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SUMMARY
ARTURO TREJO RODRIGUEZ
A THERMODYNAMIC S7UDY OF POLAR+NON-POLAR FLUID

MIXTURES: n-~-ALKANENITRILE + n-ALKANE SYSYEMS

This work consists of a thermodynamic study ot liquid binary
mixtures of the type polar + non-polar., The polar components were
chosen to be members of the n-alkanenitrile series of compounds
whereas the non-polar components are members or the n-alkane series.

4

The experimental part of the work includes:

a) the determination of upper critical solution temperatures of
binary mixtures of ethanenitrile, propanenitrile, and n-butanenitrile

with n-alkanes in order to establish the limits of liquid-liquid

miscibility;

b) the measurement of the gas-liquid critical locus (p°-7°-X)

for the six mixtures ethanenitrile + n-pentane to n-decane,

c) measurement of excess enthalpies of mixing at 298,15 K for

propanenitrile + n-pentane to n-heptanej n-butanenitrile + n-hexane,

4+ N-octane, + N-dodecane, and + n-tetradecane.

d) and the measurement at 303.15 K of excess volumes of mixing for
propanenitrile + n-pentane to n-octane; n-butanenitrile + n-pentane,
+ n-hexane, +n-octane, +n-decane, + n-dodecane, +n-tetradecane; and

n-hexanenitrile + n-hexane.

Although the experimental resulis are readily related to the
molecular size of the studied substances statistical theories of fluids

are used for a more formal interpretation.

The Scatchard - Hildebrand theory with a modification is used to
predict upper critical solution temperatures. The now widely used
van der Waals' one and two-fluid theories are uscd here to predict excess
enthalpies and volumes of mixing. The gas-liquid critical properties are
interpreted usin; a first-order theory together witn the Van der Vaals'

equation of state,



The predicted results show in each case satisfactory agreement
with experiment, furthermore, information is obtained on the relative
strength of the unlike interaction between the molecules of the mixtures

studied.,
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GENERAL INTRODUCTLON

Since mixed substances are more common than pure substances,
special efforts, both theoretical and experimental, are needed
to explore their properties. In particular, it is interesting‘
and important to determine what new behaviour results when

substance X is mixed with substance Y.

Before mixing, all molecules of X and Y have nearest neigh-
bours of the same kind; after mixing they have nearest

neighbours of different kinds.

A quantitative account of the interaction of every possible
pair of molecules is an enormous task, however, the study of

selected molecular interactions may help to generalize certain

principles on which further advances can be made.

The theory of pure fluids has made much progress in recent
years due to.the study by computer sin_xulation1 of simple systems
(e.g. hard-spheres), but the results of such studies have helped
to understand another group of simple fluids: +that of the inert

2
gases Ar, Kr, and Xe »

. {
The extension of the knowledge of the type of interactions
present in these simple fluids to more complex molecules (N2, CH4,

co, 02) has produced a very useful tool in thermodynamics: the
principle of corresponding states (PCS)3’4.

The study of mixtures as briefly mentioned above presents
another outstanding problem, that of the determination of the
unlike interactions and their relation to those between like

mplecules. However, advances in the study of mixtures, as in pure
fluids, have been made thanks to computer simulations on simple

systems,



The extension of methods for the study of pure fluids to
mixtures seems an obvious step. The PCS has been widely used
for the prediction of thermodynamic properties of mixtures having

conformal intermolecular potentials from the properties of a
reference substance obeying the same PCSS-7.

The theory of fluids, both pure and mixed, of simple
molecules interacting with spherical two-body potentials seems
to be in a secure position at the moment. However, if the theory
is to be extended to other fluids of interest to scientists and
engineers then account must be taken of the fact that these fluids
interact with orientation - dependent potentials due to the
'shapef and polarity of the molecules, Some other complications
also have to be considered such as complexing of molecules and

flexibility.

Although the understanding of these fluids is incomplete, some
of their molecular characteristics lead to behaviour which can be

understood at least qualitatively.

For example, the properties of the members of an homologous
series of compounds (e.g. n-alkanes, n-perfluoroalkanes, siloxanes)
can be easily related to the size of the moleculess’9. The rejular
fashion in which the thermodynamic properties of the pure homologues
change is also observed in their mixtures (i.e. n-alkane + n-alkane,

10-12
etc.) which has led to the proposition of certain principles

13

stemming from the principle of congruence 7,

The series of n-alkanes have attracted much interest due
partially to some of the reasons mentioned in the previous paragraph
and partially because they provide a link to test theories of

non-electrolytes and also theories of polymer solutions,

The thermodynamic properties of pure n-alkanes and their

mixtures have been reported in innumerable contributions by many workers
14-1T 4nd there is little to be added in this direction here.



Until recently, the systematic study ot the thermodynamic
properties of mixtures of two chain molecules belonging each one
to different series of homologues had not attracted much attention.
However, the work carried out in this laboratory during the last 10
years has redressed this situation18-20, at least partially. These
studies of mixtures of chain molecules have involved the following
kind of mixtures: n-alkane + linear siloxane, n-alkane +

perfluoroalkane, linear siloxane + perfluoroalkane,

The encouraging results obtained in those studies seem to
indicate that the theory can explain, with some assumptions,

the thermodynamic properties of mixtures of chain molecules,

The work here reported consists of a thermodynamic study of
liquid n-alkanenitrile + n-alkane binary mixtures, that is, mixtures

of chain molecules of the type polar + non-polar,

The presence of an electric moment in the members of the _
n-alkanenitrile series is the result of an unsymmetric distribution

of the electric charges in their molecules,

The n-alkanenitirile series of compounds are represented by the

general chemical formgla:

n - Cpllop N5 my 1

The name of each individual n-alkanenitrile is given by the
name of the n-alkane according to the number of carbon atoms in
the molecule plus the termination nitrile due to the presence of
nitrogen in the molecule, For example, the first member of the series
(m = 1, CHN) is methanenitrile, the second member (m = 2, C2H3N) is
ethanenitrile, the third member (m=3, C3H5N) is propanenitrile, etc.



The n-~alkanenitriles are polar substances whose electric
dipole moment is localized along the bond linking the carbon
atom and the nitrogen atom. This has been found experimentally21
(by spectroscopic and electron-diffraction measurements); furthermore,
several 'polar structures' have been considered for the n-alkanenitrile
compounds in order to explain their large electric moment521’22’23.
The dipole moments ( u ) of some n-alkanenitriles are listed in table 1,
from which it is clear that for the compounds with m > 2 u is essentially

constant, i.e. p is almost independent of the chain length.

This particular characteristic of the n-alkanenitriles makes
possible the study of the thermodynamic properties of binary n-
alkanenitrile + n-alkane mixtures as a function of the chain length of

either homologous series at essentially constant y

The fact that y is constant does not necessarily mean that its
effect on the properties of n-alkanenitrile + n-alkanemixtures will be
the same independently of the chain length of the n-alkanenitrile.

In order to account for the effect of u on the mixtures properties

it is possible to use a quantity called 'effective polarity' (P) defined

26
as

2 o : .
P =y /Kl (1)
where K is Boltzmann's constant and ¢ the collision diameter of the

polar molecule,

Strictly, P is used for molecules with point dipoles, however,
it may be used to give a better understanding of the effect of
on the properties of the pure n-alkanenitriles and their mixtures with

n-alkanes,

The quantity P is related to the molecular interaction of two

point dipoles, since the latter is given by

6

u(r) = -2%/3x0r (2)



when terms of higher order than ‘l/r6 are neglected,

Expression 2 also enters into the determination of the
Helmholtz function A due to the presence of point dipoles in the
interacting molecule527. Since the increase of 2114/3kTr 6 reduces A
it is then clear that this term can show the effect of u on the
thermodynamic properties of polar substances, If one approximates

relation 1 to
pr= w?/ve (3)

where © 3 has been taken to be given by the gas-liquid critical

volume Vc, it is then clear that for a given temperature P 'will
decrease as V° increases, that is, the effective polarity of an
homologous series will decrease, and consequently its effect on the
thermodynamic properties will decrease as the molecular size of the
members increzses. Table 2 gives values of ?‘ for some n-alk:nenitriles

where the mentioned trend of variation of P! is observed from m = 2,

Many properties of the n-alkanenitrile series have been reported
(e.g. densities, refractive indices, heats of vaporization, virial
coefficents, etc.) so that a comparison with the corresponding
properties of the n-alkanes series can show the effect of the
substituent nitrogen in substances whose siructure is very similar to
that of the n-alkanes. The enthalpy of vaporization is a measure of
the cohesion of the molecules in the liquid state so that a comparison
of this property can be discussed in terms of the interaction of the
molecules. Figure 1 gives the molar enthalpy of vaporizationle; for
n-alkanenitriles and n-alkanes at 298,15 K as a function of the
number of carbon atoms in the molecule of either n-alkanenitrile or

n-alkane.

Figure 1 shows thataA H; for the n-alkanenitriles series is much

higher than for the n-alkanes, which clearly indicates the existence

of stronger attraction forces due to y.



The experimental study of n-alkanenitrile + n-alkane mixtures

includes

1) - determination of the upper critical solution temperature

(UCST) of the following mixtures (the volume fraction is approximately
0.5): ethanenitrile + 05, C6,C7,08,C9,c10,c11,012,014,016, and C, g3
propanenitrie+ 05’06’08’010’012’C14’C16’ and C,, 3 n-butanenitrile +
05’06’C1O’C12’C14’ and 018; where the number of carbon atoms in the
n-alkane is given by the subscript.

c me . : .
2) - gas-liquid critical locus (p »T ,X) of the following mixturess:

ethanenitrile + C4’C5’C6’C7’CB’C9’C1O’ and C,,.

3) - molar excess volumes (Vﬁ) at 303,15 K of:
propanenitrile + 05,06,07, and C 8; n-butanenitrile + C5’C6’C8’C1O’C12’ and 014;

n-hexanenitrile + C6.-
4) - molar excess enthalpies (Hﬁ) at 298.15 K of s
propanenitrile + C5,06, and 07; n-butanenitrile + C6’CB’C12’ and

014.



Table 1 - Dipole moment of scme members of {he n-alkanenitrile series.

Substance Formula 1030w /C m 1.030;1 g/Cm
methanenitrile CHN 10.11 8.37
ethanenitrile 02H3N 13.14 11.61
propanenitrile C3H5N 13.48 1.9
n-butanenitrile n - C4H7N 13.51 11.91
n-pentanenitrile n - CSHéN 13.64 11,91
n-hexanenitrile n - 06H11N - 11.68%

YW mean dipole moment in the vapour phase; references24 and 25.
Ys mean dipole moment in solution (benzene); references24 and 25.
*  Value for isohexanenitrile

1 Debye (D) = 10-18 €esSele = 3.336 X 10-30 ¢ m.

Table 2 - 'Effective polarity (P')' of some members of the n-alkanenitrile

series.
Substance ____jﬁi____ ' 1062P'
emmol”! (c[11)2(f,~m3111o].“1)—1

méthanenitrile 1392 75-5d
ethanenitrile 1']3a 99.8
propanenitrile 229a 7943
n-butanenitrile 285b 64.0
n-pentanenitrile 340° 5447

(a) Reference 28; (v) (c) Interpolated;

(d) u, values from table 1,

Reference 29;
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Figure 1 Molar enthalpy of vaporization for n-alkanenitriles

and n-alkanes at 298,15 X,
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CHAPTER 1

SOME ASPECTS OF CLASSICAL THERMODYNAMICS

Introduction

Knowing of the existence of text books on thermodynamics

specially written for students in different fields of science
one might think that there are several kinds of "thermodynamics"
and this confusion increases even more when different appréaches are

used to introduce students into the study of thermodynamics.

The aim of this Chapter is to state some of the more important

thermodynamic relations that will be mentioned later in this work.

It is convenient to mention that thermodynamics is a 'collection
of useful relations between quantities, every one of which is

1
independently measurable' .

The usefulness of thermodynamics lies in the above statement
since some quantities are experimentally easier to determine than
others. The results obtained using the relations of thermodynamics
are independent of any proposed microscopic or molecular theory of

matter. (

1.1 Thermodynamic Relations for Pure Fluids

Most of the relations that will be given in this section are

also applicable to mixtures provided that their composition remains

constant.

The quantities of which thermodynamics makes use to study a given
gystem are called thermodynamic variables, The division of these
variables into independent and dependent is useful, one further
classification divides these variables into extensive or intensive

following the criterion given below,
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Quantities such as the entropy S, the volume V, the energy U,
the mass m, and the amount of substance n, are examples of
extensive variables since the values they may take depend on the

total quantity of matter present in the system.

Other variables such as temperature T, and pressure p, are called
intensive since they have values independent of the quantity of
matter in the system under consideration. Extensive froperties can,
however, be easily converted into intensive properties, namely, into
molar quantities through division by the amount of substance n, or

into a specific quantity through division by the mass of the system.

The proper derivation of the thermodynamic relations given
below would take more space than is available. It will be sufficient
to say that 'if we know one of the thermodynamic potentials as a
function of the variables tc¢ which it corresponds, we can express all
the other thermodynamic variables as a function of this potential

and its derivatives'

The energy U, is the thermodynamic potential associated with the
independent variables entropy S, and volume V. This relation is given
by

QU = TS~ paV (1.1)
¢
Three more thermodynamic potentials are now introduced: the

Helmholtz function A, the enthalpy H, and the Gibbs function G,

vhich are given respectively by

A=y-T8 (1.2)
H=1U4+pV (1.3)
and G=H-1TS (1.4)

The effect of small changes in the four thermodynamic
potentials for systems of constant composition is simply given

by

dU = TdS - pdVv (1.5)
dA =.8dT - pdv (1.6)
dE = TdS + Vdp (1.7)

dG = - S4T + Vdp (1.8)
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Equations 1.5 to 1.8 are often called 'fundamental equations'

because taking one of them , all the other thermodynamic potentials

can be expressed in terms of the one present in the chosen equation.

For example, choosing equation 1.8 we obtain at constant pressure.
(36/5T)p = - S (1.9)
and at constant temperature

(BG/ap)T =V (1'10)

12 to
Substituting these two results into equationshl,.4 one obtains

H=C - T (36/3T)p (1.11)
A =G - p(a6/2p)qp (1.12)
and U =G - T(36/3T)p - p(36/3p)qp (1.13)

where V,S5,H,A, and U are expressed in terms of G.

Of particular interest is the relation between the enthalpy H

and the Gibbs function. Equation 1,11 may be arranged to give

(M)_ ) = H (1.14)
(‘8(1/'T) )p

Similarly we may obtain a relation between the energy U and

the Helmholtz function A,

@Qam ) .y (1.15)
(a@/T) ) v

These last two equations are known as the Gibbs - Helmholtz

equations.

1.2 Thermodynamics of Fluid Mixtures

The specification of but two independent variables is notadequate
to define the state of a system whose composition changes and thus

additional independent variables are required,
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It is obvious that many thermodynamic properties of a system
change with composition, so it is necessary to supplement the
fundamental equations 1.5 to 1.8, which were derived on the
assumption that only iwo independent variables were necessary
to specify the state of the system under consideration, by introducing

C-% independent variables when the system has C components,

Equation 1.5 must be modified to include the effect of

infinitesimal variations in amoun*s of substance, i.e,
dU = TdS - pdV + 1,16
PAV + I yudn, (1.16)

where dn, represents an infinitisimal additional amount of
substance i, The function y is an intensive quantity and it
depends on the temperature, pressure and composition of the system;
it was called “chemical potential" by J. Willard GibbsB-

As might be expected from the position of 1; in equation 1,16
as a coefficient of dni’ 1 is a mass or chemical potential,

just as T is a thermal potential and p is a mechanical potential.

Equation 1.16 is the first of the four fundamental equations

for systems whose conosition changes, the others are

dH = TdS + Vdp +r dnj (1.17)
dh = -SAT = pdV + [ y.dng (1.18)
46 =-SAT + Vdp + J ugdn; (1.19)

Alternative expressions for My are obtained by using
equations 1.16 to 1,19, however, attention will only be given

to the last of them, namely,

uy = (BG/ar&)T’p . (1.20)

which is seen to be identical with the partial molar Gibbs function,
Gi'
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Having introduced11i, a partial molar quantity, it is necessary

to distinguish between partial and molar quantities.

Considering an extensive property of a multicomponent system,
for example, the volume V; then the partial molar volume of

component i is defined by the derivative

v, = GVAn; ) (1.21)
1 T
93Py,
J
where rﬁ indicates all species or components in the system except

the one involved in the differentiation. The partial molar volume
Vi clearly depends on the pressure, temperature and composition of

the system, but independent of the amount of substance already present;

that is, a partial molar quantity is itself formally an intensive

property.

It can be shown that

¥ = z;inivi (1022)
and Zn,dv, = 0 (p and T constant) (1.23)
i
similarly, being y i a partial molar quantity
{ .
G "’-Ei niui (1°24)
and f nd uy = 0 (p and T ccnstant)  (1.25)

Equation 1.23 and 1.25 are examples of Gibbs - Duhem equations,
Similar relations may be obtained for any other extensive quantity,

e.g. U,5,H, or A,

Dividing by the amount of substancen, Wwe can also obtain
from each extensive quantity an intensive quantity. Quantities so

obtained are called molar quantities; using again the volume
RN (1.26)

where the subscript is used to denote 'molar',
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Since in practice, molar quantities are measured rather than
partial molar properties it is important to know the relation

between them; for a binary mixture

vy = V- X, (3V/6%5) T,p (1.27)

V, =V =X, 3V /5X,) 2,0 (1.28)
where X, is the mole fraction as defined by

RV (1:29)

1.3 i Idea) Liguid Mixt

It is convenient to include thermodynamic relations which
describe a limiting behaviour of real systems. The concept of a
hypothetical ideal mixture when dealing with the properties of liquid
mixtures, like the concept of a perfect gas in the study of gases,
is extremely useful since it helps to simplify the understanding of

real systems.

The ideal mixture definition which is used here is similar in
as
form to the definition of a perfecglmixture. Hence, an ideal mixture

isy by definition, orl: whose components satisfy the equation
id *
W (p,T,Xi) = yu; (pyT) +RT In X, (1.30)

where u;d is the chemical potential of the ith component in the
*
mixture, Mg is the chemical potential of the pure component i at the

same temperature and pressure as the mixture (and in the same phase),
~ *
This choice of u; makes the use of the ideal mixture concept only

possible up to pressures of 0.3mra4.

We now obtain the thérmodynamic relations for the ideal mixture,

If we define the molar Gibbs function of a binary ideal mixture as

LI id id
G Xlul + X5, (1.31)



7

where the values for ui are given by equation 1,30, thus

id

#*
= L X )
G, 5 Xu, + BT ixi In X, (1.32)

™
where (p,T,Xi) for ¥, has been dropped.

The other thermodynamic relations are readily obtained, for a mole

of mixture
id *
B o= X (1.33)
id
=2 X.S - L , , .
S‘i‘d :E 55 Ri X1ln X4 (1.34)
and vy =F XV (1.35)

where u:, H:, S;, andvvz are the molar properties of the pure
components at p and T of the mixture. It can be seen that the
enthalpy and volume of an ideal mixture are simply the sum of the
corresyonding properties of the pure components. However, the
Gibbs function and the entropy are composed of two terms, the first
one also involves the sum of the properties for the pure components
whereas the second term gives the change in the property (G or S)
accompanying the mixing of the components to form the ideal mixture.

Hence we can now set out the molar functions of mixing for

an jdeal mixture

id
A = )X .
0 % RT ix]l In X, (1.36)
A gid R
S RT ixi In X, (1.37)
id id
A B = 0, A mv; = 0 (1.38)

since a thermodynamic function of mixing is the difference between
the property in the mixture and the sum of those for the same amount

of unmixed ccmponents at the same p and T,
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1e4 Non-Ideal Tiquid Mixtures and Excess Functions

Since the only mixtures that behave ideally over large ranges
of p,T and composition are mixtures of isotopes, non-ideality, then,

is the general rule.

For non-ideal systems, a quantity a the activity of component i

is introduced in equation 1.30, so that, pj now takes the form
*
ui(PoT’X) Y (p,T) + RT 1n a; (1.39)
where the activity is defined by
a, = X.v, (1.40)

A is the activity coefficient and it is a function of p, T, and

composition. These coefficients were first introduced by G. N. Lewisse

Clearly the dimensionless activity coefficient accounts for

departure from ideality since
15 (0 TX) =i 1% (p,7,X) = RT In (a,/X,) = RT Iny; (1.41)

The thermodynamic functions of mixing for non-ideal systems are easily

obtained by using equation 1,39 and previous definitions as follows,
{

The change in Gibbs function resulting from mixing two substances

to form a mole of non-ideal mixture is given by
= RT I . .
Gy ; X; In Xiyi (1.42)

The corresponding equations for S,V, and H are readily obtained

by the use of 1.9, 1,10 and 1,14 respectively
S =-RT IX.(3ln¥y/oT -RI X, . 1e
n X (31ny oT), - RE X InXy, (1.43)

v, = RT 'z;xi(a 1n yi/aT)T (1.44)

2
and H, =RT i)‘Sxi(a Iny /3 T)p (1.45)
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The use of thermodynamic excess functions is an alternative
method of describing non-ideality. These functions are defined as
the difference between the thermodynamic functions of mixing for an
actual system and the value corresponding to an ideal solution at the

2
same p,T and composition « Thus

E

G =RTL X, ny, (1.46)
E _.
s, ="RTZ X, (2 lny, /BT)p - RI X, lny (1.47)

i 1

The excess functions VE and Hﬁ are identical with the corresponding

functions of mixing given by equations 1.44 and 1.45 respectively.

The thermodynamic excess functions also obey the relationships
in section 1.1, furthermore they are closely related to experimental

measurements e

The use of algebraic functions for representing the various
thermodynamic properties of mixtures has many practical advantages,
most of these functions are power series expansions in composition
with coefficients depending upon p and T7. One of these functions
will be used in this work to represent experimental Hﬁ and Vﬁ of

the systems here studied.
{
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CHAPTER 2

STATISTICAL THERMODYNAMICS OF FLUIDS

TIntroduction

The relationships between different equilibrium properties
provided by classical thermodynamics are not capable of giving
insight into the molecular behaviour of fluid systems. Molecular

physics and statistical mechanics have to be used to obtain such

insight.

The term 'statistical thermodynamics' has widely been used

to describe the relationship between statistical mechanics and

thermodynamics when the main objective is to determine the bulk,
macroscopic properties of a substance from first principles, i.e.,

the intermolecular forces of the substance.

This Chapter gives only some of the basic ideas and results of

statistical thermodynamics since research work on this field has
expanded so much in the past 20 years that it would be impossible

and unnecessary to detail all the relavant aspects to the understanding

of fluids.

2.1 Intermolecular Forces

The forces betweenmolecules play an important role in the
determination of the equilibrium properties of matter. However, our
knowledge of the exact form in which the molecules interact has
been restricted until recently to simple molecules, such as the

inert gases.

The force of interaction F between a pair of spherically
symmetrical molecules is a function of the intermolecular separation only
(r). It is usual to use the potential energy of the system U(r ) (or

intermolecular pair potential energy function) which is related to F( r)

by
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U(r)==-/"F(r)ar (2.1)
r
The potential energy U(r ) is characterized by an attractive
energy prevailing at large separations of the moleculcs and a
repulsive energy present at small separations. U (r ) of a system
composed of N molecules may be determined by assuming that the

energy between the molecules is pairwise additives

U(1,0000,N) = P u.. (2.2)
o ij
i< j=1
where uij is the potential of intermolecular forces between any
two molecules i and j. Several molecular parameters can be used
to characterize uijz o , the separation at which the energy is zero

(uij( o) = 0); r » the separation at which the energy is a minimum
( (au@r)/ar), . r = 0); and £, the depth of the potential well
(u(rm) = =g ).

The interaction of a pair of molecules can be divided into

three parts: short-range, intermediate-range and long-range.

a) Short-range interactions - these are frequently called valence
forces or chemical forces and arise from the overlap of the closed
electron clouds when two molecules come close together. The form

of the short-range interaction is complicated and depends on the specific

1
type of interaction being considered. It may be represented by 2

U, =4 exp(-Br) (2.3)
where A and B are constants.

b) Intermediate-range interactions - these are called second-order
exchange energies and they are insignificant compared with short and
long-range energies. Their evaluation is extremely difficult even

1
for simple molecules

¢) Long-range interactions - there are several contributions to
these interactions: electrostatic, induction, and dispersion

contributions.
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i) Electrostatic contributions - these arise from the
interactions of the permanent moments of the molecules and are

angular as well as distance dependent.

For neutral polar molecules the leading contribution

corresponds to a dipole-dipole interaction which after averaging

over all orientations and expansion in powers of 1/xT gives

ue(u-u)=-g-l‘-3-%-—‘2’- (2.4)

ii) Induction contributions - these arise from the polarization

of one molecule by others. The interaction between a dipole and an in-

duced dipole is given by

Ha © b
Uin( L uin) == 6 (205)
T
where € is the polarizability of molecule b,
jii) Dispersion contributions - these are present in non-

polar as well as in polar molecules and hence explain the long-range
interactions between inert gas molecules. London3 first showed that

the dispersion interactions could be expressed in the form

c C c

Use . = _b + 8 + 10
dis rd a ey + esese 206
I‘6 rB I'10 ( )

where the coefficients C may be determined on a quan tum mechanical

4

basis '

Theoretical calculations of the thermodynamic properties of
fluids require the use of model intermolecular potentials given in
a simple analytic form. OSome simple angle-independent potentials

much used in theoretical calculations include the following:

hard- sphere

ufl(r)= = r< o
u(r)= 0 r» o (2.7)
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where ¢ is the hard-sphere diameter.

squaré-well

u(r) = . ‘ I‘<o;
w{r) = -¢ o <r <Ry (2.8)
u(r) = 0 r>Rg

This potential represents rigid spheres of diameter o surrounded

by an attractive core of stirength € which extends to a distance R’ .
Lennard-Jones (I-J) n -m

u(r) =4e( (o/7)" = (a/T)") (2.9)
where ¢ is the well depth and ¢ is that value of T for whichu(r) = O.

Although several angle-dependent potentials have been proposed
the Stockmayer potential5 is frequently used at least for polar molecules
for which dipole-quadrupole and higher multipoleinteractions are not

important1o This potential is given by

ilr0 0,00 = 4e((o/x)% G /2)) = we wv £(0,0,8) (2.10)
r3

where the function g(0a9cb,¢) is the angular dependence of the

dipole-dipole interaction, (Oa,Ob) and ¢ are the equatorial and

azimuthal polar coordinates of the dipoles respectively.

~

2.2 The Partition Function

The calculation of thermodynamic properties using statistical
mechanics is achieved in a simple and elegant way through the

partition function,
In statistical mechanics a system with fixed temperature, volume

-and number of particles is modelled by the canonical ensembleé.

This ensemble is characterized by

£ exp(-gV,)/ £, exp(1,) (2.11)
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(1)

in a state of energy i. For such a system the macroscopic

This expression gives the probability f of finding the system

equilibrium value of a property P is given by

= L - L -
P= IP exp(-BU;)/ I exp (-FU,) (2.12)
The partition function is given by the following expression
= L -
2 - Fexp (-BU) (2.13)

The relation between the partition function Z and the Helmholtz

function A is
A=-KT1n 2 (2.14)

from which all the thermodynamic properties of the system may be

derived using some of the relationships given in Chapter 1. Thus,

U = k1°(3 1%/ 3 Ty (2.15)
S = k 1n2~+ (U/T) i (2.16)
¢, = (3 (r%2 1nz/52) /2 1), (2.17)
p = KT(3 12/ V), (2.18)

The partition function can be separated according to the
different degrees of freedom that contribute to the energy of the
‘quantum states of a given system. Hence, one may distinguish
contributions from translations of the molecules and from rotation,
vibrations, etc., tc give

% =2 (2.19)

intztr

which is valid for nearly spherical molecules but not for molecules
with multipdles since their interaction is angle-dependent as
discussed in the previous section. If relation 2.19 is valid, then

the thermodynamic properties of mixing are determined only by Ztr'
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In order to evaluate Z the following assumption is introduced:
that the translational states are very closely spaced, so that Ztr can
be evaluated 'clasically's The tiranslational hamiltonian H for a system
of N particles in which the potential energy depends onl& on the

positions of the molecular centres of mass is given by

H= ,15 'iI’?: (pix + piy + pfz) + U (ryy 0007 31\‘) (2.20)
so that 2 is i
Ly, = 1 J eeo fexp(-BH) dp3N drBN (2.21)
Nt ot
where T and pi are, respectively, the positions and momenta of

the centres of mass of the molecules,

This result is valid for not too low temperatures, however, the
exact temperature at which it is acceptable depends on the

. 7
substance considered «

The splitting of Ztr into a factor due to the kinetic energy

and another due to the potential energy takes the form

2 ~3N/2
Zy. = h ) Q (2.22)
( 24mkT )
and
Q =-_1. S oo [ exp(-gU) dr1 eee dr 3n (2‘23)

N
wheré Q is called the configurational partition function.

In deriving equations 2,20 to 2.23 it was assumed that the
molecules interacted with central forces, where non-central
interactions are present, U is also a function bf the relative
orientation of the molecules. If U is assumed to be independent of
the vibrational energy and of the rotational momenta, it is possible

to account for the orientation effects and equation 2,23 becomes8
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Q= 1 ’N J eeo s exp (gU) dr, .. drpde, oo dug (2.24)

1

were
Jdw=Q = 4T (2.25)

which is the integration over the angular co-ordinates of each

linear molecule,
Configﬁational thermodynamic functions are obtained by
replacing 2 by @ in equations 2,14 to 2,18. Oaly the configug¥ional

properties depend on the intermolecular forces,

2.3 The Principle of Corresvonding States

The Principle of Corresponding States (PCS) was originally
introduced by van der Waals by using reduced p,V,T properties. %he
PCS has been widely used for the calculation of properties of fluids
from the known properties of a few9o This principle is applicable to
the configurational part of the thermodynamic properties by using a
dimensional analysis technique 0 so that the thermodynamic properties

. . 11
may be expressed as universal functions of reduced molecular parameters .

The requirements that must be satisfied for a system to obey the
molecular form of the PCS in its simplest form are as followss

1) The partition function can be separated into translational and
internal contributions which are mutually independent (equation 2.19),

Moreover, only Q is density dependent,

2) ztr can be treated classically, and Maxwell-Boltzmann statistics

can be used,

3) The total potential energy of the system can be expressed as the
product of an energy parameter and a function of dimensionless
separation distances between molecular centres.. A pair potential of

8
this type may be expressed by
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ug; &)= f5u (/e) (2.26)
where
f = € [ = O
ii ii/' oo’ i1 ii/coo (2.27)
h[ = g2i (2.28)

anduoo is a common reference potential,

If reduced properties are defined in terms of the critical
constants and molecular parameters of the substance under study

and of a reference substance as follows

py = <§_1_;_> p* = (£44/04,) v, (2.29)
1

c (o]

vi = (og7) v* = hyyve (2.30)

72 =(f_1£1_) ™ = £, 70 (2.31)

where the starred parameters are the reduced properties, then the
configurational partition function can also be expressed in terms of

the reduced properties by
N
Q (V,T) = hyy Q) (V/hyy»T/1y,) (2.32)
and the expression for the configurational Helmholtz function is
A, (V,T) = £114, (V/h11,T/f11) - 3NkT 1n g, , (2.33)
and consequehtly, for the pressure
py (H1) = (£14/009) g (V/nypy/244) (2.34)

Finallyy the expression for the equations of state of a

substance is given by



29

(0, V,1) = B (phy/214,V/0y,7/2, ) = 0 (2.25)

Guggenheim11 has tested the PCS for several substances
(including some polyatomic molecules) using different properties
for both fluid and solid states and concluded that argon, krypton,
and xenon conform to the principle, and that nitrogen, oxygen,
carbon monoxide, and methane also conform with fair accuracy in the

gaseous and liquid states but not in the solid state.

2.4 Deviations from the Two-Parameter PCS

In view of the large number of substances that do not conform
to the simple two-parameter PCS discussed in the previous section several

methods have been proposed to extend the theory to include them,

Extended PCS to include non-polar polyatomic fluids have been

developed by introducing more than two reduced parameters.,

Riedel12 proposed the slope of the vapour pressure curve as a

third parameter.

Rowlinson13-15 also proposed a third parameter which measures
the deviation of the reduced vapour pressure equation from that of
fluids conforming to the two-parameter PCS, He showed that the
reduced vapour pressure of a fluid with non-central forces is lower
at a given reduced temperature than the corresponding value for

simple fluids.

A very extensively used third parameter, also based on vapour
pressure deviations, is the so called acentric factor proposed by

Pitzer11’16’17

s which for simple fluids is essentially zero.
Other third parameters have also been proposed which are not
1
directly related to the vapour pressure of the substances. McGlashan 8

used for n-alkanes the number of carbon atoms in the molecule,
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Most of the mentioned modiffications to the simple PCS have
concentrated on the modification of assumption 2 discussed in the

previous section.

If the simple PCS is extended to include polar substances further

19,

assumptions will have to be made
1) Assumption 1 of the simple PCS is valid

2) The symmetric part of the molecular interactions can be
satisfactorily represented by the Lennard-Jones 12-6 potential

3) Hydrogen bonding and other specific interactions can be ignored

4) The molecules can be treated as point diroles, the dipoles
being located at the molecular centres. The interaction between

two molecules is given to a good approximation by equation 2.7

Thus, the angle-averaged pair potential of like pairs is

wuﬂ)=4d((dhf2-(07ﬂ%-1_ %i+-zf% 2.36)
Tr 3kT
where the first term is the symmetric‘part of the potential, the second
arises from dipole~dipole interactions and the third gives the dipole-

induced dipole interaction.,

Before defining reduced parameters it is necessary to set out

the molecular parameters appearing in 8.36 which are temperature

dependent as follows
-1/6
o (T) =¢ 'F / 2.37)

and

(2.38)

fl
(]
=

e (T)

where
F(T)

1 +u4/121<'1‘€ G +p.2€:/2¢-:' d' (2439)
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so that, the reduced parameter;are also function of temperature
as given by
p*=pg’ , ™= KT, V=Y  .40)
€ - - € al *
where the temperature functionality of the molecular parameters has

been omi“ted for typographical convenience (i.e., o (T) =g,ctC. ).

Using the reduced parameters in the configurational partition
function and assuming pairwise additivity of the potentials tle

reduced equation of state is obtained
p* = £ (T*,V*) (2.41)

The results obtained using this treatment show that it works

20
reasonably well ?t low densities s however, the results are poor at

low temperatures .

Another attempt to generalize the PCS to include polar molecules
is the treatment of CookandﬁRowlinson15. They also reduce the angle-
dependent intermolecular potential to a fcrm similar to that of simple
spherical molecules by averaging statistically over all orientations.
This treatment does not include the polarizability ot the molecules,
however, it retains the secon-order term of the dipole-dipole

interaction after averaging.

1
In a later paper Rowlinson 4 tested this treatment using six
properties of sixteen substances and the resulis showed good agreement

between theory and experiment,

2.5 Perturbation Thecries

Another approach to the study of fluids is the perturbation
theory. It is assumed that a complicated intermolecular potential can
be separated into two terms: a simple potential for which the partition

function is easy to calculate and a perturbing potential,
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The hard-sphere fluid is an example for which the partition
function is accurately known so that its potential is used as reference

(unperturbed potential).

The use of a hard-sphere potential (expression 2.7) as reference
is justified since it is assumed that the structure of a simple fluid
is determined primarily by the hard-ccre part of the intermolecular
potential (the repulsive part) and that the main effect of the
nonhard-core of the potential (the attractive part) is to provide

a uniform background potential (or internal pressure to maintain the

8
density)«

This concept is the basis of the equation of state proposed by
van der Viaals in 1373, He assumed that the Helmholtz function of a
fluid A was given by the Helmholtz function of the hard-sphere gas 4,
minus a term due to the background potential field, Thus,

.L. = Ao - Npa (2.42)

Furthermore, since Ao was not known, he approximated Ao to be
the free energy of a perfect gas with the total volume V replaced by a

'free volume' Vf. Therefore, his famous equation is expressed as

2
=NkT - MNa
P ;—§£ 72 _ (2.43)

The concept of evaluating the configurational partition function
Q by a perturbation technique was first suggested by Peier1821.
Zwanzig22 was the first to give a high temperature perturbation theory

by assuming that the intermolecular potential of a pair of molecules could

be written as
u(r) = (r) +ef(r) (2.44)

where uo(r) is the hard sphere potential and ¢f(r) is the perturbation

potential,
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The perturbation theory is obtained by introducing u(r) into Q and
expanding in povers of g ef{(r). This series converges rapidly at high

temperatures, that is if gef(r) is small,
The Helmholtz function A of the system is given by

o 2
A=h +2Npr [ rief(r)g/(r)dr (2.45)
)
where Ao is the hard-sphere energy, go(r) is the hard-sphere
radial distribution function (RDF) which measures the probability
ot finding & molecule at a distance r from a given one. This first-

order theory may be used to derive the van der waals' equation of state.

The results obtainéd from Zwanzig's method are not particularly
satisfactory even at high temperatures partly because they are
dependent on the value of the hard-sphere diameter o, the determination
of which is not included in the method. Zwanzig's theory assumes that
the repulsive region of the potential is unimportant within o, but this
is not entirely satisfactory for molecules with steeply rising

rebulsive potentials (i.e., they do not have hard-cores).

Barker and Henderson23 proposed a perturbation theory which
introduces two parameters, «. and y, into the potential in such a way
that when the two parameters are equal to zero a hard-sphere potential
of diameter g is reached, and when both parameters are equal to
unity the original potential is reached. This enablegﬁio gradually
tswitch off' the perturbation potential. Within the effective hard
core of the molecules the parameter « is used to control the 'steeéness'

of the potential, whilst, is used to control the effect of the

attractive well.

As for the specification of ¢ , Barker and Henderson chose

G = "fg (1+ expgu(r)) dr (2.46)
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which gives the diameter as function of temperature.

The results of the equation of state of a square-well fluid
(expression 2.8) using this perturbation techinique agree very well
2
with the Monte Carlo calculations of Rotenberg 4 at all temperatures

at liquid densities.

The progress that has been made in applying perturbation
theries to non-polar molecules has now been extended to the case

of polar molecules which as discussed in section 2.1 interact

with long-range forces,

The treatments to be discussed below have in principle been
mentioned in the section devoted to deviations from the two-parameter

PCS, however, some further details will be given.

The intermolecular pair potential of particles interacting
with long-range forces can be separated as previously into a ceniral
(isotropic) and a non-central (anisotrepic) part (formally this
separation of the potential can also be carried out for molecular fluids

which interact with non-central forces)8’25z

where the isotropic part uo is defined as the unweighted average

of U over the orientationsw'1 andw2

uo(r) = <u(r 1~2)>‘w. W' = _.13 s u‘(rl.lhﬁ)z)dﬂ)‘]dwz (2°48)
12

with g =4 5 for linear molecules to which this discussion is

resfricted.

The isotropic part can be represented as mentioned before by a
hard-sphere or a L-J potential. The anisotropic part u, can be
expressed in terms of spherical harmonics“26 (which can include
multipolar, induction or dispersion interactions at long-range, and

overlap interactions at short-range)
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uy g w) = 11z>o l°z°2>o zm x1212m(r)511m("”1)Sl2m(“‘"2) (2.49)

where Sy  are surface harmonics (based on the associnted Legendre

i
functions) and X depends only on the distances between the molecular

centres r. Hence, the total configurational potential energy u is

given by (assuming pairwisé additivity)

N N
U= ¢ “o(r) + I ‘41(m1tn‘2) "(2.50)
= ¥ j=1

In order to calculate the extra free energy that arises from
the orientation dependent potential it is necessary to expand the
Helmholtz function A using U in the configurational partition function

Q, which has the form (equation 2.24)

Q=_1__ peeey exp(U)dr eedr duy.ody (2:51)

N
N!Q
Substituting 2.50 into 2.51 and expanding exp (-3111) in

powvers of Uy to have an energy expansion as

A =Ao + ATAz sec e

The first order term A, vanishes since the integral of u, over

angular co-ordinates is zero ( <u4(r) W, = O, see equations 8.4f

and 8.48), so that the first non-vanishing term is of second order

and given as

| 2 2
by =/ By w0 anyer,
1 (o} 2,o m 2
ffee P r e ) s X (2 )%, (2r0)
e 1772’73 1 o Loo 12’7100 13

X Pl(cos 0123) dr, dr, dr3) (2.52)

where n(h) is the adequate distribution function and Pl(X) is the
This result has also been given in terms of

Legendre polynomial.
27,28

distribution functions
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This perturbation treatment is valid for small anisotropic
interaction energies compared with KT and has been tested against

31

0
Monte Carlo calculations3 and experiment” .

Several modifications have been proposed to take account

9

of larger perturbations, including effective central potentials2 ’

32

1
non-spherical reference potentials3 y and the Pade approximant” .,

The last method gives A as
A=A +A/1 - (AB/AZ) (2.53)

which is equivalent to the assumption of a geometric series for A.
When comparison of the Pade approximation results is carried out with
other theories it is concluded that the Pade results are in best
agreement with the Monte Carlo resu1t327. The reason for this is

not completely understood as yet.
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CHAPTER 3
STATISTICAL TITERMCDYNAMICS O MIXTUKRES

Introduction

It is evident that the theories used to describe the properties
of pure fluids owe much to the progress made in the study of simple

systems such as hard-sphere, square-well and Lennard-Jones fluids.

On the other hand the development of theories of mixtures has
been influenciated by the results for pure fluids., This does not
mean that the results for the later can easily be extended to
mixtures however, introducing further concepts sueh an extension is

possible.

This Chapter will be concerned mainly with some theories of
mixtures in which the thermodynamic properties are obtained from those
of a reference substance by application of the Principle of
Corresponding States (PCS). This is also extended to cases in
which the properties of two or more pure fluids can be combined

to predict the properties of a mixture.

3,1 Random Mixtures

The concept of random mixtures RM was developed by Prigogine

p

and co-workers1’2, Brown5'4, Scott” and Salsburg and his colleagues6.
This theory assumes that the probability of finding a molecule of one
species at a given distance with respect to any other molecule taken
as reference is the same for all species of the mixture, that is it is

irrespective of the molecular species concerned.

Let the configurational partition function Q of a binary mixture

of sperical molecules of species = and species y be given by

Q= (1/niNig) feeo f, exp (--BU)dr1 cee drN (3.1)
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where

In a pure liquid the total potential energy U is a function
only of the positions and not of what may be called assignment of the
molecules (since they are indistinguishable molecules). For a
mixture, U does depend on the assignments of the different molecular
species, this means that in a mixture we have not only like

interactions (UmmAand UYY) but also unlike interactions (U‘Y).

The Rm concept simplifies the calculation of Q by replacing
U by its average over the N! possible assignments of the molecules
to the N positions of each configuration. This average, <U,, may
be regarded as the sum over all molecules of an averaged pair
potential u(r) , we then have a system in which <U> is again a
function only of the intermolecular distances., If the distribution
of the molecules in the mixture is random then the probability of
finding a molecule of species = at one position is X_ (=W¢/N) and

similarly XY for species vy

It follows that

<P = L .<u (r) (3.2)
1> J
and
w(e) = <ar) = LIXXu. () (5.3)

The substitution of 3,2 into 3.1 leads to an expression for

the'configurational Helmholtz function A of a RM of composition X,

that is
A(V,T,X) = A (V,T) + NkT EX_ In X, (3.4)

and

s Sy . o ———— A
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A (V,D) = - kT1nQ
x =« kTln ( (1/N)S ooe [ exp {(-B< U> ) dry e drN) (3.5)

where Ax(V,T)is the configurational Helmholtz function of an
equal number of molecules of the 'equivalent substance' (introduced
by the average to U in 3,2) and the second term of the right-hand

side of equation 3.4 is the ideal free energy of mixing.

The Rm theory gives good results compared with experiment
for mixtures of molecules of the same size which differ only in the
strengths of their attractive forcesa. However, the theory ignores
the ordering which takes place in mixtures of molecules of differing

sizes.

9

Leland, Rowlinson and Sather” have analysed in detail these

features of the RM theory.

The use of the above results is simplified by assuming that .
the intermolecular potential of the equivalent substance is conformal
with the pair potentials of the real mixture, otherwise the
thermodynamic properties of the equivalent substance could not be

calculated using equation 3.5 by the IPCS,

It is supposed that the thermodynamic properties of a reference

system are known and its pair potential is characterized by
uoo(r) = EOOF(I‘/ %00’ (3.6)

Then since11x(r) and.u“Y (r) are assumed to be conformal with

uoo(r), ic€e
llx(r) = exF(r/ ox) (3.7)
and

Ry (r) = oy E(r/cmy) | (3.8)
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The relation with the reference potential can be given by
(see equation 2.26)

u(r) =u (v/e) s y, (r) =L, u (r/ng) (3.9)

*Y 00

where f and g were defined by equation 2,27,

This means that having conformal potentials, the properties
ot the equivalent substance and those of the pure components may then

be obtained from those of the reference substance using the PCS.

It has been proved by Brown3 that this extension ot the PCS
for mixtures can be made only for intermolecular potentials of the
lennard-Jones type with the further restriction that indices m,n must
each be the same for all interactions. Thus, we may write for the

equivalent substance

n m
ux(r) = Cx/r - Dx/r (3.10)
where
cC = XXC 11
X za: XY « y «y (3 )
(
and

x ey TEy ey T (3.12)

The Helmholtz and Gibbs functions for the equivalent substance
can be written as a function of the reference substance according

to the PCS (see equation 2.33)
Ax(v'T) = foo(V/hx,‘I‘/fx) - 3NKT 1n g (3.13)

¢ (p7) = £,6  (ph /£ ,T/f ) - 3NKT 1n g (3.14)
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The excess Gibbs function GE may be expressed as a function

of Gx as follows

6° (21%) = G (1) - T XG, (1) (3.15)
where

G, (ps7) = £, G (ph /f  »T/f, ) - 30kT In g (3.16)

The other excess properties may be obtained by differentiation,

as shown in Chapter 1.

The present treatment has been used by Leland, Rowlinson and Sather
who found that using a 12-6 potential in 3,10 there is a large contrib-
ution to the free energy of mixtures of molecules of different sizes,

not in accordance with experimental results.

In order to improve the RM theory the assumption of equal.
probability of configugation og Zhe molecules in the mixture has to
be removed. Prigogine s Brom”’” and Scott5 proposed that the
properties of the mixture could be calculated from those of a 'mixture
of two equivalent components' (if the mixture was binary) the properties
of which may be calcylated from that of a reference system using
again the PCS, This approach has been called the average potential model
AP by Prigogine and co-workers, since it uses the concept of an

average potential field being experienced by a given molecule due to its

surroundings.

Although this new treatment represents a correction to the Ru
to take account of the ordering effects of size differences of
molecules in a mixture it still gives large contributions to the

free energy of mixing when the molecules differ in size.

From the extensive calculations of Bellemans et 8110 the following
conclusions can be drawn when comparing the RM and the APM: both theories
predict that GE and HE are always positive whereas SE and VE may be
either positive or negative for mixtures whose unlike molecular

parameters are given by the Lorentz-Berthelot rules, namely
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1
945 ( aq *op)/2 €1z = €11 9)° (3.17)

' B B
The RM gives larger values of G and H and the negative
dcmain of the excess functions is somewhat smaller than for
the APM. These results agree qualitatively with experamentally observed

behaviour for simple mixtures (e.g. Kr + Xe, Ar + Kr, Ar 4'Clh, etc.).

3,2 yvan der Waals' one and two-fluid Theories

The prediction of the RM theory that the excess properties
do not necessarily all have the same sign was regarded as a great
step towards the prediction of properties of mixtures. The
refinement of this theory produced the APM which predicts more
accurate results., However, the results of these theories for a
hard-sphere mixture predict a positive infinite value of GE
(this is inherent in the assumption of random mixing in this case)
in disagreement with computer calculations11 which show that mixture
of molecules that differ only in size have small and negative values
of G and of v® (in the liquid state). These results were confirmed
by Lébowitz's12 work using the Percus-Yerick theory, furthermore the
relevance of such results to pure fluids (and also to mixtures) was
accepted after recognition that the structure of real fluids at
high densities is determined primarily by the repulsive forces

between the molecules (as discussed in section 2.4),

The contraction that occurs on mixing hard spheres may be
thought as the result of better packing when the hard spheres have
different diameters, i.e., small spheres tend to occupy gaps between

the larger ones, which do not occur in a pure fluid,

In the case of real mixtures there is also a high degree of size-
ordering which the RM or the APM does not account for successfully,

9,13

Leland and his colleagues proposed an alternative one-fluid
approximation which provides a more accurate prescription for the size
- dependence part of the equivalent substance. This presctiption was
originally suggested by van der Walls in order to extend his equation
of state to mixtures. He assumed that for mixtures the parameters a,

and b were quadratic sums of a  ard b,
X ey ey
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a, = Z.JYX«XY 2. b = ?“EYX“XY b«Y (3.18)

In terms of the parameters f and h this is given by

4 f | ® l
= (B E XX L B )/ (3419)

}—b
il

XX h 3420

jo2
]

Relations 3.19 and 3.20 give the name of van der Waals!'
on-fluid to this new approximation. However, this does not mean

that the van der Waals equation of state is linked to these

prescriptions.

The Helmholtz and Gibbs functions, A and G respectively, for
the mixture can be obtained by substituting 3.19 and 3.20 in 3,13 and

3.14a

The one-fluid van der Waals approximation gives more ré&istic
results of G meaning that it accounts for size-ordering effects
in the mixtures. However, there is a second cause which makes
molecules depart from the concept of randomness, this is due to
dif ferences in intermolecular energies.

non-
order to account for this 'second cause of Arandomness'
n "7

the two-fluid van der Vaals approximation is an obvious extension

to the one-fluid as the APM was to the RM.

The two-fluid van der Vaals approximation uses the following

relations
=(pr X £ h )n - .21
r,= (X £, 0 0/n (3.21)
where
h =3X h . (3.22)
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Summarizing the conclusions of leland et 3114: the t#o=-f1luid
van der Waals approximation leads to results similar to those of the
one-fluid van der Waals approximation for molecules that differ only
in size, moreover it also leads to the same degree of order in

mixtures whose components differ only in energy as the APmM,

3,3 Perturbation Theories

Some of the perturbation theories discussed in section 2,7 for
pure fluids have been extended to mixtures, e.g. the Barker-Henderson

theory15 for non-polar molecules and the perturbation theory for

16
polar fluids

In the Barker-Henderson theory for pure fluids the Helmholtz
function A is expanded about that of a hard-sphere reference fluid.

17

Leonard et al ' extended this theory to mixtures.

This extension may be made in two wayst one may take a single-
component hard-sphere fluid as the reference (or unperturbed) fluid

or a mixture of hard-spheres,

Consider the former apprcach. A modified potential function
w.ij (R) is defined as

exp (’&3JB(R) ¥ (1-H(o + 2 - ri'))° exp ('Buij(o + 1))
+ H(o +2 - T
+ H(R -O'ij)(exp(-'BY ulJ(R)) = 1) (3'23)

where 2z= (R -o)/#,o is the hard-sphere diameter,«. is a parameter
that varies the steepness of the modified potential in the repulsive
region, y varies the depth of the potential in the attractive region

and H(x) is the Heaviside step function defined by

H(x) = 0, X< 0
HX) =1, X>0 (3.24)
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As before, for « =y = 0, the modified potential ¥ (R)
becomes the hard-spheres potential of diametero , fore =y = 1,

¥ .. (R) is identical to the pair potentials in the mixture u.j(R).

ij i
The Helmholtz function A of a system with ¥ij (R) is
expanded as a Taylor series in powers of « andy . The first

order result is

2 ,
- T = . X, = : ; - (. X
(A-A)/NKT =3 X, In X, - 2 mp 06,(0) (o -1 XX6..)
i 1J
o 2
+ 2 Y ™R ZXiXJ- f uij(R) go(R)R dR (3025)
ij r,.
iJ
where the subscript zero is used to denote properties of the hard-
sphere reference fluid and
T..
1J
L= 1= exp (-@J.. d .
TR (1- exp (-g0;5(v)) ay (3.26)
Only ¢ remains unspecified and may therefore be chosen to

annul the term in = on the right-hand side of 3.25, i.e.
g = T XiX5 ij° after which the original potential is recovered by

ij
setting « =y =1,

The second orden terms of A involve integrals not only over the
pair-distribution function of the reference system but also over the

three and four-body distribution functions,

The results from this approach have been applied to mixtures
1
of Lennard-Jones molecules 8, however, it has been found that it

does not yield satisfactory results. In order to deal with such

mixtures the use of a hard-sphere mixture as reference is preferable.

This is done by replacing <, y and o by ﬁij’ Y i and Oij in the
modified potential function (i.e. equation 3,23) and expanding A in
powers of dij and Yi3°

A complete comparison of the results of this second approach with

computer calculations has been carried out by Henderson and Leonard18.



49

The perturbation theory of polar fluids discussed in the
previous Chapter was extended to mixtures by Gubbins and his

19-21
colleagues .

Twu et 5119 made such an extension using for the isotropic part of
the intermolecular pair potential (see equation 8.47) RN the Lennard-
Jones 12,6 potential (so that they were able to calculate the
distribution function of the L-J mixture gf {rom molecular dynamics

data) and a liquid mixture of A  + Kr as the reference.fluid.

Using a second-order perturbation expansion for A (and its
contributions to the configurational parts of p,U,S and Cv) they
evaluated the effect of anisotropic intermolecular forces, dipoles,
quadrupoles, octopoles, and overlapping, on the excess properties
(e.g. GE, VE, SE, £ and CE\. They concluded that 'even relatively
weak anisotropic fbrces have an appreciable effect on the

thermodynamic excess properties'.

They also carried out a comparison of theory and experiment

for Ar + N2, A? + CH4 and CH4 + CF4 by assuming the intermolecular

forces involved. OSatisfactory agreement was found,

In order to study mixtures with stronger anisotropic forces
than those mentioned in reference 19 Flytzani-Stephanopoulos et a120
retained also the third order term in the expansion of A, but they used
this time the Pade approximant to the series since it has been proved

22
to give good results even for large dipole or quadrVpole moments

They used the I-J 12,6 potential as the isotropic part of the

potential but two types of reference fluids were used :(1) a liquid
mixture of Ar + Kr, and (2) an ideal mixture whose components have

the potential parameters of Ar. However, they found that the qualitative

trend of results was similar for both cases,
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The anisotropic forces studied have large effects on the
excess properties of mixtures and furthermore phenomena such as
azeotropy and liquid-liquid phase equilibria were shown to occur when

strong anisotropic forces are present,
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CHAPTER 4

CRITICAL PHENOMENA

Introduction

In order to carry out a thermodynamic study of a pure substance
covering its whole liquid range one has to start from the
triple point and to finish at the gas - liquid critical point of such
a substance. The triple point marks the natural low temperature limit
of existence of the liquid state and the gas - liquid critical.

point determines the upper limit.

The first evidence for the existence of a. as - liquid
critical point was given by Caignard de la Tour in 1822, A better
understanding of the gas - liquid transition was obtained with
P, Andrews' work on carbon dioxide in 1869. Andrews was the first
to apply the term 'critical point' to the phenomenon associated

with the gas - liquid transition.

The study of the critical region in the period 1876-1914 was
extended by the theoretical and experimental work of van der Waals
and his colleagues at the Universities of Amsterdam and Leiden.

{

After nearly 157 years of study of gas-liquid and other critical
phenomena, both experimental and theoretical aspects of the field
remain fascinating and areas of active research,

4.1 Thermodynamics of the Gas - Liquid Critical Point:Pure Substances

Classical thermodynamics defines the gas-liquid critical point
as the temperature at which the coexistent liquid and vapour phases
become identical. Not only do the densities of the iwo phases become
identical but also all other physical properties which serve to
distinguish between them (e.g, refractive indices)ﬁgtg?gce tension

and the
of the liquid phase,Alatent heat of vaporization go to zero.

turntopage 55
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The middle portion of the curve at T< 7 (i.e. MON) is, however,
concave downwards which coxrequﬁb to a positive value of (3p /SV)T,
or to a negative value of (9 &/8V )T’ meaning a region of unstable

states (i.e. that they are never realizable).

It is then clear that A is not a continuous differentiable
function of V at the bubble (L) and dew (V) points. Nevertheless,
if the stable regions of A at T< T  (namely L'IM and V'VN) could
be represented by the same function, it is possible to show on
a p-V projection of the p-V-T surface, such as the one given in
figure 4.2(b), that the curve L'IMONVV' is equivalent to the

same curve on the A-V projection.,

Thus far, the analysis of the behaviour of A has been given
above and below a gas - liquid critical point. For criticality to
occur the metastable and unstable portions of the A~V curve should
coincide at a point (marked C) since the volume of the coexisting

phases (liquid and vapour) beccme equal and the relations 4.2 are satisfied.,

4,2 Critical Exponents of Fluids

It has been known for a long time that the use of equations
of state assuming an @nalytic function of volume and temperature
fail to describe the real behaviour at and near the critical point.
The description of the ways in which(Vg;Vl), 6 v/ 3 ). (T/Cp),
etc. become zero as the critical point is approached  on the assumption
that the Helmholtz function A for a one component system can be
expanded in a Taylor series about the critical point (in terms of
the difference in temperature T-Tc_and the difference in molar
volume V-Vc) remains erroneous both conceptually and quantitatively,

Some examples illustrating the disagreement between the predictions
obtained by using A as an analytic function of T and V and the
experimental observations are that the coexistence curve (T against
o) is not parabolic but more nearly cubic, the critical isotherm
(p againstp ) is of higher order than cubic, and that the molar heat
capacity at constant volume C_ diverges a% the critical point instead

of remaining finite.
turn to page 56
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Only two variables of the set p~-V-T are necessary to describe
the phase behaviour of a pure substance. Figure 4.1 shows
schematically the p-T, p-V and T-V projections together with the

p-V-T surface of a pure substance.

If one considers the p-V projection it is possible to see
that at sufficiently high temperatures the isotherms are continuous curves
whereas at low temperatures they consist of three sections. The
isotherm marked C separates both kinds of isotherms and it is
called 'the critical isotherm's The critical point of a pure

substance falls on this isotherm and it is characterized by
2 2 3 3
0, (3p/3V)gc =0, (3°p/3V")qc = 0, (37°p/0V")c <0 (4.1)
or since (aA/bva = =-p, the equivalent conditions are
2 2 '
(OA/3V)ge <0, (34/2V )c = 0, (83A/av3),l,g =0, (3*a/5vH) e >0 (4.2)

The relations 4.2 can also be obtained using the following
concepts 3’4: the thermodynamic conditions for liquid and vapour

40 be in equilibrium can be obtained from a plot of the Helmholtz
function A against volume V. A schematic plot of A against V at
different temperatures is given in figure 4.2(a). Since (34/3V)p =
-p, then the slope of each curve at any point is equal to -p.

At T >Tc the slope of the A-V curve decreases as V increases
(the pressure, on the other hand decreases) meaning that the system is
stable for any value of V, At T <Tc liquid is in equiblirium with
its vapour so that the pressure in both phases is equal, consequently
the points L (liquid phase) and V (vapour phase) are connected

by a common tangent (i.e. a straight line).

Now, the dashed portions of the curve IM and VN represent
metastable states, and since this part of the curve is concave

upwards then

(ap/av)T = --(gA/a vz)T< 0 (4.3)

turn topage 54
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The failure of the analytic theories of the critical point has
given rise to the study of critical phenomena by using a set of indices,
called critical point indices or exponents, which describe the behaviour

of various properties of interest near the critical point.

The definition of the exponent E governing the behaviour of

(o]
a function Y(V,T) as it changes with (T-T ) is given by

EY = lim (In Y(V,T7)/1n 2 (7 - 1%)) (4.4)
Toa(T¢) T

where the limit is often taken along the path anc, and, in
general, E' and E” will be different. The index E defines the

rate of a:proach of Y to zero, or to infinity if E is negative.
The exponent definitions are summarized in table 4.1,

Precise values of the critical exponents for fluids are

difficult to obtain partly because no statistical - mechanical

theory is reliable enough to describe the critical region accurately
and partly because they are dif ficult to determine from experimental

measurements,

Considerations of thermodynamic stability leads to the deduction

of some inequalities between the critical exponents 6—8, of which

the most important are

¢;+B(5+1)>,2 (405)
« ; + 28 + *Y; > 2 (4.6)
Y7 - B8(-1)30 (4.7)

=5 +Y] (@ +1)/G -1 2 (4.8)

Although the predicted value of the critical exponents are
different depending on the theory used for their calculation,
there is similarity among the values obtained experimentally9
(they are independent of the nature of the fluid to within experim-

ental uncertainty) suggesting scme kind of universality,
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All the results obtained for one compcnent systems can be
extended to the study of the critical point of two-component systems.
For mixtures there is no real distinction in the thermodynamic
discription between a gas-liquid, a liquid~liquid, and a gas-gas
critical pointlo, however, most of the precise work has been done
on systems at which p is essentially zero (i.e. liquid-liquid

critical points).

The behaviour of a two-component system can be obtained from
the idea that the Gibbs function G, a function of temperature T, and
concentration X, at constant pressure p of the mixture in analogous
to A(V,T) of a one-component system. They are analogous in the
sense that they undergo similar behaviour in the critical region,

and they are expected to tend to infinity or zero in a similar way.

Table 4.2 gives a list of some analogous quantities between
one and *Wo-component systems. The critical indices already mentioned
above now refer to the properties of the mixture as shown in table

4.3
9

A review by R. L. Scott” on critical exponents of binary

mixtures has recently appeared giving a complete discussion of

the theory and experimental meg%ds to determine critical point

exponents.

Binary Mixturess: Gas = Liguid

4.3

- It should be expected that the liquid range of a two-component
system endsat a gas-liquid critical point as happens in the case of
a one-component system. This is so, but the critical point of a binary
mixture, although physically similar to that of a pure substance,

is governed by quite different thermodynamic considerations,

Before describing features and phenomena which occur in
mixtures and which do not occur in pure substances it is desirable to
set out the thermodynamic conditions that describe a critical point

in mixtures,
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A classical description of the phase equilibria in mixtures
derives from the assumption that the Gibbs function of the mixture
is an analytic function of the mole fraction X of the components of
the mixture and T at constant p at and near the critical point of

the mixture.

The condition of mechanical stability plays an essential
role in the description of the critical point of pure substances.
Tor a mixture one must also have to consider its stability with
respect to possible local changes of composition (i.e. material
or diffusional stability). According to the criteria of material

stability3’ the conditions for a critical point in a binary

mixture are given by

(3°6/%%)y = 0 (4.9)
(33(;/:»(3),1,,p =0 (4.10)
(/) > ° (4.11)

Expressions 4.9 f$ 4,11 are equivalent to derivatives of the
chemical potential 3 of any of the components of the mixture My

with respect to composition giving perhaps a more familiar definition

of a critical point it binary mixtures.

It is interesting to note that the conditions 4.9 and 4.10
apply equally to gas-liquid and liquid-liquid critical phenomena.
In fact, both phenomena are described by the same thermodynamic

equations as will be seen later.

In writing equations 4.9 and 4.10 one is presuming mechanical
stability at the critical point. This assumption is not necessary
when using the Helmholtz function A as a function of T,V and X, to

describe the behaviour of the mixture,
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Two phases « andB (here, liquid and vapour) will be in

equilibrium at constant T if
B
A =Av (4'12)
o B
A, = A7 (4.13)
o cc‘oc o:’a: R B B R B
A ~VA -XA =4 -VA «-XA (4.17)
where in order to simplify the notation the derivatives of A
with respect to volume § &/SV)Tand composition § A/aX)Thave

been substituted by A, and A respectively,

The mixture will be in material or diffusional stability if

the determinant

(4415)

is positive (i.e. Ap, and A, should be positive)and also that
2 2
-(3p/av), (3°%6/ & )pp O (4,16)

which is zero if the mixture becomes either mechanically or
materially unstable (however, only this last limit is reached

2
as discussed by Rowlinson ).

It is convenient to explore the limits of stability in a
mixture by using & representation similar to that used for pure
substances (i.e. figure 4.2)., Figure 4.3 shows the V-X projection
of a p-V-X surface. '

The curve L is the co-existing or saturation curve showing the
equilibrium volumes of the gas and liquid phases (v€ and vt respect-

ively). The curve M is the boundary for states of the system which



60

ere materially unstable (it separates unstable states from stable
or metastable states), consequently this curve is described by

relations 4.9 and 4.10.

Curves L (called connodar or binodal curve) and M (called
spinodal curve) have a common tangent point, the critical point (C)

of the mixture.

Curve N is the boundary for mechanical stability and it is

defined by
(Gp/aV)p y = © (4.17)

This curve lies completely inside curve M and plays no role
in the determination of the critical point of binary mixtures (except
in the particular case which will be described later). Thus the
use of (G,p,X) at constant temperature or (G,T,X) at constant
pressure is justified for describing the critical point of mixtures
as done at the beginmning of this section, making use of the conditions
for material stability.

When giving the conditions of criticality in terms of A13,
the critical point may be thermodynamically stable, metastable, or
unstable with respect to separation into two or more phases at

the same temperature and pressure,

The vapour-liquid equilibrium of a binary mixture can be
represented graphically in a p-T-X surface , such as figure 4.4a.
The p-T-X surface shows the dew-point and the bubble-point surfaces,
together with the vapour pressures of the two pure components I and
II which end at the critical point (C.P.I and C.P.II respectively)

and the so-called locus of critical points (C.L.) of the mixture,

Some phenomena which occur in the critical region of binary
pixtures and which do not occur in pure substances are better discussed

with a p-T projection, similar to that in figure 4.4b which shows
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schematically the different p-T loops at constant composition

expected for birary mixtures. The critical point (C) represents in
the three loops shown, the maximum temperature and pressure at

which liquid and vapour can coexist together, howevez, it is not
necesgsarily the meximum pressure or temperature alone at which vapour-

liquid existse

By far the most striking phenomenon observed. in the critical
region of binary mixtures is the so-called retrograde condensation.

3,12,13

Full description of ?his phenomenon has been given together

with its explanation '«

The p-T critical locus of binary mixtures may attain diverse
shapes depending on the molecular size, molecular structure and
1 .
chemical nature of their components 4. The critical locus curve

may also b$ continuous or no between the critical points of the
0
components e

Figure 4.5 shows some examples of continuous critical loci
on a p=T projection. Critical locus of type 1 shows a maximum in
pressure, mixtures of members of an homologous series, like n-alkanes,
that differ in relative size have this kind of behaviour14. Type
2 is monotonic, since the pressures of the critical locus are
between the critical pressures of the pure components, e.ge COZ+
propane, n-hexane + n-octane, Type 3 represents a straight line
attributable to mixture whose components differ only slightly in
size, shape and polarity, e.g. benzene + toluene, cyclohexane +
methylcyclohexane. Loci 4 and 5 exhibit & minimum in the temperature
(with respect to the critical temperature of the pure substances)
either with a pressure maximum, €.g. 002 + N20 (type 5) or without
it, e.g. acetone + n-hexane (type 4). Type 6 has a temperature
maximum, €.ge CH_j OCH.5 + HCl, CH3002H5 + 802.

4.4 Azeoiropy

An azeotrope is formed in a mixture when its liquid and

vapour in equilibrium have the same composition, hence the mixture

distills unchangede



62

At conditions of p and T below the critical point of a binary
mixture an azeotrope is characterized by having its vapour pressure
(at constant T) and its boiling point (at constant p) as maxima or
minima with respect to changes in composition. A positive azeotrope
has a maximum vapour pressure and 8 minimum boiling point, the

converse describes a negative azeotrope,

Figure 4.6 shows the p-T-X surface and the V-X projection
for a mixture that forms a positive azeotrope (positive azeotropes

are more common than negative ones as can be seen in the list

1 . .
given by Horsley 5)- The dashed line drawn in the p-T-X surface
marks the points of maximum pressure on the isothermal loops or the
points of minimum temperature on the isobaric loops, determining

the locus of azeotropye.

The V-X diagram shows that the tie line Phg joins two phases

(1iquid and vapour) having the same composition XaB at the azeotropic

pointe

The existence of systems which form azeotropes at all

temperatures between the freezing point and the gas-liquid critical

point (absolute azeotropy) and of systems whose azeotropic temperature
range are bounded to certain range of composition (limited azeotropy)

1
was first discussed by M. Lecat 6.

The study of azeotropes in the gas=-liquid critical region of
binary mixtures presents another interesting phenomenon which

deserves attention.

It was shown in the preceding section(and in figure 4.3) that the
critical point of a binary mixture is not generally at the extremum

of the V-X curve, as the tie lines do not connect phases of equal

composition.

" A schematic diagram of the V-X and p-X projections of the p-V-X

surface is given in figure 4.7. The p-X plane shows that the
pressure (pc) at the critical point (C) is an extremum (usually a
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maximum). This is so, since the tie lines (isobars, figure 4.7b)
coalesce at the critical point (bubble and dew pressures become identical).
Furthermore, the bubble point pressure is always higher than the dew

point pressure for a given composition (figure 4.7 a and b). These two
observations require that (ap/ax)fkc’ at the bubble and dew point lines,
approach zero at the critical point, where (ap/aX)Tc’vc is zero and
(av/ax)Tc’pc is infinite. Hence the critical point is now both

materially and mechanically unstable since (compare with 4.17)
(30/5V)ge xo =0 (4.18)

and the mixture behaves as a pure substance, meaning that azeotropy exists

at the critical point of such mixture.,

The appearance of & minimum temperature point on a %X
projection is generally associated with positive critical azeotropy.
This is not a thermodynamic condition for
existence of azeotropy in the critical region since it has been
shown17 that a critical azeotrope may exist in certain systems

without a minimum temperature point on the TC-X projection.

Figures 4.8 is a sketch of scme types of azeotropic curves
that can be distinguished according to their shape {there are,

of course, more types of curves including those showing negative

azeotropy).

The description of the pattern of behaviour in the critical
region, for binary systems composed of a common component and the
members of an homologous series of compounds will be given when
discussing the results obtained for the gas-liquid critical constants

of ethanenitrile + n-alkane mixtures.

4,5 Thermodynamics of Criticality in Binary Mixturess Liguid-Liouid

The practical importance of liquid-liquid equilibria is as
obvious as that for gas-liquid equilibria, however, a comprehensive
study of the former was devéloped later than for the second case of

equilibria.
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Although the thermodynamic conditions to describe gas-liquid
equilibria of binary mixtures also apply to liquid-liquid equilibria
it is necessary to point out some of the ch:.racteristics encountered

when dealing with the latter.

A liquid~liquid critical point occurs when two liquid
phases become identical. The temperature at which this occurs

ié called critical solution temperature (CST) or consolute temperature,

A 'liquid-liquid' mixture (and any other binary mixture)
to be stable and not to separate into two phases has to satisfy the

following condition
2 2
(36/x)yp > O (4.19)

this means, that in a plot of G against X at constant p and T the
curve so obtained has to be everywhere concave upwards. The
geometrical representation of a G - X plot is given schematically in
figure 4.9 at different temperatures to illustrate the behaviour of
the mixture going from a two-phase region to an homogeneous phase 3’18.

The uppermost curve represents the existence of a complete range
of homogeneous mixtures, the temperature at which a curve like

this is obtained is the C3T. On the other hand, the lower curves

represent regions of limited miscibility.

The value of G along the dashed (metastable)or dotted (unstable)
portions of the curves at T<{ST may be lowered by separating the
system into two phases (« andg ) with compositions X and XB. If

o
a common tangent joined X and X then the conditions of phase

stability are satisfied, namely
« ! « B
(67 %) = (68 %,) 5 (365/5%,) = (36 /ox,)  (4.20)
or equivalently

_ B =
My=¥ o3 o Hy= B (4.21)
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-4

B
At the CS8T: X =X , and the metastable and unstable rcgions
coincide (point C in figure 4.9) and the conditions 4,9 and 4,10
apply.,

Two kinds of critical solution phenomena can be distinguished:

upper and lower. The upper critical solution is characterized
by the maximum temperature at which two liquid phases can coexist

(upper critical solution temperature or upper consolute temperature, UCST),
The lower critical solution is, on the other hand, defined by a
temperature below which two liquid phases will form a single stable

liquid phase (lower critical polution temperature or lower consolute

temperature, ICST).

Schematic representation of both solution phenomena is given
on T-X projections in figure 4,10, Some systems exhibit either
UCST or ICST, however, there are systems which exhibit both kinds of
phenomena in two different ways, when L, C5T> UCST or when LCST <UCST

forming a closed phase diagram in the latter case.

Upper critical solution temperatures are more common than
lower critical solution' temperatures as can be concluded from the

1 . .
data compiled by Francis 9- Interesting physical pehnomena

occuring in liquid-lfquid equilibrium such as isopynics (equal density
of the two phases) and isoptics (equal refractive indices) have been

discussed in reference 19.

The difference between UCST and ICST phenomena can be stated,
at low pressure, by studying the behaviour of the excess properties

of mixing near these liquid-liquid critical points.

It has already been demonstrated that at the UCST (aQG/axz)p m
1
is zero (or G,y = 0), and that in order to ensure material stability

this should be positive at all higher temperatures (i.e. Gox > 0),

then its temperature derivative is equivalent to ~So. > 0, and
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conversely at a ICST,

18,2
Hence, the following equalities will hold™ ™’ 0
E c
Gpy = Gpy = BT /XX, = 0 at UCST and LCST (4.22)
St =5, +RB/XX, <O at UCST, or> 0 at IST  (4.23)
iy = H, <O at UCST, or> 0 at LOST (4.24)

Relation 4.24 is more commonly used to differentiate between

E
UCST and ICST phenomena in systems whose H against X curves have no

20
change of slope o

It is well known that the pressure has only very small effect on
the thermodynamic properties of condensed systems because of their
jow compressibility. The pressure dependence of the critical solution
temperature is also small and ch/dp only rarely exceeds 20. 002 deg/MPa,

2 X
10,21 has recently reviewed the pressure dependence of

Schneider
liquid-liquid equilibria giving examples of all types of behaviour
studied experimentally up to now,

{

Because of the relation between the pressure dependence of
the critical solution temperatures and the excess properties of
mixing of binary systems, it is possible to obtain some knowledge of
these excess properties in regions which present experimental difficulties

c .

for their measurement from dT"/dp studies,

The sign of d7°/dp (in UCST or LCST phenomena) depends both
on the second derivative of the volume (Vgx) and on the kind of solution

phenomenon itself. The following relations will show thisle’zo.

ar®/ap = V3, /55 = 1°(V; ) /(& ), (4.25)

since

By, = TS, : (4.26)
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The general behaviour of the excess properties of mixing as

determined by relation 4.25 has been summarized somewhere else10’21,

The relation between ch/dp and VE is given below for UCST and
ICST phenomena )

UCST? ch/d;)> 0 if VE > 0 and ch/dp < 0 if VE < 0

ST ar/dp < O if Vo> O and aT%dp > 0 if Vo< O,
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Table 4.1 Definitions of some critical point exponents for fluid systems,

(Here € = T/Tc -1).

- - C d- .
exponent definition . Og-;glons Do
-t
o« ! Cv~ (-E) <0 0 0
bl C - € T > 0 0 o
] P Pg ~(’E)B <0 0 £ 0
Y kK (-e);Y <0 0 $ 0
Y kK~ &7 5 0 0 0
8 p-p° 0 £ 0 0
Where:?

C, heat capacity of constant volume
Py % density of coexisting liquid and gaseous phases
K isothermal compressibility

the other symbols have been described in the text,

Table 4.2 Analogous quantities for one and two-component systems

for their study in the critical region.

one-component system two-component system
density or volume (p or V) concentration (c)
temperature (T) temperature (T)
pressure (p) chemical potential ()
c
- C, . P
¢ and Cp (30/au)T
thermal diffusivity binary diffusion coefficient
thermal conductivity mobility of concentration fluc-

tuations




69

Table 4.3 Critical point exponents and their relation to the

properties of a two-component system at constant pressure

exponent property
o Cp
B X
g
. 2 2
Y (°6Ax%), p
8 b= u along T=T°
0 (ap/aX)T in the two phase region
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Figure-4.1 Schematic representation of the p-V-T
behaviour of a one-component system., The

gas-liquid critical point is marked 'c',
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(b)

Figure 4.2 (a) Plot of the Helmholtz function A against
volume V showing three isotherms. (b) Plot of
pressure p against volume V showing three
isotherms. The critical point is marked 'c!
and the critical isotherm is that at T = T°,
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Figure 4.3 The V-x projection, at T=constant, of a
p-V-x surface showing three isobars. The
critical point is marked 'c' and p_ is the

critical isobar,
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CP

T ——

(b]

Figure 4.4 (a) The p-T-X surface showing two isothermal
and a constant composition sections., fThe gas-
liquid critical point of the pure substances is
indicated as C.P. and C.L. is the critical locus.,
(b) The p-T projection showing the position ot

the gas-liquid critical point of a mixture (C.P.).
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T ——»

Figure 4,5 The p-Tvprojection. The solid curves are the
different continuous critical loci observed in
binary mixtures., The dotted lines are the
vapour pressure curves of the pure substances

ending at the gas-liquid critical point C.P.
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Figure 4.6 (a) The p-7-X surface of a binary mixture that

forms positive azeotropes. The dushed lines mark
the locus of azeotropy. (b) The V-X projection,
at T=constant, below the critical region,
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Figure 4.7 (a) The V-X projection and (b) the p-x
projection of a mixture that forms an azeotrope
at the critical point. The critical isobar is

c
marked p o



Figure 4.8

The p~T projection showing several critical lcci and types of azeotropy.
(a) Absolute azeotropy, (b) Limited azeotropy iterminated frcm below,
(¢) Limited azeotropy terminated from above and (d) Limited azeotropy

terminated frcm above and from below,

LL
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Figure 4.9 Schematic representation of the Gibbs
function of mixing against composition.

Three isothernSare siiown.
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(a) - (b)

UCST

2 LIQUID

T T PHASES
LCST J-eereveed
1 0 v 1
(é) (d)
2 LIQUD
PHASES UCST
LCST b
' ¢ T 2 LIQUID
PHASES
UCST [ereeeeeremens
2 LIQUID
PHASES LCST

0] X i 1 0 X 1

Figure 4.10 Temperature against composition phase
diagrams illustrating upper and lower
critical solution phenomena., Examplcs of
such phenomena are: (a) propanenitrile +
n-hexane, (b) water + diethylamine, (c)

sulphur + benzene and (d) glycerol + m-toluidine.
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CHAPTER 5
EXPERIMENTAL STUDIES CF UPPER CRITICAL SOLUTION PIENOMENA

Introduction

The study of mutual solubilities of hydrocarbons and polar
solvents, such as aniline and nitrobenzene, is commonly used as
a means of identification and purity determination of the hydrocarbons.
Upper critical solution phenomena characterize binary mixtures where
an n-alkane is one of the components; this is well illusprated

1
by the data collected Ly Francis .

A necessary preliminary to the measurement of any other thermo-
dynamic property for binary systems of n-alkanenitrile + n-alkane
jg the determination of the upper critical solution temperature
(UCST)- Onl& above this temperature is it possible to obtain
mixing properties such as the excess volume VE and excess

enthalpy over the full composition range.

Previous experimental determination of the UCST of binary
mixtures of n-alkanenitrile + n-alkane includes the work of

Zieborak and Olszewskiz on ethanenitrile with n-heptane to n-undecane.

The experimental procedure used in this work for the measurement
of UCST's is described below. Comparison of the experimental values

with results obtained using Hildebrand's solubility parameter theory

is also given in this -Chapter.

Experimental

5.1 Preparation of Mixtures

A1l the UCST's measured in this work correspond to mixtures
made up of approximately equal volume of each pure component. This
does not alter the goal of the present measuremenis and it is not
a bad approximation to the real.UCST, since the volume fraction of
the n-alkane (¢2) at the UCST in the work of Zieborak varies from
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0.621 for n-heptane to 0.545 for n-undecane.

Table 5.1 gives the sources and purity of the n-alkanenitriles

and n-alkanes that were used here.

Since the UCST's of ethanenitrile with the n-alkanes reported
in the literature are higher than the normal boiling point of
ethanenitrile (b.p./OC = 81.6) and by a simple exXtrapolation this
is also true for mixtures with n-pentane, n-heXane, n-dodecane
and higher n-alkanes, these mixtures were studied in sealed tubes,
Mixtures of n=-propanenitrile with n-dodecane and higher n-alkanes were

also studied in sealed tubes. The other mixtures were studied in glass

tubes fitted with a glass cap to prevent evaporation.

The sample tubes were made of Pyrex glass of approximately
0.5 cm internal diameter, 0.3 cm wall thickness and 13 cm total
length, closed at one end and with a BT ground glass cone at the other
end. Two steel bearings were placed inside the sample tube for

stirring of the mixture during measurements.

The volume of each ccmponent to make up a mixture was injected
into the sample tube using an all glass syringe and stainless steel
hypodermic needle, The sample tube was theh attached to a vacuum
line where degassing of the mixture was carried out by repeated
freezing with liquid nitrogen and thawing under vacuum, finally
the tube was sealed with a torch leaving a length of approximately

5cm of the tube containing the mixture and its vapour. No degassing
was carried out on the mixture contained in sample tubes sealed by a

glass cape

5.2 Thermostats and lMeagurement of Temperature

A five liter glass beaker was used as thermostat for

measurements at and above ambient temperature. The beaker was
insulated with glass fiber and corrugated cardboard covered with

aluminium foil. For temperatures below 273 K a 3,5 liter silvered
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glass dewar was used as thermostat.

The range of UCST's for n-alkanenitrile + n-alkane mixtures
is wide, and obviously the choice of thermostat liquids depends on
the temperature to be measured. The fluids were polyethylene glycol
for temperatures above 333 K,water for ambient temperature and up

to 333 K,and a mixture of ethanol and solid 002 for temperatures below

273 Ko

A variable speed stirrer (Citenco Ltd., type KQ 396) was used
to ensure temperature homogeneity. Heat was supplied by an
immersion heater connected to a Variac manual voltage controller

to allow variable rates of heating or cooling.

Measurements of temperature above 273K were carried out with
a mercury-in-glass thermometer and below 273K with an alcohol
thermometer. DBoth thermometers were calibrated at several

temperatures in the range of the UCST's using a quartz crystal
thermometer (Hewlett-Packard, model DY-28014).

5.3 Determination of Upper Critical Solution Temperaturcs

For the measurement of UCST thevsample tube was fixed by a
small Terry clip in a frame which could be moved vertically to
jmmerse the tube into the thermostat very close to the thermometer
bulb. The thermostat temperature at the start of a measurement was
always lower than that corresponding to the liquid-liquid phase
transition. The heating rate of the thermostat was controlled
manually by using the Variac voltage controller, at temperature
below the phase trasition the heating rate was approximately 0.5

- . =1
K min ! to be decreased to 0.1 Kmin = in the critical region,

Vigorous stirring of the sample was carried out periodically
by moving the steel bearings inside the sample tube with a permanent

magnet,
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Very close to the UCST the mixture became cloudy followed by a
dense opalescence at the liquid-liquid critical point where il was
not longer possible to distinguish two liquid phases. The temperature

at this point was noted.

The thermostat temperature was lowered slowly after the phase
transition was observed in order to determine the reproducibility

of the measured mixing temperatures.

The approach of the two liquid phases from a one liquid phase

was also performed at a very low cooling rate and with sample stirring.
The separation of the homogeneous liquid phase into two liquid
phases is accompanied by sharper opalescence than that observed

on heating the sample.

The UCST's or mixing temperature reported here are then a

mean of several determinations at the phase transition both on
heating and on cooling the sample. The accuracy of the temperatures

reported here is estimated to be b 0.5 K.

5.4 Results

Mixing temperatures were determined for binary mixtures of
ethanenitrile + n-alkane, propanenitrile + n-alkane, and n-butanenitrile
4+ n-alkane, The results are listed in tables 5.2 to 5.4 and plotted
against the number of carbon atoms in the n-alkane molecule in figure

5°2o

5.5 Qualitative Discussion of Results

Some interesting features may be noticed from the results

given in figure 5026

For a given n-alkanenitrile the mixing temperature of the
mixtures increases when increasing the molecular size of the n-alkane,

On the other hand for a given n-alkane the mixing temperature decreases
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when the molecularsize of the n-alkanenitrile is increased. The
increase in temperature observed in the first case is much lower than

the corresponding temperature decrease when the n-alkanenitrile increases
in molecular size, however there exists a larfer decrease in mixing
temperature for a given n-alkane when passing from ethanenitrile to
propanenitrile mixtures than from propanenitrile to n-butanenitrile

mixtures.

This behaviour shows, as expected, that n-alkanenitriles
relatively are more miscible with n-alkanes the longer the
n-alkanenitrile chain length. This observation is associated
with the decrease of the 'effective polarity' parameter P'(given in

the general introduction) as the size of the n-alkanenitrile increases.
This means that although the three n-alkanenitriles studied here

have essentially the same value of permanent dipole moment u, the
effect of u on the properties of the mixtures decreases as the chain
length of the n-alkanenitrile increases, that is binary mixtures of
n-butanenitrile + n-alkane are more ideal than those of ethanenitrile
or propanenitrile with the same n-alkane compounds. This behaviour

will be further confirmed by measurements of Vg and ﬁg

It is possible to summarize the behaviour discussed above in
terms of the energy of the like and unlike molecular interactions
in the mixtures., Immiscibility occurs if the difference between the
like energies of interaction of the molecules of .the pure components
is large. In this studythe strongly polar n-alkanenitriles have
larger like molecular interactions than the n-alkanes so that it is
energetically difficult for some of these substances to mix easily
and consequently one concludes that the unlike interactions are

smaller than the geometric mean of the like interactions in the pure

components,

5.6 Discussion of Results

It is desirable to use a theory to account at least in a

qualitative or semiquantitative way for the observed behaviour of
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n-alkanenitrile + n-alkane mixtures at the mixing temperature,

Certain assumptions are necessary when proposing a theoretical
model to predict or explain experimental data, except of course

in the case of completely empirical correlations,

The main aim of the theories of non-electrolyte solutions
developed in the last 25 years has been to express the observed
behaviour of mixtures in terms of the properties of its pure
components. Although some achievements have been obtained it is

necessary to continue the development of such theories.

The study of iodine solutions in non-polar solvents lcad
Hildebrand to define a regular solution as one in which the
components mix with no excess entropy (Sg = 0) and there is no volume
changes upon mixing (ﬁE = 0)3’4. This theory is simple to use as a
tfirst approximation' for the calculation of properties of mixtures,
so that we proposed to use it expecting to obtain at least a

qualitative description of the results here reported.

The derivation of the regular solutions theory was made

almost simultaneously by Scatchard5 as an improvement of the work

6
by van Laar .

E
The expression for the molar excess Gibbs energy G, as derived

6
from the regular solutions theory is 7

G = (K4Vy +X05) (Cyy + Cpp = 205) A8, (5.1)

where Xi is the mol fraction, Vi the molar volume of the pure

component, cii refers to the interactions between like molecules,

volume fraction defined by

refers to interactions between unlike molecules and ¢i is the

gy = (XV)/ XV, + xjvj) (5.2)
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and [

=1- ¢i (5+3)

The parameters C;; are called 'cohesive energy densities' defined

by the ratio of the energy of vaporization to the molar liquid volume
of the pure component. Such energy densities can be calculated using
different data as discussed by Hildebrand et a18, however, heats of

vaporization‘AHv are preferredt
v .
Ciy = (AHi - RT)/Vi (5.4)

This theory assumes for the calculation of 012 that the
intermolecular forces in the mixture between like and unlike
molecules are mainly due to dispersion effects, thus the following

expression can be used
1/2 '
Cyp = (Cqq Cpp) (5.5)

Furthermore, Hildebrand defined a 'solubility parameter' §

as the square root of the cohesive energy density

1
833 = Cy4

2. (@ ] - RT)/Vi)1/2 (5.6)

The solubility porameters have become so important in the
interpretation of results from this theory that it is also sometimes
called the solubility parameters theory.

Equation 5.1 can be expressed as a function of § using equations

5¢5 and 506 as follows: if A12 = c11 + 022 -2 c12 then

1/2 12 1/2 2
= Cyp + Oy = 2 (C405)/2 = 1% - /2 P (51)

Ay
and from 5.6

Ay, = (6, -8,)°

127 %1 7% (5.8)

which when substituted into equation 5.1 gives

. .
Cp = (KqV; +%,7,) A, £1%, (5.9)
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Before giving the expressions for the temperature and
composition at the consolute point as derived from the regular
solutions theory it is necessary to discuss some of the assumptions
involved to obtain 5.9 and to comment on its validity when applied

to polar + non-polar mixtures as it is the case in this study.

In deriving equation 5.1 or 5.9 the theory assumes that dispersion
forces prevail in the mixture. This assumption cleary will not
explain the intermolecular forces due to unsymmetrical distribution

of electrical charges in the molecules of n-alkanenitriles,

However, it is possible to include in the theory the
contributions from dipole-dipole and dipole-induced dipole

interactions that are present in the mixtures studied here.

This extension of the present theory is due to Prausniiz and Anderson9
who suggested separating the cohesive energy density of the polar
component into two parts, one due to dispersion interactions
(non-polar part) and the other due to dipole-dijole and induction
effects, i.e., if the polar species is 13

* +
C,, =a U3/Vy = & U/V, +a UI/V, (5.10)

11

where A uY is the energy of vaporization, V1 molar liquid volume,

* . +
A Uy the non-polar contribution anda U1 the polar contribution to

v
AUqe

As before, solubility parameters may be obtained from the
cohesive energy densities, but a polar and a non-polar solubility

parameters will be obtained from relation 5.10:

1
SN TANS (5.11)
1y = (4 U:/V1)1/2 (5.12)
and §§ = A%+ (5413)
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where A 1 is the non-polar and H i3 the polar solubility parameter.

It was mentioned before that induction interactions are also
present in polar + non-polar mixtures, so that a parameter, Yq,» Will
be introduced to account for these interactions. Iquation 5.8 is

now given as

2 2 2 R
which substituted into equation 5.1 gives a new exprecsion for

E
Gy namely

E _

G = (X,V, + szz) A g, ;62 (5.15)

The evaluation of 5.11, the dispersion or non-polar contribution
to the energy of vaporization, may be carried out if taken to be
equal to the energy of vaporization of the polar molecule's

thomomorph'.

Several d$finitions have been proposed for the homomorph of a
0 .
molecule Bondi = ccnsidered that the homomorph is the equistructural

hydrocarbon at the same reduced temperature as the molecule.,

Anderson11 proposed that the hydrocarbon homomorph should
have not only the same structure but also the same molar volume as the

other molecule. This means that plotting the cohesive energy

(a U;/Vz) of n-alkanes against molar volume V2 at different reduced

temperatures it is possible to evaluate the dispersion energy density
(A 1) of the n-alkanenitriles,

Weimer12 has obtained 'homomorphic plots' for the n-alkanes
series from which k1 for each of the n-alkanenitriles used in this
work can be obtained. Having determined Aj» it is now possible to evaluate
T 4 from equation 5.13 since the 'total' solubility parameter 61

can be calculated using equation 5.6.

The values of A , and T, for ethanenitrile, propanenitrile

and n-butanenitrile are listed in table 5.5,
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Evaluation of W12 is, no doubt, more difficult since there
is no complete understanding of the induction forces arising from

interactions between polar and non-polar molecules.

Using an analysis of experimental activity coefficienis of
hydrocarbons at infinite dilution in polar solvents Veimer determined

empirically a value for ¥ 45

2

¥y, = 0.396 1, (5.16)

The equations for T and X at the consolute point may be derived
by applying the conditions of criticality discussed in Chapter 4 to Gg
obtained from equation 5.9 or 5.15 by recalling that

M E id
Gm = Gm + Ame (5‘17)

equation 5.9 leads to
- .
G = (RqVq # X;0p) Ayy $iffy + BT L Xgin Xy (5.18)
whereas equation 5.15 gives

M
Gy = XV, + X,V,) A §,8, +RT rX; In Xy (5.19)
1

The critical constants ° and Xc from equation 5.18 are
XV, +XV,)°
1° = (24,,8) (x1x2va3/( 1Ty + X)) (5.20)
2 2 1/2 2 .2 1/2
(Kp/%q), = ((V + 7, - AAPYARER PYACACRUAE R MER A / ) (5.21)
and from equation 519
2

¢ = (2AR) (x1x2v1v§/(x1v1 + x2V2)3) (5.22)
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The above relations have been obtained by assuming that the
nm
molar entropy of mixing Sm is ideal, but if the 'Flory-iuggins entropy'
is substituted for the ideal value, two more expressions are

M c
obtained for G and consequently for T, These expressions are

GI; = (X,V, + x2v2) Ay, Bif, + RTg X; In g, (5423)
G“KT1 = (XV, +XV,) A BB, + RT3 X, In (5.24)
° = (24,,R) (\71V2/(V:/2 + V21/2)2) (5425)
7% = (24R) (v1v2/(v1'/2 * v21/2)2) (5.26)

and for both 5.23 and 5.24 the critical composition is given by
3/2
(Xo/%q)g = (V4/V5) / (5.27)

The substitution of the 'Flory-Huggins entropy' for the ideal
value of éﬁ is justified, by much experimental evidence13, when the

molar volumes of the components differ significantly.

In order to Predict values of T° from the corresponding
equations it is convenient to list the pure component properties
which will be used in such calculations. Tables 5.6 and 5.7 give
molar volumes, molar heats of vaporization and solubility parameters at

298,15K for n-alkanenitriles and n-alkanes compounds,

. .
The predicted values of T frcm equations 5.20 and 5.22
are given in tables 5.8 to 5.10 where comparison with the experimental

values is made,

The calculated values of 7¢ from equations 5,25 and 5,26

are listed in tables 5.11 to 5.13.

It is possible to obtain values for V¥ 12 from the experimental
values of Tc for each series of mixtures and to compare them with those
from equation 5.16. This was carried out using equations 5.22 and

5,26 in the following form
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c 3
R O AR By Y ) Geae)
(..1x2v1 v,
and c ., % %2
2 2 RT™ ,V “
?12=%((>‘1’62) +T1 )'_4- é_L_t_\Lg..z_g (5'29)
V1V2

The mean values of W12 for each series of mixtures as calculated
with equation $.29 are very similar to the corresponding values

obtained with equation 5.16., These calculated mean results of vy 12
are compared with values given by 5.16 in table 5.%.

5.7 Conclusions

Some comments will be here given to elucidate the significance

of the results for Tc.

Altogether there are four sets of predicted values of °
for each mixture. It must be emphasized that although quantitative
agreement was not expected when using the regular solutions theory
and its modified form it was hoped that some light would be thrown
to the understanding of the interactions cccurring between the polar and

non-polar molecules that make up the systems studied here.

The predicted 7¢ values from equation 5,20 agree qualitatively
with the experimental observations much better than do the values

from equation 5.25.

L » c »
On the other hand equation 5.26 provides values of T which have
not only qualitative but in some cases also quantitative agreement

with the experimental results whereas equation 5.22 does not give

better agreement.

The results for Tc from equation 5.26 are plotted in fisure 5.2 where

the experimental values are also given for comparison.

There exists a larger difference between any value of w12 for

ethanenitrile + n-alkane mixture and value of ¥90 for propanenitrile
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+ n -~ alkane mixtures that between this last set of mixturcs and
n-butanenitrile + n-alkane mixtures, following the same trend of
behaviour noticed in section 5.4 for the solubility tempcrature

of the same systems as above. The relative magnitudes of A and T also

vary in the same fashion.

It is then clear that the introduction of the parameter L P
into the regular solution theory to account for induction effects
does indeed provide some evidence of the important role of such
effects on the solubility of polar + non-polar mixtures, and
particularly in n-alkanenitrile + n-alkane mixtures which is different
from the conclusions arrived at by Zieborak and Olszewski14,
namely that 'no specific interactions between the molecule of
hydrocarbon and the molecules of the respective second component
take place'; where the second components were polar such as methanol,

sulphur dioxide, ethanenitrile, acetic acid and acetone,

However, it was pointed out before that the molecular size is also
jmportant when discussing the solubility of n-alkanes in polar solvents

as concluded also by Weimer and Prausnitz.
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Table 5.1 - Source and purity of the materials used in the UCST's study.

Substance Source and grade Stated Purity

(mole %)

Ethanenitrile a, S.LeRe > 99

Propanenitrile b > 99

n-Butanenitrile c > 99

n-Pentane a, A.R. > 99

n-Hexane a, S.L.Re | > 99

n-Heptane a, S.L.R. > 99.5

n-Octane a, S.L.R. ' > 99.5

n-Nonane d, Research 99,31

n-Decane d, Pure > 99

n-Undecane d, Research 99.97

n~-Dodecane a, S.L.Re > 99

n-Tetradecane d, Pure > 99

n-Hexadecane e, Puriss > 99

n-Octadecane f 99

a Fisons {

b Cambrian Chemicals

¢ BDH

@ Phillips Petroleum Co.

e Koch-Light

f B, Newton Maine Ltd.

All samples were dried and distilled before use.
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Table 50,2 -~ Experimental Liquid-Liquid Mixing Temperatures p®
for binary mixtures of ethanenitrile + n-alkane

(¢ 3 Oo5)

n-alkane Tc/K TC/OC
n-pentane 341.2 68,0
n-hexane 350.2 77.0
n-heptane 358.0 84.8
n-octane 36541 91.9
n-nonane 374.2 101.0
n-decane 381.7 108.5
n-undecane 38642 113,0
n-dodecane 398,2 125,0
n-tetradecane 403.7 130,5
n-hexadecane 420,2 147.0
n-octadecane 426,2 153,0

Table 5.3 - Experimental Liquid-Liquid Mixing Temperatures Tc

for binary mixtures of propanenitrile + n-alkane

(F =0.5)

n-alkane TC/K Tc/oc
n-pentane 276.2 3,0
n-hexane 284.2 11.0
n-octane 303.7 30.5
n-decane 316.2 43,0
n-dodecane 327.7 5445
n-tetradecane 341.2 68.0
n-hexadecane 349.2 76.0

n-octadecane 359.2 86.0
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Table 5.4 - Experimental Liquid-Liquid Mixing Temperatures 7°¢

for binary mixtures of n-butanenitrile + n-alkane

(6 ~0.5)

n-alkare 1°/K 7°/°

n-pentane 2372 - 36,0
n-hexane 244.2 - 29,0
n-decane 269.2 - 4.0
n-dodecane 284.7 + 11,5
n-tetradecane 297.2 24.0
n-hexadecane 307.2 34,0
n-octadecane 318.2 45.0

Table 5.5 = Polar ) and non-polar 1 solubility parameters

for some n-alkanenitrile compounds®,

n-alkanenitrile A1/ca;%bm '% T1/ca1% cm -%
ethanenitrile 8.03 8.98
propanentrile T.97 T.17
n~-butanenitrile t 7.96 6.28

# from reference 12,
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Table 5.6 = Molar volumes, molar heats of vaporization and

solubility pgrameters at 298.15K for n-alkanenitriles.

substance V;n./cmBXnol_1 IOBzSHY/cal mol™" &/cai%bm'3/2
othanenitrile  52.842(%) 7,870 11.74
propanenitrile 70.897 8.61 10.64
n-butanenitrile 87.8E9 9,40 10,01
n~-pentanenitrile 104,02 10,42 9,72
n-hexanenitrile  121.47 11,45 9.45
n-heptanenitrile 138.00 12,58 9,32
n-octanenitrile 154,682 13,58 9.16
n-nonanenitrile 171.23 14.78 9,10
n-decanenitrile 190,575 15,98 8.98
n-undecanenitrile 204.495 17.00 8.96
n-dodecanenitrile 221,02 18,19 8.92
n-tridecanenitrile 237.55 19,26 8.86
m-tetradecanenitrile 254,192 20,38 8,82

a Densities from reference 17e
b Molar heats of vaporization from references 18 and 19.
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Table 5.7 - Molar volumes, molar heats of‘Vaporization and

solubility parameters at 298.15 g for n-alkanes.

Substance ‘{n/cm}moln1 10° AH:,:/cal mol-1 5/031'?5@1'3/2
n-pentane 116.104(8) 6.32(b) 7,02
n-hexane 131,598 T.54 7.27
n-heptane 147.456 8.74 7.43
n-octane 163.530 ' 9492 7455
n-nonane 179.670 11.10 7.65
n-decane 195.905 12.28 7.72
n-undecane 212.217 13.47 7.79
n-dodecane 228,579 14.65 7.84
n-tridecane 244.924 15,83 7.89
n-tetradecane 261,312 17.01 7.93
n-pentadecane 277.698 18,20 7.96
n-hexadecane 294.083 ' 19.38 7.99
n-heptadecane 310,510 20.60 8,03
n-octadecane 326,93 21,70 8.04
a Molar volumes from reference 15

b Molar heats of vaporization from reference 16
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Table 5.8 ~ Comparison of experimental and calculated Mixing
c
Temperatures T for binary mixtures of

ethanenitrile + n-alkane (f = 0.5)

n-alkane T°/K T°/K 7°/K
expte eqn{5.20) eqn {5.22)
n-pentane 341.2 489.1 390,7
n-hexane 350.2 483.2 419.6
n-heptane 358.0 491.9 453.7
n-octane 365.1 506.0 490,1
n-nonane 374.2 52146 52745
n-decane 381.7 54204 | 56642
n-undecane 386.2  561.1 605.3
n-dodecane 39842 58347 645.1
n-tetradecane 403.7 62743 72543
n~hexadecane 420,2 67549 806.3

n~-octadecane 426.2 724.7 891.0
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Table 5.9 - Comparison of experimental and calculated l.ixing
c . .
Temperatures T for binary mixtures of

propanenitrile + n-alkane (ﬁ =0.5)

n-alkane TC/K Tc/K TC/K
expt. eqn.(5.20) eqne(5.22)

n-pentane 276.2 312,7 276.7
n-hexane 287.2 295.6 291.,1
n-octane 303.7 291.9 332,3
n-decane 316.2 300.5 379.1
n-dodecane 32707 313.7 428.,5
n-tetradecane 341.2 329,1 479.2
n-hexadecane 349.2 34845 530.7
n-octadecane 359.2 368.3 562.8

Table 5,10 - Comparison of experimental and calculated Mixing

c . .
Temperatures T for binary mixtures of

n-butanenitrile + n-alkane (f =0.5)

[}

n-alkane 7°/K T°/K /X
expt. ‘eqn{5.20) eqne (5,22)

n-pentane 2372 23045 234.3
n-hexane 244.2 209.3 242.0
n-decane 269.2 193,6 305,00
n-dodecane 284.7 196.0 242,0
n-tetradecane 297.2 200,7 380,5
n-hexadecane 307.2 208.8 419.8

n-octadecane 318.2 217.3 459.6
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Table 5.11 - Comparison of experimental and calculated Mixing
Temperatures ™ for binary mixtures of

ethanenitrile + n-alkane (f = 0.5)

n-alkane T°/K T°/K T°/K
expt. eqn. (5.25) eqn{5.26)
n-pentane 341.2 72245 3375
n-hexane 350.2 _ 398.2 345.8
n-heptane 358.0 38646 35646
n-octane 365.1 379.6 26846
n-nonane 374.2 374.0 37863
n-decane 381.7 37243 388.7
n-undecane 38642 36943 398.4
n-dodecane 398.2 36849 407.7
n-tetradecane 403.7 367.4 424.7
n-hexadecane 420,2 56849 440.1
n-octadecane 426,2 37044 453.8

Table 5.12 - Comparison of experimental and calculated Mixing
Temperatures Tc for binary mixtures of

propanéhitrile + n-alkane (f. 0.5)

(¢ C c
n-aliane zxg:- ean-/I({S e25) egn./l({S +26)
n-pentane 27602 294-7 26007
n-hexane 284.2 26945 26544
n-octane 303.7 2477 282,0
n-decane 316.2 237.2 299,2
n-dodecane 327.7 230,8 31543
n~-tetradecane 341.2 226,6 329,9
n-hexadecane 349.2 225.4 343.3

n-octadecane 359.2 227.6 35544
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Table 5,13 - Comparison of experimental and calculated Mixing

Temperatures 7° for binary mixtures of

n-butanenitrile + n~alkane (f =~ 0.5)

n-alkane TC/K T?/K TC/K
expte eqn. (5.25) eqn, (5.26)

n-pentane 237.2 22641 229,9
n-hexane 244.2 201.1 232,5
n-decane 269,02 166.4 262,1
n-dodecane 28447 158.7 277.0
n~tetradecane 292,2 153.3 290,7
n-hexadecane 307.2 150.9 303.4
n-octadecane 31842 148.9 315.0

Table 5.14 - Induction energy density Y10 for n-alkanenitrile

+ n-alkane systems

-3 -3 -3
n-alkanenitrile y / cal cm <Y 40> /cal cm <Y 4 / cal cm
124, (5.16) eqn,(5+28) %qn.(5-29)
ethanenitrile 31.93 34,51 32,07
propanenitrile 20,36 21,23 20,08
n-butanenitrile 15,62 16.13 15.50
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Figure 5.1 Sample tube used in the determination of UCST,
See text for actual dimensions,
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Fijure 5.2 UCST for n-alkanenitrile + n-alkane systems,
0 Experimental points, + calculated points as

described in the text,
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CHAPTER 6

GAS-LIQUID CRITICAL LOCI OF MIXTURES

ETHANENITRIIE + n-ALKANE .

Introduction

In the preceding chapter the limits of miscibility of
n-alkanenitrile + n-alkanes systems were eXplored . It was
pointed out that such a study reveals the wmixtures whose excess
properties could be studied at or near ambient temperature

using techniques which have been extensivelyused in this laboratory.

Ethanenitrile + n-alkane systems were shown to have relatively
high UCST's as to makéf?éasible the determination of their mixing
properties at low temperature. However, it was decided to determine the
gas-liquid (p,T,X) loci for such systems since 'the determination
of the critical locus curves for systems composed of an homologous series
of compounds with a common component offer interesting possibilities
in getting at the nature of the interactions between like and
unlike molecules in the dense phase'1.

The experimental investigation of the gas-liquid critical
point has attracted a great number of workers to develop different
techniques to determine the critical properties (temperature

Tc’ pressure pc, and volume v° or density pc) of both pure sub-

stances and their mixtures.

The critical point of a pure substance may be determined
by the shape of the p-V isotherms or by the visual determination

of the disaprearance or reappearance of the gas-liquid meniscus

when its density is close to the critical value,

The first method implies the determination of the highest
temperature for which the isotherm satisfies (ap/aV)T = 0,

- . . 2
however, great precision is needed to obtain accurate results .
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The effect of gravity on the shape of the coexistence curve is
important in the determination of the true critical temperature
using this method. This was shown in the outstanding work of
Maass and co-worker53 and of Schneider and co-workers4. '

The determination of the critical temperature by observing
the disappearance of reappearance of the meniscus is relatively simple,
but care should be taken to define the exact temperature of
disappearance (or reappearance) since strong scattering of
light (the so called critical opalescence) makes determination
hard. To use this method, the tube containing the sample must
be filled so that the overall density is approximately equal to

the critical density of the studied sample.

The recommended procedure5 for determinations of pc or Vc

is to apply the law og rectilinear diameters first preposed by
Cailletet and Mathias . This method extrapolates the mean of

the orthobaric liquid and gas densities up to Tc even if the

c
density measurements are several degrees below T

The critical pressure may be also determined from the p-V isotherms
put the same comments apply here as in the determination of Tc.
The direct determination of pc may be achieved if the sample tube used
for Tc measurements is open to allow mercury in to confine the
sample, pc can then be determined at T°,
Some of the methods discussed above for pure substances

also apply to the determination of critical properties of

mixtures.

: c
The determination of T for mixtures is also carried out
at the disappearance of the gas-liquid meniscus on slow heating

(or at its reappearance on slow cooling).
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The critical density or critical volume of a mixture is
usually determined by extrapolating8 the visually9 observed

dew and bubble point volumes to Tc.

The critical pressure may also be determined at the same time

that Tc and p° by using an open-ended tube to confine the
10

mixture over mercury -

Other methods for the determination of the critical properties
11
of mixtures have been used but 'visual' determination of Tc,

pc and pC simultaneously is generally preferred.

Many kinds of apparatus have been used for the determination
of critical properties, some of which are suitable for the study of pure
substances only and others are sufficiently versatile as to be suit-
able for pure and mixed substances. A complete description of
such apparatus exists in several reviews11-14. The method and

apparatus used in this study of binary mixtures is detailed below.

Experimental

6,1 Materials

A commercial sample of ethanenitrile (Fisons, SLR) of stated
purity 99 mole % was purified by drying over anhydrous calcium chloride

and repeated fractionating in an all-glass 1m packed column using
a high reflux ratio. Only the middle fraction was used for the
gsucceeding distillation, the final sample was stored over molecular

sieve. No impurities were detected using g.l.c. analysis with a 6t
FFA packed column with nitrogen as carrier gas and a flame ionization

detector.

The n-butane was obtained from Matheson Gas Products with stated
purity of 99.8 mole %; it was used without further purification.
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The n-alkanes from n-pentane to n-octane were supplied by the

3

National Physical laboratory as sealed 5 cm” samples. The stated

purity of each sample was: n-pentane 99.84 mole % (sample 161-9564),
n-hexane 99.96 mole % (sample 100-9206), n-heptane 99.94 mole %
(sample 91-8064) and n-octane 99.63 mole % (sample 45-9063).

The samples of n-nonane (99.71 mole %) and of n-undecane
(99.79 mole %) were Phillips Research Grade (lot 1378 und 1284
respectively). The n-decane (99 mole %) wis Phillips Pure Grade.
These three n-alkanes were dried over sodium. The cyclohexane
was Phillips Research Crade (lot 1261) with purity 99.98 mole %;
2,2-dimethylpropane (neopentane) was from BDH with purity 99 mole %.

All hydrocarbons were used without further purification.

6.2 Apparatus

The apparatus used in this work for measuring critical
temperatures and pressures is shown schematically in figure 6.1,

It is similar to those described independently by Pak 15 and H10ks16.

One of the main features of the apparatus is the inclusion of
a 'compressor block'. This is essentially a U-tube filled with
mercury to hold the g?ass sample tube. The compressor block is shown
in detail in figure 6.2. It was made of stainless steel with a
short limb (A) which held the sample tube in position, and a
larger limb (B) with three electrodes to detect the mercury-oil

jnterface and connected to the pressure system by a length of

flexible stainless steel tubing.

When the sample tube was secured in the compressor block and
the sample confined by mercury, a laboratory jack was used to

raise the block and tube into the preheated electric furnace to

pnear the estimated critical temperature of the sample.
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The electric furnace consisted of an aluminium bar (16 cm
in diameter and 25 cm long) mounted vertically with a hole drilled
through its vertical axis to accommodate the sample tube and a
horizontal hole half-way up to observe the gas-liquid meniscus of
the sample during measurements. The aluminium block was inside an

asbestos jacket supported by a small box of refractory material and
completely lagged with asbestos flakes., Heating was achieved with

Nichrome wire uniformly wound around the block whose electric

current was stabilized manually with a Variac and a Volstat.

The furnace was mounted so that it could be lowered or raised

smoothly over the sample tube as convenient by a rack and pinion

arrangement.

The details described on the electric furnace are shown in figurc

6030

The temperature was measured by a ten-junction Chromel-Alumel
thermocouple placed in small holes drilled concentrically around the
vertical hole in the oven. The thermocouple was calibrated against
the accurately known critical temperatures of five hydrocarbons
(these will be given later in another section).

{

A Budenburg Bourdon standard test gauge (25.4 cm diameter

and range 0-1000 1b in'z) calibrated by the makers against a dead

weight tester and accurate to + 0.01 MPa was used for the measurement

of pressures.

It will be helpful for the later sections to describe at this

point the sample tubes.

A thick-walled glass capillary tube (0.18 cm internal diameter)
74 cm long approximately and sealed at its upper end was joined by its
jower end to an extension glass tube (0.4 cm internal diamcter) which
had a 7/16 ground glass cone. The tick-walled tube had a swelling
(x) at approximately 70 cm from its sealed end, the extension
tube also had a swelling (Y) at approximately 3.5 cm from the lower
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end of the thick-walled tube. Figure 6.4 shows the sample tubc as des-
cribed together with the self-tightening neoprene seal, similar

17

to that described by Ambrose ', at (X) and a spring and washer

at (Y) which as illustrated in figure 6.2 helped to locate the sample
tube in the compressor block and prevented its ejection due to high

pressures.

6.3 Preparation of Samples

Mixtures of known composition of ethanenitrile with n-pentane
and higher n-alkanes were prepared by injecting into the sample tube known
volumes of the pure components from calibrated all-glass microsyringes
(Agla, Wellcome Reagents Ltd.). The sealed end of the sample tube
was immersed in liquid nitrogen and the more volatile componeni was
jnjected first followed by the second component. The ground glass

cone was capped during transfer to the vaccuum manifcld to prevent

loss of sample.

Non-condensible gases were removed from the mixtures by repeated
freezing with liquid nitrogen, pumping off the residual gas over the
solid and re-melting. After the degassing process the sample tube
was sealed under vacuum approximately 2 cm below the swelling ()

(see figure 6.4) and flame annealed.
{

The mixtures containing n-butane were made up by injecting the
ethanenitrile into the sample tube as described and attaching the
tube to a vacuum manifold with a calibrated gas burette. The amount
of n-butane was determined by measuring the pressure and temperatufe of
the n-butane, together with the burette volume. Deviations from
jdeality were taken into account by using the second virial

coefficient of n-butane18 in the relation
n = pV(RT + B(T)p) (6.1)

where R is the gas constant and B(T) the second virial coefficient

at the temperature T at which p was measured,
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Finally degassing and sealing was carried out as before.

6.4 Measurement Frocedure

Once a sample tube was sealed the neoprene washer (N) and
steel washer (W) were placed in the capillary tube (see figure 6.4),
washer (D) and the spring (E) were placed in the extension tube,

A scratch was made at point (C) with a glass knife and the tube was

immersed into liquid nitrogen to freeze the sample at the upper

end of the tube.

Meanwhile, the mercury surface in limb (A) of the compressor
block had been adjusted just above the junction of the two limbs
(figure 6.2) by using the screw press (F) in the pressure system (figure

6e1)e

Having closed (V1) the sample tube was carefully placed in limb

() and secured with washer (0) and nut (S), at the same time the
space above the mercury surface in (A) was evacuated using a rotary
pump attached to (V2). After approximately 20 minutes valve (V2) was
closed and the pressure of the system increased with (F), valve (V1)
was then opened to allow mercury to flow into the previously evacuated
space. T he sample tube was gently rocked so that the washer

(D) touched the internal walls of the limb breaking the tube at the

scratch (C). Mercury rose up into the sample tube confining the

sample after melting.

For the determination of T and p at the critical point of the
sample the furnace was preheated to approximately four degrees below
the estimated critical temperature rather than at Tc 80 as to be able to

follow the gas-liquid meniscus until its disappearance on heating.

The sample tube was introduced into the furnace in such a way

that when measurements of T and p were started the meniscus was at
the middle of the section occupied by the sample (by adjusting p),

The meniscus was viewed through the horizontal hole in the furnace

with rear illumination.
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The heating of the samples to the point of disappearance of
the meniscus was performed at a very low rate (approximately 1.5 ¥ hr-1)

by adjusting the current to the furnace with the Variac,

When the meniscus was finally observed to disappear, the

temperature and pressure were recorded as the critical values for

that sample.

The choice of the disappearance of the meniscus as a criterion
for the critical point was made on practical grounds, since
although the reappearance is a sharper phenomenon it is easier to
follow the gas-liquid meniscus at a certain position in the

sample tube than locating the meniscus on reappearance,

The critical temperature and pressure of each system studied
here were measured at least twice, i.e, after the first measurement
was completed the temperature of the furnace was lowered a few degrees
below the measured Tc and then the procedure already outlined above

was repeated, consequently the reported results are the average of

such measurements.

The apparatus and experimental procedure used in this work
for the determination of 7 and pc have some advantages over
those described by Pak and by Hicks. Whereas Pak's apparatus is
very-similar to that used here, his method of loading the sample tubes
is time consuming and furthermore the samples are not degassed
which can introduce errors14 of 0.01 to 0.06 ypm in p° and up to 1K in
7°, On the other hand in the procedure used by Hicks the composition

of the mixture is unkown and has to be determined in a separate expcriment,

6.5 Results

The calibration of the thermocouples output was carried out

19

using the latest recommended value ° of ° for 2,2-dimethylpropane, n-

pentane, n-hexane, cyclohexane, and n-decane,
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The accuracy of the T° results given here is believed to be
tO.}K and t0.0Z mPa for the pc results, The critical temperature

and pressure of the pure substances used in this work are listed

in table 6.1.

The critical temperature and pressure measured in this work
for the substance not used in the thermocouples calibration show

19

very good agreement with the respective recommended values ” as

shown helow.

The differences in 7° and pc between the values measured here and

those of reference 19 are: n-butane +0.22K, n-pentane 0,0 MPa, n-heptane

+0,2K, n-octane -0.33K, n-nonane =0,2K and -0,02 Mpa, and ethanenitrile

~-2.4K and 0.0 Npa.

The Tc measured here for ethanenitrile is 2.4 K lower than the
1
value recommended by Kudchadker et 315 and later by Ambrose 9,

However, this last value (547.9K) was originally recommended by Kobe
and Lynn7 together with a p° of 4.83 MPa, where T° was determined
by Ter-Gazarian ® and p° by Guye and nalles?',

Guye and Mallet also measured 7° (=543.3K) together with their
selected value of pc &ut their T° was not recommended because their
sample of ethanenitrile did not undergo any purification, whereas

Ter-Cazarian's sample was from the same source (Kalhbaum Co.) but

it was dried and distilled.

Guye and Mallet's value of 7° is in turn 2.2K lower than the

reported here.

So, in order to report a reliable value of 7° for ethanenitrile
several determinations were carried out over a period of approximately
two years. Table 6.2 summarizes all the measurements of Tc and pc
for ethanenitrile performed here. The values of T and p° found in
this work are thuss 5455 ¥ 0.3K and 4.83 t 0.02 MPa respectively.
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The p-T-X critical locus curves of the following binary
mixtures were determined: ethanenitrile + n-pentane, + n-hexane,
4+ n-heptane, + n-octane, + n-nonane, and + n-decane; also a couple

of mixtures were studied for each system formed by ethanénitirile + n-butane,

and + n-undecaneo

The experimental results are listed in table 6.3, Figure 6.5 is
the p-T projection for the studied systems and figures 6.6 and
6.7 give the T-X and p-X projections respectively,

The reported p¢ were corrected for

a) the barometric pressure,
b) the difference in height of the oil (the pressure transferring

fluid) levels in limb (B) of the compressor block and the
pressure gauge,

¢) the partial pressure of mercury at 7° of the sample

d) the difference in height of the mercury levels in the sample

tube and in the ccmpressor block.

Pak15 has studied the effect of mercury on the gas-liquid critical
properties by measuring 7° and p° of samples confined over gallium and
then over mercury. Since the vapour pressure of @mllium is negligible
in the range of temperature of the study (593-748K) he found that the
effect of mercury on T amounts to a decrease of 1K at 673K and that
the partial pressure of mercury is between 10-14% less than the
vapour pressure of pure mercury. He also recommends an equation for

the calculation of the vapour pressure of mercury22:
. =2
logyo (B/1b in™%) = 5.92822 - 3037.6/T (642)

where T is the absolute temperature,
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Equation 6.2 was used for correction (c¢), the maximum
difference between the vapour pressure of pure mercury as cnlculated

from reference 23 and the value from 6.2 was 27% for a mixture of

0,809 mole fraction of n-decane,

Apart from having tested the precision of the thermocouples
calibration by measuring Tc for n-butane, n-heptane, n-octane, n-nonunc,
and ethanenitrile and compared their values with those reporied in
the literature, a repeatability test was conducted on three mixtures

whose critical temperatures were in the range 469 - %44 K,

For each of the three mixtures two sample tubes were loaded
with the same composition, the maximum deviation in Tc between two mix-
tures was 0,3Kand 0.02 MPa in pc. The reported compositions are
thus believed to be correct to within 0,3%.

It is also important to point out that no decomposition was

observed to occur during the heating of any of the systems here
reported, regardless of the long heating periods applied to some of thcm.

6.6. 1a1itati iscussion of Results

A rigorous explapation of the observed pattern of behaviour of
the critical locus of the binary systems here reported would require the
knowledge of the exact type of molecular interactions present in

such systemso

Our knowledge of the intermolecular potentials between simple
molecules (e.g. Ar, Kr, Xe) has been increased by Monte Carlo and
Molecular Dynamics calculations, however, such advances have been much

more difficult for polyatomic molecules.

Hence, we choose 'parameters' such as molecular size, molecular
structure or shape and chemical nature to distinguish and scmetimes to

explain the different behaviour exhibited by pure and mixed substances,
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In the discussion that follows use will be made of such
‘practical parameters' to analyse the behaviour of the critical loci

of the ethanenitrile + n-alkane systems.

Such critical loci may be considered to exhibit the effect of
molecular size and chemical nature of the components (no molecular
structure since ethanenitrile possesses a structure slmilar to that
of the n-alkanes, which justifies the use of the n-alkane series

as ‘homomorphs' of the n-alkanenitriles in the treatment of Chapter

5)e

An examination of the p-T projection (figure 6.5) reveals the
following features: starting with theethanenitrile + n-pentane system,
its critical locus exhibits a point whose pressure is higher than the
critical pressure of the pure components and in the n-pentane - rich region
a minimum temperature point exists within the accuracy of ihe experiment.,
4s discussed in Chapter 4, a minimum temperature point in the critical

locus proves the existence of a positive azeotrope in this region.

When n-hexane is substituted for n-pentane the folding of the
locus is magnified and the presence of & minimum temperature pcint is

more easily observed, however, no maximum pressure point appears in

this system.

The critical temperature of n-heptane (540.5K) is closer to the
corresponding value fof ethanenitrile (54545K) than any of the Tc of
the other n-alkanes, and this seems to have a clear effect on the
critical locus of this system which is almost symmetrically folded éround

the minimum temperature point.

As the size and 7° of the n-slkane increases the folding of the p-

T locus is less pronounced but a minimum temperature point still exists
in the systems with n-octane, n-nonane, and within the accuracy of

T° also with n-decane,
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It is interesting to note the change in composition of the
minimum temperature point as the size of the n-alkane increases,
i.e. from the n-pentare - rich region of the locus to the

ethanenitrile~ rich region in the system with n-decane,

To verify if minimum temperature points were present in the
systems with n-butane and n-undecane two mixtures were studies for cach
of these systems in the composition range where such points would be

expected. The results do not show minimum temperature points in these

two systems.

The vapour pressure of pure et;hanenitrilez6 is also given in
figure 6.5 to show that the pressure of any of the minimum temperature
points is higher than that of the pure components, demonstrating the

existence of azeotropy in these systems.

A locus of minimum temperature points can be drawn in the 7-X

projection (figure 6.6) and the trend of change of such points is
now clearly seen. Such a locus determines an 'azeotropic range',
which as defined by Kreglewsk124, is the difference between the
critical temperatures of the homologues with highest and lowest
relative molecular mass which form an azeotrope with a common

substance or 'azeotropic agent' (ethanenitrile in this case).

Kreglewski has proposed a modified equation, originally

derived by Malesinskias, to assess the formation of azeotropes by

using the azeotropic range 3, e
He gives the following equation
c % c 2
gy = 20 (Fy - Ty + (Ty - TM)%) (6.3)

where TX is the critical temperature of the n-alkane, T§ the
critical temperature of ethanenitrile and Ty is the minimum

temperature on the critical locus.

Using equation 6.3 an azeotrope will form in a given system if
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(8,,/2) > /Ty = T/ (6.4)

Table 6.4 shows the results after using the above equitions

on the experimental values given in table 6.3,

Summarizing, it is possible to say that the hehaviour of
the binary systems formed by ethanenitrile and the n-alkane
homologs (as represented by the critical loci here reported) is

the interwoven effect of their difference in molecular size and chemical

nature.

The relationship between Tc and pc with the differences in

molecular size and chemical nature of the components is more clearly

discernible when using 'residual critical properties', which are

defined as follows

C (o] (] []
A= T - X T - X1 (6.%)
C C (] C
and A pm = pm - x1p1 - x2p2 (6.6)

where ATS and Ap: are the residual critical temperature and

* . c c . .
pressure, respectively, Tm and pm the experimental critical temperature
and pressure of the mixture, X4 the mol fraction of ethanenitrile, T?

the critical temperature of ethanenitrile and p$ its critical pressure,
and xz, Tg, p; are the corresponding values for the n-alkane,

Figures 6.8 and 6.9 show plots of equations 6.5 and 6.6 against
mol fraction of the n-alkane, respectively. The curves in figure
6.8 are not completely symmetrical, the maximum /A T;/ is shifted
towards the higher concentration of ethanenitrile, indicating its
greater effect on the critical loci. As the difference in size
of the components increases the curves become more positive, the curves

for n-nonane and n-decane have both a minimum and a maximum,
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The curves in figure 6.9 are highly asymmetric, showing that as
the size of the n-alkane increases A P; becomes more negutive up to
n-heptane when this trend reverses and the curves become much more

positive,
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Table 6,1 - Critical temperature and pressure of the pure substances

used in this work.

Substance T°/K p¢/MPa
n-butane 425,40 3.797°
n-pentane 469.7a 3.37b

n-~hexane 507.5a 3.012o
n-heptane 540.5° 2.736°
n-octane 5685 2.487°
n-nonane 594.4° 2,27°

n-decane 617.7" 2,104°
n-undecane 638.8° 1.966°
ethanenitrile 545,50 4.83°

a used in the thermocouples calibration, reference 19.

b Measured in this work

¢ Reference 19.

Table 6.2 - Critical temperature and pressure of ethanenitrile

Method 7°/K p°/MPa
a 545»59 -
-8 545-54 -
b 5455, 4.84 Average values:
¢ c
b 545.3, 4.82 /K p°/MPa
b 54545, 4.83 545.5 4,83

a Sealed sample tube; b Open-ended sample tube,
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Table 6.3 - Experimental gas-liquid critical constants for

ethanenitrile (1) + n-alkane (2) systems,

X, /K p°/MPa X, /K /M
ethanenitrile + n-butane ethanenitrile + n-heptane
0,907 43043 3494 0.103 5375 4.71
0.922 429.3 3.89 0.200 52943 4.42
ethanenitrile + n-pentane 0.293 525.4 4,20
0.090 534.2 519 0.393 92345 4.05
0.169 522,0 5.12 0.499  524.4 3,90
0.374 492.6 4.56 0.650 530.4 3,68
0.492 479.7 4.14 0.710 531.1 3456
0.600 4739 4.03 0.752 533.0 3455
0.807  469.3 3.71 0.807  535.2  3.36
0.851 469.8 3.66 ethanenitrile + n-octane
ethanenitrile + n-hexane 0.100 539.3 «54
0.101  535.1 4.89 0,202  537.6 4.36
0.204 52146 4.60 0.302 538,0 4.19
0,316 511.2 4.32 0.399 540.7 4.11
0.413 50643 4.09 0,561 5474 3.89
0,517  502.4 4.03 0.650  554.3 3.85
0,660 501.6 3479
0,725  502.6 5469 CONTINUED

0.850  504.9 3449
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Table 6.3 - (CONTINUAYION) Experimental gas-liquid critical

constants per ethanenitrile (1) + n-alkane (2)

systems
X, °/K p°/ MPa X, 7¢/K %A
ethanenitrile + n-nonane ethanenitrile + n-decane
0,099 54343 4,60 03010 54542 4,85
0.198 5448 4.46 0.050 546.1 4.77
0,302 549.1 4.34 . 0.099 545.7 4,66
06525 5644 4.04 0,202 551.5 4.62
0.612 572.0 3.88 0.298 561.2 4456
0.746 581.0 3445 0.400 571.6 4,46
0,790  58l.8 3.32 0,611 593.0  3.88
0.860 58843 2.99 0.692 600.0 3,57
ethanenitrile + n-undecane 0.809 610.7 2.95
0.010 550.7 4.90

0.050 551.3 4.81




n-alkane TK/K /TX - T;/ /K mi;;mum tempgiﬁﬁgre point (Ti— M)/K ZAN/Z przgigifopeobsv.
n-butane 425.4 120.1 - - - - No No
n-pentane 469.7 75.8 0.807 469.3 76.2 87.6 Yes Yes
n-hexane 507.5 38,0 0.660 501.6 43.9. 82.0 Yes Yes
n-heptane 540.5 5.0 0.393 523.5 22.0 TTT Yes Yes
n-octane 568.5 23,0 0.202 537.6 7.9 70.0 Yes Yes
n-nonane 594.4 48.9 0.099 54343 2.2 74.5 Yes Yes

" n-decane 617.7 T2.2 0.010 54542 0.3 82.1 Yes Yes
n-undecane 638.8 93.3 - - - - No No

Table 6.4 - Assessment of formation of azeotropes in ethanenitrile (1) + n-alkane (2)

systems using the concept of azeotropic range.

921
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CHAPTER 7
EXCESS VCLUMES OF MIXING

Introduction

The measurement of volume changes on mixing has been of
great importance in the thermodynamic study of mixtures for they

provide a particularly sensitive test of current and new theories

of solutions.

Al
Indirect determination of excess volumes of mixing VL consgistis

in measuring the density of mixtures of known composition,

E
Direct methods of measuring V consist in mixing the liquids

and observing the resulting volume change in a calibrated capillary

of suitable size.

The use of indirect methods for the determination of Vﬁ requires

a very high precision in the density measurements (of the order of
1¥10" "> for a precision of about 0,002 cm3molj1 in Vﬁ)which is

possible to obtain using more or less sophisticated equipment and
1

experience .

Batch dilatometers are used for direct determination of VE, one
measurement at certain composition of the mixture for loading at
a single constant temperaturez. Direct determination of VE over
the whole range of composition of one of the components in two

loadings, at a single constant temperature, may be achieved by using

dilution dilatometersB-

Due to the number of n-alkanenitrile + n-alkane systems we

proposed to study a dilution dilatometer was chosen for measurements

of .
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Experimental

7.1 Materials

Pure samples of propanenitrile (Cambrian Chemicals, stated
purity 99 mole %) and n-butanenitrile (Koch-Light, etated purity
99 mole %) were prepared by drying and distilling over anhydrous
calcium chloride in an all glass 1m packed column. Only the middle

fractions were retained using a high reflux ratio.

Both pure samples were stored over pre-activated molecular

sieve.

A commercial sample of n-hexanenitrile (Eastman-Kodak Chemicals,
Analytical Reagent) was dried and distilled over anhydrous calcium
chloride using the same column described above, the middle portion was

retained and stored over magnesium suphate as recommended by

Weissberger4-

All the h-alkanes, except n-tetradecane, were obtained from
Fisons with the following stated purity: n-pentane 99 mole%, n-hexine
99 mole %, n-heptane 99.5 mole %, n-octane 99.5 mole %, n-decane 99
mole % and n-dodecane 99 mole %. The sample of n-tetradecane was

Phillips Technical grade 99 mole %.

{
The samples of cyclohexane (Spectrograde Reagent) and benzene

(Analytical Reagent) were also obtained from Fisons,

Drying and distillation of all hydrocarbons was carried out over

godium,

All the materials were degassed under vacuum by repeated
freezing with liquid nitrogen and thawing. After degassing, the

samples were confined by mercury in glass cells of approximately
80 cm3 to avoid contact with the atmosphere during storage,
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7.2 The Dilution Dilatometer

The use of a dilution dilatometer for measurements of VE
offers great advantages, particularly when a systematic study of
many systems is undertaken. Although the accuracy oblained using a
dilution dilatometer may also be present in results obtained
with a batch dilatometer, the former can provide VE values that
cover the whole range of composition of any of the components in

only two dilution runs by interchanging the position of the

components in the dilatometer.

Some of the basic design requirements of a dilution dilatcmeter
which operate at not too high temperatures and pressures include:
easy calibration of its components, absence of vapour spaces, ease
of iilling‘, capability of measuring both negative and positive
vE of any magnitude, and small amounts of material,

Several dilution dilatometers have been designed in the past1’5-7

put all suffer drawbacks in some of the points mentioned above.

The dilution dilatometer used here was designed by Kumaran
and McGlashane, it is easy to calibrate, no vacuum or glass blowing

is necessary for load&ng, no danger of pre-mixing the pure components
exists and only two Teflon taps are used which greatly reduces
any possibility of leakage during measurements.

The dilatometer is shown in figure 7.1 and is now fully

described,

It consists of a mixing bulb 1 (which befeore mixing is started
contains one of the pure components) joined to a burette 2 (containing

the other pure component) by a Veridia precision bore capillary b.

Capillary a (also Veridia tubing) is joined at the bottcm of
bulb 1 providing the route by which mercury flows from bulb 1 into

the burette 2 thus displacing the same amount of pure component into 1.
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The volume change is observed in the Veridia capillary ¢ after

each mixing takes place in 1.

Since all measurements of mercury heights are relative before
and after everymixing reference marks were made on capillary c (r1)

and on the burette (r2).

Taps T1 and T2 seal the mixing bulb and burette respectively

during the experiment.

Capillaries a, b and ¢ were taken from the same length of

tubing and calibrated by weighing mercury before incorporation into the

dilatometer,

The burette was also made of Veridia precision bore tube thch was
calibrated together with bulb 3 once they were part of the dilatometer

as described by Kumaran.

7.3 Filling and Measuring Procedure

Having washed and dried the dilatometer the mixing bulb was filled
with pure mercury using a stainless steel needle and a hypodermic syringe.
Care should be taken throughout the filling procedure to avoid

air entrapment either in the bulb or in any of the capillaries.,

The glass-encapsulated magnet in the mixing bulb must also be
carefully positioned (externally with the help of a permanent
magnet) to avoid trapping air where the ends touch the bulb wulls,

Once the mercury level was just under the capillary at the
bottom of valve T1 the dilatometer was immersed in the thermostat
bath in such a way that the water level only covered up to the
beginning of the side arm attached to T1 to allow thermal equilibration

of mercury and dilatometer.

When thermal equilibrium was achieved the mercury level was

adjusted to touch the bottom of valve T1 when screwed to seal the mixing

bulb.
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A Precision Tool and Instrument Co. cathetometer (readable

to 0,01 mm) was used for all the measurements of heights required in

this experiment.

The heights of the mercury menisci in capillaries a, b and c were

measured with respect to the reference mark 1,

The next step was to introduce the pure components into the
dilatometer, The loading of the burette 2 was carried out using
a long stainless steel needle attached to & syringe, the liquid
level was left just below the top of capillary a after which the
dilatometer was tilted around a perpendicular axis to transfer mercury
from the mixing bulb to the burette through capillaries a and b,
Transfer of mercury was stopped when the mercury level in the burette

was just above the reference mark 12,

During this procedure liquid had to be removed from the burette
since the mercury being added rises the level., The transfer of

mercury in the liquid filled burette ensured that no air was trapped.

Tap T2 was screwed in place and the space above the mercury level
in the mixing bulb was filled with the second component using again
a stainless steel needle and syringe,'tap ™ was then placed in

position.

The dilatometer and its supporting frame were lowered into the
thermostat bath until the top of the capillaries remained outside the

water.

After thermal equilibration of the dilatometer and its contents
measurement of mercury menisci in capilaries a, § and ¢, and in the burette
was carried out together with the heights of the reference marker X and

rl.

The two sets of measurements described so far gave the volume of

the component in the mixing bulb as will be discussed later,
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The measurements of volume changes may now be started by
diluting the component 1 in the mixing bulb with the component 2

in the burette as described below,

Addition of component 2 into the mixing bulb was achieved by
tilting the dilatometer and its supporting frame with a clockwise
rotation so that mercury flowed into the burette through capillary a
displacing an equal volume of component 2 into the mixing bulb
through capillary b. The dilatometer was then brought back to its
original vertical position and the mixture in the mixing bulb was

thoroughly stirred with the encapsulated magnet using externally a

permanent magnet.

The new heights of the mercury menisci in capillaries a, b and

c and in the burette were measured with the cathetometer and recorded,

Dilution of component 1 was carried out following the procedure
described above until the mercury level in the burette was approximately

1 cm below the place where capillary a joins the burette.

Figure 7.2 is a block diagram of the procedure followed to

measure changes of volume as described,

The size of capillary ¢ used in the dilatometer here described
was chosen in the light of the expected magnitude of the VE'B for the
system mentioned at the beginning of this Chapter. Consequently
the mercury level in capillary ¢ was always at a convenient position,
However, when measuring VE for the standard system benzene + cyclohexane,
whose Vﬁ is larger than for most of the n-alkanenitrile + n-alkane
systems mercury had to be withdrawn from ¢ to adjust its level. On the
other hand, if large negative volume changes were to be measured then
mercury would have to be added via ¢ to adjust its level to a convenient

point,
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It was found that measurement of the mercury meniscus in
the burette presented some difficulties due to the refraction of
light, so a Terry clip was attached to the burette and always
positioned a few milimeters above the mercury level to stop
large refraction of light. BSuch an arrangement facilitated measurements
of mercury menisci in the burette during a whole series of dilutions,.
All the mercury meniscus heights in the burette were measured with

respect to reference markr 2.

Values of Vﬁ for the whole composition range of one of the
components were obtained in two series of dilutions by exchanging

the positions of the pure components in the dilatometer.

The cross section ofzcapillaries a, b and ¢ was found to be
+ -
(7.903 - 0.003) x 10 5 cm, the cross section of the burette
was 1,1301 t 0.0006 cmz, and the volume of the bulb from the

bottom of the burette to the reference mark 12 was 7,099 : 0,002 cm3.

The above values together with the measurement s of the mercury
menisci heights and the reference marks heights during each series

of dilutions were used for the calculation of Vm.

If isobaric values of Vﬁ are to be determined compressibility
corrections, due to the effect on the mixture of the change in the

pressure attributed to the heights of mercury in capillary ¢ mainly,

had to be considered,

The compressibility corrections can be avoided by adjusting the
pressure acting on the mercury in capillary ¢ so that the pressure of

" the liquids in the dilatometer remains constant throughout

a series of measurements,

The constant pressure system is shown schematically in figure
7+3. It consisted of an U-mercury manometer connected by rubber

tubing to a vessel A which was in turn joined to a capillary tubing B.
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Vessel A had approximately the same dimensions as the mixing bulb

and was also filled with approximately the same amount of mercury as the
mixing bulb would have at the beginning of a series of dilutions,
Capillary B also had approximately the same internal dimensions as
capillary ¢ to minimize the possibility of unequal depression of

the mercury levels., Both capillaries, B and ¢, were connected

with rubber tubing through ground glass joints.

Constant pressure of the liquids in the dilatometer was achieved
as follows: a pressure of 760 : 3 mm Hg was applied on the mercury
surface in vessel A, as recorded in the U-manometer. Having capillarics
B and ¢ connected, the differences in heights of their mercury levels
hB and hc respectively need to be equal in order to ensure that the
hydrostatic pressure in the mixing bulb was equal to the applied

pressure in the vessel A,

E
Isobaric Vﬁ's were then determined by repeating this procedure

for each dilution in the dilatometer,

7.4 Thermostat and Measurement of Temperature

A well insulated water filled glass tank (capacity 0.065 m3,

approximately) was used as thermostat, The thermostat was operated
at + 0.01 K with a 150 watts electric bulb as heater using a Triac
controller and a mercury contact thermometer (J, C, Cowlishaw Ltd.).
Temperature homogeneity of the thermostat was ensured by using a

multiple paddle stirrer.

The temperature control of the thermostat both during
measurements of heights of mercury menisci and reference marks was

¥ 0.003 K.

The measurement of temperature was carried out using a platinum
resistance thermometer (calibrated By the British Calibration
Service) and a comparison bridge (Rosemount Engineering Co., model
VLF-514),
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7+5 Results

B
Before any measurements of Vm were attempted on n-alkanenitrile

+ n-alkane systems a test or standard system was studied using

the dilatometer,

9

Powell and Swinton” recommended benzene + cycloherane as
a test system for measurements of Vﬁ, and recently Kumaran and

McGlashan8 have supported such recommendation.

Results for the test system are shown in table 7.1. The experimental

10
data were fitted, by the least square method, to an equation of the form 3
E i-1 '
v, = X,(1 - X)) >:ici(1 - 2X,) (7.1)

where X2 is the mol fraction of the second named component and Ci

are the coefficients of the polynomial equation,

Table 7.1 also gives the standard deviation g of the experimental

data.as calculated froms

1
o = 22 s yh)> ;2 (7.2)
Nobs, = N

{
where Nobs. is the number of experimental values of Vﬁ, N is the
E

number of coefficients used in qquation 7.1 and 4 V , also given in

table 7.1, is given by

N

E E
Ay =V - Vﬁ (calc.) (7.3)
where Vﬁ is the experimental value and Vﬁ (calc.) is determined with

equation 7.1 at the same mol fraction X2.

The results for the test system are in good agreement with
previousvvorkerSB’e. Figure 7.4 shows a comparison of the results
obtained here with those of references 3 and 8, which were also obtained

using a dilution dilatometric method.
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The excess volumes of mixing of the following systems were

studied at 303.15 K:

(n-pentane
(n-hexane
propanenitrile + (n-heptane

(n-octane

(n-pentane

(n-hexane

n-butanenitrile + (n-octane
(n-decane
(n-dodecane

(n-tetradecane

and n-hexanenitrile + n-hexane
Table 7.2 lists the molar volumes used in the calculation of Vm.
B
The results are listed in tables7.3 to T.13. Together with the Vo - %o
data each table gives the smoothing polynomial equation (i.e., equatlon
7.1) fitted to the experimental VE's, the deviations 4 V} (i.e.,
E
equation 703) and the standard deviation of Vm (i.e0, equatlon Te 2).
{ : B

Figures 7.5 and 7.6 are plots of V against the mol fraction

X_ of the n-alkane for the systems listed above,

7.6 Discussion

The comparison of results for the test system carried out
in Figure 7.4 shows close agreement between the present results and
those of Kumaran and McGlashan in the composition range 0.35 to
0.5, there exists however a better overall agreement between the data

reported here and the results of Stokes et al.

The results of Kumaran and those of Stokes with standard

3

deviation 0,0007 cm mol-1 and 0,0008 cm3 m01-1 respectively, represent

E
the most precise values of Vm for the test systemo
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The experimental results of Vﬁ for propanenitrile + n-alkune

follow a regular pattern whose general features may be described with

the help of Figure T.5.

The magnitude of Vﬁ increases on increasing the chain length of
the n-alkane component. The increase is large when n-hexane is substit-
uted for n-pentane but the increase becomes smaller as the n-alkane

chain increases.

The symmetry of the curves follows the same pattern as does
the magnitude of V; as observed from shift of the maximum value of
vﬁ for the system with n-pentane at X2 = 0,775 to X2= CeH5 for the system
with n-octane.

The same general behaviour is present in the systems formed by n-

butanenitrile + n-alkane as shown in figure 7,6,

Due to the difference in chain length between the highest
and the lowest n-alkane (n-tetradecane and n~-pentane respectively)
with which n-butanenitrile is paired the change in symmetry of the

curves is more noticeableo

For a given n-alkane (for example n-pentane, n-hexane and n-octane)
larger values of n are obtained for mixtures with propanenitrile
than with n-butanenitrile, This relative behaviour vas first noticed

when discussing the results of solubility temperatures.

E .
The measurements of vm for n-hexanenitrile + n-hexane on the

other hand, confirms the observation that as the chain length of
the n-alkanenitrile increases its mixture with a given n-alkane behave
more ideally, and this is clearly seen from the results here

E .
presented since vm is a measure of departure from ideality.

These last paragraphs may be summarized in terms of the unlike
interactions in the mixture as follows: the unlike interactions
in propanenitrile + n-alkane systems are weaker than in either n-butanen-

itrile or n~hexanenitrile + n-alkane systems,
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Plotting Vﬁ against the volume fraction of the n-alkane does
not change the above conclusions although the curves show marked
skewness towards high volume fraction of the n-alkane but also

in a regular pattern.
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Table 7.1 - Molar excess volumes VE for (1-X ) C. H6+X206 T

298,15 K, and dev1dt10ns AVE calculated from the

A

equation at the bottom of this table

X, Ve 100 AVE X, i 10% Avh
on>mol” cmomol” ¢nomol” am’mol”"
0.0765 0.1769 - 1.6 0.5044  0.6482 - 1.1
0.1446 0.3157 + 1.8 0.6262  0.6135 + 047
042252 0.4459 + 047 0.7265  0.5254 +1.6
0.3028 0.5413 0 0.8136  0.4016 - 0,3
043645 0.5946 - 1.7 0.9459  0.1343 - 2.5
0.4002 0.6199 + 0.6
standard deviation = 0.0016 cmomol™"

E

B 2 -1
AV, =V - X, (1-x2)(2.596a - 0,0836 (1-2x2) + 0,0017 (1-2x2) ) cmomol

Table 7.2 - Molar volumes V at 303,15 K used in the calculation

of the excess volumes

Substance vﬁ Reference
en’mol”
benzene , 89.41% 11
cyclohexane 108,75* 11
n-pentane 117.15 1
n-hexane 132,54 11
n-heptane 148,39 ' 1
n~-octane 164,48 11
n-decane : 196,96 1
n-dodecane 229,69 1
n-tetradecane 262.53 11
propanenitrile T71.38 12
n-butanenitrile 88.40 12
n~hexanenitrile 121,89 12

*  Values at 298,15 K
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Table 7.3 - Molar excess volumes V} for (1-X ) C3H5N + X on = C.H
J

at 303%.15 K, and deviations Avﬁ calculated froem the
equation at the foot of the table.

12

X, Vi 100 AVE X, Vi 10? VA

cm311101m1 cm3m01-1 cmBmol-1 c‘mjmol'1
0.0243 - 0.,0046 -0,1 0.,4658 + 0.1774 + 0,9
0.0917 = 0.0070 + 0u4 0.5197  + 0,2019 - 2.0
0.1114 + 0.0085 - 1.9 0.5875 + 0.2343 + 1.4
0.2479 + 0.0481 + 2.3 0.6421 + 0,2532 + 1,6
0.3095 + 0.,0833 + 1.1 0.7249 + 0,2695 - 1,0
0.3491 + 0,1058 - 1,2 0.7951 + 0,2704 - 1.3
0.3927 + 0,1320 - 2.1 0.8553  + 0,2520 + 0,7
0.4201  + 0,1515 + 0.9 0.9122  + 0,1991 + 0.4

3

standard deviation = 0,0016 cm”mol

Avﬁ vE = X, (1-X,)(0.7774 - 0,9978 (1 -2X ) + 0, 1258 (1-2x ) - 0.8317(1-2X, ) +
0.7134 (1-2X, )4 ) cm 3mo1”

Table To4 - Molar excess volumes VE for (1=X )C3H5N +X,n C6H14

at 303.15 K, and deviations Avi calculated from the
equation at the foot of the taule.

X, vh 10° A VR X, vh 10° A VH

em’mol” cm’mol” emomo1”! em® mol™!
0.,0606 0.0686 + 1.1 0.3734 0.3764 - 0.2
0.1375 0.1565 - 0.4  0.3983  0.3918 - 0.5
0.2057 0.2313 - 0.8  0.4448  0.4156 - 1.7
0.2489  0.,2747 - 0.7 0.4945 0.4391 + 1,1
0,2995  0.3225 © #1144 0.5630  0.4572 + 1,2
0.3044 0.3255 + 0.3 0.6495 0.4578 - 13
0.3284  0.3449 + 0.5  0.8054  0,3854 + 0.3

B VE standard deviation = 0.0011 cm3m01 o
AV, = Vo = x2(1-x Y(1.75956 = 0.6775 (1-2x,) + 0.4602(1-2X, )2~ 0,4907

(1- 2X2)3) emmol -1
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Table 7 5 - Molar excess wolumes VE for (1-X )C3H5N + X n-C7H16

at 303,15 K, and dev1at10ns AVE calculated from the
equation at the foot of the table.

X, Ve 10° Av}L X, N 1095 Vi
cmBmolm1 cm3mol cr’mol™ cm’mol”
0,0195  0.0415 + 0.3 0.4119  0.5372 - 0.7
0.0477 0.0983 - 0.3 0.4446 0.5508 - 0.3
0.1055  0.2067 - 0.4 0.4793  0.5617 + 0.4
0.1788 0.3244 + 0.5 0.5994 0.5688 + 0.6
0.2347  0.3970 + 0.5 0.6696  0.5501 - 0.4
0.2758  0.4402 - 0.7 0.7844  0.4734 - 0.1
0.3267  0.4860 + 0.3 0.9012  0,2932 + 0,1
0.3527  0.5048 + 0.3

standard deviation = 0.0005 cm Qol
A vﬁ - vﬁ - X,(1-X,)(2.2625 - 0. 3535(1-2x )+ 0.7450 (1-2X,)

- 0.5155(1-2%,, )3) em’mol”

Table 7.6 - Molar excess volume Vﬁ for (1-X )03H5N +X,n - CBH18

at 303.15 K, and deviations A Vm calculated from the
equation at the foot of the table

X, o 100 Vi X, v 100 AV
cm mol™! cnmol”™! cnomol”! cn’mol”!

0.0220 0.0806 + 0.6 0.3272 0.5602 + 1,1
0.,0524 0.1725 - 1.1 0.3944 0.5958 - 0.3
0.1273  0.3416 + 0.5 0.4580 0.6192 - 0.4
0.1964 0.4432 + 0.9 0.4982 0.6291 + 0.5
0.2378  0.4862 - 1.2 0.6371 0.6178 + 0.1
0.2854  0.5298 4+ 0.6 0.7771 0.5177 - 0.2
0.3056  0.35433 - 1.1 0.8782 0.3593 + 0.2

gtandard deviation: 0,0009 cmomol™
A v - vE - X, (1-X,)(2.5154 - 0.,3135(1-2X,) + O. 9685(1 2x ) + 0.2759
(1-2X,)° + 0.4807 (1-2x ) em Imol-!
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equation at the foot of the table

-C4H7N + X2n -

at 303.15 K, and deviations Avﬁ calculated from the

4
05H12

X, ;/% _ 1o:Aval1 X, ﬁ N 102 Ay;rﬁ

em’mol cm’mol cm’mol cem’mol”
0.468 - 0.0524 - 1.3 0.5189 - 0.0935 - 0.3
0.0938 - 0,0883 - 1.2 0.6172 - 0.0454 + 3.1
0.1858 - 0,1263 0 0.6896 - 0.0073 + 2,2
0.2600 « 0.,1377 0 0.7490 + 0.0218 - 0.7
0.3353 -0.1302 + 6.5 0.8267 + 0.0%546 - 0.8
0.4426 - 0.1237 = 5.7 0.8832 + 0,0638 - 0.8
0.4743 = 0.1116 - 2.8

A vﬁ = V{1-X,)(~ 0.4008 = 0,7126 (1-2X,)+ 0.3679(1-2x,)°

standard deviation: 0.0034 cm3mol-1

- 0,5611 (1-2x2)3) c:m3u1ol'1

Table 7.8 - Molar excess volumes Vﬁ for (1:X2)n - C4H7N + X2n - C6H1

at 303,15 K, and deviations AVﬁ calculated from the
equation at the foot of the table

4

X, BV% - 102 AV?1 X, BVE _ 102 A Y?v
cm“mol cm”mol cm“mol cm’mol
0.0697 0.0160 - 0.3 0.4924 0.2366 + 0,1
0.1415 040493 + 0.3 0.5354 0.2537 + 0.7
0.2264 0.0968 + 0.1 0.6028 0.2735 - 0.1
0.3284 0.1559 + 0,2 0.6638 0.2845 0
0.3866 0.1864 - 0.6 0.7961 0.2675 + 0.1
0.3929 0.1910 + 0.8 0.8554 0.2298 - 0.5
0.4299 0.2076 - 1,0 0.9247 0.1508 + 0.5
standard deviation: 0,0006 cm3m°l-1

Avﬁ = vﬁ - X,(1-X,)(0.9583 - 0,8057(1-2X,) + 0.3512 (1.2)(2)2 -
0.4279 (1-2}:2)3) em mol”
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Table T+9 ~ Molar excess volumes VE for (1-X n - L4H(N + X n =

CBH18 at 303,15 K, and dev1at10ns A H oalculated from

the equation at the foot of the table.

X, Ve 1004 Vi X, i 10° A Vi
cm’mol” ! em’mol” emPmol” cmjmol-
0.0274 0.0678 + 0.2 0.3893  0.4774 0
0.0957  0.1957 - 0.3 0.4334  0.4986 + 0.4
0.1645  0.2896 + 0.5 0.4928  0.5164 - 0.4
0.2225 043507 - 0.4 0.5391 0.5228 - 0.3
0.2604  0.3857 - 0.4 0.6394 0.5112 + 0.6
0.3057  0.4235 + 0.5 0.7376  0.4610 - 0.3
0.3207 0.4340 - 0.1 0.8926  0.2786 0

standard deviation : 0,0004 enomol”
A VE = vE - X (1-x )(2.0731 - 0, 3817(1-2x ) + 0. 5769 (1-2x, )
0.0780 (1- 2x2)3 + 0,6911 (1 2X )4) cn’mol -1

Table 7.10 - Molar excess volumes VE for (1-X n - C4H7H +X,n -

010 22 at 303,15 K, and dev1anlonsA VL calculdted from

the equation at the foot of the taole.

X, v 10° 4vh X, vhi 10°, Vi
cmmol” cmmol”! cm’mol™ coomol”

0.0347 0.0960 - 1,1 0.3708 0.5998 - 1,2
0.0755  0.2001 + 1.5 0.4172  0.6225 - 0.1
0.1368  0.3260 - 1.2 0.4798 0.6381 + 0.4
0.2079 0.4441 + 0.4 0.5672 0.6354 + 1,3
0.2604 0.5099 + 0.2 0.6243 0.6132 - 1.4
0,281 0.5317 + 0.2 0.7072 0.5623 + 0,2
0.3%161 0.5635 + 0.3 0.8266 0.4207 + 0.1

standard deviation : 0,0010 cm§mol'1

Avﬁ -V - X, (1-X,)(2.5573 - 0.0827 (1-2X,) G 6442 (1-2K,)°
-0.1735 (1~ 2x ) ) cmomol”
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Table T.11 - Molar excess volumes Vi for (1-X ) n - C4H/N - Xz n e

C12H26 at 303,15 K, and deviatlons Avg calculated from
the equation at the foot of the table.
X, i 10° AVH X, Vi 107 AVi
cm3mol-1 cm3mol-1 cm3m01-1 cmjmol-
0.0255 00,0867 - 1.8 0.3072 0.6291 - 0.8
0.0674 0.,2151 - 1.7 0.3514 0.6594 - 1.9
0.1278 0.3688 + 1.0 0.4000 0.68%4 - 0.7
0.1954  0.4977 + 2,0 0.4666 0.6969 - 0.6
0.2401  0.5600 + 0.2 0,5645 0.6876 + 3.9
0.2505 0.573%4 + 0.8 0.7078 0.5904 - 2.6
0.2787  0.6035 - 0.2 0.8754  0.3452 + 0.9

standard deviation t 0.0020 cm3 mol”
o - VE - X, (1-,) (2.7887 + 0.1576 (1-2X,) + 0.7866 (1-2x,)

- 0.0961(1-2x2)3) cmomol”

Table 7.12 - Molar excess volumes v for (1-x n - c4q7N +X, n -
c14H30 at 303.15 K, and dev1at10ns AV calculated from
the equation at the foot of the table.

{

X, e 1058 Vo X, Vo 100 AV
cm3m01'1 cm’ mol~1 cmmol™ c;m}mol"1
0.,0112 0.0510 - 0,1 0.2573  0.6232 + 0,2
0,0352 0.1494 + 0.1 0.2604 0.6262 - 0.2
0.0674 0.2602 - 0.1 0.2959  0.6609 - 0.2
0.0985 0.3492 + 0.2 0.3230 0.6834 + 0.2
0.1365 0.4378 + 0.1 0.3626  0.7094 0
0.1764 0.5124 - 0.2 0.4195  0,7348 + 0,1
0.2004 0,5502 - 0.2 0.5422  0.7409 - 0.1
0.2275 0.5879 + 0.2 0.7199  0.6262 + 0.1
0.2341 0.5962 + 0,2 0.8999 0.3199 ; o

standard deviation : 0.0002 cm mol-
‘Avﬁ = VE - X,(1-X,)(2.9856 + 0.0646 (1-2X,) + 0.7517(1-2X ) +

0. 02596(1~2X )3 + 0.6594 (1-2X )4)cm mo1”]
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Table 7.1% - Molar excess volumes VE for (1-X n - C6H11N +X, n -

c6 14 at 30%.15 K, and dev1at10ns AVL calculated from

the equation at the foot of the taole.

X, BVE . 10;AV%1 X, \3}3‘5 N 102 AY%

cm’mol cm”mol cm”’mol cm’mol
0.0703 - 0.0526 - 0.8 0.5252 «~ 0.0854 - 1,0
0.2065 - 0,1113 + 1.1 0.5756 = 0.0662 + 0,9
0.3278 - 0,12%1 - 0,2 0.6955 =~ 0.0159 + 0.7
0.4076 - 0.1156 - 1,3 0.8153 + 0,0343 - 1.7
0.4431 = 0,1063 + 0.4 0.9146 + 0.0532 +1,2
0.5113 - 0,0880 + 0,7

standard deviation ¢ 0,0013 cmamol-
AV - vE - X,(1-%,)( = 0.3681 - 0.5799 (1-X,) + O. 1852(1-2X )2
0.7287 (1-2X, )° + 0. 3832 (1-2X )4) emomol™
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Figure 7.1 The dilution dilatometer, as it was after

several dilutions had been carried oute.
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Figure 7.3 Apparatus used to achieve constant pressure on the liguids in the

dilution dilatometer throughout a series o
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Figure T+4 The excess § of the Vﬁ measured by other
workers over the values reported in Table 7.1,
against composition for C6H6 + C6H12 at 298.15 K,
Curve A calculated with data from reference 8,

curve B calculated with data from reference 3,
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CHAPTER 8

EXCESS ENTIALPINS OF MIXING

Introduction

The excess enthalpies or heats of mixing HE, as the excess

volumes of mixing, play an important role both in the thermodynamic

study of mixtures and in testing theories of non-electrolytes.

The interrelation between some properties of mixtures as given
by thermodynamics enables the determination of numerical values of
one property from experimentally observed values of some other

propertye.

Example of such interrelations were set out in Chapter 1, and of

particular interest for this discussion is the relation between
E . E
the excess enthalpy of mixing H &nd the excess Gibbs free energy G

(equation 1.11), namely

£2(2,0%%) = ¢° (7,p%%) - 7(s ¢5(1,p%,X)/a T)p  (8.1)

which is the Gibbs-Helmholtz equation and where po indicates a

standard pressure, usually 1 atm,.

Relation 8.1 means that HE may in principle be derived from
E
the temperature dependence of G , however, it has been pointed out1’2

that large errors in HE are obtained even for very accurate values -

of GE-

Experimental determination of Hp's are thus preferred over any

other method.
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McGlashan2 and more recently Marsh3 have reviewed most of
the calorimeters that have appeared in the literature for the
determination of HE. The calorimeters are distinguished according
to the principle on which they work, such as adisbatic, flow and

isothermal calorimeters.

Some hasic requirements must be considered when constructing
mixing calorimeters for precise measurementis of HE. Among the most
important ares (a) vapour spaces should be completely eliminated,
(b) means of achieving complete mixing of the liquid, and (c) means

to allow for volume changes on mixing.

Bearing in mind these requirements a displacement calorimeter was

built in this 1aboratory4 similar to that described by Stokes and

6
coworkersﬁ’ .
Experimental
8.1 Materials

All the materials for the determination of HE are from the
. E
same sources as the materials used in the determination of V .«

Methods of purification and storing of the pure samples have also

been described in section T.1.

8.2 The Displacement Calorimeter

The principle of operation of the calorimeter for the determination
of endothermic heats of mixing is as follows: a mixing vessel,
whose volume has previously been calibrated, contains originally pure
component! , addition of pure component 2 into the mixing vessel is
carried out with a calibrated burette. The drop in temperature on
mixing is compensated by electrically supplying a known amount of
energy. Volume changes on mixing are taken into account by allowing
mercury from the mixing vessel to be displaced into a pipette as a

result the experiment is carried out essentially under constant pressure,
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The ditferent components of the calorimeter are given

below with features of particular interest.,

(a) The Mixing Vessel

The mixing vessel is shown schematically in Fi:ure 8.1.
It was made of Pyrex glass by fusing its two halves by the middle
to allow the stirrer being positimed in place,

3

The mixing vessel (capacity 50 cm approximately) had

attached three capillaries A, B and C and two wells or pockets D
and E.

Capillary A, at the bottom of the mixing vessel, was connected
to the mercury pipette to allow mercury, originally filling approx-
imately half the total volume of the mixing vessel, to flow into
the pipette when dilutions were being carried out.

Capillary B, joined at one side of the mixing vessel, branches
into capillaries F and G. Capillary F was coupled to the piston
burette and provided the inlet for the pure liquid in the burette
when injected into the mixing vessel, Capillary G was closed by &
micro ball-valve V2 o?tside the thermostat bath,

Capillary C, at the top of the mixing vessel, allowed the
stirrer shaft to be taken outside the mixing vessel to be joined
to a motor outside the thermostat. A micro ball-valve V2 was fitted
to the outlet capillary H, through which air from the mixing vessel
was ejected during the filling procedure.

The glass wells were fused into the mixing vessel; D contained
the thermistor for the determination of temperature changes and E
the heater tc supply energy.
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The stirrer was designed to ensure that complete mixing was
acnhieved at any stage ot the experiment. The stirrer was directly
driven by a synchronous motor (Crouzet, type 82.18%) at a spced of
300 rpm. The stirrer had an upper propellor with two paédles designcd
to push the liquid to the bottom of the mixing vessel and a lower
four-paddled propellor designed to lift the liquid in the mixing

vessel,

(b) The Piston Burette

A 20 cm3 manual piston burette {Metrohm, type B274) was modified
and fitted with a synchronous motor (Crouzet, type 82.472) which moved
the PIFE piston P at a rate of 0.3 rpm. Figure 8,2 shows the pistcn

burette.

The volume of pure liquid injected from the burette into the
mixing was controlled with a manual switch ccnnected to the motor
driving the burette and it was read using scale @ (calibrated
in em’) and scale R (calibrated in 0,02 cm3).

A three-way tap T (Springham, type Interflon PTFE Interkey)
was joined to the burette to inject liquid through capillary S1 into

the mixing vessel and for refilling when necessary through capillary S2,

Capillaries S1 and S2 (PTFE tubing) were joined to tap T1 with
a low vapour pressure resin (Torr Seal, Varian Associates).

(c) The Mercury Pipette

Figure 8.3 shows the mercury pipette. It consisted of a flat

3

bottomed cylindrical vessel U (total capacity 50 cm” approximately)

with a long glass tube V at the top and a capillary tube W at the
bottome

Tube V was used to clamp the pipette to the frame holding
the calorimeter. Capillary W was joined to a PTFE tap T2 which had
attached a stainless steel capillary by a glass-to-metal seal,
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The mercury pipette was connected to the capillary A in the
mixing vessel by a PTFE tube (0.2 cm internal diamter) with a
female coupling at each end which screwed to the male couplings
attached to capillary A and to the capillary in tap T2 iﬁ the
pipette.

Two reference marks M1 and M2 were made on the pipette,
Reference M1 on vessel U marked the point up to which the pipette
had to be filled with mercury; reference M2 marked the position
of the mercury level at the beginning of an experiment. Consequently
M2 helped to determine the volume of the mixing vessel occupied by the

pure component at the beginning of any measurement.,

(d) The Calorimeter Jacket

The vacuwm Jjacket was a thick-walled glass cylinder with wide flanges

at either end (Quickfit type FG100). It was silvered leaving only
a clear strip in front to allow inspection of the mixing vessel.

The sealing of the jacket with the top and lower brass plate
X (see figure 8.1) was achieved using Silicon rubber O-rings Y.

The electric connexions for the heater and the thermistor,
and capillaries C, F and G passed through the top brass plate using
brass collars Z. The capillary A passed through the lower brass

plate also using & brass collar Z,

All the calorimeter components so far described were fixed
to an aluminium frame which was in turn fixed to a metal column,
This arrangement allowed the whole calorimeter assembly to be raised

or lowered into the thermostat tank as required.

Although the glass jacket was used to prevent heat losses from
the calorimeter to the thermostat and to keep the mixing process
at a constant temperature, the term isothermal has been avoided in
describing the present calorimeter,
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The name isoperibol displacement calorimeter seems more
appropriate, since it means that the calorimeter temperature is 8lightly

different from its enviroment (i.e., the thermostat bath).

B.3 M ement erature the Calorimeter

The measurement of temperature changes in the calorimeter
during the process of mixing also plays an important role if
precise values of HE are 1o be obtained.,

7

Faulkner et al described a resistance thermometry arrangement
which was an improvement to that used in the calorimeter of lLarkin

and McGlashans. The advantages of the resistance thermometry

of Faulkner et al made possible greater accuracy in the measurement
of HE such circuitry has been used in this laboratory in several

different designs of calorimeters during the last 7 years.

Figure 8.4 shows schematically the resistance thermometry used
in this work. The Wheatstone bridge having a thermistor as the
unknown resistance was operated at approximately 18 Hz by an A.C.
generator (Advance Electronics Ltd., type J2E oscillator). The use
of such a low frequency cut down the power dissipated by the thermistor
in the calorimeter. Also potential fluctuations due to thermal

e.m.f.'s present in D.C. circuitry were eliminated.

The 600 Q impedance output, with both ends floating, of the
A.C. generator was used to power the bridge and the 5 @ impedance
output, earthed on one side, supplies the reference signal for the

phase-sensitive detector (PSD).

The bridge output after amplification by a low-noise amplifier
(Brookdeal, type 450) is fed to a PSD (brookdeal, type 411) whose
D.C. signal was thenegpplied to a flat-bed potentignetric recorder
(Servorgor, type RE 511,20). The recorder displaycd directly the
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amplified bridge output which eliminated the need for point-by-

point plotting of the galvanometer - time rcadings as done by

Larkin.

The construction of the Wheatstone bridge was carried out
using short twisted wires to reduce 50 Hz pick-up. The ratio
or fixed arms of the bridge were two wire-wound resistors (Cropico
Ltd.) of 100 @ and 10 Q@ . A decade box of approximately
10 K § was used as the variable arm of the bridge. The thermistor
used was a Standard Telephones and Cable Lid. type G (bead-type
in glass capsule) with a nominal resistance of 500 § at 20°C.

Coaxial cable was used in the following connections: A.C,
generator -PSD and bridge, bridge-amplifier, amplifier - PSD, and PSD -

recorder,

The Wheatstone bridze and the ancillary equipment were used
as follows: the output voltage E of the A.C. generator was set to
give a suitable amplitude as indicated by the level detector
('magic eye') on the PSD, the E used for all the measurements in
this work was 8 volts. The resistance R (refer to figure 8.4)
was set to a value of 825 @ , so that the current through the

bridge was approximately 5.3 x 10-3A.'

The bridge was balanced by adjusting the value of the resistance
box (the variable arm) having the gain of the amplifier at its
lowest value and the recorder drive switched off. The amplifier
gain was then increased to the next value and balance was achieved,

as observed on the scale of the PSD, by adjusting the resistance box.

When a suitable gain was achieved (usually 70%) the recorder

drive was switched on and a pen response of app roximately 10mK"1 was

used.

The power dissipated by the thermistor was approximately 6.9 x 10-6W

giving a rate of warm-up of the calorimeter of 4.9 x 10-'6 X min-1
approximately, wiich is indeed a very low value compared with those

usually obtained in a D.C. resistance thermometry circuit,
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84 Heating Circuit

The heating circuit described below is used for endothermic

mixing processes where compensation of heat is required on mixing.

The heating circuit consisted (see figure 8.5) of a constant
current calibrator (Bradley Ltd., type 132), a digital timer
(Venner Electronics, type TSA 6635), a calorimeter heater, two
mercury wetted relays (ITT, type 313101 AAAA), and a manuallswitch.

The constant current calibrator (CCC) supplied any previously
gset current to the heater, the timer was started simultaneously
thanks to the mercury wetted relays. Thus, knowing the current
supplied, the heater resistance and the time the current was flowing

it was very easy to calculate the energy supplied to the calorimeter.

The calorimeter heater was wound around a cylindrical ceramic
former using resistance wire of low temperature coefficient of
resistance (Johnson Matthey, type Stabilohm 133). The heater
resistance was 706.952 g for this study as wmeasured with a
comparison bridge (Rosemount Engineering Co., model VLF-S1A)
and % standard resistor (100.0153 q ) at 298.15K, the temperature

of H measurements. (

8.5 Measuring Procedure

In order to know the volume of the pure liquid in the mixing
vessel (the dilutee) at the beginning of any set of measurements
it is necessary to calibrate the volume above the mercury surface in
the mixing vessel. This calibration was carried out by filling the
mercury pipettie with mercury up to the reference mark M. This was
done by placing the stainless steel capillary into a beaker with clean
mercury and evacuating the pipette from the top of tube V. This

procedure ensured that no air was trapped inside the pipette.
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The pipette was then connected to the mixing vessel using the
PIFE tube with couplings. The mercury was allowed to run into the
mixing vessel and stopped at reference mark M2 on the pipette.
Tap T2 was closed so that the volume in the mixing vessel above
the mercury could now be calibrated injecting liquid from the
piston burette. ?he uncorrected volume was obtained from the
burette readings taken when the first drop of liquid entered the
mixing vessel and when the first drop of liquid came out through
the micro valve V2. The final calibration volume was obtained
subtracting to the uncorrected volume the volume of capillary C (0.015 cmB)
and adding the volume of capillary B (0.004 cmj)- The calibration

volume found here was 23,11 ¥ 0,01 cm3.

The procedure for operating the dilatometer was as followss
the mixing vessel was filled with mercury as described above adjusting
the mercury level in the pipette to reference M2. The jacket was
evacuated at this stage, tap T2 closed end the calorimeter partially
immersed in the thermostat. After approximately 1 hour the degassed
dilutee is injected into the mixing vessel having valve V1 closed
and valve V2 open. Valve V2 was closed when liquid came through it

and valve V1 was opened to ensure that no air was left in any capillary.

Meanwhile the burette had been filled with the degassed diluent and
placed in the thermostat. After the mixing vessel was filled the
stirrer was switched on and the burette connected to capillary F using
a Iuer-lock adaptor. The whole calorimeter arrangement was then
immersed completely into the thermostat controlled at 298,15 + 0.005 K.
The burette was operated to fill capillary G with the diluent and valve
V1 closed.

The calorimeter was left overnight to reach thermal equilibrium
after which tap T2 was opened and mixing started. After each injection
of the diluent the mercury level in the pipette was adjusted to

ensure a constant pressure experiment and furthermore to avoid contrib-
utions to from the heat of compression of the mixture,
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Since only endothermic mixings were studied, after each
mixing the calorimeter temperature dropped so electric energy was
supplied using the heating circuit already described. The
electric energy or heat of compensation did not always bring the
calorimeter temperature back to its original value as observed in
the recorder. This difference in the temperature had to be taken into
account when HE was calculated. Thus, in order to evaluate the
amount of energy under or over-compensated, a known amount of
electric energy was supplied to the calorimeter and the ratio
energy/displacement obtained with the recorder. It was not necessary
to carry out such a calibration after each mixing since a plot of

- .
energy/displacement GImm ) against the total volume of the diluent

injected was used for interpolations.

For the calculation of HE the following data had to be

recorded at each mixing: the volume of diluent injected, the current
supplied, and the time of flow of the current during compensation, also

for some mixings when calibration was done the current and its time
of flow. These data together with the constant volume of the dilutee

"
in the mixing vessel and the heater resistance were used for HL calcu-

lationse.

8.6 Thermostat and Measurement of Temperature
{

The thermostat was a water filled galvanised tank (capacity
0.2 m3, approximately) insulated with polystyrene plates. The tank
had a front window through which the mercury levels inside the

mixing vessel and in the pipette were viewed,

The thermostat was controlled to (298,15 M 0,009 K for most
of the time used in measurements using a proportional temperature
controller (Hallikainen .Instruments Ltd., type 1053A) and a 100 Q
platimum resistance as sensor. A centrifugal pump with inductance
motor was used for stirring to avoid 'electric noise'! interfering
with the calorimeter temperature measuring circuit as usually occurred
when normal brush motors were used,
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Heat to the thermostat was supplied by a Pyrotenax heating

element wound around the inner walls of the tank,

The thermostat temperature was measured with a calibrated

platinum resistance thermometer and a comparison bridge.

8.7 Results

Although the displacement calorimeter has been extensively
used in this laboratory giving reliable results of H? it was necessary
to study a test system to get acquainted with the different instruments

and to develop a measuring technique.

The system cyclohexane + n-hexane was proposed9 as a
standard for testing enthalpy of mixing calorimeters according to
the criteria discussed by McGlashan2’1O. During 1969 several laboratories
9,11,12 were engaged in measurements to stablish precise values of

Bﬁ at 298.15 K for the above system,

The results for the test system obtained in this work are shown

in table 8.1. The Hﬁ results were fitted, by the least square
13

method, to an equation of the form 3
e x,(1-x,) £ ¢, (1-2x,)" (8.1)
m 2 2 i i 2 o

where X2 and Ci are the mol fraction of the second named component

and the coefficients of the polynomial equation respectively.

The standard deviation and also given in table 8.1 is calculated

as follows

(z( AH£)2 ;%

c = ( Nobs. -N

(8.2)

where Nobs. and N are the number of experimental values of HE and

the number of C; coefficients used in equation 8.1 and AIﬁG also given

in table 8.1, is given by:
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] E
AHS =H - Hﬁ (calc.) (8.3)

where Hﬁ is the experimental value and Hg (calc.) is the value

calculated with equation 8.1 at thc same mol fraction Xz.

Table 8.2 shows a comparison of Hﬁ (calcs) from equation
8.1 at round values of X2 with the most reliable measurements

obtained by other workers.,

The excess enthalpies of mixing of the following ne-alkanenitrile +

n-alkane systems were studied also at 298.15 Ki

(n-pentane
propanenitrile + (n-hexane

(n-heptane

(n-hexane
(n-octane
n-butanenitrile + (n-dodecane

(n-tetradecane

Table 8,3 lists the density at 298,15 K and the relative
molecuh r mass = of the pure substances used in the calculation
E {
of Hm’

Tables 8.4 to 8,10 contain the experimental Hﬁ - X2 data,
the smoothing polynomial equation (i.e, equation 8.,1) fitted to
Hﬁ, the deviations AHS (i.e., equation 8,3) and the standard
deviation of Hﬁ (i.e, equation 8.,2) for each of the studied systems.
Figures 8.6 and 8.7 are plots of Hﬁ against the mol fraction X2
of the n-alkane for propanenitrile + n-alkane and n-butanenitrile +
n-alkane systems respectively.
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8.8 Discussion

E
The results of Hm for the test system obtained in this work
are in good agreement with those reported by other workers specially
in the composition range X, = 0.3 to X2 = 0.7 where the differcnces

are within the standard deviation obtained here, i.e., 1.0 mol-1.

The magnitude of HE for n-alkanenitrile + n-alkane systems
makes desirable the use of a test system with HL similar in magnitude.

Unfortunately, no suchltest system has been prOposed up to the present,

A qualitative discussion of the experimental HE may be done with

the help of Figures 8.6 and 8,7. The magnitude of increases as
the chain length of the n-alkane increases in systems with either
propanenitrile or n-butanenitrile. The Hﬁ - X2 curves unlike the
VE results are very symmetric. As for the relative magnitude of

for systems with a common n-alkane the Hﬁ for propanenitrile +

n-hexane is higher than for n-butanenitrile + n-hexane,



Table 8.1 - Molar excess enthalpies HE for (1-X )C H
at 298,15 K, and devaatlons AHL calculzted from the
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612

equation at the foot of the table.

+ X n-CH

6714

X2 H%r 1 AH% 1 X2 HE : A H% 1
J mol J mol” J mol~ J mol”
0.0018 1.7 - 0.8 0.5154 215,7 + 0.5
0.0065 6.6 - 2.2 0.5519 21,1 + 2,0
0.0322 39.3 - 1.6 0.5792 203.5 40,3
0.0451 57.9 + 2.4 0.6079 195,3 + 0.4
0.,0625 75.2 + 1.3 0.6396 185.3 - 0.8
0,0817 92.4 0 0.6711 17346 - 1.5
0.1010 109.6 + 0.4 0.,7018 161.6 - 1.4
0,1178 122.4 - 0,18 0.7267 151,4 - 0.8
0.,1410 138.1 - 1.1 0.7489 141.7 - 0.3
0.1630 15244 - 0.7 047653 133,9 - 0,1
0.1858 16547 - 0.1 0.7824 125.6 + 0.3
0.2108 178.0 + 0.1 0.8081 13,4 + 1,6
0.2376 189.6 + 0.7 0.8385 96.8 +1.9
0,2672 199.3 + 0.4 0.8531 87.7 + 1.1
0.2973 206.9 - 0.1 0.8682 1743 - 0.5
0.3295 212.5 - 1.2 0.8838 67.7 - 0.9
0.3600 217.0 - 0.9 0.9000 58.6 - 0.4
0,3670 218.3 - 0.3 0.9343 38.4 0
0,3750 219.0 - 0.4 0.9487 28.6 - 1,2
0.4052 22243 + 1.1 0.9561 2543 - 0.1
0.4473 221.3 + 0,1 0.9753 1446 + 0.5
0.4801 220.1 + 0.8 0.9909 5.0 - 0.1

standard deviation : 1.0 J mol

b = - X, (1K, )(868.95 + 234, 05(1-2x, ) + 94.96(1-2X,)% + 170,73

(1-2x2)3

) J mol™
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Table 8,2 - Comparison of Hﬁ values for the test system (1-X2)

C6H12 + X2 n - C6H14 at 298,15 K.
X2 Hﬁ/ J mol"'1
1 2 3 4 >
0.05 60.8 56.72 56475 56463 56416
0,10 108.4 103.03 103,08 102,96 102453
0.20 172.9 169,08 169,14 169.20  169.49
0.30 207.6 206,19  206.16 206.52 207.36
0.40 221,0 220,40 220,24 220,83 221,66
0450 217.2 216.13 215,87 216,52 216.96
0.60 197.9 196.49 196.23 196.76 196,85
0.70 - 16347 163,62 163,52 163,76 163.93
0.80 11641 119.07 119.21 119,12 119,86
0,90 58.9 64.09 64.38 64411 65431
0.95 29.0 33.09  33.32 33.11 34406

1)  this work from smoothing equation
2) reference 6

3) reference 11

4) reference 9

5) reference 14
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Table 8,3 - Densities at 298.15 K and relative molecular mass

of pure substances used in the calculation of Hﬁ.

Substance M, p /er om™>  reference
cyclohexane 84.163 0.77391 15
n-pentane 72.151 0.62139 15
n-hexane 86,178 0.65481 15
n-heptane 100,206 0.67951 15
n-octane 114.233 0.69849 15
n-dodecane 170,341 0.74516 15
n-tetradecane 198,395 0,75917 15
propanenitrile 55.08 0.77682 16

n~-butanenitrile 69,107 0.78630 17
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Table 8,4 - Molar excess enthalpies HE for (1-X )03H5N + X n -

5 at 298.15 K, and dev1at10ns AHL calculated from

the equatlon at the foot of the table.

X, I Al X, m A

J mol™" J mo1™! J mol™" J mol”
0.0401 143.7 - 5.8 0.4648 1219.5 - 3,2
0.,0573 223.7 + 0.2 0.4872 1226.5 - 6.0
0.0735 298.4 + 3.2 0.5094 1236.8 - 1.9
0.0891 368.4 + 3.8 045323 1241.7 + 0.4
0.1054 435.4 - 0.8 0.5619 1236.4 - 2.3
0.,1289 536.0 + 0.4 0.5936 1227.5 -0.7
0.,1504 621.7 + 0.4 0.6370 1199.2 - 0.5
0.,1724 703%.8 + 1.2 0.6900 1144.9 + 2.9
0.1928 T771.2 - 0.5 0.7376 107049 + 3,0
0.2136 834.2 - 1.6 0.7843 977.3 + 3.5
0.2374 897.9 - 3.7 0.8276 865.4 + 0.2
0.2624 959.2 - 3.1 0.8694 732.2 - 3,3
0.2876 1013.8 - 1.7 0.9016 605.8 - 6.7
0.3132 1062.4 + 0.2 0.9289 480.5 - 5.6
0,3375 1101.0 + 0.6 0.9489 377.9 + 1.6
0.3606 1134.2 + 2,5 0.9645 282.7 + 4.7
0.3768 1155.4 + 444 0.9778 191,1 + 745
0.3966 1178.4 + 6.5 0.9867 122.9 + 8.7
0.4217 1197.1 + 2.7 0.9944 56,0 + 6.3
0.4451 1211,1 - 0.2

-1
standard deviation : 4.0 J mol

ME = B = X,(1-X,)(4945.92 = 533.22(1-2K,) + 1373.92 (1-2X,)?
+ 488.69(1-2X,)° - 226,19(1-2X,)* - 2964.87(1-2X,)°) 4 mo1™’
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Table 8.5 - Molar excess enthalpies HE for (1 -X )03H5N + X n-C, H14
at 298.15 K, and devlatlons Af%}calculated from the

equation at the foot of the table.

X2 ;% AH% x2 H%ﬁ AH%

J mol-1 J mol'.1 J mol-1 J mol-1
0.0113 71.8 - 5.6 0.3610 1344.0 + 5.7
0.0230 149.7 - 4.7 0.3802 136549 + 4.7
0.0382 248.1 - 2.0 0.3989 138642 + 6.0
0.0553 349.7 - 2.0 0.4324 1407.8 + 1.7
0.0756 465.5 + 1,2 044725 1422,2 - 1,8
0.0970 57545 + 1.4 0.5181 1424,2 - 3,2
0.1250 709.2 + 4.7 0.5646 1407.4 - 5.6
0.1542 831.7 + 6,2 0.6179 1374.3 -~ 0.5
0,1917 95842 - 2.3 0.6792  1305.4 + 3.4
0.2254 1062.7 - 1.3 0.7555 1167.4 + 2,9
0.2568 1143.0 - 3.6 0.8226 988.0 - 1,0
0.2876 1208.8 - 7.0 0.8793 T17.4 - 2.5
0.3160 1259.7 -10.3 0.9312 518.3 - 1.6

standard deviation § 4.9 J mol-1

AHﬁ - Hﬁ - x2(1-x2)(5712.6o - 70.69(1-2x2)+ 1489.03(1-2X2)2
- 548.49 (1-2x2)3 + 1037.51(1-2x2)4 - 645.67(1-2x2)5) J mol™
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Table 8.6 - Molar excess enthglpies Hﬁ for (1-X2)03H_N + X2 n -

5

C7H16 at 298.15 K, and deviations AHﬁ calculated from the

equation at the foot of the table.
X, o : AR 1 X, i 1 At 1

J mol J mol J mol J mol

0.0129 98,9 - 4.5 0.3587 1472.2 + 9.0
0.0291 221 .1 - 3.9 0.3873 1499.1 + 2,2
0.0464 344.2 - 1.0 0.4092 1515.0 - 1.7
0.0655  469.3 +1.6  0.4435  1534.3 - 3.2
0.0920  627.1 + 5.7 044829  1544.6 - 2.2
0.,1217 - 77542 + 1.2 0,5268  1540.5 + 0,6
0.1515  910.5 +1.8  0.5993  1490.4 = 1.4
0.1815 1027.5 - 0.4 0.7001 1354.7 + 0.9
0.2121  1124.2 - 9.9 0.7999 1125.0 + 2.5
0.2552 1260.0 0 0,8888 781.,0 - 3.3
0,3005  1364.9 0 0.9536 39745 + 1.6

0.3491  1449.8 0

-1
standard deviation : 4.1 J mol

2
Agﬁ - nﬁ - x2(1-x2)(61s4.74 + 227491(1-2X,) + 1567.24 (1-2X,)

- 1043.68 (1-2;(2)3 +1305.08 (1-2x,)4) 4 mol™"
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Table 8.7 - Molar excess enthalpies Hﬁ for (1-X2) n - C4H7N + X2n -

C6H14 at 298,15 K, and deviations AHﬁ calculated from
the equation at the foot o' the table.

X, 1h : Eh% 1 X2 H% 1 Al% 1
J mol J mol J mol J mol
0.0193  104.6 + 0.9 05862 1221,3 - 10,5
0.0476  251.8 +1.3 0.6271 1188.1 - 3.4
0.0766  394.1 + 1,0 0.6707 1140.8 + 441
0.1131  561.4 + 2.0 0.7116 1077.0 + 3,6
0.1511  715.0 -~ 0O 0.7507 1006.2 + 5.6
0.1855  835.1 - 4.3 0.7846 928.8 + 2.8
0.2270  963.0 - 449 0.8236 82441 + 0,1
0.,2686 1071.4 = 1.7 0.8513 73849 0
0.3096 1158.9  + 4.6 0.8784 64343 + 0,1
0.3518 1225.6  + 9.9 0.9031 544.5 + 0.8
0.3610 1220.9 - 5.3 0.9259 433.3 - 6.3
0.3833 1244.3 - 3.6 0.9452 336.8 - 444
0.,4138 1271.6  + 2.8 0.9580 2657 - 4.5
0.4464 1287.1  + 6.3 0.9689 205.3 - 0.5
0.4794 1288.4 + 5.4 0.9787 15243 + 77
0.5129 1273.4 - 2.6 0.9868 94.6 + 3,1
0.5498 12509 = 7.5 0.9935 48.9 + 3.0

standard deviation: 4.8 J mol-1

2
.Anﬁ - Hﬁ - X,(1-X,)(5119.00 + 482.31(1-2K,) + 1188,61(1-2K,)

- 1354043 (1-2%,)%) J mo1™"
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Table 8.8 -~ Molar excess enthalpies Hﬁ for (1-X2) n - C4H7N + X2

n-CH _at 298,15 K, and deviations AHg calculated

818
from the equation at the foot of the table. '
X, tin 1 AT : X, i : AF§%1
J mol” J mol” J mol~ J mol”
0,0037 29.2 - 2.4 0.3773 1213,6 + 1,0
00092 71.1 - 5.9 0.4069 1350.0 + 4.8
0,0165 124.3 - 10.3 0.4385 1381.4 + 9,8
0.,0267 19745 - 12,6 0.4666 1395.5 + 8,1
0.0385 279.2 - 11,9 0.4976 1408.3 + 12,0
0.0504 359.8 - 6.6 0.5326 1390,7 - 445
0.0632  441.1 + 0,2 0.5687 1369.6 - 12,3
0.,0753 513.8 + 8.0 0.6112 1336.9 - 13,6
0.,0898  595.7 + 18.3 0.6649 1286.5 - 1,2
0.1101  676.9 + 9.3 0.7138 1214.3 + 5.7
0.1324 7535 - 1.9 0.7601 1121,7 + 7.7
0.1575 83845 - 4.2 0.8033 1009.5 + 3,8
0,1808  915.3 + 0.3 0.8426 -886.0 + 0.1
0.,2100 994.8 - 1.0 0.8771 753.7 - 4.8
0.2402 1069.3 - 0.8 0.9106 602.5 - 5.5
0.2721 1136.7 - 3.0 0.9381 454.9 - 3.7
0.2993 1187.5 - 5.2 0.9525 271.2 + 2.4
0,3263 1230.2 - 9.4 0.9650 288.7 + 5.4
0.3062 1207.0 +1.8 0.9772 193.9 + 1.5
043251 123443 - 3.3 0.9889 99.2 + 1.6
0.3502 1276.0 - 0.4

standard deviation : 7.5 J mol-1

2
AH:?I - Hﬁ - X,(1-X,)(5586.27 - 229.34 (1-2X,) + 799.35 (1-2X,)

- 21.03 (1.2x2)3 + 2514.38 (1-2x2)4) J mo1~!
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Table 8.9 - Molar excess enthalpies Hﬁ for (1-X2)n - C4H7N + in -
C12H26 at 298.15 K, and deviations AH? calculated from

the equation at the foot of the table,

X, i : At : X, Hy 1 A 1
J mol J mol J mol J mol

0.0066 62.8 - 1.0 0.3059  1456.8 + 14.3
0.0135 123.6 - 4.7 0.3249  1488.6 + 21,0
0,0303 268.6 - 8.0 0.3742  1498.7 - 1741
0.0418 36745 - 3.7 0.4128  1530,1 - 9.0
0,0535 463.2 + 1.3 0.4560 155343 + 0.5
0.0656 55648 * 6.8 0.4951 1552.6 - 2,0
0,0791 649.9 + 8.1 0.5390  1543.7 - 0.8
0.0941 T41.4 + 543 0.5843 1519.5 + 0.5
0.1093 826.7 + 2.8 0.6344  1474.7 + 4.9
0,1252 908.6 + 0.8 0.6801 14074 + 5.9
0,1419 98545 - 23 0.7233 1311,1 - 1,1
0,1597  1059.9 - 4.7 0.7656  1192.6 - 544
0,1772 1127.3 - 4.8 0.8103 1039.2 - 5.8
0.1947  1185.2 - T.2 0.8555 853.4 - 0.4
0.2122 1239.7 { = 6.4 0.8952 663.6 + 8.9
0.2300  1289.0 - 545 0.9251 491,7 + 5.9
0.2479  1334.3 - 3.0 0.9488 339.5 - 1.6
0.2677  1380.1 + 1.5 0.9716 180.0 - 13,6
0.2871  1421.1 + 746

-1
standard deviationst 7.8 J mol

2
Ang - Hﬁ - X,(1-X,)(6216.45 + 228.07 (1-2X,) + 2888.86 (1-2X,)° +

1189.11 (1-2X,)° = 706,18 (1-2%,)*) J mo1™"




Table 8,10 - Molar excess enthalpies Hﬁ for (1-X2)n - C4H7N + X
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n - C1

2 4

H30 at 298,15 K, and deviations AHﬁ calculated from the

equation at the foot of the table.

x2 E%ﬁ AH% X2 HE AH%
J mol“1 J mol“1 J mol-1 J mol-'1
0.0094 92.6 - 5.8  0.2827 1470.9 - 2.3
0.0223 219.8 - 4.8  0.2995 152642 + 19,0
0.0370 553.2 - 3.5 03431 1586.4 + 5.0
0.0535 490.7 - 0.8 03905 1640, 1 - 1.3
0.0712 622.3 + 0.4  0.4479 168646 - 043
0.0960 790.6 + 8.0  0.5163 170241 + 0.3
0.1158 904.0 + 9.0  0.5936 165649 - 6.0
0.1385 1013.1 + 4.4  0.6563 1581,1 - 1.6
0.1622  1111.8 - 0.8  0.7386 1405.6 + 3.8
0.1870  1199.1 - 8.2  0.8145 1150,5 + 447
0.2103 1274.4 - 10.9 0.8839 815.8 - 3.7
0,2336  1346.6 - 7.3 0.9464 421.3 - 1.9
0.2579 1412.4 - 4.5
standard deviationt 7.0 J mol™

E 2
b = Hﬁ - X,(1-X,)(6809.17 = 100.61(1-X,) + 2009.18(1-X,)" + 1000.68

(1-2x2)3 + 1057.37(1-2x2)4) J mol”

1
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Figure 8.4 The resistance thermometry. (0 =) oscillator,
(A=) amplifier, (PSD=) phase sensitive detector

and (C.R.=) chart recorder.
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Figure 8,5 The heating circuit. (D.T.=) digital timer,
(R=) mercury wetted relays and (C.C.C.=)

constant current calibrator.
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CHAPTER 9
GAS~LIQUID CRITICAL LOCI:

COMPARISCN OF THEQRY AND TWXPuRIMENT

Introduction

The theoretical interpretation of the gas-liquid critical
behaviour of mixtures provides the oportunity to relate measureable
macroscopic properties to the parameters (e.g energy and size)

of the unlike molecular interactions.

The complex behaviour of binary hixtures in the critical
region was studied by the van der Waals school but such a study was
not completed due to the difficult}e; of hand-calculations, More
recently van Konynenburg and Scott '™ have investigated with the
help of modern high speed computers the phase equilibria of binary

mixtures using the van der Waals' equation of state,

The qualitative interpretation of the behaviour of binary
mixtures has been achieved by the above workers using the van der
Waals equation with suitable choices of the parameters a and b for the

pure components and for the mixtures..

In this Chapter attempts will be made to predict the p-T-X
loci reported in Chapter 6 for ethanenitrile + n-alkane binary
mixtures using the van der Waals' equation of state and the van der

Waals! one-fluid relations,

9,1 DPrediction of Critical Temperatureg

The prediction of gas-liquid critical properties of binary
mixtures as a function of composition is usually carried out assuming
that there exists a hypothetical equivalent (pure) substance, which
has the same configurational Helmholtz fuction A as the mixture at
a given T and p (see the discussion in Chapter 3 on the PCS for mixtures),

Furthermore the combinatorial energy Ac is assumed to be separable and

independent of V and p,
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Some other assumptions are made in order to calculate the

configurational Helmholtz function of the equivalent substance A_,
x

namelys

i) the equivalent substance obeys a particular reduced equation of

state,

ii) the reduced parameters of the equation of state may be
determined from 'prescriptions' which depend on composition and energy

and volume parameters of the like and unlike interactionsj

iii) the energy and volume parameters of the unlike interactions may
in turn be determined from combining rules involving the parameters of

the like interactions.

The criticality conditions that must be satisfied by a binary

mixture are> (see Chapter 4)

(2 26/5 X2)p,T = B/(1X)X + (5 %_/a X)p,1 = O (9.1)

(5 36/ 3%%)p,T = RT(2X - 1)/(1-x)%X% + (3 3cx/ 3X2)p,T = 0 (9.2)

since
¢(T,p,X) = Rz X, In X, + G _(T,p) (9.3)

where Gx is the configurational Gibbs function for the equivalent

substance.

As shown in Chapter 4, the critical point of a pure substance
(such as the equivalent substance being used in this treatment) is
given by the conditions of mechanical stability so that one can use Ax
(V,T) rather than Gx(p,T), since the latter has singularities at the

critical pointe.
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3

Rowlinson” presents an approximate solution to the criticality
conditions and obtains the difference between the gas-liquid critical
constants of the mixture and those of the equivaleni substance. For

the critical temperature of the mixture Tﬁ the difference is given

4

by

(1 - 1)/ = XX Ze(e(1-G o, b TITTE/BT) - B)Q (9.4)
where

£=(0r/3%,)/f, h=0b/3X,)/n (9.5)
and |

Q = (X/V210)/(2%p,/ 3V am)° (946)

The energy and volume parameters of the equivalent substance fx
and hx’ respectively, may be substituted by T: and V: which can be

determined using the van der Waals' one-fluid prescriptions:

c c C '
TV =& 5 XX 9.7)
c (+]
Vo= 8§ XKV (9.8)

where if i = j the critical constants are those of the pure components,

and if i#J they refer to hypothetical critical properties.

The Lorentz-Berthelot combining rules are most commonly used
for the determination of the hypothetical critical temperature and

pressure
o2, = ¢ (12, 15,0 £ =1 (9:9)

1 1
¥, = (1 +o)(VC3 4 v 3 g5 w0 (9.10)

where the parameters £ and p have been introduced to allow for departure

from the respective combining ruless’s.
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Equation 9.4 was derived without reference to an equation of
state, however, in order to obtain numerical values of T; an explicit
equation has to be used for the equivalent substance. If the
van der Vaals' equation is used, then the critical tempefature of

the mixture can be calculated from

c c c c c c\2
T, =T, (14 (X X,/16)(3(3T, /3 X,)/T + (30 /3X,)/V. )°A) (9.11)
where T;, Vi and their derivatives can be determined from equations

9,7 snd 9.8; the factor A arises from the combinational Helmholtz
function of the mixture which is unity if the mixture is taken to be

ideal and if the Flory expression7 is used for the entropy of mixing

8
then A is equal to
X.)2/(X, +rX,)
(Xy + X)Xy v T % (9412)

where r is the ratio of the molar volumes of the pure components
(ioeo ve/val) at 298015 K.

For the calculation of T; - X for the systems studied
experimentally (excluding ethanenitrile + n-butane, + n-undecane, since
only a pair of mixtures were studied for these systems) the following
procedure was used: T: and V: were obtained from equations 9.7 and
9,8 as function of X using pure substance critical constants and the
combining rules 9.9 and 9.10. The disposable parameter { was
adjusted to obtain agreement between theory and experiment at X = 0.5,

whereas, p was set equal to zero throughout all the calculations.

Two sets of values of T; - X were obtained for each of the six
systems, one corresponding to A =1 in equation 9.11 and the second set

by using relation 9,12 for A,

Although the combinatorial energy as given by Flory's equation
is more appropriate when the chain molecules are considered to be
made up of like segments, the values of T; for a given value of §&
using the ideal combinatorial energy are only slighily different from

those obtained when A is given by equation 9.12. Similar results have

been obtained for mixtures ot quasi-spherical molecules by Hicks and

9

Young .



197

One more set of results was obtained by replacing the Berthelot

combining rule by
c c c
V12 = (1 + p) (V11 +V22)/2 (9013)

2
as suggested by Scott ™ for chain molecules. The parameter o in 9.13

was also set equal to zero as in 9,10 for these calculations.

The calculated values of Tﬁ using relation 9.13 are also very
similar to those obtained with 9.10, however, the parametersg are

slightly different for a given system.

Table 9.1 gives the values of ¢ used in the calculation of T;

for each system,

Figure 9.1 gives a comparison of calculated and experimental T;
as a function of composition. Since the several sets of calculated

T; are very similar it will suffice to give only one set of results

for each system.

The values of ¢ are lower than unity in each system and this
indicates weak interactions in the mixtures compared with the geometric

mean,

As for the agreement between the calculated and the experimental
T; it can be observed that although there is not complete quantitative
agreement in the whole range of ccmposition the theory does reproduce
the general pattern of behaviour of the T: - X curves and furthermore
it predicts the existence of minimum temperature points as experimentally

observed in each one of the studied systems.

It must be pointed out that in deriving equation 9,11 the
molecular energies and sizes of the components were assumed to be
~very similar and that the equivalent substance obeys van der Waals'
equation of state, however, regardless of such assumptions in no case

did the theory predict unrealistic values of T;.
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9.2 Prediction of Critical Pressures

Using the same assumptions as in the derivation of equation
9,4 the ditference between the critical pressure of the mixture p;
and the critical pressure of the equivalent substance pi is given
as follows
c cy/.C - c mC _ mCy/mC
(28 - B2V/6% = (ain b/ plal)S (15 - 22)/18 (9.14)

As in the previous section the van der Waals equation of state

is used for the equivalent substance ao that p% is now given by
C mC c ,C
pC = B (1% (15 - T }4/10) (9415)

where T; is calculated with the one-fluid prescription (i.e. equation
9,7) and T; from equation 9.11. Since values of p: are not given
directly from the one-fluid prescriptions for the equivalent substance,

a way of calculating Z; has to be found,

c
The choice of a prescription for Zx has to be based on the fact
that the calculated p; has to run smoothly between the critical pressures
c . .
of the pure components. If Zx is determined frcm the equaticn of state

c ' . . .
this does not happen, and so Z, was determined in this work from the

relation proposed by Pitzer
c c C
2y = %1291 + X% (9.16)
where Zgi is the critical compression factor of the pure components.
c . .
Thus, P is given by

c c ¢ c c c c c
pm = RTx(x1Z11 + Xzzzz)/vx (1+(Tm - Tx)q/Tx) (9017)
The .calculation procedure for p; is similar to that for T;. Two

sets of results were determined for each system, one using equation
9,10 for V$2 and the other using equation 9.13; ,= 0 in both cases.

The results did not show any agreement with the experimental values,

In order to force agreement between theory and experiment the
parameter p was allowed to vary and £ in the Berthelot rule was given

the value calculated from Tf for the system.
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The two sets of results calculated in this way do not differ much
from each other, however, the values of p for a given system are indced
of different magnitude. Table 9.2 lists the values of p used in the

calculations for each system.

Although the agreement is improved with the use ofp as a
disposable parameter exact quantitative agreement is not obtained.
However, some features of the p; - X curves are reproduced as

can be seen in figure 9,2,

This is not surprising since Cruickshank and Hicks11 have shown
that a complete treatment of the criticality conditions, still using
the van der Waals' equation of state, predicts pressures which
are significantly different from the experimental values.,

12 .
Hicks and Young have discussed the combining rules for V?z

. 13 .
concluding that a geometric mean rule 5 is superior, however, in view
of the assumptions in applying the present treatment it is not possible

to place too much emphagis in such an observation.
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Table 9.1 Values of ¢ from experimental T; (X = 0.5) for

ethaneniirile + n-alkane systems using two different

c
combining rules for Vqoe

n«C@C

n-alkane n - C5 n - 06 n - C7 n - 08 n - 09 10
8 0.903 0,905  0.902  0.885  0.866 0,868
gD 0.904 0,907 0,907  0.895  0.862  0.669
a Using equation 9.10 for V?z, and A = 1 in equation 9,11,
b Using equation 9.13 for V$2, and A = 1 in equationr 9,11.
Table 9.2 Values of p used in the calculation of p; for
ethanenitrile + n-alkane systems.
n-alkane n - C5 n - 06 n - C7 n - 08 n - 09 n - C10
a - 0,12 - 0.08 - 0,06 ~0,08 - 0.12 =~ 0,14
p
b - 0,32 - 0.24 - 0,24 = 0.30 - 0.38 - 0.42
D

8 using equation 9.10 for V$2’ and the corresponding value of ¢

b Using equation 9,13 for V?z, and the corresponding value of ¢ .
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Figure 9.1 Comparison of calculated and experimental D ¢
curves for ethanenitrile + n-alkane systems.
The points are calculated and the curves are
experimental. The numbers against the curves

are the values of £ used in the calculations,
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Comparison of calculated and experimental p =X
curves for ethanenitrile + n-alkane systems.

The points are calculated and the curves are

experimentals The values of , used in the
calculations are also given (the corresponding

values of £ are given in table 9,1),
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CEAPTER 10

MOLAR EXCESS FUNCTIONS:

CCMPARISON OF THEORY AND EXPLRIMENT

Introduction

The interpretation of experimental results of the properties
of mixtures in terms of theories for non-electrolyte mixtures is

an integral part of any thermodynamic siudy.

Such an interpretation will be attempted in ﬁhis Chapter by
comparing the exprrlmental molar excess volumes V and molar
excess enthalpies Hm for binary mixtures of n-alkanenltrlle +
n-alkane with theoretlcal results., The regular solutions theory
of $catchard-H11debrand with a modification dve to Veimer and
Prausn1t22 is used to calculate UE at constant volume. Although
this theory in its original form assumes a random distribution of
the molecules it was seen in Chapter 5 that it predicts with
reasonable accuracy UCST when parameters are included to account for

polar and dispersion effects.

The van der Waals' one and two-fluid approximations discussed

in Chapter 3 are also used here to attempt to interpret both Hh and
VE data.
m

E
10,1 Scatchard-Hildebrand Theory: U,

The expression given by the regular solutions theory for the

energy of mixing at constant volume is
a U= (X Vy +X,7,) 6, -6 ) g, 8, (10.1)

where Xi is the molefraction of component i,Vi is the molar volume
of i, si is the solubility parameter of i (already defined by equation
5.6), and ﬂi is the volume fraction of i (taken with respect to the

unmixed state of the pure components, equation 5,2).
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. B 2
In order to determine Uv from experimental Hﬁ it is necessary
to take into account the volume changes on mixing of the mixtures
(i.e. VE) since equation 10,1 involves a mixing process at constant

volume and not at constant precsure as the experimental values of HE

of this work.

Methods for making the conversion of thermodynamic properties

from constant volumes to constant pressure (or viceversa)
were first developed by Scatchard5 and discussed by many workers

The method used here is as follows: starting with two pure substunces

45,

whose molar volumes are V, and V2 respectively, each at the same
jnitial pressure a binary mixture is formed using n, and n, (amount
of substance). In order to have VE = 0 the pressure of the mixture
is chosen accordingly. For this process at constant volume the

excess energy is given by

E () = (1,0) - T (of 1)
+ (1/2V¢ )( (9lnk /3 1nT) += T/« (3 1nc /3 p) + 1) (VE)2 + eee
(10.2)

where« andk are the thermal expansivity and the isothermal
compressibility of the mixture, respectively.

The term in (VE) can be neglected 1n this case since all the
VE measured here are less than 1 cm’ mol s 80 that the expression

used for the calculation of UE which now includes the polar 2 and

dispersion Y4, terms is given by
E 2 2
UV = ¢1¢2 (X1V +X V )((X] 62) + Ty - 2 \1112) (10.3)

The method of calculation was as follows: since the experimental
Hﬁ were determined at 298.15 K then all the variables in 10.3 should
be evaluated at that temperature. The molar volumes of propanenitrile,
n-butanenitrile, and n-alkanes at 298.15 K were given in Chapter §
together withx1, Tqr ¥ 12 for the corresponding n-alkanenitrile and
s 5 for the corresponding n-alkane also at 298,15 K. The evaluation
of = and x for the mixture was carried out by assuming additivity on
a volume fraction basis of the corresponding properties of the pure

components (i.e. <«; and ni) at 298.15 K.
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« =¢1 11 +¢2°=2 (10.4)
K =¢1K1+¢2K2 (10'5)

The data for the n-alkanes are mainly from the work of Orwoll
and Flory6 and listed in table 10.1. The values of ¢ for the n-
alkanenitriles were determined from the density data of reference 7.
Not having experimental values for k for the-n-alkenenitriles they

were determined from solubility parameters as follows:

(ou/ av)g = T(3p/ aT), - p (10.6)
which at low external pressures approximates to

(au/ aV)q = TG B/ 2T), = Ty, (10.7)

but since

2

(0 0/ 3¥)g = (BH' = RD/V =5 (10.8)

then finally, equating the right-hand sides of 10.7 and 10.8

§2 =Ty, =T&/x ' (10.9)

and
2
k= Tef6 (10.10)

Although this is a crude agpproximation equation 10,10 was used
to calculate «k for the n-alkanes in order to find out how different
these values were from those determined experimentally. Table 10,1
also gives x values from equation 10.10 and although they are higher

than the experimental values they do follow the same pattern of variation,

The values of « and ¢ for propanenitrile and n-butanenitrile

are also included in table 10,1,
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Finally, the Vﬁ at 303.15 K given in Chapter 7 are used in
equation 10.2 assuming that the temperature coefficient of Vﬁ belween

298.15 and 303,15 K is negligible for the systemsdiscussed here.

E . .
The calculated U, using equation 10,3 are given in tables 10,2 -

10.3 for the corresponding systems where a comparison with experimental
UE is also carried out at some values of mole fraction.

The following features are observed from such a comparison,s

34

1) the absolute magnitude of the experimental Uv is not reproduced

by equation 10.3 in any case.

2) the calculated Uﬁ curves show slight skewness towards the low

concentration of the n-alkane, the shifting of the maximum U&
develops as the size of the n-alkane increases for & given n-alkanenitrile.

3)  the theoretical results do, however, reproduce the relative
B . .

magnitude of U, for a given n~alkane, that is, the values for propan-

enitrile + n-hexane are higher than for n-butanenitrile + n-hexane as

in the experiment.

4) and for a given n(alkanenitrile the calculated values increase

as the size of the n-alkane increases as experimentally observed.

B
10.2 van der Waals' one and two-fluid Theories: Hm

As mentioned in the introduction of this Chapter, the van der Waals'
one and two-fluid theories will be used to calculate ﬂE and VE and to

compare with the experimental results,

\ This section deals only with Hﬁ, the calculation of Vﬁ is

deferred to the next section.



208

The concepts on which the van der ‘aals' one and two-fluid
theories are based were discussed in section 3.2 of Chapter 3,
however, it will be necessary to set out the equations for Hh
as given by each one of these theories. The calculation of excess prop-
erties using the van der Waals' one and two-fluid theories (from
now on they will be referred as W1 and W2 respeétively) can be
carried out using measured values of p, V and T for the pure componenis
of the mixture as shown by Leland and his colleagues8 or using an
equation of state as in the work of McGlashan and his colleagues9.

The latter approach will be used here and in particular using van der

Waals' equation of states
p vm/RT = vm/(vm -b) - a/RTVm (10.11)

In the W1 theory the excess molar enthalpy, at negligible
pressure is given by9 (the subscript m denoting a molar quantity

will now be dropped for typographical convenience)
E
H (T,X) = = ax/V(T,ax,bx) + X,a,/V(Tya,b,)
+ X,8,/V (Tyay,b,) - (20.12)

where a_ and bx denote the parameters a and b of equation 10,11 for
the hypothetical 'one-fluid', a; and bi are the parameters for the
pure components and V(T,a,b) denotes the corregponding molar volume
of the pure hypothetical or pure real fluid as given, at zero

pressure, by equation'lo.ll.

3

The parameters a, and bx being proportional to 503 and too
respectively can be expressed in terms of a, and bi of the pure comp-

onents using the relations already'given in Chapter 3 (i.e. 3.18), namely

| 2 2
a, = Xy 8, + 2X1X2312 + X 285 (10.13)

2
b, = x1 by + 2&X X,b + xzyb2 (10.14)
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where a5 and b12 are cross~terms of the mixture defined by

b}? N VER b;_/3 ) 2 (10,15)

1

The parameter £ "Will be used in this work as disposable to

force agreement between calculated and experimental Hﬁ at X = 0,5 for

each system.

The molar volumes of the pure fluids, hypothetical or real, are

calculated with the following equation (p = 0)
v(T,a,b) = a/2RT1 - 4bRT/a)%) (10.17)

The corresponding expression for HE from the W2 theory is,

at negligible pressure,
H(T,X) = =X, (a_,/¥(T,a 45 1) = a,/V(Tya,,b,))
- xz(axZ/V(T,axz,bxz) - a2/V(’l‘,32,t\;2)) (10.18)
where a_y» bx1 and axQ’ bx2 denote the parameters & and b for the

two hypothetical fluids. These parameters can also be given in terms

of the pure real fluid parameters and the cross-terme of the mixture

as follows
ax1 = X1a1 + X2812; axz a X1a12 + X282 (10019)
boq = Xyby #Xpbo5 Do = Xoby, + X, b ( 10.20)

x2 © %212 ¥ 42%

where 840 and b12 are given by the combining rules in equations 10,15
and 10,16,

The molar volumes in 10.18 are also calculated with equation

10.17 using the corresponding parameters,
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The parameters a and b for the pure real fluids may be

evaluated in several ways1 :

1) from the second virial coefficient;
2) from the gas-liquid critical constants;

3) from low temperature properties of the fluids, e.g., molar

volume, thermal expansivity, thermal pressure coefficient or energy

of vaporization.

Methods 2 and 3 were used in this work. For method 2 the

conditions for the gas-liquid critical point of a pure substance (see

Chapter 4) were applied to equation 10.11 leading to the following

expressions?
c
b =v/3 (10.21)
a = 27RbT/8 = 9RV°T%/8 (10,22)

where VC is the molar critical volume, 7¢ the eritical temperature

and R the gas constant.
For method 3, the properties chosen for the calcuvlation of

a and b were the molar volume V and the thermal expansivity « at 298,15 K
(the temperature at which Hﬁ were measured)., The relations between

a, b and V, «from the van der Waals' equation of state at p = O are
b= V(1 +k)/(1 + 2%) (10.23)
a = RIVY/(V = b) = RV(1 + 2T )/a (10.24)

Table 10.4 gives TC,VC,V and « for the pure n-alkanenitriles

and n-alkanes used in these calculations,
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Before discussing the method of calculation of HE it is
m

convenient to mention that apart from the combining rule for b
12

given by equation 10.15 one more relation was used, Scott  has
pointed out that the rule given by 10.15 (the Berthelot combining
rule in different notation) is a good approximation for mixtures
of spherical molecules but for chain molecules, as is the case in
this work, the original van derWaals assumption seems more

reasonable, namely
by, = (by +1,)/2 (10,29)

The calculation of Hﬁ was carried out as follows: using the

E
expressions given above for H by the W1 and W2 theories agreement
with experimental Hﬁ at X = 0,5 for each system was forced by adjusting

£ in equation 10,16, in this way eight results were obtained for

each system, i.e.

1)  two results using W1 and W2 and gas-liquid critical constants

with equation 10.15,

2) two results using W1 and W2 and gas-liquid critical constants

with equ.ation 10.25-

{
3). two results using W1 and W2 and V,« data at 298.,15Kwith
equation 10.15.

4) two results using W1 and %2 and V= data at 298,15 K with
equation 10.25.

Tables 10,5 to 10.8 give the experimental and calculated P
: m

(X = 0.5) for each system together with the corresponding values

for ¢ in the order discussed above.
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The agreement between calculated and experimential HE
(X = 0.5) is excellent in all eight cases for each one o? the
seven systems., The values of £ are very similar for each system
whether calculated using TC,VC or V,« data, or equation 10.15 or 10.25
for by although some differences are obtained when using Wt or W2,
However, it is clear that each one of the studied systems has a value
of Eleas than unity, indicating that the geometric mean of the like

interactions is not obeyed by the unlike interactions in the

mixture.

The composition dependence of HE was calculated using all the
values of £ for each system in order to find out if a particular
set of calculations was better than the others. No difference was
observed among the eight sets of calculations in any of the seven
systems, consequently it will suffice to give only one set of results
for each system. Figures 10,1 = 10,2 give a comparison of calculated

and experimental in the whole range of composition.

It can be observed that good agreement exists betiween theory
and experiment, although it is clear that for n-butanenitrile + n-
dodecane, and + n-tetradecane the agreement is less good. The W2
theory gives marginally better results than the W1 theory for the

game method of calculation.

10,3 van der Waals' one and two-fluid Theoriess Vﬁ

The excess molar volume is calculated from the W1 theory using

the following expression
VE(1,%) = V(2,8 ,b.) = X,V(Tya,,b,) = X,V(T,a,D,) (10,26)
similarly, the W2 theory gives, also at negligible pressure,
VE(T,X) = X1 (V(T’ax19bx1) - V(Tra1)b1))

: + XZ(V(T’axZ’be) - V(T’azvba)) (10027)
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where the parameters involved have the same meaning as in

equations 10.12 and 10,18, respectively.

For the calculation of VE the same methods of the previous
section are used here. Since the experimental Vﬁ were determined
at 303.15 K it has to be assumed that the parameter ¢ is constant in
the range 298.15 - 303,15K in order to use the values of the
previous section. However, the molar volume V and the thermal expansivity
data used in this section are those at 303,15 K given in table 10,9,

B
In order to carry out calculations of V for the systems whose
Eﬁ were not measured (i.e., propanenitrile + n-octane, n-butanenitrile
+ n-pentane, + n-decane and n-hexanenitrile + ﬂ-hexane) an extrapolation

(or interpolation) was used to obtain their corresponding values for

E o

Following a similar calculation procedure to that described for
HE eight sets of results of VE were calculated for each system.
These results did not show qualitiative nor quantitative agreement

with the corresponding experimental values,

It has been shown that quantitative agreement between theory and
experiment is improvai by: (a) determining & fro? VE; i.e.
forcing agreement at certain values of composition 4’15; (b) intro-

ducing a disposable parameter in the combining rule(s) for b1215'18.

Since the parameter ¢ allows for departure of the unlike energy
from the geometric mean it is then obvious to determine it from an
tenergetic' property (eego HE) rather than from a 'volumetric property!
(e.g. V), then the introduction of a disposable parameter in
equations 10.15 and 10,25 will allow deviations from such combining

rules. The new combining rules for by, 8T€now given by

b}? = (1 +p)(b}/3 +%43)/2 (10,28)
b, = (1 +p) (b +1b,)/2 (10.29)

where pis the new parameter.
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Once again the calculation procedure was repeated but this
time allowing p to vary in order to find the best possible agreement
between theory and experiment for each one of the eleven systems

whose Vﬁ were determined experimentally.,

The agreement obtained with the introduction of p is much
superior than before. For the sake of simplicity only the calculated

results giving close agreement with experiment will be given here.

Table 10.9 gives the parameters £ and p used together with
equations 10,27 (W2) and 10.28, and V, «data to obtain the best values
of Vﬁ' ¥igures 10.3 - 10.4 give a compariscn of calculated and

E . s
experimental V 1n the whole range of composition.

14 js interesting to note how the theory can reproduce the
different shapes of the vﬁ curves and to give excellent quantitative
agreement in some cases. The W2 theory is again superior to the W1
version since it reprcduces the major features of the behaviour

observed experimentally.

E
Although the calculation of H was insensitive to the choice
C o] . 2
of pure fluid properties (ie€e T 9 V or Vye ) in the case of Vﬁ

this is not sc since Psing the same values of p for a given system

the calculated vﬁ are indeed very different using Tc, ve data from

those obtained using V, « data,
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Table 10.1 Thermal expansivity « ind isothermal compressibility «

for n-alkanenitrile and n-alkane compounds at 298,15 K

substance (a) (a) (v)
103 m/K-1 ‘lOl:"K/at:m"1 104 K/atm-1
propanenitrile 1.319 - 0.842
n-butanenitrile 1.176 - 0.847
n-pentane 1,637 2.060¢) 2.398
n-hexane 1.385 1.723 1.894
n-heptane 1.253 1.482 1.638
n-octane 1.158 1e321 1.468
n-dodecane 0.980 0.990 1,151
n-tetradecane 0.921 0.924 1.058

(a) Experimental values
(b) Valiues determined with equation 10.10

(¢) Extrapolated.
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Table 10,2 Comparison of experimental UE with values from the
0 - C -
regular solution theory for (1 X2) 3H5N + in an2n+2

HE/J mol” UEV/J mol”] UE/J ol

X5
expt. expt. calc,
n-C.H, ,
0.0573 223.7 227 .1 293,5
0.1054 435.4 437.8 497.7
0.2136 834.2 824.3 832.8
0.3132 1062.4 1035, 1 1010,0
004217 197.1 1151.7 1082,6
0.5323 1241.7 1182.5 10470
0.6370 1199.2 1131.9 926.3
0.7376 1070.9 1000. 4 741.5
0.8276 865.4 799.0 526.1
0.9489 37749 ' 344.4 17042
n-C6H1 4
{

0.0553 3497 323.2 307.1
0.1250 709.2 65343 608.4
0.2254 1062,7 973.8 901,1
0.3160 1259.7 1150.4 1047.5
0.3989 1386.2 1265,2 1100.5
0.5181 1424.2 1295.8 1064.9
0.6179 1374.3 1247.6 950.8
0.7555 1167.4 1056.9 690.6
0.8798 TT7+4 704.3 371.4
0.9689 270.2 246.6 101.4

CONTINUED
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Table 10.2 (Continuation) Comparison of experimental U% with

values from the regular solution theory for (1 - X2)CSH5N +

X2 n-CnH2n+2 at 298.15 K.

X, 'HE/J mol-1 UE/J mol” UE/J mol™
expt. expt. calc,
n=Cotyg
0.0464 344.2 301.9 285.6
0.1217 755.2 681,.2 640.2
0.,2121 1124.2 989.5 921.5
0.3003 1364.9 1207.1 107543
0.4092 1515.0 1344.9 1136.3
0.5268 154045 1370.7 1076.8
0.7001 135447 1205.4 810.3
0.7999 1125,0 1002,0 582,0
0.8888 781.0 697.2 341,.8

0.9536  397.5 35646 147.7
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B
Table 10.3 Comparison of experimental UV with values from the
regular solution theory for (1 - X2) n-C4H7N + X n=C 11,
at 298.15 K,

n+-2

X, Hf/‘] mo1”™" U?/ J mol™ UE‘/J mol™
expt. expt. calc.,
n - C6H14
0.0476 251.8 248,2 211.6
0.1131 561.4 5485 453.8
0.2270 963.0 930.4 ' 15345
0.3096 1158.9 1112,.8 889,.2
0.4138 1271.6 1211.6 961.4
0.5129 1273.4 1203.7 951.3
0.6271 1188, 1 1112.3 851.8
0.7116 1077.0 1001.6 724.4
0.8236 824.1 1597 492,5
0.9259 433.3 396.6 224.5
n - 08H18-

0.0504 359.8 31344 262.7
0.1101 676.9 594.4 512.6
0.2100 994.8 875.5 804.8
0.3263 1230.2 1086.0 983,.1
0.4069 1350,0 1196.0 1023,8
0.5326 1390.7 1233.5 917.7
0.6112 1336.9 1185.4 891.9
0.7138 1214.3 1079.0 724.8
0.8426 886.0 788,2 440,3
0.9525 371,2 331.,9 142,4

(CONTINUED)
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Table 10.3 (Continuation) Comparison of experimental UE with
values from the regular solution theory for (1 - X2)
n = 04H7N + in - CnH2n+2 at 298.15 K.

Hﬁ/J mol-1 UE/J mol"1 Uﬁ/J mol"1

2 expt. expt. ’ calc,
n = Cyolag
0.0535 463.2 392.3 36646
0.1252 908.6 769.9 7.1
0.2122 1239,7 1049.2 980.7
0.3059 1456,8 1236.4 1120.2
0.4128 1530.1 1297.9 1147,0
0.5390 1543.7 131847 1048.3
0.6344 147447 1267.6 904.4
0.7233 1311.4 1130.6 728.9
0.8555 853.4 736.0 410.0
0.9488 339.5 290.4 151.6
n = G450
0.0535 490.7 404.4 410.8
0.1158 904.0 7535 747.6
0.2103 1274.4 1068.5 1052,8
0.2995 1526.2 1293.2 1182.8
0.4479 1686.6 1439.0 177.5
0.5163 1702.1 1457.9 1109.6
0.6563 1581.1 1363.5 881.6
0.8145 1150.5 997.4 519.8
0.8839 815.8 70643 335.4

0.9464 427.3 36945 15847




@)  (a) (b) (b) (c) (c)

substance ° ve v 100 = v 100

K cm3m01-1 cm§mol-1 K cmomol™ g
propanenitrile 5644 229 70.897 1.319 T71.381 1.334
n-butanenitrile 582.2 2802 87.889 1.176 88.404 1,187
n-hexanenitrile 605.0% 40 12147 1,041 121.892 1,049
n-bentane 469.7 304 1164104 1.637 117.147 1.679
n~hexane 5075 370 131,598 1.385 132,541 1.417
n-heptane 540.3 - 432 147.456 1.253 148.387 1.264
n-octane 568.83 492 163.53 1.159 164.482 1.179
n-decane 617.7 602° 195.905 1.050 196.964 1.038
n-dodecane 658.2 718° 228.579 0.980 229.694 0.986
n-tetradecane 693.0 830° 261,312 0.921 262,531 0.928
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(a) From reference 11; () At 298.15 K from reference 123

(c) At 303,15 K from reference 12; (a) Interpolated;

(e) From reference 13,

Table 10.4 Gas-Liquid critical temperature and volume, molar volume and thermal

expansivity for some n-alkanenitriles and n-alkanes.



Table 10,5 Determination of g using W1 and W2 theories with

experimental Hﬁ (X = 0.5) at 298.15 K.
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Cas-liquid critical

constants are used, and by, is given by equation 10,19,

propanenitrile + n-alkane systems

n-alkane Hi/J mo1™" £ Hﬁ/J mo1™" £ Iiydmol-1
exptal w w2
n-pentane 123645 0.859 1233.0 0.85%4 12%%,8
n-hexane 1428.1 0.837 1428.9 0.83%3 1430.4
n-heptane 1546.2 0.819 15477 0.820 1548.3
ni=-butanenitrile + n-alkane systems
-1 a -1 () -1
n-alkane Hi/J mol £ Hi/d mol £ Hi/d mol
exptal, w1 w2
n-hexane 1279.8 0.855  1281.1 0.851  1283.4
n-octane 1396.6 0.839 1397.3 0.841 1393.2
n-dodecane 1554.1 0.796 155641 0.821 1552.7
n-tetradecane  1702.3 0.764  1706.2 0,803  1702.8




fable 10.6 Determination of g using W1 and W2 theories with
experimental Hi (X = 0.5) at 298,15 K, Gas-liquid
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critical constants are used, and b12 is given by equation

10025

propanenitrile + n-alkane systems

Hﬁ/J mol-1 £ Hﬁ/J mol-1

n-alkane £ }ﬁyJ mol-1
exptal, W1 w2
n-pentane 12365 0.859 1236,6 0.854 1237.8
n-hexane 142801 00839 142402 0.835 1426.6
n-heptane 1546.2 0.822 1546.5 0.823% 1546.6
n-butanenitrile + n-alkane systems
= - ) .
n-alkane Hﬁ/J mol . Hﬁ/J mol ! ; ﬁi/d mol L
exptale. w1 w2
n-hexane 1279.8 0.856 1276.4 0.852 1279.0
n-octane 1396.6 0.841 1397.8 0.843 1393.1
n-dodecane 1554.1 0.804 15576 0.827 1549.9
n-tetradecane 1702.3 0.777 1706.2 0.811

1703.3
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Table 10.7 Determination ot ¢ using W1 and W2 theories with
experimental Hi (X = 0.5) at 298,15 K. Molar volumes
and isobaric thermal expansivities are used, uand b12

is given by equation 10.15.

propanenitrile + n-alkane systems

n-alkane Hﬁ/J mo1™" £ Hﬁ/J mo1”" £ Hﬁ/J mo1”!
2

exptal, w1 Vi
n-pentane 1236.5 0.849 1237.0 0.847 1233,2
n-hexane 1428,1 0.820 1429,.8 0.823 142142
n-heptane 154642 0.800 1542,5 0.808 154843

n-butanenitrile + n-alkane systems

n-alkane Hﬁ/J mo1™" £ Hg/d mo1”™ £ }éyd mol"1
w2

exptal, w1
n-hexane 1 27908 00846 128204 00845 1276.4
n-octane 139606 00827 139504 008}1 1400.'{
n~-dodecane 15541 0.789 1557.7 0.811  1558,3

n-tetradecane 1702.3 0,760 1704.5 0.793 1704.9
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Table 10,8 Determination ot g using W1 and W2 theories with
experimental H; (X = 0.5) at 298,15 K. Molar volumes

and isobaric thermal expansivities are used, and bys

is given by equation 10,25,

propanenitrile + n-alkane systems

n-alkane Hg/J mo1™~ £ Hﬁ/J mol™ £ Hﬁ/J mol™
exptal. w1 W2
n-pentane 1236.5 0.850 1238,8 0.848 12%5,6
n-hexane 142801 0.823 1427.3 00825 1431 09
n-heptane 1546.2 0.804 154606 0.812 1548.0
n-~butanenitrile + n-alkane systems
n-alkane Hﬁ/J mol” HE/J mo1™" Hﬁ/J mo1™
exptal. w1 w2
n-hexane 1279.8 0.847 1281.4 0.845 1283,8
n~-octane 1396.6 0,830 1393.3 0.834 1396.9
n-dodecane 155401 00798 1555.8 00818 1555.0
n-tetradecane 1702.3 0.774 1698.3 0.802 1703%,1
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Table 10.9 Values of g and p used in the calculation ot Vﬁ at
303,15 K for n-alkanenitrile + n-alkane systems. The W2
theory was used for all sysiems with V and « data at 303,15 K,

b12 is given by equation 10,28,

propanenitrile n-butanenitrile
n-alkane g P n-alkane g* p

n-pentane 0.848 - 0.067 n-pentane 0.855b - 0,062
n-hexane 0,825 - 0,072 n~hexane 0.845 - 0,060
n-heptane 0.812 - 0.074 n-octane 0,834 - 0,058
n-octane 0.794b - 0,082 n-decane 0.826b - 0,059

n-dodecane 0,818 - 0.063

n-tetradecane0,802 - 0,069

n-hexanenitrile + n-hexane

E = 00899b; p=- 00037

(2) Values from (X = 0.5) measurements

(v) Extrapolated (or interpolated) values
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Figure 10,1 Molar excess enthalpy at 298,15 K for
propanenitrile + n-alkane systems; points
calculated from W2 using gas-liquid critical
constants and b12 given by equation 10,153

curves experimental.
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Figure 10,2 Molar excess enthalpy at 298,15 K for n-
butanenitrile + n-alkane systems; points
calculated from W2 using gas-liquid critical
constants and by, given by equation 10.15; curves

experimental.
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Figure 10,3 Molar excess volumes at 303%.15 K for propanenitrile
+ n-alkane systems; points calculated from W2
using V - « data and b12 given by equation 10,29,

curves experimental,
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Figure 10.4 Molar excess volumes at 303,15 K for n-butanenitrile

+ n-alkane systems; points calculated from W2
using V - « data and by, given by equation

10,293 curves experimental,
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CONCIUSIONS

Throughout this work comments and conclusions were made
individually for each Chapter whether dealing with experimental
or theoretical results in order to provide, as far as possible,

coherent information.

Some of those conclusions will be summarized here in order to

point out the results emerged from this study.

The aim of this study of n-alkanenitrile + n-alkane binary
mixtures was to examine some of their thermodynamic properties of
mixing and to relate the observed behaviour to parameters such as
molecular size and the chemical nature of the components, and

through statistical theories to the intermolecular forces.

Prior to any measurement of mixing properties it was necessary
to establish the limits of solubility by determining the upper

critical solution temperature UCST of some systems.

The results of UCSY showed a clear dependence on the size of
the n-alkane component for a given n-alkanenitrile, although of course
such dependence can also be related to the size of the latter
compounds. The correlation of the experimental UCST was carried
out with a modified Scatchard-Hildebrand's theory in order to

account for induction forces present in the systems here studied,

It was shown that values for W12 (parameter accounting for induction
forces) derived from UCST were very similar to those from activity
coefficients for the three n-alkanenitrile homologues uscd in these

measurements,

Since the excess functions of mixtures are a measure of deviations

from ideality, the determination of excess enthalpies ﬁE and volumes

VE ot some binary mixtures was carried out.
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Once again these properties showed an extremely regular
pattern of behaviour and were easily related to the size of n-

alkane component.

It was of interest to note from the results or UCSY, Hﬁ and
vﬁ that the non-ideality of the studies systems increascd as the
size of the n-alkane component increased for a given n-alkanenitrile,
On the other hand, for a given n-alkane the systems behaved more

ideally as the size of the n-alkanenitrile increased,

This last observati?n is adequately explained by the use of
the effective polarity P of the n-alkanenitriles which was intro-

duced as an attempt to account for the 'real' effect of their

dipole moment u on the properties ot the mixtures.,

Due to the high UCST of ethanenitrile + n-alkane systems it was
B
not possible to measure H nor VE for any of their mixtures, hence,

gas-liquid critical properties (pc,Tc,X) were determined.

The study of the critical loci for these systems showed again
the regularity with which the p; - X and T:l - X curves vary as the
size of the n-alkane increases., One interesting phenomenon was
observed in the critﬂcal region of these systems: positive azeotropy
as shown by the minimum temperature points on the T; - X curves, It
extends from ethanenitrile + n-pentane to ethanenitrile + n-decane
mixtures and changes from the high concentration n-pentane region to the

low concentration n-decane region generating a locus of minimum

temperature points.

The use of statistical theories of fluid mixtures to interpret
experimentally observed behaviour of fluids provides the link between

such macroscopic properties and molecular parameters,

Recently, several theories have appeared to explain the effect
of anisotropic forces on the properties of mixtures and it would be
desirable to use them to interpret the experimental results reported

in this work. No results from such theories were here precsented,
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however, collaboration with Prof. K. Gubbins' research group
(Cornell, U.S.A.) has been started to use a treatment developed by

Prof, Gubbins in order to interpret the experimental results of

this work.

On the other hand, there exist theories which have extensively
been used and which can give numerical results without need of

lengthy and sophisticated computations.

The van der Waals' one and two-fluid theories together with

van der Waals' equation of state were used to predict HL and VE

It is difficult to establish unambiguously the 'goodness' of

the predictions of a theory, so that in the present study a
qualitative agreement between theory and experiment was considered
adequate bearing in mind that the assumptions involved in these

theories would exclude its use on the systems here studied.

The van der Waals' two-fluid theory W2 is slightly superior
to the one-fluid theory W1 in the prediction of H; when using a
parameter { to account for deviations of the unlike interactions
from the geometric mean of the like interactions (the Berthelot rule).
Both theories showed to be insensitive to the data of the pure substances,
(i.e. 7,7 or V p:) for the calculation of the parameters a and b
in the van der Waals' equation, and also to some extent to the

combining rule for b12.

Since the value of ¢ was less than unity for every one of the
systems whose Hﬁ were measured it is clear that weak interactions

are present between the unlike molecules.

The prediction of Vﬁ was also carried out using the W1 and W2
theories, It was necessary in order to obtain better agreement between

theory and experiment to introduce a disposable parameter p in the

combining rules for the cross-diameter of the molecules.



235

The W2 theory is also superior in this case, however, the choice
of data of the pure substances for the calculation of a and b does

have a clear effect both qualifative and quantitative on the predicted

v

m

The parameters ¢ and p also showed & decrease in magnitude as

the size of the n-alkane component increase for a given n-alkanenitrile.

The gas-liquid critical constants of ethanenitrile + n-alkane

systems were also predicted using a van der Waals model proposed by

Lelland, Rowlinson and Sather.

The calculation of critical'temperatures Tﬁ was carried out
allowing deviations from the Berthelot rule, that is, a parameter £
was determined to obtain the best possible agreement with experiment,
The values of £ seem to confirm weak interactions of the unlike

species with respect to the geometric mean of the like interactions.

The apparent decrease of E with increasing size difference of the
components has also been observed in mixtures of non-polar substances

such as octamethylcyclotetrasiloxane + cycloalkanes and linear siloxanes

+ n-alkanes,

. {
It is interesting to point out that although the theory does not

give quantitative agreement in the whole compositicn range it dces

c
predict the minimum temperature points on the T = X curves.

For the prediction of p: - X curves a parameter p was introduced
to allow deviations from the combining rules for the unlike size term
(V‘f2 in this treatment), A fair qualitative agreement with experiment

was observed with this method.

This study has provided limited information on the behaviour of
n-alkanenitrile + n-alkane mixtures so further studies on the same
type of systems must consider n-alkanenitriles of larger size than those

used here,

Also the study of the mixing properties over a wider range of

temperature has to be considered,
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