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PREFACE

In commutative algebra, real valued functions (which may
attain infinity) such as length, rank, multiplicity etc. are
frequently used., D.G.Vorthcott and m.Reufel were the first who
observed their underlying common properties and started the study
of functions satisfying certain properties [3].

Let R be a ring with identity element and assume that there is
a function L which asscciates with each R-module a non-negative real
number or plus infinity. We call L a length function on the category
of R-modules if it satisfies the following conditions:

(1) 1(0)

(1) L(4)

0;

1]

L(A') + L(A”) whenever 0 - A'> A » A"> 0 is an
exact sequence of R-modules,

The object of the present thesis is to study length functions
on modules, We will be particularly interested in the problem of
the characterization of all the length functions on the category of
R-modules,

In Chapter 1 we have collected the necessary prerequisites from
general module theory., It could be said with a mild exaggeration
that for the main body of this work one has only to know the Jordan-
Htlder-Schreier theorem.

Very often it is more convenient to obtain a description of
length functions on a certain subcategory of the R-modules than on
the whole category. It is therefare necessary to develop a technigue

which enables us to 'ascend' from a subcategory to the full category
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of R-modules, i,e. to extend length functions. Chapter 2 is devoted
to this problem. It is shown that this extension is always possible
and there is a 'minimal' extension. This leads to the notion of
continuity. Roughly speaking a length function L is continuous on
a subcategory U if L is uniquely determined by its values on U.
In [3] the authors considered only those length functions whose
valuea are determined on the finitely generated modules, We call
these functions ‘upper continuous', MNost of this chapter's material
is contained in [7].

Chapter 3 contains the main results of the thesis, 4 length

function L is called 'irreducible' if L = Ll + L, implies that

2

1 = cl or L, = cL, ¢ > 0. The main decomposition theorem (Theorem

3.12) states that if U is a category with Krull-dimension then every

L

length function on YU is a unique sum of irreducible functions.

The concept of the Krull-dimension of an Abelian category was
introduced by P,Gabriel in his thesis [4]. His definition, however,
was designed for the whole category and made use of the concept of
quotient categories. To meet our different requirements we have had
to modify his definition. It was felt at the same time that the
employment of quotient categories would need a good warking knowledge
of Abelian categories. Accordingly, we will use an entirely elementary
technique.

After the decomposition theorem we describe the irreducible length
functions of the category of Noetherian modules for a given ring. It
is found that the irreducible length functions are associated with
indecomposeble injective modules, In the case of a commutative ring

the indecomposable injectives can be replaced by prime ideals,
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Special questions of the general theory are discussed in Chapter
4o In Section 4.1 we describe the length functions on the category of
Artinian modules over a commutative Noetherian ring. In Section 4.2
we prove that fa Artinian rings and for (commutative) semi-local
Dedekind rings every length function is determined by its values on
Artinian and Noetherian modules, An example shows that the condition
'semi-local' cannot be dropped. D.G.Northcott and M.Reufel found that
for a rank-one valuation ring the valuation induces a length function.
We prove this result in Section 4.3. The last section of this chapter
deals with rings R for which a length function L exists such that
L(R) = 1.

After reading the first chapters the reader will probably find
that the theory could easily be accommodated in Abelian categories.
This is indeed true for the whole thesis, with the possible exception
of Chapter 4. 1t was felt, however, that the possible gains in
generality were not sufficient to warrant the use of abstract categories.
On the other hand we made a determined effoort to exploit aspects of
duality. Thus finitely embedded modules are introduced in Section 1.3
and play a complementary rdole to that of finitely generated modules.
Gabriel's definition of Krull-dimension has becn modified and now has a
self-dual nature. The result is that the decomposition theorem is
applicable to the category of Artinian modules as well,

As an application of the general theory we present multiplicities
in Chapter 5 as 'operators' on length functions., Again, Artinian
modules are placed on an equal footing with Noetherian ones., In

Section 5.2 we see the decomposition theorem at work in establishing
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the associative lew for multiplicities without any restriction
on the ring.

The ordered Grothendieck group is introduced in Chapter 6.

We show that there is a one-~to-one correspondence between the length
functions and the order-preserving homomorphisms from this group into
the real numbers.

In the present thesis we have attempted to present a general
theory of length functions. On many problems only the first groping
steps have been taken towards a solution.Of the numerous problems we
mention only two: the characterization of length functions on
categories without Krull-dimension and the problem of rank-rings, It
seems that for both of these questions the ordered Grothendieck group
holds the key.

I owe a considerable debt to the authorities of the University of
Sheffield who helped to make it possible for me to stay in Great Britain.
This debt I gladly acknowledge here. I also record my deep appreciation
of the encouragement given to me by Professor D.G. Northcott, who
stimulated me to embark on the investigation of length functions on

modules.

July, 1968 Foder  Vaunsi
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CHAPTER 1

CATEGORIES OF MODULES.

1.1 Introductory remarks.

It is assumed that the reader is familiar with the basic
ideas of module theory, say chapter 1 of [1] and [2]. We make a
few remarks, however, to clarify our terminology.

Throughout this thesis a ring R will mean a ring with identity
element and an R-module is understood to be a unitary left R-moduls.
The sign C always stands for strict inclusion and inclusion in the
wider sense is indicated by C. When we speak of a category we
mean & non-empty full subcategory of the category of modules over a
ring R i.e. a class of R-modules and all the homomorphisms between
them. In addition, we assume that if a category contains a module M,
then it contains every module isomorphic to M as well., The category
of R-modules itself is denoted by M(R).

The Jordan-Hblder-Schreier theorem plays a central rle in our
investigaf.ions. It might be helpful to recall this result here.

Let A be an R-module., By a ghain o of A we mean a finite sequence

of submodules of A of the form

(o 2 0=AOQA1CQ.ogAn=A0

The modules C, = 1\.:.1/.15.1_1 (1 <1 ¢ n) are called the chain factors of g.
Suppose that & second chain
x : 0= BogBlgccvgBm= A

of submodules of A is given with chain factors D, = 131/131_1 (1 <4 ¢<m.
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We say that t_is a refinement of o if it is obtained from o by

inserting new submodules between those already present. The
chains o and T are called equivalent if n = m and the chain
factors of o and v are isomorphic up to order i.e. there is a
permutation ¢ such that C; = D@(i) (1 «i<n). The Jordan-
Hblder-Schreier theorem states that any two chains (and conse-

quently a finite number of chains) of A have equivalent refinements.

l.2 Serre-categories

We wish to define two special types of categories which will
frequently ocour in the sequel. Let R be a ring and
O»A>A>A"0
an exact sequence of R-modules,

Definition. A subcategory U g_f_‘_ém(R) is called 'semi-closed' if it

has the property that

A € U implies A ,A"¢ YU,

The category U is said to be a 'Serre-category' if it has the

property that

A e U if and only if A ,A"¢ U

It is olear that a Serre-category is semi-closed, Further, if
¢ is a chain of the module A in a semi-closed category U then every
chain factor belongs to %, If U is a Serre-category then the
eonverse holds as well,

An intersection of Serre (resp. semi-closed) categories is
obviously a Serre (resp. seml-closed) category again., If U is a

category then the smallest Serre-category containing U is called the
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‘Serre-category generated by U'. If set theory allowed us we
could speak of this category as the intersection of all Serre-
categories containing U. Instead, we proceed by construction.
If B C C are submodules of a module A then the factor module
C/B is called a 'segment' of A. Suppose now that U is a category.
Set

a ={A e NR) : A has a chain o such that every chain factor of o
- ’ * 1is isomorphic to a segment of an element of U,

Proposition 1., Let the situation be as described above., The

category U is the Serre-category generated by U.

.Proof., It is clear that U C_Z”J] and that every Serre-category
containing U contains ﬁ. It remains to be shown that "i(' is a Serre-
category. Let

0> A A A"0
be an exact sequence in M(R) and suppose that A,A” € E(. We may
assume that A’ is a submodule of A and A”= A/A', By piecing
together any two chains of A' and A" respectively we can obtain a
chain for A, This shows that A ¢ 3, Conversely, assume that A ¢ 5.
Then there is a chain ¢ of A such that the chain factors of o are
isomorphic to segments of modules of U. Obviously, any refinement
of o will have the same property since a segment of a segment is a
segment again, Let o' and t'be equivalent refinements of o and the
chain 0 C A'C A. Then ©/ yields chains for A and A/A' having the
required property.

Corollary. Let U be a semi-closed category and ;ﬁ the Serre-category

generated by . A module A belongs to U if and only if it has a chain

o such that every chain factor of ¢ belongs to U,
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Note that the category containing the zero module alone is
a Serre-category and contained in every semi-closed category.
There can be no confusion in denoting this category by O.

Lemma 2. Let Aq,A, be submodules of A ¢ T(R) and U a Serre-

category. Then

(1) AjsA, € U if and only if A + A, € U;

(ii) A/Al,A/A2 € U if and only if A/Al NA, U

Proof'. Consider the following exact sequences:
0->A1+A1+A2->A2/ N4, >0,
0~ (A1+A2)/A1+A/A10A2->A/A2->O,

and take into account that if U contains a module then it contains

all of its submodules and factor modules,

1.3 Finitely generated and finitely embedded modules.

In accordance with our programme we now define a class of
modules, in a certain sense complementary to the class of finitely
generated modules, First, however, we shall introduce injective
modules,

Definition. An R-module M is said to be ‘'injective' if far any

diagram of R-modules

a
B

r

A .
ﬁl Y
M

with an exact row (i.e. o is a monomorphism) a homomorphism y can

be found so that vya = £,

We now briefly summerize the basic properties of injective

modules. For the proofs the reader is referred to [2, chap.III,5-7].
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For an R-module M the following are equivalent:

(1) M is injective;

(i1) M is a direct summand in every module containing it;

(iii) The functor HomR(-,M) from M(R) into the category of

Abelian groups is exact.

Definition. Let M be a submodule of the R-module N, We say that

N is an 'essential extension' of M, if for a submodule P of N,

PNM =0 implies P = 0, For every R-module M there exists a

module E(M) satisfying the following equivalent condiiions:

(i) E(M) is a meximal essential extension of M;

(i1) E(M) is a minimal injective extension of M.

Moreover, if B is another module satisfying (i) - (ii) then there

is an isomorphism between E(M) and E’ which is the identity on M.

The module E() is called the 'injective envelope' of M and will

always be denoted by E( ).

E.Matlis has shown the following [5, Proposition 2,1]:

‘I__f: M is a finite direct sum of modules X = Ml Do o B Mk then there

is an isomorphism

E(M) =~ E(Ml) D. ..0 E(Mk).

Definition. Let M be an R-module., The 'socle' of M, denoted by s(M},

is the sum of all simple submodules of M.f

Thus S(M) is the unique maximal semi-simple submodule of A and
can be written as a direct sum of simple modules., It is easily seen

that the socle commutes with direct sums,

t In case M contains no simple modules S(M) = O.
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We now now ready to introduce the concept from which the
heading of this section is derived,

Definition. An R-module M is said to be 'finitely embedded' if

E(M) = E(Sl) D. . D E(Sk),

where each Si is a simple R-module.*

Lemma 3, The module M is finitely embedded if and only if

(a) M is an essential extension of S(M) and

(b) S(i) is finitely generated.

Note that S(i) is finitely generated if and only if it is both
Noetherian and Artiniam,
Proof. Suppose that (a) and (b) hold., Then S(i) = S, @eee® 5y
where Sl""’sk are simple modules and
E(M) = E(S(M)) = E(sl Do sk) 8 B(sl) Dee D E(Sk).
Conversely, if M is finitely embedded and M # O then
E = E(#) = B(5;) ©..8 E(Sn) = E(s1 Do P Sn)

for simple modules S,,...,5 fn > 1), Since S, NN £ 0 for each SHp

i
§=5,0..85 ¢ S(#)s On the other hand
S(M) ¢ S(E()) = S(E(Sl) D. . D E(Sn)) = S,

e have S = S(ili) and M is an essential extension of S(M) since
E(¥) = E(S).

The propositions which follow are stated in dual forms for
both finitely generated and finitely embedded modules, Since these
are standard results for finitely generated modules, proofs will

only be provided far the finitely embedded case.

A family {Mi}id of submodules of Ii is said to be 'direct'

t The zero module as a vacuous sum is finitely embedded.
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(resp. 'inverse') if for any finite number il""’ik of elements

of I there is an io € T such that

M. 2 b, +eeot+ M, (reSp. M, g M. MNeseN M, )'
10 ll 1k lo 11 lk

Proposition 4. A module M is finitely generated if and only if

every direct system of proper submodules of M is bounded above by

a proper submodule of }i.

Proposition 4*., A module M is finitely embedded if and only if

every inverse system of non-zero submodules of Ii is bounded below

by a non-zero submodule of li.

Proof. Assume i £ O is finitely embedded and iMi Iid is an

inverse system of non-zero submodules of M. Since M is an
essential extension of its (Artinian) socle, S(Mi) #Z 0 and has
minimal condition for all 1 ¢ I. We can choose an i, ¢ I such that

0

S(Mi ) is minimal, For every i € I there exists a j ¢ I such that
0

M. C M, NM, « It follows that S(i,) ¢ S(M,), S(M, ) =S(ii,). Hence
J i J i io J

1

S(M, ) C M, for all i e I,

io i

Conversely, assume that any inverse system of non-zero

submodules of M is bounded below, Let N C I be a non-zero submodule.
Then, by assumption, and Zorn's Lemma, there is a minimal submodule
S of N which is, consequently, simple. Thus 0 £ S(N) C N N S(M)
and i is an essential extension of its socle which is clearly
finitely generated.

Proposition 5. A module M is Noetherian if and only if every

submodule of M is finitely generated.

Proposition 5%, A module M is Artinian if and only if every factor

module of M is finitely embedded.
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Proof. It will suf'fice to prove the "if" part. Let
Al 2 A2 Deed An Dees be a descenling sequence of submodules of
M and A = MA . Since M/A is finitely embedded we may assume that
A =0, If the sequence did not terminate it would be bounded by a
non-zero submodule which is impossible,
Let 0 » A'EE A > A”-\E 0 be an exact sequence., Then we have:

Proposition 6. If A is finitely generated then so is A", If A’

and A" are finitely generated modules then A is a finitely

generated module too.

Proposition 6%, If A is finitely embedded then so is A', If A

and A” are finitely embedded modules then A is a finitely embedded

Proof. By Proposition 4*, A’ is clearly finitely embedded whenever
A is finitely embedded. Tor the second part let a : A'> E(4 ),

B : A"> E(A”) be the embeddings of A’ and A” into their injective
envslopes. By definition E(4’') ©® E(A”) is finitely embedded. Since
E(A’) is injective, the mapping a can be extended to A, i.e. there
is a ¢’ : A» E(4') such that ¢'¢ = @, Then we have a monomorphism
o + 8y : A>E(A) @ E(A”) and the first part of the proposition
implies the result.

Corollary. Let A,A, be submodules of a module M. If Al,A

2
finitely generated then Al + A2 is finitely generated. If

are
D ——

M/A_l,i-.-i/Az are finitely embedded then M/A, N A, is finitely embedded,

Proof. Observe that Li/A.l N A2 can be mapped monomorphically into

M/A1 ® I\d/A2 and use Proposition 6*,
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Proposition 7, Let {Mi} ¢ be the family of finitely generated

ieT

submodules of a module M., Then {Mi} is a direct system and

zifIi'ii = l‘-’lc

Proposition 7*. Let {Mi}iel be the family of those submodules

of a module i for which M/Mi is finitely embedded. Then {Mi} is

an inverse system and N. M. = O,
ieT71

Proof. It is clear from the previous corollary that {Mi}ieI is

en inverse system. Let x € L., x £ O. Then there is a simple module
S and an epimorphism Rx » S. Also, the mapping Rx + S » E(S) can
be extended to M since E(S) is injective., Therefare we have a
homomorphism ¢ : M » E(S) such that ¢(x) # 0, It follows that
¥/Xer ¢ is finitely erbedded and x ¢ Ker ¢. This proves that
FEEIMi = 0.,

Remark. The duality here is very deceptive. Proposition 7 states,
in effect, that every module is the direct limit of its finitely
generated submodules, It is not true, however, that every module
is the inverse limit of its finitely embedded factor modules. The
reasons for this can be found in category theory, see e.g.

[4, Proposition 6, chap.I.]

Definition. The R-module i is said to be 'singly embedded' if

E(M) = E(S) where S is a simple module.

Proposition 8. Every finitely generated module has a chain of

submodules with singly generated chain factors.

Proposition 8%, Every finitely embedded module has a chain of

submodules with singly embedded chain factors.
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Proof. Let i be a finitely embedded module and
E(M) = E(S;) @D E(S,), 5y5e0.,5, simple modules, If
%, 2 E() » E(Si) is the natural projection and a : M - E(M)
the injection of M into E(ii), then M/Ni is singly embedded for

Ni = Ker';tia, 1 <1 <%k Also, Ny NeeeNN, =0, A typical chain

1 k

factor of the chain 0 = N; Me.AN C Ny MNueeN N L CoooC Ny CH s
of the form Ny N...N N:.L/N1 Moo NI, o =Ny Nese Ni+Ni+l/ 101 S M/Niﬂ.

The proposition now follows,

Proposition 9, Let ¢ : A+ B be an epimorphism of R-modules, B

finitely generated. Then there is a monomorphism a : A'+> A such

that & is finitely generated and Im ¢a = B,

Proposition 9%, Let ¢ : B » A be a monomorphism of R-modules, B

finitely embedded., Then there is an epimorphism ¢ : A » A’ such

that A’ is finitely embedded ard Coim ap = B,

Proof, Consider the diagram
¢
0—B — 4
’/
1
VoY
E(B)
where 8 is the injection of B into E(B). Since E(B) is injective
there is ¥ such that Yo = . Set &' = y(4A) and let a be the epi-
morphism A~ induced by ¥. Then A’ is finitely embedded and Coim a¢= B,

For a further discussion on finitely embedded modules and

related problems the reader is referred to [8].
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CHAPTER 2

LENGTH FUNCTIONS

2,1 Preliminaries,

Throughout section 1 and 2, the ring R will be kept fixed
and all the categories are understood to be subcategories of
MR) .

Let U be a semi-closed category and L a function from U into
the set of non-negative real numbers and plus infinity.

Definition. The function L on U is called a 'length function'

on U if it satisfies the following conditions:

(1) (o) =0
(ii) L(4) =L(4') + L(A") whenever
0+ A>» A > A'>0

is an exact sequence in U

Remark. Condition (i) is almost superfluous., In fact if L(A4) < +w
for some A € U, then (ii) implies (i). Condition (ii) will
sometimes be referred to as the additivity property.

It follows immediately from the definition that if A,B are
isomorphic modules in U then L(A)=L(B). Also, if A’ is a sub-
module of A € U then L(A') ¢ L(A) and L(A/A' ) £ L(A). It is useful
to note a few easy consequences of the axioms,

Let L be a length function on a semi-closed category U. If A
is a module in U and a chain

o:0=ACA CuCA =4

of submodules of A is given then a straightforward induction
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argument yields the formula
vy _ o
L(A) = Zi=1L(Ai/Ai_1).
In particlar, a finite direct sum A = Ay Des D An glves
L(4) = L(Al) toeot L(An).
Consider now a long exact sequence
0->A1—>A "oa.”An"O (l>

2

of modules in . If n = 1 then Ay = 0 and L(Al) =0, Ifn=2

then A, = A, and L(4) = L(AQ). Next we have L(Al) +L(A3) = L(A2)
in the case n = 3. We contend that, in general
Y. L&) = Y L&) (1 <i,i<n). (2)

i odd j even Y
The cases n = 1,2,3% have already been established, Assume that
(2) holds for n-1 > 2, Ve may assume, without loss of generality,
that n is odd, say. Put B = Im(An__2 -» An-l)

The sequence (1) gives rise to exact sequences:

® Ker(An_1 -» An).

O*Al"..."An_z-’B*Oand

- A »0,
n

(3)

0+B=4 4

Hence L(A;) +eeet L(An_z) = L(A;) +eeo+ L(A ) + L(B) by the

n-3
induction hypothesis and L(An) + L(B) = L(An-l)' Then
L(A) +eeet L(AL) + L(B) = L(4y) +,.0+ L(& ) + L(B), 1If

L(B) < = then (2) follows, If L(B) = « then L(An- > L(B) =

1)
and L(An_z) 2 L(B) = = from (3). Thus (2) is valid again since both
sides are equal to =,

We summarize these facts in the following:

Proposition 1. Let L be a length function on a semi~closed

category U and Ai’Bi’Ci 1l ¢1 < n modules in U,
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(1)

1=

0= AO C A Gl An = A is a chain of submodules

n
of A then L(A) = I, ,L(&/2, ).

(ii) If B = B, ©...8 B then L(B) = L(Bl) teeot L(Bn),

(i41) If 0 > Cy » C, »+.e> C_ > 0 is an exact sequence then

) n(c;) = S 1(c.).
. . d
i odd J_even
l<i<n l<jen

Remark, If we have L(Ci) <o 1 <¢i <n in(iii)then the result
n i
takes the form 2i=1<-1) L(Ci) = 0,

Proposition 2. Let L be a length function on a Serre-category U

_a_n_<_i_ Al’AZ’Bl’BZ submodules of the R-module M, Then we have
Y - \
(1) L(A1+A2) + L(A1 N4, = L(AI; + L(AZ) whenever

Al + Ay € U,
(i1) L(u/By+B,) + L(k/By N B,) = L(M/Bl) + L(r.l/Bz)
whenever M/B1 N B2 € U,
Proof. Note that all the modules which occur belong to U by
Lemma 1.2.
Consider the following exact sequences:
0> Ay > A+, > Az/Alr\Az -0 (4)
0> A NAy > A&y > A)/A N A, >0, (5)
Again, all the modules are in U, From (4) we obtain
L(Aj+A,) = L(A)) + L(A/A N A,).
Hence L(Aj+A,) + L(4N4A,) = L(A)) + L(A/A NAS) + L(A N4A,)
= L(a)) + L(4,) since L(4,) = L(A)NA,) 4 L(A,/4 N4A,) from (5).
Part (ii) is established in a similar way.
Let L’{LilieI be length functions on a semi-closed category U
and ¢ 2 0 a real number, The functions cL, zieILi defined by
(eL)(A) = cL(A); (EieILi)(A) = sup zieJLi(A) where J ranges over
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the finite subsets of I, A ¢ U. It is easily seen that both
cL and ZieILi are length functions on U, Also, if L,I' are

length functions on U and L 2 I/ (i.e. L(A) > I/ (A) for all

A e o) then set
L(A) - T/ (4) if L(A) < =
(-1 )(4) = (
(o otherwise,
We see at once that L - L' is a length function and L =L -L' + L/,
For e Serre-category Y and a length function L on U the

'kernel of L, Ker L and the ‘'domain of finiteness of L' Fin L

are defined as follows:

Ker L = {A e ¥ : L(4) = 0},

Fin L = {A € U : L(A) < =},

It follows immediately that Ker L amd Fin L are Serre-categories

and 0 C KersL Fin L C U

2,2 Extensions and continuity

Let U C B be categories and L,L'’ length functions on
U and B respectively. If L'(A) = L(A) for all A € U then we

say that L’ 3s an extension of L to B and L is the restriction

of L' to U.

If a length function L is defined on a Serre-category U
then we can easily extend L to M(R) by simply setting L(4) = «
for A ¢ Y. The additivity of L - now defined on M(R) - is

easily checked. This extension is called the trivial extension

of L, Befare discussing a more satisfactory method of extensions
we wish to introduce a convenient notational device. Assume

that L is a function on a category U and define
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L (4) = {L(A) if A e U (& « m(2)).

0 otherwise,
For a given chain
C:0=ACACCA =4 (6)
of submodules of A write

L(o,A,Y) = fiﬂ NOW/ NN

Ve simply write L(o) or L(o,A) when A or U or both are fixed,

and this notation will be adopted throughout this section.

Assume now that U is a semi-closed category, L is a length function
on U and the chain 7 of A is a refinement of the chain o in (6).

If uu(Aj/Aj_l) 1 < J <n is not zero, i.e. Aj/Aj_l € U, then all
the chain factors of © which arise by the refinement of the

Aj-l - Aj part of o will again belong to U since U is semi-closed.
Consequently L(c,A) < L{t,A). In other words, if o is refined then
L(c,A) is not decreased. Set

L(4) = sup L(0,4), A ¢ T(R)

where the supremum is taken over all chains ¢ of the module A,
We claim that § is a length function on MR) and extends L. TFor
if A’ is a submodule of A and o is any chain of A then there are
equivalent chains o’ and 1 of A such that ¢o’is a refinement of o
and © is a refinement of 0 C A“C A, The chain © induces chains
¢ and v” of A’ and A/A’ respectively, lioreover,

L(t',A") + L(v",A/A") = L(z,A) = L(o' ,4) 2 L(o,A).
Since o was arbitrary, we deduce that

L(A") + L(a/A") > L(4).
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Conversely, let p,T be chains of A’ and A/A’ respectively, If o
denotes the chain of A obtained by sticking p and v together then
L(p,A’) + L(t,A/A") = L{o,A). Hence T(A') + L(&/A") ¢ L(A).

Definition. The function L constructed above is called the

‘continuous extension' of L with respect to the semi-closed

category U.
We now characterize L as a2 minimal extension of L to M(R).
More precisely we prove:

Theorem 3. Let U be a semi-closed category, L a length function

on ‘LLLI: the continuous extension of L and L’ another extension of

L to M(R). Then L(A) ¢ L’(4) for all A ¢ M(R).

Proof., Let A € M(R) and o a chain of A, e see from the definition
of L(c,A) that L(o,A) ¢ L'(A) since L and L’ agree on U. Hence

f(a) = sup L(o,A) < L'(A).

Corollary. Let U be a semi-closed category, L a length function

on U and 9 the Serre-category generated by U. Then L has a unique

N
extension to U.

Proof. Since L can be extended to M(R) by Thearem 3 we have only

&

to prove that this extension is unique. Assume that Ll,L2 are
length functions on 9 and they both extend L. PFor each A ¢ 2 there
is a chain

c-:oongAlC...CAn:A
such that the chain factors Ci = Ai/Ai 1 1l ¢ i «n belong to U

by Proposition 1,1 Corollary. Therefare
Ll(A) = X‘iLl(ci) = s"iLz(ci) = LZ(A)

since L1 and L2 agree on U,
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The corollary shows that when dealing with length functions
on a semi-closed category we may assume, without loss of generality,
that the category in question is a Serre-category.

‘While the continuous extension of a length function L on a
semi-closed category U turned out to be the 'minimal' among the
extensions of L, the 'maximal' extension can be obtained as follows.
First extend L to &, the Serre-category generated by U, and then
take the trivial extension to ®(R).

Let U C B be semi-closed categories and T a length function
on B, The continuous extension of L with respect to U is called

the 'continuous component of L' with respect to U. In other words

this is the continuous extension of the restriction of L to U, For
any length function L whose domain ¥ conteins U, the continuous
component of L with respect to U is denoted by L. Thus L is a
length function on MR). Since L and L agree on U, L < L on the
domain of L, by Thearem 3, Clearly i =T and L » L is a closure

operation.

!

length functions whose domainscontain Y. If L denotes the continuous

Proposition L. Let U be a semi-closed category and K,Kl,{Li iel

component of L with respect to U then

(1) (éﬁ) = ¢k for a real number ¢ 2 0;

(i1) K < K{ implies K < ﬁl;

i) (5, 1) =z, T
(131) (By gl5) = T4 g0y

Proof. Statements (i) amd (ii) follow immediately from the
definition.

In order to prove (iii) assume, first, that I = {1,...,n} is a

t The semi-closed category on which L is defined.
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finite set and let A € M(R). For any € > 0 and 1 € I there is
. _ 1 Vo.
a chain o, of A such that Li(O’i) = Li(O’i,A) > Li(A’ e/n. Let o

be a common refinement of the chains O"i. then

Hence Py

On the other hand

(@) A) = sap(TmLi)m - og Y, 15(9) <

7 sup L. (o, =$_‘. i.A =T A>

o ) = T, w0 =(T £ .
T -

This shows that (zieILi) = zi«sILi when I is finite. Next, let

I be an arbitrary index set., Using the above result for the

finite case we obtain

B = 9 (7)o s (5, oo -

i
/ / ~ A
syosup /7 1, V(o) = sy (T T, ) (&) =<y L, ) (&),
\ 1ed \ ied “iel
where J and o range over all the finite subsets of I and chains of
submodules of A respectively.

Definition. Let U,B be semi-closed categories, U C B, A length

o —. >

function L on B is said to be continuous on U if L =L rdlds B, where T is

-——a

the continuous component of L with respect to U.

Note that if a function is continuous on U then it is uniquely

determined by its values on U, Also L = I: + L - f) on B since I:< L,

and L - L is O or » on Y, Thus every function admits a (unique)

decomposition into 'continuous' and 'singular' parts,
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Proposition 5. Let the catesory U be the intersection of the

semi-closed catesories U ,e.s,U and L a length function on M(R).
1 s

Then L is continuous on U if and only if it is continuous on all

the U!s,
i

wammastas

Remark. There is no loss of generality in assuming that L is on
J(R) and not on a category whose domain contains U, Indeed, one
can always éxtend L to MR). As for continuity, see the
corollaries after the proposition.
Proof., Let f,i and L be the continuous components of L with respect
to -‘ui and Y respectively. By Theorem 3 L« ii <L 1<«<31c<«s,
Theref’oreL:ii 1<ic<sifl=L,

The second part is proved by induction on s. Tor s = 1 there is
nothing to prove. Suppose that s = 2 and let A ¢ M(R) and € > 0 be

given, Since L is continuous on -‘L(l we can find a chain

T :0=Aj QA Gl A =4, Ci=Ai/Ai_l l<ic<n

F

such that L(0,A,%) > L(4) - e. Suppose that C. ,...,C, are the
! Tk
chain factors lying in -‘Ul, in other words those which contribute to

L(o,4,% ). Again, L is continuous on Y, and we have chains

iR L -
T1sees,T) Of the modules cil,...,cik such that .(Tj,cij,'uz) >L(Cij) €

1< Jj < k. But every chain factor of Tj belongs to 2., because

1’
Ci.€ ‘211 and %(l is semi-closed, Accordingly I.guz and L*u agree on ‘?,(l

J
since U = U; N A,. Hence L(’rj,Cij,%(z) = L(TJ,Cij,Su) 1<j <k
Thus, if o’ is the chain obtained from & by inserting Tysees,T, then

k k
L{o",A,%) ?Ejzl L('cj,Ci_,‘le) >§“J.=1 L(Ci ) -ke > L(A) = (k+1)e,
J ) J

It now follows from the definition of L that L(A) > L(4), whence L = L.

Finally, assume s > 2 and the proposition is proved for s - 1,
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Put B = %(1 Ne e oM sus_ Then L is continuous on B by the induction

1.
hypothesis and L is continuous on -‘L(S by assumption. Since the case
8 = 2 has already been proved we can conclude that L is continuous

on%f’\-‘us:‘u.

Corollary 1. Suppose chat two semi-closed categories ‘211 and -‘212 are

given and ‘ul - -‘Liz. If the length function L is continuous on %(1

then it is continuous on ‘2,(2.

Proof, Observe that ‘l(l = ‘2& N %(2.,

Corollary 2., Let U be a semi-closed category,t‘l\'l the Serre-category

generated by U and L a kength function. Then L is continuous on U

if and only if it is continuous on o,

Proof. It will suffice to prove that L is continuous on Y implies
that L is continuous on Y. Assume that L is continuous on U and
let L be the continuous component of L with respect to U. Then
L <L, But L and L agree on A by the corollary to Theorem 3, Thus

L extends L from Y. Therefore L < i, this time by Theorem 1 itself.,

Definition. A length function L on a semi-closed category U is said

to be 'upper continuous' if for each 4 ¢ U, L(4) = supXL(X), where X

ranges over all the finitely generated submodules of A, Dually,

L is called 'lower continuous' if for each A ¢ U, L(A) = supr(X),

where X ranges over all the finitely embedded factor modules of A,

In the work of Northcott and Reufel [3] upper continuity is
incorporated into the definition of a length function. The term
‘upper (lower) continuous' was used in [7] with a slightly different

meaning.

If L is an upper (resp.lower) continuous length function on T(R)
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then it is uniquely determined by its values on singly generated
(resp.single embedded) modules by virtue of Proposition 1.8,

Proposition 6. Let L be an upper continuous length function on a

A

semi-closed category U and L the continuous extension of L to M(R)

(with respect to ). Then L is upper continuous,

Proposition 6%, If L is a lower continuous length function on a

semi-closed category U and i 1s the continuous extension of L to

M(R) then L is lower continuous.

Proof (of Proposition 6). e prove the proposition by showing
that for any R-module 4, € > 0 and chain

C:0=A;CA G CA =2 (7)

1
of A, there is a finitely generated submodule X of A such that

L(X) 2 L(o,A) - €. (8)
Ve proceed by induction on n, If n = 1 then either L{o,A) = 0 and
there is nothin. to prove, or A € U in which case L(o,A) = L(4).
By assumption, L is upper continuous on Y. Hence L(X) > L(A) - ¢
for some finitely generated submodule X of A, X ¢ U. Therefore
i(X) = L(X) > L(o,A) - &, Assume now that (8) has been proved for
all pairs O,A, where O has at most n-l1 inclusions, Then we have a

finitely generated X' of A, in (7) such that i(X'} > L(o“,’An 1) - g/2

1
where 0’ denotes the chain 0 = A C,,.C 2 C A . If
0 =*°"= "n-2 ="n-1
A/An ] ¢ U then L(o”,An_l) = L(o,A). e may, therefore, assume that

A/An-l € U Using Proposition 1.3 and the fact that L is upper

continuous on U, we find a finitely generated submodule Y of A such

that L(Y+A ;/A 1) = L(Y+A /A ) > L(A/A_ ;) - €/2. Put X = X'+ Y,
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Then
L(X) = L(X*Y) = LX) + DOY/XNY) 2 L(X') + i(Y/An_lnY) -
LX) + LY + & /A 1) > L(o%A 1) - o/2 + L(A/A__}) - &/2 =
L{(c,A) - €.
This establishes (8)., Taking supremums on both sides of (8) we

obtain
supr;(X) > L(a) - e,

X ranges over all the finitely generated submodules of A, Since this

holds for all € > 0, supxi(x) > i(A). The proposition now follows,
The proof of Proposition 6* is analogous to Proposition 6

and omitted.

Proposition 7. Let §,5 denote the category of finitely generated

and finitely embedded modules respect:i.vely.'r If U,B are semi-closed

categories and L is a length function on M(R) then:

(1) ifUC T (resp. YL &) and L is continuous on U then L is

upper (resp. lower) continuous;

(i) if 3C B (resp. H CB) and L is upper (resp. lower)

continuous then L is continuous on B.

- -

Proof, If L is continuous on U and U < ¥ then L is upper

continuous on U trivially. Now Proposition 6 establishes (i).
Suppose that L is upper continuous, 5 C B, and let L be the

continuous component of L with respect to B. Then L <L, If Xis

finitely generated then X ¢ B and L(X) = L(X). Hence

L(4) = supr(X) = supxi(x) < L(4) where A € M(R)and X ranges over

the finitely generated submodules of i. Thus L = L and L is

continuous on B.

t 5,9 are not semi-closed. ¥ semi-closed <=> R is left-Noetherian,

As for $, see [8].
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Corollary., Let U and B be the category of Noetherian and Artinian

modules respectively. Then UC § and B H. If L is continuous

on U (resp. B) then L is upper (resp. lower) continuous. If ¥ = 3§

(resp. B = ) then the two concepts are equivalent,

Thus, if R is left Noetherian there is no need to distinguish
between upper continuous funciions and functions continuous on
Noetherian modules, A different characterization is presented in
the next theorem.

Theorem 8, Tor a length function L -on T(R) the following are

equivalent:

(i) L is upper continuous;

(ii) for any module 4 and direct systems {Ai}iel of submodules

of A such that I.A, =4, L(a) = supiL(Ai);

(1ii) for any module A and totally ordered set {Ai}isl of

submodules of A such that Z,A; =4, L(4a) = suPiL(Ai)'
Proof. (i) = (ii). By definition L(A) = supXL(X) where the supremum
is taken over the finitely generated submodules of A, Yor a typical
finitely generated submodule X of A an index j € I can be found so
that X C Aj‘ Consequently,

L(A) 2 supiL(Ai) > supr(X) = L(A).

(ii) = (iii) Clear.
(1ii) = (i) Suppose L(%) > supr(X) = ¢, where X varies over the
finitely generated submodules of A. '"e can construct an ascending
sequence Xl,X2,...,Xn,... of finitely generated submodules of A so
that L(X ) > ¢ - 1/n. Hence for B = u§=lxn, L(B) = c and B £ A,
By our assumption and Zorn's Lemma there is a submodule M of A which

is maximal with respect to the property of containing B and L(}) = c.
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Thus ¥ # A and there is a singly generated submodule S C A, S ¢& M.
We have
d = L(S/sNi) = L(S+i/M) = L(S+.) - L(K) >0 (9)

by the maximality of M. (Note that L(M) < o since L(M) = ¢ <L(4).)
Choose the positive integer k such that L(Xk) > ¢-d, Then Xk4-S
is finitely generated and

L(X+8) = L(X) + L(s/xkns) > L(X) + L(S/MNS) > ¢
by (9). On the other hand L(X +8) < ¢, a contradiction.
Remark, This theorem does not dualize, not, at least, without
modification. The reason for this is, that we had to use the fact
that every module is a direct limit of finitely generated
submodules., This phenomenon has no counterpart as it was pointed out
in section 3 of chapter 1.

The essence of Theorem 8 is, roughly speaking, that upper
continuous functions commute with direct limits. Before giving the
exact meaning of this it might be helpful to give the definition of
direct and inverse limits,

The partially ordered set I is called directed if any two
(and consequently finite number) elements of I have an upper bound

in I. Let I be a directed set and a family of R-modules

il
with a collection of homomorphisms @, i : Ai > Aj, i ¢ j, satisfying
?
a. .a. . = Q. whenever 1 ¢ jJ <« ke Let D be an R-module and
Jryki,d i,k
¢3¢ Ai -+ D homomorphisms for each i ¢ I satisfying

P = ¢;, for all pairs i < j. (10)

.a, .
Jd 1,4

The pair (D,q)i) is called the direct limit of the system (Ai’ai 3.)
>

if, for any other module D' the homomorphisms @3 : Ai + D' satisfying
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(10) there is a unique homomorphism ¥ : D » D’ such that

¢¢i = ¢& for all 1 ¢ I. Inverse limits are defined analogously.
It is well known that dircet and inverse limits always exist in
MR) and they are unique up to isomorphism, If (D,@i) is the

direct limit of the directed system (Ai,a .) (notation D = Lim Ai)

i,J
then the submodules {Im¢i}iel of D form a direct system and
EiImq3.= D. Consequently we can state

Corollary., The length function L on ™(R) is upper continuous

if and only if for each direct limit of modules (D,@i) = Lim Ai we

= )
have L(D) supiL(Ai/Kertpi,.

The easy part of Theorem 8 can be carried over to the lower
continuous case:

Proposition 9. Let L be a length function on "R) and assume that

for each module A and inverse qystem of submodules {Ai}ieI of A

such that FEAi =0, L(A) = SuPiL(A/Ai). Then L is lower continuous,

Proof., According to Proposition 1,7 the family of subumodules of X
of A for which A/X is finitely embedded form an inverse system with

zero intersection. Hence Lis lower continuous,

2.3 Change of rings.

Let R,S be rings and T an exactT functor from M(R) to M(S).
Let L be a length function on M(S) and define Ly on MR) by
(&) = L&), A cn) (11)
Evidently, L is a length function on MR). In most cases in the
present work T is induced by the functors Hom and ® It is assumed
thet the reader is familiar with the definitions and the elementary

properties of these functors. For an introduction to the tensor

——— - o o e s e s o v~ a— e - e e b rn b <s g e

t It is immaterial, at this point, whether T is covariant or
contravariant,
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product ®, the reader is referred to [2 chap.V. 1-5]. ‘e now
briefly illustrate how these functors will arise.
Let SMR be a right R and left S-bimodule, i.e. M is a left 5,
a right K-module and s(ar) = (sa)r for all r € R,s € S, a € M.,
Write
T(4) = gip ® A, A& nR).
Then T is a covariant functor and commutes with direct limits.

Also, M is called right R-flat if T is exact, If T is exact and

fa.}. - is a direct family of submodules of A and Z.A, = A then

1’iel ii
{T(Ai)}i€I form a direct family of submodules of T(A) and
zieIT(Ai) = T(4). Thus Ly in (11) is upper continuous whenever
L is upper continuous.

Next, consider a lef't R-3-bimodule b, i.e. & module M

R,S
which is a left R, left S-module and r(s(a)) = s(r(a)) for all
re€ R,8 € S,a ¢ M, Set

U(a) = HomR(A,M), A e mR).
Then U is a contravariant functor from M(R) to M(S) and turns direct
limits into inverse limits., Also, U is exact if and only if M, as an
R-module, is injective (see chapter I, section 3), If L is a length
function on M(S) such that L(M) = supiL(M/ﬁi) whenever {Mi}ieI is an
inverse system of submodules of M, ﬂiMi.= 0 amd if U is exact then
LT in (11) is upper continuous. Summing up we obtain

Proposition 10. Let R,S be rings, T an exact functor from M(R) to

M(S) amd for each length function L on M(S) define

LT(A) = L(T(A)) A ¢ mR).

Then LT is a length function on M(R) and LT is upper continuous if
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either of the following conditions is satisfied:

(1) T(a) = glip & A vhere the S,R-bimodule M, is R-flat

and L is upper continuous;

(i1) T(8) = HomR(A,R_SM) where the R-S-bimodule r-gt is

R-injective and L(B) = supiL(B/Bi) for all S-modules B and

ﬂ.B = Oo

inverse system of submodules {Bizisl’ 8Os

The next problem we propose to consider is the relation
between length functions on M(R) and on MR/I), I a two-sided ideal
of R. If we denote by W& the category of R-modules annihilated by I
then 9. and MR/I) can be identified in the obvious way., Note
that M is & semi-closed subcategory of MR). It is clear that
every lensth function on M(R) induces a length function - its
restriction to WI - on M(R/I). Conversely, a length function on

M(R/I) yields a length function on M_ and this, in turn, can be

I
extended to M(R) since %I is semi-closed. Further, Proposition 6
and 6* tell us that this extension preserves upper (resp. lower)

continuity. Thus we have obtained

Proposition 11. Let R be a ring and I a two-sided ideal of R.

There is a one-to-one correspondence between the length functions

on M(R/I) and the length functions on TM(R) which are continuous

on W&. Horeover, this correspondence preserves upper (lower)

continuity.
Finally, we briefly mention two special cases. We refer the
reader to [9] for a full description of the functors which will occur,

If the ring R is the finite direct sum of the rings Rl,...,Rn

then 1, = 1 +...+ 1, uniquely. If A (R) then
1 n
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i
can be identified with .sm(Ri) and the functors D, : Mm(R) » sm(Ri),

A= lRlA D...D anA. The Serre-category I, = {]_R A demR)Y

Di(A) = 1, A, are exact. 1 < i < n., It now follows that any length
function o:; M(R) is a unique sum of length functions on Sm(Ri), 1< ign.
Consider now R° the ring of n x n matrices over a ring R, n>0,

It is known (e.g. [9] ) that the categories MR") and MR) are
equivalent, i.e. there are exact functors S : MR") » MR),

T : MR) » MR™) such that ST and TS are naturally equivalent
to the identity functors of M(R) and MR") respectively. This
equivalence of categories induces a one-to-one correspondence

between their respective length functions.

2.4 Examples.

I. The classical length function

Let R be a rin, and © the category of simple R-modules and O.
Then © is semi-closed and if
O+A->A->4"+0
is an exact sequence in & then either A'x A and A"= 0 or A = A’and
A = 0, Define the function L on © by setting L(0) = 0 and L(S) = 1,
Se€® S #£O0. Then L is a length function on &, Let € be the
continuous extension of L to M(R). The length function £ on M(R)

is called the classical length function and will always be denoted

by €. If U and B denotes the category of Noetherian and Artinian

modules and & the Serre-category generated by © then & ¢ & =un B,

Therefore ¢ is both upper and lower continuous by Proposition 7,
Assume now that L is a length function on M(R) satisfying

L(S) = 1 for all simple modules S in M(R). Then L and € agree on ©

and hence on &, (Theorem 3 Corollary). It is easily seen that any
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non-zerd module A € M(R) has a segment which is a simple module.
Hence L(A) < » if and only if A € & = Y N B, In other words,
KerL= 0, FinL =Y N B, Thus we have obtained the following
characterisation of the classical length function,

Proposition 12, If L is a length function on M(R) and L(S) = 1

for every simple module S in T(R) then L = €.

Note the following additional property of £, If {Ai}ielis
an inverse family of submodules of A and FEAi = 0 then
£(4) = supiﬁ(A/Ai). It will suffice to consider the case
SupiG(A/Ai) =n < w. Then there is a j ¢ I such that 6(A/Aj) = n,
If there were a j with AJ.,C A then €(AJ./Aj,) > 0 which is
impossible since &(A/Aj,) = n. Thus Aj is minimal in iAi}ieI which

shows that Aj = 0 and ¢(A) = n,

II. The rank

The rank of a module is usually defined for modules over a
commutative domain by means of 'dependence'. The non-commutative
case is studied in [10] and [11]. The reader is advised to consult
these papers if interested in the relationship between rank and
dependence in modules.

A (not necessarily commutative) ring R is called a domain if

rs = 0 implies r =0 or s =0, r,s €¢ R, Let R be a domain and Q a

ring containing R as a subring. Then 0 is called the (left) gquotient
field of R if the following conditions are satisfied:
(i) if r # 0, r € R then r* exists in Q;

(ii) every element of 0 can be written in the form rs,

r,s € R, r £ 0.
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A domein is called an Qre-domain if it has a quotient field.
Cuotient fields are unique up to isomorphism. Every commutative
domain is an Ore-domain. Let R be an Ore-domain and Q its (left)
quotient field. A4s a right R-module Q is flat (see e.g. [12]).
Also, T(0) is the category of (left) vector spaces over Q and the
classical length function £ on M(R) assigns to each vector space
V its dimension, The function Lr on "(R), defined by

Lr(A) = dimO(Q @ A)

is called the rank-function of “?(R). By Proposition ll,Lr is an
upper continuous length function on ™(R). Also, Lr(R) = 1 since
Q @h R =% Q as Q-modules,

Proposition 13. Let R be a (left) Ore-domain ard L an upper

continuous length function on M(R) such that L(R) = 1. Then L

is the rank-function on "(R).

The commutative version of Proposition 12 was proved in
(3, Theorem 2].
Proof., It is enough to show that for each left ideal I of R,
L(R/I) = Lr(R/i) because both functions are upper continuous. We
may assume that I Z 0. Choose a non-zero element a ¢ I, Then
L(R/I) < L(R/Ra) = L(R} - L(Ra) = 0 since R » Ra. Ilence
L(R/I) = 0 Tor I # O. Similarly,Lr(R/I) =0 if I £ 0. This

establishes the proposition.

ITI.Trivial functions

The length function L on T(R) is said to be 'trivial' if it
has values only O or o. Let U be a Serre-category and L defined

by L(A) = 0 if A € U and « otherwise. Then T is a trivial length
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function and Ker I = U, Conversely, if L is a trivial function
then KerL is a Serre-category. Thus there is a one-to-one
correspondence between the Serre-categories of M(R) and the trivial
functions on M(R).
If L is a length function on M(R) and L is the continuous
component of L with respect to TinL then L = L+L-Land L-1L

is a trivial function whose kernel is TinlL,
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CHAPTER 3

s e s e b st

CHARACTERIZATION OF LENGTH FUNCTIONS
oM CATFCORIES WITH KRULL DIMEVSION

In his fundamental work [L], P. Gabriel defined the Krull-
dimension of an Abelian category. The terminology is justified
by the fact that for a commutative Moetherian ring R, the Krull-
dimension of T(R) is equal to the Krull-dimension of the ring R.
For our purpose Gabrigl's definition is too restrictive.
Accordingly, we give a modified definition which is more applicable
to the problem of characterizing length functions. The terminology,
however, is kept; partly because of the similerities and partly

because they are equivalent on the category of Noetherian modules,

3.1. Cuasi- L-simple modules

— e nde

Let U,B be Serre-catezories of M(R), U B,

Definition. A module S in B is called 'U-simple' if S £ U

and for any submodule S' of S either §'e¢ U or s/S" € U,

Taking Y = 0 and B = M(R) we obtain the usual definition of a
simple module. "¢ also notice that the category D plays a purely
restrictive role and its presence in favour to M(R) is only a
technical convenience. The module S in B is said to be
'‘quasi-simple' if it is U-simple for some Serre-category U C B,

“Jo now fix two Serre-categories U C B in M(R) and consider the
U-simple modules in B, The following lemma is an immediate

consequence of the definition,
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Lemma 1. Let S be a U-simple module and o a chain of submodules

of S. Then there is exactly one chain factor of o which does not

P

belong to ¥,

Lemma 2, let &' be a segment of a U-simple module S. If &

does not belong to U then 3’ is U-simple,

Proof. Let N be a submodule of S’ and suppose that S’ £ U
e can find a chain ¢ of submodules of S such that N and S’/N
are chain factors of o because 3 is a segment of S, Using
Lemma 1 we find that either ¥ € U or S/ ¢ U, Thus S’ is
U~simple.

Definition. Let S,P be U-simple modules. We say that S is

equivalent to P, write S~ P, if S and P have isomorphic

segments which in turn are U-simple modules.

It is evident from the definition that the relation ~ is
symmetric and reflexive.

Lemma 3. If S,P,Q are U-simple modules and S ~ P, P~ Q then S ~ Q.

Proof. Let A,B be segments of P and ii,N segments of S and 0
respectively such that A,B,N,N are U-simple modules and i1 = A,B = N,
There are chains 0,7 of P such that A is a factor of 0 and B is a
factor of ©. Let ¢ ,t’ be equivalent refinements of o and =,

By Lemma 1 there is exactly one chain factor, say A’ of ¢’ and
B’in ¢’ such that &' ¢ A, B £ U, Then A and B must necessarily

be segments of A and B respectively, and A’ = B\, Woreover, A’ and
B’ are U-simple by Lemma 2, The isomorphisms i = A,B = N yield
segments i’ of ¥ and N of NV such that i’=~ A}B’~ N, Thus i’ and IV

are U-simple segments of S and § and W= N, Thus S ~ Q.
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Proposition 4. Let S be a Noetherian U-simple module., Then

there is a left ideal I of R satisfying the following conditions:

(1) R/I is a Noetherian U-simple module;

(ii) Every proper factor module of R/I is in ¥;

(iii) R/I ~ S.
Proof. Let i be the maximzl submodule of S which belongs to .
Then S/M is Noetherian and does not belong to U, Hence S/ is
U-simple and S/u~S., If x££ 0 x e S/li then Rx is Noetherian and
the only submodule of Rx which lies in U is the zero module, Again,
Rx is YU-simple and Rx ~ S, Finally Rx » R/T where I = O ey X.T

Dually, we have

Proposition 4*., Let S be an Artinian U-simple module., Then there

is a simple module M and a submodule I of E(M) satisfyinc the

following conditions:

(1) T is an Artinian U-simple module;

(ii) Every proper submodule of T is in %;

(iii) s~ I,

As before, let two Serre-categories U B be given., Throukhout
this chapter, W will denote the Serre-category ;enerated by U and
the U-simple modules in B, Thus strictly speaking U depends on B as

well, It may happen, of course, that there are no U-simple modules,

ices U =, Clearly U C U C B.

Proposition 5. Let the situation be zs described above. In order

RS PR N

that a module . should belon, toU'it is necessary and sufr1c1ent that

e e e - e e

—— .

a chain O of submodules of il exists with the property thnt each

C— . — e e = PSP

chain factor of O is either a U-simple module or belonss to Y,

PR .

t+ 0 R X = fr ¢e R : rx = 0},
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Roughly speaking U consists of modules with a 'U-composition
series’,

Proof, Combine Proposition 1.1 and Lemma 2.

3,2. The Krull dimension

Let U C B be Serre-categories, Tor each ordinal number a
a Serre-category will be defined such that U g-ﬂa g.%b C3
whenever @ < B. This sequence of Serre-categories will be referred

to as the Krull sequence between U and B, ''e start with the number

-1 and se%:
W_l = U,
Assume that ﬂﬁ has already been defined for ordinals 8 < a then
< - < ! : - Q -
ﬂa = (uﬁ) if a =8+1 and

o, if @ is a 1limit ordinal.
@ j<a B

The Krull dimension of B over ¥, dim_iygg is the smallest ordinal a

for which U, = B, If there is no ordinal « such that %a = B then
we write dim BAl = w. Note that when we write dim B/ < « we
actually mean that dim B/ # o and not that dim BA is an integer.

The Krull dimension of a module M over U is defined similarly. Thus

if M e B then dim MAl stands for the smallest ordinel a for which

Me %a. If no such ordinal exists then put dim MA = w, It is clear
from the definition that the Krull dimension of a module in D is

never a limit ordinal, (e is only a symbol and not an ordinal number).

Proposition 6, Let AU 5%U,, By,B, be Serre-categories and

W CU CB, CB. Then din B,A, « din B/,

t The reason is purely aesthetic , we want our dimension concept to
coincide with the usual Krull dimension of a ring when the latter
is defined.
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Proof. We may assume that dim aal/xul = @ < oo Let {s%i be the
= i = 3
Krull sequence between ‘L[l and 931, ED_l ‘L(l, )a %l and let bﬂ be
a typical element of the Krull seguence between -‘212 and 932. The
Serre~category generated by ‘2,(2 and P, N 232 is denoted by @ﬁ'

B

We claim that &, C H, for all 3 < @. Since @3_1 = 5212 = &)_1 the

B="F
statement is true for f = -1, Assume that it has already been
proved for all ordinals ¥y, vy < f < . If f is 2 limi ordinal then
G, = UG C Uh =8&,. Assume now that f =& + 1, By the

B By =yvbx 7B d v
induction hypothesis G5 C H5. If M is a ©s-simple module in §82 and
M £ S then M is obviously a Hg-simple module. Consequently
7 ((- .'- ] Y - »
056) g196+1. Suppose that i is a.ﬂa simple module and M € %2.
Then either M € @5 or M is a @8—simp1e module in 532. It follows
L) 4 . c . .-
that & 1 C ©s) < 9g,qe Thus @ﬁ - 5)/3 for all § < a, In partioular
2‘32 = @a C S)a shows that dim 932/‘212 < & as required,
e write dimU and dim A for dim Y/0 and dim A/O respectively.

Theorem 7. If U and B denote the categories of Noetherian and

4 ——a oot . o b

Artinian modules respectively then dim U < o and dim B < », In

ge.}'ticular, dim 4 ¢ « for a module % in ¢ither U or B,

Proof. Tor a change consider the Artinian case. Let A be an
Artinian module and %a the a-th element of the Krull sequence of B,
Suppose that dim A = «» and choose the submodule . of A to be minimal
with respect to this property, i.e. dim K = o but dim N < « for any
proper submodule IT of il, i'ote that i # 0. Put ¥ = supfdim I : N C ¥i.
Then M / %\.’ by assumption. But every proper submodule of i belongs
to §BY, Hence ¥ is a %Y--Simple module and K € %Y+1 which contradicts

our assumption that dim il = »., Thus dim 4 < » for all A € B,

The Noetherian case can be proved similarly,
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In order to complete the proof we need the following property
of U and B; there is a set of modules generating U (resp. B).
Tor U, the set of modules of the form R/L, L a left ideal of R,
R/L is Noetherian do generate U in view of Proposition 1.8.
Similarly, using Proposition 1.8*% we find that Artinian singly
embedded modules generate B, Let {Lizifl be the set of mximal
left ideals and choose an injective envelope Ei far each R/Li°
Then the Artinian submodules of the modules Ei form a set of
representatives for Artinian single embedded modules,

e now complete the proof of Theorem 7. Let {Nigisl and
mj}jeJ be sets of modules generating U and B respectively. As we
have already seen dim Ni < o and dim Aj < o for all i e I,j € Ja
Put a = supidim Ni’ B = supjdim Aj’ If uY,%Y denote the typical
elements of the Krull sequences of ¥ and 8 respectively then
N, € YU, and Aj € By for all 1 ¢ I,j ¢ Jo Therefore A U,

B

%g;.faﬁ whence dim U ¢ a and dim B ¢ 3,

3.3 The main decomposition theorem

We wish to characterize length functions by representing them
as linear combinations of others. The natural building blocks for
such a representation theory are length functions which cannot be
decomposed any further. Thus we make the following

Definition. A non-trivial length function L on a category U is

called irreducible i for length functions Ll and L, on ¥,

L = L1 + L2 implies that either L1 = ¢l or L2 = cL for some real

number ¢ > 0.
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Proposition 8. If the length function L is irreducible on a

semi-closed category U then its continuous extension to M(R)

is irreducible on M(R).

Proof., Assume that 1= L1 + L2 where i is the continuous extension

of L to MR). Since L is irreducible on U we may assume that

L1 = ¢cL, ¢ > 0 on Ye Using Theorem 2,3 and Proposition 2.4 we obtain
¢cL =1 €Ly, L=101 +L,, L, « L, on T(R). (1)

e contend that L, = cl. Let A ¢ MR) and assume that i(A) S

we Next, if L(A) <  then

1

Then Ly (4) > I,(2) = of(a)
(ny(4) - f.l(A)) + (Ly(4) - Ly(8)) = 0. Hence L (s) = L ().

A length function L is said to be 'finite on U', U a semi-closed

category, if U C Mn L. Let L be a length function on MR} (or on a
semi~closed category) and let L be the continuous component of L with
respect to Pin L. Then L = 1 + (L-1) and the latter function is trivial,
“upther, if L admits a representation as a sum of irreducible
functions on Fin L, then this representation can be extended by
continuity to L. This is the reason why we can focus our attention
on decomposing a function over its domain of finiteness. If we obtain
a decomposition for L over Tin L, then L will be cxpressed as a
sum of irreducible and, possibly, trivial functions over M(R).
To avoid set-theoretical difficulties we assume that the
following condition is always satisfied in this section.
If U and B are Serre-categéries, U B, then there is a set
(8) I and a family of U-simple modules {sniﬂen in B such that for every
U-simple module S in B, S~ S, for some T € 1.

In other words the equivalence classes of ¥U-siimple modules form a set,
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The results in the previous section show that ( A) is
satisfied if B is the category of Noetherian or Artinian modules.
Let U C B Serre-cateiories, dim BA = 0 and {SKZWGH a set of
representatives of U-simple modules., If A is the semi-closed
category comprising U and the U-simple modules and
0> k~>»M->u">0
is an exact sequence in U then we have either of the following three
possibilities:
(a) w,i 1" e U;
(b) 1~ 1 and k"€ U;
(cY M ~ 1" and i € U,
Let L be a length function on B such that U ¢ Ker L, Then L(S) = L(8")
whenever 5 and $' are equivalent Y-simple modules in B(Lemma 1).
It now follows that the functions L} - on A defined by
1 if i is Y-simple and W ~ S
L (&) = { ) &
0 otherwise,

are length functions on Y. The continuous extension of Lﬂ to M(R)

(still denoted by Ln) is called the length function associated to the

quasi-simple module Sn' Note that Lﬂ has inte cer values.

Lemma 9, Let the situation be as described above and let Ll’L be

length functions on B such that U C Ker L1 N Ker L2. Then L1 = L2 if

and only if Ll(Sﬂ) = Ly(8,) for all = ¢ I,

Proof. Suppose that Ll(sﬂ)=L2(sx) for all xeli.,Then if S is a U-simple
module, S ~ sp for some p ¢ M and Ll(S) = Ll(SP) = LZ(SP) = L2(S).
Hence L1 = L2 on AU and consequently on Y. (Theorem 2,3 Cor.)

Proposition 10, Let U C B be Serre-categorics, dim VA = 0 and

(s_) e 2 minimal set of representativesTof U-simple modules, Let

t one fromeach equivalent class,
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L be a finite function on B such that U C Ker L, Then

(i) L is irreducible if and only if L = ¢l , ¢ > 0 for some

x e [I;

(i) L =2 L, c

Cc
el A %° x®

= L(S“) is the unique representation

9£ L on B as_a linear combination of the L,K's.

Proof,Write I' =3 _.c I with c = L(Sﬂ). Trom Lemma 9 and the
definitions of the I 's we see that L = LV, IfL = % g eminly then
d = L(S“) = o, for all ® € I, The proof will be completed by the
verification of (i). Assume that L = L, + L, on B, e may assume
that ¢ = Ly(S) # 0. Then L, = cL by Lemma 9. Conversely, if I is
irreducible on B, (U Ker L, B C Tin L) then L # O since L is not
trivial, Hence there is a p € II such that L(Sp) £ 0. Put

U = 219épL(S7t)L7t' Then L = L' + L(SP)LP' Since I (Sp) = 0, I/ cannot
be a multiple of L. Hence Lp = cLand L = d‘Lp.

Corollary 1. The functions L ,mell are irreducible on MR).

Proof. Apply Proposition 8,

Corollary 2., If k # O is a Noetherian (resp. Artinian) module then

there is a length function L on M(R) such that 0 < L(M) < «.

Proof. By Theorem 7,8im M = @ + 1 in the category of Noetherian

(resp. Artinian) modules. Let {L ! _ be the set of length functions

o Rell
associated to U , the term in the Krull sequence carresponding to
the ordinal a, Set L = z'neHLﬂ' Then ‘l(a = Ker L. C Q"a+1 C Pin L.
Hence 0 < L(M) < w. Also, L(M) is an integer,

One may utilize the above result and define the 'length of an

ideal' in arbitrary rings. Observe that if I is an ideal of a

commutative Noetherian ring then the number L(R/I) obtained in the
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proof is the same as the length of I as it is defined in the
classical theory.

Now we turn to the general case, Let U C B be Serre-
categories and dim BA = ¥ < w. The elements of the Krull
sequence are denoted by ma, ~1 ¢« ¢ <y, Let L be a finite
function on B and U C Ker L, For each a, -1 < @ < ¥, 1% denotes

the continuous component of L with respect to ﬂa. By Theorem 2.3

o a4+l 1

L <L . Let La be the continuous component of 17 _ 1% with

respect to U -1 < @ < ¥. The functions L, -1 < @ < ¥ are

a+l’

called the Krull components of L,

Lemma 11, Let the situation be as described above, _Then

(i) ¥, C Ker L, and L is continuous on Ma+1 (¢ £v), and

(ii) ¥ - S L for alla, -1 < a < ¥
-138<a

Moreover, the Krull components of L are completely characterized by

(1) - (44) and L= ' L, on Fin L,
~lcocy

Proof. It is evident that L and ! agree on U . Hence (i).

Next, T* = 0 and 1°= L Assume that (ii) has already been proved

-1
for all ordinals 8 < @ and consider I/ = S‘ LJ’ It follows from
-1<B<a
this assumption and (i) that I/ and L agree on Mﬁ, -1 =8<a,
Hence L% = I/ if @ is & limit ordinal. If @ = & +1 then
)
L' = ;T Lﬁ + Ly = L7+ L5 = L8+1 = La from the definition.
~1<f<b
Let K, be & second sequence satisfyin. (i) and (ii) and let a be
. a+l a )
an ordinal, -1 ¢ @ < vy, Then La =1 - L = Ka on ua+1. But
La,ﬁa are continuous on‘ua+l. Hence La = Ky
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Theorem 12, Let U C B be Serre-categories, dim BA = ¥ < «, and let

{sua} -1 ¢ @ ¢ ¥ be the Krull sequence between U and B, For each

@, =1 < ac<¥, {Sx}mna is a set of representatives of ‘Ua-simple

modules, one from each equivalent class and Il is the disjoint union

of the sets Ha' If L is a finite function on B such that U C Ker L

(i) L is irreducible on B if and only if L = ¢L_, ¢ > 0, for
; " —

some %« € II

(ii) L = z,‘ i Cplpon B, = L,(5,) if m e M, and L,
€

is the @-Krull component of L, HMNoreover, this is the

unique representation of L as a linear combination of the Lﬂ's,

Proof, Let L, -1 < & <Y be the Krull components of L, Then by

Lemma 11, L = Z L, on B, For each a, L is a finite function on

~lga<y
U and U, C Ker L . Hence La =

L c_ =1L (S ) on
o+1 '_m_na (oA ¢

c
TR b

U by Proposition 10, Since all the functions involved are

a+l

continuous on U, ; we deduce that L = Y‘ c, L on MR). Thus

'neHa

L= Z'K nanﬂ on B with ¢ = La(Sﬂ) for = € I . Let L = ymzd"‘L"
€
be a seeord representation of L as a linear combination of the

functions L. PutX = Sjmnad,tL,t, =1 < @ < j. Then the K 's

clearly satisfy conditions (i) - (ii) in Lemma 11, Hence Ky = Ly
and Proposition 10 implies the identities d7r. =c, for all = ¢ II,
To complete the proof we have to verify (i). By Propositior 10,

Cor.l,Lﬂ is irreducible on £ for all ® ¢ [I. Conversely, if L is an

irreducible length function on £ such that Y C Ker L, B¢ Fin L
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then L, # 0 for at least one a, -1 < a<¥. (By definition,
an irreducible function is not trivial.,) ZLet @ be the smallest
ordinal for which L, £AO0and put U = % IB. Then L =L, + I/,
a<B<y
But L is irreducible, Hence L, = cL or L'= cL, ¢ > 0. Since

¢ ~ ’ —_ T » » -
Ker LY, G Ker I/ we must have L, = cL. Now L is a finite

irreducible function on U and U, ¢ Ker L. Hence Proposition 10

o+l

can be applied to obtain L = ¢'L_ = dL on U

» d >0, e Ha'

a+l?

But both La and L are continuous on U . Thus L = dI. on B as
® o+l T

required.

Corollary 1. Let L be a length function on MR) and dim™in L/Ker L < we

Then L can bfiexpressedlgg Pin L as a sum of irreducible length

functions., If L is continuous on Fin L then this representation

holds true on M(R).

Proof. Immedizte,

Corollary 2. If L is a length function on the category of Noetherian

(resp.Artinian) modules then the function L can be expressed on Fin L

as a sum of irreducible length functions.

Proof. Combine Proposition 6 and Theorem 7.

Remark, The representation in Theorem 12 is unique in the following
sense: Suppose that L = L, = L. are representations of L
Li,L. are irreducible functions, Then by Theorem 12, Li’Lj’ ieT, jeJ
are scalar multiples of the functions {Ln}ﬂeﬂ' It follows that there
is a bijection ¢ : I » J and real numbers e, > 0 such that
Li = ciLw(i)’ for all 1 ¢ I,

The length function L on a Serre-category U is called 'locally

discrete' if for every module Ae¥,inf{L(S):L(S}> 0,S is a segment of A} >0.
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A sum of length functions L = ZiLi on a category U is called
'discrete' if for every module A ¢ ¥, Li(A) = 0 for all but a finite
number of 1.

Theorem 13. Let L be a length function on T(R) and dimTin L/Kerl < o,

Then the following are equivalent:

(i) dimPinI/Ker L <« O;

(ii) L is a discrete sum of irreducible functions on PinL;

(1ii) L is locally discrete.

Proof. (i) = (ii) If dimPinL /KerI. = -1 there is nothing to prove.
Assume dimFin I/Xer L = O, By Proposition 10, L = L.c L where the
Lﬂ's are the irreducible functions associated to the Ker L-simple
modules, If A € Finl then A has a chain 0 such that the chain factors

are either Ker L-simple modules or elements of Ker L. (Proposition 5).

x be the functions associated to the Ker L-simple chain
k

Let L ’ .oo’L

™
factors of 0, Then c_L (A) = 0 whenever X ;4 Tosese, N ,vf T, o

L 1 k
(ii) = (iii) By Theorem 10 we may assume L = ¥ _c_L_ where the
omell TR

functions Lﬂ have only integer values and this sum is discrete.
In order to prove that L is locally discrete we may confine ourselves
to modules A ¢ ¥inL, A £ KerL, Let A be such a module ard § a
segment of A. If cﬂLﬂ(A) = 0 thex cﬂLﬂ(S) = 0 as well, It now
follows that there are indices TyreeesT such that C.K.->O”°"° >0 and

ph
L(S) =c_L_(S) +eset+ c_ L_(S) for any segment S of A, Thus
™M ™ ™x

L(s) 2 min(cﬂ yeessC_ ) whenever L(S) > O,
1

™

(1ii) = (i) Let Ker L = U 1S uo C ful Cees be the Krull sequence

between Kerl and Mpn L and assume that %(o ;é FinL, Since
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dimFin L/Ker L < « we have ‘M_l C ‘210 C ‘211. Choose a -?,(o-simple

module S in PinL, If A is a submodule of S then either A ¢ Q,(O

0° Since S is ‘Llo-simple and not Qi_l-simple there must
be a submodule A of S such that either A € suo but A / ‘21_1 or

or S/A ¢ 9

S/A € U_ but S/A £ -‘21_1. Let A, be the one which belongs to

0
%, but not to U , and B, the other. Then 1.(s) = L(Al) +L(Bl),
L(Al) ;.( o, L(Bl) £ 0 and Bl is -‘L(O-simple, Hence the procedure
can be repeated by B, ete. In this way two sequences of modules
Al,Az,...,An,.and Bl’B2""’Bn" are generated such that

L(a)) A O,L(Bn) £0 and L(S) = L(Ay) +eeo+ L{a ) + L(Bn) for all
n > 0., Consequently L(An) + 0 and A is a segment of S,  But

this contradicts the fact that L is locally discrete.

Theorem 14, If the finite values of a length function L on MmR)

are integers then dimFinL /Ker L < O,

Proof. Assume that the theorem is not true and (Ker L)’ C Finl,
Choose a module A in FinL, A ¢ (Ker L)’ so that L(A) is minimel,

For 2 submodule B of A we have L(2) = L(B) + L(4/B). If L(B) < L(4)
and L(A/B) < L(A) then A,A/B ¢ (Ker L)’ by the choice of A and

A ¢ (Ker L) since (Ker L)' is a Serre-category, Since A ¢ (Ker L)/,
either L(B) = L(A) or L(A/B) = L(A). Therefore either B or A/B
belongs to Ker L for any choice of B, But then A is a Ker L-simple
module and, atain, A ¢ (Ker L)', contradicting our assumption.

Thus (Ker L)'= FinL and dim™nL/Ker L < O,

3,4 The category of Noetherian modules.

We have seen in the previous section how the irreducible

length functions can be used as building blocks in the representation
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problem. Apart from their existence, however, our theory
provided little information. In the present section we set
out to show that the irreducible length functions of the
category of Noetherian modules can be realised by means of
injective modules,

Definition. An R-module M is said to be 'indecomposable' if

its only direct summands are O and M.,

Proposition 15 [5, Proposition 2.2]. TFor an R-module ¥ the

following are equivalent:

(i) E(if) is an injective envelope of every non-zero

submodule of itself;

(ii) M contains no non-zero submodules S and T such that

SNT =0,

(iii) E(M) is indecomposable,

Proof. (i) = (ii) = (iii) Clear.
(iii) =» (i). If E(M) is indecomposable then it contains no non-
zero injective submodules. Thus E(ii) is the minimal injective
extension of every non-zero submodule of itself,
Let E be an injective R~module and let S be the ring of endo-
morphisms of E. Then E becomes a left R, left S~-bimodule. The
functor T() = HomR(l,E) is an exact contravariant functor from
M(R) to M(S). The S-module structure of T(li) is given by

f(a) =f+a, a : M>E, f : E > E,
For each R-module kM, put LE(M) = ¢(T(M)) where ¢ is the classical
length function on M(S), Then LE is an upper continuous length

function on M(S). (Proposition 2,10). Suppose that for a module
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¥ € MR), T(M) # 0 and every non-zero element of T(ii) is a

monomorphism ¥ + E. The next lemma tells us that LE(M) = 1,

Lemma 16, Let the situation be as described above. Then LE(M) = 1,
Proof. It will suffice to prove that T(M), as an S-module,is
simple. Since T(ii) # 0, the lemma will follow if we show that
every non-zero element of T(M) generates T(l). Suppose f,g ¢ T(M),
£ # 0. Then f is a monomorphism and the diagram

O———)M-—f—iE

%1 ,/h
(4

E
can be completed by en h : E » E such that g = hf, h ¢ S,

Tor the rest of this chapter {§ denotes the category of
Noetherian modules in M(R). Suppose L is an irreducible length
function on §. Then L is called 'normalized' if
fL(a) : A e ™Mn1} = {0,1,2,000,n0,.0.}. By Theorem 12, L = eI/,
¢ > 0 on FinL and I' is normalized since it is an irreducible
length function associated to a quasi-simple module, But an
irreducible length function is continuous on its domain of finiteness.
(For L = L+1 - ﬁ, L is the continuous component of L with respect
to MinL. But then T = dL, 4 >0 and L = T on Pin L, Hence
L = 1), Therefore L = cI/! on M(R). Thus every irreducible length
function is a scalar multiple of a normalized length function,

Me say that a module E € T(R) is an 'S-injective' if it is an

indecomposable injective module and contains a non-zero Noetherian

module,
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Lemma 17. Let E be an S~injective module. Then there is a

submodule P of E, P # 0, P ¢ § such that every non-zero

homomorphism from P to E is a monomorphism,

Proof, Let N be a non-zero I'oetherian submodule of E, Choose
& submodule Ii of N so that HomR(N/m,E) £ 0 and M is maximal with
respect to this property. Then there is a non-zero homomorphism
f : NAii > E and P = £(N/M) has the required property.

Proposition 15 shows that an indecomposable injective module
is the injective envelope of a cyclic module, Therefore one may
speak of the set of isomorphism classes of indecomposable injective

modules.

Theorem 18. There is a one-to-one correspondence hetween the

nornalized irreducible length funcgiqgf of § and the set qf

isomorphism classes of J-injective modules, given by E <=> LE.

Proof. ‘e recall that if E is injective then LE(M) = 5(HomR(M,E)),
M e MR). Here £ is the classical length function over the
endomorphism ring of E.

Let U C § be a Serre-category, P a U-simple module in § and
LP the associated length function. e are going to prove that
(a) we may assume that E(P) is §-injective and P satisfies the

conditions of Lemma 17, and in this case

(b) Lp = Lp(pye
Indeed, by Proposition 4, we may assume that every proper factor
module of P (i,e. not ™ itself) belongs to U. Suppose that S and
T are non-zero submodules of P and S NT = O, Then P/S and P/T

belong to U and there is a monomorphism P » P/S @ P/T.
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This shows that P e U which is impossible. e can then conclude
that E = E(P) is an J-injective module, (Proposition 15)., If
f : P-+E is a homomorphism and f(P) # 0 then f(P) N P # 0 since
E is indecomposable. Accordingly f(P) NP ¢ U.,. At the same time
f(P) is a factor module of P and belongs to U if it is proper, i.e.
if Ker f £ 0. Thus Kerf = 0, e now prove (b).

First let ¥ € M(R) and LE(M) > 0. e show that M has a
segment isomorphic to a proper submodule of P or in other words
¥ has a U-simple segment equivalent to P. Tor if LE(M) > 0 then
there is a non-zero homomorphism f : M » E and £(i) NP £ 0O,

It now follows that LE(M) >0 = LP(M) >0, i.e.
U C Ker LP(; Ker LE Also, if Q isan U~simple module and
LE(Q) > O then Q ~ P, Hareover, LE(P) = 1 by Lemme 16 and (a).
Using Lemma 9 we find that Ly and L; agree on U N J. Turther,
Lp is continuous on ¥ by definition, Thus L « Ly (on MR)).
If LP(M) > 0 then M has a U-simple segment equivalent to P, Hence
LP(M) > 0 implies LE(M) > 0 which shows that Ker Ly = Ker Ly.
Also, by Theorem 14 dimFin LP/Ker L, = 0. In order to show that
LP = LE on Fin LP we use Lemma 9 again., Evidently, P and every
non-zero submodule of P, is a Ker Lp—simple module, Let Q be a
Ker Ly-simple module. Since Ly is irreducible, LP(Q) > 0 implies
that ¢ ~ P by Propesitior 10, If LE(Q) > 0 then © has a segment

isomorphic to a non-zero submodule of P whence Q@ ~ P, Thus LP = LE

on Fin L. But Ly « Ly on M(R). Hence Ly = LE on am(R).*

t In Lemma 9 and Proposition 10 the condition (A) was implicit. The
following is easily verified. For an upper continuous length function
L the equivalence classes of Ker L-simple modules form a set., Indeed,
if 4 is Ker L-simple then it has a cyclic submodule B ¢ Ker L for
otherwise L(%) = 0. Thus every Ker L-simple module is equivalent to

a module of the form R/T, I a left ideal. In our case both LE and LP
are upper continuous.
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‘e now prove Theorem 18 proper. Let E be an J-injective
module and set U = Ker LE N ¥, By Lemma 17 there is a submodule
P of E such that P £ 0, P ¢ § and the non-zero homomorphisms from
P to E are moromorphisms, Obviously, P is U-simple and (a) - (b)
imply that LE = LP' Hence LE is a normalized irreducible length
function on § and E » LE is well defined,

If L is a normalized irreducible length function on § then
L = L, for some quasi-simple module P in J. Applying (a) - (d)
we see that L = LE for some J-injective E., Thus E -» LE i.s onto,

Assume now that E and ' are J-injective modules and Ly = LE"
Choose a non-zero Noetherian submodule P of E such that the non-zero
homomorphisms in HomR(P,E) are monomorphisms, (Lemme 17). Then
1= LE(P) = LE,(P) and there must be a non-zero homomorphism £ : P > E'»
Therefore LE,(f(P)) £ 0 and LE(f(P)) # 0. Again, we have a non-
zero homomorphism g : £(P) » E. Hence gf is not zero and f must be
a monomorphism. Consequently E' = E(£(P)) = E(P) = E. This completes
the proof of Theorem 17.

Corollary., Let {Ew;ﬂeﬂ be a set of representatives of ‘j-injective

modules, one from each isomorphism class, and put Ly = LE . If L
bt o
is a length function on § then L can be uniquely written as a

linear combination of the Ln's. This representation is valid on

Fin L, or on § ig L is continuous on Fin L,

The corollary is an immediate consequence of the theorem and

Theorem 12 Cor.2.
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3,5 The commutative case.

Throughout this section R will be a fixed commutative rin:
and § denotes the category of Noetherian R-modules, We will
demonstrate that the commutativity of the ring R enables one to carry
out further simplifications. Our first result characterizes the
J-injective modules.

An ideal P of R is called & 'prime ideal' if P # R and rs ¢ P
implies r ¢ P or s ¢ P for all r,s ¢ R, "We see at once that if T
and J are ideals, ID P, JDO P, then I N J D P, Thus E(R/P) is
indecomposable for a prime ideal I, By an '§-prime' ideal P we
mean a prime ideal P of R such that R/P e §, i.e. R/P is Noetherian.

Proposition 19, There is a one-to-one correspondence between the

set of §-prime ideals of R and the set of isomorphism classes of

S-injective modules, given by P<«>E(R/P).

This result was proved in [5] under the assumption that R is
Noetherian.
Proof. If P is an §-prime then: E(R/P) is §-injective. Conversely,
if B is an S-injective molule then by Lemma 17 we can find a sub-
module N of E such that U { 0, N ¢ § and the non-zero homomorphisms
from N to E are monomorphisms. Choose an element e € N, e £ O,
Then Re has the same properties as I¥ since homomorphisms from Re
can be extended to B, Let P=0: e and rs € P, s £ P for elements
r,3 € R. By assumption x » sx, x € Re, is a monomorphism since
se £ 0, Hence 0 = s(re) = re = 0 and r ¢ P. Thus ” is a prime ideal.
Finally Re = R/P implies that E » E(R/P).

Now suppose that P,P are prime ideals of R such that



- 52 -
E(R/P) ~ E(R/P'). Then E(R/P) has a submodule N isomorphic to
R/P', and ' N (R/P) £ 0. Consider a non-zero element x of
N N (R/P), and suppose that it corresponds to y ¢ R/P' . Then
P=0:x=0:y =P. This completes the proof.

According to this last result, the irreducible length
functions on § take the form LE(R/?) where P runs through the
§-prime ideals of R, It is not these functions, however, but the
principle of localizztion which is widely used in commutative
algebra., It will be presently shown that the numerical outcome
is the same whichever technigue one uses,

Let P be a prime ideal of R. A 'localization of R with

respect to P' is a ring RP with a ring homomorphism ¢ : R - RP
satisfying the following conditions:

(i) Ker ¢ = fr e R : rt = O for some t € R - P};

(ii) ¢(t) is a unit in R, forall t € R = P ;

(1ii) Every element of R, can be expressed in the form

o(r)e(tY* (reRr, t € R -~ P),

Then RP is unique up to isomorphism ard one can simply refer
to RP as the localization with respect to P, without reference to ¢,
The localization of R with respect to a prime ideal always exists.
e need only a few well-known facts concerning ‘ocalizations,

The ring RP is flat when regarded as an R-module. Accordingly
A+ R, & Ais an exact functor from M™R) to mKRP). If I is an

jdeal of R then R/T fh R, = 0 if and only if I £ P. There is a

P
unique maximal ideal of RP isomorphic to P Gh RP, and R/P gk,RP
is isomorphic to the simple Rp-module, necessarily unique up to

isomorphism,
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Let P be a prime ideal of R, £ the classical length function
on M(RP) and set
LP(A) = 2(A Y RP), A e mR).

Proposition 20, Let P be a prime ideal of R and E = E(R/P).

The functions L, and L are identical on MR).

Proof. The functions LE and LP are upper continuous by Proposition
2,10, and all of their finite values are integers, If LE £ LB then
there is an integer n > O such that the statement IE(A:=11<:> LP(A)=11
for all A € ™(R), is not true. Let n be minimal with respect to
this property.

For an ideal I of R, LP(R/I) = 0 if and only if I ¢ P, If
I C P then LE(R/T) > L(R/P) = 1. Conversely, assume that
LE(R/T) > 0 for an ideal I C R, Then there is a non-zero homomorphism
f:R/I>Eand IC 0 : £(R/I) C O : £(R/I) NR/P = P since
f(R/T) N R/P # 0. Thus for any ideal I of R, LP(R/I)= O<=> LE(R/I) = 0,
It follows that LP(A) =0 <=> LE(A) = 0 for all A ¢ MR) since the
functions are upper continuous. Hence n > 0,

Assume now that LP(R/I) =n for an ideal I C R, Then I CP
and LP(R/I) = LP(R/P) + LP(P/I) =1+ LE(P/I) = LE(R/P) since
LP(P/I) =n - 1. Similarly, LE(R/I) =n = LP(R/I) = n, Using
upper continuity we see thet LP(A) =n <=> LE(A) = n for all A ¢ M(R).
This, however, contradicts our assumption on n, Thus LP and LE
agree on MR).

The most striking difference between the commutative and
non-commutative case is, that if L is a length function on J

(R is commutative) then dimPin L /Xerl <« 0. The result depends
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largely on the fcllowing simple lemma which is of some interest

in its own right.

Lemma 21, Let L be a length function on M™(R) and P a prime ideal

of R such that L(R/P) < w. If the ideal I strictly contains P then

L(R/I) = 0.
Proof. The exact sequence

0-+I/ +R/P+R/I >0
yields L(R/I) = L(R/P) - L(I/P). Choose an element r ¢ I, r ¢ P.
Then the natural map R + rR induces a monomorphism R/P » I/P. Thus
L(R/P) <« L(R/I) and L(R/I) = O.

Lemma 22, The family of modules R/P, P is an S-prime, form a set

of representatives for quasi-simple modules in J, one for each

equivalent class,

This is implicit in Proposition 19 but we give a direct proof.
Proof., Let U ¢ J be a Serre-category and 5 a U-simple module in 7.
By Proposition 4, there is an ideal P in R such that S ~ R/P and
every proper factor module of R/P is in®, If r,s e R, r ¢ P,
then the homomorphism £ : R/? » rR/P C R/P is not zero. Hence
f(R/P) is a non-zero submodule of R/P and f(R/P) £ U, Accordingly,
Ker f = 0., If rs € P then r(sR/P) = 0 implies sR/P = 0 and s ¢ P.
Thus P is a prime ideal., It is clear that if P is an §-prime then
R/P is Ker Lp-simple. 7inally, different primes give rise to non-
equivalent quasi-simple modules since the induced length functions
are different (Proposition 19).

Theorem 23, If L is a length function on § then dim™n L/Ker L < O.

Proof. Assume that dimFin L/Ker L > 0, Then we must have
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Ker L ¢ (Ker L'C ™n L since dimFin L/Ker L < ». e can
choose a (Ker 1)’ -simple module S in ™in L of the form S = R/P,
P an §-prime (Lemma 22). Now Lemma 21 shows that every proper
fector module of S is in Kerl, Hence S is Ker L-simple contrary
to our assumption,

Tet U C § be a Serre-category. A prime ideal P of R is said to
be a 'minimal prime ideal of Y' if R/P € U and for any prime ideal
P of R, R/P ¢ ¥ and PPC P implies that P = P,

Proposition 24, If L is a length function on § then L admits a

where P

unigue decomposition on Fin L of the term L = ZPCPLP’

ranges over the minimal prime ideals of in L and Cp = L(R/P).

doreover, L is the discrete sum of the LP'S and the decomposition

holds on § (or on M(R) if L is continuous on Fin L),

Proof. By Theorem 23 dimFin I/Ker L « 0. If Ker L = Fin L, i.e.
L = 0 there is nothins to prove. Assume now that dimFin L/Ker L = O

_ § . - . .
and let ‘Pi}iel be a family of §-prime ideals such that {R/?i}iel is

a set of representatives of Ker L-simple modules in Fin I, Pi £ Pj for
i £ j. Then by Proposition 10, L = ZielcPiLPi on Fin L, oy = L(R/Pi)

i
and this representation of 1. as a linear combination of the LP 's

is unique, For each i ¢ I we have 0 < L(R/Pi) < we It followz from
Lemma 21 that Pi is & minimal prime ideal of ®in L, If P is a
minimel prime ideal of ¥in L then either 0 < L(R/P), whence R/P is
Ker L-simple and P = Pi for some i € I, or L(R/P) = 0. Thus we can

let P run through the minimal primes of ™in L. The sum is discrete

by Theorem 13,
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3.6 A counter-example

The aim of this section is to show that Theorem 23 is no
longer valid if the commutativity of the ring is dropped.

Proposition 25. There exists a ring R and a length function

L on the category of ngﬁhgyian R-modules such that dimlin L/Ker L >0,

Proof. Let F be a field and V a countable dimensional vector space

-
over ', Let {Xi}i—l be a base of V and define endomorphisms

[~}
{ej}j=l for V by

'Xi i<
ej(Xi) = xi+l i=j 1 <i,j< o,
0 J <1i

Let R be the subring of the ring of endomorphisms of V generated

by F and {ejfm Then V is a left R-module in a natural way,

j=1'
It is easily seen from the construction that

V=RX DRX D..oDRX ).o-
2 n

1
are the only R-submodules of V, Hence V is Noetherian., It is clear

that S, = in/mti+1 is a simple R-module for every i » 1., If j > i
then e;5; = 0 but €353 # 0. Therefore S; ® Sj if and only if i = j.
Let U be the category of R-modules of finite length, (i.e. the
category of modules which are both Noetherian and Artinian) and

§ the category of Noetherian R-modules., Then V e § but V ¢ U,

Also, V is U-simple since every proper factor module of V belongs to U,
Let Li be the length function associated to the simple module Si and

set L = Z 2"11..1. Then L(V) = 1=V € Fin L but V £ (Ker L)', Thus

i=1
dimFMin L/Ker L > 0. Since we considered L as a function over §,

7in L C § and dimFin L/Ker L < w.
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CHAPTER |4

SPECIAL CATEGORIES

4.1 Artinian modules over commutative Noetherian rings

The main decomposition theorem (Theorem 12) applies to the
category of Artinian modules as well as to the Noetherian one.

In the general case, however, we do not have such a transparent
description of the irreducible functions as given for the category
of Noetherian modules in section 3.4.

Throughout this section R denotes a fixed commutative
Noetherian ring and £ stands for the category of Artinian R-modules,
Tor each maximal ideal M of R the local ring RM has a natural
topology irduced by the powers of the maximal ideal of RM. The
completion of RM in this topology is denoted by ﬁm. Details of
this corstruction can be found in [1, section 9,11], together with
the result that ﬁm is a commutative Noetherian ring. Let XM be the
category of Noetherian modules over ﬁM' E.Matlis established a perfect
duality between the Noetherian and Artinian modules of a complete
local ring [5, Cor. L.3].

e first show that this result can be extended to a perfect
duality between & and the 'direct sum' of the SM'S. Our aim in this
section is to describe the length functions on & and this duality
will enable us to pass to the study of length functions on the SM'S.
“le shall rely heevily upon the methods and results of E.Matlis [5]

and [6€].



- 58 -
Let A € $, M a maximal ideal of R and define
TM(A) = fxe a1 =0 for some n > 0},
It is easily seen that TM(A) is a submodule of A, Let B be a
second element of $ and © : A > B an R-homomorphism, Let
T.(f) : TM(A) > TM(B) be the restriction of f to TM(A). e see

W
at once that TI is a functor from  to H. Tor each maximal ideal

K
M of R, EM denotes the injective envelope of R/M. From [5]and (6]
we need the following results:
(a) The functors Ty ¢ & > & are left exact and commute with
the taking of injective envelopes (5, Proposition 1].
(b) For maximal ideals M,M of R, E, € &)’r and T, (EM) = E,
if M =¥ and 0 if ¥ # W, [6, Proposition 3] and
[5, Theorem 3.4]
(c) For each A € §, A = &h:M(A) where Il ranges over all the
maximal ideals of R, and TM(A) = 0 for all but a finite
number of maximal ideals [6, Theorem 1],
(d) There is a ring isomorphism HomR(EM’EM) ~ ﬁM and an ﬁM-
isomorphism E = E(S) where S is the only simple ﬁM—module.
[5, Theorem 3.7].
For each maximal ideal M of R set
P = fAe9: TM(A) = A},

Lemma 1. Let M be a maximal ideal of R. Then @M is a Serre-

s

category and 'I‘M : H - bM is an exact functor.

Proof, Suppose A,B € H amd f : A » B is a homomorphism., Clearly

t EM ¢ $ for each maximal ideal amounts to saying that an R-module

is finitely embedded if and only if it is Artinian,
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£(1,(4)) C T, (B) for each maximal ideal i of R, It follows that
if £ is an epimorphism then TM(f') is an epimorphism by (c¢). Hence
TM is exact. Moreover, A ¢ SaM if and only if TM’ (A) = 0 for
pmaximal ideals i/ £ M. Since the functors TM are exact, §, is a

Serre-category for all maximal ideals M of R.

Proposition 2, The categories &)M amd iXM are equivalent, i.e, there

are exact functors F : SJM-> ﬁM and G : SBM_’ .s‘gM such that FG ard GF

are naturally equivalent to the identity functors.

Proof., Let I' and G be defined by

F(4)

HomR(A,EM), A e % and

G(B) Homﬁy(B,EM) B € By
1

Both P and G are exact since EM is injective even if regarded as
an )I\zM-module by (d). The isomorphisms F(EM) =~ ﬁM and G(ﬁM) N EI‘\'I
imply that F(A) € 3 and G(B) € $; Whenever A ¢ H, and B € 3,
respectively. (Here the first isomorphism is an ﬁ.M—isomcrphism
while the second is an R isomarphism.) Let A ¢ ‘igM ani consider the
mapping

£, 0 A Homy (Hom(A,EM),EM) = GF(4),
M

defined by f'A(a)(x) =x(a), a € A, X ¢ HomR(A,Eﬂ). Then f is

natural and a monomorphism, Indeed, for any A ¢ &M’

E(A) = E(T}u(A)) = TM(E(A)) = E;f for some integer k > 0 by (a) and (c),
where E; denotes the direct sum of k copies of By. Hence F(A) £ 0

if A £ 0 and for any element a € A, a # O there is a homomorphism

x : A»>E_ such that x(a) # 0. This shows that f, is a monomorphism.
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Let B = E(A)/A = EI\IZ/A. Then the following diagram

0 ~A  sE B =0
il
£]| £, ]
0 -GF(4) »GF(EM) +GF(B) » 0
is commutative with exact rows and monomorphisms between them.
But the middle f is an isomorphism, and so are all f's, This proves
that f is a natural isomorphism. A similar argument gives the
required equivalence for the functor ¥G.
Let L be a length function on $ and for each maximal ideal M
of R set
L,(A) = L(T(A), & 5.
Since TH is exact, I‘M is a length function on .

Proposition 3. TFor maximal ideals M # M of R, LM(A) =0 if A« EQMI .

Further, L = EMLM where M ranges over all the maximal jdeals of R

and this sum is discrete,

Proof, If A€ &, and ¥ £ M then T, (A) = 0 and L,(4) = 0 as well,
Let A € . Then by (¢), A = EBMTM(A), where the summation is taken
over all the maximal ideals af R, But TM(A) = 0 for all but a
finite number of maximal ideals since A is Artinian, Accordingly,
L(A) = S,L(T,(A)) = I, (4).

In view of the above proposition, we obtain a full description
of the length functions on & once we determine the length functions
on the &M 'Se

Let M be a maximal ideal of R and ¥,G the functors between
S)M and SM described in Proposition 2, If L,IL' are length functions

on &, and oy respectively then the functions LG’L{E‘ defined by
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LG(B) = L(G(B)), B ¢ By
L%(A) = U(F(A)), A € D
are length functions on 8M and &ﬁ respectively,

Theorem 4. There is a one-to-one correspondence between the

length functions on @M ard the length functions on 8M’ given by

L <->L, (L <=> L%).
Proof, Let L be a length function on &M and I/ a length function on
5. Then by Proposition 3, L, = L'if and only if L = L%. The

theorem now follows.

4,2 Artinian and Dedekind rings

As we have seen in the earlier sections, we can gain useful
information about length functions by considering them on
categories with Krull dimension, in particular on the categories
of Noetherian and Artinian modules. The question arises as to what
extent is a length function determined by its behaviour on the
categories of Noetherian and Artinian modules, In arder to put the
question in & more precise form, suppose that R is a ring and § and
5 denote the categories of Noetherian and Artinian modules respectively.
Let L be a length function on ™(R) and L, the continuous component of
L with respect to §. Then L = L, + (L-Ll) where L -1, has values 0
Or « on {e If we repeat the process with L -L1 and  then we obtain

L =1L, + L2 + L' where L2 is the continuous component of L-—Ll with

1
respect to § and I’ has values 0 or « on § and §. Thus our ariginal
question takes the following form, Is a length function trivial on

M(R) if it is triviel on § and $H? If the answer is 'yes' then every

length function on M(R) is a sum of trivial functions and length
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functions which are continuous on § or on . In this section we
decide the question in the affirmative for two classes of rings,
and show that in general the answer is 'no'., The following simple

lemma will be useful in the sequel,

Lemma 5. Let R be a ring, L a length function on M(R) and M ¢ w(R).

Set g ®; {4. Then Lesh) = o or » in either of the following cases.

(1) T is infinite,
(i1) L(M) = 0 or w.
. . apas I I I
Proof. If the index set I is infiinite then M~ = N~ & Ii" whence
L(MI) = L(MI) + L(MI). Thus L(MI) =0 or . If I is finite then
the result follows immediately from (ii).

The Jacobson radical’' of a ring R is the intersection of the

ennihilators of the simple R-modules., Let R be a ring and J its
Jacobson radical, It is well-known that if R is (left) Artinian then
J is nilpotent. If R/J is Artinian then every R-module annihilated
by J is semi-simple, l.e. a direct sum of simple modules, Moreover,
there are only a finite number of non-isomorphic simple R-modules,
Our first result concerns the class of those rings R which satisfy:
(a) R/J is (left) Artinian;
(b) J is nilpotent,
For example, every Artinian ring satisfies (a) and (b). Also, if
R satisfies (2) and (b) then § = & = modules with finite (classical)
length,

Theorem 6. Let R satisfy conditions (a) - (b) and let T be a

length function on T(R) such that L(S) = 0 or  for every simple

R-module S. Then L is trivial on M(R).
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Proof. Let } € MR) and suppose that M is semi-simple, 'e can
arrange that Il = leﬁ..&9 M, where each of the Mi's is a direct
sum of mutually isomorphic simple modules. By Lemma 5, L(Mi) =0
Or o for all i = 1,4se,k, Hence L(M) = O or ~o Assume now that
M is an arbitrary element of M(R). Since the Jacobson radical J
of R is nilpotent, J® = 0 for some n > 0. Then
M= JOM 2 Ji Deee2 Jn-lM 2 J% = 0 is a chain of submodules of M
and L(#) = z;;éL(Jim 7Ly, But J/7 M 4s annihilated by J
whence semi-simple., It follows from the first part of the proof
that L(3%5%/73* M) = 0 or w for all 4 = 0,...,n-1. Thus L(#) = O
Or o and L is trivial on M(R).

A commutative domain whose ideals are totally ordered by

inclusion is called a 'valuation ring'es If R is a valuation ring

then every finitely generated ideal is principal., If, in addition,
R is Moetherian then there is an element p € R such that every
proper ideal is of the fonm'Rpk, k > O, A comnutative Noetherian
domain R is said to be a 'Dedekind domain' if, for each maximal
ideal i of R, RM is a valuation ring. The ring R is called |
'semi-local' if it has only a finite number of maximal ideals.

Theorem 7. Let R be a semi-local Dedekind domain and let L be a

length function on T(R) such that L has values only 0O or « on

Noetherian and Artinian modules, Then L is trivial on M(R).

Proof. ''e call an R-moadule A 'torsion' if every element of A
has a non-zero annihilator ideal., The proof will be afforded in
a number of steps, the first of which shows that it is sufficient

to consider torsion modules over a valuation ring.
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We assume that there is a module A € M(R) such that
0 < L(A) < » and we want to derive a contradietion.

(a) "e may assume that A is a torsion module and R is a
valuation ring., TFor if T is the torsion submodule of A (the
maximal torsion module in A) then A/T is torsion free and
L(4) = L(T) + L(A/T). Further, we can find a maximal free
submodule F of A/T and T = (4/T)/F is a torsion module, Thus
L(a) = L(T) + L(T ) + L(F). By Lemma 5, L(F) = 0 or «, in our
case L(F) = 0 since L(F) ¢ L(A) < w. Hence L(4) = L(T) + L(T')
and either L(T) or L(T ) is finite and non-zero. Let Piseee,Pp
be the maximal ideals of R, If A is a torsion R-module then
A= A1€B..£9 Ak where every element of Ai is annihilated by a
power of the ideal P;, 1 < i < k. (c.f. [6, Theorem 1].) If
0 < L(A) < o then the same holds true for at least one Ass
1l <3i < ke It is easily seen that the elements of Ai are (uniquely)
djivisible by the elements in R - Pi' Thus each of the Ai's can be
regarded, in a natural way, as an RP.-module .

(b) Suppose that R is a Noetherian valuation ring and A is a
torsion R-module such that 0 < L{A) < w. There exists a 'basic’
submodule B of 4 such that B is the direct sum of cyclic modules
and A/B is injective. [14, Section 29, p.97-98]. Then
L(4) = L(B) + L(4/B)s But by [5, Theorem 2.5] and Proposition 3,19,
A/% is a direct sum of copies of E(R/b) where P is the maximal ideal
of R, Also, E(R/P) is Artinian by [6, Proposition 3], Using Lemma 5

we see that L(A/B) = 0. Hence L(4) = L(B).

(c) Assume now that R is a Noetherian valuation ring and
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P its maximal ideal., Let A be a direct sum of cyclic torsion
- \ o0 = Yl
R-modules such that 0 < L(A) < w. Then A S, 1A vhere A

is the direct sum of copies of R/Pk. Set

Ak if A is a finite direct sum,
Bk=
otherw1se,
'Ak if Ay is an infinite direct sum,
C., =
k

0 otherwise,

B =@‘;:1}3k, C = e‘ak_lck Then A, = B, ® C, (1 <« k < ) and
=B® C., But C ~ C® C and therefore L(C) = 0, L(4) = L(B),

Since L is O or « on Noetherian modules, B must be an infinite

sum. Consequently B =(9:=1Rbi and O : bi'2 0 : bi+1 for all i,

Set By =@ _, Rb,, , and B, =@7 | Rb,.. Then B = B, @B, and

L(B) = L(Bl) + L(B2). Tor i < j we have monomorphisms

fi,j : Rbi - ij which yield monomorphisms g : B -» Bl’ h:B-~» B2

defined by g(b.) = f‘i ?_i_l(b.) and h(b.) = fl zl(b )1l <i<

Thus L(B) ¢ L(B ), L(B) « L(B ) and these imply

2L(B) < L(Bl) + L(Bz) = L(B).

It follows that L(B) = 0, the required contradiction.

e close this section with an example which shows that the
thearem does not generalize to Dedekind domains having an infinite
number of prime ideals, ¥Yor the sake of simplicity we consider
the ring of integers, Z.

Let p be a prime number and Z(p~) the irjective envelope of
7/(p). The completion of Z(p) (called the ring of p-adic integers),

ip is a commutative domain, Let Lr be the rank function over this

ring. As we have seen HomZ(Z(p“), z2(p”)) = Zp. The function LP
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defined on M(Z) by
LP(A) = L_(Hon(4,2(p%))), & € M(2)
is a length function, Since LP(Z) = 0, Lp is zero on the Noetherian
Abelian groups. Let PysecesPsees be the sequence of rational

T

primes and Li = upithe functions defined above, The subcategory
YU of M(Z), consisting of all the Abelian groups A for which the
sequence {Li(A)}:=1 is bounded, is a Serre-category and contains
the MNoetherian and Artinian Abelian groups. Let S be the partially
ordered Abelian group of bounded sequences of integers, addition
and order defined componentwise, The subgroup D of S consisting
of sequences with finitely many non-gero terms is convex in S.
There is an order preserving homomorphism ¢ from S into the real
numbers which vanishes on D, yet ¢(1,1,e0451,...) = 1. This may
be seen as follows., The group S/D is torsion-free, whence the
partial order can be extended to a full order flS, Cor 13, p.39].
Since every convex subgroup of S containing (1,..,1,...) is equal
to S, we can find a2 maximal convex subgroup /D of the fully
ordered group S/D by Zorn's lemma. Then S/i is a fully ordered
rank-one group, whence it is order-isomorphic to a sub roup of the
reals,

The function L on M(Z) defined by

L(A) = @(Ly(8),T5(A)50ee, T (B),000), A € N

is a length function on U which vanishes on Noetherian groups
since each Ly does so, If A is Artinian then (Ll(A),...,Ln(A),,..)e D
and ¢(D) = O. Hence L vanishes on Artinian modules too. But
L(A) =1 for A =<B::iz(p:). The extension of L to M(Z) is the

required example,
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L«3 Valuation rings

In [3] the authorsdetermined all the upper continuous length
functions over a valuation ring R. In case R is Moetherian our
section 3,5 provides the (otherwise triviel) answer, The interesting
case is, of course, the one where R is not Noetherian., In this case
a completely new type of length function makes its appearance,

e feel that no account of length functions can be complete without
the presentation of this 'truly' upper continuous function,

Let R be a valuation ring and ¥ its maximal ideal., If there is
no prime ideal between M and 0, (i # 0) then R is said to be of
rank one. In this case there is a function v from R into the real
numbers and infinity satisfying:

(1) v(a) 2 0 for all a € R and v(a) = o if and only if a = O;

(ii) v(ab) = v(2) + v(b) for all a,b ¢ R;

(iii) v{a+b) 2 min(v(a),v(o).

Such a function is called a valuation of R, A proof of the existence
of a valuation can be found in [13].

Let R be a rank-one valuation ring and v a valuation on R,

For an ideal I of R set v(I) = %g% v(a). Then v(0) = «» and v(R) = O
since v/1) = 0. Also, if } is the maximal ideal of R then V(i) > O
implies that R is Noetherian,

Lemma 7. Let R be a rank-one valuation ring and v a valuation on R.

If I,J are ideals of R, where I ¢ J then v(I:J) + v(J) = v(I).

Proof., If R is Noetherian then every ideal is a principal ideal
and the lemma follows immediately. Also, if J = 0 there is nothing to

prove, Thus we may assume that J D 0 and v(ii) = O where M is the

maximal ideal of R.
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If b e I:J and ¢ € J then bec ¢ I and v(be) = v(b) + v(c).
Accordingly, v(I:3) + v(J) 2 v(I). Conversely, let a ¢ Th. Then
v(a) - v(J) > v(I) - v(J) and we can find an element b € J such that
v(a) - v(b) > v(I) - v(J). Hence a = bc for some ¢ ¢ R, Turther,
if d e J then v(ed) = v(c) + v(d) = v(a) - v(b) + v(d) > v(I) -

v(J) + v(d) » v(I)s It follows that cd ¢ I and ¢ ¢ I:J since d

was an arbitrary element of J. Thus v(a) = v(b) + v(c) where b ¢ J,

¢ ¢ I:J. Consequently, for every element a € T, v(a) » v(J) + v(I:J).
This implies that v(ITi) = v(J) + v(I:J). But v(Ii) = v(I) since

v(}) = 0.

Let the situation be as described in Lemma 7. We wish to show
that the valuation v on R induces an upper-continuous length function
L on MR) such that L(R/I) = v(I) for an ideal I of R. If R is
Noetherian then L is just a positive multiple of the classical length
function. If R is not Noetherian then L(R/i) = 0 and so L wanishes
on Noetherian R-modules. (It is easy to see that Noetherian R-modulcs
have finite classical length.) Yet L is upper-continuous.

Set U = {A € M(R):A is isomorphic to a segment of R}. Thus if
Ae U then A » I/J wvhere J C I are ideals of R, Obviously, ¥ is
semi-closed. Define I on U by writing L(0) = 0 and L(A) = v(J) - v(I)
if AxI/J and I D J are ideals of R If ID J, I'D J are ideals of
R such that I/J = I' /J' then taking annihilators on both sides:
I:J=1I:J. Applying Lemma 7 we see that v(J) - v(I) = v(J')-v(T').
Thus L is well defined and L(4) =L{B) if A & B,A,B ¢ YU, It now follows
that L is a length function on U, Let I D J be idecals of R, Then

L(1/3) = v(J) - v(I) = v(J) -a%:r[l‘f_'Jv(a) :ai:ttq_)J(v(J)-v(a)) = sup, L(Ra/J).
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This shows that L is upper contiruous on ¥, Using Proposition 2.6
we find that the continuous extension of L to M(R) is upper continuous.,
Thus we have obtained

Theorem 3. [3, Theorem 12]. Let R be a rank-one valuation ring and

v a valuation on R, Then there is an upper-continuous length function

L on M(R) such that L(R/I) = v(I) for every ideal I of R.

It was shown in [3] that the general situation,when the
valuation ring R is arbitrary, can be reduced to the rank-one case,
We note also that L in Theorem 8 is irreducible but not associated to

a quasi~simple module when R is not MNoetherian,

L4 Rank-rings

We call a ring R a 'rank-ring' if there exists a length function
L on M(R) such that L(R) = 1. Equivalently, if 0 < L(R) < o« is
satisfied by a length function L on M(R), then X is a rank-ring. The
characterization of the class of rank-rings seems to be an interesting,
though difficult, problem. The present section records the little
information on rank rings which can be deducted from our investigations
so far, The problem will be taken up again in chapter 6. (Theorem 6.k4)

A left-Noetherian ring is a rank-ring by Proposition 3.10, Cor.2,

Let S,R be rings and assume that S is a right R, left S
bi-module and S is flat as a right R-module, If S is a rank-ring then
R is a rank-ring too. For if L is a length function on %(S) such that
L(S) = 1 then L/ defined by L' (&) = L(8 &, A}, A ¢ 5(R) is a length
function on M(R) and I’ (R) = 1. Thus an Ore-domain is a rank-ring

as we have seen in example II of section 2.4, (Or more generally, if
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the elassical left-quotient ring of R exists and it is a rank-ring
then R is a rank-ring too., If R is a commutative ring and P is a

prime ideal of R such that R, is a rank-ring then R is a rank-ring

P
as well. This is the case¢, in particular, when RP is Noetherian
for o minimal prime idecal P of R,

The class of rank-rings is closed under finite direct sums
and the forming of full matrix rings. (Sec section 2.3.)

Let Rk denote the direct sum of k copies of the ring R, k > 0,
The ring R is said to have IBN (invariant basis nuwber ;) if Rk N Rn
implies k = n, We see at omce that if R is a rank-ring then it has
IBN., It is known that every comumutative ring has IBIMN but there are
rings without IBN (c.f. [16]). Therefore not every ring is a rank-
ring. In fact we can say more,

Theorem 9, There is a commutative ring R, having exactly one prime

ideal which is not a rank-ring.

Proof. Assume that R is a commutative ring and M is the only prime
ideal of R. Let i be nilpotent and L a length function on MR)., If
0 < L(RM) < o then L is a positive multiple of the classical length
function on M(R) by Proposition 2.12. On the other hand, L(R/k) = O
implies that L is trivial on M(R) by Theorem 6, If, therefore,

L(R) = 1 then L is a multiple of the classical length function and

R is Artinian. Hence R is not a rank-ring if it is not Artinian,
Sueh a ring can be constructed as follows, Let F be a field,
{xn;";r a countable number of indeteruinates and S = F[X;,eeesX se0e]
the polynomial ring over F. Let A be the ideal in S generated by
{Xixj;i,j and consider the ring R = S/A., It is easily seen that if i

is the ideal in S generated by the indeterminates {X134 then M/A is the
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only prime ideal of R. Further, (1/A)® = 0 and R is not Artinian,
Thus the ring R is not a rank-ring.

Using Theorem 8 one can obtain a rank-ring which is not related
to Noetherian rings in any of the earlier described ways. Indeed,
let R be a non-Noetherian rank-one valuation ring, v a valuation on
R and Ii the maximal ideal of R, If I is an ideal of R so that
0OCICHN then 0< v(I) < we If L is the length function in Theorem 8
then L induces a length function on $(R/I) which makes R/I a rank-ring.
But R/I is not Noetherian and does not seem to have a flat over ring

which is Noetherian, Also M/I is the only prime ideal of R/I.
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CHAPTER 5

MULTIPLICITY THEORY

el The multplicity operator

Throughout this chapter § and § denote the category of
Noetherian and Artinian R-modules respectively for a ring R.
The ring R v11l be kept fixed in the first section. Let U be
a subcategory of M(R). If for each length function L on U there
is associated a length function el on Y then we say that e is an
operator on the class of length functions on U, The product and
sum of the operators is defined in the obvious way, i.e. if e

1

and e, are operators on length functions on U then (el+ez)L::e1L+-eQL
and (elez)L = el(eZL) for every length function L on U. Ve let
T denote the centre of the ring R.

Tor each central element y ¢ I' the multiplicity symbol e[y]
will be defined as an operator acting on lemgth functions on § and $.
Qur aim in this chapter is twofold. XPirst we introduce the
multiplicity operators and prove their elementary properties
restricting ourselves to a bare minimum. At this stage the
emphasis is laid upon the parallel development, i.ec. we wish to
demonstrate that multplicity theory can be developed on Artinian
modules Jjust as well as on ioetherian ones. In section two the

associative law will be established without any restriction on

the I‘ing R.
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This work owes much to the treatment of multiplicities in
[1, chapter 7] and the reader should consult this account for
further information.

Let YqseeesYy be central elements and L,L* length functions
on § and & respectively. Define the categories &(yy,es.,7,,L) and
@(Yl, ...,Yn,L*) as follows:

G(ypseees¥pl) = A e § ¢ Ayh +oeet v A e Finli;

G(Yls---,Yn:L*) ={henH: 0 a1 NeeeN O WYq € Fin L*}.

Lemma 1, Let O + A’»> A » A”» 0 be an exact sequence in M(R) and

¥ € T Then there is an exact sequence of the form:

0-+0 :A'Y-’ 0 :AY + 0 :A”Y > AI/YAI > A/YA -> A”/YA”"’ 0. (1)
This is & special case of the so-called 'Ker-Coker sequence'. For

a direct proof see [1, Lemma 3, p.301].

Proposition 2. Let vy ¢ T and L,L* be length functions on § and §

respectively. Then &(y,L) and &(y,L*) are Serre-categories,

Proof. Let O » A’> A » A”> 0 be an exact sequence in M(R). Suppose
that &' ,A” ¢ &(y,L). From the exact secquence (1) we see that

K /YK > bfyh > A /xA'> 0
is exact. Put B = Im(&'/yA'> A/¥vA). Then B ¢ Finl, A"/yA”¢ TMn L
and we have an exact sequence

0B AMA > A/yA" > 0,
Hence A/yA ¢ FinL since FinL is a Serre-category. Thus A ¢ G(vy,L).
(Note that FinL C § since § is the domain of L.) If A ¢ &(y,L) then
Ae B(y,L) since AfyA » A"/yA"s O is exact.
One may establish in a similar manner, (using the first part

of (1)), that 4’,A"¢ &(y,L*) = A € &(y,L*) and A ¢ ©(y,L*) = &' ¢ &(y,1*).
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Assume now that A € &(y,L). In order to show that A’ e &(¥,L)
we may assume that A’ is a submodule of A, Suppose that A'/yA’ ¢ TinL,
Then we can find a submodule B of A which is maximal with respect to
the property that B/YB ,{ FinL, Put B'=B TR L Then we have
¥B'C ¥B C B/ CBCB'If B < B’ then L(B'/yB') < « by the maximality
of B. Purther, L(B/yB) ¢ L(B/¥*B') = L(B'/YR') + L(YB'/¥B') <
since vB' /Y°B = B/yB + 0 ipoy. If, on the other hand, B = B’ then
YA B = YB and L(B/yB)= L(B/yA N B) = L(B+yA/¥A) « L(A/¥A) < e
In either way a contradiction is obtained. Thus, if L(4/YA) < o
for A ¢ § then L(& /YA’ ) < o for every submodule of Aa

Now we have only to consider the Artinian case, To this end,
suppose that A ¢ &(y,L*), i.e. A ¢ § and L*¥(0 N Y) < we If there
is a submodule B C A such that A/B £ &(y,L*) then choose B to be
minimal with respect to this property, Note that for any submodule
Cof Ay O y/p ¥ » C sy v/C., Put B'=B ty Yo ThenyB C B C B B 1) ¥5
If ¥yB C B then, by the minimality of B, L*(YyB f Y/YB) < « and
L*(yB :Ay”/yB) = L*(yB N v? /YB N y) + L*(yB 0 Y/¥B) < » since
vB i, ¥/vB: va (¥B i ¥) NYA/YBC YB3 v/¥B. Thus
L*(B'/B) < L*(¥B 3, Y/YB) < w. If, on the other hand, yB = B then
it is easy to see that B'= 0 T B. . Hence
L*(B'/B) = L*(0 A /0 B ¥) < L*(0 W ¥) < o In either way, we

obtain L*(B'/B) < « But B'/B x0 ¥ which contradicts our

*A/B
assumption on B, Thus, for every submodule B of A, 4/B ¢ &(y,L*)

and the proof of Proposition 2 is concluded.
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We are now ready to define the multiplicity operator. Let
¥ € T and L,L* be length functions on § and & respectively., Since
&(y,L) and &(y,L*) are Serre-categories by Proposition 2, we find

that 0 :, v € ©(y,L) (resp. A/yi ¢ &(y,L*)) whenever A € &(v,L)

A
(resp. 4 € &(y.L*)). Hence 0 :, v ¢ FinL (resp. A/YA € Fin 1L*),

Now define the operator e[y] by

L(A/YA) - L(0 3y ¥) if & € &(y.L),

e[v]L(a) = { (A ¢ 5)

« otherwise,

) CL(0 :, y) - L(A/ya) if A € &(y,L¥*) (A e
ol¥Iir(a) - | A Y )

o otherwise,

We camnot say, as yet, that e[Y]L, e[y]L* are length functions.

So we prove

Proposition 3. The functions e[v]L and e[v]L* are additive.

Proof. Let 0 » A’> A + A”> 0 be an exact sequence in . Simce
&(y,L) is a Serre-category, A £ &(y,L) implies that either
A £ 6(y,L) or A"£ &(y,L). Hence e[v]L(A) = e[v]L(&') + e[y]L(4")
if A £ ©(y,L). Assume now that A ¢ ©&(y,L). Then fron the exact
sequence (1) and Proposition 2.1,L(0 :Aﬁ? + L(0 %A'N’)+ L(A/YA) =
L(0 ?AY) + L(A/YK) + L(A”/Y {). But all the modules which occur
belong to Fin L. Hence, by rearrangement, e[v]L(a) = e[yIL(s ) +
e[y]L(4”). The additivity of e[y]L* is proved similarly.

It is clear that e[y]L(0) = e[v]L*(0) = 0. We have only to
show, therefore, that the functions e[v]L and e[y]L* are non-negative.

This will follow from the following.
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Proposition 4. If A ¢ ©(y,L) (resp. 4 ¢ &(y,I*)) and YA = 0
for some n > O then e[vln(a) =0 (resp_. ely]L*(4a) = 0).
Proof. We proceed by induction on n. If YA = O then A/YA = 4 and

0:, ¥ =4 slso, A e ©&(y,L) (resp. A € &(y,1*)). Hence
elv]L(a) = L(A) - L(A) = 0. (resp. a[y]L*(4) = L*(4) - L*(4) =0).
Assume now that n > 1 and the proposition has been established
for all values less than n, Consider the exact sequence
0> yA > A~ A/A - O,
Then Yn_l(yA) = 0 and y(4/yA) = 0. The result now follows from
Proposition 3.

Corollary 1. The functions e[v]L, e[y]L* are non-negative.

Therefore e[y] is an operator on the length functions of § and on the

length funcl:_ions of &.

Proof. First consider A € §. We may assume that A ¢ &(y,L), Let
0: Yk be maxinal among the submodules of A of the form O % Yn,
n >0, By Proposition 4, e[y]L(0 N Yk) = 0 ani
e[¥]L(4) = e[vIL(A/0 5, ¥) since e[y] is additive. Put
B = A/0 N Yk. It follows from the maximality of 0O N Yk that
0 3 v =0. Hence e[¥JL(A) = e[¥]L(B) = L(B/¥B) > 0. (If A £ &(y,L),
then e[v]L(4) = L(A/YA) = .

Assume now that A € &(y,L*) and let YkA be minimal among the
submodules of A of the form Y 4, n > O. Then e[y]L*(4) = e[y]L"'(YkA)
since Yk(A/YkA) = 0, But Y(YkA) YkA by the minimality of YkA.

Hence e[Y]L*(YkA) = L*(0 :YkA Y) # 0,

[}

In view of the above corollary we ean now rightly call e[vy]

an operator.
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Corollary 2. The operator e[y] preserves local discreteness.

Proof. Recall that a length function L is called locally discrete
(section 3.3, if for each module A in the domain of L,
inf{L(S) : S a segment of A, L(S) >0} > 0. Let y € I and L be
a length function on §. We saw in the proof of the previous
corollary that for every A € 5, e[y]L(A) = L(S) for a factor module
S of A. Hence inf{e[Y]L(S) : S a scgment of 4, e[y]L(S) > 0} »
inf{L(S) : S 2 segment of A,L(S) > 0} > O. Analogously, if L* is a
locally discoete length function on & then so is e[y]L*., Note also
that e[y]L (resp. c[y]L*) will have integer values whenever L
(resp.L*) has.

Let Ypreees¥y be central elements. For the product
e[Yi]e[Yé]""’e[Yh] of the operators e[Yl]""’e[Yh] we simply
write e[Yl,...,Yn]. Note that e[Yl’YZ] and e[YlYé] are different

operators,

Proposition 5. Let YyseeesYy be central elements and L,L* length

functions on § and & respectively. Then

Fin e[Yl""’Yn]L = @(YISOO-)YnQL) and

Pin e[1yseee s, 1% G(rpseee v, %),

In particular,(5(Y1,...,Yn,L) 22§<§(Yl,...,Yn,L*) are Serre-

categories,

Proof, If n = 1 then the statement follows a fortiori from the
definition. Assume that n > 1 and the proposition has been
established for n - 1. Put K = e[yé,...,yh]L. Then

e[Yl,...,Yn]L = e[Yi]K. Let A € §. Then we have:
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AeTin e[Yl,...,Yn]L <=> A ¢ Fin e[yl]K <=> A/YlA € FinK <=>
A/#IA e<§(Y2,...,Yn,L)

by the induction hypothesis. Next, we have an isomorphism

B/YZB teoot Y B ® A/YlA *eest YA where B = A/YlA. This shows

that A/y A € @(YZ,.,.,Yn,L) if and only if A e @(yl,...,yn,L).
The formula Fin e[Yl""’Yh]L* =<§(Yl,...,Yn,L*) is proved

similarly,

Theorem 6, Let YyseeesYy be central elements and L,L* length

functions on § and § respectively, If A ¢ § and B € & then

n nk
L(A/#l Ateiot Yy A)

e soe L A\ = inf - 2
[Yl’ ’Yk] ( / nl,...’nk nl"'nk ) ( )
nl nk
s L* 0 : Y N -nﬂ 0 M N
e[Yl,...,Yk]L*(B) = inf ( B '1 B !Eil(})
nl’oon,nk nl..an
In the case k = 1, inf can be replaced by Lim in the formulae,
Remark. In fact inf can always be replaced by Lim where
- Dyseces Npoo

n = min(nl,...,nk). In this form the first formula is known as the
limit formula of Lech. The replacement of inf by Lim seems to give
a genuinely stronger result. TFor a proof of Lech's formula see
[1, Theorem 10, p.3Lli].
Proof. We will only prove (2) since (3) can be dealt with in a
similar manner.

First, let k = 1 and put ¥ = v;. If A £ &(y,L) then L(A/YA) = .
Hence L(A/YnA) = » for all n and there is nothing to prove.

Suppose that A € &(y,L) and 0 tp ¥ = 0. Then for each n > 0

1 .
there is an isomorphism Y A/ T-A » A/YA®  Consequently
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e[v]L(A) = L(A/va) = ri*L(4/¥"A) and the result follows., Next
consider a general element A € &(y,L). Choose the integer m so
that 0 W ym =0 % YS for all s > m. Then it is easily seen that

0: Y“N~°4A=0for a11 s » m, Put B = 4/0 :) ¥'. Then

‘A
0 Y = 0. From the first part of the proof we find that

e[y]L(B) = n'L(B/¥"B). Next, from the isomorphism

B/Y'B % 4/(0 1, ¥ + Y'A) we deduce that L(B/Y'B) = L(4/y"4) -

10 3, ¥/0 5 YN y"A). Put C = L0 5 ¥") < » (A € B(ysL)). Then
for n » m,L(B/Y"B) = L(4/Y"A) - C. Finally e[y]L(4) = e[y]L(B) =

Lin it L(A/XTA) =

ﬁiL(A/#nA) - 6'C if n » m. This shows that e[y]L(A)

i

inf ntL(A/Y 4.

Assume now that k > 1 and (2]} has been established for the case
when the multiplicity operator contains less than k central elements.
Put L' = e[Yz,...,Yk]L. Then e[Yl,...,Yk]L = e[Yl]L’ and the induction

hypothesis yields

n n
Y
L(-‘L/Yl F teaot YkkA)

]
e[y, 11 (4) = ipf 2 = inf  inf

N, N, ye8e
1 nl 1 2? ,nk nl...nk

n2 n n1 n
Here we used the isomorphism B/Qé B 4000+ YkkB = A/Yl A 4.0+ YkkA;

n
B stands for A/&llA. The proof of the thearem is now complete.

Corollary 1. The operators e[Yy] commute with each other, i,e, for
1-

central elements (1Yo e[Yl,Yz] = e[Yz,Yl].

Proof. Observe that the right hand sides of (2) and (3) are symmetric
in the Yi'S. In general, e[Yl,-.-,Yn] does not depend on the order

. 1
of the Yi Se

T Equality of”%he cperators means the obvious, i.e, e, = e. if o
elL = 92L for all length functions L on which e, and e, are acting.
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Corollary 2. For central elements yy,Y, We have e[YlYé] = C[Yl] + e[vy].

Proof. We will only prove that for each length function L on 3,
e[YlY2h3= e[Yl]L + e[v,]Le The corresponding statement for
length functions on & is analogous.
If A € § then by Theorem 6,
elv ¥, IL(4) = Lim mL(&/Y]YpA) = Lim o {L(A/Y]A) + L(vyi/v)vph) ],
Accordingly, it is enough to show that G[YZJL(A)-le n L(YlA/ lYZA/°

We may assume that A €<5(Y2,L)e For each n we have an isomorphism
ynA/NnynA ~ A/&SA + 0z, yﬁ. This gives

L(v1 4/ TYoh) = L(a/Yph) = L( 5,) where S_ = 0 i, yi‘/o N Yg n YgA.
If, however, n is large enough then 0 N Y? =0 2 Y? for some
fixed m > 0., There exists, therefore, a finite number ¢ such that
0 < L(Sn) < ¢. It now follows that kig ﬁ?L(Y /%iyé A) =

Lim ﬁiL(A/kgA) = e[yé]L(A). This establishes the corollary.
1>

5.2 The associative law

In this section we will only consider length function on §.
There are two reasons for this. The first is that a formal
associative law can be established in the Artinian case exactly the
same way as in the Noethérian one, The special forms of the
associative law, however, cannot be obtained in the general Artinian
case because we do not have the concrete description of the
irreducible functions. We note, however, that if the ring is
comnutative and Noetherian then the results of section 4.1 can be used
to obtain an analogue of Proposition 9.

If mention is being made to several rings, then §(R) is used
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to denote the category of Noetherian R-modules, Ais before,

we write simply § when there can be no confusion,.

Proposition 7. Let L, {Ligiel be length functions on § and assume

that L is the discrete sum of the Li's on Fin L, Ef Yiseesa¥,

are central elements then e[Yl,...,Yn]L is the discrete sum of

the e[yl,...,Yn]Li's on Fin e[Yl,...,Yn]L.

Proof. We recall that if L is the discrete sum of the L;'s on

FinL then for every module A ¢ FinL, L(A) = EiLi(A) and Li(A) =0
for all but a finite number of i in I. Also Fin e[Yl,...,Yn]L =
@(Yl,...,Yn,L) by Proposition 5. Let A € Fin e[Yl]L = @(Yl,L). Then
A/71A and 0 :; ¥y; belong to Fin L and hence to Fin L;, 1 ¢ I, Also,
the sum of the Li's is discrete on Fin L and therefore

Li(A,/YlA) = L;(0 3, y;/ = 0 for all but a finite number of i.
Accordingly,

L(a/vis) = 10 5y vy) = 2,40, (6/vqh) = L,(0 5, vyl = Zoelyy L, (A)
and e[Y]Li(A) = C for all but a finite number of i. Thus e[Yl]L is
the discrete sum of the e[Yl]Li's on Fin e[Yl]L. We can now take the
operators e[YZ],...,e[Yn] successively and the result is obtained.
Note that the order of the operators is immaterial by virtue of

Theorem 6, Cor.l.

Theorem 8. (associative Law,. Let L be a locally discrete length

function on g, YyseeesYy central elements and i an integer satisfying

0 <is<n. If[S]} is a set of representatives of

= YT mwell

Ker e[Yi+l,...,Yn]L-simple modules in‘5(Yi+1:--°:Yn:L); one from

each isomorphism class, then the decomposition
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e[Y]_"‘“)YnJL = Zﬂe[Yi-f-l: ""Yn]L(Sm;) .e[Yl’.'.’Yi]Lﬂ (Ll-)

holds on 6(Yl"°"Yn’L)' Here L7t is the irreducible length

function associated to Sﬁ, and the sum is discrete on
@(Yl,...,yn,L).

Remarks. We ncte that the theorem is true if § is replaged by H.
The proofs are identical.

When there are no central elements the operator e[.] is
understood tc be ths identity operator, Thus e[.]L = L. Also, we
make the convention that ©(.,L) = Fin L,

The assumption that L is locally discrete is not too severe.
It is certainly satisfied if L is taken to be the classical length
function. Also, if the ring is comautative then every length
function on § is locally discrete by Theorem 3.23.

Proof, Put L'= e[Yi+l,...,Yn]L. Then L' is locally discrete by
Proposition 4, Cor,2, Also, Fin I/= @(Yi+l"'°’Yn’L> by Propositioi .
Using Theorem 3,14 and Proposition 3.10, we find that the
decomposition

1 ’ N
=2 L (bﬂ)Lﬂ

holds on ¥in L' and this sum is discrete. Put ¢ = L’(Sﬂ) =
e[Yi+1’°°"Yh]L(Sﬁ>' Apolying Proposition 7 we obtain that
e[yl,...,Yn]L = e[Yl,...,Yi]L': zﬁe[Yl""’Yi](chx)
holds on Fin e[Yl,..a,\h}L = G(Yi"'°’Yn’L)' The theorem now
follows from the following trivial fact: for any length function
Kong, v € I' and real number ¢ > 0, e[y](cK) = ¢ e[y]K.
We can put (4 in a slightly different form, Using Proposition

2.4 and Thecrem 3.14, a set of left ideals {I } m of R can be found

™" Re
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such that E_ = E(R/In) is indecomposable for all = € I and
R/I” form a set of representatives of Ker e[Yi+1,...,Yn]L-simple
modules in<5(yi+l,...,Yn,L) one from each equivalence class,
Then the LE 's are the associated irreducible functions by Theorem 3.18.

7
Corollary 1. Let the situation be as described above., Then (4)

takes the form

elvyseeesy JL = Zﬂe[Yi+l’""Yn]L(R/iﬂ)'e[Yl"'°’Yi]LE .
assume now that the ring R is commutative. Then L i: auto-
matically locally discrete by Theorem 3.23. Also, with L’ as above,
I = Ipl! (R/P)Ip (5)
where the summation is taken over all the minimal prime ideals of
© = @Kyi+1,...,Yn,L) by Theorem 3.24. As before, the decomposition
(5) holds on @ and it is discrete there. In the commutative case,
therefore, e[Yl,...,Yn]L admits the following decomposition on
@(Yl,...,Yn,L)=

e[Y1)°°°)Yn]L = zpe[Yi+1’ s e ':Yn]L(R/P)' .e[Y]_’ e 0 .’Yi]LP. (6)

Here P ranges over all the minimal prime ideals of © and LP is the

irreducible length function associated to P. By Proposition 3.20,

P
length function on m(RP}. We now show that in (6, we can let P

for all A € MR, LP(A) = Rp (A.@h RP) where €, is the classical

run through only those wminimal prime ideals of ® which contain the
ideal I = Ryi +eoot RY}f For suppose that P is a minimal prime of &
and P does not contain I. For a module A € @(Yl""’Yh’L) we have

0 - e[Yl’...’Yi]LP(A) 3 LP(A/IA>

by Theorem 5. But I(A/I&) = O and P does not contain I. Hence
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t(A/IA) = O for some t € R-P. It now follows that LP(A/iA) = 0
and so e[Yl""’Yi]LP(A> = 0, Thus the term corresponding to P
in (6) is zero and we can leave it out.
In order to transform (6) into a more familiar form we make
a number of observations concerning chenge of rings., For a prime
ideal P of R, let Pp ¢ R - RP and qu > R/P be the canonical ring
homomorphisms. Then R/P ¢ §(R/P) vwhenever R/P ¢ §(R) and L can
be regarded, in a natural way, as a length function on F(R/P).
Further, for each R-module A annihilated by P, and y € R,
YA = #P(y?A. Accordingly, if eR/P[#P(Y)] denotes the multiplicity
operator acting on the length functions of T(R/P) then
eR/P[*P(Y)]L(A) = e[v]L(A). In particular, e[Yi+1’°"’Yh]L(R/P) =
g /pl¥p(¥y, 1)+ - ¥p(¥, ) JLR/P) tn (6).
Similarly, A ¢ §(R) implies that A ® R, ¢ §(Rp). Also, we
have an RP-isomorphism
(A/Y1A+...+YiA) & Ry ® A Q RP/@(Yi)(A N RP)+...+ @0§)(A.®RRP)
-since the functor - Sh RP is exact. In particular, for a module

A ¢ 5(R) we have by Theorem 6

& (A/erlA teoot YIiIiA) ®, Ry |
e[YJ_SO-':Yi]LP(A) = n inf RP{’ 1 J .

1,-.0,ni nl""ni

Consequently, ely),eee,v; JL(4) = eRP[cp(Yl),...,<p(Yn)]eRP (4@ Rp).

We record these results in the following:

Proposition 9. Let R be a commutative ring, L a length funetion on

ﬁ(R) and Yl""’Yn elements of 3. If now i is an integer satisfying

0 < i < n, then for a module A 6‘5(71,...,Yn,L),
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e[YlgcooyYn]L(A) = zPeR/P[\"rP(YiH.)’""*P(Yn)L(R/P)
‘eR.P[(pP(Yl),...’(pP(Yi>}6RP(A q{R‘P)'

Here P ranges over all those minimal prime ideals of

@(Yi-!'l’...,Yn’L) Which contain I, -a_.n-_d,‘ (pP : R » RP’ ll[P ¢+t R » R/P

are the canonical ring homomorphisns,
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CHAPTER 6

THE ORDERED GROTHENDIECK GROUP

6.1 The ordered Grothendieck group as a solution of a universal problem

We call a category U 'small' if there is a set of modules
iAi;ieI in o such that for every i € U,A » N for some i ¢ I. In other
words, U is small if the isomorphism classes of modules of U form a
set, Examples of small subcategories of M(R) include the Serre-~
categories generated oy the finitely generated amd finitely embedded
modules respectively. In particular, the categories of Noetherian and
Artinian modules are small., The construction of the Grothendieck
group of a small category % of’wKR) is well-known, We wish to show that
a 'natural' pre-order can be defined on the Grothendieck group. The
ordered Grothendieck group is then obteined by factorizing through the
equivalent classes with respect to this preorder and thus turning it
into a proper partial order.

Our terminology on partially ardered groups will be that of [15],
unless defined otherwise., It is assumed that the elementary properties
of partially ordered groups are known, Details can be found in [15].
Throughout this chapter a 'ELglugzggg' means a partially ordered
Abelian group.

Let U be a subcategory of MR) and G a p.o. group., A function

v : U+ G is called a 'valuation' if it satisfies the following two

conditions:
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(i) v(4) » O for all A e ¥;
(ii) v(a) = v(# ) + v(4") whenever O > A'> A+ A”> 0 is an
exact sequence in U,

We see at once that v(0) = 0, (0 € U). A valuation v of Y is a
finite length function on ¥ if and only if the range of v is a
subgroup of the real numbers,

Let U be a subcategory of M(R) and v : U » G(U) a valuation
from U into a p.o. group G(U).
Definition. The p.o.group G(YU) is called the 'ordered Grothendieck
group of U' (and v the canonical valuation) if for any p.o.group G/
and valuation Vv : U ~» G“ there is a unique order-preserving
homomorphism f : G(U; » G’ such that v/ = fv,

It is easily seen that the ordered Grothendieck group is unique
up to order-isomorphism. Our next task is to establish the existence.

Proposition 1. For each small subcategory U of T(R) the ordered

Grothendieck group of U exists.

Proof. ior a wodule A € U, & denotes the isomorphism class of A.
Since U is small, the A's form a set U, For elements X,-B' € U write
'y < B if 4 is isomorphic to a segment of B. It is clear that this
relation is well-defined and turns U into a preordered set, i,e.

¢ is reflexive and transitive. Let F be the free Abelian group on ‘27.
Then F consists of elements of the form

alKI +eoot &KZK, al,...,ak integers, Zl,...,Kk e U

We turn F into a preordered group by defiming the positive cone P of F as

P = {a)(A-By) +eeer a(R-B) t 8y 2 Opeenyay > 05& > Biyues,d 28 .
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In particular, A=A-0¢€P forall h ¢ U, Indeed, all one
has to check is that X,Y e P= X + Y ¢ P.T This, however, is
trivially satisfied. If X,Y ¢ F then we write X < Y if Y - X ¢ P,
Let D be the convex subgroup of F generated by elements of the form

A - B - C,AE,C ¢ Y and 0->B > A~>C>0 is exact in U,
(A set SC I is convex if X < Y < Z and X,Z ¢ S implies Y ¢ S.)
Put G(Y) = I'/D and Tor each A ¢ U let [A] denote the coset A + D
in G(YU). “‘e claim that G(YU) is the Grothendieck group of U and
A » [A] is the canonical valuation, The partial order on G(¥) is
the induced partial arder, i.e. the order relation between the
cosets is defined by the rule X + D ¢ ¥ + D if and only if,
X< Y+ Z for some Z € D, This is the standard method and one easily
checks that this relation on G(U)is not only a pre-order (since
it is indeed anti-symmetric). It now follows that A » [A] is a
valuation of U,

Assume now that G’ is a p.o.group and v : Y » G’ 1is a valuation.
Obviously, v(4) = v(B) if A = B. Hence v induces a homomorphism g
from F to G'. Further, v(4) < v(B) whenever A is isomorphic to a
segment of B. Hence g : ' » G' is (pre)order-preserving.
Consequently Kerg is convex in F, Since v is a valuation,

v(B) = v(A) + v(C) whenever O » B» A~> C » 0 is exact in Y. Hence

g(K;ﬁ;E) = 0., Thus D Ker g and there is a unique order-preserving
homomorphism f : G(YU) - G{ such that v(4) = £([A]) for all 4 e G(%),
This establishes the proposition.

It should be noted that the ordered Grothendieck group of a

t F is only a pre-ordered group.
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(small) category ¥ is not isomorphic to the standard Grothendieck
group as an Abelian group, but a factor of it, This can be seen
immediately from the construction if one observes that the standard
Grothendieck group is obtained from the free group F by factorising

through a group contained in D,

6.2 Length functions and the ordered Grothendieck group.

Let U be a small semi-closed subcategory of M(R), G(YU) the
ordered Grothendieck group of U and v : U » G(U) the canonical
valuation. The connection between G(U) and the length functions
on U is revealed in the next theorem.

Theorem 2. There is a one-to-one correspondence between the finite

length functions on U and the order preserving homomorphisms from

G(™) into the real numbers.

Proof. The set of real numbers is a p.o.group under addition and
natural order, Let H be the set of order-preserving howomorphisns
from G(¥U) into the real numbers. If f ¢ H then fv is clearly a
finite length function on ¥, Conversely, given a finite length
function L on U there exists a unique order-preserving homomorphism
f in H such that L = fv. Thus £ <-> fv (f € H) is the required
one-to-one correspondence,

Theorem 2 suggests that the study of (finite) length functions
may be replaced by the study of ordered Grothendieck groups, The
latter concept is probably a more natural invariant of a category
than the family of length functions on it. At the moment, however,
we can compute the ordered Grothendieck groups of certain categories

with the aid of length functions and not the other way round.
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The next result is a good illustration of this point.

Theorem 3. Let R be a commutative ring and U a Serre sub-

category of the category of Noetherian R-modules, Let G(U)

be the ordered Grothendieck group of U and v : Y » G(A) the

canonical valuation. Then G(Y) is a free group, order defined

componentwise. The elegents v(R/P), P a minimal prime ideal of U,

form a basis of G(Y).

For the proof we need the following lemma.,

Lema 4. Let R be a commutative ring and A a Noetherian R-module,

A % 0. There are prime ideals PO,...,Pn_1 of R and a chaip of
submodules
0= Ay QA GueeGC & = A

such that A, /A, 8 R/P,, 1 = 0,...,0-1.
This is a well-known and interesting result. A proof can be found
in [1, Prop.9, section 7.9, p.338].

We now prove Theorem 3. By Theorem 2, G(U)exists and the set
fv(A) : A € Ulgenerates G(Y)., Now Lemma 4 shows that
{v(R/P) : P a prime ideal, R/P ¢ U} is a generating set for G(U).
Next, if P C P/ are prime ideals and R/P € U then R/’ ¢ U and
v(R/P) = v(R/P') + V(EZP). But 3?? contains a submodule
isomorphic to R/P (see Lemma 3.21). Accordingly,
v(R/P) » v(/P') + v(R/P) and so 0 ¢ v(R/P') < O. Hence
v(R/P') = O whenever P’ is not a minimal prime ideal of %Y. Thus
the set v(R/P), P a minimal prime ox U, generates G(U)., If P is

& minimal prime ideal of U then LP,~the associated irreducible
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length function, is finite on ¥ (Theorem 3.24;. Consequently,
for each minimal prime P of U there is an order preserving
homomorphism fP such that LP = va.

Let Pl""’Pk be distinct minimal prime ideals of U and
815000180 s000,D, De integers. If alv(R/Pl) +ouet akv(R/Pk) =0
then applying ﬂp. we obtain a; = 0, i =1,ee.,ke Hence the elements
v(k/P), Pis a m;nimal prime of ¥, form a basis. Further, if

alv(R/Pl) tooot 8 V(R/P) > DyV(R/Py) +o0ot b, v(R/P,)
then, using fP. again, a; 2 bi is obtained. Thus order is defined
ccmponentwise.1

If R is a commutative Noetherian ring then for a Serre-
category U of Artinian modules the ordered Grothendieck group
G(U) of U can be computed by using the duality in section 4.1 and
Theorem 3 above. We find that G(Y) is free and order is defined
componentwise.

Several other ordered Grothendieck groups can be computed by
means of length functions. As another example we note that if R
is a rank-one veluation ring then Thearem 4.8 can be used to
compute the ordered Grothendieck group of the Serre-category
generated by the finitely generated tarsion R-modules. This group
is not free if R is not Noetherian,

Finally a theorem on rank-rings.

Theorem 4. Let R be a ring and G(R) the ordered Grothendieck group

of the Serre-category generated by the module R. Then R is a rank-

ring if and only if G(R) # O.
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Proof. If R is a rank-ring then there is a length function L on

T(R) such that L(R) = 1. Consequently,if § denotes the Serre-

category generated by R, then L is a finite non-zero function on .
Hence G(R) # O by Theorem 2, Conversely, assume that G(R) # O and

let v : §+ G(R) be the canonical valuation. Proposition 1.1 shows
that if A ¢ § then A has a chain of submodules ¢ such that every

chain factor of ¢ is isomorphic to a segment of R. Accordingly,

v(A) ¢ nv(R), n >0 A€ §. Hence v(R) £ 0 if G(R) £ O. Further,
nv(R) = 0, n > 0, implies that 0 < v(R) < nv(R) and v(R) = O. Thus
G(R) # 0 implies that v(R) # 0 and G(R) is not a torsion group. If

T denotes the torsion subgroup of G(R) then G = G(R)/T is a torsion
free p.o. group under the induced order. (T is completely unordered
in G(R).) Aalso, the partial order on G can be extended to a full
order. [15, Corollary 5, p.36]. Let v be the composite valuation

v: 5 G(R) » G. If a convex subgroup of G contains v’ (R) then it
contains v/ (A) for all A e § and so it is equal to G. There is,
therefore, a maximal convex subgroup D of G, v (R) £ D. But G/D is
fully ordered and of rank-one., This means that G/D is order isomorphic
to a subgroup of the real numbers, This shows that there is & non-zero
order preserving homomorphism f from G(R) into the real numbers.

Then fv is a finite length function on §. The extension L of fv to

M(R) is such that 0 < L(R) < w. Hence R is a rank-ring.
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