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ARTURO THEJO ROJ)RIGUEZ 

A THERMODY.N1UlIC S'i.'UDY OF POLAR+NON-POLAR FLUID 

MIXTURES: n-ALKA.NENH'R1LE + n-ALKANE SYS'l'EJ\'1S 

This work consists of a therrr.odynamic study of liquid binary 

mixtures of the type polar + non-polar. The polar components were 

chosen to be members of the n-a1kanenitrile series of compounds 

whereas the non-polar components are members 01 the n-alkane series. 

The experimental part of the work includes: 

a) the determination of upper critical solution temperatures of 

binary mixtures of ethanenitri1e, propanenitri1e, and n-butanenitrile 

with n-a1kanes in order to establish the limits of liquid-liqllid 

miscibili ty; 

b) the measurement of the gas-liquid critical locus (pc_Tc_X) 

for the six mixtures ethanenitrile + n-pentane to n-decane. 

c) measurement of excess enthalpies of mixing at 298.15 K for 

propanenitrile + n-pentane to n-heptane; n-butanenitrile + n-hexane, 

+ n_octane, + n-dodecane, and + n-tetradecane. 

d) and the measurement at 303.15 K of excess volumes of mixing for 

propanenitri1e + n-pentane to n-octane; n-butanenitrile + n-pentane, 

+ n-hexane, +n-octane, +n-decane, + n-dodecane, +n-tetradecane; and 

n-hexanenitrile + n-hexane. 

Although the experimental results are readily related to the 

molecular size of the studied substances statistical theories of fluids 

are used for a more formal interpretation. 

The Scatchard - Hildebrand theory with a modification is u5ed to 

predict upper critical solutj on temperatures. ':.'he now widely used 

van der Waals' one and two-fluid theories are used here to preaict excess 

enthalpies and volumes of mixing. The gds-liquid cri tical properties are 

interpreted usin~ a first-order theory together wi to the Von der ',,'aa1s' 

equation of state. 



The predicted results show in each case sa Lisfactory 8LTeernent 

with experiment, furthermore, information is obtained on the relative 

strength of the unlike interaction between the molecules of the mixtures 

studied. 
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Since mixed ~ubstances are more common than pure substances, 

special efforts, both theoretical and experimental, are needed 

to explore their properties. In particular, it is interesting 

and important to determine what new behaviour results when 

substance X is mixed with substance Yo 

Before mixing, all molecules of X and Y have nearest neigh­

bours of the same kind; after mixing they have nearest 

neighbours of different kinds. 

A quantitative account of the interaction ,of every possible 

pair of molecules is an enormous task, however, the study of 

selected molecular interactions may help to generalize certain 

principles on which further advances can be made. 

The theory of pure fluids has made much progress in recent 

years due to,the study by computer simulation1 of simple systems 

(e.g. hard-spheres), but the results of such studies have helped 

to understand another &TOUP of simple fluids: that of the inert 
2 

gases Ar, Kr, and Xe • 

, 
The extension of the knowledge of the type of interactions 

present in these simple fluids to more complex molecules (N2, CH4, 
CO, O2) has produced a very useful tool in thermodynamics: the 

principle of corresponding states (PCS)3,4. 

The study of mixtures as briefly mentioned above presents 

another outstanding problem, that of the determination of the 

unlike interactions and their relation to those between like 

molecules. However, advances in the study of mixtures, as in pure 

fluids, have been made thanks to computer simulations on simple 

systemso 



2 

The extension of methods for the study of pure fluids to 

mixtures seems an obvious step. The PCS has been widely used 

for the prediction of thermodynamic properties of mixtures having 

conformal intermolecular potentials from the properties of a 
reference substance obeying the same PCS5-7• 

The theory of fluids, both pure and mixed, of simple 

molecules interacting with spherical two-body potentials seems 

to be in a secure position at the moment. However, if the theory 

is to be extended to other fluids of interest to scientists and 

engineers then account must be taken of the fact that these fluids 

interact with orientation - dependent potentials due to the 

'shape 4 and polarity of the molecules. Some other complications 

also have to be considered such as complexing of molecules and 

flexibility. 

Although the understanding of these fluids is incomplete, some 

of their molecular characteristics lead to behaviour which can be 

understood at least qualitatively. 

For example, the properties of the members of an homologous 

series of compounds (e.g. n-alkanes, n-perfluoroalkanes, siloxanes) 

can be easily related\to the size of the molecules
8,9. The re0ular 

fashion in which the thermodynamic properties of the pure homologues 

change is also observed in their mixtures (i.e. n-alkane + n-alkane, 
10-12 

etc.) which has led to the proposition of certain principles 

stemming from the principle of congruence13 • 

The series of n-alkanes have attracted much interest due 

partially to some of the reasons mentioned in the previous paragraph 

and partially because they provide a link to test theories of 

non-electrolytes and also theories of polymer solutions. 

The thermodynamic properties of pure n-alkanes and their 

mixtures have been reported in innumerable contributions by many workers 
14-17 and there is little to be added in this direction here o 
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Until recently, the systematic study of the thermodynamic 

properties of mixtures of two chain molecules belonging each one 

to different series of homologues had not attracted much attention. 

However, the work carried out in this laboratory during the last 10 

h d d th ' . t t· 18-20 years ~s re resse 18 S1 ua 10n , at least partially. These 

studies of mixtures of chain molecules have involved the following 

kind of mixtures: n-alkane + linear siloxane, n-alkane + 

perfluoroalkane, linear siloxane + perfluoroalkane o 

The encouraging results obtained in those studies seem to 

indicate that the theory can explain, with some assumptions, 

the thermodynamic properties of mixtures of chain molecules. 

The work here reported consists of a thermodynamic study of 

liquid n-alkanenitrile + n-alkane binary mixtures, that is, mixtures 

of chain molecules of the type polar + non-polar. 

The presence of an electric moment in the members of the 

n-alkanenitrile series is the result of an unsymmetric distribution 

of the electric charges in their molecules. 

The n-alkanenitrile series of ccmpounds are represented by the 

general chemical formpla: 

The name of each individual n-alkanenitrile is given by the 

name of the n-alkane according to the number of carbon atoms in 

the molecule plus the termination nitrile due to the presence of 

nitrogen in the molecule. For example, the first member of the series 

(m = 1, CI~) is mothanenitrile, the second member (m = 2, C2H
3

N) is 

ethanenitrile, the third member (m=3, C3H5N) is propanenitrile, etc. 
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The n-alkanenitriles are polar substances whose electric 

dipole moment is localized along the bond linking the carbon 

atom and the nitrogen atom. 'l'his has been found experimentally21 . 
(by spectroscopic and electron-diffraction measurements), furthermore, 

several 'polar structures' have been considered for the n-alkanenitrile 

compounds in order to explain their large electric moments 21 ,22,23. 

The dipole moments ( ~ ) of some n-alkanenitriles are listed in table 1, 

from which it is clear that for the compounds with m ~ 2 ~ is essf:ntially 

constant, ioe. ~ is almost independent of the chain length. 

This particular characteristic of the n-alkanenitriles makes 

possible the study of the thermodynamic properties of binary n­

alkanenitrile + n-alkane mixtures as a function of the chain length of 

either homologous series at essentially constant ~. 

The fact that ~ is constant does not necessarily mean that its 

effect on the properties of n-alkanenitrile + n-alkanemixtures will be 

the same independently of the chain length of the n-alkanenitrile. 

In order to account for the effect of ~ on the mixtures properties 

it is possible to use a quantity called I effective IJolarity' (p) defined 
26 as 

P = II 2/1i:l'(J3 (1 ) 

where k is Boltzmann's constant and a the collision diameter of the 

polar molecule. 

Strictly, P is used for molecules with point dipoles, however, 

it may be used to give a better understanding of the effect of ~ 

on the properties of the pure n-alkanenitriles and their mixtures with 

n-alkanes. 

The quantity P is related to the molecular interaction of two 

point dipoles, since the latter is given by 



5 

when terms of higher order than 1/r6 are neglected. 

Expression 2 also enters into the deter~ination of the 

Helmholtz function A due to the presence of point dipoles in the 

interacting molecules 27. Since the increase of 2 ~ 4/3kTr 6 reduces A 

it is then clear that this term can show the effect of ~ on the 

thermodynamic properties of polar substances. If one approximates 

relation 1 to 

where a 3 has been taken to be given by the gas-liquid critical 

volume vC
, it is then clear that for a given temperature P' will 

decrease as VC increases, that is, the effective polarity of an 

homologous series will decrease, and consequently its effect on the 

thermodynamic properties will decrease as the molecular size of the , 
members increases. Table 2 gives values of ~ for some n-alk:~nenitriles 

where the mentioned trend of variation of PI is observed from m • 2. 

Many properties of the n-alkanenttrile series have been reported 

(e.g. densities, refractive indices, heats of vaporization, virial 

coefficents, etc.) so that a comparison with the corresponding 

properties of the n-alkanes series can show the effect of the 

substituent nitrogen in substances whose structure is very similar to 

that of the n-alkanes. The enthalpy of vaporization is a measure of 

the cohesion of the molecules in the liquid state so that a comparison 

of this property can be discussed in terms of the interaction of the 

molecules. Figure 1 gives the molar enthalpy of vaporization l:. H: for 

n-alkanenitriles and n-alkanes at 298.15 K as a function of the 

number of carbon atoms in the molecule of either n-alkanenitrile or 

n-alkane. 

Figure 1 shows that b. ~ for the n-alkaneni triles series is much 

higher than for the n-alkanes, which clearly indicates the existence 
of stronger attraction forces due to lJ • 
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The experimental study of n-alkanenitrile + n-alkane mixtures 

includes 

1) - determination of the upper critical solution temperature 

(UCST) of the following mixtures (the volume fraction is approximately 

0.5): ethanenitrile + C5, C6,C7,C8,C9,C10,C11,C12,C14,C16' and C18 ; 

propanenitr~+ C5,C6,C8,C10,C12,C14,C16' and C18 ; n-butanenitrile + 

C5,C6,C10,C12,C14' and C18 ; where the number of carbon atoms in the 

n-alkane is given by the subscript. 

c c ) 2) _ gas-liquid critical locus (p ,T,X of the following mixtures: 

ethanenitri~+ C4'C5'C6'C7,C8'C9,C10' and C11 • 

3) - molar excess volumes eVE) at 303.15 K of: m 
propanenitrile + C

5
,c6,C

7
, and C 8; n-butanenitrile + C5,C6'C8,C10,C12' and C14 ; 

n-hexanenitrile + C6 •. 
4) - molar excess enthalpies (~) at 298.15 K of: 

propanenitrile + C
5

,C6, and C
7

; n-butanenitrile + C6,C8,C12, and 

C14• 
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Table 1 - Dipole moment of some members of the n-alkanenitrile series. 

Substance Formula 103°lt/c m 1'030 Ic OJ lls 

methanenitrile CHN 10.11 8.37 
ethaneni trile C2~N 13.14 11.61 

propanenitrile C3
H5N 13.48 11.91 

n-butanenitrile n - C4~N 13.51 11.91 

n-pentanenitrile n - C5
H9N 13.64 11 .91 

n-hexanenitrile n - C6~1fj 11.68* 

~ mean dipole moment in the vapour phase; references24 and 25. 

lls mean dipole moment in solution (benzene); referencffi24 and 25. 

* Value for isohexanenitrile 

1 Debye (D) = 10-
18 

e.s.u. = 3.336 x 10-30 C m. 

Table 2 - 'Effective polarity (P')' of some members of the n-alkanenitrile 

series. 

Substance yC 1062p. 
3 -1 

c~m mol 2( 3 -1)-1 (C m) em mol 

methaneni trile 139
a 

13.5
d 

ethanenitrile 173
a 

99.8 

propaneni trile 229
a 

19.3 

n-butaneni trile 285
b 64.0 

n-pentanenitrile 340
c 

54.7 

(a) Reference 28; (b) Reference 29; (c) Interpolated; 

(d) lly values from table 1 0 
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, 

r-------------r-------------~------------~------------,~ 

o 
~ 

Ffgure 1 Molar enthalpy of vaporization for n-alkaneni triles 

and n-alkanes at 298.15 K. 
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CHA.PI'ER 1 

SOME ASPECTS OF CLA.SSICAL THERlV10DYNAMICS 

Introduction 

Knowing of the existence of text books on thermodynamics 

specially written for students in different fields of science 

one might think that there are several kinds of "thermodynamics" 

and this confusion increases even more when different approaches are 

used to introduce students into the study of thermodynamics. 

The aim of this Chapter is to state Bome of the more important 

thermodynamic relations that will be mentioned later in this work. 

It is convenient to mention that thermodynamics is a 'collection 

of useful relations between quantities, everyone of which is 

independently measurable' 
1 

The usefulness of thermodynamics lies in the above statement 

since some quantities are experimentally easier to determine than 

others. The results obtained using the relations of thermodynamics 

are independent of any proposed microscopic or molecular theory of 

matter. 

1.1 Thermodynamic Relations for Pure Fluids 

Most of the relations that will be given in this section are . 

also applicable to mixtures provided that their composition remains 

constant. 

The quantities of which thermodynamics makes use to study a given 

system are called thermodynamic variables. The division of these 

variables into independent and dependent is useful, one further 

classification divides these variables into extensive or intensive 
following the criterion given below. 
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Quantities such as the entropy S, the volume V, the energy U, 

the mass m, and the amount of substance n, are ex~mples of 

extensive variables since the values they may take depend on the 

total quantity of matter present in the system. 

Other variables such as temperature T, and pressure p, are called 

intensive since they have values independent of the quantity of 

matter in the system under consideration. Extensive properties can, 

however, be easily converted into intensive properties, namely, into 

molar quantities through division by the amount of substance n, or 

into a specific quantity through division by the mass of the system. 

The proper derivation of the thermodynamic relations given 

below would take more space than is available. It will be sufficient 

to say that 'if we know one of the thermodynamic potentials as a 

function of the variables to which it corresponds, we can express all 

the other thermodynamic variables as a function of this potential 
2 

and its derivatives' • 

The energy U, is the thermodynamic potential associated with the 

independent variables entropy S, and volume V. This relation is given 

by 

dU _ Td.S _ p4V 

~ 

Three more thermodynamic potentials are now introducedl the 

Helmholtz function A, the enthalpy H, and the Gibbs function G, 

which are given respectively by 

and 

A-U-TS 

H ... U + pV 

G .. H-TS 

The effect of small changes in the four thermodynamic 

potentials for systems of constant composition is simply given 

by 

dU ... TdS - pdV (1.5) 
dA =-SdT - pdV (1.6) 
dH ... TdS + Vdp (1.7) 
dG ... - SdT + Vdp (1.8) 



Equations 1.5 to 1.8 are often called Ifundamental equations I 

because taking one of them , all the other thermodynamic potentials 

can be expressed in terms of the one present in the chosen equation. 

For example, choosing equation 1.8 we obtain at constant pressure. 

(aG/aT)p -= - S (1.9 ) 

and at constant temperature 

(1.10) 

1.2 to 
Substituting these two results into equations~1.4 one obtains 

and 

H .. G 
A .. G 

U .. G 

- T (aG/aT)p 

p(aG/ap)T 

- T(aG/aT)p -

(1.11) 
(1.12) 

p(aG/ap)T 

where V,S,H,A, and U are expressed in terms of G. 

Of particular interest is the relation between the enthalpy H 

and the Gibbs function. Equation 1.11 may be arranged to give 

(a(G/T) ) 

(a (1 /T) )p 
( 

.. H 

Similarly we may obtain a relation between the energy U and 

the Helmholtz function A, 

(a(A!T) ) 

(a(1/T) ) V 
.. U 

These last two equations are known as the Gibbs - Helmholtz 

equations. 

1.2 Thermodynamics of Fluid Mixtures 

The specification of but two independent variables is notadequate 

to define the state of a system whose composition chanGes and thus 

additional independent variables are required. 
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It is obvious that many thermodynamic properties of a system 

change with composition, 80 it is necessary to supplement the 

fundamental equations 1.5 to 1.8, which were derived on the 

assumption that only two independent variables were necessary 

to specify the state of the system under consideration, by introducing 

C_1° independent variables when the system has C components. 

Equation 1.5 must be modified to include the effect of 

infinitesimal variations in amoun:s of substance, i.e. 

d U r: TdS - pd V + I 11. t1n . (1 0 1 6 ) 
1 1 1 

where dn i represents an infinitisimal additional amount of 

substance i. The function ~i is an intensive quantity and it 

depends on the temperature, pressure and composition of the system; 

it was called "chemical potential" by J. Willard Gibbs3• 

As might be expected from the position of ~ in equation 1.16 

as a coefficient of dn., ~. is a mass or chemical potential, 
~ 1 

just as T is a thermal potential and p is a mechanical potential. 

Equation 1.16 is the first of the four fundamental equations 

for systems whose composition changes, the others are 
\ 

dH • TdS + Vdp + f l\dni 

ciA .. -SdT .. pdV + ~ 11. dni 
1 1 

dG ",.SdT + Vdp + :f ~idni 

(1.17) 

(1.1S) 
(1.19) 

Al ternative expressions for 11 i are obtained by using 

equations 1.16 to 1.19, however, attention will only be given 

to the last of them, namely, 

ll· = CaG/an. ) 
1 1 T,p,n. 

J 

(1.20) 

which is seen to be identical with the partial molar Gibbs function, 

Gio 
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Having introducedp i' a partial molar quantity, it is necessary 

to distinguish between partial and molar quantities. 

Considering an extensive property of a multicomponent system, 

for example, the volume V; then the partial molar volume of 

component i is defined by the derivative 

(1.21 ) 

where n. indicates all species or components in the system except 
J 

the one involved in the differentiation. The partial molar volume 

V. clearly depends on the pressure, temperature and composition of 
l. 

the system, but independent of the amount of substance already present; 

that is, a partial molar quantity is itself formally an intensive 

property. 

and 

and 

It can be shown that 

I n.dV. 
.11 
1 

(1.22 ) 

• 0 (p and T constant) 

sllRilal'ly, being f.I' a partial molar quantity 
1 

( 

G = fl n i Vi (1.24) 
~ n. d lll' = 0 (p and T ccnstant) 
1 1 

(1.23 ) 

Equation 1.23 and 1.25 are examples of Gibbs - Duhem equations. 

Similar relations may be obtained for any other extensive quantity, 

e.g. u,s,n, or A. 

Dividing by the amount of substance n . we can also obtain 
1 

from each extensive quantity an intensive quantity. Quantities so 

obtained are called molar quantities; using again the volume 

v ... vi En. 
mil 

where the subscript m is used to denote 'molar'. 

(1.26) 
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Since in practice, molar quantities are measured rather than 

partial molar properties it is important to know the relation 

between them; for a binary mixture 

V1 
III V - X2 m 

V2 .. V - X1 m 

where Xi is the mole fraction as 

X. • n./r. n. 
1 1 i 1 

(a vn/ aX2) 

(a vn/ aX2) 

defined by 

T,p 

T,p 

(1027 ) 

(1.28 ) 

1.3 Thermodynamic Relations for Ideal Liquid Mixtlge 

It is convenient to include thermodynamic relations which 

describe a limiting behaviour of real systems. The concept of a 

hypothetical ideal mixture when dealing with the properties of liquid 

mixtures, like the concept of a perfect gas in the study of gases, 

is extremely useful since it helps to simplify the understanding of 

real systems. 

The ideal mixture definition which is used here is similar in 
gas 

form to the definition of a perfect~mixture. Hence, an ideal mixture 

is, by definition, ort; whose components satisfy the equation 

* = ~. (p,T) + RT In X. 
1 1 

(1.30) 

id 
where~. is the chemical potential of the ith component in the 

1 * 
mixture, ~. is the chemical potential of the pure component i at the 

1 

same temperature and pressure as the mixture (and in the same phase). 
* This choice of ~i makes the use of the ideal mixture concept only 

possible up to pressures of 0.3MPa4• 

We now obtain the thermodynamic relations for the ideal mixture. 

If we define the molar Gibbs function of a binary ideal mixture as 



11 

where the values for ~i are given by equation 1.30, thus 

id 
Gm • E i 

.. 
X .ll. + RT EX. 1n X. 
~ ~ i 1 ~ 

.. 
where (p,T,Xi ) for ~i has been dropped. 

(1032) 

The other thermodynamic relations are readily obtained, for a mole 

of mixture 

Hid c;t l: * XiHi (1.33) m ~ 

Sid .. E 
.. 

(1.34) X.S. - R f: X.In X. 
V!d 

i 
1 * 1 1 1 

and .. E X.V. (1.35) m i 1 1 

.. .. * .. 
where ~i' Hi' S. , and Y. are the molar properties of the pure 

1 l. 

components at p and T of the mixture. It can be seen that the 

enthalpy and volume of an ideal mixture are simply the sum of the 

corresponding properties of the pure components. However, the 

Gibbs function and the entropy are composed of two terms, the first 

one also involves the sum of the properties for the pure components 

whereas the second term gives the change in the property (G or S) 

accompanying the mixing of the components to form the ideal mixture. 

Hence we can no~ set out the molar functions of mixing for 

an ideal mixture 

6 Gid .. RT ~Xi In Xi (1.36) 
m m 1 

6 Sid ... _RT EX. In Xi (1.37 ) mm i l. 

6 Hid - 0, 6 yid • 0 (1.38) mm mm 

since a thermodynamic function of mixing is the difference between 

the property in the mixture and the sum of those for the same amount 

of unmixed components at the same p and T. 
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1.4 Non-Ideal Ljquid Mixtures ::md F.xcess Functions 

Since the only mixtures that behave ideally over large ranges 

of p,T and composition are mixtures of isotopes, non-ideality, then, 

is the general rule. 

For non-ideal systems, a quantity n., the activity of component i 
1 ' 

is introduced in equation 1.30, 80 that, ~i now takes the form 

* 1l.(p,T,X) == ll' (p,T) + R'r In a. 
~ 1 1 

where the activity is defined by 

a. c: X.Y. 
1 1 1 

(1.40) 

Yi is the activity coefficient and it is a function of p, T, and 

composition. These coefficients were first introduced by G. N. Lewis 5• 

Clearly the dimensionless activity coefficient accounts for 

departure from ideality since 

'd 
l-J.(p,T,X) -ll ~ (p,T,X) = RT In (a./X.) = RT ln y; (1.41) 

1 .1 ll'" 

The thermodynamic functions of mixing for non-ideal systems are easily 

obtained by using equation 1.39 and previous definitions as follows. 
( 

The change in Gibbs function resulting from mixing two substances 

to form a mole of non-ideal mixture is given by 

-G = RT LX. In X .. y 
mil 1 i 

The corresponding equations for S,V, and H are readily obtained 

by the use of 1.9, 1.10 and 1.14 respectively 

S co.RT LX .(13 In'y 113 T) - R L X.lnX.y (1.43) m i 1 i P i 1 1i 

Vm ... RT ~xi((nn l/a T)T (1.44) 

and l\n ..... RT
2 

~ xi(a In y.la T)p (1.45) 
1 1 
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The use of thermodynamic excess functions is an alternative 

method of describing non-ideality. These functions are defined as 

the difference between the thermodynamic functions of mixing for an 

actual system and the value corresponding to an ideal solution at the 
2 

same p,T and composition. Thus 

GEm = R 'rE X. lny. 
1 J. J. 

sE ~-HTE x.(a Inr. /dT) - HE X. Iny. 
m iJ. 1 P i1 1 

The excess functions v! and ~ are identical with the corresponding 

functions of mixing given by equations 1.44 and 1.45 respectively. 

The thermodynamic excess functions also obey the relationships 

in section 1.1, furthermore they are closely related to experimental 
6 

measurements • 

The use of algebraic functions for representing the various 

thermodynamic properties of mixtures has many practical advantages, 

most of these functions are power series expansions in composition 

with coefficients depending upon p and T7. One of these functions 

will be used in this work to represent experimental HE and vE of m m 
the systems here studied. 
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CHfl.PrER 2 

STATIsri'ICAL THER.~.lODYNA.lV1ICS OF FLUIDS 

Introduction 

The relationships between different equilibrium properties 

provided by cbssical thermodynamics are not capable of giving 

insight into the molecular behaviour of fluid systems. Molecul~r 

physics and statistical mechanics have to be used to obtain such 

insight. 

The term 'statistical thermodynamics' has widely been used 

to describe the relationship between statistical mechanics and 

thermodynamics when the main objective is to determine the bulk, 

macroscopic properties of a substance from first principles, i.e., 

the intermolecular forces of the substance. 

This Chapter gives only some of the basic ideas and results of 

statistical thermodynamics since research work on this field has 

expanded so much in the past 20 years that it would be impossible 

and unnecessary to detail all the relavant aspects to the understanding 

of fluids. 

2.1 Intermolecular Forces 

The forces between molecules play an important role in the 

determination of the equilibrium properties of matter. However, our 

knowledge of the exact form in which the molecules interact has 

been restricted until recently to simple molecules, such as the 

inert gases. 

The force of interaction F between a pair of spherically 

symmetrical molecules is a function of the intermolecular separation only 

(r). It is usual to use the potential energy of the system U(r ) (or 

intermolecular pair potential energy function) which is related to F( r) 

by 
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U (r ) '" - /:, F( r ) d r (2.1) 
r 

The potential energy U(r ) is characterized by an attractive 

energy prevailing at laree separations of the molecules and a 

repulsive energy present at small separations. U (r ) of a system 

composed of N molecules may be determined by assuming that the 

energy between the molecules is pairwise additivez 

U(1, •••• ,N) '" P 
i< j=1 

u .. 
~J 

where U . is the potential of intermolecular forces between any 
IJ 

two molecules i and j. Several molecular parameters can be used 

to characterize u .. : (J , the separa tion a t which the energy is zero 
IJ 

(u .. ( (J) = 0); r, the separa tion a t which the energy is a minimum 
IJ m 

«du(r)/dr)r= r = 0); ande:, the depth of the potential well 
m 

(U(r) = -e:). 
m 

The interaction of a pair of molecules can be divided into 

three parts: short-ranGe, intermediate-range and long-range. 

a) Short-range interactions - these are frequently called valence 

forces or chemical forces and arise from the overlap of the closed 

electron clouds when two molecules come close together. The form 

of the short-range interaction is complicated and depends on the specific 

by1,2 
type of interaction being considered. It may be represented 

Us ... A exp(-Br) 

where A and B are constants. 

b) Intermediate-range interactions - these are called second-order 

exchange energies and they are insignificant compared with short and 

long-range energies. Their evaluation is extremely difficult even 
1 

for simple molecules • 

c) Long-range interactions - there are several contributions to 

these interactions: electrostatic, induction, and dispersion 

contributions 0 
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i) Electrostatic contributions these arise from the 

interactions of the permanent moments of the molecllles and are 

angular as well as distance dependent. 

For neutral polar molecules the leading contribution 

corresponds to a dipole-dipole interaction which after averaging 

over all orientations and expansion in powers of 1/k'.r gives 

U(ll-ll)=-e 

ii) Induction contributions 

2 }l~ }l ~ 
3kT r 6 

these arise from the polarization 

of one molecule by others. The interaction between a dipole and an in­

duced dipole is given by 

u. ( II -
~n 

ll. ) 
J.n = -

ll~ tt: b 

6 
r 

where « is the polarizability of molecule b o 

iii) Dispersion contributions these are present in non-

polar as well as in polar molecules and hence explain the long-range 

interactions between inert gas molecules. London3 first shovred that 

the dispersion interactions could be expressed in the form 

+ 
C8 
r8 

+ + ••••• (2.6) 

where the coefficients C may be determined on a q-Uttt tum mechanical 

basis4. 

Theoretical calculations of the thermodynamic properties of 

fluids require the use of model intermolecular potentials given in 

a simple analytic form. Some simple angle-independent potentials 

much used in theoretical calculations include the following: 

hard- sphere 

r< (J 

r~ (J 
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where cr is the hard-sphere diameter. 

square-well 

u(r) = co 

u(r) = -":e: 

u(r) = 0 

r < cr 

cr <r < R cr 

r > R cr 

(2.8) 

This potential represents rigid spheres of diameter cr surrounded 

by an attractive core of strength c' which extends to a distance Rr • 

Lennard-Jones (1-J) n - m 

u ( r) = 4 €. ( (cr / r )n _ (a / r )m) 

where c is the well depth and cr j s that value of r for which u ( r) = O. 

Although several angle-dependent potentials have been proposed 

the Stockmayer potentia15 is frequently used at least for polar molecules 

for which dipole-quadrupole and higher multipoleinteractions are not 
1 important. This potential is given by 

u:,( r ,Qa,Qb'P) = ~t « a/ r) 12_ (cr / r )6) - 01::..11 ...;;;a~lJ:...::;.b g(Qa,Qb'.0) 
3 

r 

where the function g(Qa'Cb,.0) is the angular dependence of the 

dipole-dipole interaction, (Qa,Qb) and .0 are the equatorial and 

azimuthal polar coordinates of the dipoles respectively. 

2.2 The Partition Function 

The calculation of thermodynamic properties using statistical 

mechanics is achieved in a simple and elegant way through the 

partition function. 

In'statistical mechanics a system with fixed temperature, volume 

'and number of particles is modelled by the canonical ensemble6• 

This ensemble is characterized by 

feN) = exp(ooQ U.)/ >=. exp(-e U.) 
t" ~ ~ ~ 

(2.11) 
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This expression gives the probability f (N) of finding the system 

in a state of energy i. For such a system the macroscopic 

equilibrium value of a property P is given by 

p = ~ p. exp(-.aU.)/ L, exp (_CU.) 
1 1 11· 1 

The partition function is given by the following expression 

Z = ~ exp (-au,) 
1 1 

The relation between the partition function Z and the Helmholtz 

function A is 

A = _k"Tr In Z 

from which all the thermodynamic properties of the system may be 

derived using some of the relationships given in Chapter 1. Thus, 

U = k,i (a lnZ/ aT) v 

(2.16) 

p = k'T( a InZ/ a V)T (2.18) 

The partition function can be separated according to the 

different degrees of freedom that contribute to the energy of the 

quantum states of a given system. Hence, one may distinguish 

contributions from translations of the molecules and from rotation, 

vibrations, etc., to give 

Z = z. tZt ln r 

which is valid for nearly spherical molecules but not for molecules 

wi th mul tipoles since their interaction is angle-dependent as 

discussed in the previous section. If relation 2.19 is valid, then 

the thermodynamic properties of mixing are determined only by Ztr" 
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In order to evaluate Z the following assumption is introduced: 

that the translational states are very closely spaced, so that Zt C.'1n 
"r 

be evaluated 'clasically'. The translational hamiltonian Ii for a system 

of N particles in which the potential energy depends only on the 

positions of the molecular centres of mass is given by 

H &: 1 
"2iii 

so that Z is 

(2.20) 

where r· and p. are, respectively, the positions and momenta of 
1 1 

the centres of mass of the molecules. 

This result is valid for not too low temperatures, however, the 

exact temperature at which it is acceptable depends on the 

substance considered? 

The splitting of Ztr into a factor due to the kinetic energy 

and another due to the potential energy takes the form 

and 

) -3N/2 

) 
Q 

Q =...! f 0.. f exp ( -SU ) dr 1 ••• d r 3n 

Nl 

where Q is called the configurational partition function. 

(2.22) 

In deriving equations 2.20 to 2.23 it was assumed that the 

molecules interacted with central forces, where non-central 

interactions are present, U is also a function of the relative 

orientation of the molecules. If U is assumed to be independent of 

the vibrational energy and of the rotational momenta, it is possible 

to account for the orientation effects and equation 2.23 becomes8 
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Q:: 1 
----~N 

Nl n 
were 

Id. ill = n = 4 tr 

which is the integration over the angular co-ordinates of each 

linear molecule. 

ConfigJational thermodynamic functions are obtained by 

replacing Z by ~ in equations 2.14 to 2.18. Only the configultional 

properties depend on the intermolecular forces. 

2.3 The Principle of Corresnonding States 

The Principle of Corresponding States (PCS) w~s originally 

introduced by van der Waals by using reduced p,V,T properties. CPhe 

pes has been widely used for the calculation of properties of fluids 

from the known pIDperties of a few9• This principle is a?plicable to 

the configurational part of the thermodynamic properties by using a 
10 

dimensional analysis technique so that the thermodynamic properties 
11 

may be expressed as universal functions of reduced molecular parameters • 

The requirements that must be satisfied for a system to obey the 

molecular form of the PeS in its simplest form are as followsl 

1) The partition function can be separated into translational and 

internal contributions which are mutually independent (equation 2.19). 

Moreover, only Q is density dependento 

2) Ztr can be treated classically, and Maxwell-Boltzmann statistics 

can be used. 

3) The total potential energy of the system can be expressed as the 

product of an energy parameter and a function of dimensionless 

separation distances between molecular centres.' A pair potential of 
8 

this type may be expressed by 
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u,' (r) = f, ,u (r/g
l
, . .) 

11 11 00 .L 

f" =.f; . ./.f; , 
11 11 00 

h .. - "" s1i 
1J. 

g :: a la 
ii ii 00 

and u is a common reference potential. 
00 

(2.26) 

(2.28) 

If reduced properties are defined in terms of the critical 

constants and molecular parameters of the substance under study 

and of a reference substance as follows 

c 
v1 .. 

where the starred parameters are the reduced properties, then the 

configurational partition function can also be expressed in terms of 

the reduced properties by 

and the expression for the configurational Helmholtz function is 

and consequently, for the pressure 

Finallyf. the expression for the equations of state of a 

substance is given by 
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11 Guggenheim has tested the PCS for several substances 

(including some polyatomic molecules) using different proporties 

for both fluid and solid states and concluded that argon, krypton, 

and xenon conform to the principle, and that nitrocen, oxygen, 

carbon monoxide, and methane also conform with fair accuracy in the 

gaseous and liquid states but not in the solid state. 

2.4 Deyiations from the T,,:o-Parameter PeS 

In view of the large number of substances that do not conform 

to the simple two-parameter PCS discussed in the previous section several 

methods have been proposed to extend the theory to include them. 

Extended PCS to include non-polar polyatomic fluids have been 

developed by introducing more than two reduced parameters. 

12 Riedel proposed the slope of the vapour pressure curve as a 

third parameter. 

13-15 Rowlinson also proposed a third parameter which measures 

the deviation of the reduced vapour pressure equation from that of 

fluids conforming to the two-parameter PCS. He showed that the 

reduced vapour pressure of a fluid with non-central forces is lOVier 

at a given reduced temperature than the corresponding value for 

simple fluids. 

A very extensively used third parameter, also based on vapour 

pressure deviations, is the so called acentric f3ctor proposed by 
Pitzer11 ,16,1 7, which for simple fluids is essentially zero. 

Other third parameters have also been proposed which are not 
18 

directly related to the vapour pressure of the substances. McGlashan 

used for n-a.lkanes the number of carbon atoms in the molecule. 
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Most of the mentioned modifica tions to the simple PCS have 

concentrated on Lhe modification of assLmption 2 discussed in the 

previous section. 

If the simple PCS is extended to include polar substances further 

assumptions will have to be made19 : 

1) Assumption 1 of the simple peS is valid 

2) The symmetric part of the molecular interactions can be 

satisfactorily represented by the Lennard-Jones 12-6 potential 

3) Hydrogen bonding and other specific interactions can be ignored 

4) The molecules can be treated as point di~oles, the dipoles 

being located at the molecular centres. The interaction between 

two molecules is given to a good approximation by equation 2.7 

Thus, the angle-averaged pair potential of like pairs is 

u'(r,T) :.: 4-e:'( ( a'/r)12 - ( a'/r)6) - 1 
6' 
r 

where the first term is the symmetric part of the potential, the second 

arises from dipole-dipole interactions and the third gives the dipole­

induced dipole interaction. 

Before defining reduced parameters it is necessary to set out 

the molecular parameters appearing in 8.36 which qre temperature 

dependent as follows 

and 

where 

-1/6 
a (T) = a 'F 

2 
e: (T) :.:£ IF 

(2.39 ) 
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so that, the reduced paramete~3ure also function of temperature 

as given by 

3 
p* => lUI-

~ 

, T*' = kT V* = V 
0'3 

where the temperature functionality of the molecular parameters has 

been omi~~ted for typographical convenience (i.e., a (T) =0' ,etc.). 

Using the reduced parameters in the configurational partition 

function and assuming pairwise additivity of the potentials the 

reduced equation of state is obtained 

The results obtained using this treatment show that it works 
. . 20 reasonably well at low dens~t~es ,however, the results are poor at 

low temperatures 
19 

Another attempt to generalize the PeS to include polar molecules 

is the treatment of Cookand.Rowlinson 13. They also reduce the angle­

dependent intermolecular potential to a ferm similar to that of simple 

spherical molecules by averaging statistically over all orientations. 

This treatment does not include the polarizability of the molecules, 

however, it retains the secon-order term of the dipole-dipole 

interaction after averaging. 

In a later paper Rowlinson14 tested this treatment using six 

properties of sixteen substances and the results showed good agreement 

between theory and experiment. 

2.5 Perturbation Theories 

Another approach to the study of fluids is the perturbation 

theory. It is assumed that a complicated intermolecular potential can 

be separated into two terms: a simple potential for which the partition 

function is easy to calculate and a perturbing potential. 
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The hard-sphere fluid is an example for which the partition 

function is accurately known so that its potential is used as reference 

(unperturbed potential). 

The use of a hard-sphere potential (expression 2.1) as reference 

is justified since it is assumed that the structure of a simple fluid 

is determined primarily by the hard-core part of the intermolecular 

potential (the repulsive part) and that the majn effect of the 

nonhard-core of' the potential (the attractive part) is to provide 

a uniform background pot.ential tor internal pressure to maintain the 
8 

densi ty). 

This concept is the basis of the equation of state proposed by 

van der Waals in 1313. He assumed that the Helmholtz function of a 

fluid A VIas given by the Helmholtz function of the hard-sphere gas Ao 

minus a term due to the b9ckground potential field, Thus, 

A ::: A - Npa . 0 

Furthermore, since A was not known, he approximated A to be o 0 

the free energy of a perfect gas with the total volume V replaced by a 

'free volume' V
f

• Therefore, his famous equation is expressed as 

p ::: NkT 

V-Nb 

The concept of' evaluating the configurational partition function 

Q by a perturbation technique was first suggested by Peierls
21

• 

Zwanzig22 was the first to give a high temperature perturbation theory 

by assuming that the intermolecular potential of a pair of molecules could 

be written as 

u(r) = it (r) + E;f(r) o 

where uo(r) is the hard sphere potential and €f(r) is the perturbation 

potentialo 



33 

The perturbation theory is obtained by introducing li(r) into Q and 

expanding in powers of (l d'(r). This series convcrees rapidly at high 

temperatures, that is if ~E:f(r) is small. 

The Helmholtz function A of the system is given by 

A = A + 2N p7T /" r 2£.f(r) g (r) dr 
o 0 

o 

where A is the hard-sphere energy, g (r) is the hard-sphere 
o 0 

radial distribution function (RDF) which measures the probability 

of finding Ii molecule at a distance r from a given one. This first­

order theory may be used to derive the vnn der '\;aa1s' equution of state. 

The results obt~ined from Zwan~ig's method are not particularly 

satisfactory even at high temperatures partly because they are 

dependent on the value of the hard-sphere diametercr, the determination 

of which is not included in the method. Zwanzig's theory assumes that 

the repulsive region of the potential is unimportant within cr, but this 

is not entirely satisfactory for molecules with steeply rising 

repulsive potentials (i.e., they do not have hard-cores). 

23 Barker and Henderson proposed a perturbation theory which 

introduces two parameters, a:. and y', into the potential in such a way 

that when the two parameters are equal to zero a hard-sphere potential 

of diameter cr is reached, and when both parameters are equal to 

unity the original potential is reached. 

'switch off' the perturbation potential. 

one 
This enables~to gradually 

Within the effective hard 

core of the molecules the parameter a: is used to control the 'steepness' 

of the potential, whilst y is used to control the effect of the 

attractive wello 

As for the specification of cr , Barker and Henderson chose 

cr = - Ig (1 + exp 13 u (r » dr 
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which gives the diameter as function of temperature. 

The results of the equation of state of a square-viell fluid 

(expression 2.8) using this perturbation tec}mique agree very well 
24 

with the Monte Carlo calculations of Rotenberg at all temperatures 

at liquid densities. 

The proeress that has been made in applying perturbation 

theries to non-polar molecules has now been extended to the case 

of polar molecules which as discussed in section 2.1 interact 

with long-range forces. 

The treatments to be discussed below have in principle been 

mentioned in the section devoted to deviations from the two-parameter 

PCS, however, some further details will be given. 

The intermolecular pair potential of particles interacting 

with long-range forces can be separated as previously into a central 

(isotropic) and a non-central (anisotropic) part (formally this 

separation of the potential can also be carried out for molecular fluids 

which interact with non-central forces)8,25
1 

where the isotropic part ti is defined as the un\':eighted average o 
of u over the orient:} tions W 1 and w 2 

with n = 4 ~ for linear molecules to which this discussion is 

restricted. 

The isotropiC part can be represented as mentioned before by a 

hard-sphere or a L-J potential. The anisotropic part u1 can be 
1 -26 

expressed in terms of spherical harmonics; (which can include 

multipolar, induction or disperSion interactions at long-range, and 

overlap interactions at short-range) 
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Xl 1 {r )Sl ( w. )Sl (0'2) 
2 2m 1m '1 2

m 

where S1.m are surface harmonics (based on the associated Legendre 
1 

functions) and X depends only on the distances between the molecular 

centres r. Hence, the total configurational potential enerGY u is 

given by (assuming pairwis~ additivity) 

N 

U = E 
. i< j =1 

.N 
U (r) + E 

o :i< j =1 
, (2.50) 

In order to calculate the extra free energy that arises from 

the orientation dependent potential it is necessary to expand the 

Helmholtz function A using U in the configurational partition function 

Q, which has the form (equation 2.24) 

Q = 1 
.N 

tU n 

(2.51 ) 

Substituting 2.50 into 2.51 and expanding exp (..e~) in 

powers of u1 to have an energy expansion as 

The first order (erm A1 vanishes since the integral of U1 over 

angular co-ordinates is zero ( < u1 (r) >w· f 2 = 0, see equations 804'( 

and 8.48), so that the first Don-vanishing term is of second order 

and given as 

X 
100 

E 
m 

X2l 1 (r) dr1dr2 
1 2m 

where n(h) is the adequate distribution function and Pl(X) is the 

Legendre polynomial. This result has also been given in terms of 

distribution functions27 ,28. 
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This perturb8tion treatment is valid for small anisotropic 

interaction energies compared with kT and has been tested against 
. . 30 . 31 

Monte Carlo calculatlons and experlment • 

Several modifications have been proposed to take account 

of larger perturbations, including effective central potentials29 , 

non-spherical reference potentials
31

, and the Pade approximant32• 

The last method gives A as 

which is equivalent to the assumption of a geometric series for A. 

When comparison of the Pade approximation results is carried out with 

other theories it is concluded that the Pade results are in best 

agreement with the Monte Carlo results27. The reason for this is 

not completely understood as ~et. 
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CHA.PrE~R .3. 

STATISTICAL 'l'EERl',iCDYNiv.1ICS 01" mIXrl'UHES 

Introduction 

It is evident that the theories used to describe the properties 

of pure fluids OVle much to the progress made in the study of simple 

systems such as hard-sphere, square-well and Lennard-Jones fluids. 

On the other hand the development of theories of mixtures has 

been influenciated by the results for pure fluids. This does not 

mean that the results for the later can easily be extended to 

mixtures, however, introducing further concepts suoh an extension is 

possible. 

This Chapter will be concerned mainly with some theories of 

mixtures in which the the7IDodynamic properties are obtained from those 

of a reference substance by application of the Principle of 

Corresponding States (PCS). This is also extended to cases in 

which the properties of two or more pure fluids can be combined 

to predict the properties of a mixture. 

3.1 Random Mixtures 

The concept of random mixtures RM was developed by Prigogine 
1,2 3,4 S 5 6 and co-workers , Brown , cott and Salsburg and his colleagues • 

This theory assumes that the probability of finding a molecule of one 

species at a given distance with respect to any other molecule taken 

as reference is the same for all species of the mixture, that is it is 

irrespective of the molecular species concerned. 

Let the configurational partition function ~ of a binary mixture 

of sperical molecules of species ~ and species y be given by 



where 

I:~. = .N 
~ ~ 
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In a pure liquid the total potential energy U is a function 

only of the positions and not of what may be called assignment of the 

molecules (since they are indistinguishable molecules). For a 

mixture, U does depend on the assignments of the different molecular 

species, this means that in a mixture we have not only like 

interactions (U and U ) but also unlike interactions (U ). = n ~ 

The RbI concept simplifies the calculation of Q by replacing 

U by its average over the Nl possible assignments of the molecules 

to the N positions of each confjguration. This average, <U>, may 

be regarded as the sum over all molecules of an averaeed pair 

potential u(r) ,we then have a system in which <U> is aeain a 

function only of the intermolecular distances. If the distribution 

of the molecules in the mixture is random then the probability of 

finding a molecule of species ac: at one position is X (=N In) and 
ClC a: 

similarly X for species y • 
y 

It follows that 

<U>. = t < U (r» 
i> j 

and 

\1 (r) = < U (r » = t 1: X X u ( r ) x' a: y a:: y ocy 

The substitution of 3.2 into 3. 1 leads to an expression for 

the configurational Helmholtz function A of a RM of composition X, 

that is 

A(V,T,X) = AxeV,T) + NkT ~Xa: In Xa: 

and 
-~. ---.•. ---

SliEFflELD 
UNiVERSITY 
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A (V,T) = - kTln~ 
x 

= - kTln ( (1/Nl)! ••• 

where A (V, 'rhs the configurational Helmholtz function of an 
x 

equal number of molecules or the 'equivalent substance' (introduced 

by the average to U in 3.2) and the second term 01' the riGht-hand 

side of equation 3.4 is the ideal free enere;y of mixing. 

The Rr.'l. theory gives good resul ts compared with experiment 

for mixtures of molecules of the same size which differ only in the 

strengths of their attractive forces
8

• However, the theory ignores 

the ordering which takes place in mixtures of molecules of differing 

sizes. 

Leland, ROVTlinson and Sather9 have analysed in detail these 

features of the RM theory. 

The use of the above results is simplified by assuming that 

the intermolecular potential of the equivalent substance is conformal 

with the pair potentials of the real mixture, otherwise the 

thermodynamic properties of the equivalent substance could not be 

calculated using equation 3.5 by the PeS. 

It is supposed that the thermodynamic properties of a reference 

system are known and its pair potential is characterized by 

Then since ux(r) and u (r) are assumed to be conformal with 
!ICy 

u (r), i.e. 
00 

and 

u (r) = e: F(r/ a ) x x x 

(r) = & 
cr.y F( r/a ) 

tty 
(3.8) 
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The relation with the reference potential can be given by 

(see equation 2.26) . 

U (I') = f u (rig) x x 00 x 

where f and g were defined by equation 2.27. 

This means that having conformal potentials, the properties 

of the equivalent substance and those of the pure components may then 

be obtained from those of the reference substance using the PCS. 

It has been proved by Brown3 that this extension of the peS 

for mixtures can be made only for intermolecular potentials of the 

Lennard-Jones type with the further restriction that indices m,n must 

each be the same for all interactions. Thus, we may write for the 

equivalent substance 

where 

and 

C = E E XX C 
x ,0: Y CI: Y "'Y 

Dx = Eo: E X X D 
y~ Y o:y 

The Helmholtz and Gibbs functions for the equivalent substance 

can be written as a function of the reference substance according 

to the peS (see equation 2.33) 

A (V,T) = f A (V/h ,T/f ) - 3NkT In g x xo x x x 

G (p,T) = f G (ph!f ,T/f ) - 3NkT In g x xo x x x 



44 

E The excess Gibbs function G may be expressed as a function 

of G as follows 
x 

G
E 

(p,T,X) = Gx(p,'l') - r Xcx.;Ga: (p,T) 
a: 

where 

The other excess properties may be obtained by differentiation, 

as shown in Chapter 1. 

The present treatment has been used by Leland, Rowlinson and Sather 

who found that using a 12-6 potential in 3.10 there is a large contrib­

ution to the free energy of mixtures of molecules of different sizes, 

not in accordance with experimental results. 

In order to improve the RM theory the assumption of equaL, 

probability of configuration of the molecules in the mixture has to 
be removed. Prigogine2, Brown3,4 and Scott5 proposed that the 

properties of the mixture could be calculated from those of a 'mixture 

of two equivalent components' (if the mixture was binary) the properties 

of which may be calct~lated from that of a reference system using 

again the PCS. This approach has been called the average potential model 

!PM by Prigogine and co-workers, since it uses the ,concept of an 

average potential field being experienced by a given molecule due to its 

surroundings. 

Although this new treatment represents a correction to the RM 

to ta,ke account of the ordering effects of size differences of 

molecules in a mixture it still gives large contributions to the 

free energy of mixing when the molecules differ in size. 

10 
From the extensive calculations of Bellemans et al the following 

conclusions can be drawn when comparing the ~1 and the APM: both theories 

predict that aE 
and HE are always positive whereas SE and VB may be 

either positive or neg~tive for mixtures whose unlike molecular 

parameters are given by the Lorentz-Berthelot rules, namely 
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1 

E 12 = ~ 11 Ei22f::i' 

E E 
The RIll gives larger values of' G and H and the neg~tive 

domain of the excess functions is somewhat smaller than for 

the APro. These results acree qualitatively with experamentally observed 

behaviour for simple mixtures (e. g. Kr + Xc, Ar + Kr , Ar + C1I
4

, etc.). 

3.2 van der VI'aals lone and two-fluid Theories 

The prediction of the RM theory that the excess properties 

do not necessarily all have the same sign was regarded as a great 

step towards the prediction of properties of mixtures. The 

refinement of this theory produced the APr.'l which predicts more 

accurate results. However, the results of these theories for a 

hard-sphere mixture predict a positive infinite value of G
E 

(this is inherent in the assumption of random mixing in this case) 

in disagreement with computer calculations
11 

which show that mixture 

of molecules that differ only in size have small and neGative values 

of GE and of yE (in the liquid state). These results were confirmed 

by LebowitZ ' s
12 

work using the Percus-Yerick theory, furthermore the 

relevance of' such results to pure fluids (and also to mixtures) was 

accepted after recognition that the structure of real fluids at 

high densities is determined primarily by the repulsive forces 

between the molecules (as discussed in section 2.4). 

The contraction that occurs on mixing hard spheres may be 

thought as the result of better packing when the hard spheres have 

different diameters, i.e., small spheres tend to occupy gaps between 

the larger ones, which do not occur in a pure fluid. 

In the case of real mixtur~there is also a high degree of size­

ordering which the fua or the APM does not account for successfully. 

Leland and his colleagues9,1 3 proposed an alternative one-fluid 

approximation which provides a more accurate prescription for the size 

- dependence part of the equivalent substance. This prescfiption was 

originally suggested by van'oer' Wall," in order to extend his equatjon 

of state to mixtures. He assumed that for mixtures the p:,lrameters a 
x 

and bx were quadratic sums of ~a:y ard ~O:Y' 



a 
x 

46 

b =EtXX b 
x cc y cc y "'y 

In terms of the parameters f and h this is given by 

where 

f = (E E X X f h. )/h 
x o.:y cr:y "'Y"'Y x 

hx=tI:XX 
0: Y tr. Y 

h 
(ICy 

Relations 3.19 and 3.20 eive the name of van der Waals' 

on-fluid to this new approximation. However, this does not mean 

that the van der Vlaals eq,uation of state is linRed to these 

prescriptions. 

The Helmholtz and Gibbs functions, A and G respectively, for 

the mixture can be obtained by substituting 3.19 and 3.20 in 3.13 and 

3. 14. 

The one-fluid van der Waals approximation gives more rJ\istic 

results of GE meaning that it accounts for size-ordering effects 

in the mixtures. However, there is a second cause which makes 

molecules depart from the concept of randomness, this is due to 

differences in intermolecular energies. 

non-
In order to account for this 'second cause of~randomness' 

the two-fluid van der Waals approximation is an obvious extension
17 

to the one-fluid as the APM was to the RA~. 

The two-fluid van der Waals approximation uses the following 

relations 

(3.21 ) 

where 
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Summarizing the conclusions of Leland et a114 : the t?ro-fluid 

van der Waals approximation leads to results similar to those of the 

one-fluid van der Waals approximation for molecules that differ only 

in size, moreover it also leads to the same degree of order in 

mixtures whose components differ only in energy as the APM. 

3.3 Perturbation Theories 

Some of the perturbation theories discussed in section 2.7 for 

pure fluids have been extended to mixtures, e.g. the Barker-Henderson 

theory15 for non-polar molecules and the perturbation theory for 
16 

polar fluids • 

In the Barker-Henderson theory for pure fluids the Helmholtz 

function A is expanded about that of a hard-sphere reference fluid. 

Leonard et a111 extended this theory to mixtures. 

This extension may be made in two ways: one may take a single­

component hard-sphere fluid as the reference (or unperturbed) fluid 

or a mixture of hard-spheres. 

Consider the former approach. A modified potential function 

~ij (R) is defined as 

exp (-~ije(R)}= (1-H(a + Z - ri.»O exp (-B'\j(a + Z» 
+ H(a + Z - r .. 1 lJ 
+ H(R -a .. )(exp(-'Ih u .. (R» - 1) 

lJ lJ 

where z= (R - a )/~, a is the hard-s phere diame ter, «:, is a parameter 

that varies the steepness of the modified potential in the repulsive 

region, y varies the depth of the potential in the attractive region 

and H(x) is the Heaviside step function defined by 

H(x) = 0, 

H(X) = 1, 

X< 0 

X> 0 
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As before, for a: = y = 0, the modified potential 'i' .. (R) 
~J 

becomes the hard-spheres potential of diameter (1 , for or = y = 1 J 

If .. (R) is identical to the pair potentials in the mixture u .. (R). 
~J 1J 

The Helmholtz function A of a system with If ij (R) is 

expanded as a Taylor series in powers of 0: ond y • The first 

order result is 

(A-A )/NkT = E X. ln X. - ac TIP ic; «(1) (0 - E X.X.o .. ) 
o 1.' 1 ~ 0 .. 1 J lJ 

1J 
. 2 

+ 2y TIS EX.X. fa> u .. (R) g (R)R dR (3.25) 
., ~ J. 1.J 0 
1J r ij 

where the subscript zero is used to denote properties of the hard­

sphere reference fluid and 

0 .. -
J.J 

r .. 
1.J 

f 
o 

Onlyo remains unspecified and may therefore be chosen to 

annul the term in u: on the right-hand side of 3.25, i.e. 

a = L X.X ~ .. , after which the original potential is recovered by 
.• J. J lJ 
lJ 

setting 'cx = y = 1. 

The second orde~ terms of A involve integrals not only over the 

pair-distribution function of the reference system but also over the 

three and four-body distribution functions. 

The results from this approach have been applied to mixtures 
18 

of Lennard-Jones molecules ,however, it has been found that it 

doe~ not yield satisfactory results. In order to deal with such 

mixtures the use of a hard-sphere mixture as reference is preferable. 

This is done by replacine ci., y and a by ct .•• , y .. and 0.. in the 
l.J lJ l.J 

modified potential function (i.e. equation 3.23) and expanding A in 

powers of ci ij and y .. 0 lJ 

A complete comparison of the results of this second approach with 

computer calculations has been carried out by Henderson and Leonard18• 
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The perturbation theory of polar fluids discussed in the 

previous Chapter was extended to mixtures by Gubbins and his 
19-21 

colleagues • 

Twu et a119 made such an extension using for the isotropic part of 

the intermolecular pair potential (see equaUon 8.47) II the Lennard-o 
Jones 12,6 potential (so that they were able to calculate the 

o 
distribution function of the L-J mixture g from molecular dynamics 

... y 
data) and a liquid mixture of A + K as the reference. fluid. r r 

Using a second-order perturbation expansion for A (and its 

contributions to the configurational parts of p,U,S and C ) they v 
evaluated the effect of anisotropic intermolecular forces, dipoles, 

quadrupoles, octopoles, and overlapping, on the excess properties 
E-~ E E E, 

(e.g. G , r, S , 11 and Cv '. They concluded that 'even relatively 

weak anisotropic forces have an appreciable effect on the 

thermodynamic excess properties'. 

They also carried out a comparison of theory and experiment 

for Ar + N2, A~ + CH4 and CH
4 

+ CF4 by assuming the intermolecular 

forces involved. Satisfactory agreement was found. 

In order to study mixtures with stronger anisotropic forces 

than those mentioned in reference 19 Flytzani-Stephanopoulos et a120 

retained also the third order term in the expansion of A, but they used 

this time the Pade approximant to the series since it has been proved 
22 

to give good results even for large dipole or quadrY,pole moments • 

They used the L-J 12,6 potential as the isotropic part of the 

potential but two types of reference fluids were used :(1) a liquid 

mixture of A~ + ~, and (2) an ideal mixture whose components have 

the potential parameters of Ar. However, they found that the qualitative 

trend of results was similar for both cases. 
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The anisotropic forces studied have large effects on the 

excess properties of mixtures and furthermore phenomena such as 

azeotropy and liquid-liquid phase equilibria were shown to occur when 

strong anisotropic forces are presento 
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CHAPrER 4 

CRITICAL PHENOMENA 

Introduction 

In order to carry out a thermodynamic study of a pure substance 

covering its whole liquid range one has to start from the 

triple point and to finish at the gas - liquid critical point of such 

a substance. The triple point marks the natural low temperature limit 

of existence of the liquid state and the gas - liquid critical. 

point determines the upper limit. 

The first evidence for the existence of a fas - liquid 

critical point was given by Caignard de la Tour in 1822. A better 

understanding of the gas - liquid transition was obtained with 
2 

T. Andrews' work on carbon dioxide in 1869. Andrews was the first 

to apply the term 'critical point' to the phenomenon associated 

with the gas - liquid transition. 

The study of the critical region in the period 1876-1914 was 

extended by the theoretical and experimental work of van der Waals 

and his colleagues at the Universities of Amsterdam and Leiden. 
( 

After nearly 157 years of study of gas-liquid and other critical 

phenomena, both experimental and theoretical aspects of the field 

remain fascinating and areas of active research. 

4. 1 Themodynamics of the Gas - Liquid Critical Point:Pure Substances 

Classical thermodynamics defines the gas-liquid critical point 

as the temperature at which the coexistent liquid and vapour phases 

become identical. Not only do the densities of the two phases become 

identical but also all other physical properties which serve to 
ana. tone 

distinguish between them (e.go refractive indices),~surface tension 
aha the. 

of the liquid phase,~latent heat of vaporization go to 2.er-o. 

turn to page. 55 
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The middle port ion of the curve at T < TC (i. e. MON) is, however, 

concave downwards which correspcn3s to a positive value of (dp / CW)T' 
2 / 2 or to a negative value of Ca A. av )T' meaning a region of unstable 

states (i.e. that they are never realizable). 

It is then clear that A is not a continuous differentiable 

function of V at the bubble (L) and dew (V) points. Nevertheless, 

if the stable regions of A at T< T
C 

(namely L'LM and V'VN) could 

be represented by the same function, it is possible to show on 

a p-V projection of the p-V-T surface, such as the one given in 

figure 4.2(b), that the curve L'LMONVV' is equivalent to the 

same curve on the A-V projection. 

Thus far, the analysis of the behaviour of A has been given 

above and below a gas - liquid critical point. For criticality to 

occur the metastable and unstable portions of the A-V curve should 

coincide at a point (marked C) since the volume of the coexisting 

phases (liquid and vapour) beccme equal and the relations 4.2 are satisfied. 

4. 2 Critical Exponents of Fluids 

It has been known for a long time that the use of equations 

of state assuming an ~nalytic function of volume and temperature 

fail to describe the real behaviour at and near the critical point. 

The description of the ways in which(Vg-V
l

), ~ p/aV)4' (T/Cp), 

etc. become zero as the critical point is approached on the assumption 

that the Helmholtz function A for a one component system can be 

expanded in a Taylor series about the critical point (in terms of 
c 

the difference in temperature T-T and the difference in molar 

volume V_VC) remains erroneous both conceptually and quantitatively. 

Some examples illustrating the disagreement between the predictions 

obtained by using A as an analytic function of T and V and the 

experimental observations are that the coexistence curve (T against 

p) is not parabolic but more nearly cubic, the critical isotherm 

(p against p ) is of higher order than cubic, and that the molar heat 

capacity at constant volume Cv diverges at the critical point instead 

of remaining finite. 
turn to "page. 56 
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Only two variables of the set p-V-T are necessary to dencribe 

the phase behaviour of a pure substance. Figure 4.1 shows 

schematically the p-T, p-V and T-V projections together with the 

p-V-T surface of a pure substance. 

If one considers the p-V projection it is possible to see 

that at sufficiently high temperatures the isotherms are continuous curves 

whereas at low temperatures they consist of three sections. The 

isotherm marked C separates both kinds of isotherms and it is 

called ~the critical isotherm'. The critical point of a pure 

substance falls on this isotherm and it is characterized by 

or since (aA/av)T = -p, the equivalent conditions are 

The relations 402 can also be obtained using the following 
concepts 3,4, the thermodynamic conditions for liquid and vapour 

to be in equilibrium can be obtained from a plot of the Helmholtz 

function A against volume V. A schematic plot of A against V at 

different temperatur;s is given in figure 4.2(a). Since (aA/av)T • 
_p, then the slope of each curve at any point is equal to -po 

c At T >T the slope of the A-V curve decreases as V increases 

(the pressure, on the other hand decreases) meaning that the system is 

stable for any value of ,V. At T <T
c 

liquid is in equiblirium with 

its vapour so that the pressure in both phases is equal, consequently 

the points L (liquid phase) and V (vapour phase) are connected 

by a common tangent (i.e. a straight line). 

Now, the dashed portions of the curve 1M and VN represent 

metastable states, and since this part of the curve is concave 

upwards then 

turn to -page 5 ~ 



The failure of the analytic theories of the critical point has 

given rise to the study of critical phenomena by using a Get of indices, 

called critical po:int indices or exponents, which describe the behavi.our 

of various properties of interest near the critical point. 

The definition of the exponent E governing the behaviour of 
c 

a function Y(V,T) as it changes with (T-T ) is given by 

E! a lim (In Y(V,T)/ln ! (T _ TC
)) 

T ... (TC)! 

where the limit is often taken along the path Vc.Vc , and, in 
+ -. general, E and E wlll be different. The index E defines the 

rate of a;proach of Y to zero, or to infinity if E is negative. 

The exponent definitions are summarized in table 4.1. 

Precise values of the critical exponents for fluids are 

difficult to obtain partly because no statistical - mechanical 

theory is reliable enough to describe the critical region accurately 

and partly because they are difficult to determine from experimental 

measurements. 

Considerations of thermodynamic stability leads to the deduction 
6-8 of some inequalities between the critical exponents ,of which 

the most important are 

0: + 2 S' + y - >. 2 
21" 

Y l' - 8 (.0 - 1) ~ 0 

2 (0 +1)/(0 -1)~ 2 0: 

Although the predicted value of the critical exponents are 

different depending on the theory used for their calculation, 

there is similarity among the values obtained experimentally9 

(they are independent of the nature of the fluid to within experim­

ental uncertainty) suggesting some kind of universality. 
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All the results obtained for one component systemo can be 

extended to the study of the critical point of two-component systems. 

For mixtures there is no real distinction in the thermodynamic 

discription between a gas-liquids a liquid-lirJ.uid, and a gas-gas 

critical point lO, however, most of the precise work has been done 

on systems at which p is essentially zero (i.e. liquid-liquid 

critical points). 

The behaviour of a two-component system can be obtained from 

the idea that the Gibb$ function G, a function of temperature T, and 

concent.ration X, at constant pressure p of the mixture in analogous 

to A(V,T) of a one-component system. They are analogous jn the 

sense that they undergo similar behaviour in the critical region, 

and tbey are expected to tend to infinity or zero in a similar way. 

Table 4.2 gives a list of some analogous quantities between 

one and two-component systems. The critical indices already mentioned 

above now refer to the properties of the mixture as shown in table 

A review by R. L. Scott9 on critical exponents of binary 

mixtures has recently appeared giving a complete discussion of 

the theory and experimental met~ds to determine critical point 

exponents. 

4.3 Thermodynamics of Criticality in Binary Mixtures: Gas - Liguid 

It should be expected that the liquid range of a two-component 

system endS at a gas-liquid critical point as happens in the case of 

a one-component system. This is so, but the critical point of a binary 

mixture, although physically similar to that of a pure substance, 

is governed by quite different therm~amic considerations. 

Before describing features and phenomena which occur in 

mixtures and which do not occur in pure substances it is desirable to 

set out the thermodynamic conditions that describe a critical point 

in mixturES. 
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A classical description of the phase equilibria in mixtures 

derives from the assumption that the Gibbs function of the'mix1.ure 

is an analytic function of the mole fraction X of the components of 

the mixture and T at constant p at and near the critical point of 

the mixture. 

The condition of mechanical stability plays an essential 

role in the description of the critical point of pure substances. 

For a mixture one must also have to consider its stability with 

respect to possible local changes of composition (i.e. material 

or diffusional stability). According to the criteria of material 

stability3, the conditions for a critical point in a binary 

mixture are given by 

('lG/-&<2)T,P .. 0 

(a3G/-&<3) '" 0 T,p 

Expressions 409 to 4. 11 are equivalent to derivatives of the 
chemical potential 3,11 of any of the components of the mixture ~ 

~ 

with respect to composition giving perhaps a more familiar definition 

of a critical point iA binary mixtures. 

It is interesting to note that the conditions 4.9 and 4.10 

apply equally to gas-liquid and liquid-liquid critical phenomena. 

In fact, both phenomena are described by the same thermodynamic 

equations as will be seen later. 

In writing equations 4.9 and 4. 10 one is presuming mechanical 

stability at the critical pOint. This assumption is not necessary 

when using the Helmholtz function A as a function of T,V and X, to 

describe the behaviour of the mixture. 
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Two phases 0: and 13 (here, liquid and vapour) will be in 

equilibrium at constant T if 

cr B 
A =A (4.12) v v 

.a; AS (4. 13 ) k = x x 

a: a: a: a: a: (3 e s B e 
A -VA - X A = A - VA - X A (4. 11) v x v x 

where in order to simplify the notation the derivatives of A 

wi th re spect to volunle @ AI CN)Tand composition $ AI ax )~ave 
been substituted by Av and Ax respectively. 

The mixture will be in material or diffusional stability if 

the determinant 

A xv 

A A xv 2x 

is positive (i. eo A2x and A2v should be positive)and also that 

(4.16) 

which is zero if the mixture becomes either mechanically or 

materially unstable (however, only this last limit is reached 
12 

as discussed by Rowlinson ). 

It is convenient to explore the limits of stability in a 

mixture by using a representation similar to that used for pure 

substances (i.e. figure 4.2). Figure 4.3 shows the V-X projection 

of a p-V-X surfaceo 

The curve L is the co-existing or saturation curve showing the 

equilibrium volumes of the gas and liquid phases (vB and Vl respect­

ively). The curve M is the boundary for states of the system which 
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are materially unstable (it separates unstable states from stable 

or metastable states), consequently this curve is described by 

relations 4.9 and 4.10 0 

C~ves L (called connodar or binodal curve) and M (called 

spinodal curve) have a common tangent point, the critical point (C) 

of the mixture. 

Curve N is the boundary for mechanical stability and it is 

defined by 

(ap/av)T,X • 0 

This curve lies completely inside curve M and plays no role 

in the determination of the critical point of binary mixtures (except 

in the particular case which will be described later). Thus the 

use of (G,p,X) ~t constant temperature or (G,T,X) at constant 

pressure is justified for describing the critical point of mixtures 

as done at the beginning of this section, making use of the conditions 

fpr material stability. 

When giving the conditions of criticality in terms of A13, 

the critical point may be thermodynamically stable, metastable, or 

unstable with respect to separation into two or more phases at 

the same temperature and pressure. 

The vapour-liquid equilibrium of a binary mixture can be 

represented graphically in a p-T-X surface , such as figure 4.4a. 

The p-T-X surface shows the dew-point and the bubble-point surfaces, 

together with the vapour pressures of the two pure components I and 

II which end at the critical point (C.P.l and C.P.II respectively) 

and the so-called locus of critical points (C.L.) of the mixture. 

Some phenomena which occur in the critical region of binary 

mixtures and which do not occur in pure substances are better discussed 

with a p-T projection, similar to that in figure 4.4b which shows 



61 

schematically the different p-'r loops at constant composition 

expected for binary mixtures. The critical point (C) represents in 

the three loops shown, the maximum temperature and pressure at 

which liquid and vapour can coexist together, however., it is not 

necessarily the maximum pressure or temperature alone at which vapour­

liquid exists. 

By far the most striking phenomenon observed in the critical 

region of binary mixtures is the so-called retrograde condensation. 
Full description of this phenomenon has been given ,,12,1, together 

with its explanation
14

• 

The p-T critical locus of binary mixtures may attain diverse 

shapes depending on the molecular size, molecular structure and 
14 chemical nature of their components • The critical locus curve 

may also be continuous or no between the critical points of the 
10 

components • 

Figure 4.5 shows some examples of continuous critical loci 

on a p-T projection. Critical locus of type 1 shows a maximum in 

pressure, mixtures of members of an homologous series, like n-alkanes, 

that differ in relative size have this kind of behaviour14• Type 

2 is monotonic, since the pressures of the critical locus are 

between the critical pressures of the pure components, e.g. CO2+ 

propane, n-hexane + n-octane. Type 3 represents a straight line 

attributable to mixture whose components differ only slightly in 

size, shape and polarity, e.g. benzene + toluene, cyclohexane + 
methylcyclohexane. Loci 4 and 5 exhibit a minimum in the temperature 

(with respect to the critical temperature of the pure SUbstances) 

either with a pressure maximum, e.g. CO2 + N20 (type 5) or without 

it, e.g. acetone + n-hexane (type 4). Type 6 has a temperature 

maximum, e.g. C~ OC~ + OOl, CH3OC2~ + 802' 

404 Azeotropy 

An azeotrope is formed in a mixture when its liquid and 

vapour in equilibrium have the same composition, hence the mixture 

distills unchanged o 
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At conditions of p and T below the critical point of a binary 

mixture an azeotrope is characterized by having its vapour pressure 

(at constant T) and its boiling point (at const~nt p) as maxima or 

minima with respect to changes in composition. A positive azeotrope 

has a maximum vapour pressure and a minimum boiling point, the 

converse describes a negative azeotrope o 

Figure 4.6 shows the p-T-X surface and the V-X projection 

for a mixture that forms a positive azeotrope (positive azeotropes 

are more common than negative ones as can be seen in the list 

given by HOrSley15). The dashed line drawn in the p-T-X surface 

marks the points of maximum pressure on the isothermal loops or the 

points of minimum temperature on the isobaric loops, determining 

the locus of azeotropyo 

The V-X diagram shows that the tie line Pas joins two phases 

(liquid and vapour) having the same composition Xas at the azeotropic 

point 0 

The existence of systems which form azeotropes at all 

temperatures between the freezing point and the gas-liquid critical 

point (absolute azeotropy) and of systems whose azeotropic temperature 

range are bounded to certain range of composition (limited azeotropy) 
16 

was first discussed by M. Lecat • 

The study of azeotropes in the gas-liquid critical region of 

binary mixtures presents another interesting phenomenon which 

deserves attentiono 

It was shown in the preceding section(and in figure 4.3) that the 

critical point of a binary mixture is not generally at the extremum 

of the V-X curve, as the tie lines do not connect phases of equal 

~omposition. 

A schematic diagram of the V-X and p-X projections of the p-V-X 

surface is given in figure 407. The p-X plane shows that the 
pressure (pC) at the critical point (C) is an extremum (usually a 



maximum). This is so, since the tie lines (isobars, fjgure 4.7b) 

coalesce at the critical point (bubble and dew pressures becomp identical). 

Furthermore, the bubble point pressure is always hieher than the dew 

point pressure for a given composition (figure 4.7 a and b). 'Phese two 

observations require that (ap/aX)... ,at the bubble and dew point lines, 
1,(1 

approach zero at the critical point, where (ap/aX)Tc,Vc is zero and 

(av/ax)Tc c is infinite. Hence the critical point is now both . ,p 
materially and mechanically unstable since (compare with 4.17) 

and the mixture behaves as a pure substance, meaning that azeotropy exists 

at the critical point of such mixture. 

The appearance of a minimum temperature point on a TC_X 

projection is generally associated with positive critical azeotropy. 

This is not a thermodynamic condition for 

existence of azeotropy in the critical region since it has been 

shown17 that a critical azeotrope may exist in certain systems 

without a minimum temperature point on the TC_X projection. 

Figures 4.8 is a sketch of some types of azeotropic curves 

that can be distinguished according to their shape (there are, 

of course, more types of curves including those showing negative 

azeotropy) • 

The description of the pattern of behaviour in the critical 

region, for binary systems composed of a common component and the 

members of an homologous series of compounds will be given when 

discussing the results obtained for the gas-liquid critical constants 

of ethanenitrile + n-alkane mixtures. 

405 Thermodynamics of Criticality in Binary Mixtures: Liquid-Liquid 

The practical importance of liquid-liquid equilibria is as 

obvious as that for gas-liquid equilibria, however, a comprehensive 

study of the former was developed later than for the second case of 

equilibria. 



Although the thermodynamic conditions to describe gas-liquid 

equilibria of binary mixtures also apply to liquid-liquid equilibria 

it is necessary to point out some of the ch;racteristics encountered 

when dealing with the latter. 

A liquid-liquid critical point occurs when two liquid 

phases become identical. The temperature at which this occurs 

is called critical solution temperature (CS'J.') or consolute temperatureo 

A 'liquid-liquid' mixture (and any other binary mixture) 

to be stable and not to separate into two phases has to satisfy the 

following condition 

o 

this means, that in a plot of G against X at constant p and T the 

curve so obtained has to be everywhere concave upwards. The 

geometrical representation of a G - X plot is given schematically in 

figure 4.9 at different. temperatures to illustrate the behaviour of 
the mixture going from a two-phase region to an homogeneous phase 3,18. 

The uppermost curve represents the existence of a complete range 

of homogeneous mixtures, the temperature at which a curve like 

this is obtained is the CST. On the other hand, the lower curves 

represent regions of limited miscibility. 

The value of G along the dashed (metastable)or dotted (unstable) 

portions of the curves at T<CST may be lowered by separating the 

system into two phases (~ands ) with compositions X~ and X~. If 
ex: S 

a common tangent joined X and X then the conditions of phase 

stability are satisfied, namely 

or equivalently 

cr: lJ.9 
112 = 2 (4.21 ) 



ex: 8 
A.t the CST: X = X , and the metastable and unstable reg'ions 

coincide (point C in figure 4.9) and the conditions 409 and 4.10 

apply. 

Two kinds of critical solution phenomena can be distinguished: 

upper and lower. rl'he upper critical solution is characterized 
by the maximum temperature at which two liquid phases can coexist 

(upper critical solution temperature or upper consolute temperature, UCST). 

The lower critical solution is, on the other hand, defined by a 

temperature below which two liquid phases will form a sinGle stable 

liquid phase (lower critical polution temperature or lower consolute 

temperature, LCST). 

Schematic representation of both solution phenomena is given 

on T-X projections in figure 4.10. Some systems exhibit either 

UCST or LCST, however, there are systems which exhibit both kinds of 

phenomena in two different ways, when L CST> UeST or when LCST <UeST 

forming a closed phase diagram in the ~atter cnse. 

Upper critical solution temperatures are more common than 

lower critical solution-temperatures as can be concluded from the 

d . 19 I ~ to h ° 1 hn data compile by Francls • nveres Ing p YSlca pe omena 

occuring in liquid-liquid equilibrium such as isopynics (equal density 

of the two phases) and isoptics (equal refractive indices) have been 

discussed in reference 19. 

The difference between UeST and LeST phenomena can be stated, 

at low pressure, by studying the behaviour of the excess properties 

of mixing near these liquid-liquid critical points. 

It has already been demonstrated that at the UeST (a 2c/ax2 ) T p, 
is zero (or G2x = 0), and that in order to ensure material stability 

this should be positive at all higher temperatures (i.e. G2X > 0), 
then its temperature derivative is equivalent to -S2x > 0, and 
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conversely at a LCST. 

18,20 
Hence, the following equalities wjll hold 

E 
~X = H2x < 0 at UCST, or> 0 at LCST 

Relation 4.24 is more commonly used to differentiate between 

UCST and LeST phenomena in systems whose ~ against X curves have no 
20 

ohange of slope 0 

It is well known that the pressure has only very small effect on 

the thermodynamic properties of condensed systems because of their 

low compressibility. The pressure dependence of the critical solution 

temperature is also small and dTc/dp only rarely exceeds !0.OO2 deg/MFa. 

10,21 h Schneider as recently reviewed the pressure dependence of 

liquid-liquid equilibria giving examples of all types of behaviour 

studied experimentally up to now. 

\ 
Bec~use of the relation between the pressure dependence of 

the critical solution temperatures and the excess properties of 

mixing of binary systems, it is possible to obtain some knowledge of 

these excess properties in regions which present experimental diffi.culties 

for their measurement from dTc/dp studies. 

The sign of dTc/dp (in UCST or LCST phenomena) depends both 

on the second derivative of the volume (V~x) and on the kind of solution 

phenomenon itself. The following relations will show this
lS

,20. 

(4025) 

since 
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The general behaviour of the excess properties of mLXlng 88 

10 21 determined by relation 4.25 has been summarized somewhere else ' • 

The relation between dTCjdp and VE is given below for UCST and 

LCST phenomena 
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Table 401 Definitions of some critical point exponents for fluid systems. 

(Here f; = TITc - 1). 

exponent definition E: 
Condi~ions 

p-p p -p 

oc , C - (_£)_OCI < 0 0 0 v -oc Cv 
c "OC > 0 0 0 

B Pl-Pg 
_(-£)13 <: 0 0 ~ 0 

y K (-c)-y < 0 0 ., 0 

y K €. - Y 
> 0 0 0 

c 
0 0 ~ 0 IS p-p # 

Where: 

c v 
heat capacity of constant volume 

density of coexisting liquid and gaseous phases 

K isothermal compressibility 

the other symbols have been described in the text. 

Table 4.2 Analogous quantities for one and two-component systems 

for their study in the critical region. 

one-component system 

density or volume (p or V) 

temperature (T) 

pressure (p) 

Cv 
K and Cp 

two-component system 

concentration (c) 

temperature (T) 

chemical potential (~) 
C 

P 
(ccl ~~)T 

c 

thermal diffusivity 

thermal conductivity 

binary diffusion coefficient 

mobility of concentration fluc­
tuations 
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Table 4.3 Critical point exponents and their relation to the 

properties of a h;o-component. system at constant pressure 

exponent property 

cc 
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Figure-4.1 Schematic representation of the p-V-T 

behaviour of a one-component sys tern. 'lbe 

gas-liquid critical point is marked 'c'. 
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A 

p 

v 
( 0) 

v 
( b) 

Figure 4.2 (a) Plot of the Helmholtz function A against 

volume V showing three isotherms. (b) Plot of 

pressure p against volume V showing three 

isotherms. The critical point is marked 'c' 

and the critical isotherm is that at T = TC
• 
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Figure 4.3 The V-x projection, at T::constant, of a 

p-V-x surface showing three isobars. The 
c 

critical point is marked 'c' and p is the 

critical isobar. 
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Figure 4.4 (a) The p-T-X surface showing two isothermal 

and a constant composition sectjons. ~he gas­

liquid critical point of the pure substances is 

indicated as C.P. and C.L. is the critical locus. 

(b) The 'p-T projection shoViing the position of 

the gas-liquid critical pOint of a mixture (C.P.). 
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Figure 4.5 The p-T projection. The solid curves are the 

different continuous critical loci observed in 

binary mixtures. The dotted lines are the 

vapour pressure curves of the pure substances 

ending at the gas-liquid critical point C.P. 
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Figure 4.6 (a) The p_rl'_X surface 01' a binary mixture that 

forms positive azeotropes. The dashed lines mark 

the locus of azeotropy. (b) '1'he V-X projection, 

at T=constant, below the critical region. 
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Figure 4.1 (a) The v-x projection and (b) the p-x 

projection of a mixture that forms nn azeotrope 

at the critical point. The criticnl isobur is 
c 

marked p • 
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Figure 4.9 Schematic representation of the Gibbs 

function of ~ixing against composition. 

Three isother@ are shown. 
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(a) ( b) 

u CST ............. ~ .•... 

T 

LCST 

T 

UCST 

a 

2 uqum 
PHASES 

x 

( c) 

'2 lIQUD 
PHASES 

1 

1 

T 
2 LIQUID 
PHASES 

LeST ............ . 

o x 

( d) 

UCST ................ . 

T 

LCST 

o 

2 LIQUro 
PHASeS 

x 

Figure 4.10 Temperature against composition phase 

diacrams illustrating upper and lower 

critical solution phenomena. Examples of 

such phenomena are: (a) propanenitrile + 
n-hexane, (b) water + diethylamine, \c) 

1 

1 

sulphur + benzene and (d) glycerol + m-toluidine. 
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CHAPI'ER 5 

EXPERlMEN'l'AL STUDIES OF UPPER CRITICAL SOLU'J'ION PllETTOMENA 

Introduction 

The study of mutual solubilities of hydrocarbons and polar 

solvents, such as aniline and nitrobenzene, is commonly used as 

a means of identification and purity determination of the hydrocarbons. 
Upper critical solution phenomena characterize binary mixtures where 

an n-alkane is one of the components; this is well illustrated 
1 

by the data collected by Francis • 

A necessary preliminary to the measurement of any other thermo­

dynamiC property for binary systems of n-alkanenitrile + n-alkane 

is the dete~ination of the upper critical solution temperature 

(UCST). Only above this temperature is it possible to obtain 

mixing properties such as the excess volume VE and excess 

enthalpy ~ over the full composition ranee. 

Previous experimental determination of the UCST of binary 

mixtures of n-alkanenitrile + n-alkane includes the work of 
2 

Zieborak and Olszewski on ethanenitrile with n-heptane to n-undecane. 

The experimental procedure used in this work for the measurement 

of UCST's is described below. Comparison of the experimental values 

with results obtained using Hildebrand's solubility parameter theory 

is also given in this . Chapter. 

Experimental 

5. 1 Preparation of Mixture~ 

All the UCST's measured in this work correspond to mixtures 

made up of approximately equal volume of each pure component. This 

does not alter the goal of the present measurements and it is not 

a bad approximation to the real UCST, since the volume fraction of 

the n-alkane (¢2) at the UCST in the work of Zieborak varies from 



0.621 for n-heptane to 0.545 for n-undecane. 

Table 5.1 gives the sources and purity of the n-alkanenitriles 

and n-alkanes that were used here. 

Since the UCST's of ethanenitrile with the n-alkanes reported 

in the literature are higher than the normal boiling point of 

ethaneni trile (b.p.jOC = 81.6) and by a simple extrapolation this 

is also true for mixtures with n-pentane, n-heXane, n-dodecane 

and higher n-alkanes, these mixtures were studied in sealed tubes. 

Mixtures of n-propanenitrile with n-dodecane and higher n-alkanes were 

also studied in sealed tubes. The other mixtures were studied in glass 

tubes fitted with a glass cap to prevent evaporation. 

The sample tubes were made of Pyrex glass of approximately 

0.5 cm internal diameter, 0.3 cm wall thickness and 13 em total 

length, closed at one end and with a B7 ground glass cone at the other 

end. Two steel bearings were placed inside the sample tube for 

stirring of the mixture during measurements. 

The volume of each component to make up a mixture was injected 

into the sample tube using an all glass syringe and stainless steel 

nypodermic needle. The sample tUbe was then attached to a vacuum 

line where degassing of the mixture was carried out by repeated 

freezing with liquid nitrogen and thawing under vacuum, finally 

the tube was sealed with a torch leaving a length of approximately 

5cm of the tube containing the mixture and its vapour. No degassing 

was carried out on the mixture contained in sample tubes sealed by a 

glass cap. 

5.2 Thermostats and Measurement of Temperature 

A five liter glass beaker was used as thermostat for 

measurements at and above ambient temperature. The beaker was 

insulated with glass fiber and corrugated cardboard covered with 

aluminium foil. For temperatures below 273 K a 3.5 liter silvered 
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glass dewar was used as thermostat. 

The range of UCST's for n-alkanenitrile + n-alkane ~ixtures 

is wide, and obviously the choice of thermostat liquids depends on 

the temperature to be measured. The fluids were polyethylene glycol 

for temperatures above 333 K,water for ambient temperature and up 

to 333 K,and a mixture of ethanol and solid CO2 for temperatures below 

273 Ko 

A variable speed stirrer (Citenco Ltd., type K~ 396) was used 

to ensure temperature homogeneity. Heat was supplied by an 

immersion heater connected to a Variac manual voltage controller 

to allow variable rates of heating or cooling. 

Measurements of temperature above 273Kwere carried out with 

a mercury-in-glass thermometer and below 273K with an alcohol 

thermometer. Both thermometers were calibrated at several 

temperatures in the range of the UCST's using a quartz crystal 

thermometer (Hewlett-Packard, model DY-280lA). 

5.3 Determination of Upper Critical Solution Temperatures 

For the measurement of UCST the sample tube was fixed by a 

small Terry clip in a frame which could be moved vertically to 

immerse the tube into the thermostat very close to the thermometer 

bulb. The thermostat temperature at the start of a measurement was 

always lower than that corresponding to the liquid-liquid phase 

transition. The heating rate of the thermostat was controlled 

manually by using the Variac voltage controller, at temperature 

below the phase trasition the heating rate was approximately 0.5 

K min-1 to be decreased to 0.1 K min-
1 

in the critical region o 

Vigorous stirring of the sample was carried out periodically 

by moving the steel bearings inside the sample tube with a permanent 

magnet. 
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Very close to the VeST the mixture became cloudy followed by a 

dense opalescence at the liquid-liquid critical point where it was 

not longer possible to distinguish two liquid phases. The temperature 

at this point was not.edo 

The thermostat temperature was lowered slowly after the phase 

transition was observed in order to determine the reproducibility 

of the measured mixing temperatures. 

The approach of the two liquid phases from a one liquid phase 

was also performed at a very low cooling rate and with sample stirring. 

The separation of the homogeneous liquid phase into two liquid 

phases is accompanied by sharper opalescence than that observed 

on heating the sample. 

The VeST's or mixing temperature reported here are then a 

mean of several determinations at the phase transition both on 
heating and on cooling the sample. The accuracy of the temperatures 

reported here is estimated to be ! 0.5 K. 

5.4 Results 

Mixing temperatures were determined for binary mixtures of 

ethanenitrile + n-alkane, propanenitrile + n-alkane, and n-butanenitrile 

+ n-alkane 0 The results are lis ted in tables 5 .2 to 5.4 and plot ted 

against the number of carbon atoms in the n-alkane molecule in figure 

5. 2• 

505 Qualitatiye Discussion of Results 

Some interesting features may be noticed from the results 

given in figure 502. 

For a given n-alkanenitrile the mixing temperature of the 

mixtures increases when increasing the molecular size of the n-alkane. 

On the other hand for a given n-alkane the mixing temperature decreases 
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when the molecular size of the n-alkanenitrile is increased. The 

increase in temperature observed in the first case is much lower than 

the corresronding temperature decrease when the n-alkanenitrile increases 

in molecular size, however there exists a larger decrease in mixing 

temperature for a given n-alkane when passing from ethanenitrile to 

propanenitrile mixtures than from propanenitrile to n-butanenitrile 

mixtures. 

This behaviour Shows, as expected, that n-alkanenitriles 

relatively are more miscible with n-alkanes the longer the 

n-alkanenitrile chain length. This observation is associated 

with the decrease of the 'effective polarity' parameter pt(given in 

the general introduction) as the size of the n-alkanenitrile increases. 

This means that although the three n-alkanenitriles studied here 

have essentially the same value of permanent dipole moment ~, the 

effect of ~ on the properties of the mixtures decreases as the chain 

length of the n-alkanenitrile increases, that is binary mixtures of 

n-butanenitrile + n-alkane are more ideal than those of ethanenitrile 

or propanenitrile with the same n-alkane compounds. This behaviour 

will be further confirmed by measurements of v! and ~ 

It is possible to summarize the behaviour discussed above in 

terms of the energy of the like and unlike molecular interactions 

in the mixtures. Immiscibility occurs if the difference between the 

like energies of interaction of the molecules of .the pure components 

is large. In this study the strongly polar n-alkanenitriles have 

larger like molecular interactions than the n-alkanes so that it is 

energetically difficult for some of these substances to mix easily 

and consequently one concludes that the unlike interactions are 

smaller than the geometric mean of the like interactions in the pure 

components 0 

50 6 Discussion of Results 

It is desirable to use a theory to account at least in a 

qualitative or semiquantitative way for the observed behaviour of 
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n-alkaneni trile + n-alkane mixtures at the mixing temperature. 

Certain assumptions are necessary when proposing a theoretical 

model to predict or explain experiment.al data, except of course 

in the case of completely empirical correlations. 

The main aim of the theories of non-electrolyte solutions 

developed in the last 25 years has been to express the observed 

behaviour of mixtures in terms of the properties of its pure 

components. Although some achievements have been obtained it is 

necessary to continue the development of such theories. 

The study of iodine solutions in non-polar solvents load 

Hildebrand to define a regular solution as one in which the 

components mix with no excess entropy (S! = 0) and there is no volume 

changes upon mixing (v! = 0)3,4. This theory is simple to use as a 

'first approximation' for the calculation of properties of mixtures, 

so that we proposed to use it expecting to obtain at least a 

qualitative description of the results here reported. 

The derivation of the regular solutions theory was made 

almost simultaneously by Scatchard5 as an improvement of the work 
6 

by van Laar • 

E 
The expression for the molar excess Gibbs energy G6 as derived 

th 
. 6,7 

from the regular solutions eory 1S 

(5. 1 ) 

where X. is the mol fraction, V. the molar volume of the pure 
1 1 

component, Cii refers to the interactions between like molecules, 

C refers to interactions between unlike molecules and ~. is the 
~ ~ 

volume fraction defined by 

"'1' - (X. V . )/ (X. v. + X V.) 
~ 1 1 1 1 j J 
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and p.=1-p. 
J ~ 

The parameters C·. are called 'cohesive energy densities' defined u. 
by the ratio of the energy of vaporization to the molar liquid volume 

of the pure component. Such energy densities can be calculated usin6 
8 

different data as discussed by Hildebrand et al , however, heats of 

vaporiza tion 6. H
V 

are preferred I 

C .. = ( l\ H~ - RT)/V. 
~~ ~ ~ 

This theory assumes for the calculation of C12 that the 

intermolecular forces in the mixture between like and unlike 

molecules are mainly due to dispersion effects, thus the following 

expression can be used 

Furthermore, Hildebrand defined a 'solubility parameter' & 

as the square root of the cohesive energy denSity 

0 .. = C .. 1/ 2 
III ( (6.H:' _ RT)/V.)1/2 

'. ~:L:L~ l. ~ 

The solubility ~~rameters have become so important in the 

interpretation of results from this theory that it is also sometimes 

called the solubility parameters theory. 

Equation 5.1 can be expressed as a function of 6 using equations 

5.5 and 5.6 as follows: if A12 = C11 + C22 - 2 C12 then 

and from 50 6 

which when substituted into equation 5.1 gives 
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Before giving the expressions for the temperature and 

composition at the consolute point as derived from the regular 

solutions theory it is necessary to discuss some of the ~sstrnptions 

involved to obtain 5.9.and to comment on its validity when applied 

to polar + non-polar mixtures as it is the case in this study. 

In deriving equation 5.1 or 5.9 the theory assumes that dispersion 

forces prevail in the mixture. This assumption cleary will not 

explain the intermolecular forces due to unsYID~etrical distribution 

of electrical charges in the molecules of n-alkanenitriles. 

However, it is possible to include in the theory the 

contributions from dipole-dipole and dipole-induced dipole 

interactions that are present in the mixtures studied here. 

This extension of the present theory is due to Prausnitz and Anderson9 

who suggested separating the cohesive energy density of' the polar 

component into two parts, one due to dispersion interactions 

(non-polar part) and the other due to dipole-di;.;ole and indl;ction 

effects, i.e., if the polar species is 1: 

(5. 10) 

where 6 u; is the energy of vaporization, V1 molar liquid volume, 

II u7 the non-polar contribution and 6 u; the polar contribution to 
v 

II U1 • 

As before, solubility parameters may be obtained from the 

cohesive energy densities, but a polar and a non-polar solubility 

parameters will be obtained from relation 5.10: 

A1 - (6 u* / V )1/2 
1 1 (5.11 ) 

T1 - (ll U;/V1) 1/2 (5.12) 

~2 2 + 2 
(5. 13) and 1 - A 1 T 1 
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where A 1 is the non-polar and T1 is the polar solubility parameter. 

It was mentioned before that induction interactions are also 

present in polar + non-polar mixtures, so that a parameter, ~12' will 

be introduced to account for these interactions. Equation ~).8 :is 

now given as 

2 A a (A
1 

which substituted into equation 5. 1 gives a new expression for 
E G
m

, namely 

The evaluation of 5.11, the dispersion or non-polar contribution 

to the energy of vaporization, may be carried out if taken to be 

equal to the energy of vaporization of the polar molecule's 

'homomorph' • 

Several definitions have been proposed for the homomorph of a 

molecule Bondi
10 

considered that the homomorph is the equistructural 

hydrocarbon at the same reduced temperature as the molecule. 

11 Anderson proposed that the hydrocarbon homomorph should 

have not only the same structure but also the same molar volume as the 

other molecule. This means that plotting the cohesive energy 
(6 u;!V

2
) of n-alkanes against molar volume V2 at different reduced 

temperatures it is possible to evaluate the dispersion energy density 

(A 1) of the n-alkanenitriles. 

Weimer12 has obtained 'homomorphic plots' for the n-alkanes 

series from which A1 for each of t~e n-alkanenitriles used in this 

work can be obtained. Having determined A1, it is now possible to evaluate 

T 1 from equation 5.13 since the 'total' solubility parameter 61 
can be calculated using equation 5.6. 

The values of A 1 and T 1 for ethanenitrile, propanenitrile 

and n-butanenitrile are listed in table 5.50 



Evaluation of '!' 12 is, no doubt, more difficult since there 

is no complete understanding of the induction forces arising from 

interactions between polar and non-polar molecules. 

Using an analysis of experimental activity coefficients of 

hydrocarbons at infinite dilution in polar solvents Weimer determined 

empirically a value for'!' 12 

The equations for T and X at the consolute point may be derived 

by applying the conditions of criticality discussed in Chapter 4 to OM m 
obtained from equation 5.9 or 5.15 by recalling that 

equation 5.9 leads to 

whereas equation 5. 15 gives 

G:= (X1V1 +X2V2)A~1~2 +RTI: Xi In Xi 
i 

The critical constants T
C 

and XC from equation 5.18 are 

and from equation 5.19 
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The above relations have been obtained by assumine that the 
1Vl 

molar entropy of mixing Sm is ideal, but if the 'Flory-HuC't5ins entropy' 

is substituted for the ideal value, two more expressions are 
11 c 

obtained for G and consequently for T. These expressions are m 

d! = (X1V1 + X2V2) A 151152 + RT 1 

( 2A R) (v v I(V1/ 2 + V 1/2)2) 
12 1 ~ 1 2 

and for both 5.23 and 5024 the critical composition is given by 

The substitution of the 'Flory-Huggins entropy' for the ideal 

value of SM is justified, by much experimental eVidence13 , when the 
m 

molar volumes of the components differ significantly. 

In order to predict values of T
C 

from the corresponding 

equations it is convenient to list the pure component properties 

which will be used in such calculations. Tables 5.6 and 5.1 give 

molar volumes, molar heats of vaporization and solubility parameters at 

298.15K for Jil.-alkanenitriles and n-alkanes compounds. 

The predicted values of T
C 

frem equations 5.20 and 5.22 

are given in tables 5.8 to 5.10 where comparison with the experimental 

values is made. 

The calculated values of T
C 

from equations 5.25 and 5.26 

are listed in tables 5. 11 to 5.13. 

It is possible to obtain values for '¥ 12 from the experimental 

values of TC for each series of mixtures and to compare them with those 

from equation 5. 16. This was carried out using equations 5.22 and 

5.26 in the following form 
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~ 12 =t 

and 

The mean values of ~12 for each series of mixtures as calculnted 

with equation 5.29 are very similar to the corresponding values 

obtained with equation 5.16. These calculated mean results of ~ 12 

are compared with values given by 5.16 in table 5.14. 

5.7 Conclusions 

Some comments will be here given to elucidate the significance 

of the results for T
C

• 

Altogether there are four sets of predicted values of T C 

for each mixture. It must be emphasized that although quantitative 

agreement was not expected when using the regular solutions theory 

and its modified form it was hoped that some light would be thrown 

to the understanding of the interactions occurring between the polar and 

non-polar molecules that make up the systems studied here. 

c 
The predicted T values from equation 5.20 agree qualitatively 

with the experimental observations much better than do the values 

from equation 5.25. 

On the other hand equation 5.26 provides values of T
C 

which have 

not only qualitative but in some cases also quantitative agreement 

with the experimental results whereas equation 5.22 does not give 

better agreement. 

The results for T
C 

from equation 5.26 are plotted in fjCure 5.2 where 

the experimental values are also given for comparison. 

There exists a larger difference between any value of ~12 for 

ethanenitrile + n-alkane mixture and value of ~12 for propanenitrile 
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+ n - alkane mLxtures that between this last set of mixtures and 

n-butanenitrile + n-alkane mixtures, following the same trend of 

behaviour noticed in section 5.4 for the solubility temperature . 
of the same systems as above. The relative magnitudes of A1 and T1 also 

vary in the same fashion. 

It is. then clear that the introduction of the parameter '¥12 

into the regular solution theory to account for induction·effects 

does indeed provide some evidence of the important role of such 

effects on the solubility of polar + non-polar mixtures, and 

particularly in n-alkanenitrile + n-alkane mixtures which is different 

from the conclusions arrived at by Zieborak and Olszewski
14

, 

namely that 'no specific interactions between the mo1ecule of 

hydrocarbon and the molecules of the respective second component 

take place'; where the second ccmponents were polar such as methanol, 

sulphur dioxide, ethanenitrile, acetic acid and acetone. 

However, it was pointed out before that the molecular size is also 

important when discussing the solubility of n-alkanes in polar solvents 

as concluded also by Weimer and Prausnitz. 
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Table 501 - Source and purity of the materials used in the UCUT's study. 

Substance Source and grade 

Ethanenitrile a, S.L.R. 

Propanenitrile b 

n-Butaneni trile c 

n-Pentane a, A.R. 

n-Hexane a, S.L.R. 

n-Heptane a, S.L.R. 

n-Octane a, S.L.R. 

n-Nonane d, Research 

n-Decane d, Pure 

n-Undecane d, Research 

n-Dodecane a, S.L.R. 

n-Tetradecane d, Pure 

n-Hexadecane e, Puriss 

n-Octadecane r 

a Fisons 

b Cambrian Chemicals 

c BDH 

d -Phillips Petroleum Co. 

e Koch-Light 

r B. Newton V~ine Ltd. 

All samples were dried and distilled before use. 

StatGd Purity 
(mole %) 

> 99 
> 99 
> 99 
> 99 
> 99 
> 99.5 

> 99.5 
99.31 

> 99 
99.97 

> 99 
> 99 
> 99 

99 
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Table 502 - Experimental Liquid-Liquid lHxing 'rempcra turcs '1,0 

for binary mixtures of ethnnenitrile + n-alkane 

(¢ ~ 0.5) 

n-alkane TC/K TC/oc 

n-pentane 341.2 68.0 

n-hexane 350.2 77 .0 

n-hepta.ne 358.0 84.8 

n-octane 365.1 91.9 

n-nonane 374.2 101.0 

n-decane 381.7 108.5 

n-undecane 386.2 113,0 

n-dodeoane 398.2 125.0 

n-tetradecane 403.7 130.5 

n-hexadecane 420.2 147.0 

n-octadecane 426.2 153.0 

Table 5.3 - Experimental Liquid-Liquid Mixing Temperatures TC 

for binary mixtures of propanenitri1e + n-a1kane 

(p == 0.5) 

n-a1kane TC/K TC/oC 

n-pentane 276.2 3.0 

n-hexane 284.2 11.0 

n-octane 303.7 30.5 

n-decane 316.2 43.0 

n-dodecane 327.7 54.5 

n-tetradecane 341.2 68.0 

n-hexadecane 349.2 76.0 

n-octadecane 359.2 86.0 
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Table 5.4 - Experimental Liquid-Liquid Mixing 'rempcraturcs 'lIC 

for bjnary mixtures of n-butanenitrile + n-alkane 

«(> :< 0.5) 

n-alkane TC/K TC/oC 

n-pentane 237.2 - 36.0 

n-hexane 244.2 - 29.0 

n-decane 269.2 - 4.0 

n-dodecone 284.7 + 11.5 
n-tetrodecane 297.2 24.0 

n-hexadecane 307.2 34.0 

n-octadecane 318.2 45.0 

Table 5.5 - Polar A and non-polar T solubility parameters 

for some n-alkanenitrile compounds*. 

n-a1kaneni trile A /ca1t cm -2-
1 . 2 T /cali cm -2 1 2 

ethaneni trile 8.03 8.98 

propanentri1e 7.97 7.17 

n-butaneni trile 7.96 6.28 

* from reference 120 



98 

Table 5.6 - Molar volumes, molar heats of vaporization and 

solubility parameters at 298.15K for n-a1kaneni trUes • 

v /cm3mol-1 3 vI -1 . / t 3/2 
substance 10 l':. H cal mol () ca1 2 cm-

m 

ethaneni trile 52.842(a) 7.87(b) 11.74 

propanenitrile 70.897 8.61 10.64 

n-butaneni trile 87.889 9.40 10.01 

n-pentanenitrile 104.02 10.42 9.72 

n-hexaneni trile 121.47 11.45 9.45 

n-heptanenitri1e 138.00 12.58 9.32 

n-octaneni trile 154.682 13.58 9.16 

n-nonanenitrile 171.23 14.78 9.10 

n-decaneni tr ile 1900575 15.98 8.98 

n-undecanenitrile 204.495 17.00 8.96 

n-dodecanenitri1e 221.02 18.19 8.92 

n-tridecanenitrile 237.55 19.26 8.86 

m_tetradecanenitrile 254.192 20.38 8.82 

a Densities from reference 17. 
b Molar heats of vaporization from references 18 and 19. 
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Table 5.7 - l~olar volumes, molar heats of vaporizntion and 

solubHity parameters at 298.15 K for n-alkanes . 

Subst~nce ~/cm3mo1-1 3 ~ -1 10 t. I cal mol 
. J 3/2· 

~/cal"cm-

n-pentane 116.104(a) 6.32(b} 7.02 

n-hexane 131.598 7.54 7.27 

n-heptane 147.456 8.74 7.43 

n-octane 163.530 9.92 7.55 

n-nonane 179.670 11.10 7.65 

n-decane 195.905 12.28 7.72 

n-undecane 212.217 13.47 7.79 

n-dodecane 228.519 14.65 7.04 

n-tridecane 244.924 15.83 7.89 

n-tetradecane 261.312 17.01 7.93 

n-pentadecane 277.698 18.20 7.96 

n-hexadecane 294.083 19.38 7.99 
n_heptadecane 310.510 20.60 8.03 

n_octqdecane 326.93 21.70 8.04 

8 Molar volumes from reference 15 

b Molar beats of vaporization from reference 16 
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Table 5.8 - Comparison of experimental and calculated Mixing 
c 

Temperatures T for binary mixtures of 

ethaneni trUe + n-alkane (~= 0.5) 

n-alkane TC/K TC/K TC/K 
expt. INn.(5.20) eqn.(5.22) 

n-pentane 341.2 489·1 390.7 

n-hexane 350.2 483.2 419.6 

n-heptane 358.0 491.9 453.7 

n-octane 365.1 506.0 490.1 

n-nonane 374.2 521.6 527.5 

n-decane 381.7 54204 566.2 

n-undecane 386.2 561.1 605.3 

n-dodecane 398.2 583.7 645.1 

n-tetradecane 4°3.7 627.3 725.3 

n-hexadecane 420.2 675.9 806.3 

n_octadecane 426.2 724.7 891.0 
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Table 5.9 - Comparison of experimental and calculated : ... i:dng 

Temperatures T
C 

for binary mixtures of 

propaneni trile + n-allcane (j!J ~ 0.5) 

n-alkane TC/K TC/K TC/K 
expt. eqn.(5.20) eqn.(5.22) 

n-pentane 216.2 312.1 216.1 

n-hexane 281.2 295.6 291.1 

n-octane 303.1 291.9 332.3 

n-decane 316.2 300.5 319.1 

n-dodecane 32707 313.1 428.5 

n-tetradecane 341.2 329.1 479.2 

n-hexadecane 349.2 348.5 530.7 

n-octadecane 359.2 368.3 582.8 

Table 5.10 - Comparison of experimental and calculated Mixing 

Temperatures T
C 

for binary mixtures of 

n-butaneni trUe + n-alkane (¢ .. 0.5) 

n-alkane 

n-pentane 

n-hexane 

n-decane 

n-dodecane 

n_tetradecane 

n-hexadecane 

n_octadecane 

Te/K 
expt. 

231.2 

244.2 

269.2 

284.1 

291.2 

307.2 

318.2 

TC/K 
·eqn{5.20) 

TCIK 
eqn. (5.22) 

230.5 234.3 

209.3 242.0 

193.6 305.00 

196.0 342.0 

200.7 380.5 
20808 419.8 
211.3 459.6 
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Table 5.11 - Comparison of experimental and calculated Mixing 

Temperatures TC for binary mixtures of 

ethanenitrile + n-alkane (~~ 0.5) 

n-alkane TC/K TC/K TC/K 
expt. eqn.(5. 25) eqn l5.26) 

n-pentane 341.2 722.5 337.5 

n-hexane 350.2 398.2 345.8 

n-heptane 358.0 386.6 356.6 

n-octane 365.1 379.6 368.6 

n-nonane 314.2 314.0 318.3 

n-decane 381.1 372.3 388.7 

n-undecane 386.2 369.3 398.4 

n-dodecane 398.2 368.9 407.7 

n_tetradecane 403.7 367.4 424.7 

n_hexadecane 420.2 368.9 440.1 

n_octadecane 426.2 310.4 453.8 

Table 5.12 - Comparison of experimental and calculated Mixing 

Temperatures TC for binary mixtures of 

propan~ni trUe + n-a lk.ane (P = 0.5) 

n-s1kane TCIK TC/K TC/K 
expt. eqn.(S.25) eqn.(5.26) 

n-pentane 216.2 294.7 260.1 

n-hexane 284.2 269.5 265.4 

n-octane 303.7 241.1 282.0 

n-decane 316.2 231.2 299.2 

n-dodecane 327.7 230.8 315.3 

n_tetradecane 341.2 226.6 32909 

n_hexadecane 349.2 225.4 343.3 

n_octadecane 359.2 227.6 355.4 

-
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Table 5.13 - Comparison of experimental and calculated Mixjng 

Tempera tures TO for binary ndxtures of 

n-butanenitrile + n-a1kane (}6 ~ 0.5) 

n-alkane TC/K TCIK TelK 
expt. eqn. (5.25) eqn. (5.26) 

n-pentane 231.2 226.1 229.9 

n-hexane 244.2 201.1 232.5 

n-decane 26902 166.4 262.1 

n-dodecane 284.1 158.1 217 .0 

n-tetradecane 292.2 153.3 290;1 

n-hexadeeane 301.2 150.9 303.4 

n-octadecane 318.2 148.9 315.0 

Table 5.14 - Induction energy density 'i' 12 for n-alkanenitrile 

+ n-alkane systems 

/ -3 I -3 <'i' 12 /eul cm-3 n_alkanenitrile '1'12. cal em <'I' 12> cal em 
eqn. (5.16) eqn.(5. 28) eqn. (5.29) 

ethanenitrile 31.93 34.51 32.01 

propanenitrile 20.36 21.23 20.08 

n';'butanenitri1e 15.62 16.13 15.50 
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'--- GLAS 5 CAP 

UQUID1 

LIQUID 2 

Figure 5 .1 Sample tube used in the determina tion of UC '1'. 

See text for actual dimensions o 
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CHAPrER 6 

GAS-LIQUID CRITICAL LOCI OF MJXTUm:S 

ETHANENITR1LE + n-ALKA~m 

Introduction 

In the preceding chapter the limits of miscibility of 

n-alkanenitrile + n-alkanes systems were explored. It was 

pOinted out that such a study reveals the mixtures whose excess 

properties could be studied at or near ambient temperature 

using techniques which have been extensivelyused in this luboratory. 

Ethanenitrile + n-alkane systems were shown to have relatively 
not. 

high UCST's as to makekfeasible the determination of their mixing 

propertieS' at low temperature. However, it was decided to determine the 

gas-liquid (p,T,X) loci for such systems since 'the determination 

of the critical locus curves for systems composed of an homologous series 

of compounds with a common component offer interesting possibilities 

in getting at the nature of the interactions between like and 
1 

unlike molecules in the dense phase' • 

The experimental investigation of the gas-liquid critical 

point has attracted a great number of workers to develop different 

techniques to determine the critical properties ttemperature 

TC, pressure pc, and volume V
C 

or density nC) of both pure sub-

stances and their mixtures. 

The critical point of a pure substance may be determined 

by the shape of the p-V isotherms or by the visual determination 

of the disappearance or reappearance of the gas-liquid meniscus 

when its density is close to the critical value. 

The first method implies the determination of the highest 

temperature for which the isotherm satisfies (aP!aV)T a 0, 
2 however, great precision is needed to obtain accurate results. 
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The effect of gravity on the shape of the coexistence curve js 

important in the determination of the true critical temperature 

using this method. This was shown in the outstanding work of 
34' Maass and co-workers and of Schneider and co-workers • 

The determinat~on of the critical temperature by observing 

the disappearance or reappearance of the meniscus is rclutively simple, 

but care should be taken to define the exact temperature of 

disappearance (or reappearance) since strong scattering of 

light (the so called critical opalescence) makes determination 

hard. To use this method, the tube containing the sample must 

be filled so that the overall density is approximately equal to 

the critical density of the studied sample. 

5 c c 
The recommended procedure for determinations of p or V 

is to apply the law of rectilinear diameters first preposed by 

Cailletet and !~thias6. This method extrapolates the mean of 

the orthobaric liquid and gas densities up to T
C 

even if the 
c 

density measurements are several degrees below T • 

The critical pressure may be also determined from the p-V isotherms 

but the same comments apply here as in the determination of TC
• 

The direct determination of pc may be achieved if the sample tube used 

for TC measurements is open to allow mercury in to confine the 

sample, pc can then be determined at T
C

• 

Some of the methods discussed above for pure substances 

also apply to the determination of critical properties of 

mixtures. 

. c 
The determination of T for mixtures is also carried out 

at the disappearance of the gas-liquid meniscus on slow heating 

(or at its reappearance on slow cooling). 
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The critical density or critical volume of a mixture is 

usually determined by extrapolating
8 

the visually9 observed 

dew and bubble point volumes to T
C

• 

The critical pressure may also be determined at the same time 

that TC and ~c by using an open-ended tube to confine the 
10 

mixture over mercury 

Other methods for the determination of the critical properties 

of mixtures have been used
11 

but 'visual' determination of T
C

, 

pC and pC simultaneously is generally preferred. 

Many kinds of apparatus have been used for the determination 

of critical properties, some of which are suitable for the study of pure 

substances only and others are sufficiently versatile as to be sui 1.­

able for pure and mixed substances. A complete description of 

t 
. -t .. 1 . 11-14 such appara us ex~ti s ~n severa rev~ews • The method and 

apparatus used in this study of binary mixtures is detailed below. 

Experimental 

6.1 Materials 

A commercial sample of ethanenitrile (Fisons, SLR) of stated 

purity 99 mole % was purified by drying over anhydrous calcium chloride 

and repeated fractionating in an all-glass 1m packed column using 

a high reflux ratio. Only the middle fraction was used for the 

succeeding distillation, the final sample was stored over molecular 

sieve. No impurities were detected using g.l.c. analysis with a 6ft 
FFA packed column with nitrogen as carrier gas and a flame ionization 

detector. 

The n-butane was obtained from Matheson Gas Products with stated 

purity of 99.8 mole %; it was used without further purification. 
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The n-alkanes from n-pentane to n-octane were supplied by the 

National Physical Laboratory as sealed 5 cm3 samples. The Dtsted 

purity of each sample was: n-pentane 99.84 mole % (sample 161-9)64), 
n-hexane 99.96 mole % (sample 100-9206), n-heptane 99.94 mole % 
(sample 91-8064) and n-octane 99.63 mole % (sample 45-9063). 

The samples of n-nonane (99.71 mole %) and of n-undecane 

(99.79 mole %) were Phillips Research Grade (lot 1378 and 1284 
respectively). The n-decane (99 mole %) WJS Phillips Pure Grade. 

These three n-alkanes were dried over sodium. The cyclohexane 

was Phillips Research Grade (lot 1261) with purity 99.98 mole %J 
2,2-dimethylpropane (neopentane) was from BDH with purity 99 mole %. 
All hydrocarbons were used without further purification. 

6.2 Apparatus 

The apparatus used in this work for measuring critical 

temperatures and pressures is shown schematically in figure 6.1. 

It is similar to those described independently by Psk15 and Hicks
16

• 

One of the main features of the apparatus is the inclusion of 

8 'compressor block'. This is essentially a U-tube filled with 

mercury to hold the ~lass sample tube. The compressor block is shown 

in detail in figure 6.2. It was made of stainless steel with a 

short limb (A) which held the sample tube in position, and a 

larger limb (B) with three electrodes to detect the mercury-oil 

interface and connected to the pressure system by a length of 

flexible stainless steel tubing. 

When the sample tube was secured in the compressor block and 

the sample confined by mercury, a laboratory jack was used to 

raise the block and tube into the preheated electric furnace to 

near the estimated critical temperature of the sample. 
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The electric furnace consisted of an aluminium bar (16 cm 

in diameter and 25 cm long) mounted vertically with a hole drilled 

through its vertical axis to accommodate the sample tube and a 

horizontal hole half-way up to observe the gas-liquid meniscus of 

the sample during measurements. The aluminium block wns inside an 

asbestos jacket supported by a small box of refractory material and 

completely lagged with asbestos flakes. Heating was achip.ved with 

Nichrome wire uniformly wound around the block whose electric 

current was stabilized manually with a Variac and a Volstat. 

The furnace was mounted so that it could be lowered or raised 

smoothly over the sample tube as convenient by a rack and pinion 

arrangement. 

The details described on the electric furnace are shown in figure 

6.~. 

The temperature was measured by a ten-junction Chromel-Alumel 

thermocouple placed in small holes drilled concentrically around the 

vertical hole in the oven. The thermocouple was calibrated against 

the accurately known critical temperatures of five hydrocarbons 

(these will be given later in another section). 

A Budenburg Bourdon standard test gauge (25.4 cm diameter 

and range 0-1000 Ib in-2) calibrated by the makers against a dead 

weight tester and accurate to ~ 0.01 MFa was used for the measurement 

of pressures. 

It will be helpful for the later sections to describe at this 

point the sample tubes. 

A thick-walled glass capillary tube (0.18 cm internal diameter) 

14 cm long approximately and sealed at its upper end was joined by its 

lower end to an extension glass tube (0.4 cm internal d:inmcter) which 

had a 7/16 ground glass cone. The tick-walled tube had a swelling 

(X) at approximately 10 cm from its sealed end, the extension 

tube also had a swelling (Y) at approximately 3.5 em from the lOVier 
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end of the thick-walled tube. Figure 6.4 shows the sample tube as des­

cribed together with the self-tightening neoprene seal, similar 

to that described by Ambrose17 , at (X) and a spring and wHsher 

at (Y) which as illustrated in figure 6.2 helped to locate the ~mmple 

tube in the compressor block and prevented its ejection due to high 

pressures. 

603 Preparatjon of Samples 

Mixtures of known composition of ethanenitrile with n-pentane 

and higher n-alkanes were prepared by injecting into the sample tube knov.n 

volumes of the pure components from calibrated all-glass microsyringes 

(Ag;ta, Wellcome Reagents Ltd.). The sealed end of the sample tube 

was immersed in liquid nitrogen and the more volatile component was 

injected first followed by the second component. The ground e1nsB 

cone was capped during transfer to the vaccuum manifold to prevent 

10s6 of sample. 

Non-condensible gases were removed from the mixtures by repeated 

freezing with liquid nitrogen, pumping off the residual gus over the 

solid and re-melting. After the degassing process the sample tube 

was sealed under vacuum approximately 2 cm below the swelling (Y) 
(see figure 6.4) and flame annealed. 

( 

The mixtures containing n-butane were made up by injecting the 

ethanenitrile into the sample tube as described and att3ching the 

tube to a vacuum manifold with a calibrated gas burette. The amount 

of n-butane was determined by measuring the pressure and temperature of 

the n-butane, together with the burette volume. Deviations from 

ideality were taken into account by using the second virial 
18 

coefficient of n-butane in the relation 

n • pV(RT + B(T)p) 

where R is the gas constant and B(T) the second virial coefficient 

at the temperature T at which p was measured. 
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Finally degassinG' and sealing VIas carried out as before. 

6.4 Measurement Procedure 

Once a sample tube was sealed the neoprene washer (N) and 

steel washer (W) were placed in the capillary tube (see figure 6.4), 
washer (n) and the spring (E) were placed in the extension tube. 

A scratch was made at point (C) with a glass knife and the tube Wllf) 

immersed into liquid nitrogen to freeze the sample at the upper 

end of the tube. 

Meanwhile, the mercury surface in limb (A) of the compressor 

block had been adjusted just above the junction of the two limbs 

(figure 6.2) by using the screw press (F) in the pressure system (fjr,ure 

6.1 ). 

Having closed (v1) the sample tube was carefully placed in limb 

(A) and secured with washer (0) and nut (S), at the same time the 

space above the mercury surface in (A) was evacuated using a rotary 

pump attached to (V2 ). After approximately 20 minutes valve (V2) Vias 

closed and the pressure of the system increased with (F), valve (V1 ) 

was then opened to allow mercury to flow into the previously evacuated 

space. T he sample tube was gently rocked so that the washer 

(n) touched the internal walls of the limb breaking the tube at the 

scratch (C). 1.'l.ercury rose up into the sample tube confining the 

sample after melting. 

For the determination of T and p at the critical point 01' the 

sample the furnace y~s preheated to approximately four degrees below 

the estimated critical temperature rather than at T
C 

so as to be able to 

follow the gas-liquid meniscus until its disappearance on heating. 

The sample tube was introduced into the furnace in such a way 

that when measurements of T and p were started the meniscus was at 
the middle of the section occupied by the sample (by adjusting p). 

The meniscus was viewed through the horizontal hole in the furnace 

with rear illumination. 
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The heating of the samples to the point of disappenrnnce of 

the meniscus was performed at a very low rate (approximately 1.5 K hr-1 ) 

by adjusting the current to the furnace with the Variac. 

When the meniscus was finally observed to disappear, the 

temperature and pressure were recorded as the critical values for 

that sample. 

The choice of the disappearance of the meniscus as a criterion 

for the critical point was made on practical grounds, since 

although the reappearance is a sharper phenomenon it is easier to 

follow the gas-liquid meniscus at a certain position in the 

sample tube than locating the meniscus on reappearance. 

The critical temperature and pressure of each system studied 

here were measured at least twice, i.e. after the first measurement 

was completed the temperature of the furnace was lowered a few derrrees 
c below the measured T and then the procedure already outlined above 

was repeated, consequently the reported res~lts are the average of 

such measurements. 

The apparatus and experimental procedure used in this work 
c c 

for the determinatio~ of T and p have some advantages over 

those described by Pak and by Hicks. Whereas Pak's apparatus is 

very similar to that used here, his method of loading the sample tubes 

is time consuming and furthermore the samples are not degassed 

which can introduce errors 14 of 0.01 to 0.06 111 Ib. in pC and up to 1 K in 

TC• On the other hand in the procedure used by Hicks the composition 

of the mixture is unkown and has to be determined in a separate experiment. 

6.5 Results 

The calibration of the thermocouples output was carried out 
19 c 

using the latest recommended value of T for 2,2-dimethylpropane, n-

pentane, n-hexane, cyclohexane, and n-decane. 
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o The accuracy of the T results given here is believed to be 

+ + 0 -0.3K and -0.02 MFa for the p results. The critical temperature 

and pressure of the pure substances used in this work are listed 

in table 6.1. 

The critical temperature and pressure measured in this work 

for the substance not used in the thermocouples calibration show 

verii good agreement with the respective recommended values 19 as 

shOwn beloVio 

The differences in TO and pc between the values measured here and 

those of reference 19 are: n-butane +0.22K, n-pentane 0.0 MFa, n-heptClno 

+0.2K, n-octane -0.3
3
K, n-nonane -0.2K and -0.02 Mpa, and ethanenitrile 

-2.4K and 0.0 [upa. 

The TC measured here for ethaneni trile is 2.4 K lower than the 

value recommended by Kudohadker et a15 and later by Ambrose
19

• 

However, this last value (54?9K) was originally recommended by Kobe 
and Lynn? together with a pc of 4.83 Mfa, where TC was determined 

20 c 21 
by Ter-Gazarian and p by Guye and Mallet • 

Guye and Mallet also measured T
C 

(=543.3K) together with their 

selected value of pc but their TC 
was not recommended because their 

\ 
sample of ethanenitrile did not undergo any purification, whereas 

Ter-Gazarian's sample was from the same source (Kalhbaum Co.) but 

it was dried and distilled. 

c 
Guye and Mallet's value of T is in turn 2.2K lower than the 

reported here. 

c 
So, in order to report a reliable value of T for ethnnenitrilc 

several determina tiona ..... ere carried out over a period of approximR tely 

two years. Table 6.2 summarizes all the measurements of TO and pc 

for ethanenitrile performed here. The values of TC and pc found in 
+ + 

this work are thus: 545.5 - 0.3K and 4.83 - 0.02 Mfa respectively. 
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The p-T-X critical locus curves of the following binary 

mixtures were determined: ethanenitrile + n-pentane, + n-hexanc, 

+ n-heptane, + n-octane, + n-nonane, and + n-decane; also a couple 

of mixtures were studied for each system formed by ethanonitrjJe + n-butl.lne, 

and + n-tmdecaneo 

The experimental results are listed in table 6.3. Figure G.5 is 

the p-T projection for the studied systems and figureo 6.6 and 

6.7 give the T-X and p-X projections respectively. 

The reported pC \'[ere corrected for 

a) the barometric pressure, 

b) the difference in height of the oil (the pressure transferring 

fluid) levels in limb (B) of the compressor block and the 

pressure gauge, 

c) the partial pressure of mercury at T
C 

of the sample 

d) the difference in height of the mercury levels in the sample 

tube and in the ccmpressor block. 

Pak15 has studied the effect of mercury on the gas-liquid critical 

properties by measuring T
C 

and pc of samples confined over galHum and 

then over mercury. Since the vapour pressure of lJlllium is negligible 

in the range of temperature of the study (593-740K) he found that the 
c 

effect of mercury on T amounts to a decrease of 1K at 673K and that 

the partial pressure of mercury is between 10-14% less than the 

vapour pressure of pure mercury. He also recommends an equation for 
22 the calculation of the vapour pressure of mercury a 

(6.2) 

where T is the absolute temperature o 
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Equation 6.2 was used for correction (c), the maximum 

difference between the vapour pressure of pure mercury us calculated 

from reference 23 and the value from 6.2 was 21% for a mixture of 

0,809 mole fraction of n-decaneo 

Apart from having tested the prec~s~on of the thermocouplos 
c 

calibration by measuring T for n-butane, n-heptane, n-octnnc, n-nol1uneJ, 

and ethanenitrile and compared their values with those reported in 

the literature, a repeatability test was conducted on three mixtures 

whose cri tical tempera tures were in th~ range 469 - 544 K. 

For each of the three mixtures two sample tubes were louded 
c 

with the same composition, the maximum deviation in T between two mix-
c 

tures was 0.3 K and 0.02 MFa in p. The reported compositions are 

thus believed to be correct to within 0.3%. 

It is also important to point out that no decomposition was 

observed to occur during the heating of any of the systems here 

reported, regardless of the long heating periods applied to some of them. 

6.6. ~la1itatiye Discussion of Results 

A rigorous explaration of the observed pattern of behaviour of 

the critical locus of the binary systems here reported would require the 

knowledge of the exact type of molecular interactions present in 

such systemso 

Our knowledge of the intermolecular potentials between simple 

molecules (e.g. Ar, Kr, Xe) has been increased by Monte Carlo and 

Molecular Dynamics calculations, however, such advances have been much 

more difficult for polyatomic moleculeso 

Hence, we choose 'parameters' such as molecular size, molecular 

structure or shape and chemical nature to distinguish and sometimes to 

explain the different behaviour exhibited by pure and mixed substances. 
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In the discussion that follows use will be made of such 

'practical parameters' to analyse the behaviour of the critical loci 

of the ethanenitrile + n-alkane systems. 

Such critical loci may be considered to exhibit the effoct of 

molecular size and chemical nature of the components (no moloculur 

structure since ethanenitrile possesses a structure similar to thut 

of the n-alkanes, which justifies the use of the n-alkane series 

as Ihomomorphs' of the n-alkanenitriles in the treatment of Chapter 

5) • 

An examination of the p-T projection (figure 6.5) reveals the 

following features: starting with theethanenitrile + n-pentane system, 

its critical locus exhibits a point whose pressure is higher than the 

critical pressure of the pure components and in the n-pentane - rich rcr;ion 

a minimum temperature point exists within the accuracy of the experiment • 

• s discussed in Chapter 4, a minimum temperature point in the critical 

locus proves the existence of a positive azeotrope in this region. 

When n-hexane is substituted for n-pentane the folding of the 

locus is magnified and the presence of a minimum temperature point is 

more easily observed, however, no maximum pressure point appears in 

this system. 

The critical temperature of n-heptane (540.5K) is closer to the 

corresponding value fof ethanenitrile (545.5K) than any of the T
C 

of 

the other n-alkanes, and this seems to have a clear effect on the 

critical locus of this system which is almost symmetrically folded around 

the minimum temperature point. 

c 
As the size and T of the n-alkane increases the folding of the p-

T locus is less pronounced but a minimum temperature point still exists 

in the systems with n-octane, n-nonane, and within the accuracy of 

TC also with n-decaneo 
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It is interesting to note the change in composition of the 

minimum temperature point as the size of the n-alkane increases, 

i.e. from the n-pentane - rich rerion of the locus to the 

ethanenitrile- rich region in the system with n-decane. 

To verify if minimum temperature points were present in the 

systems with n-butane and n-undecane two mixtures were stuuies for c~ch 

of these systems in the composition range where such points v,ould be 

expec ted. The resul ts do not show minimum temperature poin ts in ilwso 

two systems. 

The vapour pressure of pure ethanenitrile
26 

is also given in 

figure 6.5 to show that the pressure of any of the minimum temperature 

points is higher than that of the pure components, demonstrating the 

existence of azeotropy in these systems. 

A locus of minimum temperature points can be drawn in the 1'-X 

projection (figure 6.6) and the trend of change of such points is 

now clearly seen. Such a locus determines an 'azeotropic range', 

which as defined by KreglewSki
24

, is the difference between the 

critical temperatures of the homologues with highest and lowest 

relative molecular mase which form an azeotrope with a common 

substance or 'azeotropic agent' (ethanenitrile in this case), 

Kreglewski has proposed a modified equation, originally 

derived by Malesinski25 , to assess the formation of azeotropes by 

using the azeotropic range ZAN' 

He gives the following equation 

where T~ is the critical temperature of the n-alkane, T~ the 

critical temperature of ethanenitrile and TM is the minimum 

temperature on the critical locus. 

Using equation 6.3 an azeotrope will form in a given system If 
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Table 6.4 shows the results after using the above c~u:\tions 

on the experimental values given in table 6.3. 

Summarizing, it is possible to say that the hehaviour of 

the binary systems formed by ethanenitrile and the n-alkane 

homologs (as represented by the critical loci here reported) is 

the interwoven effect of their difference in molecular size and chemicnl 

nature. 

The relationship between T
C 

and pc with the differences in 

molecular size and chemical nature of the components is more clearly 

discernible when using 'residual critical properties', which are 

defined as follows 

and (6.6) 

c c where 6T and 6p are the residual c.ritical temperature and 
n' m 

pressure, "respectively, T~ and P~ the experimental critical temperature 

and pressure of the mixture, X1 the mol fraction of ethanenitrile, T~ 
the critical temperature of ethanenitrile and p~ its critical pressure, 

and X
2

, T~, P~ are the corresponding values for the n-alkane. 

Figures 6.8 and 6.9 show plots of equations 6.5 and 6.6 against 

mol fraction of the n-alkane, respectively. The curves in figure 

6.8 are not completely symmetrical, the maximum /6 T~ is shifted 

towards the higher concentration of ethanenitrile, indicating its 

greater effect on the critical loci. As the difference in size 

of the components increases the curves become more positive, the curves 

for n-nonane and n-decane have both a minimum and a maximum. 
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The curves in figure 6.9 are hitrhly asymmetric, showing that Ut3 

c 
the size of the n-alkane increases !:J. p becomes more negative up to 

In 

n-heptane when this trend reverses and the curves become much more 

positive 0 
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Table 601 - Critical temperature and pressure of the pure substances 

used in this work. 

Substance TC/K pC/MPa 

n-butane 425.4b 
3.797° 

n-pentane 469.7
a 

3.37
b 

n-hexane 507.5
a 

3.012° 

n-heptane 540.5
b 

2.736° 

n-octane 568.5
b 

2.487° 

n-nonane 594.4
b 

2.27b 

n-decane 6l7.7
a 20 104° 

n-undecane 638.8
c 

1.966° 

ethaneni trile 545.5
b 

4.83
b 

a used in the thermocouples calibration, reference 19. 

b Measured in this work 

c Reference 19. 

Table 6.2 - Critical temperature and pressure of ethanenitrile 

Method TC/K pC/MFa 

a 545 0 59 
.a 545.54 
b 545.54 4.84 

AYerage values I 

TO/K pC/MFa 
b 545.31 4.82 

b 545.50 4.83 545.5 4.83 

a Sealed sample tube; b Open-ended sample tube. 
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Table 6.3 - Experimental gas-liquid critical constants for 
ethanenitrile (1) + n-alkane (2) systems. 

X2 
TCIK pc/MPa X2 TC/K pC/ MPa 

ethaneni trile + n-butane ethanenitrile + n-heptone 

0.907 430.3 3.94 0.103 537.5 4.71 

0.922 429.3 3.89 0.200 529.3 4.42 
ethanenitrile + n-pentane 0.293 525.4 4.20 

0.090 534.2 5.19 0.393 523.5 4.05 

0.169 522.0 5.12 0.499 524.4 3.90 

0.374 492.6 4.56 0.650 530.4 3.68 

0.492 479.7 4.14 0.710 531.1 3.56 
0.600 473.9 4.03 0.752 533.0 3.55 

0.807 469.3 3.71 0.807 535.2 3.36 

0.851 469.8 3.66 ethanenitri1e + n-octane 

ethanenitrile + n-hexane 0.100 539.3 4.54 

0.101 535.1 4.89 0.202 537.6 4.36 

0.204 521.6 4.60 0.302 538.0 4.19 

0.316 511.2 4.32 0.399 540.7 4.11 

0.413 506.3 4.09 0.561 547.4 3.89 

0.517 502.4 4.03 0.650 554.3 3.85 

0.660 501.6 3.79 

0.725 502.6 3.69 CO~TINUED 

0.850 504·9 3.49 
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Table 6.3 - (CONTINUA'l'lON) Experimental gas-liquid c:ri tical 

constants per ethanenitri1e (1) + n-alkane (2) 

systems 

X2 
TC/K pC/MFa X2 TC/K pC;UPa 

ethanenitri1e + n-nonane ethanenitri1e + n-decanc 

0.099 543.3 4.60 OlD10 545.2 4.85 

0.198 544.8 4.46 0.050 546.1 4.77 

0.302 549.1 4.34 0.099 545.7 4.66 

0.525 564.4 4.04 0.202 551.5 4.62 

0.612 572.0 3.88 0.298 561.2 4.56 

0.746 581.0 3.45 0.400 571.6 4.46 
0.790 581.8 3.32 0.611 593.0 ~.88 

0.860 588.3 2.99 0.692 600.0 3.57 

ethanenitrile + n-undecane 0.809 610.7 2.95 

0.010 550.7 4.90 

0.050 551.3 4.81 



n-alkane TVK /T~ - T~/ /K minimum temperature point (Tc_T )/K 
X2 TJK A M gAN/2 

n-butane 425.4 120.1 

n-pentane 469.7 75.8 0.807 469.3 76.,2 87.6 

n-hexane 507.5 38.0 0.660 501.6 43.9 82.0 

n-heptane 540.5 5.0 0.393 523.5 22.0 77.7 

n-octane 568.5 23.0 0.202 531.6 7.9 70.0 

n-nonane 594.4 48.9 0.099 543.3 2.2 74.5 
n-decane 611.7 72.2 0.010 545.2 0.3 82.1 

n-undecane 638.8 93.3 

Table 6.4 - Assessment of formation of azeotropes in ethanenitrile (1) + n-a1kane (2) 

systems using the concept of azeotropic range. 

azeotrope 
predict. obsv. 

No No 

Yes Yes 

Yes Yes 

Yes Yes 

Yes Yes 
-" 

Yes Yes I\) 
0\ 

Yes Yes 

No No 
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CFhPTER 7 

EXCESS VClLUMES OF MJ!ll!Q. 

Introduction 

The measurement of volume changes on mixing has been of 

great importance in the thermodynamic study of mixtures for they 

provide a particularly sensitive test of current and new theories 

of solutions. 

Indirect determination of excess volumes of mixing'" consists 

in measuring the density of mixtures of known composition. 

Direct methods of measuring V
E 

consist in mixing the liquids 

and observing the resulting volume change in a calibrated capillary 

of suitable size. 

The use of indirect methods for the determination of V
E 

requires m 
a ver~ high precision in the density measurements (of the order of 
1X10-o for a precision of about 0.002 cm3mol,)1 in v!)WhiCh is 

possible to obtain using more or less sophisticated equipment and 
1 

experience • 

Batch dilatometers are used for direct determination of vE, 
measurement at certain composition of the mixture for loading at 

a single constant temperature
2

• Direct determination of vE over 

one 

the whole range of composition of one of the components in two 

loadings, at a single constant temperature, may be achieved by uDing 

dilution dilatometers'. 

Due to the number of n-alkanenitrile + n-alkane systems we 

proposed to study a dilution dilatometer was chosen for measurements 

of I. 



Experimental 

1.1 Materials 

Pure samples of propanenitrile (Cambrian Chemicals, stated 

purity 99 mole %) and n-butanenitrile (Koch-Light, etated purity 

99 mole %) were prepared by drying and distilling over anhydrous 
oalcium chloride in an all glass 1m packed column. Only the middle 

fractions were retained using a high reflux ratio. 

Both pure samples Vlere stored over pre-activated molecular 

eieve. 

A oommercial sample of n-hexanenitrile (E&stman-Kodak Chemicals, 

Analytical Reagent) was dried and distilled over anhydrous calcium 

chloride using the same column described above, the middle portion wus 

retained and stored over magnesium suphate as recommended by 

Weissberger4. 

All the n-alkanes, except n-tetradecane, were obtained from 

Fisons with the following stated purityz n-pentane 99 mole%, n-hexJne 

99 mole %, n-heptane 99.5 mole %, n-octane 99.5 mole %, n-decane 99 
mole % and n-dodecane 99 mole %. The sample of n-tetradecsne was 

Phillips Technical grade 99 mole %. 
\ 

The samples of cyclohexane (Spectrograde Reagent) and benzene 

(Analytical Reagent) were also obtained from Fisons. 

Drying and distillation of all hydrocarbons was carried out over 

sodium. 

All the materials Vlere degassed under vacuum by repeated 

freezing with liquid nitrogen and thawing. After degassing, the 

samples were confined by mercury in glass cells of approximate.Ly 

80 om; to avoid contact with the atmosphere during storage. 
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1.2 The Dilut:ion Dilatometer 

E 
The use of a dilution dilatometer for measurements of V 

offers great advantages, particularly when a systematic study of 

many systems is undertaken. Although the accuracy obtained using a 

dilution dilatometer may also be present in results obtained 
o E 

with a batch dilatometer, the former can provlde V values thut 

cover the whole range of composition of any of the components i.n 

only two dilution runs by interchanging the position of the 

components in the dilatometer. 

SOIDe of the basic design requirements of a dilution dilatClmcter 

which operate at not too high temperatures and pressures includes 

easy calibration of its components, absence of vapour spaces, ease 

of filling, capability of measuring both negative and positiv~ 
VE of any magnitude, and small amounts of material. 

Several dilution dilatometers have been designed in the pnst1,5-1 
but all suffer drawbacks in some of the points mentioned above. 

The dilution dilatometer used here ~~s designed by Kumaran 
8 °t 0 t lOb t 1 bl and McGlashan , 1 1S easy 0 ca 1 ra e, no vacuum or g ass owing 

is necessary for loading, no danger of pre-mixing the pure components 
~ 

exists and only two Teflon taps are used which greatly reduces 

any possibility of leakage during measurements. 

The dilatometer is shown in figure 1.1 and is now fully 

described. 

It consists of a mixing bulb 1 (which before mixing is started 

contains one of the pure components) joined to a burette 2 (containing 

the other pure component) by a Veridia precision bore capillary ~. 

Capillary ~ (also Veridia tubing) is joined at the bottcm of 

bulb 1 providing the route by which mercury flows from bulb 1 into 

the burette 2 thus displacing the same amount of pure component into 1. 
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The volume chanee is observed in the Veridia capillnry .£ after 

each mixing takes place in 1. 

Since all measurements of mercury heights are relative before 

and after every mixing reference marks were made on capHlary .£ (1'1) 

and on the burette (r2). 

Taps T1 and T2 seal the mixing bulb and burette respectively 

during the experiment. 

Capillaries ~, g and .£ were taken from the same length of 

tubing and calibrated by weighing mercury before incorporation into the 

dilatometer. 

The burette was also made of Veridia precision bore tube which was 

calibrated together with bulb 3 once they were part of the dilatometer 

as described by Kumaran. 

7.3 Filling and Measuring Procedure 

Having washed and dried the dilatometer the mixing bulb was filled 

with pure mercury using a stainless steel needle and a hypodermic syringe. 

Care should be taken throughout the filling procedure to avoid 

air entrapment either in the bulb or in any of the capillaries. 

The glass-encapsulated magnet in the mixing bulb must also be 

carefully positioned (externally with the help of a permanent 

magnet) to avoid trapping air where the ends touch the bulb walls. 

Once the mercury level was just under the capillary at the 

bottom of valve T1 the dilatometer was immersed in the thermostat 

bath in such a v~y that the water level only covered up to the 

beginning of the side arm attached to T1 to allow thermal equilibration 

of mercury and dilatometer. 

When thermal equilibrium vms achieved the mercury level was 

adjusted to touch the bottom of valve T1 when screwed to oeul the mixing 

bulb. 
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A Precision Tool and Instrument Co. cathetometer (readable 

to 0.01 mm) was used for all the measurements of heights required in 

this experiment. 

The heights of the mercury menisci in capillaries !, .!!. and .£ \'Iere 

measured with respect to the reference mark r1. 

The next step was to introduce the pure components into the 

dilatometer. The loading of the burette 2 was carried out using 

a long stainless steel needle attached to a syringe, the liquid 

level was left just below the top of capillary ! after which the 

dilatometer was tilted around a perpendicular axis to transfer mercury 

from the mixing bulb to the burette throl1gh capillaries! and .:£. 
Transfer mf mercury was stopped when the mercury level in the burette 

was just above the reference mark 12. 

During this procedure liquid had to be removed from the burette 

since the mercury being added rises the level. The transfer of 

mercury in the liquid filled burette ensured that no air was trapped. 

Tap T2 was screwed in place and the space above the mercury level 

in the mixing bulb was filled with the second component using again 

a stainless steel needle and syringe, tap T1 was then placed in 

position. 

The dilatometer and its supporting frame were lowered into the 

thermostat bath until the top of the capillaries remained outside the 

water. 

After thermal equilibration of the dilatometer and its oontents 

measurement of mercury menisci in capilaries !, ~ and £, and in the burette 

was carried out together with the heights of the reference marker v and 

r"2. 

The two sets of measurements described so far gave the volume of 

the component in the mixing bulb as will be discussed later. 



The measurements of volume changes may now be started by 

diluting the component 1 in the mixing bulb with the component 2 

in the burette as described below. 

Addition of component 2 into the mixing bulb was achic~ed by 

tilting the dilatometer and its supporting frame wHh a clockwioe 

rotation so that mercury flowed into the burette through capillary!!. 

displacing an equal volume of component 2 into the mixing bulb 

through capillary £.. The dilatometer Vias then brou.ght back to its 

original vertical position and the mixture in the mixing bulb was 

thoroughly stirred with the encapsulated magnet using externally a 

permanent magnet. 

The new heights of the mercury menisci in capillaries !!" k and 

c and in the burette were measured with the cathetometer and recorded. 

Dilution of component 1 was carried out following the procedure 

described above until the mercury level in the burette was approximately 

1 cm below the place where capillary!!, joins the burette. 

Figure 7.2 is a block diagram of the procedure followed to 

measure changes of volume as described. 

The size of capillary £ used in the dilatometer here described 

was chosen in the light of the expected magnitude of the VEls for the 

system mentioned at the beginning of this Chapter. Consequently 

the mercury level in capillary c was always at a convenient position. 
E -

However, when measuring V for the standard system benzene + cyclohex3ne, 

whose ~ is larger than for most of the n-alkanenitrile + n-alkane 
m 

systems mercury had to be withdrawn from £ to adjust its level. On the 

other hand, if large negative volume changes were to be measured then 

mercury would have to be added via £ to adjust its level to a convenient 

point. 
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It was found that measurement of the mercury meniscus in 

the burette presented some difficulties due to the refract jon of 

light, so a Terry clip was attached to the burette and always 

poe1tioned a few milimeters above the mercury level to stop 

large refraction of light. Such an arrangement facHita ted measurements 

of mercury menisci in the burette during a whole series of dilutions. 

All the mercury meniscus heights in the burette were measured with 

respect to reference mark r 2. 

Values of ". for the whole composition ranee of one of the m 
components were obtained in two series of dilutions by exchanging 

the pOSitions of the pure components in the dilatometer. 

The cross section of capillaries a, band c W~jB found to be 

(1.90} ! 0.003) x 10-3 cm
2

, the cross ~ec~~on of the burette 
+ 2 

was 1.1301 - 0.0006 em , and the volume of the bulb from the 

bottom of the burette to the reference mark r2 was 1.099 ~ 00 002 cm3• 

The above values together with the measurement s of the mercury 

menisci heights and the reference marks heights during each series 
E 

of dilutions were used for the calculation of Vm• 

If isobaric values of yE are to be determined compressibility m 
corrections, due to the effect on the mixture of the change in the 

pressure attributed to the heights of me~cury in capillary £ mainly, 

had to be considered. 

The compressibility corrections can be avoided by adjusting the 

pressure acting on the mercury in capillary £ so that the pressure of 

the liquids in the dilatometer remains constant throughout 

a series of measurements. 

The constant pressure system is shown schematically in figure 

1.}. It consisted of an U-mercury manometer connected by rubber 

tubing to a vessel A which was in turn joined to a capillary tubing B. 
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Vessel A had approximately the same dimensions as the mixjng bulb 

and was also filled with approximately the same amount of mercury as the 

mixing bulb would have at the beginning of a series of dilutions. 

Capillary B also had approximately the same internal dimensions as 

capillary .Q. to minimize the possibility of unequal depression of 

the mercury levels. Both capillaries, Band .Q., were connected 

with rubber tubing through ground glass jOints. 

Constant pressure of the liquids in the dilatometer was achieved 
+ . as follows: a pressure of 760 - 3 mm Hg was apphed on the mercury 

surface in vessel A, as recorded in the U-rnanometer. Having capillaries 

Band £ connected, the differences in heights of their mercury levels 

hB and hc respectively need to be equal in order to ensure that the 

hydrostatic pressure in the mixing bulb was equal to the applied 

pressure in the vessel A. 

E 
Isobaric V 's were then determined by repeating this procedure 

m 
for each dilution in the dilatometer. 

7.4 Thermostat and Measurement of Temperature 

A well insulated water filled glass tank (capacity 0.065 m3, 

approximately) was used as thermostat. The thermostat was operated 

at ! 0.01 K with a 150 watts electric bulb as heater using a Triac 

controller and a mercurJ contact thermometer (J. C. Cowlishaw Ltd.). 

Temperature homogeneity of the thermostat was ensured by using a 

multiple paddle stirrer. 

The temperature control of the thermostat both during 

measurements of heights of mercury menisci and reference marks was 

! 0.003 K. 

The measurement of temperature was carried out using a platinum 

resistance thermometer (calibrated by the British Calibration 

Service) and a comparison bridge (Rosemount Engineering Co., model 

VLF-51A) • 
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7.5 Results 

E 
Before any measurements of Vm were attempted on n-allrunenitrile 

+ n-alkane systems a test or standard system was studied using 

the dilatometer. 

Powell and SWinton9 recommended benzene + cyclohl.');'ane as 

a test system for measurements of VE, and recently Kumurun and 
8 m 

McGlashan have supported such recommendation. 

Results for the test system are shown in table 7. 1• The experimental 
10 

data were fitted, by the least square method, to an equation of the form , 

(7.1 ) 

where X
2 

is the mol fraction of the second named component and Ci 
are the coefficients of the polynomial equation. 

Table 7.1 also gives the standard deviation a of the experimental 

data as calculated froml 

a = (r (6 ~)2 )i 
(Nobs. - N ) 

( 

where Nabs. is the number of experimental values 

number of coefficients used in ~quation 7.1 and 

table 7.1, is given by 

of /", N is the 
Em 

6 V , also given in 
m 

where VE is the experimental value and VE (calc.) is determined with m m 
equation 7.1 at the same mol fraction X2• 

The results for the test system are in good agreement with 

previousworkers3,8. Figure 7.4 shows a comparison of the results 

obtained here with those of references 3 and 8, which were also obtained 

using a dilution dilatometric method. 
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The excess volumes of mixing of the following systems were 

studied at 303.15 K: 

propanenitrile + 

n-butanenitrile + 

and n-hexanenitrile + 

(n-pentane 

(n-he"ane 

(n-heptane 

(n-octane 

(n-pentane 

(n-hexane 

(n-octane 

(n-decane 

(n-dodecane 

(n-tetradecane 

n-hex:me 

E 
Table 7.2 lists the molar volumes used in the calculation of V • 

m E 
The results are listed in tables 7.3 to 7. 13. Together with the Vm - X2 
data each t<,!ble gives the smoothing polynomial equation (i.e., equation 

7.1) fitted to the experimental ~'s, the deviations 6 v!J (i.e., 
m E m 

equation 703) and the standard deviation of Vm (i.e., equation 7.2). 

~ 

Figures 705 and 7.6 are plots of v! against the mol fraction 

X
2 

of the n-alkane for the systems listed above. 

7.6 Discussion 

The comparison of results for the test system carried out 

in Figure 7.4 shows close agreement between the present results and 

those of Kumaran and McGlashan in the composition range 0.35 to 

0.5, there exists however a better overall agreement between the data 

reported here and the results of Stokes et ale 

The results of Kumaran and those of Stokes with standard 
. 0 0007 cm3 mol-1 and 0.0008 cm3 mol-1 t· 1 t deviat~on • respec ~ve y, represen 

E 
the most precise values of V for the test systemo m 
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The experimental results of vf' for propanenitrile + n-alkane m 
follow a regular pattern whose general features may be described with 

the help of Figure 7.5. 

The magnitude of v! increases on increasine the chain lenGth of 

the n-alkane component. The increase is large when n-hexane is substit­

uted for n-pentane but the increase becomes smaller as the n-alkune 

chain increases. 

The symmetry of the curves follows the same pattern as does 
E the magnitude of Vm as observed from shift of the maxjrium value of 

v! for the system with n-pentane at X2 ~ 0.775 to X2~ 0.55 for the system 

with n-octane. 

The same general behaviour is present in the systems formed by n­

butanenitrile + n-alkane as shown in figure 7.6. 

Due to the difference in chain length between the highest 

and the lowest n-alkane (n-tetradecane and n-pent~ne respectively) 

with which n-butanenitrile is paired the change in symmetry of the 

curves is more noticeableo 

For a given n-alkane (for example n-pentane, n-hexane and n-octane) 

larger values of v! are obtained for mixtures with propanenitrile 

than with n-butanenitrile. This relative behaviour was first noticed 

when discussing the results of solubility temperatures. 

E 
The measurements of Vm for n-hexanenitrile + n-hexane on the 

other hand, confirms the observation that as the chain length of 

the n-alkanenitrile increases its mixture with a given n-alkane behave 

more ideally, and this is clearly seen from the results here 

presented since v! is a measure of departure from ideality. 

These last paragraphs may be summarized in tenus of the unlike 

interactions in the mixture as follows: the unlike interactions 

in propanenitrile + n-alkane systems are weaker than in either n-butanen­

itrile or n-hexanenitrile + n-alkane systemso 
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Plotting ~ against the volume fraction of the n-alknne does m 
not change the above conclusions although the curves show marked 

skewness towards high volume fraction of the n-alkune but also 

in a regular patterno 
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Table 7.1 - Molar excess volumes v: for (1-X2) CGH6+X2C6H12 nt 
298.15 K, and deviations /). ~ calculated from the m 
equation at the bottom of this table 

X2 
,fm 103 6vffi X2 ~ 103 l\ v~ 

. 3 -1 3 -1 } -1 .. 3 -1 
dm mol em mol elm mol om mol 

0.0'(65 0.1769 - 1.6 0.5044 0.6482 - 1.1 

0.1446 0.3157 + 1.8 0.6262 0.6135 + 0.7 

0.2252 0.4459 + 0", 0.7263 0.5254 + 1.6 

0.3028 0.5413 0 0.8136 0.4016 - 0.3 

0.3645 0.5946 - 1.7 0.9459 0.1343 - 2.5 
0.4002 0.6199 + 0.6 

standard deviation = 0.0016 c013mol-1 

E 'IS (1-X2)(205968 - 0.0836 (1-2X2) + 000017 (1-2X
2

)2) cm301ol-1 t:.v :c V . - X m m 2 

Table 7.2 - Molar volumes Vm at 303015 K used in the calculation 

of the excess volumes 

V Reference Substance m 
3 -1 em mol 

benzene 89.41* 11 

cyclohexane 108.75* 11 

n-pentane 117.15 11 

n-hexane 132.54 11 

n-heptane 148.39 11 

n-octane 164.48 11 

n-decane 196.96 11 

n-dodecane 229.69 11 

n-tetradecane 262.53 11 

propaneni trile 71.38 12 

n-butanenitrile 88.40 12 

n-hexanenitrile 121 .89 12 

* Values at 298015 K 
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Table 7.3 - Molar excese volumes ~ for (1-X2) C
3
H5N + X2n - C

5
H12 

at 303.15 K, and deviations 
E t::.Vm calculnted frem the 

equation at the foot of the table. 

~ 103 II v'~ X2 
E 10) I~ 

X2 Vm t. Vrn 
3 -1 3 -1 3 -1 3 -1 em mol em mol ern mol om mol 

0.0243 - 0.0046 -0.1 0.4658 + 0.1774 + 0.9 

0.0917 - 0.0070 + 0.4 0.5197 + 0,2019 - 2.0 

0.1'(14 + 0.0085 - 1.9 0.5075 + 0.2343 + 1.4 

0.2479 + 0.0481 + 2.3 0 0 6421 + 0.2532 + 1.6 

003095 + 0.0833 + 1.1 0.7249 + 0.2695 - 1.0 

0.3491 + 0.1058 - 1.2 0.7951 + 0.2704 - 1.3 

0.3927 + 0.1320 - 2.1 0.8553 + 0.2520 + 007 

0.4201 + 0.1515 + 0.9 0.9122 + 001991 + 0.4 
3 -1 standard deviation = 0.0016 em mol 

t::.v! = ~ - X2(1-X2}(0.7774 - 0.9978 (1-2X2) + 0.~258 (1-2X2)2- 0.8317(1-2X2)3 + 

0.7134 (1-2X2)4) cm3mol-

E 
Table 704 - Molar excess volumes Vm for (1-X2)C3H5N + X2n -C6H14 

X2 

0.0606 

0.1375 

0.2057 

0.2489 

0.2995 

003044 

0.3284 

at 303.15 K, and deviations liVE calculated from the m 
equation at the foot of the table. 

,fro 103 6~ X2 V~ 103 1.1 V~ 
3 -1 3 -1 3 -1 3 -1 em mol em mol em mol em mol 

0.0686 + 1.1 0.3734 0.3764 - 0.2 

0.1 :;65 - 0.4 0.3983 0.3918 - 0.5 

0.2313 - 0.8 0.4448 0.4156 - 1.7 

0.2747 - 0.7 0.4945 0.4391 + 1.1 

0.3225 + 1.4 0.5630 0.4572 + 1.2 

0.3255 + 0.3 0.6495 0.4578 - 1.3 
0 0 3449 + 0.5 0.8054 0.3854 + 0.3 

3 -1 
"F. ~ standard deviation = 0.0011 cm mol 2 

6V.~= .~- X2(1-X2)(1.7596 - 0.6775 (1-2X2) + 004602 (1-2X2) - 0.4907 

(1-2X2)3) em3mol-
1 
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Table 7.5 - Molar excess ~olumes ~ for , m (1-~2)C,H~N + X2n-C7H16 
/).V calculated from the 

m 
at 303.15 K, and deviations 

equation at the foot of the table. 

X2 
~ 1 03 t!~ X2 v#i 10' c:. v~ 
3 -1 3 -1 3 -1 3 -1 em mol em mol em mol em mol 

000195 000415 + 0.3 0.411 9 0.5372 - 0.7 

0.0477 0.0983 - 0.3 0.4446 0.5508 - 0.3 

0.1055 0.2067 - 0.4 0.4793 0.5617 + 0.4 

0.1788 0.3244 + 0.5 0.5994 0.5688 + 0.6 

0.2347 0.3970 + 0.5 0.6696 0.5501 - 0.4 

0.2758 0.4402 - 0.7 0.7844 0.4734 - 0.1 

0.3267 0.4860 + 0.3 0.9012 0.2932 + 0.1 

0.3527 0.5048 + 0.3 
standard deviation = 0.0005 em3~ol-1 

6 v! = v! -X2(1-X2)(2.2625 - 0.3535(1-2X2)~ 0.7450 (1-2X2) 
- 0.5155(1-2X2)3) cm3mol-

Table 7.6 - Molar excess vOlume~ for (1-X
i

)C
3

H
5
N +X2 n - C8H18 

at 303.15 K, and deviqtions 6 V calculated from the m 
equation at the foot of the table 

vfJ 103 E 
X2 ~ 103 A~ X2 AVm 

3 -1 3 -1 3 -1 3 -1 em mol em mol em mol cm mol 

0.0220 0.0806 + 0.6 0.3272 0.5602 + 1.1 

000524 0.1725 - 1.1 0.3944 0.5958 - 0.3 

0.1273 0.3416 + 0.5 0.4580 0.6192 - 0.4 

0.1964 0.4432 + 0.9 0.4982 0.6291 + 0.5 

0.2378 0.4862 - 1.2 0.6371 0.6178 + 0.1 

0.2854 0.5298 + 0.6 0.7771 0.5177 - 0.2 
0.3056 o. ::;433 - 1.1 0.8782 0.3593 + 0.2 

standard deviation: 3 -1 0.0009 em mol 

6 v! • v! - X2(1-X2)(2.51 j4 - 0.3135(1-2X2) + 0.9685(1-2X2{2 + 0.2759 

(1-2X2)3 + 0.4807 (1-2X2)4) cm3mol-
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Table 101 - M.olar excess volumes v! for (1-x2)n-C4H7N + X2n - c~:/q2 
at 303.15 K, and deviations !lVE calculated from the 

If} 

equation at the foot of the table 

X2 ~ 103 !l ~ X2 ~ 103 i\ v~ 
3 -1 3 -1 3 1 3 ::'1 om mol em mol em mol- em mol 

0.468 - 0.0524 - 1.3 0.5189 - 0.0935 - 0.3 
0.0938 - 0.0883 - 1.2 0.6112 - 0.0454 + 3.1 

0.1858 - 0.1263 0 0.6896 - 0.0013 + 2.2 

0.2600 - 0.1377 0 0.7490 + 0.0218 - 0.7 

0.3353 -0.1302 + 6.5 0.8267 + 0.0546 - 0.8 

0.4426 - 001237 - 5.7 0.8832 + 0.0638 - 0.8 

0.4143 - 0.1116 - 2.8 
standard deviation: 3 -1 0.0034 cm mol 

6 v~ • V~~1-X2)(- 0.4008 - 0.7126 (1-2X2)+ 0.3879(1-2X2)2 

- 0.5611 (1-2X2)3) em3mol-1 

Table 7.8 - Molar excess volumes v: for (1:X2)n - C4H?N + X2n - C6H14 
at 303.15 K, and devia tions !l VB caIcuIu ted from the m 
equation at the foot of the table 

~ 103 t. /ni X2 ~ 103 6 :E 
X2 

'Vm 
3 -1 3 -1 3 -1 3 -1 em mol em mol em mol em mol 

0.0697 0.0160 - 0.3 0.4924 0.2366 + 0.1 

0.1415 0.0493 + 0.3 0.5354 0.2537 + 0.7 
0.2264 0.0968 + 0.1 0.6028 0.2735 - 0.1 
0.3284 0.1559 + 0.2 0.6638 0.2845 0 
0.3866 0.1 e64 - 0.6 0.7961 0.2675 + 0.1 

0.3929 0.1910 + 0.8 0.8554 0.2298 - 0.5 
0.4299 0.2076 '- 1.0 0.9247 0.1508 + 0.5 

standard deviation: 
3 -1 0.0006 em mol 

E ~ 2 6 Vm • m - X2(1-X2)(0.9583 - 0.8057(1-2Xf) + 0.3512 (1-2X2)' -
0.4279 (1-2X2)3) em3mol-

, --
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Table 7.9 - Molar excess volumes v! for (1-X2}n - " C 4H"(N + X2 n -

COH18 at 303.15 K, and deviations b. ~~~ culculuted from 

the equation at the foot of the table. 

X2 vfi 103 b. viii X2 vfJ 103 fI ~ 
3 -1 3 -1 3 -1 3 -1 em mol em mol em mol em mol 

0.0274 0.0678 + 0.2 0.3893 0.4774 0 

0.0957 001957 - 0.3 0.4334 0.4986 + 0.4 

0.1645 0.2896 + 0.5 0.4928 0.5164 - 0.4 

0.2225 0.3507 - 0.4 0.5391 0.52?O - 0·3 
0.2604 0.3857 - 0.4 0.6394 0.511 2 + 0.6 

0.3057 0.4235 + 0.5 0.7376 0.4610 - 0.3 
0.3207 0.4340 - 0.1 0.8926 0.2786 0 

standard deviation: 3 -1 0.0004 em mol 

b. v~ = v! -X2(1-X2)(2.0731 - 0.381 7(1-2X2) + 0.3769 (1- 2X2)2 -
0.0780 (1-2X2)3 + 0.691 1 (1-2X2}4) cm3mol-

1 

Table 7. 10 - M.olar excess volumes v! for (1-X2)n - ,C4
H7H + X2 n -

C10H22 at 303. 15 K, and deViatiOnS6y! calculated from 

the equation at the foot of the table. 

X2 
v~ 103 t.\~ X2 ~ 103 A viJ 

3 -1 3 -1 3 -1 3 -1 em mol em mol em mol em mol 

0.0347 0.0960 - 1.1 0.3708 0.5998 - 1.2 

0.0755 0.2001 + 1.5 0.4172 0.6225 - 0.1 

0.1368 0.3260 - 1.2 0.4798 0.6381 + 0.4 

0.2079 0.4441 + 0.4 0.5672 0.6354 + 1.3 

0.2604 0.5099 + 0.2 0.6243 0.6132 - 1.4 
0.2811 0.5317 + 0.2 0.7072 0.5623 + 0.2 
0.3161 0.5635 + 0.3 0.8266 0.4207 + 0.1 

standard deviation: 0.0010 cm3mol-
1 

~V: • v! - X2 (1-X2)(2.5573 - 0.0827 (1-2X2) + 0.6442 (1-2X2)2 
-0~1135 (1-2X2)3) cm3mol-

1 



154 

Table 7.11 - Molar excess volumes v! for (1-X2 ) n ; C
4
Hl ... X2 n -

C12H26 at 303.15 K, and deviations t,V~ calculated from 

the equation at the foot of the table. 

~ 103 t\ V* ~ 
---.; Til 

X2 X2 
10) t\ Vill 

3 -1 3 -1 3 -1 , --1 
em mol em mol em mol em mol-

0.0255 0.0867 - 1.8 0.3072 0.6291 - 0.8 

0.0674 0.2151 - 1.7 0.3514 0.6594 -1.9 

0.1278 0.3688 + 1.0 0.4000 0.6834 - 0.7 

0.1954 0.4977 + 2.0 0.4666 0.6969 - 0.6 

0.2401 o. ~)600 + 0.2 0.5645 0.6878 + 3.9 

002505 0.5734 + 0.8 0.7078 0.5904 - 2.6 

0.2787 0.6035 - 0.2 0.8154 0.3452 + 0.9 

standard devi~tion I 0.0020 cm3 mol-1 

L'lv! • v: -X2(1-X2)(2.7887 + 0.1576 (1-2X2) + 0.7866 (1-2X2)2 

- 0.0961 (1-2X2)3) cm3mol-1 

E 
Table 7. 12 - Molar excess volumes v~ for (1-X2)n -~C4H?N ... X2 n -

X2 

0.0112 

0.0352 

0.0674 

0.0985 

0.1365 

0.1764 

0.2004 

0.2275 

0.2341 

C14~0 at 303.15 K, and deviations L'lV; calculated from 

the equation at the foot of the table. 

~ 1036 vg X2 
,fro 103 i\~ 

3 -1 3 -1 3 -1 3 -1 em mol em mol em mol em mol 

0.0510 - 0.1 0.2573 0.6232 ... 0.2 

0.1494 ... 0.1 0.2604 0.6262 - 0.2 

0.2602 - 0.1 0.2959 0.6609 - 0.2 

0.3492 ... 0.2 0.3230 0.6834 ... 0.2 

0.4378 ... 0.1 0.3626 0.7094 0 

0.5124 - 0.2 0.4195 0.7348 ... 0.1 

0.5502 - 0.2 0.5422 0.7409 - 0.1 

0.5879 ... 0.2 0.7 199 0.6262 ... 0.1 

0.5962 ... 0.2 0.8999 0.3199 0 
3 -1 standard deviation: 0.0002 em mol 

-6V! • v! - X2(1-X2)(2.9856 + 0.0646 (1-2X2) + 0.7')17(1-2X2)2 + 

0.02596(1-2X2)3 + 0.6594 (1-2X2)4)cm3mol-
1 
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rrable 7. 13 - Molar excess volumes v! for (1-X2 )n - ,C 6H11 N + X2 n -

C
6

H
14 at 303.15 K, and deviations llv! calculated from 

the equation at the foot of the table. 

~ 103 t:, vili ~ 
"1 

fI~ X2 
X2 10 J 

3 -1 3 -1 3 -1 3 -1 em mol em mol em mol em mol 

0.0703 - 0.0526 - 0.8 0.5252 - 0.0854 - 1.0 

0.2065 - 0.1113 + 1.1 0.5756 - 0.0662 + 00 9 

0.3218 - 0.1231 - 0.2 0.6955 - 0.0159 + 0.7 

0.4016 - 0.1156 - 103 0.8153 + 0.0343 - 1.7 

0.4431 - 0.1063 + 0.4 0.9146 + 0.0532 + 1.2 

0.511 3 - 0.0880 + 0 0 7 
standard deviation : 3 -1 0.0013 em mol 

6V! · v: - X2(1-X2)( - 0.3681 - 0.5199 (1-X2) + 0.1852(1-~X2)2 -

0.7281 (1-2X2)3 + 0.3832 (1-2X2)4) cm3mol-
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wotkers over the values reported in ~able 1.1, 
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Curve A calcul:1ted with data from reference 8, 

curve B calculated with data from reference 3. 
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CIIAPTER 8 

EXCESS ENTlIATJPn:S OF MIXING 

Introduction 

The excess enthalpies or heats of mixine If, as the excess 

volumes of mixing, play an important role both in the thermodynamic 

study of mixtures and in testing theories of non-electrolytes. 

The interrelation between some properties of mixtures as eiven 

by thermodynamics enables the determination of numerical values 01' 

one property from experimentally observed values of some other 

property. 

Example of such interrelations were set out in Chapter 1, Hnd of 

particular interest for this discussion is the relation between 
E E 

the excess enthalpy of mixing H and the excess Gibbs free energy G 

(equation 1.11), namely 

E e E e E e H (T,p ,X) = G (T,p ,X) - T(a G (T,p ,x)/a T)p (8.1 ) 

8 
which is the Gibbs-Helmholtz equation and where p indicates a 

standard pressure, u~J_ally 1 atm. 

Relation 8.1 means that ~ may in principle be derived from 
E 1 2 

the temperature dependence of G , however, it has been pointed out' 

that large errors in HE are obtained even for very accurate values -
E 

of G • 

Experimental determination of /'s are thus preferred over any 

other method. 
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McGlashan2 and more recently 1~rsh3 have reviewed most of 

the calorimeters that have appeared in the li teratuf'e for the 
E. determination of H The calorimeters are distinc,uiGhcd accordjnG 

to the principle on which they work, such as adiabatic, flow and 

isothermal calorimeters. 

Some basic requirements must be considered when c0nstructin~ 
E 

mixing calorimeters for precise measurements of H. Among the mOBt 

important are: (a) vapour spaces should be completely eliminnted, 

(b) means of achieving complete mixing of the liquid, and (c) menns 

to allow for volume changes on mixing. 

Bearing in mind these requirements a displacement calorimeter WIIS 

built in this laboratory4 similar to that described by Stokes and 
;,6 

coworkers • 

Experimental 

8.1 Materials 

All the materials for the determination of HE are from the 
E 

same sources as the materials used in the determination of V • 

Methods of purification and storing of the pure sampll's have also 

been described in section 7.1. 

8.2 ~he Displacement Calorimeter 

The principle of operation of the calorimeter for the determination 

of endothermic heats of mixing is as folloVisl a mixing vessel, 

whose volume has previously been calibrat.ed, contains oriGinally pure 

component1, addition of pure component 2 into the mixine vessel is 

carried out with a calibrated burette. The drop in temperature on 

mixing is compensated by electrically supplying a known amount of 

energy. Volume changes on mixing are taken into account by allowing 

mercury from the mixing vessel to be displaced into a pipette as a 

result the experiment is carried out eGsentially under constant pressure. 
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The different components of the calorimeter are given 

below with features of particular interest. 

(a) The Mixing Vessel 

The mixing vessel is shown schema tically in Fi . .',ure 8.1. 

It was made of P,yrex glass by fusing its two halves by the.middle 

to allow the stirrer being positioned in place. 

The mixing vessel (capacity 50 cm~ approximately) had 

attached three capillaries A, Band C and two wells or pockets D 

and E. 

Capillary A, at the bottom of the mixing vessel, was connected 

to the mercury pipette to allow mercury, originally filling approx­

imately half the total volume of the mixing vessel, to flow into 

tbe pipette when dilutions were being carried out. 

Capillary B, joined at one side of the mixing vessel, branches 

into capillaries F and G. Capillary F was coupled to the piston 

burette and provided the inlet for the pure liquid in the burette 

when injected into the mixing vessel. Capillary G was closed by a 

micro ball-valve V2 0ftside the thermostat bath. 

Capillary C, at the top of tbe mixing vessel, allowed the 

stirrer shaft to be taken outside the mixing vessel to be joined 

to a motor outside the thermostat. A micro ball-valve V2 was fitted 

to the outlet capillary H, through which air from the mixing vessel 

was ejected during the filling procedure. 

The glass wells were fused into the mixing vessel; D contained 

the thermistor for the determination of temperature changes and E 

tbe beater to supply energy. 
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The stirrer was designed to ensure that complete mixjng was 

acbieved at any staee of the experiment. The stirrer was directly 

driven by a synchronous motor (Crouzet, type 82.18) at a spoed of 

300 rpm. The stirrer had an upper propellor with two pada les design(!d 

to push the liquid to the bottom of the mixl,ng vessel and a lower 

four-paddled propellor designed to lift the liquid in the mixing 

vesselo 

(b) The Piston Burette 

A 20 cm' manual piston burette (Metrohm, type E274) was modifjed 

and fitted with a synchronous motor (Crouzet, type 82.472) which moved 

the PrFE piston P at a rate of 0.3 rpm. Figure 8.2 shows the piston 

burette. 

The volume of pure liquid injected from the burette into the 

mixing was controlled with a manual switch ccnnected to the motor 

driving the burette and it was read using scale Q (calibrated 

in cm') and scale R (calibrated in 0.02 cm'). 

A three-way tap T1 (5pringham, type Interflon PTFE Interkey) 

was joined to the burette to inject liquid through capillary S1 into 

the mixing vessel and for refilling when necessary through capillary 52. 

Capillaries S1 and S2 (PTFE tubing) were joined to tap T1 with 

a low vapour pressure resin (Torr Seal, Varian Associates). 

(c) The Mercury Pipette 

Figure 8.' shows the mercury pipette. It consisted of a flat 

bottomed cylindrical vessel U (total capacity 50 cm' approximately) 

with a long glass tube V at the top and a capillary tube \V at the 

bottom. 

Tube V was used to clamp the pipette to the frame holding 

the calorimeter. Capillary W was joined to a PTFE tap T2 which had 

attached a stainless steel capillary by a glass-to-metal seal o 



161 

The mercury pipette was connected to the capillary A in the 

mixing vessel by a PTFE tube (0.2 em internal diamter) with a 

female coupling at each end which screwed to the male couplings 

attached to capillary A and to the capillary in tap T2 in the 

pipette. 

Two reference marks M1 and M2 were made on the pipette. 

Reference M1 on vessel U marked the point up to which the pipette 

had to be filled with mercury; reference M2 marked the position 

of the mercury level at the beginning of an experiment. Consequently 

M2 helped to determine the volume of the mixing vessel occupied by the 

pure component at the beginning of any measurement. 

(d) Ihe Calorimeter Jacket 

The vacuum jacket was a thick-walled glass cylinder with wide flanges 

at either end (Quickfit type FG100). It was silvered leaving only 

a clear strip in front to allow inspection of the mixing vessel. 

The sealing of the jacket with the top and lower brass plate 

X (see figure 8.1) was achieved using Silicon rubber O-rings Y. 

The electric connexions for the heater and the thermistor, 

and capillaries C, F and G passed through the top brass plate using 

brass collars Z. The capillary A passed through the lower brass 

plate also using a brass collar Z. 

All the calorimeter components so far described were fixed 

to an aluminium frame which was in turn fixed to a metal column. 

This arrangement allowed the whole calorimeter assembly to be raised 

or lowered into the thermostat tank as required. 

Although the glase jacket was used to prevent heat losses from 

the calorimeter to the thermostat and to keep the mixing process 

at a constant temperature, the term isothermal has been avoided in 

describing the present calorimeter. 
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The name isoperibo1 displacement calorimeter seems more 

appropriate, since it means that the calorimeter temperature is slightly 

different from its enviroment (i.e., the thermostat bath). 

8.3 Measurement of Temperature in the Calorimeter 

The measurement of temperature changes in the calorimeter 

during the process of mixing also plays an important role if 

precise values of HE are to be obtained. 

Faulkner et a17 described a resistance thermometry arrangement 

which was an improvement to that used in the culorimeter of Larkin 

and McGlashan8• The advantages of the resistance thermometry 

of Faulkner et a1 made possible greater accuracy in the measurement 

of ~ such circuitry has been used in this laboratory in several 

different designs of calorimeters during the last 7 years. 

Figure 8.4 shows schematically the resistance thermometry used 

in this work. The \Vheatstone bridge having a thermistor as the 

unknown resistance was operated at approximately 18 Hz by an A.C. 

generator (Advance Electronics Ltd., type J2E osoillator). The use 

of such a low frequenoy cut down the power dissipated by the thermistor 

in the calorimeter. Also potential fluctuations due to thermal 
\ 

e.m.f.'s present in D.C. circuitry were eliminated. 

The 600 n impedance output, with both ends floating, of the 

A.C. generator was used to power the bridge and the 5 n impedance 

output, earthed on one side, supplies the reference signal for the 

phase-sensitive detector (PSD). 

The bridge output after amplification by a low-noise amplifier 

(Brookdeal, type 450) is fed to a PSD (brookdeal, type 411) whose 

D.C. signal was then~plied to a flat-bed potentiQnetric recorder 

(Servorgor, type RE 511.20). The recorder displayed dil'ectly the 
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amplified brid~e output which eliminated the need for point-hy­

point plotting of the galvanometer - time readings HS done by 

IBrkin. 

The construction of the Wheatstone bridge was carried out 

using short twisted wires to reduce 50 lIz pick-up. The ratio 

or fixed arms of the bridGe were two wire-wound resistors (Cropico 

Ltd.) of 100 nand 10 (2 • A decade box of approximately 

10 K n was used as the variable arm of the bridge. The thermistor 

used was a Standard Telephones and Cable Ltd. type G (bead-type 

in glass capsule) with a nominal resistance of 500 n at 200C. 

Coaxial cable was used in the following connectionsl A.C. 

generator -PSD and bridge, bridge-amplifier, amplifier - PSD, and PSD -

recorder. 

The Wheatstone bridse and the ancillary equipment were used 

as follows: the output voltage E of the A.C. generator was set to 

give a suitable amplitude as indicated by the level detector 

('magic eye') on the PSD, the E used for all the measurements in 

this work was 8 volts. The resistance R (refer to figure 8.4) 

was set to a value of 825 n , so that the current through the 

bridge was approximately 5.3 x 10-3A. 

The bridge was balanced by adjusting the value of the resistance 

box (the variable arm) having the gain of the amplifier at its 

lowest value and the recorder drive switched off. The amplifier 

gain was then increased to the next value and balance was achieved, 

as observed on the scale of the PSD, by adjusting the resistance box. 

When a suitable gain was achieved (usually 70.%) the recorder 

drive was switched on and a pen response of app roximately 10 mK-
1 

was 

used. 

The power dissipated by the thermistor was approximately 6.9 x 10-6W 
-6 -1 giving a rate of warm-up of the calorimeter of 4.9 x 10 K min 

approximately, wLich is indeed a very low value compared with those 

usually obtained in a D.C. resistance thermometry circuit. 
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8~4 Heating Circuit 

The heating circuit described be10Vl is used for endothermic 

mixing processes where compensation of heat is required on mixing. 

The heating circuit consisted (see figure 8.5) of a constant 

current ~a1ibrator (Bradley Ltd., type 132), a digital timer 

(Venner Electronics, type TSA 6635), a calorimeter heater, two 

mercury wetted relays (ITT, type 313101 AAAA), and a manual switch. 

The constant current calibrator (CCC) supplied any previously 

set current to the heater, the timer was started simultaneously 

thanks to the mercury wetted relays. Thus, knowing the current 

supplied, the heater resistance and the time the current was flowing 

it was very easy to calculate the energy supplied to the calorimeter. 

The calorimeter heater was wound around a cylindrical ceramic 

former using resistance wire of low temperature coefficient of 

resistance (Johnson A~tthey, type Stabilohm 133). The heater 

resistance was 706.952 n for this study as measured with a 

comparison bridge (Rosemount Engineering Co., model VLF-S1A) 

and a standard resistor (100.0153 n ) at 298.15K, the temperature 
E 

of H measurements. 

8.5 Measuring Procedure 

In order to know the volume of the pure liquid in the mixing 

vessel (the dilutee) at the beginning of any set of measurements 

it is necessary to calibrate the volume above the mercury surfnce in 

the mixing vessel. This calibration was carried out by filling the 

mercury pipette with mercury up to the reference mark M1. This Vias 

done by placing the stainless steel capillary into a beaker with clean 

mercury and evacuating the pipette from the top of tube V. This 

procedure ensured that no air was trapped inside the pipette. 
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The pipette was then connected to the mixinG vessel usinG the 

Pl'FE tube with couplings. The mercury Vias allowed to run into the 

mixing vessel and stopped at reference mark M2 on the pipette. 

Tap T2 was closed so that the volume in the mixing vessei above 

the mercury could now be calibrated injecting liquid from the 

piston burette. The uncorrected volume was obtained from the 

burette readings taken when the first drop of liquid entered the 

mixing vessel and when the first drop of liquid came out through 

the micro valve V2. The final calibration volume was obtained 

subtracting to the uncorrected volume the volume of capillnry C (0.015 cm3) 
and adding the volume of capillary B (0.004 cm3). The calibration 

volume found here was 23.11 ! 0.01 cm3• 

The procedure for operating the dilatometer was as followsa 

the mixing vessel was filled with mercury as described above adjusting 

the mercury level in the pipette to reference M2. The jacket was 

evacuated at this stage, tap T2 closed and the calorimeter partially 

immersed in the thermostat. After approximately 1 hour the degassed 

dilutee is injected into the mixing vessel having valve V1 closed 

and valve V2 open. Valve V2 was closed when liquid came through it 

and valve V1 was opened to ensure that no air was left in any capillary. 

Meanwhile the burette had been filled with the degassed diluent and 

placed in the thermostat. After the mixing vessel was filled the 

stirrer was switched on and the burette connected to capillary Fusing 

a Luer-lock adaptor. The whole calorimeter arrangement was then 

immersed completely into the thermostat controlled at 298.15 t 0.005 K. 

The burette was operated to fill capillary G with the diluent and valve 

V1 closed. 

The calorimeter was left overnight to reach thermal equilibrium 

after which tap T2 was opened and mixing started. After each injection 

of the diluent the mercury level in the pipette was adjusted to 

ensure a constant pressure experiment and furthermore to avoid contrib­
utions to r! from the heat of compression of the mixtureo 
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Since only endothermic mixings were studied, after each 

mixing the calorimeter temperature dropped so electric enerGY was 

supplied using the heating circuit already described. r.l'he 

electric energy or heat of compensation did not always bring the 

calorimeter temperature back to its original value as observed in 

the recorder. This difference in the temperature had to be taken into 

account when If was calculated. Thus, in order to evaluate the 

amount of energy under or over-compensated, a known amount of 

electric energy was supplied to the calorimeter and the ratio 

energy/displacement obtained with the recorder. It was not necessary 

to carry out such a calibration after each mixing since a plot of 
-1 ) energy/displacement (Jmm against the total volume of the diluent 

injected was used for interpolations. 

For the calculation of ~ the following data had to be 

recorded at each mixing: the volume of diluent injected, the current 

supplied, and the time of flow of the current during compensation, also 

for some mixings when calibration was done the current and its time 

of flow. These data together with the constant volume of the dilutee 

in the mixing vessel and the heater resistance were used for HE calcu­

lations. 

8.6 Thermostat and Measurement of Temperature 
\ 

The thermostat was a water filled galvanised tank (capacity 

0.2 m3, approximately) insulated with polystyrene plates. The tank 

had a front window through which the mercury levels inside the 

mixing vessel and in the pipette were viewed. 

+ The thermostat was controlled to~98.15 - OoOO~ K for most 

of the time used in measurements using a proportional temperature 

controller (Hallikainen .Instruments Ltd., type 1053A) and a 100 n 
platimum resistance as sensor. A centrifugal pump with inductance 

motor was used for stirring to avoid 'electric noise' interfering 

with the calorimeter temperature measuring circuit as usually occurre~ 

when normal brush motors were used. 



Heat to the thermostat was supplied by a Pyrotenax he3tin~ 

element wound 'around the inner walls of the tank. 

The thermostat temperature was measured with a calibrated 

platinum resistance thermometer and a comparison bridge. 

8.7 Results 

Although the displacement calorimeter has been extensively 

used in this laboratory giving reliable results of t~ it was necessary 

to study a test system to get acquainted with the different instruments 

and to develop a measuring technique. 

The system cyclohexane + n-hexane was proposed9 as a 

standard for testing enthalpy of mixing calorimeters accordjng to 

the criteria discussed by McGlashan
2

,10. During 1969 several laboratories 

9,11,12 were engaged in measurements to stablish precise values of 

a: at 298.15 K for the above system. 

The results for the test system obtained in this work are shown 

in table 8.1. The a: results were fitted, by the least square 
13 

method, to an equation of the form a 

(8.1) 

where X
2 

and Ci are the mol fraction of the second named component 

and the coefficients of the polynomial equation respectively. 

The standard deviation and also given in table 8.1 is calculated 

as follows 

C1 -

E .lc 
( 1: (6Hm)2 )"2" 
( Nobs. -N ) (8.2) 

where Nobs. and N are the number of experimental values of HE and 
-.E m 

the number of Ci coefficients used in equation 8.1 and 6I~, also given 

in table 8.1, is given bya 
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~HE = HE _ HE (calc.) 
m m m 

where a: is the 

calculated with 

experimental value and ~ (calc.) is the value m 
equation 8.1 at the same mol fraction X2• 

Table 8.2 shows a comparison of ~ (calc~) from equation 

8.1 at round values of X2 with the most reliable measurements 

obtained by other workers. 

The excess enthalpies of mixing of the following n-alkanenitrile + 

n-alkane systems were studied also at 298.15 Ka 

propanenitrile + 

n-butanenitrile + 

(n-pentane 

(n-hexane 

(n-heptane 

(n-he~ne 

(n-octane 

(n-dodecane 

(n-tetradecane 

Table 8.3 lists the density at 298.15 K and the relative 

molecuhr mass· . of the pure substances used in the calculation 
E \ 

of ~. 

Tables 8.4 to 8.10 contain the experimental ~ - X2 data, 

the smoothing polynomial equation (i,e, equation 8.1) fitted to 

n:, the deviations 6~ (i.e., equation 8.3) and the standard 

deviation of a: (i.e, equation 8.2) for each of the studied systems. 

Figures 8.6 and 8.7 are plots of ~ against the mol fraction X2 
of the n-alkane for propanenitrile + n-a1kane and n-butanenitrile + 

n-alkane systems respectively. 
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8.8 Discussion 

E 
The results of Hm for the test system obtained in this work 

are in good aereement with those reported uy other workers specially 

in the compos i tion range X2 EO 0.3 to X2 = 0.7 where the differcmces 

are within the standard deviation obtained here, i.e., 1.0 J mol-1 • 

The magnitude of HE for n-alkanenitrile + n-alkane systems 
m ....E 

makes desirable the use of a test system with II similar in macnitude. 
m 

Unfortunately, no such test system has been proposed up to the present. 

A qualitative discussion of the experimental ffE may be done with 

the help of Figures 8.6 and 8.7. The magnitude of ~ increases as 

the chain length of the n-alkane increases in systems with either 

propanenitrile or n-butanenitrile. The ~ - X2 curves unlike the 

VE results are very symmetric. As for the relative magnitude of 

~ for systems with a common n-alkane the n: for propanenitrile + 

n-hexane is higher than for n-butanenitrile + n-hexane. 
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Table 8.1 - Molar excess enthalpies ~ for,,(1-x
2

)C6H12 + X
2 

n - C6H14 
at 298.15 K, and deviations t.lf calculated from the 

m 
equation at the foot of the table. 

X2 
~ M~ X2 HI~ 6 lti~ 

-1 -1 -1 -1 
J mol J mol J mol J mol 

0.0018 1.7 - 0.8 005154 215.7 + 0.5 

0.0065 6.6 - 2.2 0.5519 211.1 + 2.0 

0.0322 " 39.3 - 1.6 0.5792 203.5 +0.3 

0.0451 57.9 + 2.4 0.6079 195.3 + 0.4 

0.0625 75. 2 + 1.3 0.6396 185.3 - 0.8 

0.0817 92.4 0 0.6711 17,.6 - 1.5 

0.1010 109.6 + 0.4 0.7018 161.6 - 1.4 

0.1178 122.4 - 0.18 0.7267 151.4 - 0.8 

0.1410 138.1 - 1.1 0.7489 141.7 - 0.3 

0.1630 152.4 - 0.7 0.7653 133.9 - 0.1 

00 1858 165.7 - 0.1 0.7824 125.6 + 0.3 

0.2108 178.0 + 0.1 0.8081 113.4 + 1.6 

0.2376 189.6 + 0.7 0.8385 96.8 + 1.9 

0.2672 199.3 + 0.4 0.8531 87.7 + 1.1 

0.2973 206.9 - 0.1 0.8682 77 .3 - 0.5 

0.3295 212.3 - 1.2 0.8838 67.7 - 0.9 

0.3600 217.0 - 0.9 0.9000 58.6 - 0.4 

0.3670 218.3 - 0.3 0.9343 38.4 0 

0.3150 219.0 - 0.4 0.9487 28.6 - 1.2 

0.4052 222.3 + 1.1 0.9561 25.3 - 0.1 

0.4473 221.3 + 0.1 0.9153 14.6 + 0.5 

0.4801 220.1 + 0.8 0.9909 5.0 - 0.1 
-1 standard deviation a 1.0 J mol 

!l ~ - ~ - X2(1-X2)(868.93 + 234.05~1-2X2) + 94.96(1-2X2)2 + 110.73 
(1-2X2) 3) J mo1-
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Table 8.2 - Comparison of ~ values for the test system (1-X2) 

C6H12 + X2 n - C6H14 at 298.15 K. 

X2 ad' J mol-1 

1 2 3 4 5 

0.05 60.8 56.72 56.75 56.63 56.16 

0.10 108.4 103.03 103.08 102.96 102.53 

0.20 172.9 169.08 169.14 169.20 169.49 

0.30 207.6 206.19 206.16 206.52 207.36 

0.40 221.0 220.40 220.24 220 0 83 221.66 

0.50 211.2 216.13 215.87 216.52 216.96 

0.60 197.9 196.49 196.23 196.76 196.85 

0.70 163.7 163.62 163.52 163.76 163.93 

0.80 116.1 119.07 119.21 119.12 119.86 

0.90 58.9 64.09 64.38 64. 11 65.31 

0.95 29.0 33.09 33.32 33. 11 34. 06 

1) this work from smoothing equation 

2) reference 6 

3) reference 11 

4) reference 9 
5) reference 14 
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Table 8.3 - Densities at 298.15 K ~nd relative molecular mass 

of pure substances used in the calculation of ~. 

Substance reference 

cyclohexane 84.163 0.77391 15 

n-pentane 72.151 0.62139 15 
n-hexane 86.178 0.65481 15 
n-heptane 100.206 0.67951 15 

n-octane 114.233 0.69849 15 

n-dodecane 170.341 0.74516 15 
n-tetradecane 198.395 0.75917 15 
propaneni trile 55.08 0.77682 16 
n-butanenitrile 69.107 0.78630 17 
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Table 8.4 - Molar excess enthalpies ~ for (1-X2~C3rr5N + X2 n -
C

5
H12 at 298.15 K, and deviations ~}~ calculated from 

the equation at the foot of the table. 

X2 ~ MlJ. X2 Hfii ~H~ 
-1 -1 -1 -1 

J mol J mol J mol J mol 

0.0401 143.7 - 5.8 0.4648 1219.5 - 3.2 
0.0573 223.7 + 0.2 0.4872 1226.5 - 6.0 

0.0735 298.4 + 3.2 0.5094 12;6.8 - 1.9 

0.0891 368.4 + 3.8 0.532; 1241.7 + 0.4 

0.1054 435.4 • 0.8 0.5619 1236.4 - 2.3 

0.1289 536.0 + 0.4 0.5936 1227.5 -0.7 

0.1504 621.1 + 0.4 0.6370 1199.2 - 0.5 

0.1724 703.8 + 1.2 0.6900 1144.9 + 2.9 

0.1928 111.2 - 0.5 0.7376 1070.9 + ;.0 

0.2136 834.2 - 1.6 0.1843 977.3 + 3.5 

0.2314 891.9 - 3.1 0.8276 865.4 + 0.2 

0.2624 959.2 - 3.1 0.8694 1"52.2 - 3.3 

0.2876 1013.8 - 1.7 0.9016 605.8 - 6.7 

0.3132 1062.4 + 0.2 0.9289 480.5 - 5.6 

0.3375 1101.0 + 0.6 0.9489 377.9 + 1.6 

0.3606 1134.2 + 2.5 0.9645 282.7 + 4.7 

0.3768 1155.4 + 4.4 0.9778 1 ~1.1 + 7.5 

0.3966 1178.4 + 6.5 0.9867 122.9 + 8.7 

0.4211 1197.1 + 2.7 0.9944 56.0 + 6.3 

0.4451 1211.1 - 0.2 
.1 

standard deviation , 4.0 J mol 

AU: - ~ - X2(1-X2)(4945.92 - 533. 22 (1-2X2) + 1373.92 (1-2X2)2 

+ 488•69(1-2X2)3 - 226.19(1-2X2)4 - 2964.87(1-2X2)5) J mol-1 
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Table 8.5 - Molar excess enthalpies If! for (1-X2)C~H_N + X2 n - C.H 
m E / 5 b 14 

at 298.15 K, and devia t ions A H calculo ted from the 
m 

equation at the foot of the table. 

~ E X2 HfJ CllJil X2 AHm 
-1 -1 -1 -1 

J mol J mol J mol J mol 

0.0113 11.8 - 506 0.3610 1344.0 ... 5.1 
0.0230 149.1 - 4.1 0.3802 1365.9 ... 4.1 
0.0382 248.1 - 2.0 0·3989 1386.2 ... 6.0 

0.0553 349.1 - 2.0 0.4324 1401.8 ... 1.1 

0.0156 465.5 ... 1.2 0.4125 1422.2 - 1.8 

0.0910 515.5 ... 1.4 0.5181 1424.2 - 3.2 
0.1250 109.2 ... 4.1 0.5646 1401.4 - 5.6 
0.1542 831.1 ... 6.2 0.6179 1374.3 - 0.5 

0.1911 958.2 - 2.3 0.6192 1305.4 ... 3.4 

002254 1062.1 - 1.3 0.7555 1167.4 + 2.9 

0.2568 1143.0 - 3.6 0.8226 988.0 - 1.0 
0.2816 1208.8 - 1.0 0.8795 111.4 - 2.5 
0.3160 1259.1 -10., 0.9312 518.3 - 1.6 

0.3364 1309.3 ... 5.8 0.9689 270.2 + 4.1 

standard deviation a 4.9 J mol 
-1 

A~ D ~ - X2(1-X2)(5112.60 - 10.69(1-2X2)+ 1489.03(1-2X2)2 

- 548.49 (1-2X2)' ... 1031.51 (1-2X2)4 - 645.61(1-2X2)5) J mol-
1 
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Table 806 - Molar excess enth&lpies ~ for (1-X2)C
3
H

5
N + X2 n -

C
7
H16 at 298.15 K, and deviations 6~ calculated from the 

equation at the foot of the table. 

X2 
J1 t.I~ X

2 HRi 6H~ 
-1 -1 -1 -1 

J mol J mol J mol J mol 

0.0129 98.9 - 4.5 0.3587 1472.2 + 9.0 

0.0291 221.1 - 3.9 0.3873 1499.1 + 2.2 

0.0464 344.2 - 1.0 0.4092 1515.0 - 1.7 

0.0655 469.3 + 1.6 0.4435 1534.3 - 3.2 

0.0920 627. 1 + 5.7 0.4829 1544.6 - 2.2 

0.1217 775.2 + 1.2 b.5268 1540 • .5 + 0.6 

061515 910.5 + 1.8 0.5993 1490.4 - 1.4 

0.1815 1027.5 - 0.4 0.7001 1354.7 + 0.9 

0.2121 1124.2 - 9.9 0.7999 1125.0 + 2.5 

0.2552 1260.0 0 0.8888 781.0 - 3.3 

0.3003 1364.9 0 0.9536 397.5 + 1.6 

0.3491 1449.8 0 

standard deviation z 4.1 J mol 
-1 

6~ = ~ - X2(1-X2)(6184.74 + 227.91 (1-2X2) + 1587.24 (1-2X2)2 

- 1043.88 (1-2f2 )3 + 1305.08 (1-2X2)4) J mol-1 
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Table 8.7 - Molar excess enthalpies ~ for (1-X2) n - C
4

R7N + X2n -

C6H14 at 298.15 K, and deviations tJ. ~ calculated from 

the equation at the foot of' the table. 

X2 ~ ln~ X2 riR tJ.l~ 
-1 -1 -1 -1 

J mol J mol J mol J mol 

0.0193 104.6 + 0.9 0.5862 1221.3 - 10.5 
000476 251.8 + 1.3 0.6271 1188.1 - 3.4 
0.0766 394. 1 + 1.0 0.6707 1140.8 + 4.1 

0.1131 561.4 + 2.0 0.7116 1077.0 + 3.6 

0.1511 715.0 0 0.7507 1006.2 + 5.6 

0.1855 835.1 - 4.3 0.7846 928.8 + 2.8 
0.2270 963. 0 - 4.9 0.8236 824. 1 + 0.1 

0.2686 1071.4 - 1.7 0.8513 738.9 0 

0.3096 1158.9 + 4.6 0.8784 643.3 + 0.1 

0.3518 1225.6 + 9.9 0.9031 544.5 + 0.8 

003610 1220.9 - 5.3 0.9259 433.3 - 6.3 
0.3833 1244.3 - 3.6 0.9452 336.8 - 4.4 
0.4138 1271.6 + 2.8 0.9580 265.7 - 4.5 
0.4464 1287.1 + 6.3 0.9689 205.3 - 0.5 

0.4794 1288.4 + 5.4 0.9787 152.3 + 7;1 

0.5129 1273.4 - 2.6 0.9868 94.6 + 3.1 

0.5498 1250.9 - 7.5 0.9935 48.9 + 3.0 

standard deviationl 4.8 J mol -1 

.AI~ = ~ - X2(1-X2)(5119.00 + 482.31 (1-2X2) + 1188.61 (1-2X2)2 

- 1354.43 (1·2X2)3) J mol-1 
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Table 8.8 - Molar excess enthalpies ~ for (1-X2) n - C
4
17N + X2 

n - C8H18 at 298.15 K, and deviations E 
t:, H calculated m 

from the equation at the foot of the table. . 

X2 J t:, 11m X2 l~ t:,H~ 
-1 -1 -1 -1 J mol J mol J mol J mol 

0.0037 29·2 - 2.4 0.3773 1313.6 + 1.0 

0.0092 71.1 - 5.9 0.4069 1350.0 + 4.8 

0.0165 124.3 - 10.3 0.4385 1381.4 + 9.8 

0.0267 197.5 - 12.6 0.4666 1395.5 + 8.1 

0.0385 279.2 - 11.9 0.4976 1408.3 + 12.0 

0.0504 359.8 - 6.6 0.5326 1390.7 - 4.5 

0.0632 441•1 + 0.2 0.5687 1369.6 - 12.3 

0.0753 513.8 + 8.0 0.6112 1336.9 - 13.6 
0.0898 595.7 + 18.3 0.6649 1286.5 - 1.2 

0.1101 676.9 + 9.3 0.7138 1214.3 + 5.7 

0.1324 753.5 - 1.9 0.7601 1121.7 + 7.7 
0.1575 838.5 - 4.2 0.8033 1009.5 + 3.8 
0.1808 915.3 + 0.3 0.8426 886.0 + 0.1 

0.2100 994.8 - 1.0 0.8771 753.7 - 4.8 

Q.2402 1069.3 - 0.8 0.9106 602.5 - 5.5 

0.2721 1136.7 - 3.0 0.9381 454.9 - '.7 
0.2993 1187.5 - 5.2 0.9525 371.2 + 2.4 

0.3263 1230.2 - 9.4 0.9650 288.7 + 5.4 

0.3062 1207.0 + 1.8 0.9772 193.9 + 1.5 

0.3251 1234.3 - 3.3 0.9889 99.2 + 1.6 

0.3502 1276.0 - 0.4 
standard deviation I 7.5 J mol-1 

t:,~ a ~ - X2(1-X2)(5586.27 - 229.34 (1-2X2) + 799.35 (1-2X2)2 

- 21.03 (1-2X2)3 + 2514.38 (1-2X2)4) J mol-1 
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Table 8.9 - Molar excess enthalpies HE for (1-X2)n - C ILN + X n -m 4 ., 2 

C12E26 at 298.15 K, and deviations ~~ calculated from 

the equation at the foot of the table. 

X2 ~ ~~ X2 ~ M~ 
-1 -1 -1 -1 

J mol J mol J mol J mol 

0.0066 62.8 - 1.0 003059 1456.8 + 14.3 
000135 123.6 - 4.7 0.3249 1488.6 + 21.0 

0.0303 268.6 - 8.0 0.3742 1498.7 - 11.1 

0.0418 367.5 - 3.7 0.4128 1530.1 - 9.0 
0.0535 463.2 + 1.3 0.4560 1553.3 + 0.5 

0.0656 556.8 ... 6.8 0.4951 1552.6 - 2.0 

0.0791 64909 + 8.1 0.5390 1543.7 - 0.8 
0.0941 741.4 + 5.3 0.5843 1519.5 + 0.5 

0.1093 826.7 + 2.8 0.6344 1474.7 + 4.9 
0.1252 908.6 + 0.8 0.6801 1407.4 + 5.9 

0.1419 985.5 - 2.3 0.7233 1311.1 - 1.1 

0.1597 1059.9 - 4.7 0.7656 1192.6 - 5.4 
0.1772 1127.3 - 4.8 0.8103 1039.2 - 5.8 
0.1947 1185.2 - 7.2 0.8555 853.4 - 0.4 
0.2122 1239.7 - 6.4 0.8952 663.6 + 8.9 
0.2300 1289.0 - 5.5 0.9251 491.1 + 5.9 

0.2479 1334.3 - 3.0 0.9488 339.5 - 1.6 

0.2671 1380.1 + 1.5 0.9716 180.0 - 13.6 

0.2871 1421.1 + 7.6 
standard deviationsl 

-1 7.8 J mol 

~n: = a: -X2(1-X2)(6216.45 + 228.07 (1-2X2) + 2888.86 (1-2X2)2 + 

1189.11 (1-2X2)3 - 706.18 (1-2X2)4) J mol-
1 



185 

Table 80 10 - Molar excess enthalpies n! for (1-X2)n - C4
H7N + X2n - C14 

~O at 298.15 K, and deviations 6~ calculated from the 

equation at the foot of the table. 

~ ~HIii H~ 
i,\ 

X2 
X2 

A rffi} 
-1 -1 -1 -1 

J mol J mol J mol J mol 

---
0.0094 92.6 - 50 8 0.2827 1470.9 - 2.3 
0.0223 219.8 - 4.8 0.2995 1526.2 + 19.0 

0.0370 353.2 - 3.5 0.3431 1586.4 + 5.0 

0.0535 490.7 - 0.8 0.3905 1640.1 - 1.3 

0.0712 622.3 + 0.4 0.4479 1686.6 - 0.3 
0.0960 790.6 + 8.0 0.5163 1702.1 + 0.3 
0.1158 904.0 + 9.0 0.5936 1656.9 - 6.0 
0.1385 1013.1 + 4.4 0.6563 1581.1 • 1.6 

0.1622 1111.8 - 0.8 0.7386 1405.6 + 3.8 
0.1870 1199.1 - 8.2 0.8145 1150.5 + 4.7 
0.2103 1274.4 - 10.9 0.8839 815.8 - 3.7 
0.2336 1346.6 - 7.3 0.9464 427.3 - 1.9 
0.2579 1412.4 - 4.5 

standard deviation. -1 7.0 J mol 

6~ = ~ - X2(1-X2)(6809.17 - 100.61 (1-X2) + 2009.18(1.X2)2 + 1000.68 

(1-2X2)3 + 1057.37(1-2X2)4) J mol -1 



186 

V2 V1 
TO 

MO,TO R 

TO 
BRroGE H G 

TO F TO 
HEATrNG BURETTE 
CIRCUIT 

Z Z 
X 

Y 

C 

B 
o 

JACKET 

E 

A 

Y~~============:,~~============~ x 

Fi gure 8.1 The mixing vessel and j acke t 



187 

[l'!"!","( L\!!~t!il!,L!!c!!IJI R 
A 

Figure 802 The piston burette 

v 

.B'igure 8.3 'rhe mercury pipette 



188 

"-----' .... ----'--.,11 

~ __ --~600~n~--~ 

o 

Figure 8.4 

5.0. 

The resistance thermometry. (0 =) oscillator, 

(A=) amplifier, (PSD=) phase sensitive detector 

and (C.R. =) chart recorder. 

D.C. 

D.T.I ~'-----~ ___ R ___ ' ~ R 

c,c.c. 
CALORIMETER 

HEATER 

Figure 80 5 The heating circuit. (D. T. =) digital timer, 

(R=) mercury wetted relays and (C.C.C. =) 

cons tant current calibrator . 



189 

1500 

1000 

500 

O~ ____ ~ ______ -L ______ ~ ______ ~ ____ ~ 

o 0.2 0.4 0.6 0.8 
XnALKANE 

Figure 806 Experimental If a t 298 .1 5 K for propanenitrile + m 
n-alkane 'systemso 



190 

1500 

1000 

500 

o~ ____ ~ ______ ~ ______ ~ ____ ~~ ____ ~ 
o 0.2 0.4 0.5 

Figure 807 

Q8 

Xn-ALKANE 

Experimental ~ at 298 .1 5 K for n-butanenitri l e + m 
n-alkane systems o 



191 

8.9 References 

1. A. G. Williamson, 'An Introduction to Non~Electro1yte Solutions', 

London (Oliver and Boyd), 1967. Chapter 4. 

20 M. L. McGlashan, 'Heats of Mixing', in Experimental Thermochemistry, 

volume 2, (H. A. Skinner editor), Chapter 15, London (Interscience), 

1967. 

30 K. N. Marsh, 'The Measurement of Thermodynamic Excess Functions 

of Binary Mixtures', in Chemical Thermodynamics, volume 2, 

A Specialist Periodical Report (M. L. McGlashan editor), The Chemical 

Society, London, 1978. 

4. B. H. Powell, Ph.D. Thesis (University of Sheffield), 1976. 

5. R. H. Stokes, K. N. Marsh, and R. P. Tomlins, J. Chem. 

Thermodynamics, (1969),1, 211. 

60 M. B. Ewing, K. N. Marsh, R. H. Stokes, and C. W. Ruxford, 

J. Chem. Thermodynamics, (1970), ~, 751. 

7. E. A. Faulkner, M. L. McGlashan, and D. Stubley, J. Chem., Soc., 

(1965), 2837. 

8
0 

J. A. Larkin and M. L. McGlashan, J. Chern. Soc., (1961), 3725. 

90 M. L. McGlashan andH. F. Stoeck1i, J. Chem. Thermodynamics, 

(1969), 1, 589. 

10. M. L. McGlashan, Pure and App. Chem., (1964), ~, 15~. 

11. S. Murakami and G. C. Benson, J. Chern. Thermodynamics, (1969), 1, 559. 

12. K. N. Marsh and R. H. Stokes, J. Chem. Thermodynamics, (1969), 1, 223. 

13. D. B. Myers and R. L. Scott, Ind. and Eng. Chern., (1963), 22, 43. 



192 

14. H. Watts, E. C. W. Clarke, and D. N. Glew, Can. J. Chern., 

(1968), 1£, 815. 

15. F. D. Rossini, editor. Amer. Petrol. Inst. Project 44 
Tables, 1953. 

16. J. Timmermans, 'Physico-Chemical Constants of Pure Oreanic Compounds', 

Amsterdam (Elsevier Publishing Co., Inc.), 1950. 

17. International Critical Tables, volume 3, New York (McGraw-!Iill 

Book Company, Inc.) 1928. 



193 

CHAP'l'ER 9 

GAS-LIqUID CRITICAL LOCI: 

COMPARISON OF THEORY AND "'Xp~nIHIENT 

Introduction 

The theoretical interpretation of the L~s-liquid critical 

behaviour of mixtures provides the oportunity to relate meusureable 

macroscopic properties to the parameters (e.g. energy and size) 

of the unlike molecular interactions. 

The complex behaviour of binary mixtures in the critical 

region was studied by the van der Waals school but such a study was 

not completed due to the difficulties of hand-calculations. More 

recently van Konynenburg and Scott
1
,2 have investigated with the 

help of modern high speed computers the phase equilibria of binary 

mixtures using the van der Waals' equation of state. 

The qualitative interpretation of the behaviour of bin3ry 

mixtures has been achieved by the above workers using the van der 

Waals equation with suitable choices of the parameters a and b for the 

pure components and for the mixtures., 

In this Chapter attempts will be made to predict the p-T-X 

loci reported in Chapter 6 for ethanenitrile + n-alkane binary 

mixtures using the van der Waals' equation of state and the van der 

Waals' one-fluid relations. 

9.1 Prediction of Critical Temperatures 

The prediction of gas-liquid critical properties of binary 

mixtures as a function of composition is usually carried out assuming 

that there exists a hypothetical equivalent (pure) substance, which 

has the same configurational Helmholtz fuction A as the mixture at 

a given T and p (see the discussion in Chapter 3 on the PeS for mixtures). 

Furthermore the combinatorial energy A is assumed to be separable and , c 
independent of V and po 
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Some other assumptions are made in order to calculate the 

configurational Helmholtz function of the equivalent substance A , 
x 

namely: 

i) the equivalent substance obeys a particular reduced equation of 

state, 

ii) the reduced parameters of the equation of state may be 

determined from 'prescriptions' which depend on composition and energy 

and volume parameters of the like and unlike interactj.ons; 

iii) the energy and volume parameters of the unlike interactions may 

in turn be determined from combining rules involving the parameters of 

the like interactions. 

The criticality conditions that must be satisfied by a binary 

mixture are3 (see Chapter 4 ) 

since 

(a 2G/a X2)p,T = RT/(1.X)X + (a 2Gxfax2)p,T a 0 (9.1). 

(a 3G/ ax3 )p,T = RT(2X - 1)/(1_X)2X2 + (a 3G~ ax3)p,T • 0 (9.2) 

G(T,p,X) = RTE.X. In X. + G (T,p) 
l. l. l. X 

where G is the configurational Gibbs function for the equivalent 
x 

substance. 

As shown in Chapter 4, the critical point of a pure substance 

(such as the equivalent substance being used in this treatment) is 

given by the conditions of mechanical stability so that one can use Ax 

(V,T) rather than Gx(P,T), since the latter has singularities at the 

critical point. 
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Rowlinson3 presents an approximate solution to the criticality 

conditions and obtains the difference between the gas-liquid crjtical 

constants of the mixture and those of the equivalent substance. For 

the critical temperature of the mixture T
C 

the difference is given m 
by4 

where 

and 

The energy and volume parameters of the equivalent substance f x 
and h , ~espectively, may be substituted by TC and VC which can be x x x 
determined using the van der Waals' one-fluid prescriptionsa 

TxCVx
c = L ~ X.X.T~.V~. 

1. J 1. J lJ 1.J 

where i£ i = j the critical constants are those of the pure components, 

and if if. j they refer to hypothetical critical properties. 

The Lorentz-Berthelot combining rules are most commonly used 

for the determination of the hypothetical critical temperature and 

pressure 

t m 1 

where the parameters ~ and p have been introduced to allow for departure 

from the respective combining rules5,6. 



Equation 9.4 was derived vd thout reference to nn eq1lation 01' 

state, however, in order to obtain numerical values of T
C 

an explicit m 
equation has to be used for the equivalent substance. If the 

van der Waals' equation is used, then the critical temp£:lrature of 

the mixture can be calculated from 

c c where Tx' Vx and their derivatives can be determined from equations 

9.7 snd 90 8; the factor A arises from the combinational Helmholtz 

function of the mixture which is unity if the mixture is taken to be 

ideal and if the Flory expression7 is used for the entropy of mixing 
8 

then A is equal to 

where r is the ratio of the molar volumes of the pure components 

(i.e. V~V1) at 298.15 K. 

For the calculation of T~ - X for the systems studied 

experimentally (excluding ethanenitrile + n-butane, + n-undecane, si~ce 

only a pair of mixtures were studied for these systems) the following 

procedure was used: T~ and V~ were obtained from equations 9.7 and 

9.8 as function of X using pure substance critical constants and the 

combining rules 9.9 and 9.10. The disposable parameter ~ was 

adjusted to obtain agreement between theory and experiment at X = 0.5, 
whereas, P 'was set equal to zero throughout all the calculations. 

c 
Two sets of values of Tx - X were obtained for each of the six 

systems, one corresponding to A = 1 in equation 9.11 and the second set 

by using relation 9.12 for A. 

Although the combinatorial energy as given by Flory's equation 

is more appropriate when the chain molecules are considered to be 

made up of like segments, the values of TC for a given value of ~ m 
using the ideal combinatorial energy are only slightly different from 

those obtained when A is given by equation 9.12. Similar results have 

been obtained for mixtures of quasi-spherical molecules by Hicks and 

young9• 
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One more set of results was obtained by replacing the Bertfwlot 

combining rule by 

2 as suggested by Scott for chain molecules. The parameter p in 9.13 
was also set equal to zero as in 9.10 for these calculations. 

The calculated values of T~ using relation 9. 13 are also very 

similar t9 those obtained with 9.10, however, the parameters~ are 

slightly different for a given system. 

Table 9.1 gives the values of ~ used in the calculation of TC 
m 

for each system. 

Figure 9.1 gives a comparison of calculated and experimental T~ 
as a function of composition. Since the several sets of calculated 

TC are very similar it will suffice to give only one set of results 
m 

for each system. 

The values of ~ are lower than unity in each system and this 

indicates weak interactions in the mixtures compared with the geometric 

mean. 

TC 
m 

As for the agreement between the calculated and the experimental 

it can be observed that although there is not complete quantitative 

agreement in the whole range of composition the theory does reproduce 

the general pattern of behaviour of the T~ - X curves and furthermore 

it predicts the existence of minimum temperature points as experimentally 

observed in each one of the studied systems. 

It must be pointed out that in deriving equation 9.11 the 

molecular energies and sizes of the components were assumed to be 

very similar and that the equivalent substance obeys van dar Waals' 

equation of state, however, regardless of such assumptions in no case 

did the theory predict unrealistic values of T~. 
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Prediction of ~ritical Pressures 

Using the same assumptions as in the derivation of ~quation 

th9. difference between 'the critical pressure of the mixture p~ 
the critical pressure of the equivalent substance pc is given x 

as follows 

As in the previous section the van der Waals equation of state 

b 
c . 

is used for the equivalent su stance 80 that Pm 1S now given by 

where T~ is calculated with the one-fluid prescription (i.e. equation 

9.7) and T~ from equation 9.11. Since values of p~ are not given 

directly from the one-fluid prescriptions for the equivalent substance, 

a way of calculating Z~ has to be found. 

The choice of a prescription for z~ has to be based on the fact 
c that the calculated Pm has to run smoothly between the critical pressures 

of the pure components. If Z~ is determined frem the equation of state 

this does not happen, and so ZC was determined in this work from the 
10 x 

relation proposed by Pitzer 

where Z~. is the critical compression factor of the pure components. 
1.1. 

c Thus, Pm is given by 

The calculation procedure for p~ is similar to that for T~. Two 

sets of' results were determined for each system, one using equation 

9.10 for v~ 2 and the other using equation 9.13; p = 0 in both cases. 

The results did not show any agreement ~th the experimental values. 

In order to force agreement between theory and experiment the 

parameter {) was allowed to vary and E; in the Berthelot rule was given 

the value calculated from TM for the system. 
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The two sets of results calculated in this vtay do not differ much 

from each other, however, the values of p for a given system are indeed 

of different magnitude. Table 9.2 lists the vnlues of p used jn the . 
calculations for each system. 

Although the agreement is improved with the use ofp as a 

disposable parameter exact quantitative agreement is not obtained. 
c 

However, some features of the Pm - X curves are reproduced as 

can be seen in figure 9.2. 

This is not surprising since Cruickshank and Hicks
11 

have shown 

that a complete treatment of the criticality conditions, still using 

the van der Waals' equation of state, predicts pressures which 

are significantly different from the experimental values. 

Hicks and Young12have discussed the combining rules for V~2 
. 1 13 . . concluding that a geometr1c mean ru e 16 super10r, however, in view 

of the assumptions in applying the present treatment it is not possible 

to place too much emphasiS in such an observation. 
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from experimental 'rc (X ~ 0.5) for 
m 

ethanenitrile + n-alkane systems using two different 
c 

combining rules for V12 • 

n-alkane n - 05 n - 06 n - 07 n - ° 8 n - C9 
a 0.903 0.905 0.902 0.885 0.866 E;; 

b 0.904 0.907 0.907 0.895 0.082 ~ 

a uBing equation 9. 10 for V~2' and A III 1 in equation 9.11. 

b Using equation 9. 13 
c for V12 , and A .., 1 in equation 9.11. 

C 
Table 9.2 Values of p used in the calculation of Pm for 

ethanenitrile + n-alkane systems. 

n-alkane n - C5 n - 06 n - 07 n .. C 
8 n - 09 

a .. 0.12 - 0.08 - 0.06 -0.08 - 0.12 
p 

b - 0.32 - 0.24 - 0.24 - 0.30 - 0.38 
P 

n - C10 

0.060 

O. £j09 

n - 010 

.. 0.14 

- 0.42 

a Using equation 9.10 for V~2' and the corresponding value of t • 

b Using equation 9.13 for V~2' and the corresponding value of t 
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CHAPI'ER 10 

MOLi~R EXCESS FUNCTIONS: 

COMPARISON ,OF THEORY AND EXPERImENT 

Introduction 

The interpretation of experimental results of the properties 

01' mixtures in terms 01' theories for non-electrolyte mixtures is 

an integral part of any thermodynamic study. 

Such an interpretation will be attempted in ~his Chapter by 

comparing the experimental molar excess volumos Vm and molar 

excess enthalpies ~ for binary mixtures of n-alkanenitrile + 

n-alkane with theoretical results. The reG~lar solutions theory 

of ~catchard-Hildebrand1 with a modification due to Weimer and 

Prausnitz2 is used to calculate ~ at constant volume. Although 

this theory in its original form assumes a random distribution of 

the molecules it was seen in Chapter 5 that it predicts with 

reasonable accuracy UeST when parameters are included to account for 

polar and dispersion effects. 

'l'he van der Waals' one and two-fluid approximations discussed 

in Chapter 3 are also used here to attempt to interpret both }f and 
m 

VE data. 
m 

E 
10.1 Scatchard-Hildebrand Theory! Uv 

The expression given by the regular solutions theory for the 

energy of mixing at constant volume is 

(10.1) 

where X. is the molefraction of component i, V. is the molar voltlm9 
~ ~ 

of i, c5 i is the solubility parameter of i (already defined by equation 

5.6), and Pi is the volume fraction of i (taken with respect to the 

unmixed state of the pure components, equation 5.2). 
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In order to determine U
E from experimental I~ it is ncces~~ry v m 

to take into account the volume changes on mixing of the mixtures 

(i.e. yE) since equation 10.1 involves a mixing process at cunstant 
m 

volume and not at constant prer::sure as the experimental values of I' 
m 

of this work. 

Methods for mnking the conversion of thermodynamic properties 

from constant volumes to constant pressure (or viceversa) 

were first developed by Scatchard3 and discussed by many workers4,5. 
The method used here is as follows: starting wi th two pure subs t~mces 

whose molar volumes are V1 and V2 respectively, each at the same 

ini tial pressure a binary mixture is formed using n1 and n2 (amount 

of substance). In order to have ~ = 0 the pressure of the mixture m 
is chosen accordingly. For this process at constant volume the 

excess energy is given by 

uE (T,V) = HE (T,p) - T (al K) VE 
v 

+ (1/~VK )( talnK la lnT) +ex:"T/ K (a InK la p) + 1) (vE)2 + ••• 

whereex: andK are the thermal expansivity and the isothermal 

compressibility of the mixture, respectively. 

(10.2) 

The term in (~)2 can be neglected in this case since all the 
m 3 -1 VE measured here are less than 1 cm mol ,so that the expression 

u:ed for the calculation of U!, which now includes the polnr T1 and 

dispersion ~12 terms is given by 

The method of calculation was as follows: since the experimental n: were determined at 298.15 K then all the variables in 10.3 should 

be evaluated at that temperature. The molar volumes of propanenitrile, 

n-butanenitrile, and n-alkanes at 298.15 K were given in Chapter 5 
together withA1' T1' ~ 12 for the corresponding n-alkanenitrile and 

o 2 for the corresponding n-alkane also at 298.15 K. The evaluation 

of « and K for the mixture was carried out by aSGuming additivity on 

a volume fraction basis of the corresponding properties of the pure 

components (i. e. CC: i and ~i) at 298.15 K. 



206 

K = f51 K 1 + fJ2 K 2 (10.5) 

The data for the n-a1kanes are mainly from the work of Orwo11 

and Flory6 and listed in table 10.1. The values of ~ for the n­

alkanenitri1es were determined from the denSity data of reference 7. 
Not having experimental values for K for the -n-alkeneni triles they 

were determined from solubility parameters as follows: 

which at low external pressures approximates to 

(aul aV)T = T(a pi aT\ = T y v 

but since 

(a ul aV)T ~ (AHv 
- RT)/v =0 2 

then finally, equating the right-hand sides of 10.7 and 10.8 

and 

2 
K = T ~I lIi 

(10.6) 

(10.8) 

(10.9 ) 

(10.10) 

Although this is a crude approximation equation 10.10 was used 

to calculate K for the n-alkanes in order to find out how different 

these values were from those determined experimentally. Table 10.1 

also gives K values from equation 10.10 and although they are hiGher 

than the experimental values they do follow the same pattern of variation. 

The values of «and K for propanenitrile and n-butanenitrile 

are also included in table 10.1. 
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Finally, the yE at 303.15 K given in Chapter 7 are used in m 
equation 10.2 assuming that the temperature coefficient of ..,. between 

m 
298.15 and 303.1) K is negligible for the system discmlsed here. 

The calculated uE 
using equation 10.3 are given in tables 10.2 -v 

10.3 for the corresponding systems where a comparison with experimental 
uE is also carried out at some values of mole fractjon. 

v 

The following features are observed from such a comparison., 

1) the absolute magnitude of the experimental U: is not reproduced 

by equation 10.3 in any case. 

2) the calculated u! curves show slight skewness towards the low 

concentration of the n-alkane, the shifting of the maximum ~ 
develops as the size of the n-alkane increases for a given n-alkanenitrile. 

3) the theoretical results do, however, reproduce the relative 

magnitude of u~ for a given n-alkane, that is, the values for propan­

enitri1e + n-hexane are higher than for n-butanenitrile + n-hexane as 

in the experiment. 

4) and for a given n-alkanenitrile the calculated values increase , 
as the size of the n-alkane increases as experimentally observed. 

E 
10.2 van der Waals' one and two-fluid Theories, Hm 

As mentioned in the introduction of this Chapter, the van der Waals' 
E _..E 

one and two-fluid theories will be used to calculate Hm and V; and to 

compare with the experimental results. 

\ This section deals only with ~, the calculation of v! is 

deferred to the next section. 



208 

The concepts on which the van der ''';aals' one and two-fluid 

theories are based Vlere discussed in section 3.2 of Chapter 3, 

however, it will be necessary to set out the equations for 1~ 
as given by each one of these theories. The calculation of excess prop­

erties using the van der Waals' one and two-fluid theories (from 

now on they will be referred as W1 and Vl2 respectively) can be 

carried out using measured values of p, V and T for'the pure components 

of the mixture as shown by Leland and his COlleagues
8 

or using an 

equation of state as in the work of McGlashan and his collenLrues9• 

The latter approach will be used here and in particular usine van der 

Waals' equation of state: 

(10.11) 

In the W1 theory the excess molar enthalpy, at negligible 

pressure is given by' (the subscript m denoting a molar quantity 

will now be dropped for typographical convenience) 

where a and b denote the parameters a and b of equation 10.11 for 
x x 

the hypothetical 'one-fluid', a i and bi are the parameters for the 

pure components and V(T,a,b) denotes the corre,ponding molar volume 

of the pure hipothetical or pure real fluid as given, at zero 

pressure, by equation 10.11. 

The parameters a and b being proportional to EO 3 and to 0
3 

x x 
respectively can be expressed in terms of a i and bi of the pure comp-

onents using the relations already given in Chapter 3 (i.e. 3. 18), namely 
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where a12 and b12 are cross-terms of the mixture defined by 

= 

(10.16) 

The parameter ~ '~ill be used in this work as disposable to 

force agreement between calculated and experimental ~ at X • 0.5 for m 
each system. 

The molar volumes of the pure fluids, hypothetic&l or renl, are 

calculated with the following equation (p • 0) 

V(T,a, b) = a/2R']{I-(1' - 4bRT/ari) (10.11) 

The corresponding expression for ~ from the W2 theory is, 

at negligible pressure, 

(10.18) 

where a
x
1' bx1 and a~, bx2 denote the parameters a and b for the 

two hypothetical fluids. These parameters can also be given in terms 

of the pure real fluid parameters and the cross-terms of the mixture 

as follows 

(10.19 ) 

( 10.20) 

where a
12 

and b12 ~re given by the combining rules in equations 10.15 

and 10.16. 

The molar volumes in 10.18 are also calculated with equahon 

10.11 using the corresponding parameters. 
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The parameters a and b for the pure real fluids may be 
10 

evaluated in several ways I 

1) from the second virial coefficient; 

2) from the gas-liquid critical constants; 

3) from low temperature properties of the fluids, e.g., molor 

volume, thermal expansivity, thermal pressure coefficient or energy 

of vaporizationo 

Methods 2 and 3 were used in this work. For method 2 the 

conditions for the gas-liquid critical point of a pure substance (see 

Chapter 4) were appli~d to equation 10.11 leading to the following 

expressions: 

(10.22) 

where VC is the molar critical volume, TC the critical temperature 

and R the gas constant. 

For method 3, the properties chosen for the calculation of 

a and b were the molar volume V and the thermal expansivity« at 298.15 K 
(the temperature at which ~ were measured). The relations between 

a, b and V, «from the van der Waals' equation of state at p ~ 0 are 

b .. V( 1 +'1L:)/ (1 + 2To:) 

a .. RTV2/(V - b) .. RV(1 + 2Tcc )/« 

c c 
Table 10.4 gives T ,V , V and a: for the pure n-alkanenitriles 

and n-alkanes used in these calculations. 
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Before discussing the method of calculation of H8 it is 
m 

convenient to mention that apart from the combining rule for b 
10 12 

given by equation 10.15 one more relation VIas used. Scott hus 

pointed out that the rule given by 10.15 (the Berthelot combining 

rule in different notation) is a good approximation for mixtures 

of spherical molecules but for chain molecules, as is the case in 

this work, the original van derWaals assumption seems more 

reasonable, namely 

The calculation of HE was carried out as follows: using the 
m E 

expressions given above for Hm by the W1 and W2, theorim Agreement 

with experimental ~ at X = 0.5 for each system was forced by adjusting 

~ in equation 10.16, in this way eight results were obtained for 

each system, i.e. 

1) two results using W1 and W2 and gas-liquid critical constants 

with equation 10.15. 

2) two results using W1 and W2 and gas-liquid critical constants 

with equation 10.25. 

\ 
two results using Vl1 and W2 and V,r1: data at 298.15 K with 

equation 10.15. 

4) two results using W1 and W2 and VF d~ta at 298.15 K with 

equation 10.25. 

Tables 10.5 to 10.8 give the experimental and c~lculated ~ , m 
(X = 0.5) for each system together with the corresponding values 

for ~ in the order discussed above. 
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_.E 
The agreement between calculated and experimental H 

m 
(X = 0.5) is excellent in all eight cases for ench one of the 

seven systems. The values of ~ are very sjmil,'Jr for each systC'm 

whether calculated using TC,V
c 

or V,« data, or equation 10.15 or 10.25 

for b
12

; although some differences are obtained when usin{3' \'11 or W2. 

However, it is clear that each one of the studied systems has 11 value 

of ~leas than unity, indicating that the geometric mean of the like 

interactions is not obeyed by the unlike interactions in the 

mixture. 

E 
The composition dependence of \t was calculated using all the 

values of ~ for each system in order to find out if a particular 

Bet of calculations was better than the others. No difference was 

observed among the eight sets of calculations in any of the seven 

systems, consequently it will suffice to give only one set of results 

for each system. Figures 10.1 - 10.2 give a comparison of calculated 

and experimental a: in the whole range of composition. 

It can be observed that good agreement exists between theory 

and experiment, although it is clear that for n-butanenitrile + n­

dodecane, and + n-tetradecane the agreement is less good. 1~e W2 

theory gives marginally better results than the W1 theory for the 

same method of calculation. 

10.3 van der Waals' one and two-fluid ~~ecriesl I-m 

The excess molar volume is calculated from the W1 theory using 

the following expression 

(10.26) 

similarly, the Vl2 theory gives, also at negligible pressure, 
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where the parameters involved have the same meaning as in 

equations 10.12 and 10.18, respectivelyo 

For the calculation of vE the same methods of the previous 

section are used here. Since the experimental ~ were determined m 
at 303.15 K it has to be assumed that the parameter ~ is constant in 

the range 298.15 - 303.15K in order to use the values of the 

previous section. Ho\,rever, the molar volume V and the thermal cxpansjvi t,y 

data used in this section are those at 303. 15 K given in table 10.9. 

E 
In order to carry out calculations of V for the systems whose 

E ~ were not measured (i.e. propanenitrile + n-octane, n-butanenitrile 

+ n-pentane, + n-decane and n-hexanenitrile + rt-hexane) an extrapolation 

(or interpolation) waS used to obtain their corresponding values for 

f; • 

Following a similar calculation procedure to that described for 

HE eight sets of results of yE were calculated for each system. 

These results did not show qualitiative nor quantitative agreement 

with the corresponding experimental values. 

It has been shown that quantitative agreement between theory and 

experiment is improv,""-,t by: (a) determining f.: from,f; i.e. 

forcing agreement at certain values of composition
14

,1 5; (b) intro­

ducing a disposable parameter in the combining rule(s) for b1215-18. 

Since the parameter f; allows for departure of the unlike energy 

from the geometric mean it is then obvious to determine it from an 

'energetic' property (e.g. HE) rather than from a 'volumetric property' 

(e.g. VE), then the introduction of a disposable parameter in 

equations 10.15 and 10.25 will allow deviations from such combining 

rules. The new combining rules for b12 are now given by 

(10.20) 

where p is the new parame ter. 
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Once agajn the calculation procedure was repeated but this 

time allowing P to vary in order to find the best possible agreement 

between theory and e~periment for each one of the eleven systoms 

whose VE were determined experimentally, 
m 

The agreement obtained with the introduction of p is much 

superior than before. For the sake of simplicity only tho calculated 

results giving close agreement with experiment will be given here. 

Table 10.9 gives the parameters ~ and p used together with 

equations 10.27 (W2) and 10.28, and V, «data to obtain the best values 

of~' It'igures 10., - 10.4 give a comparison of calculated and 
m E 

experimental Vm in the whole range of composition. 

It is interesting to note how the theory can reproduce tho 

different shapes of the v: curves and to give excellent quantitative 

agreement in some cases. The W2 theory is again superior to the W1 

version since it reproduces the major features of the behaviour 

observed experimentally. 

E 
Although the calculation of f\n was insensitive to the choice 

c c) _-E 
of pure fluid properties {i.e, T ,V or V,c in the case of y-. m 
this is not so since using the same values of p for a given s,Ys tern 

the calculated yE ar: indeed very different using T
C

, V
O 

data from 
m 

those obtained using V, « data. 
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Table 10.1 Thermal expansivi ty ~ ind isothermal oompressibi li ty K 

for n-alkanenitrile and n-alkane compounds at 298.15 K 

substance 

propaneni trile 1.319 

n-butanenitrile 1.176 

n-pentane 1.637 2.060(0) 

n-hexane 1.385 1.723 

n-heptane 1.253 1.482 

n-ootane 1.158 1.321 

n-dodecane 0.980 0.990 

n-tetradecane 0.921 0.924 

(8) Experimental values 

(b) VaJ.ues determined with equation 10.10 

(c) Extrapolated. 

(b) 
4 / -1 10K 11 tm 

0.842 

0.847 

2.398 

1.894 

1.638 

1.468 

1.151 

1.058 



Table 10.2 

0.0513 
0.1054 
0.2136 
0.3132 
0.4211 

0.5~23 

0.6310 
0.1316 
0.8276 
0.9489 

0.0553 
0.1250 
0.2254 
0.3160 
0.3989 
0.5181 
0.6179 
0.7555 
0.8798 
0.9689 
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Comparison 01' experimental tf with values from the v 
regular solution theory for (1 -.X ) C}Ht: N + X2n-C II2 . 2:> n ni-2 
at 298.15 K. 

~J mol-1 

expt. 

n-C5~2 

223.1 

435.4 
834.2 

1062.4 
1191.1 

1241.1 
1199.2 
1010.9 
865.4 
371.9 

n-C6H., 4 

349.7 
709.2 

1062.7 

1259.7 
1386.2 
1424.2 
1374.3 
1167.4 
777.4 
210.2 

CONTINUED 

1f/J mol-1 If/J mol-1 

expt. calc. 

221.1 293.5 
431.8 491.1 
824.3 832.8 

1035.1 1010.0 
1151.1 1082.6 
1182.5 1041.0 

1131.9 926.3 
1000.4 741.5 
799.0 526.1 
344.4 170.2 

323.2 307.1 

653.3 608.4 
973.8 901.1 

1150.4 1047.5 
1265.2 1100.5 
1295.8 1064.9 
1247.6 950.8 
1056.9 690.6 
704.3 311.4 
246.6 101 0 4 
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Table 10.2 (Continuation) Comparison of' experimental U
E 

with v 

values from the regular solution theory for (1 - X
2

)C
3

H
J
N + 

X2 n-CnH2n+2 at 298.15 K. 

0.0464 344.2 
0.1217 755.2 

0.2121 1124.2 

0.3003 1364.9 
0.4092 1515.0 

0.5268 1540.5 
0.7001 1354.7 

0.7999 1125.0 

0.8888 781.0 

0.9536 39? .5 

U~J mol-1 

expt. 

301.9 
681.2 

989.5 
1207.1 

1344.9 
1370.7 
1205.4 
1002.0 
697.2 
356.6 

285.6 
640.2 
921.5 

1075.3 
1136.3 

1076.8 
810.3 
582.0 
341.8 
147.7 



rl'able 10.3 

0.0416 
0.1131 
0.2210 
0.3096 
0.4138 
0.5129 
0.6211 
0.11 16 
0.8236 

0.9259 

0.0504 
0.1101 
0.2100 

0.3263 
0.4069 
0.5326 
0.6112 

0.7138 
0.8426 
0.9525 
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Comparison of experimentAl U
E 

with values from the 
v 

reGUlar solution theory for (1 - X2 ) n-C 4~N + X2n-CnII2n+2 

at 298.15 K. 

I\jJ mol-1 

expt. 

n - C6H14 

251.8 

561.4 
963.0 

1158.9 
1211.6 
1273.4 
1188.1 

1071.0 
824.1 

433.3 

u~ J mol-1 

expt. 

248.2 

548.5 
930.4 

1112.8 
1211.6 
1203.7 
1112.3 
1001.6 

159.7 
396.6 

n - C8H18 

359.8 313.4 
676.9 594.4 
994.8 875.5 

1230.2 1086.0 

1350.0 1196.0 

1390.7 1233.5 
1336.9 1185.4 
1214.3 1079.0 
886.0 788.2 

371.2 331.9 

(CONTIN!JED) 

U~J mol-
1 

calc. 

211.6 

453.8 
153.5 
885.2 
961.4 
951.3 
851.8 

724.4 
492.5 
224.5 

262.7 
512.6 
804.8 
983.1 

1023.8 

977.7 
891.9 
724.0 
440.3 

142.4 
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Table 10.3 (Continuation) Comparison of eXperimental UE with 
v 

values from the regular solution theory for (1 - X
2

) 

n - C4~N + X2n - CnH2n+2 at 298.15 K. 

E 1 
~J mol- ~jJ mol-1 

expt. expt. 

n - C12H26 

0.0535 463.2 392.3 366.6 

0.1252 908.6 769.9 717.1 

0.2122 1239.7 1049.2 980.7 

0.3059 1456~8 1236.4 1120.2 

0.4128 1530.1 1297.9 114700 

0.5390 1543.7 1318.7 1048.3 

0.6344 1474.7 1267.6 904.4 
0.7233 1.311.1 1130.6 728.9 

0.8555 853.4 736.0 410.0 

0.9488 339.5 290.4 151.6 

n - C14~0 

0.0535 490.7 404.4 410.8 

0.1158 904.0 753.5 747.6 

0.2103 1274.4 1068.5 1052.8 

0.2995 1526.2 1293.2 1182.8 

0.4479 1686.6 1439.0 1171.5 

0.5163 1702.1 1457.9 1109.6 

0.6563 1581.1 1363.5 881.6 

0.8145 1150.5 997.4 519.8 

0.8839 815.8 106.3 335.4 

0.9464 427.3 369.5 1 :58.1 



(a) (a) (b) 

substance TC VC V 

K 3 -1 cm mol 3 -1 cm mol 

propaneni trile 564.4 229 70.897 

n-butanenitrile 582.2 280d 87.889 

n-hexanenitrile 605.0
d 401 d 121.47 

n-pentane 469.7 304 116.104 

n-hexane 507 .5 370 131.598 

n-heptane 540.3 432 147.456 

n-octane 568.83 492 163.53 

n-decane 617.7 602e 195.905 

n-dodec~ne 658.2 718
e 

228.579 

n-tetradecane 693.0 830
e 261.312 

(a) From reference 11; (b) At 298.15 K from reference 12; 

(c) At 303. 15 K from reference 12; (d) Interpolated; 

(e) From reference 13. 

(b) (c) 
103. a: V 

K-1 3 -1 Cm mol 

1.319 71 .381 

1.176 88.404 

1.041 121.892 

1.637 117. 147 

1·385 132.541 

1.253 148.387 

1.159 164.482 

1.050 196.964 

0.980 229.694 

0.921 262.531 

Table 10.4 Gas-Liquid critical temperature and volume, molar volume and thermal 

expansivity for some n-alkanenitriles and n-alkanes. 

(c) 
103c:c 

K-1 

1.334 

1.187 

1.049 

1.679 

1.417 

1.264 

1.179 
I\) 

1.038 I\) 

0 

0.986 

0.928 
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Table 10.5 Determination of ~ using \'11 and W2 theories with 

experimental ~ (X = 0.5) at 290.15 K. Gas-liqujd critical 

constants are used, and b12 is given by equation 10.1~. 

propanenitrile + n-alkane systems 

n-alkane H!lJ mol-
1 n!lJ mol-1 

t I' Jmol-~ -, 
exptal W1 W2 

n-pentane 1236.5 0.859 1233.0 0.854 1233.8 

n-hexane 1428.1 0.837 1428.9 0.833 1430.4 

n-heptane 1546.2 0.819 1547.7 0.820 1 )40.3 

n-butanenitrile + n-alkane systems 

n-alkane ~J mol-
1 

E; 
If 1 ;/J mol-

E; ~J mo 1-1 

exptal. W1 W2 . 

n-hexane 1279·8 0.855 1281.1 0.851 1203.4 

n-octane 1396.6 0.839 1397.3 0.841 1393.2 

n-dodecane 1554. 1 0.796 1556.1 0.821 1552.7 

n-tetradecane 1702.3 0.764 1706.2 0.803 1702.8 
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fl'able 10.6 Determination of ~ using W1 and W2 theories with 

experimental HE (X = 0.5) at 298.15 K. Gas-liquid m 
critical constants are used, and b12 is given by equation 

10025 

propanenitrile + n-alkane systems 

E -1 Rj'J mol-1 
n-alkane VJ mol f; f; & 1 1 .r mol-

exptal. W1 W2 

n-pentane 123605 0.859 12~6.6 0.854 12}7.8 

n-hexane 1428.1 0.8~9 1424.2 0.835 1426.6 

n-heptane 1546.2 0.822 1546.5 0.823 1546.6 

n-butaneni trile + n-alkane systems 

~J mol-
1 

n-alkane H!tJ mol-' I&J -1 
f; 

mol 

exptal. W1 ~W2 

n-hexane 1279.8 0.856 1276.4 0.852 1279.0 

n-octane 1396.6 0.841 1397.8 0.843 1393.1 

n-dodecane 1554.1 0.804 1557.6 0.827 1549.9 , 

n-tetradecane 1102.} 0.171 110602 0.811 1703.} 
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Table 10.7 Determination of E; using W1 and W2 theor1cfI with 

experimental If (x • 0.5) at 298.15 K. Molllr volumes m 
and isobaric thermal expansivities are used, und u12 
is given by equati.on 10.15. 

propanenitrile + n-alknne systems 

n-alkane J mol-{; 1 E; If' 1 ;/J mol- e J mol-{; 1 

exptal. W1 \;2 

n-pentane 1236.5 0.849 1237.0 0.047 1233.2 

n-hexane 1428.1 0.820 1429.8 0.023 142'(.2 

n-heptane 1546.2 0.800 1542.5 0.008 1~48.3 

n-butanenitrile + n-alkane systems 

n-alkane {; -1 J mol E; qJ mo1-1 
I; fQJ mo 1-1 

exptal. W1 W2 

n-hexane 1219.8 0.846 1202.4 0.845 1216.4 

n-octane 1396.6 0.821 139).4 0.83 1 1400 •• ( 

n-dodecane 1554.1 0.789 1551.1 0.811 1550.3 
n-tetradecane 1702.3 0.760 1704.5 0.793 17011.9 
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Table 10.8 Determination 01" ~ using W1 and W2 theories with 

experimental ~ (X = 0.5) at 298.15 K. Molar volumes 

and isobaric thermal expansivities are used, and b12 
is given by equation 10.25. 

propanenitrile + n-alkane systems 

n-alkane ~J mol-1 
~ ~J mol-1 

~ ~J mol-1 

exptal. W1 W2 

n-pentane 1236.5 0.850 1238.8 0.848 1235.6 

n-hexane 1428.1 0.823 1427.3 0.825 1431.9 

n-heptane 1546.2 0.804 1546.6 0.812 1548.0 

n-butanenitrile + n-alkane systems 

Q -1 ~J mol-1 ~J mol-1 
n-alkane J mol 

~ t 
exptal. W1 W2 

n-hexane 1279.8 0.847 1281.4 0.845 1283.8 

n-octane 1396.6 0.830 1393.3 0.834 1396.9 

n-dodecane 1554.1 0.798 1555.8 0.818 1553.0 
n-tetradecane 1702.3 0.774 1698.3 0.802 1703.1 
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Table 10.9 Values of F,: and p used in the calcula Lion of "f at 
m 

303.15 K for n-alkanenitrilc + n-alkane systems. 'rIle W2 

theory Vias used for all systems with V Hnd -= du ta u t 303.15 K, 
bt2 is given by equation 10.28. 

propanenitrile n-butanenitrile 

n-alkane 

n-pentane 

n-hexane 

n-heptane 

n-octane 

~ 
-a 

0.848 

0.825 

0.812 

0.794
b 

p 

- 0.061 

- 0.072 

- 0.074 

- 0.082 

n-alkane t U 

n-pentane 0.855
b 

n-hexane 0.045 

n-octane 0.834 

n-decane 0.826
b 

n-dodecane 0.818 

n-tetradecaneO.802 

n-hexanenitrile + n-hexane 
b 

t a 0.899; p = - 0.037 

(a) Values from flE (X = 0.5) measurements 

(b) Extrapolated (or interpolated) values 

p 

- 0.062 

- 0.060 

- 0.058 

- 0.059 

- 0.063 

- 0.069 
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o 0.2 0.1.. 0.6 0.8 
Xn-ALKANE 

Figure 10.1 Mol ar excess en thalpy at 298.1 5 K for 

propane-ni trile + n-alkane sys t ems ; point 

calcul a t ed from V/2 using gas-liquid cd tic 1 

constants and b12 given by cqua tjon 10.1 5; 

curves experimental. 
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n-C14 
x 

o 0.2 0.4 0.6 0.8 

Xn:rALKANE 

Figure 10. 2 Molar excess enthalpy a t 290 .1 5 K for n­

butanenitril e + n-alk ne systems ; pints 

calculated from W2 using gas-liquid cr:i tj co l 

const8nts and b12 6iven by equation 10. 15; c rv 

experimental. 



~-o 
E 

1 -W E 
>' 

+ 0.1 

-0.' 

+ 

o 0.2 

228 

n-HEXANENITRILE 
+ 

n-HEXANE 

0.4 0.6 0.8 
Xh-ALK ANE 

Figure 10.3 Molar excess vol umes at 303.1 5 K f or prop' nenitr il 

+ n-alkane systems ; poi nt s ca lcul a t ed f r m W2 

using V - ex data and b12 given by equa tion 10. 29 , 

curves experimental . 
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o 0.2 0.4 0.6 0.8 
Xn-ALKAN E 

Figur e 10.4 Molar excess volumes a t 303 .1 5 K for n-but ' nonitr ' l 

+ n-alkane systems ; poin ts c lculnted fr m W2 

us ing V - « da t a ar d b12 given by equ t i on 

10. 29 ; curves experjmenta l. 
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CONCLUSIONS 

Throughout this work comments and conclusions were made 

individually for each Chapter whether dealing with exporjmental 

or theoretical results in order to provide, as far as possible, 

coherent information. 

Some of those conclusions will be summarized here in order to 

point out the results emerged from this atudy. 

The aim of this study of n-alkanenitrile + n-alkane binary 

mixtures was to examine some of their thermodynamic properties of 

mixing and to relate the observed behaviour to.parameters such as 

molecular size and the chemical nature of the components, and 

through statistical theories to the intermolecular forces. 

Prior to any measurement of mixing properties it was necessary 

to establish the limits of solubility by determining the upper 

critical solution temperature UCST of some systems. 

The results of UCS'l\ showed a clear dependence on the size of 

the n-alkane component for a given n-alkanenitrile, although of course 

such dependence can also be related to the size of the latter , 
compounds. The correlation of the experimental UeST was carried 

out with a modified Scatchard-Hildebrand's theory in order to 

account for induction forces present in the systems here studied. 

It was shown that values for ~12 (parameter accounting for induction 

forces) derived from UCST were very similar to those from activity 

coefficients for the three n-alkanenitrile homologues used in these 

measurements. 

Since the excess functions of mixtures are a measure of deviations 

from ideality, the determination of excess enthalpies ~ and volumes 
..,. of some binary mixtures was carried out. 
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Once again these properties showed an extremely reG~lur 

pattern of behaviour and were easily related to the size of n­

alkane component. 

It was of interest to note from the results 01' UCS'jl, It' and 
E m 

V~ that the non-ideality of the studies systems increased as the m 
size of the n-alkane component increased for a given n-alkanenitrile. 

On the other hand, for a given n-alkane the systems behaved more 

ideally as the size of the n-alkanenitrile increased. 

This last observation is adequately explained by the use of 
I 

the effective polarity P of the n-alkanenitrj.les which was intro-

duced as an attempt to account for the 'real' effect of their 

dipole moment lJ on the properties of the mixtures. 

Due to the high UCST of ethanenitrile + n-alkane systems it was 

not possible to measure HE nor ~ for any of their mixtures, hence, 

gas-liquid critical properties (pc,Tc,X) were determined. 

The study of the critical loci for these systems showed again 

the regularity with which the p~ - X and T~ - X curves vary as the 

size of the n-alkane increases. One interesting phenomenon was 

observed in the crit\cal region of these systems: positive azeotropy 
c 

as shown by the minimum temperature points on the Tm - X curves. It 

extends from ethanenitrile + n-pentane to ethanenitrile + n-decane 

mixtures and changes from the high concentration n-pentane region to the 

low concentration n-decane region generating a locus of minimum 

temperature points. 

The use of statistical theories of fluid mixtures to interpret 

experimentally observed behaviour of fluids provides the linK between 

such macroscopic properties and molecular parameters. 

Recently, several theories have appeared to explain the effect 

of anisotropic forces on the properties of mixtures and it would be 

desirable to use them to interpret the experimental results reported 

in this work. No results from such theories were here presented, 



234 

however, collaboration with Prof. K. Gubbins' research group 

(Cornell, U.S.A.) has been started to use a treatment developod by 

Prof. Gubbins in order to interpret the experimental results of 

this work. 

On the other hand, there exist theories which have extensively 

been used and which can give numerical results without need of 

lengthy and sophisticated computations. 

The van der Waals' one and two-fluid theories tOGether with 

van der Waals' equation of state were used to predict If and VE. m m 

It is difficult to establish unambiguously the 'goodness' of 

the predictions of a theory, so that in the present study a 

qualitative agreement between theory and experiment was considered 

adequate bearing in mind that the assumptions involved in these 

theories would exclude its use on the systems here studied. 

The van der Waals' two-fluid theory W2 is slightly superior 

to the one-fluid theory Vl1 in the prediction 01' ~ when using a 

parameter E; to account for deviations of the unlike int.eractions 

from the geometric mean of the like interactions (the Berthelot rule). 

Both theories showed to be insensitive to the data of the pure substances, 
c c ) (i.e. T,V or V~u for the calculation of the parameters a and b 

in the van der ',';aals' equation, and also to some extent to the 

combining rule for b12• 

Since the value of ~ was less than unity for everyone of the 

systems whose HE were measured it is clear that weak interactions m 
are present between the unlike molecules. 

The prediction of ..,. was also carried. out using the W1 and W2 
m 

theories. It was necessary in order to obtain better agreement between 

theory and experiment to introduce a disposable parameter p in the 

combining rules for the cross-diameter of the molecules. 
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The W2 ,theory is also superior in this cuse, hOVlew!r, the choice 

of data of the pure substances for the calculntion of a ond b does 

have a clear effect both qualitative and quantitative on the predicted 

VE. m 

The parameters F; and p also showed a decrease in rnaG11i tude as 

the size of the n-alkane component increase for a given n-alkanenitrile. 

The gas-liquid critical constants of ethanenitri1e + n-alkane 

systems were also predicted using a van der Waals model proposed by 

Lel1and, Row1inson and Sather. 

The calculation of critical' temperatures TC was carried out m 
allowing deviations from the Berthelot rule, that is, a pnrameter ~ 

was determined to obtain the best possible agreement with experiment. 

The values of ~ seem to confirm weak interactions of the unlike 

species with respect to the geometric mean of the like interactions. 

The apparent decrease of F; with increasing size difference of the 

components has also been observed in mixtures of non-polar substances 

such as octamethylcyclotetrasiloxane + cyc10alkanes and linear siloxanes 

+ n-alkanes. 

It is interesting to point out that although the theory does not 

give quantitative aereement in the whole composition range it does 
c 

predict the minimum temperature points on the Tm - X curves. 

For the prediction of pc - X curves a parameter p was introduced m 
to allow deviations from 

(Vf2 in this treatment). 

the combining rules for the unlike size term 

A fair qualitative agreement with experiment 

was observed with this method. 

This study has provided limited information on the behaviour of 

n-a1kanenitrile + n-alkane mixtures so further studies on the same 

type of systems must consider n-alkanenitriles of larger size than those 

used here. 

Also the study of the mixing properties over a wider range of 

temperature has to be considered o 
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