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Summary 

Wheel and Rail Contact Simulation Using a Twin Disc Tester 

Ezequiel Alberto Gallardo Hernandez 

Summary 

The contact between wheel and rail has been studied for many years in the field and 
using different test approaches. The wheel/rail contact in this work was simulated by a 
rolling-sliding twin disc contact machine. Currently this approach is widely accepted as 
a technique for studying different aspects of the wheel/rail contact such as; wear, rolling 
contact fatigue (ReF) crack propagation and issues concerning wheel/rail isolation. 

In this thesis, one of the studies consisted of measuring temperatures in the twin disc 
contact. Experiments carried out with a thermal camera were compared with analytical 
solutions to measure temperature developed by Lewis & Dywer-Joyce (2004) and two 
methods proposed by Olver (1991). The thermal camera gave a full validation for these 
solutions. 

This work also looks to fill some gaps on the study of wheel and rail contact. The twin 
disc methodology has not been used to evaluate temperature using a thermal imaging 
camera, nor has the application of some contaminants and isolation in terms of signalling 
using commercial friction modifiers. 

Another study was carried out on adhesion. Poor adhesion in braking is a critical safety 
issue. Tests were run with water, oil and leaves in dry conditions and with water. Results 
showed that water and oil reduce the adhesion coefficient and wet leaves reduce 
adhesion even lower. The same behaviour was seen with dry leaves. Sand applied with 
the leaves, was shown to mitigate the effect of low adhesion. Oil and water mixtures 
were evaluated in terms of adhesion. Whatever the amount of the water present the 
traction coefficient stayed at the oil level. Test also showed that very low amount of oil 
gave a sustainable low traction coefficient; spraying water onto this low oil amount 
made little difference; drying a wet contact reduced traction. Roughness increases were 
shown to raise traction coefficient as well as reducing contact pressure. 

A solid friction modifier (HPF) was also studied in dynamic and static conditions for a 
simulated 8Hz electrical circuit. The results have proved that the interfacial film by the 
friction modifier no affect the impedance either in dynamic or static conditions and the 
variation seen in voltage are related to some other issues as roughness, disc creep level, 
surface profile and interfacial film thickness (presence of debris). 
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Nomenclature 

Nomenclature 

Symbol Description Units 

A Contact area (m2
) 

Ad Area of a disc dissipating radiation energy (m2
) 

a Disc contact half width (m) 

b Disc contact width (m) 

Cp Specific heat capacity of air (l kJ/kgIK) 

Cps Specific heat capacity of the wheel/rail steel (kJ/kg K) 

E Young's modulus (MPa) 

E· Contact modulus (MPa) 

Fn Normal Force (N) 

G Conductance (0-1) 

h Convective heat transfer coefficient (WlKm2) 

1 Current (A) 

k Wear coefficient 

ka Thermal conductivity of air (0.025 W/rnIK) 

ks Thermal conductivity of the wheel steel (W/rnIK) 

K/c The material of fracture toughness (MPa.j;,) 

L Track width (m) 

I Length of the resistance (m) 

L Peelet number (given by UaI2%) 

LI The stub shaft length (m) 

L2 The stub shaft length (m) 

Ld Disc circumference (m) 

Ls Shaft length (m) 

M Thermal responsivity of the disc surface (OCIW) 

Po Maximum contact pressure (MPa) 

p Load applied (N) 

Q Heat generated (pFnus) 

QI Heat loss due to convection (W) 
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Nomenclature 

O2 Heat loss due to conduction (W) 

03 Heat loss due to radiation (W) 

q Traction distribution (N) 

RJ Radius of curvature of rail disc (m) 

R2 Radius of curvature of wheel disc (m) 

R' Reduced radius of curvature (m) 

R Resistance across the disc contact (0) 

r Disc radius at any point within the disc (m) 

ro Disc outer radius (m) 

rj Disc inner radius (m) 

rs Shaft diameter (m) 

T Tractive force (jlxp) (N) 

T Tangential force (N) 

To Ambient air temperature (OC) 

Tb Disc body temperature (OC) 

Tf Flash temperature in disc contact (OC) 

T, Disc inner temperature (OC) 

'if Average flash temperature in disc contact (OC) 

A 

Maximum flash temperature in disc contact (OC) Tf 

TfA 
True flash temperature in the body A eC) 

TjB True temperature in the body B (OC) 

T Maximum flash temperature eC) 
Ie 

T Average flash for a line contact in body A (OC) 
fA 

T Average flash for a line contact in body B eC) 
jB 

" 
T Maximum flash temperature (OC) 
jC 

1\ Maximum flash temperature in body A (OC) T 
fA 
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Nomenclature 

" T Maximum flash temperature in body B (OC) 
jB 

Ttot Total surface temperature (OC) 

Ts Body Temperature (OC) 

Tc Contact Temperature (OC) 

TA Ambient temperature caC) 

Us Disc sliding speed (mls) 

Ur Air velocity relative to the disc (mls) 

U Velocity of contacting solid (mls) 

V Voltage (V) 

W Load applied (N) 

y Constant depending on the crack geometry 

Z Location of the maximum shear stress (m) 

a Proportion of heat entering disc 1 

r Slip (percentage in disc surface speeds) 

E Emissivity 

'l'/a Dynamic viscosity of air (2xlO's kglmls) 

jJ Coefficient of friction 

v Possion's ratio 

P Resistivity (n-m) 

Pa Density of air (1.2 kglm3
) 

P The density of the wheel/rail (8000 kglm3
) 

a Stefan-Boltzmann constant (5.6xl0·8W/m21K) 

a The stress surrounding the particle (MPa) 

ax Thermal compressive stresses (MPa) 

cry Thermal compressive stresses (MPa) 

1: max Maximum shear stress (MPa) 

Z Thermal diffusivity (m2/s) 

u Vehicle speed (mls) 
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Chapter 1 

Chapter 1. Introduction 

1.1 Statement of the Problem 

Railway systems involve vehicles that receive support and lateral guidance from a track 

structure. The vehicle reacts to the topology of the track due to the rail-bounds. The rail 

crown provides vertical support and lateral guidance for the wheel of the vehicle. The 

vehicles are designed to support very high loads over their axles however a bad design 

could rapidly jeopardize the operation of railway systems. In order to illustrate a railway 

vehicle a picture of a Diesel Locomotive F -10 # 1114 on the Cape Cod Railroad in USA 

is shown in the Figure 1.1. The locomotive was built by General Motors Electromotive 

Division in 1946. 

Figure 1.1 Diesel Locomotive F-I 0 # III . Catnip website, (1996-2007), Track pictures (online), Available: 

www.catnip.co.uk (Accessed 03 September 2007). 

Railway vehicles are complex and consist of many sub-systems, such as; bogies, wheel 

sets, suspensions, body shells, couplers, power collectors, doors, lights, ventilation, 

communication systems, water provision and waste management. Wheel-sets contain 
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Chapter 1 

elements as; axles, suspension, springs and wheels. In particular, wheels are in close 

relationship with the railway tracks (Schmid, 2003). Rail tracks support and guide the 

wheels of the vehicle. Figure 1.2 illustrates the wheel shape. The wheel and rail profiles 

have been the object of continuous improvement. 

CoBia, of "'''eel Treads 

Flaa,es 

Axle 

Figure 1.2 Wheel Shape and wheel-rail contact (Railway-Technical Web Pages 1998 - 2007, Wheels and 
Bogies (online), Available: www.railway-technical.comlwhlbog.shtml (Accessed 03 September 2007). 

Currently, of the first rail profiles, the only one surviving is the grooved rail, which is 

presently used along tracks where the rail top and the pavement surface are at the same 

level. The double headed or bull-head rail was widely used in the last century, it is still 

in use in some railways and metros in the UK. The flat bottom rail, or Vignole-type rail, 

consists of a head, web and base. This rail cross-section was formulated on the basis of 

the need to join rail lengths together. In Figure 1.3 illustrates some shapes of rails 

previously mentioned. 

Bullhad Ran Flat Botto. Ran or Yip.le. T~ 

(a) (b) (c) 

Figure 1.3 a) Grooved (www.tmsv.org.au). b) Bull head and c) Flat or Vignole-Type rails. (Railway­
Technical Web Pages 1998 -2007, Track (online), Available: www.railway-technical.comlwhlbog.shtml 

(Accessed 03 September 2007». 
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Chapter 1 

There is a tiny contact area between wheel and rail which is very similar in size to a 20p 

coin (of 13 mm diameter) (Williams et aI., 2001). On straight track the wheel tread is in 

contact with the rail head, but in curves the wheel flange may be in contact with the 

gauge corner of the high rail (Nilsson, 2003). The wheel load is transmitted to the rail 

through the contact under high stress. The developed stresses on the rail are; stresses 

resulting from rail bending on the ballast, stresses resulting from bending of the rail head 

on the web, stresses resulting from thermal effects, plastic stresses remaining on the rail 

after the removal of external loads and Hertz stresses (at the wheel-rail contact) 

(Profillidis, 1995). Therefore the wheel-rail contact can be a source of many phenomena 

which could put at risk the performance of the railway during every journey. There are 

some related to damage, such as; rolling contact fatigue (ReF), wear and crack 

propagation, etc. loss of adhesion, etc. and some related to performance, such as 

adhesion and wheel and rail isolation in terms of train detection. All of these are affected 

by a number of variables, load, speed, temperature, material, etc. Adhesion and isolation 

are also influenced by contaminants formed on the rail head such as leaves, water, oil, 

etc. 

Wheel and rail contact performance is key to having a safe and reliable railway network. 

Damage resulting from ReF and wear driven by the wheel and rail contact can lead to 

rail breakages and consequently accidents can occur. Adhesion loss results in reduced 

performance (train delays) or safety problems as in braking. Isolation of the wheel/rail 

contact can cause train detection to be lost. As it is so important a large body of research 

has been carried out looking at, in particular, rolling contact fatigue and wear. Less has 

been carried out on adhesion and isolation, however. 
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Chapter 1 

1.2 Aims 

The objective of the project is, through the use of experimental and analytical simulation 

to study temperatures, adhesion and isolation in the wheel and rail contact. 

1. Temperature evaluation 

The aim of this part of the project was to carry out experimental temperature 

measurement of a twin disc wheel/rail contact simulation using a thermal camera and to 

compare these with a range of analytical calculations methods. 

2. Adhesion 

A number of contaminants are found in the wheeVraii contact; water, oil, leaves, etc. The 

aim here was to establish their effect on adhesion experimentally, and compare 

measurements with other measurements techniques and field measurement and also to 

test methods for mitigating the problem. 

3. Isolation 

The aim of this part of the project was to establish the effect of friction modifiers on 

wheel/rail isolation, again using a twin disc technique. 

1.3 Benefits of the Work 

The benefits of the work are obtained below; 

1. Greater knowledge of the temperature in the contact will help understanding of the 

wear mechanism and transitions seen in a rolling/sliding contact as contact parameters 

are varied. 

2. Understanding the effects of contamination has on adhesion will help with mitigation 

of adhesion problems on the actual rail network or in deciding whether mitigation the 

wheel and rail well work, or in decaling whether mitigation is actually required. 

3. Establishing the effect on conductance of friction modifiers will help determine 

whether there are any safety issues concerning their use. 
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1.4 Thesis Layout 

The thesis presents a description of the nature of the wheel/rail contact for train systems 

in chapter 2 as well as some of the factors that affect the performance of the contact. 

Some information has been focused on solutions to improve the contact in terms of 

efficiency. 

Temperatures for the twin disc contact were studied in analysis described in chapter 3. 

Experiments carried out using a thermal camera to measure disc body and contact 

temperatures were obtained. These results are then compared with a number of analytical 

calculation methods. 

In chapter 4, experiments are described that were carried out to asses the effect of 

contaminants on adhesion. Contaminants such water, oil, wet leaves and dry leaves were 

tested. Sand, which is used widely to improve the adhesion between wheel and rail 

contact was also evaluated. 

Experiments are outlined in chapter 5 that were carried out to assess wheel/ rail isolation 

when using a friction modifier in the wheel/rail contact. The friction modifier was 

applied to the wheel disc to simulate a train measured application. 

The last part of the thesis, chapter 6, focused on adhesion in a wheel/rail disc contact and 

oil-water mixtures. The testing consisted of evaluating water and oil together at different 

percentages to see which had the overriding effect. The last set of tests in this chapter 

was focused on observing the remaining effect on the adhesion coefficient of some oil 

dropped on top disc. Also experiments were carried out to observe the effect of water 

dropping on the top disc and some remaining oil in terms of adhesion coefficient. 
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Chapter 2 

Chapter 2. The Wheel and Rail 

Contact 

2.1 Introduction 

This chapter describes some of the current knowledge of wheel/rail contact issues. As 

mentioned earlier the contact is small, around the size of a 20p coin (Nilsson, 2003) and 

transmits high loads. 

The resulting contact stresses along with the slip inherent in the system lead to wear, 

ReF etc. occurring. As it is an open system there are many factors that can influence 

what happens in the contact. 

Contaminants can lead to low friction where it is undesirable. Further contaminants are 

applied to remedy this, such as sand or sandite. Other products, such as grease, are 

applied to reduce friction on curves, for example. All these contaminants can also affect 

wear and RCF. It is clearly a complex system. 
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Chapter 2 

2.2 The Wheel/ Rail Contact 

Several factors affect the performance of the wheel/rail contact. Each influences to a 

different degree and in different mode. Figure 2.1 shows five categories for the 

wheel/rail contact. These are wheel and rail materials, wheel dynamics, contact 

mechanics, friction management and damage modes (Kalousec et aI., 1997). 

Rail and Wheel Life Up 

rrr WheellRail Material J-i I 

1 
thermal Cracks ~ 

6 Wear Plasti c Flow ~ 

It. 

i Damage Modes ! 

f. ~ Rolling Contact Fatigue 
8 
:g 

Hollow Wheels 
n 

'J: Rail Rollover '" rz.. 

~ Contact Mechanics }\ 
Spending Down 

Figure 2.1 Categories of study in rail/wheel contact (Kalousec et aI., 1997). 

The wheel/rail contact is approximately lcm2 in size. The contact is illustrated in Figure 

2.2, along with the forces acting (Sinclair, 2004). 

Normal Foroa 

Lalaral 
Force 

Figure 2.2 Forces acting in the interaction between wheel and rail (Sinclair, 2004). 
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Wheel/rail contact mechanics involve the study of the geometry of the contact and also 

the levels of stress and creepage. These vary with dynamics of the vehicle/track 

characteristics and directly affect wear and RCF of the wheel and rails. Figure 2.3 shows 

how dynamics and wear are related and the influencing parameters. Coordinates, 

velocities, forces and moments acting from rails on wheel sets are known from the 

dynamics of vehicle/track interaction, the magnitude and distribution of normal and 

tangential stresses, relative slippage (creepage) and friction on the contact patch can be 

found. Possibly a third body can affect the contact producing a change in the friction and 

causing abrasion on the wheel and rail surfaces (Kalker, 1990). 

Dynamics of Vehic1efrrack Interaccion 

LDleenm A.liu 
Wheel Set Velocities u-raadA&i 

CooldiDates of a I Set I I Foree. aDd lvbmenll Actig 
fl:om IWlt on a Wheel Set 

Diltn'buion ofRelatM Distribuion ofFrictiol Shape aDd lMtriIution of Normal aDd 
S~e on contact Vecm. TUlea:iI1 Simi on COdact Pathe. 
Pat 

I The TliJd Body I Wheel Fluge aad I PlJprties Rail He ad Pm. 

Whee1lRail Wear J 
Figure 2.3 Vehicle track interaction (Zakharov et aI., 2001). 

There are three possible regions of wheeVrail contact. These regions are shown in Figure 

2.4. Due to the difference of levels of force and slip in each region different wear rates 

are seen in each (Tourney, 2001). The three regions are: 

1. Region A is the contact between the central region of the rail crown and wheel 

tread. Contact is made most often in this region and occurs when the vehicle 

8 



Chapter 2 

negotiates tangent track, mild curves and on straight track. The contact stress is 

low and lateral and longitudinal creepages and forces are lower. 

2. Region B. Contact between the gauge comer of the rail and the flange. The 

contact patch in that region is smaller than that region A and is often much more 

severe. There are high wear rates and high contact stresses. Some times two parts 

of contact can occur simultaneously in region A and B. 

3. Region C is the contact between the field sides of both rail and wheel. Contact is 

least likely to occur here and if it does, high contact stress is generated it 

produces wear features causing incorrect steering of the wheelset. 

Figure 2.4 Three regions of contact in wheel and rail (Tourney, 2001). 

2.3 Loads 

Loads vary for each type of railway vehicle. For passenger and lightweight vehicles 

axles support loads in a range from 90 kN to 300 kN on main lines for example, (for a 

fully occupied vehicle) while a lightweight passenger coach of mass 36 t supports a 

single wheel static load between 45 kN to 150 kN. However, dynamic forces grow as a 

function of u2(speed) by the energy stored in the linearly moving and rotating masses of 

wheels, axles, bogies and vehicles bodies (Schmid, 2003). 
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Typically, there is a wheel-rail contact stress of around 3000 MPa between a flange and 

the gauge comer of the rail which occurs on curves (Region B, Figure 2.4). The wear of 

rail and wheel in this sort of contact causes the contact patch to change its 

configurations. The contact patch size decreases and shifts to the field side of the high 

rail resulting in growth of the contact pressure which results in a railhead plastic flow. 

Typically tread wheel runs over the central region in the crown rail is 1300 MPa and 

1700 MPa (Region A Figure 2.4). 

2.4 Wear in the WheellRail Contact 

Wear is the continuous loss of material between two surfaces in motion, that are loaded. 

Wear leads to the degradation of the material and it losing its functionality (Seireg, 

1998). In the wheel and rail contact there are two main areas where wear occurs. The 

first one is the top of rail wheel/tread contact. The second one is the gauge face and 

wheel flange, mainly seen in curves. Wear is determined by the slippage and stress in the 

contact. In tum, the relative slippage and stress depend on dynamic parameters of wheel 

and rail interaction. The top of rail is subject to contact stresses of about 1300-1700 

MPa, depending on the axle load and relative slippage. The flange contact is subjected to 

wear especially when the vehicle takes the curves or in changes of tracks. 

When the wear has been generated particles become detached from the surface and are 

mixed with various environmental contaminants that compose a third body layer on the 

top of the rail. In this case the mild wear mode of oxidative origin is predominant. 

Abrasive particles resulting from sanding to increase adhesion or from other sources can 

also affect the wear rate and may increase it by two or three times (Kalousek et at., 1999; 

Lewis et al., 2004; Ghonem et aI., 1982). Figure 2.5 shows the result of wear on the 

tread, which can cause a hollow profile to form. The rail crown causes the wheel tread 

become hollow due to the wear. The hollow is generated when tread wear is high, and 

the wheel forms a false flange at the end of treads areas Figure 2.5a. Figure 2.Sb show 

the damaged generated by high contact stress in wheel tread, which could rise until 6000 

MPa for 2 mm hollow worn wheel (Williams et at., 2001). Also shown in the Figure 2.Sc 

is a rail with wear and deformation. 
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Wheel 

(a) (b) (c) 

Figure 2.5 Hollow worn wheel profile (h is depth of hollow) and rail with wear and defonnation (Ghonem 

et aI., 1982). 

Wheel hollowing causes changes in the effective contact, below there are some results of 

these changes; 

• Increased car rolling resistance and fuel consumption. 

• Creation of a false flange, which causes surface damage of rails, switches, frogs, 

and crossings. 

• Increased lateral forces on rails in curved track, increasing track deterioration and 

the risk of derailment. 

• Increased shear stress acting toward the field side of the low rail and the 

incidence of flaking damage. 

Railhead gauge face and wheel flange wear usually takes place in curves, although it 

may occur on straight track. In sharp curves under dry conditions, catastrophic wear can 

occur resulting in a large amount of wear particles deposited on the track, sometimes the 

particles are captured into the contact causing a modification of the friction and abrasive 

wear. Wear is highly dependent on the third body properties, which are strongly 

influenced by lubrication, environment conditions (humidity, rain and snow), and the 

presence of sand (Adrievsky, 1961). 

Experiments by Lewis et al. (2004), have shown that three wear regimes exist for wheel 

steels; mild, severe and catastrophic. These have been defined in terms of wear rate and 

wear debris and recent work has been carried out to explain the cause of the transitions 

between the regimes. 
11 
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Figure 2.6 shows the results of twin discs wear testing between R8I wheel steel and 

UIC60 900A rail steel. An energy approach is used to plot the wear data. It is assumed 

that wear rate is related to work done at the interface. (Wear rate= kTy/A, where Tis 

tractive force and y is slip at the interface, k is a wear coefficient and A the contact area). 

Figure 2.6 clearly shows the three regimes of wear due to the severity of the contact 

(Lewis et aI., 2004). 

3000 ..,---------------.. 

2500 
-N 

~ 2000 -E 

~ 1500 Catastrophic 
Q) .... 
(U 

0::: 
~ 1000 
~ Mild 

500 

o 20 40 60 80 100 120 

Figure 2.6 Wheel steels wear transitions (Lewis et al., 2004). 

At mild contact conditions the wear is dominated by surface oxidation as exhibited by a 

brown colouration on the surface, with some abrasive scoring. At more severe contact 

conditions the wear is dominated by presence of cracking on the surface, and mass loss 

by spalling. Wheel tread wear is mainly in the mild regime with flange wear in the 

severe to catastrophic regimes. 

It is proposed that the first transition (mild-severe) is associated with the onset of full 

sliding in the contact and the second is result of excessive surface temperature. 

For twin-disc testing at the point of transition from partial slip to full slip a wear 

transition occurs. After the full slip condition has been reached, increasing the magnitude 

of slip has no affect on friction or wear in the contact. 
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As slip is increased the traction distribution, q, in the contact increases (whilst q < J,lp). 

The shear stress at the surface increases, which results in increasing wear with slip. Once 

limiting friction has been reached (q < J,lp everywhere in the contact region) then the 

surface shear stress remains constant with increasing slip. The wear is largely 

independent of the sliding velocity. This is an interesting observation. In this regime the 

wear is controlled by constant stress alone. If the wear mechanism had been by abrasion, 

(for example caused by asperities or hard particles abrading the surface) increasing the 

sliding velocity would result in proportionally more abrasive ploughing wear (Lewis et 

al.,2004). 

At the second wear transition (where the wear data breaks from pattern of the friction 

measurements) another mechanism must be initiated, leading to the much higher wear 

rate observed (Lewis et aI., 2004). As shown in Figure 2.7, the second wear transition 

occurs at around 200-250°C, which coincides with the point at which the properties of 

the wheel steel such as hardness and yield stress decrease. 

400 -r------------------r 3000 

350 2500}-
P300 -~ 250 • 2000 "a 

~ 200 : ,/ 1500 i' 
8. 150 .r 1000 ~ 
~ 100 .. : I 

50 ... ;W •• r 500 ~ 
WeIll Ral. :. t Trl/larlion .•......•..... ", . O .. &L~~~-+-~~-~T--~~---+O 

o 20 40 60 80 100 120 
T'IA (N/mm2) 

Figure 2.7 Twin disc contact temperatures and wear coefficients for UIC60 900A rail material versus R8T 

wheel material (Lewis et aI., 2004). 
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2.5 Heat Generation in the Wheel/Raii Contact 

While railway wheels are heated by friction in the contact patch, there is also heat loss 

due to conduction through the contact patch into the rail (Ertz et al" 2002). High 

temperatures and thermal stress in wheels are also caused by non-uniform heating, which 

results from tread braking. 

The bulk temperature of the wheel increases with time due to the continuous frictional 

heating on its surface. Therefore, the temperatures of wheel and rail are very different. 

This gives rise to a considerable heat flow from the wheel into the cold rail due to 

conduction through the contact patch (Ertz et aI., 2002). 

A surface temperature change of 200°C would result in thermal compressive stresses ax 

= a y ~ -700 MPa. This may cause plastic deformation, residual stresses and work 

hardening at the surfaces of wheel and rail. While the contact temperatures are confined 

to a very thin surface layer, the bulk temperature of the wheel also increases with time 

by continuous frictional heating. It can be shown that the wheel temperature for constant 

operating conditions cannot be more than twice the average temperature for the first 

contact of the cold wheel. This limit is due to the heat conduction from the hot wheel 

into the cool rail. It corresponds to the usual assumption that the wheel is an insulator 

and all the frictional heating flows into the rail (Ertz et al., 2002). 

Temperature calculations have been developed using analytical models developed by 

Lewis et al. (2004). The models equate frictional heat generated in the contact with heat 

dissipation due to conduction convection and radiation. Using the models temperatures 

were calculated in the body and contact for a number of contact conditions using a twin 

disc sliding rolling machine. Temperatures were compared to wear rates as shown in 

figure 2.7 and helped identify the cause of the severe to catastrophic wear regimes. 
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2.6 Adhesion 

Friction is defined by Williams (1994) and Seireg (1998), as the resistance encountered 

to the motion of a body respect to another when are in contact. Adhesion is also defined 

by Ohyama (1991) and Eadie et al. (2000) as the maximum traction coefficient reached. 

The relative slip is a non dimensional value, which for the wheel tread contact is 

calculated as the ratio of the velocity of relative movement of the surfaces to the linear 

velocity of the surface. The relative velocity depends on wheel and rail profiles, the 

angle of attack and such dynamic parameters as the position of a wheel-set and its 

instantaneous axle of rotation. 

Three types of creepage occur in wheeVrail contact, lateral, longitudinal and spin. The 

degree of creepage depends on the normal load and friction in the contact. The level of 

slip increases until a full slip, condition is reached, as shown in Figure 2.8. 

TRACTIVE 
FORCE (=J.1N) 

~ 
~~~. 
-Stick Slip 

sUp Roiling 
Direction .. 
~ Tractive Forces 

Stick~SIIp 

CREEP 

Figure 2.8 Transition from partial to full slip between traction and creepage (Tourney, 2001). 

WheeVrail adhesion is the term used to describe as the limiting friction which can be 

exerted between wheel and rail (Broster et al., 1974). Poor or high adhesion causes 

difficulties of operation in railway systems. Poor adhesion leads to loss of traction that 

can cause delays or braking problems that affect safety. High adhesion can lead to an 

increase in wear, ReF or noise generation. 

In the wheel and rail contact, friction determines the vehicle dynamic behaviour because 

the forces are a product of the friction or creepages characteristics. For instant, a high 

friction coefficient is required to climb slopes or for braking or leaving stations, and high 
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friction coefficients are not required for cars running in curves with small radius. It 

brings an increase in lateral forces resulting in noise and rail corrugations due to the 

motion of the wheel along of the rail (Tomeoka et al., 2002). 

If good adhesion is achieved a lot of troubles would disappear (Broster et al., 1974). 

Adhesion has a direct influence on the cost of rail maintenance and the surface damage 

on wheels treads and rails. Common damage is wheel flats, skidding marks. Wheel/rail 

adhesion is commonly affected by contaminants, such, leaves, wear, debris, dust, oils, 

water and snow. 

Water and oil show low values of friction. In experiments carried out between wheel and 

rail using water, friction coefficients of less than 0.3 were observed. Water mixes with 

solid debris or rust to form a paste with similar properties to oil reducing friction even 

more to around 0.03. Nevertheless, in steady rain when water removes most of the 

particles higher values of adhesion were observed (Ohyama, 1991). 

Experiments carried out in a rolling contact machine by Ohyama (1991) and using a 

wheel-set mounted on rail rollers rig (Zhang et aI., 2002), have been used to demonstrate 

that in presence of water, adhesion can be affected and increasing the speed up to 250 

km!hr and 270 kmIhr, adhesion coefficient can be reduced to around 0.03 and 0.05 

respectively. Rough surfaces influence adhesion coefficients. Smooth surfaces present 

lower values of adhesion compared with more rough surfaces. 

Nevertheless, under a perfect lubricant film it was found that the adhesion coefficient 

increases when the contact pressure rises, but the influence of speed was slight (Ohyama 

et aI., 1991). Zhang et a1. (2002) carried out experiments with a wheel-set mounted over 

two rollers in order to simulate the rail track. It was demonstrated that no matter what 

contaminants are introduced, the adhesion coefficients decreases with an increase in 

axle-load, independent of speed. 

During autumn, leaves on the track affect adhesion quite dramatically. In normal 

conditions some leaves are wiped away, but some can be dragged into the contact 
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accumulating and crushing to form a permanent film. Oxide and iron debris mixed with 

the leaves generates a black hard and glazed film over the rails (Rail Safety and 

Standards Board, 2004). 

In some cases, it is necessary to fell problem trees. However to protect the environment, 

these are replaced with smaller leaves trees such as hazel, cherry and holly. Network 

Rail's tree surgeons take advice from conservation specialists to minimise the impact 

tree management can have on wildlife. For example, no work is planned during the main 

nesting season (Arriva Trains Wales, 2006). 

Studies carried out by Olofsson & Sundvall (2004), showed how friction coefficient 

decreases due to the increases in the relative humidity and decreases when leaves are 

present. Tests were carried out in a pin on-disc-rig. The friction coefficient for a non­

lubricated system varied between 0.5 and 0.6, while for lubricated the range was 

between 0.2 and 0.4. For elm leaf lubrication, the friction coefficient was around 0.1 

with some variation due to increasing humidity. 

Adhesion and factors influencing have mainly been investigated using experimental 

techniques, although some attempts have been made to model so called third body layers 

in the wheeVrail contact (Iordanoff at al., 2002; Hou et al., 1997). Chen et a1. (2002) 

have produced theoretical models to investigate the effect of water in a contact. 

2.7 Friction Modifiers 

Three methods have been developed to improve the adhesion for wheels on the rails, 

such as; 

1. Mechanical, scouring, branding and sanding on the rail. 

2. Chemical, using additives on the rail surface (Friction Modifiers). 

3. Electrical, sparking discharge by an electrode between wheel and rail (Fichaux et al., 

1968). 

Fleets of trains are also fitted with sophisticated sanding equipment to improve traction 

on slippery rails - the equivalent of ABS on a car. The driver can apply the sand when 
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wheel spin occurs during acceleration. In Japan to improve wheel-rail adhesion under 

such conditions, a ceramic particle jetting system was developed which uses compressed 

air to spray fine ceramic particles (about lOJ.lm diameter) between the wheel tread and 

rail. The ceramic particles act as tiny wedges, increasing adhesion. This system is used 

on the Series 500 Nozomi Shinkansen and on conventional rolling stock operating on 

steep gradients. 

Network Rail has a fleet of special 'sandite' trains, which spread a gritty paste on the rails 

to give trains improved adhesion. Known problem areas such as deep cuttings and steep 

inclines are targeted in order to minimise delays. There are also static machines to apply 

sandite at known trouble spots and mobile applicators, which can be used by track 

workers. High pressure water jets are also used to remove crushed leaves before they 

form a hard coating (Arriva Trains Wales, 2006). 

The application of sand/ceramic particles to the wheel/rail contact from train mounted 

systems is commonly used to increase adhesion. This has a number of disadvantages as 

rail and wheel damage can result and build up of sand can cause problems to the rail 

infrastructure (Kumar et aI., 1986; Lewis at aI., 2006; William, 2001). Alternatively, rail 

or wheel mounted systems are also used to apply other types of friction modifiers in 

either solid or liquid form, these can be designed to increase or decrease friction. 

Friction modifiers are substances capable of manage the friction to obtain desirable 

characteristics. These substances are materials that are added as a layer into the wheel 

and rail contact. There are three categories of friction modifiers (Kalousek et aI., 1999): 

1. Low coefficient (LeF), with coefficient of friction 0.2 or less. Approximately the 

layer thickness is 10-30 microns for solid lubricant whilst 5 microns greases. 

2. High friction modifiers in the range of friction coefficient (from 0.2 to 0.4, HPF). 

3. Very high friction modifiers or friction enhancers are applied to increase 

locomotive adhesion and improving braking effort in railway systems (VHPF). 
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Figure 2.9 shows how the friction modifiers can be classified according to the behaviour 

after creepage saturation. If the traction decreases after saturation then the modifier has a 

negative friction. If the traction increases after point of saturation so the modifier has 

positive friction. The friction modifiers categories are; high positive friction (VHF) and 

very high positive friction modifier (VHPF) (Eadie et al., 2000). 

Traction 

Free 
Rolling • 

Positive --+ ~ 
Friction __,,- --

- N eutnl Friction 

SatU1'ation 
4--_Negative 

Friction 

Creepage 

Figure 2.9 Traction force against creepage (Eadie et aI., 2000). 

2.8 Rolling Contact Fatigue 

Wheels and rails suffer damage due to wear and crack growth due to rolling contact 

fatigue (ReF). In some cases one of the mechanisms can dominate to the extent than the 

other may be neglected. In other cases both processes are of almost equal importance in 

determining component life making their interaction critical (Kapoor et aI., 2003). 

One critical influence on crack growth is crack length. However, wear is completely 

independent of crack length. In practice it is most likely that wear and fatigue occur 

simultaneously under contact loading, for which the crack growth rate has a more 

complex relationship to crack length. 

There are three critical stages in wear and rolling contact fatigue as shown in Figure 

2.10: 

(l) Material subject to rolling contact may separate as wear debris. 

(2) Small crack may develop. 
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(3) Early propagation of cracks will be in the near surface plastically deformed 

material. 

(4) Later propagation will be driven by contact stress and the fluid pressurisation of 

the crack in deeper, elastic, material. 

(5) As the crack extends it may branch and driven by rail bending stress. 

(6) Eventual rail fatigue occurs by fast fracture after a critical crack length IS 

reached (Kapoor et aI., 2003). 

(1) (1) (3) 

• • • 
(6) Fracture 

f 
(5) 

t 
(4) 

Figure 2.10. Critical stages in wear and rolling contact fatigue (Kapoor et aI., 2003). 

To estimate the life of the material element at the rail surface is necessary to use either 

the operating conditions (maximum contact pressure, friction coefficient) or material 

properties (hear tre at yield, strain hardening properties, critical strain to failure) 

(Kapoor et aI. 2003). 

Three mode of crack propagation exist. Mode I refers to crack propagation when the 

applied I ad pull open the crack faces. This mode is not possible without water entering 

into the crack pr pagation i due to the cracks being pressurized by the passing wheel 

contact. The hydraulic pr ur get transmitted to the crack tip and propagates the crack 

growth. M de II and III refi r to the ituation when the faces are sheared backwards and 

forward , and id wa r pectively. For this mode water can also reduce friction 

between th cra k fac increa ing the mode II stress intensity factor, and hence the 

crack pr pagation rate. 

Fatigu i c n i r d a £ rm f wear. ubsurface and surface fatigue is observed during 

con tant r lling and liding 1 ad applied. The repeated loading and unloading induces 

the formati n f u urI: and urfa e cracks. Eventually after a critical number of 

cycle th [feet leads to formation of wear fragments and pits 

on th pitting. It can occur after hundreds, thousands or may 

cl . F r f: tigue lifi i m r relevant and useful rather than the amount 
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of material removed from the surface material. Life must be defined in terms of number 

of revolutions or time before fatigue failure occurs. To calculate the maximum shear 

stress in sub-surfaces the following equation can be used; 

(2.1) 

,U 
Z~O.56VW? (2.2) 

Where, (Z) is the location of the maximum shear below the surface (m), W is the load 

applied (N), and R' and E·, are defined by; 

R' = I I I ; It is the effective radius. 
--+-
RI R2 

E" = 1 ; It is the effective modulus of elasticity. 
1 1 -+--

EI E2 

(2.3) 

(2.4) 

The cyclic loading of steels in the rolling/sliding contact takes four different forms. 

Figure 2.11 illustrates the response of material to repeated loading; 

(1) Perfectly elastic behaviour if the load not exceeds the elastic limit during any load 

cycle. 

(2) Elastic Shakedown, where plastic deformation takes place during the early cycles but 

due to the development of residual stress and the strain hardening of steel. The steady 

state behaviour is perfectly elastic. 

(3) Plastic shakedown is experienced in the steady state is a closed elastic-plastic loop 

with no net accumulation of plastic deformation. This behaviour is sometimes referred to 

as cyclic plastic. In here the load limit is called the ratchetting (or sometimes the plastic 

shakedown limit). 
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(4) Above the ratchetting threshold, this steady state consists of open elastic-plastic 

loops ratchetting; Bower and Johnson, (1989) have shown that ratchetting is a function 

of both the operating and the shakedown loads. 

Ratchetting is sometimes referred to as incremental collapse. Results showed that 

ratchetting of the surface of the surface layer during the dry phase of a dry-wet rolling 

process can cause significant deterioration in RCF life of the driven (rail disc). 

Retdl .. tlftg 

I I I I I 

Figure 2.11 Response of material the repeated loading (Kapoor, 1995). 

The effect on life of the materials response is shown in Figure 2.12 Clearly the two 

important factors are load or contact pressure and friction (influenced by lubrication 

applied). The other main factors are thickness of the hardened layer at the material's 

surface; residual stress and the size of the contact. 

Plastic flow: short life 

Elastic operation: Long life 

Friction or traction coefficient 

Figure 2.12 Typical shakedown plot (Kapoor, 1995). 
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Analysis has shown that a rail surface fails by both wear and rolling contact fatigue 

(ReF) (Figure 2.13). Below the horizontal line is the optimum life. The line intersects 

the life curve at two points, A and B. Point A represents failure by Rolling Contact 

Fatigue and point B failure by wear. It can be seen schematically in the figure 2.13. This 

analysis has shown an interesting observation that for the same life a higher material 

removal rate leads to a safer operation. This higher material removal rate can achieved 

through use of a softer rail material or through grinding (Kapoor et al., 2003). 

Below the horizontal line is the optimum life. The curves in figure 2.10 represent the 

control of rail life by wear and fatigue for a given wear rate (thick lines). 

Fatigue : Wear 
(\DlSafe): (safer) 

Wear rate 
Figure 2.13 Rolling contact fatigue (Kapoor et at., 2003). 

Operation at the maximum life point (dotted line) is difficult because of variability in 

operating conditions. For a reduce life (dashed line) operation could be at point A or B, 

but B is inherently safer (Kapoor et al., 2003). 

Some possible sources of error can be considered during the test process, such as; 

dimension of the disc (diameter and disc width track), line up of the discs, variation of 

the load (overshooting), and bearing torque. Taken in account all these issues, the next 

expression can be presented: 

llT = MJ + ll~ + IlL + AN + AB ; llT=Total error, M=Error due to diameter of the 

discs, llT/=Error due to disc width track, IlL=Error due to line up, AN=Error due to 

overshooting, B=Error due to torque bearing. 
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2.9 Testing 

To investigate the behaviour of wheel/rail materials under different circumstances work 

has been carried out using different equipment configurations, such as: full scale, wheel 

and plate, pin-on-disc and twin disc rigs. For full scale experiments were performed by 

Ahlstrom et al. (1999). To evaluate the mechanical and thermal effects in zones under 

railway flats, wheel flats are formed when a wheelset is locked and skids along the rail. 

Experiments were performed in 1996 on a regular line in Stockholm, a whole train 

which consisted of a locomotive and three carriages. The carriages were equipped with 

instrumentation and loaded with some weight. The last axle was equipped with a 

separate braking system which was controlled from a measurements carriage. This was 

locked to generate the wheel flats. With the data collected, such a train speed, test axle 

rotation and the force in the brakes, the friction coefficient could be calculated. 

Multiplying the friction coefficient by the train speed and the axle load, the total power 

generated in the contact surface can be computed. 

Some other testing has been carried out in order to understand of the influence of leaves 

on adhesion, but this has been using a pin-on-disc set-up using full sliding conditions, 

rather than the rolling-sliding found in an actual wheel/rail contact (Olofsson et al., 

2004). Also Lewis and Olofsson (2004), have investigated the wear producing in wheel 

and rail material in a pin-on-disc tester. The results have been displayed as wear maps to 

understand more about wear. In the pin-on-disc tester a hundred percent of slip is 

reached. This apparatus consists of a rotating disc against a pin which is loaded. Other 

investigation in this equipment by Olofsson et al. (2004), was to find out the influence of 

wet leaves in the wear/adhesion of wheel and rail materials. 

The rig described by Beagley et al. (1975), consisted of a wheel and one plate simulating 

the rail. This work was carried out to shows the effect of oily fluids on adhesion. The 

slipping effect was produced by a spring balance until the slip desired was achieved. 

Another rig is that used by Broster (1974), in work carried out to investigate the effect of 

rail contamination, on adhesion which consists in a powered trolley running along one 

rail of 60 ft length. This rig was mounted on the tracks. Furthermore work by Fichaux & 

Moore (1968), used a wheel set vehicle over rollers which is mounted on a rail. It was 

developed to do some work to improve adhesion by spark discharge. 
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Two roller/sliding testing machines have been developed. They are used to study wear, 

isolation, ReF and adhesion. With such rigs is possible to evaluate the creep 

characteristics of various contact conditions of wheel and rail steels. In these 

measurements are able to select accurate values of slip, speed and load. Tomeakoa et al., 

2002, used this type of tester to evaluate the friction between wheel and rail in lubricated 

conditions. Lewis and Dwyer-Joyce (2004), analyzed the contact in wheel/rail materials 

to study the wear characteristics in order to establish the wear regimens. Works as those 

done by Ohyama (1991) and Bugarcic (1986), to explain the friction performing under 

different circumstances, such as; high speeds and contaminants, using two discs against 

each other. 

2.10 Isolation 

Train detection on many railway networks is facilitated by track circuits. These are 

devices designed to continuously detect the absence of a train from a particular section 

of track. Their failure mode is to indicate the presence of a train and therefore they 

cannot be used to detect whether a train is present. 

A track section is electrically defined by insulated joints, which is shown in Figure 2.14. 

An electrical energy source (transmitter) is connected, via a series impedance, across one 

end of the track circuit. At the other end is a detector. If there is no train within the 

boundaries of a track circuit the detector picks-up the electrical energy from the 

transmitter. It in turn energies a repeater circuit, which tells the signalling system the 

section of track is clear. 

INSULATED RAIL JOINTS 

TRANSMITTER 
(FEED) 

DETECTOR 
(RELAY) 

Figure 2.14 Track Circuit Schematic (Lewis et aI., 2006). 
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If a train is present on the track section the rails will be short-circuited and the detector 

will no longer be able to sense the electrical energy from the transmitter. It therefore 

changes state and the signalling system is informed that the section of track is occupied. 

It can be seen that any short-circuit, caused by a train or otherwise, or a break in the 

circuit will fail the track circuit and inform the signalling system that the track is 

occupied, so a good degree of fail-safe is incorporated. The system, however, relies on 

good wheel/rail electrical contact to work (Lewis et al., 2006). 

Third bodies present on the rail head or wheel tread surface, whether they be natural 

(rust, leaves, ballast fragments) or deliberately applied (friction modifiers, sand, 

lubricants etc.) could compromise the wheel/rail electrical contact and lead to loss of 

train detection (Lewis et al., 2006). 

As was mentioned before, sand, is applied into the wheel and rail interface to increase 

adhesion in braking and traction and contaminants such as leaves fall naturally over the 

tracks affecting the wheel/rail adhesion. Studies have been carried out to identify the 

effect of sanding and contaminants on electrical isolation for signalling purposes. Sand 

and/or contaminants (third body) entering into the contact between wheel and rail can 

compromise the contact, inhibiting train identification. Lewis et al, (2003) have done 

some work using a twin disc machine to simulate isolation. The contact discs were 

isolated from the rest of the twin disc machine to pass electric current through the discs 

contact. A simulated TI21 track circuit was used which is applied widely in the UK in 

railway networks (Figure 2.15). The circuit used consist of a 2 kHz AC Voltage source, 

Vo, connected in series with a resistor. Another Ion resistor was connected in parallel 

with the disc contact. The resistor was used as a replication of transmitter and receiver 

resistances from the TI21 track circuit. RMS (root mean square) voltage, V, was logged 

using data-capture apparatus with samples taken at 0.1 s intervals. The aim of the tests 

was to establish the minimum amount of sand required for sand and contaminants to 

asses the effect of them over the isolation. 
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Figure 2.15 Electrical circuit used for determining voltage across the wheeVrail section and twin disc. 

The work related the resistance of the contact to the sand flow-rate. This was to help 

asses the likelihood of isolation occurring for all different types of track circuit. The 

resistance, R, across the disc can be calculated by: 

10 
R=---

Vo IV - 2 
(2.5) 

This makes assigning an average value for contact resistance for a given sand flow-rate. 

In order to overcome this, the conductance, G, was considered rather than resistance 

(where G=lIR). 

Results showed that for sand flow rates 0.5 kg/min and above the voltage is apparently 

continues above the closed circuit-value. With sand flow-rates of 0.5 Kg/min and lower 

the voltage change intermittently but tend toward its closed-circuit values. 

Adding water and the same 0.5 Kg/min, the voltage was above of the closed-circuit 

value observing complete isolation. 

Varying the voltage in wet from 5 - 2 V, 1500 MPa at 10 % of slip and nominal sand 

flow rate of 0.38 kg/min occurring the same phenomena than those where water and 

different sand flow rates were applied. 

The conductance for two experiments with two different values of sand flow rate which 

are 0.68 and 0.20 kg/min respectively. At the higher sand rate, where voltages remained 

at open-circuit value, the conductance remains very low. At the lower sand flow-rate, 

where closed-circuit values for voltage and current were seen, conductance is several 

orders of magnitude higher. 
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Another interesting observation was that the isolation times are of the same order of 

magnitude for 0.40 kg/min sand flow-rate in wet and dry conditions. The tests were 

carried out at 2 milelh and 5 milelh. better conductance was observed at 5 milelh than at 

2 milelh. It suggested that sand entrainment was grater at the higher speed. 

The contact resistance for the situation where the two discs are separated by a thin layer 

of sand can be modelled using: 

R = pi 
A 

(2.6) 

Where p is the resistivity of the sand layer, 1 is the length of the resistance (the thickness 

of the sand layer and A is the area of the disc contact. 

The size of crushed sand fragment will be dictated and the size of any flaws in the 

material. The minimum fragment size after crushing in the disc can be obtained from the 

stress surrounding the particle, 0; and the size of any flaw, a', in the material of fracture 

toughness Kc: 

(2.7) 

where Y is a constant depending on the crack geometry and (J is the maximum stress. 

Here it is equal to the hardness of the disc material and aJ can be estimated for the 

smallest possible surviving sand fragment as 0.1 - 0.2 j.UIl. 

2.11 Summary 

Clearly a large amount of knowledge has been accumulated on wheel/rail contact issues, 

but some gaps exist. The aim of this thesis is to try and fill some of these gaps relating to 

wheel/rail temperature and wear transmission; adhesion testing with different 

contaminants and isolation issues. 
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Chapter 3. Thermal Analysis 

3.1 Introduction' 

The aim of the work described in this chapter was to measure temperatures in a twin disc 

simulation of the wheel/rail contact. These data are then compared with analytical 

calculations of temperature. 

Temperature can have a large influence on material properties and affect damage 

mechanisms, so a good understanding of its magnitude at typical operating conditions is 

important. The thermal experiments results are compared with the analytical calculations 

using the method developed by Lewis & Dywer-Joyce (2004). This model compares 

calculations of the heat generated by friction in the contact with heat loss due to 

conduction, convection and radiation. Further comparisons were made with two methods 

proposed by Olver (1991), to calculate temperatures in twin disc contacts. 

3.2 Thermal Camera Measurements 

3.2.1 Twin Disc Test Apparatus 

The thermal camera tests were carried out using a twin-disc machine test; a schematic 

view can be seen in Figure 3.1. In this machine it is possible to simulate typical 

wheel/rail contact conditions by varying the slip and load between the discs. The 

machine has two independently driven shafts that permit control of the speed to attain 

the desired slip values. The machine is based upon a standard Colchester Mascot 1600 

lathe. It uses the lathe motor to drive the top "braking" disc. A 4 kW a-c motor drives the 

bottom "driving" disc via a separate Fenner interchangeable gear box, flexible drive 

shaft and a pivoting bearing housing. In effect, the 7.5 kW lathe a-c induction motor acts 

as a "generating brake" on the system, thus creating a slippage at the disc contact 

(Garnham, 1991 and Fletcher, 2000). The test discs are hydraulically loaded together. 
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Figure 3.1 Schematic diagram of the twin-disc test machine. 

3.2.2 Specimens and Test Conditions 

The discs tested were cut from R8T wheel rims and UIC60 900A rail and machined to a 

diameter of 47 mm and the contact track width was 10 mm. The discs are shown in 

Figure 3.2. The wheel disc was the driving disc and the rail disc the brake. A nominal 

disc rotational speed of 400 rpm was used and a contact pressure of 1500 MPa which is 

typical of the actual wheel/rail contact. Tests were carried out at slip values of 0.5%, 1 %, 

2%, 3% and 5%. Tests were run until steady state friction and temperatures were 

achieved (2000-2800 cycles). 

(a) Rail (b) Wheel 

Figure 3.2 Rail and wheel disc specimens. 

Some possible sources of error can be considered during the test process, such as; 

dimension of the disc (diameter and disc width track), line up of the discs, variation of 

the load (overshooting), and bearing torque. Taken in account all these issues, the next 

expression can be presented: 

!:IT = !ill + !:l1; + M + MY + !:lB 
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~T=Total error 

M)=Error due to diameter of the discs (±0.1 %) 

~TJ=Error due to disc width track (±0.5%) 

M=Error due to line up (±2.5%) 

M/=Error due to overshooting (1.3%) 
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M=Error due to torque bearing (±1.25%) (Fletcher, D. I. & Beynon, J. H., 2000) 

3.2.3 Thermal Camera 

In taking the temperature measurements the thermal camera was placed in front of the 

twin disc machine as shown in the Figure 3.3. Disc "body" temperatures were recorded 

at spots 5 and 6 and "contact" temperature at spots 1-4. 

Wh99f MaterlOl 
DIsc (DrMngJ 

RaliDisc 
~! 
• 

~1 • • ~2 
~3. • Spot4 

Figure 3.3 Temperature measurement spots near to the contact and on the disc bodies and view of the 

camera set up. 

The camera used was a long wave infrared type from FLIR Systmems. The images 

recorded during the test were analyzed and films were analyzed using the software 

package to determine temperatures provide for FLIR Systems. For the camera the spatial 

resolution is a fundamental property, and directly determines the spatial scale of the 

resultant information. The spatial resolution for the camera used during the testing 

(IFOV The instantaneous field-of-view) was 1.1 mrad, IFOV is a combination of 

geometric, mechanical and electronic properties of the imaging system. 
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3.2.4 Calibration Measurements 

During the testing the emissivity was set to a nominal value of 0.9. This could be 

changed post test using the previously mentioned software. 

After the temperature measurements were completed, the next step was to find the actual 

emissivity in the contact and on the disc surfaces. The worn discs were placed in an oven 

with a small piece of black tape on the surfaces for a couple of hours until they reached a 

steady temperature. After that, the discs had to be moved quickly from the oven and put 

in front of the camera, avoiding a temperature drop, to obtain the emissivities. The black 

tape on the surface was used as a reference with emissivity of 0.9. Emissivities were 

calculated by comparing points on the tape surface with points on the metallic disc 

surface. Figures 3.4 and 3.5 show the camera images of the discs with tape on. 

Figure 3.4 Black tape on rail disc surface. 

Figure 3.5 Black tape on the wheel disc surface. 
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Figure 3.6 shows the temperature data collected during the test run at 3% slip. The 

values of emissivity determined during the calibration tests were used to recalculate 

temperatures post-test (£=0.67 for the wheel and £=0.22 for the rail). As can be seen, 

using these values the wheel and rail body temperatures are approximately equal as 

would be expected. 
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Figure 3.6 Temperature behaviour at 3% slip for a twin-disc contact. 
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3.2.5 Results 

The results of the friction measurement are shown in the Figures 3.7 for the five values 

of slip selected. Also the resulting creep curve is presented Figure 3.8. 
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Figure 3.7 Traction coefficient evolution during the test. 
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Figure 3.8 Creep curve showing the steady state traction coefficient measurements variation with slip. 

34 



Chapter 3 

Figures from 3.9 to 3.13 show the pictures taken using the camera. The images were 

taken every 2 seconds during each experiment. The pictures shown were for 0.5%, 1 %, 

2% 3% and 5% slip. The images were taken every two seconds with an emissivity of 0.9. 

This means that the temperature data as shown is not accurate, but can be used as a guide 

in comparing the different cases. Clearly at 5% slip temperatures are much higher and 

the temperature increase is much more rapid than the 0.5% case, for example. 

(h) (i) 

Figure 3.9 Temperature results for the test carried out under dry conditions at 0.5 % slip. The pictures 

show of the images taken during the test the progress for the cycles presented in the results section. 
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Figure 3.10 Temperature results for the test carried out under dry condition with I % slip. The pictures 

show of the images taken during the test the progress for the cycles presented in the results section. 
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(g) (h) (i) 

Figure 3.11 Temperature results for the test carried out under dry condition with 2 % Slip. The pictures 

show of the images taken during the test the progress for the cycles presented in the results section. 
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Figure 3.12 Temperature results for the test carried out under dry condition with 3 % slip. The pictures 

show of the images taken during the test the progress for the cycles presented in the results section. 
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Figure 3.13 Temperature results for the test carried out under dry conditions at 5% slip. The pictures show 

of the images taken during the test the progress for the cycles presented in the results section. 
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3.3 Thermal Modelling 

To provide a comparison with the measurements two analytical approaches were used to 

calculate the body and contact temperatures for the discs. These assume that the 

temperatures of the discs are made up of three components; the body temperature, Th, the 

flash temperature in the contact Tf and the ambient temperature around the discs, Ta. 

3.3.1 Hertzian Contact Analysis 

In order to calculate disc temperature, the sliding distance in the twin disc contact was 

required. To calculate this distance the geometry of the line contact is required. The 

contact halfwidth, a, is given by (for calculation details see, for example, Williams 

(1994»: 

2 4WR' 
a =--

L1CE· 
(3.1) 

where, a is the contact half width, W is the load, L is the track width, R' is the reduced 

radius of curvature and E· is the reduced modulus. 

First it is necessary to use the next equation to find the reduced modulus: 

(3.2) 

where E, is Young's modulus and v is Possion's ratio 

For wheel and rail steels E = 2.09 x 10 11 N/m2 and v= 0.3, so: 

1 1-(0.3)2 1-(0.3)2 1 
- = + = -------
EO 2.09 xl 0" 2.09 xl 0" 8.708 X 10-12 
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The reduced radius of curvature, R, is given by Williams (1994): 

1 1 1 
-=-+-
R R) R2 

RJ and R2. radius of curvature of both discs respectively. 

Therefore for the twin disc simulation used in the testing: 

!= + 1 =85.10 
R 0.0235 0.0235 

R'= 0.01175 m 

Chapter 3 

(3.3) 

Now, it is necessary to find the maximum contact pressure is given by Williams (1994): 

rw 
Po = RLn 

(3.4) 

where load, W, is given by: 

(3.5) 

Substituting; 

W = 7307.17 N 
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Using Equation (3.1): 

a = 0.000307 m 

The sliding speed at the disc interface will be given by: 

u. =(2*3.l4l6*Slip%* DiscRadius) * rpm (3.6) 

Table 3.1 show the sliding speed in the contact for each slip value. 

Table 3.1. Sliding speed. 

Slip (%) Sliding speed 

0.5 0.00492 mls 

1 0.0098 mls 

2 0.019 mls 

3 0.029 mls 

5 0.049 mls 

3.3.2 Method 1 

In order to calculate the body temperature of the two discs in contact, Tb, heat generated 

due to sliding friction in the contact is equated to heat loss due to convection, conduction 

and radiation giving: 

• • • 
pF'nu• = 2(Q\+Q2+Q3) (3.7) 

where 11 is the coefficient of friction, Fn is the normal load applied to the discs, Us is the 
•• • 

sliding speed and Q\, Q2 and Q3 are heat loss due to convection, conduction and 
radiation respectively. The dissipated heat is multiplied by two as there are two discs. 
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3.3.3 Heat Generated by Convection 

In this case the heat loss due to convection is obtained by assuming that a laminar 

thermal boundary layer exists at the disc surface. As the layer reaches the disc interface 

it is removed (to then reform on the subsequent disc rotation). The rate of heat loss as the 

thermal layer is removed gives the heat loss due to convection and can be expressed as 

(Young, 1989): 

(3.8) 

where, b is the contact width of the discs (10 mm), Ka is the thermal conductivity of air 

(0.025 W/m/K), '1a is the dynamic viscosity of air (2 x 10.5 kg/m/s), Cpis the specific heat 

capacity of air (1 kJ/kg/K), Ur is the air velocity relative to the disc (equal to the disc 

surface speed), Ld is the disc circumference, Ta is the ambient air temperature and Tb is 

the disc body temperature. 

3.3.4 Heat Generated by Conduction 

Conduction is the mode of heat transfer in solid material and occurs by virtue of a 

temperature difference between different parts of the material. Conduction within a solid 

is a transfer of internal energy; this energy is, in fact, energy of motion of the constituent 

molecules, atoms, and particles of which the material consists. The kinetic energy is 

proportional to the absolute temperature; molecular collision lead to energy transfer to 

regions of lowers kinetic energy. Under steady conditions a molecule will pass on the 

same amount of energy that it receives. Under non-steady conditions the flow of energy 

is governed by the changing energy levels. The heat conduction is given by (Simons, 

1975): 

(3.9) 
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where, Ks is the thermal conductivity of the wheel and rail material, Tb is the body 

temperature, Ti the disc inner radius (shaft temperature), ro is the disc outer radius and rj 

is the disc inner radius. 

3.3.5 Heat Generated by Radiation 

Radiation is an energy transfer which is transmitted most freely in a vacuum. It occurs 

between all material phases. All matter at temperatures above absolute zero emits an 

electro-magnetic spectrum. The mechanism by which radiation is propagated is not of 

various wave-lengths. Radiation is energy emitted by vibrating electrons in the 

molecules of material at the surface of a body, and the amount emitted depends on the 

absolute temperature of the body. The radiation heat loss is given by (Holman, 2002): 

• 
Q3 = (jAd Grat/(Tb

4 -Ta4
) (3.10) 

where, (jis the Stefan-Boltzman constant (5.669 x 1O'8W/m2/K), Grad is the emissivity of 

the disc steel and Ad is given by 5m-ob/6. 

In calculating the area Ad it was assumed that 3000 of each disc is radiating heat to 

surrounding air and 600 on each is radiating heat to the other disc, as shown in Figure 3.1 

Ad = 6.15 X 10-4 

Figure 3.14 Radiation from discs in contact. 
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The heat loss by conduction, convection and radiation is in Table 3.2 

Table 3.2 Heat generated in the twin-disc contact and heat losses due to convection, 
conduction and radiation. 

Slip • • • • • • 
Q) Q2 Q3 2(Q)+ Q2+ Q3) 

(%) (W) (W) (W) 

0.5 0.0883 4.1 0.0049 8.2 

1 0.153 16.6 0.05 33.6 

2 0.271 43.85 0.07 88.3 

3 0.382 59.3 0.143 119.6 

5 0.841 87.11 0.22 176.3 

3.3.6 Analysis of the Flash Temperature 

Expressions for flash temperature in line contacts for several ranges of velocity are 

summarised by Jaeger (1943). The formula to be used varies with the Peelet number, L, 

given by: 

L=Ua 
2% 

(3.11 ) 

where, U is the velocity, of either contacting solid (0.98 mls), a is the contact half width 

(equal to 307 pm) and X. is the thermal diffusivity given by: 

(3.12) 

where p is the density of the wheel/rail (8000 kg/m\ Cps is the specific heat capacity of 
the wheel and rail steel (500 J/kg/K) and ks is the thermal conductivity of the wheel and 
rail material(60 W/m/K); Therefore: 
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and 

L = 10.02 

For L>5, average flash temperature for a line contact is given by (Jaeger, 1943): 

• o.S 

t = 1.064!L(za) 
f K U 

s 

(3.13) 

• 
where, q is the rate of heat supply per unit area given by: 

• Q 

q= 2ab (3.14) 

where, Q is the heat generated (pF'nus), b is the contact length, p. is the friction 

coefficient, Fn is the normal force in the contact and Us is the sliding speed. The results of 

calculation are shown in Table 3.3. The heat generated calculated here is relatively equal 

to those presented in the Table 3.3 where the heat generated is due to conduction, 

convection and radiation. 

Table 3.3 Heat generated in the twin-disc contact. 

Slip Sliding speed Heat Generated 

% (m/s) (W) 

0.5 0.00492 8.2 

1 0.0098 30.9 

2 0.0196 86.2 

3 0.0295 127.3 

5 0.0492 172.6 

The average flash temperature for each value of shp is shown In table 3.4, and also the 

maximum flash temperature, which is given by: 
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(3.15) 

Table 3.4 Flash temperatures. 

Slip Average Flash Maximum Flash 

Temperature Temperature 

% eC) eC) 

0.5 1.63 2.45 

1 6.12 9.18 

2 17.08 25.61 

3 25.20 37.80 

5 38.44 57.65 

The heat generated in frictional contacts is split between the contacting solids. The 

proportion of the total heat flowing to each body is determined on the basis that the 

average surface temperature is the same for both bodies. To estimate the true 

temperature rise is to assume that all the heat generated is supplied to body A, Tfa• It 

should then also be carried out assuming that all the heat is supplied to body B to obtain 

T fB. The true flash temperature rise must be the same for both solids in contact and is 

given by Jaeger (1943): 

1 1 1 
-=-+-
Tf Tftf TfB 

(3.16) 

For the twin disc contact, the true average and maximum flash temperature at the disc 

conjunction, T jC and T jC are given by expressions: 
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1 1 1 
-=-+- (3.17) 
t t t jC fA jB 

and 

1 1 1 
-=-+-

1\ 1\ 1\ 
(3.18) 

T T T 
jC fA jB 

The total surface temperature T TOT is given by: 

(3.19) 

Table 3.5 shows the last results of average, maximum and total temperature obtained by 

the equations shown before. 

Table 3.5 Analytical results of temperature in the contact and body. 

Slip 1\ - 1\ 

Tb TjC TjC T,O/c T,otC 

(%) 
cae) caC) caC) (OC) (OC) 

0.5 13 0.81 1.22 13.8 14.2 

1 21.0 3.06 4.59 24.4 25.9 

2 35.5 8.54 12.8 44 48.3 

3 49.3 12.6 18.9 61.9 68.2 

5 89 19.22 28.8 108.2 117.2 
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3.3.7 Method 2 

The second analysis approach used was that proposed by Olver (1991). This method is 

for calculating the temperatures of body and contact, TB and Te, for a pair of contact 

discs. This is based on the flash temperature approach of Block (1999) combined with a 

linear conduction and convection model and is not limited to the discs at the same skin 

temperature. Both discs are subject to the same ambient temperature TA. Thus, the 

contact temperature is given by 

(3.20) 

where 

(3.21) 

For this method the total heat generated by sliding in the contact is. 

Q= J.lW&u (3.22) 

Being Wthe load applied, JJ is the friction coefficient and Au= U/-U2 is the sliding 

speed. 

Now the bulk temperature rise is directly proportional to the heat input to each disc: 

for the disc 1 (3.23) 

for the disc 2. (3.24) 

n, is the proportion of the heat entering disc 1 and M/ and M2 are functions of the disc 

geometry, the conductivity (k/ and k2) and heat transfer coefficients (hI and h2); a is 
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determined in the usual way by assuming that the average contact temperature rise above 

ambient is the same for both bodies, using the results of Jager (1943): 

( J
I/2 

(IlT) = 1.06aQ Xlb + (IlT ) 
f Q1I Ak UBI 

I I 

(3.25) 

( J
I/2 

(IlT) = 1.06aQ X 2b + (IlT ) 
f Q1I Ak U B 2 

2 2 

(3.26) 

A is the contact area which is defined as; 2bl. I is the contact half width and b the track 
width. 

To calculate the thermal responsivity of moving hotspot eCIW) the next equation is 
proposed. 

B __ 1 ~ %;b ( J
I/2 

, - 2bl k, U, ' 
i= 1,2 (3.27) 

To solve a which is given by; 

(3.28) 

(3.29) 

And the maximum contact temperature is determined by Jaeger (1943): 

(3.30) 

Here the term in the first bracket is the heat generated and that of the second bracket the 

heat partition, a. The terms in third bracket represent the temperature rise due to flash 

and skin response respectively. TA is the ambient air temperature. It has to be noticed that 

so 
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HI and H] are functions only of the material and contact parameters but that MI and M] 

must be found from a thermal model of the whole assembly. 

The second analytical approach was that proposed by Olver (1991), where further details 

of the equations outlined below can be found. This approach also involves equating heat 

loss to heat generated by frictional sliding in the contact. Each disc is considered 

independently, allowing for discs off different geometries to be analyzed. The maximum 

contact temperature, T,ol' is given by: 

(3.31) 

Here the term in the first bracket is the heat generated and that of the second bracket the 

heat partition, a, which represents the proportion of heat entering disc 1. The terms in 

the third bracket represent the temperature rise due to flash and skin response 

respectively. Subscripts 1 and 2 refers to discs 1 and 2 respectively. M is the thermal 

responsivity of the disc surface and is related to the disc geometry. H is given by: 

( )

"2 
1 1 za . B =-- - 1=12 

I 2ab ks U
I 

' , 

(3.32) 

The second analytical approach was that proposed by Olver (1991), where further details 

of the equations outlined below can be found. This approach also involves equating heat 

loss to heat generated by frictional sliding in the contact. Each disc is considered 

independently, allowing for discs off different geometries to be analyzed. The maximum 

contact temperature, T,Ol' is given by: 

(3.33) 
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Various ways of calculating M were presented by Olver (1991). Two simplified 

situations were taken for this work. Firstly that for thin discs (rs = 0, b ++ ro, where rs is 

the shaft diameter, b the axial width of the disc and ro the disc outer radius) was used. I a 

is the contact half width. As shown in Figure 3.15a, the thermal gradient is entirely radial 

and in this model convection from the sides of the discs is considered. This situation is 

analogous to a circular cooling fan and the following one-dimensional solution is well 

known: 

M R = {S.SS(hk. )'" h''',. I't"l}-I 
10 nro 

(3.34) 

where n = (2h / kab )1/2 and h is the convective heat transfer coefficient and II and 10 are 

appropriate Bessel functions (for a derivation see Chapman (1974)). 

Figure 3.IS (8) The thin disc model and (b) the small disc model. 

The second situation considered was that of a small disc with a thick shaft (rs ::tI r 0, b ++ 

r 0 ++ Ls, where Ls is the shaft length). Heat conduction and temperature gradient is 

primarily axial as shown in Figure 3.1Sb. Again the relevant solution is well known, 

being one-dimensional in nature (Chapman, 1974): 

(3.35) 
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where L. and L2 are the stub shaft lengths (see Figure 16b) and m = (2hl korJl/2. 

The convective heat transfer coefficient is given by: 

h = 0 265 -1/2 112 1/3C 1/3 k 2/3 -1/6 . ro u, Po p 0 v (3.36) 

where v is the dynamic viscosity of air, given by 111 Pa. The value of every literal has 

been mentioned before due to those constant are used for the other thermal model as 

well. 

These two solutions were evaluated using the disc and shaft geometries and load and slip 

conditions used in the twin-disc tests and the resulting friction coefficients. Table 3.6 

outlines the disc body and contact temperatures calculated. 

Table 3.6 Thin disc and small disc solution temperature predictions. 

Slip (%) Thin Disc Small Disc 

Tb (OC) " Tb (OC) ~Ol (OC) T,ol (OC) 

0.5 1.6 21.3 3.2 12.9 

1 6.3 34.2 12.0 40 

2 17.7 90.2 33.7 106.3 

3 26.1 131.6 49.8 155.2 

5 39.9 199.2 75.9 235.3 
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3.3.8 Comparison of Analytical and Experimental Results 

Figure 3.16 shows a comparison of the total analytical temperatures results, with TA 

incorporated and the experimental results from the thermal camera for the disc body 

temperatures. Emissivity values used for the thermal camera data were those obtained in 

the calibration test (0.67 for the wheel disc and 0.22 for the rail disc). As can be seen a 

good correlation exists between the first analytical approach used and the thin disc 

model and the experimental results for the wheel and rail bodies, with the small disc 

model giving slightly lower temperatures. 

Figure 3.17 shows how the temperatures varied if other values of emissivity were used 

with the thermal camera data. The range of spread is different in each case as different as 

slightly different spot positions on the discs were used for each calculation and 

roughness varies over the disc surfaces and this will heavily influence apparent 

temperature values. 
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Figure 3.16 ThennaJ camera disc body temperature data (&rail=O.22; &whee1=0.67) compared with analytical 
models from Lewis & Dwyer-Joyce (2004) and Olver (1991). 
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Figure 3.17 Thennal camera and analytical temperatures for the disc bodies for a range of & values. 

Figure 3.18 shows a similar plot for the contact temperatures. A value of emissivity 

would not be determined experimentally, but over the range of camera temperature using 

values from 0.12 to 0.67 good correlation is seen between the first analytical approach 

and the experimental result although it is likely that the actual value will change 

continuously as the contact surface conditions throughout a test. Thin disc and small disc 

approximations were slightly higher in this case. 
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Figure 3.18 Thermal camera and analytical disc contact temperatures for a range of emissivity valucs. 
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Chapter 4. Wheel and Rail 

Adhesion 

4.1 Introduction 

Friction (or adhesion) loss has a large impact on safety and performance of railway 

networks. Poor adhesion in braking is a safety issue as it leads to extended stopping 

distances. If a train experiences poor adhesion in traction when pulling away from a 

station and a delay is enforced the train operator will incur costs. Similar delays will 

occur if a train passes over areas of poor adhesion while in service. 

There is no standard testing approach for assessing adhesion loss. Tests methods used 

have ranged from specimen testing through to full-scale testing and field measurements. 

Specimen testing techniques have included pin-on-disc (Olofsson et aI., 2004), disc on 

flat (Beagley et aI., 1975) and twin disc testing (with a line contact) (Beagley et aI., 

1975, Beagley, 1976), (Chen et aI., 200 I). Twin disc testing has also been carried out 

with scaled wheel and rail profiles (Kumar et aI., 1986). Full scale testing was used by 

Jin et aI. (2004) to study the effect on adhesion of wet, dry and oil contaminated 

conditions using a range of axle loads and rolling speeds. Field measurements have been 

taken using track mounted tribometers (Broster et aI., 1974; Harrison et aI., 2002) and 

instrumented trains (Nagase et aI., 1989). 

As the testing techniques become more complex, the accuracy of the representation of 

the contact geometry and loading and environmental conditions increases. However, at 

the same time the level of control of operating parameters decreases. The twin disc 

approach perhaps gives the best compromise and has been used extensively for testing 

fatigue and wear properties of wheel and rail materials. 
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4.2 Test Apparatus and Specimens 

The twin disc test machine used to carry out the testing is shown schematically in 

Chapter 3. The disc specimens were cut from UIC60 900A rail steel R8T wheel steel 

sections. They had a diameter of 47 mm with a contact width of lOmm (see Chapter 3). 

The discs were cleaned and weighed to then be mounted on the machine shafts. When 

the stability has been reached the test was stopped and the discs were taken out from the 

shafts. They were cleaned and once again the weight and the roughness were measured. 

The contact surfaces were ground to a roughness of 1 f.1IIl. 

For wet conditions simple distilled water was used. The oil used was a standard 15W40 

engine oil. The leaves used in testing were a mixture of varieties typically found 

trackside in the UK. They were dead leaves collected during autumn. They were 

partially broken down prior to testing. 

The sand used was standard commercial grade railway silica sand complying to the 

guidelines issued by Railway Safety, UK, for fitting of sanding equipment to multiple 

units. In its raw form the sand has an average particle size of around 1.5 mm. In previous 

twin disc testing with this sand entrainment was a problem, (Lewis et aI., 2003; Lewis et 

aI., 2006) so for this work the sand was pre-crushed. The grains were then passed 

through sieves (see B.S. 1377:1975) to ascertain the size distribution. Figure 4.1 shows 

the percentage retained at each sieve. 
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Figure 4.1 Sand grain distribution for every percentage retained. 
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4.3 Test Procedure 

The tests were run on the twin disc machine described in section 3.2.1. The tests were 

carried out using the wheel disc as the driving disc and the rail disc as the braking disc, 

as shown in Figure 4.2. An environment chamber enclosed the discs. The inlet at the top 

was used to drip in the water and oil. A nominal disc rotational velocity of 400 rpm was 

used and a contact pressure of 1500MPa. The tests were carried out at slips of 0.5%, 1 %, 

2%,3% and 5% representing values typical of tread and flange contacts. 

--_, Suclion 

Figure 4.2 Schematic diagram of the disc environment chamber 

Tests were initially run dry with no contamination and then with: 

• water at two drops per second (enough to keep the discs completely wetted) 

• oil at two drops per second 

• leaves (dry and with water) 

• leaves and sand 

For tests with water and oil the supply of liquid was started prior to loading the discs 

together so the whole test was run lubricated. Water and oil were applied at two drops 

per second. For tests with leaves, the discs were run dry or wet until the friction 

stabilised and then the leaves were added suction was applied to draw the leaves through 

the contact and prevent then clogging the environment chamber. The sanding tests were 

run in a similar manner, except that after a certain period crushed sand was added with 

the leaves. This was not in a way representative of that which occurs in reality, where 
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sand is mixed with compressed air and project towards the wheel/rail contact via a 

nozzle placed a few centimetres away. Sand was applied at a rate of7 gis, most of which 

entered the contact. 

Chutes were added to the test set-up to allow the leaves and sand to be added, as shown 

in Figure 4.3. Leaves were fed down the chute at a rate sufficient to ensure a continuous 

supply to the contact. 

Leaf Chute 

Figure 4.3 Feeding arrangement for (a) leaves and (b) leaves and sand. 

4.4 Results 

4.4.1 Friction Data 

Figures 4.4, 4.6 and 4.8 show examples of the data collected during the testing. Traction 

coefficient against time is displayed. Traction coefficient increases as slip increases. In 

wet conditions a sharp increase was observed between 1 and 2%. Tests run dry and wet 

actually showed a slight decrease in friction at higher slip values. In oil conditions a 

sharp increase was also seen between 0.5 and 1 % and then a slower rise up to 5%. This 

was a typical of the behaviour seen with other contaminants. In the Figure 4.6 the data 

for 0.5% slip looks smooth, it is due to during the traction coefficient recorded at a lower 

rate than the other te ts by accident. 

Roughness po t test was Ra 2.43 Ilm for the wheel disc and Ra 1.65 Ilm the rail disc on 

average for dry conditions. Figure 4.5 shows the characteristics of the discs post test. 
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Figure 4.4 Traction coefficient against number of cycles for different values of slip in dry conditions. 

(a) Wheel disc (b) Rail disc 

Figure 4.5 Rail and wheel discs after dry test. 

Post test, the roughness was measured as Ra 0.89 /lm for the wheel and Ra 1.15 /lm for 

the rail on average with wet conditions and Figure 4.7 shows the characteristics of discs 

after they had been tested. 
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Figure 4.6 Traction coefficient progression in wet tests for different values of slip. 

(a) Wheel disc (b) Rail disc 

Figure 4.7 Wet test discs after test. 
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Traction data is shown in Figure 4.8 for the different values of slip tested with oil. 
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Figure 4.8 Traction coefficient against number of cycles for different values of slip with oil. 

Figures 4.9 to 4.13 shown the data generated from the dry leaf tests carried out. They are 

plotted individually so it is easier to observe the behaviour of the friction for every value 

of slip after leaves have been added. 

Note: As can be seen some graphs are smooth (Figure 4.6, 0.5% slip, Figure 4.11 and 

Figure 4.12). It is because during the tests was not selected high rate acquisition data at 

60 values per minute. However, data was collected manually directly from the screen 

and lower rate acquisition data was also used. 
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Figure 4.9 Traction coefficient against number of cycles for dry leaftests at 0.5% slip. 
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Figure 4.10 Traction coefficient against number of cycles for dry leaf tests at 1% slip. 
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Figure 4.11 Traction coefficient against number of cycles for dry leaftests at 2% slip. 
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Figure 4.12 Traction coefficient against number of cycles for wet leaf tests at 3% slip. 
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Figure 4.13 Traction coefficient against number of cycles for dry leaf tests at 5% slip. 

During wet leaf tests they were fed down the chute at a rate sufficient to ensure a 

continuous supply to the contact and water was applied at 2 drips per seconds. Traction 

coefficient data are presented in Figures 4.14 to 4.18. The plots show the traction 

coefficient before and after leaves have been applied. In the figures is possible to 

observe when leaves were applied as the friction coefficient dropped dramatically. 
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Figure 4.14 Traction Coefficient against number of cycles for wet leaf tests at 0.5% slip. 
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Figure 4.15 Traction coefficient against number of cycles for wet leaf tests at 1% slip. 
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Figure 4.16 Traction coefficient against Number of Cycles for Wet Leaf Tests at 2% Slip. 
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Figure 4.17 Friction coefficient against number of cycles for wet leaf tests at 3% slip. 
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Figure 4.18 Traction coefficient against number of cycles for wet leaf tests at 5% slip. 

Figures 4.19 and 4.20 show the traction coefficient when leaves and sand were added. In 

some cases the traction coefficients have reached the values obtained without leaves and 

sand only with water. The sand was put throughout after leaves were applied, which was 

about 400 cycles later. 
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Figure 4.19 Traction Coefficient against Number of Cycles for a Test run with Leaves, Sand and Water at 

1% slip. 
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Figure 4.20 Friction Coefficient against number of cycles for a test run with leaves, sand and water at 2 % 
slip. 

For each slip value for all the tests, an average traction coefficient was determined for 

the established region. These were then compiled to create creep curves for the different 

conditions, as shown in Figure 4.21. It is clear from these results that leaves are a very 

good lubricant. They give lower friction than oil, even when dry. 
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Figure 4.21 Creep curves for the various test conditions. 
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The oil used during the tests was SAE lOW 40 engine oil. A different grade of oil will 

offer a different traction coefficient. The viscosity of oil is important because it is 

directly related to its load-carrying capabilities. The greater a viscosity of the fluid, the 

greater the load it can withstand. The viscosity of a fluid must be adequate to separate 

moving parts and offer low traction coefficient under normal operating conditions 

(temperature and speed). 

4.4.2 Leaf Layers 

During the dry tests, a thick hard layer of compressed leaf material formed on the disc 

surfaces at every slip value, as shown in Figure 4.22a. The hardness of the layer was 

measured using a micro-hardness tester. Different zones in the layer had different 

hardness depending on the level of compaction that had occurred. Average hardness in 

the more compacted areas was 40 HV 1gr, while the average value in other zones was 14 

HVlgr. During wet leaf tests a soft dark layer was apparent on the disc surfaces 

immediately after the tests, as shown in Figure 4.22b. This was relatively easy to 

remove, but underneath was a much harder compacted layer that was extremely difficult 

to remove (see Figure 4.22c). Micro-hardness tests on this layer gave values of 59 HV Igr. 

The hardness was also taken for the steel where the layer was presented, being 295 

HVI Okg. 
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Figure 4.22 Leaf la) r after (a) a dry test and (b) a wet test and (c) the hard layer left after a wet test. 
Figure 4.23 h \\ th indentation produced during the hardness test on the leaf layer. 

me tim durin th hardne te ting cracks appeared. It is because the layer areas are 

fragil. h nth 1 ad wa appli d cracking was generated in the axial direction. 

Figure 4.23 Indentation on leaf layers. 

fier th dry t t, parate te t at different slip values were run to see how long it 

w uld tak t rem e the layer. The number of cycles to remove the layers can be seen 

in igur 4._4. w uld be expected the number of cycles reduced with the amount of 

liding in th alue hown represent many wheel passes. 
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Figure 4.24 Number of cycles to remove hard leaf layer at different slip values. 

4.4.3 Surface Morphology 

Chapter 4 

After the tests the disc surfaces were examined using optical microscopy and roughness 

measurements were taken. The disc surfaces after the oil tests were smoother than they 

had been before the test (the wheel and rail discs Ra values of 0.57 ~m and 0.65 ~m post 

test, compared with l~m before) and exhibited characteristics of mild lubricated wear 

(see Figure 4.25). 

The discs surfaces showed relatively high damage after the tests carried out with dry 

leaves. Some deep indents and scratches could be seen (see Figure 4.26). These were 

probably due to stalks being entrained into the contact. The wheel and rail discs had Ra 

values of3.94 ~m and 1.3 ~m respectively. 

Figure 4.25 (a) Rail and (b) Wheel Surfaces after Oil Tests. 
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Figure 4.26 Wheel di c surface damage due to the interaction with dry leaves. 

e er urfac damage was seen in the discs after sand application, as shown in Figure 

4.27. 0 P ind ntation were visible on the wheel disc surface and indentations and 

orne ratch w re een on the rail disc surfaces. This is in line with observations made 

after pr vi us and te ting (Lewis et aI., 2004). The sand particles had indented into the 

ofter \ heel material and then abraded the harder rail material and it was clear 

m thing imilar had occurred in this work. Post test Ra values for the wheel and rail 

di c w r 1 . !lm 5.54 !lm respectively. 

igur 4.27 (a) Rail and (b) Wheel disc surface features after leaves, water and sand were applied. 

4.5 mpari 00 with other Data 

h twin di 

diffi r nt 

te t appr ach ha been used to produce creep curves for a number of 

nditi n . Thi m thod while not having the scale or geometry of the 

a tual nta 1, pr id a good imulation of the rolling-sliding motion and allows close 
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control of operating parameters not available in more complex test methods. 

The data shown in Table 4.1 was collected from the literature and was determined using 

a variety of full-scale techniques using a bogie on a roller-rig, a rail tribometer and an 

instrumented train. The roller-rig tests were carried out under closely controlled 

conditions so load, velocity and slip are known. It was shown in this work, as mentioned 

previously, that varying load and rolling speed affects friction. This is something that 

needs exploring further with the twin disc technique. Clearly in the actual track testing a 

range of loading and slip conditions will have occurred. 

The shape of the creep curves derived from the roller-rig tests is similar to those seen in 

this work. This is significant as the initial slope of the curve is important and this as well 

as the initial peak and then slight decline seen with some conditions differs from results 

achieved using analytical modelling techniques (as noted previously (Bucher et al., 

2006). 

The techniques used to apply contaminants worked well. The data recorded for leaves 

further indicates what a good lubricant they are, even in dry conditions. The test method 

allows for testing of potential friction modifiers to increase adhesion when leaves are 

present as seen with the sand tests. An added benefit was the generation of a relatively 

hard leaf layer on the discs, which has not been achieved experimentally before. As was 

seen in Figure 4.35, these layers took some time to wear away. If one cycle represents a 

wheel pass then it would be sometime in the real situation before the layer is removed by 

wear alone and this does not allow for further leaves falling. This may allow testing of 

leaf removal solutions. 

As shown in Table I, the twin disc results with leaves are similar to those seen with an 

instrumented train run over leaves. In that work (Nagase K., 1989), different leaves gave 

different results, with oily needle leaves from pine trees giving the highest friction. The 

leaves in this work were mixed, so further work may be appropriate to identify which 

leaves may be worst. 

It was interesting to note that even leaves can cause damage to the disc surfaces. It was 

expected that sand would, and this could potentially be an issue if sand is applied 

regularly to a stretch of track that suffers from poor adhesion. 

74 



Chapter 4 

bi 41 D Ta e II ata eo eete dfr h r dd . d om t e Iterature an etermme usmg vanety tee hni lques. 
Author Test Load/Contact Rolling Test Peakp Slip at Stablep 

Apparatus Pressure Speed Conds. Peakp (5% slip) 
(kmlh) jo/~ 

44kN 10-70 Dry 0.57-0.5 2 0.57-0.5 

67kN 10-70 Dry 0.55-0.44 1-2 0.52-0.44 
Zhang et 44kN 120-240 Wet 0.13-0.07 0.5-1 0.12-
al.,2oo2 Full-scale 0.065 

roller rig 67kN 80-240 Wet 0.11-0.05 0.5-1 0.105-
(using an 0.05 
actual bogie) 67kN 140-300 Oil 0.055- I 0.052-

Jin et aI., 0.045 0.044 
2004 135kN 140-300 Oil 0.05-0.04 I 0.048-

0.037 
Harrison Triborailer Dry 0.52 I 0.5 
et aI., (used on 
2002 actual track) 

Push Triba- Dry 0.7 2-5 0.7 
meter 
Instrumented "Dry" Range of II. 0.2-0.4 
bogie on test 

Wet Range of If. 0.05-0.2 Nagese, vehicle (run Variable Variable 
1989 on test track Oil Range of If. 0.05-0.07 

and actual 
Leaves Range of p: 0.025-0.10 routes) 

Present 1500 MPaI 
3.54 DJ)" 0.6 2 0.54 

study 
Twin Disc 

7.7kN 3.54 Wet 0.2 I 0.17 
3.54 Oil 0.07 1 0.06 

7S 



Chapter 5 

Chapter 5. Isolation Test 

5.1 Introduction 

This chapter describes the testing carried out to duplicate the conditions where an 

interfacial solid stick friction modifier HPF has been applied onto the wheel and rail 

contact for a simulated 8 Hz track circuit, using the twin disc technique described in 

Chapter 2. 

Friction modifiers have been developed to contribute to the wheel (tread and flange) and 

rail traction control. 

Contaminants on the rail tracks such as dust, rust, oil or leaves, and also some substances 

to improve train operation (Friction modifiers or sand) may cause the contact between 

the wheel and the track to be compromised, inhibiting train detection. The designed 

friction modifiers can be used either in liquid or solid form depending on the 

requirements application. Thus, friction modifiers are used to minimize curve noise, 

lateral forces, corrugation, and wear (Eadie et al., 2005; Eadie et al., 2006). Friction 

modifiers form a third body applied to the rail head provides a thin dry film putting in 

risk the train detection. Trains present on the track section the rails will be short­

circuited and the detector will no longer be able to sense the electrical energy from 

transmitter. It can be seen that any short-circuit, caused by a train or otherwise, or a 

break in the circuit will fail the tracks circuit and inform the signalling system that the 

track is occupied, so a good degree of a fail-safe is incorporated. The system, however, 

relies on good wheel/rail electrical contact to work. Thus, in order to investigate the 

effect of the friction modifiers on the train detection using the twin disc method, some 

baseline tests were run at typical loads and slips without and with friction modifiers to 

then later carry out dynamic tests to measure the contact impedance in presence of HPF. 

Static tests were also carried out using disc pre-conditioned with a friction modifier film. 
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5.2 Test Apparatus Set-up 

The SUROS Machine was modified to electrically isolate the disc with an 8 kHz circuit. 

All the data were logged in an acquisition system for monitoring the friction coefficient 

and track circuit. Figure 5.1 shows the points electrically insolated. 

r----- --- --- - ------ - -- --- - - ------- --- - - --- - - -~::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::;~~~~~~~~~~~~~~~~1----
j j Torque Test Discs j 
: i Transducer I Motor : 
i i i Controller i 
. . Pivoted i 

Motor Bearing 1 

Motor Shaft / 
Encoder 

Solid Drive 
Shaft "i Shaft 

Encoder 

Hydraulic Piston 
and Load Cell 

- ... _---------------------------------------------------------------------, 

Figure 5.1 Twin disc rig for an isolation test. 

In order to duplicate the transfer mechanisms of HPF film on the wheel disc as is found 

in the field (see Figure 5.2a), an arm applicator was designed to apply the stick (which is 

10 mm diameter) as show in Figure 5.2b. 

Figure 5.2 a)Friction modifier applicator on field b)Friction modifier arm applicator for the SUROS 

machine. 

The HPF was designed to ensure the whole area of the wheel disc was covered. It was 

applied under a spring load onto the moving wheel disc. The spring was capable of 

applying the ame pressure as is the field with a 1.01 kPa spring. Figure 5.3 shows a 

schematic view of how HPF was applied. 
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Rail Disc Bolt to Adjust Spring Force 

VVI'leelDlsc 

Figure 5.3 Disc arrangement and HPF applicator. 

5.3 Test Procedure 

The tests were performed using the rail disc as the braking disc and the wheel disc as the 

driving disc as shown in Figure 5.3. The solid friction modifier was directly applied on 

the wheel disc (see Figure 5.3). The selected values of slip are those ones corresponding 

to the track conditions in curves (high creep) and tangent track (low creep). 

5.3.1 Outline of the Tests 

1. Baseline tests. Test with no HPF and with HPF in order to establish friction reference 

values for the impedance. The tests were carried out at 0.1 %, 1 % and 3% slip. 

3. Dynamic tests. The objective of these tests was to investigate disc contact impedance 

under rolling sliding conditions. The slip values used in these tests were 0.1 %, 1 % and 

3% at 900MPa. 

2. Static tests. The aim of these tests was to asses the impact of the friction modifier on 

the disc contact impedance under static conditions. The tests were carried out at 900 

MPa contact pressure. 

A nominal disc rotational velocity of 400 rpm was used for all tests. 
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5.4 Test Specimens 

For this testing the disc and the solid friction modifiers were supplied by Kelsan 

Technologies. The wheel and rail were manufactured from actual sections of the wheel 

and rail sourced from North America. 

The traction coefficient was monitored during the course of the interfacial conditioning 

until once the coefficient of the friction has been observed stable to then stop the 

machine. 

Disc surfaces were examined to ensure that the complete surface was cover by an HPF 

film. Figure 5.4 shows the discs before and after HPF has been applied to form a uniform 

film. 

Figure 5.4 a) Wheel and b) rail disc with friction modifier on. 
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5.5 Track Circuit 

A signal generator was used to provide an 8 kHz signal; a power amplifier was used to 

boost the signal current to 1 amp. The circuit design was modified based on 

recommendations provided by MTRC (Mass Transit Railway Corporation in Hong 

Kong) and is shown in the Figure 5.5. The primary change was to reduce the first resistor 

in series to 1 ohm to better reflect the transmitter impedance ofMTRC's audio frequency 

track circuits. 

10 

o 
Wheel 

Vo Power Supply 10 n 
(1 Volt, 

Rail 

Figure 5.5 8KHz track circuit. 

Data acquisition system was used to log, i) input voltage, ii) (rms) voltage potential 

across the isolate wheel/rail discs and iii) (rms) current. Data was logged every tenth of a 

second. The measured impedance of the circuit when the wheel-rail discs were not in 

contact was approximately 9000 milli-n. Circuit impedance measurements were taken 

continuously during wheel/rail disc rolling contact. 
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5.6 Traction Coefficient Data Results 

5.6.1 Baseline tests 

Initial baseline tests are shown in Figure 5.6 for dry conditions to establish reference 

values of impedance testing. It can be observed that the traction coefficient is 0.07, 0.4 

and 0.6 for 0.1 %, 1 % and 3% respectively. 
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Figure 5.6 Baseline traction values for dry conditions at 900 and 400 rpm speed. 

In Figure 5.7 data from a test with 3% slip is shown. The dry value can be seen, as well 

as the moment when the friction was applied. With HPF, traction coefficient dropped to 

approximately 0.28. During the impedance measurement tests the discs were run dry to 

condition the surface, until seen the baseline friction values to then afterwards HPF was 

applied. Impedance values were recorded throughout the test. The tests were repeated 

three times. Figure 5.8 shows traction coefficient data for ail slip values without and with 

HPF and the moment when HPF has been applied. For 0.1 % slip, there was no change in 

traction coefficient with HPF application. This was due to the almost pure rolling 

conditions. 
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Figure 5.7 Baseline traction values for HPF application at 3% slip and 900MPa. 
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Figure 5.8 Traction coefficients versus number of cycles for 0.1, I and 3%. 
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5.6.2 Dynamic Test 

The methodology used had some limitations due to the fact slip at 0.1 % test conditions it 

was impossible to monitor the change in coefficient of traction under almost pure rolling 

conditions. For these tests the no HPF and HPF applied section were segregated by time 

rather than traction coefficient (as shown in Figure 5.9, 5.10 and 5.11). For 0.1%, 1% 

and 3% tests, data was segregated using the change in traction coefficient seen on HPF 

application. 
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Figure 5.9 Impedance segregation for 0.1% slip. 
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Figure 5.10 Impedance segregation for 1% slip. 
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Figure 5.11 Impedance segregation for 3% slip. 
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5.6.3 tatic Te t 

The tatic circuit imp dance measurements were taken around the circumference of the 

wheel/rail di c. part from slightly higher measured impedance values for the dry 

condition ,pr bably due to the presence of debris, the measured impedance values (HPF 

and Dry) app ar t b imilar. Under these test conditions, the introduction of HPF 

friction m difi r t chn logy does not appear to have resulted in an increase in 

impedanc tI r the 8 kHz circuit. Figure 5.12 shows the results from the six contact 

point. 
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Chapter 6. Effect of the Water and 

Oil on Friction 

6.1 Introduction 

This chapter is focused on the effect of water/oil oil/water mixtures on adhesion. Oil has 

been found on tracks in small amounts however this can led to a significant reduction in 

adhesion levels. Oil from the rail head can be easily spread to the by the passage of trains 

fonning a very thin layer over the continue rail head. Previous work has shown that the 

presence of wear debris at the interface can result in very low adhesion conditions while 

drying in the presence of water. Water jetting systems are used on the UK network to 

remove autumn contamination and anecdotal evidence suggests that low adhesion, 

greater than expected from the presence of water alone, can be experienced immediately 

after the passage of a treatment train. There has been researched or proved case of this 

phenomenon (Beagley and Pritchard, 1975), (Beagley et al., 1975), (Chen et al., 2008). 

6.2 Test Apparatus 

The Rolling Sliding Twin Disc Machine has been used to carry out the testing which has 

been shown and describe previously in Chapter 3. 

The arrangement used to mix water and oil is shown which consists of two funnel 

glasses connected to a "Y" pipe which is also connected to the inlet disc environment 

chamber box. The percentages water and oil can be controlled by the funnels valves. The 

arrangement is shown in the Figure 6.1. 
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Figur 6.1 a) Oi environment chamber and b) Mixture feed method 
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6.3 pecimen 

aJ 

a r u hne 

9.89 IlID \.\a 

im n were cut fr m UIC60 900A rail steel and R8T wheel steel sections. 

rib d in chapter 3. Wheel and rail disc contact surfaces were ground to 

t xtured rail disc (see Figure 6.2) with a roughness of Ra 

e tigate the effect of roughness on adhesion. 
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6.4 Test Procedure 

The tests were carried out using the wheel disc as the driving disc and the rail disc as the 

braking disc, as shown in Figure 6.1. An environment chamber enclosed the discs. The 

inlet at the top was used to drip in the water and oil. Oil and water mixtures were applied 

using the set-up shown in Figure 6.2a and 6.2b. The valves were adjusted to ensure that 

all the oil and water flowed out in the required time. Although this arrangement did not 

provide a through mixing effect it was thought sufficient to replicate what has been seen 

on actual rail (for example when rain falls on oil contaminated track). 

6.4.1 Outline of Tests 

The aims of the tests carried out in this chapter are shown listen below: 

1. Some baseline adhesion values to compare results from the subsequent tests. Tests 

were run at 1500 MPa in dry, wet (2 drips/sec) and oily (2 drips/sec) conditions. The 

slips used for these tests are; 05%, 1%, 2%, 3% and 5%. 

2. The aim of these tests was to establish which had the dominant effect (if either), when 

applied to a rolling/sliding contact. Tests were again carried out at 1500 MPa for slip 

values of 0.5%, 1 %, 2%, 3% and 5%. Mixtures of 50% oi1l50% water and 20% oi1l80% 

water were applied. 

3. Contact Pressure. The aim of these tests was to investigate the effect of contact 

pressure on adhesion. Tests were run at 900 MPa in dry, wet (2 drips/sec) and oily (2 

drips/sec) conditions. 

4. Roughness. The aim of this test was to. study how increased roughness affected 

adhesion. A rail disc was machined, as illustrated in Figure 3, to increase its roughness to 

Ra 9.89 J.1Ill. The test was run at 1500 MPa and 0.1 % slip. Oily (2 drips/sec) were used to 

try and reduce wear and subsequent roughness evolution. 

5. Low Oil Test. The aim of this test was to establish if friction was as low with a small 

amount of oil as it was in the previous tests with the oil reference tests (2 drips/second 
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applied throughout test). Static and dynamic oil deposition tests were carried out to 

establish what the minimum amount of oil was that could be deposited (in its raw form). 

Oil was applied to discs and then left for varying periods of time. Residual amounts were 

weighed and the coverage calculated. Tests were also carried out while rotating the discs 

to see how much could be "flung" off. For the actual tests, 5 drops of oil were applied to 

the top rail disc and left for 5 minutes. The rail disc was then rotated at 400 rpm for 40 

seconds before the load was applied and the rolling/sliding test was started. The test was 

repeated. 

6. Low Oil with Water Test. The aim of this test was to see if the addition of water 

influenced friction. Five drops of oil were applied to the top rail disc and left for 5 

minutes. The rail disc was then rotated at 400 rpm for 40 seconds before the 

rolling/sliding test was started. The discs were run for 1500 cycles before water was 

added at 2 drips/second. The test was repeated. 

7. Drying Test. The aim of this test was to see if a drop in friction was seen as the drying 

started, as was observed with tests carried out previously (Beagley and Pritchard, 1975). 

The discs were run dry for approximately 1000 cycles (or until stable friction was 

reached) before water was added for 1000 cycles at 2 drips per second. The water was 

then stopped and a hot air drier started immediately, which was focused on the disc 

contact. The test was repeated. 

A nominal disc rotational velocity of 400 rpm was used for all tests. 

6.5 Results 

6.5.1 Dry, Wet and Oily Tests 

Figure 6.3 to 6.5 show the data from tests carried out using dry, oily only and water only 

tests over the range of slips mentioned previously and Figure 6.6 illustrates the 

corresponding creep curves for the same conditions. The tests were carried out at 400 

rpm and 1500 MPa contact pressure. 
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Figure 6.3 Traction coefficient data for dry tests. 
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Figure 6.4 Traction coefficient data for oil tests. 
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6.5.2 OillWater Mixtures 

Figure 6.7 and 6.8 show data from 50% oi1l50% water and 20% oi1l80% water tests. 

(where incomplete data is shown, data was not collected at the highest rate on the test­

rig). The tests were run at 400 rpm and 1500 MPa contact pressure. As can be seen the 

data is very similar to that for the oil only tests (Figure 6.4) as emphasized in Figure 6.9 

which shows the creep curves. It is clear that oil is having the overriding effect. During 

the water/oil mixture tests it was possible to see globules of liquid around the contact 

entrance as shown schematically in Figure 6.10. These were seen to be expelled 

sideways for the contact region or actually back along the disc surface against the disc 

motion. It is thought that these globules were made up largely of water, which was being 

squeezed from the contact. This effect has been seen in previous work using a ball-on­

flat configuration (Yang et al., 2004) where at low speed, oil and water/oil emulsions 

gave similar friction coefficients for a range of slip values. It was also found, however, 

that at higher rolling speeds this behaviour changed. This may also be an issue with the 

twin disc contact. 
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Figure 6.7 Traction coefficient data for 50% oi1l50% water tests. 
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Figure 6.8 Traction coefficient data for 20% oiV80% water tests. 
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Figure 6.10 Globules fonning around the contact. 

6.5.3. Effect of Contact Pressure 

Figure 6.11 shows the effect of the contact pressure on traction coefficient. The tests 

were carried out at 400 rpm. In dry conditions, it can be seen that when 1500 MPa 

contact pressure is applied, traction coefficient is relatively close to 900 MPa. However 

in wet conditions traction coefficient for 1500 MPa and 900 MPa is seen between the 

range in wet conditions. With oil traction coefficient seems to present the same 

behaviour in the two different contact pressure. Work carried out by Baek et aI., 2007 

has demonstrated that changing contact pressure the traction coefficient increases 

linearly and reaches to a peak and then decreases a little and becomes steady. 
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hi lh r rri ti n a hown in Figure 6.12. Rail disc 
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Figure 6.14 Pictures of the rough rail disc before and after at 1500 MPa contact pressure. 

6.5.5 Oil Coverage 

Table 1 shows the calculated oil coverage derived from the static and dynamic oil 

deposition tests. The values obtained were three orders of magnitude higher than those 

measured in the field on actual track (Collin et aI., 1972). However, those measurements 

were rather crude. They involved soaking oil into a cloth over a 300m stretch of track 

and then averaging out over that distance. It is unlikely that the oil would be evenly 

spread over the whole length of the track so where it was actually deposited, coverage 

was probably much higher. In the same piece of work bench tests were carried out using 

these oil coverage values, achieved by mixing the oil with chloroform to change its 

viscosity and making it spread more easily. The use of chloroform to allow the oil to 

spread would have immediately changed its lubricating properties. 

a e ac ae T bl 1 C 1 ul t d average Ol 1m lC '1 fil thO kn esses rom epos! IOn es s. fi d '1' T t 

Test Description Mass of Oil Disc Area Oil Coverage 
(g) (cm2) (g/cm2) 
0.0808 14.8 0.00547 

5 drips oil/5 minutes 0.090 14.8 0.00610 
Averag_e 0.00479 

5 drips oill5 minutes/disc 
0.0705 14.8 0.00477 
0.0692 14.8 0.00469 

rotated for 40 seconds 
Average 0.00473 
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6.5.6 Friction with a Low Amount of Oil 

As shown in Figures 6.15 and 6.16, the friction stabilized at just over 0.05 for the tests 

run with a small amount of oil. This value is very close to that seen with 2 drops per 

second of oil at the same test conditions (Broster, 1974). Tests in previous work 

(Broster, 1974) using oil film thicknesses of the order ofO.5xlO-6 glcm2 showed that as 

the oil film thickness reduced the friction went up. This makes sense as more and more 

metal to metal contact would apparent as the thickness reduces. A transition was 

observed at a thickness of 1 x 10-6 glcm2
, so in this work tests were run above the 

transition, where friction is independent of the amount of oil. It is arguable whether these 

coverages actually exist in reality, however, and those used in the present study could be 

deemed to be more realistic, i.e. dropping on oil and letting it spread. If oil drops onto 

track during train operation this is what would happen. 
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Figure 6.15 Traction coefficient data for test run with small amount of oil. 
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Figure 6.16 Traction coefficient data for test run with small amount of oil. 

6.S.7 Fridion with Oil and Water 

As shown in Figures 6.17 and 6.18, the friction stabilized at just over 0.05 for the tests 

run with a small amount of oil. This value is very close to that seen with 2 drops per 

second of oil at the same test conditions (Broster et al., 1974). Tests in previous work 

(Broster et al., 1974) using oil film thicknesses of the order of 0.5xl0-6 g/cm2 showed 

that as the oil film thickness reduced the friction went up. This makes sense as more and 

more metal to metal contact would apparent as the thickness reduces. A transition was 

observed at a thickness of 1 xl 0-6 g/cm2
, so in this work tests were run above the 

transition, where friction is independent of the amount of oil. It is arguable whether these 

coverage actually exist in reality, however, and those used in the present study could be 

deemed to be more realistic, i.e. dropping on oil and letting it spread. If oil drops onto 

track during train operation this is what would happen. 
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Figure 6.17 Traction coefficient data for test run with small amount of oil before the addition of water. 
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Figure 6.18 Traction coefficient data for test run with small amount of oil before the addition of water. 
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6.5.8 Friction in a Drying Test 

Figures 6.19 and 6.20 show the results of the drying tests. A slight decrease in friction 

was observed on the on-set of drying (about 0.04-0.05). In this work the drying process 

has been accelerated. In the previous work carried out the drying was done naturally 

(Broster et al., 1974). The absolute coefficient values for wet conditions are similar for 

both pieces of work however the pronounced drop in adhesion levels of ~.1 previously 

seen were not witnessed in the latest tests. 

0.5.,.-----------------------------, 

.. 
C 
CD 
'\5 

0.4 

IE 0.3 

! 
(.) 
c 
:8 0.2 

~ 
~ 

0.1 

Water Added 

o~-~--~--~-~--~--~-~--~--~-~ 
o 1000 1500 2000 2500 3000 3500 4000 4500 5000 

Number of Cycles 

6.19 Traction coefficient data for drying test run dry. 
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Figure 6.20 Traction coefficient data for drying test run dry. 
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Chapter 7. Discussion 

7.1 Introduction 

The wheel/rail contact is a crucial factor in ensuring good performance of railway 

systems. The wheeVrail contact, however, has many factors affecting its performance. 

These included the fact it is an open system affected by environmental conditions, third 

bodies (from the environment and applied) are present which affect adhesion. Also the 

contact over a small area at high load which drives a number of damage mechanisms, 

such as wear and RCF. In this work a number of wheeVrail contact issues have been 

investigated using a twin disc simulation of the wheeVrail contact: 

1. Contact temperature. Analytical models have been compared with thermal 

camera measurements. 

2. Adhesion. The effect of contaminants, such as leaves, sand, oil and water have 

been investigated. 

3. Isolation. The effect of solid stick friction modifier has been studied. 

There are discussed in the following sections: 

7.2 Temperature Measurements 

In this thesis one of the aims was to establish the temperatures in the bodies and contact 

between the wheel and rail discs using two analytical methods and to compare them with 

measurements carried out by a thermal camera. The thermal camera measurements and 

calculations using the analytical approach proposed by Lewis & Dwyer-Joyce (2004) 

compare well for the body temperature of the discs in a rolling-sliding test set up 

compare well. This is despite the number of assumptions in the analytical modelling and 

the deficiencies in the thermal camera measurements. This provides a measure of 

validation for the analytical approach. Temperatures from this twin disc approach and 

the "small disc" approach (Olver, 1991) also give reasonable agreement. There are some 

significant differences between the two analytical approaches though. The most 

important is related to how the heat losses are assumed to occur. Heat loss due to 
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conduction is significant and much higher from the contact with convection and 

radiation having smaller effect on the contact temperature using the Lewis & Dwyer­

Joyce method. This is similar to the "small disc" method, however, in the "small disc" 

model heat flow is considered to be in axial direction and in the Lewis & Dwyer-Joyce 

model it is entirely radial. 

In the "thin disc model" also proposed by Olver (1991), convective heat loss dominates. 

It was found that for the same change in convective heat transfer coefficient the change 

in contact temperature was greater in the ''thin disc" model than the small disc model. 

Determining the correct emissivity value to use is possibly the biggest source of 

discrepancy in the thermal camera measurements. The values found in the calibration 

test were for the disc after they had been tested at 5% slip. The range of values recorded 

was large and varied considerably with the disc surface condition. After the tests at other 

slip values the surface characteristics were different and as a result the emissivity values 

would be different. 

Validation of the analytical approaches provides support for the hypothesis that 

temperature effect causes the second transition seen in wheel and rail material wear rates 

during twin-disc testing. Figure 2.7 shows the results of wear tests on UIC60 900A rail 

steel and R8T wheel steel carried out during previous twin-disc testing as well as 

temperatures calculated using the first analytical method (Lewis & Dwyer-Joyce, 2004). 

The second wear transition occurs at around 200-250°C which coincides with the 

temperature at which the mechanical properties of these steels start to decline (British 

Steel Makers Creep Committee, 1973). 

A fully validated thermal model will be useful in carrying out further investigations on 

wear transitions and the influence of contact geometry and sliding in the interface. 

Temperatures in the actual wheel/rail contact have been analyzed analytically and 

numerically (Ertz and Knothe, 2002; Gupta et al., 1996). Temperatures ranged from 280 

to 700°C for slips from 8 to 20%. These slips represent those likely in the rail gauge 

comer/wheel flange contact as those in the tread are very much lower. Clearly the 

situation is very different from that considered in the twin-disc testing as there is a much 

larger volume of material in which to dissipate heat and the wheel is rolling over cold 
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rail. The temperatures are similar, however, because the wheel velocity is much higher 

than that of the discs so there is much higher heat generation. This adds some support to 

the twin-disc test method as it is likely that wear transitions are occurring where they 

would in an actual wheel/rail contact for the same contact conditions. Results from twin­

disc testing, though, could only be translated where the actual wheel/rail contact 

conditions have been fully defined. 

7.3 Adhesion Experiments 

The results derived for dry wet and oily conditions compare well with previous testing 

and actual track measurements as the data in Table 4.1 in Chapter 4 shows. 

The data shown in Table 4.1 in Chapter 4 was collected from the literature and was 

determined using a variety of full-scale techniques using a bogie on a roller-rig, a rail 

tribometer and an instrumented train. The roller-rig tests were carried out under closely 

controlled conditions so load, velocity and slip are known. As was seen previously, that 

varying load and rolling speed affects friction. This is something that needs exploring 

further with the twin disc technique. Clearly in the actual track testing a range of loading 

and slip conditions will have occurred. 

The shape of the creep curves derived from the roller-rig tests is similar to those seen in 

this work. This is significant as the initial slope of the curve is important and this as well 

as the initial peak and then slight decline seen with some conditions differs from results 

achieved using analytical modelling techniques (as noted previously (Bucher, 2006». 

The techniques used to apply contaminants worked well. The data recorded for leaves 

further indicates what a good lubricant they are, even in dry conditions. The test method 

allows for testing of potential friction modifiers to increase adhesion when leaves are 

present as seen with the sand tests. An added benefit was the generation of a relatively 

hard leaf layer on the discs, which has not been achieved experimentally before. As was 

seen in Figure 4.24, these layers took some time to wear away. If one cycle represents a 

wheel pass then it would be sometime in the real situation before the layer is removed by 

wear alone and this does not allow for further leaves falling. This may allow testing of 

leaf removal solutions. 
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As shown in Table 1 Chapter 4, the twin disc results with leaves are similar to those seen 

with an instrumented train run over leaves. In that work (Nagase, 1989), different leaves 

gave different results, with oily needle leaves from pine trees giving the highest friction. 

The leaves in this work were mixed, so further work may be appropriate to identify 

which leaves may be worst. 

It was interesting to note that even leaves can cause damage to the disc surfaces. It was 

expected that sand would, and this could potentially be an issue if sand is applied 

regularly to a stretch of track that suffers from poor adhesion. 

7.4 Isolation 

Isolation experiments were carried out with a solid stick friction modifier (High Positive 

Friction (HPF» which is most used on curves to reduce noise and wear. Three values of 

slip were used in order to simulate the contact conditions of the wheel and rail in curves 

and tangent tracks, they were 0.1 %, 1 % and 3%. 

It was observed that at 0.1 % of slip, traction coefficient had no significant change with 

HPF. However, the traction coefficient changed at slips of 1% and 3% when HPF was 

applied 

With HPF traction coefficient was 0.28. A black layer built up on the disc on application 

of HPF. 

Contact impedance was low at all slip levels and loss train identification in unlikely at 

these conditions. 

The decrease in impedance seen with increasing slip was expected as the higher slip 

would make more metal-to metal occurred. 
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7.S Adhesion with Oil I Water Mixtures 

The set of tests carried out varying the percentage of water and oil at the same conditions 

(speed, load, and slip) have shown that even changing the percentage, traction 

coefficient stays as it did with pure oil involved. The superficial tension is much higher 

for the oil, and as a result the water is squeezed away as soon as it tries to enter into the 

contact and water may only flow around of the contact. One of the reasons why oil goes 

into the contact is the affinity of the solid to the oil phase (Benner, 2006). 

Zhu et al' (1994) and Yang et a1. (2004) found that the film thickness of emulsions 

behaved identically to pure oil at low speed. However when speed was increased the 

film thickness increased. They concluded that water was drawn into the contact zone at 

higher speeds because of this. 

However, to carry out tests at higher speed with the twin disc machine is not possible as 

to it is necessary to change the gear box. 

It is clear that from these tests oil remains an effective lubricator in the wheeVrail 

interface independent of the presence of water in any amount. These tests have also 

shown that a small quantity of oil, equivalent to a teaspoon (2.5 ml) of oil spread over 

4m of running band provides a robust low adhesion surface that remains largely 

unaffected by the presence of a continuous stream of water applied to the wheeVrail 

interface. 

Previous work has shown that the adhesion of an oil coated surface remains largely 

independent of oil quantity until a threshold level as low as 1 x 1 0-6 glcm I, or a teaspoon 

of oil distributed over 2 Ian of running band. This work used chloroform to thin oil to 

allow it to be spread evenly over the test surfaces, and while Chloroform is a volatile 

solvent, it is likely that it will have affected the lubricating properties of the oils used. 

The work also showed the effect that low quantities of oil had on reducing adhesion, 

increased with humidity, and in particular the humidity during application of the oil to 

the surface. Conceptually it is hard to imagine oil being spread into layers only a few 

molecules thick along the railhead over large distances (2 Ian) without its removal by 

wear debris as suggested by other work. Droplets of oil deposited onto the rail head will 

spread under the passage of trains and may be distributed to levels that are similar to 

those seen during these tests (Beagley et al., 1975). Given the low quantities of oil 

required to reduce adhesion, and the robustness of the layer in the presence of water it is 
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possible that small quantities of surface active organic compounds could build up over 

time, perhaps as a result of leaf contamination. Levels of semi-volatile organic 

compounds in the order of 5x 1 0-6 glcm2 have been found on the UK at sites where low 

adhesion is considered to be an issue, Beagley et a1. (1975). 

The low amounts of oil required to cause reduced levels of adhesion could well explain 

the phenomenon of low adhesion experienced on apparently clean rail. It is not known 

whether high pressure water jetting, used on the UK network, is capable of removed 

such low levels of oil from the rail surface. Beagley et al. (1975), demonstrated using a 

rolling tribometer that small amounts of oil can reduce the adhesion coefficient. 

However water can mitigate the oily effect, washing some away depending on the 

original oil coverage applied on the disc surface. This can explain the slight effect of 

water added on the adhesion coefficient (see Figures 6.17 and 6.18 in Chapter 6). 

Experimental results where the drying process was accelerated showed good correlations 

with results by Beagley (1975 & 1974). Adhesion in dry conditions came up to 0.45 and 

in presence of water, adhesion was lower, at around 0.2, with a slight decrease in the 

adhesion after the drier was started. It may be due to some debris forming a viscous 

paste for a few seconds before adhesion started recovering to that value previously seen 

in dry conditions. In the work carry out by Beagley (1975), using a rolling disc 

tribometer a paste of F02 03 with water painted on the discs and a test with some water 

sprayed on the rail disc were carried out which showed the same decrease in the 

adhesion coefficient on the on-set of the drying. 

Broster et al. (1974) found in the field that water reduces adhesion immediately 

(becoming less that 0.24) and adhesion regained its original level once the water had 

evaporated. Also it was found that a locomotive slipping is promoted in damp conditions 

where a larger amount of debris was observed on the rails heads. This can promote a low 

shear strength quasi-viscous paste of debris particles. 
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Chapter 8. Conclusions 

8.1 Introduction 

This thesis had initially four major objectives for the analysis of the wheel/rail contact. 

• The first one was to experimentally measure the temperatures in a simulated 

wheel and rail contact compare then with analytical methods from Lewis & 

Dwyer-Joyce (2004) and Olver (1991). 

• The second objective was to evaluate the effect on adhesion of a number of 

contaminants. 

• The third objective was to find the effect of the friction modifier on the wheel 

and rail isolation. 

• The fourth objective was to observe the effect of water and oil mixtures on 

adhesion. 

In this regard, the problems treated in this thesis represent those ones commonly 

presented in the field. The twin disc rolling sliding method has shown a good simulation 

of the wheel/rail contact. 

8.2 Temperature 

Thermal camera measurements have been carried out to determine temperature values 

(body and contact) for a range of slip values in a twin disc contact. 

To find the correct temperature values a calibration tests had to be carried out to 

determine emissivity values for the disc surfaces to use with the thermal camera data. 

The emissivity varies considerably with the condition of the surface. Average values of 

0.67 for the wheel disc and 0.22 for the rail disc were measured. 

Two analytical models were used to predict the temperatures in the twin-disc contact. 

The first model was developed for the twin disc contact, by Lewis & Dwyer-Joyce 

(2004) and the second model was derived by Olver (1991) for thin or small discs 

assuming radial and axial thermal gradients respectively. 
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Body and disc contact temperatures compare well with analytical models of the 

temperatures despite the assumptions in the models and deficiencies inherent in 

determining correct emissivity values for the thermal camera measurement. The camera 

gives a measure of validation for the models. 

8.3 Adhesion 

Adhesion of wheel and rail disc contact was assessed with some contaminants, such as 

water, oil and leaves in dry and wet conditions using the twin disc approach. Sand was 

added with leaves and was shown to be a good improver of traction, as it brought back 

the traction coefficient to values seen before the sand was applied. 

During the leaf tests, leaf layers were generated that were between 14Hvlgr and 58Hvlgr. 

These layers took between 200 and 600 cycles to remove in dry uncontaminated 

conditions, depending on the slip value. 

Traction coefficient was reduced once leaves were applied, however, according to the 

data displayed in Figure 4.21, wet leaves reduced the adhesion more than leaves in dry 

conditions. Oil showed higher values of adhesion followed by pure water conditions. As 

was expected, tests in dry conditions yielded the higher traction coefficients. 

Leaves caused some surface damage to the discs, particularly when stalks were passing 

through the contact, which resulted in long indentations. Sand also caused indents and 

scratches in the wheel and rail materials. 

In this work the twin disc technique has been shown to be an effective means to study 

wheeVrail traction coefficients as greater control can be exerted over test parameters. At 

present no standard test has been developed for studying adhesion and the effect of 

friction modifiers, so this may be the direction to head in. 

The results determined during the tests compare well with those from other tests and 

from the field, enhancing the credibility of the twin disc approach as a standard test for 
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assessing traction and friction coefficient, especially when trying to characterise the 

perfonnance of friction modifiers. 

8.4 Isolation 

F or twin disc tests at relative contact pressure and slips HPF did not cause isolation of 

the discs. 

Static test have also shown that, even with no traction in the contact that would enhance 

metal-to-metal contact, the presence ofHPF does not affect impedance. 

Increasing slip reduce impedance as more metal-to-metal occurred. 

8.S Oil Water Mixtures 

Applying oil and water at different percentage in the twin disc contact at same speeds 

has shown that the mixing oiVwater behaves in a range as the pure oil condition. 

The testing carried out to investigate the effect on adhesion of a number of contaminants 

has shown that if oil and water are present (regardless of amount), oil has the dominating 

effect and traction coefficients remain at similar levels to having oil alone. Even when 

spraying water at relatively high pressure the traction coefficient will only rise a very 

slight amount. 

Results from this work have backed up previous tests using different approaches 

indicating that low amounts of oil are still able to reduce traction coefficient and that 

drying a wet contact can initially give a slight drop in traction coefficient. They have 

also confirmed that that roughness will increase traction coefficient and that reducing 

contact pressure also increases adhesion. 
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8.6 Future Work 

This work has been carried out mainly on temperature, adhesion and isolation. Every 

area can be expanded. The necessity of understanding how the wheeVrail contact can be 

affected due by different issues involved can be explore of more using the twin disc 

machine approach in order to increase the knowledge of the wheeVrail contact. For this 

some complementary work is proposed. 

• Carry out more experiments varying the load and the speed. 

• Study the effect of the load and speed on the traction coefficient. 

• Experiment with other contaminants, such as frost, wear debris, tyre rubber wear 

debris from automobiles and different kind of leaves. 

• Test friction modifiers. 

• Perfonn isolation experiments in terms of impedance with different friction 

modifiers. 

• Carry out more experiments with oiVwater mixtures at higher speeds. 

• Make some experiments with high and low temperature water. 

• Study possible solutions to remove leaf layers. 

8.7 Publications 

The following papers have arisen from this work: 

Conference 

Gallardo-Hernandez, E.A., Lewis R., Dwyer-Joyce, R. S., "Temperature in a Twin-Disc 

WheellRail Contact Simulation", Proceedings 32nd Leeds-Lyon Symposium on 
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Gallardo-Hernandez, E.A., Lewis R., 2006, "Twin Disc Assessment of WheellRail 

Adhesion", Proceedings ofCM2006, 7th International Conference on Contact Mechanics 

and Wear of RaillWheel Systems, Brisbane Australia, 24-27 September 2006, Vol. 2, 

pp311-319. 
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