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PREFACE 

In commutative al8ebral real valued functions (which may 

attain infinity) such as length, raDk, multiplicity etc. are 

frequently used. D.G.i'Torthcott and iCl.Reufel were the first who 

observed their underlying common properties and started t~ study 

of functions satisfying certain properties [3]. 

Let R be a ring vvith identity element and assume that there is 

a function L which associates with each R-module a non-neBative real 

number or plus infinity. ~;le call 1 a length function on the category 

of R-modules if it satisfies the foll~Ning conditions: 

(i) 1(0) = 0; 

(ii) L(A) = 1(A') + 1(A") whenever 0 -+ A'-+ A -+ A"-+ 0 is an 

exact sequence of R-modules. 

The object of the present thesis is to study length functions 

on modules. We will be particularly interested in the problem of 

the characterization of all the length functions on the category of 

R-modules. 

In Chapter I we have collected the necessary prerequisites from 

general module theory. It could be said with a mild exaggeration 

that for the main body of this work one has only to knor.v the Jordan­

Holder-Schreier theorem. 

Very often it is more convenient to obtain a description of 

length functions on a certain subcategory of the R-mociules th8l1 on 

the whole category. It is t~refare necessary to develop a technique 

which enables us to 'ascend' from a subcategory to the full category 
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of R-mcdules, i.e. to extEnd length functions. Chapter 2 is devoted 

to this problem. It is shown that this extension is aJways possible 

and there is a 'minimal' extension. This leads to the notion of 

continuity. Roughly speald.ng a length function L is oontinuous on 

a subcategory ~ if L is uniquely determined by its values on ~. 

In [3] the authors oonsidered on~ those length functions whose 

values are determined on the finitely generated modules. We call 

these functions 'upper continuous '. Most of this chapter's material 

is contained in [7]. 

Chapter 3 contains the main results of the thesis. A length 

function L is oal1ed 'irreducible' if L = 11 + L2 implies that 

L1 = cL or L2 = oL, c > O. The main decomposition theorem (Theorem 

3.12) states that if ~ is a category with Krull-dimension then every 

length function on ~ is a unique sum of irreducible functions. 

The concept of the Krul1-d:ilrension of an Abelian category was 

introduced by P.Gabriel in his thesis [4]. His definition, however, 

was designed for the whole category and made use of the concept of 

quotient categories. To meet our different requirements we have had 

to modify his definition. It was fel t at the same time that the 

employment of quotient categories wouJd need a good werking knowledge 

of Abelian categories. Ao cording 1y, we will use an entirely elementary 

teohnique. 

After the decomposition theorem we describe the irreducible length 

funotions of the category of Noetherian modules for a given ring. It 

is found that the irreducible length functions are associated with 

indecomposable injective modules. In the oase of a commutative ring 

the indeoomposab1e injectives can be replaced by prime ideals. 
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Special questions of the general theo~ are discussed in Chapter 

4. In Section 4.1 we describe the length functions on the catego~ of 

Artinian modules over a commutative Noetherian ring. In Section 4.2 

we prove that fer Artinian rings and for (commutative) semi-local 

Dedekind rings every length function is determined by its values on 

Artinian and Noetherian modules. .An example shows that the condition 

'semi-local' canllot be dropped. D.G.Northcott and Ivl.Reufel found that 

for a rank-one valuation rin& the valuation induces a length function. 

We prove this result in Section 4.3. The last section of this chapter 

deals with rings R for which a length function L exists such that 

L(R) = 1. 

Af'ter reading the first chapters the reader will probably find 

that the theory could easily be accommodated in Abelian categories. 

This is indeed true for the whole thesis, with the possible exception 

of Chapter 4. It was felt, however, that the possible gains in 

generali ty were not sufficient to warrant the us e of abstract categories. 

On the other hand we made a determined effort to exploit aspects of 

duali ty. Thus finitely embedded modules are introduced in Section 1.3 

and playa complementary role to that of finitely generated maiules. 

Gabriel '5 definition of Krull-dimension has been modified and now has a 

self-dual nature. The result is that the decomposition theorem is 

applic able to the category of .Artinian modules as well. 

As an application of the general theory we pr-esent multiplicities 

in Chapter 5 as 'operators' on length functions. A[:;ain, Artinian 

modules are placed on an equal footing with Noetherian ones. In 

Section 5.2 we see the decomposition theorem at work in establishing 



- v -

the assooiative law far multiplicities vrithout any restriction 

on the ring. 

The ordered Grothendieck group is introduced in Chapter 6. 

We show that there is a one-to-one correspondence between the length 

functions and the order-preserving homomorphisms from this group into 

the real numbers. 

In t~ present thesis we have attempted to present a general 

theory of length functions. On many problems only the first groping 

steps ha. ve been taken tmiards a solution. Of the numerous problems we 

mention only twu: the characterization of length functions on 

categories without Krull-dimension and the problem of rank-rings. It 

seems that for both of these questions the ordered Grothendieck group 

holds the key. 

lowe a considerable debt to the authorities of the University of 

Sheffield who helped to make it possible for me to stay in Great Britain. 

This debt I gladly acknowledGe here. I also record my deep appreciation 

of the encouragement given to zoo by Professor D.G. Northcott, who 

stimulated me to embark on the investigation of length functions on 

modules. 

July, 1968 
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CHAPTER 1 

CATEGORIES OF MODULES 0 

1.1 Introductory remarks. 

It is assumed that the reader is familiar with the basic 

ideas of module theory, say chapter 1 of [I} and [2]. We make a 

few remarks, however, to clari~ our terminology. 

Throughout this thesis a ring R will mean a ring with ;1dentity 

element and an R-module is understood to be a unitary left It-module. 

The sign C always stands for strict inc lusion and inolusion in the 

wider sense is indicated by <,;. When we speak of' a categorY we 

mean a non-empty f'ull subcategoty of' the category of' modules over a 

ring R i.e. a class of' R-modules and all the homomorphisms between 

them. In addition, we assume that if' a category contains a module M, 

then it contains fNery module isomorphic to M as well. The category 

of' R-modules itself' is denoted by ~(R). 

The Jordan-H~lder-Sohreier theorem plays a oentra1 ~le in our 

investigations. It miSht be helpful to reoall this result here. 

Let A be an R-module. By a chain a- of A we mean a finite sequenoe 

of' submodu les of A of the form 

a- : 0 = Ao Co ~ C ••• ~ An = A. 

The modules Ci = Ai/A
i _l (1 ~ i ~ n) are called the chain faotore of !!.. 

Suppose that a second ohain 

" : 0 = BO <,; Bl <,; •• .<;, Bm = A 

of' submodu1es of' A is given with ohain faotors Di = BiIBi _l (1 ~ i ~ m). 
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We say that 1: is a refinement of CJ' if it is obtained from CJ' by 

inserting new submodules between those already present. The 

chains CJ' and 't are called equivalent if n = m and the chain 

factors of CJ' and 1: are isomorphic up to order i.e. there is a 

permutation ~ such that Ci ~ D~(i) (1 ~ i ~ n). The Jordan­

H~l.d.er-Schreier theorem states that any two chains (and conse-

quently a finite number of chains) of A have equivalent refinements. 

1.2 Serre-categories 

"Ve wish to define two special types of categories which will 

frequently occur in the sequel. Let R be a ring and 

o ... A' ... A ... A" ... 0 

an exact sequence of R-modules. 

Definition. A subcatego~ ~ ~~(R) is called 'semi-closed' if it 

has the property that 

A £ ~ ~plies A' ,A" ( ~. 

The category ~ is said to be a 'Serre-category' if it has the 

property that 

A ! SU if and onq if .A! ,A"! CU. 

It is 0 lear that & Serre-oategory is semi-olosed. Further, if. 

g is a. chain of the module A in a semi-closed category 'U then every 

chain faotor belongs to SUo If SU is a Serre-category then the 

eonverse holds as well. 

An intersection of Serre (resp. semi-closed) categories is 

obviously a Serre (resp. semi-closed) category again. If 'U is a 

category then the smallest Serre-category containing SU is called the 
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'Serre-category generated by ~'. If set theor,y allowed us we 

could speak of this categor,y as the intersection of all Serre-

categories containing!U. Instead, we proceed by construction. 

If B ~ C are submodules of a module A then the factor module 

c/B is called a 'segment' of A. Suppose now that ~ is a catego~. 

Set 

~ = [ () A has a chain (j" such that eve~ chain factor of (j"J 
A ~ ~ R : is isomorphic to a segment of an element of !U. 

Proposi ti on 1. Let the situation be as described above. The 

-catego~ ~ is the Serre-category generated by ~. 

'" Proof. It is clear that ~ <: SU and that every Serre-category 

'" -containing 'U contains 'U. It remains to be shown that ~ is a Serre-

catego~. Let 

o ... A' ... A ... A" ... 0 

be an exact sequence in ~(R) and suppose that J{,A" € lU. We may 

assume that A' is a submodule of A and A" = A/A!. By piecing 

together any two ohains of N and. A" respectively we can obtain a 

'" chain for A. This shows that A ( ~. Conversely, assume that A ( ~. 

Then there is a chain (j" of A such that the ohain factors of (j" are 

isomorphic to segments of modules of SU. Obviously, any refinement 

of (j will have the same property since a segment of a segment i8 a 

segment again. Let a' and 't' be equivalent refinements of (j" and the 

chain 0 ~ A' ~ A. Then 't' yields chains for N and A/A! having the 

required property. -Corollary. Let lU be a semi-closed category and SU the Serre-category 

-generated by SU. A module A belongs to 'U if and only if it has a ohain 

(j" such that every chain factor of (j" belongs to SU. 
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Note that the category containing the zero module alone is 

a Serre-category and contained in eve~ semi-closed category. 

There can be no confusion in denoting this category by O. 

Lemma 2. ~ Al'~ be submodules of A € ~(R) and !U a Serre­

~ategory. Then 

(i) Al ,A2 € !U if and only if ~ + A2 ( ~; 

(ii) AI ~,AlA2 € ~ if and only if AlAI ('\ ~ ( SUo 

Proof. Consider the following exact sequences: 

o -+ ~ -+ ~ + A2 -+ ~/~ ('\ A2 -+ 0, 

o ... (AI +A2 ) I ~ -+ AI ~ ('\ A2 -+ AI A2 -+ 0, 

and take into account that if SU contains a module then it contains 

all of its submodules and factor modules. 

1.3 Finitely generated and finitely embedded modules. 

In accordance with our programme we now define a class of 

modules, in a certain sense complement~ to the class of finitely 

generated modules. First, however, we shall introduce injective 

modules. 

Definition. An R-module ]vi is said to be 'injective' if fer any 

diagram of R-modules 

ex 
O~A --+.B 

131 .~. 
'" t... I 

M 

wi th an exact row (i.e. ex is a monomorphism) a homomorphism y ~ 

be found so that yex = fi. 

We now briefly summarize the basic properties of injective 

modules. For the proofs the reader is referred to [2, ohap.III,5-7]. 
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For an R-module M the following are equivalent: 

(i) M is injective; 

(li) M is a direct summand in every module containing it; 

(iii) The functor HOIl1l(-,M) ~~(R) into the category of 

Abelian groups is exact. 

Definition. Let M be a submodule of the R-module N. lNe say that 

N is an 'essential extension' .o! M, if for a submoclule P ~ N, 

P nIl! = 0 implies P = o. For every R-module M there exists a 

module E(M) ~tisfying the following equivalent conditions: 

(i) E(K) is a maximal essential extension of Mj 

(ii) E(M) is a minimal injective extension of M. 

Moreover, if W is another module satisfying (i) - (ii) then there -
is an isomorphisn between E(K) and E' which is the identity on M. -
The module E(M) is called the 'injective envelope' of Iii and. will 

alwgrs be d.enoted. BY E( ). 

E.lriatlis has shown the following [5, Proposition 2.1]: 

If M is a finite clirect sum of modules iii = MI ffi •• .ffi Mk then there 

is an isomozphism 

Defini tiona Let M be an R-moclu1e. The 'socle' of M, denoted by S (M), 

t 
is the sum of all simple submodules of M. 

Thus SCM) is the unique maximal semi-simple submodule of A and 

can be written as a direct sum of simple modules. It is easily seen 

that the socle commutes with direct sums. 

t In case M contains no simple modules SCM) = O. 
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We now now ready to intraioo e the concept from which the 

heading of this section is derived. 

Definition. An R-module M is said to be 'finitely embedded' if 

E(fu) ~ E(Sl) ffi ••• $ E(Sk)' 

where each S1 is a simple R-module.t 

Lemma 3. The module fA is finitely embedded if and only if 

(a) M is an essential extension of SCM) and 

(b) SCM) is finitely generated. 

Note that SCM) is finitely generated if and only if it is both 

Noetherian and Artinian. 

Proof. Suppose that (a) and (b) hold. Then SeE) = Sl Ee ••• $ Sk 

where Sl"",Sk are simple modules and 

E(Jii) = E(S(M» = E(SI $ ... $ Sk) ~ .(81) $ ... $ E(8k). 

Converse ~, if M is finite ly emb edded and !vi -I 0 then 

E = E(M) = E(Sl) Ee •• .EB E(Sn) = E(SI $ •• .E9 Sn) 

for simple modules Sl"'. ,Sn (n ~ 1). Since 8
i 

n M J 0 for each 8
i

, 

S = Sl Ee •• .E9 Sn C S(IVi). On the other hand 

S(H) ~ S(E(lJl) = S(E(Sl) $ •• .$ E(Sn» = S. 

'7e have S = S (M) and r.I is an essential extension of SCM) sinoe 

E(M) = E(S). 

The propositions which follow are stated in dual forms for 

both finitely generated and finite];y embedded modules. Sinoe these 

are standard results for finitely generated modules, proofs will 

only be provided far the finitely embedded case. 

A family {M
i 

Ii!I of submodules of IiI is said to be 'direot I 

t The zero module as a vacuous sum is finitely embedded. 
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(resp. 'inverse') if for any finite number il, ••• ,ik of elements 

of I there is an iO e I such that 

K. ~ M. + ••• + M. 
~O ~l ~k 

(resp. M. ~ Iv!. n ••• n M. ). 
~O ~l ~k 

Proposition 4. A module ivl is finitely generated if and only if 

~very direct system of .Ero.E.,.er rubmodules of M is bounded above by 

a 'proper submodule of h-i. 

Proposition 4*. A module Ni is finitely embedded if and only if 

every inverse system of pon-zero submodules of 1\1 is bounded below 

b;t a non-zero submodule of Ivi. 

Proof. Assume j\i /: 0 is finitely embedded and {M. L I is an 
~ 1. E' 

inverse system of non-zero submodules of M. Since M is an 

essential extension of its (Artinian) socle, S(M.) -I 0 and has 
1. 

minimal condition for all i ( I. Vve can choose an iO E' I such that 

S (M. ) is minimal. For every i e I there exists a j e I such that 
1.0 

M. ~ M. n Mi. It follows that S(M.) ,S(M.), SeMi ) = SOvI.). Hence 
J ~ 0 J 1. 0 J 

SeMi ) s;: M. for all i E' I. 
o 1. 

Conversely, assume that any inverse system of non-zero 

submodules of 1'!t is bounded below. Let N <;: M be a non-zero submodule. 

Then, by assumption, and Zorn's Lemma, there is a minimal submodule 

S of N which is, consequently, Simple. Thus 0 ~ SeN) ~ N n SCM) 

and III is an essential extension of its socle which is clearJ;y 

finitely generated. 

Proposition 5. A module I'll is Noetherian if and only if every 

submodule of M is finitely senerated. 

Proposition 5*. A module M is Artinian if and only if every factor 

module of M is finitely embedded. 
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W of • It will suffice to prove the "if" part. Let 

Al ~ A2 ~ ••• 2 An ~ ••• be a descen:ling sequence of submodules of 

M and A = 0A. Since M/A is finitely embedded we may assume that n 

A = O. If the sequence did not terminate it would be bounded by a 

non-zero submodule which is iopossible. 

<p 1/1 
Let 0 -+ A'-+ A -+ A"-+ 0 be an exact sequence. Then we have: 

Propositi..?'p 6. If A is finitely generated then so is A". If A' 

,!'Pd All ~~itely generated modules then A is a finitely 

generated ~e too. 

Proposition 6*. If A is finitely embedded then so is A'. If A! 

and A" are finitel.z embedded modules then A is a finitely embedded 

module too. 

Proof. By Proposition 4"', A' is cJearly finitely embedded whenever 

A is finite:lJr embedded. Ji'or the second ~rt let a : A' -+ E(A! ) 1 

(3 : A--+ E(A") be the embeddings of A' and A" into their injective 

env~lopes. By definition E(A/) E9 E(AII) is finitely embedded. Since 

E(A') is injective, the mapping a can be extended to A, i.e. there 

is a <p' : A -+ E(A') such that <p' <p = a. Then VIe have a monomorphism 

<p' + f31jr : A -+ E(A') EB E(A") and the f:irst part of the proposition 

implies the result. 

£,orollary. ~ Al'A2 b~ submod.ules of a m~ M. If Al'A2 ~ 

f.initely generat.:d then Al + ~ is finitely generated. If 

M/A:I.,i;1/A2 are finitely embedde9- then M/~ n A2 is finitely embedded. 

~f. Observe that iii/~ n A2 can be mapped monomorphic ally into 

M/~ 9 l\i/~ am use Proposition 6*. 
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~roposi tion 7. Let btL L I be the family of finitely generated 
~ ~ ~E' 

submodules of a module M. Then {M.l is a direct system and - ~ 

EiE'tv1i = i~i. 

~position 7*. ~ {f,Ii}id be the family of those submodules 

of a module 111 for which M/M. is finitely embedded. Then {M.} is ----- ~ -~-

_an_~_' n_v_e_r_s_e_s ...... 'i_s_t_e_m_and nidt.1 i = o. 

Proof. It is clear from the previous corollary that {MiliE'I is 

an inverse system. Let x E' L, x 1= O. Then there is a simple module 

S and an epimorphism Rx -+ S. Also, the mapping Rx -+ S -+ E (S) can 

be extended to M since E(S) is injective. Therefore we have a 

homomorphism ~ : M -+ E(S) such that ~(x) I O. It follows that 

:E/Ker q> is finite ly elJlbed.ded and x I Ker q>. Thi s proves tha t 

niE'IMi = O. 

~~. The duality here is very deceptive. Proposition 1 states, 

in effect, that every module is the direct limit of its finitely 

generated submodules. It is not true, however, that every module 

is the inverse limit of its finitely embedded factor modules. The 

reasons for this can be found in category theory, see e.g. 

[4, Proposition 6, chap.I.] 

Definition. ~....B:.!n0du~. i';i is said to be 'singly embedded' if 

E(M) = E(S) where S is a simple module. ---- . 
Proposition 8. Every finitc.ly generated mod.!:,.le has a chain of 

submod.u~es _with singl, generate~_n factors. 

Proposi.tion 8*. Ev,:l)' :t:inite.ly embedded module has a chain of 

submodules with singll embedded chain factors. 
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Proof. Let M be a finitely embedded module and 

E(M) = E(Sl) ffi ••• m E(Sk)' Sl' •• • ,Sk simple modules. If 

'It.: E(hi) ... E(S.) is the natural projection and a : K -+ E(M) 
J. J. 

the injection of Minto E(lII), then MINi is singly. embedded for 

N. = Ker'lt.a, 1 ~ i ~ k. 
J. J. 

Also, Nl r't ••• n Nk = 0 0 A typical chain 

factor of the chain 0 = Nl (l. •• r't Nk s;: Nl (l. •• n Nk_l ~. G'S;: Nl ~ M is 

of the formNln ••• r'tN./Nln ••• nN. 1 ~Nlr't···nN.+N. liN. l~MIN. 1· J. J.+ J. J.+ J.+ J.+ 

The propositi on now follows. 

Proposition 9. Let <.0 : A ... B be an epimorphism of R-modules, B 

!initely generated. Then there is a monomorphis~ a : A' ... A such 

~ PI. ~inite1y generate~! 1m <pa = B. 

Pro,.E.osi ti on 9*. Let <p : B ... A be a monomorphism of R-:!llodules, B 

fin! tely embedded. Then there is an epimorphisnl 0: : A -+ A' such 

~~ A' is finitely embedded and C oim a<p = B. 

Proof. Consid er t he diagram 

where ~ is the injection of B into E(B). Since E(B) is injective 

there is f such that f<P =~. Set A'= *(A) and let a be the epi-

morphism A-+N induced by *. Then A'is finitely embedded and Coirn a<p= B. 

For a further discussion on finitely embedded modules and 

relm; ed problems the reader is referred to [8]. 
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C HAP T E R 2 

LENGTH FUNCTIONS 

2.1 Preliminaries. 

Throughout section 1 and 2, the ring R will be kept fixed 

and all the categories are understood to be SUbcategories of 

~(R) • 

1et ~ be a semi-closed catego~ and 1 a function from ~ into 

the set of non-negative real numbers and plus infinity_ 

Definition. The function 1 ~ ~ is called a 'length function' 

on ~ if it satisfies the followinJ2.,conditions: 

(i) 1(0) = 0 

(ii) L(A) = L(A') + 1(A") wheneve£ 

o .... A' .... A .... A" ... 0 

is an exact se~ence in Q.i. 

Remark. Condition (i) is almost superfluous. In fact if L(A) < +~ 

for some A ( ~, then (li) implies (i). Condition (ii) will 

sometimes be referred to as the additivi~ property. 

It follows immediately from the definition that if A,B are 

isomorphic modules in ~ then L(A) = L(B). Also, if A' is a sub­

module of' A ( !U then L(A') ~ L(A) and L(A/A! ) " L(A). It is useful 

to note a few easy consequences of the axioms. 

IJet 1 be a length function on a semi-closed category!U. If A 

is a modu Ie in !U and a chain 

(j : 0 = AO ~ Al C ••• ~ An = A 

of submodules of A is given then a straightforward induction 
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argummt yields the formula 

L(A) = t~_lL(A./A. 1). 
~- ~~-

In partic1ar, a finite direct sum A = Al ffi ••• EB An gives 

Consider now a long exact sequence 

o ~ A- ~ A ~ ••• ~ A ~ 0 
-~ 2 n ( 1) 

of modules in~. If n = 1 then Al = 0 and L(A1 ) = O. If n = 2 

then A1 ~ A2 and L(~) = L(A2). Next we have L(A1 ) + L(A
3

) = L(A2) 

in the case n = 3. '.ve contend that, in general 

f L(A.) = f L(A.) (1 ~ i,j ~ n). 
i oad ~ j even J 

(2) 

The cases n = 1,2,3 have already been established. Assume that 

(2) holds for n-1 > 2. yre may assume, without 108S of generality, 

that n is odd, say. Put B = Im(A 2 ~ A 1) ~ Ker(A 1 ~ A ). 
n- n- n- n 

The sequence (1) gives rise to exact sequences: 

o -+ A_ -+ ••• -+ A -+ B -+ 0 and 
-~ n-2 

o -+ B -+ A 1 -+ A -+ O. n- n 

Hence L(A1) + ••• + L(An_2 ) = L(~) + ••• + L(A
n

_
3

) + L(B) by the 

induction hypothesis and L(A ) + L(B) = L(A 1). Then n n-

L(~) + ••• + L(An) + L(n) = L(~) +,~.+ L(An_l ) + L(B). If 

L(B) < co then (2) follows. If L(B) = co then L(An .. 1 ) ~ L(B) = co 

and L(An_2) ~ L(B) = co from (3). Thus (2) is valid again since both 

sides are equal to co. 

Yle summarize these facts in the following: 

Proposition 1. Let L ~a length f~n on a semi-closed 

category ~ and Aa ,B. ,C. 1 ~ i < n modules in ~. 
_ ~.L.l.l. 
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(i) If 0 = AO <.: Al ~ •• .c:;. An = A is a chain of submodules 

of A then 1(A) = E~ l1(A./~. 1). 
~= ~~-

(11) !! B = BI ffi ••• ffi Bn ~ L(B) = L(Bl ) + ••• + 1(Bn ). 

(iii) If 0 ~ CI ~ C2 ~ ••• ~ Cn ~ 0 is an exact sequence then 

Remark. 

L. L(C.) = I: L(e.). 
i odd ~ j even J 
l~i~n l<j~n 

If we have L(e.) < 00 1 ~ i ~ n in (iii) then the result 
~ 

takes the form E~=l(-l)iL(Ci) = O. 

PrO'position "g. Let L b~ a length function on a Serre-category SU 

~ A
l

,A
2

,B
l

,B
2 

submodules of the R-module M. Then we have 

(1) L(~+~) + 1(~ n A2 ) = L(~) + L(A2 ) whenever 

Al + .A2 ! SU, 

(ii) 1(Ivi/Bl +B 2 ) + L(l-l/Bl n B2 ) = L(i-i/B l ) + L(r.I/B2) 

wheneve,;: M/BI n B2 ( SUo 

Eroof. Note that all the modules Which occur belong to SU by 

Lemma 1.2. 

Consider the following exact sequences: 

o ~ Al ~ Al+A2 ~ A2/Al nA2 ~ 0 

o ~ Al nA2 ~ ~ ~ A2/ ~ n A2 -a. O. 

Again, all the modules are in CU. From (4) we obtain 

L(~+A2) = L(~) + L(~/~ n ~). 

Hence 1(Al +A2) + L(~ nA2) = L(~) + 1(A2/~ n A2 ) + 1(~ nA2 ) 

= 1(~) + L(~) since L(A2 ) = L(~n ~) .... L(A2/1'J. n A2 ) from (5). 

Part (ii) is established in a similar way. 

Let 1, [L
1

1i (I be length functions on a semi-closed category SU 

and c ~ 0 a real number. The functions oL, Zi€ILi defined by 

(cL)(A) = cL(A); (Zi€ILi)(A) = syP Zi(~i(A) where J ranges over 
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the finite subsets of I, A !~. It is easily seen that both 

cL and L. IL. are length functions on~. Also, if L,V are 
~! ~ 

length functions on ~ and L ~ L' (i.e. L(A) ~ L' (A) for all 

A ( SU) then set 

(L-1' ) (A) 
= r L(A) - L' (A) if L(A) < 00 

loo otherwise. 

We see at once that L - L' is a length function and L = L -L' + L' • 

For 2. Serre-category ~ and a length function L on ~ the 

'kernel of L, Ker L and the 'domain of finiteness of L' Fin L 

are defined as follows: 

Ker L = fA (~ L(A) = ol, 

Fin L = fA (~ L(A) < ooJ. 

It follows immediately that Ker L ana Fin L are Serre-categories 

and. 0 c; KerSt Fin L c; SUo 

2.2 Extensions and continui,!l 

Let SU ~ ~ be categories and L,L' length functions on 

SU and ~ respectively. If L'(A) = L(A) for all A ( SU then we 

say that L' is an extension of L to ~ and L is the restriction 

of L' to SUo 

If a length function L is defined on a Serre-category SU 

then we can easily extend L to ~(R) by simply setting L(A) = 00 

for A I SUo The additivity of L - now defined on ~(R) - is 

easily checked. This extension is called the trivial extension 

of L. Before discussing a more satisfactory method of extensions 

we wish to introduce a convenient notational device. Assume 

that L is a function on a category SU and define 
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[
LO(A) if A ( 'U 

otherwise. (A ( \TTl(R)). 

CJ : 0 = AO C A_ r ••• c A = A 
- -~ -- - n 

of' s ubmodules of' A write 

Vre simply write L( CJ) or L( CJ,A) when A or SU or both are f'ixed, 

and this notation will be adopted throughout this section. 

(6) 

Assume now that SU is a semi-closed category, L is a length function 

on SU and the chain ~ of' A is a refinement of the chain CJ in (6). 

If' T~(A./A. 1) 1 ~ j < n is not zero, i.e. A./A. 1 ( SU, then all 
~ J J- J J-

the chain factors of ~ which arise by the refinement of the 

A. 1 C A. part of CJ will ~ain belong to SU since SU is semi-closed. 
J- J 

Consequently L(CJ,A) ~ L(~ ,A). In other words, if' CJ is refined then 

L(CJ,A) is not decreased. Set 

L(A) == sgp L(CJ,A), A e 9Jl(R) 

where the supremum is taken over all chains CJ of the module A. 

We claim that t is a length function on ~(R) and extends L. For 

if' A' is a submoclule of A and. CJ is any chain of' A then there are 

equivalent chains er and ~ of A such that er is a refinement of CJ 

and ~ is a refinement of 0 <;: .A! <;: A. The chain ~ induces chains 

~, and~" of A' and A/A' respectively. horeover, 

L('t' ,A') + L(~" ,A/A') == L('t,A) = L(er ,A) ~ L(CJ,A). 

Since CJ was arbitrary, we deduce that 

L(A') + L(A/A') ~ L(A). 
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Conversely, let p,~ be chains of A' and A/A' respectively. If ~ 

denotes fue chain of A obtained by sticking p and ~ together then 

L(p,A') + L(~,A/A') = L(~,A). Hence L(A') + L(A/A I
) ~ L(A). 

"-

Definition. The function L constructed above is called the 

'continuous extension' of L with !,espect to the semi-closed 

category~. 

A 

We now characterize L as a minimal extension of L to WI(R). 

More precisely rie prove: 

Theorem ). Let ~ be a semi-closed catego;y, L a length function 

.. 
on ~, L the continuous extension of L and L' another extension of 

~ to ~(R). Then teA) ~ L'(A) for all A ( ~(R). 

Proof. Let A ( sm(R) and ~ a chain of A. "fe see from the definition 

of L(~,A) that L(~,..A) ~ L' (A) since L and L' agree on SU. Hence 

L(A) = sgp L(~,A) ~ 1'(A). 

CorollarY. ~ ~ be a semi-closed catego~, 1 a length function 

-.2!! ~ and ~ the Serre-category generated l:?l.~. Then L has a t:.n~. 

"" e,E;ension to !U. 

JXQ.Qf. Since L can be extended to ~(R) by TheCIr' em 3 we have only 

to prove that this extension is unique. Assume that Lr12 are 
~ ~ 

length functions on OJ and they botb extend L. For each A ( OJ there 

is a chain 

~ : 0 = AO C Al { •• o{ A = A 
.- - -..it n 

such that the chain factors C. = A./A. 1 1 ~ i ~ n belone; to SU 
~ 1. 1.-

by Proposition 1.1 Corollary. TherefCIr'e 

since 11 and L2 agree on ~o 
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The corollary shows that when dealing with length functions 

on a semi-closed category we may assume, without loss of generality, 

that the category in question is a Serre-(atego~. 

While the continuous extension of a length function L on a 

semi-closed category ~ turned out to be the 'minimal' among the 

extensions of L, the 'maximal' extension can be obtained as follows. 

"" First extend L to ~, the Serre-category generated by~, and then 

take the trivial extension to ~(R). 

Let ~ ~ ~ be semi-closed categories and L a length ~~nction 

on~. The continuous extension of L with respect to ~ is called 

the 'continuous component of L' with respect to~. In other words 

this is the continuous extension of the restriction of L to SUo :For 

any length function L whose domain t contains SU, the continuous 

component of L with respect to ~ is denoted by i. 
A 

Thus I, is a 

length function on ~(R). 
A A 

Since L and. L agree on SU, L ~ L on the 
.... 
A A A 

domain of L, by Theorem 3. Clearly L = L and. L ~ L is a closure 

operation. 

Proposition 4. Let SU be a semi-closed catego~ and K,Kl,[L. 1. I 
- . ~- 11€ 

A 

length functions whose domains contain ~. If L denotes the continuous 

component of L with respect ~ ~ ~ 

(i) (~ = oK for a real number c ~ 0; 
A A 

(11) K ~ Kl implies K ~ Kl ; 
_____ A 

(iii) (Li I L.) = E. I L .• (1 1( 1 

Proof. Statements (i) smd (ii) follow immediately from the 

definition. 

In order to prove (iii) assume, first, that I = [1, ••• ,n1 is a 

t The semi-closed category on which L is defined. 
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~inite set and let A (~(R). For any g > 0 and i ( I there is 

a chain (5. o~ A such that L. ((5.) = L. ((5i,A) > Li(A) - gin. Let (5 
~ ~ ~ ~ 

be a common re~inement o~ the chains (5 .• then 
~ 

( >. L. ) ( <T) > ( )' £.) (A) - €. 
HI ~ \ id ~ 

Hence 

On the other hand 

(~~)( A) = s~ (~. L.) ((5) 
~(I ~ ~(I ~ 

J sUP L.((5.) = >. £.(A) =(> £.)(A). 
--id ~ ~ ~ ---id ~ \ -id 1. 

."-- "-..... ~ 

This shows that (E. IL.) = E. IL. when I is ~inite. Next, let 
~(~ ~(~ 

I be an arbitrary index set. Using the above result ~or the 

~ini te case we obtai n 

rf'?:)(A) = sup ( > L. )(5) = supsup (J L.) ((5) = 
\ u I ~ a- -- ~ (J J -i (J 1. 

where J and (5 range over all the finite s ubsets o~ I and chains o~ 

submodules of A respectively. 

Definition. ~ ~,~ be semi-closed cat~gories, ~ ~ ~. A length --
function L on ~ is said to be continuous on lU i~ L = t r.o.ld.s m~, more L is 

the continuous compOnei?t o~ L with respect to SU. 

Note that i~ a function is continuous on ~ then it is uniquely 
h h A 

determined by its values on lU. Also L = L + L - L on ~ since L ~ L, 
A 

and L - L is 0 or ~ 'on~. Thus eve~ function admits a (unique) 

decomposition into 'continuous' and 'singular' parts. 
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Proposition 5. Let the cateGo~ ~ be the intersection of the 

semi-c!osed ~ate00ries ~l""'Vs an~ L a length function ~ ~(R). 

Then L is continuous on ~ if and only if it is continuous on all 

the ~: s. 
~ J. 

Remark. 'rhere is no loss of benerality in assuming that L is on 

~(R) and not on a category whose domain contains V. Indeed, one 

can always extend L to 31(R) • As for continuity, see the 

corollarie s after the proposition. 

Ai '" Let Land L be the continuous components of L with respect 

to V. and V respectively. 
J. 

'" Ai By Theorem 3 L ~ L < L 1 ~ i ~ s. 
Ai A 

Therefore L = L 1 ~ i ~ s if L = L. 

The second part is proved by induction on s. For s = 1 there is 

nothing to prove. Suppose that s = 2 and let A ~ ~ (R) and e :> 0 be 

given. Since L is continuous on Vl we can find a chain 

~ . 0 = AO r A1 C ••• r A = A, C. = A./A. 1 1 ~ i < n 
';a ~ .. n J. J. J.-

such that L(~JAJ~) :> L(A) - e. Suppose that C. , ••• ,C. are the 
11 J.k 

chain factors lying in Vl , in other words those which contribute to 

L(~,A,~S)' AGain, L is continuous on V 2 and we have chains 

'"l, ••• ,'l:k of the modules C. , ••• ,C. such that Lh.,c. '~2) >L(C. ) - e 
11 J.k J J. j 1j 

1 ~ j ~ k. But every chain factor of 'l:
j 

belongs to Vl ' because 

Ci.f Vl and Vl is semi-closed. Accordingly ~ and Lv agree on 'Ul 2 J 
since V = Vl n ~2' Hence L(1:.,C. ,~) = L('l: 4 ,C. ,5)1) 1 ~ j ~ k. 

J J. j ~ 1j 

Thus, if CJ' is the chain obtained from ~ by inserting '1:
1

" • • ,'l:k then 
k k 

L(T,A/U) ~rj=l L(1:j'Ci.'~) >}""' j=l L(C i ) -kg:> L(A) - (k+1)e. 
J J 

It now follows from the definition of L that L(A) ~ L(A), whence £ = L. 

Finally, assume s :> 2 and the proposition is proved for s - 1. 
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Put ~ = lUI n ••• n lUs_I. Then L is conti nuous on ~ by the induction 

hypothesis and L is continuous on IU by assumption. Since the case s 

s = 2 has already been proved we can conclude that L is continuous 

on ~ n 'Us = SUo 

Corolla;rz 1. Suppose 'chat two semi-closed categorie s lUI ~ SU2 ~ 

given and lUI ~ 1U2 • If the length function L is continuous on SU1 

then it is conti nuous on SU
2

• 

Proof. Observe that lUI = ~ n lU2 0 

"" Corolla£[ 2. Let SU be a semi-closed cateG~,lU the Serre-category 

~enerated by IU ~ L a length function. Then L is conti nuous on !U 

if and only if it is continuous on SUo 

"'" Proof. It will suffice to prove that L is continuous on SU implies 

that L is contj.nuous on SUo Assume that L is continuous on ;U and 

'" let L be the continuous component of L with respect to SUo Then 

£ ~ L. But L and £ agree on SU by the corollary to Theorem 3. Thus 

~ "'" ~ 

L extends L from SUo Therefore L ~ L, this time by Theorem 1 itself. 

Definition. A length function L on a semi-closed ~ategory SU ~s said 

to be 'u.l?l?er continu~~2! for ~ach A e lU, L(A) = supXL(X), ~ X 

ranges ove.:_ all the finitely generated submodules of A. Dual 11., 

L ~~ called 'lower continuous' if for each A e SU, L(A) = sUPXL(X), 

~ere X ranges over all the finitely embedded factor modules of A. 

In the work of Northcott and Reufel [3] upper continuity is 

incorporated into the definition of a length function. The term 

'upper (lower) continuous' was used in [7] with a slightly different 

meaning. 

If L is an upper (resp.lower) continuous length function on ~(R) 
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then it is uniquely determined by its values on sinbly generated 

(resp.single embedded) modules by virtue of Proposition 1.8. 

Propositi~i. Let L be an upper contim:.o...us length function on a 

semi-c:losed...?}:.tegory !U ~.?-. £ the continuous extension of L to ~(R) 
.. 

( with respec~ !U). Then L is upper conti nuous • 

Pro}!osition 6*. If L is a lOVler continuous length function o~ 
.. 

semi-closed categ.ory Q.{ .::,.nd L is the conti nuous extension of L to 

~(R) then L is lower continuous. --_ ... -- '---
Proof (of Proposition 6;. '"'e prove the proposition by showing 

that for any R-module A, € > 0 and chain 

0- : 0 = AO C Al C ••• C A = A 
- - - n 

of A, there is a finitely generated submodule X of A such that 

L(X) ~ L(o-,A) - e. (8) 

\'Je proceed by induction on n. If n = 1 then either L(<J,A) = 0 and 

there is no thin" to prove, or A E ':» in which case L(<J,/I.) = L(A). 

By assumption, L is upper continuous on V. Henoe L(X) > L(A) - £ 

for some finitely generated submodule X of A, X E~. Therefore 
.. 
L(X) = L(X) > L(<J,A) - £. Assume now thQt (8) has been proved for 

all pairs <J,A, where <J has at most n-l inc lusions. Then we have a 

finitely generated X' of A
n

_l in (7) such that LCX') > L(o-JA
n

_l ) - £/2 

where <J' denotes the chain 0 = AO C ••• C i'. 2 CAl. If - - n- - n-

A/A 1 I !U then L(er',A 1) = L(<J,A). ".".'e may, therefore, assume that 
n- n-

A/A
n

_
l 
E~. Using Proposition 1.3 and the fact that L is upper 

continuous on ~1, we find a finitely generated submodule Y of A such 

that L(Y+A l/A 1) = L(Y+A l/A 1) > L(A/A 1) - £/2. Put X = X'+ Y. n- n- n- n- n-



- 22 -

Then 

L(X) = L(x'+Y) = L(X') + L(Y/X'ny) ~ L(X') + L(Y/An_l n Y) = 

L(X') + £(Y + An_l/An_l ) > L(~',An_l) - e/2 + L(A/An_l ) - e/2 = 

L(cr,A) - e. 

This establishes (8). Taking supremums on both sides of (8) we 

obtain 

X ranges over all the finitely generated submodules of A. Since this 

holds for all e: > 0, suPXfJ(X) ~ L(A). The proposition now follows. 

The proof of Proposition 6* is analogous to Proposition 6 

and omitted. 

Proposition 7. Let D,~ denote the category of finitely generated 

and finitely embedded modules respectively.t If ~,~ are semi-closed 

categories and L is a length func~on on ~(R) then: 

(i) if !U ~ 0 (~.!U r;.~) ~ L !.S contiI'.uous on !'li then L is 

upper (resp. lower) continuous; 

(li) if 0 S;; ~ (resp. S) £:~) and L is upper (resp. 100'1'er) - --.. 
conti nuous then L is conti nuous on m. 

Proof. If L is continuous on ~ and ~ C J then L is upper 

continuous on ~ trivially. How Proposition 6 establishes (i). 

Suppose that L is upper continuous, 'j G~, and let 1 be the 
~ 

continuous component of L with respect to~. Then L ~ L. If X is 

finitely generated then X e ~ and L(X) = L(X). Hence 

L(A) = sUPXL(X) = SUPxL(X) ~ 1(A) where A e ~(R)and X ranges over 
.. 

the finitely generat ed submodules of 1l.. Thus L = L and L is 

continuous on ~. 

t 5,~ are not semi-closed. ~ semi-closed <=> R is left-Noetherian. 

As for~, see [8]. 
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Corollarz.. Let!U and lB be the category of Noetherian and Artinian 

~ules re~~ctivelx. Then !U C D and ~ C ~. - - -- - If L is conti nuous 

~ ~ (~..sl'.. lB) then L is u.l?per (resp. lower) continuous. If SU = S 

(resp. !B = ~) then the twe;. concepts are ecr-tivalen~. 

Thus, if R is left Noetherian there is no need to distinguish 

between upper conti.. nuous functions and functions conti.. nuous on 

Noetherian modules. A different characterization is presented in 

the next theorem. 

Theorem 8. ~or a length function L'~ T!(R) the following are 
~---.-

equivalent: 

(i) L is upper continuous; 

(ii) for any module A and dll'ect systems fA. J. I of submodules 
~ ~E' 

of A such that E.A. = A, L(A) = sup.L(A.); - ~ ~ ~ ~ 

(iii) for any module A and totally ordered set fA. J. I of 
~ ~E' 

submodules of A such that ~.A. = AJ L(A) = sup.L(A.). 
~ ~ ~ ~ 

Proof. (i) ... (ii). By definition L(A) = supxL(X) where the supremum 

is taken over the finitely generated submodules of A. Por a typical 

finitely generated submodule X of A an inde~ j E' I can be found so 

that X CA.. Consequently, 
- J 

L(A) ) sup.L(A.) ~ sUPXL(X) = L(A). 
~ ~ 

(ii) • (iii) Clear. 

(iii) ... (i) Suppose' L(A) > sup~(X) = c, where X varies over the 

finitely generated submodules of A. ~'Te can construct an ascending 

sequence X1,X2 , ••• ,Xn , ••• of finitely generated submodules of A so 

that L(An) > c - lin. Hence for B = ~=lXn' L(B) = c and B J A. 

By our assumpti.. on and Zorn's Lemma there is a submodule !vi of A which 

is maximal with respect to the property of containing Band L(lvi) = c. 
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Thus ivi fi A and there is a singl, generated. submodule S ~ A, S rl1vi. 

d = L(S/S nlli) = L( S+i1/11) = L(S+I,.) - L(l\[) > 0 (9) 

by the maximali ty of M. (r,Tote that L(l-!I) < 00 since L(~II) = c < L(A).) 

Choose the positive integer k such that L(Xk) > c-d, Then Xk + S 

is finitely generated and 

L(JSc+S) = L(Xk) + L(S/XknS) ~ L(JSc) + L(s;ilns) > c 

by (9). On the oth8r hand L(~+S) ~ c, a contradiction. 

Remark. This theorem does not dualize, not, at least, without 

modificati on. The reason for this is, that we had to use the fact 

that eve~J module is a direct limit of finitely generated 

submodules. This phenomenon has no counterpart as it was pointed out 

in section 3 of chapter 1. 

The essence of Theorem 8 is, roughly speaking, that upper 

continuous functions co~ute vdth direct limits. Before biving the 

exact meaning of this it might be helpful to bive the definition of 

direct and inverse limits. 

The partially ordered set I is called directed if any two 

(and consequently finite number) elements of I have an upper bound 

in I. Let I be a directed set and tAo L I a family of R-modules 
1. 1. E' 

with a collection of homomorphisms a. : A • 
1.,j 1. 

.... A 
j' i < j, satisfying 

a. ka .. = a. k whenever i ~ j ~ k. Let D be an R-module and 
J, 1.,J 1., 

~. : A. ~ D homomorphisms for each i E' I satisfying 
1. 1. 

~.a . . = ~., for all pairs i ~ j. 
J 1.,J 1. 

The pair (D'~i) is called the direct limi~ of 

(10) 

the system (A.,a .. ) 
:r 1.,J 

if, for any other module ~ the homomorphisms ~~ : A. ~ D' satisfying 
1. 1. 
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(10) there is a unique homomorphism V : D ~ D' such that 

v<p. = <p'. for all i (I. Inverse limits are defined analogously. 
1 1 

It is well known that direct and inverse limits always exist in 

~(R) and they are unique up to isomorphism. If (n,<p.) is the 
1 

direct limit of the directed system (A.,a . . ) (notation D = Lim A.l 
1 1, J ~ l' 

then the submodules {Im <P.l. I of D form a direct sy stem and 
1 1( 

E. Im <po = D. Consequently we can state 
1 1 

Corollary. The len[sth function L ~ ~(R) is upper continuous 

if and only if for each direct limit of modules (D,<p.) = Lim A. we 
1 ~ 1 

have LCD) = sup.L(A./Ker<p.). 
111 

The easy part of Theorem 8 can be carried over to the lower 

continuous case: 

Proyosition 9. Let L be a lenGt~~~~~ ~(R) and assume that 

for each module A and inverse system ~f_~~~m~dule~ {Aili(I of A 

such that n A. = 0, L(AI = sup.L(A/A.). ~hen L is lower continuous. 
~~-~·-i1 ' 1 1 

Proof. Accordint to Proposition 1.7 the family of subIl10dules of X 

of A for which A/x is finitely embedded form an inverse system with 

zero intersection. Hence Lis lower continuous. 

t 
Let R,S be rin5s and T an exact functor from ~(R) to ~(S). 

Let L be a length function on ~(S) and define ~ on ~(R) by 

4r(A) = L(T(A)), A ( 9](R) (11) 

Evidently, ~ is a length function on ~(R). In most cases in the 

present work T is induced by the functors Hom and 0. It is assumed 

that the reader is familiar with the definitions and the elementary 

properties of these functors. For an introduction to the tensor ----.. ---. ---- - ..•. --.--.- -- ---.- .. _-_.-_. __ .- .. _ ....•.• 
t It is immaterial, at this point, whether T is covaria):t or 

contravariant. 
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product 0, the reader is referred to [2 chap.V. 1-5]. ':'!e now 

briefly illustrate how these functors will arise. 

1et Sl~ be a ri€;ht R and left S-bimodule, i.e. M is a left S, 

a right R-module and sear) = (sa)r for all r ~ R,s ~ S, a ~ M. 

Write 

Then T is a covariant functor and commutes with direct limits. 

Also, 1i is called right R-flat if T is exact. If T is exact and 

{A.}. I is a direct family of submodules of A and ~.A. = A then 
l. l.E' l. l. 

{T(A.)}. I form a direct family of submodules of T(A) and 
l. l.~ 

E. IT(A.) = T(A). Thus 1- in (11) is upper contuluouS whenever 
l.E" l. ~ 

1 is upper continuous. 

Next, consider a left R-S-bimodule R Slvi, i.e. a module M , 
which is a left R, left S-module and r(s(a») = s(r(a) for all 

r ~ R, s E' S, a ( M. Set 

U(A) = Ho~(A,M), A E' ~(R). 

Then U is a contravariant functor from ~(R) to ~(S) and turns direct 

limits into inverse limits. Also, U is exact if and only if M, as an 

R-module, is injective (see chapter I, section 3). If 1 is a length 

function on IJJ!(S) such that 1(li) = sUPi 1(M!Mi ) whenever {Mili!I is an 

inverse system of submodules of 111, f\Mi' = 0 ani if U is exact then 

Lrr in (11) is upper continuous. Summinc up we obtain 

Proposition 10. 1et R,S be rings, T an exact functor fr~ ~(R) i2. 

~(S) ani far each length function 1 ~ ~(S) define 

L.r(A) = 1(T(A») A ( ~(R). 

~ Lor ~8 a length function on ~(R) and L.r is upper continuous if 



- 27 -

either of the following conditions is satisfied: 

(i) T(A) = Sr.fR ~ A where the S,R-bimodule SMR ~ R-flat 

and L is upper continuous; 

(ii) T(A) :..;: Ho~(A'R_Slll) where the R-S-bimodule R_SIvI is 

R-injective and L(B) = sUPiL(B!Bi) £or all S-modules Band 

~verse syste~~_:mb~.~dules_ [Bi lie-I' (\Bi = o. 

The next problem we propose to consider is the relation 

between length functions on ~(R) and on ~(R/I), I a two-sided ideal 

of R. If we denote by ~ the catebory of R-modules a;mihilated by I 

then ~ and ~(R/I) can be identified in the obvious way. Note 

that ~ is a semi-closed subcateGory of ~(R). It is clear that 

every lenbth function on ~(R) induces a lenbth function - its 

restriction to ~I - on ~(R/I). Conversely, a length function on 

~(R/I) yields a length function on ~I and this, in turn, can be 

extended to ~(R) since ~ is semi-closed. Further, Proposition 6 

and 6* tell us that this extension preserves upper (resp. lower) 

continuity. Thus we have obtained 

~oposition 11. Let R be a rin5 and I a two-sided ideal of R. 

There is a one-to-one correspondence bet~_....!he _~e:.~6t..~ctions 

~ ~(R/I) and the length runc~}ons o~ ~(R) which are continuou~ 

~~. Moreover, this correspondence preserves upper (lower) 

continuity. 

Finally, we briefly mention two special cases. 'Ve refer the 

reader to [9] for a full description of the functors which will occur. 

If the ring R is the finite direct sum of the rings Rl, ••• ,Rn 

then ~ = ~ + ••• + ~ uniquely. If A E' ~(R) then 
1 n 
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A = ~ A ED ••• ED ~ A. The Serre-category ~i = 
I n 

{~.A : A ( ~(R)} 
~ 

oan be identiried with ~(Ri) and the runctors D. : ~(R) .. sm(R. ), 
~ ~ 

D.(A) = L A, are exact. I ~ i ~ n. It now rollows that any length 
~ lL 

~ 

runction on ~(R) is a unique SULl of length functions on ~(R.), I ~ i ~ ll_ 
~ 

Consider now Rn the rin€, of n x n matrices over a ring R, n > O. 

It is known (e.g. [9] ) that the categories ~(Rn) and ~(R) are 

equivalent, i.e. there are exact functors S : ~(Rn) + ~(R), 

T : !lJI(R) + ~(Rn) such that ST and TS are naturally equivalent 

to the identity functors of ~(R) and ~(Rn) respectively. This 

equivalence of cate50ries induces a one-to-one correspondence 

between their respective length functions. 

2.4 Example s • 

I. The classical length function 

Let R be a rinG and ~ the category of simple R-modules and O. 

Then ~ is semi-closed and if 

o + A'+ A + A" .. 0 

is an exact sequence in 6 then either A' ~ A and A" = 0 or A ~ .Al' and 

K= O. Define the function L on ~ by settinL L(O) = 0 and L(8) = 1, 

S ( ~, S .; O. Then L is a lent,th function on @5. Let e be the 

continuous extension of L to ~(R). The length function e on ~(R) 

is called the classical l~n&th fUEcti~ and will always be denoted 

bye. If ~ and ~ denotes the cateto~ of Noetherian and Artinian 

modules and ~ the Serre-cateBory generated by @5 then @5 C ~ = ~ n ~. 

Therefore e is both upper and lower continuous by Proposition 7, 

Assume now that L is a length function on sm(R) satis fyinb 

L(S) = 1 for all simple modUles S in ~(R). Then Land e agree on ~ 
..... 

and hence on~. (Theorem 3 Corollary). It is easily seen that any 
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non-zero module A ( ~(R) has a segment which is a simple module. 

Hence L(A) < ~ i~ and only i~ A ( 6 = ~ n~. In other words, 

KerL= 0, FinL =~nQ3. Thus we have obtained the ~ollowint; 

characterisation of the classical lenbth ~unction. 

Proposition 12. I~ L is a length function on ~(R) and L(S) = 1 

for every simple~odule S ~ ~(R) ~~ L = t. 

Note the follcwling additional property of t. If {A. L ris 
1 1( 

an inverse family of submodules of A and n.A. = 0 then 
1 1 

It will suffice to consider the case 

sup.t(A/A.) = n <~. Then there is a j ( I such that t(A/A.) = n. 
1 1 J 

If there were a j' with A.,e A. then t(A./A.,) > 0 which is 
J J J J 

impossible since t(A/A.,) = n. Thus A. is minimal in fA. J. r which 
J J 1 1( 

shows that A. = 0 and teA) = n. 
J 

II. The rank 

The rank of a module is usually definerr for modules over a 

commutative domain by means of 'dependence'. The non-commutative 

case is studied in [lOJ and [11]. The reader is advised to consult 

these papers if interested in the relationship between rank and 

dependence in modules. 

A (not necessarily commutative) rinE, R is called a do~~J.!!. if 

rs = 0 implies r = 0 or s = 0, r,s (R. Let R be a domain and Q a 

ring containing R as a subring. Then Cl is called the Deft) guotient 

~ of R if the following conditions are satisfied.: 

(i) if r f 0, r ( R then r~ exists in Q; 

(ii) every element of q can be written in the form ris, 

r,s(R,r,lO. 
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A domain is called an Ore-domain if it has a quotient field. 

quotient fields are unique up to isomorphism. Every commutative 

domain is an Ore-domain. Let R be an Ore-doma~n an.d Q its (left) 

quotient field. As a ritht R-module q is flat (see e.g. [12]). 

Also, ~(Q) is the catego~ of (left) vector spaces over Q and the 

classical length function e on ~(R) assigns to each vector space 

V its dimei,sion. The function L on :r1(R), defined by 
r 

is called the rank-f~n_c_tJ._C?!? of ~(R). By Propos i tion li, L is an 
r 

upper continuous length function on I1l)(R). Also, L (R) = 1 since 
r 

Q OR R ~ Q as Q-moiules. 

Pro'position 13. IJet R be a (left) Ore-~~ain ar:~ L an upper 

continuous length function on ~(R) such that L(R) = 1. Then L 

is the rank-func tion ~ sP(R). 

The commutative version of Proposition 12 was proved in 

[3, Theorem 2]. 

Proqf. It is enough to show that for each left ideal I of R, 

L(R/I) = L (R/I) because both functions are upper continuous. we 
r 

may assume that I J O. Choose a non-zero element a £ I. Then 

L(R/I) ~ L(R/Ra) = L(R) - L(Ra.) = 0 since R ~ Ra. Hence 

L(R/I) = 0 for I J O. Similarly,Lr(R/I\ = 0 if I j O. This 

estab lishes the proposition. 

IIIoTrivial functions 

The lenGth function L on TI(R) is said to be 'triv~~l' if it 

ha.s values only 0 or ..... Let ~ be a Serre-catego~ and L defined 

by L(A) = 0 if A ( SU and 00 otherwise. Then L is a trivial. lenDth 
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function and Ker L = SU. Conversely, if L is a trivial function 

then Ker L is a Serre-category. Thus there is a one-to-one 

correspondence between the Serre-catesories of ~(R) and the trivial 

functions on ~(R). 

If L is a length function on ~(R) and £ is the continuous 

" " component of L with respect to Fin L then L = L + L - Land L - L 

is a trivial function whose kernel is "!"in L 0 
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C HAP T E R 3 ._-_._-------

CHARACTERIZATION OF LENGTH FUNCTIONS 
-~------ - ___ I - ___ ,_ 

Ol'T CATE C',oRIES ~'lIT'rI KRULL-DniEl'TS IQ]\T _________ _ . __ .• ____ 4---'" .... _____ . ____ .-......... __ 

In his fundamental work [4], P. Gabriel defined the Krull-

dimension of an Abelian category. 'fhe terminol.o@' is justified 

by the fact that for a commutative Foetherian ring R, the Krull-

dimension of ~(R) is equal to the ¥rull-dimension of the ring R. 

For our purpose GabrtQl's definitio~ is too restrictive. 

Accordingly, we give a modified definition which is more applicable 

to the problem of characteriZing length functions. The terminology, 

however, is kept; partly because of the similarities and partly 

because they are equivalent on the category o~ Noetherian modules. 

Let ~,~ be Serre-catecories of ~(R), V C~. 

Definition. A module S in !B is c~lleA._'~-siI?pl!..'_2:! S I !U 

and for an.l_~ub~~~~e S' o~ S ~~_ther S' ~ !U ~r.. sis' ~ 'U. 

Takin6 ~ = 0 and ~ = ~(R) we obtain the usual definition of a 

simple module. ':re also notice that the cate6ory!B plays a purely 

restrictive role and its presence in favour to ~(R) is only a 

technical conver~ence. The mcx:lule S in!B is said tQ be 

'~uasi-simpl~' if it is !U-simple for some Serre-category ~ C~. 

''[e now fix two Serre-categories SU ~ lB in ~(R) and consider the 

Ill-simple modules in !B. The following lemma is an immediate 

consequence of the definition. 
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Lemma 1. Let S be a ~simEle ~~dule and ~ a chain of submodules 

of S. Then there is exactly one chain factor of ~ which does not 

belong to !U. 

Lemma 2. Let 8' be a se~ent of a ~-simple module 8. If 3' 

does not belone:.. to ~ thel~ 8' is !u-~im.P1-~. 

Pro£.f. Let N be a submodule of 3' and suppose that 8' I lU. 

',re can find a chain ~ ot submodules of S such that Nand 8' IN 

are chain factors of ~ because 3' is a segment of S. Using 

Lemma 1 we find that either lor ( !U or S'll'! (lU. Thus S' is 

SU-simple. 

Definition. Le! S,P !>~ lU-sim£le mod~les. '.,re say that S is 

equivalent ~ P, w~te 3 ~ P, if S and P have isomorphic 

segments which in turn are !U-sim£le modules. 

It is evident from the definition that the relation ~ is 

symmetric cmd r eflexi ve. 

Pro'?f. Let A,B be sevnents of P and ~.i,I'T seQllents of Sand (\ 

respectively such that A,B,M,N are SU-simple modules and ;01 ~ A,B ;::: !IT. 

There are chains ~,'t of P such that A is a factor of ~ and B is a 

factor of 'to Let crt ,1:' be equivalent refinements of ~ and 'to 

By Lemma 1 there is exactly one chain factor, say A I of crt and 

B 'iil 't"' such that A' I lU,B' I. lU. Then A' and B' must necessarily 

be segments of A and B respectively, and A' ~ B/. Moreover, A' and 

B' are SU-simple by Lemma 2. The isomorphisms N ~ A,B ;::: N yield 

segments i·;' of lv1 and p' of JIT such that lti';::: A',B';::: N. Thus lvI' a'1d 1':' 

are SU-simple segments of Sand Q and 1\1' ;::: N'. Thus S '" Q. 
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Pro..E.osition 4. Let S be a Hoetherian 'ii-simple module_. __ Jhen 

there is a left ideal I of R satis fying the followi.pJ. conditions: 

(i) R/I is a Poetherian 1i-simyle modul~; 

(ii) ~very proper factor module of R/I is in 'iI; 

(iii) R/I '" S. 

~. Let Ivi be the maximd submodule of S which belongs to SUo 

Then S/M is Noetherian and does not belong to 1i. Hence S/}'! is 

~-simple and s/l'l ...... S. If x -lOx ( slM then Rx is Noetherian anr) 

the only submodule of Rx which lies in ~ is the zero module. A£ain, 

Rx is SU-simple and Rx '" S. 

Dually, we have 

t 
Finally Rx ~ R/I where I = 0 :R x. 

Proposition 4*. Let S be an Artipian V-simple module. Then there 

is a simJ.:le module M and a submodule I of E(M) satisfyinL the 

~owing conditions: 

(i) I is an ~nian SU-sim'ple module; 

(ii) Every prop£~. submodul_~ of I !..~ in 1ii 

( iii) S '" I. 

As before, let two Serre-categories 1i ~ ~ be given. Throughout 

this chapter, V' wi l_l de''.ote the Serre-catec:,ory cenerated by 'li and 

the 'il-simple modules in~. Thus strictly speakint ~ depends on ~ as 

well. It may happen, of course, that there are no ~-simple modules, 

i.e. II = 'il' • 

Proposition ~. Let the situation be 2.S described above. In order 

that a module j~j should be lone to~1 it is necessary anQ sufficient thllt --------- --~~.~ ....... --- - -.------------.--.. ---.-.----- - -

a chain (j of sub~~_~les_._9.£ n eXi_sts __ W! !~_t~:'~E.~p~rt~_th~.~_e_a~ 
chain factor of (j is either a ru-simple module or belonEs to rue - ... --~~--.----.---.--.-..... --
t 0 =n. x = f r ( R : rx = 0 1 • 
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Roughly speaking ~I consists of modules with a '~-composition 

series' • 

Proof. Combine Proposition 1.1 and Lemma 2. 

3.2. The Krull dimension 

Let ~ ~ ~ be Serre-categories. Tor each ordinal number a 

a Serre-catet;ory will be defined such that IU C SUa S; ~{3 £; ~ 

whenever a ~ {3. This sequence of Serre-categories will be referred 

to as the KrulLs~9.l!.~ce between ~ and~. 'Te start with the number 

t 
-1 and set: 

SU_ l = SUD 

Assume that ~(3 has already been defined for ordinals p < a then 

~a = (SU{3) I if a = p + 1 and 

= ,.,U SU,q if a is a limit ordi.nale 
p<a t' 

The Krull dimension of ~ over_ IU~_ di!ll.!o/.~, is the smallest ordinal a 

for which ~a = ~. If there is no ordinal a such that ~ = ~ then 
a 

we write dim ~tu = 00. Note that when we write dim ~/U < ~ we 

actually mean that dim ~)u I ~ and not that dim ~)U is an inte~er. 

The hull dimension of a module M over ~ is defined similarly. Thus 

if M ( ~ then dim M/U stands f'or the smallest ordinal ex for which 

M (SUa. If no such ordinal exists then put dim M/U = 00. It is clear 

from the definition that the Krull dime l1 sion of a module in ~ is 

never a limit ordinal. (00 is only a symbol and not an ordinal number). 

Propos ition 6. ~et ~,~12' ~1'~2 be Serre-catek1or~.E_~!.9:. 

~ <; !U2 ~ ~2 <; ~. ~ dim ~2;U2 ~ dim ~/SUl· 

t The reason is purely aesthetic , we want our dimension concept to 

coincide with the usual Krull dimension at' a ring when the latter 
is defined. 
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~.f.. r{e may assume that dim ~/~ = a < 00. Let I!ip 1 be the 

Krull sequence between ~ and ~l' ~-l = ~l' ~a = ~l and let ~p be 

a typical element of the Krull sequence between ~2 and ~2. The 

Serre-category generated by ~2 and ~p n ~2 is denoted by ~p. 

'Ve claim that ~ ~ 8J{J for all (3 ~ a. Since ® -1 = SU2 = ~ -1 the 

statement is true for p = -1. Assume that it has already been 

proved for all ordinals y, y < {J ~ a. If {3 is a limi ordine.l then 

®(.1 = U(30. CUrl) = 8)(3" Assume now that f3 = & + 1. By the 
I-' y< Y - y<t-' Y 

induction hypothesis ®& ~~&. If M is a®6-simple module in 02 and 

M I ~o then M is obviously a.Do -simple module. Consequently 

(@50)'~ .\)0+1. Suppose that E is a m6- s imple module and M € 02. 

Then either Iv! € ®6 or M is a ®o -simple module in 02. It follows 

that ®o+l ~ (®o)' C 00+1· Thus ®f3 ~ J.)f3 for all ,6 ~ a. In partioular 

~2 = @5a <;'.);)a: shows that dim ~2/~2 ",. 0: as required. 

"Te write dim!U and <limA for dim 'W'O and dim Alo respectively. 

Theorem 7. If Q1 and 0 denote the cateLories of Noetherian and 

11.rtinian modules respecti vel:'[-.!.hecl dim ?J < 00 ~nd dim [l < 00. In 

pe.rticular, dim j~ < ag for a module .f,. in d thcr 'U or ~. 

Proof. T'or a chanbe consider the Artinian case. Let A be an 

Artinian module and ~a the a-th element of the Krull sequence of~. 

Suppose that dim A = 00 and choose the submodule /i of A to be minimal 

with respect to this property, Le. dim M = 00 but dim N < "" for any 

proper submodule IT of I,I. iTote that jii I O. Put Y = supfdim }'T : ]IT C }d. 

Then jYl I ~, by assumption. But every proper submodule of Ivi belongs 
'( 

to ~ 0 

y 
Hence E is a 93

y 
.. simple module and lvi ( :8

Y
+

l 
which contradicts 

our assumption that dim Ll = co. Thus dim A < 00 for all A ( ~. 

The Foetherian case can be proved similarly. 
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In order to complete the proof we need the following property 

of ~ and~: there is a set of modules generating ~ (resp. ~). 

For~, the set of modules of the form RIL, L a left ideal of R, 

R/L is l'Toetherian do generate 'U in view of Proposition 1.8. 

Similarly, using Proposition 1.8* we find that Artinian singly 

embedded modules generate ~. Let fL. L I be the set of llRximal 
3. 3. e-

left ideals and choose an injective envelope Ei far each R/Lio 

Then the Artinian submodules of the modules E. form a set of 
3. 

representatives for Artinian single embedded modules. 

-"'Te now complete the proof of Theorem 7. Let {N. L I and 
3. 3. E" 

~.l. J be sets of modules generating ~ and ~ respectivelyo As we 
J Je-

have already seen dim N. < ~ and dim A. < ~ for all i e- I,j e- J. 
3. J 

Put ex = sUPidim Ni' P = suPjdim Aje If ~,~y denote the typical 

elements of the Krull sequences of ~ and ~ respectively then 

N. e- ~ and A. e- ~p for all i e- I,j E: J. Therefore ~ r ~ 
3. ex J tJ -ex 

~ ~ ~{3 whence dim ~ ~ ex and dim 0 ~ {3. 

3.3 The main decomposition theorem 
--~-----

"Ie wis h to characterize lenbth functions by represei1tin{~ them 

as linear combinations of others. The na tural building blocks for 

such a representation the ory are length functions which cannot be 

decomposed any further. Thus we make the following 

Definition. A non-trivial length function L on a cateso!y ~ is 

called irreducible if for length functions Ll and L2 ~ ~, 

1. = Ll + L2 implies that either Ll = cL or L2 = oL for some real 

number c > o. 
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Proposition 8. If the length function L is irreducible on a 

semi-closed catego~ ~ then its continuous extension to ~(R) 

is irreducible _C:!: >;1J(R). 

~. Assume that L = Ll + L2 where i is the continuous extension 

of L to ~(R). Since 1 is irreducible on ~ we may assume that 

11 = c1, c > 0 on SUD Usin!o Theorem 2.3 and Proposition 2.4- we obtain 

(1) 

1~e contend that Ll = cL. 1et A ~ ~(R) and assume that L(A) = 00. 

Then 11 (A) ~ ileA) = ci(A) =~. Next, if i(A) < ~ then 

(11 (A) - i'l (A)) + (L2 (A) - L2 (A)) = O. Hence Ll (A) = 11 (A). 

A length function L is said to be 'finite on~',?J a semi-closed 

cateto~, if?l <;;:. fin L. Let 1 be a length function on S'1')(R) (or on a 

" semi-closed category) and let L be the continuous component of 1 with 

respect to "Pin L. Then L = JJ + (1-1) and the latter function is trivial. 

~'uztthel'~ if L admits a representation as a sum of irreducib18 

functions on Fin 1" then this representation can be extruded by 

" 
continuity to L. This is the reason why we can focus our attention 

on decomposinto a function over its domain of finiteness. If we obtain 

a decomposition for 1 over rin 1, then L will be expressed as a 

sum of irreducible and, pOSSibly, trivial functions over ~(R). 

To avoid set-theoretical difficulties we assume that the 

followinb condition is amays s"1tisfied in this section. 

(t.) 

If o:u and ~ are Serre-catebories, Q.( C~, then there is a set 

IT and a family of SU-simple modules fs! IT in ~ such that for every 
" 7\;~ 

~-simple module S in~, S ~ S7\; for some 7\; ~ IT. 

In other words the equivalence classes of ~-!dmpl(; modules form a set. 
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The results in the previous section show that (b.) is 

satisfied if ~ is the catebory of Noetherian or Artinian modules. 

Let ~ C ~ Serre-cate;~ories, dim ~~, = 0 and fs 1 TI a set of _. ~ /'" 71: 71:E 
"-

representatives of ~-simple modules. If ~ is the semi-closed 

cate gory c omprisin,; SU and the 'll-simple modules and 

"-

is an exact sequence in SU then we have either of the following three 

possibilities: 

(c \ H '" E" and ~\j' E Q.l. 

Let L be a length function on m such that Q.( ~ Ker L. Then L(S) = L(3' ) 

whenever S and S' are equivalent SU-simple modules in ~ (Lemma 1) • 
.... 

It now follows that the functions [L 1 n on Q.( defined by 71: 71:E 

L (lvi) = 71: [
1 if i"I is SU-simple and r~l "" S 

71: 0 otherwise, 

are lenbth functions on~. The continuous extension of L71: to ~(R) 

(still denoted by L71:) is called the l~~fu~ction ~~ocj-:...~te~_~c:~~e 

g~asi-sim~le module S71:. Note that L has inte fer values. 71:" 

Lemma 9. Let the situation be as n.escribed abo_ve an~.Je~ 11,L2 be 

:!ngth functions o~ m such that Q.( S Ker 11 n Ker L2• Then Ll = L2 if 

and only if Ll (871:) = L2 (871:) ~all 71: E TI. 

Proof. Suppose that Ll (8
7t

)=L
2

(S1t) for all1tE'n.Then if. S is a Q.l-simple 

modulo,S ~ S~ for some ~ E n and Ll(S) = Ll(S~) = L2(8~) = L2(3). 

Hence Ll = L2 on ~ and consequently on SUe (Theorem 2.3 Cor.) 

Proposi tion~. ~ 'U ~ ~ ?e Serre-cate gOE=!:.c:::., dim SD/U = 0 and 

(S) n a minimal set of representativestof 'U-simple modules. Let 
7t 7tE - ~--

t one from each equivalent class, 



- 40 -

L be a finite function on ~ such that 'U ~ Ker L. Then 

(i) L is irreducible if and on~ if L = cL~, c ) 0 for some 

~ ( n; 

(ii) L = ~~(ncnL~, c~ = L(8~) is the unique re2resentation 

of L on ~ as a linear combination of the L~'s. 

Proof. Write L' =Z nC L with c = L(8). Prom Lemma 9 and the 
~(7t~ ~ ~ 

definitions of the L 's we see that L = L'. If L = E. ~ L then 
~ .. E'I1~ 7t 

d = L(8 ) = c",. for all ~ (IT. The proof will be completed by the 
~ ~ " 

verification of (i). Assume that L~ = Ll + L2 on !B. we may assume 

that c = Ll (S7t) I O. Then Ll = cL by Lemma 9. Conversely, if L is 

irreducible on!B, (SU ~ Ker L, !B ~ ~in L) then L I 0 since L is not 

trivial. Hence there is a ~ ( IT such that L(S ) I o. 
~ 

Put 

L' = 1:_1 L(S ) L • 
-'1oF1l 7t 7t 

be a multiple of L. 

Then L = L' + L(8 )L • Since L' (8 ) = 0, L' cannot 
~ ~ ~ 

Hence L = cL and L = c-1.L • 
~ ~ 

Corollary 1. The functions L7t,~(n are irreducible or: ~(R). 

Proof. Apply Proposition 8. 

Corollary 2. g h I 0 is a Noetherian (res.£: Artinian) module then 

there is a length function L ~ ~(R) such that 0 < L(M) < 00. 

Proof. By Theorem 7,dim M = a + 1 in the catego~ of Noetherian 

(resp. Artinian) modules. Let ~L I IT be the set of length functions 
7t 7tE' 

associated to IlIa' the term in the KruU sequence corresponding to 

the ordinal a. Set L = E7t(nL~. Then SUa = Ker L C Q,la+l ~ Jin L. 

Hence 0 < L(M) < 00. Also, L(M) is an integer. 

One may utilize the above result and define the 'length of an 

illeal' in arbitrary rings. Observe that if I is an ideal of a 

commutative Noetherian ring thEm the number L(R/I) obtained in the 
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proof is the s arne as the length of I as it is defined in the 

classical theory. 

Now we turn to the t,eneral case. Let Q( c; ~ be Serre-

cateGories and dim ~/U = y <~. The elements of the Krull 

sequence are denoted by ~a' -1 ~ a ~ y. Let L be a finite 

function on 3 and ~ ~ Ker L. 
ex For each a, -1 ~ a ~ y, L denotes 

the continuous component of L with respect to ~a. By Theorem 2.3 

La ~ La+l. Let La be the continuous component of La+l _ La with 

respect to ~a+l' -1 ~ a ~ y. The functions La' -1 ( a ( yare 

called the Krull component~ of L. 

Lemma 11. Let the situation be as described aboveJ Then 

(i) lUa c; Ker La .a.Ed La ~ontinuous on ~a+l (a ~ y), and 

( 44) La -_ ~ L f 11 1 ........ I . . or a _ a, - ~ a ,<: y. 
-l~p<a p 

~~oreoverl- the Krull com"p'onents of L are completely characterized b'y 

(i) - (ii) and L = }. La ~ Fin L. 
-l~a<y 

Proof. It is evident that La and La+l agree on ~a. Hence (i). 

Next, L~ = 0 and LO= L_l • Assume that (ii) has already been proved 

for all ordinals [3 < a and consider rJ = )' L,]. It follows from 
-l<,~<a ' 

this assumption and (i) that V and L n~ree on ~[3' -1 = [3 < a. 

Hence La = L' if a is a limit ordinal. If a = 0 +1 then 

L' = 
o 0+1 a ;, Lp + Lo = L + Lo = L = L from the definition. 

-1~p<5 

Let Ka be a second sequence satisfyinL (i) and (ii) and let a be 

an ordinal, -1 ~ a < y. Then L = La
+1 - La = K on ~ 10 But a a a+ 
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Theorem 12. Let SU <;, ~ be Serre-categori.:!., d.im Q3fU = y < 00, and. let 

{SUa} -1 ~ a ~ ybe the Krull sequence between SU ~~. For each 

a, -1 ~ a < y, [S~}~(ITa is a set of repres~ntative~.o~ ~ex-simple 

mod.ules, one from each equivalent class a~d. IT is the d.isjoint union 

then 

(i) L is irred.ucible on !S if and. only if L = cL
7t

, c > 0, for 

some 7C ( IT· 

c~~on!S, ~ = L (S ) if ~ (IT and. L _ ~ a~_ a~a 

is the a-Krull component of L. Moreover, this is the 

unique representation of L as a linear combination of the L
7C

's. 

ProBf. Let La' -1 ~ a < Y be the Krull components of L. Then by 

Lemma II, L = L La 
-l~a<y 

on!S. ?or each a, La is a finite function on 

SU 1 and. SU C Ker L • a+ a - a Hence La 

'U 1 by Proposition 10. a+ Since all the functions involved. are 

continuous on 'U 1 we d.ed.uce a+ that L =)' c L on ~(R). Thus 
a_ IT ~7C 

~( ex 

L = L c~L~ on!S with c~ 
7CE"IT 

= L (S ) for ~ ( IT. Let L = ) d. L a 7C a . ~(E?t 7C 

be a secord representation of L as a linear combination of the 

Put K =)' d. L , -1 ,: a < j. Then the K 's ex __ ~(ITex ?t ?t a 

clearly satisfy concli tions (i) - (ii) in Lemma ll. Hence Ka = La 

and. Proposition 10 implies the identities d. = c for all 7C ( IT. 
~ ~ 

To complete the proof we have to verifY (i). By Proposition 10, 

Cor.l,L~ is irred.ucible on ~ for all ~ (n. Conversely, if L is an 

irreducible length function on ~ such that 'U ~ Ker L, ~~ Fin L 
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then La I 0 for at least one a, -1 ~ a < Y. (By definition, 

an irreducible function is not trivial.) Let a be the smallest 

ordinal for which L F 0 and put Ii = ~ L,-:). Then L = L + l' • a /, ;.- a 
a<i3<y 

But L is irreducible. Hence 1a = c1 or 1'= cL, c > O. Since 

Ker L ~ ~a+l C Ker Ii we must have La = c1. Now L is a finite a 

irreducible function on Va+l and Va <;. Ker La ° Hence Propositi on 10 

can be applied to obtain L = c-1. L = dL on 'U l' d > 0, 'Jt ( II • a 'Jt a+ a 

But both La and L'Jt are continuous on ~a+l. 

required. 

Thus 1 = dL on ~ as 'Jt 

Corollary 1. 1et 1 be a length function on ~(R) ~ dimFin L/Ker L < ~o 

Then L can be expressed on Fin 1 as a sum of irreducible length --- - --
functions. If I, ~~tinuous on Fin L then this representation 

holds true on ~(R). 

Proof. Immediate. 

Corollary ~. If L i~ a length function on the catego~ of Noetherian 

(resp.Artinian) modules then the function L can be expressed on Fin L 

as a sum of irreducible length functions. 

~!. Combine Proposition 6 and Theorem 7. 

sense: 

The representation in Theorem 12 is unique in the following 

Suppose that L = > L. = > L. are representations of L, 
,-- i(I l. '~j (J J 

L.,L. are irreducible functions. Then by Theorem 12, 1.,1., i(I,j(J 
l. J 1. J 

are scalar multiples of the functions [1 1 n0 It follows that there 
7t 'Jt( 

is a bijection q> : I -+ J and real numbers c. > 0 such that 
1. 

Li = ciLq>(i)' for all i ( I. 

The length function L on a Serre-category ~ is called 'locally' 

<lisc.F~' if for every module MU, inf{ 1(S): 1(S) > 0, S is a segment of Al >0. 
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A sum of length functions L = ~.L. on a catebory ~ is called 
~ ~ 

'discrete' if for every module A (~, L.(A) = 0 for all but a finite 
~ 

number of 1. 

Theorem 13. Let IJ be a lent.,th function on I})'!(R) and dim."'in L/Ker L < 00. 

Then the following ~ equivalent: 

(i) dimPin I/Ker L ~ 0; 

(ii) L is a discrete sum of irred.ucible functions on Fin L ; 

(iii) L is locally discrete. 

Proof. (i) ~ (ii) If dimFin L /Ker L = -1 there is nothing to prove. 

Assume dim Fin I/Ker L = O. By Proposition 10, L = ~?tc?tL1t where the 

L']t's are the irreducible functions associa.ted to the Ker L-simple 

module s. If A ( Fin L then A has a chain (j such that the chain factors 

are either Ker L-simple modules or elements of Ker L. (Proposition 5) 0 

Let L , ••• , L be the functions associ'lted. to the Ker L-simple chain 
'1. 1t.k 

factors of (j. Then c']tL?t(A) = 0 whenever 1t ft 1tl , ••• ,1t ft 1tk • 

(ii) * (iii) By Theorem 10 we may assume L = ) c L where the 
'··1tdI 7t 1t 

functions L1t have only inteGer values and this sum is discrete. 

In order to prove that L is locally discrete we may confine ourselves 

to modules A ! 1:<'in L, A I Ker L. Let A be such a module am S a 

segment of A. If c L (A) = 0 the~ c L (S) = 0 as well. It now 
7t 1t 1t 1t 

follows that there are indices 7t l , ••• ,,\: such that c1tl>O, ••• ,c~ >0 and 

L(8) = c L (S) + ••• + c L (8) for any segment 8 of A. Thus 
7t1 1tl '1c 7'"x 

L(S) ~ min(c1t1' ••• 'c~) whenever L(S) > o. 

(iii) * (i) Let Ker L = ~ -1 ~ tIO S; ~l C... be the Krull sequence 

between Ker L and Fin L and assume that SUo ft Fin L. Since 
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dimFin L/Ker L < co we have ~-l C SUo C SUI. Choose a SUo-simple 

module S in Fin 1. If A is a submodule of S then either A ( SUo 

or S/ A ( '>10. Since S is !Uo -simple and not SU _I-simple there mus t 

be a submodule A of S such that either A ( SUo but A 'SU_1 or 

S/A ( SUo but S/A I !U_l. Let Al be the one which belongs to 

SUo but not to ~-l and BI the other. Then L(S) = L(AI ) + L(B l ), 

L(AI ) j 0, L(BI ) t 0 and Bl is SUO-simpleo Hence the procedure 

can be repeated by BI etc. In this way two sequences of modules 

L(A ) j O,L(B ) ~ 0 and L(8) = L(Al) + ••• + L(A ~ + L(B ) for all n n n n 

n > O. Consequently L(A ) -+ 0 and A is a seesment of S. n n But 

this contradicts the fact that L is locally discrete. 

Theorem 14. If the finite values of a length func~ L ~ ~(R) 

are inte gers the~ dimFin 1/Ker L ~ O. 

Proof. Assume that the theorem is not true and (Ker L)' C Fin L. 

Choose a module A in Fin L, A I (Ker L)' so that L(A) is minimal. 

For a submodule B of A we have L(A) = L(B) + L(A/B). If L(B) < L(A) 

and L(A/B) < L(A) then A,A/B ( (Ker L)' by the choice of A and 

A ( (Ker L)' since (Ker L)' is a 8erre-catego~. Since A I (Kcr L)' , 

either L(B) = L(A) or L(A/B) = L(A). Therefore either B or A/B 

belongs to Ker L for any choice of B. But then A is a Ker L-simple 

module and, aLain, A ( (Ker L)', contradicting our assumption • 

. Thus (Ker L)' = Fin Land diIilfi'in L /Ker L ~ O. 

l.lt. The catellory of Noetherian modules. 

lYe have seen in the previous section how the irreducible 

length functions can be used as building blocks in the representation 
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problem. Apart from their existence, however, our theory 

provided little information. In the present section we set 

out to show that the irreducible length functions of the 

category of Noetherian modules can be realised by means of 

injective modules. 

Definition. An R-module M is said to be 'inde_~_mJ~.?sable' if 

its only d~ summands are ° and ivi. 

Proposition 15 [~ Proposition 2.2]. For an R-module ]iii the 

following are equivalent: 

(i) E(in is an injective envelope of every non-zero 

submoo u1e of i,taelf; 

(ii) iI'[ contains no non-zero submodules S alld T such that 

s n T = 0, 

(iii) E(M) ~indecomposable. 

Proof. (i). (ii) • (iii) Clear. 

(iii) -> (i). If E(M) is indecomposable then it contains no non-

zero injective submodu1es. Thus E(H) is the minimal injective 

extension of every non-zero submodule of itself. 

Let E be an injective R-mooule and let S be the ring of endo-

morphisms of E. Then E becomes a left R, left S-bimodule. The 

functor T(ld) = Ho~(M,E) is an exact contravariant functor from 

WI(R) to 91I(S). The S-mooule structure of T(lii) is given by 

f(a) = f.a, a : M • E, f : E • E. 

For each R-module M, put ~(M) = .e(T(M)) where .e is the classical 

length function on ~(S). Then ~ is an upper continuous length 

function on ~(S). (Proposition 2.10). Suppose that for a module 
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l.'; ~ !lJl(R), T(M) -I 0 and every non-zero element of T(hi) is a 

monomorphism M ~ E. The next lemma tells us th~t ~(]() = 1. 

~emma 16. Let the situation be as described above. Then ~(M) = 1. 

Proof. It will suffice to prove that T(:rvr), as an S-module,is 

simple. Since T (l,i) I 0, the lemma will follow if we show that 

every non-zero element of T(M) generates T(M). Suppose f,g ~ T(M), 

flo. Then f is a monomorphism and the diagram 
f 

O---:)M~E 
I 

61 /~ 
\.! 

E 

can be completed by an h : E ~ E such that g = hf, h ~ s. 

P-or the rest of this chapter ~ denotes the category of 

Noetherian modules in ~(R). Suppose L is an irreducible length 

function on 5. Then L is called 'normalized' if 

(L(A) : A ~ :"in L 1 = fO,1,2, ••• ,n,. •• }. By Theorem 12, L = cV , 

c > 0 on FinL and. L' is normalized since it is an irreducible 

length function associated to a quasi-simple module. But an 

irreducible length function is continuous on its domain of finiteness. 
.. .. .. 

(For L = L + L - L, L is the continuous component of L with respect 

to Fin L. But then f, = dL, d. > 0 and L = L on Fin L. Hence 

L = i). Therefore L = cU on ~(R). Thus every irreducible length 

function is a scalar multiple of a normalized length function. 

'.7e say that a module E ~ !I1!(R) is an '~-injective' if it is an 

indecomposable injective module and contains a non-zero Noetherian 

mcdule. 
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Let E be ~l a-injective module. Then there is a 

submodule P of E, P -I 0, P e (1 such that every non-zero 

homomorphism f.~~ P ~~ E is a monomorph~~. 

Proof. Let N be a norl-zero Foetheria". submooule of E. Choose 

a submodule I,i of N so that Ho~(N/i'l,E) -I ° and IV! is mximal with 

respect to this property. Then there is a non-zero homomorphism 

f : N/li ~ E a.Tld P = f(N/M) has the required property. 

Proposition 15 shows that an indecomposable injective mcdule 

is the injective envelope of a cyclic module. Therefore one may 

speak of the set of isomorphism classes of indecomposable injective 

modules. 

Theorem 18. There is a one-to-one .~ITespc:nde.!!.~e be.!ween th_~ 

?ormaliz e~ 2E:.~~2-1c i~.} engt.!2..~~i(?~_s ___ <:! 5 BE-d the _~c:~ 

~~orphi~~~~~.~ of 'J.-injec~i~~odul~.l.._~~'yer:_ by E <==> ~. 

~. '::e recall that if E is injective then ~(M) == .e(Ho~ (TIl,E)), 

}{ € 9Jl(R). Here e is the classical length function over the 

endomorphism ring of E. 

Let ~ G 0 be a Serre-category, P a ~-simple module in a and 

~ the associated length function. ",fe are going to prove that 

(a) we may assume that E(P) is IT-injective and P satisfies the 

cond i tions of IJermna 17, and in this case 

Indeed, by Proposition 4, we may assume that every proper factor 

module of P (i.e. not ry itself) belongs to~. Suppose that Sand 

Tare non·-zero submodules of P and S n T == 0. Then pis and piT 

belone to ~ and there is a monomorphism P ~ piS ffi piT. 
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This shows that P € 'U which is impossible. 'iTe can then concluie 

that E = E(P) is an ~-injective module. (Proposition 15). If 

f : P ~ E is a homomorphism and f(P) I 0 then f(P) n P I 0 since 

E is indecomposable. Accordingly f(P) n P I ~ .. At the same time 

f(P) is a factor module of P and belongs to ~ if it is proper, i.e. 

if Ker f f. O. Thus Ker f = O. me now prove (b). 

First let M € ~(R) and ~(M) > O. 'iTe show that M has a 

segment isomorphic to a proper submodule of P or in other words 

M has a lU-simple segment equivalent to P. For if ~(M) > 0 then 

there is a non-zero homomorphism f : 1'1 ~ E and f(M) n P -J o. 

It no7V follows that ~(ll) > 0 "* 1p(M:) > 0, Le. 

~ ~ Ker 1p ~ Ker ~ Also, if Q isan ~-simple module and 

~(Q) > 0 then Q '" P. Moreover, L:E(p) = 1 by Lemma 16 and (a). 

Using Lemma 9 We find that ~ and. ~ agree on 'U' n 0'. Further, 

1p is continuous on~' by definition. Thus ~ ~ ~ (on ~(R)). 

If ~(M) > 0 then M has a ~-simple segment equivalent to P. Hence 

1p(M) > 0 implies ~(M) > 0 which shows that Ker ~ = Ker ~. 

Also, by Theorem 14 dimFin Lp"Ker ~ = O. In order to show that 

~ = ~ on Fin ~ we use Lemma 9 again. Evidently, P and every 

non-zero submodule of P, is a Ker ~-simple module. Let Q be a 

Ker Lp-simple module. Since ~ is irreducible, Lp(Q) > 0 implies 

that Q '" P by Propositior: 10. If ~(Q) > 0 then Q has a seGment 

iSOl:lorphic to a non-zero submodule of P whence q '" P. Thus Lp = ~ 

on Fin Lp. But Lp ~ ~ on ~(R). 
t 

Hence ~ = ~ on ~(R). 

t In Lemma 9 and Proposition 10 the condition (~) was implicit. The 
following is easily verified. For an upper continuous length function 
L the equivalence classes of Ker L-simple modules form a set. Indeed, 
if A is Ker L-simple then it has a cyclic submodule BIKer L for 
otherwise L(A) = O. Thus every Ker L-simple module is equivalent to 
a module of th; form R/I, I a left ideal. In our case both ~ and ~ 
are upper continuous. 
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l'1e now prove Theorem 18 proper. Let E be an "J-injective 

med ule am set V = Ker ~ n J. By Lemma 17 the re is a submcd ule 

P of E such that P I 0, P { 0 and the non-zero homomorphisms from 

P to E are monomorphisms. Obviously, P is ~-simple a.nd (a) - (b) 

imply that ~ = tp. Hence ~ is a normalized irreducible length 

function on U ru1d E ~ ~ is well defined. 

If L is a normalized irreducible length function on U then 

L = ~ for some quasi-simple module P in o. Applying (a) - (b) 

we see that L = ~ for some u-injective E. Thus E ~ ~ is onto. 

Assume now that E and Ff are o-injective modules and ~ = ~I • 

Choose a j,on-zero Noetherian submodule P of E such that the non-zero 

homomorphisms in Ho~(P,E) are monomorphisms. (Lemma 17). Then 

1 = ~(p) = ~I (p) and there must be a non-zero homomorphism f : P ~ E'"" 

Therefore ~,(f(P)) I 0 and ~(f(P») I O. Again, we have a non-

zero homomorphism g : f(P) ~ E. Hence gf is not zero and f must be 

a monomorphism. Consequently ~= E(f(P) ~ E(P) = E. This completes 

the proof of Theorem 17. 

Let {E} n be a set of representatives of j-injective --- ~ ~~ --------------
modules, one from each_ isomorphis~class, fu~d put L~ = ~. If L 

~ 

is a length function on 5 ~ L can be unique_ly ~_~~r:._~s ___ ~ 

linear combination of the L~' s. Irms representation is va lid on 

Fin L, or on IT !! L is continuou~ Fin L. 

The corollary is an immediate consequence of the theorem @1d 

Theorem 12 Cor.2. 
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3.5 The commutative case. 

Throughout this section R will be a fixed commutative rins 

and t5 denotes the catecory of f'!oetherian R-modules. 'lYe will 

demonstrate that the commutativity of the ring R enab'.es one to carry 

out further Simplifications. Our first result characterizes the 

t5-injectivc modules. 

An ideal P of R is called a 'prime ideal' if P 1 Rand rs ( P 

implies r ( P or s ( P for all r,s (R. 1He see at once that if I 

and J are ideEtls, I J P, J J P, then I 11 J ~ P. Thus E(R/P) is 

indecomposable for a prime ideal p. By an '[-~rime' ideal P we 

mean a prime ideal P of R such that R/P ( '0, i.e. RIP is Noetherian. 

Proposition 19. There is a one-to-one ~~~~~pondence between the 

set o~ ~-prime ~deals ?! Rand the set of isomorphism cl~~~~_"of 

t5-injectivG module2 giv~.J>.1: P< .. >E(R/P). 

This result was proved in [5] under the assumption that R is 

Noetherian. 

Proof. If P is an o-prime the:"! E(R/?) is a-injective. Conversely, 

if E is an 0-injective m~ule then by Lemma 17 we can find a sub­

module N of E such that IT -J 0, N ( '5 and the non-zero homomorphisms 

from N to E are monomorphisms. Choose an element e ( N, e -J o. 

Then Re has the same properties as F sine e homomorphisms from Re 

can be extendei to E. Let P = 0 e and rs ( P, sip for elements 

r,s ( R. By assumption x ~ sx, x ( Re, is a monomorphism sinee 

se f. O. Hence 0 = sere) '* re = 0 and r (P. Thus~' is a prime ideal. 

Finally Re ~ R/P implies that E ~ E(R/P). 

Now suppose that P,P are prime ideals of R such that 
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E(R/p) ~ E(R/p'). Then E(R/p) has a submooule N isomorphic to 

R/P' , and IT n (R/P) -I O. Consider a non-zero element x of 

N n (Rip), and suppose that it corresponds to y f: RIP'. Then 

p = 0 : x ;.:: 0 : y = P'. This completes the proof. 

ADcording to this last result, the irreducible length 

functions on ~ take the form ~(R/P) where P runs through the 

5-prime ideals of R. It is not these functions, however, but the 

principle of localization Which is widely used in commutative 

algebra. It will be presently shown that the numerical outcome 

is the same whichever technique one uses. 

Let P be a prime ideal of R. A 'localization of lL.!.i t~ 

~.Eect t~.E' is a rinE; ~ with a ring homomorphism cp : R -) Rp 

satisfyinG the followins condi tiona: 

(i) Ker cp = (r f: R : rt = 0 for some t f: R - pi; 

(ii) cp(t) is a. unit in ~ for all t f: R - P ; 

(iii) Every element of Rp can be expressed in the form 

cp(r)cp(tj1 (r f: R, t f: R - p). 

Then Rp is unique up to isomorphism a...-,d one can simply refer 

to ~ as the localization with respect to P, without reference to cpo 

The localization of R with respect to a prime ideal always exists. 

1\;'e need only a fey; well-known facts concerning localizations. 

The ring ~ is flat when regarded as an R-module. AccordinGly 

A -to ~ ~ A is an exact functor from ~R) to 9J!(~). If I is an 

ideal of R then R/I ~ Rp = 0 if and only if I ,P. There is a 

unique maximal ideal of ~ isomorphic to P ~ ~, and Rip 0 R Rp 

is isomorphic to the simple ~-module, nece5sari~ unique up to 

isomorphism. 
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Let P be a prime ideal of R, e the classical length function 

or.. ::n(~) and set 

1p(A) = e(A @R ~), A ~ ~(R). 

Proposition 20. Let P be a prime_idea_~of Rand E = E(R/r). 

The functi<??~ ~ ~nd ~ are iden~ic~! __ o~ ~(R). 

~of. The flUlctions ~ and ~ are upper continuous by Propositi on 

2.10, and all of their finite values are integers. If ~ I ~ then 

there is an inte(,er n ~ 0 such that the statement I~(A: =n <:::> ~(A) = n 

for all A ~ ~(R), is not true. Let n be minimal with respect to 

this property. 

For an ideal I of R, ~(R/I) = 0 if and only if I ~ P. If 

I ~ P then ~(R/I) ~ ~(R/P) = 1. Conversely, assume that 

~(R/I) > 0 for an ideal I ~ R. Then there is a non-zero homomorphism 

f : R/I ... E and I CO: f(R/I) ~ 0 : f(R/I) n R/P = P since 

f(R/I) n Rip I O. Thus for any ideal I of R, ~(R/I) = 0 <::;> %(R/I) = O. 

It follows that 1p(A) = 0 <=> ~(A) = 0 for all A E ~(R) since the 

functions are upper continuous. Hence n > O. 

Assume now that T~(R/I) = n for an ideal I ~ R. Then I C P 

and ~(R/I) = ~(R/P) + L~(P/I) = 1 + ~(~/I) = ~(R/P) since 

~(P/I) = n - 1. Similarly, ~(R/I) = n ~ ~(R/I) = n. Using 

upper continuity we see the.t ~(A) = n <=> ~ (A) = n for all A ( ~(R). 

This, however, contradicts our assumption on n. Thus Lp and ~ 

agree on ~(R). 

The most striking difference between the commutative and 

non-commutative case is, that if L is a length function on 0 

(R is commutative) then dimFin 1/Ker L < O. ~e result depends 
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largely on the followinG simple lemma which is of some interest 

in its own right. 

Lemma 21. Let L be a length function oE ~(R) ~ P a ~rime ideal 

of R such that L(R/P) < ~w If the ideal I strictly contains P then 

L(R/I) = O. 

Proof. The exact sequence 

o -. I/P -. R/P -+ R/I -. 0 

yields L(R/I) = L(R/P) - L(I/P). Choose an element r ( I, riP. 

Then the natural map R -+ rR induces a monomorphism R/P -. I/P. Thus 

L(R/P) ~ L(R/I) and L(R/I) = O. 

LeIlllla 22. The family of modules R/P, P ~ o-Erime, form a set 

of representatives for quasi-simple modules in IT, one for each 

equivalent class. 

This is implicit in Proposition 19 but we give a direct proof. 

Proof. Let SU ~ i5 be a Serre-catee;ory and S a SU-simple module in \5. 

By Proposition 4, there is an ideal P in R such that S ~ R/P, and 

every proper factor module of R/P is in SUo If r,s ( R, riP, 

then the homomorphism f : R/? -+ reR/P ~ R/P is not zero. Hence 

f(R/P) is a non-zero submodule of RIP and f(R/P) I~. Accordingly, 

Ker f = O. If rs ( P then r(sR/P) = 0 implies sR/P = 0 and. s ( P. 

Thus P is a prime ideal. It is clear that if P is an 15-prime then 

R/P is Ker ~-simple. Finally, different primes give rise to non­

equivalent quasi-simple modules since the induced length functions 

are different (Proposition 19). 

Theorem 23. If L is a length function on U then dimPin L/Ker L ~ O. 

fF..2.2!. Msume that diml"in' L/Ker L > O. Then we must have 
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Ker L C (Ker L~'C r.'in L since dimFin L/Ker L < ex>. 1;'e can 

choose a (Ker L)' -simple moo.ule S in !t'in L of the form S = RIp, 

p an 15-prime (Lemma 22). N0\7 Lemma 21 shows that every proper 

factor module of S is in Ker L • Hence S is Ker L-simple contrary 

to our assumption. 

L<lt !U ~ l5 be a Serre-category. A prime ideal P of R is said to 

be a 'minimal ;erime ideal o.!~' if Rip ~ 9..( and for any prime ideal 

P' of R, RIP' ~ SU and P' <; P implies that P' = P. 

Proposition 24. If L is a length function on u then L admits a 

unique decomposition on Fin L of the term L = tpcpLp' ~e!.':.. P 

of ii'in L ~ 0p = L(Rjp). 

:~oreover, L is the discrete sum of the ~ 's ~d the decomposition 

holds on n (or on ~(R) if L is continuous on Fin L:. 

Proof. By Theorem 23 dimFin L/Ker L ~ O. If Ker L = Fin L, i.e. 

L = 0 there is nothint to prove. Assume now that dimFin L/Ker L = ° 
and let [p.l. I be a family of ~-prime ideals such that [Rip. l. I is 

1 1~ 1 1~ 

a set of representatives of Ker L-simple modules in rin L, P. / P. for 
1 J 

i I j. Then by Proposition 10, L = Z. lOp iL on Fin L, 0p = L(R/P.) 
H' • -Po . 1 
111 

and this representation of L as a linear combination of the ~. 's 
1 

is unique. For each i ~ I we have 0 < L(R/Pi) <~. It follows from 

Lemma 21 that P. is a minimal prime ideal of Fin L. If P is a 
1 

minimal prime ideal of f,'in L the:~i either 0 < L(rr/p), whence Rip is 

Ker L-simple mld P = P. for SOllie i ~ I, or L(R/P) = 0. Thus we Orul 
1 

let P run through the minimal primes of "'in L. The sum is discrete 

by Theorem 13. 
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3.6 A counter-example 

The aim of this section is to show that Theorem 23 is no 

longer valia if the commutativity of the ring is dropped. 

Proposition 25. There exists a rin~ R and a length function 

L on the cateeorz. of l'~oetpe~ian R-~odules such_that dimI."in L/Ker L > o. 

Er22f. Let ~ be a field and V a countable dimensional vector space 

over l". Let {Xi l~=l be 1". base of V and define endomorphisms 

{e .l~ 1 for V by 
J J= 

e. (X.) 
J ~ 

( 
I x. 

= 1 ~~+l 
i < j 

i = j 
j < i 

1 « i, j < 00. 

Let R be the subring of the rine; of endomorphisms of V generated 

by F and {e. t l' Then V is a left R-module in a natural way. 
J J= 

It is easily seen from the construction that 

are the only R-submodules of V. Hence V is Noetherian. It is clear 

that S. = RX./RX. 1 is a simple R-module for every i ~ 1. If j > i 
~ ~ ~+ 

then e.S. = 0 but e.S. 10. Therefore S. ~ S. if and only if i = j. 
J J J ~ ~ J 

Let ~ be the category of R-modules of finite length, (i.e. the 

category of modules which are both Koetherian and Artinian) and 

IT the catebory of lToetherian R-modules. Then V ( '0 but V I SUo 

Also, V is SU-simple since every proper factor module of V belongs to SUD 

Let L. be the length function associated to the simple module S. and 
~ ~ 

set L = L~ 12"iI, .• Then L(V) = 1 ~ V ( Fin L but V I (Ker L)'. Thus 
~= ~ 

dimFin L/Ker L > O. Since we considered L as a function over ~, 

T~in L <;, a and dimFin L/Ker L < 00. 
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C HAP T E R 4 

SPECIAL CATEGORIES 

4.1 Artinian mooulcs over commutative Eoetl:erian rin.£ 

The main decomposition theorem (Theorem 12) applies to the 

category of Artinio.n modules as well as to the Noetherian one. 

In the general case, however, we do not have such a transparent 

de3cription of the irreducible functions as give'} for the category 

of l'~oetherian modules in section 3.4. 

Throughout this section R denotes a fixed commutative 

Noetherian rine and ~ stands for the category of Artinian R-modules. 

Por each maximal ideal H of R the local ring ~vI has a natural 

topolOb'Y iniuced by the powers of the maximal ideal of~. The 

" 
completion of ~"l in this topology is denoted by ~,'I. Details of 

this corstruction can be found in [1, section 9.11], together with 

the result that ~j is a commutative Noetherian ring. Let 1r\~ be the 

" category of ?Toetherian modules over R~. E.Matlis established a perfect 
III 

duali ty between the Noetherian and Artinian modules of a complete 

local ring [5, Cor. 4.3]. 

'"[e first show that this result can be extended to a perfect 

duality between 8) and the 'direct sum' of the ·~'s. Our aim in this 

section is to describe the length functions on ~ and this duality 

will enable us to pass to the study of length functions on the Owi's. 

"Te shall rely heavily upon the methods and results of E.Matlis [5] 

and [6]. 
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Let A ~ Q, }II a maximal ideal of R and define 

TM(A) = {x € A : Ml1:~ = 0 for some n > 01. 

It is easily seen that TM(A) is a submodule of A. Let B be a 

second eleme~t of~ and f : A ~ B an R-homomorphism. Let 

T1,(f) : TM(A) ~ T,.(B) be the restriction of f to T,.!(A). ~'.·e see 
u Iii !' 

at once that T~ ia a functor from 8) to ,ro. For each maximal ideal 

Ii of R, R .. denotes the injective envelope of R!M. From [5Jand. [6] 
Itl 

we need the following results: 

(a) The functors TM : ffJ ~ s:) are left exact and commute with 

the takinb of injective envelopes [5, Proposition 1]. 

For maximal ideals K,M' of R, R. ~ .Y) t and TM , (R..) = E~, 
l\j !'l -M d 

if til = fl.' and 0 if M I M'. [6, Proposition 3] and 

[5, 7heorem 3.4J 

(c) For each A € ~, A = EDMTM(A) where 11 ranges over all the 

maximal ideals of R, and TM(A) = 0 for all but a finite 
l.l 

number of maximal ideals [6, Theorem 1]. 

(d) There is a rin!; isomorphism Hom... (E..,E,,) :::: R., and an i
l
-

. .K l\l lVl -lil -'1; 

isomorphism ~d :::: E(S) where S is the only simple ~,{-moiule. 

[5, Theorem 3.7]. 

For each maximal ideal M of R set 

Lemma 1. Let M be a maximal ideal of R. !hen .)1v1 is a Serre­

category ~~ TM : ~ ~ ~M is an exact !~~t~~. 

~oL. Suppose A,B ~ ~ and f : A ~ B is a homomorphism. Clearly 

t ~i € ~ for each maximal ideal amounts to saying that an R-module 

is finitely embedded if and only if it is Artinian. 
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f(TM (A)) ~ TAti (B) for each maximal id.eal !vI of R. It follows that 

if f is an epimorphism then TM(f) is an epimorphism by (c). Hence 

Tlii is exact. Moreover, A ~ ~ if and only if Til[' (A) = 0 for 

maximal ideals ?/ I m. Since the functors T are exact, .~- is a 
M -'"M 

Serre-category for all maximal ideals M of R. 

Proposition 2. Tl\e categories 8.>M ani l\ are equivalent, i.e. there 

are exact functors F : 8)M~ l)M and G : ITM~ 8.>1' such that FG am GF ---------------- --- ~ ~------
are nat~ally equivalent to the identity functors. 

Let F and G be defined. by 

F(A) = Ho~(A,EM)' 

G(B) :: HO~(B,EM) 

A(S),and 
1':1 

Both F and G are exact since EM is injective even if regarded as 

1-
an R.j-mcd ule by (d \. 

j. 

... 
The isomorphisms F(El"l) ~ ~ and G-(~vl) ~ EM 

imply that F(A) ( ~l and G(B) ( ~vl whenever A ( ~vj and B ( \r 
respectively. 

... 
(Here the first isomorphism is an R..,-isomar-phism -1,. 

while the second is an R isomerphism.) Let A ( .~ awl consider the 

mapping 

fA : A ~ Ho~ (Hom(A,EM) ,~) = GF(A) , 
ill 

defined by fA(a)(x) = x(a), a ( A, x (HO~(A,Ev). Then f is 

natural and a monomorphism. Indeed, for any A ( S~,' 
Nj 

E(A) = E(T. (A») = T .. (E(A» = ~l' for some integer k > 0 by (a) and (c), 1.1 1,j -Iv 

where E~ denotes the direct sum of k copies of ErIJI. Hence peA) I 0 

if A I 0 and fer any element a ( A, a I 0 there is a homomorphism 

x : A -. E.. suoh that x(a) 10. 
~l 

This shows that fA is a monomorphism. 
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k 

Let B = E(A)/A = "K-M./A. Then the following diagram 

o ... A 
fl 
'" o ... GF(A) 

k ... fi
J 

J 

f, 
-+ GF(E~) 

1\1 

-+ B -+ 0 

fJ 
-+GF(B) -+ 0 

is commutative with exact rows and monomorphisms between them. 

But the middle f is an isomorphism, ani so are all f's. This proves 

that f is a natural isomorphism. A similar argument gives the 

required equivalence ~or the functor FG. 

Let L be a length function on ,r; and for each maximal ideal M 

of R set 

Since T,. is exact, TL. is a length function on 5J. 
111 [.1 

Proposi tion 3. T<'or maximal ideals M I M' of R, ~(A) = 0 if A ~ ~vi' • 

~urther, L = EM1M where M ranges over all the maximal ideals of R 

and this sum is discrete. 

Proof. If A ~ ~,;' and M I 11' then TM (A) = 0 and ~(A) = 0 as well. 

Let A ~ b. Then by (c), A = EBMTM(A), where the summation is taken 

over all the maximal ideals "f R. But Tr,:r(A) = 0 for all but a 

finite number of maximal ideals since A is Artinian. Accordingly, 

In view of the above proposition, we obtain a full description 

of the length functions on 5J once we determine the length functions 

on the S)M 's. 

Let M be a maximal ideal of Rand F, G the functors behreen 

5J
M 

and :5
M 

described in Proposition 2. If L,L' are length functions 

on ~1 and JM respectively then the functions LG'~ defined by 



- 61 -

LG(B) = L(G(B»), B (\r 
!.p(A) = L'(F(A)), A ( S)M 

are length functions on t\i and '\ respectively. 

Theorem 4, There is a one-t o-one correspondence between the 

lenc;th functions on ~? __ am the length functions on ~, given bX 
- N, -----=-~~-:...-~:;.:.:.~~ "M -

Proof. Let L be a lentth function on -\1 and V a length function on 

5.. Then by Propos i tion 3, LG = L' if and only if L = TL. The 
1., ~ 

theorem nov; folIo-lis. 

4.2 Artinian and Dedekind rin8s 

As Vie have seen in the earlier sections, we can gain useful 

information about length functions by consi dering them on 

categories rd th Krull dimension, in particular on the categories 

of Noetherian and Artinian modules. The que stion arises as to what 

extent is a length function determined by its behaviour on the 

categorl eS of Noetherian and Artinian modules. In order to put the 

question in a more precise form, suppose that R is a ring and J and 

S) denote the categories of Noetherian and Artinian modules respectively. 

Let L be a length function on ~(R) and Ll the continuous component of 

JJ wi th respect ).;0 u. Then L = Ll + (L-Ll ) where L - Ll has values 0 

or 00 on 'ij. If we rep eat the process with L - Ll and!i) then we obtain 

L = Ll + L2 + L' Vlhere L2 is the continuous component of L - Ll with 

respect to 8) and L' has values 0 or co on -S and S). Thus our original 

question takes the following form. Is a length function trivial on 

~(R) if it is trivial on 1 and !i)? If the answer is 'yes' then every 

length function on ~(R) is a sum of trivial functions and length 
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functions which are continuous on 0 or on~. In this section we 

decide the question in the affirmative for two classes of rings, 

and show that in general the anSVler is 'no'. The fo 1 lowing simple 

lemma will be useful in the sequel. 

Lemma 5. ~ R be a rln,£" L a length function on ml(R) and M ( ~(R). 

Set bI
I 

= Ea • ...i:i{. Then L(].iI) = 0 or co in either of the following cases. 
- ~E'l.--

(i) I is infinite, 

(ii) L(M) = 0 or =. 

Pxoof• I£ the index set I is inf'ini te then MI ~ lIlI EB lilI whence 

L(MI) = L(MI ) + L(hlI ). Thus L(NI ) = 0 or co. If I is finite then 

the result follows immediately from (ii). 

The (Jacobson radical' ~f a ring R is the intersecUon of the 

annihilator s of the simple R-modules. Let R be a ring and. J its 

Jacobson radical. It is well-known that if R is (left) Artinian then 

J is nilpotent. If R/J is Artinian then every R-mcrl.ule annihilated 

by J is semi-simple, Le. a direct sum of simple modules. Moreover, 

there are only a finite number of non-isomorphic simple R-modules. 

Our first result concerns the class of those rings R which satisfy: 

(a) R/J is (left) Artinianj 

(b) J is nilpotent. 

For example, every Artinian ring satisfies (a) an~ (b). Also, if 

R satisfies (a) and (b) then 5 = ~ = modules with finite (classical) 

length. 

Theorem 6. Let R satisfy conditions (a) - (b) and let L be a 

length function on sm(R) such that L(S) = 0 or 00 ~very simple 

R-module S. Then L is trivial on ~(R). 
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~. Let 1,: ( SJI(R) and suppose that M is semi-simple. 1.;[e can 

aITange that 1.: = hil <B ••• ED Mk where each of the Mi's is a direct 

sum of mutually isomorphic simple modules. By Lemma 5, L(L) = 0 
1. 

or ~ for all i = l, ••• ,k. Hence L(M) = 0 or~. Assume now that 

M is an arbitrary element of sm(R). Since the Jacobson radical J 

of R is nilpotent, In = ° for some n > O. Then 

M = JOM 2 J: .. : 2 •.• 2 In-li'i 2 JnM = 0 is a chain of submod u 1e s of M 

and L(tt) = 1:~:;L(J~'i/Ji+~1). But JiM/Ji+\i is a...l1Ilihilated by J 

whence semi-simple. It follows from the first part of the proof 

that L(Ji.J'Ii/Ji+\i) = 0 or ~ for all i = 0, ••• ,n-L Thus L(i\!i) = ° 
or ~ and L is trivial on ~(R). 

A commutative domain whose ideals are totally ordered by 

inclusion is called a '~ation ring'. If R is a valuation ring 

then every finitely generated ideal is principal. If, in addition, 

R is :t-Toetheriar, then there is an element p ( R such that every 

proper ideal is of the fom Rpk, k > 0. A commutative Noetherian 

domain R is said to be a 'Dedekind domain' if, for each maximal 

ideal Iii of R, I),I is a valuation rine;. The ring R is called 

'semi-local' if it has only a finite number of maximal ideals. 

Theorem 7. Let R be a semi-local Dedekind domain and let L be a 

length funct~~ SJJl(R) such that 1 has values only 0 or ~ on 

Noetherian and Artinian modules. Then L is trivial on SJI(R). 

Proof.. I 'e call an R-mcxi ule A '~_oJl' if every element of A 

has a non-zero annihilator ideal. The proof will be afforded in 

a number of steps, the first of which shows that it is sufficient 

to consider torsion modules over a valuation ring. 
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W'e assume that there is a module A e STJl(R) such that 

o < L(A) < ~ and we want to derive a contradiction. 

(a) ~"re may assume that A is a torsion module and R is a 

valuation rin&. Por if T is the torsion submodule of A (the 

maximal torsion module in A) then A/T is torsion free and 

L(A) = L(T) + L(A/T). Further, we can find a maximal free 

submodule F of A/T and T' = (A/T)/F is a torsion module. Thus 

L(A) = L(T) + L(~ ) + L(F). By Lemma 5, L(F) = 0 or ~, in our 

case L(F) = 0 since L(F) ~ L(A) <~. Hence L(A) = L(T) + L(T') 

and either L(T) or L(~ ) is finite and non-zero. Let Pl, ••• ,Pk 

be the maximal ideals of R. If A is a torsion R-module then 

A = A:L @ ••• ff) ~ where every element of Ai is annihilated by a 

power of the ideal P., 1 ~ i ~ k. (c.f. [6, Theorem 1].) If 
l. 

o < L(A) < ~ then the same holds true for at least one A., 
l. 

1 ~ i ~ k. It is easily seen that the elements of A. are (uniquely) 
l. 

di visible by the elements in R - P.. Thus each of the A. 's can be 
l. l. 

regarded, in a natural way, as an ~.-module • 
l. 

(b) Suppose that R is a Noetherian valuation ring and A is a 

torsion R-module such that 0 < L(A) <~. There exists a 'basic' 

submodule B of ~ such that B is the direct sum of cyclic modules 

and A/B is injective. [14, Section 29, p.97-98]. Then 

L(A) = L(B) + L(A/B). But by [5, Theorem 2.5] and Proposition 3.19, 

AlB is a direct sum o~ copies of E(R/n) where P is the maximal ideal 

of R. Also, E(R/P' is Artininn by [6, Proposition 3]. Using Lemma 5 

we see that L(A/B) = O. Hence L(A) = L(B). 

(c) Assume now that R is a Noetherian valuation ring and 
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P its maximal ideal. Let A be a direct sum of cyclic torsion 

R-modules auch that 0 < L(A) <~. Then A = ffi~=l~' where ~ 

is the direct sum of copies of RIPk. Set 

B = ll~ if Ak is a finite direct sum, 
k 0 otherwise; 

~ if Ak is an infinite direct sum, 
Ck = L o otherv'lise, 

B = EB~=lBk' C = @~l Ck" Then Ak = Bk ElJ Ck (1 ~ k < 00) and 

A = B @ C. But C ~ C EB C and therefore L(C) = 0, L(A) = L(B). 

Since L is 0 or ~ on Noetherian modules, B must be an infinite 

sum. Consequently B =@a:lRb.andO: b. ~ 0 : b. I for all i. 
1= 1 1 1+ 

Set Bl = E9~=1 Rb2i_l and B2 = EB~=l Rb2i • Then B = Bl EB B2 and 

L(B) = L(Bl ) + L(B2). ~or i ~ j we have monomorphisms 

f .. : Rb. ~ Rb. which yield monomorphisms g : B ~ Bl , h B ~ B2 
1,J 1 J 

defined by g(b.) = fi 2. l(b.) and h(b.) = f. 2.(b.) I ~ i < 00. 
1 , 1- 1 1 1, 1 1 

Thus L(B) ~ L(31), L(B) ~ L(~2) and these imply 

2L(B) ~ L(El ) + L(B2) = L(B). 

It foll~s that L(B) = 0, the required contradiction. 

'Ve close this section with an example which shows that the 

theorem does not generalize to Dedekind domains having an infinite 

number of prime ideals. Por the sake of simplicity we consider 

the ring of integers, Z. 

Let p be a prime number and Z(pOO) the L;jective envelope of 

z/(p) • 

" 

The completion of Z( '\ (called the ring of p-adic integers), 
p, 

Z is a commutative domain. Let L be the rank function over this 
p r 

ring. The functi on L 
p 
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defined on ~(Z) by 

L (A) = L (Hom(A,Z(pj», A ( ST!l(Z) 
P r 

is a length function. Since L (Z) = 0, L is zero on the Noetherian p p 

Abelian groups. Let Pl, ••• ,Pn' ••• be the sequence of rational 

primes and L. = 1 the functions defined above. The subcategory 
~ Pi 

~ of ~(Z), consistinb of all the Abelian groups A for which the 

sequence I L. (A) J:-' 1 is bounded, is a Serre-category and contains 
1. 1.= 

the tToetheria.."1 and Artinian Abelian groups. Let S be the partially 

ordered Abelian group of bounded sequences of integers, addition 

and order defined componentwise. The subgroup D of S consisting 

of sequences with finitely many non-zero terms is convex in S. 

There is an order preservinG homomorphism ~ from S into the real 

numbers 7{hich vanishes on D, yet ~(l,l, ••• ,l, ••• ) = 1. This may 

be seen as follows. The group sID is torsion-free, whence the 

partial order can be extended to a full order [15, Cor 13, p.39]. 

Since every convex subt;roup of S containinE- (1, •• ,1, ••• ) is equal 

to S, we can find a maximal convex subgroup EID of the fully 

ordered group sID by Zorn's lemma. Then s,A: is a fully ordered 

rank-one croup, whence it is order-isomorphic to a sub<-roup of the 

reals. 

The function L on ~(Z) defined by 

is a length function on ~ which vanishes on Noetheriru1 groups 

since each Li does so. If A is Artinian then (Ll(A), ••• ,Ln(A), ••• )( D 

and ~(D) = O. Hence L vanishes on Artinia.."1 modules too. But 

co ("'" L(A) = 1 for A = $ .. Z p.). 
~=1. 1. 

The extension of L to ~(Z) is the 

required example. 
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4.3 Valuatiop rin~s 

In [3] the authorsdetermined all the upper continuous length 

functions over a valuation rin€, R. In cc;.se R is I'Toetherian our 

section 3.5 provides the (otherwi. se trivial) answer. The interest in.c; 

case is, of course, tl:e one where R is not Noetherian. In this case 

a completely new type of length function makes its appearance. 

"Te feel that no 2-CCOunt of length functions can be complete without 

the presentation of this 'truly' upper continuous function. 

Let R be a value. tion ring and t~ its maximal ideal. If there is 

no prime icleal between M and 0, (M -I 0) then R is said to be of 

rank one. In this case there is a fUnction v· from R into the real 

numbers ana. infinity satisf'ying: 

(i) V(I1») 0 for all a ( Rand v(a) = co if and onJ.y if a = 0; 

(ii) v(ab) = v(~) + v(b) for all a,b ( R; 

(iii) v(a+b) ~ min(v(a),v(b». 

Such a function is called a valuation of R. A proof of the existeac8 

of a valuation can be found in [13]. 

Let R be a rank-one valuation ring and v R valuation on R. 

For an ideal r of R set v(r) = ~~ v( a) • Then.,( 0 j = ..., and vCR) = 0 

since v~l) = O. Also, if M is the maximal ideal of It then v(M) > 0 

implies that R is Noetherian. 

~a 7. Let R be a r~nk-one valuation ring and v a valuation on R. 

If I,J are iae~13 of P, where I ~ J ~ v(I:J) + v(J) = v(I). 

Proof. If R is Noetherian then every id sal is a principal ideal 

and the lemma follows immediately. Also, if J = 0 there is nothing to 

prove. Thus we may assume that J :::> 0 and v(ivI) = 0 where M is the 

maximal ideal of R. 
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If b ! I:J and c ! J then bc ( I and v(bc) = v(b) + v(c). 

Accordingly, v(I:J) + v(J) ~ v(r). Conversely, let a ! D,i. Then 

v(a) - v(J) > v(r) - v(J) and we can find an element b ! J such that 

v(a) - v(b) > v(I) - v(J). Hence a = bc for somo c € R. Further, 

if a € J then v(cd) = v(c) + v(d) = v(a) - v(b) + v(d) > v(I) -

v(J) + v(d) ~ v(I). It follows that cd € I and c € r:J since d 

was an atbitra~ element of J. Thus v(a) = v(b) + v(c) where b c J, 

c < I:J. Consequently, for every element a € 1M, v(a) ~ v(J) + v(r:J). 

This implies that v(Di) ~ v(J) + v(I:J). nut venn = v(I) since 

veE) = o. 

Let the situation be as described in Lemma 7. Fe wish to show 

that the valmttion v on R induces an upper-continuous length function 

L on ~(R) such that L(R/I) = v(I) for an ideal I of R. If R is 

Noetherian then L is just a positive multiple of the classical length 

function. If R is not Noetherian then L(R!iii) = 0 and so L vanishes 

on Noetherian R-modules. (It is easy to see that Noetherian R-mcxlules 

have finite classical length.) Yet L is upper-continuous. 

Set su = fA € sm(R):A is is omorphic to a segment of R}. Thus if 

A ( SU then A ~ I/J i7here J C. I are id eals of R. Obvious ly, SU is 

semi-closed. Define L on Q.i by writing L(O) = 0 and L(A) = v(J) - v(r) 

if A ~ 1/J and I J J are ideals of R. If r J J, 1'J JI are ideals of 

R suoh that I/J ~ I' /J' then taking annihilators on both sides: 

I : J = I' : J ' • Applying Lemma 7 we see that v(tT) - v(I) = v(J' ) - v(r' ). 

Thus L is well defined and L(A) = L(B) if A ~ B,A,B c SUo It now follows 

that L is a length function on SUo Let r ~ J be ideals of R. Then 

L(I/J) = v(J) - vCr) = v(J) - inf v(a) = sup (v(J)-v(a) = sup L(Ra/J). 
a€I-J a!I-J a€I-J 
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This shaNS t'lat L is upper contirmous on SUo Using Proposition 2.6 

we find that the continuous extension of L to sm(R) is upper continuous. 

Thus we have obtained 

!,heorem 8. [3, Theorem 12]. ~ R be a rank-on~,..!..c:.~ua~..rin..R ~ 

v ~luation on R. Then there is an u~~continuous length function 

L ~ ~(R) E>uch that L(R/I) = v(r) for every ide~~ I 2! R. 

It was shown in [3] that the general situation,when the 

valuation ring R is arbitrary, can be reduced to the rank-one case. 

We note also that L in Theorem 8 is irreducible but not associated to 

a quasi-simple module when R is not Noetherian. 

4.4 Rank-rings 

"Fte call a ring R a 'rank-ri~' if there exists a length function 

L on ~(R) such that L(R) = 1. Equivalently, if 0 < L(R) < ~ is 

satisfied by a length function L on 1Tl(R), then ~l is a rank-rine;. The 

characterization of the class of rank-rings seems to be an interestinG, 

though difficult, problem. The present section records the little 

infonnation on rank rings which can be deducted from our investigations 

so far. The problem will be taken up ai:)ain in chapter 6. (Theorem 6.4) 

A left-Noetherian rinG is a rank-ring by Proposition 3.10, Cor.2. 

Let S ,R be rings and assume that S is a right R, left S 

bi-module and S is flat as a right R-module. If S is a rank-ring then 

R is a rank-ring too. I'or if' L is a length function on ~(S) such that 

L(S) = I then L' defined by L' (A) = L(S ~ A), A ~ ~(R) is a length 

function on ~(R) and L' (R) = 1. Thus an Ore-domain is a rank-ring 

as we have seen in example II of section 2.4. (Or mare Generally, if 
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the classical left-quotient ri~ of R exists and it is a rank-ring 

then R is a rank-ring too.) If R is [J cOIIlllluta ti vc rinb and P is a 

prime id eal of R such that Rp is a rank-ring then R is IJ. rank-ring 

as well. This is the case, in particular, when ~ is Noetherian 

for a minimal prime ideal P of R. 

The class of rank-rings is closed under finite direct sums 

and the formini:!> of full matrix rings. (Sec section 2.3.) 

Let Rk denote the direct SUl1l of k copies of the ring R, k > 0, 

The ring R is said to have IB1\! (invcl.riant basis nUlJlbe:r) if Rk f::S R
n 

implies k = n. We see at once that if R is a rank-ring then it has 

IBN. It is knovm that every cO/lllllutative ring has IBF but there are 

rings without IBN (c.f. [16]). 'l'herefore not every ring is a rank-

ring.. In fact 'de can say more o 

Theorem 9. 'rhere is a COIIlllluta tive nIl[; R, havi~ exactly one 'prirn~ 

ideal 1ilhich is not a rank-rin1,io 

Proof. Assume that R is a conunutative rine am IIi is the only prime 

ideal of R. Let III be nilpotent and L a length function on ~(R) 0 If' 

° < L(R,!1vl) < 00 then IJ is IJ. positive multiple of the classical length 

function on ~(R) by Proposition 2.12. On the other hmld, L(R;Jd) == 0 

implies that L is trivial on ~(R) by Theorem 6. If', therefore, 

L(R) = 1 then L is a multiple of the c la3sical length function and 

R is Artinian. Hence R is not a rank-rint:, if it i3 not Artinian. 

Such a ring can be constructed as follmls. Let Ii' be a field, 

00 

{Xn1n:l' a countable number of indeterminates and S = F[Xl, •• o,Xn , ••• ] 

the polynomial ring over F. Let A be the ideal in S generated by 

{XiXj li,j and consider the ring R = S/A. It is easily seen that if ivi 

is the ideal in S generated by the indeterminates {x. I. then lii/A is the 
1 ='_ 
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only prime ideal of R. Further, (b/A)2 = 0 and R is not Artinian. 

Thus the ring R is not a rank-ring. 

Using Theorem 8 one can obtain a rank-ring which is not related 

to Noetherian rings in any of the earlier described ways. Indeed, 

let R be a non-Noetherian rank-one valuation ring, v a valuation on 

R and E the maximal ideal of R. If I is an ideal of R so that 

o C I C Iv! then 0 < v(I) < co. If L is the length function in Theorem 8 

then L induces a length function on ~(R/I) which makes R/I a rank-ring. 

But R/I is not Noetherian and does not seem to have a flat over ring 

which is Noetherian. Also Mil is the only prime ideal of' Rile 
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CHAPTER 5. 

1iULTIPLICITY THE..Qll 

.2.!1 The ~l~licitx op3rator 

Throughout this chapter U and 8) denote the category of 

Noetherian and llrtinian R-modules respectively for a ring R. 

The ring R ,~ll be kept fixed in the first section. Let ~ be 

a subcategory of ~(R). If for each length function L on ~ there 

is associated a length function eL on ~ then we say that e is an 

operator on the class of length functions on~. The product and 

sum of the operators is defined in the obvious VlaY, i. e. if 8
1 

and e
2 

are operators on length functions on SU then (el +e2 )L = 9
1

L+ 8
2

TJ 

and (°
1 

e
2

)L = e l (e2L) for every length function L on~. VIe let 

r denote the centre of the ring R. 

For each central element y € r the multiplicity symbol e[y] 

will be defined as an operator acting on length func tions on i} and ·D Q 

Our aim in this chapter is twofold. l~irst we introduce the 

multiplicity operators and prove their elementary properties 

restricting ourselves to a bare minimum. At this stage the 

emphasis is laid upon the parallel development, Le. we wish to 

demonstrate that multplicity theo~ can be developed on Artinian 

modules just as well as on Noetherian ones. In section two the 

associati ve law will be established without any restriction on 

the ring R. 
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This Vlork ONes much to the treatment of multiplic i ties in 

[1, chapter 7] and the reader should consult this account for 

further information. 

Let Yl' ••• 'Yn be central elements and L,L* length functions 

on 3 and ~ respectively. Define the categories ~(Yl' ••• 'Yn,L) and 

6(Yl, ••• ,yn,L*) as follows: 

€:1(Yl, ••• ,yn ,L) = fA € 0 .A/ylA + ... + YnA € FinL Ji 

€1(yl , ••• ,yn ,L*) = {A € ~ 0 :AYI n ••• n 0 :AYn € FinL*J. 

Lemma 1. Let 0 .. A'-+ A .. A"-+ 0 be an exact sequence in ~R) and - -~ 

Y e: r. Tl"!,en there is an ex.act seg"uence of t~ form: 

o .. 0 :.A!Y -+ 0 :A Y -+ 0 :.A!'Y" Af/yAf -+ A/yA .. A"/yA"-+ O. (1) 

This is a special case of the so-called 'Ker-Coker sequence'. For 

a direct proof see [1, Lemma 3, p.301]. 

Pro12osition 2. ~ Y e: r ~ 1,L* ~e length fup..ction~ l5 ~a.: 8) 

respectivel~. Then€1(y,L) and€1(y,1*) are Serre-categories. 

P£2of. Let 0 -+ A' -+ A -+ A"-+ 0 be an exact sequence in ~(R). Suppos e 

that A' ,A" c::.(y L) e: ~ , • From the exact sGquence (1) we see that 

PI /yA' -+ A/yA -+ A" /yA!'-+ 0 

is exact. Put B = Im(A' /yA' -+ A/yA). Then B € Fin L, A" /yA" e: fin L 

and we have an exact sequence 

o -+ B -+ A/yA -+ A" /yA" -+ O. 

Hence A/yA e: Fin 1 since Fin L is a Serre-category. Thus A ~ €5(y,1). 

(Note that Fin L ~ (5 since 0 is the domain of L.) If A e: ®( y,L) then 

A" e: €5( y, L) since A/yA -+ A" /yA!'-+ 0 is exact. 

One may establish in a siuilar manner, (using the first part 

of (1)), that A' ,Aile: €1(y,L*) ... A € ®(y,L*) and A e: €i(y,L*) .. A' € CS(y,L*). 
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Asswne now that A (®(y,L). In 'order to show that A' ( (SJ(y,L) 

we may asswne that A' is a submodule of A. Suppose that A' /yA' I Fin L. 

Then we can find a submodule B of A which is maximal wi th respect to 

the property that B/YB J Fin L. Put B' = B :A y. Then we have 

-IB'S;;; yB S;;; yB':;:Bc;;..B' .If B C B' then L(B' /yB') < 00 by the maxirnality 

of B. Further, L(B/yB) ~ L(Br-l B') = L(B' /yB/ ) + L( yH' /-1 B/) < 00 

since yB' /-fF! ~ T!/yB'+ 0 131 y. If, on the other hand, B = B' then 

yA n B = yB and L(B/yB)= L(B/yA n B) = L(B+yA/yA) ~ L(A/y),) < 00. 

In either way a contradiction is obtained. Thus, if L(A/yA) < 00 

for A ( 15 then L(A' /yA') < 00 for every submodule of A. 

now we have only to consider the Artinian case. To this ena., 

suppose that A ( (0(y,L*), i.e. A ( 8) and L*(O :A y) < 00. If there 

is a submodule B ~ A such that A/B J ®(y,L*) then choose B to be 

minimal with respect to this property. Note that for any submodule 

C of A, 0 : A/e y ~ C : A y/C 0 Put B' = B :A y. ThenyB ~ B ~ B' ~ yB :A y2. 

If yB C B then, by the minimali ty of B, L* (YB :A y/yB) < eo and 

L*(yB :A-(/YB) = L*(yB 'A -?/yB ~ y) + L*(YB :A y/yB) < 00 since 

yB :A' -f /yB :A y ~ (yB 'A y) n yA/yB S;;; yB :A y/yB. Thus 

L*(B' /B) ~ L*(yB :A -(/yB) < 000 If, on the other hand, yB = B then 

it is easy to see that B' = 0 :A y + B. Henoe 

L*(B' /B) = 1*(0 ~ y/O =a y) ~ 1*(0 'A y) < 00. In either way, we 

obtain L*(B' /B) < 00. But B' /B ~ 0 :A/B y which contradicts our 

asswnption on B. 'rhus, for every submodule B of A, A/B ( €>(y,L*) 

and the proof of Proposition 2 is concluded. 
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We are now ready to define the multiplicity operator. Let 

y ( r and L,L* be length functions on U and ~ respectively. Since 

$(y,L) and ~(y,~*) are Serre-categories by Proposition 2, we find 

that 0 :A y (€5(y,L) (resp. A/yA (G(y,L*))whenever A (€5(y,L) 

(resp. A ( €J(y.L*)). Hence 0 :A y (FinL (resp. A/yA ( Fin L*). 

Now define the operator e[ y] by 

= [

L(A!YA) - L(O :A y) if A ( 6(y.L), 
e[Y]L(A) 

00 otherwis e, 

L(O:A y) - L(A/yA) if A E" €?(y,L*) 
e[ Y]L*(A) -l 

- CIO otherwise. 

(A E" ~) 

He caIIDot say, as yet, that e(y]L, e[Y]L* are length functions. 

So we prove 

Proposition 3. The functions e[Y]L ~ e[Y]L* are additive. 

Proo(. Let 0 .... A' .... A .... A" .... 0 be an exact sequence in o. Since 

€5(y,L) is a Serre-category, A I ~(y,L) implies that either 

Alj€5(y,L) or A"!G(y,L). Hence e[y]L(A) = o[Y]L(Al) + e[Y]L(A") 

if A 1®(y,L). Assume now that A (~(y,L). Then from the exact 

sequence (1) and Proposition 2.1, L(O :,NY) + L( 0 :A' y) + L(A/YA) = 

But all the modules which occur 

belong to Fin L. Hence, by rearrangement, e[Y]L(A) = e[Y]L(~1 j + 

e[y]L(A"). The additivity of e[Y]L* is proved similarly. 

It is clear that e[Y]L(O) = e[Y]L"'(O) = O. We have only to 

show, therefore, that the functions e[Y]L and e[Y]L* are non-negative. 

This inll follow from the following. 
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for some n > 0 then e[Y]L(A) = 0 (resp'. e[Y]L*(A) = 0). 

f£.22f. 7'!e proceed by induction on n. If yA = 0 then A/yA = A and 

o :A y = A. j1.1so, A ! ®( y,L) (resp. A € ®( y,L*». Hence 

e[Y]LCA) = L(A) - L(A) = O. (resp. a[Y]L.f.(A) = L*(A) - L*(A) = 0). 

Assume now that n > 1 and the proposition has been established 

for all values less than n. Consider the exact sequence 

o -+ yA -+ A -+ A/yA -+ O. 

n-l( ) ( I I ) Then y yA = 0 and y ./Jy yA = O. The result now follows from 

Proposi tion 3. 

Corollary 1. The functions e[Y]L, e[Y]L* are non-ne5ative. 

Therefore e[y] is an operator on the length functions of 0 and on the 

length functions of ~. 
~---~------... -
Proof. First consider A {15. We may assume that A ! ®(y,L). Let 

o :A yk be IDaxilna1 among the submodu1es of A of the form 0 :A yn, 

n > O. By Proposition 4, e[Y]L(O :A yk) = 0 and 

e[ Y]L(A) = e[ y]LCA/O :A yk) since e[ y] is additive. Put 

k k 
B = Alo :A y. It follows from the maximali ty of 0 :A y that 

o 13 y = Oc Hence e[Y]L(A) = e[Y]L(B) = L(B/yB) ~ O. (If A I <0(y,L), 

then e[ Y]L(A) = L(A/yA) = (Xl.) 

Assume now that A { ~(YJL*) and let ykA be minimal among the 

n k 
submodules of A of the form y A, n > O. Then e[ Y]L*(A) = e[ y ]L*( Y A) 

k k k 
But y(y A) = y A by the minimality of y A. 

Hence e[Y]L*(ykA) = L*CO :ykA y) ~ O. 

In view of the above corollary we can now rightly call e[y] 

an operator. 



- 77 -

Corollary 2. The operator e[y] preserves local discret~. 

fr22f. Recall that a length function L is called locally discrete 

(section 3.3) if for each module A in the domain of L, 

inf{L(S) : S a segment of A, L(S) > oj > O. Let y ( rand L be 

a length function on u. ',ve saw in the proof of the previous 

corollary that for every A ( U, e[Y]L(A) = L(S) for a factor module 

S of A. Hence inffe[y]L(S) : S a seGment of A, e[Y]L(S) > oj ~ 

inffL(S) : S ~ segment of A,L(S) > oj > O. Analogously, if L* is a 

locally disc:.:'€te length function on 5) then so is e[Y]L*. Note also 

that e[y]L (resp. o[Y]L*) ·vill have integer values whenever L 

(resp.L*) ha.s. 

Let yl' •••• yn be central elements. For the product 

e[Yl]e[Y2], ••• ,e[Yn] of the operators e[Yl], ••• ,c[YnJ we simply 

,~ite e[y1, ••• ,yn]. Note that e[YI'Y2] and e[yl y2] are different 

operators. 

Proposition 5. Let YI""'Yn be central elements and L,L· leng~ 

functions on ~ and 5) respective~. Then 

Fin e[y1, •• ·,yn]L = 6(Yl, ••• ,yn,L) and 

Fin e[YI""'Yn]L*=~(YI'.'.'Yn,L*). 

In particular, 6(YI , ••• ,y ,L) and ~(YI"."Y ,L·) are Serre-
n - n 

categories. 

Proof. If n = I then the statement follows a fortiori from the 

definition. Assume that n > 1 and the proposition has been 

established for n - 1. Put K = e(y2 , ••• ,yn]L. Then 

e[ Yl'."'Y n]L = e[ Yl JK_ L~t A (~. Then we have: 
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AE'Fin e[yl, ••• ,yn]L <=> A E' fin e[yl]K <=> A/ylA E' E'inK <=> 

A/ylA € ®(y2,···,yn,L) 

by the induction hypothesis. Next, we have an isomorphism 

B/y2B +.0.+ YnB ~ A/ylil.. +. •• + Yrf where B = A/ylA. This shows 

that A/ylA E' ®(y2 , ••• ,yn,L) if and only if A E' ®(Yl, ••• ,yn,L). 

The formula ~in e[yl, ••• ,Yn]L* = ®(Yl, ••• ,yn,L*) is proved 

similarly. 

~~eorem ~. Let Yl' ••• 'Yk ~e central elements and L,L* len~h 

functio~ cr and 3) resJLectively. I~ A E' 0 ~d B E' ~ ~ 

nl nk 
inf L(A/Yl A + ••• + Yk A) 

~-.- - - - --, 
nl'···'~ nl ••• ~ 

(2) 

nl nk 
L*(O :B Yl (\ ••• (\ 0 :B .. ~l (.3) inf 

nl'···'~ 

In the case k = 1, i~i can be re~ed bl. ~~ in th;::..~~ae .• 

Remark. In fact ~ can always be replaced by Lim where 
nl' ••• '~ n+oo 

n = min(n
l

, ••• ,~). In this form the first formula is known as the 

limit formula of Lech. The replacement of inf by Lim seems to give 

a genuinely stronger result. For a proof of Lech I s fonnula see 

[1, Theorem 10, p • .3J4.]. 

Proof. VIe will only prove (2) since (.3) can be dealt with in a 

similar manner. 

First, let k = 1 and put Y = Yl • If A I ~(y,L) then L(A/yA) = 00. 

Hence L(A/ynA) = 00 for all n and there is nothing to prove. 

Suppose that A E' €5(y,L) and 0 :A Y = o. Then for each n > 0 

. n A j n+1A 1\ I. A. there is an isomorphlSID Y ~Y ~ ~Y Consequently 
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e[y]L(A) = L(A/yA) = ri1 L(A/ynA) and the result follows. Next 

consider a general element A ~ €5(y,L). Choose the integer m so 

m s 
that 0 :A y = 0 :A y for all s ~ m.. Then it is easily seen that 

o :A ym n ySA = a for all s ~ ms Put B = Ala :A ym. Then 

a :B y = O. From the first part of the proof we find that 

e[Y]L(B) = ri.lL(B//~). Next, from the isomorphism 

B/yll-e ~ 1/(0 :A ..;n + ynA) we deduce that L(B/ynB) = L(A/ynA) _ 

L(O :A -.t/O :A ..;nn ynA). Put C = L(O ~ ym) < 00 (A (@5(y,L). Then 

for n ~ m,L(B/ynB) = L(A/ynA) - C. Finally e[Y]L(A) = e[Y]L(B) = 

ri.l L(A/ynA) _ ri.l C if n ~ m. 

inf ri.1 L(A/ynA). 
n 

Assume now that k > 1 and (2) has been established for the case 

when the multiplicity operator contains less than k central elements. 

Put 1'= e[Y2' ••• 'Yk]L. Then e[YIJ".'Yk]L = e[Yl]L' and the induction 

hypothesis yields 

= 

n2 n~. nl n
k Here we used the isomorphism B/Y2 B + ••• + Yk~13 ~ A/Yl A + ••• + Yk A; 

n 
B stands for A/yllA. The proof of the theClr'em is now complete. 

Coroll~ 1. The opera~o~ e[y] ~ute vdth each other, i.e. for 

t 
central elements Y1' Y2 e[ Y1'y 2] = e[ Y2' Yl]· 

~. Observe that the right hand sides of (2) and (3) are symmetric 

in the y. 's. 
~ 

In general, e[YIJ ••• 'Yn] does not depend on the order 

of the y. 's. 
,----~-- .. -- - ---,._------,------

f--Equality of the operators meruls the obvious, i.e o e
l 

elL = 8
2

L for all lent;th functions L on rvhich 8 1 ana: 
= e2 if 
e2 are actil1b. 
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p_o.!'ollary 2. For central elements Y1' Y2 we have e[YIY2] = o[Yl] + e[yJ. 

I1:9.9f. We will on~ prove that for each length function L on 'i3, 

The corresponding statement for 

length functions on ~ is analogous. 

If A e u then by Theorem 6, 

e[ yl y2]L(A) = ~~! niL(.A/y~y~A) = k~ n-i {L(A/Y~A) + L( y~il/Y~Y~A) 1. 

AccordirlBly, it is enough to show that e[ Y 2]L(A) = ~!! niLe y~.A/Y~Y~A) • 

We may assume that A e ®(y2,L). For each n we have an isomorphism 

~A/~'iA z A/Y~A + 0 :A y~. This gives 

L(y~.A/Y~Y~A) = 1(iV'Y~A) - 1(Sn) where Sn = 0 :A y~/o :A Y~ () Y~A. 
n m 

If, however, n is large enough then 0 :A Y 1 = 0 ~ Yl for some 

fixed m > O. There exists, therefore, a finite number c such that 

o ~ L(Sn) ~ c. 

Lim n-j.L(A/Y~A) 
n-'oo 

It now follows that Lim niL(Y~A/Y~Y~A) = 
n+oo 

= e[y2 ]L(A). This establishes the corollary. 

5.2 The associative law 

In this section we will only consider length function on ~. 

There are two reasons for this. The first is that a formal 

associati ve law can be established in the Artinian case exactly the 

same way as in the Noetherian one. The special forms of the 

associative law, however, cannot be obtained in the general Artinian 

case because we do not have the concrete description of the 

irreducible functions. We note, however, that if the ring is 

commutative and Noetherian then the results of section 4.1 can be used 

to obtain an analogue of Proposition 9. 

If mention is being made to several rings, then 5(R) is used 
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to denote the category of' Noetherian R-modules • .As before, 

we _¥rite simply U when there can be no confusion. 

Propositi~~. ~e~ L, {Lili!I b~l~n~th~ctions~ U and assume 

that L is th.:.~.:..rete sum .of t.he Li' s ~ Fin L. !! YIP" 'Yn 

tire central eleme~ts t~~ e[YI, ••• Jyn]L is ~he discrete sum of 

the e[ Yl' ••• 'Y ] L. 's on Fin e[yl, ••• ,y ]L. 
~ n ~ --- n 

Proof. We recall that if L is the discrete sum of the L. 's on 
~ 

Fin L then for every module A ! Fin L, L(A) = 1:. L. (A) and L, (A) = 0 
~ ~ ~ 

for all but a finite number of i in I. Also Fin e[yl, ••• ,yn]L = 

~(Yl' ••• 'Yn,L) by Proposition 5. Let A ! Fin e[YI]L = ~(YI,L). Then 

.A/ylA and 0 :A Yl belong to .B'in L and hence to Fin Li , i (I. Also, 

the sum of the L. 's is discrete on Fin L and therefore 
~ 

Li (A/yIA) = Li (0 'A Yl) = 0 for all bu~ a finite number of 10 

Accordi~ly , 

L(A!yIA) - L(O :& Yl ) = 1: i {Li (lVY1A) - Li(O :A YI )} = Lie[yl]Li(A) 

and e[y]Li(Aj = 0 for all but a finite number of 10 Thus e[yl]L is 

the discrete sum of the e[yl]Li's on :Fin e[YI]L. We can now take the 

operators e[y2], ••• ,e[yn ] successively and the result is obtained. 

Note that the order of the operators is immaterial by virtue of 

Theorem 6, Cor.l. 

Theorem 8. (Associative L~). !!..et L ~e a localq di_~=~leng'y_~ 

function~ 5, YI' •• "Yn central elements and i ~n integer s~tisf1~~t 

o ~ i ~ n. !! fs~l~(rr is a set of rep2:e3~tatives of 

Ker e[y. 1' ••• 'Y ]L-simple modules in ~(Yi 1' ••• 'Y ,L), one from 
~+ n ' + n 

each isomorphism class, then the ~j>os~tion 
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e[Yl' ••• 'Yn]1 = Z e[y. l •••• 'y ]1(S ).e[Yl,·.·,y·]1 
7t J.+' n 7t J. 7t 

Here 1 is the irreducible len~th 
- 7t Q~ 

function associated to S , and the sum is discrete on 
7t .-~-

I0(Yl' ••• 'Yn,L). 

Remarks. 'fIe note that the theorem is true if U is repl~ed by 8). 

The proofs are identical. 

Nhen toore are no central elements the operator e[.] is 

wrlerstood to be th8 identity operator. Thus e[ .]L = 1. Also, we 

make the convention that <0(. I 1) = Fin L. 

The assumption that L is locally discrete is not too severe. 

It is certainly satisfied if 1 is taken to be the classical leng~h 

function. Also, if the rin6 is cOIDWutative then every length 

function on 0 is locally discrete by Theorem 3.23. 

ELoof. Put L'= e[Yi+ll ••• ,Yn]L. Then LI is locally discrete by 

Proposition 4, Cor.2. Also, Fin L' = ~(y. 1" •. ,y ,L) by Propositil)," :..>. 
J.+ n 

Using Theorem 3.14 and Proposition 3.10, we find that the 

decomposition 

L' = Z L' (8 )L 
7t 'R 7t 

holds on Fin LI and this sum is discrete. Put c = L~(S ) = 
7t 7t 

e[y. l'.'.'Y ]L(S~). Applying Proposition 7 we obtain that 
J.+ n ,. 

e[yl, ••• ,y JL = e[Yl' ••• Jy.]L'= Z e[Yl'.'.'Y.](c L ) a J. 7t J. 7t7t 

holds on F'in e[yl, ••• ,yn]L = 6(Yl ' ••• 'Yn,L). The theorem now 

follovls froCl the followiIlb trivial fact: for any length function 

K on U, y ( r and real number c ~ 0, e[y](cK) = c e[y]K. 

We can put (ll-~ in a slightly different fonn. Using Proposition 

3.4 and Theore~ 3.14, a set of left ideals {I
7t

}']t(n of R can be found 
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such that E1t = E(R!I
1t

) is indecomposable for all 1t ! IT and 

R/I~ form a set of representatives of Ker e[y. l' ••• 'Y ]L-simple 
I~ ~+ n 

modules in G(y. 1' ••• 'Y ,L) one from each equivalence class. 
1+ n 

Then the ~ IS are the associated irreducible functions by Theorem 3.18 0 

1t 
Coroll~~~. Let the situation be as described above. Then Q±l 

takes the form 

e[YI' ••• 'Y ]L = L e[y. l' ••• 'Y ]L(R!I~).e[YI' ••• JY.]1L • n 1t ~+ n" ~ ~ 
7t 

Assume now that the ring R is commutative. Then L is auto-

matically locally discrete by Theorem 3.23. Also , with L' as above, 

L' = rpL' (R!P)~ (5) 

where the summation is taken over all the minimal prime ideals of 

(b =€i(yi+l, ••• ,Yn,L) by Theorem 3.24. As before, the decomposition 

(5) holds on ~ and it is discrete there. In the commutative case, 

therefore, e[yl, ••• ,yn]L admits the following decomposition on 

€5(yl ,···,yn ,L): 

e[yl, ••• ,Yn]L = Lpe[Yi+l, ••• ,Yn JL(R!P).e[Y1' ••• 'Yi]1p. (6) 

Here P ranges over all the minbal prime ideals of ~ and Lp is the 

irreducible lene;th function associated to P. By Proposition 3.20, 

for all 11. ! !Dl(R;, Lp(f.~ = tR (A ~ ~) where tR is the classical 
p P 

length fWlction on !Iil(Rp). ':'Ie now show that in (6) we can let P 

run through only those minimal prime ideals of' €5 which contain the 

ideal I = R Y 1 + ••• + RYt. For suppose that P is a minimal prime of ® 

and P does not contain I. For a module A ! ®(yl, ••• ,yn,L) we have 

o , e[yl , ••• ,Yi ]1p(A) ~ LpCA/IA) 

by Theorem 6. But I(A/!}.) = 0 and P does not contain I. Hence 
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t(A/LA) = 0 for some t e R-P. It now follows that Lp(A/IA) = 0 

and so e[ Yl , ••• 'Yi ]Ip(A) = O. ThUll the term corresponding to P 

in (6) is zero and we can leave it out. 

In order to transform (6) into a more familiar form we make 

a number of obs ervations concerning change of rings. For a prime 

ideal P of R, let <Pp : R -+ ~ and 1/tp -+ R/P be the canonical ring 

/ homomorphisms. Then R/P e t5(R/P) whenever R/P e t5(R) and L can 

be regarded, in a natural way, as a length function on t5(R/P). 

Further, for each R-module A annihilated by P, and Y ( R, 

y.A = ~(Y)A. Accordingly, if eR/p[~p(Y)] denotes the multiplicity 

operator acting on the length fUnctions of ~(R/p) then 

~/p[tp(y)]L(A) = e[Y]L(A). In particular, e[yi+l, ••• ,Yn]L(R/P) = 

~/P[~P(Yi+l)'.'.,~p(Yn)]L(R/P) in (6). 

Similarly, A ( t5(R) implies that A ®R ~ (o(Rp). Also, we 

have an ~-isomorphism 

since the functor - ®R ~ is exact. In particular, for a module 

A ( oCR) we have by Theorem 6 

• 

We record these results in the following: 

Proposition 9. ~ R be a comm~~ve ri~, L a length fun.tion on -------
o(R) and Yl , ••• ,y n elements of R. If now i is an inteb'8r satisfying 

o ~ i ~ n, then for a module A ( e( Y1 , .••• ,yn,L), 
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e[y1,···,yn]L(A; = LPlR/P[o/P(Yi+l),···,*p(Yn)L(R/P) 

• ~ [<PP(y1),·.· ,<pp( Yi ) ]e~ (A ~~). 

Here P r~es over all those~~al prime ideals of 

~(y. l' ••• 'Y ,L) which contain I, and <Pp R ~ Rp, *p R ~ R/P 
l.+ n -- -

are the can~.nic al ring homomorp~. 
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CHAPTER 6 

TI!L,9RDERJ!D gOTHENDIECK GROUP 

~1Ee ordered Gro~endieck group as a solution of a universal probl~ 

We call a category 'U 'small' if there is a set of modules 

{A.}. I in !U such that for ever.f 11'1 € 'U,A.::s M for some i (I. In other 
~ ~( ~ 

words, !U is small if the isomorphism classes of modules of 'U form a 

set. Examples of small subcategories of~(R) include the Serre-

categories generated oy the finitely generated ani finitely embedded 

modules respectively. In particular, the catebories of Noetherian and 

Artinian modules are small. The construction of the Grothendieck 

group of a small category 'U of !lJl(R) is well-known. We vii sh to show that 

a 'natural' pre-order can be defined on the Grothendieck group. The 

ordered Grothendieck group is then obtained by factorizing through the 

equivalent classes with respect to this preorder and thus turnint:, it 

into a proper partial order. 

Our terminology on partially crdered groups will be that of [15], 

unless defined otherwise. It is assumed that the elementary properties 

of partially ordered groups are known. Details can be founa in [15]. 

Throughout this chapter a '~.§ro~' means a partially ordered 

Abelian group. 

Let 'U be a subcategory of !lJl(R) and G a p.o. group. A function 

v : !U + G is called a 'y~luation' if it satisfies the followillB two 

conditions: 
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(i) v(A) > 0 for all A € ~; 

(ii) veAl = V(A/) + v(A") whenever 0 .. A' .. A" A"-+ 0 is an 

exact seq~ence in ~. 

We see at once that v(O) = 0, (0 € ~). A valuation v of ~ is a 

fini te length function on III if and only if the range of v is a 

subgroup of the real numbers. 

Let ~ be a subcate50ry of~(R) and v ~ -+ G(~) a valuation 

from ~ into a p.o. 5rouP G(~). 

Defini~. The p.o.group G(~) is called the 'ordered Grothendieck 

group of~' (and v the canonical valuation) if for any p.o.group ~ 

and valuation v': V .. G' there is a unique order-preserving 

homomorphism f : G(~) .. G' such that v= fv. 

It is easily seen that the ordered Grothendieck group is unique 

up to order-isocorphislli. Our next task is to establish the existence. 

~~osition 1. For each small subcate60ry ~ ~ ~(R) the ordered 

Grothendieck group of ~ exists. 

Proof. ?or a wod~le A € ~, A denotes the isomorphism class of A. 

Since 'U is sI!1all, the .A's fOrI:l a set 'U. E'or elements !,,] € ~ write 

A ~ B if A is isomorphic to a segment of B. It is clear that this 

relation is well-defined und turns V into a preordered set, i.e. 

E; is reflexive a1:'.1 transitive. Let F be the free Abelian group on~. 

Then F consists of elements of the form 

al~ + ••• + ~~, al'···'~ intebers, Al'···'~ f ~ 

We turn F into a preordered group by defining the positive cone P of F as 

p = {~(~-Bl) + ••• + ~(~-l\) : al ~ OJ ••• '~ ~ O;~ ~ BIJ ••• ,~~BkJ. 
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In particular, A == A - 0 ~ P f'or all A ~ SUo Indeed, all one 

t 
has to check is that X,Y ~ P ~ X + YeP. This, however, is 

trivially satisf'ied. If' X,Y ( F then we write X ~ Y if' Y - X e P. 

Let D be the convex subgroup of' F generated by elements of' the f'orm 
---.. _-

A - B - e,A,B,e ~ SU and o -+ B -+ A-+C-+ 0 is exact in SUo 

(A set S <;. 1<' is convex if' X ~ Y ~ Z and X,Z ~ S implies Y ~ S. ) 

Put G(SU) == riD and for each A ( SU let [A] denote the coset A + D 

in G(SU). .'e clairr; that G(SU) is the Grothendieck group of SU and 

A -+ [A] is the ca.-lOnic al valuation. The partial order on G(SU) is 

the induced partial order, i.e. the order relation between the 

cosets is def'ined by the rule X + D ~ Y + D if and only if, 

x ~ Y + Z f'or some ZeD. ~his is the standard method and one easily 

checks that this relation on G(SU)is not only a pre-order (since 

it is indeed anti-symmetric). It now f'ollows that A -+ [A] is a 

valuation of SU. 

Assume now that G' i5 a p.o. group and v : SU -+ G' is a valuation. 

Obviously, v(A) = v(B) if' A jl$ B. Hence v induces a homomorphism g 

f'rom F to G'. Further, v(A) ~ v(B) whenever A is isomorphic to a 

segment of B. Hence t : r -+ G' is (pre)order-preserving. 

Consequently Ker g is convex in F. Since v is a valuation, 

v(B) = veAl + vee) whenever 0 -+ B -+ A -+ e -+ 0 is exact in SUo Hence 

g(A'-B-C) = O. Thus D C Ker g and there is a unique order-preserving 

homomorphism f' : G(SU) -+ G' such that v(A) == r([A]) for all A e G(SU). 

This establishes the proposition. 

It should be noted that the ordered Grothendieck group of a 

t F is only a pre-ordered group. 
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(small) category ~ is not isomorphic to the standard Grothendieck 

group as an Abelian eroup, but a factor of it. This can be seen 

immediately from the construction if one observes that the standard 

Grothendieck group is obtained from the free group F by faotoricing 

through a group contained in D. 

6.2 Length functions and the ordered Grothendieck grouR. 

Let ~ be a small semi-closed subcategory of ~(R), G(~) the 

ordered Grothendieck group of ~ and v : ~ + G(~) the canonical 

valuation. The connection between G(~) and the length functions 

on ~ is revealed in the next theorem. 

Theorem 2. There is a one-to-one correspondence between the fi~~ 

length functions on ~ and the order preserving homomorphisms from 

G(~) ~o the real numbers. 

Proof. The set of real numbers is a P.O.5rouP under addition and 

natural order. Let H be the set of order-preservine; hOLQomorphisL1s 

from G(~) into the real numbers. If f ! H then fv is olearly a 

finite length function on~. Conversely, given a finite length 

function L on ~ there exists a unique order-preserving hooomorphism 

f in H such that L = fv. Thus f <-> fv (f ( H) is the required 

one-to-one correspondence. 

Theorem 2 suggests that the study of (finite) length functions 

may be replaced by the study of.ordered Grothendieck sroups. The 

latter concept is probably a more natural invariant of a category 

than the family of length functions on it. At the moment, however, 

we can compute the ordered Grothendieck groups of certain categories 

with the aid of length functions and not the other way round. 
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The next result is a bood illustration of this point. 

Theorem 3. ~ R be a commutative ring and ~ a Serr~~~­

category of the category of Noetherian R-modules. Let G(~) 
,. - -.-.---.-
be the ordered Grothendieck group of ~ and v : ~ ~ G(~) the 

canonical valuation. Then G(~) is a free group, order defined 
-~--~--~~-.-- ---~~--

componentwise. The ele~ents v(R/P), P a minimal prime ideal of ~, 

form a basis of G(~). - -
For the proof vie need th e following lemma. 

Lennna 4. ~e..! R ~~~_coIDL1utative ring and A ~~therian R-module, 

A .;. O. There are prime ideals POl ••• 'P 1 of R and a chain of ~ ______ ~____________ n-

submodules 

o = Ao <;, Al <;, ••• ~ An = A 

such that A. l/A. ~ RIP., i = O, ••• ,n-l. 
J.+ J. J. 

This is a well-knovm and interesting result. A proof can be found 

in [1, Prop.9, section 7.9, p.338]. 

-~{e now prove Theorem 3. By Theorem 2, G(~) exists and the set 

{v(A) : A E" !:Ul generates G(SU). l~ow Lemma 4 shovls that 

[ v (R/P) P a prime ideal, R/P ~ ~J is a generating set for G(~). 

Next, if PCP' are prime ideals a.nd R/P E" SU then R/P' ~ SU and 

v(R/P) = v(R/P /) + v(?/p). But p'/P contains a submodule 

isomorphic to R/P (see Lemma 3.21). Accordingly, 

V (R/P) ~ v(R/P') + v(R/P) and so 0 ~ v(R/P/) ~ O. Hence 

v{R/P') = 0 whenever P I is not a mi.nimal prime ideal of SUo Thus 

the set V (R/P) , P a minimal prime Ol?~, generates G(!U). If P is 

a minimal prime ideal of !:U then ~, ·the associated irreducible 
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length function, is finite on 'U (Theorem 3.24). Consequently, 

for each minimal prime P of ~ there is an order preserving 

homomorphism fp such that Lp = fpvo 

Let PI' ••• ,Pk be distinct minimal prime ideals of ~ and 

al, ••• ,~,bl) ••• Jbk be integers. If ~V(R/Pl) + ••• + ~V(R/Pk) = 0 

then applying fp we obtain a. = 0, i = l, ••• ,k. Hence the elements . ~ 
J. 

v(R/P), P is a minimal prime of ~, form a basis. Further, if 

then, using fp. again, ai ~ bi is obtained. Thus order is defined 
J. 

componentwise. 

If R is a commutative Noetherian ring then for a Serre-

categorJ ~ of Artinian modules the ordered Grothendieck group 

G('U) of 'U can be computed by using the duality in section 4.1 and 

Theorem 3 above. We find that G(~) is free and order is defined 

componentvvise. 

Several other ordered Grothendieck groups can be computed by 

means of length functions. As another example we note that if R 

is a rank-one valuation ring then Theorem 4.8 can be used to 

compute the ordered Grothendieck group of the Serre-category 

generated by the finitely generated torsion R-modules. This group 

is not free if R is not Noetherian. 

Finally a theorem on rank-ringso 

Theorem 4. Let R be a ring and G(R) the ordered Grothendieck gr~~ 

of the Serre-category generated by _~e module R. Then R is a rank­

ring if and only if G(R) -I O. 
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~. If R is a rank-ring then there is a length function L on 

wKR) such that L(R) = 1. Consequently, if ~ denotes the Serre-

catego~ generated by R, then L is a finite non-zero function on ~o 

Hence G(R) .j 0 by 'I'heorem 2. Conversely, assume that G(R) /. 0 and 

let v : l) .... G(R) be the canonical valuation. Proposition 1.1 shows 

that if A ! U then A has a chain of submodules ~ such that every 

chain factor of ~ is isomorphic to a segment of Ro Accordingly, 

v(A) ~ nV(R), n > 0 A (l5. Hence vCR) /. 0 if G(R) /. O. Further, 

nv(R) = 0, n > 0, implies that 0 ~ vCR) ~ nV(R) and vCR) = O. Thus 

G(R) ~ 0 implies that vCR) ~ 0 and G(R) is not a torsion group. If 

T denotes the torsion subgroup of G(R) then G = G(R)/T is a torsion 

free p.o. group under the induced order. (T is completely unordered 

in G(R).) Also, the partial order on G can be extended to a full 

order. [15, Corollary 5, p.36]. Let v be the composite valuation 

v' : '0 ! G(R) .... G. If a convex subgroup of G contains v' (R) then it 

contains Vi (A) for all A ( U and so it is equal to G. There is, 

therefore, a maximal convex subgroup D of G, v' (R) I D. But G/D is 

fully ordered and of rank-one. This means that G/D is order is omorphic 

to a subgroup of the real numbers. This shows that there is a non-zero 

order preserving homomorphism f from G(R) into the real numbers. 

Then fv is a finite length function on~. The extension L of fv to 

~(R) is such that 0 < L(R) <~. Hence R is a rank-ring. 
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