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SUMMARY

This thesis reports what is believed to be a new
approach to the analysis of the spiral (clock-type) spring
based on a re-thinking of the fundamental equations.

Detailed examination of this type of spring has
led to the discovery that the free spiral form approximates
to a logarithmic spiral. Methods of examining the free
spiral form are described and what are thought to be unique
methods of determining its equation are presented.

Knowledge of the spiral equation enables the
moment-rotation characteristic to be constfucted which is
then compared with experimental results obtained on a
testing machine designed by the author. This machine
allows measurements of torque to bé obtained without
introducing machine friction. It has been designed to
allow autographic recordings to be made of the spring
test. |

Prediction of the spiral equation from
consideration of the elastic-plastic behaviour of an
idealised material has been achieved and charts have
been produced which will facilitate this prediction.

The relationship between the back-tension during winding
and the free spiral form has also been investigated.

A further research programme has been outlined
which, together with the present findings, should lead
to a complete understanding of the mechanics of the

spiral-spring forming process however performed.
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PREFACHE

The spring indusiry is seldom given the credit
it deserves for the part it plays in modcrn technology.
Its produets often disoeppear into the remcote inacccessible
rcgions of complex mechanisms, sometimes never to reappear
but never-the-less to function as they were designed to do
throughout their working lives. Some of the procducts of
the gpring industry spcend their lives exposed for all to
see but subjected to son environment in which no other
mecnanical device would be expected to function.

Mechanisms in which springs find @ use appear
 to be designed specielly to frustrate the spring manu-
facturer who, at this stage, is usually given the credit
of being the expert. In the majority of new designs it
appears that the springs are the last components to be
considered and, abparently with no malice aforethought;
the space available is always insufficient to allow the
spring to meet its specification. Furtherimore the
supply of the sgprings for the prototype always falls in
the category 'urgent'. There is little wonder that the
spring designer tends to rely on his pest experience when
designing a new spring. It seems ineviteble that he isg
forced into designing for higher and higher working
stresses and faster working cycles;

This fhesis forms pert of a more extensive
field of research in which the effects of prestressing
of Springs is being investigated. The aim of the pre-
stressing is 10 preduce within the material residuel
stresses wvhich are.of the oprosite scnse to the nermal
working stresscs. ‘fhere are, in fact, two adventazcs

L
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to be gained if the residual stress pattern is as desired.
First, the working load can be increased without increasing
the maximum permissible stresses, Unfortunately, the
penalty paid for this concession is that operation must be
unidirectional; for example a pre-strained torsion bar must
be loaded in the direction of pre-straining if the material
is to be utilized to its full extent. The second advantage
is derived from the fact that over-straining usually leads
to a raising of the elastic limit of the material in the
direction of loading and, therefore, a higher working stress
can be employed with a resultant saving in the cost of
material, |
This thesis is concerned with the clock-type spiral
spring, its method of manufacture, the residual stresses
encountered, methods of analysis and predicted performance.
Whilst it is recognised that power springs of this type are
no longer used in record players and other devices in which
they used to be employed, it is true to say that this type
of spring still finds extensive applica£ions.
The work covered by this thesis really falls into
three parts:
Part 1 re-examines the theory of the working
of this type of spring as a result of
which some knowledge of the mathematical
form of the spiral is required.
Part 2 examines methods of determining the
mathematical equation of the spiral
relating this to the theory of part 1,
and validating the theory.

ii.



Part 3

examines the reasons for the spiral

form, the consequent residual stress
pattern and a method of determining

the residual stress pattern in a

real spring.

iii.
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CHAPTER 1

'INTRODUCTION

1.1, Preamble

.~ Springs have played, and still do play, an
important role in the development of many of the mechanical
contrivances which characterise our present technological
attainments. Had it not been for the development of the
hair-spring and the power spring for use in clocks and
watches it is doubtful that our scientific knowledge
would have reached its present high level. The high
performance of the modern internal combustion engine is
seriously impaired if the many springs built into it do
‘ not function faultlessly. A brief study of the
peraphernalia associated with modern technology will
reveal phe‘use of a multitude of springs of various
shapes and sizes and materials. The materials currently
employed fbr spriﬁging include solids; liquids and gases,
metals and non-metals and also fibre reinforced materisals.

.At the present time the vast majority of springs
are made of metal, steel being the most widely used of

x .
1(R1 Ch.2) ‘compares a wide variety of spring

these. Wah
materials on a cost basis and also on the basis of physical
'broperties. Table I summarises the properties of some of
the materials commonly used in the manufacture 6f clock-
type springs. .

The clock-type spring is only one of a whole

range of special shapes into which metals are formed so

as to produce a spring. The basic function of a spring

% R1 Ch.2 refers to Bibliography in appendix B1 .1
Ref. 1 Chapter 2.
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Tahle 1

TENSILIE PROPERTIES

*Rockwell

: 0w v o
MATERIAL ANALYSIS Ultimate Strength Elastic Limit Modulus of Hardness
: Lb. per sq. in. Lb. per sq.in. | Elasticity, pesi.

CLOCK fL’EING Carbon  .90-1.05% 150,000 150,000 Al
Sl.5k Mn. 30-50% to to 30000000 | o0
Rk 340,000 310,000 Ci0152
ATl -

FLAT ,S,I;;’S'\'G Carbon  .70-.80%, 160,000 125,000 ' "‘,’,‘Pg"égd

- STE Mn. 50-.50%, 1o to 30,000,000 ot
A.S. 101 320 000 280 000 1 cmp d
EN &A.Ez. :'3:“}2c . : ' C35-50
@ s . Chrome 17-209% '
é%fl ;r ﬁlp\}: Niekel So-log;‘; 160,000 60,000
Nl arbon 08-.15% to to
g s Ak 2% Max. 330,000 260,000 N0 o515
EN S8a ot .30-.75%% g
Ni 129, .
NI.SPAN “c” | &F 4 200,000 ;
1) ¥ W) Ti. 2.3% A 110,000 27,500,000 382
Fe. bal.
BERYLLIUM 160,000 100,000 16,007,609 to
e Copper 039, . J ~
COPPER o = Vo0 to t 18,500,000 .
AS.45 as. us | Beryllium 2% 200,000 lso%oo Subject to R
B.S.2870-CBlOI g i{cat-treatment
. BR-'\~°A — Zine Remainder i 3(;‘(’)00 to 15,000,000 B20
8.5.2870 - C2 106 . ' o
o Cepper 91-03%
PHOSPHOR- Tin 7-9%, 100,000 60.000
BRONZE - or to o 15,000,000 B%0-100
co AS. 10) opper 94-96<% \0L0, 50-
A BS 2870- PBI102/3 Tir: : 4-6“3 100 110,000
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is to store energy for a period of time and to deliver
back the greater part of this energy as and when required,
but whilst all bodies possess this ability to a greater

or lesser extent, the distinguishing characteristic of a
spring is that, normally, the spring is capable of
sustaining large deformations without permanent distortion.
If a spring does suffer permanent distortion under its
designed working load then, to all intents and purposeé,

that spring has failed in its duty.

1.2 Spiral Springs

One of the earliest and still one of the most
commonly used springs is the spiral spring whose purpose
when wound as a clock spring is to supply motive power to
mechanisms such as clocks, watches, cine-cameras, and toys.
In slightly different form it finds use as hair-springs,
control springs in switches, and brush springs in electrical
motors and generators. When used as a hair-spring (or
control spring on an instrument) it is not required to
suffer large deformations and the coils do not come into
contact. Its use in switchgear is to produce high-speed
opening and closing of electrical contacts so as to reduce.
arcing across them, In order to do this the spring is
wound up relatively slowly and then suddenly released.
When applied to brush gear its purpbse is to exert a
constant force on the brushes and the development of the
tensator (constant force) spring was a result of this

type of requirement.



1¢3, Historical

The knowledge that metals possess elastic
properties dates back to about the second century B.C.
and knowledge of this property in certain types of wood
was used in the construction of bows and catapults by
our ancestors. The introduction of springs into
mechanical devices dates back to about 1400 A.D. but it
was not until the enunciation of his well-known law by
Hooke in 1678 that any theoretical approach to the design
of springs could be attempted.

At the present time knowledge of the elastic
behaviour of spring materials is extensive but their
behaviour when subjected to plastic deformation is less
well known. It is the purpose of this thesis to try'to
examine, in greater detail than previously, the physical
changes experienced by a material when it is formed into
a spiral spring and facilitate prediction of the performance
of the resulting spring. In order to do this, methods of
analyzing ;he free spiral have been evolved together with
means of recording the torque-rotation characteristics of

this type of spring.

1.b. lanufacture of a Spiral spring

The work of this thesis is concerned with the
analysis of spiral springs manufactured‘from heat-treated
strip material and subjected to no heat treatment after
forming.

The manufacturing process for this type of spring
is extremely simple and consists, basically, of winding a

strip of suitable material onto an arbor or mandrel which is

u.



rotated. Springs can be made on machines which range from
small hand operated winders or small power-driven lathes to
large power-driven multi-purpose winding machines, In any
event the manufacturing process begins by cutting the strip
off to a length specified by the designer and including an
allowance of about four times the arbor diameter for end
fixings. Next the specified end fixings are formed, often
requiring heating of the ends of the strip. In the case of
thick material it may be necessary to hot-form the inner coil
before the start of the coiling operation. The end fixings
may necessitéte the punching of a shaped hole if the strip
is attached to the arbor or drum by means of a peg or in
some cases a T-shaped tongue may be required, or perhaps,
particularly at the outside end, a loop might be formed for
attachement to a pin incorporated in the retaining system
(parrel, if one is used).

One of the most common methods of attachment to the
arbor and barrel is merely to bend the strip to about 90o and
locate in suitable slots in the arbor and barrel. The bends
must; of course, necessarily be in oppoéite directions.

Having formed the end fixings, the inner end of
the strip is attached td the winding arbor and the outer end
is restrained by hand whilst winding proceéds. If the material
is thin, the operator is able to provide sufficient back-tension
to wind layer-upon-layer, for very thin material he may even
be able to provide a tension in excess of the minimum required
and this will affect the depths of the yield surfaces., In
the case of thicker materials the operator cannot provide the

back-tension necessary to wind layer-upon-layer and the spring is

La,



formed by coiling loosely on the arbor followed by a
tightening operation. When springs with a large number
of coils are formed in this way, it may happen that the
gap in the machine through which the strip has to pass,

in order to reach the arbor, may not be sufficiently large
to allow the material to feed onto the coils tangentially,
in which case reversed bending occurs during the winding
process.

The tightening operation referred to above consists
of forcibly restraining the outer end of the strip, usually
by attaching it, by means of a hooked bar for example, to
the frame of the winding machine and rofating the arbor until
the coils are tight. At this stage rotation of the arbor is
stopped and, whilst the spring is still undér load, a spring
steel keeper is slipped over the spring, or it is simply bound
round with wire, to prevent it unwinding when removed from the
machine. The finished spring is then removed from the winding
arbor and should be ready for installation in the equipment
for which it was designed.

It will be evident that the process described is
one in which it is most difficult to ensure reproducible
conditions of manufacture.* Results of the analysis of the
free form of springs, supposedly from the same type of stock
énd produced by the same manufacturer, show considerable
variation in their spiral form.,

The result of subjecting the material to the above

Meyers (R2 p82) claims that helical springs are stress
relieved to remove the stiresses caused by coiling etc.
'because they are impossible to evaluate'.

5.



pfocess of forming is to induce in it a residual stress
pattern which varies along the length of the material and
thus determines the radius of curvature attained by the
ceritroidal axis of the strip at any point along its length.
The obvious conclusion to be drawn from this statement is
that the equation of the spiral is directly related to the
manner in which the residual stress pattern changes along

the length of the strip.

154 Residual stress system

-

The stress—strain relationéhip for steel is
dependent upon its composition, heat treatment and
previous strain history. In the case of a steel which
has been previous}y strained beyond the elastic limit,
any further stfaining in the same sense raises the elastic
limit whilst straining in the opposite direction reduces
the elastic limit for reverse loading. This phenomenon
is described as the Bauschinger effect being named after
5. Bauschinger B32 P¥13) wno arew attention to 1t in 1881.

It is obvious that the Bauschinger effect should
be taken account of in any analysis aimed at determining
the final state'of stress in material subjected to strain
cycles involving plastic deformation. Strain history
analysis purports to do just that,

The method involves a step-by-step analysis of
the straining of consecutive layers of material and hence
determination of the residual stress distribution throughout
the material. In order to support this analysis, a routine
has been established for a layer removal technique and is
reported together with the method of processing the results
later in this thesis,

6.



1.6. Idealised material

Tensile tests performed on spring steel stock
showed that an idealised elastic-perfectly plastic material
should predict a behaviour approximating to that of the
materials used in practice. In order to retain simplicity
in the theoretical analysis it is assumed that the material
behaves in the same way in compression as it does in tension
and that there is no Bauschinger effect during unloading and
subsequent reverse loading. These assumptions may present
an over-simplified picture of the experience to Which a
particular particle of material is subjected but, at least,

enable one to come to terms with the problem.

1e7 Conventional Theory for spiral springs

In his text-book on Mechanical Springs, A. N. Wahl(R1)
considers spiral power springs having two types of outer end
fixings, pinned-end and clamped-end.

The analyses of the two cases lead to the equation
relating the rotation of the arbor to the external (winding
or available) torque

ML
(o) ]
ﬂ —a_E"]’:‘ oo - ee o0 oo o e o0 ) (1.1)

where g = rotation of arbor in radians
a = 1 for clamped outer end
= 1.25 for pinned outer end
MO = external torque applied to
the arbor
¢ = total (active) length of spiral
E = modulus of elasticity

= »relevant second moment of aresa,

*
The derivation of eq. 1.1 is given in Appendix A1,
7



1.8. Anticlastic behaviour

The term 'anticlastic behaviour' describes the
phenomenon whereby a beam, bent about its longitudinal
neutral axis, acquires a curvature about its transverse
neutral axis due to the Poisson effect. It can be shown
(R7 p.4h4) that, if the relevant slopes are small and the
depth of the section is comparable with its breadth, the
transverse neutral axis is bent in an approximately circular
arc of radius R' given by

R' = -2
where R = radius of longitudinal
neutral axis and v = Poisson's ratio.
The negative sign indicates that the centres of curvature
are on opposite sides of the beam.

Anticlasticity is clearly exhibited in a routine
1800 bend test carried out on a testpiece of standard
dimensions.

If, however, the strip being bent is wide relative
to its thickness, stresses are induced in the transverse
direction which tend to suppress the anticlastic behaviour

across the middle portion of the strip.

Ashwell(Ru) shows that the shape of the deformed
cross-section depends upon the quantity bz/Rt (b = width of
strip, t = thickness of strip, R = radius of longitudinal
neutral axis) and concludes that for values of b2/Rt less
than unity the simple beam theory is applicable and the

transverse neutral axis acquires a radius RA . For larger

8.



values of bQ/Rt the cross~section becomes undulating but
when bz/Rt exceeds a value of about 100 the section becomes
substantially flat except at the edges where the maximum
deflections tend to the value 0.102%.

For very large values of bQ/Rt Ashwell's theory
agrees with the conventional theory for the bending of
plates. The latter theory involves substituting in
equation 1.1 a modified modulus of elasticity (R3a p 77)

resuiting in the equation:

1 4

l\'0
g = a1 - v%) 2= ceeeee (1.18)

Equation 1.1a indicates a stiffness, defined as
M/8, 11.0% higher than that predicted by equation 1.1 if
¥ = 0;3. For reasons explained in Appendix A1.2 the
stiffening effect experienced by a clock spring may be
considerably less than this and varies along the length
of the strip.

Two other factors resulting from the anticlastic
curvature produced during the forming process enter into
the problem of the spiral spring. One concerns the
alteration in the value of the relevant second moment of
area duve to the curling of the edges of the strip. This
results in an increase in the value of I of about 2%
(appendix 1.3). The other factor is also associated with
the distortion at the edges of the strip. The amount by
which the edges rise above the centre of the strip varies
along the length of the strip résulting in a lack of fit
between adjacent coils and, consequently, a gap. (The

theory assumes that the distance between the centrelines of

8a,



ad jacent coiis is equal to the strip thickncss). This
lack of F£it alters the change of curvatwre sulfered by an
elenentary length of strip in passing from the wound to
the unwound conditions and vice versa.

In Appendix A1 the conscquences of anticlastic
behaviour are'explored further. Here we shall discuss
the implications so far as the development of the theory,
which follows in Chapter 2, is conccrned.

Since the value of b2/Rt varies along the gtirip
forming the spiral spring in bhoth the wound and unwound
condition, equation 1.1a should be modified, Should it
prove possible to assign a 'mean effective modulus of
elasticity' to the material in place of the_modified
modulus (E/(1 - v2)) of the plafe theory, then the simple
approach of Chapter 2 is easily corrected. Should it
not prove possible, or acceptable, to use a 'mean effectivé
modulus' then a correction factor must be found, which is
a function of the position on the strip, and applied to the
moment equation 1.1 expressed in elemental form.

Figure A1.1 in Appendix A1 has been constructed
from data derived from one of Ashwell's curves and
indicates that for a strip 0.05 in., thick, 1 in. wide
bent to a radius of 2 in. or more, the moment calculated
from the theory of Chapter 2 is in error by no more than
5%. For this reason, therefore, the experinental results
reported in this thesis are compared with theoretical

results derived using the simple beam theory.

8b.



1.9. Bending Stresses

The maximum stress due to bending is of importance
in designing a spiral spring and occurs at point A (fig. 1.1).
The value of the maximum stress may be found using simple

beam theory and for a spring of unit width is given by:

M/t2 .o .o .o .o - (1.2)

-~
N

o =
where = maximum bending stress

= bending moment at point A

¢ = QI

= thickness of spring material.

According to Timoshenko (X3P P369)

, recourse to
curved beam theory is unnecessary provided that the radius
of curvature exceeds ten times the thickness of the spring
material. Accepted practice is to 1limit the minimum
radius of curvature in a spring to about 10 x thickness,
(R1 p1L49), therefore the simple beam theory suffices since

the minimum radius of curvature must occur at the attachment

to the arbor. n

1.10. Specific Energy

The purpose of a spring is to store energy in
the form of strain energy and its capacity for doing this

may be expressed as a specific energy

u = BMP¢/2EIV vy w3 ws wwm ww K13
where u = specific energy in work units/
unit volume
v = volume of material contained

by active length.

9.



A Position of max.
bending moment,

|

Region of max.
= = 4N j stress fox -

\ small No., of Coils.

%P

Fig 1.1 Showing the position (A) normally quoted as
sustaining the maximum stress (R6 and others)
and the region of maximum stress according
to Kroon and Davenport (R8 p.184).

Oa.



B = constant
M, E and I are defined above.

The value of B depends upon the type of loading
on the spring. If the spring is subjected to bending
moment M* which is constant fhroughout the active length
then B = 1.0, and substitution in eq. 1.3 of M* = 0¥ £2/12
from eq. 1.2 together with the values of Iand V for a
rectangular crbss-section of unit width and thickness t
gives

u = o*2/2E .. .. .o .. (1.4)

If the bending moment is not uniform B has a
value less than unity, and if the material were uniformly
stressed to a valﬁe o* the specific energy would be

uw = 0¥/ ., .. . .. (1.5)

The implication is obvious, if maximum use is to
be made of the available material then means must be found
of . increasing the mean working stress whilst, at the same
time, ensuring that the limiting design stresses are not
exceeded. It is the aim of pre-stressing techniques

to achieve this end.

141 Spiral form ,
In a paper published in 1931, J. A. Van Den

Brogk(RS) outlined the design of the spring illustrated
in its free state in fig. 1.2 (his fig. 12) in which,
when tightly wound up, the maximum bending stresses
throughout the entire length are equal to the elastic-
1imit stress for the material. Unfortunately, this
spring would be difficult to produce and, therefore,

 existing facilities for the winding of spirai springs
10,
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Free form of spiral spring designed by
Van Den Broek (R5) to be subjected to a uniform
bending stress throughout its length equal to

the elastic limit stress when tightly wound on
its arbor. .
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are examined in order to offer more effective utilization
of the material.

Dr. S. C. Gross(R6 p6)

suggested that a better
approach to the design of clock springs might be possible
if the equation of the free spirel was known. In the
present research, analysis of a large number of springs
was carried out with a view to establishing the eguations
of their spirals. It was found possible to approximate
many of them to a logérithmic spiral. The reasons for
this logarithmic form were then sought by examing the

forming process,recourse being made to elastic-plastic

theory.

12.



CHAPTER 2

8.7 TEEORY OI' THE SPIPAL SPRIIG (R6)

2.1.1 Definitions and svmbols

The following tabulation lists those defini-
tions and symbols which are used repeatedly throughout
- this thesis. Other symbols and definitions recur less
frequently and may be'applied-in oné or two chapters
only. Also some of the symbols listed below may be
found occasionally to represent meanings other tﬁan
those defined below, In all such instances the meanings

are explained when the symbol is used.

M - applied torque or generated'torque
E - modulus of elasticity

I - 2nd moment of area for bending

i " - active length of strip

A - radian angle of rotation of arbor
n, N - number of coils .

8 - length of spiral from origin to

co-ordinates (r, ©)

r, © - polar co-ordinates of point on
spiral
X, AX - curvature and change of curvature
a, b, .
- constant defined in text
A, B, C
t - thickness of strip
R, R' - radius of barrel, arbor

2.1.2. Theoxry

A spiral spring intended TIor use as a powver
spring is ususally contained in a barrel, Normally it
never attains its free state and spends its working life

3¢



.alternating between two conditions. In its run-down
condition it is coiled layer upon layer on the inside of
the barrel and in its fully-wound condition it is coiled
layer upon layer on the arbor, fig. 2.1. This type of
spring is usually manufactured from hardened and tempered
strip by coiling and tightening on a former and, upon
completion, some form of retaining clip is fitted which
is usually removed only as the spring is pressed into its
barrel. In the case of cheap clocks or toys restraint
to the uncoiling is usually imposed by the structure of
the clock or toy itself and no barrel, as such, is used.
However, in these instances also the spring never attains
its "free' form.

If we allow a spiral spring to attain its free
state, the length strip, L, is contained by a number of
coils, n,, whereas, if it is in the barrel in the run-
down condition, the number of coils in the length L is
altered to,say, n,. In order to achieve the necessary
coiling the ends must undergo a relative angular displace-
ment given by

Ay = 2x(ny - n,)
application of the moment equation

EI
M=Tﬁ oo ,.. oo oo oo (201)
gives the moment induced in the spring due to
the restraining action of the barrel

EI
M, = 2% -r(n1 - no)

If the spring is now wound up so as to contain

turns then the moment required is changed to

= EI -
M, = 2% I’(na no).

no

1k4.



o) Free spiral

b)Run dowin in barrel

C)\'u'ound onarbor

Fig. 2
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Thus the useful moment theoretically available
between the fully-wound and run-down conditions is

M=M,-M

2 1

]

BEI
on L(n2 - n1)

2%%}1 ce ee ee ee  (2.2)

Equation 2.2, shows & linear relationship between
M and N which is exhibited in practice as the exception
rather than the rule. Practical springs of this type
often possess non-linear characteristics which give rise
to a hysteresis loop when loading is followed by unloading.
It is unlikely that any theory could predict the law
governing this hysteresis loop but theory should predict
the characteristic shape of the curve when hysteresis is
negligible.

If we now reconsider equation 2.1, the active
length of the spring is assumed to be constant, L. In
fact this is not true, the active length varies during
both the winding up process and whilst the spring is
delivering power, The implication here is that an
integration process should be involved.

Let equation 2.1 be written in differential

form then,

M = EI a

ds
or, rearranging,
¥ = P ds Y 1
which indicates that the arbor must be rotated
by the angle d6 in order to subject some elementary
length, ds, of the strip to a moment M. Resulting from
the application of this moment this elementary length

experiences a change of curvature given by application

16.



of the simple beam theory:-

- M
8K = gy
which together with equation 2.3 gives
_ 4
AK = ds
or d,l‘:Ade o e oo ) ) ) (?oLI-)

Integrating equation 2.4 we obtain the rotation

of the arbor '] 5,
/d,é = /Ade
o] 31
5
2
or J = AKAS e¢  e¢ oo e (2.5)
1
2.2, Solution of the integral equation for

arbor rotation

Alternative methods of solving equation 2.5

present themselves:
i) the appropriate values can be measured

go as to plot the AK versus s curve, or,

ii) a mathematical relationship between AK and
g can be sought so that the right-hand side of equation 2.5
can be integrated.

Both approaches have been applied successfully
fo practical springs during the course of this research{

In order to relate AKAand s mathematically it is
necessary to establish the equation of the spiral in its
free state. The process outlined ebove is then considereﬁ
as taking place in two stages. First the spring is
imagined to be coiled from the free state to the condition
in which it will just fit into the barrel (the run-down
condition). It is then imagined to be coiled from the

17.



frece state to the condition in which it is tightly wound
onto the arbor (the wound-up condition). Thus the right-
hand side of equation 2.5 is represented by the area lying

between two AK - s curves.

2.3 Equation of the free spiral

Detailed examination of a large number of spiral
(clock—type) springs followed by the application of much
more rapid and simpler but less accurate examination of
many more springs of this type leadsto the conclusion
that the shape of the free gpiral of many of these springs
approximates to the logarithmic spiral

r = roebe L) L) e oo (206)

where b is a constant determined from a plot of
log (radius of coil) against rotation, 0, of the radius
vector from the position r = r . -

2.k Curvature of the free spiral

Using the well-known mathematical equation for

curvature in its polar form:

we have, for the logarithmic spira1.+

1
K = -— o e o0 L) e (207)
o roeb9(1 " b2)2

+ For proof see appendix A2.

18.



In order to relate KO and s, the length of a

logarithmic curve is ascertained as being:
i 2 4
2 dr
. 8 :'—‘g[r +<.a.5>] d-o ) o0 e e oo (208)
1 .

and substitution of equation 2.6 into 2.8 and

subsequent integration gives:

. 7 b6
.,S=[re 1+b>l

thus the length of the spiral from the position
(ro, 0) is given by: '

B = 2; (1 + b2>%<epe - 1> e es  ee ee (2.9)

Equation 2.9 with 2.7 gives the required

relationship between Ko and s to be:

v ws .o .-. (2:10)

1
Ko= 2,‘!_
bs + r (1 +Dd%)2

2.5. Spiral forms in barrel

Yhen the spring is retained in the barrel in the
'run-down condition it can be considered to be tightly
coiled adjacent to the barrel. - This assumption neglects
the thickness of any film of lubricant which might be
present and also ignoresa relatively short length of
spring stretching acfoss the gap between the bulk of the
spring and the arbor. The area of the ennulus occupied
by these cpils is given by the product of the length of
spring and its thickness. The curvature at a position

19.



distance s from the inner end of the spring is given by:

ey e

and re-arrangement of this equation gives:

K1 = ‘—B—- ) oo oo oo oo (2011)~

C1 + 8
where B = ’-%

2
2 t
and C1 - B (R - 5) - L

If we now consider the fully-wound condition

and apply similar assumptions the curvature at any
distance along the strip is determined in a similar

manner, resulting in the equation:

B
K = jgr—ene e L) o0 () () L) 2.12
2 4 C, + 8 ( )

where B

%m

- Rl t
and 02- B (R' + 2)

2,6, Change of curvature

Consider the change of curvature occurring at a
point in the spring. First the spring suffers a change
from its free state to the run-down condition and the
point under consideration is subjected to a change of
curvature (denoted by AK1O) which is obtained from
equations 2.10 and 2.11

B 1
AK = e = — @ © e ) °

= 227
where A = r (1 + b%)* = r,

20,



In similar manner when the spring is fully wound,

this point in the spring has been subjected to a total

change of curvature, from its free state, (denoted by AK20)
obtained from equations 2.10 and 2.12.
= _—"B—_ - —l—"—' e e o e 2.1

Applicatiovii of the above equations for curvature
end change of curvature to the integral equation 2,5 will

now be examined.

sl Significance of the limits of integration
When equation 2.5 was obtained by integrating

equation 2.4 it was clear that the left-hand integral
represented the rotation of the arbor but the significance
of the right-hand integral was not investigated. This
situation will now be rectified.

Consider the spring in its fully-wound condition.
Only that part of the spring spanning the annulus between
the barrel and the wound coils is free to deform and this,
therefore, determines the active length at this stage.
As the spring runs down this section of the spring goes
out of action when it either lies on the barrel or on
coils adjacent to the barrel. This process continues
until the only remaining portion of spring capable of
deforming is that section left spanning the gap between
the arbor and the spring coiled against the barrel. Thus
the active length of the spring varies and the active
gection progresses from one end of the spripg to the
other during both the winding-up process and the running-
down process. This, then, indicates the significance of

21.



the limits of integration in equation 2.5: the manner
in which the limits are determined and in which the

integration is carried out is now explained.

0.8 Evaluation of integral 2.5

Given that it is possible to obtain the curves
for Ko K1 and K2 (equationsz.jo, 2.11, 2.12) then the
curves for AK,, and AK,, (equations 2.13 and 2.414) can
be constructed. The result of carrying out this pro-
cedure is presented in figs. 2.2 and 2.3.

In fig. 2.2. the variation of curvature along
the strip is shown for the three conditions encountered.
The points P and P' indicate the fully run-down condition
end the fully wound-up condition and the strip length
corresponding to A'P is the length of strip connecting
the bundle of coils to the arbor, whilst the length P'B
is tha£ portion which never detaches itself from the drum
and is never included in the active length. Thus at the
commencement of the winding-up process the active length
of the spring is 8 o

Each element of strip contained by the coils
resting against the inside of the drum is subjected to an
‘initial vending moment due to the change of curvature from
that indicated by the Ko curve to that indicated by the K1
curve. The result of this initial moment is'a pressure
between coils and a pressure on the inside of the barrel.
The value of this initiel bending moment at any position
is given by

M, = EI(K; - K;) = EI AK,,
and it is not possible for an elementary length

22.
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of strip to detach itself from the remaining coils until
this moment is exceeded; its maximum strain energy will
be reached when its curvature has a value determined by
the K2 curve,

The length of spring which is active at any given
instant is obtained by ascertaining the position of an
element being wound onto the arbor and that of an element
being detached from the coil inside the barrel when the
applied moment has a given value. This condition is
indicated by equal ordinates on the AK1O and AK20 curves,
and is the length As indicated in fig. 2.3.

The value of the integral 2.5 is given by the
area between the AK20 and AK10 curves between the

ordinates O and s,. The rotation of the arbor is,

therefore,
Si 52
g = /AK2Ods + 0K(s, - 8;) - /AK,'ods ve s 2415
o B4

If mathematical relationships between Ko, K1,

K. and s are obtainable then the integrals can be

2
evaluated and the M - g characteristic constructed.

Alternatively, if the Ko’ K1.and K2 curves can be drawn,

~ areas between the AK20 and.AK1o curves can be measured

and again the M - 4 characteristic mey be constructed.
Before proceeding further with the theoretical

aspects of the M - g characteristic, methods of determining

the law for the spiral will be examined followed by

examination of M - £ characteristics determined from tests

on actual springs, particular attention being paid to

those springs which produce an s-shaped M - § charac-

teristic.
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CHAPTER 3
METHODS OF DETERMINING SPIRAL EQUATION

Bels Measurements from the spiral spring

A large number of clock-type springs were
obtained from various manufacturers. These springs
were examined with a view to establishing the equation
of their spirals; some of them were tested on the
author's testing machine which is described in Chapter L.

Visits were made to works in order to witness
the manufacture of clock-type springs since it was'con-
sidered early in this work that the spiral equation would
depend not only on the physical properties of the strip
material, but also on the method of forming. It is in
the forming process that events are likely to take place
which lead to inconsistencies in the final free spiral
form.

Before any start can be made to determine the
spiral equation by measuring radii at various angles one
must ensure that the spring is in its free state and not
distorted due to the frictional effects between the spring
and the surface upon which it is resting. Further, it is
necessary to locate the origin of the spiral; the
accuracy with which this operation must be carried out
is discussed later but, regardless of this, measurements

must be made from some known reference point.+

The first tests were carried out on fairly stiff

springs so that difficulties in eliminating frictional

+ Kroon and Davenport (R8 p.184) claim 'That the flexi-
bility of the (spiral) spring is little affected by a
change in the shape of the spiral, as long as the
length stays the same.'
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effccts were minimal. Thg springs wer§ mercly placced on
a glass plate which was then lightly hemmered so that the
spring took up its free position. Measurements were made
6n a Sociéte Genevoisec measuring machine which is sited in
a metrology laboratory equipped with air conditioning.
Under these conditions and with this machine measurcments
of radius and angle can be made with a high degree of
accuracy. It is unlikely that either equipment in this
category or similar conditions of working would be
available in industry to personnel likely to undertake
this particular task; thérefore, it was intended that

the simplest possible method should be sought which would
allow the determination of the spiral equation to an
acceptable degree of accuracy.

In the early stages of this work consideration
was given to a number of mathematical spirals to which
this type of spring hight conform. But plotting of the
natural logarithm of the radius (measured from an assumed
origin) againét the radian angle turned through from the
initial radius vector position to the current vector
position gave some indication of a linear relationship
worthy of further study. The plot showed a sinusoidal
. type variation with decaying amplitudé on a straight
inclined axis (fig. 3.41). The fact that the amplitude
(measured from the sloping axis) decayed with increasing
angle and radius, suggested that this feature of the vlot
might be due to lack of coincidence between the reference
point and the origin of the spiral. At first the varia-
tions from the linear (ln R v ©) relationship vere dis-

regarded and a mean line consiructed to give a law of
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the form

the value of b being ascertained from the slope
of the mean line. This procedure wés followed for a
number of springs and the same effects recorded. The
main differences occurred in the positions of the crests
of the 'sinusoidal' variations and, as one might anticipate,
their amplitudes.

Having now established that at least some springs
of this type might possess a logarithmic spiral form,
explanation of the sinusoidal claracteristic was sought.

It was thought that since location of the origin presented
some difficulty, this might be the controlling factor.

At the same time it is evident from the Kroon and Davenport
paper dealing with spiral springs having a small number of
turns(R7), that for the first few turns, at least, other
factors might be involved as well.

3e20 Effects due to lack of coincidence of
reference point and origin
In order to investigate this effect a spiral

having the equation

P = 0.780'039

was constructed. The construction was carried
out by plotting values of r for 90° intervals of 6 and
joining the points by circular arcs. The resulting
spiral is shown in fig. 3.2, O being the origin. The
reference point P, from which measurements are taken, is

located 0.1 in. in the -x direction and 0.1 in the -y

28,
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Fig 32 Spiral r=0-7 zo-oae in,

O is origin of spiral
P is reference point for fig 3-3
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direction from O. 8 is the start of the spliral and axes
PX' and PY' are constructed so that 8 lies on both the OX
axis and the PX' axis. The values used for the logarithmic
plot of fig. 3.3. are méasured with reference to the Y'PX'
axes. It is evident that the resulting curve of fig. 3.3.
is similar to that obtained from actual springs. The next
step is to see if it is possible to determine the value of
'p' without locating the position of the origin.
| Examination of the original plot from which

fig. 3.3. is traced reveals that the peaks and crests of
the curve occur at the angles

nx + O.4 and mx + O4 n

0, 2, 4, etec.,

_ 1, 3, 5, ete.,
respectively. We will now investigate this

m

fact further since we note that the line OP (fig. 3.2) is
inclined at 45° to the OX axis and 45° is not far removed
" from O.4 radian.

If we consider measurements of radius made along
OP produced in both directions, we find that values in one
direction are increased by the amount OP whilst those in
the opposite direction are decreased by the same amount.
Measurements in other directions are affected to a smaller
extent and therefore the values of radius measured in the
direction OP appear at either a crest or trough of the
curve at angular positions separated by = raedians.

If a line is drawn tangent to the crests then
this line will be displaced upwards by the (logarithmic)
amount OP from the true lnr v © curve, Likewise a line
drawn tangent to the troughs will be displaced downwards
by the same amount. Therefore the true lnr v 6 curve
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lies (logarithmically) half way between these two tangent
curves and its slope will give the value of 'b'. In the

case of the constructed spiral r = O.?eo'039

y, the value
of 'b' obtained was 0.0299, which is sufficient proof
that the method is acceptable.

The procedure outlined above will allow not
only the determination of the exponent but it will also
give the position of the true origin of the spiral. In
the case of the constructed spiral the distance OP from
the graph agrees almost exactly with the true value
0.444l4 in, and the angle (37%0) between OP and PX' agrees
with the inclination of OP to OX of 45°.

Thus, a method has been developed which will
enable the determination of a logarithmic spiral equation
from a reference point close to the origin of the spiral.
Obviously one will attempt to place the reference point
as close as possible to the origin since a large value
of OP will create difficulties in plotting and in the

necessary construction.

3e3. Locating the reference point
Ideally the spring being investigated will

possess a logarithmic spiral and the reference point will
coincide with the origin of the spiral. 'In practice
neither of these conditions is likely to arise, but
should it be necessary, non-compliance with the logarithmic
law can be overcome by fitting a number (preferably a small
number) of straight lines to the plotted curve.

The origin of a logarithmic spiral can be
located in a number of ways. If one accepts that the
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placing of a tangent to a curve is not an easy task nor is
the result likely to be highly accurate, then one may
construct tangents to the spiral and make use of the
property of a logarithmic spiral that points on the curve
with equiangular tangents all lie on the same (straight)
line through the origin. Thus if a spring is arranged
on squared paper in such a way that the lines are tangent
to the coils, then the origin is easily located. The
squared paper enables two lines at 90° to each other and
passing through the origin to be located. Fig. 3.4
illustrates this method applied to the constructed spiral
referred to in section 3.2 above,

Other technigues will be explained but since
application of some of these methods is easier if a
reproduction of the spiral on paper is available, some
of the processes used for producing these replicas will

be discussed first.

3ol Production of replicas of the spiral

A technique which produces acceptable results
when used in connection with stiff spiral springs is to
place a sheet of graph (or other) paper over the spring
and carefully take a pencil rubbing. Fig. 3.5 is &
photo-copy of such a rubbing on which construction lines
agsociated with the variation of reference point also
appear. Fig. 3.6 is a photo-copy of a record made by
tapping round the edge of the spring afier placing it on
Carbon paper with white paper beneath it.

It will be obvious that neither of these
techniques can be applied to weak springs so recourse
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Fig. 3-6 Carbon copy of spirl of sprlng no.3.
Obtained by tapping round edge of spring
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was made to photographic techniques. The springs were
placed on the glass plate forming the top of a large light
box and photographs taken from above,the top edge of the
spring being in focus. Thus a dark line representing the
top of the spiral is recorded. Exemples of the result
of applying this technique appear in figs. 3.7, 3.8 and .
3.9. A variation of this method which can be used for
springs up to about 8 in. diameter is to place the spring
on a flat-bed Xerox copying machine and obtain a copy of
the spiral. Some machines introduce a magnification
factor but provided that no distortion is introduced,
the results are unaffected. When transparencies are
required, these can be produced on Fordifax or similar
machines used for meking overhead projector transparencies.
A photographic technique possesses one great
advantage over other methods in thaet it allows a record
to be made of very large springs to a reduced scale. If
a spring does have a logarithmic spiral form then the
same value for 'b' is obtained regardless of the magni-

fication used in obtaining the print.

3¢5 Further techn eg of locating the
reference point
Fige. 3.10 shows the result of moving a spiral

through a distance of ¥ in. It is evident that the
points of interséction of the two sets of coils lie in
a straight line passing midway between the original centre
0 and the displaced centre O0'. Fig. 3.141 shows the
effect of moving O' from O a distance of  in. in a
direction at right angles to that moved in order to
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Fig. 38 Reproduciion of photograph
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obtain figure 3.10. The result ol carrying out thesce two
operations congecutively is that two lines are produced
which are displaced § in. from parallel lines passing
through O.

The method can be applied to a spring resting
on a reproduction of its spiral but it is mwuch easier to
apply to a reproduction overlaid by a tiransparency.

One of the simplest ways of locating the
reference point is a 'four-point' method illustrated in
fig. 3.12 with its overlay. Here two points A and B are
marked on the spiral and the coincident points A' and B'
on the overlay. The overlay is then rotated through
180° and arranged so that the overlay coils are
symmetrically disposed with reference to the spiral below
it. The lines joining the points AA' and BB' must pass
throﬁgh the origin of the spiral, It is not too aifri-
cult to use the spring itself in conjunction with either
the transparency, which is laid on top of the spring, or
with the reproduced spiral, which is placed below the

spring. In either case, of course, the replica must be

full size.

3.6. Inherent difficulties of rapid methods

Two methods of measuring the spirals in order
to obtain a value for the exponent and which showed
evidence of easy and rapid application are now exsmined.

i) Returning to the mathematical spiral

e roebg,

let us examine expressions for the 'coil

diameters' given by the sum of the two radii separated

L2,






by the angle ® radians. The value of radius at @ = 0 is
obviously Ty then let the values of r at x, 2x, 3x, etc.,
be rys Tos r3, etc., respectively. The successive coil

diameters, D, are obtained as follows:-

r, =Ty Ty = roeﬂb ; D1 = ro(exb+1)
r, = z'oez"'cb 3 Dy = r~o(e"‘b+'1)e7cb
T3 = Po°3xb 3 Dg = ro(e'xb+1)e27tb
r, = roenWb ; Dy = ro(em)ﬂ)e(n"")"Cb
Py = roe(n+1)7cb ; D, = ro(exb+1)enxb

from which:-

Dneq _ e P

Dp

Thus, if a ruler is laid across the coils so
that the measuring edge passes through the origin of the
spiral (the angles between the coils and the ruler, on one
gide of the origin, are equal) and measurements taken of
successive coil diameters, & plot of current diameter
versus previous diameter should result in a straight line
of gradient eﬂb.

Fig. 3.13 shows a typical plot of r against ©
obtained during application of this method. (One would
not expect this plot to be necessary. It is included
only to illustrate the inaccuracies introduced by this
method.) Fig. 3.14 shows the plot of raw results for
the 'diameter' measurements together with the results
when adjusted to the mean r - 6 curve. It is interesting

and important to note that a change in the slope of
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D v D, line of about 10% produces a change in the

n+1
value of b of approximately 250%, so that whilst this
method shows quickly that the spiral approximates to a
logarithmic form, (since a straight line results) it is
not a good method of determining the constant b.

ii) Let us now examine the coil spacing, S,
which is given by the differegce between the two values
of radius separated by 2=« radians. Following the

procedure outlined in i) above, we have:-

2Kb
r,e ; 8, = ro(e

r r 1'2

o} 0

e

r eﬂb 5 r3 = p e3ﬂb ; 81

I
)
(o]
—

ry o o
from which it is seen that

S

n+d _ 7
S = e

n
which again gives a linear plot of Sn+1
against Sn.

In this method also, much scatter is obtained
if raw results are plotted and even after adjustment of
results using an r - © plot the value of 'b' is extremely
gensitive to a small error in the measurement of slope as
is evident on examination of fig. 3.15. But,once more,
the method will quickly indicate whether or not the spiral
is logarithmic. Should the spring conform to an
Archimedes spiral, r = rOG, then both Dn+1/Dn and

Sn+1/Sn tend to unity as n increases.

367 Results of examination of clock-type springs
Whilst investigating the methods of determining

the equation of a spring's spiral outlined above, some
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fwenty springs of widely dif{fering sizes were cxamined.
Some of these springs were examined by more than one
person using different methods. In these cases acceptable
agreement was obtained but all the methods demand some
practice before the individual concerned becomes adept.
Table 3.1 summarises the results obtained from
the measurcments of twenty springs and it is seen that,
in the case of sixteen of these, a logarithmic spiral is
indicated. In general a straight line could be drawn
through the results when carrying out both the 'coil
spacing' plot and the ‘'coil diameter' plot, but the valucs
of 'b' obtained from these plots.were seldom in close |
agreement with the value obtained from the lnr v 6 plot
for the reason outlined in 3.6 above. Of these twenty
springs, one was found to conform to an Archimedes spiral,
one to a spiral of the form r = aE™ C, and two were
found to require two separate logarithmic spiral equations.
It is also evident from the table that there
was no obvious relationship existing between the value of
'p' and the physical dimensions of the spring, all of
vhich were made of steel, The most likely parameter to
wﬁich 'b' might be related is the strip thickness but it
might be expected that the arbor diameter also influences
the value of 'b'. No firm conclusion can be drawn from
the results particularly since the history of the springs
vas not available. However, it may be of some interest
to note that a plot of Inbd against thickness, though there
is much scatter in the points, gives the impression that a

linear relationship might exit between these two variables.
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Spring

No.

P1
P2
P>
Py
P5
P6
P7
P8
Py
P10

P11
P12
P13

Pk
P15
P16
P47
P18
P19
P20

\V'idth
of

Strip
in.

0.8125

of
Strip

in.

0.059
0.071
0.055
0.049
0.023
0.024
0.023
0.049
0.024

£ 0.037

0.065

0.058

0.049

0.037
0.106
0.027
0.022
0.023
0.023
0.024

TABLE %.1

Thickness INumber

of

Coils

-
R NS I - - Xo B o ) W o) SN B © ; BN |
Dl ol o= ol d+ o= o= M

10%

Length

of

Strip

6
3
7
11
14
12
10
6
10

50

29
12

13

25
45

8
14

7
13
12

ft. &: ino

l11|l
2
8

10

11

|

10

10

0O N W v

2.

1.
2.

Valuc
of

r
(@)

in.
0.71
*
0. 741
0.704
0.726
0.396
0.214
0.887
+
0.876
0.151
1.624
1.01
0.748
1.68
1.105
2.31
0.267
0.364
0.246
0.31
0.733

Value

|bl
0.0257

0.0289
0.0316
0.0587
0.040
0.076
0.0239

0.0366
0.0630%
0.0328
0.0309
0.0632)
0.0315
0.018
0.0217
0.0395
0.0417
0.0433
0.0518
0.0472

x P2 was found to be an Archimedes spiral ecuation r = 0.03816

+ P9 was found to have the equation r = 0.005191‘91 + 0.22.
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CHAPTER
DESIGN OF THE SPRING TESTING MACHINE

L.1. Machine Reguirements

The purpose of the machine is to examine the
behaviour of clock - type spiral springs during loading,
with special emphasis on the confirmation of the foregoing
theory for Spiral Springs.

A universal machine was needed in order to test
a wide variety of springs, the largest of which was
estimated to require a torque of 2000 1bf in.

Due to some evidence produced by a certain
spring manufacturer, that different results are obtained
depending upon whether a spring is wound by rotating the
arbor or the barrel, the machine was originally intended
to load the springs by either method. However, it was
the author's view that the rotation of a clock type
spring was purely dependent on the relative motion of
the arbor and the barrel, and that no difference should
occur in the results depending upon whether the barrel
or the arbor remained stationary.

Consequently, tests were carried out on the
spring manufacturer's apparatus and it was discovered
that errors due to friction in that particular machine
could be of the order of 30%, and that it was almost
impossible to obtain reproducible results.

The schematic arrangement of the particular
machine in question is shown in fig. L4.d.

The plates (1) and (2), can be interchanged on
the machine so that the torque, which is measured by means

of a simple arm and weighing machine arrangement, could
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be measured either from the arbor A, or from the driving
peg side B (corresponding to the barrel). The friction
due to the journal bearing X depends on 1ts load, and
the largest force occurs on plate 1. (Since here the
torque is transmitted at a smaller radius.) Clearly, the
friction in bearing X will be greater when the plates (1)
aend (2) are in the positions shown than when reversed.
The friction within the machine was large and this
explains the difference between the readings obtained

on this apparatus for winding by means of the peg and

by means of the arbor.

The machine designed for the work described in
this thesis was therefore required to load the springs
by one»method only. To design the machine to wind the
springs by both methods would have introduced unnecessary
complications.

The springs to be tested were available before
a start was made on the design, and so the maximum size
of barrel required was known to be about 11 in. diameter.

The basic requirements for the machine were
therefore:

(1) Torque range - O - 2000 1bf in.

(2) Accommodation for barrel sizes up to

11 in, diameter.

(3) Accommodation for any type of arbor.

(4) Allowance for any type of end fixing

for the springs.

(5) Maximum accuracy with special emphasis

on the elimination of friction.
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L.2. The Design (General)

Many systems were considered but it was finally
decided that torque bars would provide the best means for
measuring the torque since there should be no inaccuracies
incurred due to friction in bearings, etc.

The simplest system considered consisted of a
worm gear arrangement suspendgd on a crossheam, as shown
in fig. L4.2.

The torque was to be transmitted by the torsion
bar to the arbor, the barrel being clamped to the base.
Measurement of the twist of the torsion bar, it was
decided, would be by means of dial gauges actuated by
levers attached rigidly at the ends of the torsion bar,
the twist being measured by the difference in readings of
daial gauges. The torque acting would be determined from
a calibration chart or,later, probably strain gauges
would be used.

Ultimately, it was decided to incorporate an
existing worm and gear into the design. This gear
assembly was of a large size, having a 10" diameter drum
as an integral part of the gear wheel, and the incon-
venience of suspending this,in the proposed plan, led to
the final design shown in the photograph, fig. 4.3, and
on the assembly drawing, figs. L.4, 4.5 and L4.6.

Very little calculation was required for the
design as only a féw components took a sufficiently large
load to warrant this. In consequence, the actual
dimensions used were arrived at by estimation and availa-
bility of materials.

The machine is an experimental one and for this

5h.



Pig,4,3 Testing machine in its original form
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reason it was not considered importani to enter into details
of strcss calculations in order %o make the best use of
materials which would be necegsary for qguantity production.

It will be noticed from the design that the
torque acting on the spring is transferrecd directly to the
torque bar, and so there can be no loss of torque by fric-
tion within the machine bearings, etc. The friction
encountered which can affect the results obtaincd is that
within the spring itself, between the spring and the table,
and also slight friction which may occur in the base bearing,
compenent No. 10, fig. L.4.

The spring centres have a tendency to deflect
when the spring is loaded, and for this reason the arbor
holder was included in the original design. (Later this
arrangement was modified resulting in a simpler design.)
This component, No. 11, was purely for location fixing of
the arbor and takes no load apart from the deflection
force of the spring centre. This force will be small
‘and so friction effects from the bearing will be
negligible. Due to the thin section of some of the
springs in question, it was necessary to load them in a
horizontal position, otherwise the springs would have
deformed under their own weight. The effect of this on
the torque-rotation curve would probably be small, but
the machine was required to examine in deteil the
behaviour of‘the springs during winding to ascertain, if
possible, the causes of bundling of coils. Thus even
though friction between the table and the spring was
unavoidable frictional effects should be small enough to
be discounted.
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One foreseen difficulty with the torsion bar
system was the requirement for close tolerances on the
torque bar ends and attachments so that the torque bar
would be fixed in a rigid vertical position with no side
deflection possible. Clearly, any deflection of the
ends of the torque bar in a horizontal direction would
read directly on the dial gauges thus giving an incorrect
torque reading.

Two dial gauges are used so that only relative
twist of the ends of the torque bar is measured thus
eliminating any error due to end fixings and strain in
the machine.

Should it be necessary, correction for any error
caused by sideways mbvement of the lower end of the torsion
bar is made by the addition of a further dial gauge to run
on the torque-bar-arbor connection, perpendicular to the
torque arm, to heasure the actual sideways deflection of
the lower end of the torsion bar.

Basically then, the machine consists of a worm-
gear drive to a horizontal revolving table, to which
barrels of various sizes can be attached. The spring
is wound onto an arbor which is restrained against lateral
movement and rigidly connected to a torsion bar, supported
and fixed at the upper end so that the torque transferred
to it by the arbor results in a twist, Torque arms and
dial gauges at each end of the torque bar are used to
measure the twist of the bar and hence, the torque on the
arbor. The actual angle turned through by the spiral is
measured directly from degree markings on the edge of the

table.
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L.3. Design gDetailsZ

Le3.1. Worm and Worm Wheel

Very little work was needed to adapt the worm
drive for the purpose of the design. The most important
alteration was to adapt the table to the gears, and to
provide a positive drive between the two.

The rim on the gear wheel drum was not wide
enough to use for the purpose of loading the springs and
difficulties would have been met due to the cast iron
construction so the final solution was to provide means
of transmission by a tongue and groove arrangement in

the gear wheel hub.

L.3.2. Table Design

In order to position the barrels on the tablé,
two mutually perpendicular slots were machined in the
table top as shown in fig. 4.5. When the barrel is
positioned clamping plates, (component No. 17) are used

to secure the barrel.

Le3.3. Barrel Design

Three main types of end fixing are commonly used
for springs of spiral form. The end may be bent over at
right angles forming a small tongue (which may be shaped)
or a hole or slot may be cut in the strip near to its
extremity, or the end may be bent in the form of a loop
gsuitable for locating on a circular bar or stub. The
end of the loop may then be rivetted or spot welded onto
the strip to prevent the loop from opening out.

The design of barrel adopted (fig. 4.6) will
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allow any type of end fixing to be accommodated.

Originally, a set of three barrels of diameters
7V, 9" and 11", was provided but further barrels may be
added as required.

From the detail, fig. L.6, it will be seen that
the barrels are not continuous. The gap enclosed by the
welded bracket enables various adaptors to be used in
conjunction with the barrels for end fixing the springs.
In this way any adaptor is interchangeable with the
barrels. The actual design of the adaptors (or fixing
pins) must necessarily depend on the spring to be tested.
In the case of fixing pins, the pins are placed in the
gap provided so that they do not interfere with the
uncoiled bundles of fhe spring.

L|>o3ol-|»o SEri!E Arbor Degign
It is impossible to cater for all sizes of

springs and it was an accepted part of the design that
an individual arbor must be designed for each spring
tested. The design was planned to include a simple and

cheap arbor.

Le3.5. Torsion Bar Degign
A range of torsion bars for use with torques of

between O and 2000 1bf in., and producing a twist of
approximately 3° at the maximum design torque, were
required. It was decided to use a set of five bars with
maximum torques of 200, 300, 500, 1000 and 2000 1bf in.

A convenient length was chosen for the torsion bars and
the well known formula:

62.



i3
!
!
=iQ

was used to determine the necessary diameters.

L4.3.6. Gesuge arm design
Little is required in the way of design for the

gauge arms, the requirements are simple. The arms must
be attached rigidly at the ends of the gauge length and
must operate the diasl gauges at a predetermined radius.
In fact, the arms attach to the squareends of the torsion
bars and the gauges are attached to a piilar and arranged
gso that their plungers rest on the torque arms at the 7"
length mark on the arms. The whole arrangement is then
calibrated by applying known torques as described in
appendix AL. The error introduced due to obliquity as
the torsion bar rotates is also dealt with in appendix Al.

Lol Operation of machine (Refer to fig. U.l.)
The operation of the machine is quite simple.

The carrier bar, 20, is raised after slackening the clamp,
19. The required barrel is then located centrally on the
table, 8, and clamped into position with the clamping
plates, 17. The torsion bar to suit the designed torque
of the spring is then selected and one end inserted into
the adapter, 22, on the carrier bar. It is found that
part of the square end of the torsion bar stands proud
and to this is fixed one of the gauge arms. The second
gauge arm is fitted to the lower end of the torsion bar
followed by the arbor. Next the spring is attached to
the arbor and the table rotated so that the outer end
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may be fixed in the ‘cut-out' of the barrel. The carrier
is now lowered so that the arbor is located in its holder,
11, and the spring is fed into the barrel.

The dial gauges are now fixed into position on
the rod, 27, and positioned to the 7 in. mark on the gauge
arm. A third dial gauge is positioned to measure the
lateral movement (at right angles to the gauge arm) of
the lower end of the torsion bar. The table (barrel) is
then rotated by operating the handwheel and readings taken
of angle turned through by the table and the difference in
dial gauge readings. These latter readings are then
converted to torque and the torque-rotation characteristic

is plotted for both loading and unloading.
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CHAPTER 5
COMPARISON OF THLEORETICAL AND

EXPERINENTAL RESULTS

~

5}1, Introduction

The theory and techniques discussed in the
previous chapters have been successfully applied to a
number of springs. Little purpose would be served
in referring to each test here but the validitylof the
theory will be demonstrated by reference to one cr two

special examples.

562 Testing of spring T.S.1

Fig. 5.1 is a reproduction of the spiral of
this particular spring and figs. 5.2 and 5.3 show the
r - © and the 1n r - © plots for this spring. From
these plots the spiral equation is found to be

r = 0.81 60.0253 g oo' o0 ¢ 0 (501)

The total angle of the spiral is 16=% if a short
length at the start of the spiral is ignored. The
measured length of the spirél, obtained by marking off
one foot lengths of the spring making use of thin paper
tape wrapped tightly round the spring, is 82.5 in. and the
length excluded from the ensuing calculation is approxi-
mately 1% in.

Integrating the spiral equation 5.1 over the
total angle of the spiral gives

16
L J . a2 . 0.8197¢0+02538 '°%
L =f r *\ae = 0.0253 o

(@)

82.2 in.
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Fig. 5
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which is in closelagreement with the measured
length (80.75 in.). This suggests that there is no
serious error in the equation for the spiral (ege. 5.1).

We will now consider the case when this
particular spring is inserted into a barrel with its
arbor, and progress through the method of Chapter 2 in
order to obtain the M - g characteristic for the spring.
We will then obtain the M - I characteristic in the
conventional manner and compare these two characteristics
with that obtained by testing the spring in the machine
described in Chapter 4.

Be3e M - g characteristic for spring
' 1.5.1 (Case 1)
The following data apply to the first illustra-
ticn of the method:-

Equation of free spiral ¢ » = 0.81 e0‘0253 e
Active length of strip ¢ L = 81.5 in.
Thickness of strip ¢ t = 0,056 in.

Width of strip

w = 1,000 in.

Radius of arbor R = 0.625 in.

Radius of barrel

R' = 10875 ino

L -
Second moment of area of strip ¢ I = !ﬁ; = 14.62 . 10 6
in B
Modulus of elasticity : E =3 . 106 lb/in.2
(assumed)

The curvature at any point on the spiral
distance S from the start is given by eq. 2.10

1 ~ 1
Ko= i bs + r
0.2
bs + r (1 + d7)

e (2.90)
(0]
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. _ 1 - :
l.e. Ko - 0.0253 S + 0.81 L N ] [ N 3 L N ] * e (502)

Equations 2.11 and 2.12 respectively, give the curvature
at the same point when the spring is run-down and wound vup

in its barrel:-

K, = ——— . - - 5 - (2.11)

cy = BXAR - &) - 1L
i h B ¢
K = oo 0 oo o0 oo (2.12)
2
"/ C2 + S -
where B = %
2
- Bpt . X
C,= B (R' + 2)

For the present case the values of the constants

are
B = 7.4900
C, = 109.8794
C2 = 23.9215 s

and the plotted values of Ko’ K1 and K2 are shown
in fig. 5.4 together with the AK10 andﬂAKzo curves.

| Now it was shown in Chapter 2 that the rotation
of the arbor is given by the area lying between the AK10
and.AKzo curves and the abscissa corresponding to M.

(It must be noted that AK,, is zero for the first 30 inches

of the spring.) The torque reguired at the arbor is given

by M = EIAK 5
= 30 . 108 . 14.62 . 10‘6 AK
i.e. M = L438.6 AK 1bf.in. .. . (5.3)
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If measurements of area are made from the graph,
fig. 5.4, in order to compute the twist 4, then, since the
graphs are plotted to scales of 10 mm. = 0.2 in-1 for
curvature and 10 mm. = 10 in. for strip length, rotation
of the arbor in radians is given by

area mea%gredimmz)

A table of results for this spring is included

in appendix A5 together with the practical test results,
both of which are plotted in fig. 5.5. along with the
results obtained in applying the conventional theory.

We will now consider the conventional theory applied to

this spring.

5.4. Conventional theory applied to the

present case

The theory was examined in Chapter 2 but will

be reiterated here.

It is based on the relationship M = Q%é and

if nj is the number of coils in the free state, n, the

nunber when run down in the barrel and n2 the number

when fully wound on the arbor, we showed that:

Initial torque (applied to spring): M, = 2??1(n1 - no)
ﬂ'—\
Maximum torque: M, = 27%l(n2 - n,)
Useful torque: M = M2 - M1
_  2%EI _
= S5(ny - ny) ee e (2.2

If we now visualise the spring coiled against
the barrel, the area of the annulus (neglecting the

thickness of any lubricant film) is:-
72
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T _ 2
Lt = u(Dz D, ) .. .o . (5.4)
where L = strip length
D2 = idinside diameter
of barrel
D1 = 1inside diameter
of coils
Also n,t = (D2-D1)/2 %5 - . (5.5)

From equation 5.4 it is seen that

D

1 x

in equation 5.5 gives:

| 2 £
n1 = D2 -J D2 K o0 .
2t
Simi 1ar1y n2 = -\/ g;[c;t + D12 = D1 .
2t

In the present case these equations give

n, = 7.95 and

n2 = 13017

nO = 8.375

M1 = =-14.3 1lbf.in.

M2 = 161 1lbf.in.

b = 27t(n2 - n1) = 10.44 radians.
5¢5 Some comments on the results

J D2 - At .na substitution

(5.6)

(5.7)

Although the practicel and theoretical torque-

rotation curves differ slightly in shape, the proximity

of the theoretical to practical results is quite good,
especially over the working range. The conventional
theory is clearly in error in this particular case.

the conventional theory the spring is assumed to be

7h.
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totally coiled against the barrel when unwound, and a
negative initial torque is given by the theory. If the
spring were housed in a smaller barrel then the conven-
tional theory would provide a closer approximation to the
actual behaviour of the spring.

In a retest of the spring all the machine
readings were repeated with very great accuracy,
indicating that the results themselves were valid.

Only very slight differences were obtained with the
spring liberally oiled which suggests that frictional
effects between the spring and table were negligible.

The failure of the conventional theory in this
instance is obvious. The whole of the stirip length is-
not resting against the barrel or the coils adjecent to
the barrel in the unwound state, and the length of strip
involved is not L. There are, in fact, only 2% coils,
in the free state, lying outside the barrel diameter.

In Chapter 6, the effects of altering the

arbor size and the barrel size will be investigated.

75.



CHAPTER 6

FURTHER TESTS

6.1, Purposc of the investigation and its

execution

The primary object of the tests now described
was to provide further evidence in support of the theory
of Chapter 2 and to examine the effects of the variables
barrel diameter and arbor diameter. It was intended also
to explore the possibility of applying the theory to open-
coiled springs. The spring to be tested, therefore, was
chosen so that it could be fitted into a number of barrels,
at least one of these producing open-coil conditions during
testing. Also, it had to be capable of accommodating
arbors sufficiently different in diameter to produce
discernible changes in the M - 4 characteristic.

The spring selected was one of those supplied
by the Airedale Spring Company and referred to as spring
No. A7. Details of the spring itself appear later in
the text.

Three tests are reported here in which the

following barrel and arbor diameters were employed:

Test Barrel Arbor
a 7 in. 1.375 in.
b 11 in. 1370 in.
c 7 in. 2,06 in.

It was anticipated that an arbor diameter of
2.06 in. might cause some distortion of the innermost
coils and so tests a and b were to be carried out before
attempting to fit the spring to this arbor. It will,
of course, be appreciated that the arbor radius is given,
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theoretically, by the value of ro in the spiral eqguation
r = roebQ so thaﬁ initially AKZO is zero. Expanding the
inner coils onto an over-large arbor will induce stresses
in the inner coils different from the residual stresses
existing in the spring in its free state. As a further
precaution, it was decided that care must be taken in
carrying out tests a and b since overtightening in either
of these‘tests might affect subsequent results,

In each test the coils were to be manually
distiurbed before taking readings from the testing machine;

this precaution being taken to eliminate as far as possible

any frictional effects.

6.2 Constants for spring A7.

The equation of the free spiral of the spring,
as reported above, is given by equation 6.1, This,
together with the relevant constants is quoted here for

convenient reference.

BEquation of free spiral: r = 1.03e0‘0183Lle in.

Strip thickness : t =0.038 in.

Strip width ¢ w =1,757 in.

Strip length ¢ L = 300 in,

Modulus of Elasticity : E = 3.0.106 1bf/1in° (assumed)
6.3. Calculations for the curvature curves

1
From eq. 2.10 X, = G757830s + 1.03

From test (a):-
9.09
N702 + 8

0
From eq. 2.12 K2 = Ji?2§=g==
° + B8

From eq. 2.11 K1 =

7.



For test (b):-
9.09

=N 2180 + s

9.09
Ko =NI7.5 15 as for test (a)

For test (c¢):-

Ky

92.09
Ky =v"502 + 8

9.09
Ko =4790.9 + 8

Gdlis Results of tests on spring A7

The curvature and change-of-curvature curves
for the three cases examined are shown in figs. 6.1, 6.3
end 6.5. The influence of arbor size on the AK,, curve
is clearly seen on comparing figs. 6.1 and 6.3 with
fig. 6.5. It will be noted that the AK,, curve of
fig. 6.5 falls short of the origin. This is the result
of forcing the spring onto an arbor which is too large.
The effect of the over-sized arbor is clearly seen in
fig. 6.7 on comparing curves a and ¢, the stiffness is
increased and the total rotation of the arbor restricted.

Comparison of the theoretical torque-rotation
characteristic, predicted using the theory of Chapter 2,
with that predicted using the conventional approach and
with the experimentally determined characteristic is
presented in figs. 6.2, 6.4 and 6.6,

The three theoretical curves may be compared by
referring to fig. 6.7.
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6.5. Conclusions to be drawn from the tests

The fipgures referred to in article 6.4 show
clearly the degree of agreement obtained between the
experimental and theoretical curves. The conventional
theory predicts torques considerably lower than those

measured and it must be clearly understood that the
conventional theory will give good agreement only in

cases in which no coils find themselves in their free

form in either the wound or the unwound condition.

It will be observed on referring to figure 6.2,
that the experimental and theoretical curves are parallel
to the curve for the conventional theory over a consider-~
able part of the working range. This is not generally
the case as the siope of the conventional theory curve is

constant and is given by

ar\ _E
d¢ - L
conve.

in which L is the total
length of strip, whereas the slope of the theoretical

curve will be given by

(9.1».1 _ BI
d¢ th S

where S is the active

length of stripe. Therefore it will be in only those
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cases where almost the whole of the strip is active that
the curves will be parallel. Fig. 6.1 shows that in
test (a) the AK20 curve has an initial value and it shows
also that the active length of strip is initially about
110 inch§§ increasing rapidly to almost the full length

of strip, and this condition persists until the spring
is fully wound. In test (¢) (figs. 6.5 and 6,6) the

active length is less to start with and is never either
constant or equal to the total length of strip, conse-
guently the curves of fig. 6.6 are not parallel,

It is significant, therefore, that the conven-
tional theory will give an incorrect value of spring rate
unless either the design of the spring is such that its
active length rapidly approaches the full length of strip
and remains so, or unless some correction is applied to L
when using equation 2.2. Fig. 6.5 suggests (make area

below AXK,. rectangular) that L should be reduced by about

20
10% in the case of test (c). This increases the slope

of the conventional theory curve by approximately 10%
(shown dashed on fig. 6.6) and it is seen that the three

curves are now almost parallel.

In test (b) very few coils were bundled against
the barrel and the spring was effectively without a barrel
‘after‘a few turns of the arbor. In this configuration it
resembles an open-coiled spiral spring and is worthy of
note that the theory of Chapter 2 gives close agreement
with practical results. It is also to be noted that the
M - ¢ characteristic for this case is almost linear,

The most marked effects of altering the barrel
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and arbor diameters are, evidently, as follows:-

1) An increase in arbor diameter decreased
the number of useful turns of the arbor. (In this
instance by about 30%) But the spring rate, represented
by the slope of the M - g characteristic increased only
slightly.

2) A decrease in barrel size increased the
torque for a given rotation without altering the stiffness
over most of the working range of the spring.

It is unwise to attempt to generalise with the
evidence of only three tests and many more tests must be
performed if the effects noted are to be thoroughly under-

stood.

6.6. Analytical procedure applied to _test (c)

The spring A7 was photographed, a transparency
made, and the origin of spiral found using the 'four-
point method' referred to in article 3.5. If the
transparency of fig. 6.8 is superimposed on the photograph
in the 180o position it will be seen that there is some
distortion of the inner coils. Superimposing in the
position where A and A' and B and B' coincide indicates
the manner in which the position of the reference point O
was arrived at. Fig. 6.9 shows the r - 6 plot.

The logarithmic plot of radius against angular
position on the spiral is shown in Fig. 6.10. The
values of radius were taken from the photograph of the
spring, not from the spring itself. The equation of the
mean line in Fig. 6.10 is:-

r = ‘l.l\LOeO’O“BZ’LLe in.
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Fig.6-8. Spiral of spring for which figs.6:9
and 6:10are constructed, Measurements -
were taken trom a photograph of which
the above is a Xerox copy. (ﬂlt‘?ﬂ
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This must be corrected to take into account the scale of
the photograph which is 1/1.87. Thus the equation of the
spiral is

- 1.)-‘» .
ro= 2.504

0.048340

or r = 1.03 e in, ce e oo (6.1)
In fact there is a length of strip measuring approximately
3.9 in. before the position at which r = 1.03 in.
The measured length of strip comprising the
spring is 25 ft., the calculated length is given by
ro'J 1+ p? [ebe:lg
o

b

L =

or from fig. 6.9

L ~ (89.5 -~ 1“».0) . 4.87
- 0001?3'—‘- . 250“- . 12

= 25.2 ft.

or including the length prior to the r, position
a total length of 25.5 ft. giving an error of + 2.0% which,
congsidering the distortion of the spiral, is deemed to be
acceptable.

Measurement of stfip thickness can present
difficulties due to lubricant or plating which must be
removed before measuring and also due to the curvature
and anti-clastic curvature of the strip. These can be
overcome by using either a thread micrometer or standard
balls with a flat-ended micrometer. The thickness of
strip for the spring A7 was

t = 0.038 in.
and the mean width
w= 1.757 in,
which gives a relevant second moment of area
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wt3
12

ignoring the rounded edge of the strip.

I - 8.04 . 10°0 ipt

The constants involved in the csalculation and

defined by equations 2.10, 2.11 and 2.12 are:-

B = 9009
C1 = 702
02 = 90.9

and the curvature equations are as follows:

K = 1
o~ 1.03 + 0.01834 s

K - —9.09
17/ 702 + 8

K. = —2:0
2 . /90.9 + 8

whence

AK1O = 900,9 - 1 L) e (6.2)
~/ 702 + 8 1.03 + 0.1834 s

S —— | 1 (6.3)
n/90.9 + s 1.03 + 0.183L 8

Let AK10 be represented by X and
AKZO be represented by Y
now let x, be value of s when X = 0 and
yo be value of s when Y = O
Then solving equation 6.2 for X =0 s = x, gives
0.0278 x,° + 2,12 X, - 614l = O

and taking the positive root
Xy = 115 in.
Similarly, solving equation 6.3 for Y = 0O

8 = yO gives 1.97 1
yo = ° nNe

91.



Now consider a specimen calculation for AK = 0.1.
The torque exerted is given by
M = EIAK
= 30 . 106 . 8.04 , 106 . 0.1
= 24.12 1bf.in.

The positions on the X and Y (AK1O and AKQO)
curves corresponding to this torque are given by
substituting X = Y = 0.1 in equations 6.2 and 6.3 in which
case equation 6.2 reduces to |

3.361 . 1070 &3 - 24,3 . 1073 52 + 0.94s + 768.5 = 0

e oo ee  (6.4)

whence x5 , =~ 214 in. if the cube term is
ignored. This may be corrected later if it is found
necessary to do so.
Likewise, equation 6.3 reduces to an equation
similar to equation 6.4, viz.
3.361 . 1070 &3 - 23.4 . 10™382-1.5628 + 22.5 = 0
oo oo oo (6.5)

whence Yo.q4 = 12.1 in.

Thus equation 2.5 for the rotation of the arbor required
to produce this torque may be re-written (for proof see

Appendix A6)
T 1 r RANE
g = OK [s]y1 + | 2B Ch, + 8 -3 in <s + _o(1+ >

r 2,% 9
— 1 0(1+b ) 1
-12 cy +8 -3 ln (s + Sl “REmee :E-
i ( )L
Let 4 = (A) + (B) - (c) - (D) + (B)
where (A) = &K [s]§1= 0.1 (214 - 12.1) = 20.19
l: 1 :ﬁ2.1
(B) = 2 . 9.09f/ 90.9 + s .97 = 9.26
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[ 1 1.0 12.1
(¢) = | 5ro983; 10 <'8 + 0.01é3u>:] 8.80
1.97

—

14
(D) = 2 . 9.03/ 702 + s:f15

B = 30.7
E - [ =11 1.03 \ P
= | 0.0183L ° (B * 0.0183u>]115 = 2.3

whence g = 14.85 rad.
This process may now be repeated for increments

in AK and the M - g characteristic constructed.

6e7e Discussion on the use of the

analytical solution

It is evident from article 6.6 that the
analytical solution involves much arithmetic calculation.
Consequently, the probability of errors occurring is high.
Further, should two intercepts oI‘AKWO or AKgo arise for
a given torque (see Chapter 7) the solution is more
involved. However, agreement between the results just
calculated, that from the graphical solution and the
measured value, is very good.

There is some difficulty in obtaining the limits
of integration when constructing the M - 6 cheracteristic
in this way, but if the main interest lies in determining
the maximum rotation of the arbor and the corresponding
torque, the method is much less cumbersome and is illus-

trated below: -
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Maximum rotation available = ‘smax

ﬁmax. = Area below AK,qy curve -

Area below AK1O curve.

ro(1+b2)%

o e[ BETE pan(es YT

1
1 r°(1+b2)2
- 2B/c1+s +Eln<s+-——r———>:[z

(e}

18.18/90.9 + 8 - '0'_.6"1@’ ln (8 + 56.1) 1027

L}

—

1 00
-l_18°18“/702 + 8 - 0.,01834 1n (8 + 56-1{E
15

whence ﬁmax. = 69,9 radians (11.1 revolutions)

The difference between this value and that
obtained by measuring the enclosed area is about 1.4%.
In proceeding through 'the area method' increments in area
are measured and added to the previous total, a process
in which errors tend to accumulate, The example with
which the present calculation is compared will, thérefore,
contain one of the largest errors encountered. The con-
clusion to be drawn from this is that 'the area method'
ig sufficiently accurate and, moreover, is simpler to
épply than is the purely anslytical approach. However,
as stated above, the analytical approach quickly gives
the maximum available rotation. Should it prove possible
to predict the spring form, then we have here a useful

tool for the spring designer.
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6.8. Comments on the shape of the AK curves

Doubtless it will have been observed that the
AK1O and AK20 may pass through maximum values in which
case for certain values of torque there are two corres-
ponding values of AK. We will consider cases for which
the .curves have the shapes shown in Fig. 6.11, Case 1
is perfectly straightforward gnd is dealt with in the
manner already described.

In Case 2 on Fig. 6.11 two intercepts occur on
the X-curve. This may be interpreted as meaning that
the end part of the spring has unwound from the barrel
housing but the central part of the spring has remained
unchanged. This is, of course, impossible as the central
part of the spring cannot be tightly coiled against the
barrel whilst the end part is free. This may however
explain the 'bundling behaviour' of this type of spring
in which a number of coils remain in contact and separate
from the remainder of the bundle.

In a like manner, as in Case 4, two intercepts
may occur on the Y-curve giving rise to similar reasoning.
The implication is that it is possible for one part of
the spring to be wound tightly on the arbor whilst some
previous part of the spring remains free, again an
impossible situation.

No mathematical correction has been discovered
which can be applied to the theory so that these
incongruities may be overcome, and so it has been assumed
that there'is, in fact, a rotation equal to the area A on
the diagram because springs often do separate unevenly.

In the event that the spring concerned has the
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inherent property that the central region of the spring
prevents part of the outer region from unwinding (coils
remain in contact) then the area A must be ignored.

Similarly, no allowance appears possible when
two intercepts appear on the Y-curve in which case any
part of area B encountered in the calculation is excluded.

From the nature of the K curves, it is evident
that the maximum turning point of thez&KQO curve occurs
before that of the AK1O curve, and hence if the spring
length were s' instead of L, the above conditions which
cause the bundling would not apply.

Had the spring used been of length s' instead
of L, the same torque range would occur but the angle of
rotation would have been reduced by some 4O - 50%.

Note

If the gpring is designed so that no bundling
occurs, then in the winding and unwinding of the spring
no friction can occur between coils. The result there-
fore would be a smoothly running spring, and a torque-
rotation curve obtained from the above theory should be
very accurate.

A maximum will not occur however between 0 - L
if the modulus of the gradient of the K, curve is not

greater than the modulus of the gradient of the Ko curve

for s = L.

B
So as K = —
and K o = 1
r_ + bs
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dK

and 2| = 1
)3/2 ds (ro + b8)2

2 -B
2(c2 + 8

Hence, for no bundling

1 > B
(ro ¥ bs)2 2(c2 + 3)3/2

1 .o (a)

oty * 445
2 “ t 2
(bL + raf1 o+ bz) 2 ((R' + %)2 # L>j/

This equation gives the turning point of K

80

20
curve when the equals sign applies, this being the maximum

value of L for no bundling.
The variables involved in a spring system are
seven in number, namely:

b and r, - the constants of the spring

o
free form equation

bo
I = roe

R and R' - the radii of the barrel and arbor

L, t and w - the length, thickness and width

of the spring strip.

The width of the strip affects only the torque
given by a particular rotation, hence the spring should
first be designed for rotation. The required torque may
then be attained by correct choice of the strip width.

Investigations are reported later in this thesis
on an analysis designed to predict the constant b of the
spring spiral form before manufacture. Failing this 'b'
must be assessed from previous experience.

The arbor diameter cannot be significantly
altered and its effect on condition (&) above, can be
considered unimportant.
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The two governing parameters of this condition
(for no bundling) may therefore be assumed to be t and L.
For no bundling it is necessary to decreasse t in order to
extend the range of the spring, i.e. in order to satisfy
the condition given, a meximum value of t will exist for a
given spring length L. The maximum torque required also
imposes a limit on t, this being a minimum limit given in
spring design tables(R9 p.61).

If a suitable strip thickness t cannot be
determined to satisfy the condition, then the length L,
already assumed, will have to be altered.

It may happen that using a minimum value of t
and a maximum value of L, the rotation given by the system
will be too small, in which case it appears that bundling
would be unavoidable.

The suggested procedure in design is to select
the smallest strip thickness allowable for the torque
required and use this to determine the apprpximate value
of L to provide the fotation required. Then using the
condition (&), determine if possible, a greater and more
satisfactory strip thickness. The change in t will have
little affect on the rotation available.

The condition given for non-bundling of the
éoils depends on the outer end of the spring being fixed
rigidly to the barrel.

In designing a spring system for non-bundling
therefore, it will be necessary to clamp a short length
of the spring to the side of the barrel,

This should, in fact, improve the working of any
spiral spring system whether open or close coiled, by

reducing friction.
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CHAPIIR 7

WINDING 01" SPIRAT, SPRINGS

7.1, Introduction

The purpose of the preceding chapters has been
to establish the form of spiral exhibited by this type of
spring when allowed to attain its free form, It has been
shown that, in general, & logarithmic spiral equetion can
be found which will approximate to the free form of =2
particular spring. Reasons are now sought to explain
why the free spring should exhibit a logarithmic spiral

form.

Te2e Examination of the winding process

On observing the winding of spiral springs it
becomes evident that there may be considerable lack of
.consistency on the part of the operator. Summarieing the
‘process described in art.l.Y4, the operator atteches the
'hook' end of éhe strip to the arbor and applies sufiicient
tension to the free end of the strip to gain some control
over the manner in which the strip approaches the arbvor.
Especially in the case of the larger sizes of strip used
in the cold forming of this type of spring, it seld&m
occurs that this back-tension has any significant effect
on the residual stress distribution. Thus the strip
winds onto the arbor with practically no back-tension,
forming a loose coil the size of wvhich is controlled only
by the availsble 'gap' in the machine through vhich the
materiel has to pess on its way to the arbor. I1f the
. loose coils have a large outer diameter, it may well be
that some of the strip is subjected to reverse bending
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on passing through the gap.
When the end of the material rcaches the gap in
the machine it may be restrained by jauming it against
the machine frame using some form of hooked bar, whilst
the arbor is rotated. This part of the process induces
tensile stresses in the coil and, at the same time,
increases the bending stresses. The absence of control dur-
ing this final stage ceuses unpredictable variations in the iree

" spiral form of springs supposedly to identical specificatiocns.

Te3e Experimental winding rig

It was decided that one aspect of this research
would be to examine the history of the strip during the
winding process. Consequently, the testing machine
described in Chapter L4 was modified slightly, by creating
a gap through which strip could be fed. Arrangements
were then made by which the strip could be subjected to
tension whilst being wound onto the arbor. Strain gauges
were attached to the strip and a photographic method
devised to enable the passage of a'boint on the strip 1o
be followed from the gap to its final position on the
arbor. Figs. 7.1, 7.2 and 7.3 are almost self-explanatory.
The equation of the path was derived (Appendik A7) but is
not considered of great significance. Good agreement wes
obtained when comparing the recorded path with the
theoretical prediction. What is more important is the
strain history of an elementary length of stirip during
the winding process.

Strain gauges were stuck onto opposite faces of
the strip. Obviously there are serious criticisms of
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Fig.7.2 Photograph of strip after winding
under tension. (x1/5.5)
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épplying gauges to thin material; the gauges with their
backing and glue-line form a sandwich of a thickness
approaching the half-thickness of the material in some
cases. Also there must be some local stiffening of the
strip in the vicinity of the gauges and they prevent the
coils from comingintocontact at the arbor. Further to
this there are electrical difficulties on reaching the
arbor and the fact that the gauges are useless when
strains apprbach those encountered at the onset of plastic
deformation.

The stress induced in the material during its
passage from the gap to the arbor was calculated from the
equation of the path and compared with that calculated
from the measured strain. The results of this comparison
are to be seen in Figs. 7.4 and 7.5. These indicate that
the material does suffer reverse bending within the elastic
limit. They also show that the stresses induced in the
outer fibres are almost equal, i.e. the back-tension
employed had little influence on the stress distribution.

The results just described taken in conjunction
with the basic idea leading to the theory of Chapter 2
prompted an investigation into the 'spring-back' behaviour
of spring steel strip. A previous investigation carried

(R.10)

out under the author's supervision had examined

the behaviour of torsion bars when subjected to overstrain

in torsion in which a strain-history analysis had been

employed. Consequently, it was known that Gardiner(R'11)

(Re12) poq studied the spring-back

and Woo and Marshall
properties of sheet materials. It was decided, therefore,
that information was required regarding
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i) spring strip deformed in bending (Gardiner).
ii) spring strip deformed by bending under
tension (Marshall and Woo).
iii) spring strip deformed by bending followed
by tension (strain-history analysis).

It was realised that practical data on spring
back were essential and that the material properties must
be investigated and idealised if any successful theory
was to be evolved. It was also evident that a thorough
investigation of (iii) above is necessary and should form
an investigation supplementary to the present research.
In this thesis, therefore, the treatment of bending
followed by tension is limited to outlining the procedure

to be adopted in further research.

Tele Testing of spring strip
7o Material used in tests

The material chosen for the investigation was
spring steel strip in thicknesses varying between 0,010
and 0.030 in. The tensile test dafa were obtained using
a Hounsfield tensometer, the extensions being measured on
& Hounsfield extensometer having a 2.0 gauge length.
Table 7.1. sunmarises the results obtained. Materials
A, B and C were used in their 'as-received' condition but
material D was tempered to reduce the hardness from
600 VPN.to 388 VPN, The tensile specimens were cut from
the strip and shaped to the conventional 'plate tensile
specimen' shape the parallel portion being about 2.5 in.
long. The final shaping was carried out by carefully
draw-filing by hand.
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TABLE 7.1

!
i
!

T

Yield ! 2

Material % Thicknessi Width | Hardness Streasn éE + 10
in. | in. V.P.N. ton/in? ton/in?
|
l
A 0.012 1.1/16 360 80.5 = 12.8
B 0.020 7/8 L00 89.3 14.4
C 0.021 1«1/ LL6 79.0 137
p* 0.031 0.788 388 68.3 13.1

x

Material D was supplied with a hardness of the order

of 600 V.P.N.

given in the Table.

Re-tempering resulted in the values
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Tensile tests were carried out into the plastic
region with unloading and reloading cycles performed
during the test. The stress-strain curves (figs. 7.6,
7.7, 7.8, 7.9) indicated that each of the materials
approximated to an ideal elastic-perfectly plastic material
having an elastic recovery line parallel to the original
elastic loading line. It was assumed that the behaviour

in compression would be similar.

Telke2s Pure bending tests

One of the difficulties encountered during the
bending of strip materials is due to the Poisson effect
which manifests itself in the production of anti-clastic
curvature, the presence of which affects the spring-back
properties of the strip. Whilst it is accepted that
anti-clastic curvature will be present in manufactured
springs and affect their performance, it is considered
that its presence should modify a simple theory evolved
'neglecting its presence, rather than attempt a complex
theory taking account of anti-clastic curvature, always
assuming that this is possible. (See Appendix A1.2.)

It was considered, therefore, that if strip
~material is pressed into a semi-circular die, the
conditions can be assumed to be almost identical to those
obtained in pure bending., To this end a semi-circular
die was made to accommodate a strip of the thinnest
material. After tests on this thickness of strip had
been carried out the die was machined to accommodate
progressively thicker-strips, next a new press-tool of

;arger_radius was made and the process repeated.
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Several tests were performed with each thickness of
material.

The radius of the bent strip after removal from
the die was determined by measuring the chord and sagitta.
The measurements were made accurately using a travelling
microscope and less accurately (but much more speedily)
by placing on millimeter squared paper. If one accepts
that the behaviour of this type of material when subjected
to elastic-plastic deformation is not entirely consistent,
then little purpose is served in ensuring highly accurate
measurements. Of far greater value is the acquisition
of a large number of results of a lower, but acceptable,
standard of accuracy.

Thus, the étrips were considered to have been
subjected.to pure bending to an inside radius equal to
the radius of the press tool. If this radius is
sufficiently small to produce plastic deformation then
spring-back will occur to a circular arc of radius greater
than that of the press-tool. Gardiner showed that this
effect can be measured in terms ofﬂthe spring-back ratio.

o

where R = initial radius of neutral axis

L)

oo we sx (7=1)

final radius of neutral axis

yield stress for material

modulus of elasticity

¢ BH < =
L}

= thickness of strip.

Since the strip retains some curvature there
must be present within the strip residual stresses.

These residual stresses may be determined from simple
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theory and expressed in terms of the yield stress.
Referring to fig. 7.10, the residual stress distribution
across the strip is given by

(o]

28 = 2% iro<x<h .. .. (7.2)
or Y
res _ Ep(d-21); ki
v = 1 3 h <r ]R)Ji‘h <x<3 .. (7.3)
where ores is the residual stress and h is the

distance from the neutral axis to the yielding layer
which is given by

-—}g = %—% oo o oo L) (7'“‘)

Since the residual stress distribution (eq. 7.2 or €q. 7+3)
is linear and must be zero at the neutral axis, only two

values (at x = h and x = %) need be calculated.

7.5.' . Results of the bending tests

The test strip lengths were calculated before
inserting in the die, so that fouling of the ends would
not occur on closure of the die. After removal from
the die the strip was placed on millimeter graph paper
and viewéd through an illuminating.magnifier. Measure-
ments were made on the ihside edge of the specimen which

'édmittedly is not accurate but the error incurred is only
of the order of one or two per cent (1.1% for material B
at 0.5 in. radius).’ ﬁeadings were taken for both edges
of the strip in case the strip had not been inserted_
squarely in the bending rig. The extreme ends of the
test strip were not iAcluded in the measurements.

From simple geometry the radius of the inside
of the strip (fig. 7.11) is given by:-
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BDZ + CD°

r = 2CD L) oo oo oo oo (7.5)

Results of the tests are presented in Table 7.2 which also
shows the percentage variation of the theoretical results
(rt) from the experimental results (re). The basis of
this comparison is to be found in Appendix A7. The
theoretical spring-back curves are shown in fig. 7.12

and the experimental results are indicated.

The theoretical residual stress distribution
was determined from equations 7.2, 7.3 and 7.4 using both
the experimental value of radius and the theoretical value.
These results are depicted in figs. 7.13 - 7.16.

The experimental determination of the residual
stress distribution is best carried out by etching
successive layers from the specimen and measuring the
resulting change in radius. This technique will be
discussed in greater detail later in this thesis.

The next step in the investigation is to examine
the influence of back-tension on the spring-back charac-
teristics. In order that some control might be gained
over all of the parameters involved, it was decided at
this stage that the order of application of load must be
tension followed by bending.

7+64 Bending under tension
The basic requirements for the bending under.

tension tests were considered to be
i) the ability to epply and control a measured
back-tension whilst winding the strip round the arbor.
ii) the ability to carry out a number of
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8 it et = e = et

Material R in r, in. r, in. % Variation
A 0.506 1.85 1.81 2.2
A 1.00(6) ing, 303 -
B 0.5*'10 0.937 0.963 2,8l
c 1.01 4.19 3.84 8.L7
D 0.515 0.696 0.687 1.37
D 1.01(5) 1.99 1.90 .56

Comparison of theoretical and experimental values of radius of

curvature after press-forming.
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fevolutions of the arbor whilst maintaining the required
back-tension.

These requirements were met by designing an
attachment for the Hounsfield tensometer which was
capable of accommodating different sizes of arbor. The
torque was applied to the arbor by hand. This imposed
limitations which might be overcome in later experiments.
The design of the arbor housiné was such that the strip
winding onto it lay along the axis of the testing machine,
the other end being held in the normal plate grip of the
machine. Fig. 7.17. The machine itself was clamped to
the bench.

The materials listed in Table 7.1 were used and
the direct stress (dﬁe to back-tension) was calculated
from the maximum torque available at the arbor,which was
about 246 1bf.in., and the width of the strip. In this
way it was possible to attain direct stresses up to about
35 ton/inz.

.The radius of curvature of the specimens was
determined in the manner already described in article 7.5.
It was assumed that the shape of the portion of strip
being measured would not differ greatly from a circular
arc. The spring-back ratios thus obtained are compared
with the theoretical values obtained in accordance with
the theory for bending under tension which forms the

subject matter of Chapter 8.
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CHAPTER 8

THEORY FOR BENDIRG UNDER THNSION

8.1 Introduction

The variation of curvature along the length of a
strip wound into a spiral form is a direct conseqguence of
the dependence of the amount of plastic deformation suffered
by an element upon its position in the strip. Since all
elements of the cross-section of the strip are not sub jected
to the same plastic deformation during the forming process,
residual stresses are induced and, when subsequently unloaded,
the strip possesses curvature. The plastic deformation also
varies along the length of the strip with consequent varia-
tion in the residual stress pattern. The equation of the
spiral is, therefore, dependent upon this variation of the
residual stress pattern which manifests itself in the amount
of springback from the fully deformed position and can be
measured in terms of a 'springback ratio'.

In this chapter Woo amd Marshall‘s(R12) theory for
stretch forming is modified to non-dimensional form so that
curves and tables can be produced for spring-strip materials
giving springback ratios and residual stress distribution for
a wide range of arbor diameters and back-tensions, with a view
to predicting the free-spiral equation. The present investi-
'gation has been restricted to consideration of an ideal
elastic - perfectly plastic material since the materials
tested exhibited no significant work hardening and conformed
closely to this model material. The Bauschinger effect is
ignored* together with two systems of loading which call for

a different analytical approach. In one of these systems it

* sidebottom and Chan(R13 p.631) showed that errors of 30%

can result from ignoring the Bauschinger effect.
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Cuart No. 1
CLASSIFICATION OF STRESSES

Source
Mechanical, Thermal, Chemical

2 i
—

a ]

Body Str:csscs Teztural Stresses
Macroscale £ Miecroscale
ITomo- and Inhomogeneous Bodies Inhomogeneous Bodies

tural dislocations, com-
posite bodies by differ-
ential expansion, ete.

non-strain hardening ma-
terial. Also by phase trans-
formations, ete.

grain boundary eflects, ori-
cntation effects, disloca-
tion, etc.

Contingent Residual Residual Contingent
Stresses Stresses Stresses Stresses
! ] ] ]

Produced by chemical or Produced after inhomogene- Produced after inhomogene- Produced by chemiceal or
structuril effects, nitrid- ous plastic flow by external ous plastic flow by external structural effects, alloy-
ing, casc-carburizing, forces or thermal gradients forces or thermal gradients, | ing, precipitation, phase
electropluting, struc- in both strain hardening and glide, twinning, kinking, transformation, thermal

cflcets by relative ex-
pansions between differ-
cnt constituents, etc.

of the from which they are derived. They also include elastic stresses

Note: Conlingent stresses arc thosc stresses which are i t upcn the co
produced by exicrnal loads while the Joads rewain on the body. Except for the latter they can be called contingern? residucl siresses.
Residual stresses may be present without, and are not contingent upon, the co-exisicnee of the source from which they are derived, such as the external loads caus-

ing plastic flow, ete.

FIG, 8.01 Classification of residual stresses ex Residual stresses

in metals and metal construction - Osgood

(r14)




is possible for yielding in compression to occur before
applying the back-tension and in the other it is possible
for yielding to occur during the springback after forming.
It is considered that strain history analysis
supported by experimental determination of the residual
stress distribution in actual springs wound under controlled
conditions should be used in a further investigation aimed

at modifying the theory presented later in this chapter.
This should then facilitate prediction of the free spiral

equation resulting from any of the current processes of

cold forming spiral springs.

8.2, Experimental determination of residuval stresses

Stresses can be classified in different ways
depending on the objective in mind, The chart constructed

(R1L p105)

by C.W. MacGregor and reproduced in fig. 8.01

presents a classification well suited to our present purposes.

Assuming that the strip from which a spiral
spring is formed is initially stress-free, the type of
residual stresses we are interested in are the macroscale
body stresses due to non-uniform plastic flow.

Residual stresses may be measured by physical or
mechanical methods. Of the former X-ray methods, which
measure crystal lattice strains have found wide acceptance.
Other properties which are affected by residual stress are
electrical resistivity, magnetic permeability, density,
internal friction and stress-wave propagation. So far(R16)
methods based on these properties have been limited to
qualitative observations, but they can yield information

about sub-surface stresses and are non-destructive.

125,



Mechanical methods are destructive, or at least partially
so, whilst X-ray techniques are limited to the detcrmina-
tion of surface stresses and the accuracy with which these
stresses can be determined leaves much to be desired(R17'21).
One of the earliest recorded attempts to measure

- residual stress was that by Kalakoutzky(R22) in 1687. Some
time later, Howard(RZB) reported longitudinal compressive
stresses calculated from the increase in length of a bar
after boring out, but did not appreciate that the stress

(R2u) used a

distri bution was not uniform. Heyn and Bauer
layer femOVal technique which consisted of measuring cheanges

of length of tubes and rods when successive layers were

turned off the outside. The method, and attendant calcula-
tions, omits to take account of the presence of tangential

and radial stresses and can be seriously in error. An

exact method of determining the longitudinal, tangential

and radial residual stresses in bars and tubes was proposed

by Mesnager(R25) and modified by Sachs(RZG) to his well=-

knowvn boring-out technique. This method is limited to
cylindrical bodies in which the residual stresses may vary

in the radial direction but are constant in the tangential

and longitudinal directions. The Sachs boring method also
precludes determination of the residual stress at the outside

éf the tube or bar which information is of'ten of greatest
importance. Fuchs and Matson(R27) determined residual shear
stresses in tension bars by grinding concentric layers from

the outside of the bars and measuring the resultent deformation.

(R10) carried out a similar procedure using etching

Whiteside
technicues.
Heyn and Bauer's method of calculation cen be

applied to plate material vhere there is a symmetrical stress
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distribution end this is the method outlined in Chapter 9.
Treuting and Read(Rzg) extended the Heyn and Bauer method
to determine the biaxial residual-stress on the surface

of a thin sheet, Their method of metal removal was to
cement the sheet to a flat block and carefully polish

and etch. The sample was then released and the principal
curvatures measured. The theory represents an advancement
on that due to Heyn and Bauer and is recommended for use

in the future work on spiral springs.

The etching technique is discussed further in
Chapter 9 and it is sufficient to say here that 1t is
accepted that etching of steels with nitric acid diluted
with water or alcohol is one of the least off'ensive methods
of metal removal as far as introduction of stress by the
layer removal itself is concerned. Loxley(R29), Hill(RBO),
Taira and Yoshioka(R31), Jackson(R32), Botros(R33) and
Whiteside all report favourably on this method of metal
removale. The author has used etching techniques on torsion
bars and sections of clock springs using an apparatus
described in the next chapter.

One of the foreseeable problems associated with
the layer removal technigue as applied to the spiral spring
concerns the induction of inelastic strains in the remain-
ing material. The residual stress distribution in the
specimen cannot be related to the measured deformations
(during etching) unless the stress-strain relationship is
known for all parts of the specimen remaining at any
particular stage in the layer-removal process. In order
~ to ensure that no inelastic strains occur during etching,

it is suggested that a jig be designed in which the
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geometry of the specimen remains constant and the
necessary restraining forces are measured by strain

gauges attached to the jig.

8.3. Vloo _and Marshall theory for stretch-forming

As statéd in article 8.1, it is considered
sufficient at this stage to develop the theory in non-
dimensional form (Appendix A8) for an ideal elastic -
perfectly plastic material. Examination of the figures
7.6, 7.7, 7.8, 7.9 reveals that the actual materials
tested exhibited almost ideal stress-strain curves.
The assumptions regarding homogeneity of the material,
absence of warping of the cross-section during bending
and shift of the neutral axis which are usually made in
simple bending theory, are taken to apply here. The
fibres are taken to unload elastically along a line on
the stress strain curve parallel to the elastic loading
line, i.e. the Bauschinger effect>is ignored at this
stage.

The theory is considered in two distinct phases.
First the conditions under which compressive yielding of
the inside fibres takesrplace are considered and then the
treatment is adjusted to consider what happens if there
is no compressive yielding of these inside fibres. From
the equations derived computer programmes were written
which will give values of the spring-back ratio for, what
is believed to be, the working renges of materials, thick-
ness of strip, radius of arbor, end back~tension likely
to be encountered. Programmes were also written to give

the residual stress distribution. Tables compiled from
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these programmes accompany this thesis.

‘s TN O Compressive yielding at the

inside fibre

It is evident that the amount of spring-back
(measured by the spring-back ratio) exhibited by a
particular strip depends upon two factors:

1) Plastic deformation must take place; the
greater the depth of the plastic layer, the smaller is
the spring-back ratio. In pure bending the depth of
yielded material is approximately the same on either
side of the strip. |

2) The presence of a back-tension causes an
unbalance in the depth of the yilelded material on either
side of the strip, increasing that on the tensile side
and, perhaps eliminating, but certainly reducing that
on the compressive side, Obviously this affects the
spring-back ratio and exposes one of the facets of the
problem to be explored,

It is shown in the Appendix A8 that for the
above idealised material subjected to bending under
'tension of such a magnitude that yielding in compression

occurs at the inside fibres, the spring-back ratio is

given by:-

: (1+8a)+6%(¥-%.A) 05,13
= . D L .
A

g

in which the symbols are in accordance with
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the following notation:-
R radius to which the centroidal axis of a
particular element is bent initially.
r radius of that elcment after removal of
all external forces and moments. :
€ maximun strain at the inside fibres.
yield stress of material.
modulus of elasticity.
thickness of strip. .

tensile stress applied.

» W oo =

constant defined below.

DA’ DB also defined in text.

The corresponding equation of R/r with no
yielding at the inner fibres is similar but with

different expressions for € A and DA'

a’

The present conditions give rise to the

expressions
e - 1 - t :
a._.e/(1 8) . o0 °e L)
where €' = (1 - %)/2 %% ‘ %

(NOTE: The terms are not cancelled because the term

RY/Et is used as a parameter.)

2 2
Y _ ,(RY e .
A =g - 2A57/(1 + &) (,_,)E + 8y " E) e
and. DA=1+8a"'h§/%+3A v e o0 .00

The depths of the two yield surfaces are of

(8.2)

(8.3)

(8.4)

interest and expressed in terms of the strip thickness

are given by
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E RY
A 1 -F -%) 5% O B
t 1+ €
E oy RY
and EE _ - (1 + Y ea) Et ° . LI o0 ° e (806)
t = 1T+ €

where dtand dc are measured from the tension and
compression faces respectively.
The residual stress distribution is determined

from tﬁe equations: -

£es =%—§+ [ = R/r)/2%% —% (4 --5)/{% .. (8.7)

in which Or is the residual stress at layer distance d

es
from the compression face and S is the stress at this
layer in the fully bent condition. It is shown

(Appendix A8) that if S Z + Y then

=-EY— o ea+%(1 + ea)/g_Yt" oo e . oo (8'8)

sl

8.3:2. No compressive yielding at the

inside fibre

This will be the case for higher values of back-
tension. The analysis (Appendix A8) is seen to follow
the same lines as that for compressive yielding and gives
Ifise to the same form of equation for spring-back ratio:-

E

s (1+e)+6BE - Ly

'i.' = D () () L) (809)
B

in this case

€ = 8'/1 - e' o ) ) P (8’10)

a

as before but
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e' = 1 -«/ (2 -2 P/Y)/%%

E/Y

and

Y Y a, 2 a2 ; |
B= §-(F-ed() + AP +e /350§ (8a1)

+ 3B - " . 5% (8.1é)

ig
i<

Dp= 1+¢&,-14

It should be noted that if €, 18 regarced as a
small quantity, the value of the spring-back ratio becomes
independent of the material, depicted by the value of E/Y,
and therefore the same curve, relating R/r to RY/Et,
applies to all materials.

The equations for residual stress are equations
8.5, 8.7 and 8.8. . Under these present conditions equation

8.6 does not apply since d, is zero.

In the computer programme the change over from
the compreééive yield equations to those for no compressive
'yielding is brought about by evaluating the strain on the
compressive face and, when this equals the yield value, '
the computer is directed to a second part of the programme.

A

8.4, OQutput of results

For the materials tested the value of E/Y was
168.6. Sets of tables were printed for various values
of RY/Et and P/Y giving the spring-back ratio, the strain
at the inside fibre, the depths of the tensile and com-
pressive yield surfaces and the magnitude of the residual

stress throughout the strip. In certain cases the
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residual stress is listed as exceeding the yield stress
which is obviously incorrect. FFor these conditions the
theory does not hold because, theoretically at ieast, the
material is strained plasticelly on releasc of the load.
Clearly, such cases call for a strain history analysis.
These results could be excluded from the tables by
evaluating the final strain at the ingide fibre and
rejecting the results if this strain exceeds the yield

~ strain of the material. However, it is considered
useful to leave the results in the tables in order that
attention may be drawn to conditions which might produce
plastic deformation on recovery.

The chart (fig. 8.1) shows the spring-back
ratio for variations of initial radius (represented by
RY/Et) and back-tension (expressed as P/Y). In the
region of the chart to the left of the S-shaped boundary
curve yielding in compression takes place at the inside

fibres whilst in that to the right the conditions for
| no compressive yielding pertain.

The distribution of residual stress is shown
in fig. 8.2 for various values of back-tension and
initial radius. Also displayed is the stress distribu-
tion in the bent position which should epproximate to
_that.existing when a spring is in the fully wound up
condition. The spring-back curve is drawn for each
value of back-tension and can be seen to approximate to

two straight lines.

8¢5 Wound spiral

If we assume that the radius of curvature of
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the strip is equal to the radius to centre of the arbor
and thickness small compared with radius, then, for any
position on the wound spiral, we can express the radius

of curvature as:-

R=R'+

i.e. RY _R'Y 9o/2x

Et -~ Bt ' E/Y

. RY e

° t T 2T™E/Y

1’

AX 1
2x RE/Y
where Ax is the elementary length of strip

subtending an angle A6 at the centre of the arbor. If

now, we let %% = ¢ct, ¢ being a constant then:

AEt=c .5y / (B/0)?

(For incremental lengths of, say, % inch (Ax)
using 0.020 in. thick spring steel strip, then ¢ ~ 4.0.)

If an initial value of RY/Et is chosen then an
iterative process can be started in which are evaluated
initial and final (after spring-back) radii of curvature
at intervals of % inch along the strip length.

Actually, & computer progrémme was designed
to give a finer interval than this and was written to
"take account of the two conditions of either yielding
or no yielding of the inside fibres.

If we assume that the radius of curvature after
spring-back is the same as the radius given by the spifal

equation

be
r=r.e

i.e. that b 1is small,'then we can work out the angular

position on the spiral of an element after spring-back
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since, approximately,
Ax = rA©
or A8 = Ax/r.

The computer programme was designed to carry out the
iterative process for 6. From these results (Appendix A8)
the R - © curve can be plotted and analysed to determine

its mathematical form.

B.6. Examination of theoretical results

From the computed values ln r vO curves were
constructed for values of P/Y ranging from zero to 0.8
(fig. 8.3). It is seen that the resulting curves for
values of P/Y up to O.4 can be approximated to two
straight lines. The final parts.of the curves will
naturally have infinite slope (nb plastic deformation)
and consequently this part of the curve is disregarded.

Fig. 8.4 shows a plot of the values of b with
respect to P/Y and it is seen that a linear relationship
exists for the first part of the ln r v6 curves and a
curvilinear relationship for the second part. If a
Jogarithmic plot is made (fig. 8.5) it is found that b

4is related to the back-tension by the law

b = - 0 PAY
B Lidy .
8.7. Experimental determination of the spring-

back ratio due to bending under tension

8.7.1, Description of apparatus and method

Basically the apparatus used for these tests
comprised a simple winding rig which could be fitted to
| 133.
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values from fig.8-3.
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a Hounsfield tensometer, the idea being to wind the strip
round an arbor in this rig whilst tensioning in the
tensometer. The winding rig is shown at A in fig. 8.6
and merely consisted of an arbor mounted in an adapter for
fitting to the tensometer so that the sirip winding onto
the arbor lay along the tension axis of the tensometer.
The winding torque was provided by hand as is evident
from.the photograph.' When the technique had been
mastered, it was reasonably easy to operate the tensometer
lead screw by means of the motor B (fig. 8.6) so as to
maintain an almost constant back-tension (as indicated by

the mercury column, C) whilst winding the strip.

8.7.2. Preparation of tegt pieces

The materials used were those decribed in
Chapter 7 for the pure bending tests. Samples were
prepared for use with arbor diameters of 1 in., 2 in.
and 3 in. The maximum torque which could comfortably
be applied by hand was found to be about 250 1lbf.in.
This value was used to determine the width of specimen
which could be wound under tensile stresses up to about
L40% of the yield stress. Thus samples were marked out
and prepared by bending over at one end and forming a
short length to the arbor radius and drilling the other
end for use with the Hounsfield tensometer plate grip
(see the specimen marked S, fig. 8.7, for details of
shape) . The edges of the strip were finally prepared
by draw filing after guillotining approximately to width.
The tolerance on width is approximately 0,045 in in % in.
if the variation in stress is to be maintained within
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Fig.8.6 Winding under tension.
A -~ winding rig, B -- motor, C -- mercury column,
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Fig.8.7 Spccimens sfter winding under tension.



about 2% of the mean valuc. This degrce of accuracy is

easily attained.

i

Bs703s Observations and results

After forming, the specimen was removed from the.
rig, the gripped end cut off and the radius of curvature
of the formed part of the strip was determined by the
graph-paper method. It is significant that quite large
variations in final radius were noticed in samples which
had received practically the same treatment. This
indicates some randomness in the process which is difficult
to explain other than to attribute it to non-uniform
behaviour of the material itself when subjected to plastic
deformation. Hever-the-less, the measure of agrecement
between the theoretical and experimental behaviour (if not
the actual values expressed as percentage variance) of the
material under these conditions of deformation is encouraginé
and leads one to believe that the results of winding strip
in this manner may be predictable. Similar occurrences
were noticed by Yoo and Llarshall working with other
materials., It is fossible that tests on high-purity
material might throw some light on this problem. The
results obtained are presented in graphical form in fig. 8.8
and show the same sort of agreement between experimental and
theoretical values as were obtained by Woo and Marshall,

It is interesting to note that neither the
experimental nor theoretical values of spring-back ratio
show any marked alteration from the value for pure bending

for direct stresses up to about 15 tsi.
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8.8. Possible extension of the stretch-

forming theory

The argument from this stage develops along the
lines that if the winding is such that yielding in com-
pression takes place before the tensile foarce is apﬁlied,
a process requiring a quite different theoretical approach,
then for the limiting case, at least, where compressive
yielding just occurs, both methods of treatment should
give results which agree. This would lead one to expect
that the results of a strain history analysis might Dbe
used to modify the foregoing theory to take account of
the different process. If the conditions are not widely
different from those specified for the stretch-forming
theory, in other words, if the depth of yielding in
bending is not great, then a modification of this theory
into a three-stage theory in place of the present two-
stage theory by empirical means should be sufficiently

accurate.
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CHAPTER 9
STRAIN-HISTORY ANALYSIS AND

LAYER RENOVAL TECHNIQUE

9.1. Strain-History analysis
9.1.1. Introduction

In this Chapter is offered an outline of
prodedures which are considered suitable for the examina-
tion of spring material deformed plastically and then
subjected to reverse loading. Details of similar
techniques applied to overstrained torsion bars are to
be found in J. B. Whiteside's thesis(R+10),

The stress-strain relationship for a steel
depends primarily upon its composition and heat-treatment
but is markedly affected by any previous straining in the
plastic region. For further straining in the direction
of the original strain the elastic limit stress is raiseqd,
the extent to which it is raised depending on the degree
of overstraining and whether or not the material work-
hardens. Obviously, these effects have an important
bearing on the manner in which the results of forming
springs by bending followed by tension can be predicted.
One important factor is the magnitude of the overstrain
at any particular position. For large overstrains a
bi-linear approximation to the stress-strain curve can
be justified on the basis that the'parabolic' portion at
the beginning of the plastic stage makes only a small
contribution to the total process. For small degrees
of overstrain, however, the situation is quite the

reverse and other methods of approximating the shape of
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the stress-strain curve must be resorted to.

The method used to study the elastic-plastic
process of bending a strip-so that it attains a permanent
set is a step-by-step analysis of the deformations of
successive layers of fibres. The behaviour of any layer
during recovery from the (over-) strained state, possibly
followed by subsequent reversed loading is predicted from
the results of separate tension and compression tests

(R13)

carried out for various degrees of overstrain.

9.1.2. Theoretical determination of

residual stress after bending

When cold forming a spiral spring an elementary
length of the strip is bent to a curvature depending upon
the arbor diameter and the position of the element in the
coiled strip. On relaxation of the bending forces there
is some elastic recovery to the final curvature of the
element in the free spiral.

| Although in the final state the average stress
in the strip must be zero aﬁd the first moment of the
stresses about the neutral axis must be zero, there are
stresses in each fibre. Those fibres which have not
been subjected to plastic yielding have stresses cérres—
ponding to their final strain whilst those which were
plastically deformed undergo a reduction in stress during
the unloading process. Those fibres near the surface
are, in fact, subjected to reverse loading and conse-
quently suffer a reversal of stress.

If the Bauschinger effect is to be taken into
account it 1s essential that the strain history of each
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layer be ascertained. If an ideal bi-linear material is
considered, the residual stress distribution can be
calculated from the geometry of the stress-distribution
across the strip when loaded, together with the strain
distribution when loaded and unloaded. The analysis can,
therefore, follow similar lines to the stretch-forming
analysise

In order to demonstrate strain-history analysis,
consider a material possessing the ideal stress-strain
curve shown in fig. 9.1. If a strip of this material is
bent so as to suffer plastic deformation, the magnitude of
the strain at any fibre can be represented by the straight
line 0S fig. 9.2 end the stress distribution by OFT. Let
OR represent the final strain distribution across the half-
thickness of the strip, i.e. AR represents the strain in
the outside fibres corresponding to the final curvature of
the stripe. This is, in fact, the quantity we require.
The distance SR on fig. 9.2. can be calculated as follows.

AT represents the yield stress Y and, to this
scale, the reduction in stress due to unloading is given
by the (vertical) distance between the lines OS and OR.
(Thus, the residual stress at the outside fibre is given
by AT - SR.)

Now, the applied bending moment at maximum
curvature is given by the first moment of area OPTA about
O together with the corresponding moment for the other
half of the strip thickness. The change of stress on
relaxation must be such as to balance the applied bending

moment. Hence, the moment of area OSR about O together
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with the corresponding moment for the other hslf of the
strip must also equal the applied bending moment. This

condition leads to the equation

3 2 3
.\ \2
whence SR = 3 AT - { AT <g}g\) ce e eeee (941)
2 5 o

Therefore since the diagram OSTA can be drawn,
the line OR can be constructed.

The final strain at the surface fibres‘is
represented by AR and corresponds to a calculated strain

eA = t/ZR

where R is the final radius of curvature of the
strip and t is the strip thickness.

Referring now to fig. 9.3 we can follow the
strain-history of fibres when unloading occurs. The
procedure for a material exhibiting a Bauschinger effect
will follow a similar but slightly modified procedure.

Consider the fibres at the outside edge of the
strip. The strain in these fibres when the strip is
subjected to maximum curvature is represented by AS and
the corresponding stress by AT. Thé strain in the
subsequent relaxed position is given by AR, RS being
given by equation 9.1. During the relaxation process
the stress at A decreases, the value being given by a
position on the line TY corresponding to the strain at
any given instant. TY is parallel to the elastic
loading line OP in the absence of a Bauschinger effect.
If the overstraining were uniform throughout the section

then the stress at A would reduce to zero (position x)
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and the Tinal strain would be represented by 0X. The
value would be given, by considering thc geometry of

fig. 9.3, as

e = AS . OX
AP. b"j{ ¢ oo oo .o (9.2)

eAn signifying the remaining strain for point A.

Since the stirain across the section is not
uniform the stress reduces to zero only at certain points.
In the case of point A, the stress must corresvond to the
final strain AR so that the final strain is represented
by OU on the stress-strain diagram OPTA where

ou AR

CA = As
that is, the point V on TY. If V is now projected to
point W on SA produced then AW (= UV),is,to the scale
AT = yield stress,the residual stress at A. Similarly
for a fibre at position B, the initial strain is BS' the
final strain BR', the unloading line is T'Y'. The final

strain is represented on axis OA by OU' where

ou' _ BR'
0B =~ BS'

and the corresponding point on T'Y' is V' which
projected onto S'B produced gives point W'.  Again the
residual stress at position B is represented by Bw'.

In this way the residual stress distribution
across the thickness of the strip can be plotted with
the result shown in fig. 9.4.

If material which has yielded in compression is
subjected to tension,then the unloading end possible
subsequent reverse loading of the fibres must he studied
in the above manner.
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9.2 Experimental determination of

residual stress distribution

Qe 21 » Method adopted

Of all the methods available for the determina-
tion of the residual stress distribution, by far the
cheapest and simplest is the layer removal technique.
Research has been carried out by Sachs(R26 & 34) and
others using various methods of removing layers and
measuring the resulting strains. This techniqué is
easily epplied but one must be aware of the fact that it
is quite easy to introduce stiresses into a material
whilst carrying out metal removal pfocesses. Distur-
bances do not penetrate deeply but in the case of thin
strip even this might represent a high proportion of the
material remaining.

Where the material under investigation possesses
an awkward shape, normal machining processes present
difficulties. Whilst a spiral itself is not too difficult
a shape to deal with in short lengths which can be fixed
to a circular adapter for maching purposes, the presence
of anti-clestic curvature does present problems. In
cases such as this electro-chemical machining or acid
‘etching appear to offer greater potentialities than other
techniques. Of these two processes acid etching is the
gsimpler, the main difficulties being the restriction of
etching to the surface under investigation and control‘
of the depth of layer removed.

The method adopted by the author is to 'stop
off' with special lacquer the surfaces where etching is

not required and to mount the section of the spiral
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(usually half a coil which approximates to a semicircle)
under investigation in the etching rig shown in fig. 9.5.
The bath contains 25% nitric acid/water etchant and the
specimen is rotated in this etchant for a set time. It
has been found that the time required to remove a layer
of material 4/1000 in. thick is approximately 10 minutes.
The thickness of layer removed is determined
by careful measurement using a micrometer, The radius
of curvature before and after leyer removal is determined
by measuring a chord and its sagitta. The calculation
of the stress in the removed layer is then carried out

as outlined below.

9.2.20 Calculation of Residual stress

It is assumed that the radius of curvature is
at all times much greater than the thickness of the strip
and consequently curved-beam theory is an unnecessary
complication. Referring to fig. 9.6, if a layer of
material of thickness A, is removed from a strip of
material containing a residual stress system, then two
processes are set in motion:

i) since removal of the layer represents
removal of an axial internal force, there must result
a change in the axial internal stress system in the
remaining material. Removal of subsequent layers
results in further changes in the internal stress system.

ii) since the layer is situated (and always
will be situated) to one side of the centroidal axis of
the strip, then a bending moment is associated with the
internal force contributed by the layer and removal of
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this moment must result in a change of curvature and
consequently a further change in the internsl stress
system. Clearly, an iterative process is indiceted

for removal of successive layers in which the apparcnt
"mean stress in the layer is calculated from the measured
change in curvature, This apparent mean stress is then
corrected to allow for the effect of the removal of
previous layers. Obviously, no correction is required

for the first layer. The procedure is outlined below.

9.243 Calculation of stress in removed

layer

Let the strip be of unit width.

For first layer let original thickness be t1,
the thickness of layer removed be Ajand the mean stress

o] The arrows on fig. 9.6 indicate the direction of

1.
a force applied to the remaining material which would
"produce the same effects as removal of the layer.

The elongation of the strip is given by

6, A
_ 21
a(e)y = E n,

and the change of curvature from simple beam

theory is:

Az = 3
2 E(h, -4,)
1 1
_ 60, A
= 1 1 2 P o0 L (901)
or approximately:
o,A, h
1 = 411
Aphy = =@

where I = 2nd moment of area about the néutral

axis for the material remaining.
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Rearranging eq. 1. the mcan stress in the layer

remeved is given by _
1 2
. d(z) (hy - Ay) . B o]
1 - 6A1 o ® e e °

Now consider the removal of a second layer.

Equation 92will give us the apparent stress as:

1 2
- a(3) (hy - 4,) < E
2 - 64,

_ - A .
where h2 = h1 1

This is now corrected to allow for changes in

the direct and bending stresses caused by removal of

layer 1. '
Direct stress due to removal of first layer
is: "
o)
od1 = 1h11 e L) oo e (9.3)
Bending stress due to removal of first layer
is:
o am Bk,
by = h13 2 2
= o, A
3 1 1 o0 o0 L] L) (90‘4)
h,
The true mean stress in the second layer is now
given by:
02 = 02' . 0d1 L o'b1 oo () () (905)

For the third layer the apperent stress is given
by application of equation 9.1 using the eppropriate values
for the change of curvature, the thickness of material and
the depth of layer removed. This is then corrected for
changes in stress due to removal of layers 1 and 2.
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Direct stress correction due to removal of

previous layers is:

o o A
O = 3984 4 3%8 9% , 3975
2 h h 1 h
1 2 2
and, then
o = O = 0© - O
3 = % a, ~ %,

It will be obvious how succeeding layers are

dealt with.

9¢2e4. Results of layer removal tests

In spite of the lack of knowledge of the true
history of the springs supplied for investigation, it
was decided to select some of these for layer removal
tests.

The results now reported refer to spring T.S.1
for which results of other tests have been reported
earlier in this thesis. In these tests half-coils were
cut and etched from one side only. (It is suggested
that in the full scale tests the half-coils are carefully
slit along the length of the strip and then one half
subjected to removal of layers from the outside whilst
‘the other is subjected to removal of layers from thé
inside.) The mean radius of curvature of the remaining
material is shown plotted against the depth of material
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removed in figs. 9.7 and 9.8 in which samples 'A' and 'B'
are successive half-coils subjeccted to layer removal from
the outside and samples 'C' and 'D' are different successive
half-coils subjected to lasyer removal from the inside.
The curvature curves are also plotted in these figures.

The stresses in the removed layers were calcu-
lated in accordance with the procedure established in

article 9.2.3 and are presented in fig. 9.9.
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CHAPTER 10

REVIEW OF TECHNIQUES AND RESULTS

10.1. Introduction

The investigation reported in this thesis has
fallen into a number of quite separate but supplementary
phases. These, it will be remembered, arose out of the
suggestion that the conventional theory applied to the
spiral (clock-type) spring has certain undesirable
limitations particularly when the spring possesses a
non-linear M - g characteristic.

The theory presented requires a knowledge of
the mathematical form of the spring when it is allowed
to attain its free state. As a result of this,tech-
niques of examining spiral forms were evolved resulting
in, finally, a simple technique which will allow the
equation of the (assumed logarithmiec) spiral to be
determined in a matter of minutes. This technique will
be described in detail later in this chapter. Thus far
then, two phases have been described, the call for and the
presentation of a new look at the basic theory, and
evolution of a method of examining existing springs.

The third phase embodies the work necessary to
validate the first two phases and this involves testing
the theory and techniques against measured results. In
order to carry out these tests a reliable testing machine
has been designed. This machine has spent much of its
life being used by an industrial concern for routine
testing of this type of spring. The machine described
in Chapter L4 has now been modified so that autographic
recording may be used. |
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In phase four of the work reasons for the mathema-
tical form were sought and, in particular, methods of
predicting the spiral equation were examined. The scope
of this phase has been reduced to a manageable task by
restricting the analysis to a simple idealised material.
This has led to the drawing up of charts to be described
later from which it is possible to predict the value of
'b' in the spiral equation r = roebg. In this phase,
also, the residual stresses induced in the material were
examined theoretically by the use of a computer programme,
and experimentally by applying a layer removal technique.

Finally, suggestions are put forward for
supplementing the present work by examining in detail
the mechanics of the formation of springs of this type

by plastic bending followed by tension.

10.2. Use of the theory

10.2.1. Method

The theory of Chapter 2 has been fully supported
in the tests reported in this thesis, and has given a far
better prediction of the M - g characteristics than has
the conventional theory. But it must be added in support
of the conventional theory that the cases chosen for
examination were selected for this reason. There are
many instances in which the conventional theory gives éood
results. Furthermore, it is simple in its application.

The theory advanced in this thesis is most
easily applied by measuring the required areas. Recapi tu-~
lating, it will be recalled that the technique in applying

160.



fhe theory is to obtain curvature curves plotted against
strip length for the wound, un-wound and free spiral
conditions. From these curves are plotted the curvature-
change curves and the area required is determined from
these last @entioned curves. If the method is to be
adopted it is a simple matter to draw up standard curves
for the fully-wound and run-down conditions. It will bve
possible also to accumulate data so that standard curves
for the free spiral are available for springs manufactured
by a particular firm, i.e. the values of 'b' associated

with an established technique of forming.

10.3. Determination of spiral form

10.3.1. Rapid determination of 'b'

If the free spiral is free from gross distortions
then the outside and inside 'diameters' may be used to
ascertain the value of 'b'. The inner and outer
'diameters' should be measured through the origin of the
spiral,but if it is remembered that when the ruler is laid
across the centre, the coils 'spring' from the ruler
measuring edge at equal angles, no serious error should
be incurred. The only restriction in the theory below
is that there must be the same number of. coils on either
side of the origin. This may necessitate discounting
the outside coil on one side.

For n coils on either side we can write
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e2n7tb

Py = Py
_ v, 2NTb
Tm = *p ©
= 1 133 emeten! - t 2n7h
B, * B, (= outer 'diameter') (r0 B B e
. outer 'dismeter' _ ‘n " Tm _ £ 2N
° inner 'diameter' r, + fg =
and In rn + I
1
rs + Py - b
2nT
in which n = no. of coils
r, = yradius at 6 = 0
ro' = pradius at 6 = =«
th
r, = radius of n coil
on side of r,
T . th
r = radius of n coil

on side of ro'

10.3.2. %o - g5 chart (fipg. 10.1)

It has been shown that the curvature of the

free spiral is given by

1
K =
(o) bs + r,
vhence r K = 1 '
oo bsr' + 1 L X [ N ] L ) (N

o

(10.1)

and approximately Ko=1/r, the radius on the free spiral at

distance s from the start of the spiral. Further Py is

approximately equal to the arbor radius. Equation 10.1

can be re—written as

r S
; = b"f'— + 1 ) oo oo
(s) (o]

(10.2)
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This relationship has been plotted for various
values of b in fig. 10.1 and the resulting chart may be
used to construct the K0 - é curve, Alternatively, the
chart.provides for the determination of b from the strip

length and the arbor diameter.

10e¢3¢ 34 Fully wound condition

A chart similar to fig. 10.1 has been prepared
relating the radius of a point on the centreline of the
strip to its distance from the start of the strip. This
chart, fig. 10.2, shows the ratio of the radius at the
point to that of the arbor plotted against the strip
length/arbor ratio for various thickness ratios (t/ro).
This chart is based bn the relationship for curvatupe in

the wound-up condition; equation 2.12.

— = 1
J(ro + 1;/2)2 + 8t/x

Ko

But'ft is approximately equal to the minimum
radius R (this is the same as the'R’'in the spring back

ratio R/r), therefore,
R? = (ry + t/2)2 + st/x :

and either approximately if r_ is the arbor
radius or exactly if Ty is the radius of the centre-line

of the strip at the start of the spring:
R = p 2 4 st/x

(o)

whence (R/ro)2 = 1+ s/ro . t/I‘O e T/x o5 (10:3)
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Equation 10.3 has been used to plot figure 10,2
for various values of t/ro.

This chart may be used to determine the initial
radius of points along the strip in the fully wound condi-

tion, and, of course, to plot the K2 - s curve,

103444 Errors

Examination of the equations concerned with the
free spiral shows that the percentage error incurred in
the determination (using 'b') of strip length, and curva-
ture are of the same order as the percentage error in 'b'.
The twist calculation will tend to minimise errors because
it involves the difference between two quantities each
including the term in error (+kK ). The effect on K, for
alterations in the value of 'b' are best visualised by

referring to figure 10.1.

10640 Testing using autographic recording
(f£ig. 10.3)

It was mentioned earlier that the testing
machine described in Chapter 4 has now been modified to
enable autographic recordings to be made. It is also
possible to drive the turntable by an electric motor so
that the testing operation is now comparable with most
other physical testing techniques.

The autographic recording has been achieved by
rfitting strain gauges to the torsion bar and re-calibrating
so that the torgque can be plotted directly. An X - Y
plotter is used to record the results and makes use of an

attenuator on the input to each axis so that the torque
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‘and rotation scales can be adjusted to suit the spring in
use., The rotation is monitored by driving a 410-turn
helipot through reduction gearing. The potentiometer

has a linear resistance characteristic so that its output
is directly related to the relative rotation of the barrel
and arbor. |

This recording arrangement is quite sensitive;
so much so that it is able to monitor the effect of coil
bundling and instability of the coils.

The machine is now being copied by an industrial
concern for their own use and should be capable of being
modified for use in a project designed to examine tensioning
of a strip after bending.

Figs. 10.4, 10.5 and 10.6 are copies of auto-
graphic recordings for the springs whose details are noted

on the recordings.

10.5. Use of charts and tables

10.5.1. 'b' charts

In fig. 10.1 we see plotted, for various values
of 'b', the dimensionless term roiKo (arbor radius x
curvature at & point on the free spiral) against the
dimensionless term s/r0 (s = distance of the point from
the start of the spiral). This information is presented
in a slightly different manner in fig. 10.7.

Basically the chart is for the spiral equation

be
r=mr.e

If 6 is made to correspond to a whole number of turns then

168.



JOQqu4D 30

Uo1D

%Y.

anbaoy

ui’jq]

S9




JOQJD JO UOIIDIGY

olo]

anbioy

13q|

170,



"J0qJ4D jO

punom £jinj
]241Dq DIp Ul

€q bundg

s4e5a885e

4oy gt

"uiq|

<ty

ceerferr

Seeidsror

anbso}

L8]




RADIUS CHART

//////// ///////// /://:: ::/i,_l

///////// ///////// ///////.// ii/i: ::/:__-

A
e
——
—
—
L
SN

Fig.10./7 Radius V No. of turns for

-To P

_

spiral r

_

Q
X amu O i 1

O.O O < Q
o [od o @) n

\

o

o

.o,,o///////// LB KT R S S S L R R RS R SR R R R
R
A R ID RN

—

_:____ eS|

10000

T
o)

1000
100
I

48
N

44

16 20 24 28 32 36

12

172

No. of complete coils




2%
o o roe¢~Nb

whence 1n r/rO = 27Nb

and this is the expression which gives the
straight 'b' lines when ln(r/ro) is plotted against N.
It is possible to affix scales for r K, and s/rO to the

n/ro and N axes respectively.

10.5.2. Example on spring T.8.1

This is a spring which has been the subject of
a number of tests reported in this thesis. There is no
significance to be attached to this fact, it merely
happened by chance that this particular spring was a
subject of nearly every exercise carried out, including
the layer removal technique.

Referring back, it will be seen that the
equation of the spiral was:

r = 0,81e0:92536

and the data for the spring were:

thickness t 0.056 in,

arbor radiug . : 0,625 in.
length of strip : 82.5 in.

We will now use this data in conjunction with
the charts, figs. 10.2, 10.7 and 8.1. By determining
the initial radius (wound-up) of a point (given value of
s) from fig. 10.7 (or 10.1) we can determine the value
of RY/Et and look up the spring—back ratio R/r on fig. 8.1
for any given back tension (P/Y). Then using a step-by-
step method we could construct the free-spiral form and,

if we saw fit, analyse it.
17 3.



the strip

roko =

Let us consider a point at the outside end of

then, noting that

t/z-0 = %/35 and L/ro w 132

then from fig. 10.2

The value of RY/Et is for E/Y = 168.6:

2.35 . 0.625 _ 4 456,

RY/Bt = 51056~ 166.6 =

From fig. 8.1 the spring-back ratio is

8 o
o_ R /R _
T = P //ro = 0.218

Now referring back to fig. 10.7 for

0.218 and &/ro = L/ro = 132

we find that

b = 0.027.

This value is within 10% of that obtained by

experiment.

10.5.3.

Investigation of spring A7

(refer to article 6.2)

The data for this spring were:

strip thickness : t = 0.038 in.
strip length : L = 300 in.
arbor radius : ry, = 1.375 in.
spiral constant : b = 0.0183
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Measuring the photograph for 415 coils on either

side of the origin, the inner and outer 'diameters' are,

at one position, 1.05 in. and 6.75 in. respectively.

Then applying equation 10.4, the value of 'b' is given

by:~-

and gives

result of

giving

values of

and

~

B = 1238;33 = 0.0197

This operation takes five minutes at the most
a result within 10% of the value obtained as a
careful measurement.

The values required for use with the charts are:

t i <]
— = and —=— = 140 for convenlience,
r, 86.8 v,

From the chart fig. 10.2

R
. * 1.62
RY _

gt = 0.3

From the spring-back chart fig. 8.1 for low

P/Y which will give compressive yielding
R ~

- 0.2

r

o _ E?/ll = 0.124

r r/ r,

which value on chaft fig. 10.1 gives
b = 0.506.
Obviously, the spring has been formed under

quite different conditions.

of

H |0 s

The value of b = 0.0183 requires that the value

= 0.3 be given and consequently that
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which could be obtained (fig. 8.1) if the strip is bent
under a back tension producing approximately 63% of the
yield stress. It is quite possible that a similar
residual stress pattern might be produced by tensioning
after bending.

Had we known that this spring had been formed
under tension, we could now examine the theoretical
residual stress distribution throughout the length, the

pattern would be in accordance with fig. 8.2.
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CHAPTER 11

CONCLUSIONS AND RECOLIENDATIONS

11.1. Reparding anplication of the thecry

The theory of chapter 2 has been substantiated
and the varioﬁs techniques tested and compared in those
inétances when more than one technique is avsilable,

Whilst the theory is easily epplied to a known
design, i.e. ﬁhen the choice of arbor and barrel_sizes is
restricted and the strip thickness is known, it is not an
easy task to apply the method of analysis described in
this thesis td the'design of a spring. A trial and
error method could be established using plots on trans-

parent paper of the three curvature curves-(K1, K, and Ko)

2
which would allow rapid plotting of the two change-of-
curvature curves and from these the Moment twist curves.
Obviously, this ultimately réduces the design operation
to a process of selection rather than a process of
calculation.

The theory examined has been shown to produce
a far better approximation to the actual M - g charac-
teristic than does the conventional (linear) theory,
particularly for those cases in which the M - g charac-
teristic is inherently non—linear., |

Fig. 6.2 is reproduced in Fig. 11.1 with
supefimposed on it the design curve proposed by the
(R35)

Associated Spring Corporation applied to the
spring A7 using the arbor and barrel sizes recorded.
Clearly in this instance the theory exemined in this
thesis gives closer agreement with the experimental

results than does the A.S.C. curve.
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It appears that the proposals in this thesis
could serve most usefully in predicting the M - 4
characteristic after the spring dimensions have been
decided. This could save the time and expense involved

in winding a prototype spring and then testing it.

11.2. Regarding testing techniques

The. autographic recording and manual testing
techniques using the author's testing machine have been
well tried and found to be satisfactory. The method
of testing used by some industrial concernsleaves much
to be desired; in particular-;t has been demonstrated
that friction in the machine can easily be excluded from

the torque measured at the arbor (or barrel).

11.3. Regarding supplementary work
At the outset it was thought that the clock-

spring problem could be neatly wound up. However, as
in most research projects, more work is involved in this
task than is apparent in the early stages. It was
necessary to restrict the investigation to two conditions
of forming, namely by pure bending and by bending under
tension, and to a simple idealised material.

Further work is necessary to establish
experimentally and theoretically the free form of springs
manufactured by winding with little or no back-tension
followed by a tightening operation. In this case a
comprehensive testing programme will be necessary to
ascertain the behaviour of the material during unloading
and reverse loading from plastic overstfaining.
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J. B. Whiteside's thesis (R.10) should prove helpful
in establishing the necessary technigues which have been
broadly outlined in Chapter 9 of this thesis.

Further study of the behaviour of the spiral
spring during the winding-up and running-down processes
might prove useful, particularly if coupled with the
examination of the curvature-change curves as indicated

in article 6.8, page 95.

11.4. Closure

The work described in this thesis has, it is
hoped, contributéd to the knowledge of spiral springs
in that it has established that such springs are,
approximately at leaét, of logarithmic form. New
methods of examination and testing have been evolved
and.tried, giving satisfactory results, and new work
has been proposed which, together with the work reported
here, should give a complete understanding of the
mechanics of the spring forming process for this

particular type of spring however performed.

180.



APPENDIX Al

Al.l - DERIVATION OF EQUATION 1.1

In figure Al.l are depicted the forces and moments con-
sidered to be acting on a spiral spring. M, is the external moment
applied to the arbor, and M, is the external moment required to ‘fix
the direction of the strip at its outer end in the clamped condition.

X and Y are external forces applied at the outer end of the strip to

maintain its location. The distances c¢ and d are self-explanatory.

Y

.S
Fig Al.1. External forces and moments acting on a
spiral spring.
Al.1l.1 Case 1. Theoretical M-¢ relationship for clamped outer end

If there is no friction between adjacent coils, equating

of external moments gives :-

hﬂ° = M‘-l- Ye Q"‘)

and taking Ml positive as
shown, the bending moment, M, at a point P (x,y) on a coil is :-
M = M+ Xy +.‘l C-x —_—(.2)
Substituting for Y from eq. 1.1 :-

(.3)

Moo= M- 2)+ xy Mz

Al.



The energy stored in the spring is now obtained as

4
., - 2
2El jM ds
0

in whichYy is a function

depending upon the product of the width to thickness ratio and the

width to radius of curvature ratio. (See appendix Al.2). In the
accepted theory for wide plates Y has the value

W= |- Vz

and in those cases where
simple bending theory is acceptable W = 1. |
At the present stage \Y will be taken to be unity and

corrections made later, if found necessary.

t

R B
Vo= ZEleds

o -

Then

(1.4)

If the outer end is clamped neither M; nor X do work

dufing either the winding-up process or the running-down process

2V 1.5)
oM WX \ .

From eq. 1.3 :-

M x
am, - ¢

o/

—m - fj-’ -—-——-—-——Q'“’»
A
Substituting the first of equations 1.7 with equation

1.3 into the first of equations 1.6 gives :-
L

j[M(l - X)+xy + M‘lé.] x ds =0 —{.8)

Q
whence

2 L

2
Jﬂox ds + j(MI-Méxlds+ f&xyc\s = 0O
c O C

[}

o

A2.



Now, if the coil spacing, d, is small then

2
(i) J’x ds = O since c. of g. lies on the x-axis
o
Q
(ii) f Yds wo since c. of g. lies on the y-axis
[}
Q

(iii) ny ds ¥ O  gince c. of g. lies at 0, approx.

]

In this event equation 1.8 reduces to :-

[}
' _(M-M)xlc\s = O
C
°
: and, therefore,

M=M|

Q

The value of X is found by substituting the second of

equations 1.7 with equation 1.3 into the second of equations 1.6 :-

| S
f[MQ(I - 2(__"-)4- Xy + M%]yds = 0O
Q° L L
or fMOYAS +J2MI-MQxyds +ijzds = O
° ¢ °
° which gives
X=0O
Substituting these values into equation 3 indicates that
the bending moment along the strip should be constant, i.e.
™M = Mg

If we now equate the strain energy, V , to the work done

by M, in turning the arbor through radian angle ¢ we obtain that

R
_ My _ A
V’aelgds =z ™Mb
. [~ .
whence
= Mgt 1.9)
P= E1 {

or more accurately

A3.



M €
¢= W-ET

where Y is the function
referred to above. It is implied here that\ is constant through-
out the length of the spring but, in fact, this is not the case.

This aspect of the problem is dealt with more fully in Appendix Al.2.

Al.1.2 Case 2. Theoretical M-¢ relationship for pinned outer end

In this case M; = 0 in equations 1.1, 1.2 and 1.8 and
equation 1.4 is unaltered. Therefore :-

M, = Ye (2..\\
M Xy + Y(o.-—x)__..—-—(z‘Z)
M = MQQ - X) + Xy (2:3)

1

and, renumbering

equation 1.4 for convenience

A Q
= W
V SET oj!"\ ds (2.4)
then, since X does
no work :
dV _ (
+ = © (2.5)
and
Q
AM = (2.6
a2 - o -

Q

Equation 2.2 with equation 2.6 gives :-

Q
Jr[xy +Ye-9] ds = o
. which expands to
0 Q :
JX\/":\S + J\/c.yds - JnydS =0 ~—_(2.7)
© [y °

As before

X = D ' because

Au.



IA d .
= d =
ofy s afxy s (@]

Equation 2.3 now gives :-

M= (1 -3).

and equation 2.4. becomes :-

fQ o xY ds

2] ) 2 %
R G

OI‘-’

V

"

N
.—f

no
~—p
O
v

and, since Xxds:(b s
0
L
. 2 2
v o= Mo jfds
2€1 2EI

M)

Now for a long close-coiled spiral of outer radius c,

2
z [
‘J\I O\S = T
o
therefore,
: 2
- _ 5 QQ
Vo o= 8 E

and equating to the external

work done by M, during rotation of the arbor :-

2
'S—M:-‘EM“(‘)

8 EL
therefore
¢ =T8T —)
Equations 1.9 and 2.9 can be combined into the single
equation M.€
= gt
¢ LBy

AS.



which is equation 1.1 of the text and in which a = 1.0 for a clamped

outer end and 1.25 for a pinned outer end.

Al.2 Distortion of transverse cross-section of a strip in
bending
(R4)
Ashwell shows that the shape of the transverse

cross-section of a strip subjected to bending depends upon the
dimensions of the strip (b = width, t = thickness) and the radius,
R, to which the longitudinal neutral axis of the strip is bent.
Three major types of distortion of the transverse cross-section may

occur depending on the value of the quantity b2/Rt as follows :

[ 8
i) o« % < \ bent to circular arc radius —5—

2
ii) 1 £ g—i—(lOO undulating, the undulations decreasing
' towards the centre of the cross-section

2
iii) 100 £ ﬁ%; flat except near edges. The maximum 'lift'
of edges tending to a value 0.102t

Ashwell deals with the theoretical determination of
bending moment by applying a factor varying between 1.0 and 1.125,
depending on the value of b2/Rt, to the simple bending equation

which, therefore, may be modified to the form

— EX
M o= EL oy, (AV.2.1)
in which we will refer to y, as Ashwell's
factor which is given approximately by the table Al.2 constructed

by the author from Ashwell's curve (R4 fig 7).

Table Al.2
b2/Rt| © 10 20 | 30 50 100 300
N 1.0 | 1.07 | 1.09 | 1.10 | 1.105 | 1.112 | 1.12

A6.



In the manufacture of spiral springs a wide variety of
strip widths and thicknesses are encountered,and the range of
b2/Rt through which a given spring may operate varies considerably,
Therefore the correction to be applied to the moment equation will
depend upon the instantancous state of the spring. In other words,
the value of Ashwell's factor is governed by the curvature of the
active portion of the strip for a given point on the moment versus
arbor rotation characteristic,

A chart showing the variation of Ashwell's factor Ya s
for a range of width/thickness ratios, with the radius of curvature
of the strip is given in Figure Al.1l. A typical spring design
might require the length of 1 in x 0.056 in strip to be 10,000t.

(t = thickness). The arbor diameter should be not less than 15t
and, for best utilization of material, the barrel diameter will be
approximately 150t. Under these conditions the value of b2/Rt at
the arbor will be about 30 and that at the barrel approximately 3.
The 'working radius' will have a value nearer to 3 than to 30

i.e. a value of R/t of approximately 70 (Fig Al.1l) which gives a
correction factor, ¢A= 1.02 to 1.03; It is seen t£erefore that the
application of the theory of simple bending incurs an error of less

than 5% in this instance.+

Al.3 Second Moment of Area of distorted cross-section

The curling of the edges of the strip during the manufac-
ture of a spiral spring causes a change in the relevant second
when
moment of area which should be taken into accountkinvestigating the
moment-rotation characteristic of the spring itself.
One of the springs tested was ultimately cut up into

half-coils in order to ascertain the variation in shape of the

cross-section throughout its length. At the inside coils the value

+ see section Al.4 p.A9a.
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of b2/Rt was approximately 25 and at the outside coil 6.5. The
deformation of the cross-section was such that the central part
appeared to be almost flat with the outer 1/8 in raised by 0.006 in
at the outside coil and 0.008 in at the inside coil. These values
are roughly in agreement with Ashwell's predictions. Fig Al.2 is a
reproduction of Ashwell's Fig 4 showing the theoretical variation
in cross-section to be expected.

The half-coils were next bent in a vice to half their
initial radius and the '1ift' of the edges was measured again. The
changes noted were of the order of 0.0005 in, in some cases an
increase, in others a decrease. It is justified, therefore, to
assume that the shape of the cross-section does not alter under the
operating conditions of a spiral spring.

The relevant moment of inertia of the undeformed cross-
section of the spring referred to was

o 3 -
I = l;;ig;géi_ =1.39 . 1070 in%

The value for the distorted section can be estimated by approxi-
mating to two rectangles displaced relative to each other in the
direction of the thickness by 0.005 in. The shift in the neutral
axis amounts to 0.0013 in if the edge effect is 1/8 in wide. The

relevant moment of inertia is

-1

1.389 . 10”2 in%

1.38 . 102 + 0.75 . 0.056 . 0.00132 + 0.25 . 0.056 . 0.00372

which is less than 1% greater than

the value for the undistorted cross-section. For the worst case the

increase in I is unlikely to exceed 2%.
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Al.4 " Supporting Evidence

The author's experience supports that of Votta
(Ref. B1.2.17). In the discussion of his paper with A.M. Wahl,
Votta pointed out that the plate theory produced errors, in his,
Votta's,case, greater than simple theory. The test results on his
neg'ator springs were 10% lower than calculated results based on

the simple bending expression but 20% lower than those calculated

using the plate theory.
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APPENDIX A2

A2.1. Derivation of equation 2.7
L 2
K ¢ Ar
- r =« 2 : - e Le
K = (T@) __Ae N O R
e Ac ¥ 1%
[\ * d.e)l
2 2be 2 2 2be 2 4 b
. ¥ = e - 2hr.e -—\arL_Q‘
e e (Fe™ « Trneeyn
|
- 5 - < =4 - = == (A2l
r,e.bek\ \-\:"y‘ (' 3

\ .
1.8s kc = \_(\*\;\#z

A2.2. Deri‘}ation of ecuations 2.8 and 2.9

The length of a logarithmic spiral between

angular positions 91 and 92 is given by:

Gz . d 1‘/2
s = Ar ) 46
§ (g
L= .
©
and r= r, e,be : ar - L.
ae
. G II
>
. e = S e ok\+\;31°\9
L ] [ ] &
e\ o
be \Il 2
2 - roer \*\3,.\ }
i.e. S [ o ( o,
Now if © = ©° and 6, = ©
C 2 ‘/7. ve - ([\'2_'2.\
then s = {_(\&B)(@—f) - - - -

Alo.



A2.3 Derivation of eaquation 2.10

Iguation A2.2 can be rewritten:
. Lo Y 2\
bs = e (AW — (W)™
Substitute equation A2.1 and get

bs = — — naR)"

o

whence

\
Ke =

bs ~ (\-«\;\.I"

and if % — O

bs ~ r,

All.



 APPENDIX Al

Al.1. Calibration of Torgue Barsgs for use in

the Tesgting Machine
Al.1.1. Apparatus

The machine used was an Avery torsion testing
machine, the arrangement being as shown in the photograph
(Fig. Al.1).
Ah.1.2. Procedure

The arrangement of the dial gauges shown in the
photograph is identical to that used in the spring testing
machine. The four torsion bars, A, B, C and D, were
designed for maximum torques of 200, 300, 500 and 1000
1bftin. at a twist of epproximately 30. This allowed
for a factor of safety of approximately 2, and provided
a good range for the machine. |

The torgue was measured directly by the Avery
machine and the diasl gauge readings noted. A plot of
torque against gauge differences was made for each bar.
A second set of readings over the range of each torque
.bar was made as a check.
ALh.1.3. Results

The resulting curves of torque against gauge
differences are shown in Fig. AL.2, These all prove
to be good straight lines, and allow the calculation of a
factor for converting the dial gauge differences (in
thousands of an inch) directly into torque in 1bf.in.

From the curves the gradients are:

grad A. = %ﬁ%%lbf.in./0.001 so factor A =

0.51751bf.in./0.001 in.
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Fig. A4-1. Testing rig.

500

400

Torque Ibf.in.
W
O
O

200

100

1 1 1

1
100 200

Difference in dial gauge readings
Fig. A4-2 Torsion bar calibration.
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grad., B = Eg—glbf.in./o.om so factor B =
- 0.81751bLf.in./0,001 in.
grad., C = ﬁ%%lbf.in./o.om so factor C =

1.275 1bf.in./0.001 in.

grad. D = %%%Q 1bf.in./0.001 so factor D

2,575 1bf.in./0.001 in.

Al.1.h Comments
The results obtained enable simple. torque

readingé to be obtained on the machine.

Ah. 2. Notes on the use of Dial Gauges

in the Testing Machine

. The use of dial gauges for measuring the machine
torque will incur 1haccuracies if they are incorrectly
aligned and positioned. It is required to estimate the
maximum probably error due to this.

Cbnsider fhe dial gauge and torque arm arrange-

ment shown in fig. AlL.3.

All



Assume an error in positioning of AL, and an
incorrect perpendicular angle with error A¢, as shown.

(a) Considering first the angle error, let the
twist of the torque arm be © (this is necessarily small),
so the true deflection of the gauge should be L6.

However, due to the error Ap the actual gauge
reading will be L6 sec. A¢, the error = LO(sec. A¢ - 1)
and percentage error due to this error = (sec. Agp - 1) x
100%. But sitinginaccuracy will not be greater than
+ 2°, so maximum percentage error = 0.0006 x 100 = 0,06%.

(b) Due to a positional error of AL as shown,
the effective length of the arm is L + AL, so the actual
reading for a small twist 6 is (L + AL)© whereas the true
reading should be L6,

Hencé the percentage error is given by-é%g x 100
In the system to be used L = 7 in. and siting inaccuracy is
of the order 0.025 in.

Hence the maximum percentage error due to

positioning will Dbe
94225 x 100 = 0.3%

The result of an angle error in the plane of the diagram
will be the same as for the angle error discussed above,
énd the total effect of all these errors is additive.

The total maximum error however, will not be greater than
0.5%, which is well within the required limits of the
machine.

The torsion-bar calibration will itself involve
inaccuracies but these are unavoidable in that it is
impractical to design a torsionbar for which the torque-
twist relat;onship can be simply and accurately calculated.
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Rotn.
e

~NouomEwnh -~ O

~NowunEsEwnNn 0 o

~NowmpEswnn .0 lo

-

-

< N

Test 1
Dial‘Gauge Loading
1 2 3 o Toraue 12 3 A
0 0 0 0 0 3.5 11 15 .5
1 1 L3.5 L1.5 34,0 8.0 17.5 60 34.5
1 3 7L.5  70.5 57.6 12.0 19.5 92.5 61.0
2 6 401.0 93,0 76.1 . 9.0 20,0 110.5 81.5
3.5 10 130 116.5 95.4 15 21 140 140.0
-9.5 16 159 152.5 124.8 =13 20 130 123.0
0 20.5 212 181.5 148.3 18 22.5 186 145.5
5 23 239 221.0 180.0
Retest
1 2 3 A ul 2 b A
0 0 0 0 0 .5 .5 0
0.5 12 52.5 I 0O 16 50.5 34.5
2 1L 87.5 71.5 3.5 18 82 60.5
3 16  111.5 92.5 1 18 100.5 81.5
L 17 138 117 7.5 19 131 104.5
9 18 152 153 -26.5 17.5 114 123
1.5 20 202.5 181 -9  20.5 175.5 146
6 21.5 226.5 221
Test 2 (Spring lubricated)
i 2 3 A a 2 - A
0 0 0 0 6 51 5
1 13 55 L4 3.5 16.5 56 36
4 16.5 90.5 70 6 18 85.5 61.5
5 17 113.5 91.5 L 19 105 82
5.5 18 138 114.5 11 19 134 104
0O 18.5 146 148 -26 17.5 116.5 125
3 20 201 178 12.5 21 182 148.5
6 21 222 217
Units
© - radians
Dial Gauge readings (1, 2 and 3) - 4072 in.

Spring No. 1

A

Torque

APPENDIX A5

Barrel 33" diameter, Arbor 14" diameter

Torsion Bar B factor = 0.8175.

1bf.in,.

A6,

actual relative deflection of torque arms

Unloading
Torque

U
28.2
49.9
66.6
85.1

100.6

119.0

10™3 in.



APPENDIX A6

A6.1. Spring A7 Test (a)

Experimental Results

2 dial gauges 3 dial gauges
Rotation Torque Torque Torque Torqgue
(revs.) (1b.in.) (1b.in.) (1b.in.) (1lb.in.)
Up Down Up Down
0 o) 0] 0 0

3 B i 1.4 8.2 6.73

1 12.9 11 4 13.2 11.4
1% 18.1 12,4 17.85 16.8
2 - 23.4 19.7 22.0 21 .2
2% 26.3 22.5 25.85 2L.8
3 31.6 2l.1 29.5 28.2
3% 33.8 26.4 32,6 29.5
4 37.8 29.0 35.7 32.6
Lt 40.1 32.1 37.5 36.5
5 43.6 34.7 Lo.L 38.6
5% uh.0 35.7 42.7 10.9
6 47.1 -+ h4o.y 45.5 b2.7
6% 50.5 4. Y 47.6 L45.5
7 53.4 47.6 50.5 L48.9
7% 53.9 L5.0 52.5 51.3
8 58.5 52.0 56.1 55.6
8% 59.5 50.0 58.5 55.6
9 69.8 56.2 64.2 58.0
9% 65.8 5h4.L 62.6 61.1
10 73:5 62.1 63.4 63.2
10% 75.0 60.0 67.5 67.0
11 81-7 - 6801 69.’4

Theoretical Results

Rotation Torque
(revs.) (1v.in.)
0] 0
1413 12,06
2.72 24.12
L.99 36.18
7.21 u8.24
9.75 60.30
12.12 72.36
14.52 84.42
16.12 96.48

16.42 106.2

Al7.



A6.1 (continued)

Spring A7 Test (b)

Experimental Results

Rotation Torque Torque

(revs.) (1b.in.) (1b.in.)
Up Down
0 0 1.0
% 9.6 o4
1 10.1 6.7
1% 12.9 8.3
2 15.3 10.9
2% 16.6 157
3 18.9 16.5
3% 21.7 18.6
L 23.3 21.7
5 28.2 26.1
5% 31.6 29,8
6 31.8 31.3
6% 36,2 3542
7 36,2 35.4
7% L4O. L4 40.1
81 40.9 ui.h4
8% 46.0 U5.3
91 Ll-?.9 L|.60
10 50, 51.5
103 55.2 55.9
11 55.6 5541
11% 60.3 60.0
12 60,0

Theoretical Results

Rotation Torque
(revs.) (1bein,)
0 0
2.22 12.06
L.61 24.12
7.00 36.18
9.36 Lu8.24
11.75 60.30
14.15 72.36
16.50 84.42
18.22 96.48
18.76 106,2

Al 78 e



A6.1 (continued)

Spring A7 Test (c)

Experimental Results

Rotation Torque Torque
(revs.) (1v.in.) (1b.in.)
Up Down
0 0] 5
% 7.0 6.2
1 13.5 11.6
1% 4841
2 22.8 24,2
2% 26.6 24.8
31 30.5 28.2
3z 34.2 30.5
h1 36.5 33.9
Lz 39.3 3645
5. 1.9 39.6
52 Ly.3 L41.9
61 L7.4 45.0
6? LF?-LI- L|-7-6
7# 54.9 53.5
1z 54.9 55.2
8 60.9 59.8
8% 58.0 58.8
9. . 6L4.7 62.1
9% 66.0 63.6
10 67.8 67.3
103 83.4

Theoretical Results

Rotation Torque
(revs.) (1lb.in.)
0 0
1.02 12.06
2.36 24,12
L.37 36.18
6055 LI-8.2LL
8.6 60. 30
10.45 72.36
10.95 79.50

A18,



A6.2, Proof of the equation for rotation

of the arbor

The angle of rotation is given by the area
between the AK20 and AK1O curves and the AK ordinate

corresponding to the applied moment.

g = AK(s) + [AKzods - /AK10ds
-_B 1
Now /AKZOds = ‘/{02+s - bs+k1}"18
3
where k, = ro(1 + b2)

1 k1 limits
= I:2B. c2+s—sln(s+-5-)]

B 1
Similarly /AK_'ods - /{ e bs+K1}

k limits
1 1
=| 2B c1+s—--51n(8+"b—)

' < k limits
. limit
¥ g = bLK(s) 3+[2B c2+s—%1n(s+f):]
4 k1 limits
—[2B’c1+ 8 + 3 1ln (s+-.5-):|
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APPENDIX A7

A7 .1 Equation of path on strip durine winding

Refer to fig. 7.3, page 103, for a point (x, y)

on the strip, the bending moment M is:-

M = ™M = T\.‘ - Rx
whence EL dy = M+ Ty - Rx
axr
2 2
2 2 — =t =
and LD’“)Y o SEE Y
. 2 . 0\1
where O I
m = R
ET
z
T
i £t
L = _‘1\-
P €1
which has the solution:
y = Aswhox Reahnx + Bx =My -— —-— (A1)
T X
The boundary conditions are:-
(1) Ax x=o ; y:o (11) ot x= L, y=~d
) ot %m0, Y- vy ab xsL L4y —el
(iii) = 5 = B (iv) o =)
(i) in equation A7.1 gives R = %
(ii) 4in equation A7.1 gives d = A swh nL+$(us\a nl-1) +%‘—~-{A‘li
(111) in gz (A7.1) gives @ = An R — oo (A1)
and
(iv) in % (47.1) gives ol = An ceshnl + P_f\T_n sinh m L 5 - - ~( A1)

A20,



Substitute for -13 from A7.3 into A7.2 then:
c; = Asw\ nl + %(ﬁcs\\ n\_-\) “ LQ/%~F\n\

or & = A(sinh nL-nq...;@os\mL\q N e ).

IEliminate % from A7.3 and A7.4:

Dé = /-\r\(QoS\'\nL—\X -« M____r_n §'\r\\\ nL-\-(& = - - - -KF\T’L)

1
Eliminate 31-, from A7.L and A7.6:

2
dnsinh bl = w4 (Qns\-\ nL-q = A sinh n\—-(%'\n\\ n\.-y\L\ - An (QO‘Z“ “L—“
+LBnasink ol = Besh nl )

n sinh nL(d L{s\ (\ Cosh n\—\(& ﬁ\ I, _((\j.j)
whence A = h {S\n\w nL(S\n\\ hL"‘hL) (_&o';\\ nl - \) }

Equations A7.2 and A7.3 give, on eliminating A,

C\nktcs\'\ nbk- \w- 0(.(‘5\}1\\ al —hL) = (\:\r" (QOS\'\ ol- \\ M'\ Sinh nb {sinhnl~ "q

+ L pn(esbal-0) - [s(-,.nk nl - L)

whence = T{(Q‘“’“ nl- ‘)(d £8) = (sinb aL-nL )R- A} - - - o(RTE)
ke

osh nl - \) — S\nh \'\L(Sm\\ k- nL)

Substituting for A,and B = % in equation A7.5 gives

A (tosh nla)(d-LE) = (sint nL-“qus-oo)} o v Bues ——'(“7'“\

(fosh AL =) = sk b (swh nl-nL)

A21,



Now, from equation A7.3 we get

R = ‘T((s— Ar) and hence

(o) ',-'\n\\ fal L(d -— Lg\ ~- (o(—(%)(\ - Qos\'\ nL}
R = v {(3 T sweh nL(Swnk nL.-hL‘)— (eosh nl - Y-

If we substitute in A7.1 for % and % we get

\J = A swwh nr « g(}os\\ \’\7&—-\) ~“« ({S-Rn\x

which requires only evaluation of A and B in order to
obtain the path of a particle " which is almost identical

to the shape of the strip between 0 and P, fig. 7.3.

A7.2. PER CENT VARTATION OF EXPERIMENTATL

VALUZS FROM THEORETICAL

The simple per cent variation given by the

expression
r, -r
e
¥

does not yield a true indication of the difference since

% variation = x 1005%
the final radius depends heavily on the initial radius
before spring--back. A better expression is yielded by
using the spring-back ratios R/rt and R/I.e :
% variation = R/ry - R/re x 1005
R/rt

Note that R cancels leaving reciprocal r's.

For example take material B, table 7.1, page 108, pressed

with a # in. radius tool.
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R = 0.510, ry = 0.963, r = 0.937 (table 7.2,

e
page 118)
1 . _1 _
% variation = 0,963 0.937 x 100%
1
0.963
= 2.84%
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APPENDIX A8

STRETCH=-FORIMING OF SPRING STRIP

Assume an ideal elastic- perfectly plastic material.

~— Yz —]

+Y

|
|
l
|

>y F—

(i) Stress distribution with Pure Bending.

.‘___v):_’ t.4—— ("t —
by m'*y
/ 2xY = Pt
TEnsLE / P

R P

compPRY! b Ny
] dc oY E = E-
Y d—la t 2N

(ii) Stress distribution with tensile stress P giving

compressive yielding.

/F:iz:_.,y

S

(iii) Stress distribution with tensile stress P giving

no compressive yield.

A2l



b
B, e weh e = _ i}
Q.
\
sl @)y .
5 - — = —
L

(W) Strain diagranm.

ab position of unstrained fibre.

a1b1 position of fibre strained in tension only.

a2b2 position of fibre strained in tension and bent
to radius R.
a3b3 position of fibre after stretch forming process.

Assume that strip is bent under constant tension.
Two conditions may obtain depending on the magnitude of the
tensile force and the radius of bend.
1) There may be compressive yielding at the inside

edge (fig} ii) in which case the analysis is as follows:-

Let &, = strain at inside fibre = (ELF\-"."-
strain at distance d from inside fibre is
£y 3 AV and LedL)y = L+@lg,
. R+d R

A25,



e s (Redy (L)

or 2q = Q*%)U‘*Ea)—\ s £
Depth of yield dc:-
. Y
E. Edc = "\{ Vo Ede = €
A
AlSO E-o\g_ = E‘e\ iy —R&C\.\- ié\\
(Y
\+ Sa
de . —RY _L_
and f - Eb "k €a

Depth of yield dt:—

\ = v
E2a, = Y SoEc %
Also 4. = Eo~+ (E=dN (1 =a
Ay = ( )
(Y _
o.o dt - = ik)R -
\ & Ra

and db:\_(c&_‘_lﬁ_

For zero resultant force on cross section:-

Pe = \/(C\k— d‘c\

ie. Pe = N (k A 2_35(_\\

\ % Sea
Sa - P k
whence = = -\ )=
' l¢ e (\( )1E
If = &a— | then o (—\PT - \>';—'R
or it =, = (| ._E>
or 2 RY

Ec \I

—* %(\-& SQ



Stress condition across the section is:- (see d&ngi€)

oy~ By R
ay' _ Dby = E[’;“ * L) ‘\%\
b2| - b2 o- = —\\l

Let radius after spring back be r then strain at any
distance 4@ from the inside fibre is:-
{
- d
g4 = Zay - S(vv ey

Change in strain is

' | < £, _ lx g,
N T

Residual stress is given by:-
o = o 4+ EAS
e

For zero resultant force on any cross section in the final

state, we have:-

jo‘ dt = O Leb k-4 = o\:
theq 3 —
de de . : ¢
‘S—\ld\: + j‘Ez,dr EQ-*SQS‘_«:U: -~ SYcu-
s Ao " 0(;

k
+ B (e )~ Bz a)dlar =0
5 v R

U 2
v, = Ydx Brfdy o) v E(wed(el - d:>+ Ve Mo,
2R

-+ E(Eqs-ia)\: + E(\:“_Ems__\ \\:z -0
v R )T

i.e. Y(t - QAL*AQ))* Eea(df ~dem &) = e(\;{iaﬁ@: -a}t‘)

et EE E A E-(\*'i*\;\t = O
.‘lr
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and g, (EC %‘\ = Y(dg® de-t) - \?L__t; X Eaﬂﬁk—b\\(dt\\

+ eﬁ\{_\?(@_ (e -o0))

\
) EAN S+ g

+ (\« 24) 'l_ 0"-_ ) '
N GEOES) (V)

For zero resultant moment on any cross section
in the final state we have:-

b

- d d = O
=9
;\t . d\t . k
) u S—-\{c\c\);- * SEiqdd\k ~ SEL\—%&\_C}_&: + S‘{A&‘c
- R
‘ e de d,
. £
(e _ - (S v S\d dk = O
.3 Xk(zd; Ta)d ok + Sc(*_r 2 1R_ o
© ' (¢]

TR S
te. Y(e- d, -d) + E;mko\': -t ;E:R(wi«\(d;o\t—h)

< EEM\:_;L + '_E;(\--\-Ems \:3 = O
3r

2 3 L c R : \1- T
whence E_iws(\’-* %_ = %th*c\,ﬁ~t3* _%‘_ (\: cw O\Q))

' 3
RSS! €°_(a"—o\2\) ~ EE
IR - 3
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S ) = X (el - f_;kk‘—@f-(*‘c»

(i

A l(\«im\\__ (o\ c\) C o (A2
,m( b= (he2)

From page Ao6

dc = —C.“.E*- ‘i«)R - C\t\ = dos AR o (p‘%,»ﬁ)
\+ 2o Ek\*i“\

— - e— —\ .= ) éo\ (@)

\x<a (\/ >2R =

" le LA S =\

then o = (—YE—\)ZEE S o e e s e s e _..(Hg,z.,)

E
Ir  \x Ta — | then  £.= (§"V) e
V=18

also N (3 de) = P of \/(L-_c,\:_o\Q = Py

\
and dy-de = 23R . AC+0\¢= — AR s,
E.(\+$..§ g \+ Ea
. 2Rs, P
A = t
o \I(t I+ S

AB-\ now gives

i e = — - E“("' l\\e
q;(\ * a2 E C(H"Zo\)

(14 %) (L. ANR

-+ b+
2R¢ E ()
; N S S L
. L = —=—X 4+ S, +~ £

R Sy (\ ) E 2r 2R (‘* i“\

A29,



< . = 1= : .=
I A R s A A Gl
Similarly with equation A8.2:-
Laqy (\* ——j 2 = K %(D.YI-& 2\5"2:))
3¢ EX E(Hs;,\
* %(EL*- Af\{QZEG\
t E (= @)
“ 1 \«x iu)& )
IR (;(\ m)("\‘ *\’\‘EA
el "
AT
Expanding right hand side
=y, - Y .2(yyR N Rt
&“’(\* Sr) ) € (E)((HEQ)Q * %g—ié‘\-;—isr;\
<t =4 AN
((\«-Z..)\—)
A :L(\+ sqk v A
_k )(l\*i*)’c\ iﬁ(\*mt)
- 2
v
u«u;_f) = €4 + E%(\-«-&) —3-?;_\%
-V Z
E ( L(u—i“)’c)( ) 12“)>
Y N R L A (B T it (A% L)



V(AE.S)*(\*%&"_\ = £a (\*z e) _P \*%%)‘5(‘*%%)*?52(\““)(” ’,-g?) o= (ABY)

(heby v (v £) = g E )+ TR0, ~2e () - E) - - e
3 -lié_\ \"'%}\

(hsn) - (res) & -

and E (im..\,\) « &£ \L _ 2P __\(&\

?-k(-\*i&\b Y . 2R
c

GR =
L[ os.a\ 2 © N (\-2A) = £ _Y(li-2n)~ E (_\+i..
r(-*’?;'c:*ﬁ( e e )
| HE B (R _Y(1an))
w\‘\it\ct_ E = t - c \ € c \
&% 2 P _
J - IE ™ L (-2n)
o wabuels A B N *
o whe = Ly )
(\*ia)b>(‘$k5\*
o A i | Q\/>z'
(&
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e R . b $(E -30-2e)
- L - 28 o Y (-2R)
. I N(E _ (- 3
And . R - g*'ét(\( Q -2m) e (he
1
g R ‘23‘% lé ~ Y(v-2n)

No compressive yielding

2)
Ead: \l \\\ Za = \_/__ < d e \’
E r[[
v llfL
Yor any value of d:- w/i | R
o
/ ®
(« @Y, = R*“‘K\»«\d\\“\ | Iﬁ comPrention
® o [~a i
\d\) - R-\d\ &d‘\"m T& >
i SRR g

k% Eg ¥ (B £,
)1 =)
IR ‘*%Q\*E«)-\-ik

® Ca = ‘%(}*i@)
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Equilibrium of cross section

area = = area \\W\
X
Y-P _  Pioc o Pro . d-x
e A - ' N-@ .
. ~ =  (Y-p)
N+ &
area =, = area W\
area = + U7 = area W + 7

Y-#)e - %L‘HG}

N+o) & (1= €a)
e(N-0) N
= (L-w) & . \
N-e2) k € )\\«s_&) and & \x g —>

then _2£ N—P) w (Y
E (X-) = (-=R

(%’_--i,)z w -;_(_2(\(-9)
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o = Y _Jz2t
: Y N 20 -
tan - —_— = L
°f E C\ =
Et

where the dash s vsed bk o\\'s\-iw&v\s\\ bekween the tuwe
cases \e cCase | and case 2.

Stress distribution across section

a-d:- o = Ead = E(za*' c—é(\-\i.}) A b

d -b:i- o= ~Y

If radius after spring back /

is r then strain at distance

d from inside fibres is

= . g ey '
d o ¥ r(\*io,\

Change in strain is As = (Fa-%)« Q* £ — \xg. \
ne - ey

n

Residual stress is:- s o+ EAL

For Zero resultant force in final state:-

jO‘ S\

a-di— o : E(ter %Q\*sq) = (RS A E_‘_‘E.\(H a) - 2w

£ (e~ 4(w)

1]

o

"
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d - b:- oo = Y = E(E‘:* %(\i—il)) = E(ém* %Q\-&-&\w

9

t t
SC';QS dt = ijk -~ L[E (2; ~« %-(\-& i;\)dk‘ -~ jE_(iM+ O_é(\-\- Ee_)‘) Ak
d Q a

o = \/(E——d‘) “«- EE;\: “« %.(\-&E:,\g — EQGQ:_&\‘ %(‘*iq\(ti“{d})

ea (b~ et - Eafb-d) ¢ (a)(iat) ~EE () oo - (k819
2¢ 2R 2¢

For zero resultant moment in final state:-

Scr A d = O
res
t b b v
\
_ Sc‘{;s A ok = S\(d dvr =« SEKEG\d ~ %\z(\.\.go\\'o\\— - gEK&d*—O‘\_;(\-&@&.\:

0 d o

v L2 3 o '!__ 3
o = Y[+ EnE | etiia) - enlear) -Hua e

\ 2 2o 3 43 _ v N (A8
2 (ef ) - Beld) « N - B e &) - --- 488

Rewrite (A?-lt:):-
|
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