Understanding the inhabitation of the Stonehenge Environs: the interpretative potential of ploughsoil assemblages.

Volume III: Plates and Figures

Benjamin Tun-Yee Chan

Thesis submitted for the degree of Doctor of Philosophy

The Department of Archaeology, The University of Sheffield

July 2003
Volume III: Plates and Figures

LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate 1</td>
<td>The location of the Stonehenge Environs Project sample areas and the significant topographical locations.</td>
</tr>
<tr>
<td>Plate 2</td>
<td>The distribution of all recorded flakes.</td>
</tr>
<tr>
<td>Plate 3</td>
<td>Z-score distribution for flake length.</td>
</tr>
<tr>
<td>Plate 4</td>
<td>Z-score distribution for flake breadth.</td>
</tr>
<tr>
<td>Plate 5</td>
<td>Z-score distribution for flake length:breadth ratios.</td>
</tr>
<tr>
<td>Plate 6</td>
<td>Z-score distribution for flake weight (including Well House (83)).</td>
</tr>
<tr>
<td>Plate 7</td>
<td>Z-score distribution for flake weight (excluding Well House (83)).</td>
</tr>
<tr>
<td>Plate 8</td>
<td>Z-score distribution for flake cortex coverage.</td>
</tr>
<tr>
<td>Plate 9</td>
<td>Z-score distribution for core weight (excluding Well House (83)).</td>
</tr>
<tr>
<td>Plate 10</td>
<td>Z-score distribution for the average number of flake scars on cores.</td>
</tr>
<tr>
<td>Plate 11</td>
<td>Z-score distribution of the average length of flake scars on cores.</td>
</tr>
<tr>
<td>Plate 12</td>
<td>Z-score distribution of the maximum flake scar length on cores.</td>
</tr>
<tr>
<td>Plate 13</td>
<td>The location of areas displaying an element of systemic technology.</td>
</tr>
<tr>
<td>Plate 14</td>
<td>The distribution of levallois-style cores compared to overall core density.</td>
</tr>
<tr>
<td>Plate 15</td>
<td>The distribution of Kombewa-style cores compared to overall core density.</td>
</tr>
<tr>
<td>Plate 16</td>
<td>The distribution of reused flakes and cores compared to flake density.</td>
</tr>
<tr>
<td>Plate 17</td>
<td>The distribution of thinning flakes and miscellaneous bifacial retouched flakes.</td>
</tr>
<tr>
<td>Plate 18</td>
<td>The distribution of core rejuvenation flakes.</td>
</tr>
<tr>
<td>Plate 19</td>
<td>The distribution of hammerstones and cores reused as hammerstones.</td>
</tr>
</tbody>
</table>
Plate 20 The average length of flakes per collection run.
Plate 21 The average weight of flakes per collection run.
Plate 22 The average flake length:breadth ratio per collection run.
Plate 23 The average amount of cortex on flakes per collection run.
Plate 24 The average length of flakes from collection runs with more than three flakes.
Plate 25 The average amount of cortex on flakes from collection runs with more than three flakes.
Plate 26 The average length of flakes from collection runs with more than three flakes at Well House.
Plate 27 The average length of flakes from collection runs with more than three flakes at Wilsford.
Plate 28 The distribution of systematic cores compared to overall flake density.
Plate 29 The concentration of systematic cores in the dry valley in the south of the Stonehenge Environs.
Plate 30 The distribution of Clark Type A1 cores compared to overall core density.
Plate 31 The distribution of conical blade cores compared to core density.
Plate 32 The distribution of blades and crested blade flakes.
Plate 33 The distribution of cores with platform maintenance.
Plate 34 The distribution of flakes with prepared butts compared to overall flake density.
Plate 35 The distribution of flakes with trimmed butts.
Plate 36 The distribution of flakes with punctiform butts.
Plate 37 The distribution of retouched/utilized flakes.
Plate 38 The distribution of retouched/utilized flakes around Wilsford.
Plate 39 The distribution of retouched/utilized flakes around Rox Hill and Well House.
Plate 40 The distribution of all tools compared to the density of flakes.
Plate 41 The proportion of flakes, cores and tools from individual sample areas.
Plate 42 The Stonehenge Environs Project total flint distribution (from Richards 1990).

Plate 43 The six zones suggested by the Stonehenge Environs Project (after Richards 1990).

Plate 44 The distribution of flint collected by Holgate and Thomas from the Avebury region (from Holgate 1988).

Plate 45 The division of the Early Bronze Age landscape according to Parker Pearson and Ramilisonina (from Parker Pearson and Ramilisonina 1988).

Plate 46 Darvill’s suggestion of the cosmological scheme witnessed at Stonehenge Phase 1 indicating the relationship between the monument and its surrounding landscape (from Darvill 1997).

Plate 47 Darvill’s suggestion of the cosmological scheme witnessed in Stonehenge Phase 3 indicating the relationship between the monument, the surrounding landscape and the other monuments in the Environs (from Darvill 1997).

Plate 48 The Harvesters by Bruegel (from Ingold 1993).

Plate 49 The Stonehenge Environs Project collection grid (from Richards 1990).

Plate 50 Frequency of the different numbers of worked flint collected by the Stonehenge Environs Project from individual collection runs (from Richards 1990).

Plate 51 Diagram showing the relationship between hypothetical flake lengths in a normally distributed population and standard deviations above and below the mean for flake lengths (from Shennan 1997).

Plate 52 Diagram showing the proportion of a normally distributed population in different standard deviation units above and below the mean (Shennan 1997).

Plate 53 Histograms showing the proportions of flakes of different flake class categories from three archaeological sites (from Gingell and Harding 1981) (I= my category 1; II= my category 2; III= my category 3; IV= my category 4; misc= my category 0)

Plate 54 Examples of Palaeolithic Levallois cores (from Addington 1986).

Plate 55 Late Neolithic levallois cores collected by Durden on the Yorkshire Wolds (1 & 2) and an example of a discoidal knife produced from these cores (3) (from Durden 1995).

Plate 56 Potential axe roughout from Wilsford Down (from Richards 1990).

Plate 57 Oblique and oblique ripple flaked arrowheads from Durrington
Walls (from Edmonds 1995).

Plate 58 Example of different types of plunging flakes: 1) on a core with a cortical end; 2) on a pyramidal pressure core; 3) on a core with two opposed platforms; 4) on a biface; 5) on an angle burin; 6) on a levallois core (from Tixier et al. 1980).

Plate 59 Different methods of measuring flake length (from Andrefsky 1998).

Plate 60 Examples of flake butt types: 1) cortical; 2) plain; 3) dihedral; 4) faceted; 5) punctiform (after Tixier et al. 1980).

Plate 61 Examples of different types of flake terminations: a) feathered; b) hinged; c) stepped; d) plunging (from Andrefsky 1998).

Plate 62 Illustration indicating the Kombewa method and the characteristics of the Janus flake that is removed using the method (from Debnath and Dibble 1994).

Plate 63 Diagram showing different flake class categories (from Gingell and Harding 1981) (Ia = my category 1; Ib = my category 2; IÎ = my category 3; IIÎ = my category 4).

Plate 64 Example of a blade core also indicating the direction of faceting and trimming removals.

Plate 65 Examples of expedient cores that also use keeled platforms to minimise the need for platform preparation.

Plate 66 Example of a core with two platforms that has been rejuvenated by rotating it 90° (Clark Type B3).

Plate 67 Example of a typical heavily worked multi-platform core with three platforms (Clark Type C).

Plate 68 Examples of blade cores (Clark Type A1).

Plate 69 Example of a large well-worked levallois core.

Plate 70 Example of a levallois core.

Plate 71 Example of a Kombewa core.

Plate 72 Examples of Kombewa cores.

Plate 73 Example of a reused core with two phase cortication.

Plate 74 Example of a previously multi-platform core reworked into a single platform core (Clark Type A2).

Plate 75 Example of a denticulated flake.
Plate 76 Example of a bifacial tabular core.
Plate 77 Examples of possible right angle rejuvenation flakes.
Plate 78 Large single platform core from Well House (83) (Clark Type A1).
Plate 79 Small expedient cores worked with minimal preparation (Clark Type A2).
Plate 80 Example of an expedient core that also uses a keeled platform to minimise the need for platform preparation.
Plate 81 Example of a core with two platforms that has been rejuvenated by rotation through 90° (Clark Type B3).
Plate 82 Examples of typical multi-platform cores.
Plate 83 Examples of single platform blade cores (Clark Type A1).
Plate 84 Example of a single platform blade core (Clark Type A1).
Plate 85 Examples of reused flakes showing two-phase cortication.
Plate 86 Example of a reused core exhibiting two-phase cortication.
Plate 87 Examples of reused cores exhibiting two-phase cortication.
Plate 88 Examples of levallois cores.
Plate 89 Example of a large well-worked levallois core from Well House (83).
Plate 90 Examples of Kombewa-style cores.
Plate 91 An example of an opposed platform blade core (Clark Type B1).
Plate 92 Example of a multi-platform core also used to produce blades.
Plate 93 Example of a bladelet core of Clark Type A2.
Plate 94 Example of a tabular core (my core category 10).
Plate 95 Example of a bifacial tabular core (my core category 11).
<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 3.1:</td>
<td>The varying sample fraction in relation to the number of pieces of flint per collection run.</td>
</tr>
<tr>
<td>Figure 4.1:</td>
<td>The weights of flakes from sample areas.</td>
</tr>
<tr>
<td>Figure 4.2:</td>
<td>The weights of flakes from sample areas.</td>
</tr>
<tr>
<td>Figure 4.3:</td>
<td>The length of flakes from selected sample areas.</td>
</tr>
<tr>
<td>Figure 4.4:</td>
<td>The breadth of flakes from selected sample areas.</td>
</tr>
<tr>
<td>Figure 4.5:</td>
<td>The length:breadth ratios of flakes from selected sample areas.</td>
</tr>
<tr>
<td>Figure 4.6:</td>
<td>The percentages of cortex covering the dorsal surface of complete flakes from selected sample areas.</td>
</tr>
<tr>
<td>Figure 4.7:</td>
<td>The proportions of flake scar orientation categories from selected areas.</td>
</tr>
<tr>
<td>Figure 4.8:</td>
<td>The termination types of flakes from selected sample areas.</td>
</tr>
<tr>
<td>Figure 4.9:</td>
<td>The proportions of flake class categories on flakes from selected sample areas.</td>
</tr>
<tr>
<td>Figure 4.10:</td>
<td>The proportions of flake class categories on flakes from selected sample areas.</td>
</tr>
<tr>
<td>Figure 4.11:</td>
<td>The proportions of different flake butt types (excluding plain butts) from selected sample areas.</td>
</tr>
<tr>
<td>Figure 4.12:</td>
<td>The proportions of different flake butt types (excluding plain butts) from selected sample areas.</td>
</tr>
<tr>
<td>Figure 4.13:</td>
<td>The proportions of preparation and trimming flakes in selected sample area assemblages.</td>
</tr>
<tr>
<td>Figure 4.14:</td>
<td>The proportions of preparation and trimming flakes in selected sample area assemblages.</td>
</tr>
<tr>
<td>Figure 4.15:</td>
<td>Plot indicating the component loadings for attributes calculated by Principal Components Analysis.</td>
</tr>
<tr>
<td>Figure 4.16:</td>
<td>Scatterplot of individual sample area scores on the first two principal components.</td>
</tr>
</tbody>
</table>
Figure 5.1: The weights of cores (in grammes) from selected sample areas.
Figure 5.2: The proportions of cores from selected sample areas worked with different levels of control.
Figure 5.3: The proportions of cores from selected sample areas worked with different levels of control.
Figure 5.4: The proportions of core types from selected sample areas.
Figure 5.5: The proportions of core types from selected sample areas.
Figure 5.6: The proportions of the dominant types of platforms on cores from selected sample areas.
Figure 5.7: The proportions of the dominant types of platforms on cores from selected sample areas.
Figure 5.8: The proportions of the dominant types of production from cores from selected sample areas.
Figure 5.9: The potential remaining in cores at discard from selected sample areas.
Figure 5.10: The lengths of flakes from the landscape zones suggested by the Stonehenge Environs Project.
Figure 5.11: The percentage of cortex on flakes from the landscape zones suggested by the Stonehenge Environs Project.
Figure 7.1: The adjusted amount of flint per hectare collected by field survey projects in southern Britain.
Plates
Plate 1: The location of the Stonehenge Environs Project sample areas and the significant topographical locations.
Plate 2: The distribution of all recorded flakes
Plate 3: Z-score distribution for flake length
Plate 4: Z-score distribution for flake breadth

Flake Breadth Z-score
- > 2 s.d. below mean
- -2 s.d. - -1 s.d.
- -1 s.d. - -0.5 s.d.
- -0.5 s.d. - mean
- mean - 0.5 s.d.
- 0.5 s.d. - 1 s.d.
- > 1 s.d. above mean
- Round Barrows

Water detail
Linear Archaeology
Plate 5: Z-score distribution for flake length:breadth ratios
Plate 6: Z-score distribution for flake weight (including Well House (83))
Plate 7: Z-score distribution for flake weight (excluding Well House (83))

Flake Weight Z score Excluding Well House
- > 2 s.d. below mean
- -2 s.d. - -1 s.d.
- -1 s.d. - -0.5 s.d.
- -0.5 s.d. - mean
- mean - 0.5 s.d.
- 0.5 s.d. - 1 s.d.
- > 1 s.d. above mean
- Round Barrows

Water detail
Linear Archaeology

0 0.5 1 1.5 Kilometers
Plate 8: Z-score distribution for flake cortex coverage
Plate 9: Z-score distribution for core weight (excluding Well House (83))
Plate 10: Z-score distribution for the average number of flake scars on cores

Z-Score for Average Number of Flake Scars
- >-1 s.d. below mean
- -1 s.d. - -0.5 s.d.
- -0.5 s.d. - mean
- mean - 0.5 s.d.
- 0.5 s.d. - 1 s.d.
- 1 s.d. - 2 s.d.
- >2 s.d. above mean
- Round Barrows

Water detail
Linear Archaeology

0 0.5 1 1.5 Kilometers
Plate 11: Z-score distribution of the average length of flake scars on cores

Z-Scores of the Average Length of Flake Scars

- >2 s.d. below mean
- 2 s.d. - 1 s.d.
- 1 s.d. - 0.5 s.d.
- 0.5 s.d. - mean
- mean - 0.5 s.d.
- 0.5 s.d. - 1 s.d.
- 1 s.d. - 2 s.d.
- >2 s.d. above mean
- Round Barrows

Water detail
Linear Archaeology
Plate 12: Z-score distribution of the maximum flake scar length on cores

Z-Scores of Max. Core Flake Scars Excluding Well House
- >-1.5 s.d. below mean
- -1.5 s.d. - -1 s.d.
- -1 s.d. - -0.5 s.d.
- -0.5 s.d. - mean
- mean - 0.5 s.d.
- 0.5 s.d. - 1 s.d.
- 1 s.d. - 1.5 s.d.
- 1.5 s.d. - 2 s.d.
- Round Barrows

Water detail
Linear Archaeology
Plate 13: The location of areas displaying an element of systematic technology
Plate 14: The distribution of levallois-style cores compared to overall core density
Plate 15: The distribution of Kombewa-style cores compared to overall core density

Density of Kombewa-Style Cores
- 1
- 4

Density of All Cores
- 1
- 2
- 3
- 4-6
- 7-8

Round Barrows
Linear Archaeology
Water detail
Plate 16: The distribution of reused flakes and cores compared to flake density
Plate 17: The distribution of thinning flakes and miscellaneous bifacial retouched flakes
Plate 18: The distribution of core rejuvenation flakes

Rejuvenation Flakes
- Linear Archaeology
- Round Barrows

Water detail
Core Density per Square km
- 0 - 138.157
- 138.157 - 276.313
- 276.313 - 414.47
- 414.47 - 552.626
- 552.626 - 690.783
- 690.783 - 828.94
- 828.94 - 967.096
- 967.096 - 1105.253
- 1105.253 - 1243.41
- No Data

0 0.5 1 1.5 Kilometers
Plate 19: The distribution of hammerstones and cores reused as hammerstones.

- Plate 20: The average height of stone per collection.
Plate 20: The average length of flakes per collection run.
Plate 21: The average weight of flakes per collection run
Plate 22: The average flake length:breadth ratio per collection run

Ave Flake L:B
- <1
- 1 - 1.9
- 2 - 3
- >3

Water detail
Round Barrows
Linear Archaeology

0 0.5 1 1.5 Kilometers
Plate 23: The average amount of cortex on flakes per collection run

Ave Flake Cortex
- 0%
- 25%
- 50%
- 75%
- 100%

Water detail
- Round Barrows
- Linear Archaeology
Plate 24: The average length of flakes from collection runs with more than three flakes.
Plate 25: The average amount of cortex on flakes from collection runs with more than three flakes
Plate 26: The average length of flakes from collection runs with more than three flakes at Well House
Plate 27: The average length of flakes from collection runs with more than three flakes at Wilsford

Average Lengths of Flakes
- 1 - 17
- 18 - 38
- 39 - 58
- 59 - 71
- 72 - 113

0 0.2 0.4 0.6 Kilometers
Plate 28: The distribution of systematic cores compared to overall flake density
Plate 29: The concentration of systematic cores in the dry valley in the south of the Stonehenge Environs
Plate 30: The distribution of Clark Type A1 cores compared overall core density.
Plate 31: The distribution of conical blade cores compared to core density

- Round Barrows
- Water detail
- Linear Archaeology
- Systematic Blade Cores

Core Density per sq. km:
- 0 - 138.157
- 138.157 - 276.313
- 276.313 - 414.47
- 414.47 - 552.626
- 552.626 - 690.783
- 690.783 - 828.94
- 828.94 - 967.096
- 967.096 - 1105.253
- 1105.253 - 1243.41
- No Data
Plate 32: the distribution of blades and crested blade flakes
Plate 33: The distribution of cores with platform maintenance

- Round Barrows
- Water detail
- Linear Archaeology
- Cores with Platform Maintenance

0 - 138.157
138.157 - 276.313
276.313 - 414.47
414.47 - 552.626
552.626 - 690.783
690.783 - 828.94
828.94 - 967.096
967.096 - 1105.253
1105.253 - 1243.41
No Data
Plate 34: The distribution of flakes with prepared butts compared to overall flake density
Plate 37: The distribution of retouched/utilised flakes
Plate 38: The distribution of retouched/utilised flakes around Wilsford

[Map of retouched/utilised flakes around Wilsford]

- Retouched/Utilised Flakes
 - 1
 - 2
 - 3
 - 4
 - 5 - 6

- Linear Archaeology
- Round Barrows

Density of flakes per sq. km:
- 0 - 1919.064
- 1919.064 - 3838.120
- 3838.120 - 5757.191
- 5757.191 - 7676.255
- 7676.255 - 9595.319
- 9595.319 - 11514.383
- 11514.383 - 13433.447
- 13433.447 - 15352.51
- 15352.51 - 17271.574
- No Data
Plate 39: The distribution of retouched/utilised flakes around Rox Hill and Well House
Plate 40: The distribution of all tools compared to flake density

Distribution of All Tools

1
2
3
4 - 5
6 - 10

Round Barrows
Linear Archaeology

Water detail
Density of Flakes per sq. km

0 - 1919.064
1919.064 - 3838.128
3838.128 - 5757.191
5757.191 - 7676.255
7676.255 - 9595.319
9595.319 - 11514.383
11514.383 - 13433.447
13433.447 - 15352.51
15352.51 - 17271.574
No Data
Plate 41: The proportions of flakes, cores and tools from individual sample areas
The six zones suggested by the Stonehenge Environs Project (after Richards 1990)
The distribution of flint collected by Holgate and Thomas from the Avebury region (from Holgate 1988)
The division of the Early Bronze Age landscape according to Parker Pearson and Ramilisonina (from Parker Pearson and Ramilisonina 1988).
Darvill's suggestion of the cosmological scheme witnessed at Stonehenge Phase 1 indicating the relationship between the monument and its surrounding landscape (from Darvill 1997).
Darvill's suggestion of the cosmological scheme witnessed in Stonehenge Phase 3 indicating the relationship between the monument, the surrounding landscape and the other monuments in the Environ (from Darvill 1997).
The Stonehenge Environs Project collection grid (from Richards 1990).

Frequency of the different numbers of worked flint collected by the Stonehenge Environs Project from individual collection runs (from Richards 1990).
Diagram showing the relationship between hypothetical flake lengths in a normally
distributed population and standard deviations above and below the mean for flake lengths
(from Shennan 1997).

Diagram showing the proportion of a normally distributed population in different standard
deviation units above and below the mean (Shennan 1997).

Histograms showing the proportions of flakes of different flake class categories from three
archaeological sites (from Gingell and Harding 1981) (Ia= my category 1; Ib= my category 2; II= my
category 3; III= my category 4; misc= my category 0).
Examples of Palaeolithic Levallois cores (from Addington 1986).

Late Neolithic levallois cores collected by Durden on the Yorkshire Wolds (1 & 2) and an example of a discoidal knife produced from these cores (3) (from Durden 1995).
Potential axe roughout from Wilsford Down (from Richards 1990).

Oblique and oblique ripple flaked arrowheads from Durrington Walls (from Edmonds 1995).
Example of different types of plunging flakes: 1) on a core with a cortical end; 2) on a pyramidal pressure core; 3) on a core with two opposed platforms; 4) on a biface; 5) on an angle burin; 6) on a levallois core (from Tixier et al. 1980).
Different methods of measuring flake length (from Andrefsky 1998).
Examples of flake butt types: 1) cortical; 2) plain; 3) dihedral; 4) faceted; 5) punctiform (after Tixier et al. 1980).

Examples of different types of flake terminations: a) feathered; b) hinged; c) stepped; d) plunging (from Andrefsky 1998).
Illustration indicating the Kombewa method and the characteristics of the Janus flake that is removed using the method (from Debénath and Dibble 1994).

Diagram showing different flake class categories (from Gingell and Harding 1981) (Ia= my category 1; Ib= my category 2; II= my category 3; III= my category 4).
Example of a blade core also indicating the direction of faceting and trimming removals.
Examples of expedient cores that also use keeled platforms to minimise the need for platform preparation.
Example of a core with two platforms that has been rejuvenated by rotating it 90° (Clark Type B3).
Example of a typical heavily worked multi-platform core with three platforms (Clark Type C).
Examples of blade cores (Clark Type A1).
Example of a large well-worked levallois core.
Example of a levallois core.

Example of a Kombewa core.
Examples of Kombewa cores.
Example of a reused core with two phase cortication.

Example of a previously multi-platform core reworked into a single platform core (Clark Type A2).
Example of a denticulated flake.

Example of a bifacial tabular core.
Examples of possible right angle rejuvenation flakes.
Large single platform core from Well House (83) (Clark Type A1).
Small expedient cores worked with minimal preparation (Clark Type A2).
Example of an expedient core that also uses a keeled platform to minimise the need for platform preparation.
Example of a core with two platforms that has been rejuvenated by rotation through 90° (Clark Type B3).
Examples of typical multi-platform cores.
Examples of single platform blade cores (Clark Type A1).
Examples of reused flakes showing two-phase cortication.
Example of a reused core exhibiting two-phase cortication.
Examples of reused cores exhibiting two-phase cortication.
Example of a large well-worked levallois core from Well House (83).
Examples of Kombewa-style cores.
An example of an opposed platform blade core (Clark Type B1).
Example of a multi-platform core also used to produce blades.
Example of a bladelet core of Clark Type A2.

Example of a tabular core (my core category 10).
Example of a bifacial tabular core (my core category 11).
Figures
Fig. 3.1: The varying sample fraction in relation to the number of pieces of flint per collection run.
Fig. 4.1: The weights of flakes from sample areas.
Fig. 4.2: The Weights of Flakes from sample areas.
Fig. 4.3: The length of flakes from selected sample areas
Fig. 4.4: The breadths of flakes from selected sample areas.
Fig. 4.5: The length:breadth ratios of flakes from selected sample areas.
Fig. 4.6: The percentage of cortex covering the dorsal surface of complete flakes from selected sample areas (see Table 4.1 for flake frequency)
Fig. 4.7: The proportions of flake scar orientation categories from selected sample areas (see Table 4.3 for category definitions; see Table 4.1 for flake frequency)
Fig. 4.8: The termination types of flakes from selected sample areas. (0=indeterminate, 1=feathered, 2=step, 3=hinge, 4=plunging; See Table 4.1 for flake frequency)
Fig. 4.9: Proportions of flake class categories on flakes from selected sample areas (see Fig. 4.10 for category definitions; see Table 4.1 for flake frequency)
Fig. 4.10: Proportions of flake class categories on flakes from selected sample areas (see Table 4.1 for flake frequency)

 Flake Class Category Definitions:
 0 (Indeterminate)
 1 (Point of percussion behind a crest)
 2 (Point of percussion to one side of a crest)
 3 (Point of percussion between two ridges)
 4 (Uncrested/flat/cortical)
Flake Butt Type Categories:
0 (indeterminate/absent)
1 (Plain)
2 (Faceted)
3 (Thermal)
4 (Dihedral)
5 (Cortical)
6 (Punctiform)
7 (Crushed)
8 (Trimmed)
9 (Trimmed and Faceted)

Fig. 4.11: The proportions of different flake butt types (excluding plain butts) from selected sample areas
Fig. 4.12: The proportions of different butt types (excluding plain butts) from selected sample areas

Butt Type Categories:
0 (indeterminate/absent)
1 (Plain)
2 (Faceted)
3 (Thermal)
4 (Dihedral)
5 (Cortical)
6 (Punctiform)
7 (Crushed)
8 (Trimmed)
9 (Trimmed and Faceted)
Flake Type Categories:
3 (preparation flake)
4 (side trimming flake)
5 (distal trimming flake)
6 (side and distal trimming flake)
7 (miscellaneous trimming flake)

Fig. 4.13: The proportions of preparation and trimming flakes in selected sample area assemblages (see Table 4.1 for flake frequency)
Fig. 4.14: The proportions of preparation and trimming flakes in selected sample area assemblages (see Table 4.1 for flake frequency)
Fig. 4.15: Plot indicating the component loadings for attributes calculated by Principal Components Analysis.

Fig. 4.16: Scatterplot of individual sample area scores on the first two principal components.
Fig. 5.1: The weights of cores (in grammes) from selected sample areas
Core Character of Working Categories:
0 (unsystematic)
1 (semi-systematic)
2 (systematic)
3 (indeterminate)

Fig. 5.2: The proportions of cores from selected sample areas worked with different levels of control (see Table 5.1 for core frequency).
Fig. 5.3 The proportions of cores from selected sample areas worked with different levels of control (see Table 5.1 for core frequency).
Fig. 5.4: The proportions of core types from selected sample areas (see Table 5.1 for core frequency)
Fig. 5.5: The proportions of core types from selected sample areas (see Table 5.1 for core frequency)
Fig. 5.6: The proportions of the dominant types of platforms on cores from selected sample areas (see Table 5.1 for core frequency)
Fig. 5.7: The proportions of the dominant types of platforms on cores from selected sample areas (see Table 5.1 for core frequency)

0 (indeterminate)
1 (prepared)
2 (use of negative facet/flake scar)
3 (use of existing surface)
4 (unmodified)
Fig. 5.8: The proportions of the dominant types of production from cores from selected sample areas (see Table 5.1 for core frequency)
Fig. 5.9: The potential remaining in cores at discard from selected sample areas (see Table 5.1 for core frequency)
Fig. 5.10: The lengths of flakes from the landscape zones suggested by the Stonehenge Environs Project
Fig. 5.11: The percentage of cortex on flakes from the landscape zones suggested by the Stonehenge Environs Project
Fig. 7.1: The adjusted amount of flint per hectare collected by field survey projects in southern Britain (MCS = Maiden Castle Survey, SEP = Stonehenge Environments Project, SDR = South Dorset Ridgeway Survey, WHS = Windmill Hill Survey, MFP = Maddie Farm Project, UMVS = Upper Moon Valley Survey, MAVS = Middle Avon Valley Survey, NSS = North Stoke Survey, EBS = East Berkshire Survey).