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Abstract

The function of a DNA sequence is commonly predicted by measuring its nucleotide
similarity to known functional sets. However, the use of structural properties to
identify patterns within families is justified by the discovery that many very different
sequences have similar structural properties. The aim of this thesis is to develop tools
that detect any unusual structural characteristics of a particular sequence or that
identify DNA structure-activity fingerprints common to a set.

This work uses the Octamer Database to describe DNA. The database’s contents are
split into two categories: those parameters that describe minimum energy structure and
those that measure flexibility. Information from both of these categories has been
combined to describe structural tendencies, offering an alternative measure of sequence
similarity.

A structural DNA profile gives a graphical illustration of how a parameter from the
Octamer Database varies across either a single sequence’s length or across a set of
sequences. Profile Manager is an application that has been developed to automate
single sequence profile generation and is used to study the A-tract phenomenon. The
use of profiles to explore patterns in flexibility across a set of pre-aligned promoters is
then investigated with interesting transitions in decreasing twist flexibility discovered.

Multiple sequence queries are harder to solve than those of single sequences, due to the
inherent need for the sequences to be aligned. It is only under rare circumstances that
sequences are pre-aligned by an experimentally determined position. More commonly
a multiple alignment must be generated. An extended, structure-based, hidden Markov
model technique that successfully generates structural alignments is presented. Its
application is tested on four DNA protein binding site datasets with comparisons made
to the traditional sequence method. Structural alignments of two out of the four
datasets were comparable in performance to sequence with useful insights into
underlying structural mechanisms.
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Chapter 1:

Introduction

Molecules of Deoxyribonucleic Acid (DNA) store most of the hereditary
information belonging to a particular living organism. Recent studies have suggested
that molecules other than DNA may also transfer hereditary information, as proteins
such as prions have recently been identified as genetic elements (Bussard, 2005). The
majority of DNA is located in the nucleus of every cell, with the exception of red blood
cells, in our body. A small proportion of DNA is found within an organelle called the
mitochondria. This mitochondrial DNA differs from the nuclear DNA as it is only
inherited maternally (Chen and Butow, 2005).

DNA defines who we are by encoding the structures of proteins and enzymes
that our body manufactures. The production of proteins is very important, controlling
the state of a cell and processes such as muscle building, the digestion of food and
synthesis of hormones. The segments of DNA that encode protein structure are known
as our genes and make us unique individuals that carry a unique combination of our
parents’. genetic material. Recently, the concept of genetic imprinting has been
recognised, whereby the activation of a gene can be switched on or off depending on
whether it has been inherited maternally or paternally (Mager and Bartolomei, 2005).
Imprinting is one example of epigenetics, which is how the function of a gene can be
altered without any changes being made to the DNA sequence. Understanding how
DNA works is Very>important in identifying many genetic diseases and enables us to

have a greater knowledge of what controls who we are and the environment around us.

It would be a mistake to believe that the main bulk of our DNA is made up of -
genes. 95% of our DNA is non-coding and is often referred to as ‘junk’, since we do
not understand its function. Discovering the fur,lctional purpose's, of some of this so-
called ‘junk DNA’ has been likened to searching through “Heirlooms in the attic” and
finding hidden gems (Johnston and Stormo, 2003). The development of computational
tools to detect any unusual characteristics of a particular sequence or to identify patterns

common to a set of sequences will therefore be valuable.
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The use of structural properties to identify patterns within families of sequences
is justified by the discovery that many very different sequences have similar structural
properties (Gardiner et al., 2004). This means that by looking at the information hidden
within the structure, similarities between DNA sequences will be found that would
otherwise be unrecognised. Observing how the structure of sequences vary across their
length will not only help predict unknown functions, but will also be a key to
understanding the structural mechanisms involved in known functions (something that
cannot be done by looking at a string of nucleotide letters). The aim of this work is to
develop and use tools that analyse how the structure of DNA varies with its function, in

order to identify structural patterns, known as activity fingerprints.

Chapter 2 describes the double helical structure of DNA aﬁd presents a well-
known system of nomenclature used to describe subtle differences between the helical
geometry of sequences. This research uses the Octamer Database (Gardiner et al.,
2003) to encode the sequence-dependent structure of DNA. An octamer is a DNA
sequence of nucleotide length eight (x1X2X3X4XsX¢X7Xs, Where x equals A, C, G or T).
The database contains structural properties describing the minimum energy
conformation and flexibility of ail unique octamers. Chapter 3 gives a detailed
description of the Octamer Database and explores correlations between its parameters.
In brief, the minimum energy structure is described by the base-step parameters and
three ground state properties: energy, groove and RMSD. The flexibility is described
by the force constants and partition coefficients. Chapter 4 presents a novel extension
to the Octamer Database, combining the minimum energy of an octamer with its
flexibility in order to calculate structural probabilities. This offers a novel way of

comparing two sequences, allowing the dynamical structure of DNA to be studied.

Chapters 5 and 6 present the structural DNA profiles, which can be used to
visualise activity fingerprints. A profile is a graphical illustration of how a structural
parameter from the Octamer Database varies across either a single sequence’s length or
across a set of sequences. Chapter 5 looks at single sequence queries with presentation
of an application to automate the generation of single sequence profiles (Profile
Manager). Development of the graphical user interface is explained and program
functionality is described with examples. Chapter 6 then explores multiple sequence

queries and how they can be answered by multiple sequence profiles.
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Application of the multiple sequence profiles is restricted to pre-aligned
sequence datasets. It will not be possible to find structural patterns without an
alignment method. A structural alignment tool is therefore needed. A method
commonly used to generate sequenbe alignments is Hidden Markov Models (HMMs).
Chapter 7 examines the HMM technique with some simple examples. The traditional
model architecture used to analyse biological sequences is presented. Details are given
on model construction, including explanation of the commonly used Viterbi algoﬁthm,
Forward algorithm and Baum-Welch procedure. Other topics covered are the
alternative Simulated Annealing technique, model surgery, prior knowledge and

sequence weighting. A survey of analogous structural HMM work is also performed.

Chapter 8 then presents a novel structural DNA alignment technique, which
currently aligns sequences by a singlev minimum energy parameter (3-step roll).
Flexibility is encoded within a model’s prior knowledge, therefore considering the
dynamical nature of DNA. Methods for assessing the performance and predictive
ability of HMMs are presented and an artificial dataset applied in order to test the
functionality of the technique before applying it to real data. Structural HMMs of four
protein-DNA binding site datasets are then constructed, assessed and compared to their
traditional sequence models in Chapter 9. Chapter 10 then summarises the conclusions

made throughout this work, making suggestions for future research.
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Chapter 2:

Deoxyribonucléic Acid

Over fifty years ago a breakthrough in scientific research occurred when the
structure of DNA was discovered and published (Watson and Crick, 1953). Since then
vast amounts of DNA research have been carried out with structural discoveries beyond
the double helix continuously being made (Pearson, 2003), reflecting how much there is
still to learn about this complicated molecule. By the 1970’s, experimental techniques
to determine the nucleotide sequence of a piece of DNA had been discovered. However
it was not until about 1995 that technology had become advanced‘ enough to deal with
the size of the human genome (Olson, 1995). This resulted in an enormous scientific
challénge, the human genome project (HGP). Finally on the 50™ anniversary of Watson
and Crick’s discovery the HGP was completed (Collins et al., 2003a; Collins et al.,
2003b; Frazier et al., 2003), providing a wealth of information to analyse. This has
opened the doors to further understanding DNA structure and to discovering cures for

numerous genetic diseases.

.This chapter describes the double helical structure of DNA. The exact structure
of a double helix is dependent upon its nucleotide sequence, thérefore parameters that
encode the geometry of a helix are needed. A standard system of nomenclature for such
parameters has been agreed and is known as the Cambridge Accord (Diekmann, 1989).
There are three categories of geometric descriptors: the base-pair parameters, base-step
parameters and global parameters. The development of a computational model that can

* be used to accurately predict the geometry of any DNA double helix is reviewed.

2.1. The Double Helix

DNA is a biopolymer whose polymeric building blocks are the nucleotides. A
nucleotide consists of a sugar, phosphate group and base (Figure 2.1). Note the
labelling of carbon atoms around the sugar (Figure 2.1). The position at which the base

- is bound is numbered 1 (C1°). In DNA the sugar is 2’deoxyribose, ribose with oxygen
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removed from position 2. The phosphate is connected to the C5’ carbon of the sugar via
a phosphate-ester bond. The sugars and phosphates of adjacent nucleotides join together
to form a sugar-phosphate backbone, producing a single strand of DNA (Figure 2.2).
The ends of a strand are labelled 3’ and 5’ based on the positioning of sugar atoms. This

is known as the directionality of DNA.

Figure 2.1: The Nucleotide. The polymeric building block of DNA, consisting of a phosphate group,

sugar and base.
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Figure 2.2: The sugar-phosphate backbone. Nucleotides join together to form a single strand of DNA.
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The heterocyclic amine bases are either pyrimidines (thymine, T and cytosine,
C) or purines (adenine, A and guanine, G). The chemical structures of these four
different bases are given in Figure 2.3. Hydrogen bonds are shown between purine-
pyrimidine bases and form the Watson-Crick base pairs (A-T and G-C) (Watson and
Crick, 1953). A-T and G-C are equal in length, enabling DNA to form a double
stranded structure analogous to a ladder. The energy to break a G-C interaction is
greater than that required to break an A-T one, due to three hydrogen bonds versus two.
The 5° to 3’ directionality of the two strands run in opposite directions, they are anti-
parallel. The strict base pairing rules mean that the strands are complementary to one

another. For this reason the sequences ATGCCA and TGGCAT are equivalent.

Figure 2.3: The Watson-Crick base pairs and double stranded structure of DNA.
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The double stranded structure is twisted to form a double helix (Watson and
Crick, 1953), see Figure 2.4. The sugars and phosphate groups are hydrophilic and
therefore highly soluble in the aqueous cellular environment. The bases however are
hydrophobic and place conformational constraints on DNA in vivo. The formation of a
double helix stabilises the structure by keeping the hydrophobic portion of the molecule
in its interior, where solvent accessibility is kept to a minimurﬁ. There are two helical
grooves (Figure 2.4c) that expose parts of the base pairs to the surrounding environment
and that enable drugs and proteins to recognise and bind to specific sequences. The

deeper groove is called the major groove and the smaller of the two is the minor groove.
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Figure 2.4: The double helix of DNA. (a) All atom representation. (b) Cartoon representation analogous

to a twisted ladder. (c) The two grooves that expose parts of the base pairs.
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DNA tends to have 10 to 12 phosphates per helical turn and can be broadly split
into three types: A, B and Z. A, B and Z have 11, 10 and 12 phosphates per turn
respectively with A (Figure 2.5a) and B (Figure 2.5¢) having right-handed helices and Z
having a left-handed helix. In reality DNA takes on intermediate structures between
these extreme cases, its exact three-dimensional structure being sequence dependent.
For example the crystal structure of CATGGGCCCATG (Figure 2.5b) is an
intermediate between idealised A-DNA and B-DNA.

Figure 2.5: The sequence dependent structure of DNA (Ng et al., 2000). Crystal structure of A-DNA (a)
viewed from the side and (d) from the top. Crystal structure of CATGGGCCCATG (b) viewed from the
side and (e) from the top. Crystal structure of B-DNA (c) viewed from the side and (f) from the top.
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2.2. The Cambridge Accord

Parameters describing the geometry of DNA helices have been devised, in order
to investigate how the shape of a double helix varies with its base-pair sequence. In
1988 a meeting held in Cambridge (Dickerson et al., 1988) set down an agreement
across the scientific community on the nomenclature of the translations and rotations
required to successfully describe a helix. This agreement is known as the Cambridge
Accord (Diekmann, 1989). There are three classes of motions within a helix: base-pair
motions, base-step motions and global motions (see Table 2.1). Each motion is

described by six degrees of freedom (three translations and three rotations).

Table 2.1: The Cambridge Accord Nomenclature (Diekmann, 1989).

Motion Translation Axis Rotation Axis
X y zZ X y z
Pair Shear Stretch Stagger Buckle Propeller  Opening
Step Shift Slide Rise Tilt Roll Twist
Global  x-displacement y-displacement Rise, Inclination Tip Twist,

The base-pair parameters describe the geometry of the two bases within a single
base-pair, see Figure 2.6a (Lu & Olson, 2003). The three rotations are buckle, propeller
and opening. The three translations are shear, stretch and stagger. Only two of the
base-pair parameters have been found to vary significantly: the x-rotation buckle and y-
rotation propeller (Yanagi et al., 1991). The base-step parameters (Figure 2.6b) describe
the geometry of two adjacent base-pairs. The three rotations are twist, roll and tilt. The
three translations are rise, slide and shift. Finally, the global parameters (Figure 2.6c¢)

describe the geometry of the base-pairs relative to a global reference frame.

The positive directions along the x, y and z-axes are shown in the coordinate
frame of Figure 2.6. The x-direction is along the short axis of the base-pair, the y-
direction is along the long axis of the base-pair and the z-direction is perpendicular to
the base-pair. The Cambridge Accord adopts a right-hand rule for the direction of the
rotations, meaning that clockwise rotations about an axis are positive and anti-clockwise

rotations are negative.
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Figure 2.6: (a) The base-pair, (b) base-step and (c) global parameters (Lu and Olson, 2003)
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The Cambridge University Engineering Department Helix Computation Scheme
(CEHS) (El-Hassan and Calladine, 1995) calculates the base-pair and base-step-
parameters in agreement with the Cambridge Accord. Consider the calculation 'of the
base-step parameters. Firstly, the location of tfle two adjacent base-pairs forrning the
base-step must be described. The positioning in space of a single base-pair is encoded
by its own individual reference frame, known as a base-pair triad. A base-pair triad
provides a set of three axes (x, y and z) with a specified origin from which the

-orientation of the base-pair can be deciphered. The difference in geometry between two
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adjacent base-pairs could therefore be considered as the rotations and translations
required to transform the triad of the first base-pair into that of the second base-pair.
However, a problem occurs with this approach, as the measurements observed will
depend on the observer’s frame of reference. In other words, the resulting base-step
parameters will differ with which base-pair is chosen as the reference. For this reason
the CEHS introduced the concept of mid-step triads. A mid-step triad,‘ as its name
suggests, is a reference frame located between the two base-pairs in such a way that the
base-step parameters are identical despite the direction in which the step is read. For
full mathematical details of the base-pair triads and how the associated mid-step triad is
calculated see the CEHS (El-Hassan and Calladine, 1995).

The CEHS scheme was used to analyse a database containing the X-ray crystal
structures of 60 DNA oligomers (El-Hassan and Calladine, 1996). The variation in slide
for each dinucleotide step was aséessed via a frequency plot with the standard deviation
being taken as a flexibility measure (slide mobility). Some steps were found to be rigid
with a tendency for a single value of slide (e.g., AA), some were flexible with a wider
slide range (e.g., CA) and others were bistable with a bimodal slide frequency
distribution (e.g., GG). The mean propeller of a step was identified as being inversely
proportional to its slide mobility, due to high propeller acting as a “steric interlock” that

causes low slide mobility (El-Hassan and Calladine, 1996).

The Structure and Conformation of Helical Nucleic Acids Analysis program,
SCHNAaP (Lu et al., 1997a) implements and extends the CEHS scheme. Along a
sequence it generates the 18 parameters presented in Table 2.1 from the atomic
‘ coordinatés. Backbone descriptors are also calculated, which include a variety of
torsion angles and groove widths. Mismatched base-pairs and subtle variations of the

base structures, such as absent methyl groups, can be dealt with. The outp{1t includes.

base stacking illustrations and polymorphic family assignment. A program that carries

out the reverse procedure, rebuilding structure from base-pair and step parameters,

exists: SCHNATP (Lu et al., 1997b). SCHNATrP offers a valuable way of comparing and

evaluating structures predicted by different models. SCHNAaP and SCHNATfP,

collectively referred to as SCHNAP, have now been replaced and supe.rséded by 3DNA
_(Lu and Olson, 2003).
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Base-stacking diagrams are useful when analysing the transitions required to
convert the crystal structure of B-DNA (refer back to Figure 2.5¢ on page 7) into A-
DNA (refer back to Figure 2.5a on page 7). A two-stage conversion involving a change
in slide and a change in roll is presented in Figure 2.7 (Dickerson and Ng, 2001). The
effect of negative slide upon a helix applied evenly at each base-step can be seen from
the difference between Figure 2.7a and b. Likewise the effect of positive roll can be
seen from the differences between Figure 2.7a and c¢. Applying both of these changes
simultaneously results in transforming idealised B-DNA of no slide or roll into idealised
A-DNA having a slide of —1.5 Angstroms and roll of 12°

Fig‘ ure 2.7: Converting B-DNA to A-DNA by uniform changes in base-step slide and base-step roll
(Dickerson and Ng, 2001). (a) Idealised B-DNA with no slide or roll. (b) Intermediate with uniform slide
of —1.5 Angstroms. (c) Intermediate with uniform roll of 12°. (d) Idealised A-DNA with slide of —1.5
Angstroms and roll of 12°.

- 2.3. Base-stacking model

The stacking interactions of the 16 possible base-steps were calculated as a
function of slide, roll, twist and propeller (Hunter, 1993). Shift and tilt were set to zero
and rise was altered to ensure van der Waals’ contacts between the base-pairs. For
simplicity the sugar phosphate backbone was ignored and the dielectric constant set to
unity. Energy contour plots of slide versus roll were used to examine the
conformational preferences. Complementary steps gave identical results, leading to ten

“unique steps with energy minimum structures that agreed qualitatively with experiment
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(Hunter, 1993). The properties of certain base-pair steps were found to be related to the
properties of the constituent base-pairs. For example, the incompatible conformations
of TA and AT account for the strong preference of DNA to unwind when the TATA
sequence is present. This supports the importance of the TATA-box as a core promoter

element in transcription initiation.

Correlations between the experimental base-step parameters of the oligomer
database (El-Hassan and Calladine, 1996) and those predicted by Hunter’s stacki}xg
interaction model have been analysed (Hunter and Lu, 1997). The dielectric constant
was investigated with four being more accurate than unity. Calculated values of rise,
roll and tilt correlated well with the experimental data, meaning these descriptors are
determined solely by the base stacking interactions. Upon further inspection it was
found that these three degrees of freedom were almost entirely explained by just the van
der Waals’ interactions, due to their association with the vertical separation between
base-pairs. Slide and shift were not so well predicted, with electrostatic interactions
being important in explaining the range of values observed. The precise values however
are constrained by both the sugar phosphate backbone and the conformations of
neighbouring steps, two factors that needed further investigation. Twist has a very poor
correlation with the base stacking interactions and is thought to be entirely dependent

upon the backbone.

A semi-flexible rod model of the backbone constraint has been constructed
(Packer and Hunter, 1998). Two parameters are used, the mean backbone length for a
step and the difference in backbone lengths. Both of these parametérs can be accurately
~calculated from slide, shift and propeller. Twist can now be accurately modelled,
confirming that it is totally dependent on the backbone. Slide and shift cannot be

predicted, due to their context dependence upon neighbouring steps.

The 16 dinucleotide energy contour mdps of slide -vers'us shift with optimised
values of twist, roll, tilt and rise have been investigated (Packér et al., 2000a). Certain
steps were found to be bistable, meaning that they possess two or more distinct energy
minima in their slide-shift conformational energy maps. Minima were defined as

.separate if their slide values differed by at least 1 Angstrom. The bistability of GG and

CC can be seen clearly by the presénce of two energy minima (see Figure 2.8b) in
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comparison to the single global minima of the AA step (Figure 2.8a). However the
known bistability of GC and CG is not observed, since it is a property of sequence
context effects not described at the dinucleotide level. Slide flexibility was assessed by
fitting quadratic equations to energy minima paths and the results agreed well with slide
mobility (El-Hassan and Calladine, 1996).

Figure 2.8: Energy contour maps of slide versus shift in Angstroms (Packer et al., 2000b) for the

dinucleotide (a) AA that possesses a single distinct energy minimum and (b) GG which is clearly bistable.

Shift (A)

Slide (A)

Contour plots analogous to those just described have also been constructed for
all tetranucleotides (Packer et al., 2000b): these successfully describe the context

dependent effects, providing accurate predictions of slide and shift. This work proposed

a two-term model for calculating the energy of an oligomer of length N (EY ),

oligomer
which is shown as the first two terms of Equation 2.1 (the base-step energies and step
junction contributions). Some steps are context independent, due to neighbouring steps
with compatible conformational properties and others have strong context dependence
(Table 2.2). Neighbouring slide values along a sequence are strongly correlated.
Neighbouring shift values along a sequence are anti-correlated. This means that slide

has a tendency to be similar along a sequence and shift has a tendency to alternate.

Table 2.2: Context Dependence of Dinucleotides as classified by Packer et al. (2000b).

- Classification : el Steps ,
Context Independent | AA/TT, AT, TA
Weakly Context Dependent AC/GT, AG/CT, CA/TG, GA/TC
Strongly Context Dependent CG, GC, CC/GG
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An extension to the above model was used to make predictions about 30
oligomers (Packer and Hunter, 2001). A third term was introduced to describe base-

backbone interactions via a penalty function to account for steric clashes between a base

n
sugar

n

% is the energy of the n" step

and furanose sugar (E; ). See Equation 2.1, where E

and E}, ., is the step junction contribution.
N N-1 N=2 N
— n n n
E oligomer — Z E step + Z E Junction + Z E sugar Equ' 2’1
n=1 n=2 n=1

A genetic algorithm was used to search for an oligomer’s global minimum energy
structure, followed by a grid search to identify local minima. 24 of the 30 sequences
had their structures accurately predicted, with three of the remaining having their

differences accounted for by crystal packing in the solid state.
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Chapter 3:

The Octamer Database

Conformational energy maps of central base-step slide and shift have been

stored and used to calculate the structural properties of the 32,896 unique octamers,

creating the Octamer Database (Gardiner et al., 2003). The database’s contents can be

split into two categories: the parameters that describe an octamer’s minimum energy

structure and those that describe an octamer’s flexibility.

3.1. Describing the minimum energy structures

Minimum energy structures are described by the parameters in Table 3.1 (the six

minimum energy step parameters for each of the seven steps in an octamer, the 3-step

parameters, the minimum energy, the minor groove width and the RMSD).

Table 3.1: Minimum energy parameters of the Octamer Database.

Parameter

Description -

Central step parameters
All step parameters
twist3, roll3, slide3, shift3

Energy

Groove

RMSD

The six step parameters (twist, roll, tilt, rise, slide
& shift) at the octamer central step.

The six step parameters (twist, roll, tilt, rise, slide
& shift) at each of the seven steps of the octamer.

The four 3-step parameters (3-step twist, roll, slide
& shift) at the octamer central step.

The minimum energy of the octamer.

The minor groove width, measured as the
minimum phosphate-phosphate distance

Root mean square deviation from a notional
straight path through the centres of the base-pair
triads.

Chapter 3: The Octamer Database
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As previously explained in Chapter 2, the base-step parameters describe the geometry
between two adjacent base-pairs. The 3-step parameters measure the same rotations and
translations, but in relation to the two base-pairs at the ends of a 3-step sequence (Figure
3.1). In general n-step parameters describe the geometry between the two end base-

pairs of an n-step (n+1 base-pair) sequence.

Figure 3.1: The 3-step parameters versus the single step parameters

3 Step Twist

Normal Twist

The minor groove width measures the minimum phosphate-phosphate distance of the
minimum energy conformer minus the van der Waals’ radii of the phosphate groups.
Note that the major groove cannot be considered since it extends outside an octamer’s
length. Both grooves provide the sites at which drugs and proteins interact with DNA.
The RMSD is the root mean square deviation of the actual path through the base-pair

triads from a “straight” path that is aligned to the z-axis. It measures how bent a

structure is.

Five percent of octamers are bistable (Gardiner et al., 2003). However for the
following analysis of the parameters only the global minimum energy. structures have
been considered and the step parameters refer to the central step alone. Parameter
distributions over the entire octamer population are described in Table 3.2. Skew is

measured as the mean cube deviation (Steiner, 2000), see Equation 3.1, where N is the
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population size, x; is the i value of the parameter, s is the standard deviation and X is
the mean. Modified box plots (Weiss, 1995) of the distributions are shown in Figure

3.2 with outliers marked by crosses and determined by the inner fence boundaries.

1 &(x-%Y
skew = WZ Equ. 3.1

i=1 s

Table 3.2:. Minimum energy structural parameter analysis. NB(Rotations are given to 1° accuracy,

translations and distance are given to 0.14 accuracy and energy lkJmol" accuracy).

Parameter =~ Minimum Maximum - Mean Std.Dev. Skew
Twist 30° 39° 552 D2 -0.58
Roll -8° A58 3° 4° 0.04
Tilt 93 DF 0° i1 0.25
Rise 3.0A 3.4A 324 0.1A -0.37
Slide -2.0A 0.7A -0.3A 0.3A -1.84
Shift -0.6A 0.7A 0.1A 0.3A 0.32

Twist3 94° 114° 106° 4e -0.38
Roll3 =32 219 8° 4g 0.11
Slide3 -6.0A 1.7A -1.0A 0.8A -1.99
Shift3 -0.9A 1.2A 0.2A 0.3A -0.05
Energy  -411kJmol™ -351 kimol?  -383 kimol!  8kJmol! = 0.28
Groove 9.4A 13.2A 11.4A 0.5A -0.14
RMSD 0.1A 3.0A 0.7A 0.4A 2.54

Tilt, rise and shift are severely limited by the backbone (Calladine and Drew,
2002) and to a first approximation show no variation with sequence (Gardiner et al.,
2003). In agreement with these observations, it can be seen from Table 3.2 and Figure
3.2a that the range of tilt is small compared to twist and roll and that rise has a
negligible range of 0.4 A in comparison to the other two translations. Roll is the single
step rotation with the largest range and spread in values and twist has the lérgest
magnitude. The analogous 3-step rotations however have similar variances to one
another. Roll, roll3, shift3 and groove are normally distributed about the mean with
values of skew close to zero. Both slide and slide3 have a large negative skew in their
distributions. RMSD has a very positive skew of 2.54, corresponding to the fact that
90% of octamers have an RMSD of less than 1A (Gardiner et al., 2003).
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Figure 3.2: Box plots for (a) the central I-step parameters and (b) the central 3-step parameters, energy
(E), RMSD and Groove. N.B. The parameter ranges of (b) have been normalised.
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3.2. Flexibility parameters

The flexibility parameters (Table 3.3) fall into two main categories: the force
constants and the partition coefficients (see sections 3.2.1 and 3.2.2 respectively). The
meaning of flexibility within the context of this work should be made clear. Flexibility
of an octamer refers to the ease with which its structure can be distorted away from its
global energy minimum conformation with respect to either an increase or decrease in a
particular base-step parameter. Only twist and roll flexibility are considered, since these
two rotations have been recognised as important in protein-DNA recognition (Koudelka

et al., 1988; Rice et al., 1996).

Table 3.3: Flexibility parameters of the Octamer Database.

Parameter Description

Flexibility force constants Force constants required to decrease/increase

K Rol, K" Roll, K Twists K Twist the parameter from its minimum energy
value.

3-step force constants The force constants of the 3-step parameters.
3K Rolls 3K Rolls 3K Twist, 3K Twist

Flexibility partition coefficients Partition coefficients of the single step
QRots Q" Roll> QTwist Q Twist parameters.

Total partition coefficient Sum of the partition coefficients
Qr

3-step partition coefficients Partition coefficients of 3-step parameters.
3(Q-Roll, 3Q+R0Il, 3Q-Twist’ 3Q+Twist

Total 3-step partition coefficient Sum of the 3-step partition coefficients
3Qr

3.2.1. The Force Constants

Both the roll energy curve and the twist energy curve of each octamer have been
modelled by two Hooke’s law equations, allowing highly unsymmetrical curves to be
accurately represented (Gardiner et al., 2003). The energy required (E) to move an
octamer from its energy minimum roll (#,,,) to roll r is calculated by the formula below,

where x = r - r,;, and k is a force constant.
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E = kx2 : Equ- 3.2
whenx <0, k =K&Rron

when x > 0, k = k'ron

With analogous application to the twist energy curves, this leads to four force constants
per octamer (K'rou, K'Roll, K'Twist, and K'rwis) that describe the energy required to
decrease and increase roll and twist respectively. The larger a force constant is, the
steeper the curve from the minimum, meaning that more energy is required to make a
rotation in that direction and the less flexible the octamer is considered to be. The
modelled roll energy curve of ACCCAGCC is given in Figure 3.3. This is an extreme
case of a highly unsymmetrical energy distribution, illustrating how-an octamer can be
flexible with respect to decrease in roll from its energy minimum structure but rigid
with respect to increase in roll. Note that the value of £ when x equals zero is

- undefined, but will always lead to zero energy.

Figure 3.3: Roll Energy Curve of ACCCAGCC
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3.2.2. The Partition Coefficients

The partition coefficients (Q grot, Q+R0“, Q wist, Q+Twist) measure flexibility as the
number of different conformations that are accessible at room temperature. Therefore
the higher their values are, the more flexible the octamer. Calculations are based upon
the Boltzmann distribution. First, consider roll flexibility where the Boltzmann weight,
w[x], is proportional to the number of conformations having a roll of r at room
temperature (T=298K) with x = r-r,,;, (Equation 3.3). The gas constant R (0.0083144
kJmol'K™) is used instead of the Boltzmann constant due to the molar energy scale.

Note that w/x] equals one at the energy minimum, so this conformation is always

populated.
wix]=exp(—kx*/RT) | Equ.33

The total number of roll conformations available at room temperature (Qgon) is the sum
of w/x] across all values of roll. This involves an integral over infinity due to the

continuous nature of roll (Equation 3.4).
Opor = [ Wixldx o Equ. 3.4

Since k has one of two values (k'ron and k'gen), two separate integrals (Q'ron ar}d Q"Rol))
must be considered and combined to calculate Qgron (Equations 3.5 a, b and ¢). Figure .

3.4 gives a graphical illustration of the problem.
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Figure 3.4: Graphical illustration of the integrals required for calculating O, for ACCCAGCC.

w(x) vs X
QRoll =
+
QRoll= m
QRon=mi +m
-15 5 10 15
X
Oron = Cront + ot Equ. 3.5a
0
Qin = [exp(~kiyx* / RT)dx Equ. 3.5b
Opoi = [exp(~ki, x> | RT)dx Equ. 3.5¢
0

Conveniently, there are exact solutions to the above definite integrals in the form shown
in Equation 3.6a, where a is defined as &#/RT. This results in a simple solution to the roll
partition coefficient (Equation 3.6b). Note, the components (Q'Twis; and Q+Twist) of the

overall twist flexibility (Qrwist) are calculated in an analogous way to those of Qo

J'exp(—ax2 Ydx = %\/z Equ. 3.6a
R a
1 |[RTw 1 |RT7m
Oront = Nk R Equ. 3.6b
kRo/l kRoII 5
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To a first approximation the Q’s are independent (Gardiner et al., 2003),
meaning that they can be summed to give an overall measure of octamer flexibility, the
total partition coefficient (Qr), see Equation 3.7. The independence of the coefficients

is verified in section 3.3, where parameter correlations are explored.
- + - +
Or = Qrout + Qrott + Crvist + Crvis qul- 3.7

The 3-step flexibility parameters are calculated in an identical way to above, but
using the energies associated with the 3-step parameters. The minimum energy
conformations can be combined with their associated flexibility parameters in order to
determine the probability that én octamer will adopt a certain structure. This extension

to the database is presented in Chapter 4.

Tables 3.4 and 3.4 and Figure 3.4 describe the flexibility parameter distributions.
Note that the modified box plots of Figure 3.5 have had their scales normalised by their
parameter range, so that degrees of skew and inner quartile ranges can be visually
compared. All the force constants have positively skewed distributions, meaning that
an octamer has a higher probability of being at the flexible end of a parameter’s scale
than at the rigid end. kK" Ront is the most positively skewed 1-step force constant and has a
distribution of similar shape to k'rwist (Figure 3.5). Likewise k'ron and K Twist have
similar distribution shapes to one another. This pairing of the force constants may be
due to parameter correlations, which will be explored in section 3.3. kron and K rwist
have the smallest mean magnitudes (Table 3.4), meaning that on average decreasing roll
and increasing twist are marginally the most flexible directions. On going from the 1-

step to the 3-step force constants the positive skews are increased with a decrease in a

parameter’s mean and variance.

The partition coefficients distributions are more symmetric than the force
constants with skews closer to zero. The 3-step 15artition coefficients are smoother than
the 1-step with greater standard deviations. Qgon is more positively skewed than the
total twist flexibility (Qrwist), but this difference disappears when comparing 3Qgon and

3Qrwist- Increasing twist flexibility (Q+-rw,-st or 3Q+Twist) is the largest component of the

total flexibility (approximately 30% in both cases).
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Table 3.4: The Force Constant distribution statistics

Parameter Min/kJmol”’ Max/kJmol’ Mean/kJmol™ Std.Dcyev/kJmol'l Skew

degrees™ degrees™ degrees™ degrees™
K Twist 0.13 4.16 0.60 0.41 3.41
K Twist 0.08 0.78 0.31 0.12 0.89
K Roll 0.06 1.48 0.50 0.27 0.92
K Roll 0.05 13.29 0.75 0.71 6.31
3K Twist 0.04 2.32 0.22 0.17 5.47
3K Twist 0.02 0.45 0.10 0.04 1.28
3K Roll 0.03 1.01 0.20 0.12 1.75
3K Roll 0.02 8.06 0.24 0.21 10.24
Table 3.5: The Partition Coefficient distribution statistics
Parameter Minimum Maximum Mean Std.Dev. Skew
Qrwist 0.69 3.96 1.99 0.43 -0.29
Q" Twist 1.59 5.05 2.66 0.49 0.36
Q'ron 1.15 5.72 2102 0.61 0.46
Q" Roll 0.38 6.33 1.90 0.61 1.01
3Q Twist 0.92 7.29 3.26 0.74 0.26
3Q  Twist 2.09 9.24 4.70 0.86 0.50
3QRoll 1.39 8.09 3.53 0.91 0.39
3Q Roll 0.49 9.45 3.22 0.88 0.70
Qrwist 2.59 7.19 4.64 0.54 -0.31
Qron 2.90 8.79 4.12 0.71 0.92
Qr 6.11 15.07 8.77 1.02 0.66
3Qrwist 4.14 12.53 7.96 0.97 0.33
3Qroll 3.46 11.95 6.76 1.05 0.33
3Qr 9.50 23.16 14.71 1.73 0.45
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Figure 3.5: Flexibility Box Plots.
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3.3. Parameter Correlations

This section investigates correlations between parameters in the octamer
database. = Comparisons are made by calculating Spearman Rank correlation
coefficients, rs (Daly et al., 1995) and visually inspecting plots of parameter pairs. 1,
measures how well the ranks are correlated to one another and has values that vary
between —1 and +1. Zero means no association is present, +1 a monotonic increasing
relation and —1 a monotonic decreasing relation. In the tables that follow significant
correlation coefficients (where |r>0.6) are highlighted. Note that even if no strong

correlation is found, a relationship may still exist that can be observed graphically.

3.3.1. Correlations between the 1-step parameters

Values of r; for all possible pairs of the central 1-step minimum energy
parameters are shown in Table 3.6. Shift and tilt (the translation and rotation of the x-
axis respectively) are highly correlated (rs of 0.95) by a positive linear relationship
(Figure 3.6). This is because shift alleviates unfavourable contacts between bases that
are caused by tilt. Rise and twist (the translation and rotation of the z-axis) have
inversely correlated ranks, since a small rise leads to steric clashes that are minimised
by increasing twist. A correlation between slide and roll is expected, since they are the:
translation and rotation of the y-axis. Steric clashes or electrostatic repulsions caused
by change in roll may be alleviated by slide or vice versa. Surprisingly the ranks are
unrelated (15 of only 0.03), however when central step types are individually considered

very strong relationships become apparent in all cases (Figure 3.7).

Table 3.6: Spearman Rank Correlations between the 1-step parameters with values of |ry|=0.6
highlighted i

Twist Roll Tilt Rise Slide Shift
Twist 1
Roll  |-036 1
Tilt 0.2 -0.64 1 |
Rise -0.70 -0.26 0.58 1
Slide 0.19 ~0.03 0.02 0.05 1
“Shift -0.15 -0.64 0.95 0.49 0.03 1
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Figure 3.6: Shift versus Tilt.
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In eight out of the ten central step types, an inverse relationship can be seen between
slide and roll (Figure 3.7). Notice that both the GC and AC/GT plot are wave-like in
shape. The structural reasons for this are unknown. They are both purine-pyrimidine
steps, but more specifically they are the only two guanine-pyrimidine steps. Perhaps
when certain parts of the guanine base slide over the other purine base, a steric clash or

electrostatic repulsion occurs that causes a temporary change in the direction of roll.

The shift-roll relationship is very similar to the tilt-roll relationship, due to the
strong correlation between shift and tilt. High minimum energy roll tends to favour low
shift and tilt. Previous research has suggested that roll and twist are anti-correlated with
the exact linear relationship varying with the central step type (Gorin et al., 1995). The
central step roll-twist graphs of Figure 3.8 look very similar to their analogous central
step roll-slide graphs of Figure 3.7. This suggests that there is a very strong positive
correlation between slide and twist for each central step type. The linear nature of this
relationship is confirmed by the high squared Pearson correlation coefficients (r?) of
Table 3.7. Coefficients are also included for the roll-twist and roll-slide relationships.
In general, roll, twist and slide are all highly coupled to one another. Notice the low
roll-twist r* values for the TC/GA central step (Table 3.7), signifying non-linearity. The

curvi-linear nature of these relationships is clearly seen in Figures 3.7 and 3.8.

Table 3.7: Squared Pearson correlation coefficients of slide-twist, roll-twist & roll-slide correlations.

Step type Slide-twist Roll-twist Roll-slide
TG/CA 0.92 0.95 0.98
TC/GA 0.96 0.40 0.35
TA/TA 0.98 0.95 0.98
CG/CG 0.89 0.94 0.92
GC/GC 0.96 0.16 0.05
GG/CC 0.97 0.86 0.94
AT/AT 0.99 0.99 0.98
AG/CT 0.98 0.86 0.90
AC/GT 0.91 0.73 0.57
AA/TT 0.99 0.98 0.98

All octamers 0.08 0.31 0.00
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Figure 3.8: Twist versus roll for different central steps. All octamers are shown in bottom right plot.
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3.3.2. Correlations between the 3-step parameters

The roll-shift correlation disappears on going from the central single step
parameters to the central 3-step parameters. There is no strong monotonic relationship
between any of the 3-step parameters (Table 3.8). Slide has a tendency to be sirﬁilar
along a sequence (Packer et al., 2000b), hence the strong correlation between slide and
slide3 (Table 3.8 and Figure 3.9). The plot of twist versus twist3 in Figure 3.9
emphasises that the 3-step parameters (apart ﬂom slide) contain information very

different from their single step counterpart, therefore validating their use. .
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Table 3.8: Spearman Rank Correlations between the 3-step parameters with the most significant

highlighted (slide3-slide).

Twist3 Roll3 Slide3 Shift3 1-Step Equivalent

Twist3 1 0.59

Roll3 -0.49 1 0.26

Slide3 0.57 -0.31 1 0.85

Shift3 -0.02 -0.14 0.15 1 -0.17
Figure 3.9: /-step to 3-step correlations
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3.3.3. Energy, groove and RMSD correlations

No significant energy correlations exist with all magnitudes of rs being less than

0.39 (Table 3.9). Both groove and RMSD are inversely correlated to twist3 with an r

of —0.60. An inverse relationship between groove and twist is understandable, because

untwisting opens the groove (Gorin et al., 1995). RMSD is inversely correlated to both
slide3 (Figure 3.10) and slide, r; of —0.70 and —0.61 respectively. The RMSD versus

roll plot is included in Figure 3.10 since it shows a tendency of roll to be high when

RMSD is high, meaning that roll is an important degree of freedom in bent structures.
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Table 3.9: Spearman Rank Coefficients for energy, groove and RMSD correlations with the most
significant highlighted (RMSD-Slide3, RMSD-Slide, RMSD-Twist3, Groove-Twist3)

Energy Groove RMSD

Twist -0.17 -0.41 -0.37
Roll -0.04 0.01 0.25
Tilt 0.17 0.18 -0.09
Rise 0.21 0.36 0.00
Slide 0.10 -0.11 -0.61
Shift 0.08 0.11 -0.08
Twist3 -0.21 -0.60 -0.60
Roll3 -0.02 0.35 0.59
Slide3 0.12 -0.14 -0.70
Shift3 0.06 -0.08 -0.04
Energy 1 0.39 -0.15
Groove 0.39 1 0.24
RMSD -0.15 0.24 1

Figure 3.10: Most significant RMSD and Groove correlations
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3.3.4. Force constants & Partition Coefficients

Flexibility in the increasing twist direction is positively correlated to flexibility
in decreasing roll with a 1-step rs of 0.61 and a 3-step rs of 0.66 (Tables 3.10 and 3.11).
Note that the partition coefficient pairs will have the same r; values as the analogous

force constant pairs, due to the derivation of one from the other. The Pearson
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correlation coefficients will be different however, since although the ordering of the
points within a graph will be the same, their dispersion will be different (Figures 3.11a
and b). k' on is only high when Kyt is low (Figure 3.11c) and an octamer never appears
highly rigid with respect to both decrease in roll and decrease in twist (Figure 3.11d),
meaning that an octamer is always able to either untwist or decrease roll to a certain
extent, which are both mechanisms of relieving clashes in the major groove. It can be
confirmed that the partition coefficients are independent to a first approximation, since
(apart from Q"wwist and Q o) all pairs have an 15 of less than 0.5. This validates the use

of Qrwist » Qron and Qr as descriptors.

Table 3.10: Single step force constant correlations with the most significant highlighted (k" pyis o)

Krwist K Twist KRon K"Rol
Kwist 1
K" Twist -0.35 1
Krolt -0.48 0.61 1
K Rol 0.43 -0.19 -0.37 1

Table 3.11: 3-step force constant correlations

3K Twist 3k Twist  3KRon 3K Rolt 1-Step Equivalent
K rwist | 1 0.61
3K Twist | -0.26 1 0.65 -
3K Ron -0.45 0.66 1 0.73
3k'ron | -0.54 -0.12 -0.30 1 0.59

3.3.5. Correlations between flexibility and minimum energy

Spearman rank correlation coefficients between a selection of flexibility
parameters and minimum energy parameters are given in Table 3.12. The only
significant correlation found was an inverse monotonic relatior; between minimum
energy 3-step twist and flexibility in the increasing twist direction. A low rs of 0.09
between Qr and RMSD confirms that how bent an octamer is in its minimum energy

conformation is unrelated to its overall flexibility (Gardiner et al., 2003). -
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Figure 3.11: Some force constant and partition coefficient correlations
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Table 3.12: Correlations between flexibility and minimum energy

B R s
K twist/ kJmol ldegrecs 4

1(-Twisn‘. k+Twist Q-Twist Q+Twist QTwist
Twist -0.5553 0.4905 0.5553 -0.4905 -0.0689

K'Roll K Roll Qrol Q" Rol QRroll
Roll -0.1576 -0.1874 0.1576 0.1874 0.2781

3k—‘Twist 3K Twist 3Q Twist 3Q " rwist 3Qrwist
Twist3 -0.3973 0.6938 0.3973 -0.6938 -0.3172

3K Roll 3k Roll 3QRol 3Q "Rl 3QRoll
Roll3 -0.3687 0.0679 0.3687 -0.0679 0.2768

QTwist QRoll QTotal 3QTwist  3QRoll 3QTotal
E 0.2750 0.1796 0.2436 0.5276 0.3978 0.5336
Groove 0.2730 0.2410 0.2821 0.3984 0.4010 0.4666
RMSD -0.1111 0.2236 0.0853 -0.1382 0.2479 0.0770
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3.4. Conclusions

A database that describes the minimum energy structure and flexibility of all
DNA octamers has been successfully produced (Gardiner et al., 2003). The parameters
tilt, rise and shift show little variation due to the backbone constraints. Slide is
negatively skewed with a tendency to be similar along a sequence, hence its strong
positive correlation to slide3. Twist and roll are both important rotations for protein
recognition that are anti-correlated. Their exact correlation varies with the central-step
and is found to be identical to the corresponding slide and roll relationship. RMSD is
positively skewed with most octamers having values less than 1 A. Roll tends to be
high when RMSD is high, meaning that it is important degree of freedom in bent

structures. How bent an octamer is has no relation to its flexibility.

On average, increasing twisf is the most favoured direction in flexibility,
followed by decreasing roll. Increasing twist flexibility is positively correlated to that
of decreasing roll. An octamer never ai)pears to be highly rigid with respect to both
decrease in roll and decréase in twist, therefore there is always some degree of
flexibility for widening the major groove, a common way by which proteins bind to
DNA (Brandon and Tooze, 1991). The following chapter combines an octamer’s
minimum energy conformation with its flexibility, in order to determine its structural

probabilities.

Chapter 3: The Octamer Database , 34



Chai)ter 4:

Database Extension — Structural Probabilities

The minimum energy conformation and flexibility of an octamer can be
combined to calculate structural probabilities in terms of roll or twist. This fusion of
database parameters is explored and offers a useful alternative way of comparing DNA
sequences to one another. It will enable estimates of the likelihood that two sequences
will have the same structure or that a sequence will adopt a certain binding motif. The
probabilities must be calculated using a numerical integration technique due to the
continuous nature of the structural parameters. A Rectangular Approximation algorithm

has been implemented for this purpose and is found to give accurate results.

4.1. Calculating the probabilities

The probability that an octamer has an exact value of roll (r) is mathematically
-impossible to calculate, since roll is a continuous variable. This means that the number
of possible outcomes is infinite with the probability of one particular outcome occurring
being undefined. Therefore, only the probability that an octamer will have a roll within

a defined range a to b, P[a <r <b], can be considered. See Equation 4.1, where w[x] is

the Boltzmann weight and Qg,r is the roll partition coefficient (Chapter 3 section 3.2).

[wix]
Plasr<b]=2 Equ. 4.1

Roll

"Unlike the calculation of Qg.y discussed’in Chapter 3, there is no standard
solution to the integration of w/x] over defined ranges and numerical integration must
be used in order to approximate areas under a curve. The simplest method is the
Rectangular Approximation where the area is represented by rectangles of fixed widths
(Figure 4.1). The height of a rectangle is defined by the value of the function at the

midpoint of the rectangle width. The Trapezoidal rule and the Simpson’s Rule are two
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other commonly used approximations that ‘also use uniformly spaced ordinates (Figure
4.1). They are known as the Newton-Cotes quadratures. The Trapezoidal rule uses
trapezia rather than rectangles and Simpson’s rule uses parabolas. Formulae for the
approximations are given in Equations 4.2a, b and c. It can be seen that all three

methods are relatively straightforward to calculate and not computationally demanding.

Rectangular:
b
[f@dc~ny, f(x—J’z-x—‘) Equ. 4.2a
a 0<i<n
where h=(b-a)/n for n rectangles
Trapezoidal:

[ Gy ~ hB S+ FG)+ £ ) ot )+ £y )] Equ. 4.2b

where h=(b-a)/n for n trapezia

Simpson’s:
[fG)dx ~ Q[f(xo) A1)+ 21 (x) + 4L (%) +2f @)+ 4f (%) + £(35,)]

Equ. 4.2¢
where h=(b-a)/2n for n parabola

Figure 4.1: Methods of Numerical Integration. Illustrations of the Rectangular, Trapezoidal and
Simpson'’s rule for estimating the integration of a theoretical function, f(x), using three ordinates xy, X,
and x,. Shaded areas show the estimations with the darker shading referring to regions above the curve.

Crosses in the Rectangular illustration show the midpoint heights.

RECTANGULAR TRAPEZOIDAL SIMPSON'S
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The use of rectangles can be more dccurate than trapezia, because a rectangle’s
tendency to go partly over and under a curve may cancel out the error in area
estimation, whereas a trapezium tends to completely under-estimate or over-estimate the
area (Sedgewick, 1988). This is illustrated in Figure 4.1. The over-estimation between
Xo and x; of the Simpson’s approximation in Figure 4.1 illustrates how parabolas of
smaller widths (i.e. one from X to X; and a second from x; to x;) would allow a much
better estimation. This inaccuracy may also be avoided by using a Gaussian quadrature.
Gaussian quadratures, unlike Newton-Cotes quadratures, have unevenly spaced
ordinates chosen to optimise the area estimation. Further information on Gaussian and
Newton-Cotes quadratures can be found in the literature (Sedgewick, 1988; Acton,
1990; Borse, 1997; Steiner, 2000).

Acton suggests that given the availability of computers to automate processes
using the simplest technique repeatedly is often the most efficient and effective

approach:

“Why not count squares — provided we have an automated computer to do it?”
(Acton, 1990)

This opinion supports the decision to use the Rectangular approximation. An algorithm
has been written that starts estimating the desired area by splitting it into a specified
starting number of rectangles. Estimations are then repeated with doubling of the
number of rectangles until the solution has converged to a required number of decimal
places. Since the function being numerically integrated, w/x/, depends on whether x is
positive or negative (Whether roll/twist is being decreased or increased from its energy
minimum) it is important to treat areas that cross an x of zero with caution. Figure 4.2
illustrates an extreme case of a highly unsymmetrical distribution (the roll of octamer
ACCCAGCC), showing how a rectangle that crosses the energy minimum may lead to
inaccurate predictions. For this reason calculations will treat areas that cross zero as the
sum of two separate area estimations, allowing convergence to occur with a differing
numbér of rectangles either side of the energy minimum. Finally once the desired
integral has been estimated it can be converted into its associated probability with

division by the partition coefficient.
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Figure 4.2: The rectangle approximation for the roll of ACCCAGCC

w(x) vs x - Rectangle approximation

The convergence threshold was set to 0.00001 (5 decimal place accuracy) and
the number of starting rectangles was initially set to two. However it was discovered
that under certain circumstances the area estimation algorithm converged prematurely.
For example the probability that CGGTATAC has a roll between —10° and +20° is
approximately one, but when considering the broader range of —100° to +100° the
probability estimation dramatically decreases to 0.4525. This severe error and reduction
in probability is caused by a drastic under-estimation of the area to the left of i (2
decrease from 3.15 to 6.01X10° degrees). Convergence has occurred much too early at
only four rectangles, each with an approximate width of 28°. A simple but effective
solution to this problem is used. Instead of setting the starting number of rectangles to
two regardless of the roll range size, a starting number that corresponds to rectangle

widths of one degree is used.

Now let’s return to the highly unsymmetrical roll probability distribution of
ACCCAGCC (Figure 4.2). Differing numbers of optimal reqtangles either side of
ACCCAGCC’s minimum energy roll structure (1) have been found (Table 4.1). This
Justifies the use of a probability calculation procedure that estimates areas either side of
the energy minimum independently. Note that ACCCAGCC has a ryi, of 11.90°, K ron
of 0.109 kJmol'ldegrees'2 and ko of 8.422 kJmol'ldegrees'z. The range —10° to +20° is

included in Table 4.1, since this is the roll variation in usual DNA structures (Calladine
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and Drew, 2002). As expected, the respective probability is one. With the exception of
rmint 1°, the number of rectangles is greater below rp;, than above. The optimal number
of rectangles depends on the gradient magnitudes and the pace with which they are

changing, defined by the force constant and distance from minimum energy roll.

Table 4.1: ACCCAGCC probability calculations around its energy minimum roll (ry,,)

Probability No of rectangles before  No of rectangles after  Probability

range I'min Imin
e 128 128 0.311
T Cox 256 16 0.503
Vairarar 384 24 0.665
Tince 4 512 32 0.788
T on 640 40 0.876
Tt LOS 320 80 0.997

-10°to +20° 320 160 1.000

It can be confirmed that identical probabilities to those of Table 4.1 are obtained
when using the more sophisticated, but also more computationally demanding, Labatto
quadrature to estimate the required integrals. The Labotta quadrature is a recursive
adaptive gaussian procedure that is available via the ‘quadl’ function in Matlab (Gander

and Gautschi, 2000).

Flowcharts showing details of the final structural probability algorithm and its
implementation are given in Figure 4.3. Two functions are shown, the probability
function and the getArea function. The former makes calls to the later. A third function
also exists (RectangularApproximation) but has not been included since its structure is
covered in adequate detail by Equation 4.2a. Program flow is initiated by a call to the
probability function. Five input arguments are needed: rmin, Ko, k' ron, the lower roll
probability limit (min) and the upper roll probability limit (max). The main part of this
function is to determine what areas need to be calculated. Three situations exist: the
whole area occurs either before or after ry;, or it crosses rmin. As discussed above, if it
crossed ryin then the area is split into two, resulting in two calls to the getArea function.
Once called, the getArea function calculates an area using a determined number of

starting rectangles and an iterative procedure until the convergence threshold is reached.
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Figure 4.3: The probability and getArea functions of the Rectangular Approximation algorithm

_probability function getArea function
probability(r,,;., Ko K op» min, max) - getArea(k, a, b)
Set X, to min —r, ;. Set number of rectangles to
Set X, to max —r;. (b — a) rounded to integer
A 4
Calculate Q from kg, ko Is number of Reset to 1
(Refer to chapter 3 equation 7b) rectangles 0?
Does the total ar;aa Set Area to getArea(k o, Xmin Xmax) [ Calculate area by <
fall before r,;,? Rectangular approximation
Has area Double number
Does the total area Set Area to getArea(k+mll, X Xmax) | Converged? ofrectang]es

fall after r,,;,?

Need to deal with area Set Area to getArea(k™, o Xpins 0
that crosses r;; . +getArea(k® 1, 05 Xpa)

Set probability to Area/ Q | %

!

Return probability
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Although the majority of DNA structures have a single-step roll between —10° and +20°
it was found that in order to cover the structural space available to the octamer
population an extended range of -20° to +30° must be used. The 3-step roll and
analogous twist dimensions are shown in Table 4.2. These dimensions will need to be

considered when comparing the structures of two octamers, the topic of the next section.

Table 4.2: The structural Roll/Twist space

Dimension Minimum / ° Maximum / °
Roll -20 30

Roll3 -20 40

Twist 15 55

Twist3 75 135

4.2. Structural Similarity

The probability that an octamer will have a particular range of roll can now be
calculated (section 4.1). This leads to a further question of how to calculate the
probability that two octamers will have the same roll, their structural similarity. It is
important to note that although all examples so far have been about roll the same

principles are used to calculate twist probabilities and similarities.

Consider two octamers X and Y. X has a roll of X,y and Y has a roll of Y.
The probability that X and Y have identical roll structures, P(X;on=Yron), is estimated as
the sum of probability products over roll’s structural space, see Equation 4.3. The
structural space, although continuous, is considered in one-degree segments. Hence
Equation 4.3 calculates the probability that both octamers have a roll in the first one-
degree bin plus the probability they both have a roll in the next bin and so on until the

entire roll dimension has been considered.

+30
P(Xrnll o Yl‘ul/) = Z P(XI'U” =4 Eis O'S)P(lel =] s 05) Equ' 4'3

i==20
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This procedure is graphically illustrated as a volume in Figure 4.4. The quantized
probability distributions of two hypothetical octamers are shown in the same plane in
Figure 4.4a, then at right angles to one another in Figure 4.4b. Three dimensional

blocks can then be drawn to join up the distributions (Figure 4.4c), the total volume of

which estimates P(X;on=Yrol)-

Figure 4.4: Estimating P(X,;n=Y01)

(a) Separate probability distributions, (b) rearrange distributions to be at right angles to one another, (c)

then calculate volume of blocks that join the distributions together.
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The structural similarity of two octamers X and Y, S(X,Y), will have a value
between zero and one, one meaning identical. This allows comparisons between
different structural similarity measures to be made, see the next section. The probability
that two octamers will have the same structure (either with respect to roll or twist) will

never be equal to one, since a DNA sequence’s structure is not static. Even when
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considering a pair of identical octamers the chances that they will both be in the same
configuration at the same moment in time is far from certain. In fact the average
probability that a pair of identical octamers will have the same roll structure is only
0.174 or that they will have the same twist structure is only 0.153. The highest pairwise
roll probability (0.238) is between AGAGAATT and itself or its structural equivalent
(AATTCTCT), since it is the octamer most rigid to changes in roll with the lowest value
of Qron. It may seem alarming that structural probabilities are so low between identical
octamers, but they clearly reflect the importance of dynamics in DNA structure, a long
recognised characteristic (Levitt, 1983). Note however that the probabilities only
consider octamers in isolation and do not account for any structural constraints that may

be placed upon them by surrounding base-pairs or other environmental factors

It can be more probable for two different octamers to have the same central step
geometry than two identical octamers. For example AGGTAGCC is more likely to
have the same value of roll compared with AGGTAGAG than with another _molecuie of
itself. This is because AGGTAGCC is extremely flexible by roll and has a very similar
minimum energy roll to the less flexible AGGTAGAG.

Two normalisation techniques are presented for the conversion of the probability
measures to symmetric non-directional similarities, i.e. S(X,Y) is equal to S(Y,X).
Method 1 always gives an octamer a similarity of 1 with itselﬂ whereas method 2
differentiates between the level of similarity between one identical pair and another, i.e.

S(X,X) does not necessarily equal S(Y,Y).

e Method I1:
S(X.Y) =S¥, %)
SXX) =1
S(x, 7y =—22&=1) Equ. 4.4a

P(X=X)+P(Y=Y)
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e Method 2:

SXY) =S(T.X)
Differentiates whether P(X=X) > P(Y=Y)

P(X=Y)

S(X,Y)= VAT

Equ. 4.4b

where MAX is the maximum pairwise probability over the entire octamer
population (i.e. 0.238 for the conversion of the roll prdbabilities). In other words, the
similarities values are all relative to the most similar octamer pair (that is the similarity

of the most rigid octamer to itself).

N.B.(Do not confuse MAX with max{P(X=X),P(Y=Y)}).

4.3. Comparison to minimum energy structure distances

A similarity measure based upon structural probabilities will be of no use if it is
found to give similarity scores identical to those based upon the minimum energy
structures. Equation 4.5 defines the minimum energy structure similarity between
octamers X and Y when considering a single parameter p. D,(X;Y) is the distance’

between X and Y with respect to p and r is the parameter’s population range.

D (X,Y)

S(X,Y)=1-—2 Equ. 4.5
r

It is a daunting task to look at all poésible pairs of octamers, therefore similarities have
been binned and frequency matrices drawn for both the roll and twist comparisons
(Figure 4.5). The measures introduced in Equations 4.4a and 4.5 are used. If the
similarity measures were equivalent, the use of both would be redundant and all the
scores would lie on the diagonal of the matrix. The area above the diagonal corresponds
to an octamer pair being more similar by their structural probability than by their

- minimum energy structure and vice versa for the area below the diagonal (Figure 4.5a).
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Figure 4.5: Structural probability and minimum energy structure similarity comparisons for (b) 1-step
roll and (c) I-step twist.

&0
~

Similar By Probability
Different By
Roll/Twist
Distance

>

Similar By Roll/Twist
Distance Different
By Probability

Increasing Probability Similarity

Increasing Roll/Twist Similarity

b)

Roll Probability Similarity

0.2 04 0.6 08 1.0
Roll Distance Similarity

Asusnbayy snunpueol

0.8

g
=

Twist Probability Similarity
(=}
—

0.2

02 04 06 0.8 10
Twist Distance Similarity

Chapter 4: Database Extension — Structural Probabilities 45



In the roll matrix (Figure 4.5b) the majority of octamer pairs lie beneath the
diagonal, meaning that they are less similar by their structural roll probabilities than by
their ryj, values. 49% of the octamer pairs have a roll distance similarity greater than
0.7 and a roll probability similarity of less than 0.4. This reflects the fact that if a pair
of octamers have identical or near identical minimum energy structures they can still
have very different structural probabilities, due to differences in their flexibility. On the
other hand, when the roll probabilities are high it is impossible for the ry;, similarity to
be low, due to the relationship between the rn;, values and roll probability. Hence the
absence of octamers in the top left hand corner of both plots and the asymmetric nature
of the matrices. In the twist matrix (Figure 4.5¢) the majority of octamer pairs are also
below the diagonal, though to a far lesser extent than in the roll matrix. Clearly
different information is contained in the novel probability similarities in comparison to
their minimum energy counterparts, justifying their use as alternative descriptors for

sequence comparison methods. ,

Figure 4.6a shows the roll probability distributions of an octamer pair that are
similar by both their minimum energy roll and their roll probabilities. The distributions
have almost identical shapes with a very large overlap. The similarity values are given
in Table 4.3 along with each octamer’s rmin, Kron and k' ro. Figure 4.6b shows the roll
probability distributions of another octamer pair that are again similar by their minimum
energy roll, but are very different by their roll probabilities. GGGGAGTC (shown in
black) is highly flexible with respect to increasing roll (Table 4.3) making its structural
roll tendencies very different from AAAAAACA.

Figure 4.6: Boltzmanns weight, w(x), versus roll for (a) an octamer pair (AAAAAATC and TGGGCATA)
similar by both their minimum energy roll and roll probabilities and (b) an octamer pair (AAAAAACA

and GGGGAGTC) similar by their minimum energy roll but very different by their roll probabilities.
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Table 4.3: The similarities between the octamer pairs shown in Figure 4.6 along with their minimum

energy roll and roll flexibility values.
Octamer Tmin Kol Kol Roll Roll

(degrees) (kJmol!  (kJmol! distance probability

degrees?) degrees?) similarity  similarity

AAAAAATC 3 0.37 1.13

0.9 0.8
TGGGCATA 1 0.95 0.57
AAAAAACA 3 0.37 1.13

0.9 0.2
GGGGAGTC 5 0.77 0.09

4.4. Conclusions

The Rectangular Approximation algorithm is a fast and efficient iterative
procedure with a 5 decimal place convergence threshold that calculates the probability
that an octamer will adopt a particular roll or twist structure. It has been confirmed that
combining the minimum energy conformation and flexibility of an octamer to evaluate
its structural tendencies does provide a novel way of comparing sequences by their
structure. Note that structural bistability has been ignored and only global minimum
energies considered, since only five percent of octamers are bistable (Gardiner et al.,
2003). A large number of octamer pairs that have identical or near identical minimum
energy structures have very different structural tendencies (particularly with respect to
roll). Pattern recognition via the structural probabilities may therefore find structural

DNA fingerprints that would otherwise be unrecognised.
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Chapter S:

~ Structural Profiles — Single Sequence Queries

Structural profiles are graphical illustrations of how DNA structure varies across
a sequence or set of sequences. They use the contents of the Octamer Database either to
observe any characteristics of a single sequence that are special (a single sequence
query) or to visualise a pattern common to a set of sequences (a multiple sequence
query). They are an aid in understanding structural reasons for functional DNA activity,
helping to answer questions, such as what structural features make a sequence have such
a high affinity for a drug molecule or why does a protein recognise a particular set of
DNA sequences? This chapter introduces the profiles that answer single sequence
queries and presents Profile Manager (a software application developed to automate

profile generation). For discussion of multiple sequence queries see Chapter 6.

A single sequence query is answered by a set of single sequence profiles. Each
profile gives a graphical illustration of how a particular parameter varies across the
sequence length with any special regions highlighted. Single sequence profiles can also
be used to observe any striking similarities or differences between a sequence pair.
Before presenting the profiles, a survey of the literature is made to identify any

analogous tools that already exist.

5.1. Survey of Analogous Visualisation Tools

Attempts have been made to capture the nucleotide content of a DNA sequence
graphically. One such example is a path followed in two-dimensional space, where
each C, T, A and G refer to a movement north, south, west and east respéctively (Randic '
and Vracko, 2000a). These graphical walks have been extended to three dimensions by
describing a sequence of bases by movements along the vertices of a tetrahedron
(Randic et al., 2000b). A Z-curve represeﬁtatiori (Zhang et al., 2003) also exists, where
a curve of N points (xn, YN, zn) represents a sequence of length N (Equations 5.1 a, b

~and c¢). xn represents the ongoing ratio of purine to pyrimidine bases, }'}N represents the

amino to keto ratio and zy represents weaker hydrogen bond bases to stronger.
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xn = (Ax + Gy) - (Cn + T) Equ. 5.1a
yN=(AN+Cn) - (G +Tn) Equ. 5.1b
zn=(An+ Tn) — (Gn + Cy) Equ. S5.1c

where Ay, Cn, Gy and Ty are cumulative counts of the number of respective bases

encountered so far along the sequence.

Structural parameter plots of DNA can be obtained from the plot.it server
(Vlahovicek et al., 2003) or from DNAssist (Patterton and Graves, 2000). Plot.it has 45
parameters to choose from (including roll, twist and tilt dinucleotide parameters and
flexibility measures). Smoothing options are also available. The structural profiles
presented here are more realistic than those of plot.it and DNAssist, since octamer units
rather than context independent dinucleotide units are considered. Extra functionality in
Profile Manager includes determination of unique areas of a sequence with respect to
each parameter, the ability to summarise a set of profiles and an option to study the

dynamics of DNA structure.

1

5.2. Single Sequence Profiles

Consider a single DNA sequence and a single structural pérameter. The first
step in generating a structural profile is to convert the nucleotide sequence of length N
into its consecutive overlapping (N-7) octamer sequence. For example the 10-letter
sequence AACTTTGGTC is converted into 3 octamers: AACTTTGG, ACTTTGGT
and CTTTGGTC. The chosen parameter’s values are then retrieved from the octamer
database for these octamer units. They are then each converted into a Zscore value that

measures the importance/significance of a particular value of a parameter (Equation
5.2).

X=X

Zscore = Equ. 5.2

g

~where x is a particular value under consideration, X is the mean of the parameter across

the population of all possible octamers and & is the population standard deviation.
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A profile is then constructed by plotting the Zscore values against the sequence length
(Figure 5.1). Cut-offs of <-3 and >3 at the minimum and maximum of the Zscore scale
are used for visual purposes when comparing several profiles. Any parameters that fall
outside this range are assigned values of —3 or +3 accordingly. The Zscore is the
number of standard deviations a value is from the parameter’s population mean. When
considering a normal distribution, there is a 68% chance that a value will fall within
plus or minué one standard deviation of the mean (region A in Figure 5.1) and a 95%
chance that a value will fall within plus or minus two standard deviations (region B in
Figure 5.1). Therefore any value that falls outside of these two boundaries (marked by
green lines on a profile) is significantly different from average. Each value along a
sequence has been colour coded, in order to highlight any special regions. At the two
extremes, blue means average (within region A) and red means special (outside region
B). Intermediate values, those between one and two standard deviations from the mean,

are shown in purple.

Figure 5.1: Example of a structural profile for a sequence’s energy. Zscore boundaries are marked by

green lines. For a normal distribution 68% of the data falls in region A and 95% in region B.
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The use of structural profiles to analyse the minimum energy structure and the
flexibility of a sequence, in order to identify any interesting characteristics, is illustrated

with two examples: the A-tract phenomenon and a Drosophila promoter comparison.

5.2.1. The A-tract Phenomenon

This example uses single sequence profiles to identify why two sequences that
appear similar by their nucleotide composition are so different structurally (the A-tract
phenomenon). An A-tract sequence is one that contains four or more adjacent adenine

bases without a T-A step.  The A-tract phenomenon refers to the difference between the
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bent A-tract structure d(A4T4) and the straight structure d(T4A4). Note that d(S) means
a sequence composed of repeating units of the subsequence S. What is it that makes a
sequence curve? A sequence (Figure 5.2a) can accomplish a curvature of 45° per
helical turn by using the periodic roll pattern shown in Figure 5.2b (Calladine and

Drew, 2002). The roll at step n (R,) varies as a cosine wave along the sequence
(Equation 5.3).

R, =9 cos(36°n) ' Equ.5.3

Figure 5.2: Sequence curvature (Calladine and Drew, 2002) a) Sequence with 45° curvature per helical

turn. b) A plot of the sequence’s roll angle versus step number.
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Nuclear magnetic resonance structures of d(CA4T4G) and d(GT4A4C) have
identified some interesting structural characteristics (Stefl et al., 2004), the majority of
which are clearly illustrated with the structural profiles shown in Figure 5.3. Important
features can be seen easily at a glance by focusing solely upon the shades of red,
apparent in the roll, roll3, energy and minor groove profiles. The A-T steps of the
d(A4T4) structure have large negative rolls, whereas the T-A steps of d(TsA4) have
positive rolls in both the 1-step and 3-step roll profiles. The 10 base-pair'periodic ‘
transitions between low and high 3-step roll in d(A4Ty), reflect the smooth wave-like
pattern of roll angles that cause DNA curvature (Calladine and Drew, 2002). Note that
the energy of both sequences is extremely low across the majority of their lengths,
meaning that these sequences are relatively stable. Narrow minor groove stretches

-interrupted by wide grooves at each of the G-C steps are found for d(A4Ts). In

comparison, nothing is special about the groove widths along d(T4A4).
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Figure 5.3: Structure Profiles of the bent A-tract sequence d(4,T;) and the straight d(T,A,) sequence.
d(A4T4 ) Bent d(T4 A4) Stra|ght

zscore

>3
Side

0
zscore

S ATTTTOCAAAATTTTOCAAAATTTTOCAAAAT  TAAAACOTTTTAAAACGTTTTAAAACGTTTTA

<3 3

ATTTTGCAAAATTTTGCAAAATTTTGCAAAAT TAAAACGTTTTAAAACGTTTTAAAACGTTTTA

RMSD

Iscore
i ATTTTGCAAAATT T TGCAAAATTTTGCAAAAT ~ TAAAACGT TTTAAAACGTTTTAAAACGTTTTA

Flexibility profiles in terms of the 3-step partition coefficients show no
significantly flexible regions in either sequence (Figure 5.4). Significantly rigid steps
can however be found in the d(T4A4) sequence. The C-G step is rigid in the decreasing

twist, increasing roll and overall twist directions and the T-A step is rigid with respect
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to overall twist. The d(A4T4) and d(T4A4) increasing twist flexibility profiles are almost

identical. Looking at the 3Qroa profiles it can be concluded that the overall flexibilities

are similar.

Figure 5.4: Flexibility Profiles of the bent A-tract sequence d(A,T,) and the straight d(T,A,) sequence.
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5.2.2. Drosophila Promoter Comparison

The Drosophila Core Promoter Database (Kutach and Kadonaga, 2000), publicly
available online at www-biology.ucsd.edu/labs/Kadonaga/DCPD.html, contains 205
Drosophila Melangaster (fruit fly) promoters that are aligned by their experimentally
determined transcription start sites. The three common promoter elements (discussed in
Chapter 2) - the TATA-box (TATA), initiator (Inr) and downstream promoter element
(DPE) - were identified along the promoters (Kutach and Kadonaga, 2000) and used to
categorise them. The profiles of Figures 5.5 and 5.6 make an interesting comparison
between two promoters from the database: ald (Shaw-Lee et al., 1992) and 4f-rp
(Petschek et al., 1997). Ald belongs to the DPE and TATA containing class and 4f-rnp

to the class that possessed neither of these elements.

Two important positions (15 and 70) along both the promoiers can be seen when
focusing upon the common red areas. Both ald and 4f-rnp havé a low slide, low 3-step
twist, high RMSD and fluctuations in 3-step roll at positions 15 and 70 (Figure 5.5).
High energy is also a common feature at 70. These patterns show clear agreement
between the structural alignment of the promoters and alignment by their experimental
transcription start sites, suggesting that certain structural features could be used for
promoter recognition, even across the different classes of promoters. Multiple
sequences should however be considered before making any solid conclusions, see

Chapter 6.

A large transition of high to low decreasing twist flexibility (3Q wist) is present
in both promoters between positions 65 and 70 (Figure 5.6). Octamers that are very
flexible by increasing roll appear at the ends of the sequences. Additional large
transitions are present, but not in common positions. Sudden changes in flexibility may
therefore be an important promoter feature. Flexible octamers may puf stress upon the .
surrdunding rigid octamers and present sites along a sequence where the double helix
can be easily unravelled for transcription initiation. This hypothesis among others will

be further investigated in Chapter 6.
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Figure 5.5: Structural Profiles of two Drosophila promoters. TATA=TATA-box, Inr=initiator and
DPE=downstream promoter element. The experimentally determined transcription start site is at

position 47. (a) The Ald promoter. (b) The 4f-rnp promoter.
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Figure 5.6: Flexibility Profiles of two Drosophila promoters. TATA=TATA-box, Inr=initiator and
DPE=downstream promoter element. The experimentally determined transcription start site is at

position 47. (a) The Ald promoter. (b) The 4f-rnp promoter.
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5.3. Summary Charts

The information contained within a set of profiles can be summarised by two bar
charts: one displaying the general importance of each parameter (Ipara) across the
seqﬁence’s entire length and the other displaying the general importance of each
position along the sequence (I0s) With respect to all the parameters. In both cases the
importance (a bar’s height) is measured by averaging the appropriate Zscore magnitudes
(Equations 5.4a and b). In the summary charts (Figures 5.7 and 5.8) note the présence
of green lines and colour coding identical to that used in the structural profiles. Grey
lines extending above and below the bars show the standard deviations of the averaged

Zscores.

N

> |Zscore(p, D)

Ly =2 v Equ. 5.4a
Py
Z |Zscore( D, i)l

I, =21 : Equ. 5.4b

M

where N is the profile length, M is the number of parameters being considered, Py is the
x™ parameter under consideration and |Zscore(p,i) | is the modulus of the Zscore at

position i with respect to parameter p.

The parameter summary for d(A4T4) shows that energy is the most important
parameter mfollowed by minor groove then 3-step roll (Figure 5.7a). The fluctuating
.position importance along the repeating sequence has maxima at the AT steps (Figure
5.7b). The summary for d(TsA4) also has energy as the most important parameter, but
not the minor groove or 3-step roll (Figure 5.7c). Twist flexibility is slightly more -

important than roll flexibility with CG being the most significant step (Figure 5.7d).

Flexibility by twist is slightly more important than by roll in both of the
promoter sequences‘(Figure 5.8 a and c). Energy and 3-step twist are generally more
) important in 4f-rnp than ald. Clear peaks are seen in the position summaries at around

15 and 70, indicating areas where common features may be present (Figure 5.8 b and d).
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Figure 5.7: A-tract phenomenon summaries. a) d(A,T,) parameter summary, b) d(4,T,) position summary, c) d(T,4,) parameter summary and d) d(T,A,) position summary
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Figure 5.8: Promoter sequences summaries. a) Ald parameter summary, b) Ald position summary, c) 4f-rnp parameter summary and d) 4f-rnp position summary
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The summary charts are a good way of quickly determining the important features of a
sequence. When analysing DNA it may be beneficial to look at the summary charts

first, in order to determine which structural profiles will be most interesting.

T-tests can be performed on pairs of sequences to determine whether their
general levels of importance (| Zscore I -distributions) are equivalent. A useful rule is
that when the degrees of freedom (DOF, Equation 5.6) is much greater than 50, the
distributions are significantly different if the magnitude of T (Equation 5.5) is greater
than 2.58 (Miller and Miller, 1994).

T= x'z'fz 2 Equ. 5.5
o, , o,
n, ¥ n,
2 2 2
DOF = (‘;‘ /”'2“’2 {”2) L2 Equ. 5.6
(GI /”1) +(0'2 /nz)z '
n +1 n, +1

— 2 . .
where X,, o,” and n; are the mean, variance and sample size of sequence 1’s | Zscore |

. . . . . -— 2
distribution and likewise for X,, o, and n; for sequence 2.

When comparing d(A4Ts) to d(T4A4) in the above manner, the | Zscore | distributions
are found to be significantly different with T being 3.54 and DOF being 928. T’s |
 positive v:ixlue confirms that the structure of d(A4T4) is significantly more unusual than
that of d(T4A4), since its Zscore magnitudes are generally higher. The Ald promoter is
significantly less unusual than 4f-rnp with a negative T of —3.47 and a DOF of 2431.

5.4. Structural Tendencies
Profiles examining the structural tendencies of a sequence can be drawn by

. combining minimum energy structure with flexibility. Two classes of structural

tendency profiles exist: structural probability profiles and energised structural profiles.
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Structural probability profiles approximate the range of roll or twist around the
minimum energy structure that an octamer populates by a specified probability.
Calculations are based on the theory of Chapter 4, estimating the probability that an

octamer has a roll between a and b, Pla<r <b]. The upper and lower structural

boundaries for a particular octamer are determined by starting at the energy minimum
value and making one degree adjustments to the boundaries until the desired probability

(Pcutorr) has been reached. The pseudocode is given below:

1. Set Pcutorr to desired value (default is 0.75)
2. Set lower and higher to the minimum energy roll

3. If P[lower —1<r < higher] > P[lower < r < higher +1]

then lower = lower —1

Else if P[lower —1<r < higher]| < P[lower < r < higher +1]
then higher = higher +1

Else lower = lower — % and higher = higher + 2

4. If Pllower <r < higher]2 P. ;- then STOP else RETURN to step 3

A structural tendencies profile is drawn with a lower and upper curve,
representing the structural boundaries. The space between the curves is the populated
structural space. The 3-step roll structural tendencies have been examined for the
d(A4T4) and d(T4A4) sequences (Figure 5.9). A periodic roll curve can be formed for
both sequences, although with a much smaller magnitude for d(T4A4) than d(A4Ts).
This suggests that although d(T4A4) has a straight minimum energy conformation it can

be bent to a certain, but much lesser, extent than the already highly curved d(A4Ty).

Figure 5.9: Structural 3-step roll tendencies of d(A,T,), on the left, and d(T,A,), on the right, using a
probability cut-off of 0.75

Roll3 zscore

ATTTTOCAAAATTTTOCAAAATTTTOCAAAAT = TAAAACOGTTTTAAAACOTTTTAAAACGTTTTA
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Energised structural profiles are an alternative way of viewing structural
tendencies. A chosen amount of energy is applied to each octamer in both directions
from the energy minimum structure. Lower and upper structural boundaries can then be

plotted as before, and are determined using the force constants (Equations 5.7a and B).

lower =r,, —+E/lk;, Equ. 5.7a

upper =r,; + \/ Elk;, Equ. 5.7b

5.5. Profile Manager

Profile Manager is an application currently under development that aims to
automate profile generation in an efficient, user-friendly environment. The design of
Profile Manager version 1 (v.1) is explained with details about the graphical user
interface (GUI).

The GUI is the communication device between the end-user of the application
and the computer. It therefore needs to be both easy to understand and fully functional.
These two factors may compromise one another, since the more functionality a GUI
offers, the more complicated it may appear, and the more expert user knowledge it will
require. Mandel makes an analogy of user control to the choice between taking a train
and driving a car (Mandel, 1997). The car driver refers to the expert who desires full
control. The train passenger is the novice who wants to be taken.to the answer with
- minimal knowledge of how they got there. Any good application should be designed
for both novices and experts. Therefore Profile Manager tries to give experts the option
to “drive” without baffling the novice with hundreds of controls. Proﬁle; Manager .
accomplishes this by using a tabbed window to categorise and hide advanced feétufes,

welcoming users with the simple, lowest level of control.

The first stage in the GUI design process was to identify the minimal and
maximal input to, and output from, the program with decisions made about any default
- settings. The simplest scenario will be for the user to enter a DNA sequence and then

press a button and receive a set of profiles. More complicated scenarios can be
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understood by identifying variables on which the output depends. Table 5.1 lists the

attributes associated with a collection of profiles and Table 5.2 gives details of any

additional functionality that the GUI interface should have (such as a way of exiting the

application).

Table 5.1: Variables associated with a collection of profiles

Variable

Comment

List of parameters

Sequence

Background distribution

Special sequence positions
Maximum sequence

frame length

x-axis labels
y-axis labels

y-axis scale

Dependent upon profile type:

e Minimum energy structure profile

Central 1-step & 3-step parameters and ground state properties
e Flexibility profile

The partition coefficients

e Structural probability profile

I-step & 3-step twist and roll

e Energised structural profile

I-step & 3-step twist and roll

Entered directly or via file

Parameter population distributions as the default or
based on sequence/sequences given in a file.

To be highlighted in plot, i.e. transcription start site
Maximum sequence length covered by a set of
profiles. If length exceeds this then continue in a
second window of profiles

Label by the nucleotides or nucleotide position

Label by the z-score values or parameter values
Define how many z-scores to scale by or use

parameter ranges
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Table 5.2: Additional functions of Profile Manager v.1

Command name Function

Refresh To reset variables to their default settings
Exit To exit application
Help To aid users

Include Summary To draw a bar chart to summarise profiles

Draw Profiles To draw the selected profiles

Each of the variables has a default value and a control for its manipulation. The
location and type of a control are important factors to consider and affect the GUI
interface design. The commands of Table 5.2 also need controls to activate their
functions. A summary of the control type and its location for each variable and
command is tabulated in Table 5.3. This analysis resulted in a GUI composed of two

menus and four tabs positioned on a main panel (Figure 5.10).

Table 5.3: Location and type of all the GUI components

Variable / Command Control Type Control Location
Parameter Checkbox Tab panel categorised
by profile type
Sequence Text box and [...] button Main panel
Background distribution Text box and [...] button Advanced tab
Special sequence positions  Text box Advanced tab
Maximum sequence Slider Advanced tab
frame length
x-axis labels Pair of radio buttons Advanced tab
y-axis labels Pair of radio buttons Advanced tab
y-axis scale Slider & pair of radio buttons Advanced tab
Refresh Menu item File menu
Exit Menu item File menu
Help Menu item Help menu
Include summary Checkbox Main panel
Draw Profiles Button Main panel
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The four tabs refer to three profile categories b(minimum energy structure,
flexibility and structural tendencies) plus an advanced tab. Note that the structural
probability profiles and energised structural profiles have been grouped together as
structural tendencies, since they both use the same parameters to describe likely
structures. Separation of the parameters across a tabbed panel is essential, as it would
be overwhelming to present them together and a user (particularly a novice) may only
be interested in one profile type at a given time. The most common and simple profile
type will be that of minimum energy structure; therefore, this is the default tab
displayed when the application is opened (Figure 5.10).

Figure 5.10: Profile Manager’s GUI and the Minimum Energy Structure tab

2 menus

‘ Minimum Energy Structure tab — composed of checkboxes for
File >Refresh

minimum energy parameter selection (see below)

- Exit i

¢ . Flexibility tab — composed of checkboxes for flexibility
Help->Basic parameter selection :

= Advanced m Structural Tendencies tab — to draw profiles that combine minimum

- Parameter Info energy and flexibility information to examine likely structures.

Advanced tab — to control advanced features, such as profile scaling
and labelling, window sizing and background distributions.

4 tabs

Draws the selected

Enter the sequence

directly or the file structural profiles Draws bar charts

containing it summarising the
chosen structural
profiles
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The menu bar is located above the tabbed panel and is composed of a File and
Help menu. Refresh and Exit are tucked away within the File menu, since although
they are common actions they are also destructive and do not want to be activated by
mistake with a single click of a button. The Help menu allows easy selection of the
different types of available help (basic, advanced and parameter information).
Components belonging to the main panel represent frequent actions that can be seen
regardless of the current active tab. The sequence or the name of the file containing the
sequence can be entered into the text box. Alternatively the [...] button can be used to
select the file from directory listings. The [Draw Profiles] button gets the profiles with

optional summary bar charts specified by the Include Summary checkbox.

The minimum energy structure parameters have been split into three groups:
rotations, translations and ground state properties. This grouping and vertical alignment
of 10 or fewer checkboxes makes the user choices easier to digest (Weinschenk et al.,
1997). The presentation and default selection of these parameters is shown in Figure
5.10. Tilt, rise, shift and 3-step shift are deselected by default, since they do not vary
significantly (Chapter 3). 3-step slide is also deselected by default due to its high

correlation with single step slide.

The flexibility parameters are presented in a similar way to those of minimum
energy structure (Figure 5.11), with vertical alignment and segregation into three
categories (twist, roll and combined). For the sake of simplicity, none of these
parameters are selected by default. Note that the partition coefficients (not the force
constants) are the chosen measure of flexibility. They have a more intuitive meaning
" than the force constants (the larger, the more flexible) and they can be summed to give

combined measures of flexibility.

The third tab (Figure 5.12) is designed for the more experienced users WilO are
interested in cbmbining flexibility with minimum energy structure in order to analyse
structural tendencies (the dynamics of DNA) as discussed in section 5.4. The parameter
panel of this tab gives checkbox choices of the four parameters that can be analysed in
this way (1-step and 3-step roll and twist). The method panel allows one of two
" methods to be selected: probabilistic to obtain structural probability profiles or energetic

to obtain energised structural profiles. The third panel titled “cut-off values” gives
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slider controls to select either the probability cut-off or energy cut-off, depending on the
selected method. Note that the appropriate slider is greyed out, so as to make it clear to
the user that this control has no use for the current selected method. The default

probability cut-off is 0.75 and the default energy cut-off is 1 kJmol™.

Figure 5.11: Profile Manager’s Flexibility tab

11 Increas! il reasing Roll Flexibility

H ¢ ¢ 2 “ YA AP 0 ¢ y | o aba nuarall £l
[__J"I creasing Iwist Hln creasing Roll Flexibilit ] 3-step Overall Flexibilit

D?IQ fist Flexibility U;.'.ﬂ Flexibilit

[_j Increasing 3-stef Twist Flexibility i Increasing 3-step |
[-] Decreasing 3-step Twist Flexibility || Decreasing 3-step F
itep Twist Flexibility

T |
|"Jvr.r»1uf-! Summan

Chapter 5: Structural Proﬁle; — Single Sequence Queries 67



The Advanced tab (Figure 5.13) is split into an ‘x-axis’ panel, ‘y-axis’ panel and
‘other’ panel. The ‘x-axis’ panel contains a slider control for the maximum sequence
frame length (whose default value is 50) and a radio button choice of nucleotides or
nucleotide positions for the x-axis labels. The ‘y-axis’ panel contains radio buttons for
the y-axis scale and label choices. A slider is also present for manipulation of the
maximum | Zscore | value (default of three). The ‘other’ panel contains miscellaneous
advanced options. The ‘Highlight Positions’ text box allows comma-separated input of
the nucleotide positions to highlight along the profiles. A file containing an alternative
background distribution to the entire octamer population (that will be used to calculate

the Zscores) can be entered in the remaining text box or by using the [...] button.

Figure 5.13: Profile Manager’s Advanced tab

[

5.6. Conclusions

Profile Manager v.1 is a valuable visualisation tool for the analysis of DNA
structure. Application of single sequence queries to the A-tract phenomenon clearly
illustrates the structural findings found in nuclear magnetic resonance structures (Stefl
et al., 2004). Differences between the minor groove and roll3 profiles of d(A4T;) and
 d(T4A4) are striking. The roll3 profiles show that sequences can accoinplish curvature

by using a periodic roll pattern. Two important positions (15 and 70) and frequent
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sudden changes in flexibility were identified in both of the studied promoters. Multiple
sequences should now be studied to determine if similar patterns are common to

promoters in general (Chapter 6).

The summary charts illustrate how the general importance of a sequence varies
with respect to the parameters or how the importance varies across a sequence for a
combination of parameters. Significant differences in the importance of two sequences
can be assessed by a T-test. The structural tendency profiles provide an insight into
structural dynamics. However, none of these approaches are capable of pattern

recognition across multiple sequences, the subject of the remaining chapters.
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Chapter 6:

Structural Profiles — Multiple Sequence Queries

The use of structural profiles to answer multiple sequence queries is explored.
This work leads on from Chapter 5, where single sequence profiles were presented and
used to answer single sequence queries. Initially, sequence logos are introduced. A
logo is the equivalent visualisation tool to structural profiles that is used to summarise
the nucleotide patterns in a set of sequences. The remainder of this Chapter uses
structural profiles to explore patterns in flexibility for a set of promoters. Bendability
profiles have previously been generated to analyse flexibility patterns in a set of pre-
aligned promoter sequences (Pedersen et al., 1998). The analogous structural profiles

are generated here with the roll and twist flexibility parameters.

6.1. Sequence Logos

First, consider a multiple sequence alignment that will be displayed throughout
this research by a matrix plot. Each row of a matrix represents a sequence and each
column represents a particular nucleotide position in the aligﬁment. Therefore an
element in the matrix represents a single nucleotide or gap, which is colour coded blue
for C, orange for G, green for A, red for T and black for a gap. An example of a matrix

plot is given in Figure 6.1a.

A sequence logo (Schneider and Stephens, 1990) takes each column in a
multiple sequence alignment and turns it in to a frequency distribution of bases, which it
then displays as a stack of letters (Figure 6.1b). The heights of the letters within a>
single stack are proportional to their relative frequency within a column (Equation 6.1).
The letters are ordered so that the most frequent appears at the top of the pile and vice
versa. Therefore a consensus sequence can be obtained by reading across the top letters
in a logo plot. The total height of a letter stack (R;, Equation 6.2) equals the importance
_of that nucleotide position relative to the other alignment columns. This importance is

otherwise known as the column’s information content and is measured in bits. It can be
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viewed as a loss in uncertainty, hence the two entropy terms, Sperore and Syrrer. Gaps
are not displayed in sequence logos, but they suppress the heights of corresponding
letter stacks. A clear explanation of information content, uncertainty and bits is given
by Shaner et al. (1993). Note that all sequence logos displayed within this research
were obtained using the online tool WebLogo (Crooks .et al., 2004) at
http://weblogo.berkeley.edu.

h,, = f(b,L)R, | Equ. 6.1

where A; 1 is the height of nucleotide b in column L, f{b,L) is the frequency of base b in

column L and Ry is the information content of the letter stack for column L.

Ry = Spprors =S arrer Equ. 6.2a

S perors =108, N Equ. 6.2b
N

S yrzen = =2, S (b, L)log, f(b,L) Equ. 6.2¢
b=1

where Sperore is the entropy before the alignment and Syrrer the entropy after the
alignment. N is the alphabet size (4 for DNA) and f{b,L) is the frequency of base b in

column L.

Nucleotide patterns within a set of Catobolite Activator Protein (CAP) binding
sites were observed via a matrix plot (Figure 6.1a) and a sequence logo (Figure 6.1b).
The double hump in the logo is aésociated with the fact that CAP is a homodimeric
protein that has two helix-turn-helix motifs (Schultz et al., 1991). As mentioned in
Chapter 2 section 2.2, CAP’s two recognition helices bind to_consecutive turns of the
major groove, bending the DNA by 90°. Common patterns in the structure and how
easily it can be bent are clearly important to these sequences. The consensus sequence
(the nucleotides positioned at the top of the letter stacks) is a palindrome. Two large
kinks in the structure have been identified as occurring at the TG/CA base pairs that are

5-6 positions on either side of the dyad axis (Schultz et al., 1991).
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Figure 6.1: Nucleotide patterns within a set of Catobolite Activator protein binding sites.

a) The matrix plot, where each row is a sequence and each column is a position along the alignment.
Blue = C, orange = G, green = A and red = T. b) Sequence logo, obtained from Weblogo (Crooks et al.,
2004).
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Assuming that the set of CAP binding sites are pre-aligned by their structure, a
matrix plot illustrating their 3-step roll alignment patterns can be drawn (Figure 6.2a).
Here, each element of the matrix represents an octamer’s 3-step roll rather than a
nucleotide and is shaded from white to black meaning. low to high 3-step roll
respectively. The structural matrix plot can be summarised by a structural profile
(Figure 6.2b), showing the variation in the average 3-step roll along the sequences.
Standard error bars are given at each alignment position and represent the variation of
roll down a particular alignment column. The solid central green line represents the
mean of 3-step roll across the entire octamer population and the dotted green lines show
this mean plus or minus one population standard deviation. The roll pattern is clearly

symmetric with the two kinks present at octamer positions 2 and 14.
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Figure 6.2: 3-step roll patterns within a set of Catobolite Activator protein binding sites.

a) The matrix plot, where each row is a sequence and each column is a position along the alignment.
Light to dark shading meaning low to high 3-step roll. b) 3-step roll structural profile, showing the
variation of average 3-step roll (measured in kJmol” degrees™) along the sequence. The green lines refer

to the octamer population mean plus and minus one standard deviation.
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6.2. Promoter Flexibility Case Study

Characteristic DNA flexibility patterns have previously been found in a set of
pre-aligned promoter sequences via average bendability profiles (Pedersen et al., 1998).
Three flexibility measures were used that all independently identified the same general

trend. This case study explores the analogous roll and twist flexibility profiles.
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Features common to the dataset but not to random sequences will form a structural
fingerprint of promoter activity. The analysis of patterns in flexibility along promoters
is justified by the single promoter profiles of Chapter 5, where frequent transitions in
flexibility were found along two promoters. The TBP-TATA complex is a classic
example that illustrates the importance of promoter flexibility (Chapter 2). An analogy
made between ergonomic engineering and the recognition of DNA by transcription

factors (Juo et al., 1996) also supports this study.

“An ergonomic engineer considers the local motions possible for the
human body when designing equipment; a DNA-binding protein
considers and uses the local deformations available to a particular target
sequence”.

(Juo et al., 1996)

6.2.1. The Dataset

Pedersen et al. (1998) selected 624 non-redundant Human RNA Polymerase II
promoters from GenBank (Benson et al., 1997). The extracted sequences are pre-
aligned by experimentally determined transcription start sites in the centre of their 501
base pair lengths (Figure 6.3). Two categories of promoter exist: those containing
codons within the 250 nucleotides downstream (42% of the dataset) and those that do

not.

Figure 6.3: The Promoter Template. Each sequence has its experimentally determined transcription site

located in the centre with 250 nucleotides upstream and downstream.

| < 250 > [T« 250 %l
Upstream Downstream

Transcription start site
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Three flexibility models were used to generate the profiles: (1) a tri-nucleotide
DNase I cutting frequency model (Brukner et al., 1995); (2) a tri-nucleotide model
based on the location preferences of nucleosomes (Satchwell et al., 1986; Goodsell and
Dickerson, 1994); and (3) a dinucleotide propeller-twist model, related to slide mobility
as discussed in Chapter 3 (ElHassan and Calladine, 1996). A profile shows the average
flexibility across the dataset. Smoothing was applied with running average windows of
size 20 for (1) and 30 for (2) and (3). A tendency for higher flexibility downstream of
the transcription start than upstream was found with a large transition around the start

point and spikes at —25 referring to the TATA-box.

6.2.2. Twist and Roll Flexibility Profiles

Flexibility profiles of thé single-step force constants were generated. Each
sequence is described by the flexibility of its 494 consecutive overlapping octamers,
resulting in a matrix of 624 sequences by 494 octamer positions for each flexibility
measure. The average of each octamer column in a matrix is then calculated, giving a
profile that is based on the alignment of the experimentally determined transcription
start sites. Note that an octamer represents the nucleotide position that lies at its centre.
This means that the analysed promoter length is reduced slightly (-246.5 to +246.5
instead of —250 to +250). ' | |

Initially the profiles were considered without smoothing (Figure 6.4). Two
random sets, identical in size to the prémoter set, were used to generate analogous
random profiles, shown in blue and grey. Note that the variation in a force constant
across a promoter profile is negligible in comparison to the standard deviation of the
octamer population (Chapter 3 Table 3.6), no strong patterns in promoter flexibility
being apparent. This was further investigated by a series of t-tests.. A value of T wés
calculated for each position along the promoters, comparing a position’s mean and
standard deviation to that of the octamer population. The percentage of positions along
the average promoter that are significant (magnitude of T greater than 2.58) was
calculated (Table 6.1). Analogous values were obtained for one of the random profiles

as a control.
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Figure 6.4: Promoter (black) and two random (blue and grey) flexibility profiles. The units of flexibility being kJmol !degrees®. a) The Ky profiles. b) The k', profiles.

¢) The k pyis profiles. d) The k' 5 profiles

0.55 ~
et

0.53

0.49 ~
0.48 -
0.47
0.46 -
0.45 -

Average K ron

W Wn M”' '“"'H‘M

!

\

IL

l

Average k *ron

0.44 T T T
-250 -150 -50 50
Nucleotide Position

0.7
0.68 -
0.66
0.64
0.62 1

0.6 I

Average K “wist

0.58 1

0.56 -

0.54

150

250

Average K *wist

-250 -150 -50 50
Nucleotide Position

Chapter 6: Structural Profiles — Multiple Sequence Queries

150

250

0.9

o©
[
3}

°
©

0.65 4

b)

0.6

0.33 -
0.325
0.32

0.315

0.31
0.305 +

o
w

0.295
0.29
0.285
0.28

0.275

-250 -150 -50 50 150 250

Nucleotide Position

-250 -150 -50 50 150 250

Nucleotide Position

76



Table 6.1: Percentage of the profiles significantly different (/T/>2.58) from the octamer population.

Profile Percentage of length that significant
Promoter ko1 5.0
Random ko1 3.4
Promoter K o . 1.6
Random ko 2.1
Promoter K iwist 6.9
Random K iwist 2.1
Promoter K it 48.6
Random K gwist 4.0

Approximately half of the positions along the average promoter’s increasing twist
flexibility (k+twist) profile are significant, suggesting that this is the direction of
movement that will differentiate promoter sequences from random. Only small
percentages are present for the other force constants. Any regional tendency of these
small percentages is of interest however. The average promoter was therefore

reconsidered in 50 base-pair blocks (Figure 6.5)

Figure 6.5: Histogram of promoter positions significantly different from the octamer population,
considering 50 base-pair blocks.
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In K on, the significant positions are randomly dispersed across the promoter length.
k"o has the lowest overall percentage with again no apparent regional tendency. Even
though the significance of K'ise is only 6.9% this level rises to approximately 25%
when considering the upstream region —100 to 0, suggesting that flexibility in
decreasing twist is important over this promoter location. Promoter differentiation via

+ . .
K" twist appears very promising.

A smoothing window of 30, analogous to that used in the Location Preference
and Propeller-Twist profiles (Pedersen et al., 1998), was applied to the profiles. Local
transitions in flexibility were observed and compared to those of the smoothed random
profiles (Figure 6.6). Remember that higher force constants refer to less flexible
octamers, since more energy is required to rotate in a particular direction. Significant
transitions in flexibility are only apparent in kK'yyist and k' ron. A clear transition from low
flexibility to high flexibility is seen in kK'yist between =50 and +10, supporting the idea
that flexibility is greater downstream than upstream. k';on has a transition in

approximately the same place as K'yist, but in the opposite direction.

The amount of overlap between the two random profiles is far greater than the
overlap of either with the promoter set. The random profiles appear collectively above
the increasing twist promoter profile and collectively below the decreasing roll and
twist profiles. The significance of these observations can again be quantified by T-tests
(Table 6.2). Favourable conformational changes in the average promoter involve
increases in twist with decreases having high energetic penalties. Decreases in roll are
also unfavourable in comparison to random. Note that due to transitions in flexibility,

the energy barrier for decreasing twist is suddenly reduced at the transcription start site.

Table 6.2: Values of T between pairs of the smoothed profiles.

Force constant T between promoter T between promoter T between the two

& randoml profile & random?2 profile  random profiles

K ol 106.8 100.5 2.3
ko 32.4 27.6 -4.0
K wist 41.9 43.4 5%
K wist -86.0 -80.3 RY),
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Figure 6.6: Promoter (black) and two random (blue and grey) flexibility profiles with smoothing using a window size of 30. The units of flexibility being kJmol degrees™.
a) The k o profiles. b) The k . profiles. c) The k ;5 profiles. d) The k' ;5 profiles
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A surprise finding was the remarkable similarity in the shape between the
smoothed Kyist curve and the Location Preference profile (Figure 6.7a and b). This
could signify a possible relationship between these two descriptors or just the octamers
present in the promoter sequences. The Location Preference profile is based upon the
frequencies of trinucleotides found in DNA wrapped around nucleosomes (Satchwell et
al., 1986; Goodsell and Dickerson, 1994). These trimer descriptors have been
converted into octamer descriptors by summing the 6 overlapping consecutive trimers
that form each octamer. This allows correlations between the Location Preference and
K'wist to be tested. No monotonic or linear association is apparent between K yyist and the
Location Preference with a Spearman rank correlation coefficient of only 0.168 (Figure
6.7c). However, a partial dependence of k'iwisc on the Location Preference and vice
versa can be observed. When the Location Preference is very low, Kist is restricted to

low values and when k'yyist is high, the Location Preference is restricted to high values.

Figure 6.7: Comparison of k n,is to Location Preference. a) k s profile. b) Location preference profile.
c) Plot of k n,is: versus location preference. Note that the location preference has been converted into an

octamer descriptor by summing the 6 constituent trimers.
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6.2.3. Upstream versus downstream flexibility

Pedersen et al., (1998) investigated the average flexibility of an upstream region
(-200 to —50) relative to a downstream region (+1 to +150) concluding that flexibility is
generally higher downstream. The TATA-box region was deliberately excluded, so as
not to bias results. Analogous comparisons were performed with the roll/twist
flexibility force constants by summing values of consecutive overlapping octamers
within these two regions and noting the number of promoters having a higher flexibility
downstream. Approximately only half of the promoters are more flexible downstream
than upstream, with respect to the roll and twist measurements (Table 6.3). Even when
considering the coding (Table 6.4) and non-coding (Table 6.5) subsets separately, the
relative regional flexibility of downstream to upstream is still around 50% and therefore

is not affected by any “codon usage bias” (Pedersen et al., 1998).

Table 6.3: Promoters having higher flexibility downstream (+1 to +150) than upstream (-200 to —50)

Flexibility % of promoters having higher flexibility downstream
Parameter ‘

k-roll 49

k+roll 47

k.lwist 53

k+twisl 55

Table 6.4: Coding promoters having higher flexibility downstream than upstream

Flexibility % of coding promoters having higher flexibility downstream
Parameter

k-roll 48

k+roll 45

k-lwist 55

k+lwist 29

Table 6.5: Non-coding promoters having higher flexibility downstream than upstream

Flexibility % of non-coding promoters having higher flexibility
Parameter downstream

k-roll 50

k+roII 48

k-lwisl 52

k+lwisl 53
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6.2.4. Flexibility Profiles Of Individual Promoters

The flexibility profiles that have been constructed view patterns in flexibility
across the whole dataset, however they say nothing about the individual promoters and
how closely they are represented by their average. Different classes of promoters may
exist that cancel out one another’s patterns in flexibility when their distinguishing
features are combined. The comparison of single sequence profiles is therefore needed.
For each promoter and flexibility parameter, a vector descriptor was calculated, the n™
element being the standard deviation distance of the parameter from its population mean
~ at the n™ overlapping octamer position. This results in a matrix of size 494 by 624 for '
each flexibility parameter, where each row represents a promoter and each column an

overlapping octamer position.

The 1-step flexibility parameter matrices are shown in Figure 6.8. Red means
that the parameter at that point is significantly high (two standard deviations greater
than the population mean) and blue that it is significantly low. The majority of the Q
twist Matrix is blue and corresponds to the red pattern observed in the Kyt matrix plot.
Note that blue in the partition coefficient matrices and red in the force constant matrices
refer to patterns of rigidity not flexibility. Ideally the matrix plots would contain clear
vertical lines, indicating ﬂexibili'ty trends common to all promoters. Even though this is
clearly not the case, faint vertical lines through the middle afe seen in the matriées
associated with decreasing twist flexibility. A light horizontal band is also present,
suggesting a specialised subclass of promoters. The vertical lines occur between the
TATA box region and just after the start site, referring to a common highly fluctuating
flexibility between —50 and +10 in the promoters. The shading appears to be slightly
darker to the left of the start site than to the right, meaning that there may be a tendency
for upstream to be more rigid than downstream. This would be in agréement with

previous work (Pedersen et al., 1998).
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Figure 6.8: Single step flexibility matrices

k-

roll

Q-roll

Chapter 6: Structural Profiles — Multiple Sequence Queries

k+

roll

83



6.3. Conclusions

Twist flexibility is the important parameter for identifying promoter sequences.
Approximately half of the positions along the average promoter are significantly
different from the octamer population with respect to kK'wist. Kiwist also appears
important in the upstream region —100 to 0. After smoothing, significant transitions
appear between —50 and +10 from low to high flexibility in Kyis.. Characteristics in
promoter flexibility were identified in the promoter profiles that were absent in the
random profiles. It is favourable to increase the twist of a promoter, but high energetic
penalties are associated with decreases in either roll or twist. Due to the transitions
however, the energy barrier for decreasing twist is suddenly reduced around the
transcription start site. This enables the polymerase to unwind the DNA, but in one

direction only (Figure 6.9).

Figure 6.9: The decreasing twist energy barrier (red) blocks Polymerase (blue) from travelling in one
direction along the DNA (grey). The direction of transcription is restricted to that marked by the arrow.

—b

Relative flexibility of downstream to upstream is not affected by codon usage
and neither up or downstream tends to be generally more flexible, when summing
octamer values in these regions. There is a remarkable similarity between the shapes of
the K'wist and Location Preference profiles. However no monotonic or linear association
is present between them. When the Location Preference is very low K'yist appears to be
restricted to low values and when K'yis is high the Location Preference appezirs to be

restricted to high values. Note that these dependencies are directional.
Whether a protein can successfully bind to a particular piece of DNA not only

depends upon how easily it is able to flex the DNA sequence, but also upon the shape of

the unbound DNA. A sequence having a similar bound and unbound conformation does

Chapter 6: Structural Profiles — Multiple Sequence Queries 84



not necessarily need to be flexible for protein recognition. Perhaps a more valid
correlation can be found between promoter activity and a descriptor that combines the
flexibility of DNA with information about its energy minima conformation (e.g. the

structural probabilities introduced in Chapter 4).

Currently the application of multiple sequence profiles is restricted to pre-
aligned sequences. It would be of great benefit to develop a tool that generates a
multiple alignment as the first step in calculating a structural fingerprint. The remainder
of this thesis therefore concentrates on developing a novel Hidden Markov Model
technique that aligns DNA not by its nucleotide sequence but by its structure. In order
for this new alignment tool to be successful it should account for flexibility and the fact

that a single sequence can adopt one of several structures.
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Chapter 7:
Hidden Markov Models

Hidden Markov Models (HMMs) have been extensively used to produce
multiple alignments of, and find patterns within, sets of protein sequences (Haussler et
al., 1993; Krogh et al., 1994a) and DNA sequences (Churchill, 1989; Baldi et al., 1996)
sequences. Many other applications outside of bioinformatics also exist, including face
image retrieval (Martinez, 1999), the study of electrocardiogram signals within the field
of medicine (Koski, 1996) and its well-founded use as an analysis tool in speech

recognition, dating back to the 1970’s (Rabiner, 1989).

This chapter introduces the concepts behind HMMs and includes some general
examples of models and their architectures. A detailed account of model construction
with algorithmic solutions is presented, and successful applications from the literature
to biological sequences are then given. Finally, a brief review of previous work on
building structural HMM s is included, since successfully developing this style of model

with the octamer database parameters is a main objective of this research.

7.1. Random variables, Markov chains & Hidden Markov Models

An HMM is a probabilistic model describing a stochastic/random process and is
based upon the theory of Markov chains that was invented by Andrei A. Markov. A
Markov chain is a sequence of random variables or, using the HMM terminology, a
sequence of states. A detailed discussion of random variables and Markov chains with
informative examples can be found in the literature (Norris, 1999; Grimmett and |
Stirzaker, 2001). In brief, a discrete random variable or state that has six ‘equally
prdbable outcomes can be used to describe a single roll of a fair dice. Continuous
random variables also exist, such as that used to describe how far a ball might be
thrown. In general each state in an HMM emits a value of the property being modelled

with its own individual probability distribution.
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It is the order of the Markov chain that defines the dependency of a state in the
sequence upon its predecessors. Here we are interested in the classical 1* order Markov
chain, where the next variable in a chain is solely dependent on the current variable and

totally independent of all others previous to this (see Equation 7.1).

“...conditional on its present value, the future is independent of the past”

(Grimmett and Stirzaker, 2001)

A random walk describing the movement of an isolated particle is a clear e){ample of
this, since the position of the particle after a time interval only depends on its current

position. It has no memory of the positions it has travelled through in the past.

P[qr = Sj!qt—l = an:-z =S, ""]z P[q‘ = Sjlql—l = S,], Equ.7.1
N.B. notation taken from Rabiner (Rabiner, 1989),

where q; is the state at time t chosen from a set of states (S;, S;, Sy, ...)

Note that P[A|B] is the conditional probability of event A given that event B has already
occurred. P[A¢B.1,Ci.2,Dr3] is the probability of A given the sequence of events D, C
then B has already happened. The above likelihood of state i being followed by state j
is known as the transition probability, a;; and the probability that a particular state i will

emit the value k is known as an emission probability, e;(k).

A path through a model’s states, leads to a sequence of observations. Since
different state paths can lead to the same observation sequence, the Markov process is
hidden. This statement will be clarified by the examples of HMMs given in the next
section. The information needed to completely describe an HMM can be summarised

by the five parameters (Rabiner, 1989) listed below.

(1) The number of states in a model, N.

(2) The number of observables, M.

(3) The state transition probabilities, ajj, defined by an N x N matrix A.

(4) The emission probabilities, ej(k), defined by an N x M matrix B.

(5) The probability of starting in each state, defined by vector C of length N.
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7.2. Some simple examples of HMMs

The basic ideas behind an HMM will now be clarified by three simple examples,
the first being the biased coin exarhple (Rabiner, 1989). There is a room with a barrier
and on one side of the barrier some biased coins are being flipped and on the other side
nothing is known but the outcome sequence of heads (H) and tails (T). Two different
ways of modelling this coin system are shown in Figure 7.1. Circles denote the states,
with the arrows between them representing.the transitions and the block arrows pointing
to the emissions. Model 1 (Figure 7.1a) consists of two states, one that only emits heads
(S1) and one that only emits tails (S2) and is therefore really a single state HMM as
shown in Figure 7.1b. It should be nofed that a single state HMM is not really a true
HMM since its state path is not hidden. Model 2 (Figure 7.1 c¢) also consists of two
states. However this time each state represents a coin and the state path that generates

the observed outcome sequence will be truly hidden.

Figure 7.1: The biased coin example. a) Model 1 has two states (SI and S2). S1 emits heads and S2
emits tails. The probability of being in S1 is P(H) and the probability of being in S2 is 1-P(H). b) An
equivalent single state representation of model 1, showing that the state path is not hidden. c) Model 2 is
a true HMM that has two states (S1 and S2), each with their own individual probabilities of emitting H or
T. The likelihood of travelling from state i to j is depicted by the transition probabilities (a;).
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The second example is analogous to model 1 of the biased coin system, because
again it is not a true HMM due to unhidden state paths. It illustrates how DNA
sequences can be modelled using the discrete four-letter alphabet to allow patterns in
the nucleotide sequences to be determined. The single state is shown as a rectangle with
the emission probabilities contained within it (Figure 7.2). Sequences of the same
length will be generated with the same probability (0.25" where L is the length). This
important model is the null hypothesis, meaning that it is used as a standard to measure

an HMM’s predictive ability against. Model scoring is discussed in section 7.4.2.

Figure 7.2: The DNA Null Hypothesis Model

The final simple example of an HMM models DNA using two states, an AT rich
state and a GC rich state (Churchill, 1989) see Figure 7.3. It can be seen from the given
transition probabilities that it is far more probable to iterate back to the current state
than to move into the other state, hence the model has a high probability of generating

either AT rich or GC rich sequences.

Figure 7.3: HMM representing GC & AT rich DNA sequences (Churchill, 1989)

A 0.4 ; 0.05
G 0.1 C 0.4
G 0.1 G 0.5
T 0.4 T 0.05
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7.3. Model Architecture

From the examples in the previous section it should be clear that HMMs are
capable of modelling a wide variety of problems and the structure of an HMM, that is
the number of states that it possesses and the way they are connected, can be tailored to
suit the needs of the problem domain. This section concentrates on common
architectures used to model biological sequences. Generally these architectures are
based on a classical structure that is shown in Figure 7.4. Note the state types that are
present. Those represented by squares are the match (m) states, which are related
directly to the consensus columns in a multiple alignment. The delete (d) states, shown
as circles, are used to skip a match state. For example a transition to d, will cause a
sequence path to miss out my. The third type is the insert (i) state, which is used to
insert extra nucleotides or amino acids between two match states, i.e. i, enables extra
letters to be inserted between m; and m3. Notice that every insert state has a recursive
transition back to itself. This allows for multiple insertions between two match states.
Inserts and deletes create the gaps that are commonly seen in multiple alignments. It is
also usual to have a start and end state, which are null states used to depict the start and
end of an observation sequence. In Figure 7.4 my refers to the start state and ms to the

end state.

Figure 7.4: Common HMM architecture used to model biological sequences. my is the i" match state, i, is

th

the i" insert and d, is the i" delete. A possible state path through the model is highlighted in red from the

start state (mg) to the end state (ms). An observation sequence of length 4 is emitted by iy, m;, m, and m;.

t m }——" m, ) — m,
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Two architectures based upon the classical state structure are shown in Figure
7.5 (Krogh et al., 1994a). Architecture (A) connects a defined number of classical
HMM structures together and was designed to identify protein sub-families. A ten-
component structure of this model was applied to a set of globin sequences. The three
main sub-families (alpha, beta and myoglobin) were correctly classified. A more
specific example of a multi-component architecture is an HMM composed of four sub-
models representing, membrane core, short turns, long loops and N or C terminus to
collectively describe the transmembrane regions of -barrel membrane proteins (Liu et
al., 2003). The transitions between components of this model are however more

complex than that shown in Figure 7.5.

The purpose of architecture (B) is to identify domains, where a sub-sequence or
several sub-sequences of a protein are important. The kinase catalytic domain was
successfully modelled using 193 kinase sequences as the training set (Krogh et al.,
1994a). Note that the state structure between my and mys;, within the shaded box, is
identical to that of Figure 7.4. For multiple domain identification, a transition from the

end state back to the begin state is added to architecture (B).

Figure 7.5: Architectures for (A)Subfamily identification, (B)Domain identification (Krogh et al., 1994a)
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An alternative wheel architecture has been’used to build HMMs and multiple
alignments of human exons (Baldi et al., 1995; Baldi et al., 1996). This strategy was
adopted since it was thought to be suitable for determining periodic patterns in DNA
(Figure 7.6). A state path can start from any of the states within the wheel. Note the
absence of the traditional insert states, but instead the possibility for a match state to
iterate back to itself. It was concluded from this work that strong periodic patterns that
refer to nucleosome positioning signals are present within exons (Baldi et al., 1995).
Confirmation is given that these patterns are not due to the secondary structure of the
proteins being encoded, that they are not present to such a strong extent in introns and

that they are totally absent in random sequences (Baldi et al., 1996).

Figure 7.6: HMM Wheel Architecture (Baldi et al., 1996). The thickness of external arrows refers to the

probability of starting at each state. The emissions are shown within the state boxes.
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Further examples of HMM architectures are endless and the few presented
above serve as a taster to illustrate the diversity of structures that can be created. An
important design factor to note is that the more complicated the architecture, the more
state paths there are to explore, model parameters to optimise and the likelihood of not
finding the optimal solution to the problem is increased. Model structure design is an
‘art’ (Durbin et al., 1998), unlike the next topic to be discussed; how to train the chosen

architecture to accurately model the family of séquences being analysed.

7.4. Model construction & mathematical problems

Once the model structure has been chosen, starting values are assigned to the
parameters that describe it. These values can either be randomly generated or based on
intuition/prior knowledge about the specific problem domain. Next the training
sequences are fitted to the starting model to produce a score. This is an overall
assessment of the probability that each of the sequences was emitted from the model.
An iterative procedure for adjusting the model parameters to better suit the sequences is

“then carried out until a reasonable converged solution has been found. The final model
can then be used to generate a multiple sequence alignment of the training set and make
predictions about whether further sequences belong to this set. This general method of
HMM construction is illustrated by Figure 7.7. Note that within the diagram coloured
boxes surrounding parts of the procedure show the stages in which three well-known

algorithms, Viterbi, Forward and Baum Welch, are traditionally used.

This section presents the mathematical problems faced in model construction and
analysis, introducing the algorithms that are used to overcome them. Ferguson presents

these problems as falling into three categories (Rabiner, 1989).

| 0)) Identifying the state sequence fesponsible for "generating a particular
observation sequence (approximately solved by Viterbi algorithm).
2) Calculating the probability of génerating a sequence from a given model
(exact solution given by Forward algorithm). |
)] Developing a method for adjusting the model parameiers SO maximum

performance can be obtained (Baum-Welch procedure).
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These three topics shall now be discussed in turn. Excellent explanations of all the
algorithmic solutions involved can be found in the literature (Rabiner, 1989; Durbin et
al., 1998). Kasif and Delcher give a more general review of applying probability
theory, including HMMs, to biological data (Kasif and Delcher, 1998).

Figure 7.7: Outline of Model construction procedure. Coloured boxes show the traditional use of the

three well-known algorithms, Viterbi, Forward and Baum Welch.

| Model architecture design ]

| Assignment of starting values to model parameters J
TRAINING plli>-
SEQUENCES

>]I Current model score | (Forward algorithm)

(Baum Welch)
Model parameter
adjustments required?
YES NO
——| Adjustments to model parameters l Final model obtained l
<
SEQUENCES
‘ Generate sequence alignment I ! | Make predictions about new sequences |
BALICCE ) - (Forward algorithm)

7.4.1. Identifying the state path

The problem of identifying the state path of an observation sequence can enly be
approximately solved, due to the hidden element of HMM theory. The Viterbi
algorithm is used and assumes that the responsible state path is that which has the
highest probability of generating the observations. It is from these most probable paths
that a multiple sequence alignment .is directly obtained. The algorithm’s recursive

methodology follows.
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x; is the i™ symbol of the observation sequence.

v(i) is probability of most probable path up to and including state / at i™ observation.
ei(x;) is probability of state / emitting symbol X

ay is transition probability of state k being followed by state /.

. L is the path length

' is the most probable path.

Note that max,(f(x)) means the maximum vaiue of f(x) and that argmax,(f(x)) means
the value of x that leads to the maximum value of the function f(x). The ptri(/) values

are pointers to keep track of the path .

Initialisation: v,(0) =1, since we define a BEGIN state

Recursion:  v,(i) = ¢,(x,)max, (v, (i =1)a,)

pir,(l) = argmax, (v, (i ~Da, )

Termination: P(x,7") = max k(vk (L)a kO)

7y = argmax, (v, (L)a,,)
Traceback: 7« = ptr, (”; )

Dyrbin et al give a good example of the Viterbi algorithm applied to a set of
~ CpG islands (Durbin et al., 1998). This report uses the Churchill model (Churchill,
1989) of Figure 7.3 to illustrate how the Viterbi algorithm works. The HMM is
summarised by the two matrices A and B. Remember that state 1 is AT rich, state 2 is
GC rich and the probability of staying in the same state is far highef than changing to

the other. It is assumed that there is an equal probability of starting in state 1 or 2.

Transition matrix A: ' Emission matrix B:-
State 1 State 2 _ ' A C G T
State 1 0.99 0.01 State 1 0.4 0.1 — 0.1 0.4
State 2 0.1 09 . State 2 0.05 04 0.5 0.05
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Consider the observation sequence GCAT. The recursive Viterbi matrix (V) is shown
below with any identified maxima shown in red and arrows indicating the trace back
path. Elements in the first column of V, values v;(1) and vy(1), are obtained by
multiplying the probability of the given state emitting G (0.1 for state 1 and 0.5 for state
2, see matrix B) by the probability of starting in that state (0.5 in both cases).
Subsequently v;(2) equals the probability of state 1 emitting C multiplied by the
maximum probability of reaching the state at this partcular observation time. Once the
matrix is complete and the trace back has been followed it can be seen that the most

probable state path is 2, 2, 1, 1 with the probability of 0.00143.

Viterbi matrix V:

v, (i) = ¢,(x;) max, (vk (i— l)akl)

G C A T
0.1X0.5 | 0.1Xmax[(0.05X0.99), 6.4Xmax[(0.00495X0.99), 0.4Xmax[(0.0036X0.99),
State 1 (0.25X0.1)] (0.09X0.1)] (0.00405X0.1)]
=0.05 =0.00495 A 00036 T =0.0014256
0.5X0.5 | 0.4Xmax[(0.05X0.01 ) 0.05Xmax[(0.00495X0.01), | 0.05Xmax[(0.0036X0.01),
State 2 e e (125X09)] (0.09X0.9)] (0.00405X0.9)]
=0.25 =0.09 =0.00405 =0.00018225

7.4.2. Probability of generating a sequence from a model.

Unlike identifying the responsible state path, the probability of generating a
sequence X given the model A can be exactly solved by summing over all possible state

paths 7 that could have generated it (Equation 7.2).

P(x|/1)= ZP(x,ﬁ) . Equ. 7.2

Note that the number of possible paths is explosive with both the number of states, N,
and the sequence length, L. If it were possible for all states to be followed by all other

states including themselves then the number of paths would be N" (i.e. 10*° for an N of
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20 and L of 20). This number is reduced to approximately 3x10'* when considering the
traditional architecture of Figure 7.4. It would be infeasible to separately calculate and
sum this many values. An approximate solution is to calculate the probability as that of

the most probable path (Equation 7.3). )

P(42)= Plx,z")

Equ. 7.3

Although this is often a good approximation (Durbin et al., 1998) the exact solution can
be found by using the Forward algorithm. This recursive algorithm is analogous to that
of Viterbi with a summation used in the recursive step instead of a maximisation, as

shown below.

fi(i) is the probability of generating the sequence up to the i" observation symbol with x;
being emitted from state /.

Initialisation: f;(0) =1, since we define a BEGIN state

Recursion:  f, (i) =e¢,(x, )Z fii—Da,

Termination: P(xlzl) = Z Si(L)ay,

- Applying the forward algorithm to the Churchill model results in the following matrix

and determination of P(x|4) when sequence x equals GCAT.

- Forward matrix F:

fi)=¢ (xl)z fi(i=Day,

G C A T
0.1X0.5 0.1X[(0.05X0.99)+ | 0.4X[(0.00745X0.99) +. | 0.4X[(0.00656X0.99)+
State 1 (0.25X0.1)] (0.0902X0.1)] (0.00406X0.1)]
=0.05 =0.00745 - =0.0065582 =0.0027595562
0.5X0.5 0.4X[(0.05X0.01)+ | 0.05X[(0.00745X0.01)+ | 0.05X[(0.00656X0.01)+
State 2 (0.25X0.9)] (0.0902X0.9)] ~ (0.00406X0.9)]
=0.25 =0.0902 =0.004062725 =0.000186101725
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Summing the final column in the above matrix gives the probability that the Churchill
model produces GCAT, P(x=GCAT|4), of 0.00295. If the Viterbi approximation
(Equation 7.3) was assumed and only the most prbbable path was considered then

P(x=GCAT\A) would be reduced to 0.00143, an underestimation of more than 50%.

The probability that a model will generate a sequence gives a measure of how
related that sequence is to the model or to the sequence family upon which the model
was built. This measure must however be standardised before a fair estimation or
prediction of a sequence’s behaviour can be made. The standardisation involves a null
hypothesis, previously illustrated for DNA sequences in Figure 7.2. The null hypothesis
can be thought of as a random sequence generator that for DNA typically generates a
sequence with the probability of 0.25", L being the sequence length. Variations on
protein null models have been discussed (Barrett et al., 1997) and include a flat
distribution of amino acid frequencies, a distribution to represent frequencies within the
entire population of all proteins and occurrence counts of amino acids within training
set sequences. The score given to a sequence X, S(x), is commonly calculated as the log

odds ratio shown in Equation 7.4.

P(x|A
S(x)=log2(P—(ilfI’;;})l—)-} ~ Equ.74

An S(x) of zero means that sequence x is equally likely to belong to the model A
as it is to a totally random model. A positive score indicates that the sequence is more
 likely than random chance to belong to the model and a negative score less so. Note
that the logarithm is taken to the base 2, which gives a score measured in bits. It is very

important to normalise the scores by sequence length, which the log odds ratio

automatically does.

The log odds ratio score for GCAT and the Churchill model is -0.405. This is
understandable, since the Churchill model has been built to favour GC or AT rich
sequences and to disfavour switches between. GCGC yields a positive score of 1.96.

_ Another way to interpret these results is to say that GCGC is 5.15 times more likely to
belong to the Churchill model than GCAT, that is 23(G¢60) - S(GEAT)

Chapter 7: Hidden Markov Models ' ' 4 98



A similar scoring method to the log odds ratio is used in the construction and
optimisation of an HMM, where adjustments are iteratively made to the model
parameters until the model séore converges (section 7.4.3). A model should be scored
by how well it fits the data it is bliilt'upon. This can be measured by calculating the
average score of the training set sequences or by the log likelihood of the model, where

« is the j training set sequence and 6is the current model’s parameters.

Zn:log2 P(x’ |¢9)
=

A suggestion to take the number of free parameters into account when comparing
models has been made; score — %k log(n), where k is the number of parameters and n
the sequence length (Churchill, 1992).

7.4.3. Adjustments to model parameters

The standard iterative gradient descent procedure for determining the set of
model parameters, 6, that maximises a model’s performance is Baum Welch.
Adjustments are made to the emission and transition probabilities to increase the log
likelihood of the model. The iterations are continued until the change in model
performance is less than a chosen threshold or a maximum number of Cycles have been
reached. The starting parameters of a model can be chosen randomly, set to frequencies
representing the entire population of biological sequences or based on some prior
 knowledge. Prior knowledge can be built in via PAM matrices or Dirichlet mixtures
(see sections 7.4.4 and 8.3). The parameters are then adjusted by calculating the
expected number of times the training set sequences use the transition from state k to-
state 1, Ay, and the emission of b from state k, Ey(b). These two expectation counts are
based upon the probability that k is the i™ state of the hidden stat.e sequence, P(mi=k|x,0),
calculated using the forward algorithm and its reverse analogue, the backward
algorithm. This process shall be explained shortly, after the following questions have

been answered. How are Ay and Ei(b) calculated from P(m=k|x,0) and how are they

used to adjust the model parameters?
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The value of Ex(b) across the training set is obtained by summing the mentioned
probability value across all of the sequences and all of their lengths (Equation 7.5). The
sequence number is j with xJ being the j sequence. The position along the sequence is i
with x; being the letter emitted at that time. Ay is calculated in a similar manner to

Ex(b). Note though that it has to account for the two state path elements that make up

the transition of interest (Equation 7.6).

E,(b)= Z;ZP(E,. =Kx’,0) | Equ.7.5

4, =;Z’P(zz, =k,z,, =I|x’,0) "~ Equ.7.6

Once all values of Ay and Ex(b) have been calculated, the new parameter set (ay and
ex(b)) is obtained (Equations 7.7a and b). The difference in the log likelihood of the
new model and previous model is then examined, followed by repetition of the

optimisation procedure using the new parameter set.

Akl
a, = Equ.7.7a
o erld' q
E, (b
ek(b)=_—_k( ) Equ. 7.7b
D E®)

Returning to the probability calculations, P(mi=k|x,0) is related to the forward
and backward variables, fi(i) and by(i) respectively, as shown in Equation 7.8a.
Equation 7.8b is used when the probability of a transition between two states at time i is_

required. Note that in this second equation the index of the backwards variable differs

from that of the forwards variable.

| B
Pz, =kx,0)=j1;+;l)/1;—l))

. Equ.7.8a

. )b, (i +1
P (”i =k,m,, =lx, 6’)=L‘P(())4’/1—(9))ak,e, (x, Equ. 7.8b
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The forward algorithm was presented in section 7.4.2. The backward algorithm, as
opposed to the forward algorithm, starts at the end of the sequence and works
backwkards, recursively calculating the probability of being in state k given all the
possible paths after it and till the end of the sequence. This procedure and the value of

by(i) are given below.

Initialisation: b.(L)=a,,

Recursion: b ()= Z aye (x,)b,(i+1)
1

Termination: P(x|/1) = Z aye, (x)b, (1)

Finally substitution of Equation 7.8a into 7.5 and 7.8b into 7.6 results in the following

formulae for obtaining Ey(b) and Ay in terms of the forward and backward variables

and the current parameter set.
1 .
E®)=)|——=> fl bl Equ. 7.9
¢ (D) Z/:|:P(x’|ﬂ.,0)sz @) k(l)] q

' 1 1T
Ay = ; {W 21: (f Ob] G+ Daye, (x), )):\ ' Equ. 7.10

For a visual representation of how the forward and backward algorithms and their
variables are related to the values of Ay and Ex(b) see Figufe 7.8. The circles represent
the states, those in red being involved in the calculation. The components of Ay and
Ex(b) with their associated segments of the model are labelled across the bottom of each
diagram in the figure. The reason for the index difference of the backward variable

between the two expectation counts should be clearly seen.

A common alternative to the Baum Welch procedure is Viterbi training. This
method has been successfully used and is often favoured due to its computational speed
(Haussler et al., 1993). It is however based upon the Viterbi approximation, so the

accuracy of results are compromised.
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Figure 7.8: Using the forward and backward variables to obtain the expectation counts, Ay and Ex(b) for
a hypothetical 4 state model where transitions between all states and themselves are allowed. States are

represented by circles and transitions as lines with sequence position i increasing from left to right.

bl(i+1)

7.4.4. Further suggestions for model performance optimisation

HMMs are commonly used to obtain a multiple sequence alignment from
scratch with several local optima present within the parameter space that give rise to
different alignment solutions. The algorithms previously introduced have a tendency to
get stuck in local optima and therefore may not find the best answer to the problem. If
an alignment of a dataset is already available then using it as a starting point to build an
HMM greatly reduces the parameter search space. Parameter estimation can be carried
out by converting the observed counts of both symbol emissions and state transitions
from the provided alignment into probabilities (Krogh, 1998). Even just a small pre-
aligned subset of the training data can be useful (Krogh et al., 1994a). It is also worth
considering more constrained model architectures with less deletes, inserts and therefore

model parameters than the traditional model.
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Extensions to the traditional training algorithms have been suggested in order to
try and solve local minima problems. A simulated annealing (SA) technique (Eddy,
1995) based upon the‘ “noise-injection” method (Haussler et al., 1993) has been
developed. SA is commonly applied" to energy minima structure searching and uses
statistical thermodynamics theory to calculate the probability of a conformation 7 in

relation to its energy E, the partition function Z and the Boltzmann temperature factor
kT (Equation 7.11).

-E
exp[ - )
P(r)= —y Equ.7.11

When applying SA to HMMSs, a conformation is equivalent to a state path and the
energy to the negative score, since it is the highest scoring alignments that are being
sought. SA is applied to the Viterbi training technique. Z is calculated by the forward
algorithm with values of a;; replaced with aijl/kT and ¢;(x) with ej(x)“kT. Upon each
training iteration, the value of kT is decreased until convergence is reached. Equation
7.11 reduces to Equation 7.12, since the value analogous to E for HMM application is —
log P(m,x|A). SA performed better than Baum-Welch or Viterbi training when applied
to 10 different protein datasets (Eddy, 1995).

P(Ir,xlzl)””

Z P( xl;{)l/kT

P(r)=

Equ. 7.12

An extension to Baum Welch and SA that involves Particle Swarm optimisation

(PSO) combined with an evolutioriary algorithm (EA) has been found to improve
certain alignments (Rasmussen and Krink, 2003). This algorithmic hybrid (PSO-EM) is
referred to here as an extension, since Baum:Welch and SA solutions are used as
starting points. PSO is based upon the movement of animal swarms in nature with a
number of particles moving around the search space by iteratively updating their
positions and velocities. The current position vector of each particle represents a
possible solution to the problem. In PSO-EM the particles can also breed, in order to

evolve a new generation of solutions.
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Model surgery can be used to determine a better model length (the number of
match states) by observing patterns in transitions to insert and delete states within each
model building iteration (Haussler et al., 1993). If the fraction of optimal sequence
paths that choose d exceeds a threshold value, Yqel, then that position is removed from
the model. If more than yins choose i then a number of new match states are inserted at

position k.

An alternative to training an HMM to maximise the log odds ratio and to instead
maximise the quality of an alignment, measured by the sum of pairs score (SoP), has
been proposed (Rasmussen and Krink, 2003). See Equation 7.13, where /; is aligned
sequence i and D is a distance matrix, such as BLOSUM (Henikoff and Henikoff,
1992). This score considers the similarity between all pairs of aligned sequences. A
gap cost is calculated for every gap in each sequence and subtracted from the SoP score
(Equation 7.14). GOP is the fixed gap opening penalty, n is the gap length and GEP is
the gap extension penalty. A GOP of 11 and GEP of 2 have been previously used for
protein work (Rasmussen and Krink, 2003).

n-1 n v

SoP =Y %" D(,1)), Equ.7.13
i=1 j-i+l

GapCost = GOP + nGEP Equ. 7.14

The HMM training data should be chosen carefully. Both quantity and diversity

are important factors. For protein family .recognit'ion more than 100 sequences should
‘be used (Eddy, 1996) otherwise it is likely that the model will not have enough
information to identify a pattern. When the amount of training data is limited to under
this amount it is strongly advisable to add prior information into the model, cbmmonly '
performed via pseudocounts, PAM matrices, BLOSUM matrices or Dirichlet Mixtures,
which will all be briefly introduced shortly. One of these techniques should also be
used when a larger sample of data does not have a fair spread in diversity. In such

skewed sets it is sensible to apply weights to the sequences, giving less importance to

those that are over represented.
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A Maximum Discrimination HMM method has been developed that optimises
the correct classification of sequences (Eddy et al., 1995). This procedure is effectively
equivalent to using a sequence weight scheme proportional to the probability of
misclassifying a sequence. A model constructed via this method is capable of
recognising more than one sequence family from information given in the training data.
However this can be a disadvantage, since the effect of a single false positive in the
training set will be greatly increased. Several variations of the maximum discrimination
weighting scheme have been explored (Karchin and Hughey, 1998) and other methods

exist that use tree based clustering of sequence similarity (Gerstein et al., 1994).

Pseudocounts prevent an amino acid or nucleotide from being given a
probability of zero in an alignment column. This is essential because if a sequence fits
well to the majority of a model, but has a single zero probability then, due to calculating
products, the entire sequence will be given a probability of zero. Pseudocounts work by
adding a constant to each observed amino acid count and then renormalizing the
distribution. An analogy has been made between this method and a single component

Dirichlet mixture (Sjolander et al., i996).

PAM (Dayhoff et al.,, 1978) and BLOSUM (Henikoff and Henikoff, 1992)
matrices are amino acid substitution matrices. They tabulate the probability of
replacing one amino acid with another and therefore define the similarity between pairs
~ of amino acids. Substitution matrices form a vast research area in themselves. For

further discussion see Chapter 8.

A Dirichlet Mixture is made up of several components or densities. The mixture
assigns differing weights to each component, which are called the mixture’s
coefficients. A component is a probability density over a set of probability vectors, -
each vector describing an amino acid distribution. The use of several comp(.)nents
means that different relationships between the amino acids can be considered within one
alignment. For example, one component might favour that certain residues be buried
whilst another may favour solvent exposed residues. More detail about Dirichlet

mixtures can be found elsewhere (Sjolander et al., 1996; Durbin et al., 1998).
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7.5. Applications of HMMs to biological sequences

Three applications of HMMs to biological sequences were presented in section
7.3: the recognition of protein family and sub-family sequences (Krogh et al., 1994a),
domain identification (Krogh et al., 1994a) and examining periodic patterns within the
exons of Human DNA (Baldi et al., 1995; Baldi et al., 1996). This section includes

some further examples of applications to biological sequences.

A classic example of successful protein family recognition is an HMM built
from 400 randomly selected globin sequences that was used to make predictions about a
further 225 globins and 19,458 non-globins (Haussler et al., 1993). Viterbi training
rather than Baum Welch was used and model surgery performed to optimise the model
length. The results obtained were very promising with very low numbers of false
positives and false negatives. Excellent agreement of the final HMM’s sequence
alignment with a previously obtained structural alignment was also observed. Further
examples of family classification can be found (Baldi et al., 1994; Karplus et al., 1998).
The latter example is a different approach to HMMs, designed to detect remote
homologies of a single target sequence. It has been shown to be three times as effective
as pairwise methods (Park et al., 1998). Although successful, the globin recognition
problem is not necessarily best thought of as a pure classification technique. A
characteristic motif may have several overlapping occurrences within a single sequence.
Therefore instead of finding only the single best alignment of a sequence to a model it is

wiser to consider several high scoring alignments (Bucher et al., 1996).

As well as performing sub-family  recognition on a protein set the opposite
procedure of putting sub-family members back into their parent families can be carried
out. HMMs classifying 47 of 60 glycosyltransferase families back into Av just four
superfamilies have been constructed (Kikuchi et al., 2003). From the results obtained
ﬁseful predictions about the evolutionary history' of the original families were made. A
model has been constructed to predict whether peptides bind to certain cell surface
marker molecules associated with the immune system (Kato et al., 2003), illustrating

that HMMs are clearly suited to any sort of classification problem not just family

_recognition.
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HMMs can be used to locate genes. E. Coli DNA has been analysed using a
composite HMM structure that is comprised of codon triplet models, states representing
intergenic regions, codon start positions and stop positions (Krogh et al., 1994b). 80%
of the genes were accurately predictéd and 90% had their approximate position correctly
found. False positives were often found to refer to known protein sequences, suggesting
that they may be correctly identified but undiscovered genes. Two further refinements
have been made to the above procedure (Krogh, 1997), the use of Class HMMs
(CHMMs) and determination of the most prdbable gene prediction instead of state
sequence. CHMMs are trained to optimise recognition rather than model statistics from
the training sequences (Krogh, 1994c) and involve assigning class labels to the
sequences. These labels (‘C’ for coding, ‘I’ for intron and ‘O’ for intergenic) are
emitted from each state along with a nucleotide. Every allowed path through a CHMM
must have a state label sequence that agrees with the observed labels. Further attempts
to apply Markov Models to the problem of locating genes include the use of a Markov
Chains/Bayes method, GeneMark (Borodovsky and Mclninch, 1993) and then later an
HMM version of GeneMark, GeneMark.hmm (Lukashin and Borodovsky, 1998).

Another strategy for finding genes is to search for promoter sequences. The
consensus sequence of RpoD promoters in Campylobacter jejuni was investigated with
an HMM trained to identify motifs upstream of known genes (Petersen et al., 12003).
Research has also been carried out on locating other protein binding sites across
genomes, for example the Integration Host Factor (IHF) and Factor for inversion
stimulation (FIS) within the E.Coli genome (Ussery et al., 2001). A binding model to
denote the IHF/FIS sites was placed between two background states that both represent
the nucleotide composition within the entire genome. The transition probability from
the 1¥ background state to the binding model is related to the posterior probability of
finding a site within the genome. Several occurrences of the sites can be searched for -
within E.Coli by adding a transition between the two background states. This is

analogous to the domain identification architecture discussed in section 7.3 (Krogh et
al., 1994a).

Chapter 7. Hidden Markov Models o 107



HMMs have been built to recognise splicing sites (Yin and Wang, 2001).
Splicing is the removal of introns and rejoining of exons in mRNA. The splicing sites
can be either donor or acceptor sites and are the positions for intron removal and RNA
rejoining. Four separate HMMs wére'built, true donor, false donor, true acceptor and
false acceptor models. A sequence is then used as input to all the models and an
acceptor score and donor score is obtained as ratios of the related true and false models.
The donor model had 9 states with state 4 only emitting G and state 5 only emitting T.
The acceptor model had 16 states with state 14 only emitting A and state 15 only
emitting G. 92% of the true donor sites and 91.5% of the true accéptor sites were
correctly identified (Yin and Wang, 2001).

Publicly accessible databases of HMMs have been generated, Pfam (Bateman et
al., 2000), SUPERFAMILY (Gough et al., 2001) and PANTHER (Thomas et al., 2003).
A major advantage of having an HMM library is that a new sequence can be
automatically classified. The growth of sequences within these databases that attempt
to represent all existing sequences is illustrated by the change in the number of families
represented by Pfam. In 2000 Pfam contained 1815 families (Bateman et al., 2000) and
4 years later it contained over 6190 (Bateman et al., 2004).

7.6. Building Structural information into HMMs

Sequence and structure information can be combined to enhance the predictive
ability of models. A known structural alignment can be used as a starting solution for
‘sequence alignment (Al-Lazikani et‘ al., 2001) or sequence can be used to identify
structural characteristics.  The location and orientation of alpha helices in
transmembrane proteins has been predicted using ten-fold cross validation and seven -
state types to represent different residue types, e.g. helix loops (Sonnhammer et al.,
1998). These models were further developed using sequence labéls (M for membrane, I
for inside/cytoplasmic) to form CHMMs (Krogh et al., 2001). Transmembrane models
have also been constructed based on differences between amino acid distributions in
various structural parts (Tusnady and Simon, 1998). The five states, inside loop (1),
inside tail (i), membrane helix (h), outside tail (0) and outside loop (O) were used with

specialised transitions to reflect known structural characteristics, such as a tail coming
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after a helix can be followed by another tail or a loop, but only on the same side of the
membrane. HMMs encoding structural characteristics with conditional probabilities
that an amino acid belongs to one of thirteen structural types (i.e. the probability of
Alanine being in a loop or coil) ha{fe also been used (Stultz et al., 1993; White et al.,
1994). ’

Improved discrimination between CAP binding and non-binding sites of DNA
was found after the addition of structural information to an HMM (Thayer and
Beveridge, 2002). Roll/tilt bending dials that measure the probabilities of dinucleotides
having a range of geometries were used to describe the dynamical structure of DNA.
From these dials two types of probabilistic outcomes were calculated, firstly the
probability that the base pair step a has the geometry k,1 (Py(k,])) and secondly the
probability that a particular geometry is due to é, certain base pair step (P i(c)).
Initially an HMM is built upon sequence alone, with 10 observation symbols describing
the 10 distinct dinucleotides. The structural HMM is then formed by combining the two
previously mentioned probabilistic outcomes with the emission probabilities of the
sequence based HMM. Note that the transition probabilities of the original HMM
remain unchanged and that both model parameter optimisation and alignment is based

purely upon patterns in the dinucleotide sequence.

Two stages are involved in merging structure with sequence. First the
probability of state i emitting dinucleotide o (eiy) is translated into the probability of

state i emitting geometry k.l (€’in), see Equation 7.15.

e'ikl = Z [eiaPa (ka l)] . Equ. 7.15

Then €’jy is translated back to the probability of state i emitting dinuceotide o but this

time with the inclusion of structural information (e’*;,), see Equation 7.16.

ey = Z[e'ikl B, (a)] Equ. 7.16
Kl :
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As well as a noticed improvement to the recognition of binding sites, a further
improvement was also observed when the HMM was restricted to sequence only in a

highly conserved 5 base pair consensus region (Thayer and Beveridge, 2002).

HMMs based upon the secondary structure of proteins have been built using a 3-
letter alphabet for the alignment of the key structural characteristics, helix (H), strand
(E) and coil (C) (DiFrancesco et al., 1997; Di Francesco et al., 1999). A series of
models, each representing a different topology, were constructed and stored in a
database called FORESST (Di Francesco et al., 1999). Successful rates of test set
predictions confirm the validity of this novel procedure (DiFrancesco et al., 1997; Di
Francesco et al., 1999; Holbrook et al., 1999). The reduction in size from the 20-letter
amino acid alphabet to this 3-letter structural alphabet means that the number of

learning parameters is greatly reduced with the requirement of less training data.

It is difficult to identify the most important structural descriptor for a set of
sequences, since the most discriminating factor will vary with the position along the
aligned sequences’ length (Claverié, 1992). It is therefore wise to consider several
descriptors simultaneously. Likewise an HMM can be trained on both sequence and
structure (Bystroff et al., 2000). HMMSTR models are based upon a library of protein
sequence-structure motifs (Bystroff and Baker, 1998). Each state in an HMMSTR
model emits an output symbol, representing sequence or structure. There are four
categories of emission symbols: the traditional 20-letter amino acid alphébet, secondary
protein structure (helix, strand or loop), 11 dihedral angle symbols and 10 structural
context symbols.

This research explorés structural DNA alignments (Chapters 8 and 9), encoded
by structural alphabets that place an octamer’s minimum energy conformer into a -
discrete bin. Flexibility is used to define inter-bin relationships, accounting for DNA
dynamics. During this research, a related piece of work was. found (Hasan, 2003),
where DNA is translated into and aligned by flexibility sequences. Two shortcomings
of this method should be pointed out. Only flexibility in terms of a tetranucleotide’s
slide (Packer et al., 2000b) is considered. What about actual conformations and other

‘degrees of freedom? Secondly, inter-bin relationships are not defined, making sequence

comparisons unrealistic.
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7.7. Conclusions

The use of HMMs within biological sequence analysis is clearly a vast research
area that has been under investigafion" and successfully used for well over a decade.
Several bioinformatics applications exist, including protein family recognition,
prediction of DNA-protein binding sites, gene location and identification of splicing
sites. Bilmes points out the potential for HMMs to “accurately model any real-world
probability distribution” (Bilmes, 2002). A major gap in the research area is pure
structure based DNA HMM:s.

When building structural HMMs many lessons can be leamnt from previous
sequence HMM research. The commonly used training algorithms (Baum-Welch,
Simulated Annealing and Viterbi training) often have problems getting stuck in local
optima due to a highly complex parameter space. This large number of free parameters
can be partially controlled by the number of observables, model surgery and by
designing simpler model architectures. Optimising by alignment quality or correct
classification instead of the log odds ratio may be worth considering. Finally the
quantity and quality of the training data is véry important. Prior knowledge, in the form
of substitution matrices, pseudocounts or Dirichlet mixtures, and sequence weights
should be used to refine the quality. In deciding which descriptors to use, studying

several simultaneously may be the most beneficial.

Chapter 7: Hidden Markov Models A 111



Chapter 8:
Structural DNA Alignments

The novel structural DNA alignment technique is introduced and its
implementation discussed. The current methodology aligns sequences by a single
minimum energy parameter. 3-step roll has been chosen as a starting point. Flexibility
is encoded within a model’s prior knowledge, in order to make comparisons between
sequences and to consider the dynamic structure of DNA. Representation of the
observable, the null hypotheses and prior knowledge via a substitution matrix are all
topics of discussion. Methods for assessing the performance and predictive ability of
models are presented. Finally a test scenario is used to ensure this novel extension to

hidden Markov models is fully functional.

8.1. Structural Alphabets

In reality, the minimum energy parameters are continuous variables, however
they are modelled here as being discrete, so as to reduce the algorithmic complexity and
increase computational speed by avoiding the use of multivariate weighted Gaussian
mixtures. In speech recognition, discrete versus continuous corresponds to speed versus
accuracy, with accuracy and therefore continuous winning (Melnikoff et al., 2002).
Both of these opposing factors are important in DNA analysis, since reliable results are
desired from a tool that can digest the vast amount of biological information publicly
available. The speed-accuracy dilemma does not always exist. It has been found that in
some situations discrete representations outperform continuous in both accuracy and -
speed, for example in face recognition (Wallhoff et al., 2001) and in handwriting
recognition (Rigoll et al., 1996). The logical approach taken here, due to the uncertainty
of the best observable representation for structural DNA analysis, is to first assess the
performance of the quicker discrete method. If the level of recognition is highly
successful then the development of the much slower and perhaps no more accurate
continuous approach will not be needed. Discrete probability distributions of the

parameters will also allow a more direct comparison between this novel technique and
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the traditional sequence alignment procedures that use a four-letter alphabet to represent
the nucleotides. Structural alphabets have therefore been generated to represent the
minimum energy structure of an octamer, with 3-step roll being solely considered as a

simple starting point.

Discrete one degree values of 3-step roll have been previously calculated for the
entire octamer population (Gardiner et al., 2003) and cover a range of -3 to +21°. This
naturally forms a 25-letter alphabet of one degree bin widths, namely the A-Y alphabet.
Note that the larger the alphabet size the larger the number of model parameters to
estimate with more training data required for reliable models. Therefore the nucleotide
alphabet will have an unfair advantage over the A-Y alphabet. For this reason a variety
of structural alphabet sizes were created by grouping roll values into larger bins,
allowing the effect of alphabet size upon model performance to be explored. Four
different 3-step roll alphabets will be studied within this work (Table 8.1). Note that the
25 one degree bins can only be evenly grouped into five and that a structural alphabet of
size four (A-D) has been included for closer analogy of structure to sequence DNA

alignment.

Table 8.1: The Structural 3-Step Roll Alphabets

Alphabet Name Size Bin Width Description
A-D 4 1" 3 bin widths=6° and 4"=7°
A-E 5 All bin widths=5°
A-M 13 Bin widths=2° except last of 1°
A-Y 25 All bin widths=1°

8.2. The Null Hypotheses

A null hypothesis is used to assess the meaningful connection between a
sequence x and an HMM as opposed to a chance connection. It is the dominator of the
odds ratio score. The sequence null hypothesis presented in Chapter 7 generates each
nucleotide with a flat probability of Y. If a structural hypothesis was based upon a
similar flat distribution then the importance of the most commonly occurring roll bins

would be exaggerated and vice versa for the rarer roll values. Instead the normalised
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minimum energy 3-step roll frequencies must be used and will obviously vary with the
alphabet size (Figure 8.1). The random generation of sequence x from the null model,
P(x|null), is given in Equation 8.1. N is the sequence length, x; is the i"™ value of roll in

the sequence and f,; is the frequency of the 3-step roll bin associated with x;.

N
P(x | null) =] £ Equ. 8.1
i=1

Figure 8.1: Frequency Distributions of The Structural Alphabets
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8.3. Inter-bin Relationships And Prior Knowledge

The HMM training procedure itself has no knowledge of the inter-bin
relationships within each of the 3-step roll alphabets. It sees the placement of a 3-step
roll from bin A and a 3-step roll from bin Y in an alignment column dominated by B’s
as equally favourable. The letters are either an identical match or a total mismatch.
There is therefore a need to define the similarity between neighbouring bins as being
higher than between distant ones. This is accomplished by adding prior knowledge into
the HMM procedure, thereby suitably altering the state emission probabilities. Either
Dirichlet priors (Sjolander et al., 1996) or substitution matrices (Dayhoff et al., 1978)
address the analogous problem in protein sequence alignment, describing the similarity

between amino acids with respect to their chemical features, size and shape.
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Dirichlet priors have a major advantage over substitution matrices in protein
analysis. They can represent the similarity between amino acids in several different
contexts via their multi-component structure. One component might be concerned with
hydrophobicity and another might be based upon similar sizes, reflecting the variable
importance of several factors across an alignment. A substitutioh matrix has fixed
amino acid similarities and therefore can only model similarity in a single context.
However, when concerned with the structural alignments of this work a single
component method will suffice, since only one context of similarity exists when
measuring the distance between pairs of roll bins. For this reason a substitution matrix

will be used to define the 3-step roll inter-bin relationships.

8.3.1. Substitution Matrices and Sequence Similarity

In general the element S(i,j) of a substitution matrix S describes the likelihood
that a building block of type j can be replaced by a building block of type i with no
dramatic effect upon the structure or function of the object being studied. Extensive
research has been carried out upon substitution matrices of protein sequences for over
25 years, dating back to the famous and still commonly used Point Accepted Mutation
(PAM) matrix series (Dayhoff et al., 1978). DNA substitution matrices also exist but
have not received as much attention as those of proteins, probably due to their much
smaller alphabet size. An example of a four by four DNA matrix that favours the
alignment of purines and pyrimidines with themselves but not with each other is given
in Table 8.2a (Lesk, 2003) along with a matrix that lacks any prior knowledge (Table
8.2b).

Table 8.2: Examples of DNA substitution matrices
a) Purine & Pyrimidine Matrix [Lesk 2003] b) Matrix lacking any prior knowledge

A G T C A G T C
20 10 5 5
10 20 5 5
5 5 20 10
5 5 10 20

Q=1 Q »
Q3 Q >

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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A PAM matrix (Dayhoff et al., 1978) gives the probability that an amino acid
will be replaced by another amino acid after a defined evolutionary time. Phylogenic
trees were generated to study the evolutionary changes within 71 groups of closely
related proteins and to determine the frequencies of the point accepted mutations. These
frequencies were converted into mutation probabilities and then into the final log odds
ratio PAM matrix that accounts for the random chance occurrence of the amino acid
pair. Note that the matrix entries are commonly multiplied by a constant y and rounded
to the nearest integer. The theory behind PAM construction forms the basis of
subsequent protein matrices, which all have the general log odds ratio form given in
Equation 8.2. P(ij) is the probability that j will be replaced by i, f; is the occurrence
probability of i and b is the logarithmic base. -

S = ylog,{P}i’f j)] _ ylogb(ﬂ"?i)) Equ. 8.2
iJj i

In this general form of a substitution matrix, a positive entry means that the
substitution is more likely to be meaningful than to have occurred by random chance
and vice versa for negative entries. It has been suggested that the matrices should be
adjusted to the amino acid composition of the proteins being analysed instead of just

using the standard background frequencies upon which they were originally built (Yu et
al., 2003).

Well-known competitors to the PAM series are the Block substitution matrices
(BLOSUM) (Henikoff and Henikoff, 1992). Like PAM, they are dependent upon the
pre-alignment of proteins, but the sequences used are less similar to one another and are
aligned in clustered blocks. The best matrix varies with the data being analysed, so a
variety should be used with significance measured by a combined scoring scheme rather
than the single highest matrix score (Frommlet et al., 2004). An alternative
optimisation procedure is introduced that uses Bayesian decision theory to classify

“sequences, maximising the classification accuracy of a matrix (Hourai et al., 2004).
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A dipeptide substitution matrix was constructed, in order to investigate any
dependence of an amino acid substitution on neighbouring substitutions (Gonnet et al.,
1994). PAM theory assumes there to be no such dependence, but is proven wrong.
This extended matrix cannot however be applied to HMM analysis. A review of the
different ways that amino acid similarities can be encoded has been carried out (Vogt et
al., 1995) and includes volume comparisons, secondary structure comparisons and
genetic code distances. Matrices based upon superimposed protein pairs have also been
explored, where amino acids are said to be equivalent if C* or C? atoms are less than

five Angstroms apart (Prlic et al., 2000).

Another example of incorporating structural information iﬁto a matrix is the
linear combination of BLOSUMS0 with a table of threading energies (Teodorescu et al.,
2004). The threading energy of a protein is the energy it requires to form a shape
analogous to another. An alternative use for substitution matrices is illustrated by the
CLASSUM series that describe how an amino acid substitution within a particular

protein family is involved in altering some functionality (Vilim et al., 2004).
8.3.2. Substitution Matrices within HMM analysis

A well known software package for producing HMMs is HMMER (Eddy,
1998). HMMER uses the “substitution matrix mixture” strategy (Durbin et al., 1998) to
alter the emission probabilities with regard to the prior knowledge contained with a
substitution matrix. This procedure is summarised by the 3 stages below.
(1) Convert all the substitution matrix entries, S(i,j), to P(i|j). Note that the matrix

entries must first be converted to natural logarithms so that the exponential can then be

taken. This is done by the scale factor In b.

P(i| j) = f, exp(S(, j) x scale), Equ. 8.3

where scale = l_né
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(2) Calculate the pseudocount for letter i in alignment column a (aui,), where fj, is the
fractional abundance of j in the column and A4 is the pseudocount weight with the
HMMER default value of 20.

a, =AY [P j) Equ. 8.4
J

(3) From the pseudocounts calculate the emission probability of i from the match state

associated with column a, e,(i), where c;, is the frequency count of i in the column.

cia + aia

e ()==—"—"""— Equ. 8.5
"() Zci‘a+ai'a q

8.3.3. Substitution Matrices and Structural Similarity

The substitution matrix S depends on the occurrence frequencies (calculated for
the null hypothesis), the two constants y and b (that shall be set to 3 and 2 respectively)
and on one remaining variable yet to be determined, P(i,j). This probability value
(traditionally representing the mutation of one amino acid to another via an evolutionary
process) represents the structural similarity between an octamer from bin i and an
octamer from bin j. Two subtly different strategies for calculating P(i,j) based upon

DNA flexibility will be studied: the P(i &) strategy and the P(i=j) strategy.

o The P(i &) Strategy:
P(ij) is defined as the probability of an octamer in binj flexing to a structure
within bin i, P(i <), analogous to the previously mentioned protein-threading

energies.

o The P(i=j) Strategy:
P(ij) is defined as the probability that an octamer in bin i and an octamer in
bin j will have the same structure, P(i=j). P(i=j) will be highly correlated with
P(i €j), but it describes the dynamic structure of octamer pairs, giving a more

realistic representation of DNA structural similarity than P(i &j).
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Chapter 4 introduced a novel method for calculating the probability that one
particular octamer will have a certain roll structure (section 4.1) or that two octamers
will have the same roll structure (section 4.2). A highly generalised version of the same
theory is used to calculate P(i 67) and P(i=j), since a substit_ution matrix is not
concerned with individual octamer probabilities, but with general tendencies of the

octamers contained within particular roll bins.

First consider the matrices of the A-Y alphabet: P4y(i &) and P4y(i=j). Two
major approximations are made. The average force constant over the entire octamer
population (Ka, which equals 0.22 for 3-step roll) is used to represent the general
flexibility of any octamer. Secondly, P4y(i €j) uses a single rectangle of width one
degree to approximate the required integral. The calculation therefore only involves a
single exponential term (Equation 8.6). P(i=j) is then derived from the P(i €), see
Equation 8.7. Note that flexibility is covered in the extended 3-step roll range of —20°
to +40°, as discussed in Chapter 4 section 4.1. There is a clear resemblance between

Equation 8.7 and Equation 4.3.

xp|- K, x? / RT|
Q

. , €
Py« ))=

Equ. 8.6

where x=x;-x; (the distance between the bins being compared),

K,y is the average of (3K o+ 3K 1o/ 2) for all octamers, 0.22

— 257
0= >7%.,

a=-20

40 ~
Py(i=))= D Py(a«iPy(a« j) ~ Equ.87

Once the two probability matrices above, P4y(i€j) and P4y(i=j), had been
calculated they were applied to Equation 8.2 with rounding to the nearest integer values,
resulting in the substitution matrices Syy; o and Syy;-; respectively. The smaller
~ alphabet matrices were then calculated by summing blocks in the P4y matrices that refer

to the larger roll bin widths. The block sums were then divided by either their widths
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for P(i €j) or by their area for P(i=j). This considers all combinations of ways that a

larger bin can obtain a structure within another larger bin. For example, consider the

calculation of P(4 €A) and P4p(A=A), shown in Equations 8.8 and 8.9.

Py(A<A)= >

Py(A=A)+P,(A=B)+P,(B=A4)+P,(B=B)
4

Py (A= A)=

Py (A= A)+ P,y (A< B)+ Py/(B < A)+PB,; (B < B) Eq

u. 8.8

Equ. 8.9

The resulting substitution matrices of the A-D, A-E, A-M and A-Y alphabets are shown

in Figure 8.2. Note the anomalous lines in the Spy matrices (figures 8.2a and b). These

unusual features could be caused by the extremely low occurrence probabilities of bins

B and X.

Figure 8.2: 3-step roll Substitution matrices. a) Say, i.; b) Sayi- and c) those of the smaller alphabets.

Notice that values of S are all plotted on the same —150 to 75 scale so that direct comparisons can be

made between all of the matrices.

(a) 3-step roll substitution matrix S,y ;¢;  (b) 3-step roll substitution matrix S,y ;_;

3-step roll bins

[
-

3-step roll bins

(c) The smaller 3-step roll alphabets

AM,i€j Sak,icj SAM.,‘ifj Sak,i=j
w o
T Sap,i¢; SAp,h-j

-

-100

-150

Chapter 8: Structural DNA Alignments

120



Two useful measures for describing the numbers within a substitution matrix are
the expected score E (Henikoff and Henikoff, 1992) and the entropy H (Altschul, 1991).
E is the average value within a matrix (Equation 8.10) and H measures the difference
between the substitution probabilities and the background probabilities (Equation 8.11).
E and H have both been calculated for all of the 3-step roll matrices (Table 8.3).

E= Z( £.7,8G, 7)) Equ. 8.10
H = Z(P("_J)S.___(’?J')J Equ. 8.1
13 y

Table 8.3: Lowest and highest values, expected scores (E) and entropies (H) of the matrices

Matrix Lowest Highest E H

Savig  -151 82 48 2019
Savii 43 81 89 1809
Samiy 137 68 24 902
Sawis 41 67 3.1 37.6
Sagij 82 33 QS hmemailis
Sapij 40 25 42 1.7
Sapij 55 26 0.5 14.8
Sapj5 30 17 5.4 0.5

As the alphabet size decreases, E and H decrease, since the scores get closer to
zero. This is seen by the decreasing difference between the lowest and highest values
(Table 8.3) and by the missing extreme colours in the A-D and A-E substitution
matrices (Figure 8.2). The S-; matrices have lower entropies than the S; ; matrices
across all of the alphabet sizes, meaning that they have a lower level of differentiation
between the substitution probabilities and the background probabilities. The expected
score is higher for S,y than Syy; ;and likewise for the A-M alphabet. Notice however
the opposite trend is apparent for the two smaller alphabets (A-D and A-E) with
negative S;-; scores. Negative values of £ mean that on average a value of P(i,j) is less
than fif;, suggesting that the alignment of i and j is more likely to have occurred by

chance than because of structural equivalence. Syy,-; sees the possibility that distant roll
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bins can be structurally equivalent, whereas Syy;; ; strongly forbids distant bins to have
equivalent structures (note the presence of dark blue in the corners of the matrix). An
alternative approach to calculating a 3-step roll substitution matrix is a simple linear
probability scale based upon differences in roll (the probability being inversely
proportional to |x;-xj|). This could be thought of as describing a protein’s view of the
DNA sequences, which could be useful when analysing a particular set of protein

binding sequences.
8.4. Software

HMMER version 1.8.4 (Eddy, 1998) is commonly used to generate traditional
sequence HMMs and alignments. Here, it has been extended and generalised to deal
with the 3-step roll alphabets, their null hypotheses and substitution matrices. Four
executable programs from the HMMER package are used throughout this work:
‘hmmt’, ‘hmma’, ‘hmme’ and ‘hmms’. The ‘hmmt’ program generates trained models,
‘hmma’ then produces sequence alignments from the models and ‘hmme —b’ emits the
model’s most probable sequence, also referred to as the consensus sequence. Finally,
individual sequence scores are obtained using ‘hmms’. Here, HMMER has been
extended to deal with the structural alphabets with the null hypotheses encoded. A ¢-Z’
option has been implemented for structural alphabet selection phrposes. The 3-step roll
substitution matrices have each been placed into a common file format understood by
HMMER version 1.8.4 and are specified in the usual way, with the ‘-P’ option of
‘hmmt’. '

Default parameters were used to construct all models and are as follows. The
traditional HMM architecture discussed in Chapter 7 section 7.3 is used with unbiased
uniform state transition and symbol emission probabilities in the starting models. Thé
model length is initialised to the average sequence length of the training set. Model
surgery is used to optimise the model length and a simulated annealing strategy (SA) is
used to train the model whilst attempting to avoid local minima problems (Chapter 7).
The SA default parameters are a kT of five and a ramp of 0.95. The value of ramp
defines the ‘cooling’ process by being the factor that kT decreases by upon each training
iteration. Finally once SA has converged, the Viterbi algorithm is used to refine the

alignment solution.
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8.5. Evaluating the matrices

Before discussing the methods used to assess model performance and reliability,
an evaluation of the 3-step roll substitution matrices (section 8.3.3) is presented. The
alignment of two sequences from the A-Y alphabet is shown below, with each correctly
aligned column composed of two octamers from adjacent roll bins. Note that a full stop

symbol refers to a gap.

. .ADJNQRMT. .
SSBEKMPSNSAA

This pair of sequences has been chosen to check that the substitution matrices recognise
the inter-bin relationships that are essential for their correct alignment. Alignments are
also obtained using no prior knowledge, a substitution matrix of random probabilities, a
randomly shuffled Say; ¥ matrix and a matrix with probabilities linear to the roll bin
distances (where P=constant/|x;-x;|). The linear matrix was mentioned previously in
section 8.3.3 as describing a protein’s view of DNA sequences. The first sequence
(ADJNQRMT) was hard-wired into the training set by duplicating it 19 times. 100
models were then generated for each prior knowledge type with the frequency of the

correct alignment counted and its score noted (Table 8.4).

Table 8.4: Assessing varying levels of prior knowledge for the A-Y alphabet and the alignment of two
sequences, ADJNORMT and SSBEKMPSNSAA. Note that lowercase letters come from an insert state.

Prior Knowledge Alignment. ~ Score  Frequency
None ADJ....NQRMT 36.07 ABSENT
SSBekmpSNSAA
SAy,i(_J- . .ADJNQRMT. . 3776 87%
SSBEKMPSNSAA
SAij . .ADJNQRMT. . 37.12 32%
SSBEKMPSNSAA
Randomised o e A DJINQRMT 35.03 ABSENT
SAY,i(_J .ssbekmPSN. SAA
Random ADJ. ...NQRMT 36.47 ABSENT
probabilities SSBekmpSNSAA
Linear with roll ADJ....NQRMT 36.26 ABSENT
bin distances SSBekmpSNSAA
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The two substitution matrices based on structural DNA probabilities (Say,i ojand SAy,i=j)
are the only two methods that align the test sequences correctly (Table 8.4). Say,j is
more reliable than Say = giving the correct alignment 87% of the time in comparison to
32%. However, the best performing substitution matrix may vary with the sequences
considered. Surprisingly, the matrix based on probabilities that are linear with the roll
bin distances results in the same highest scoring solution as the random matrix or as no

prior knowledge at all in this instance.

8.6. Model Assessment

It is important to be able to measure the performance and robustness of models
generated, in order to judge whether suggested alignments are reliable. Such
assessment techniques will also prove useful for comparing sequence alignments to
structural alignments. Three methods have been chosen: the non-validated approach,

leave-one-out cross validation (LOO CV) and test set validation.

8.6.1. The non-validated approach

This approach uses the entire dataset as a training set and analyses the
distribution of model scores obtained from 100 HMMs. A model score is the average
log odds ratio of all the sequences in the dataset (Chapter 7) and is therefore a measure
of how well the training data is explained by a model. The higher a score, the better the
data is explained. The standard deviation of the score distribution over 100 models
measures the reproducibility and precision of an alignment solution. The distributioﬁ’s
mean is the average performance and strength of explanation across the models. The
best scoring model is used to generate the final alignment solution, which is viewed by

a matrix plot and summarised by a logo plot (Chapter 6).
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8.6.2. Leave-one-out Cross validation (LOO CV)

Not only is it important to have a model that explains the training data well (as
measured by the above non—validéfed analysis). An estimation of how well it might fit
data outside of the training set (its predictive ability) is also needed. For this purpose
leave-one-out cross validation (LOO CV) is performed. Every sequence within a
dataset is removed in turn and its score predicted by 100 HMMs generated in its
absence. The average of these 100 values is then taken as a single cross validated
sequence score (the score for sequence x being Scyx). The values S¢y 1 to Scyq (n being
the dataset size) are then averaged to give an overall LOO CV score for the whole
dataset. The amount of decrease from the non-validated model scores to the LOO CV
model scores corresponds to robustness. If a model is very robust then removing one
sequence will not largely affect its predictive ability, the decrease being small.
However if the dataset contains a lot of outliers then removing a sequence from the
training data will lead to poor predictions and a much smaller LOO CV model score

with a high likelihood of model overfitting (Hawkins, 2004).

8.6.3. Test set validation

This final data analysis technique measures the performance of an HMM by
applying it to an external test set that is composed of both active and inactive sequences.
20% of the dataset is randomly selected as the test set actives with the remaining 80%
forminé the training set. For each selected active, nine random presumed inactive
sequences of equal length are gengrated, finally resulting in a test set of 90% inactives
and 10% actives. 50 models are generated and each used to score the test set sequences,
since the same training data can lead to different HMM solutions. The results will also
depend upon the test set used, so in order to remove any bias 100 test sets were
randomly generated. The scores from the resulting 5000 models per dataset were
combined in the following manner. Firstly, for each particular test set run the 50 scores
obtained for each test set sequence were averaged. The test set sequences were then
ordered by their decreasing average scores and converted into a ranked cumulative
recall list. The 100 ranked cumulative recall lists can then be averaged and a single

cumulative recall plot finally generated. This technique is summarised in Figure 8.3.
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Figure 8.3: The test set validation procedure. 100 test sets are randomly selected and analysed. Their
recall results are then combined into a final cumulative recall list from which a plot is generated. The
large central box contains the analysis procedure carried out individually on each of the 100 test sets and

involves the generation of 50 HMMs per test set.
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There has been much discussion of LOO CV versus test set validation (Shao,
1993; Hawkins et al., 2001; Hawkins et al., 2003; Hawkins, 2004). Evidence has been
given that when a dataset is small removing a subset as an external test set is not
sensible, since essential information will be lost from the training data (Hawkins et al.,
2003). The results may also be unreliable due to their high variation with the test set
selected. However, since the procedure used here involves selecting 100 test sets
randomly it can be likened to a k-fold cross validation. The only difference being that
rather than choosing the test sets by splitting the dataset into k-partitions they are
chosen independently from one another. It has been argued that LOO CV tends to
overestimate predictivity and that k-fold cross validation gives a more reliable

estimation (Shao, 1993).

The measure RecallNom (Salton and McGill, 1983) can be used to assess a
model’s recall ability in comparison to the perfect scenario (Equation 8.12). A value of
one represents perfect recall and zero is the worse case scenario (all actives being placed

at the bottom of the recall list). .

ACT ACT
D RANK, - i
Recallyop, =1- ZICT(N — Aé?) ‘ Equ. 8.12

where ACT is the number of active sequences in the test set, RANK; is the rank of i

active sequence and N is the test set size.

Three different methods can be used to generate the nine inactive sequences
associated with each active. The first randomly generates sequences having the same
length as the active, selecting one of the four nucleotides at each position with an
independent probability of 0.25. The second and third methods preserve the nucleotide
and dinucleotide composition respectively by performing hundreds of suitable shuffling
operations on the active sequence. The operation involved in retaining the
mononucleotide frequency distribution is simply to randomly select and swap the
positions of two nucleotides. Dinucleotide shuffling however is more complicated,

because swapping random pairs of doublets will alter the overlapping composition
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within the sequence. A simple solution to this was used, the swapping of two sub-
sequences that have identical starting letters and ending letters. For example in the
sequence GGACATGGTTATAATTTGCTAG, the two highlighted sections can be
swapped since they both start with A and end with G. It was ensured that each inactive
generated was not the same as the original sequence or the other associated inactives.
Other more sophisticated techniques include an algorithm that uses a Markov chain
structure in its implementation (Kandel et al., 1996) and a method involving Eulerian
walks and graph theory (Altschul and Erickson, 1985; Coward, 1999; Wu and Gu,
2002).

Recall is related only to the score ordering and lacks details of the score values
and therefore the degree of separation between actives and inactives. However, the
difference between the active score distribution and inactive score distribution can be
measured and assessed by T-tests (Chapter 5). Unpaired heteroscedastic two-tailed T-
tests (Miller and Miller, 1994) are therefore performed on the active and inactive score
distributions obtained in test set analysis. The null hypothesis of two population means

being equal is used and a confidence level of 95%.

8.7. Artificial Dataset

The functionality of the novel structural DNA alignment fechnique must be fully
tested before applying it to real data. Therefore an artificial dataset is created here, in
order to set up a test scenario with a known correct outcome. The use of the three
model assessment techniques introduced in section 8.6 will be illustrated. The artificial
dataset has been designed so that it is more conserved by a 3-step roll motif than by its
nucleotides. Therefore it is expected that for this mock run the structural alignment
results should be superior to traditional sequence analysis. This will act as a null test. If
the outcome is unsuccessful here then the structural HMM methodology is incorrect and

will need to be refined.
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8.7.1. Creating the dataset.

Creating a dataset that is more conserved by 3-step roll than by sequence
requires vertical blocks of octamers to be very similar by roll but different by their
nucleotides. Note that there are seven intervening octamers determined by the two
adjacent non-overlapping octamer columns (Figure 8.4). A decision was made to
design a motif of alternating low and high 3-step roll. “Low” octamers were defined as
those having a 3-step roll less than 3° and “high” were defined as those with a 3-step

roll greater than 14°,

Figure 8.4: Designing the artificial dataset with a motif of alternating low and high 3-step roll. There

are seven intervening octamers pre-determined by each low and high octamer.

Low High Low High Low High
[xxxxxxxx] [xxxxxxxx] [xxxxxxxx] [ xxxxxxxx} | xxxxxxxx| { Xxxxxxxx|

21

3-step roll (°)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35.37 39 41
Octamer Number

Two diverse selections by sequence were made, one from the collection of
octamers with “low” roll and the other from the octamers of “high” roll. The sphere
exclusion clustering technique (Butina, 1999) was used, where all octamers within a
specified sphere radius from a selected octamer are excluded. The distance between
~ two octamers was defined by their sequénce dissimilarity (the fraction of their
nucleotides that mismatch). A sphere radius of 0.5 gave 48 “low” octamers and 49
“high” octamers, resulting in an artificial dataset of 16 “Low Hiéh Low High Low

High” sequences of length 48 nucleotides.
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Before constructing any models, a check was made that the dataset’s sequence
similarity was considerably lower than its structural similarity. The sequence similarity
was calculated by averaging the pairwise Needleman-Wunsch similarity (Needleman
and Wuncsh, 1970) of all possible sequence pairs within the dataset. The structural
similarity was based on the 3-step roll distances between octamers and used an
algorithm analogous to Needleman-Wunsch, in order to align pairs of sequences by
maximising their pairwise structural similarities. The average sequence similarity of the
artificial dataset is 0.417 and the average structural similarity is 0.841, therefore
confirming that the artificial dataset is more conserved by structure (3-step roll) than by
sequence. Note also that the distribution of pairwise similarities for sequence has a
larger variance than structure (Figure 8.5). Application of this dataset to the novel
structural alignment technique and to the traditional sequence alignment technique can
now be carried out with confidence that the superior pattern recognition results should

come from structure not sequence.

Figure 8.5: Pairwise similarity distributions for sequence and structure, confirming that the artificial
dataset is more conserved by 3-step roll (grey) than sequence (black). Needleman-Wunsch similarities

are used for sequence and structure with the pairwise structural alignments based on minimising 3-step

s
Y
5
£
b
i
b
i
i
i
. S
T T T T T

T T T 1

0.0-0.1 0.1-0.2 0.2-0.3 0.3-04 0405 0.5-06 06-0.7 0.7-0.8 0.8-09 0.9-1.0
Similarity Bins

roll distances.

o
o
1

=
IiN
1

Normalised Frequency
& o

o
N
1

=
1

o

Chapter 8: Structural DNA Alignments 130



8.7.2. The non-validated approach

100 non-validated models were generated and the model score distributions
were analysed for sequence and each of the four 3-step roll alphabets (A-D, A-E, A-M
and A-Y) in combination with three types of prior knowledge (none, S;_j and Si-j). The
average model score for sequence alignment is lower than any of the structural
alignments, regardless of the level of prior knowledge used (Table 8.5 and Figure 8.6).
The model scores tend to increase as the structural alphabet size increases, with the
exception of A-D fitting the data slightly better than A-E. Within each alphabet a
general trend is observed (Figure 8.6). The S; ; substitution matrix is clearly
performing better than the Si5 substitution matrix which in turn is performing better
than no prior knowledge at all. The most precise model scores and reproducible models
are generated with no prior knowledge and the two smallest alphabets (A-D having a
standard deviation of 0.44 and A-E having a standard deviation of 0.66). This could be
due to the larger alphabets having a larger number of model parameters to minimise
which means that when inter-bin relationships are defined a variety of alternative

favourable matches can be found (leading to less precise models).

Table 8.5: Non-validated scores for artificial dataset with varying alphabet type and prior knowledge.

Alphabet  Prior Knowledge  Average Model Score  Standard deviation

A-D None 16.88 0.44
A-D SADjigj 21.47 1.24
A-D SAD,i=j 20.99 1.07
A-E None 14.54 0.66
A-E SAE;ij 18.99 0.81
A-E SAE,i=j 18.02 0.75
A-M None 23.80 1.32
A-M SAM;igj 27.84 0.87
A-M SaM,i=j 26.09 1.05
A-Y None 30.57 1.45
A-Y SAYigi 35.84 1.29
A-Y SAY,i=j 33.90 1.54
Sequence None 7.5 1.40
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Figure 8.6: Score distributions for 100 non-validated HMM runs across the different alphabets with differing levels of prior knowledge. The different alphabets are
sequence (orange), A-D (dark blue), A-E (red), A-M (green) and A-Y (light blue). The type of bar shading refers to the different levels of prior knowledge: no prior

knowledge (solid shading), S,-; substitution matrix (medium shading) and S, _; substitution matrix (light shading).
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The highest scoring sequence model and 3-step roll model were selected and
their alignment solutions were examined (Figure 8.7). A detailed explanation of matrix
plots and sequence logos was given in Chapter 6. However, a novel structural logo is
now introduced in Figure 8.7d and needs to be explained. There are two components to
a structural logo: an information content bar chart and a 3-step roll structural profile.
The bar chart is analogous to a sequence logo with information content calculated in the
same way, using the A-Y alphabet instead of the four-letter nucleotide alphabet. The
height of a letter stack in a sequence logo is the same as the height of a bar in the bar
chart. Notice the shading within each bar uses the same colour scheme as the structural
matrix plot (white to black referring to lowest to highest 3-step roll and red meaning a
gap). The height of a single letter in a stack is analogous to the height of a shade of
colour within a bar. Remember the letters are ordered by their 3-step roll (highest roll at
the top to lowest roll at the bottom). Now, consider the 3-step roll profile laid on top of
the bar chart with its y-axis placed on the right hand side of the logo. It is identical to
the structural profiles introduced in Chapter 6. The blue line shows the variation of 3-
step roll along the average sequence with standard deviation bars showing the variation
within each alignment column. The green lines mark the octamer population’s mean

plus and minus one standard deviation.

No strong nucleotide patterns exist in the artificial dataset, since no vertical
bands of colour are observed in the sequence matrix plot (Figure 8.7a) and the majority
of letter stacks are not even visible in the sequence logo (Figure 8.7b). Notice that no
gaps are present in the sequence alignment (Figure 8.7a). There are four columns
dominated by gaps (red) in the structural alignment (Figure 8.7c). This is surprising,
since the dataset is pre-aligned by alternating low and high 3-step roll. However, these
gaps are occurring within the random octamer regions. The structural logo (Figure
8.7d) clearly shows that the gaps occur at positions 13, 27, 32 and 40 with the.negative
information content of the bars erhphasising that these alignment positions do not have
any importance. The bars are an important feature in the structural logo, since without
them (and with the 3-step roll profile alone)‘ the alignment columns 13 and 32 would
appear to have perfect conservation with standard deviations of zero. The original 3-
step roll motif upon which the artificial dataset was built can be seen from the high bars

(positions 1, 9, 18, 26, 36 and 44) and their alternate light and dark shading.

Chapter 8: Structural DNA Alignments 133



Figure 8.7: Sequence alignment versus structural alignment of artificial dataset. a)Sequence matrix plot, where blue = C, orange = G, green = A andred = T. b) Sequence
logo, obtained from Weblogo (Crooks et al., 2004). c) Structural matrix plot, where red = gap and light to dark shading is low to high 3-step roll. d) Structural logo
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8.7.3. Leave-one-out cross validation

Sequence models have the lowest LOO CV scores with the greatest percentage
reduction from their non-validated scores (Table 8.6). This means that the sequence
HMMs are not only giving the poorest fit to the artificial dataset, but are also the least
robust. Although the A-Y alphabet generated the highest scoring non-validated models,
it generated the lowest scoring LOO CV models (75% reduction). This suggests that
the A-Y models are overfitting the data, due to a large number of model parameters.
Greater predictive ability is obtained with the smaller alphabet sizes (those models
having fewer parameters to optimise). In fact this LOO CV analysis suggests the best
models are obtained from the A-D alphabet. Confirmation can be given that there is no
correlation between the LOO CV sequence scores from the nucleotide models and those
from any of the structural models (Figure 8.8), the squared correlation coefficients

varying from 0.00 to 0.21.

Table 8.6: LOO CV scores for artificial dataset with varying alphabet type and prior knowledge

Alphabet Prior LOO CV % Score Standard deviation
Knowledge Score Reduction

A-D None 12.29 27 3.56
A-D SAD,i 14.23 34 5.63
A-D SAD,i=j 15.02 28 5.65
A-E None 8.39 42 331
A-E SAE;i¢j 9.38 51 4.61
A-E SAE,i=j 10.23 43 4.29
A-M None 9.95 58 2.78
A-M SaMiigj 10.01 64 4.31
A-M SAM,i=j 181524 577 3.99
A-Y None 6.28 /0. 3.45
A-Y SAY,igj 9.13 75 4.62
A-Y SAY =i 9.78 71 4.06

Sequence None -4.69 161 3.38
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Figure 8.8: Correlation between LOO CV sequence scores and LOO CV structural scores. Red = A-E
alphabet with no prior knowledge (R’ is 0.21). Blue = A-Y alphabet with Sy, o« Prior knowledge (R is
0.00).
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8.7.4. Test set analysis

Test set analyses were carried out as described in section 8.6.3 for all the
alphabets (sequence, A-D, A-E, A-M and A-Y) using the three methods for generating
the inactives (random, mono-nucleotide shuffling and dinucleotide shuffling). Note that
the active sequence set is in fact the artificial dataset (or in general the dataset being
modelled). The Si; matrix was chosen when generating the structural models. All
structural models had perfect recall ability (Figure 8.9) with Recallyorm equalling 1.00.

The Recallyorm values for sequence were not perfect, but surprisingly high (Table 8.8).

Table 8.8: Values of Recallyor for sequence. N.B. (All values of Recallyory for structure were 1.00

Settings : Average Recallyorm
Sequence with random inactives 0.864
Sequence with mono shuffled inactives 0.859
Sequence with doublet shuffled inactives 0.867
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Figure 8.9: Cumulative recall plot for the artificial dataset, considering the sequence models (black) and
the A-Y roll alphabet models (purple). The S, ; substitution matrix is used for structure and the three

classes of inactives: random inactives (solid lines), mono shuffled inactives (medium weighted lines) and

doublet shuffled (light weighted lines).
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Score distributions (Figure 8.10) of the active and inactive sequences show that
structure clearly separates the actives from the inactives with positive and negative
scores respectively, regardless of the method used to generate the inactives. Sequence
models tend to score both actives and inactives as negative, although the distributions
have a significant mean separation of around 5 bits with values of T greater-than 20
(Table 8.9). The mean separation of the distributions from the structural models is
around 35 bits with values of T geater than 105. Structure clearly differentiates the
actives from the inactives to a much greater extent than sequence (the mean separation

being about 7 times greater).
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Figure 8.10: Score distributions of the sequence inactives (red), sequence actives (green), structure
inactives (purple) and structure actives (light blue). The level of shading refers to the method used to
generate the inactives: random generation (solid lines), mono shuffling (lighter shading) and doublet

shuffling (dashed lines). The S;  ; substitution matrix is used for structure.
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Table 8.10: 7-test analyses between active and inactive score distributions from Figure 8.10. DOF is the
number of degrees of freedom. X, —X, is the mean separation between the two distributions. The S; )

substitution matrix is used for structure.

~ Alphabet Type of inactives DOF T %-%

Sequence Randofn ‘ 383 25.7‘5‘ | 495 |
Sequence Mono 962 8RN0 3167/ SENeRED 6
Sequence Doublet 383  26.08 5.09
A-Y Random sel el sy 36.57
A-Y Mono 93551116109 36.42
A-Y Doublet 543 105.74 34.30
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8.8. Conclusions

A novel HMM technique that successquy aligns sequences by their 3-step roll
has now been introduced. Structural alphabets of different sizes (A-D, A-E, A-M and
A-Y) form discrete representations of 3-step roll. Relationships between the bins in an
alphabet have been encoded via substitution matrices that incorporate the general
flexibility of DNA octamers into an HMM. SAv,iej was found to be more reliable than
Sav,=j. The correct alignment of a sequence pair was obtained 87% of the time with

Sav,igj in comparison to 32% of the time with Say ;.

Model performance will depend on the number of model parameters (alphabet
size) and the amount and quality of the training data. Three methods were used to
assess performance (the non-validated approach, leave-one-out cross validation and test
set validation). An artificial dataset was applied to the novel alignment procedure,
confirming that it is fully functional. In the non-validated approach, sequence scored
the worst and A-Y the best. The most precise scores were, however, obtained using the
A-D or A-E 3-step roll alphabet. The substitution matrix of choice is clearly Say,i;
rather than Suy,i=j. No strong nucleotide patterns were observed in the alignments. The
original ‘Low High Low High Low High’ 3-step roll motif is clearly seen in the highest
scoring A-Y alignment. Both sequence and A-Y score poorly in the leave-one-out cross
validation, the most robust models being obtained with A-D. This suggests that A-Y
may be overfitting the data with its large number of model parameters. Perfect recall
results were obtained with all structural models and near perfect for sequence. This
could be due to a poor test method with the random sequences always being very
different from those of the dataset despite mono- or di-nucleotide shuffling. Real DNA
datasets should be analysed before coming to any solid conclusions about what model
settings are the absolute best. HMM:s of four DNA protein binding site datasets are now

produced and analysed in Chapter 9.
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Chapter 9:
HMMs Of Four DNA Protein Binding Sites

Four DNA protein binding site datasets are investigated by both sequence and
structural (3-step roll) HMMs. Model performance is assessed by the three techniques
introduced in Chapter 8: the non-validated approach, leave-one-out cross validation
(LOO CV) and test set validation. Each dataset’s size and diversity is analysed as a
prerequisite to HMM generation, in order to increase our understanding of performance

and check for biased redundant sequence information.

9.1. PrrA binding DNA

The PrrA binding site dataset was obtained from the Department of Molecular
Biology and Biotechnology at Shefﬁeld University (Laguri et al., 2003) in the hope that
some further light could be shed upon the structural properties common to the DNA
sequences. This collection of sequences bind to the effector domain of the PrrA protein
of Rhodobacter sphaeroides, a proteo bacterium. PrrA plays' an imporfant role in the
expression of genes involved in controlling metabolic changes between aerobic and
anaerobic conditions. It has a helix-turn-helix motif that forms a dimer when activated.
A DNA sequence alignment has been previously produced (Laguri et al., 2003) and
identifies a consensus of inverted repeats separated by a variable spacing of three to
nine nucleotides (GCGNC...GNCGC, where N means any nucleotide). Both the
flexibility of the DNA and of a protein subunit are thought to be important factors in the

underlying binding mechanism.

There are 38 sequences with an average length of 23.58 nucleotides, ranging
from 20 to 26. The average pairwise Needleman Wunsch sequence similarity
(Needleman and Wuncsh, 1970) is 0.48 and the analogous average structural similarity
with respect to 3-step roll is 0.80. The PrrA binding sites are therefore more similar and

- less diverse by their structure than their sequence (Figure 9.1).
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Figure 9.1: Diversity of the PrrA binding site dataset with respect to Needleman-Wunsch sequence

(black) and structure (grey) similarity distributions of all possible pairs.
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9.1.1. Non-validated analysis

A non-validated assessment of model performance was carried out as discussed
in Chapter 8 section 8.6.1. The highest average model score was obtained with the A-Y
alphabet using the Say,;j substitution matrix, closely followed by sequence (Table 9.1
and Figure 9.2). The model scores of A-Y with Say; j are more precise than those of
sequence, with a lower standard deviation. As alphabet size increases, the model scores
tend to increase. S;_j is the highest scoring level of prior knowledge for all four
structural alphabets. Surprisingly, in the A-M models no prior knowledge appears to be

performing better than the S;5 matrix.

The highest scoring sequence model and highest scoring A-Y with Say i ; model
were used to construct a sequence alignment (Figure 9.3a) and a structural alignment
(Figure 9.3c) respectively. In the sequence alignment gaps (shown in black) are
concentrated in the centre of the sequences and correspond to the variable spacing
identified in a previous consensus pattern (Laguri et al., 2003). To either side of the gap
area there are alternating columns of mainly orange (G) and blue (C), clearly reflected

by the tallest letter stacks of the sequence logo (Figure 9.3c).
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Table 9.1: Non-validated scores for the PrrA binding site dataset with varying alphabet type and prior

knowledge. Each average model score is taken over 100 models.
~ Alphabet  Prior Knowledge  Average Model
eI (D) T T

- Standard deviation

«A-D,, S k“Non‘é

A-D SAD;ij 0.79 0.21
A-D SAD,i=j 0.53 0.21
A-E None 0.92 0.21
A-E SAEij 1.53 0.18
A-E SAE,i=j 1.18 0.20
A-M None 3.18 0.31
A-M SAM;i 3.56 0.27
A-M SaMi=i 3.03 0.28
A-Y None 5.58 0.44
A-Y SAYigj 6.29 0.34
A-Y SAy,i=i 5.81 0.39
Sequence None 6.28 0.41

Figure 9.2: The PrrA binding model score distributions for 100 non-validated HMM runs across the
different alphabets with differing levels of prior knowledge. ~ The different alphabets are sequence
(orange), A-D (dark blue), A-E (red), A-M (green) and A-Y (light blue). The type of bar shading refers to
the different levels of prior knowledge: no prior knowledge (solid shading), S; o Substitution matrix
(medium shading) and S;-; substitution matrix (light shading).
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Figure 9.3: Sequence alignment versus structural alignment of PrrA dataset. a)Sequence matrix plot, where black = gap, blue = C, orange = G, green = A andred = T.
b) Sequence logo, obtained from Weblogo (Crooks et al., 2004). c) Structural matrix plot. Red = gap and light to dark shading is low to high 3-step roll. d) Structural logo
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The logo’s consensus displays the importance of GCG at alignment positions 7, 8 and 9
and CGC at alignment positions 19, 20 and 21. The structural alignment and logo
(Figure 9.3 ¢ and d) were constructed and used to determine any structural implications
with respect to the 3-step roll of these sequences. Again, a central region of variable
spacing can be seen by gaps (shown in red) in the alignment (Figure 9.3 c). They
suppress the heights of bars in the middle of the structural logo (Figure 9.3 d). Gaps
also dominate the outer alignment columns 1, 2, 18, 23 and 24. The most important
alignment position is 6 followed by 20, where in both cases the consensus 3-step roll is

greater than average.

9.1.2. Leave-one-out cross validation

LOO CV was performed on the PrrA dataset (Chapter 8 section 8.6.2), where
100 models were made in the absence of each sequence. The predictive ability of all the
structural models is poor with negative LOO CV scores (Table 9.2), meaning that on
average a sequence removed from the training data will fit better to the null hypothesis
(random DNA) than to the family of sequences to which it belongs. The percentage
score reduction from the non-validated model scores to the LOO CV scores is greater
than 100% (Table 9.2) for all the structural alphabets, corresponding to the negative
LOO CV scores. The greatest percentage score reduction is for the A-D alphabet
models that lack any prior knowledge. Although the non-validated A-Y models were
marginally better than sequence, this LOO CV analysis shows that the sequence models

have a much higher predictive ability than structure for the PrrA binding sites.

9.1.3. Test set validation

Test set validation was carried out as previously described (Chapter 8 section
8.6.3). Seven sequences (approximately 20% of the PrrA data) were randomly selected
100 times, in order to form the actives of 100 test sets. Nine inactive sequences were
~ then generated for every active. Initially, model recall ability across all the alphabets
with differing levels of prior knowledge and using the random method for generating

inactives was considered (Table 9.3 and Figure 9.4). Sequence has the highest and
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nearly perfect recall ability (Recallyorm of 0.986). However, structure is not far behind
with values of Recallyorym varying from 0.830 (A-D with no prior knowledge) to 0.927
(A-Y with Say; (_j). Within each structural alphabet S; b is again the best choice of prior
knowledge.

Table 9.2: LOO CV scores for the PrrA binding site dataset with varying alphabet type and prior
knowledge. Note that % score reduction refers to the reduction from the average non-validated model

score to the analogous average LOO CV model score.

Alphabet Prior knowledge LOO CV Score % Score reduction

A-D None -1.68 864
A-D SAD,i(_J -0.85 208
A-D SAD,i=j -0.915 273
A-E None -0.49 153
A-E SAE’i(_J -0.58 138
A-E SAE, i=j -0.55 147
A-M None -0.87 127
A-M SAM e -0.84 124
A-M SaM,i=i -0.67 122
A-Y None -1.92 134
A-Y SAy,i(_J' -1.49 124
A-Y SAY,i=i -1.45 125
Sequence None 3.57 43

Table 9.3: Values of Average Recallyopy for the PrrA binding site dataset with varying alphabet type

and prior knowledge. N.B. (The inactives are generated using the random method).

Alphabet Prior knowledge  Average Recallyom

A-D None 0.830
A-D SAD;i i 0.873
A-D SAD,i= 0.859
A-E None 0.886
A-E SAEi 0.914
A-E SAE,i=j 0.908
A-M None 0.866
A-M SAMiij 0.913
A-M SAM,i=j 0.904
A-Y None 0.862
A-Y SAY.igj 0.927
A-Y Sav,isj 0.913
Sequence None 0.986
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Figure 9.4: Cumulative recall plot for the PrrA binding site dataset with varying alphabet type.
Sequence is orange, A-D is dark blue, A-E is red, A-M is dark green, A-Y is light blue, random recall is

black and ideal recall is bright green. N.B. (The inactives are generated using the random method).
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The effect that the method for generating the inactives has upon recall was
explored for the A-Y alphabet with Say ;i j and the traditional sequence alphabet (Table
9.4 and Figure 9.5). The expected degrading effect upon recall when going from
random to mono shuffled to doublet shuffled inactives was observed. In all cases the
sequence recall remains higher than structure. The active and inactive score
distributions were plotted (Figure 9.6) and T-tests assessing their separation were

performed (Table 9.5).

Table 9.4: Exploring the effect different methods for generating the inactives have upon values of
Recallyor for the sequence and A-Y (with Say, .;)models for the PrrdA binding site dataset.

Inactive Class Sequence Recallyorm  A-Y Recallyorm
Random 0.986 0.927
Mono shuffling 0.963 0.885
Dinucleotide shuffling 0.938 0.849
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Figure 9.5: Cumulative recall plot for the PrrA binding site dataset, considering the sequence models
(black) and the A-Y roll alphabet models (blue). Ideal recall is shown in green and random recall in red.
The S, ; substitution matrix is used for structure and the three classes of inactives were explored: the
random inactive (solid lines), mono shuffled inactives (dashed lines) and doublet shuffled (lighter shaded

lines).
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Figure 9.6: PrrA score distributions of the sequence inactives (red), sequence actives (green), structure
inactives (purple) and structure actives (light blue). The level of shading refers to the method used to
generate the inactives: random generation (solid lines), mono shuffling (dashed lines) and doublet

shuffling (lighter shaded lines). The S; _ ; substitution matrix is used for structure.
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Table 9.5: T-test analyses between active and inactive score distributions from Figure 9.6. DOF is the
number of degrees of freedom. X, —Xx, is the mean separation between the two distributions. The S;

substitution matrix is used for structure.

Alphabet  Type of inactives DOF T X —%;

Sequence Random 867 82.06 14.35

Sequence Mono 850 63.60 11.55

Sequence Doublet 880  56.99 10.44
A-Y el 998 5895 932
A-Y Mono 839 4382 7.84
A-Y Doublet

45972723 6.32

All active score distributions are significantly different from their inactive analogues
(values of T being much larger than 2.58). The mean separation is greater for sequence
than structure (leading to the higher recall ability). The separation decreases when
going from random to doublet shuffled inactives. Although the majority of active
sequences are being scored negatively with the structural models (Figure 9.6) they are
still being scored significantly less negatively than their inactive counterparts. This

explains why the LOO CV scores are so low, but the recall ability is high.

9.2. PPARg Factor Binding Sites

This dataset was obtained from a list of 95 transcription factors, each with at
least 20 associated binding sites (Barash et al., 2003), the origin of the data being the
TRANSFAC database (Wingender et al., 2001). The factor concerned is a peroxisome
proliferator-activated receptor of type gamma (PPARg) that binds to DNA via two zinc
fingers. This nuclear receptor induces proliferation of peroxisomes in the cytoplasm, a
peroxisome’s function being to oxidise materials in the cell and then catalyse the
destruction of the resulting poisonous hydrogen peroxide by-product. An excellent
review of PPARs is present in the literature (Berger and Moller, 2002). There are 72
sequences with an average length of 19.44, ranging from 15 to 21. The average

sequence similarity is 0.71 and structural similarity 0.84 (Figure 9.7).
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Figure 9.7: Diversity of the PPARg binding site dataset with respect to Needleman Wunsch sequence

(black) and structure (grey) similarity distributions of all possible pairs.
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9.2.1. Non-validated analysis

The models built from the A-Y alphabet with Say; o are the highest scoring
(Table 9.6). All non-validated A-M and A-Y model scores beat those of sequence,
regardless of the level of prior knowledge used (Figure 9.8). However, sequence does
have the smallest standard deviation, therefore it has the most reproducible alignment
solutions. The model scores increase with the size of the structural alphabet and are the

highest for the S; j matrices followed by Si-j matrices.

A very strong sequence consensus (GGTCAAAGGTCA) and structural
consensus (repeating low to high 3-step roll) have been identified from the top scoring
sequence and structure model. Clear vertical bands of colour are present in the matrix
plots (Figure 9.9a and c). The letter stacks in the sequence logo are high and dominated
by single letters (Figure 9.9b). The structural logo has high information content with
large bar heights and negligible 3-step roll variance (Figure 9.9d). Gaps are present in
both alignments, but always towards the edges. This is particularly the case for

structure, where gaps are purely at the ends and never interrupt a sequence.
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Table 9.6: Non-validated scores for the PPARg binding site dataset with varying alphabet type and prior

knowledge.

~ Alphabet  Prior Knowledge ~ Average Model ~  Standard deviation
A-D None 10.86 0.45
A-D SAD¢j 12.22 0.29
A-D SAD,i=j 11.87 0.24
A-E None 14.51 0.32
A-E SAE,ij 15.80 0.29
A-E SAE,i=j 15.31 0.31
A-M None 24.70 0.32
A-M SAMij 25399, 0.17
A-M SAM,i=j 25.35 0.28
A-Y None 31.37 0.47
A-Y SAY,iej 89485 0.47
A-Y SAY,i=j 32.05 0.45

Sequence None 21.59 0.17

Figure 9.8: PPARg binding model score distributions for 100 non-validated HMM runs across the
different alphabets with differing levels of prior knowledge. The different alphabets are sequence
(orange), A-D (dark blue), A-E (red), A-M (green) and A-Y (light blue). The type of bar shading refers to
the different levels of prior knowledge: no prior knowledge (solid shading), S, ; substitution matrix
(medium shading) and S;-; substitution matrix (light shading).
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Figure 9.9: Sequence alignment versus structural alignment of PPARg dataset. a)Sequence matrix plot, where black = gap, blue = C, orange = G, green = A and red = T.
b) Sequence logo, obtained from Weblogo (Crooks et al., 2004). c) Structural matrix plot. Red = gap and light to dark shading is low to high 3-step roll. d) Structural logo
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9.2.2. Leave-one-out cross validation

A-Y S;_j is the highest LOO CV model scorer with sequence still falling behind
the A-M and A-Y models (Table 9.7). The percentage score reductions from the non-
validated analysis are all low (between two and four percent). Therefore all models

regardless of their prior knowledge are robust and highly predictive.

Table 9.7: LOO CV scores for the PPARg binding site dataset with varying alphabet type and prior

knowledge.

Alphabet Prior knowledge LOO CV Score % Score reduction
A-D None 10.56 3
A-D SAD,ieJ 11.74 4
A-D SAD,i=j 11.39 4
A-E None 14.10 3
A-E SAE,ij 1155257 3
A-E SAEi=i 14.84 3
A-M None 24.03 3
A-M SAM;igj 25.08 3
A-M SAM,i=j 24.75 D
A-Y None 30.10 4
A-Y SAYigi 31.08 4
A-Y SAYi=i 30.81 4

Sequence None 20.95 3

9.2.3. Test set validation

All models have perfect recall ability (Tables 9.8 and 9.9) even when
considering the different methods for generating the inactive sequences. Surprisingly,
although the active and inactive score distributions have a greater mean separation for
structure than sequence (Figure 9.10) their separation is less significant with smaller
magnitudes of T (Table 9.10). This is because values of T depend upon the variance of
distributions, the variance in the structural score distributions being much greater than

those of sequence.
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Table 9.8: Values of Average Recallyopy for the PPARg binding site dataset with varying alphabet type

and prior knowledge. N.B. (The inactives are generated using the random method).

Alphabet  Prior knowledge Average Recallyom

A-D None 0.997
A-D SADjigj 0.999
A-D SAD,i=j 0.999
A-E None 0.996
A-E SAEji¢j 0.999
A-E SAE,i=j 0.999
A-M None 1.000
A-M SAM;igj 1.000
A-M SAM,i=j 1.000
A-Y None 1.000
A-Y SAYicj 1.000
A-Y SAy,i=i 1.000
Sequence None 1.000

Table 9.9: Exploring the effect different methods for generating the inactives have upon values of
Recallyory for the sequence and A-Y (with Sy é,)moa’els for the PPARg binding site dataset.

Inactive Class Sequence Recallyorm  A-Y Recallyorm
Random 1.000 1.000
Mono shuffling 1.000 1.000
Dinucleotide shuffling  0.997 0.991

Table 9.10: T-test analysis upon the score distributions of Figure 9.10. DOF is the number of degrees
of freedom. The samples are labelled in 3 parts separated by ¢ *. The 1* part is the alphabet type: ‘sequ’
means sequence and ‘AY’ means A-Y 3-step roll alphabet. The 2" part is the method used to generate
the inactives: ‘r’ means random generation, ‘m’ is for mono shuffling and ‘d’ for doublet shuffling. The

3" part is ‘a’ for an active distribution and ‘i’ for an inactive distribution.

Alphabet  Type of inactives DOF 1 X =%,

Sequence Random 2646 428.92  46.03

Sequence Mono 2524 397.06 42.48

Sequence Doublet 4571 22586 2823
A-Y Random 1607 22350 5539
A-Y Mono 1310 196.05  54.06
A-Y Doublet

2048 153.06  40.52
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Figure 9.10: PPARg score distributions of the sequence inactives (red), sequence actives (green),
structure inactives (purple) and structure actives (light blue). The level of shading refers to the method
used to generate the inactives: random generation (solid lines), mono shuffling (dashed lines) and

doublet shuffling (lighter shading). The S; _; substitution matrix is used for structure.
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9.3. FIS Binding Sites

This dataset is a collection of FIS binding sites pre-aligned by their sequence
(Ussery et al., 2001). The protein concerned is a Factor for Inversion Stimulation (FIS)
associated with E.Coli chromatin. It possesses a weak consensus DNA binding site and
has a helix-turn-helix motif. FIS is a gene expression regulator that stabilises DNA
looping (Ussery et al., 2001). Ten redundant sequences were found in the data and
removed. 91 aligned sequences of length 15 nucleotides remained. The average

sequence similarity is 0.48 and the average structural similarity is 0.83 (Figure 9.11).
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Figure 9.11: Diversity of the FIS binding site dataset with respect to Needleman Wunsch sequence
(black) and structure (grey) similarity distributions of all possible pairs.
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9.3.1. Non-validated analysis

The sequence models have the highest scores (Table 9.11 and Figure 9.12). The
average model scores increase with the structural alphabet size, but the level of prior
knowledge used within each alphabet does not have a considerable effect on the model
performance. The A-D, A-E, A-M and sequence alphabet models all have standard
deviation of zero, corresponding to one unique alignment solution. The A-Y alphabet

also has very precise model scores with a standard deviation of only 0.1 bits.

The majority of FIS sites start with guanine and end with cytosine and have a
high density of adenine and thymine in the centre (Figure 9.13a and b). No gaps are
present in the sequence alignment, since the sequences are pre-aligned and of identical
length. No striking structural patterns can be seen in the 3-step roll alignment and logo
plot (Figure 9.13c and d). This suggests that roll is not an important degree of freedom
in FIS binding site recognition. Note the gaps present in alignment column 4. These

must refer to an insert state being used by a single sequence.
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Table 9.11: Non-validated scores for the FIS binding site dataset with varying alphabet type and prior
knowledge.

Alphabet ~ Prior Knowledge ~ Aver:

" Standard deviation |

A_,D : L = Bt : 130 S 0,00 i
A-D SAD,i 1.32 0.00
A-D SAD,i=j 1.29 0.00
A-E None 1.96 0.00
A-E SAE,igj 1.75 0.00
A-E SAE =i 1.73 0.00
A-M None 2.50 0.00
A-M SAM,i¢j 2.50 0.00
A-M SAM,i=j 2.44 0.00
A-Y None 3.56 0.08
A-Y SAY,igj 3.56 0.12
A-Y SAY,i=j 3.48 0.12
Sequence None 6.57 0.00

Figure 9.12: FIS binding model score distributions for 100 non-validated HMM runs across the different
alphabets with differing levels of prior knowledge.  The different alphabets are sequence (orange), A-D
(dark blue), A-E (red), A-M (green) and A-Y (light blue). The type of bar shading refers to the different
levels of prior knowledge: no prior knowledge (solid shading), S; o Substitution matrix (medium shading)
and S;-; substitution matrix (light shading).
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Figure 9.13: Sequence alignment versus structural alignment of FIS dataset. a)Sequence matrix plot, where blue = C, orange = G, green = A and red = T. b) Sequence
logo, obtained from Weblogo (Crooks et al., 2004). c) Structural matrix plot, where red = gap and light to dark shading is low to high 3-step roll. d) Structural logo
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9.3.2. Leave-one-out validation

The sequence models are the most predictive and robust with the highest LOO
CV models scores and lowest percentage score reduction from the non-validated models
(Table 9.12). The LOO CV scores increase with the structural alphabet size, however
the percentage score reduction also increases. This means that although the predictive
ability increases from the A-D to A-Y alphabets, the tendency to overfit the data also

increases, due to the increase in the number of model parameters to optimise.

Table 9.12: LOO CV scores for the FIS binding site dataset with varying alphabet type and prior

knowledge.

Alphabet Prior knowledge LOO CV Score % Score reduction
A-D None 1.15 12
A-D SADjij 1.16 12
A-D SAD,ij 1.14 12
A-E None 1.24 37
A-E SAE;i¢j 1.15 34
A-E SAEji=j 1.22 29
A-M None 1.87 25
A-M SaM,igj 1.85 26
A-M SAM,i=i 1.85 24
A-Y None 1.85 48
A-Y SAYigj 1.96 45
A-Y SAY,i=i 1.99 43

Sequence None 3.97 9

9.3.3. Test set validation

Sequence models have higher recall ability than any of the structural ‘models
(Figure 9.14) with an almost perfect value of Recallyorm (Table 9.13). The structural
models clearly distinguish between the actives and inactives with significant values of T
(Table 9.15) and their recall ability is approximately 80% successful (Table 9.13). The
degrading effect on separation of inactive and active scores when going from randomly
generated inactives to doublet shuffled is clearly seen in the sequence distributions
(Figure 9.15), the mean separation falling from 12.84 bits to 5.4 bits (Table 9.15). The

analogous but smaller degrading effect is also seen in structure.
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Table 9.13: Values of Average Recallyory for the FIS binding site dataset with varying alphabet type

and prior knowledge. N.B. (The inactives are generated using the random method).

“Alphabet Prior knowledge  Averags

A-D None
A-D SAD,i o 0.805
A-D SAD,i=j 0.801
A-E None 0.813
A-E SAE;i 0.812
A-E SAEi5 0.810
A-M None 0.842
A-M Samii o 0.840
A-M SAM,i=j 0.836
A-Y None 0.831
A-Y SAY,igj 0.835
A-Y SAY,ij 0.830
Sequence None 0.971

Figure 9.14: Cumulative recall plot for the FIS binding site dataset with varying alphabet type. A-D is
dark blue, A-E is red, A-M is green, A-Y is light blue, sequence is orange, random recall is black and

ideal recall is bright green. N.B. (The inactives are generated using the random method)
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Table 9.14: Exploring the effect different methods for generating the inactives have upon values of
Recallyory for the sequence and A-Y (with S,y 6’,)moa'els for the FIS binding site dataset.

"Random 0.971 0.835
Mono shuffling 0.965 0.816
Dinucleotide shuffling 0.850 0.781

Figure 9.15: FIS score distributions of the sequence inactives (red), sequence actives (green), structure
inactives (purple) and structure actives (light blue). The level of shading refers to the method used to
generate the inactives: random generation (solid lines), mono shuffling (dashed lines) and doublet

shuffling (lighter shading). The S; _ ; substitution matrix is used for structure
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Table 9.15: T-test analyses between active and inactive score distributions from Figure 9.15. DOF is the
number of degrees of freedom. X, —X, is the mean separation between the two distributions. The S;

substitution matrix is used for structure.

Alphabet  Type of inactives DOF T X =%
Sequence Random 2303 126.8507 12.84
Sequence Mono 2291 118.6777 11.7
Sequence Doublet 2260  52.4688 5.4
A-Y Random 2107  52.05861 5.33
A-Y Mono 2104 47.93003 497
A-Y Doublet 2194 4280389  4.37

9.4. IHF Binding Sites

This dataset is a collection of Integration Host Factor (IHF) binding sites pre-
aligned by their sequence (Ussery et al., 2001). Like FIS, IHF is a chromatin protein.
However, it has a strong binding site preference. It is a heterodimer of the histone-like
family and regulates transcription via DNA looping. IHF has been referred to as “the
master bender” (Travers, 1997) with its ability to bend a DNA sequence in excess of
180 degrees (Rice et al., 1996), see Figure 9.16a and b. The structure of DNA has
therefore been recognised as an important binding variable, especially with respect to
base step roll. A plot of roll has been constructed for a single 34 base pair sequence
from which two large “kinks” were identified (Rice et al., 1996), see Figure 9.16¢. This
observation certainly justifies the application of the novel structural roll HMM
technique to this dataset. Redundant sequences were removed from the dataset,
resulting in a dataset size of 47 sequences all of nucleotide length 15. The average

Needleman-Wunsch pairwise sequence similarity is 0.53 and that of 3-step roll structure
is 0.85.
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Figure 9.16: Complex of IHF bound to DNA (Rice et al., 1996). a) Front view. b) Top view. The two
protein subunits are shown in white and pink with an identified DNA consensus highlighted in green.

Intercalating prolines are shown in yellow. c) Roll profile (Rice et al.,1996). No points plotted for TTG,

which are in non-Watson-Crick configurations.
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Figure 9.17: Diversity of the IHF binding site dataset with respect to Needleman Wunsch sequence
(black) and structure (grey) similarity distributions of all possible pairs.

0.8
0.7 1
= 06 1 it
()
= e
3 05 -
o i
L £
- 04 - ;,{.,i
(1] ;;
n b
= ,u%
€03 i
A *f';
$ :
0.2
)i
0.1 1 '

0 T it — T T T T
00-01 01-02 0203 0304 0405 0506 0607 07-08 0809 09-10
Similarity Bins

Chapter 9: HMMs of Four DNA Protein Binding Sites 162



9.4.1. Non-validated analysis

Sequence gives the highest scoring models in comparison to structure (Table
9.16 and Figure 9.18). As usual, the model scores tend to increase with the alphabet
size. The S;_j substitution matrix is the best performing type of prior knowledge. All
standard deviation are zero or very close to zero, meaning that precise alignment

solutions are found. Their accuracy, however, is still debatable.

No gaps are present in the sequence alignment (Figure 9.19a), since this dataset
has been pre-aligned (Ussery et al., 2001). A typical IHF binding site can be recognised
by CAA at positions 2,3 and 4 and TT at positions 9 and 10. The palindrome consensus
sequence TCAATATATTGA is present in the sequence logo (Figure 9.19b).
Palindromic DNA is usually associated with dimeric proteins. The two subunits of IHF
are shown in Figure 9.16a. No highly conserved 3-step roll motif can be deciphered
from the structural alignment or structural logo (Figure 9.19¢ and d). No gaps are
present in the structural alignment, meaning that the sequence alignment has been
maintained. The second roll kink is positioned between nucleotides 3 and 4 in the
sequence logo (Figures 9.16¢ and 9.19b). Both kinks are therefore located outside of

the structural profile, where octamer 1 refers to the roll between nucleotides 4 and 5.

Table 9.16: Non-validated scores for the IHF binding site dataset with varying alphabet type and prior
knowledge.

Alphabet  Prior Knowledge Average Model Score  Standard deviation

A-D None 2.78 0.00
A-D SADjij 3.10 0.00
A-D SAD,i=j 3.03 0.00
A-E None 3.81 0.00
A-E SAE;i 4.17 0.02
A-E SAE,i=j 4.08 0.00
A-M None 5.23 0.00
A-M SaM;igj 559 0.00
A-M SAM,i=j 5.39 0.00
A-Y None 6.81 0.00
A-Y SAY,i(_J' 7.14 0.06
A-Y SAy,i=i 6.97 0.01
Sequence None 10.28 0.04
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Figure 9.18: [HF binding model score distributions for 100 non-validated HMM runs across the
different alphabets with differing levels of prior knowledge.  The different alphabets are sequence
(orange), A-D (dark blue), A-E (red), A-M (green) and A-Y (light blue). The type of bar shading refers to
the different levels of prior knowledge: no prior knowledge (solid shading), S;_; substitution matrix
(medium shading) and S;-; substitution matrix (light shading)

100
90
80
70

60

50

Frequency

40

30

20

10

V2772227222772

I PR | ——

AISERO IS 6RO RIS SN /SRS 8 51191 ROI6 B OR1 0’5
Model Score (bits)

3 35 4

9.4.2. Leave-one-out validation

The sequence models are the most predictive with the highest LOO CV model
scores and the most robust with the smallest percentage score reduction from the non-
validated model scores (Table 9.17). The A-M 3-step roll alphabet models have a
higher predictive ability than the A-Y alphabet models. Therefore the A-Y models are

overfitting the data, due to their large number of model parameters.

9.4.3. Test set validation

Surprisingly, even though no strong 3-step roll pattern was visualised, all the
structural models have excellent recall ability with values of Recallyorym greater than 0.9
(Table 9.18 and Figure 9.20). Even when the double shuffled inactives are used the
recall still remains high (Table 9.19). The active and inactive score distributions
(Figure 9.21) and their associated values of T (Table 9.20) show discriminative

capability in structure and sequence, with mean separations greater than 10 bits.
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Figure 9.19: Sequence alignment versus structural alignment of IHF dataset. a)Sequence matrix plot, where blue = C, orange = G, green = A and red = T. b) Sequence

logo, obtained from Weblogo (Crooks et al., 2004). c) Structural matrix plot, where red = gap and light to dark shading is low to high 3-step roll. d) Structural logo

1101 dajs-¢

e = = = o Ly .
ol Alignment column
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Table 9.17: LOO CV scores for the IHF binding site dataset with varying alphabet type and prior

knowledge.

Alphabet Prior knowledge LOO CV Score % Score reduction
A-D None 2.45 12
A-D SADij 2.68 14
A-D SAD,i=j 2.65 13
A-E None 3L 14
A-E SAE,ij 3.57 14
A-E SAE,i=j 3543 18
A-M None 4.05 23
A-M SAMigj 4.14 26
A-M SAM,i=j 3.06 43
A-Y None 4.28 37
A-Y SAYigj 3.31 54
A-Y SAv,i=i 3.65 48

Sequence None Dr1E 11

Table 9.18: Values of Average Recallyory for the IHF binding site dataset with varying alphabet type

and prior knowledge. N.B. (The inactives are generated using the random method).

Alphabet Prior knowledge  Average Recallnom

A-D None 0.914
A-D SADJ(_J 0.915
A-D SAD,i=j 0.916
A-E None 0.920
A-E SAEicj 0.934
A-E SAE,i=j 0.934
A-M None 0.933
A-M SaMii i 0.942
A-M SaM,i=j 0.943
A-Y None 0.907
A-Y SAYigj 0.931
A-Y SAY,i=j 0.931
Sequence None 0.997
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Figure 9.20: Cumulative recall plot for the IHF binding site dataset with varying alphabet type and
prior knowledge. A-D is dark blue, A-E is red, A-M is green, A-Y is light blue, sequence is orange,
random recall is black and ideal recall is bright green. N.B. (The inactives are generated using the

random method).

10

Number of actives
(6, ]

Number of sequences

Table 9.19: Exploring the effect different methods for generating the inactives have upon values of
Recallyopy for the sequence and A-Y (with S,y éymodels for the IHF binding site dataset.

Inactive Class Sequence Recallyorm  A-Y Recallyorm

" Random 1007 0.931

Mono shuffling 0.981 0.918
Dinucleotide shuffling 0.930 0.885
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Figure 9.21: [HF score distributions of the sequence inactives (red), sequence actives (green), structure
inactives (purple) and structure actives (light blue). The level of shading refers to the method used to
generate the inactives: random generation (solid lines), mono shuffling (dashed lines) and doublet

shuffling (lighter shading). The S, _; substitution matrix is used for structure.

Frequency

Score bin (bits)

Table 9.20: 7-test analyses between active and inactive score distributions from Figure 9.21. DOEF is the
number of degrees of freedom. X, —Xx, is the mean separation between the two distributions. The S;_;

substitution matrix is used for structure.

~ Alphabet Type of inactives DOF T % -%

Sequence Random 1163 111.88 19.02

Sequence Mono (1RO 740 () 4574

Sequence Doublet 1277 . 6652 . 11 _51A
A-Y Sdon 1054  54.03 1101
A-Y WAL 1088  53.10  10.86
A-Y Doublet

1117  48.08 10.00
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9.5. Conclusions

All the datasets have an average pairwise structural similarity greater than
sequence (between 0.80 and 0.85). The dataset sizes vary from 38 to 91 sequences,
reflecting the typical small sizes of protein binding site datasets, which can often lead to
sample to feature ratio problems. The S; ; matrix is the best performing prior
knowledge in three of the datasets, with the prior knowledge having no considerable
effect on FIS model performance. As the structural alphabet size increases, on going
from A-D to A-Y, so do the non-validated model scores for all four of the datasets. For
both the PrrA and PPARg datasets, the A-Y alphabet with the S AY,i o substitution matrix
leads to the highest scoring non-validated models, beating sequence. In PrrA the LOO
CV analysis shows that the A-Y models are, however, overfitting the data with
sequence having a much better predictive ability. The FIS and IHF datasets are pre-
aligned by sequence, giving structure an unfair disadvantage. In both cases, sequence

models perform better with greater predictive ability than any of the structural models.

Even though no common structural patterns were found in the FIS or IHF
binding sites, the structural models still had excellent recall ability and significant
differences in the scores they assigned to the active and inactive test set sequences.v In
fact, for FIS, structure seems more stable in its predictions than sequence when going
from the randomly generated inactives to the doublet shuffled inactives. This points to
the previously mentioned weakness of the test set recall validation; random sequences
will always be very different from those of the dataset despite mono- or di-nucleotide
shuffling. In the IHF data, the A-Y models give a greater mean separation between the
actives and inactives than sequence. However the significance of this separation is less

due to greater variation within the scores of a distribution.

The structural alignment of the PrrA binding sites identified two impbrtant
alignment positions (6 and 20) where 3-step roll tends to be greater than average. In the
observed PPARg alignment a repeating low to high roll fingerprint is seen, with gaps

never interrupting a sequence.
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Chapter 10:

Conclusions and Future Research

The aim of this thesis was to develop and use tools that analyse how the
structure of DNA varies with its function. The Octamer Database was used to describe
the minimum energy structure and flexibility of DNA. An extension to the database
was presented, calculating structural probabilities to describe DNA dynamics. It was
discovered that a large number of octamer pairs that have identical or near identical
minimum energy structures have very different structural -tendencies. A Java
application (Profile Manager) was successfully developed to analyse any special
structural features of a single DNA sequence. The use of structural profiles to explore
patterns across multiple sequences was then investigated. Finally, a tool that aligns

sequences by their 3-step roll to obtain structural activity fingerprints was implemented.

This thesis will now conclude with discussion of five key topics: parameter
correlations, flexibility and DNA dynamics, Profile Manager, hidden Markov models

and architectural suppression.

10.1. Parameter correlations

When considering the degrees of freedom that describe the geometry between
two base-pairs, the translations and rotations along each axis are correlated (that is shift
and tilt for the x-axis, slide and roll for the y-axis, and rise and twist for the z-axis).
This is because steric clashes that are caused by one movement can be minimised by
changes in the other movement. The exact relationship between slide and roll was
found to be somewhat more complicated than the analogous x-axis and z-axis
correlations, since it is highly dependent on the central step type. Eight out of the ten
step types have strong inverse slide-roll relationships as expected. However, the two
guanine-pyrimidine steps have a wave-like slide-roll correlation. The structural reasons
for this are unknown and need further investigation. Twist-roll plots that are identical in
nature to the slide-roll plots were found, with twist strongly correlated to slide when

considering the different central step types separately.
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Another puzzling correlation found within this work was between the location
preference and ks smoothed.30 promoter profiles. An attempt to confirm the
associated parameter correlation was unsuccessful. The tri-nucleotide location
preference was converted into an octamer descriptor by simply summing the six
overlapping trimer values. Other methods for converting a tri-nucleotide descriptor into

an octamer descriptor should be studied.

10.2. Flexibility and DNA dynamics

On average, increasing twist is the most favoured direction in flexibility. An
octamer never appears to be highly rigid with respect to both decrease in roll and
increase in twist, therefore there is always some degree of flexibility for widening the
major groove (a common way by which proteins bind to DNA). A large number of
octamer pairs that have identical or near identical minimum energy structures have very
different structural tendencies. The probability of two identical octamers having the
exact same conformation at one given time is low, reflecting the importance of
dynamics in DNA structure. It can be more probable for two different octamers to have
the same central step geometry than two identical octamers. This happens when an
extremely flexible octamer has a minimum energy structure very close to that of a rigid

octamer.

The single sequence profiles of two promoters highlighted frequent transitions in
flexibility. This led to the hypothesis that sudden changes in flexibility may be an
important promoter feature with flexible octamers putting stress upon the surrounding
rigid octamers and presenting sites where the dbuble helix can be easily unravelled for
transcription initiation. The well-known TBP-TATA complex supports this importance
of promoter flexibility and DNA dynamics. When multiple promoter sequences were
considered, k'wist was the most distinguishing direction in flexibility in comparison to
the octamer population. kit Was found to be important at —100 to O relative to the
transcription start site with a large transition becoming apparent in the TATA region

after a smoothing window of 30 was applied to the promoter profile. Favourable
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conformational changes in average promoter involve increases in twist with decreases
having a high energetic penalty. Note that due to the transition in flexibility, the energy

barrier for decreasing twist is suddenly reduced at the transcription start site.

10.3. Profile Manager

Profile Manager is a valuable visualisation tool for the analysis of DNA
structure. This was clearly illustrated by the A-tract example with characteristic
patterns in roll and minor groove width. The next stage in the development of Profile
Manager is to gain user feedback and to decide whether it should remain as an

application or be made available on the Internet.

10.4. Hidden Markov Models

Structural 3-step roll alignments of DNA can now be successfully obtained from
the novel HMM extension presented here. Structural alphabets of different sizes were
explored and two subtly different substitution matrices for- defining the inter-bin
relationships were introduced. The S;j matrix has a lower entropy than S;_j, meaning
that it has a lower level of differentiation between the substitution probabilities and
background probabilities. Indeed, it was found that S; j generally gave superior results
to Sis. Sav,=j sees the possibility that distant roll bins can be structurally equivalent,
whereas MSAy,i o strongly forbids distant bins to have equivalent structures. The A-Y
alphabet seems to form the best models, but caution should be given to overfitting,

Structural alignments of PrrA and PPARg were comparable in performance to sequence

with useful insights into structure.

Future work should include generating the analogous 3-step twist alignment tool
and ultimately to explore the possibility of performing a combined roll-twist alignment.
Bistability of octamers could also be encoded into an HMM by sequence weights.

Further HMM applications worth exploring are: promoter recognition, splice site

detection and nucleosome wrapping.
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10.5. Architectural suppression

The key to generating a successful HMM is adapting the model architecture and
defining the allowed transitions in relation to the problem domain (Durbin et al., 1998).
A gap-less alignment is required when studying DNA nucleosomal wrapping regions.
For this purpose, the suppressed HMM architecture of Figure 10.1b should be used with
the model length L being set to 147 (the known wrapping length). Note that in
comparison to the traditional biological sequence HMM architecture (Figure 10.1a) a
large number of transitions between states have been suppressed with only 4 unknowns
(a, b, ¢ and d) remaining in the transition matrix. The hidden element of the model is
maintained, since different state paths that lead to the same observation sequence still

exist, except when the sequence length, N, is equal to L.

Figure 10.1: The Architectures. a)traditional, b)suppressed.

End

Since the suppressed architecture is a highly constrained adaptétion of the traditional it
will have a much smaller solution search space. The above architecture can be
implemented by partially freezing the traditional architecture and optimising emissions.
A transition from state k to state 1 can be disabled by setting the maximum likelihood

estimator ay to 0.
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10.6. Concluding Remark

Even when a structural model does not have a greater predictive ability than a
sequence model, it will still provide additional information about a structural
mechanism that could never be gained from looking purely at the nucleotide sequence.

This thesis has introduced novel tools for providing such additional information.
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