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ABSTRACT 

Concern has arisen as to whether the lack of appropriate consideration to surface 

water in urban spatial planning is reducing our capacity to manage surface water flood 

risk. Appropriate tools are required that allow spatial planners to explore opportunities 

and solutions for surface water flooding at large spatial scales. An urban surface water 

balance model has been developed that screens large urban areas to identify flooded 

areas and which allows solutions to be explored. The model hypothesis is that key 

hydrological characteristics; storage volume and location, flow paths and surface water 

generation capture the key processes responsible for surface water flooding. The 

model uses a liDAR OEM (light Detection and Ranging Digital Elevation Model) as the 

basis for determining surface water accumulation in a catchment and has been 

developed so that it requires minimal inputs and computational resources. 

The urban surface water balance approach is applied to Keighley in West Yorkshire 

where several instances of surface water flooding have been reported. Data for 

validating surface water flood risk models is sparse because such flooding events are of 

short duration, very localized and distributed across the catchment. This research used 

a postal questionnaire, followed up with site visits to collect data on surface water 

flooding locations in Keighley. The validation exercise confirmed that the major 

processes responsible for flooding are largely well represented in the model for 

situations where interaction with the urban sewer network is well represented by the 

assumptions made in the model. A qualitative analysis based on field visits revealed 

that the degree of interaction with the sewer network varies spatially, and as the 

importance of the interaction of the sewer system increases, the accuracy of the 

model results are lowered. It also highlighted that local detail not present in the OEM, 

the presence of urban drainage assets and the performance of the sewer system, 

which are not be represented in the model, can determine the accuracy of model 

results. 

Model results were used as a basis to develop solutions to surface water flooding. A 

least cost path methodology was developed to identify managed flood routes as a 



solution. These were translated into model inputs in the form a modified OEM. It was 

shown that the simple and fast representation of flood routes and surface storage is of 

considerable benefit for scenario analysis. 
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1. INTRODUCTION 

1.1. FLOODING IN URBAN AREAS 

The Oxford English Dictionary defines 'flood' as "an overflowing or influx of water 

beyond Its normal confines" (Allen, 1990). Urban areas can be flooded by water from a 

number of sources, and these include coastal waters, groundwater, river flows, foul 

water from sewers, water from burst water mains and rainfall that remains on the 

urban surface. Flooding has traditionally been classified according to the direct source 

of water (as listed above) as this has permitted scientists to concentrate on 

understanding the underlying processes and mechanisms responsible for the water to 

flow beyond its normal confines, be it the piped sewer system, the river channel, or 

the infiltration processes that usually drain the land. In reality all flooding is part of the 

same system; the wat,er cycle. In the current decade, and as a direct consequence of 

recent flood events, there has been a move towards Integrating the research to date In 

each of the component parts of the system responsible for flooding (although it Is 

recognized that not all parts of the system are always included). Recent flood events 

In the UK, most notably the flooding In the summer of 2007, acted as a timely 

reminder that the various processes that lead to different types of flooding, do not 

always occur In Isolation and furthermore interact with each other (Table 1.1). In the 

summer of 2007, climate conditions led to many UK cities suffering from rivers 

overtopping their banks as well as a build-up of rainfall on the urban surface (that 

never entered the sewer system or the fluvial system) and surcharging from 

overloaded sewers. Since the recent flooding events a new branch of urban flood risk 

science has taken off and Is known as Integrated Urban Drainage (IUD) (Gill, 2008). 

Whilst there Is still much research needed to fully understand and model the processes 

(both physical and Institutional) that lead to flooding from each of the components, 

IUD modelling aims to integrate current knowledge in each of the fields to better 

understand the joint consequences. 
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Table 1.1: Interactions between some of the different sources of urban flooding 

Source of flood Ina 

Fluvial 

Surface water 

Sewer system 

Groundwater 

Interactions with other sources of floodln!! 

Raised river levels prevent surface water from discharging Into rivers and watercourses and rivers 
and therefore It remains on the urban surface. 
Raised river levels also cause backing up of sewers which can lead to surcharging and flooding from 
the sewer svstem. 
Increased surface water makes its way into rivers and increases flow In rivers. Increased runoff 
production means greater Quantities of water enter the sewer system. 
Increased flow In sewers leads to Increased com blned sewer overflow spills Into rivers; therefore 
there Is more flow and pollution In rivers. Surcharged assets expel water onto the urban surface 
aggravating surface water flooding. 
Raised water tables can cause direct flooding of basements, tunnels and even at the surface. 
Groundwater Interacts with other potential sources of flooding as raised water tables can reduce 
soillnflltratlon and groundwater Infiltration Into sewers reduces the available conveyance caDaclty. 

1.2. SURFACE WATER FLOODING 

The boundaries between the different types of flooding are often blurred. There is a 

fine line between what is now being termed surface water flooding and sewer 

flooding. Under normal conditions, rainfall that lands on the urban surface is expected 

to enter the sewer system and eventually be removed from the urban area (Butler and 

Davies, 2000). In some cases, rainfall never enters the sewer system for a number of 

reasons; it could be that the topography means that the flow route of the rainfall 

failing on a particular spot is never Intercepted by a gulley or it could be that the sewer 

system is full and therefore rainfall cannot enter it. A build-up of surface water in both 

these cases would be termed surface water flooding. However, it is also possible for 

rainfall that has entered the sewer system at one point to then leave the sewer system 

under surcharging conditions at a pOint further downstream. This water will then 

proceed to flow on the urban surface and could either be termed sewer flooding or 

surface water flooding. It Is currently the responsibility of each researcher to clearly 

define the scope of their research. 

Several terms are currently in use which can all be interpreted to mean the same type 

of flooding including; stormwater flooding, pluvial flooding and surface water flooding. 

A clear consensus on a definition for each of the terms could not be found, and all the 

terms are used to mean similar types of flooding In the literature. In this research the 

term surface water flooding Is adopted, in line with current practice within 

organizations In the UK. The definition adopted is that surface water flooding is rainfall 
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that ends up on the urban surface because it does not infiltrate into the ground and 

neither is it drained by the sewer system. This definition excludes flooding that may 

arise from sewer surcharges or failures. This runoff, which is termed excess surface 

water throughout the thesis, either moves across the urban surface as overland flow or 

remains on the urban surface in the form of puddles and large ponding areas. 

Usually puddles in urban areas aren't seen as a problem and therefore they are not 

referred to as flooding, but when the puddles are large enough to close roads because 

vehicles cannot drive through, or when the puddles prevent people from getting into 

their houses, this is a surface water flooding problem. Similarly, very shallow overland 

flow running along the side of a road does not cause inconvenience, but when the 

overland flow path is through a property, or is so deep that it prevents vehicles and 

pedestrians from using the roads, it is classed as a flooding problem. There is now a 

growing awareness, possibly coupled to a growing frequency of surface water flooding, 

as illustrated by a quick scan of recent media reports on the internet that refer to . 
surface water flooding incidents as listed below: 

"Some roads were left under several inches of water after an intense rain and 

hail storm overwhelmed drains on Saturday" (BBC News, 2011) 

liAs the road down through the street began to look more like a river, 

householders were forced to make a mad dash to the fire station to collect 

sand bags and protect their property" (Harwick News, 2011) 

" ... london Assembly's Environment Committee claim some streets could flood 

from rain within minutes." (EdleWater, 2011) 

"Motorists endured treacherous conditions while driving through flooded roads 

in Newcastle-upon-Tyne on Saturday - and there is more weather like this to 

come" (Mall Online, 2011) 
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"I watched the water cascading down Feus Road on Wednesday and the drains 

were clearly no use, again" (Perthshire Advertizer, 2011) 

"The pumping station, to be sited underneath the Corporation Street car park, 

will pump surface water into the adjacent river during a flood, reducing the risk 

to central Rotherham" (Yorkshire Post, 2011) 

"We are working with Dundee City Council to investigate the wider issues 

regarding surface water management across the catchment" (The Courier . , 

2011) 

"There is obviously a major fault in the system when the drains cannot cope 

with what has become normal rainfall and we must look again at what has 

been done and what still needs to be done to ensure that these folk can sleep 

in their beds at night" (Southern Reporter, 2011) 

1.3. MODELLING SURFACE WATER FLOODING AND LlDAR 

Up until the last decade surface water flooding (in this case defined as rainfall that is 

not removed from the urban surface by the sewer system), was modelled and 

predicted by representations of the piped urban drainage system. These Include sewer 

network models such as Infoworks CS, MOUSE (Model for Urban SEwers) and SWMM 

(StormWater Management Model) which use mathematical modelling to represent the 

hydraulics In pipes and manholes (Butler and Davies, 2000). The contributing area of 

the sewer entry points has traditionally been manually delineated using topographical 

and land use maps and following expert judgement (MWH Soft, 2011). Runoff from the 

contributing areas is computed by the Rational Method or one of the empirical 

percentage runoff coefficients developed by HR Wallingford (DoE, 1983), and is then 

applied to obtain the volumes of flow entering the system. Surface flooding Is 

predicted at manhole locations where flow exits the sewer system. The volume of 

flood water exiting the system may then be used to produce an outline of the extent of 
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the flooded area, or an attempt to predict the likely onward overland flow path can be 

made using topographical data. 

LiDAR (Light Detection and Ranging) is a relatively new technology which enables the 

production of digital elevation models, over large areas and at very high resolutions 

(Lillesand and Kiefer, 1999). The availability of such data triggered a rebirth in the 

techniques used to predict surface water flood risk. Existing urban drainage models 

began to be revised (Allitt et aL, 2009) to make use of LiDAR OEMs (Digital Elevation 

Models), principally to model the onward overland flow route of water leaving the 

sewer and also re-entering, but also to better predict surface water flood depths and 

extents. New models have also been developed that exploit the detail in LiDAR OEMs 

to model overland surface flows using 20 hydrodynamics (Hunter et aL, 2008), and 

LiDAR OEMs have also been used to extract 10 networks representing the urban 

surface, which are then used to compute channel hydraulics (Makslmovic et aI., 2009). 

These on-going developments in urban drainage modelling have also fed Into current . 
exercises in Integrated urban drainage modelling, whereby sewer network models are 

coupled to models that represent surface overland flows and in some cases a 

representation of the fluvial system is also Included (Chen et aL, 2010). 

L1DAR OEMs created much excitement In the urban drainage modelling community 

because they cover large spatial areas at a relatively low cost (compared to land 

surveying techniques) and furthermore they represent many of the urban features that 

dictate water movement, such as buildings and road curbs, which are not always 

obvious from topographic maps. Whilst LiDAR has generally been accepted as a 

valuable resource, there are still challenges to be addressed which currently mean that 

there are Inherent limitations in the use of LiDAR for surface water modelling. For 

example, techniques have been developed to remove vegetation and extract surface 

heights In Its place, but other features such as road bridges and elevated roads 

continue to pose challenges for hydrological modelling (Evans, 2008). Similarly, 

depending on the resolution of the data, not all features that dictate surface water 

movement are captured by LIDAR. 
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1.4. MODELLING WITH GIS 

Geographical Information Systems (GIS) are widely used in various disciplines and 

applications. It is thought that GIS originates from exercises that date back to the 

1960s when the first computerized maps were being produced (Longley et aI., 2001). 

Although in many ways GIS are similar to a database, in that various data sets can be 

linked and queried, and to computer aided design (CAD) in that shapes and geometric 

properties can be produced and stored, the unique features of GIS are the ability to 

carry out spatial analyses and queries, and to be able to geo-reference features in 

relation to the earth's surface. GIS is used as a (spatial) problem solving tool because It 

allows specific and high resolution information to be combined to produce general 

patterns which form the basis of the practical output for decision making and problem 

solving (Longley et aI., 2001). 

GIS has been widely applied in hydrology (Chen et aI., 2004; Jenson, 1991; Maidment, 

1993; Maldment, 2002; Singh and Woolhiser, 2002), and GIS software packages 

Include as standard basic tools for hydrologic analysis such as identification of cell flow 

direction, catchment delineation tools and methods for identifying surface depressions 

(ESRI, 2010). New algorithms continue to be developed for improving the extraction of 

hydrological and hydraulic data from OEMs (Freeman, 1991; Metz et aI., 2011; 

Tarboton et aI., 1991; Wang and Liu, 2006). GIS has also been used as a modelling 

platform In Itself (Chen et aI., 2009), and as a source for extracting or computing 

parameters as Inputs for hydraulic models (Boonya-Aroonnet et aI., 2007; Casas et aI., 

2006; Evans and Ackerman, 2000; Wiles and Levine, 2002). Although GIS has been used 

to compute river catchment water balances (Arnold et aI., 1999), there are few studies 

that combine standard hydrological tools and GIS capabilities to compute the urban 

surface water balance with the aim of predicting flood risk locations. The main 

difference Is that catchment scale water balance models are usually based on well

defined and reasonably well understood river channel networks. Water movement 

across an urban surface Is not as straightforward to identify due to small and subtle 

man-made features which alter natural pathways. A water balance approach that uses 

a LIDAR OEM in a GIS to dictate locations of surface water accumulation may prove 
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useful in screening for surface water flood risk at large scales. To screen for flood risk 

over large scales using hydrodynamic modelling, not only requires significant 

parameterization and calibration but also computational resources. Methods that can 

screen large areas with minimal resources would therefore be of great value. Similarly, 

models that facilitate solutions and scenario analysis to be explored over large scales, 

would be of use. A water balance approach may satisfy these needs. 

1.5. SURFACE WATER FLOOD RISK SOLUTIONS AND CLIMATE CHANGE 

Much of the UK drainage system, particularly In older towns and cities, dates back to 

the Victorian era. Since then towns and cities have grown along with connections to 

the sewer system (Butler and Davies, 2000). This has meant that not only are there 

more pipes and drains collecting water into the sewer network, but Increasing 

Imperviousness and Impermeability associated with urbanization also means that 

more rainfall Is converted Into runoff. Both of these factors increase the risk of surface 

water flooding. Coupled to these pressures Is the uncertainty surrounding changing 

rainfall patterns associ~ted with climate change and the need to adapt to an uncertain 

future (Evans et aI., 2004a). Most climate change studies conclude that extreme 

rainfall events will become more frequent (Hulme, 2002), however translating climate 

change rainfall scenarios into the temporal resolution required for urban drainage 

modelling is an area of ongoing research. 

Despite calls for a re-think of surface water management (White and Howe, 2004), 

surface water flood risk only really moved up the research agenda following the 

flooding In the summer of 2007, with recommendations emerging as a direct result 

(Pitt, 2008). These are now beginning to be reflected In legislation and The Flood and 

Water Management Act (2010) is expected to lead to significant changes in the surface 

water management. For example, the automatic right to connect to the sewer system 

may be modified and It should become easier to Implement sustainable solutions 

which up until recently were held back by Institutional and organizational barriers. 

SuDS (Sustainable drainage systems and also known as BMPs, Best Management 

Practices and WSUD, Water Sensitive Urban Design) Is a term that describes a 
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collection of man-made features that aim to mimic the natural processes of urban 

drainage (Woods-Ballard et aI., 2007). Although in some cases increasing the capacity 

of the sewer system or underground assets is still deemed the most viable option, it is 

now generally accepted that sustainable urban drainage solutions are more desirable 

and provide greater adaptability to deal with climate change, as well as offering social 

and ecological benefits (Faram et aI., 2010; Wong, 2001). 

Recent thinking regarding climate change calls for more emphasis on adapting to 

climate change, rather than merely stating the impact of climate change (Wilby and 

Dessal, 2010). Identifying adaption options is a huge challenge as even without climate 

change, current trends pOint to the fact that we are in fact reducing our ability to deal 

with the challenges associated with climate change. Monitoring of the UK's progress in 

adapting to climate change found that impervious cover increased at the expense of 

urban green space in six locations in the UK (Committee on Climate Change, 2011), 

highlighting the reduced adaptive capacity for surface water flood risk management. 

Faram et al (2010) also make the point that the existing built environment is one of the 

major constraints In Implementing sustainable drainage options. In dealing with 

surface water flooding, it Is not an option to wipe the slate clean and start afresh 

(Faram et aI., 2010), therefore methods are needed to identify viable solutions that 

can be implemented given the current urban fabric. There has been much progress in 

this field, in terms of development of decision support tools (Swan, 2003) and 

guidance (CIRIA, 2011) for identifying opportunities for retrofit SuDS. 

1.6. OBJECTIVES 

The aim of this research is to develop a model for screening for flood risk locations, 

which Is computationally efficient so that It can be used to rapidly evaluate a range of 

high level surface water flood risk solutions. The overall aim of the thesis is to use the 

model results to propose surface water management solutions and to evaluate a range 

of scenarios on their ability to build in capacity to cope with surface water flooding 

under current and climate change conditions. To achieve the overall thesis aim, three 

main objectives were set out: 
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1. To develop and validate a model to screen for surface water flooding. A 

computationally efficient model is required that will represent the main 

processes responsible for flooding. The research aims to use a liOAR OEM 

as a basis on which to develop a model that represents surface water 

flooding processes, but that requires minimal effort in order to rapidly 

evaluate solutions and scenarios. The research seeks to test whether 

conceptually simple approaches that exploit the detail in liOAR OEMS, are 

able to form the basis to screen for surface water flooding. The hypothesis 

that a water balance can represent the main processes that lead to surface 

water flooding will be tested through the model validation. 

2. To use the model results to propose surface water management solutions 

over a large scale. The understanding gained from the modelling exercise, 

in terms of the general flooding patterns and the processes that lead to 

surface water flooding, will be used as a basis to propose solutions. The 

relevant design solutions literature will be reviewed in order to identify a 

range of options. 

3. To use the surface water model to evaluate a range of solutions In terms 

of their potential to build In adaptability to climate change. The solutions 

identified will be translated Into model inputs, in the form of an altered 

OEM. Climate change scenarios will be created and translated Into model 

inputs in the form of climate change perturbed rainfall. A measure of 

catchment surface water flooding will be proposed based on model outputs 

and this will be used to compare and evaluate the solutions. 

1.7. THESIS LAYOUT 

To achieve the objectives set out above, the research was divided Into three major 

phases which correspond to the three main research activities that were conducted. 

Each phase of work is covered in a self-contained chapter, which also Includes a more 

detailed Introduction and literature review relevant to the research described In the 

chapter. 
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The first phase of work involves the development of the model. To complete this phase 

it was necessary to familiarize myself with the various modelling techniques that were 

being developed for surface water modelling (e.g. 10, 20 modelling). The development 

of an understanding of conventional urban drainage modelling and urban hydrology 

was also necessary. Based on this understanding I developed a conceptual framework 

which would then be translated into a GIS modelling tool. Chapter 2 describes current 

surface water modelling capabilities and developments and against this backdrop of 

research, a new alternative modelling approach is proposed, fit for the purpose of 

screening large areas. Chapter 2 is a manuscript submitted and accepted for 

publication In the ASCE Journal of Hydrologic Engineering. 

The second major activity undertaken In order to complete the research was to carry 

out a validation exercise. It was necessary to discover how emerging models were 

being evaluated and tested. Appropriate data to validate my model was needed. 

Chapter 3 describes this model validation. An overview Is given of how existing surface 

water flood risk models are validated, and the methodology, based on questionnaires 

and local knowledge, which was adopted to validate the model developed in this 

research is described. The results of the validation exercise are presented and 

evaluated. Chapter 3 concludes by discussing the Insights into the model performance 

that were gained as a result of the validation exercise. The lessons learnt from the 

questionnaire exercise, as a means of model validation are also presented. 

The final phase of work Involved using the model to propose surface water 

management solutions and evaluate their potential under climate change. This 

Involves Interpreting the model results to understand the main processes that lead to 

flooding In the study catchment. With a greater understanding of the underlying 

reasons for surface water flooding, appropriate solutions can be sought. A literature 

review was conducted In order to understand surface water management solutions 

and design standards. By combining the understanding gained regarding the causes of 

flooding, and the emerging guidance on surface water solutions, a number of potential 

scenarios are proposed. It was discovered that there was very little guidance on how 

to identify managed flood routes and therefore a methodology was developed to find 
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optimal routes through an urban area. Three solutions are selected and represented 

as new OEMs, which are used as an input for the surface water model developed in 

this thesis. The results of the scenario analysis are evaluated and discussed. 

Finally the overarching conclusions of the research as a whole are presented In 

Chapter 5 along with future directions for research. 
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2. MODEL DEVELOPMENT 

2.1. INTRODUCTION 

There are serious concerns regarding the potential impacts of climate change and 

future development on urban flooding (Evans et al., 2004a). Only recently however has 

surface water flooding received due attention. Surface water flooding arises from 

rainwater that is not adequately drained naturally or by man-made infrastructure, and 

therefore accumulates in surface depressions. In the UK it has become commonplace 

to refer to this type of flooding as surface water flooding. According to the 

Environment Agency (2007), some two thirds of the flooding that took place across the 

UK in the summer of 2007 was due to surface water. This rapidly ascended the political 

agenda and triggered a series of reviews and recommendations (Coulthard et aI., 2007; 

DCLG, 2008; Defra, 2008a; Pitt, 2008). It is now argued that the lack of appropriate 

consideration of surface water management is reducing our capacity to manage urban 

flood risk, especially given the uncertainty surrounding climate change (Ashley et aI., 

2005). Traditional responses to urban flooding relate to development design (Evans et 

aI., 2004b) and high level spatial planning (DCLG, 2006; Defra, 2005). Major changes in 

urban form result in enormous disruption and cost, making such measures unfeasible. 

At the same time, enlarging the capacity of urban drainage assets can be costly, given 

the environmental and economic benefits. As a result of the flooding of 2007, there is 

a current requirement for UK local planning authorities to develop Surface Water 

Management Plans (SWMP) (Defra, 2009). Although the development of detailed 

guidance of what a SWMP should comprise is an ongoing process, locations at risk of 

surface water flooding need to be identified. There is therefore a need for appropriate 

tools that will allow local flood authorities to map surface water flood risk for large 

spatial extents within the resources available to them. 

One opportunity for building In capacity to deal with urban flood risk is within pockets 

of land that become available for redevelopment. The importance of conSidering 

surface water flooding in both large scale redevelopment plans as well as individual 

planning applications is being recognized (DCLG, 2008; Defra, 2008b). In many surface 
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water flooding events the sewer system may operate at capacity with only the major 

system (i.e. the surface) fully operational. There is therefore a need to better manage 

urban flood flows at the surface (Balmforth et aI., 200Gb). Redevelopment should take 

place in a way that maximises the opportunities for flood risk reduction. Appropriate 

hydrological tools are required that allow decision makers to explore opportunities and 

impacts of redevelopment plans at a range of scales. 

RESEARCH AIMS 

Urban topography Is a critical factor determining the extent, depth and location of 

surface water flooding. Changes in topography, e.g. through redevelopment, 

potentially alter key storage areas and transmit surface water to previously un-flooded 

locations. Redevelopment alters infiltration characteristics and the amount of excess 

surface water that is generated. This work is based on the premise that by alteration of 

these key characteristics urban redevelopment can be exploited to manage surface 

water flood risk. To explore opportunities for flood risk management, the hydrological 

connectivity of sites of all sizes across the urban catchment need to be considered. 

The hypothesis Is that a simple water balance comprised of rainfall inputs, surface 

storage and pathways Is able to represent the main processes that are responsible for 

surface water flooding. This would avoid the complexities of overland flow modelling 

coupled with underground drainage, and provide a simple tool with which decision 

makers can screen a range of scenarios. This can highlight areas which merit the use of 

more complex modelling tools. Our objectives are (1) to construct a water balance 

model for urban surfaces, and (2) to test its sensitivity and validity. The model will be 

used in later studies to explore the opportunities for flood risk management through 

urban redevelopment. 

The model is based on a GIS approach that Is widely accessible and capable of 

analYSing raster data: the most common format for Digital Elevation Models (OEMs). 

GIS is also the standard approach for spatial planning applications and in this study 

ESRI GIS software was used to manage the data and to assemble the surface water 

balance model. 
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CURRENTLY AVAILABLE TOOLS 

Traditionally urban drainage is represented using sewer network models. These are 

principally designed to simulate dry weather flows as well as stormwater flows within a 

combined system. For this purpose there are many widely used commercially available 

models; Infoworks CS (Wallingford Software, 200gb) , Microdrainage (Microdrainage, 

2009), SWMM (Rossman, 2009), StormNET (Boss international, 2009), MOUSE (OHI, 

2009) and others. Most sewer network models have a basic representation of the 

catchment surface. Empirically derived equations, such as the modified rational 

method, are used to calculate the runoff volumes that enter the piped system at given 

entry pOints. This requires catchment delineation along with an assessment of the 

pervious and Impervious land cover, which has commonly been carried out manually 

using parcel and contour information from existing maps. 

More recently, and as a result of the availability of high resolution OEMs, sophisticated 

overland flow models are being developed, with the primary aim of better determining 

surface flood location, depth and in some cases flow velocity. There are two 

approaches. In the 10 approach, the OEM Is used to extract the location and geometry 

of overland flow paths, which are treated as channels and used to route pre

determined runoff hydrographs. In the 20 approach, the high resolution OEM is used 

to create the input surface to solve complex shallow water equations. Additionally 

many of these models are being developed so that they can be fully coupled to existing 

sewer network models. 

Examples of emerging urban overland flow models Include: 

• the release In 2007 of InfoWorks 20 for integration of overland flow in 

Infoworks cs vB.S (Wallingford Software, 2009a) i 

• release in 2007 of the 20 FloodFlow module for use within Microdrainage 

(Microdrainage, 2007) 

• SIPSON (Simulation of Interaction between Pipe flow and Surface Overland flow 

In Networks) which is a coupled 10 surface and 10 sewer model (Ojordjevlc et 

al.,2005); 
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• a GIS based 10 link and node model for representation of overland flow 

(Boonya-Aroonnet et aI., 2007; Maksimovic et aI., 2009); 

• JFlow, a 20 raster routing model (Bradbrook, 2006) and 

• a 20 overland flow urban inundation model (UIM) (Chen et aI., 2005; Hsu et aI., 

2000) and 

• a distributed GIS based pluvial inundation model (Chen et aI., 2009). 

Further reviews of current urban modelling capabilities can be found in (Balmforth et 

aI., 2006a; Elliott and Trowsdale, 2007; Hankin et al., 2008; Leandro et aI., 2009; 

Wheater et aI., 2007). 

The ability of GIS to process and generate spatially distributed information has meant 

that GIS have been widely used for hydrological modelling (Whiteaker and Maidment, 

2004). Olivera and Maidment (1999) used GIS to identify uniform catchment sub-areas 

and flow paths and using this information generated catchment hydrographs based on 

spatially distributed rainfall. Liu et al. (2003) also proposed a method for computing 

unit hydrographs in GIS using the slope, roughness coefficient and hydraulic radius. 

This work was developed further to determine the runoff contributions from different 

land uses within the catchment (Uu et aI., 2006). 

The advent of high resolution LiOAR OEMs also prompted further Investigation and 

understanding of GIS methods to extract information that act as input for hydrological 

applications. Barber and Shortridge (2005) compared the GIS derived hydrological 

outputs (flow direction, basin identification and contributing area) from a standard 30 

m USGS OEM and a LiOAR OEM and found the results to be comparable in high relief 

areas, but greater differences were observed in output for low-relief areas. Erskine et 

al. (2006) compared five existing algorithms for computing contributing area In GIS and 

found that when used on OEMs of higher resolutions there are greater differences In 

the results produced by the algorithms. (Zandbergen, 2006) Investigated the 

occurrence of artificial depressions associated with high resolution LiOAR OEMs and 

found the number of depressions to be least in OEMs with cell resolutions between 30 

and 61 metres. This research is of importance to hydrological modelling since many 

flow direction algorithms require a depression free surface to generate flow patterns. 
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Correctly identifying depressions that are artefacts of the data, and then infilling these 

can be a time consuming task. The standard tool found in most GIS software analyses 

the surface iteratively several times. Wang and Liu (2006) proposed an alternative and 

faster method based on least cost analysis. The growing volume of research into GIS 

methods to create hydrologically correct OEMs is also illustrated by reviews covering 

issues regarding grid cell resolution and surface modification (Wechsler, 2006). 

More recently GIS have been exploited for more specific hydrological applications. 

Jones et al. (2008) propose a novel technique for identifying the flow patterns of low 

relief landscapes which in addition to using the 08 flow direction algorithm, is based 

on facets. In the US where surface storage has been widely incorporated, but where 

records on the location and characteristics are not always known, a GIS method is 

proposed to locate and characterize these using LiOAR OEMs (Liu and Wang, 2008). 

Methods have also been compared for incorporating known piped drainage 

characteristics (e.g. pipe and gutter elevations) into OEMs for urban hydrological 

modelling (Glronas et at, 2010). Whilst it was found to be benefiCial to incorporate 

data on known surface drainage for urban flow path modelling, Gironas et al. (2010) 

noted that varying contributing areas, and therefore catchment characteristics were 

obtained depending on the method used. 

Standard GIS methods such as Identifying cell flow directions and determining 

hydrological flow patterns have been widely used for river catchments. There are 

fewer studies that extract useful hydrological Information relevant to urban 

catchments. Urban environments pose greater challenges due to modifications by man 

to the natural surface hydrology (by alternation of the topography) and this is coupled 

to the greater resolution which is required to accurately Identify such features. 

Similarly few studies have used GIS for modelling urban surface water accumulation 

based on properties derived from a OEM. Ojokic and Maldment (1991) used GIS 

capabilities to create a network for modelling flows. The piped drainage network was 

Integrated with the known surface drainage and input OEM (which consisted of 

digitized contours) was used to calculate contributing areas and time of concentration. 

Due to the acknowledged complexities of Identifying flow patterns In urban surfaces, 
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the input OEM was not used to determine the surface flow patterns. This Is no longer 

the case with the availability of high resolution OEMs which capture man-made 

protruding structures and depressions, that form part of the urban topography 

dictating flow patterns. Given the freely available existing algorithms to extract key 

hydrological information from OEMs, and the capabilities of GIS as a hydrological 

modelling environment it is now also timely to test whether hydrological modelling in 

GIS is capable of efficiently screening for urban surface water flood risk. 

Generally however, hydrodynamic models and those linked to a sewer network may 

take several hours to simulate a large area. Such models are also complex, often 

requiring an exact representation of the characteristics of the catchment surface, and 

the input of a large number of hydraulic and network parameters. These models 

require expert users. Hence the development and application of a simpler and faster 

representation of surface water would be of considerable benefit to all those involved 

in screening for urban flood risk management. This paper describes the development 

of one such model. 

2.2. URBAN SURFACE WATER BALANCE MODEL 

Excess surface water is that which remains on the surface after accounting for losses 

such as infiltration. Water that drains to a surface sink is stored according to the sink 

volume and any further water is passed downstream. The model assumes that there 

are no inputs or outputs from the piped sewer system and that there are no further 

losses, for example as runoff travels across a pervious area. 

The water balance is computed as the total water that accumulates and overflows 

through a series of sinks as presented In Figure 2.1 and Equation 2.1: 

P =~p +E-V £.oJ I-I". 
p.o-+p<o 

(Eq.2.1) 

Where P Is the water passed down from sink (m3
), E is the excess surface water from 

the sink catchment that Is not accounted for by smaller nested catchments (m3), V is 

the sink volume (m
3

) and J is a counter of the nested sinks from 1 to n. Sinks are areas 
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where ponding occurs, making them areas of potential flooding or critical storage. 

Each sink has a catchment and these are nested, with small catchments nested within 

larger ones. A nest level of five means that the catchment is nested within and drains 

to five larger catchments. A value of 1 refers to the major sub catchment from which 

water drains to a model boundary. Sinks fill up with excess surface water and when a 

sink is full it overflows and passes water downstream to the catchment in the next nest 

level. A summary flow chart of the methodology and model processes is presented in 

Figure 2.2. Box Ai and A2 in Figure 2.2 outline the production of the principal model 

inputs; an excess surface water layer, a modified OEM and sink polygons. The data and 

methods used to derive the model inputs are presented followed by a description of 

the water balance computation. 

--I 

Surface sinks, cont ri buting 
areas and catchment nest ing 
are derived from t he OEM 

1 

Rainfall depth 

• 
The chosen method to convert 
ra infall into water that remains on 
the surface generates an excess 
surface water layer 

'( Excess surface 
water layer. 

Surface water accumulation 
through nested sinks 

Figure 2.1: Conceptual model of excess surface water accumulation across the urban surface. The 
contributing areas labe"ed 5 are nested within 5 other contributing areas. Contributing area 1 is the 
contributing area of the most downstream sink and its contributing area is equal to the major sub
catchment boundary (and it contains a" other contributing areas). Surface water accumulation is 
calculated by applying Equation 2.1. at the outlet of the contributing areas of nest level S. The arrows 
downstream of the number 5 represent the results of the calculation i.e. the water passed down from 
those sinks. The second iteration applies Equation 2.1. to the contributing areas of nest level 4. In this 
iteration the contributing areas of nest levelS are not taken into account, only water passed down 
from levelS and contributing area that has not already been accounted for (e.g. for nest level 4 it is 
shown in purple). The algorithm iterates in this manner until the results for nest level 1 are computed. 
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Figure 2.2: Flow chart of the methodology and model processes. 
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Figure 2.3: Model boundaries, land cover classification and major catchments. 
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It was not possible to obtain to obtain records of the area served by purpose built 

urban drainage infrastructure such as highway drainage and the storm sewer network. 

Land use data, which is more readily available, was used to classify the study area into 

the two major hydrological classes; pervious and impervious. The amount of excess 

surface water at each cell was calculated by applying runoff coefficients according to 

land use. Ordnance Survey Master Map (OSMM) data uses polygons, points and lines 

to represent all fixed features of greater than a few metres in size in urban areas (OS, 

2008). OSMM data was used to assign runoff coefficients as well as to identify elevated 

structures and open water features as in Box Al in Figure 2.2. Since this study is 

concerned with urban surface water flooding, rivers, watercourses and large open 
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drains are boundaries to the urban drainage system. OSMM represents water features 

greater than 1 m wide at their true scale and therefore these were used to identify and 

remove boundary features from the LiDAR OEM (Figure 2.3). Catchment outlets, as 

identified by the methodology of the surface water balance model lie on the lowest 

elevation point adjacent to the model boundaries. 

RUNOFF COEFFICIENTS 

Given the uncertainties associated with allocating runoff coefficients to each speCific 

surface, the study area was divided into only two hydrological classes, pervious and 

imperviOUS, using attribute information in OSMM. A runoff coefficient of 0.829 for 

impervious surfaces was adopted from the Wallingford Procedure Percentage Runoff 

equation, which was based on a limited number of experimental investigations (DoE, 

1983). There are numerous methods available to estimate runoff from natural 

pervious areas that require many parameters. Most of these methods are too complex 

and data-hungry for the screening tool under development, and a fixed value of 0.25 

was adopted based on the typical runoff coefficient for open areas provided by the 

Wallingford Procedure Percentage Runoff Model (Wallingford Software, 2007). The 

assumptions and limitations associated with the use of a simple runoff coefficient to 

represent very complex rainfall to runoff relationships have been widely discussed 

(Chow et aI., 1988; Parak and Pegram, 2006; Pilgrim and Cordery, 1993). A sensitivity 

analysiS of the model to the runoff coefficient was carried out. 

DIGITAL ELEVATION MODEL 

Delineation of surface sinks, corresponding catchments and the nesting pattern is 

dependent on detailed topographical information. High resolution OEMs nowadays are 

readily created from LiDAR (Light Detection and Ranging) remote sensing (Wehr and 

lohr, 1999). A laser signal Is emitted from an aircraft which then reflects upon contact 

with solid ground features and the first pulse return time is used to determine the 

elevation. Building heights are recorded and in some cases roads and pavements can 

be differentiated, which is important for identifying urban overland flow paths. The 

last pulse return has vast hydrological significance since it penetrates features that are 

not entirely solid and permits removal of vegetation features. The LiDAR OEM used in 
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this study was captured and processed by Infoterra in 2004 for The City of Bradford 

Metropolitan District Council. The survey has a resolution of "'1 m and a quoted 

vertical accuracy of ±150 mm. Three datasets were provided with varying levels of 

post-processing; 

1. A OEM based on the first pulse return with minimal processing which 

represents the height of the uppermost surface features including parked 

vehicles, vegetation and buildings. 

2. A building OEM which uses the last pulse return to remove vegetation. 

Temporary objects such as parked vehicles were also removed and surface 

heights were interpolated. 

3. A bare earth OEM in which buildings (and in some cases elevated roads and 

tracks) have been removed and ground levels interpolated. 

Techniques for processing liOAR data to produce hydrologically correct OEMs are 

rapidly evolving (Evans, 2008). The building OEM was used in this study since the 

presence of buildings is important for flow paths and catchment delineation. A 

common problem encountered in urban hydrological modelling using liOAR OEMs is 

the presence of elevated structures such as bridges and fly-overs. Attempts to create a 

hydrologically correct OEM typically involve manually interpolating surface heights in 

order to create a flow path under such structures as in Clarke et al. (2005). In this 

research these features were further investigated using a combination of OSMM data, 

Google Earth images and field visits to determine the most likely flow path in each 

identified case of elevated structures. A visual representation of the modification 

applied to the OEM to correct for elevated structure is shown in Appendix 1. Figure 

2.4 shows the identification of sinks before and after interpolation of surface heights 

across elevated structures. In Figure 2.4a many deep sinks are identified alongside the 

elevated features: this is not the case in Figure 2.4b. Problematical features were not 

restricted to large elevated objects such as fly-overs and bridges, and included smaller 

features such as elevated walkways between buildings or canopy structures (e.g. for 
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car storage}. Evidence of some of these structures is shown in Figure 2.5. No attempt 

was made to modify such features in the OEM . A further process that is carried out to 

obtain hydrologically correct OEMs is the identification of surface depressions of which 

some may be an artefact of the data collection and processing methodologies {Wang 

and Liu, 2006; Zandbergen, 2006}. In this research it was assumed that all depressions 

in the LiOAR OEM are genuine. 

_ Removed elevated structures 

N" Model bOundaries 

Sink depth (m) 

CJ up to 30 cm 

30cmto 1m 

.. 1mto30m 

b 

o 250 500 
'--_'--_1...1 ___ -ll Meters 

Base map: C Crown CopyrighVdatabase right 2009. 
An Ordnance SurveylEDINA supplied service 

Figure 2.4: Sinks identified (a) prior and (b) post removal of elevated features and Inclusion of model 
boundaries (only sinks with an area greater than 10 m1 are shown). Photographs of the removed 

elevated structures can be found in Appendix 1. 
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Figure 2.S: Elevated structures that in LiOAR OEMs are represented as barriers to water movement 
downstream. 

LiOAR OEMs have been used extensively in hydrodynamic floodplain inundation 

modelling (Hunter et aI., 2008; Marks and Bates, 2000; Mason et aI., 2007; Neelz and 

Pender, 2007). The LiOAR grid usually has to be reduced in hydrodynamic models due 

to the permitted maximum number of computational units. For this reason there is 

much development of methods to optimize the data obtained from LiOAR OEMs whilst 

at the same time reducing the number of points (Bates et aI., 2003; Mandlburger et aI., 

2008). In this study we have used the LiOAR OEM at the resolution provided without 

the need for any resampling. 

URBAN SURFACE WATER BALANCE COMPUTATION 

The water balance is computed using standard ESRI ArcToolboxes and Spatial Analyst 

tools which are automated using model builder and organized as toolboxes (further 

details are provided in Appendix 2 and Appendix 6). The cell flow direction is the 

starting point for many of the model processes, including the delineation of 

catchments. The flow direction method used throughout is the 08 algorithm which 

assigns each cell a single flow direction into one of its eight neighbouring cells, based 

on the steepest gradient. Using the modified OEM (the output of Box A2 in Figure 2.2) 

the major surface water catchments were delineated (Figure 2.3). The processes 
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outlined in Box B in Figure 2.2 are applied to the major surface water catchments of 

interest. 

Box B summarises the processes applied to extract the required inputs for the water 

accumulation model. It is impractical to include every sink in the analysis as many were 

extremely shallow and therefore would not pose a flood risk. Furthermore shallow or 

small sinks offer limited potential for storage. Sinks to include were selected based on 

various combinations of sink attributes. Volume, surface area at maximum extent, 

maximum depth, minimum depth and average depth were experimented with. The 

simple criterion of "maximum depth> 0.1 mil was found to greatly reduce the number 

of very small sinks, whilst not eliminating known flood risk areas. If all surface 

depressions found in the OEM are genuine, reducing the number of sinks implies that 

some storage will not be accounted for and there will be some overestimation of 

surface water accumulation. 

The sink extent is the boundary at which it is contained by cells of higher elevation. 

Sink outlets, where water would flow out of the sink when full, are the lowest cells on 

the boundary. Water balance calculations in the water accumulation model are made 

at each outlet. The catchment area of each sink outlet was delineated. The nest level, 

which states the number of larger catchments in which an individual catchment is 

contained, was also determined. 

Some sinks were found to have more than one outlet cell with the same elevation. 

These are not necessarily contiguous, resulting in a sink with several outlets (Figure 

2.6). These can overflow to different catchments. This causes problems in allocating 

the excess surface water that should be passed on to each of the downstream 

catchments. Furthermore this causes problems for catchment nesting since the two 

downstream catchments may have different nesting levels. The model deals with this 

by splitting sinks between the outlets, and subdividing their catchments. The adjacent 

sinks which are in hydraulic continuity in the real world are treated as independent for 

the purpose of the model. Each outlet is assigned an equal share of the total volume of 

the sink. A sensitivity analysis was carried out on various methods to model multiple 

outlet sinks. 
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The surface water accumulation algorithm (Box C in Figure 2.2) commences by 

applying Equation 2.1 to each sink in the highest nest level in which there are no 

nested sinks. The excess surface water from the sink catchment is summed and the 

volume retained by the sink is subtracted. Any remaining water is passed down as an 

input to the next nest level. The process is then repeated for every sink, computing all 

the sinks in one nest level at a time and ending with the water balance calculation for 

the sinks which then drain out of the major sub-catchment. The attribute table for 

each outlet is populated with the total water accumulated, amount stored and the 

volume of water that is passed onto the next nest level. The model also produces a 

raster layer summarising the total volume of water that passes through each cell, 

which provides an indication of the major flow paths. 
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Figure 2.6: An illustrative sink and its catchment and cell flow directions (in this example a multiple 
outlet sink Is shown). 

ApPLICATION OF THE MODEL 

This research uses the town of Keighley in West Yorkshire to develop the model (Figure 

2.7). Keighley sits in a hilly depression formed by the confluence of the River Aire with 

the River Worth. The River Aire and its functional floodplain border the north east end 

of the town. The River Worth and its tributary, the North Beck, both incorporate 
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culverted sections, and flow into the town from a south west direction. Upslope the 

town is surrounded by rolling moorland and grassland. Keighley's sewer network is 

predominantly a combined system that drains by gravity from the southwest to the 

northeast. Marley wastewater treatment works is located at the downstream end and 

discharges treated effluents into the River Aire. 

Keighley has suffered from frequent surface water flooding, notably in 2002 and 2003. 

In the summer of 2003, rainfall events led to localized flooding on three separate 

occasions in a four week period (CBMDC, 2005). Some of the flooded areas had no 

record of having flooded before. 
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Figure 2.7: Map and aerial photography of case study location. 

2.3. MODEL RESULTS 

SENSITIVITY ANALYSIS 

4.000 5.000 N 

A 

/ ( 

The assumptions made in the model are tested with a sensitivity analysis. The purpose 

of the sensitivity analysis was to determine the most appropriate representation of 

significant processes and parameters in the model. Sensitivity analyses were 

performed for: 
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• the method used for processing multiple outlet sinks, 

• the criteria used to select sinks to be represented in the model, and 

• the runoff coefficient values used to generate the excess surface water. 

The assumptions made regarding the impact of the performance of urban drainage 

infrastructure due to backflows from the river were not tested. This was explored as 

part ofthe model validation in section 3.3 and the implications are discussed in section 

5.4. 

TREATMENT OF MUL TlPLE OUTLET SINKS 

The aim of this test is to determine model sensitivity to the representation of the 

processes occurring at multiple outlet sinks. The model algorithm does not allow for a 

fully realistic apportionment of outflow from a sink with more than one outlet. Three 

simple methods of apportioning outflow from multiple exit sinks are proposed and 

compared in terms of the water balance results and the predicted locations of surface 

water flooding. The sensitivity analysis consists of determining whether the methods 

produce results (water balance and patterns of flooding locations) that are arguably 

different from each other. This would indicate that selection of an appropriately simple 

representation of these processes is critical to the model results and would therefore 

warrant further investigation and development. 

A multiple outlet sink is illustrated in Figure 2.6. The most logical option, given a lack of 

knowledge of the hydraulic behaviour of the various outlets, is to deal with multiple 

outlet sinks by finding out the total volume entering the sink, take into account the 

sink's storage and then pass on any remaining water equally through each of the 

outlets. In this method the sink is indeed treated as a single entity: 

Single sink method ~ = W - V 
n 

(Eq.2.2) 

Where P is the volume leaving each sink outlet (m3
), V is the sink volume (m3

), W is the 

surface water that accumulates at the sink (m3
) and i is a counter of the outlets from 1 

to n. The water accumulation algorithm does not accommodate this method and an 

alternative approach was required. Two alternatives were tested whereby the sink is 
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split into parts related to each outlet, with each part treated independently. Equation 

2.3 assigns an equal share of the sink volume to each outlet, while Equation 2.4 shares 

the sink volume in proportion to the catchment area (m2
) (A) of each outlet 

Split sink method 1F; = W; -(:) (Eq.2.3) 

Split sink method 2 p, = w, -v( L ~_, J (Eq.2.4) 

Neither is representative of reality but both allow multiple outlet sinks to be processed 

using the water accumulation algorithm. The split sink methods were compared to the 

single sink method. The major catchment labelled A in Figure 2.3 was used with a 10 

mm rainfall event. The single sink method was processed manually for 19 of the nest 

levels accounting for 67% of the catchment area and 389 of the 938 sinks. Table 2.1 

shows that in terms of total water stored, the split sink methods produce results that 

are within 2% of the results obtained with the single sink method. There are small 

differences in the number of full sinks (-4.0 to +5.1%) and their surface area (up to 

3.6%). 

Table 2.1: Water balance results using the various methods for computing the water passed down 
through the multiple outlet sinks. 

Single sinks method Split sink Split sink 
method 1 method 2 

Water stored in sinks 1168m' -1.7% 0.4% 
Number of sinks full to pour point 176 -4.0% 5.1% 
Area of sinks full to pour point 2782 m2 3.6% 2.5% 

Water stored in sinks full to pour point 621 m3 -1.6% 2.0% 

These results show that the split sink approaches differ in the distribution of water 

across the catchment but, in terms of urban flood risk prediction, these differences are 

relatively small. All three methods produce a very similar pattern. Most of the single 

outlet sinks store approximately the same volume of water under the three methods, 

and the differences are principally explained by larger changes in the multiple outlet 

sinks. The split sink approaches sometimes classify part of a multiple outlet sink as full, 

whereas the single approach classes the entire sink. 
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A Kappa statistic is the percentage correctly classified minus the correct classifications 

that could have occurred by chance (Longley et aI., 2001). Sinks were classified into full 

or not full. Table 2.2 shows that the split sink methods produce similar results in terms 

of classifying sinks as full or not full with Kappa statistics of 84% and 91%. Most of the 

differences using split sinks method 1 are due to the smaller number of sinks that are 

reported as full. 

Table 2.2: Contingency matrix comparing the sink results of method 1 and 2 with the single sink 
method. 

Method 1 Method 2 
Not full Full Not full Full 

Single sink Not full 201 12 200 13 
method Full 19 157 4 172 

Percentage correctly classified 92.03 95.63 
Kappa statistic 83.63 91.22 

To further compare the differences between the split sinks and the single sink 

methods, the spatial changes in accumulated volume were assessed. The accumulated 

volume along many of the major flow paths remains the same. Most of the large 

changes (i.e. greater than 25%, positive or negative) are not along the main flow paths. 

The largest changes occur immediately downstream of the multiple outlet sinks and in 

both split sink methods the changes diminish to between 0 and ± 4% by up to 100 

metres downstream. It can therefore be concluded that the changes do not 

accumulate downstream but rather become less significant. 

Although there are subtle differences in the surface water accumulation patterns 

achieved with the different methods for processing multiple outlet Sinks, most of the 

noticeable changes occur at similar locations for both split sink methods and these are 

generally downstream of the multiple outlet sinks. The single sink method for multiple 

outlet sinks cannot be processed automatically by the nesting algorithm. Nesting levels 

are assigned based on the catchment area of sink outlets and multiple outlet sinks 

produce catchments with different nest levels which cannot be processed 

simultaneously. It is possible to add further complexity to better describe the flow 

processes at multiple outlet sinks in a more realistic and representative manner but 

based on the results of the sensitivity analysis, this is not justified given the small 
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differences that are observed when the alternative approaches are used. Furthermore 

this is primarily a screening tool to allow high level scenarios to be explored, and it is 

considered beyond the scope of the model to accurately capture local detail. Both 

alternative approaches reproduce the overall catchment patterns and are therefore 

appropriate for the model purpose. Equation 2.4 requires the computation of the 

fictional catchment area of the various sink parts, therefore the more straightforward 

Equation 2.3 has been adopted in this study. 

SINK SELECTION CRITERIA 

This sensitivity analysis explores the changes observed in water balance results as sinks 

are excluded from the model. The aim of the test was to find an acceptable 

compromise between excluding sinks from the model in order to speed up model 

execution, and inclusion of all identified surface sinks. A solution was sought that 

maximised the number of eliminated small sinks, but that minimised the change in the 

overall surface storage represented in the model. 

This sensitivity analysis explored different selection criteria for inclusion of sinks in the 

model. A comparison was made with the situation where all 7245 identified sinks were 

included and when only sinks with a maximum depth of >10 cm and >20cm were 

considered. The results are presented in Figure 2.8 and Table 2.3. A >10 cm maximum 

depth threshold eliminated circa 90% of sinks, equivalent to a 10% reduction in storage 

volume from a 10 mm event (assuming all these sinks would fill). A >20 cm maximum 

depth threshold removed only slightly more sinks ("'95%), but resulted in a 20% 

reduction in storage capacity. As detailed in Table 2.3, there is "'20% more water 

leaving the catchment with the 20 cm threshold than with the 10 cm threshold. This 

illustrates how this reduction in storage capacity translates through the model to 

produce the large differences in the results. 

The >10 cm maximum sink depth is considered an appropriate compromise between 

reducing the number of sinks represented and the number of calculations, whilst not 

removing an excessively large proportion of the potential storage capacity. It is 
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recommended that field surveys and a validation exercise are completed to reveal 

appropriate sink selection crit eria in the future. 

Table 2.3: Water balance using a 10 em and 20 em threshold for sinks selected to be represented in 
the model. 

Number of sinks in model 
Eliminated storage capacity (m

3
) 

Volume stored in sinks in a 10 mm event (m
3

) 

Volume leaving catchment for a 10 mm event (m
3

) 
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Figure 2.8: Sinks present with (a) no selection criteria, (b) sinks with maximum depth> 10 cm and (c) 
those with maximum depth> 20 cm. 

RUNOFF COEFFICIENT 

This test explores the sensitivity of the volume of water stored and passed down at 

individual sinks to changes in the runoff coefficients. The model behaviour should 

reproduce the changes in in water accumulation across the catchment to changes in 

runoff coefficient, but this cannot be tested because no such data exists at similar 

scales from the real world . This sensitivity analysis was conducted to learn about 

model behaviour and to quantify the unit changes experienced in model output (water 

balance at individual sinks and total water accumulated at grid cells) for a given unit 

change in the runoff coefficients. 

Two catchments labelled A and B in Figure 2.3, with differing proportions of pervious 

and impervious land cover, were used in the analYSis (Table 2.4). Figure 2.9 

summarizes the changes in the water balance that are observed when the pervious 
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and impervious runoff coefficients are varied by 25%. Smaller changes in the total 

excess water produced are observed when the pervious runoff coefficient is varied 

since the low runoff coefficients mean that excess water originating from pervious land 

cover is always a small proportion of the total. This is particularly the case in 

catchment B where only 20% of the land cover is pervious and therefore the excess 

water produced from the pervious land cover is always a very small proportion of the 

total excess water; less than 7% in the baseline analysis. Catchment B is therefore not 

sensitive to changes in the pervious runoff coefficient. 

Table 2.4: Characteristics and water balance computation for a 10 mm excess surface water event. 

Catchment A CatchmentB 

Area (m2
) 948000 1126000 

Pervious land cover (%) 72 20 
Number of sinks 936 2375 
Total sink volume (m3

) 60500 65400 
Total sink area (m2

) 17200 32700 
Rainfall depths (mm) 5 10 50 5 10 50 
Excess surface water (m3

) 1951 3903 19514 4027 8054 40269 
Water stored in sinks (% oftotal) 100 78 33 65 50 25 
Water leaving catchment (% of total) 0 22 67 35 50 75 
Overflowing sinks (% of total) 28 43 74 25 39 71 

The changes in the impervious runoff coefficient in catchment B result in almost a 

proportional reduction in the total excess water produced. The changes observed in 

the water stored in the sinks and water exiting the catchment are not proportional 

(Figure 2.9). The position and storage capacity of sinks in relation to the distribution 

land cover within the catchment determine whether the storage capacity freed up by a 

reduction in water produced from one type of land cover means that water originating 

from the other land cover type can therefore be stored. 

Despite catchment A having a large proportion of pervious land cover (72%), sensitivity 

to changes in both the impervious and pervious runoff coefficient is comparable 

(Figure 2.9a). Reducing the runoff coefficient for the 5 mm events lead to reductions in 

water stored across the catchment that are directly proportional to the reduction in 

total excess water produced. Figure 2.10 however shows how the sensitivity varies 

greatly between sinks and very few sinks pass on a volume of water relative to the 

reduction in excess surface water. Sinks with a 0% change are those that do not pass 

any water downstream and therefore store 100% of incoming water across all the 
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scenarios tested. It is a different distribution of water across catchment sinks that 

leads to an overall proportional change. Similar patterns of individual sink behaviour 

were found for both catchments and for changes in the pervious runoff coefficient. 
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Figure 2.9: Percentage change in total excess surface water produced, total water stored in surface 
sinks and total water exiting the catchment for a -25% change in the runoff coefficients in (a) 
catchment A and (b) catchment B. 
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Figure 2.10: Percentage change in water passed down at each sink shown as a cumulative percentage 
of total number of sinks in Catchment A. 

The sensitivity to changes in the runoff coefficients is reduced with larger rainfall 

events in both catchments (Figure 2.9). This is because there is a limit to the amount of 

water that can be stored in the catchment. Larger events lead to more sinks that are 

full in all scenarios and therefore there is limited scope for changes to the stored 

volumes. 

The above assessment does not expose changes to the flow paths. The changes in 

water volume accumulated at each cell were examined. Most cells exhibited changes 

that were approximately relative to the change in the runoff coefficient and similar 

patterns were produced for the various event volumes. A small number of cells 

representing major flow paths, most of which were intercepted by sinks, resulted in 

greater changes. In catchment A the main flow path with an accumulated volume of 

over 1500 m3 in a 10 mm event exhibits greater changes downstream whereas the 

opposite is true in a 50 mm event. Although the principal catchment flow paths prevail, 

changes in runoff coefficients lead to significant localized alterations in flow paths as 

expected. 
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The sensitivity analysis revealed that the responses are catchment specific and depend 

on a combination of factors, making it difficult to predict the cumulative changes that 

will take place. Some of the factors that influence the catchment response to changes 

in the runoff coefficients are the proportion and distribution of pervious and 

impervious land cover in relation to sink storage and location and the size of the 

rainfall event. This illustrates that the methodology has the potential to help 

understand complex interactions such as the relationships between catchment 

characteristics, land cover, sink location and volume and sensitivity to the runoff 

coefficients for different event volumes. 

MODEL VALIDATION 

To validate the model, a 10 mm event was applied to four major catchments where 

flooding was known to occur (A, B, C and 0 on Figure 2.3). Sparse data on flood 

location was available from the City of Bradford Metropolitan District Council. Many of 

the known flooding locations shown in Figure 2.11 became apparent during the 

flooding events in 2002 and 2003. An example of a rainfall event responsible for 

significant flooding in Keighley is that of the 3rd of July 2003. The recorded rainfall 

depth one hour into the storm was 20.20 mm and at the end of the storm 8 hours later 

was 28.4 mm. Model runs using rainfall depths of 5 mm, 10 mm, 20 mm and 50 mm 

were carried out and the 10 mm event depth provided the closest match to the known 

flooding locations. 10 mm is approximately equivalent to the remaining rainfall after 

making an allowance for the sewerage system by subtracting the average rainfall 

intensity from the hydrograph of a typical 60 minute 20 year return period rainfall 

event over Keighley. This assumes that the sewerage system has the capacity to carry 

the average rainfall intenSity of such a storm. 

Sinks that are within 6 metres of a building or road, with a surface area greater than 4 

m2 and that were overflowing were classified as posing a flood risk. Figure 2.11 

compares model sinks that can be classified as posing a flood risk and those areas that 

are known to have surface water flooding problems. In general there Is excellent 

agreement in the location of the predicted filled sinks and the observed flood 

locations. In some cases the outlines are approximate and merely summarize a group 
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of properties, of which some have suffered from flooding but the exact location is not 

known. This initial and informal validation exercise indicates that the model produces 

very conservative results and is probably overestimating the number of sinks that fill, 

and therefore the flood risk. This is likely to be partly due to the exclusion of the 

drainage system which is responsible for draining many of the areas highlighted at risk 

of flooding. It may also be the case that the model is correctly depicting areas that 

flood, but these locations have not been made aware to the local authority. Despite 

this, it is reassuring to see that most of the known locations subject to surface water 

flooding have been highlighted by the model. It is much harder to identify any false 

positive model results since the local authority representatives could not confirm the 

locations that do not flood. 

The model has also identified some key aspects of the flooding performance of the 

catchment. For example the area labelled a in Figure 2.11 is at the lower end of the 

catchment adjacent to the River Aire floodplain and it is therefore highly likely that 

water will naturally pond there prior to discharging to the River Aire. Discussions with 

local authority representatives also confirmed that under rainy conditions this area is 

waterlogged and OSMM data highlights the presence of an open drain at that location. 

Several properties within the area labelled b have reported flooding and the model 

also shows this. The catchment area of these sinks is largely composed of grassland 

(which is unlikely to be served by urban drainage infrastructure). 

In some instances the exact properties that have experienced flooding have not been 

identified by the model, but a location nearby has been flagged. This may be the result 

of small local variations which may displace water, such as a lowered curb or raised 

structures (such as a wall) and that have not been captured by the LiDAR OEM. There 

were also two locations (c and d) that reported severe flooding and although the 

model highlights the presence of an overflowing sink, the sink is small compared to the 

reported flooding extent. The flooding at area c, however may be explained by a major 

flow path that the model identifies in this area. Hence surface flows may have caused 

some local flooding en route. Area d is more difficult to explain. The model has 

identified a very small sink (a surface area when full of 6 m2 and a volume of 0.5 m3
) 
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with a small catchment (61 m2
). local speculation about flooding in the area is that the 

flooding is caused by runoff from a large non-urban upstream area. Therefore if local 

accounts are correct the model has failed to pick up a larger sink within the area and 

catchment delineation is also incorrect. The model identifies a sink the width of the 

road at location e. local authority representatives could confirm that when other parts 

of the catchment are flooding, this part of the road does not flood in this manner. This 

suggests that the model has either incorrectly delineated the sink, which could be a 

result of local variations or the location is well served by the drainage system. If the 

latter is true, then the model has highlighted a potential flood risk area should the 

drainage system fail at that location. 

One of the greatest assets of liOAR OEMs is the huge amount of detail that is captured. 

For example in many cases it is possible to distinguish between the road and the 

pavement and features such as driveways can sometimes be detected. This scale of 

detail may be exploited to better determine the exact path and ponding of surface 

water since it is recognized that urban flow paths may not follow the lie of the land 

due to manmade features such as buildings and walls. Small variations between the 

actual and model topography may result in significant differences to the resultant flow 

paths and flooding extent, hence, a formal validation exercise is recommended in 

order to test model validity with greater confidence. 
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Figure 2.11: Comparison of modelled output and local knowledge of flooding locations. 

2.4. DISCUSSION 

The water balance model is not proposed as an alternative to detailed hydrologic and 

hydraulic modelling, but as an additional evaluation tool to assist in high level spatial 

planning and decision making. It also serves as a process to identify areas of interest 

that require further analysis, and results produced from this model can also aid in 

specifying boundary conditions for further modelling. 

The model results are mapped as the total water stored in surface depressions. An 

example of how the model may be applied is shown by the results of a simulation of a 

10 mm and 50 mm event for a sma" area of catchment A (Figure 2.12). By reference to 

sink A in Figure 2.12b and its catchment area the sink can be seen to have a large 

spatial extent when full which may be considered of interest as it lies within a 

residential area. The results of the 10 mm and 50 mm events show that sink A and the 

sinks nested within its catchment area are practically empty for a 10 mm event (Figure 

2.12a). A 50 mm event results in a large part of the sinks within the catchment 

overflowing (Figure 2.12b). Simulations of a range of events revealed that many of 

these sinks begin to overflow with events greater than 20 mm. This information can be 
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used to focus attention on sinks that may begin to pose risks under smaller, more 

frequent events. Potential solutions and/or adverse impacts of developments within 

the catchment area can then be spotted. The sink layer can be used to consider the 

impact of enlarging existing surface depressions to store more water. For example, by 

reference to sink B in Figure 2.12b it can be seen that this sink receives water from 

over half of sink A's catchment, and that it intercepts a major flow path. Sink B is not 

adjacent to any buildings and therefore it may offer an opportunity to store more 

water and prevent it from reaching sink A. The model may be used for other types of 

scenario analyses. 

The model produces a raster file illustrating the total water that passes through each 

cell. This is used to identify the major flow paths. By examination of Figures 12c and 

12d it can be seen that a major flow path passes along the boundary of the sink 

catchment. Any topographical changes in the proximity of location C (Figure 2.12d) can 

lead to significant changes in the delineation of the catchment area of sink A. The 

surface water accumulation layer can also be used to see if there is scope to intercept 

or redirect the flow away from flood risk areas. 
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Figure 2.12: Model output showing sink water storage status for (a) a 10 mm event and (b) a 50 mm 
event, and surface water accumulation for (c) a 10 mm event and (d) a 50 mm event. 

The sample application has focussed on a small sub-catchment, however the model 

produces catchment-wide results illustrating the wider hydrological connectivity. 

Combined with spatial planning information the model provides a simple but powerful 

approach to aid in decision making and allocation of resources for further conventional 

hydraulic modelling. If overlaid with maps of where development is likely to take place, 

opportunities based around urban development can be sought that will reduce flood 

risk or that will build in capacity. This is realized by combining spatial planning maps 

with information provided by the model regarding volumes accumulated and stored at 
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sinks under different event sizes, catchment areas, nested sinks and indicative surface 

flow paths. Visualization of this information allows spatial planners to appreciate 

development sites within the context of the wider catchment. They can therefore 

begin to identify developments that may have adverse impacts and also to explore 

flood risk management scenarios. 

It is a simple task to alter sink volumes (to represent sink removal or sink enlargement) 

and re-run the model. Similarly several runs can be executed using different excess 

surface water input files, thereby affording the opportunity to examine different 

rainfall events as well as climate change scenarios. An excess surface water input file 

can also be prepared taking into account the sewer system by making drainage 

assumptions based on land use or by making allowances for volumes that are drained 

at speCified points. Similarly the impact of the spatial variability of runoff production 

associated with varying land cover within the catchment can be explored by altering 

the input excess surface water file. A modified input OEM can also be used to 

represent redevelopment scenarios or alleviation measures that would alter elevation 

(and therefore flow direction). 

2.5. CONCLUSIONS 

A screening tool to identify flood risk areas and to explore potential management 

options has been presented. It is a simple method that can be used by decision makers 

to analyse impacts and opportunities of development on surface water flood risks. The 

method fills a gap by providing a high level screening tool that can be used by decision 

makers without formal training in hydraulics and with minimal input parameters. 

The model uses a water balance approach in conjunction with high resolution LiOAR 

OEM data within a GIS environment. The accumulation of excess surface water is 

simulated as it accumulates through a cascade of nested sinks identified, together with 

their catchments, from the OEM. The subsurface drainage system was assumed to be 

full and not to interact with surface water for the purpose of model demonstration. A 

recommendation for future model development is to account for urban drainage 

infrastructure in the calculation of the excess water input. 
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Sensitivity analyses were performed to test the main assumptions adopted in the 

model. It was demonstrated that the main catchment processes remained unchanged 

under the various tests. There was local variation; however, for the purpose of a 

screening tool that does not aim to accurately represent local detail, the assumptions 

produce acceptable model results. 

Informal validation against anecdotal information on surface water flooding locations 

in Keighley suggests the model works well for its intended screening purposes. This 

simple methodology gives a quick assessment of sinks that are potential areas of 

flooding, or that are critical storage areas within in the catchment which could be used 

to alleviate flooding. 
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3. VALIDATING THE URBAN SURFACE WATER BALANCE MODEL 

3.1. INTRODUCTION 

Surface water flooding is defined as rainwater that is not adequately drained naturally 

or by man-made infrastructure, and which accumulates in urban surface depressions 

leading to disruption and loss. An urban surface water balance model is described in 

chapter 2. The model was developed as a screening tool to be used in flood risk 

management scenario analysis. It was developed in ArcGIS to be both computationally 

simple and user-friendly. The objectives of this chapter are: 

1. To provide an overview and evaluation of the validation tests used for 

models that predict urban surface water flooding. 

2. To present and justify the methodology chosen to validate the urban 

surface water balance model. 

3. To assess the model through the validation process; whether the model 

works and how it can be improved. 

4. To outline the lessons learnt from the validation exercise. 

WHY VALIDATE AN URBAN SURFACE WATER FLOODING MODEL? 

The importance of validating models in terms of rigorous and appropriate testing and 

better model analysis is well documented (Anderson and Bates, 2001; Kirchner, 2006; 

Kirchner et aI., 1996; Wainwright and Mulligan, 2004). Models are considered useful if 

they are at least as reliable as the next best alternative, such as expert opinion 

(Kirchner et aI., 1996), but it is necessary to test whether this is the case. The aim is to 

test the GIS urban surface water balance model to determine whether there is any 

value in using such a tool. 

There are two terms that are commonly used in model testing; verification and 

validation. Depending on the discipline these terms can have different meanings or 

implications. In the Integrated Urban Drainage modelling guide (WaPUG, 2009), 

verification is defined as the process of checking a model against independent data to 

determine its accuracy, whereas validation is defined as the degree to which a model is 
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representative of the real world from the perspective of its intended use. Mulligan and 

Wainwright (2004) note that in computer science verification is the process of checking 

computer code and removing bugs, whilst validation is testing that the model output 

gives the desired solution or result. Anderson and Bates (2001) suggest that the term 

validation is unhelpful altogether and suggest a neutral term such as evaluation or 

assessment. 

In this section model validation is taken as the comparison of the modelled output 

with the observed data with the objective of quantifying how well the model results 

match observations. Validation should test critical model outputs in terms of the 

purpose of the model (Mulligan and Wainwright, 2004).The model purpose is as a 

screening tool to locate flood risk areas (defined as locations close to major flow paths 

and surface depressions that fill with water) and hence an ideal validation would test 

the model's capability to reproduce areas that in reality do suffer from surface water 

flooding, and those areas that do not flood. In this validation, we are testing the 

adequacy of the model as a screening tool for flood risk, i.e. is the model capable of 

directing a user to areas of high flood risk within a catchment? 

CURRENT APPROACHES 

DATA AVAILABLE FOR VALIDATING SURFACE WATER FLOODING MODELS 

Models that predict surface water flooding should, as a minimum requirement, be 

validated against their ability to locate flooded areas. But what data is currently 

available for doing this? In the UK data on surface water flooding is sparse (Defra, 

2009). This is because surface water flooding events are of short duration, very 

localized and unevenly distributed across the catchment. A further reason is that 

responsibility for surface water flooding has not previously been clearly defined (Pitt, 

2008) and therefore no one organization has been concerned with gathering data. 

Despite this several potential sources of surface water flooding data have been 

identified: 

• Water and Sewerage Companies are required to keep a record of flooding 

arising from sewers, such as overloaded and blocked sewers (Ofwat, 2007). 
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Although it is possible, it is unlikely that any record will be kept of incidents that 

were not considered to be directly related to flooding from the sewer system. 

• Local Authorities may hold data on surface flooding incidents in various 

departments. Drainage departments typically have records of flooding incidents 

from sources such as culverts, storm drains and watercourses. Some of these 

incidents will be a result of heavy rainfall, others due to blockages or other 

failures. When incidents are deemed not to be the responsibility of the 

drainage department they are passed on, for example to sewerage companies 

or the land owner, in which case there are no further details of the incident on 

record. Similarly highways departments receive and record complaints 

regarding flooding that is believed to be due to blocked highway drains and 

gullies. Data held usually includes a location of the flooding incident and in 

some cases an indication of the extent, depth and duration of flooding. It is not 

always possible to determine the cause of flooding from records held. 

• Anecdotal information such as personal accounts, photographs and videos of a 

flood event can be used to extract information about flood location, extent and 

depth. 

• CCTV may prove a useful source of information as it can also provide time 

dependent information on the flood extents and flood depths may be inferred. 

Further sources of information are discussed by WaPUG (2009). The main drawback, in 

terms of using the data described above for model validation, is that in most cases 

there is no confirmation of locations that did not flood, nor is there complete coverage 

of the flooded locations. 

VALIDATION OF EXISTING MODELS USED TO PREDICT SURFACE WATER FLOOD RISK 

It is recognised that standardized model evaluation tests are desirable but lacking 

(Kirchner et aI., 1996). Until recently, it was mainly sewer network models that were 

used to predict locations of non fluvial urban flood risk. Sewer models tend to be built 

for a specific purpose (e.g. for issues related to CSOs) and the locations at which 

verification is carried out reflect this (WaPUG, 2002). It is therefore expected that the 

prediction of surface water flooding volumes and location is less reliable. The 
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standards required for acceptance of a sewer network model vary according to the 

country. In the UK a code of practice exists detailing the conditions that must be met 

prior to operational use of the model (WaPUG, 2002). Verification of sewer hydraulic 

models normally starts by conducting a sewer flow survey, using flow monitors in 

sewers along with rain gauge data from the catchment. Modelled flows are then 

compared on the basis of flow rate and depth and in the form of a hydrograph which 

should meet the criteria for both shape and magnitude. WaPUG (2002) also state that 

the rainfall events captured for sewer flow verification should include three storm 

events of varying return periods and detailed guidance on rainfall events accepted for 

model verification is provided. The model should also reproduce all reported flooding 

in terms of location, severity and frequency where records permit. It is however 

recognized that good quality data on historical flooding is sparse. 

Despite detailed requirements for sewer model acceptance, the process establishes 

confidence in the modelled sewer flows, but not so much in the predicted surface 

flood risk locations. It is not feasible to carry out flow surveys across the entire 

catchment, therefore strategic locations are sampled. Despite the recommendations 

to include storm flow in the verification process, flow surveys often have a limited 

duration and therefore extreme events are not always captured. There is high 

uncertainty in the results at locations not included in the flow survey and in 

simulations of extreme events. Sewer hydraulic models can only predict flooding at 

manhole locations. Some simplified sewer models may not represent all manholes, 

and therefore even where good surface water flooding records exist; the model is 

unlikely to identify all flood risk locations in the catchment. 

Integrated Urban Drainage (IUD) modelling can be loosely defined as coupling the 

various models that have been developed to represent aspects of urban drainage (e.g. 

sewer systems, surface flow and fluvial systems). There is a drive towards IUD 

modelling (Gill, 2008), and guidelines for model testing have been produced (WaPUG, 

2009). The guidance generally states that the models should be verified using the 

standards for each of the parts of the integrated model and also as an integrated 

model, and that the verification results of the integrated model should be greater than 
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those of the parts since it is assumed that an integrated model provides a better 

representation. In terms of predicting surface flooding, the suggested validation 

methodology involves comparing model predictions with reported flood extents and 

flood routes. Site inspections are also required to check that the surface features that 

dictate surface flow routes are accurate. What is considered as an acceptable measure 

of agreement is not stated. The level of agreement between the model and data is not 

specified in terms of quantities and it is the responsibility of the modeller to define 

what is acceptable and this would be defined in the model reporting. 

The greater availability of high resolution digital elevation models (OEMs) has led to a 

growing sophistication in urban surface flood risk modelling (e.g. Bradbrook, 2006; 

Maksimovic et aI., 2009). Table 3.1 shows that many locations have been studied using 

a variety of modelling approaches, and while most carry out some validation in terms 

of flood extents and some present comparative depth data, few make any statistical 

measure of the quality of the model fit. This is likely to be due to the quality (and 

quantity) of the observed data being inadequate, which does not allow for statistics or 

formal measures of agreement to be calculated. Furthermore it is unlikely that the 

existing data regarding known flood locations will represent a comprehensive dataset 

of all areas that were flooded and those that were dry. 

Table 3.1: Model evaluation In surface water flooding studies (in IUD cases the sewer model 
verification has not been described in this table). 

Broad 
classification 
of model 

Surface 

Surface 

Surface 

IUD 

Details of model or study 

A 20 model (JFiow) was used to 
c:reate national surfac:e water flood 
risk maps for the UK (Environment 
Agencv, 2010a; Environment Agencv, 
2010b). 

A GIS based runoff and inundation 
model is developed (Chen et al., 2009) 

Six 20 hydraulic modeis were tested 
by running them on an Identical 
(benchmark) UOAR OEM. (Hunter et 
al.,2008) 

Two slightly varying dual-drainage 
approaches are described whereby 
overland flows (10 representation) 
are dynamically linked to a sewer 

Model evaluation 

Surface water incident data (mostly held by Local Authorities) was 
obtained and the model was evaluated in terms of Its ability to 
reproduce the probability of incidents in a zone. A qualitative 
evaluation of historic: records with modelled output was made for a 
selection of towns in the UK. in total 6 examples from the around the 
UK are presented. 
Inundation depths are known for two observed storms. The 
percentage difference in the model predicted depths (for 12 model 
cells covering the known inundation depths) and the observed depths 
is reported. The modelled flooded extent is also mapped onto the 
known flooded locations. 
Six models were run for an area in Glasgow where flooding was known 
to have occurred. The model outputs were compared against each 
other in terms of time series of water depth at various locations In the 
study area and also the maximum extent predicted by each model. 
Reference is made to eyeWitness accounts of the flooding patterns. 
Four streets known to have flooding problems are described. The 
results of two modelling approaches are compared In terms of flow 
volumes In and out of the minor and major system aiong the four 
roads. Although It is known these roads suffer from flooding, flow 
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Broad 
classification 
of model 

IUD 

IUD 

IUD 

Surface 

IUD and 
Surface 

IUD 

IUD 

IUD 

IUD 

IUD 

IUD 

Details of model or study 

model (Maksimovic et al., 2009) 

An IUD model was used to look at 
flood risk in the Brent North 
catchment. (Bamford et al., 2007) 
(Defra, 2009) 
A comparison of 2 approaches to 
coupling surface and sewer models is 
made (Leandro et ai., 2009) 

Two surface and sewer model 
coupling approaches are compared 
(Allitt et al., 2009) 

As part of the Strategic Flood Risk 
Assessment, areas susceptible to 
surface water flooding were identified 
using a 20 model, JFlow (described in 
(Bradbrook, 2006). 

Various surface water flood risk 
modelling approaches are compared. 
These inciude 10, 20, integrated and 
surface only (Bamford et ai., 2008) 

A surface channel and ponding 
network is extracted in G IS and used 
In Infoworks CS to model both 
overland flow and sewer flow (Leit:lo 
et ai., 2008) 
Describes the development of a 
model to extract 10 surface overland 
flow networks. The model is used with 
a sewer network to model surface 
water flooding (Boonya-Aroonnet et 
al.,2oo7) 
Development of integrated sewer and 
surface model (SIPSON) is described 
(DJordjevlc et ai., 2005) 
A sewer model (SWMM), a 10 
channel flow model (HEC-1) and a 20 
overland flow model are used to 
simulate the flooding observed in 
Taipei (Taiwan) during a typhoon 
event (Chen et ai., 2005). 
A coupled storm sewer model with a 
20 overland flow model is used to 
predict inundation (Hsu et ai., 2000) 
An overland flow model is coupled 
with an existing Infoworks CS model. 
The purpose was to investigate 
surface water flooding problems In 
Nottingham (Harrison, 2000) 

Model evaluation 

rates and volumes are not known and so cannot be compared with 
model output. 

The areas highlighted as being at risk from flooding by the modelling 
were compared with photographic and video records made by the 
general public during flooding on the 20tt. July 2007. Storm data for 
the same date was also used to drive the models. 

It is noted that dynamically measured flood data does not exist for the 
case study location. The modelled depths and velocities are compared 
against each other. It is noted that the case study site is likely to flood 
(but confirmation of whether it does flood is not stated). 
In all cases a previously verified sewer model was used. The surface 
flooding was compared against known flooding. Modelled volumes 
and depths were compared with CClV footage from known flood 
events. No measure of agreement is stated. 
The Royal Borough of Kensington and Chelsea compiled a list of 373 
properties that reported flooding during a heavy rainfall event of the 
20tt. July 2007. An intense summer storm (100 year event) obtained 
from the FEH design rainfall procedure was used to run the model and 
the depth results were compared to the list of properties that 
reported flooding. JBA Consultring (2009) conciuded that a visible 
(qualitative) correlation of modelled ponding areas and observed 
incidents existed. 

The results are compared qualitatively on the basis of their ability to 
replicate observed flooding for a number of design rainfall return 
periods. An example is provided of where the extent of flooding has 
been delineated from video footage and this is compared to the (20) 
modelled extent. 
The model results (extent, volume, velocity, depth) were compared 
against four different approaches (all based on 10 surface and 10 
sewer representations) and no comparison with observed data was 
made although it is noted that some of the roads modelled as 
flooding, are also known to have flooding problems. 
Photographic evidence of flooding and known locations of flooding are 
compared to the surface water flooding results. 

Observed and simulated maximums depths at four points along a 
street during a flood event are presented graphically. 

A mapped survey of flooded locations, following Typhoon Nari (2001) 
Is presented and the model predictions of flood extents are compared 
qualitatively against the observations. No quantitative measure of 
agreement is stated. 

Inundated areas across Taipei from Typhoon Zeb (1998) were mapped 
by the government. These are compared graphically and discussed 
qualitatively against the modelled inundation extent. 
A previously verified Infoworks CS sewer model was coupled to an 
overland flow model. It Is stated that it was not possible to verify the 
overland flow model. 
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VALIDATION OF FLUVIAL MODELS 

Given that urban surface water flooding is now being modelled as overland flow to 

produce 20 inundation results, it may be possible to adapt methods that are used in 

the testing and validation of fluvial inundation models. Fluvial inundation models also 

use high resolution OEMs to predict flooding extent and this has required the 

development of appropriate validation measures. Typically, hydraulic models are 

validated on their ability to reproduce flow hydrographs (e.g. Bates et aI., 2003). With 

advances in remote sensing data availability, flood inundation models are also 

evaluated on their ability to reproduce inundation extent or pattern. 

Fluvial models have been tested with inundation data obtained from satellite borne 

data (Bates and De Roo, 2000; Horritt and Bates, 2001; Horritt and Bates, 2002) as well 

as with aerial imagery (Yu and Lane, 2006). Satellite borne data includes SAR (Synthetic 

Aperture Radar) which produces images with a ground resolution of tens of metres 

and airborne images have much higher resolutions. Techniques have been developed 

to classify inundation extent and pattern and these are compared to the modelled 

output (Horritt, 2006; Horritt et aI., 2001). Satellite and airborne surveys provide 

excellent spatial coverage of the flood event but, unlike validation with time 

dependent flow hydrographs, the use of such data only provide one snapshot of the 

event with which to assess model accuracy. It is unlikely that currently available 

satellite remotely sensed data (e.g. SAR) will prove useful in determining urban surface 

water flooding locations and extents. Surface water flood events are often short lived 

and therefore the chance of a satellite capturing appropriate images is reduced. 

Furthermore surface water flooding occurs in small isolated patches distributed across 

the catchment which may be smaller than can be detected by the satellite. 

Neal et al. (2009) describe an approach for model testing whereby following a flood 

event, an extensive survey of wrack and water marks was carried out across the study 

area. This provided not only inundation extent but also depth data. Using the survey 

data and gauged hydrograph data, it was then possible to compute a Root Mean 

Squared Error (RMSE) between the simulated and observed water depths. Such an 

approach is labour intensive as it requires an extensive field survey during or as soon 
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as possible after the event. Whilst surface water flooding may not leave obvious traces 

or wrack or water marks, a simultaneous survey by several observers during the flood 

event could prove useful in obtaining depth and extent data. Connell et al. (1998) used 

a door to door survey of 40 floodplain residents (Waihao River in New Zealand) to 

collect data such as personal accounts, photographs and videos with which to validate 

a 20 flood plain model. Although there were difficulties in establishing whether 

photographic evidence of flood extent was post or pre flood peak, Connell et al. (1998) 

concluded that the exercise was a useful method of validation. Hull City Council in the 

UK carried out an exercise of a similar nature in 2007 (Coulthard et aI., 2007; The 

National Land and Property Gazeteer, 2009). On the day following extensive surface 

water flooding, many members of staff were relieved from their day jobs in order to 

provide the necessary man power to carry out a house to house survey with the 

objective of identifying vulnerable residents in need of help. Hull City Council then 

realised they were collecting valuable data that could feed into their Strategic Flood 

Risk Assessment (SFRA), and therefore the aim of the survey was expanded to include 

collection of data regarding flood levels. All properties in the City of Hull were surveyed 

and the exercise lasted two weeks (Codd, 2008). The exercise produced an invaluable 

data set with which to compare results from modelling carried out for the SFRA. It was 

recognized however that caution had to be exercised given that it was a post flooding 

survey and conflicting results were returned whereby neighbouring residents would 

report varying flood depths. 

3.2. METHOD USED TO VALIDATE THE URBAN SURFACE WATER BALANCE 

MODEL 

CASE STUDY 

Keighley is a town in West Yorkshire, UK, with a population of approximately 50,000. 

The urban area sits near the confluences of the Rivers Aire, Worth and North Beck. 

Much of the suburban area lies on slopes of 3 to 10 degrees ("'7 and 18%). As outlined 

in chapter 2, one of the first steps of urban surface water balance model is to identify 

the major sub-catchments that drain to model boundaries (e.g. a river, watercourse or 
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open drain). Four of the largest sub-catchments were selected, as this is where 

potential exists for the build-up of surface water to cause flooding and furthermore 

there are known surface water flooding issues in these areas. The four study 

catchments have a combined area of 362 hectares and each span approximately 2 km 

in length from the top of the catchment to the model boundary outlet (Figure 3.1). Of 

the 3956 properties in the four study catchments, ..... 60% of housing is characterized by 

rows of terraced housing (mainly in the lower and central parts of the town) and ..... 40% 

are detached and semi-detached properties with larger curtilage; these principally sit 

on the suburban slopes. Some of the terraced housing has cellars, many of which have 

been converted into basement living space. 

- Rivers, watercourses and open drains 
CJ Study catchments 
-- 25 m contours 

Figure 3.1: Study catchments and aerial photography. 
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OBSERVED DATA TO TEST THE MODEL 

Having considered some of the major limitations of existing data sources, including the 

fact that the data held by local authorities may be not be digitally mapped or even in 

electronic format (but in paper based records), independent data collection in a 

standardized manner was opted for. Several options were considered, including 

mapping exercises with local authority drainage operatives, a residential door to door 

survey and waiting for a flood event and carrying out a field survey of flooded 

locations. These options were not considered effective given the time and resources 

available. A postal questionnaire survey was deemed the most resource efficient 

option. 

The aim was to make the questionnaire as simple as possible with minimal questions 

to increase response rate. A further aim was to encourage replies not only from 

flooded residents but also to get confirmation of locations that have not been flooded. 

As an incentive, respondents who returned their completed questionnaires within 

three weeks were also entered into a £50 prize draw. A copy of the questionnaire sent 

out can be found in Appendix 3 and the online version can be viewed at 

www.flood.group.shef.ac.uk/guest.html. The questionnaire comprised 6 questions, of 

which only 3 were required; question 1 asked if they suffered from surface water 

flooding, question 2 asked for the length of residence at the address and question 3 

whether they were happy to be contacted in the future. Questions 4, 5 and 6 were 

optional if respondents were willing to provide further details about the surface water 

flooding incidents. Further details regarding the flooding incidents, such as the date, 

exact location and depth would have been extremely useful, but it was felt asking for 

this type of information would only deter some people from filling out the 

questionnaire. Instead, respondents were simply asked if they had ever 'suffered' 

surface water flooding and providing further information was left as optional. 

Additional information clarifying the adopted definition of surface water flooding was 

distributed along with the questionnaires (Appendix 3). One of the required questions 

asked respondents to state the length of time living at that address. This was asked in 

order to determine whether during their time at the address there would have been 
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any significant rainfall events that might have led to flooding. Rainfall that led to 

localised flooding was observed in September 2009 (Rahman, 2009) and therefore 

unless they had just moved in, most respondents should have knowledge of whether 

that event led to flooding at the property. 

It was not feasible to send questionnaires to every resident in the catchment, so two 

random selections of properties were made using the results of model runs as 

described in chapter 2. The first selection consisted of properties that were considered 

to be at risk of surface water flooding, and a second selection was of properties well 

beyond areas considered at risk of surface water flooding. A total of 1000 properties 

were selected and each property was assigned a unique reference number which 

would enable the reply to be matched to its address on return. The questionnaires, 

along with freepost response envelopes, were sent out in August 2009. There was also 

the option of completing the questionnaire online and there was a webpage dedicated 

to Frequently Asked Questions regarding the questionnaire. 

Figure 3.2 illustrates the addresses that were sampled and, for those that replied, 

whether or not flooding has been experienced. Table 3.2 summarises the replies of the 

questionnaires. Addresses were provided as points, however for the purpose of model 

validation, these points were then linked to the corresponding building footprint as 

provided by OSMM. Due to the random sampling used to select addresses, in two 

cases replies were received from separate addresses within the same building 

footprint. Fortunately the replies agreed, and therefore for mapping purposes and 

statistical analysis the two replies from the same building footprint are treated as one. 

The total number in the sample for statistical analysis is therefore 92. No one opted to 

complete the questionnaire online although in August 2009 there were 15 unique 

visitors to the website and in September 2009 there were 2. Two respondents posted 

back photographic evidence of flooding and one additional photocopied questionnaire 

was returned from an address that had not been sampled. Twenty two respondents 

provided details of flooding at locations further afield from their homes, this was not 

included in the statistical analysis but was mapped independently and is discussed 

separately. Two questionnaires were returned where it was clear from the additional 
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information that the flooding was not on the property itself or street directly in front. 

Three questionnaire were returned where 'no' has been ticked but the details 

provided clearly indicated the flooding was adjacent to the property. These replies 

were therefore altered for the purpose of model testing. 

D Surfatewalercalctmwtnls 0 PllrvIous _ Open walerfllaturllS Reported flooding 
• Catchment outlets 0 ImpeNiolls * Yes 

Figure 3.2: Sampled properties and responses. 

Table 3.2: Summary of questionnaire replies. 

Reported suffering from surface water flooding 
Residence t ime at the address less than 2 years 
Residence time at the address between 2 and 5 years 
Residence time at the address between 6 and 10 years 
Residence time at the address greater than 10 years 
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• No 

Didn't reply 

Number of replies 
Yes No Total 
31 63 94 

1 5 6 
6 10 16 
7 5 12 

16 42 58 



RAINFALL EVENTS RESPONSIBLE FOR FLOODING 

An appropriate input rainfall was required to test the model. Out of the 31 replies that 

reported flooding 24 provided some details regarding the frequency or dates of 

flooding. These were classified into those that indicated very frequent flooding, often 

stating something like "Every time it rains" or "Every time there is heavy rainfall" 

(although some of these were also accompanied with a specific mention of a date), 

and those which only provided specific dates {Figure 3.3}. From those that provided 

more information regarding the date of flooding, six dates were identified using 

information from questionnaire replies and also from local newspaper reports {Table 

3.3}. 

All heavy rainfall events (16) 

Only specific dates (8) 

o No dates provided (7) 

• No reported flooding 

Figure 3.3: Analysis of dates of flooding. 
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Table 3.3: Dates that were identified as responsible for surface water flooding. 

Oates 

1st Nov 2010 
6th Oct 2009 

6th Sept 2008 

21st Jan 2008 

25th Jun 2007 

15th Jun 2007 

Mentioned in questionnaires 

Mentioned specifically in 1 reply 

Mentioned specifically in 1 reply 

4 mentioned "summer 2008" (no 
rain gauge data until 31st Aug 

2 questionnaires "January 2008" 

2 questionnaires mention "2007" 

2 questionnaires mention "2007" 

Mentioned in newspaper 
No 

Yes. "He said the water entered the house at about 3pm, on 
October 6, following hours of unusually heavy rain. " 
(Rahman, 2009) 

Yes "Severe rain lashing the district for the past 24 hours has 
resulted in a September washout of sporting fixtures not seen 
for more than 30 years. " (Win row, 2008) 

Yes. "The torrential rain has brought flooding chaos to 
Keighley and South Craven." (Shand, 2oo8a; Shand, 2oo8b) 

Yes. "Cellars in homes of Braken Street, Keighley, were 
flooded to a depth of four feet and had to be pumped out by 
fire-fighters" 26th June 2007 (Rush, 2007), and "Home owners 
fear they could be forced from their houses if water continues 
to rise following a second week of flooding" 28th June 2007 
(Johnson, 2007) 

Yes. "The month's average rainfall arrived in only 24 hours, 
with Bingley declared the wettest place in Britain. West 
Yorkshire Fire & Rescue Service took 400 calls between 7am 
and 4pm yesterday from desperate homeowners wanting 
their flooded houses pumped out (Griffiths, 2007a; Griffiths, 
2oo7b) 

Rainfall data from two 0.2 mm tipping bucket rain gauges was obtained from the City 

of Bradford Metropolitan District Council (CBMDC) for these dates. One of the rain 

gauges (HF) is located within the study catchments as shown in Figure 3.3 and the 

other (SC) is located in the urban area 350 m south of the study catchments. The 

rainfall on the dates listed in Table 3.3 has been analysed to determine the maximum 

depth falling during a range of durations. The FEH (Flood Estimation Handbook) Depth 

duration frequency (DDF) model (Bayliss, 1999) was used to obtain depth and intenSity 

values according to the return period for both sites and the observed rainfall was 

analysed on this basis (Figure 3.4 and Figure 3.5). The rainfall was analysed with the 

aim of identifying a typical storm profile responsible for flooding, with which to test 

the model. Table 3.4 provides a summary of the maximum rainfall depth observed at 

different durations centred on these dates. 
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Table 3.4: Maximum rainfall depth (mm) for a range of durations observed on dates of flooding. 

Date Rain gauge 30 mins 1 hour 6 hours 24 hours 48 hours 
01 November 2010 HF 4.80 8.80 26.20 31.60 34.80 

SC 4.40 8.20 25.60 29.60 32.60 
06 October 2009 HF 12.20 19.20 25.40 32.80 33.00 

SC 13.60 21.00 28.00 34.60 34.80 
06 September 2008 HF 4.60 4.80 17.60 42.40 48.80 

SC 7.60 7.60 19.80 51.60 58.00 
21 January 2008 HF 4.40 8.20 28.40 40.80 50.40 

SC NA NA NA NA NA 
2SJune2007 HF 2.20 3.60 19.00 38.20 44.00 

SC 3.00 4.40 21.60 45.20 51.40 
IS June 2007 HF 5.60 7.20 26.40 46.00 62.40 

SC 7.80 8.80 27.60 50.00 70.40 

The times of concentration for the study catchments, were computed using the 

BransbY-Williams formula (Derwent Estuary Program, 2005); these ranged from 43 to 

95 minutes. It was therefore expected that the rainfall responsible for flooding would 

have durations of approximately 1 hour. The maximum depth and intensity for a 1 

hour duration storm on five of the dates that led to flooding was characteristic of a 

frequent event, in most cases with a return period of less than 1 year and in all cases 

with a return period less than 5 years. It was the longer duration rainfall, of 24 and 48 

hours of each of the events that was associated with the highest return periods 

(between 5 and 10 years). The only storm for which this was not the case was on the 

6th October 2009, which was a short duration, high intensity storm. The maximum 1 

hour rainfall depth and intensity of this storm lies just above the DDF modelled 10 year 

return period. 

It is evident from this analysis that selecting a single deSign storm responsible for 

flooding is complex, and especially given the limited number of storm dates that were 

obtained. From this limited number of dates when rainfall is reported to have led to 

flooding, it is the rainfall durations between 6 and 48 hours that are associated with 

the highest return period (with one exception on the 6th October). The 24 hour 

duration 5 year return period was selected for model testing and the storm profile was 

generated using the FEH methodology (Faulkner, 1999). 
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Figure 3.4: Maximum rainfall depth for given durations plotted against FEH DDF curves (HF rain 

gauge). 
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Figure 3.5: Maximum rainfall depth for given durations plotted against FEH DDF curves (SC rain 

gauge). 
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EXCESS WATER INPUT FOR URBAN SURFACE WATER BALANCE MODEL 

From the limited analysis presented above, it is assumed that it is generally the longer 

duration storms that are responsible for much of the surface water flooding in 

Keighley. Long duration storms have lower rainfall intensities which the sewer system 

is expected to be able to drain away; the assumption made is that in these types of 

events the surface water responsible for flooding originates predominantly from 

natural surfaces that are not served by the sewer system and that begin to contribute 

runoff once the soil approaches saturation following prolonged rainfall. A more 

sophisticated method of estimating the excess surface water produced by natural 

areas, not served by the sewer system, is therefore required. 

The method is based on a simple classification of the study catchments into areas 

expected to be served by the sewer system and those areas that are not. Using OSMM 

data, buildings and roads were given a 10 m buffer and this area was assumed to be 

served by the sewer system. A 10 m buffer was selected as this distance was found to 

also include many other typically urban surfaces which were not buildings or roads 

(e.g. gardens and courtyards) but that are likely to also be drained by the sewer 

system. This also assumes that runoff from within the 10 m buffer also ends up in the 

sewer system. All remaining areas were classed as not served by the sewer system, 

and are predominantly natural surfaces (Figure 3.6). Using the Bransby Williams 

formula (Derwent Estuary Program, 2005) the average time of concentration for the 

catchments was found to be approximately 1 hour and standards dictate that urban 

drainage should be designed to drain the rainfall intensities of a 30 year return period 

event (Water Research Centre, 2006). The model accounts for the capacity of sewers 

by assuming that these design standards are met. 

Using the FEH methodology (Faulkner, 1999), the average rainfall intensity of the 1 

hour 30 year return period event for Keighley was calculated to be 29.44 mm/hr. 

Based on this, the maximum sewer conveyance capacity is set at 30 mm/hr and all 

areas classified as 'served by sewer' will be able to drain off rainfall intensities of up to 
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30 mm/hr. The area of the hyetograph above the 30 mm/hr threshold is therefore 

deemed as excess water that remains on the surface. The maximum rainfall intenSity 

of the design profile for the 24 hour duration, 5 year return period rainfall is 5.39 

mm/hr therefore for the event used in model testing, no excess water is produced in 

the areas classed as served by sewer. 

Land classification 

o Served by sewer 

_ HOST26 

HOST 24 

HOST1S 

HOST 10 

HOST 6 

HOSTS 

Figure 3.6: Land cover classed as served by sewer and soil HOST classes for natural land cover types. 

The FEH variable percentage runoff equation was used to calculate the runoff volumes 

from the natural surfaces (Houghton-Carr, 1999). This method was selected as it is 

dynamic in reflecting changing runoff rates according to catchment antecedent 

conditions and storm magnitude, and it is recommended for the calculation of 

greenfield runoff rates (Balmforth et aI., 2006b). It requires minimal data inputs as 

shown in Equation 3.1, where PRRURAL is the percentage runoff from the natural part of 

the catchment, SPR is the standard percentage runoff (which is determined from the 

HOST soil type), DPRcwl is the catchment wetness index and the DPRRA1N is variation in 

runoff depending on the storm magnitude. 
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PRRURAL = SPR + DPRcWI + DPRRAIN (Eq.3.1) 

This method relies on the HOST (Hydrology of Soil Types) classification to obtain the 

SPR, which is then adjusted according to DPRcwl (Eq. 3.2) and DPRRAIN (Eq. 3.3). 

CWI=12S+APIS-SMD (Eq.3.2) 

Where API5 is the antecedent precipitation index (as in Houghton-Carr, 1999) and SMD 

is the soil moisture deficit. 

DPR
RAIN 

= 0.4S(P-40)O.7 (Eq.3.3) 

Where P is the catchment rainfall (mm) and P = 0 where the catchment rainfall is less 

than 40 mm. For model testing using design profiles, the API5 and the SMD were 

assumed to be zero. Table 3.5 presents the excess surface water depths used as model 

inputs. 

Table 3.5: Excess water depths (mm) calculated according to land cover. The 1 hour duration, 30 year 
return period values are also shown for comparison. 

Total deslsn rainfall depth 
Served by sewer 
HOST soli type 26 
HOST soli type 24 
HOST soli type 15 
HOST soil type 10 
HOST loll type 6 
HOST soli type 5 
HOST soli type 4 

24 hour duration, 5 year return 
period 

49.15 
o 

29.82 
20.48 
24.75 
13.40 
17.58 

8.09 
1.95 

MEASURES OF MODEL AGREEMENT 

1 hour duration, 30 year return period 
(summer) 

29.44 
9.94 

15.81 
10.22 
12.78 

5.98 
8.48 
2.80 
o 

The objectives of this exercise are to 1) compare observed data and quantify model 

performance and 2) determine if there is any value in the using the model. To achieve 

the first objective a suitable measure of agreement is required. The latter objective 

will be addressed with a qualitative discussion based on a range of data sources and 

field trips. In this case the modelled and observed results can be summarized by a 

contingency matrix as shown in Table 3.6. A number of descriptive statistics can be 

derived from a contingency matrix, as summarized in Table 3.7. 
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Table 3.6: Example of a contingency matrix. 

Modelled flooding Yes 
(predicted) No 

Observed flooding 

Yes 
a 
c 

No 
b 
d 

Table 3.7: Descriptive statistics that can be derived from a Z x Z contingency table, a, b, c and d are as 
shown In Table 3.6 and N Is the number of matched samples. (Source: Fielding and Bell, 1997; Kohavl 
and Provost, 1998). 

Measure 

Overall accuracy 
(percentage correctly 
classified) 
True positive rate (also 
Recall, Sensitivity) 
True negative rate 
(Specificity) 
Precision (also Positive 
predictive power PPP) 
Negative predictive power 
(NPP) 

False positive rate 

False negative rate 

Prevalence 

Overall diagnostic power 

Misclasslflcation rate 

Cohen's Kappa 

Description Calculation 
The rate of correct predictions made (a + d)/ N 
by the model 

The conditional probability that case a/(a +c) 
X is correctly classified 
The conditional probability that case d /(b + d) 
X is incorrectly classified 

Assesses the probability that a case a/(a+b) 
Is X if the model classifies as X. 
Assesses the probability that a case d /( c + d) 
is not X if the model does classify 
the case as X 

Measures the strength of 
agreement 

b/(b+d) 
c/(a+c) 

(a+c)/ N 
(b+d)/ N 
(b+c)/N 

(a + d) «(a + c)(a + b) + (b + d)(c + d»/ N) 

N - «(a + c)(a + b)+ (b + d)(c + d»/ N) 

Cohen's Kappa is one of the only available measures of agreement for categorical data 

(Everitt, 1977). The Kappa statistic was selected as the main measure of model 

agreement, although other measures such as the false positive rate, false negative rate 

and the overall percentage correctly classified are also used to assess model 

performance. The Kappa statistic takes into account the classifications that could have 

occurred by chance and provides a value that ranges from 0 to 1. A value of 1 is a 

perfect agreement and values nearer to zero are considered to have occurred by 

chance. Negative values are rare but are said to have an agreement that is weaker 

than what would have occurred by chance. There is little guidance on the exact 

interpretation of the Kappa statistic, with the exception of the benchmark proposed by 

landis and Kock (1977, cited in Everitt, 1977) as shown in Table 3.8, especially with 

regard to model testing. The confidence interval of the Kappa statistic can be 

calculated which provides an indication of the possible range of the result. 
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Table 3.8: Suggested benchmark for evaluating Kappa values by Landis and Kock, (1977) cited In 

Everitt (1977). 

K Strength of agreement 

o Poor 
Slight 
Fair 

0-0.2 
0.21-0.40 
0.41-0.60 
0.61-0.80 
0.80-1 

Moderate 
Substantial 
Almost perfect 

3.3. RESULTS OF THE MODEL TESTING AND DISCUSSION ABOUT MODEL 

VALIDATION 

MODEL CALIBRATION 

The model has few input parameters that can be calibrated and the sensitivity of some 

of these was tested in chapter 2. Table 3.9 summarizes the model properties that 

could be used for model calibration. Given the limited surface water flooding 

observations, these are reserved for model testing rather than calibrating. It is 

expected that that model testing will highlight the important model inputs that require 

calibration, and therefore appropriate data can be collected. 

Table 3.9: Summary of the model properties that may require calibration. 

Model properties 

OEM 

Excess water method 

Land cover classification 

Surface depressions (sinks) 

Flow direction algorithm 
Treatment of surface water 
passed down from multiple exit 
sinks 
Translation of model outputs 
Into flooded locations 

calibration options 

Minimum level of detail required (inclusion of walls, curbs etc .. ) 
Inclusion of elevated underflow structures (bridges, canopies etc .. ) 

Method used to account for urban drainage conveyance. 
Method used to calculate excess water from pervious and Impervious land cover 
Number of land cover classes 
Assignation of excess water method for each land cover class 
Properties of sinks to be excluded or Included in the model (I.e. minimum depth, volume 
or surface area of sinks) 
Unique cell flow direction or flow apportioning algorithms 

Method for computing water stored and passed down at each of the exits of a multiple exit 
sink 

Determining sink and flood route properties that classify as a location as flooded 

CLASSIFYING PROPERTIES AS FLOODED 

Once the model results have been generated, an interpretation of model output for 

use as a predictor for surface water flooding was required. To use the model output as 

a predictor it was necessary to identify a set of criteria that could be used to classify 

the status of a property as flooded or not flooded. The classification is based on 

65 



proximity to model output in the form of areas where water ponds {sink polygons} and 

indicative major flood routes {polylines}. Flood routes are cells with high total 

accumulated surface water; they are termed indicative flood routes as they are 

identified as 1 cell wide, whereas in reality the flood route may span the width of a 

road for example. Using these two principal model outputs, appropriate selection 

criteria for classifying properties as experiencing surface water flooding were explored. 

A suitable selection criteria is required that does not highlight over-large proportions 

of the catchment as being at risk, as this would not be a useful tool. A limited number 

(84) of combinations of selection criteria were explored manually and the general 

findings are summarised in Table 3.10. The findings in Table 3.10 are based on a single 

model run which produced one set of model results which are the basis of the 

validation. 

Table 3.10: General findings of the exploratory analysis of selection criteria. 

Description 

Depth of water In sink 

Distance of sink from 
building footprint 

Sink surface area 

Total accumulated 
volume of flow path 

Distance of flow path 
from property 

Selected based on (1) 
flow paths only, (2) 
sinks only, (3) near sink 
and flow path (4), near 
sink or flow path 

Range looked at General findings 

15 em to 50 em A greater water depth resulted in a better match with known flood risk 
areas. A water depth of 15 em resulted in approximately 50 % of the 
properties highlighted as at risk compared to less than 10% If a 50 em 
water depth is used. 

1 and 2 metres Using a distance of 2 metres generally highlights slightly more properties 
as at risk 

All sinks and those with There was a better match with flood risk locations when all sinks were 
a surface area greater Included. Generally this resulted In more properties highlighted as at risk 
than 5 mZ 

50, 150, 250, 300 and Overall the best matches with flood risk areas were obtained using 
500 mJ accumulated volumes of 300 m

J 
and these highlighted approximately 3% 

of properties as at risk. Using a higher volume did not Improve the 
correspondence with known flood risk areas. 

1, 2 and 3 m Using a distance of 2 and 3 m generally produced similar results in terms 
of matched flood risk areas, with only 3% of properties selected as at 
risk 
These selection criteria made a significant difference to the percentage 
of properties highlighted as at risk and also the matches with locations 
known to flood. Generally the better results were produced by satisfying 
the criteria of being near a 'flow path or sink' or only flow paths. Using 
only sinks generally produced poor results in terms of highlighting 
known areas of flooding. Using selection criteria of 'sinks and flow paths' 
produced poor results as very few locations satisfied both criteria. 

From the limited analysis and using expert judgement the selection criteria that had to 

be met for a property to be highlighted as flooded was s 2 m from a sink with a water 

depth ~ 50 cm or S 2 m from a flow route with a total accumulated volume of ~ 300 

m3
• Application of these criteria with the event selected for model testing results in 6% 
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of properties being selected as experiencing surface water flooding. Using these 

criteria also flags 6235 m (~11%) of road length that coincides with a major flow path 

and 2396 m2 of ponding ~ 50 cm deep on roads (~1% of road surface) (Figure 3.7 and 

Table 3.11) . 

-- Roads that coincide with major flow routes 

_ Road surface with ponding water => 50 cm deep 

_ Properties classified as not flooded 

_ Properties classified as flooded 

. (-
'. 

I 

• • 

Figure 3.7: Roads and properties that are highlighted as flooded using the selection criteria. 

Table 3.11: Properties and roads that are classified as flooded. 

Entire Catchment 
study area A B C 

Flooded properties (%) 6 12 7 2 
Road length that coincides with a major flood route (%) 11 12 9 6 
Road surface with pondlng ~ SO cm deep (%J 1 2 2 0 

MODEL PERFORMANCE ASSESSED AGAINST REPORTED FLOODING 

0 

13 
25 
0 

The 24 hour duration rainfall event of a 5 year return period produced a Kappa statistic 

of 30% for the study area, which according to the benchmark reproduced in Table 3.8 

means that the model has a 'fair' strength of agreement with observed data. 
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Computing the 95% confidence intervals of the Kappa statistic reveals that the lower 

and upper limits are 7% and 53% respectively, indicating the wide range in possible 

interpretations. This is due to the very small sample size, and drawing conclusions 

regarding the model performance in reported flooded areas is further constrained 

given that only one third of the sample reported flooding. The spatial distribution of 

the results in shown in Figure 3.8 and Table 3.12 summarizes the findings across the 

four study catchments. The building footprint of five properties that replied fell in two 

catchments; this is because roofs often mark catchment boundaries. These five cases 

were looked at individually and a decision about which catchment they corresponded 

to was made on the basis of the likely processes that would lead to flooding. 

Table 3.12: Model agreement statistics and number of replies that reported flooding. 

Study 
area A 

Kappa statistic 0.30 0.54 
Fraction correctly classified 0.73 0.77 
False positive rate 0.10 0.00 
False negative rate 0.63 0.46 
Reported flooding 30 13 
No reported flooding 62 13 

- Major flood routes (accumulated surface water => 300 m3
) .. 

Sinks with water =>50 em deep water .. 

.. Reported N. Model Y (6) 

• Reported Y, Model N (19) 

• Reported Y, Model Y (11) 

.. Reported N, Model N (56) 

Figure 3.8: Reported and modelled results. 
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B 
0.09 
0.74 
0.10 
0.83 
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There is a clear difference in the strength of agreement across the four catchments 

(Table 3.12). The model best represents flooded locations in catchments A and D but, 

according to the Kappa statistic there is a slight and poor agreement with observed 

data in catchments Band C. Despite the high percentage correctly classified (> 68%) in 

catchments Band C, the Kappa statistic tells us this may be purely down to chance. 

The false positive rate is low, but it is the false negative rate which is very high, making 

the use of the model in these areas questionable. Across the study area a total of 25 

properties were misclassified (Figure 3.9). The misclassified properties were evenly 

distributed across the four catchments. These were looked at on a case by case basis, 

and 12 of these locations were investigated by means of a field visit, in order to try to 

establish the possible reasons for misclassification. The detailed analysis is outlined in 

Appendix 4 and a summary of the reasons why the model has failed to correctly 

classify the properties is found in Table 3.13. 

- Major flood routes (total accumulated water => 300 m' ) 

Sinks with water =>50 em deep 

Misclassifications 
... Reported N. Model Y (6) 

• Reported Y. Model N (19) 

15 • 

16 • 

13 • 

Figure 3.9: Misclassifications: locations where observed and model results do not agree. 
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Table 3.13: Summary of the most likely reasons for poor model agreement. 

Reason for misclasslflcatlon Total Fieid Properties (Label numbers as in Figure Catchments 
visit 3.9) 

Umitation with OEM 10 5 1, 4, 9, 11, 14, 15, 21, 22, 24, 25 All 4 
Selection criteria 10 5 2, 5, 6, 12, 13, 16, 18, 19, 20, 23 All 4 
Rainfall event 5 2 7, 16, 17, 18, 19 B,C 
No representation of drainage assets 3 3 3,8,9 A, B 
Excess water method 2 1 6,13 A,B 
Interpretation of flooding 1 0 10 B 
Multiple exit sink problem 1 0 5 A 

The limitations of this somewhat subjective analysis are acknowledged. Primarily there 

are very few observations on which to make generalizations. Only the misclassified 

properties were looked at in detail. It would be possible to go a step further and look 

at all 92 properties on a case by case basis to establish whether in fact many of the 

correctly classified properties could have occurred by chance. For example, could the 

resident be reporting flooding in the road to the front of the property but the property 

is identified as at risk due to a sink filling at the rear of the property? That analysis was 

not undertaken and it is assumed that properties have been classified for the right 

reason. 

The explanations attributed to the properties that were visited should be given more 

weight and some interpretations are more conclusive than others (see Appendix 4 for 

details on the explanations given and on what basis). Nonetheless the results are very 

revealing indicating that limitations associated with the OEM can account for many of 

the incorrect model predictions. It may be that alternative selection criteria could be 

developed to identify flooded locations in the model. Although in the questionnaire 

design phase it was felt that the definition of surface water flooding was sufficient and 

would produce homogenous replies, it was evident from replies that there was a great 

range of interpretations of surface water flooding. Another potential explanation for 

the low model agreement in catchments Band C, is that the type of event that leads to 

flooding is different to that which was used to test the model. 

Some of the more interesting findings and interpretations for each of the catchments 

are detailed below. These discussions incorporate some of the additional data 

provided by respondents about flooding in other parts of Keighley. They also draw on 

drainage incident data and locations of known culverts and watercourses that were 
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obtained from CBMDC. At the start of this phase of the research local authority 

drainage incident data for Keighley was only available in paper based records. As a 

result of the new surface water management responsibilities assigned to local 

authorities, CBMDC deemed it a worthwhile exercise to digitize drainage incident 

records. These were made available for this research. The quality of this data set was 

not evaluated, however it is noted that the precise location of an incident was not 

always known from the paper records and therefore was placed in the middle of a 

stretch of street to which the incident related. Similarly although the database aimed 

to record further details about the incidents, these were not always obvious from the 

paper based records. 

CATCHMENT A 

Based on the statistical analysis, the best results of the model were obtained in 

catchment A with a Kappa statistic of 54% and 0% false positive rate. In this catchment 

the sample sizes that reported flooding and no flooding was equal, which provides 

comparable confidence in computed false pOSitive and negative rates. There is a well

known surface water flooding spot at the top of the urban part of the catchment 

where many of the properties along a particular road often complain of flooding 

(Figure 3.10). There is also known flooding lower down in the urban parts (Figure 3.11). 

The flooding in this catchment can be principally explained as a result of runoff from 

the upstream fields. In the urban area this runoff accumulates into major flood routes, 

and properties near those flood routes suffer from surface water flooding, either 

directly from the flood route itself or from surface depressions filling with water. 

The main conclusion that can be drawn from the detailed analysis is that the model 

performs well in this catchment because the major flood routes are modelled well. 

This is confirmed by photographic evidence that was provided by respondents and is 

shown in Figure 3.10 (locations a, b, c and d). Furthermore, some of the major flood 

routes identified by the model coincide well with the location of culverts and 

watercourses as in location f in Figure 3.10, which provides further confirmation that 

the model is representing the major catchment flood route patterns. Some of the 

CBMDC land drainage incidents can also be explained by the model results. The land 
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drainage incidents shown in location e in Figure 3.10 coincide with major flood routes 

and sinks as identified the model. Many of the land drainage incidents don't provide 

further details, but location c in Figure 3.11 mentions 'water flooding road' and this is 

corroborated by model results showing a major flood route along the road. Also in 

Figure 3.11 the land drainage incident at location d is in very close proximity to a major 

flood route. 

location a in Figure 3.11 illustrates where local features not represented in the OEM 

limit the accuracy of model results. The wall shown at location a is not represented in 

the OEM and the neighbouring resident confirmed that significant ponding occurs at 

this point, so much so that the resident takes it upon himself to regularly maintain the 

gulley at this location so as to alleviate flooding in this location which is adjacent to his 

property. The properties downstream of location b in Figure 3.11 commented that 

flooding has occurred when there are issues (e.g. blockages, failures, or flooding) with 

the culvert shown in the photo. Whilst this example highlights where the presence of 

urban drainage assets may lead to erroneous model predictions (when performing as 

required), the presence of the culvert grate in the same location as a modelled major 

flood route provides confirmation that a major flow path traverses this location. 

Furthermore scouring and fine sediment deposition was evident upslope of the culvert 

(as seen in the photograph of location b) indicating the presence of flowing water. 
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Figure 3.10: Upper urban part of catchment A. 

Base map: 0 Crown 

Copyright/database right 2009. 
All Ordnance Survey/EDINA 

Figure 3.11: Lower down In the urban area of catchment A. 
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CATCHMENTB 

Catchment B has a high false negative rate (86%) which raises questions about the 

model for predicting surface water flooding, as many flooded areas would fail to be 

identified. Whilst the percentage of correctly classified properties is high (74%), this 

statistic is heavily biased by the correctly classified non-flooded properties which are 

two thirds of the sample. The model performs poorly in identifying the six properties 

that did report flooding (only 1 is correctly identified by the model as flooded). 

At the top of the catchment, there is some assurance that the principal flood routes 

are fairly well represented in the model as they coincide with the presence of known 

drainage assets. location a in Figure 3.12 shows where there are three closely spaced 

gullies in the road in approximately the same location as a modelled flow path. CBMDC 

records also confirm a short stretch of culvert or watercourse in the vicinity. 

Downslope of this location, a resident confirmed the presence of a culvert that by

passes her property: the approximate location of the culvert as described by the 

resident is shown in location b of Figure 3.12. This coincides with a modelled flow path. 

These two examples also serve to highlight that the exclusion of urban drainage assets 

account for poor model performance. 

At the lower end of the catchment, on inspection of the anecdotal and photographic 

information one may conclude that the main flooded areas are represented in the 

model, as in locations a and b in Figure 3.13. Eleven respondents from around the 

study area made reference to the flooding problems on Skipton Road (location a) and 

there is also a collection of CBMDC land drainage incidents which match up with the 

properties classified as flooded in this location. There was only one questionnaire reply 

from Skipton Road, and this was the only correctly classified property in this 

catchment. There are three properties (6, 7 and 12) downslope from the main ponding 

area that reported flooding but that fail to be identified by the model. Properties 7 and 

12 are however very close to the flood route, and property 6 is on a catchment 

boundary. It is known that in past flood events, a major flood route in this area is 

straight through a property (shown by locations c, d and e in Figure 3.13) and not 

solely through the alley way further down the road as the model predicts. It may be 
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that the cumulative errors resulting from the failure to accurately model the flood 

route explain the three properties that are not correctly identified by the model. This 

catchment illustrates the influence that local features, not represented in the DEM, 

have on the major flow paths and sinks that collect surface water. Location c in Figure 

3.13 was a major flood route in the event pictured, however when the site was visited 

in 2010, the resident had installed a flood gate (photo in f in Figure 3.13). Local 

features that can greatly influence results can be temporary and variable. It is 

therefore a complex task to identify and incorporate them into surface water 

modelling. 

Base map: C Crown Copyright/database right 2009. An Ordnance Survey/EDINA supplied service 

Figure 3.12: Upper urban part of catchment B (see Figure 3.10 for the legend). 
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9ase map: C Crown Copyright/database right 

Figure 3.13: Lower urban part of catchment B (see Figure 3.10 for the legend). 

CACTHMENTC 

Catchment C produced the lowest Kappa statistic of all the catchments indicating a 

poor level of agreement. None of the six locations that reported flooding were 

identified by the model, but the model identified all the dry properties (0% false 

positive rate). Using additional information gathered, it is ascertained that at least 

three points along the modelled major flood route are known to pose flooding 

problems. One questionnaire respondent mentioned that there is flooding at the 

bottom of the road as shown in location a in Figure 3.14, CBMDC representatives also 

made reference to this location where a wall was toppled by flood waters. A known 

problem of surface water flowing, along Mayfield Road at location b (very near to the 

modelled flood route), led to the installation of a series of stepped swales along this 

road (Stovin et aI., 2007). At location c in Figure 3.14, the modelled flow path coincides 

with a short stretch of culvert that crosses the railway line. 
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This catchment has the least pervious land cover of the four study catchments (-20%). 

Using the 24 hour duration rainfall event of 5 year return period produces no excess 

water in 80% of the catchment as it is classified as {served by sewer' and for the 

associated rainfall intensity it is assumed there is no water remaining on the surface, 

and that the sewer has sufficient capacity for the entire flow. This explains why many 

of the reported flooded locations are not identified by the model. It is therefore 

inferred that either the sewer system is not effective at draining these areas for the 

test event (for example it has insufficient capacity), or that the event that leads to 

flooding is different to that which was used to test the model. Figure 3.15 shows the 

major routes and sinks that are modelled when a 1 hour duration rainfall event of a 30 

year return period is used. Using the method outlined in section 3.2, this event 

produces 8.88 mm (out of a 29.44 mm event) that remains on the surface that is 

classed as {served by sewer'. The properties labelled 16 to 19 would now be classified 

as flooded. 

Bose mop: 0 Crown Copyritht/dotabase risht 2009, All Ordnance Survey/EDINA supproed service 

Figure 3.14: lower part of catchment c. 
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Bas. map: CI Crown Copyright/database right 2009. An Ordnance Survev/EOINA supplied service 
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• Reported N, Model Y 

• Reported Y, Model N 

• Reported y, Model Y 

• Reported N, Model N 

* CBMDC Lal'ld drainage incidents 

- CBMDC Culverts al'ld watercoorses 
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Figure 3.15: Model results for a 1 hour duration rainfall event of a 30 year return period. 

CATCHMENT 0 

Catchment D was the second best modelled catchment of the study with a Kappa 

statistic of 29%, however it also proved the most difficult catchment to understand 

using the modelled and reported results. Five properties reported flooding and two 

were correctly identified by the model, both of these are at the bottom of the 

catchment. The catchment has the highest false positive rate of the study. Unlike the 

other catchments, the modelled flow paths at the top of the urban part of the 

catchment do not coincide so neatly with the CBMDC known culverts and 

watercourses. The location of the known culverts would suggest that most of the 

upslope pervious area in Figure 3.16 drains to locations band c. The model represents 

the upslope surface water mainly accumulating into two major flood routes at 

locations d and e. The resident at location 25 stated that water flooded the property 

from the rear, possibly indicating the major path is not in front the property as 

depicted by the model. The resident at location 23 stated that although it did not 

result in a flooding problem, the road in the front of the property has had flowing 

water of up to 1 inch in depth. 
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Some of the CBMDC drainage incidents however do show a good correspondence with 

the modelled locations of surface ponding ~ 50 cm deep as in locations f, g and h. This 

catchment clearly requires further investigation to understand the major process 

responsible for the flooding and highlights the need for complementary site visits 

coupled with enhanced local knowledge on past events and urban drainage assets. 
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o Surface water catchment boundary Base map: C Crown Copyright/database right 2009, M Ordnance Survey/EDINA supplied service 

Figure 3.16: Model results at the upper urban part of cat chment D. 

3.4. DISCUSSION 

WHAT WAS LEARNT ABOUT THE MODEL FROM THE VALIDATION EXERCISE? AND HOW 

CAN IT BE IMPROVED? 

The Kappa statistic states the agreement of the model with observed data is {fair' . 

Some of the reported results don't match with modelled results due to the selection 

criteria that was used for classifying properties as flooded or not. When some of these 

locations are looked at closely, the model produces results that correspond to the 

additional details provided in the questionnaire. For example, a resident mentioned 
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surface water collecting in a tennis court, and inspection of the model results also 

shows this. Having looked at the model results in the context of a range of data 

sources and anecdotal evidence, it can be ascertained that many of the principal 

processes responsible for surface water flooding are represented in the model. I 

believe this is clearly illustrated in catchments A, Band C where some of the major 

flow paths and major locations of surface water ponding, that are the source of much 

flooding are on average well represented in the model results. In particular in 

Catchment A, much of the photographic evidence that was supplied corresponds 

extremely well with the modelled surface water routes. 

In all catchments, it is believed that local details that are not represented in the LiOAR 

OEM are responsible for inaccurate predictions, and in some cases it was possible to 

confirm this with a site visit. The explanation for some of the misclassifications was not 

conclusive and may also be due to cumulative inaccuracies in the OEM which are 

difficult to identify but which locally result in large discrepancies between modelled 

and observed surface water accumulation. The OEM is one of the main model inputs 

and the main determining factor for identifying flood risk areas. Although the excess 

surface water model input determines the quantity and source location of surface 

water, it is the flow direction that is extracted from OEM which ultimately influences 

where excess surface water will accumulate. Further work is recommended to 

determine the sensitivity of model results to small local features that influence surface 

water accumulation. Such features include gaps between properties that have canopy 

structures, passages between terraced housing and walls (including field boundaries) 

and gates. In catchment A, a major flood route through a field gate is correctly 

identified (location b in Figure 3.10). In this case the lowest cell elevation in the vicinity 

coincided with the gate location, which is why the flow route is depicted. local 

features that influence surface water flow direction can also be temporary and 

variable. Residents can use sandbags to prevent surface water flowing along a road 

from entering properties or can alter features by erecting walls or creating gaps in 

walls. An interesting question to try and answer is, what is the cumulative effect of 

small and localised model inaccuracies due to the misrepresentation of local features 

in the OEM? To answer this question requires extremely detailed and wide coverage of 
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data on actual flow routes. A suggested source of such data is CCTV coverage. At 

present, the current network of CCTV cameras in the study area, as shown in Figure 

3.17, would not allow for this type of analysis as there is not sufficient coverage over a 

large enough spatial area. Furthermore, CCTV coverage is mainly focussed on major 

roads and city centres. This model testing exercise looked at model agreement with 

flooded locations, but it was not possible to verify modelled volumes of water. Future 

model testing should also seek to obtain data on water depths at flooded locations. 

• CCTV cameras 

• Base map: Q Crown Copyright/database right 2009. An Ordnance Survey/EDINA supplied service 

Figure 3.17: Local Authority CCTV coverage (source: CBMDC). 

The presence of properly performing drainage assets may also explain the difference in 

modelled and observed results. Assets include the sewer system and also features such 

as culverts. The accuracy of model results could be improved with a better 

representation of the performance of the sewer system and also by accounting for 

culverts. It may be possible to use output from sewer network models to assign 

spatially varied sewer conveyance rates linked to the level of sewer performance. In 
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terms of urban drainage structures such as culverts, the location of these is not always 

known, or it is not known where culverts discharge to. This is highlighted in Figure 

3.16, where there are several stretches of culverts; these may link into the sewer 

system, or may be linked to culverts downstream. 

LESSONS LEARNT REGARDING THE DATA COLLECTION EXERCISE BASED ON 

QUESTIONNAIRES 

The two major limitations of the data collection exercise were the small sample of 92 

locations and their limited information content, which hampered rigorous model 

testing. Only one third of the replies were from flooded locations, which means that 

the statistics derived for flooded locations, such as a false negative rate or positive 

predictive power are based on a very small sample. The spatial distribution of the 

replies also greatly influences the computed model agreement statistics. In catchment 

B, the anecdotal evidence all points to the fact that the main catchment processes are 

modelled well, but the few reported flooding locations are missed by the model. 

The questionnaire replies refer to a range of rainfall events and it is difficult to carry 

out a validation exercise without more specific information on the events leading to 

flooding. It is unlikely that residents will be able to pinpoint the actual dates of 

flooding, but in further exercises of this type it may be worth considering a selection of 

tick boxes to help respondents characterize the type and frequency of event that led to 

the flooding and this should be linked to design storms. This could be done by asking 

residents to tick the type of rainfall that led to flooding from a selection such as: 

• On average how often do you suffer from surface water flooding? 

o Only on specific dates (and provide a box to enter the dates if they 

can be recalled) 

o Once every 10 years 

o Once every 5 years 

o Once a year 

o Several times a year 
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• What type of rainfall generally leads to flooding? (tick all that apply) 

o Short and intense storms (up to 2 hours in duration) 

o When it's been raining for more than a couple of hours (but less 

than 24 hours) 

o When it's been raining non-stop for approximately 24 hours? 

o When it's been raining for 2 or 3 days? 

It was noted in the methodology section that several questionnaires had to be re

assessed and corrected because due to the information given it was determined that 

the flooding was not directly on their property or the street in front. Also in the 

detailed case by case examination it was evident that respondents' interpretations of 

flooding varied. In one case a respondent classified a flooded tennis court (which is 

approximately 15 m from the property) as 'suffering from flood risk', whereas in 

another case a respondent had ticked the 'no' box but also noted that water collects in 

the back garden (which in this case is much closer to the property). Whilst trying to 

keep information required by respondents to a minimum, more specific information 

about the location of flooding is desirable for assessing model performance. 

Suggestions for future exercises might be to include a diagram of a house, curtilage 

and street and ask the respondents to mark where flooding occurs. Alternatively, tick 

boxes with a list of places (e.g. front of property, back garden, front drive etc.) could be 

provided. It would also be desirable to extract approximate depths of water and make 

a distinction between flooding from flowing water and locations where water ponds. 

All these requests for information would need to be balanced with maintaining the 

questionnaire short and simple, as I feel that the high response rate (9.4%) was due to 

the straightforward nature of the questionnaire (taking less than 1 minute to complete 

the required questions). 

Finally, there is always a risk of wrongly rejecting a model when it does not agree with 

observed data, when in fact it is the poor quality of the data that is at fault. In this 

exercise it was assumed that respondents are stating the truth and that the question 

has been interpreted as expected. In future it is worth considering methods for cross 

checking the observed data and weighting replies according to the level of verification. 
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It may be that responses can be cross checked against photographic, CCTV footage or 

media reports. 

3.5. CONCLUSIONS 

This exercise illustrated the model's level of representativeness to be satisfactory for 

its purpose as a screening model. It is shown that many of the major surface water 

flood risk processes are represented in the model. Some localized areas of flooding are 

misrepresented by the model and this underperformance is principally attributed to 

the limitations in the OEM in representing local features that influence surface water 

accumulation. 

Despite the limitations in the questionnaire design, the data was collected in a 

standardized format and therefore it is a considered an improvement on using 

anecdotal data alone. A questionnaire is a good source of historical flooding 

information; however, one of the main challenges that need resolving for a future 

exercise of this nature is how respondents can identify the key event that led to 

flooding, in order to associate this with a design storm. 

Several papers that were reviewed in section 3.1 carried out a visual analysis and made 

conclusions regarding the apparent correlation between modelled flood risk and 

observed incidents. A similar conclusion was also arrived at in Chapter 2, when the 

surface water balance model was compared to known flood risk locations prior to the 

model testing exercise. Having carried out a more formal statistical test of model 

agreement, it is clear that the results are not as good as a visual inspection may 

suggest. This therefore proves the need for rigorous statistical validation and cross 

checking in order to highlight areas where the model is weak. In this case it was 

highlighted that the model performs better in some surface water catchments than in 

others. It is believed that in some catchments it is the cumulative effect of local errors 

in the OEM which leads to a poor representation. We therefore require methods to 

collect detailed information on the interaction of surface water movement with local 

topography. 
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4. MODEL APPLICATION 

4.1. INTRODUCTION 

The GIS urban surface water balance model is a tool designed to support planning 

decisions in relation to the impacts and opportunities for surface water flood risk 

management. The aim of this research is to apply the model in a scenario analysis 

based around proposed solutions for surface water management and to evaluate 

whether such options build in capacity for adapting to climate change. To answer this 

question, the following aims and objectives are set out: 

1. To identify flooded locations and determine general causes of flooding. 

2. To propose surface water management solutions. 

3. To generate climate change perturbed model inputs. 

4. To represent the solutions in the model and evaluate their impact. 

CLIMATE CHANGE 

Future climate change is expected to result in changes in precipitation patterns and 

amounts (Jenkins et aI., 2009; Solomon et aI., 2007) and it is now a requirement that 

climate change be taken into account in surface water management plans (CIRIA, 

2011; Department for Communities and Local Government, 2008). Output from 

General Circulation Models (GCMs) used to predict climate change is coarse, both in 

terms of spatial resolution ("'300 km) and temporal resolution (daily), and therefore 

cannot be used directly for urban drainage applications which require short term 

intensities and over small areas. The minimum temporal resolution required for time 

dependent urban drainage modelling has been shown to be sub-hourly, and the spatial 

resolution for small catchments should be in the region of 1 km 2 (Liguori et aI., 2011; 

Schellart et aI., 2011). 

Many methods have been developed to extract climate change information for impact 

and adaptation studies, and a state of the art review can be found in Wilby et al. 

(2009). Various statistical downscaling techniques have been developed to improve 

the spatial resolution as well as better represent rainfall patterns at a local scale (Kilsby 
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et aL, 2007; Wilby et aL, 2002). Such tools have been widely used, and generally 

accepted for providing appropriate rainfall input for hydrological applications and for 

making projections regarding changes in rainfall patterns on a daily time scale 

(Harpham and Wilby, 2005; Haylock et aL, 2006). The main assumption in the 

statistical downscaling techniques is that the relationship between local precipitation 

(predictand) and the large scale factors (predictors obtained from a GCM or RCM) 

remains under climate change. In a study that compared eight methods of 

downscaling, including both statistical and dynamical, it was found that mean 

precipitation and maximum consecutive dry days were the better modelled statistics 

by all the methods. The success in downscaling in terms of describing extreme events 

and heavy precipitation, such as the fraction of total rainfall from heavy events, the 

90th percentile rainfall and precipitation intensity was not as good (Haylock et aL, 

2006). In some cases negative correlations were found between the predictors and 

the predictand (local precipitation) which implies that there is site specific behaviour 

that is not captured by the large scale predictors. 

In addition to the challenges associated with downscaling for analysis of extreme 

conditions, these methods remain limited in terms of providing suitable temporal 

resolutions for urban drainage applications, which require details on the frequency of 

short duration events as well as hyetographs with time steps in the region of minutes. 

Recently, a range of techniques have been proposed to obtain climate change scenario 

precipitation data, at a sub-daily time scale, for use in urban drainage applications. 

Nguyen et aL (2010) used statistical downscaling (SDSM) and then further temporal 

downscaling using the general extreme value distribution to produce IOF curves and 

design storm profiles. Results using output from two GCMs (HadCM3A2 and 

CGCM2A2) were compared. The HadCM3A2 produced slight decreases in rainfall 

intensities with progressive future time periods, whereas CGCM2A2 showed an 

upward trend with larger increases associated with the 2080s time period. He et aL 

(2006) used a method whereby an Intensity Duration Frequency curve is established by 

empirically adjusting GCM precipitation data to match observations, and then an 

extreme value distribution analysis is applied to the annual maximum daily rainfall to 

produce design storm profiles. Semadeni-Davies et aL (2008) opted to apply change 
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factors obtained directly from six hourly output of a Regional Climate Model (RCM) to 

perturb observed high resolution precipitation data. Larsen et al. (2009) extracted 

extreme events from the output of an RCM and fitted a generalized pareto distribution 

to the data in order to predict changes in the frequency and intensity of extreme 

events under climate change. Onof and Arnbjerg-Nielsen (2009) propose a method to 

further downscale based on disaggregation of hourly precipitation output from an 

RCM into minutes. 

The general findings regarding the impacts of climate change for urban drainage are 

that conditions worsen, regardless of the method used. Madsen et al. (2009) found 

that precipitation intensities would increase over Denmark, and Larsen et al. (2009) 

found the greatest increases in rainfall intensity associated with increasing return 

periods and shorter durations, and that the greatest changes were observed in winter 

and spring (with factors as high as 1.6). For the UK, a 20 year 1 hour event becomes a 

10 year event and a 100 year event becomes a 41 year event (Larsen et aI., 2009). He 

et al. (2011) used artificial neural networks fed with downscaled precipitation data and 

found both that runoff peaks and volumes increased under climate change. Willems 

and Vrac (2011) used two different types of downscaling methods to generate sub

daily precipitation values under climate change and found both methods produced 

similar results in that given storm depths are likely to occur twice as frequently. A 

limited number of studies have used climate changed storm profiles as an input for 

urban drainage modelling. CBMDC (2008) used a sewer network model (InfoWorks CS) 

with climate change factors applied to rainfall data, coupled with scenarios based on 

current trends in urban change and found greatly increased volumes of surface water 

and greater numbers of surcharged manholes. Semadeni-Davies et al. (2008) used 

climate change perturbed rainfall, coupled with storylines to reflect urbanisation and 

SuDS management trends, modelled in DHI MOUSE (Danish Hydrological Institute 

Model of Urban Sewers) to conclude that, even without further urban development, 

climate change alone would lead to an increase in the number of discharges from 

combined sewer overflows. Similarly He et al. (2006) found that, using PCSWMM, 

climate change resulted in greater surcharging of sewers. Nie et al. (2009) also found 
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with the use of DHI MOUSE that climate change would lead to increased flooding from 

manholes and more discharges from CSOs. 

Despite the clear emerging picture of the need to develop flexible adaptation 

strategies to cope with future climate change, there have been fewer studies that 

evaluate potential solutions. By use of storylines to represent the increased 

implementation of SuDS, Semadeni-Davies et al. (2008) conclude that SuDS may 

become essential for reducing the impacts of climate change as the study showed that 

although stormwater disconnection did not reduce the number of combined sewer 

overflow spills, it reduced the total volume of spills compared to scenarios without 

SuDS. Karamouz et al. (2011) used statistical downscaling and also developed an 

optimization tool to select options to adapt to climate change, and these are discussed 

under the section surface water management. 

This study is concerned with assessing potential surface water management solutions 

in terms of the potential to build in capacity to adapt to climate change. UK planning 

and flood risk guidance documents suggest the use of climate change factors to take 

account of climate change (DCLG, 2008). Furthermore, given that the urban surface 

water balance model uses input excess water volumes and not high resolution time 

dependent data, the use of change factors is simple and straightforward and involves 

fewer assumptions. It is therefore considered the most appropriate method for 

generating climate change data for this study. The time period of 2055 - 2085 is 

chosen, which is translated into a future climate change scenario by applying the 

suggested +20% change to the rainfall intensity of the selected design profiles (DCLG, 

2008). The design profiles under baseline and climate change conditions are shown in 

Figure 4.1 and Figure 4.2. Table 4.1 summarizes the resulting excess surface water 

once the excess surface water methods are applied as described in section 3.2 (Excess 

water input for urban surface water balance model). Runoff coefficients are empirically 

derived and there is currently little scientific basis on which to alter runoff coefficients 

to account for climate change. It is assumed that the method used to calculate runoff 

from pervious surfaces (Eq. 3.1) is valid under climate change. This results in a direct 

increase of 20% in excess water produced by the pervious surfaces in the short 
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duration event, and under the long duration event, the average increase in excess 

water produced varies from 22% to 57% according to soil type (Table 4.1). Maximum 

sewer conveyance rates are assumed to remain unchanged under climate change, and 

this leads to areas classed as served by sewer exhibiting a 42% increase in surface 

water for the short duration storm, i.e. the area above the maximum sewer 

conveyance rate as shown in Figure 4.2. 

150 

'- 100 ..c ........ 
E 
E 50 

o 

- Precipitation (Baseline) 

- Precipitation (2055 - 2085) 

- Excess water HOST soil type 26 (Baseline) 

- Excess water HOST soil type 26(Climate change} 

- Sewer conveyance (30 mm/hr) 

---
2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 

Time (minutes) 

Figure 4.1: Rainfall profiles under current (baseline) conditions and with climate change factor for the 
period 20SS -208S applied to a one hour duration storm of a 30 year return period. The computed 
excess surface water is shown for HOST soil type 26. The sewer conveyance is the assumed maximum 
sewer conveyance as defined in section 3.2. 
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Figure 4.2: Rainfall profiles under current (baseline) conditions and with climate change factor for the 
period 2055 -2085 applied to a 24 hour duration storm of a 5 year return period. 

Table 4.1: Excess surface water depths (mm) for various land cover types after applying methods as 
described in section 3.2 

1 hour duration 30 year return period 24 hour duration 5 year return period 
Current 2055 -2085 Current 2055 -2085 

Total rainfall 29.44 35.32 49.15 58.97 
Served by sewer 9.94 14.07 0.00 0.00 
5011 type 26 17.28 20.74 29.82 36.51 
soli type 24 11.69 14.03 20.48 25.30 
Soli type 15 14.25 17.10 24.75 30.43 
5011 type 10 7.45 8.94 13.40 16.81 
Soli type 6 9.95 11.94 17.58 21.82 
Soli type 5 4.27 5.12 8.09 10.44 
5011 type 4 0.59 0.71 1.95 3.07 

SURFACE WATER MANAGEMENT 

The changes in rainfall patterns predicted under climate change are likely to increase 

the frequency and severity of flood events (as discussed above) and this, coupled to 

increasing pressures from urban growth and urban creep, mean that urban surface 

water flooding will be exacerbated. There is a need for solutions that will increase 

adaptability to future pressures (Faram et aI., 2010). Finding solutions is a multi

faceted process involving key stakeholders, as well as appropriately designed (hard or 

soft) engineering solutions (Ashley et aI., 2007). Engineering solutions that focus on the 
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underground assets are not considered economically or environmentally viable (Evans 

et aI., 2004b), and do not provide the flexibility required for climate change (Sieker et 

aI., 2008). As part of good drainage design, it is recommended that the surface is 

appropriately developed to cope with rainfall events that cannot be drained entirely by 

the sewer system (Balmforth et aI., 2006b). Suggestions include the use of dual 

purpose surface storage and surface conveyance as well as a consideration of the 

building layout for managing flow routes. Conveyance features may include highways, 

footpaths, ditches, swales, car parks and natural or artificially created vegetated 

channels. In terms of detailed design of specific features, well established and detailed 

design guidance documents exist (Balmforth et al., 2006b; Suds working party, 2009; 

Woods-Ballard et aI., 2007). 

SuDS (Sustainable drainage systems, or BMPs Best management practices) are an 

alternative to (and are also used in combination with) conventional piped drainage. 

Solutions that manage water on the surface, and that mirror natural processes are 

more environmentally and economically sustainable, and additionally they provide 

greater headroom for dealing with uncertain futures since they require less effort to 

renew than underground solutions (Faram et aI., 2010). To date, the main drivers for 

SuDS have included water quality improvements, a reduction in CSO spills and urban 

surface water flood risk reduction. Recent changes in legislation (Defra, 2010; 

Goodson, 2011; The Flood and Water Management Act, 2010) will also lead to greater 

implementation of more sustainable practices. It is expected that as a result of the 

Flood and Water Management Act (2010), SuDS will become mandatory in new 

construction and will have to comply with national standards. New design guidance 

documents are also emerging (Burns et aI., 2010; CIRIA, 2011; Islington Council, 2010) 

to support regulatory changes. In the last few years there have also been changes to 

permitted development aimed at reducing urban creep (Secretary of State, 2008) and 

new developments are required to achieve greenfield runoff rates (HR Wallingford, 

2004). These relatively new regulations may curtail the pressures of urban growth and 

urban creep (dependent on successful enforcement), but challenges associated with 

climate change will remain and therefore effective retrofit design solutions are 

required. 
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SuDS features include those aimed at runoff management at source (e.g. green roofs, 

pervious pavements, water butts), features that allow infiltration into the ground (e.g. 

soakaways, infiltration trenches, pervious pavements), conveyance features (e.g. 

swales) and storage features (ponds, storage basins). Detailed design guidance on 

individual SuDS components as well as aspects of SuDS implementation, including 

SuDS philosophy, stakeholder engagement, selection, and maintenance is covered in 

Woods-Ballard et aL (2007). Central to the SuDS philosophy is the idea of a treatment 

train which aims to mimic natural processes by incorporation of multiple components 

which collectively reduce peak discharge rates and pollutant loadings. 

There has been much research into the production of decision support frameworks for 

the identification of opportunities for retrofitting SuDS as well as the optimization of 

SuDS, in terms of cost and/or performance and according to given drivers (Ellis et aL, 

2004; Sakellari et aL, 2005; Scholz, 2006; Singh et aL, 2005; SNIFFER, 2006; Stovin and 

Swan, 2007; Swan, 2003; Viavattene et aL, 2008). The reduction achieved in terms of 

volumes and rates of SuDS features has been studied (e.g. Gerolin et aL, 2010; 

Kellagher and Udale-Clarke, 2008; Stovin, 2009) and a limited number of studies have 

evaluated and quantified the performance of SuDS at large catchment scales. 

Vivattene et al. (2010) coupled a SuDS selection tool with a hydraulic model to a 170 

ha catchment and showed that the use of green roofs and porous pavements reduced 

surface water runoff rates by up to 28%. Ashley et aL (2010) applied a hydraulic model 

(Infoworks CS) to three sub-catchments in London to illustrate how implementing 

SuDS, in order to disconnect over 10,000 hectares of impervious surfaces that drain to 

a combined sewer system, reduces the number of CSO spills and reduces overflow 

volume by 55%. Software has also been developed that can model a treatment train in 

terms of various SuDS components (MUSIC Development Team, 2009) and which are 

capable of predicting the runoff reductions that can be achieved. Burns et aL (2010) 

used MUSIC to conclude that rainwater harvesting could retain rainfall events of up to 

29 mm in hypothetical 5 km2 catchments. This study concluded that whilst rainwater 

harvesting has the potential to contribute to flood risk reduction, it is likely that flood 

risk can only be significantly reduced with a combination of retention components 

acting at a range of scales. Fang et aL (2010) looked at urban development combined 
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with detention storage of various sizes and in various locations of a catchment in order 

to assess the effectiveness for flood control. This study found that in many of the 

development scenarios the larger regional detention storage led to the greatest 

reduction in peak flows when compared to local storage ponds. Karamouz et al. (2011) 

developed an optimization algorithm (based on a mathematical objective function) 

with the aim of identifying the minimum cost solution. Inputs to the algorithm include 

the costs of the SuDS management practices and the flood damage costs. The process 

involves proposing a number of management practices and simulating these in a 

storm water model to determine the flood damage. A range of combination of options 

that included increased green space, detention ponds, increased capacity of channels 

and creating new diversion channels were considered for a 110 km2 catchment. 

Karamouz et al. (2011) found that the optimal combination to be a 1700 m diversion 

channel and a detention pond of 30 000 m3
• This combination reduced flood volumes 

and flooded areas in the 110 km 2 catchment. Using Infoworks CS CBMDC (2008) 

showed that increased development and climate change are likely to lead to significant 

increases in surface water flooding, in terms of the number of locations and surface 

water volumes as well as the frequency of flooding. In terms of solutions, CBMDC 

(2008) focussed principally on demonstrating the importance of integrated approaches 

and stakeholder engagement, and made the point that options of managing surface 

water on the surface are more cost effective than underground solutions. 

In summary, the studies reviewed above point to the fact that in terms of surface 

based solutions large storage and planned flood routing are viable solutions with 

potential to reduce catchment scale flood risk. Guidance exists for the siting of regional 

storage (Woods-Ballard et aI., 2007). In terms of surface conveyance, suggestions are 

proposed for land uses that can serve as dual purpose for conveyance, and hydraulic 

design details are provided (Balmforth et aI., 200Gb; Woods-Ballard et aI., 2007). 

Kunapo (2009) illustrated how LiDAR OEMs can be used to understand the drainage 

pattern at the land parcel scale and use this information for SuDS design and 

implementation. In terms of exploiting high resolution OEMs with land use information 

to design catchment wide conveyance solutions; little guidance exists. Faram et al. 

(2005) state that the biggest challenge in implementing SuDS is indeed working within 

93 



the constraints of the built environment. However, the use of planned flood routes is 

being proposed as a retrofit solution; for example CIRIA (2011) suggest retrofitting 

roads for flood conveyance when roads are resurfaced or redesigned for traffic 

calming. Whilst designers and engineers may be able to identify opportunities for 

managed flood routes based on experience and inspection of the various factors that 

influence the outcome (e.g. land use, topography), there is a need for an objective 

methodology that will enable the most optimal routes to be identified in the light of 

all the contributing factors. 

Chapter 3 illustrated that many of the surface water flood risk problems in the study 

catchment are a result of the convergence of surface water into major flood routes 

through the urban area. The flood routes themselves are considered a flood risk and 

they also lead to large areas of ponding in undesired locations. The selection of 

sustainable drainage design options and their design is fairly well understood and 

documented, and has been shown to reduce flow volumes, but it is also likely that 

without managed flow routes and large scale storage, such features will not 

significantly reduce surface water flood risk. This part of the research develops and 

uses a methodology to identify suitable flood routes through an urban area, via or to 

potential regional storage areas, in order to reduce surface water flood risk. The 

resulting methodology aims to form the basis for a long term strategy for identifying 

key areas for maximising opportunistic implementation of managed flood flow routes. 

4.2. METHOD 

Figure 4.3 illustrates the modelled current flood routes for a long duration rainfall 

event (24 hours) of a five year return period. A very broad categorization of the types 

of flooding can be made on the basis of contributing area. For example, the area 

labelled a in Figure 4.3 illustrates flooding that arises from a small, mainly urban 

contributing area. In such an area SuDS features, such as the approach presented by 

Ashley et at. (2010) may significantly reduce flood risk. The area labelled b is flooded as 

a result of a large contributing area, which is mainly grassland and therefore not 

served by the sewer system, and where in certain rainfall events runoff converges into 
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major flood routes that enter the urban area and lead to flooding. In this case source 

control SuDS in the urban part of the catchment are not likely to significantly reduce 

the overall flows. There is therefore a need to firstly identify locations suitable for large 

scale storage features and find appropriate flood routes to divert problem inflows to 

appropriate storage areas. This section describes the development of a method for 

identifying optimal managed flood routes through an urban area. The aim is to find 

managed flood routes that do not pose a risk and where implementation is least 

costly. 

o 125 250 500 Meters 
I I I 

Base map: 0 Crown Copyright/database right 2009. AIl Ordnance SurveV/EDINA supplied service 

Figure 4.3: Snapshot of current flow routes and the contributing areas at two problem locations. 

Least cost path analysis has been used in the planning and design of linear features 

where multiple criteria determine the optimal route, such as roads, pipelines and 

power lines (Bagli et aL, 2011; Ebrahimipoor et aL, 2009). Least cost path algorithms 

have also been developed so that the cost assigned to a cell is dependent on the 

direction of movement (Collischonn and Pilar, 2000), so that for example if the path is 

uphill through a cell it can be given a different cost than if it is downhill. In hydrology 

the use of LCP has also been proposed as an alternative method for drainage network 

extraction (Metz et aL, 2011). One of the main challenges in using least cost path 

analysis to identify optimal solutions where many criteria are involved is the correct 
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weighting given to each criteria to be considered (Bagli et aI., 2011) and different 

weightings can result in quite different optimal routes. 

The method is based on optimum path or continuous space routing principles (Longley 

et aI., 2001). The objective of optimum path algorithms is to find the least costly path 

from a given point to a destination (ERSI, 2009). The user identifies key costs which do 

not have to be financial and could represent the degree of unacceptability of taking a 

given path. There may be several factors that determine the overall cost of traversing a 

particular point, and each factor is represented as a continuous cost surface, with each 

cell representing the cost incurred of traversing through it. The total cost of traversing 

through a particular point is a function of all the cost surfaces, and the least cost path 

algorithm used in this research (ERSI, 2009), computes the cumulative cost of the 

entire route, " by: 

r= Lcds (Eq.4.1) 

Where c is the total cost of traversing the cell (a function of surfaces representing the 

multiple criteria), d is distance (vertical and horizontal) and 5 is the slope cost factor 

(optional). For a given input cost surface (c), and slope cost function (s), the optimal 

path will always be the same, as it is the path with least accumulative cost. 

Assigning monetary costs involves myriad factors that are not easily translated into a 

value per cell. For this reason in this study, cost simply refers to relative cost on an 

arbitrary scale. Figure 4.4 outlines how the optimum path methodology is applied for 

finding flood conveyance routes through an urban area. Key steps are discussed in 

detail below. 
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Figure 4.4: Flow chart illustrating methodology. 

LAND USE CLASSIFICATION 

Land use should be classified according to the unacceptability of siting flood 

management solutions (storage or managed flood routes). In practice, assigning cost is 

not straightforward and would require consideration of social issues as well as land 

acquisition and demolition costs. For this study a simple five tier classification system is 

proposed, ranging from the most unacceptable places to site flood management 
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solutions to the most acceptable. The basis on which a particular land use is assigned 

to a category is summarised in Table 4.2. land use was determined by Ordnance 

Survey Master Map (OSMM) data. Table 4.3 details the category that was assigned to 

the most common land uses in the study area. In summary, residential buildings were 

considered the most unacceptable locations and non-residential bUildings were 

assumed to be slightly less unacceptable solutions, as commercial and industrial 

buildings have higher turnover rates and there are more redevelopment opportunities 

arising that may permit use of these sites (with less effort required to change the land 

use). The most acceptable locations included natural surfaces and urban green spaces, 

followed by private gardens and property curtilage. 

Table 4.2: Basis on which to assign land use category representative of relative cost required for 
implementation. 

Relative 
cost 
category 

Basis 

1 Ideal locations for flood routes and surface water storage - water flowing or stored in these locations does not 
pose a risk. No changes required. 

2 Locations where flood routes or flood storage poses a low risk and minimal changes required. 

3 Locations with a primary function that is sacrificed during surface water events. Some change is required but it is 
relatively easy to implement. 

4 Locations where flood routes and flood storage pose a risk and therefore some changes would be required to 
allow water to flow through or be stored In these locations. Changes are more likely and less costly than category 

5. 
5 Highly undesirable locations for flood routes or surface water storage. Water flowing or stored in these areas 

would pose a very high risk (and therefore significant changes would be required associated with high costs). 

Table 4.3: Cost categories aSSigned to the top 10 land uses (In terms of area) In the study area. 

OSMM land use Infonnatlon Total Area Additional Notes Cost cateeory 
1m!) 

General Surface, Natural, 2170313 Mainly parks, green areas, rural periphery 1 
General Surface, Multi Surface, 742186 Gardens, property curtilage 2 
Multiple, 
Road Or Track, Manmade, 370981 Urban roads, 4 
Buildin" Manmade, DWELLING 249843 Residential, dwellings, properties 5 
General Surface, Manmade, 218061 Courtyards, curtilage of industrial buildings etc .. 2 
Bulldin" Manmade, OTHER BASE 178331 Non-residential buildings 4 
FUNCTION 
Natural Environment, ALL, 161734 1 
Roadside, Manmade, 148985 Pavements, pedestrian walkways 2 
Roadside, Natural, 97835 1 
Buildin" Manmade, 92808 Mainly garden sheds, garages and other non- 3 

residential buildings. 

This simple method of ranking land use according to the assumed cost of siting flood 

management solutions is not based on existing planning frameworks that would 
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potentially eliminate many land uses as options for implementing solutions. Current 

planning frameworks are generally based on relatively short timescales (25 years) and 

furthermore policies can change. Instead this study adopts a more philosophical 

approach based on longer time scales and where there is greater scope for change, for 

example in the next 100 years. The classification system is dynamic and can be altered 

to reflect changes in paradigms and policies. If, for example it becomes more feasible 

to acquire and demolish residential areas to accommodate flood risk solutions, then 

this can be incorporated into the analysis by assigning these areas a lower cost. 

POTENTIAL AREAS FOR SURFACE WATER STORAGE 

The flood risk management approach developed here is dependent on identifying 

suitable locations where there is scope for appropriate surface water storage to which 

surface flood waters can be diverted. For the purpose of this research, and given that 

the GIS urban surface water model is not time dependent, the issue of whether online 

or offline storage is adopted is not addressed. This methodology aids in large scale 

screening for potential storage locations. Once options have been evaluated at this 

scale, detailed hydraulic design and details such as whether it is online or offline can be 

dealt with. For the screening approach, suitable locations for building in surface water 

storage features were determined by areas that satisfied the following criteria; 

1. Land use cost category of 1,2 or 3 (Table 4.1) 

2. Slope of up to 5% (as recommended in Woods-Ballard et al. (2007) 

3. More than 5 m from a building, this is so as not to eliminate the option of 

infiltration if site conditions permit Woods-Ballard et al. (2007) 

4. A surface area greater than 100 m2 (as large scale storage features are 

sought) 

Using spatial queries in GIS the locations· that satisfied the above criteria were 

identified for the case study area and these are shown in Figure 4.5. 
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Figure 4.5: Potential surface water storage areas in the four study catchments (storage areas in the 
natural upper part of the study area are not shown). 

COST FUNCTIONS AND COST SURFACES FOR LEAST COST PATH ANALYSIS 

The principal limiting costs identified with respect to implementing flood conveyance 

routes are slope and land use. Slope and direction of slope is of importance because 

only routes that principally flow downhill are viable and the cost of implementing a 

flood conveyance solution varies according to flow velocities which are highly 

dependent on slope. Furthermore, in terms of flood routes through urban and 

populated locations, gentler slopes with lower flow velocities pose less risk. In order to 

derive appropriate cost functions, slope was explored individually prior to combining it 

with land use. 

DERIVATION OF SLOPE COST FUNCTION 

In line with current sustainable drainage principles, it is envisaged that a desirable 

conveyance solution would take the form of a swale, although depending on the slope 
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and site conditions other types of channel may be required. Swales should be designed 

following standard hydraulic principles as outlined in Woods-Ballard et al. (2007). The 

method proposed here is concerned with finding optimal routes that require the least 

engineering or the least amount of change in order to create a conveyance feature 

such as a swale. At this level the method is not concerned with the detailed design of 

the conveyance feature (e.g. channel depth and width) but more with siting the 

conveyance features according to the two major constraints of slope and land use. 

The ideal slope cost function should delineate a route which involves the least surface 

re-profiling in order to achieve downslope conveyance and which produces a path 

principally composed of gently sloping terrain. Flood routes with steep downhill 

gradients are not eliminated as it may still be viable to implement solutions, albeit at 

greater cost. The algorithm used could be set up to eliminate routes incurring uphill 

slopes, but this has not been done since the aim of the cost function is to identify the 

least costly route overall. Therefore, if a route exists which is principally along a gentle 

downhill gradient, but there is a small uphill gradient such as a building or wall along 

the path, it may remain a viable option if the additional cost of eliminating the uphill 

slope is cheaper overall than the alternatives. Naturally, transporting water uphill is 

expensive and does not mirror natural processes, and involves significant re-profiling. 

Similarly, steep drops are not ideal conveyance solutions as the potential erosion 

would necessitate reinforced structures. 

Woods-Ballard et al. (2007) state that the longitudinal slope of a swale should not 

exceed a gradient of 5%. The framework proposed by Swan (2003) also states that to 

allow infiltration the gradient should be no greater than 5.88% (1 in 17) and to prevent 

erosion should not be greater than 2% (1 in 50). Stovin et al. (2007) illustrate the 

implementation of a stepped trenched swale on a road in Keighley, which according to 

the OEM used in this study, has a slope of approximately 10% (the steps ensure each 

section maintains a low gradient). These gradients are used as a basis on which to 

assign the least costly cell values. Outside of this range of slopes, there are, to the 

author's knowledge, no published rules of thumb that may be used to associate 

increased slopes with cost values. Only with hydraulic and erosion calculations would it 
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be possible to determine approximate costs based on the flow velocity and the types 

of structures that would be required. This is considered beyond the scope of this 

simple methodology and would be one of the next steps in selecting and designing the 

planned flood route. Using engineering calculations at this stage would add over 

complexity for this feasibility approach, and therefore an empirical approach was 

adopted to determine the cost function for slope. The following basic set of principles 

were used as a starting point for a trial and error approach to establish an appropriate 

slope cost function; 

• The optimum cells for siting conveyance solutions are downhill slopes of up 

to 5% 

• Downhill slopes greater than 5% are increasingly more costly and beyond a 

given downhill slope, incur a high flat rate cost. 

• A small uphill gradient can be re-profiled but the cost associated with uphill 

slopes steeply increases (more so than downhill slopes). 

A limitation of the least cost path algorithm used in this methodology is that it cannot 

account for the total length of earthworks that would be required to remove 

protrusions and ensure a downhill path. For example a wall would incur a high cost 

associated with the uphill and downhill stretch of the path (as represented by the 

slopes either side of the wall). A path that traverses a long hillock also incurs an uphill 

and downhill high cost, but then assuming the top of the hillock is fairly flat, the length 

of route that traverses the top of the hillock is given a low cost. Therefore whilst slope 

may be capable of minimising uphill and steep downhill stretches, it may not mirror 

very well the cut and fill costs associated with removing protrusions of varying width. 

Several slope cost functions, with different ranges of values, were developed (Figure 

4.6). The routes mapped by the least cost path analysis for each of these slope cost 

functions were then visually evaluated for their suitability based on the spatial 

delineation of the route and the route profile. Slope cost functions (SF), with increasing 

cost associated with greater slopes and that were approximately symmetrical along 

the slope value of -5% were tested but these proved to be inappropriate as some of 

the optimal paths to uphill locations had lower costs than paths to downhill locations. 

102 



It was therefore learnt that uphill slopes should be assigned a greater cost than similar 

downhill slopes. It also became apparent that to favour a longer route, with a gentler 

slope, over a short steep drop, a greater difference in the cost associated with steep 

slopes was required. 
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Figure 4.6: Slope cost functions that were tested. Costs are extended up to 900 by means of a flat line. 

The optimal path for each SF (Figure 4.7) and respective profiles (Figure 4.8) to a 

selected storage area were compared in detail to reveal further insight into the 

relationship between slope cost functions and the delineated optimal routes. In Figure 

4.8 it can be seen that SF10, SFll and SF13 all have a short stretch of uphill route just 

prior to reaching the storage area (shown by the arrow on the graph). These examples 

confirm that uphill slopes should have a much greater penalty. It can also be 

appreciated from Figure 4.8 that whilst SF12 does not involve an uphill stretch, the 

entire route is steep with an average gradient of 1 in 10 (10% slope), similar to SF10, 

SF11, and SF13. This illustrates the need to have a greater difference between the 

ideal slope range and the steeper slopes. At the other extreme SF20, SF21 and SF23 all 

achieve lower overall gradients ranging between 1 in 22 ( .... 3% slope) and 1 in 32 ( .... 4% 

slope), but this occurs through delineating a zigzag path (Figure 4.7), which in practice 

103 



would not be implemented. This occurs because the cost for siting the path on cells of 

high downhill slopes is too high. 

Optimal paths - SF12 - SF21 Elevation (m) 
- SF10 - SF13 - SF22 High : 175 
- SF11 SF20 - SF23 

Low : 117 

Figure 4.7: Spatial delineation of optimal paths to a given storage area for various slope cost functions 
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Figure 4.8: Route profiles to a given storage area according to slope cost function. The arrow points to 
the slope functions that result in an uphill stretch prior to the storage area. 

Based on this limited trial and error exercise, the slope cost function that was selected 

as most appropriate was SF22, which gives the best compromise between slope and 
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distance travelled. The values in Table 4.4 are used by the optimal path algorithm to 

compute the cost of each cell according to slope, and values are interpolated by 

assuming straight lines (ERSI, 2009). The overall gradient of the route that uses SF22 is 

1 in 16 ("'6% slope) and this slope cost function does not lead to overly zigzagged 

paths. However, a unique feature of the SF22 profile to the selected storage area is 

that it is the most stepped like route (Figure 4.8), i.e. an approximately uniform slope is 

achieved for stretches of path with several steep falls along the way. Clearly the 

selection of an appropriate cost function that best represents the engineering costs 

associated with re-profiling deserves more attention. The cost function needs to be 

optimized in terms of the acceptability of the mapped route as well as slope. There is a 

need to develop a method to systematically discriminate a good slope cost function 

from a bad one in this respect. 

Table 4.4: Selected slope function. 

Gradient (m/m) lin .. Slope (%) Slope SF22 cost values 
(degrees) 

-90.00 25 
-0.18 -6 -17.63 -10.00 25 
-0.06 -17 -5.88 -3.37 10 
-0.05 -20 -5.00 -2.86 5 
-0.02 -SO -2.00 -1.15 1 

0.00 0.00 1 
0.05 19 5.24 3.00 25 
0.18 6 17.63 10.00 SO 

90.00 SO 

LAND USE COST FUNCTION 

A cost is assigned to each of the categories in Table 4.1 that reflects the acceptance 

and difficulty in using land for flood routing. Ideally a flood route should not be located 

near properties and should be sited on land uses that can be used to this effect with 

minimal effort (such as grassed road verges). Two land use cost functions (lU) were 

explored as shown in Table 4.5. The land use factors on their own produce the same 

optimal path, but with a different total cost. The land use cost factors were therefore 

explored in combination with the selected slope factor. The results are shown in Figure 

4.9. By increasing the difference in the cost associated with the most acceptable and 

least acceptable land uses categories, the optimal routes are encouraged to flow along 
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the more acceptable locations. Figure 4.9 shows that LU2 ensures that the flood path 

flows for a greater length along a roadside as shown at location o. Also at location b, 

the route mapped out using LU2 is considered to be more desirable as it flows along a 

natural area, rather than the middle of road as is the case with LU1. There is also a 

notable difference in the mapped flood routes downstream from location c. The 

optimal path using LUl involves a steep drop and the path mapped with LU2 finds a 

longer route that avoids the steep drop (not shown). This is because the steep drop is 

classified as a 'Cliff in OSMM data and this was consequently categorized as cost 

category 4. Use of SF22, coupled with LU2 means that the resulting cost of traversing 

the cliff becomes excessively high, so that it finds an alternative route. ASSigning 

appropriate land use cost functions is an area which is worthy of further research and 

an objective method of validating the optimal paths that are mapped with different 

functions is needed. In this research it was opted to use LU2 as the mapped flood 

route is considered more desirable. 

Table 4.5: Relative cost category as presented in Table 4.2 and the land use cost functions (LUl and 
LU2) that were tested. 

Relative cost category LUI LU2 

1 1 1 
2 2 4 
3 3 9 
4 4 16 
5 5 25 
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Base map: 0 Crown Copyright/database right 2009. An Ordnance Survey/EDINA supplied service 

Figure 4.9: Results of the land use cost factors combined with the slope cost factor. 

4.3. RESULTS AND DISCUSSION 

IDENTIFYING SOLUTIONS USING LEAST COST PATH ANALYSIS 

J 

Using the method outlined above, the optimal paths from a number of diversion points 

to each potential storage area can be identified as shown in Figure 4.10. The optimal 

onward path from each storage area to all the downstream potential storage areas can 

also be identified by applying the same methodology. In this way all the potential 

route options for getting surface water from a given point to a suitable outlet can be 

mapped. Options may include a managed flow route directly from the surface water 

problem area directly to the catchment outlet, which may alleviate flooding within the 

surface water catchment but might not offer much attenuation. Alternative options 

include a managed flood route which incorporates various storage areas en route. As 

can be appreciated from Figure 4.101 there are a huge number of options. Translating 

the flood route costs along with storage volumes en route, into a network, would allow 

network optimization techniques to be applied to identify combinations of managed 

flow routes and storage areas based on maximising the storage potential, whilst 

keeping the implementation costs low (as expressed by the optimal route cost values). 
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This kind of network analysis is beyond the scope of this research, but is a critical next 

step in the development of this approach to finding surface water flooding solutions. 

Diversion points 

o Potential storage locations 

- Optimal routes 

Base map: C Crown Copyright/database right 2009. An Ordnance Survey/EDINA supplied service 

Figure 4.10: Example results of optimal path identification from diversion points and between storage 
areas. 

Two diversion points were selected for comparison of potential flood routes. The 

diversion points are located upstream of the urban area and a small number of what 

were judged to be sensible options were selected for the purpose of a comparison 

(Figure 4.11). For the purpose of this analysis, the locations for potential surface water 

storage were converted into the maximum storage area possible, therefore they were 

all depressions 3 m deep (based on the maximum depth of water as suggested in 

Woods-Ballard (2007) and the length to width ratio was not considered. Scenario 1 

uses some of the least costly flood routes to transport surface water directly to storage 

areas near the catchment outlet (Figure 4.11b). Scenarios 2 and 3 (Figure 4.11c and 

Figure 4.11d) incorporate some of the larger storage areas that were closest to the 

managed flood routes used in Scenario 1. Table 4.6 summarizes the cost values and 
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the total storage for each scenario and Figure 4.12 and Figure 4.13 illustrate the 

current elevation profiles for the proposed managed flood routes. 

• Diversion points - Current flood paths - Optimal paths 0 SulH:atchment boundary CJ Potential storage areas 

Base map: 0 Crown Copyright/database right 2009. An Ordnance Survey/EDINA supplied service 

Figure 4.11: Modelled flood routes (a) and scenarios based on combinations of managed flood routes 
and storage areas: scenario 1 (b), scenario 2 (c) and scenario 3 (d). 

Table 4.6: Total costs for each scenario. 

Total optimal route value Total storage (m') 

Diversion A to storage s 12667 4005 
Diversion B to storage t 10536 3288 
SCENARIO 1 (Total) 23204 7293 
Diversion A to storage u, v and w 12720 8300 
Diversion B to storage x and t 11616 29962 
SCENARIO 2 (Total) 24336 38261 
Diversion A to storage u, v and y 14926 5345 
Diversion B to storage x and t 11616 29962 
SCENARIO 3 (Total) 26542 35307 
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Figure 4.12: Profiles from diversion point A for scenarios 1, 2 and 3. The vertical lines represent the 
locations of the storage features. 
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Figure 4.13: Profiles from diversion point B for scenarios 1, 2 and 3. The vertical lines represent the 
locations of the storage features. 
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For scenario 2 a number of large storage areas were selected in upper parts of the 

catchment. A large potential storage area (x) was identified between diversion point B 

and storage area t and the optimal paths connecting these locations were delineated. 

There was no potential for a single very large storage area in the upper catchment 

between diversion point A and storage area s, and therefore three smaller storage 

areas (u, v and w) were selected. The optimal path connecting diversion point A to 

storage areas u, v, wand s was delineated, and unexpectedly also passed through 

storage area x. This resulted in a significant change to the delineation of the two major 

surface water catchments, with the catchment boundary being located just north of 

storage area x. In practice this means the flood route between storage areas x and w is 

practically redundant, as the outlet of catchment x drains to storage area t. This occurs 

because when optimal paths are identified between storage areas, it is the current 

elevation and land use which is used as input. Once the user selects the potential 

storage areas that may be incorporated, this begins to have implications for the 

delineation of optimal paths, as was learnt from the combination of storage areas 

selected for scenario 2 (Figure 4.11c). Had storage area x been taken into account in 

the least cost path methodology, then the optimal routes delineated in the region of 

storage area x and downstream may have been quite different. The optimal route 

connecting storage area v and w was delineated without knowledge that storage x 

would be accessed. This suggests that if the user decides to approach the problem 

having firstly made a decision regarding the potential storage areas to be 

implemented, it may be worth firstly incorporating these into the OEM and then 

delineating optimal paths. Figure 4.14 zooms into an area of the optimal path which 

reveals a further interesting feature of Scenario 2. The optimal path starts by flowing 

along a downhill road, and then diverts down another road only to return to the 

original road further downhill. The optimal path is delineated in this way, as a more 

ideal profile with a slope of 2 degrees is achieved by adopting this route, compared to 

a 3 degree slope for the stretch of road that is avoided (Figure 4.15). 
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- Optimal path 

- A1temative path along road 

Base map: C Crown Copyright/database right 2009. An Ordnance Survey/EDINA supplied service 

Figure 4.14: A section of optimal path that diverts off from a road and re-joins the same road 
downhill. 
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Figure 4.15: Elevation profile of optimal route and route downhill road as shown In Figure 4.14. 
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The storage areas in scenario 3 were selected with the aim of avoiding the issue 

encountered in scenario 2, whereby there were significant changes to the sub

catchment delineation. A storage area en route was selected that was linked by an 

optimal path that was not so close to the current sub-catchment boundary. Table 4.6, 

however, shows how the resulting total optimal route value is the highest of the three 

scenarios which is understandable as Figure 4.12 illustrates the steep drop that this 

route involves (at around a distance of 800 m from the most downstream storage 

location). 

There are clearly engineering challenges associated with profiling all of the routes 

demonstrated in Figure 4.12 and Figure 4.13, if these are to be used as managed 

surface flood routes. The methodology presented here assigns a relative cost value 

that reflects the difficulty in implementing solutions and which is capable of identifying 

the more viable options. Detailed engineering design would necessarily adapt and 

modify the optimal routes identified by this methodology to a more realistic solution 

to implement. 

SCENARIO ANALYSIS 

Two rainfall events were used to run the urban surface water balance model for 

scenario analysis as shown in Figure 4.1 and Figure 4.2. The 24 hour duration,S year 

return period event was chosen because it was apparent from the questionnaire 

exercise that this type of long duration rainfall often led to flooding. The short duration 

1 hour event of 30 year return period is also used in the scenario analysiS as short 

duration, high intensity events are often assumed to be the critical events in urban 

areas. In this case, using the Bransby-Williams equation (Derwent Estuary Program, 

2005), the time of concentration for the two surface water catchments used for 

scenario analysis is 63 and 47 minutes for the respective catchments of diversion point 

A and diversion point B (as shown in Figure 4.11). Scenarios 1, 2 and 3 as shown in 

Figure 4.11 were incorporated into the OEM using software built with landscape and 

built environment designers in mind and that allows interactive modification of OEMs 

(Simmetry 3D, 2011). The managed flood routes are imported into Simmetry 3D as 

shapefiles and the software allows the user to interactively carve out the routes along 
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the polylines and represent these in the OEM. The software has the additional 

advantage of providing enhanced visualization of the managed flood routes in a 3D 

perspective. Due to the resolution of the OEM the minimum width of the managed 

flood route channels is limited to 1 m. However, through trial and error it was learnt 

that in order to carve out an approximately smooth channel that would ensure a 

downhill flow direction and minimal creation of small depressions that would not be 

assigned a flow direction, a minimum channel width of 3 m was needed. Similarly, the 

depth of the channel varied and was carved out in order to ensure a downhill path. 

The least cost path methodology is a screening tool to identify the location of optimal 

routes, and further detailed analysis would lead to the deSign of a more realistic 

solution (e.g. with less bends) and hydraulic analysis would determine the optimal 

channel width and depth. The channel dimensions used in this approach are not 

suggestions for channel design; this simply enables a OEM to be created that allows 

the water balance model to compute the surface water accumulation whilst ensuring 

that the managed flood routes are represented in the model. Indeed the model 

output, in terms of indicative flood routes, remains only one cell wide because the 

major flow accumulation is identified as a single cell width downhill along one of the 

cells representing the managed flood route. Three new OEMs were created to 

represent scenarios 1 to 3 and these were used as an input to the urban surface water 

balance model. 

Guidance exists for evaluating flood risk management options using costs based on 

flood depths and damage curves (Penning-Rowsell et aI., 2005). In this research the 

surface water management solutions are evaluated using measures of catchment 

flooding as permitted by the model output. These measures are based on the criteria 

that were found to have highest agreement with observed accounts of flooding as 

presented in section 3.3 (Classifying properties at risk of surface water flooding). Risk 

locations are properties that are within 2 m of a flood route with a total accumulated 

volume ~ 300 m3 or within 2 m of a sink that has a water depth ~ 50 cm. The total 

excess water produced in the study catchments increases by 24% and 27% for the long 

duration and short duration events respectively (Table 4.7). The increase in surface 

water is less for the long duration event as the areas served by the sewer do not 
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generate excess surface water. In the short duration event, the land classed as served 

by sewer does produce excess water as the short duration storm produces rainfall 

intensities that are assumed not to be drained by the sewer. The increase in total 

excess water produced in the catchments is greater than the climate change factor 

(+20%) and this is a logical result as it is not expected that sewer capacities will be 

increased under change conditions and urban drainage modelling studies conclude 

that more water will remain on the surface under climate change (CBMDC, 2008). In 

both events the proportion of the total excess water that leaves the catchment 

increases (Table 4.7), indicating the reducing capability of the catchment to retain its 

surface water. 

The increase in the number of flooded properties is 5% and 11% for the long duration 

(Figure 4.16) and short duration (Figure 4.17) events under climate change. These 

increases may seem modest, but in fact the total water stored in risk locations 

increases by greater amounts, 8% and 19% (Table 4.8) for the long and short duration 

storms respectively, suggesting that properties that currently suffer from mild surface 

water flooding may in future have to deal with greater depths of flooding or a greater 

extent of flooding. 

Table 4.7: Water balance under current and climate change scenarios. 

Total excess Water stored Water stored Water leavin, 
water(m') at non risk within 2 m of a at catchment 

locations as a property or outlet as a " of 
" of total road as "of total 

total 

D24RPS (Ion, duration) Current 19802 16 20 64 
Climate change +23.85% 15 18 67 

D1RP30 (short duration) Current 16400 23 31 46 
Climate change +26.76% 23 29 48 
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• Flooded under CC 

• Flooded (Bl and CC) 

Surface ponding Bl 
CJ Surface ponding CC 

- Flood route (Bl) 
- Flood route (CC) 

Figure 4.16: Properties at risk of surface flooding for the 24 hour duration,S year return period event 
under current (BL) and climate change (ee) scenarios. 

8ase map: C Crown Copyright/database right 2009. M Ordnance Survey/EDINA supplied service 
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Figure 4.17: Properties at risk of surface flooding for the 1 hour duration, 30 year return period event 
under baseline (BL) and climate change (ee) scenarios. 
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Table 4.8: Number of flooded properties and volume of water stored at risk locations under climate 
change and for the various surface water solutions; scenario 1 (51), scenario 2 (52) and scenario 3 (53) 
as shown in Figure 4.11. 

Number of flooded Volume of water stored at 
properties risk locations, and greater 

than 50 cm deep water (m~ 
D24RP5 (long duration) Current 142 3403 

Current 51 -46% -23% 
Current 52 -46% -27% 
Current 53 -49% -30% 
Climate change +5% +8% 
Climate change 51 -45% -15% 
Climate change 52 -46% -18% 

Climate change 53 -49% -23% 
D1RP30 (short duration) Current 219 3937 

Current 51 -15% -14% 
Current 52 -12% -19% 
Current 53 -21% -29% 
Climate change +11% +19% 
Climate change 51 -6% +1% 
Climate change 52 -4% -1% 
Climate change 53 -13% -14% 

In all cases, including with climate change scenarios, the solutions (51, 52 and 53) 

reduce the number of flooded properties (Table 4.8). Implementation of the solutions 

51, 52 and 53 reduce the number of flooded properties in the long duration event by 

more than 45% even under climate change scenarios. The reduction is less for the 

short duration event, and the results range from a 21% reduction under current 

solutions with solution 53 to a small reduction of 4% under climate change conditions 

with 52. In terms of the volume of water stored at risk locations, under climate 

change, solutions 51 and 52 manage to keep volumes comparable to results under 

current conditions for the short duration event. Therefore, although the solutions are 

not able to reduce the impacts of climate change, they manage to maintain conditions 

that are comparable to the current state. Figure 4.18 illustrates that even solution 51, 

which incorporates storage only at the downstream end of the catchment, leads to a 

reduction in water stored at risk locations as well as a reduction in the surface water 

that leaves the catchment. This suggests that the incorporation of the managed flood 

routes successfully manages to intercept additional existing flood routes which lead to 

surface water filling depressions at risk locations. Figure 4.19 illustrates that for the 

long duration event, all three solutions 51, 52 and 53 offer Significant reductions in the 

number of flooded properties (shown in green). There are still however locations 
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which under all scenarios properties are classed as flooded. For example, the 

properties located in area a in Figure 4.19 do not benefit from the solutions because 

they are upstream of the selected diversion point. The properties located in area b of 

Figure 4.19 continue to be classed as flooded and this is less expected as they are 

downstream of the selected intervention point which was located on the flood route 

which drains to that area. This locality was investigated in detail and whereas with no 

solutions, location b has a contributing area of 349191 m2, it is greatly reduced to only 

54621 m2 under scenario S2 (the reduced contributing area is shown in Figure 4.19). 

These findings illustrate that whilst the managed flood routes are not sufficient to 

eliminate surface water flooding at this location, with a smaller contributing area, it is 

now more likely that local scale and source control approaches may be more effective 

at dealing with the problem. 

In general the solutions are less effective for the short duration event as seen in Figure 

4.20. There are many more locations for which surface water flooding occurs under all 

of the scenarios. Solution S3 is clearly the best option for reducing the number of 

flooded properties as a result of the short duration event. A reduction of 13% in the 

number of flooded properties under climate change is achieved, compared to only 6% 

and 4% with Sl and S2 (Table 4.8). This is also shown by the black stars at locations a 

and b in Figure 4.20, which highlight the 28 properties that suffer from flooding under 

current conditions. Only S3 reduces the surface water flooding at this location. S3 is 

also the most expensive solution to implement according to Table 4.6, however it is 

this flow path (which incurs a very steep drop) which intercepts the existing flood 

routes which lead to the flooding at these locations. This should also be considered in 

the light that the model has not been validated for this event and that flooding for 

short duration, intense storms is likely to be much more dependent on the spatial 

variability of the sewer system performance. In this approach it is assumed that all 

areas classed as served by sewer can drain rainfall intensities up to 30 mm/hr, 

however in reality this is likely to vary spatially. The results, and scenario analysis for 

short duration storms should therefore be treated with caution. 
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Figure 4.18: Water balance results for all scenarios (Sl, S2 and S3) and under current (Bl) and climate 
change (eC) scenarios. (Note: the difference in total excess water within the Bl and ee scenarios is 
due to small changes in the total catchment area as a result of implementation of the managed flood 
routes). 
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Base map: CI Crown Copyrisht/databa.e .;w.t 2009. An Ordnance SUrvey/ED1NA supplied service 
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Figure 4.19: Impact of scenarios on the properties classified as flooded for the 24 hour duration,S 
year return period (the number of properties is given in brackets in the legend) . 
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Figure 4.20: Impact of scenarios on the properties classified as flooded for the 1 hour duration, 30 
year return period (the number of properties is given in brackets in the legend). 
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4.4. CONCLUSIONS 

The urban surface water balance model has been used to identify surface water 

flooding under two types of rainfall events; a 24 hour duration 5 year return period 

event and the 1 hour duration 30 year return period event. By looking at the 

contributing areas of the flooded locations it was determined that the causes of 

flooding can be loosely divided into two. There are areas that suffer from flooding due 

to a very large contributing area made up of a significant proportion of peri-urban 

natural surfaces, which produce excess water that converges into major flood routes 

that enter the urban area. And there are areas that have small contributing areas and 

that suffer from surface depressions filling with surface water. There has been 

significant research which suggests that considerable reductions in runoff volumes can 

be achieved with SuDS features. Managed flood routes are now also being advocated 

but there has been little research into methods for identifying how to best implement 

these types of solutions. This research developed a least cost path methodology to 

identify optimal flood routes based on slope and land use. A diversion point was 

identified along existing flood routes which are causes of flooding in Keighley and the 

least cost path methodology was applied to identify optimal managed flood routes. 

Three potential solutions were selected and these were compared on the basis of 

elevation profiles which reflect the difficulty or ease of implementation. These surface 

water flooding solutions were used as an input for the water balance model in order to 

evaluate their effectiveness in reducing surface water flooding in the catchment under 

current and climate change conditions. 

Translating climate change predictions into rainfall scenarios suitable for urban 

drainage impact studies is an area of on-going development and there is no clear 

consensus on the most appropriate methodology. In this study climate change factors 

advocated by UK government (DCLG, 2008) were used as it is a straightforward 

approach with fewer assumptions. In general, the solutions all reduced the number of 

flooded properties, and enabled the surface water catchments to retain greater 

proportions of the excess surface water within the catchment at non-risk locations. 

The managed flood routes also intercept existing flood routes downstream of the 
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diversion point and transport water to non-risk locations, avoiding risk locations where 

possible. This is achieved through use of the least cost path methodology which 

assigns high costs to passing near properties. The selection of an appropriate cost 

function that best represents the engineering costs associated with re-profiling is an 

area which deserves more attention. This relationship is critical to the practical 

application of the methodology. 

Incorporation of source management techniques combined with these types of 

solutions has the potential to reduce surface water flooding and provides potential for 

adapting to climate change. Significant engineering challenges exist in implementing 

these types of managed flood routes, especially in a catchment such as Keighley which 

is characterised by steep and changing slopes, however the scenario analysis has 

shown that there exists potential for regional scale solutions such as these to build in 

capacity for coping with climate change. The urban surface water balance model 

represents how surface water accumulates along the managed flood routes, and 

therefore reduces flooding. However, since it is not a hydraulic model and nor are the 

flood channels fully designed at this stage, it cannot be confirmed if the managed flood 

routes would not be a source of flooding through overtopping. The urban surface 

water balance model however is a useful high level screening tool that allows many 

scenarios to be run relatively quickly and comparisons to be made regarding the 

effectiveness of a range of solutions. Due to the simplicity of the model it cannot 

substitute detailed hydraulic analysis; it is instead suggested as an initial step to aid in 

proposing solutions and evaluating their impact. 
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5. CONCLUSIONS AND RECOMMENDATIONS 

5.1. WHAT WAS ACHIEVED? 

This research set out to develop a method capable of screening for surface water flood 

risk at a large scale, with minimal inputs and computational effort required, so that it 

can be used in scenario analysis. To achieve this goal, the hypothesis that a water 

balance approach can represent the main processes that lead to surface water flooding 

was tested. The water balance is composed of rainfall inputs, a representation of 

infiltration and sewer system losses, and the outputs are given in terms of locations 

and volumes of water that remain on the surface. The model takes the form of a series 

of transferable ESRI ArcGis toolboxes. It is executed and model results are visualized 

using GIS. This enables immediate use of the model outputs with eXisting GIS layers 

(e.g. spatial queries with land cover data or land use planning data). The conceptually 

simple model framework, coupled to the intrinsically complex urban surface in terms 

of dictating water movement, meant that several modelling challenges were 

encountered such as the treatment of multiple outlet sinks. The concept of catchment 

nesting was developed in order to accumulate surface water through the urban 

catchment (as urban sub-catchments do not have the reasonably well defined drainage 

patterns that natural catchments have). 

Chapter 2 described the development of this new approach for modelling surface 

water flooding, and its sensitivity to the assumptions made. The model is developed in 

GIS and produces output which is easily visually interpreted and which can be used in 

spatial queries with existing GIS layers. The model requires as inputs a hydrologically 

correct OEM, a method for estimating excess surface water according to land cover 

and an input rainfall amount. The entire model can be run in several hours and for a 

given input OEM, scenarios can be run in a couple of hours. 

Chapter 3 carried out a validation exercise. A measure of model agreement of 30% 

(Cohen's Kappa) was observed, although the model performed better in some 

catchments than in others. A detailed, case by case, qualitative analysis of modelled 

and observed flooding, revealed that many of the major catchment flooding patterns, 
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in terms of the main flood routes and large ponding areas, are represented well in the 

model. It is therefore concluded that a water balance approach is capable of 

representing the processes that lead to surface water flooding. 

The urban surface water balance model was used as a basis on which to propose 

solutions for surface water management. The result of the model indicated that the 

surface water flooding in the study catchments was largely a result of inflows to the 

urban area from natural areas not served by the sewer system. This points to solutions 

in the direction of managed flood routes. To the author's knowledge, chapter 4 offers 

one of the first attempts to propose an objective methodology for identifying optimal 

managed flood routes through the entire urban area, taking into account the existing 

built environment. The proposed methodology applies least cost path analysis to 

multiple criteria that are deemed important in siting flood routes. This exercise further 

shows the potential value in the surface water balance model as a screening tool, as it 

enabled these solutions to be evaluated and compared with minimum effort. It also 

provides a starting point for more detailed analysis. 

5.2. CONTRIBUTION MADE 

The principal contributions to knowledge made in this thesis are; 

• demonstrating that a surface water balance approach is capable of highlighting 

locations at risk of surface water flooding, 

• producing a GIS based surface water balance model that that can be applied to 

large spatial scales and which requires minimal data inputs and executes with 

minimal effort and, 

• developing a methodology to automate the identification of viable managed 

surface water flood routes. 

Much of the recent model development (that makes use of LiOAR OEMs) is concerned 

with making improvements to the hydrodynamic representation of interactions of the 

sewer system with the surface (Boonya-Aroonnet et aI., 2007; Leandro, 2008; Leandro 
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et aI., 2009; leitao, 2009; Maksimovic et aI., 2009). This continues to be an area of 

much research as illustrated by current projects exploring gulley hydraulics with the 

aim of better understanding the processes that link the surface to the sewer (FRMRC, 

2011). My research approached surface water modelling from a different perspective. 

An approach was sought that was less computationally demanding and also requiring 

less data. To this end, the use of a water balance to highlight potential areas of surface 

water flooding was tested. The water balance approach presented in this thesis avoids 

the complexities and parameterisation required for hydrodynamic modelling. As has 

been shown in this research, the water balance approach enables a quick assessment 

of the main surface water flooding patterns within a catchment, and solutions to be 

evaluated. The water balance approach is therefore able to highlight areas within a 

catchment that require further investigation. Due to the conceptual simplicity of the 

model it cannot highlight areas where the complex interactions of the sewer, surface 

and fluvial systems lead to flooding, however the approach is able to quickly highlight 

where there is build-up of surface water. This saves the computational effort and time 

that would be required to identify such areas using hydrodynamic or hydraulic models. 

A suggestion for the role of the various modelling approaches is presented in Figure 

5.1. 

State of the art surface water modelling capabilities that make use of liDAR OEMs 

were reviewed in chapter 2. The production and development of surface water models 

has been fast moving, not least due to changing regulatory requirements for local 

authorities to produce surface water management plans (SWMPs) (Defra, 2010), but 

also modellers have been keen to exploit the use of liDAR OEM technology. 

Developments continue to be made as illustrated by recent publications such as 

Fewtrell et al. (2011) which compares various models based on the St Venant 

equations to simulate depths and velocities from a combined river and surface water 

flooding event. Most of the models reviewed in chapter 3 (Table 3.1) that used liDAR 

OEMs, focussed on modelling small areas in great detail (e.g. producing time variant 

depth information), and few of these models have been applied for screening large 

areas for flood risk. In the approach developed in this thesis, the user can screen for 

surface water flood risk over a large spatial scale in an efficient manner by firstly 
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identifying the major (i.e. largest) surface water catchments, and then the surface 

water accumulation module is applied to catchment areas where there is scope for 

build-up of surface water. 

Surface water ponding 

-- Major flood roules 

o Major sub-eatchmenls 

Figure 5.1: Proposed role of various modelling approaches. 

High level screening applied to an 
urban and peri-urban area, or a 
strategic planning scale. 
(Water balance model) 

Major surface water sub-catchments 
identified and within these surface 
water accumulation hotspots are 
highlighted. Enhanced understanding 
of surface water processes. 

Application of appropriate detailed 
model to hotspot areas, e.g. 
coupled surface and piped 
drainage model or 2D hydraulic 
modelling of surface. 

Concurrent with the development of this research, in 2009 the Environment Agency 

released the results of the first major exercise in mapping surface water flood risk at a 

national scale (Environment Agency, 2010b). A two dimensional model (JFlow) was run 

on a 5 m grid, as with the water balance model described in this thesis, the 20 model 

made assumptions regarding the sewer conveyance (a national average of 12 mm/hr 

was used although how the national average was arrived at is not stated). An average 

infiltration is applied to rural areas and two values of Manning's n are used to 

represent rural and urban roughness. With the exception of this national scale 
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exercise, the emerging LiDAR OEM based surface water models that were reviewed, 

have not been applied to screen for surface water flooding at large scales. 

The overarching difference between the surface water balance model and the JFlow 

model used by the Environment Agency (2010b) is that the latter, whilst it has been 

developed to reduce typical data requirements, it is still a hydrodynamic model and 

requires parameterization, including Manning's In' which can only ever be estimated. 

Model output is in the form of gird based time variant surface water depths. Currently 

the results of this exercise are distributed to local authorities in the form of static GIS 

layers detailing the extents and depths of flooding as predicted by the model for two 

events (a 1 in 30 year event and 1 in 200 year event). Results distributed in this format 

do not lend themselves to providing a deeper understanding of the root cause of 

surface water flooding as the contributing areas are not easily deciphered. Section 3.3 

of this thesis illustrated how it was possible to use the output of the water balance 

model to gain a greater understanding of the processes leading to surface water 

flooding. Whilst the Environment Agency model outputs, in the form of static maps, 

may be used as a basis for surface water management plans, they cannot be used to 

evaluate the impacts of management solutions unless access to the flow model is 

provided. The approach developed in this thesis is resource efficient and is executed in 

software available to local authorities (that may want to explore solutions) and 

requires competencies that are likely to be already available. The national scale 

exercise (Environment Agency, 2010a) however also provides an alternative for 

screening for surface water flood risk, which can also model blocked culverts and 

watercourses 

In contrast to the production and development of models, there is relatively less 

research in the area of automating, and taking the subjectivity out of the search for 

viable solutions. With this is mind, it is felt that there is most novelty and greatest 

potential impact in the development of a methodology that supports strategic 

planning towards reaching the ideals of sustainable drainage within a highly 

constrained environment. Development of the methodology based on least cost path 

analysis, makes it possible to propose catchment wide solutions, in terms of storage 
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and planned flood routes for managing surface water flooding. This is shown in 

Chapter 4. The least cost path methodology was shown to be able to discriminate 

between less viable paths (e.g. that would involve significant re-profiling, that go 

uphill, that involve very steep drops, or that would involve demolition of buildings) and 

more viable paths. The methodology is also dynamic in that it can be adapted to reflect 

changes in planning policy, for example if it becomes a viable option to acquire a 

certain type of land for flood risk management, the costs can be adjusted accordingly 

and the least cost path method will take this into account. It is envisaged that this type 

of approach would form the basis for long term strategic planning. 

5.3. WIDER IMPLICATIONS OF THE RESEARCH 

This research revealed that the lack of observed data is a major problem hindering 

advances in surface water modelling. Other surface water modelling studies also note 

the lack of surface water flooding data (Fewtrell et aI., 2011; Hunter et aI., 2008) and 

therefore resort to benchmarking exercises in order to gain insight into model 

performance. Using the data collected as part of this research (as described in Chapter 

3), the Kappa statistic was used to measure the strength of agreement between 

modelled data and observed data and was found to be 30%, which according to a 

proposed benchmark means that the model has a 'fair' agreement. Although this 

appears a modest agreement with observed data, a qualitative analysis of the results 

revealed that many of the patterns, such as flood routes and ponding areas, described 

by respondents were accurately mapped by the model results. Computing a statistical 

measure of agreement as part of a validation exercise provides great insight into the 

model and provides a degree of confidence in the model, yet of the surface water 

flooding modelling studies that were reviewed, very few provide a measure of 

agreement. The most frequent approach is to make a visual comparison with scant 

data that can be obtained on flood extents, depths and locations. 

This is a direct consequence of the lack of appropriate data, and this also raises the 

question of whether complex hydraulic and integrated models that produce time 
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varying depth, extent and velocity data, should continue to grow in sophistication in 

terms of model output, without having comparable observed data with which to 

validate such models. Clearly there is a need for both screening models, such as that 

developed in this thesis, to highlight areas at risk on a large scale, and hydraulic and 

integrated models which would then be used to further understand the complexities 

and interactions at a more local scale. Both types of modelling approach require 

validation data which is currently not available. Perhaps it is worth investing similar 

efforts (as those invested in model development) into data collection. There are 

unique challenges associated with data on surface water flood risk locations, the 

events are short lived and flooding occurs in isolated patches and is widely distributed. 

A snapshot of the location and extents of a surface water flooding event could be 

obtained through aerial photography (although the aircraft would have to be on 

standby or rely on accurate weather forecasting). A further option is the use of CCTV, 

which would not require deployment as it is always in use and in addition there may be 

potential to extract time variant depth information which would be of use for time 

dependent studies. 

As part of the validation exercise, locations where the modelled results did not match 

with the questionnaire responses were looked at on a case by case basis. Many 

locations were visited in person with the aim of trying to understand the reasons for 

poor model performance. This process actually revealed some information that is 

fundamental to urban surface water modelling; that many local features that are 

important in dictating water movement are not represented in the OEM, and 

consequently result in inaccurate model predictions. This finding is of relevance for all 

surface water modelling studies. It raises interesting questions regarding the minimum 

level of detail that needs to be represented in a OEM for accurate surface water 

modelling. What are the cumulative effects of small local features that are not present 

in the OEM? And how much detail should be included? This is likely to vary with the 

intended use of model results. Temporary features (such as sandbags) will alter the 

volumes of water arriving at different locations of the catchment. Despite the 

identified limitations in OEMs, they still offer unprecedented capabilities for surface 
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water modelling in urban environments and Hunter et al. (2008) also concluded that 

for urban flood wave propagation modelling, a LiOAR OEM was a good choice. 

5.4. TRANSFERABILITY OF THE METHODS 

The urban surface water balance model adopts two assumptions which determine the 

transferability of the method to predict locations of surface water flooding under 

varying wider catchment scale conditions. These assumptions are that a} all the surface 

water accumulated at the catchment outfall is free to leave the catchment, and b} that 

the proportion of rainfall that is converted to runoff in areas served by the sewer 

system can be estimated by allowing a fixed and ubiquitous loss to the sewer system 

(see section 3.2). The outfalls on the boundaries were identified as the lowest 

elevations in the LiOAR OEM on the model boundaries (i.e. rivers and watercourses 

identified using OSMM). The assumption that surface water is free to leave the 

catchment via these outfalls implies that the water levels of receiving watercourses are 

below the outfall elevation. In the case of raised river levels or rivers overtopping their 

banks, surface water discharge rates at the outfall become limited by a complex 

relationship between the available head of the discharging water, and the head of the 

receiving water at the outfall. The urban surface water model is non-transient; 

therefore incorporating these relationships is beyond the scope of the model. It would 

be possible to represent raised receiving water levels as closing off surface water 

outfalls by using higher elevations at the boundary to re-calculate the maximum extent 

and depth of surface sinks. This was not tested as part of the sensitivity analysis, 

however it is expected that such a scenario would principally alter the potential for 

surface water ponding near the model boundaries and that changes will be confined to 

the localities of previously identified surface sinks and major flow paths as these are 

determined by the topography. In a steep catchment like Keighley, the impact of fluvial 

inundation, on surface water flooding outside the flood plain will be minimal. Chen et 

al. (2010) conducted a very detailed modelling study of both a fluvial flood event and 

rainfall induced surface water flooding event (which also modelled the piped 
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drainage), for an area of approximately 50 ha adjacent to the River Aire in Keighley. 

This modelling exercise illustrated that whilst the extent and depth of flooding was 

greater under a combined fluvial and surface water flooding event, there were very 

few flooded areas that were unique to coincident fluvial and surface water flooding 

events due to the restriction of the terrain. 

Assumption (b) is considered to be more limiting to the wider applicability ofthe urban 

surface water balance mode/. Raised river levels can also impact on surface water 

flooding by altering the performance of the sewer system further upstream as 

discharges from the piped system are either contained within the system where flap 

valves are present (therefore capacity is reduced as the storm progresses), or as river 

water enters the piped system from the downstream end. The spatial variation of the 

conveyance rate of the piped drainage system is altered depending on the pipe 

elevations and the location and availability of storage within the sewer network. For 

simplicity, and due to the lack of data on the spatial variability of sewer performance, a 

ubiquitous value to represent loses to the piped urban drainage system was used for 

all areas classified as 'served by the sewer system'. In reality losses to the piped system 

will vary spatially and also with the type of rainfall event as well as the conditions at 

the outfalls. As an example, Allitt (2006) illustrates how flows from highway drainage 

vary dramatically from one storm event to another, and this could be explained by 

either the soakaway capacity or the relationship between gully capacity and by-passing 

water flows. This level of detail is currently very difficult to obtain, given that urban 

drainage is split between local highway authorities and privatised water companies 

which do not freely share the results of sewer modelling exercises. Furthermore, as 

illustrated in the study by Allitt (2006), the relationships between urban overland flows 

and storm events are not fully understood and therefore accurate modelling is not 

always possible. Nevertheless, Stovin et a/. (2008) propose that, useful spatially 

distributed data regarding variations in sewer performance can be obtained from the 

results of hydraulic models produced by water companies, where this information is 

made available. This could take the form of translating the results of the sewer 

hydraulic model into a time averaged and spatially interpolated sewer capacity based 

on a range of storms. The basic assumptions adopted in this study mean that surface 
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flooding is overestimated in areas where the piped urban drainage system has 

additional conveyance capacity and can absorb incoming overland surface flows, or 

surface water from a range of rainfall events. Conversely surface flooding is 

underestimated in areas where the sewer system conveyance rates are highly sensitive 

to a range of factors such as storm characteristics or the state of the fluvial system. 

Whilst it is recognized that a better representation of the performance of piped urban 

drainage network would be beneficial to the screening tool proposed in this research, 

representing the effects of coincident sources of flooding is considered beyond the 

scope of such a tool. The urban surface water balance tool is capable of highlighting 

areas where there is potential for surface water to accumulate and pond, and 

therefore where detailed integrated flood risk modelling is required to understand the 

impacts of flooding from multiple sources. Furthermore by combining the results with 

local knowledge of surface water flooding (and given the intended users of such a tool 

would be local authorities), this approach becomes a powerful tool to understand the 

sources of flooding and eliminate the need for complex modelling where it is not 

needed. The validation exercise in section 3.3 illustrated how for catchments A and B, 

the urban surface water balance model is capable of providing a credible and logical 

explanation for much of the reported flooding without the need for additional 

modelling (after making an allowance in catchment B for the deficiencies in the liOAR 

OEM as shown in Figure 3.15). In catchments C and 0, the low agreement statistic and 

the difficulties in explaining the reported flooding with the model results, point to the 

need for more detailed modelling to fully understand the source of flooding. It is clear, 

even only with knowledge of the CBMOC culverts (as shown in Figure 3.16) that the 

piped urban drainage is critical in understanding the processes that lead to flooding in 

catchment O. The same may be true of catchment C and hence there is merit in more 

data hungry and complex modelling for these areas. 

Keighley, a town situated in the steep valleys of the River Aire in West Yorkshire, was 

used as a case study to develop this research. Given that the model requires no 

parameterization it is expected that it be easily transferable to other catchments. The 

model is likely to perform to a similar standard in catchments similar to Keighley and 
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where inflows to the urban area are the source of problems. In highly urbanized 

catchments, it is expected that an improved representation of the spatial variability of 

the performance of the sewer system will be key in determining where surface water 

flooding occurs. Flatter catchments may also pose additional challenges as it is 

expected that urban features, such as dropped kerbs, walls and protrusions will 

become even more critical in determining the major flood routes. In catchments such 

as Keighley, although urban features result in local modifications to the surface water 

movement, surface water accumulation follows the natural topography to some 

degree. Therefore, where urban features alter flood routes, in general the water 

eventually finds an alternative path downhill. In flatter catchments it may be the urban 

features which almost entirely dictate surface water movement (due to the very 

subdued underlying natural topography). The assumption made regarding the multiple 

outlet sinks may also have greater implications in flatter catchments for the same 

reasons. 

Regarding the methodology described for finding managed flood routes, in flatter 

catchments, it will be principally land use that will determine the optimal route. It is 

felt that the methodology will remain applicable, and maybe even more so. Given that 

in flatter catchments slope will not be such a limiting factor, a huge number of 

managed flood routes could be identified using manual techniques. By developing 

improved methods to assign costs associated with implementing solutions according to 

detailed land use information, the least cost path methodology can find the optimal 

route through a highly urbanized and flat catchment (where land use will probably be 

more influential in determining the optimal routes than overall terrain slope). 

5.5. SUMMARY OF MAIN CONCLUSIONS 

• A water balance model was produced in GIS which requires minimal 

computational resources and parameterization. 

• A surface water balance approach is capable of representing the main 

processes that lead to flooding (e.g. catchment scale major flood routes and 

major ponding areas). 
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• Less certainty can be attached to local scale (i.e. property level) model 

predictions as local model results are highly dependent on small scale features 

that dictate water movement and that are not always represented in the OEM. 

• Investigating the sensitivity of the model to the storm sewer behaviour and flap 

valves on receiving watercourses or the rainfall events simulated was beyond 

the scope of the present work. 

• This omission is likely to be a reason for the poor performance of the model at 

locations that exhibit spatially and temporally complex interactions with 

existing urban drainage infrastructure. 

• The availability and quality of data for validation of surface water flood risk 

models is inadequate. 

• A questionnaire exercise is a useful method of obtaining data to validate a 

screening model as developed in this thesis (and lessons were learnt on how to 

improve the exercise in the future). 

• A method that delineates optimal managed flood routes has been developed 

based on least cost path analysiS. This method aids in the identification of high 

level flood risk solutions. 

• Implementation of managed flood routes and storage areas has the potential to 

reduce surface water flood risk and increase adaptability for climate change. 

5.6. RECOMMENDATIONS 

This research highlighted the value of using the two methods developed, as a basis for 

exploring solutions for surface water flooding. Several key areas for further 

development and refinement of the methods have been highlighted, and it is hoped 

that with further research these methods will be used in practice. Suggestions for 

future research are stated below in the proposed order of prioritization. 

1. Validation of optimal flood routes. Methods are needed to validate that 

the optimal routes identified by the least cost path methodology are indeed 

the optimal routes in terms of the costs and difficulties associated with 
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implementing them. This may be possible by selecting a number of routes 

of varying relative cost and comparing the actual costs that would be 

incurred with implementation of the routes. This would take the form of 

carrying out the detailed engineering design, including all the costings 

required for the change in land use, materials, structures and earthworks. 

The results of this exercise would then be fed into the identification of 

appropriate slope cost functions and land use functions to reflect 

implementation costs. 

2. Representation of the sewer system for screening approaches. Further 

research is required to develop simple methods that can account for sewer 

performance in screening approaches (without the need for simultaneous 

hydraulic modelling of sewers). It may be that the results of sewer models 

can be translated into static layers representing the spatial variability of 

model performance. This can then be used to derive the rainfall amounts 

that remain on the surface in urban catchments. Research is needed to 

identify whether this is possible and the degree of accuracy that can be 

achieved by simplifying sewer model results in this manner. 

3. Use of design storms. Questions have been raised as to the 

appropriateness of using theoretical design storms as a basis for much 

urban drainage modelling and flood risk studies (Ashley et aI., 2007). 

Although only a limited sample was obtained, the results of this research 

also point towards the unsuitability of design storms in helping to 

understand and characterize the events that lead to flooding. An analysiS of 

the rainfall, in relation to the dates given by respondents when surface 

water flooding was reported, did not present very clear patterns on a type 

of event that led to flooding. In many respects this is expected as it is not 

just rainfall that leads to flooding, but a combination of factors including 

soil moisture for example. This is particularly important where natural 

surfaces drain into urban areas (and all urban areas have some natural 

surfaces). The issue of deSign storms becomes of greater significance under 

(uncertain) climate change where we cannot be sure that the probability 
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distributions, on which the intensity duration frequency theory is based, 

will be applicable (Milly et aI., 2008). There have been calls for the use of 

continuous simulation in urban drainage modelling (Faram et aI., 2010), but 

this may not be the way forward for screening approaches. 

4. Interpretation of model outputs. The urban surface water balance has 

been shown to represent the major surface water flooding patterns (flood 

routes and large ponding areas). In order for the model to be of greater use 

in surface water management, it would be useful to be able to use model 

output to prioritize areas for surface water management solutions. In this 

thesis the model output was used to classify flooded properties. A visual 

inspection shows that there are clusters of flooded properties and also 

isolated instances of flooded properties. In terms of finding solutions, 

priority should be given to areas where greater gains can be achieved. 

Further research is required to translate model output into measures that 

can be used to prioritize areas for surface water management solutions. It 

may be that classifying properties as flooded or not is not the best method, 

and an alternative that highlights zones with greatest flooding potential, is 

preferable. 
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7. ApPENDICES 

7.1. ApPENDIX 1: MODIFICATIONS TO THE lIDAR DEM TO ACCOUNT 

FOR ELEVATED STRUCTURES 

Figure 7.1 locates some of the elevated structures that were identified. Figure 7.2 

illustrates the manual modification that is applied to the LiDAR DEM to allow surface 

water accumulation through elevated structures. 

Basemap: C Crown 
Copyrfght/databasa right 2008. 
All Ordnance SurveylEOINA 
,upplled ,ervlce 

Figure 7.1: Photographs and locations of elevated structures. 
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RawUDARDEM 

Modified liOAR OEM to allow water 
accumulation through elevated structures. 

Figure 7.2: Illustration of manual modification to LiOAR OEM to allow surface water accumulation 
through elevated structures. 
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7.2. ApPENDIX 2: DESCRIPTION OF TOOLBOXES AND MODELS THAT 

MAKE UP THE URBAN SURFACE WATER BALANCE MODEL 

Figure 7.3 illustrates the toolboxes and the models that make up the Urban Surface 

Water Balance Model. The coloured shading in Figure 7.4 shows where each model lies 

with reference to the model flow chart presented in Figure 2.2. The following account 

provides a short description of each model and what is achieved. A CD provided with 

this thesis contains a model manual. 

··CJ MODEL TOOLBOXES 

~.. A SINK PROPERTIES 
j .. .. ~ Si'nld. - Fi.nding basins and sinks 

~ .. 

B·· 

i····.j:>. Smk2. - work; ng with sel ected ba sin 
i····.j:>. Sinfc3 - Selecting sinks and finding exits 
j .... }-- Sink4 - Finding pour points outside the sink 

I··· ·~ SinkS - Eliminate points that drain ba,ck into same Sink 
i····.j:>. Sinl(6 - Sink points to define catchments 
j .... .j:>. Si n k7 - Fin d in g catch m ents 
j .... .j:>. Sinf<B - Catchment Nesting 
L.. . .j:>. Sin k9 - P ntOutl!..ess with Vol urn e 

B SURFACE Ji\TER ACCUMULATION 

I · ···~s m 
L...~ 'A2. 

C PRESE T RESULTS 

I····~ Results! 
L...~ Resultsl 

Figure 7.3: Urban surface water balance model toolboxes. 
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Figure 7.4: Model flow chart shaded to illustrate the models that execute the model processes. 
Standard ESRI algorithms that directly produce the required model data are preceded by ESRI and the 
name of the tool (e.g. the ESRI Spatial Analyst Basin Tool which computes catchment areas). All other 
model processes are computed using a combination of using existing GIS functions and map 
calculations (e.g. the module SInk4 uses various Iterations of the ESRI Data Management Shift 
function combined with field calculations to compute the sink outlet cells). 
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TOOLBOX A SINK PROPERTIES 

Sink1 - whole raster to get basins and sinks 

The model diagram is shown in Figure S3. This model splits the input raster into 
the major sub-catchments. Each sub-catchment has an outlet that drains to a 
boundary (i.e. out of the raster or a river or watercourse). The model also 
identifies the sinks and then calculates sink properties such as maximum, 
minimum and average sink depth of each sink. 

Sink2 - working with selected basin 

The model diagram is shown in Figure S4. This model clips and cuts all the data 
for the selected major sUb-catchment and creates a new directory for all the 
data. 

Sink3 - Selecting sinks and finding exits 

The model diagram is shown in Figure S5. In this model the user can make a 
query to select the sinks to be included in the model (e.g. sinks with a max 
depth> 10cm and with a surface area> 2m2). A new layer is then created of the 
selected sinks. This model also looks at all the border cells inside each sink and 
identifies the cells that with flow directions that drain out of the sink; these are 
the sink outlets. 

Sink4 - Finding pour points outside the sink 

The model diagram is shown in Figure S6. The model calculations (i.e. the sum 
of water arriving at the sink minus the sink volume) are executed for each sink 
on one cell per sink. In some cases there are two boundary cells with flow 
directions that drain to the same cell just outside the sink. It therefore makes 
sense to do the calculations just outside the sink in the cell that receives the 
water leaving the sink. This model identifies those cells. This is the cell where 
the sink calculations will take place. In essence each of these points represents 
a single sink, hence sinks with more than one exit point will become split sinks; 
one sink for every exit point. Every exit cell is linked to the sink by the sink 10 
number. 

Sink5 - Eliminate points that drain back to the same sink 

The model diagram is shown in Figure S7. In many cases, according to the cell 
flow direction, water leaves the sink for one cell then travels back into the same 
sink (eventually this would create a split sink for cases where this happens). 
This model therefore eliminates the exit points where this happens (Le. where 
water only leaves a sink for one cell then drains back into the sink). This is all 
done using the flow direction raster which has one flow direction for every cell. 

Sink6 - Sink points to define catchments 

The model diagram is shown in Figure S8. At this stage a unique number is 
required for every sink (including a unique number for every sink part of the split 
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sinks) in order to define the sink catchment area. It is not possible to use the 
exit cells that lie just outside the sink (as these all have unique numbers) 
because this would delineate a sink catchment that is larger than that of the 
sink. If the exit cells that lie inside the sink boundary are used, this would result 
in even more split sinks (even when not required). This would happen where 
two adjacent exit cells (inside the sink boundary) have flow directions that drain 
to the same cell outside the sink. This is illustrated in Figure 89. This model 
assigns each exit cell (inside the sink) the 10 number of the cell it overflows to 
outside the sink. In this way the catchment area for all the cells with the same 
10 is delineated. The catchment area of each sink part of the split sinks is also 
delineated (Le. each sink part has a different 10). 

8ink7 - Finding catchments 

The model diagram is shown in Figure 810. This model uses the unique sink 
exit 10 numbers to delineate each sink catchment in turn. 

8ink8 - Catchment nesting 

The model diagram is shown in Figure 811. This model calculates the nest level 
of each sink catchment. The model takes each of the catchments and counts 
how many other catchments contain it. A nest level of 1 means the catchment is 
only contained in its own catchment (and is therefore equivalent to the major 
sub-catchment boundary). 

8ink9 - PntsOutless with volume 

The model diagram is shown in Figure 812. This model assigns a volume to 
each of the exit points (where the calculations will be done). In most cases this 
is equal to the sink volume but where sinks have been split due to multiple exits 
it assigns a portion of the total sink volume to each exit. The model currently 
uses the total volume of the sink divided by the number of exits so that each exit 
has the same volume. 

TOOLBOX B SURFACE WATER ACCUMULATION 

The model diagram for the surface water accumulation algorithm is shown in 
Figures 813 and 814. The 8WA1 and 8WA2 models are almost identical but 
the 8WA 1 just produces some of the input files needed to run the accumulation 
algorithm for the first time. In the highest level (to start the model) there is 
nothing carried over from nested sinks, so it starts by creating a layer with no 
carry over. Model 8WA2 then continues the same process that is run in 8WA 1. 
It is fully automated, the user simply inputs the number of levels in the major 
sub-catchment and it keeps running until it gets to level 1. As the model 
progresses it uses the outputs from the previous level calculations as inputs. 
Each nest level is calculated in turn, Le. the model runs once for level 10, then 
runs again for level 9, then level 8 etc .. The model sums the surface water from 
all the cells in the catchment area of each sink. Any portions of the sink that 
have already been accounted for in higher nest levels are not included. Only 
the carryover of the nested sinks is included for these portions. 
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The surface water is accumulated for each sink by a summation of all the 
excess surface water values of each cell inside the catchment area of the sink. 
This is much quicker that the flow accumulation tool and provides the output 
that is needed for the exit cell of each sink. Given that the calculations are made 
on the cell outside the sink boundary (i.e. the cell that receives the water 
leaving), if the ESRI Flow Accumulation tool were used, the value given for that 
cell would be the total water arriving at the exit cell, which might be more than 
that entering the sink. Since there are sometimes several cells inside the sink 
which have flow directions that drain out, it would be trickier to use the flow 
accumUlation value of each exit cell inside the sink boundary. This is why it was 
therefore more appropriate and faster to use the summation of all the excess 
surface water values inside the catchment area of the sink. 

The ESRI Flow Accumulation tool is not used for the purpose of the 
calculations; however it is run simultaneously to get an indication of the surface 
water flow paths. If this is omitted, the model runs even quicker providing the 
user with the volumes stored and passed down at each of the sinks. 

TOOLBOX C PRESENT RESULTS 

Results 1 

Given that the surface water accumulation calculation are made at one point 
(cell), for the purpose of presenting the results, the values are illustrated on the 
sink polygon. This model transfers the data obtained at the sink points to the 
sink polygons. 

Results 2 

This model produces a mosaic of all the flow accumulation results. When the 
SWA2 model is run a raster of the flow accumulation for each nest level is also 
produced. This model mosaics the flow accumulation output for all the nest 
levels to produce one raster file for the entire sub-catchment area. 
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7.3. ApPENDIX 3: SURFACE WATER FlOODING QUESTIONNAIRE 

e 
lhai~'C~ity 

... _i'""'IIHr.< Of 
Sheme1d. 

Flooded or not? 
SUrfac9 w r f looding is wh9ro largg volurn9s of wator pond or Q 
coflod following tiaavior rainfafl ovGl1ts. We are \\'Orking on reducing 
surf.ac9watgr flood risk. To do Ihi.swg need 0 rocate the areas 'thai have suffered 
or currentry suffer from s rf.ac9watgr flooding and.also locate areas Chat.are not 
affected by SUrf.ac9 w.atgr. The datil \\'9 colle . is confiden ial and will be used 
anonymously to ms and va[idate om lfelSearchL If you would ~ to know more 
about this researo'h please visit www.flood.group.sI1ef. c. uk or OOft act 
Jaoqlmlin9 Dm-Nieto by email at ~ .diaz@:sheffield.~.lIIk 

Please help us by com 19ling this questionnaire.and rnruming to us by the 25 of S9 p1:9moor 
and you wil l be' en~red inlO a prize dra'i\' for a £25 gift voucher for the :store of your choice. 
You can also com letg the' Q~tionnaire oOOne.at www.flood.grouplsl1ef.ac.uktqueat.html 
or you can email youranswerstoj.diaz<g)shefliekl.ac.uk 
Tht: winning rl!k!-e'I':IOe' nltl"."lbilf" wiJ be ~ed Q'1 ~ ~iI9!-' i" (k.lllbef" iJn! 1:.1'1 m:;o ~ r~~red byemliI. 

I Rm9 rence numoor : 

1) Ha.s this propa rty or ltave the streaiS rmt to this propany baa n flood9d or affected 
by surface water? (this includes lame Duddles of water which are an inoonvenienoe) 

o 0 Yes 0 
P19a59 answer quaslions 2 & 3 .and return Please' answer que.stions 2 to 6 and rgturn 
Ihg questionnaire in Ihe envefope provided. lhe qoos ·onnaire in lflg eRVe opg provided. 
This i ormation will e wry useful to our This will be great value to ou r research. 
resgarcfl. ThankYOUVgry much or your time'. Thank YOlJvery much for your time'_ 

2) How many ve rs t.ave vou liwd at this address? (this Is 'or us to !mow what heavy 
rainlall events youwoufd hav9 9:xperienced at this address) 

3) Can we contact you if we haw any funhor quastions? 

Yes D I am ham' for you to contact me by (p'9ase Pl'O~cf9d9taffs Wh9f9appYcatie}: 

am9: 
~============================~ Em : 
~============================~ Te19phone: 
~============================~ 

Post: 

L 0 D plgase do not contlct me. 
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4) ~an you m mamber tha, data s and data; Is m when this property or the, streets naxt to 
It have baa n flaodlador affaC18d by surfaca wats r? (please complete the talJfe helow) 

Data What was affected orfrooded? (e.g. had( garden. Slreet in .ront 01 
(or approximation house. front drive) and any additional in'ormation abou the flooding or 
9.g. S1.Jmm9f 198f11 affected area (e'.g. how deep was the troDding) 

5) Do YOU have any additional information that you think would bill of jntal'8lt to us? 
FIX example do you know o. olher areas in the neighbourhood which are> aftect9d by 
surfaoe water floodmQ' (properties. streets. parks etc..). do you have any a.dditional 
oollllll{lnts to make about the fJoodinQ sufferad at this lXoPGdV. or do vou have anv 
pbo ographs of flooding incidents? 

6) Do you give LIS parmission to notify d1a City of Ora.dford Metropolitan District 
CouncU oftba_ flo 'na incidents? 
All rasponKIs are coofid n ial and i n be disclosed unl9ss you tick the Yes box h ON. 

~sD ~ I~ 
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WHAT COUNTS AS SURFACE WATER FLOODING? 

It the presence of rain water Is disrupting everyday life then it can be considered surface water flooding. 
It is important to remember that surface water flooding occurs during or immediately after heavy or prolonged 
rainfall. It is sometimes difficult to decide whether flooding is due to surface water, river flooding or sewer flooding 
and In many cases it might be a combination of various sources. The list below provides information about the 
types of flooding we are interested in hearing about. 

Examples of surface water flooding: 

• Flooding that is a direct result of heavy or prolonged rainfall (this type of flooding is usually very localized and 
only affects certain streets or properties in the area). 

• A large ponding area which leads to a road being closed. 
• A very large puddle that you would rather not drive through. 
• A surface water flow path that runs through a property. 
• Surface water that enters a property and causes damage. 
• Large puddles that restrict access to a property. 
• Flooding due to blocked gullies (rain water cannot drain into the gully and so there is flooding on the surface). 
• Heavy or prolonged rainfall events that lead to flooding from sewers (when water pushes manhole covers 

open and water exits the sewer system onto the surface). 
• Localized flooding from small streams or watercourses (it is sometimes difficult to decide whether this is river 

flooding or surface water flooding. As a general rule of thumb if the flooding affects a small area and occurs 
during or shortly after the rainfall that fell in the same place as the flooding location then we can say it is 
surface water flooding). 

What is NOT surface water flooding: 

• Flooding from rivers that overtop their banks (thiS type of flooding usually affects very large areas). 
• Flooding from waler that seeps from the ground (groundwater flooding). 
• Flooding from burst water pipes and sewers (when it has not rained). 
• Flooding from leaks in the roof. 

7.4. ApPENDIX 4: TABLE OF MISCLASSIFIED PROPERTIES AND REASONS 

ATIRIBUTED FOR THE MISCLASSIFICATION 
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Label Reported Catch-
and ment 
Modelled 

1 Y,N A 

2 Y,N A 

3 Y,N A 

4 Y,N A 

5 Y,N A 

6 Y,N A 

7 Y,N B 

8 Y,N B 

9 N,Y B 

10 Y,N B 

11 N,Y B 

12 Y,N B 

Visi-
ted 

Y 

Y 

Y 

Y 

N 

N 

Y 

N 

Y 

N 

Y 

Y 

Proposed explanation for misclassiflCation 

The resident reports a large ponding area near the property. Ponding occurs due to the presence of a wall which is not 
picked up the by liDAR OEM. 
The resident mentions a flow path which washes out the drive. This flow path is in fact represented in the model but it is 
approximately 15 metres from the property and so the selection criteria fail to highlight the house as at risk. 

The resident mentions that there is an underground beck and also CBMDC records also show a culvert near the property. It 
is likely that the flooding is related to the culvert 
The residents mention that water accumulates in their drive. The model shows the water running straight down the road 
in front of their property. Having visited the site the property has a very low curb and it's likely that some water enters the 
drive as well as flowing along the road 
The resident mentions significant ponding in the street in front of the property causing problems entering property. The 
model represents a sink with a maximum depth of 19 cm in front of the property. The treatment of multiple exit sinks 
means that this sink doesn't fill, furthermore the sink is approximately 3 metres from the property so wouldn't be included 
in the selection criteria. 
The resident did not provide any details regarding the flooding. The model does pick up a sink in the road in front of the 
property but it only has a maximum depth of 16 cm. Furthermore the sink does not fill in the model because its 
contributing area (which is 1085 m21 is entirely classified as served be sewer which for the event used in the model test 
produces zero excess water. 
The resident did not provide details regarding the flooding. The model does not represent any sinks or flow paths near thie 
property. The site was visited and it was not possible to make any clear conclusions regarding why this property might 
flood. It is known that upstream of this property one of the mayor flow paths locations is wrongly modelled and it may be 
that this has cumulative effects downstream. 
The resident specifically mentions flooding on only one event in 2003. On this event the back yard flooded. The model 
indicates the presence of a large sink to the rear of the property with a maximum depth of 61 cm but in the model test 
run, the sink doesn't fill as its contributing area (10382 m21 is entirely classed as served by sewer and therefore the excess 
water produced is zero. 

Having spoken to a neighbouring resident, it was confirmed that there is a culvert that starts upstream of the property and 
is likely to intercept the modelled flow path that leads to this property being classed as flooded. 
The resident reports flooding of the tennis court. The model also represents a sink in the location of the tennis court which 
fills to a water depth of 10 cm, however the property is not highlighted as at risk because the water depth is too shallow 
and the sink is more than 2 metres away from the property. 
The resident provided no further details. The model represents a flow path across the road in front of the property which 
then flow along the side of the property. Having visited the site there are 3 gullies in the road in the approximate location 
of the modelled flow path. Furthermore there is a small stretch of culvert with would drain the flow path in front of the 
property away from the property itself. 
The resident reports flooding on the road in front of the property and also water entering the cellar. The model represents 
a flow path 7 metres in front the property. therefore it is not highlighted as at risk. The model also highlights a full sink 
adjacent to a contiguous property to the rear - it may be that this is the source of flooding in the cellar but the property in 
question is not highlighted. 
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Summary reason 

limitation with OEM 

Selection criteria 

Drainage assets 

limitation with OEM I 
Flow direction algorithm 

Treatment of multiple 
exit sinks I Selection 
criteria 

Selection criteria I Excess 
water method 

No obvious reasons I 
limitation with OEM 

Event that lead to 
flooding is different to 
the event used to test 
the model I Excess 
surface water method 
Drainage assets 

Interpretation of flooding 

Drainage assets I 
limitation with OEM I 
Flow direction algorithm. 

Selection criteria 



Label Reported CatEh- Visi- Proposed explanation for misdassificatio Summary reason 
and ment ted 
Modelled 

13 Y,N B Y The resident reports flooding in the road in front of the property and blames it on blocked drains. The model represents a Selection criteria / Excess 
sink along one side of the road but it is only 17 em deep and furthermore does not accumulate any surface water for the water method 
model test event as its contributing area (794 m2) is entirely classed as served be sewer. 

14 Y,N C N The resident reports flooding in the street in front of property and into the drive. There is a flow path along the back of the Umitation with OEM 
semi-detached properties on the opposite side of the road - many of these properties seem to have canopies in-between 
the properties. It may be that in reality this flow path flows under one of these canopies, across the road and into this 
property. 

15 Y,N C N The resident reports flooding along the road and a large puddle on the road. The model does not represent a sink or a flow Umitation with OEM 
path in this location. Furthermore this property is very near to the catchment boundary and therefore there is little scope 
for surface water to build up. It may be that the catchment has been delineated incorrectly. 

16 Y,N C N The resident reports a flow path along the road in front of the property. The model produces a flow path along this road Selection criteria I Event 
when run using 1 hour rainfall duration of a 30 year return period. The flow path is 6 m from the property. 

11 Y,N C N Resident mentions flooding specifically in Summer 2008, when water came down the road in front of property. The model 
produces a flow path along this road when using 1 hour rainfall duration event of a 30 year return period. 

18 Y,N C Y The residents mention ponding near the properties. The model represents a sink in this location, however the contributing Event / Selection criteria 
area of the sink is mainly classed as served by sewer and therefore very little water accumulates in the location in the 
model test event. In a 1 hour 10 year retum period event, a water depth of 15 em is modelled in the sink and in a 1 hour, 
30 year event results in SO em water depth 

19 Y,N C Y As above (the properties neighbour the same sink) Event / Selection criteria 

20 N,Y C N The property is highlighted as at risk because it is less than 2 m away from a sink with a water depth greater than SO cm. Selection criteria 
The sink is not on the curtilage of the property but on a neighbouring field. 

21 N,Y 0 N The property is highlighted as at risk because it is adjacent to a sink with a water depth greater than SO cm and also a flow Umitation with OEM 
path flows very near to the property. It may be that the flow path has been incorrectly delineated in this location. 

22 N,Y 0 N As above (the properties are neighbours) Umitation with OEM 

23 Y,N 0 N The resident mentions a flow path in the road in front of the house approximately 1 inch deep. The model does indeed Selection criteria 
show a significantly high volume flow path in the road, but the property is not highlighted as at risk because it is 
approximately 10 m from the property. 

24 N,Y 0 N The property is highlighted as at risk because it has a sink with a water depth of SO cm. Furthermore the contributing area Umitation with OEM 
of the sink is largely pervious and for this event results in significant accumulation of water in the sink. Water enters the 
sink from an adjacent road, however it may be that the water continues to flow along the road rather than diverting into 
this property. 

2S Y,N 0 Y The resident mentions water flooding the neighbour's garden and then running into this property. Upstream of this Umitation with OEM 
property (20 m), the model identifies a large sink which stores all the water from an incoming flow path. Having visited the 
site it does appear the upstream sink may exist but it could not hold water SO em deep as the retaining wall is 
approximately 2S em taU. It may be that this sink does not hold as much water as represented in the model and therefore 
water continues to flow downhill into the misclassified property. 
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7.5. ApPENDIX 5: FIGURE LOCATION MAPS 
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Figure 7.5: Location map for figures in Chapter 2. 
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Figure 7.6: Location map for figures in Chapter 3. 
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Figure 7.7: Location map for figures in Chapter 4. 
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7.6. ApPENDIX 6: CONTENTS OF THE CD 

MODEL MANUAL 

A word document with instructions on how to use the urban surface water balance 

model. 

SWMB (Folder) 

A folder containing the ESRI toolboxes that make up the urban surface water balance 

model. Contained in this folder is the original LiDAR OEM used in the study. 
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