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Summary 

This thesis describes the model-based development and validation of an advisor for the 

maintenance of artificially ventilated patients in the intensive care unit (leU). The advisor 

employs fuzzy logic to represent an anaesthetist's decision making process when adjusting 

ventilator settings to safely maintain a patient's blood-gases and airway pressures within desired 

limits. Fuzzy logic was chosen for its ability to process both quantitative and qualitative data. 

The advisor estimates the changes in inspired O2 fraction (FI02), peak inspiratory pressure 

(PEEP), respiratory rate (RR), tidal volume (VT) and inspiratory time (TIN), based upon 

observations of the patient state and the current ventilator settings. The advisor rules only 

considered the ventilation of patients on volume control (VC) and pressure regulated volume 

control (PRVC) modes. 

The fuzzy rules were handcrafted using known physiological relationships and from tacit 

knowledge elicited during dialogue with anaesthetists. The resulting rules were validated using a 

computer-based model of human respiration during artificial ventilation. This model was able to 

simulate a wide range ofpatho-physiology, and using data collected from leu it was shown that it 

could be matched to real clinical data to predict the patient's response to ventilator changes. 

Using the model, five simulated patient scenarios were constructed via discussion with an 

anaesthetist. These were used to test the closed-loop performance of the prototype advisor and 

successfully highlighted divergent behaviour in the rules. By comparing the closed-loop 

responses against those produced by an anaesthetist (using the patient-model), rapid rule

refinement was possible. The modified advisor demonstrated better decision matching than the 

prototype rules, when compared against the decisions made by the anaesthetist. 

The modified advisor was also tested using data collected from leu. Direct comparisons were 

made between the decisions given by an anaesthetist and those produced by the advisor. Good 

decision matching was observed in patients with well behaved physiology but soon ran into 

difficulties if a patients state was changing rapidly or if the patient observations contained large 

measurement errors. 
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Chapter 1: Introduction 

Hypothesis: Using fuzzy-logic it is possible to construct an advisory system that emulates the 

changes made by an anaesthetist to the ventilator settings. on patients in intensive care (leU). 

Knowledge elicitation and rule-refinement can be improved through the use of a computer-based 

model of a ventilated patient. The model can be used to simulate closed-loop control and provide 

stability analysis of the control rules. This can have advantages over validation made using only 

clinical data, and highlights a design methodology that facilitates future advisor design. 

Artificial ventilation is defined as the provision of minute volume (Mv) of respiration by 

external forces. It is usually required when there is either severe dysfunction of the mechanics of 

breathing, impairment to the patient's respiratory muscles or a need to improve the oxygenation 

ofthe arterial blood. The main situations in which it is employed are; 

1). Resuscitation following acute apnoea (cessation of breathing). 

2). Anaesthesia with paralysis. 

3). Intensive care with failure of one or more vital functions. 

4). Prolonged treatment of chronic ventilatory failure. 

Patients are usually connected to a ventilator using an endotracheal tube via a humidifier, see 

Figure 1.1. The vital functions of the patient (i.e. heart rate, oxygen saturation, cardiac output, 

blood pressure, etc) are recorded using a bedside monitoring system, and accurate measurement 

of arterial and venous blood O2 and CO2 are made using a blood-gas analyser. 
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Figure 1.1: Overview of patient on artificial ventilation. 
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Ventilatory support is continued, until the underlying causes of respiratory failure have been 

resolved. From the start of intubation, the anaesthetist has to maintain the patient's blood-gases 

and airway pressures within safe limits with a view to eventually weaning them from the 

ventilator. This involves adjustment of the ventilator settings in response to the gradual 

improvement or degradation of the patient's condition. It is this decision process that we wish to 

emulate using a fuzzy-logic based advisor. 

The potential benefits of an advisory system for the ventilatory care of patients in ICU have 

been expressed for many years, and previous studies have highlighted advantages in terms of 

improved patient care and anaesthetist training. Many attempts to represent anaesthetists' 

knowledge in ventilatory care have been made, for example Fagan, 1980; Miller, 1985; 

Summers et ai, 1987 and 1988; Singh & Roth, 1988; Sittig, 1988; Farr & Fagan, 1989; 

Hermindezsande, et ai, 1989; Rudowski et ai, 1989; Shahsavar et ai, 1989 and 1991; Arkad et 

ai, 1991; Summers et ai, 1991 and 1992; Miksch et ai, 1993; Fernando et ai, 1995; Dojat et ai, 

1996 and 1997; Snowden et ai, 1997; to name but a few. 

However, increased understanding of the ventilation care problem has led to changes in the 

ventilation strategies employed, causing advisory systems to become outmoded, and no longer 

applicable to new clinical practices. Consequently, new advisor rules need to be constructed and 

re-tested against clinical data to ensure that the advice generated is safe. This is an extremely 

time consuming process since it has to be repeated each time the rules are modified. To make 

matters worse, the data used for validation may contain significant measurement errors, 

complicating any decision comparisons made. Whilst a truly useful system must be able to deal 

with such errors, developing an advisor in this way for complex processes can prove extremely 

labour intensive. Such investment will be wasted when conceptually very different care 

strategies are introduced into ICU. Furthermore, unless the control-loop can be closed between 

the advisor and the process then no guarantee of rule stability can be assured. The rules may 

contain divergent or limit-cycle behaviour that is not detectable using one-off comparisons of 

decision differences. Since clinicians are unlikely to close the control loop until safe control has 

been demonstrated we are left with somewhat of a design dilemma. 

There is a better way - model-based advisor development! If control system design is to keep 

abreast of current care developments then a more rapid method for rule validation is required. 

By constructing a computer-based model of the process, closed-loop control can be simulated 

and the performance of the rules assessed. Because this is closed-loop control (albeit simulated) 

the incidence of rule instability, divergence and limit-cycle behaviour can be rapidly identified 

and resolved. 

With careful selection of the model, virtual patient scenarios can be constructed to represent a 

wide range of respiratory pathology and trauma. These have the advantage of being repeatable 

and free from measurement errors, a quality not possible using clinical data. This allows 

quantitative comparisons to be made between anaesthetists' decisions and those produced by the 

advisor, thus enabling rapid identification of rule errors and the elicitation of tacit knowledge 

that may have been missed during the prototype advisor design. Better still, the efficacy of 

alternative advisor designs can be quantitatively measured. 
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Fuzzy-logic was chosen as the method for rule representation since it is able to process the 

uncertainties of the problem. Its applicability to process control has been widely demonstrated 

and recent work has shown its use in the maintenance of end-tidal Peo2 during mechanical 

ventilation in anaesthesia [Schaublin et ai, 1996] and during high-frequency jet ventilation 

[Noshiro et ai, 1994]. Interacting and conflicting rules can be processed with the same degree of 

ease, due to the simple computational mechanics of fuzzy logic. Also its use of linguistic 

classifiers (e.g. inspired O2 is high) makes the system readily interpretable by an expert (i.e. an 

anaesthetist). The simplicity of rule representation makes for rapid modification and methods 

exist for self-organisation of control rules. This makes it well suited for future design. 

Whilst developing an advisor capable of handling all aspects of ventilatory care is the long term 

objective, this research was restricted to a sub-set of the care-problem in order to prove the 

capabilities and benefits of fuzzy-logic and model-based controller design. The advisor was 

therefore restricted to the maintenance of arterial O2 partial pressure (Pao2), arterial CO2 partial 

pressure (Pae02), pH and peak inspiratory pressure (PIP) via the adjustment of inspired O2 

fraction (FI02), positive end-expiratory pressure (PEEP), respiratory rate (RR), tidal volume 

(VT) and inspiratory-expiratory ratio (I:E), in patients ventilated using continuous mandatory 

ventilation (CMV) and in particular those on volume control (VC) or pressure regulated volume 

control (PRVC) modes. These patients are expected to be well sedated and therefore performing 

no breathing for themselves or indeed triggering any breaths. The patient model was selected to 

meet the requirements of this sub-problem. 

A summary of the thesis chapters is given below; 

Ch 2: Fuzzy Logic and its Application to Control in Biomedicine 

This provides a brief overview of fuzzy logic concepts and principles, followed by a review of 

the previous applications of fuzzy logic to biomedical control with particular reference to 

advisory systems and ventilator management. 

Ch 3: Respiratory Models 

This provides a review of respiratory models with particular reference to their classification and 

suitability for advisor development. Models are grouped according to the process they are 

describing and whether they are theoretically (white-box) or empirically (black-box) based. Also 

described are model-based nomograms that are useful descriptors of physiological behaviour. 

Ch 4: SOP A Vent - Patient Model Development 

The architecture of the patient model is presented together with a detailed description of the 

equations behind it and their sources. This includes explanations of the O2 and CO2 mass 

transport equations and the O2 and CO2 gas dissociation function (GOF) together with the 

computation of their inverse (IGOF). A simple ventilator model is also described, and equations 

for the conversion of gas-volume, gas-fraction and gas flow-rate from observed units and 

conditions to the units and conditions required by the model are presented (e.g. STPD -

standard temperature pressure dry converted to BTPS - body temperature pressure saturated). 
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The functional implementation of the O2 GDF and it validation using clinical data available in 

the literature is discussed, followed by the implementation of its inverse. Methods employed to 

optimise the inverse function, are described. The implementation of the O2 transport equations 

using SIMULINK is presented and its ability to match expected normal blood-gas values is 

demonstrated using patient parameters representative of a healthy male subject. This is repeated 

for the CO2 GDF and CO2 transport equations, and then the behaviour of the integrated O2 and 

CO2 model is examined. This does not constitute the final model and further improvements are 

discussed in the beginning of Chapter 7. 

Ch 5: Clinical Validation of Patient Model 

This chapter describes the attempts to validate the patient-model using data collected from ICU. 

The primary objective was to ascertain whether the model could predict blood-gas responses to 

changes in ventilator settings. Whether this can be achieved depends very much on the quality 

of the data collected and the parametric sensitivity of the model. The first section therefore 

provides a brief review of sensitivity analysis methodology including descriptions of the 

problems that can be encountered and their implications when interpreting sensitivity results. 

The classical sensitivity analysis of the patient-model is then described and the implication of 

the results to clinical measurement and model tuning are discussed. 

Next, the data collection protocols and data processing required to produce all of the inputs of 

the model are described. The method used for tuning the model to match the observed blood

gases is described and the ability of the model to match blood-gas responses to ventilator 

changes is assessed using qualitative and quantitative techniques. Finally, the possible causes of 

response errors are discussed. 

Ch 6: FA VeM - Advisor Development 

The advisor architecture is presented together with a detailed examination of the choice of 

inference methodology. This is followed by a discussion of techniques used to implement the 

rules, including the need for completeness, the method of fuzzy consequent construction and the 

description of a rule reduction algorithm to reduce computational overheads. 

The development of the F102, PEEP, Mv and VT-RR advisor subsystems is presented in turn, 

highlighting the sources of knowledge and methods employed to elicit them. The F102 rule 

development describes the elicitation of fuzzy classifications for Pa02 from an anaesthetist and 

the use of iso-shunt nomograms to deduce prototype control rules. The evaluation of these rules 

by an anaesthetist is described, and the suitability of the advice generated assessed. The 

modifications made to the control rules based on this assessment are described. PEEP rule 

development is described next with an explanation of the benefits and disadvantages of PEEP 

and how these might be expressed using fuzzy control rules. The F102 and PEEP rules work 

together to provide maintenance of Pa02. 

PaC02 maintenance via the adjustment of Mv is explored and simple control rules proposed. 

The importance of goal-orientated Paco2 maintenance to encapsulate particular ventilation 

requirements such as patients with head injury is discussed. These control rules are then 

extended to include acid-base imbalance. The causes of imbalance are described in detail and 

4 



the elicitation of pH fuzzy classes using the Henderson-Hasselbalch equation presented. The 

rules are further extended to include consideration of PIP and thus prevent possible barotrauma. 

Finally, the development of rules to correctly convert changes in Mv to changes in RR and/or 

Vr is described. The concept of an ideal RR-Vr relationship is presented together with its use to 

estimate the control rules. The rules are extended to include restrictions due to elevated PIP. 

Ch 7: Closed-loop Advisor Validation 

The prototype rules are then evaluated usmg simulated closed-loop control. This chapter 

highlights the advantages that such an approach has over other validation methods and describes 

its implementation. Before closed-loop validation could be performed, improvements were 

made to the model so that it would respond realistically to changes in ventilator settings. These 

include modelling of pH changes, airway pressures, effects of PEEP and the inclusion of 

relationships governing nominal cardiac output (Q,), O2 consumption (Vo2 ) and CO2 

production ( Veo2)' The equations describing these improvements are presented. 

The use of this improved model to construct virtual patient scenarios with input from an 

anaesthetist is described. These are then used to provide simulated closed-loop evaluation of the 

prototype advisor's performance. Behavioural discrepancies are highlighted and modifications 

made to the rules described. The advisor is then re-evaluated and the level of performance 

improvement assessed. Any remaining decision differences are examined and potential 

solutions discussed. 

Ch 8: Clinical Validation of Advisor 

In the final chapter the modified advisor is validated against real clinical decisions. The causes 

of decision mismatch are explored in detail and possible solutions outlined. Analysis is made 

using both qualitative scoring techniques and statistical measures. 
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Chapter 2: Fuzzy Logic & its Application in Biomedicine 

2.1 Introduction 

Fuzzy logic theory was first developed by Zadeh in 1965, and combines elements of multi-valued 

logic, probability theory and artificial intelligence. It provides the concept of fuzzy linguistic 

variables and uses fuzzy sets to express linguistic rules that can produce a realistic control 

strategy. It is therefore well suited to problems that require human judgement or loose linguistic 

descriptors of the control process, and for controlled systems that have non-linear characteristics 

that are difficult to model mathematically. 

This chapter provides a brief overview of the principles and concepts of fuzzy set representation, 

rule inference and defuzzification. For more detailed explanations of these and other related 

concepts the reader is directed towards the work of Driankov et al (1993) and Yan et al (1994). 

This is followed by a review of fuzzy logic control applications, and is restricted to examples 

occurring in biomedicine. Tong (1977) gives a survey of early FLC applications, and Sugeno (1988) 

describes the use of FLC in industrial processes such as heat exchangers, blast furnaces, waste water 

treatment and train operation. 

2.2 Basics Principles and Concepts of Fuzzy Logic 

Fuzzy logic is a branch of logic that represents membership within a set as a continuous function 

rather than having strict true/false membership. The degree of membership is the certainty 

(expressed as a number from 0 to 1) of a particular observation value belonging to a fuzzy set. 

This enables complex computing tasks with imprecise or fuzzy answers to be processed easily. It 

enables linguistic concepts such as hot and cold to be described mathematically and thus used to 

represent statements such as 'The room temperature is hot' . 

2.2.1 Set Membership and Geometry 

Several different shapes can be used to model linguistic uncertainty, see Figure 2.1. The most 

popular fuzzy set shapes are the triangular and trapezoidal ones, because of their simplicity of 

representation, and ease of computer implementation. The fuzzy singleton is a special class of 

crisp set, with full membership only occurring for a unique observation value. 

The way in which linguistic terms of a fuzzy variable are mapped onto its domain (or universe of 

discourse, UoD) can affect the performance of the controller in a number of ways, see Section 

6.3.2. In order to discuss these influences it is necessary to introduce some definitions of 

parameters which characterise a membership function. 

Peak Value 

This is the point at which the degree of membership for a given linguistic value (P) is 1, i.e. J1 (Xpeak) = 
1, see Figure 2.2. In the case of trapezoidal membership functions the peak value is an interval. 
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J I : 1 I 0 I I J 6 I I 

23 24 2.5 26 27 DC 23 24 2.5 26 27 DC 23 24 2.5 26 27 DC 

fuzzy singleton crisp fuzzy set triangular fuzzy set 

]~ :J C\ :lL I I 

23 24 2.5 26 27 DC 23 24 2.5 26 27 DC 23 24 2.5 26 27 DC 

bell-shaped fuzzy set trapezoidal fuzzy set sigmoid fuzzy set 

Figure 2.1: Different fuzzy set membership functions 

Left and Right Width 

The left width of a membership function II is the length of the interval from the peak value to the 

point when the degree of membership equals zero. Similarly the right width is the interval from 

the peak value to the point to the right of the peak value when II (x) = O. The sum of the left and 

right widths defines the support of II, see Figure 2.2. If the left and right intervals are equal the 

membership function is said to be symmetrical. 

1 

support 

,... . ... 
left width ~ 

Xpeak 
right width 

Figure 2.2: The peak-value, left width, right width and support of a triangular membership function. 

Cross-point 

Usually, neighbouring membership functions on a given VoD intersect, allowing an observation 

to exist in more than one set simultaneously. Let III and 112 be two membership functions 

representing two linguistic values upon the same universe of discourse. A cross-point between III 

and 112 is that value Xcross within the universe of discourse such that; 

(2.1) 

The cross-point level is defined by the degree of membership at III (Xcross) which by definition of 

the cross-point is the same as /.12 (xcross). The cross point ratio is the number of cross-points 

between two neighbouring membership functions. In triangular sets this can only ever be 1 or O. 
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Figure 2.3 illustrates the above definitions in the case of triangular functions. It is important to 

remember that all of the above notions are relevant for any type of membership function. 

J.I 
1 

Xcross 

Cross-point level = 0.4 
Cross-point ratio = 1 

x 

J.I 
1 

No cross-points 

Figure 2.3: Cross-points and cross-point levels of triangular membership functions. 

2.2.2 Fuzzy Inference 

x 

In a fuzzy logic controller (FLC) the possible output actions are defined using a number of IF

THEN rules. A collection of these rules forms the rule-base or knowledge-base of the FLC. 

Most FLCs use rules that have two inputs (or antecedents) and one output (or consequent). The 

inputs usually considered are the error from a desired set-point and the change in error. The 

output is either the actual control level or the change in control level (increment or decrement). 

Typically the fuzzy inputs and fuzzy outputs are described by seven linguistic sets, ranging 

from positive big to negative big. An example of a simple rule-base might be; 

1). IF (error is zero) AND (change in error is pos itive small) 

THEN (output is negative small). 

2). IF (error is zero) AND (change in error is zero) 

THEN (output is zero). 

3). IF (error is negative small) AND (change in error is zero) 

THEN (output is positive small). 

The controller inputs are used to obtain the contribution of each rule to the final output. This is a 

process known as fuzzy inference. Using what is known as individual-rule based inference, one first 

'fires' each rule with a fuzzy singleton and obtains n scaled or clipped consequent fuzzy sets that are 

aggregated to form the fuzzy output. Scaled sets are produced using Larsen's implication operation 

(also known as MAX-DOT inference) [Kaufman, 1975] and clipped sets are produced using 

Mamdani's implication operation (also known as MAX-MIN inference) [Mamdani et ai, 1981]. This 

process is best clarified graphically using the above rule-base example, see Figure 2.4. 

The firing weight of a rule (as defined by the height of the clipped or scaled fuzzy set) is 

normally obtained using the minimum height of the antecedent memberships. This is known 

as the liaison operator, and other operators include algebraic product, bounded sum, bounded 

product and drastic product. The minimum and algebraic products are the most commonly 

used liaison operators and have different advantages depending upon their application. 
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Algebraic product will produce smaller firing weights than the minimum operator if the input 

memberships are less than 1, see Figure 2.5. 

The final stage of the inference process is to derive a scalar output from the fuzzy aggregated 

output. This is known as defuzzification and is discussed in the next section. 
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-6 

-6 

fuzzy aggregated output 

fuzzy aggregated output 

11 

-4 -2 \:1?4~ 
defuzzified 

output 

PS: positive small 
NS: negative small 
Z: zero 

Figure 2.4: Diagram of the fuzzy inference mechanism using (a) scaled fuzzy sets (Larsen's 
implication) and (b) clipped fuzzy sets (Mamdani's implication). 

Z firing weight 
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minimum 
liaison operator 
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Figure 2.5: Difference in rule-firing outputs using the minimum and algebraic liaison operators. 
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2.2.3 Defuzzification 

Many methods exist for output defuzzification, but perhaps the most widely used are centre-of

gravity (CoG) and centre-of sums (CoS). The main function ofthe defuzzification process is to 

take the distributed fuzzy output derived using the inference process (as described above) and 

produce a single output value that can be used to drive the controlled process. 

The CoG method finds the balance point of the aggregated fuzzy output. In this case the aggregated 

fuzzy output is the union of the scaled (or clipped) rule consequents. The CoS method is identical to 

CoG except the aggregated fuzzy output is the sum of the rule consequents, see Figure 2.6. 

-6 6 -6 

CoG CoS 

(a) (b) 

Figure 2.6: Comparison between (a) centre-of-gravity defuzzification method where the 
aggregate is formed by taking the union of the consequent sets and (b) centre-of-sums 
defuzzification method where the aggregate is formed by taking the sum of consequent sets. 
The bold line indicates the aggregated fuzzy output. 
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2.3 Biomedical Applications of Fuzzy Logic 

The following biomedical applications ofFLC have been found and are discussed in more detail below; 

1). Post-surgical control of mean arterial pressure (MAP). 

2). Control of depth of anaesthesia (DO A). 

3). Ventilator control. 

4). Control of Fr02 and isoflurane delivery in minimal flow anaesthesia. 

5). Pace-maker regulation. 

6). Treatment of renal anaemia. 

7). Post-operative pain control. 

2.3 .1 Post-surgical Control of Mean Arterial Pressure 

The fast-acting vasodilator drug sodium nitroprusside (SNP) is used to treat patients who demonstrate 

elevated systemic arterial blood pressure after open-heart surgery. The rapid and powerful action of 

SNP requires the frequent monitoring of mean arterial pressure (MAP), followed by adjustment of 

SNP infusion rate. Ying et al (1992) proposed a closed-loop controller that would relieve nurses of this 

task, leaving them free to perform other duties. A simple 4 rule FLC [ying, 1988] that derived changes 

in SNP infusion rates based upon error from MAP set-point (e) and rate of ehange in error (e ), was 

converted into a set of lOnon-fuzzy control algorithms. This gave a precise analytieal representation of 

the fuzzy controller, a feature not usually possible since most FLC structures are very complex. These 

non-fuzzy algorithms describe the control relationship in terms of the input and output scaling factors 

and the turning point of the fuzzy sets. These were optimised using a Laplace model of the SNPIMAP 

relationship, to give the best generalised control of patients with a wide range of sensitivities to SNP. 

Ruiz et al (1993) produced a much simpler FLC that used 3 trend measures of MAP over 160, 

80 and 20 second observation windows, to determine whether the SNP infusion rate should be 

increased, decreased or maintained. These trends gave an indication of the long-term and short

term MAP behaviour. Having established the action required, the SNP infusion rate was then 

adjusted using quantitative relationships. This approach was shown to give adequate performance 

with small over and undershooting outside of predefmed limits, and produced significantly better 

performance than manual control. The control algorithm separates the problem into qualitative 

''What to do?" using FLC and quantitative "How much?" using clinically proven relationships. 

2.3.2 Depth of Anaesthesia 

Two areas of anaesthesia control have been explored using FLCs; unconsciousness using inhaled 

anaesthetics, and muscle relaxation using infused neuromuscular block. Unconsciousness is 

considered to be the depth of anaesthesia (DOA) necessary to counteract physiological response 

to surgical stimuli (i.e. the incision of a scalpel). Muscle relaxation on the other hand is necessary 

to prevent potentially fatal involuntary movements in a patient. 
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Unconsciousness Anaesthesia 

Traditionally DOA has been controlled by maintaining systolic blood pressure (SBP) at pre

anaesthetic levels. Tsutsui & Arifa (1994) described an FLC for the closed-loop control of SBP 

via enflurane anaesthesia. The SBP was sampled every 30 seconds and the current value and 

previous value were used as the inputs to the FLC, with the output being the enflurane percentage 

concentration. Rules were constructed to establish an initial SBP value of MAC-BAR (minimum 

alveolar concentration to block adrenergic response in 50 % of patients [Roizen et ai, 1981 D, and 

maintain it at AD95 (the known value of anaesthetic effective dose for 95 % of patients [Dejong & 

Eger, 1975]). In clinical trials the FLC maintained SBP to within ± 20 % of the pre-anaesthetic 

SBP in 82 % of cases, compared to 83 % using manual control. 

Meier et al (1992) developed a similar FLC for the control of DO A using proportional-integral 

(PI) control. Instead of SBP, the inputs to the FLC were the error from mean arterial pressure 

(MAP) set-point and the integral of the error. The output was the % concentration of isoflurane 

and the integral of the inspired isoflurane fraction. In clinical trials [Zbinden et aI, 1995], the 

FLC outperformed human control at skin incision (maintaining 48.2 % of all MAP values within 

± 10 % of the desired level, compared to 40.4 % using human control) , but performed slightly 

worse during the rest of the operation (78.3 % using FLC and 82.3 % using human control). 

It is questionable whether arterial blood pressure alone provides an accurate measure of the DOA and 

therefore a guarantee of unconsciousness in the patient. This problem was addressed by Shieh et al 

(1998) using a hierarchical control structure based on SAP, heart rate (HR) and end-tidal gas 

concentrations (Et) to adjust desflurane concentration. The first hierarchical level used an FLC to 

control SAP at set-point. The second level used a rule-base to control HR in the stable condition. A 

third level used anaesthetists' experience to tune the SAP set point level when Et reaches upper and 

lower limits. To prevent awareness during anaesthesia a fourth level used the low limit of Et to 

determine the dose of inhaled anaesthetics, and finally an alarm level to warn when SAP and Et are 

going out of safe limits. In clinical trials automatic control was maintained for 89.l5 % of the time, 

with manual control being necessary when the patient's condition fell outside the abilities of the 

controller or the controller was failing to maintain the patient as required. 

Another multi-factorial approach to DOA control was employed by Abbod & Linkens (1998). 

They used fuzzy logic fusion to combine two measures of DOA; auditory evoked response (AER) 

depth of anaesthesia (AER_DOA) and cardio-vascular based DOA (CV _DOA); into a final 

measure of DOA (F _DOA) that was used to control the infusion rate of propofol given to a 

patient. The AER_DOA was based on wavelet analysis of the AER signal and was classified 

using an Adaptive Network Based Fuzzy Inference System (ANFIS) [Jang, 1993]. Using a hybrid 

learning procedure, ANFIS can learn input-output mapping based on human knowledge (in the 

form of IF-TIffiN fuzzy rules). The AER_DOA was classified as awake, light, ok_light, 

ok_deep and deep. The CV _DOA used the same classifications of DOA and was based upon 

observations ofHR and SAP, with the rule-base derived from anaesthetist's experience [Linkens 

et ai, 1996]. The final DOA produced from the fuzzy logic fusion module was fed to the propofol 

plasma concentration controller. This fuzzy logic rule-based controller, used the current target 

concentration and the measured DOA to calculate a new target plasma concentration. From this 
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the drug infusion rate was derived using a 3-compartment patient model with an additional effect 

compartment. The overall DOA control system was validated using a computer simulated patient 

model, describing the pharmacokenetics and pharmacodynamics of propofol in the plasma. The 

outputs of the model were SBP, HR and AER. The results obtained from closed-loop simulations 

showed that the system effectively maintained the patient at clinically acceptable DOA. Clinical 

trials were being undertaken at the time of pUblishing. 

Muscle Relaxant Anaesthesia 

In 1988, Linkens & Mahfouf described a simple FLC for automated drug infusion of atracrium 

for muscle relaxant anaesthesia, where the problem of knowledge elicitation was tackled using 

self-organising fuzzy logic techniques. The efficacy of the controller was investigated via 

extensive simulation studies using a non-linear model of the drug response. Linkens & Abbod 

(1993) discussed the importance of such anaesthesia simulators for the design of supervisory 

rule-based control in the operating theatre. 

Mason et al (1994) described a similar fuzzy controller using a PD + I (proportional. differential 

plus integral) configuration. The rules of the FLC were handcrafted based on simulations 

involving the non-linear atracrium dose-response characteristics. This was assessed clinically 

[Mason et al. 1996] and gave good control performance although the infusion rate appeared 

erratic. An alternative schema, using a self-learning fuzzy logic controller (SLFLC) was proposed 

in 1997 [Mason et al. 1997]. This started with a blank PO (proportional-differential) rule-base and 

adapted the outputs of the fuzzy control rules in real time to match the needs of each individual 

patient. In clinical trials the atracrium infusion rate was observed to be much less erratic than 

when using the earlier simple FLC with a fixed rule-base, and the overall control performance was 

very good. A hierarchical approach to muscle relaxant anaesthesia, similar to that applied to 

desflurane anaesthesia, was considered by Shieh et al (1996 and 1997). 

2.3.3 Ventilator Control 

The use of fuzzy-logic for ventilator control (and this includes advisory systems) has not been 

that widely explored. One of the earliest examples is that of Vasil' eva et al (1989). They used 

an FLC to adjust the inspiratory gas flow (VI) produced by a ventilator in response to changes 

in alveolar pressure (PA(t). A simple model of the lung mechanics during inspiration and 

expiration was used to test the FLC. 

Sun et al (1994) described an FLC for the adj ustment of F102 in ventilated new-born infants. 

The controller utilised rules elicited from neonatologists and was implemented in real-time. 

Clinical trials were being conducted at the time of publication. 

In the 1980s, high-frequency jet ventilation (HFJV) came into vogue. This uses much smaller tidal 

volumes (typically 2.2 to 5.0 mllkg) and higher respiratory frequencies (60 to 300 rpm) than 

conventional mechanical ventilation. Its ability to provide ventilation at much lower inspiratory 

pressures promised much. unfortunately the complex and non-linear relationship between RR, Vr 

and PaC02 made routine application difficult. Noshiro et al (1994) used a fuzzy PI control system 

to successfully regulate end-tidal PC02 (PErC02) in a new HFJV ventilator. They compared the 
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closed-loop response of the FLC and a conventional PI compensator on 11 anaesthetised and 

intubated mongrel dogs. The performance of the two systems was almost identical, however the 

FLC was found to give better generalised control. 

Shaublin et al (1996) described the closed-loop control of end-tidal CO2 content fraction (FE-rCCh) 

via the adjustment of VT and RR, in artificial ventilation during anaesthesia. This was done 

whilst minimising the deviation of VT and RR from normal values of 10 rn1Ikg and 10 rpm 

respectively, and attempting to maintain the plateau airway pressure (Pplat) within suitable limits 

«3 - 4 kPa). Compared with human controllers, the FLC maintained desired FE-rC02 with similar 

precision and stability and gave good dynamic response to set-point changes. The breathing 

pattern, selected by the FLC was within clinically acceptable ranges. However, apart from 

maintaining P plat within acceptable limits, the controller did not adapt the ventilator settings to the 

lung function or lung mechanics of an individual patient, a feature offered by the adaptive 

ventilator controllers of Labscher et al (1994) and Weiler et af (1994). 

Most recently, Ncmoto et al (1999) developed a fuzzy-logic based advisory system (FLBAS) for the 

control of pressure support (PS) ventilation in patients with chronic obstructive pulmonary disease 

(COPD). Pressure support is prescribed for spontaneously breathing patients that are triggering breaths 

for themselves but require additional pressure to aid inflation of the lung because of muscle 

insufficiency or increased work of breathing. It enables the patient to be gradually weaned from 

artificial ventilation by gradually reducing the amount of pressure support (in cmH20) required. 

Nemoto et al used observations of heart rate, arterial O2 saturation (Sao2) and current RR and 

VT settings to determine the percent change in PS required. These observations defined a measure 

of the patient's status and were assigned to a quantity called CONDITION, having four possible 

categories: POOR, QUESTIONABLE, MODERATE and GOOD. A second quantity called 

TREND used observations of RR, change of RR, and change of Sa02 to derive a measure of 

whether the patient's condition is STABLE, IMPROVING, DETERIORATING or CRASHING. 

These were then combined using fuzzy-logic fusion to produce the controller output % PS

change, labelled as INCREASE A LOT, INCREASE, MAINTAIN and DECREASE. Validation 

of the control rules was only made using retrospective comparison against actual clinical 

decisions made on 13 ICU patients. Consequently, whilst the advisor was found to have generally 

good agreement, there is no evidence of the controller's stability in closed-loop control. 

2.3.4 Miscellaneous Applications 

These have been included to illustrate the breadth of biomedical fuzzy-logic applications, and 

represent applications not falling into the above larger categories. 

Sugiura et al (1991) applied fuzzy-logic to the control of cardiac-pacemaker rate based upon 

observations of RR and body temperature (T BODY). The fuzzy relationship between RR and T BODY 

on intrinsic hear rates were derived using 3 mongrel dogs. The pace-rates calculated using the 

derived fuzzy rules were then compared against the intrinsic heart rates, of 2 different dogs. 

14 



Carolla et al (1993) reported the use of FLC for the control of alfentanil infusion for post

operative pain relief. This was achieved using a simulated patient model of drug 

pharmacodynamic relationships. 

Bellazzi et al (1994) described the use of FLC in the delivery of recombinant human 

erythropoietin (r-HuEPO) for the treatment of renal anaemia. Validation was achieved by 

performing a case-simulation study using a multi-compartmental model of the erythropoietic 

response to r-HuEPO. The FLC was able to adapt to patient drug sensitivity. 

Curatola et al (1996) used fuzzy logic to control inspired isoflurane and O2 concentrations during 

minimal flow anaesthesia (MFA). The FLC enabled isoflurane and F102 to be maintained at set 

levels during MFA performed by anaesthetists not trained in minimal flow technique. When using 

MFA the inspired gas concentrations do not correspond with those in the fresh gas because of 

mixing with exhaled alveolar gas, making human control difficult. The FLC was able to 

demonstrate reliable isoflurane and F102 control and reduced anaesthetic gas delivery and costs 

over the human operator. 

Becker et al (1997) described the design and validation of a fuzzy logic based intelligent patient 

monitoring and alann system to ease the cognitive load of anacsthctists during high invasive surgery. 

2.4 Summary & Conclusions 

The basic principles of fuzzy set representation and an overview of the mechanics of individual 

rule-based inference and defuzzification have been described. 

The review of FLC applications highlighted an increased interest in the use of FLCs in 

biomedical applications, and this has led to their clinical acceptance in certain areas. Some simple 

controllers have been developed for the maintenance of artificially ventilated patients, but these 

have been restricted to subsets of the overall care problem. Model-based validation has been 

demonstrated to be of particular benefit for stability analysis and controller optimisation, 

although it has not yet been applied to ventilatory care. 

The next chapter reviews the models suitable for the development of a patient simulator for the 

validation of a fuzzy-logic-based advisor for the ventilation of patients on artificial ventilation. 
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Chapter 3: Review of Respiratory Models 

3.1 Introduction 

This chapter presents a critical review of mathematical models of the human respiratory system, 

placing them within historical context and according to various classification criteria. Particular 

attention is given to those models, or model elements suited to the development of a patient 

simulator for the purpose of advisor validation. The correct choice of model is a trade-off between 

complexity and clinical usefulness. A model with too much complexity becomes difficult to 

implement, whereas over simplification limits the range of physiological behaviour that can be 

represented. Consideration also needs to be given to the estimation of the model parameters to 

match its behaviour to that observed clinically. Again if the model is too complex then this 

becomes increasingly difficult to achieve as the number of unknown parameters increases. 

Classification According to Process 

Historically, models of the human respiratory system have been developed to explain various 

aspects of the process and can be categorised accordingly; 

I). Lung Mechanics: models of the mechanics of breathing being concerned with 

volume, flow and pressure characteristics of the lung system. 

2). Ventilators: models describing artificial mechanical ventilators, often developed 

in conjunction with models of lung mechanics. 

3). Gas Exchange: models concerned with gas exchange in the lungs. Usually only O2 

and CO2 but may also include the transport of N2 (nitrogen) and CO (carbon 

monoxide). 

4). Gas Dissociation: models of the relationship between blood-gas partial pressures 

and contents. 

5). Respiratory Control: models concerned with the self-regulating mechanisms of 

breathing to maintain O2, CO2 and pH homeostasis. 

6). Integrated: a combination of any number of the above model elements, describing 

their interaction to form a cohesive description of the entire respiratory process. 

The lung mechanics, ventilator, gas transport, gas dissociation and respiratory control models 

are known as local models and only deal with part of the respiratory system, whereas the 

integrated models are global. This is not a measure of their complexity, since integrated models 

may contain many simplifications resulting in poor specificity, whilst local models can contain 

deep physiological knowledge that make them comprehensive within their domain of operation. 
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Classification According to Method of Implementation 

A number of approaches to model implementation are available and these fall into one of three 

broad categories; 

1). White-Box Models: also known as theoretical models, these are based soundly 

and explicitly upon the underlying physical and chemical processes. 

2). Black-box Models: also known as empirical models, these are concerned with the 

interaction and interdependence of system variables, being mathematically 

representative of the process but imparting little in the way of physical meaning. 

Such models include regression models, neural models and parametric 

identification models. 

3). Grey-box Models: also known as empirico-theoretical models, these cover the 

majority of models, being based where possible upon the underlying physical and 

chemical processes but also dependent upon empirical relationships. 

Usually, model development aims to be as theoretical as possible (white-box modelling) enabling 

interpretation by the widest possible audience. It also helps to identify possible model inadequacies 

and assumptions made in the model, a process often difficult using black-box models. 

3.2 Grey-Box Models 

It is difficult to draw a distinction between gas exchange/transport models and respiratory 

control models, since their development is often dependent and interrelated. However, the 

research has often focused more on either physiological process modelling or ventilatory 

control modelling. More complex models also began to introduce many integrated 

physiological components including lung mechanics and empirical physiological relationships 

describing disease states. The following reviews have therefore been grouped according to the 

process types, however there will inevitably be some overlap between them. 

3.2.1 Respiratory Mechanics Models 

Respiratory mechanics models describe the relationship between inspiratory and expiratory 

flow rates and the pressures generated across the airway and alveolar space. Typically they 

describe the lung mechanics in terms of total flow resistance (R) and total compliance (C), but 

may also include terms describing the properties of the ventilator (if artificial ventilation is 

being considered). Compliance (in I/cmH20) is an indicator of lung and chest-wall elasticity 

and flow resistance (cmH20/l/sec) reflects resistive properties of both the tissue and peripheral 

airways. 

Several studies characterising the main aspects of breathing have been published. These have 

used different lumped-parameter models, ranging from a simple two-element resistance

compliance linear model to more sophisticated physiological models which include tissue 

viscoelasticity, the inertial effects of the airways and branching networks [Lutchen & Costa, 

1990], to non-linear models [Ben-Haim et ai, 1988]. 
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Barbini et al (1994) compared the Bode diagrams of four lumped-parameter resistance-compliance 

models against those clinically observed on mechanically ventilated patients. They found that the 

simple two-element series R-C model (see Figure 3.la) produced Bode diagrams basically different 

from the clinical responses. This was resolved by the inclusion of an additional parallel compliance 

(Cp), see Figure 3.1b, although no physical meaning was attributed to this new element. 

More complex models have been suggested; a 4-element R-C model [Mead, 1969]; 6-element 

R-C-I model (where I is an inductance component) [Dorkins et aI, 1988] and a 9-element R-C-I 

model [Jackson & Lutchen, 1987]. However, this level of complexity may be useful in 

describing the frequency behaviour of the lungs across the range 0-200 Hz, but does not provide 

any real benefits in terms of clinical understanding. 

R 

O--L=:l-------,I 

o~_-----JI 
(a) 

C 
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O---r-C=:l-------,I 
Cp 

o---a.-------J1 

C 

(b) 

Figure 3.1: Electrical analogues of (a) the simple 2-element R-C airway model and (b) with an 
additional parallel compliance as proposed by Barbini et al (1994). 

3.2.2 Gas Exchange Models 

These models are concerned with descriptions of the gas diffusion between the alveolar space 

and the pulmonary capillaries. They form a key component in integrated model development 

and represent a significant part of the "controlled" process in models of respiratory control. 

The diffusion boundary is usually described in terms of a linear homogenous blood-gas barrier 

offering resistance to diffusion of the gases [Piiper & Scheid, 1981]. This assumes diffusion 

occurs only perpendicular to the barrier and is governed by Fick's law of diffusion. 

Early gas exchange models represented the lung as a single ideal alveolus compartment with a 

ventilation-perfusion ratio of unity CV/Q = 1) [Grodins et ai, 1954]. This was extended to 

include dead space and shunt compartments with V / Q = 00 and V / Q = 0 respectively [Riley & 

Cournard, 1949]. Using this classical gas exchange model it was possible to represent a wide 

range of patho-physiology. However, V / Q varies across the lung in an approximately log

normal manner [Farhi & Rahn, 1955] and this gives rise to differences in O2 uptake from those 

obtainable using the 3-compartment model. West (1969) examined lung models with 3-1000 

respiratory segments and found that 10-compartments was sufficient to describe this log-normal 

17/ Q distribution. Kelman (1970) used a 25-compartment approximation to the log-normal 

17/ Q distribution. Recently, 4-compartment models of gas exchange have been employed 

[Petros et ai, 1993; Rutledge (1994 & 1995), providing a trade-off between representative O2 

uptake (and CO2 elimination) and clinical usefulness. 
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3.2.3 Gas Dissociation Models 

Models of the relationship between blood-gas tensions (partial pressures) and blood-gas contents 

have been used to bridge the gap between the mass transport blood circulation models (concerned 

with gas contents) and the lung diffusion models that are driven by differences in partial pressure 

between the alveoli and pulmonary capillaries. Similarly, gas partial pressures and not contents 

drive the chemoreceptors for ventilatory control. The relationship between pressure and content of 

each gas was determined early this century by driving off the gases from blood in successive 

steps - hence the term "dissociation curve". 

Oxygen Dissociation Curves 

In 1966 Kelman published an empirical description of the O2 dissociation curve (ODC), suitable 

for computer implementation. It extended the previous work of Adair (1925) and accounted for 

shifts in the position of the curve due to pH, Peo2, temperature and haemoglobin concentration, 

and has widely been accepted to be accurate for the majority of applications. 

However, at lower P02 the curve was found to diverge from experimentally determined values 

and Kelman (1968) corrected for this by switching to a different expression for O2 saturation 

when P02 was below 10 mmHg. 

Ingram & Bloch [1986] developed a very similar algorithm to that of Kelman, using the same 

equation to derive O2 saturation. However shifts in the position of the curve were based upon 

organic phosphate 2,3-diphosphoglycerate (2,3-DPG) concentration in haemoglobin, temperature, 

pH and base excess (BE). Corrections to the pH and BE effects were made according to the 2-3-

DPG levels. Additional shifts in the ODC position were accommodated by the inclusion of the 

ratio 26.8331Pso in the expression for virtual O2 pressure, where Pso reflects the 50% saturation 

point of the ODe and 26.833 mmHg is the normal operating point. 

Earlier ODC formulations are reviewed by Roughton (1964). 

Carbon Dioxide Dissociation Curves 

Kelman (1967) also formulated an algorithm for the conversion of Peo2 into CO2 content, taking 

into account the effects ofhaematocrit, pH, temperature and Po2. This was based upon the earlier 

nomogram of Singer & Hastings (1948). 

Inverse Dissociation Curves 

Unfortunately the gas exchange and respiratory control models require the calculation of the 

inverse of the dissociation functions. This is normally achieved using an iterative solution

searching algorithm. Severinghaus (1979) did attempt to derive an explicit inverse function but it 

did not handle corrections required for shifts in pH and temperature. 

3.2.4 Respiratory Control Models 

These models attempt to describe the regulation of respiration via physiological feedback 

mechanisms, which indirectly monitor the amount of O2 and CO2 in the blood and adjust the level 

of alveolar ventilation to maintain homeostasis. This element of the respiratory system describes 
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the respiratory "controller" (respiratory centre) and has usually been developed alongside models 

of the controlled process, i.e. respiratory plant (lung apparatus and body tissues). 

In 1954 Grodins et af presented one of the earliest chemo-stat models of respiratory control. It 

described changes in ventilation in response to partial pressures of CO2 (Pe02)' The process 

model was based upon the laws of mass transfer and the respiratory centre was described by an 

empirical "black-box" model, that of a simple proportional controller; 

(3.1) 

where KJ and K2 are constants and Pve~ is the mixed venous Pe~. However, basing feedback on 

Pve~ was incorrect and later studies used arterial Pe~. The alveolar Pe~ was provided as a model 

output, enabling experimental confirmation of responses to the input stimulus of inspired gas Pe~. 

Significant improvements in descriptions of the gas transport models were made and in 1960 Defares 

et af added a brain tissue compartment with cerebral blood flow varying with Pe~. Further details of 

earlier models relating to the control of breathing in general and the relation of chemical and non

chemical factors are reviewed by Defares (1964) and Yamamoto and Raub (1967). 

In 1965, Milhorn et af published a model that included elements of the chemical control of 

respiration previously ignored. These included the role of O2 and circulatory time delays in the 

feedback loop. They considered the regulation of respiration to be a function of brain tissue Peo2 

(Pbeo2, central component), aortic-carotid body P02 (Paeo2, peripheral component) and hydrogen 

ion concentration ([W]). Making use of the relationship between [J.f] and Peo2 the alveolar 

ventilation was reduced to a function of two variables; 

(3.2) 

The mechanical status of the lung was also included in the controller. The controlled process 

was represented using lung, brain and tissue compartments with gas storage and transport 

equations derived from mass balance relationships. Cerebral blood flow depended upon arterial 

peo2 and Po2. The ventilation was continuous with no breath-by-breath modelling. 

Grodins et af (1967) extended the process model further and the controller described the 

ventilation as a function of brain Peo2, the fractional concentration of alveolar O2 and the H+ 

concentration in the cerebral spinal fluid. This model represented a major advance towards a 

comprehensive model that could be used to test a wide variety of forcing inputs. 

Milhorn and Brown (1971) published a comparison of two older models of the controller 

subsystem connected to an updated process model. They compared the classical controller 

equation of Gray (1950) against the more recent work of Lloyd and Cunningham (1963). Both 

equations were developed using curve-fitting methods, the former incorporating an additive 

combination of CO2 and O2 whereas the Lloyd model contained multiplicative as well as 

additive CO2 terms. Milhorn and Brown concluded that the Lloyd-Cunningham version was 

more accurate over the range for which it was intended, although t~e equation would need to be 

extended if the entire control range was to be covered, i.e. the low O2 and CO2 range. 

20 



The next significant advance was the inclusion of the response to perfusion of the medulla 

resulting in high cerebrospinal fluid PC02 [Milhorn and Reynolds, 1973]. This increased the 

range of stimulus to which the model could successfully be subjected and therefore significantly 

increased its validity. 

In 1980 Saunders et al produced a comprehensive model of the human respiratory system, 

incorporating effects within the respiratory cycle. This extended what had previously only been a 

continuous ventilation model into one that described control on a breath-by-breath basis. This 

model was based upon that developed by Grodins et al (1967) and was adapted to include cyclic 

ventilation, dead space, blood shunt and a separate muscle compartment. Sarhan (1983) in his 

Ph.D. thesis modified this cyclical model to explore the relationships between the elements of the 

breathing pattern. 

More recent work has modified earlier respiratory control models to examine apnea response and 

unstable breathing [Longobardo et ai, 1989] and more dynamically the maturation of chemo

reflex loops in new-born infants [Revow et ai, 1989]. 

3.2.5 Integrated Models 

Early attempts at integrated models were often only theoretical since the relationships between 

system elements required numerical methods only possible using a computer. These were either 

not invented or were inadequate for the complexities of the task. Perhaps one of the most 

significant breakthroughs occurred in 1973 with the model proposed by Farrel and Siegel. At the 

time it represented one of the most complete descriptions of a respiratory system and contained 

10-compartment alveolar-pulmonary gas exchange [West, 1969], lung mechanics [Wald et ai, 

1969; Mead, 1961], lumped arterial, venous and tissue pools, non-linear gas dissociation 

relationships for O2 and CO2 [Kelman, 1966 and 1967], the interaction of cardiac function and 

tissue metabolism, and respiratory control in response to pH, PaC02 and Pa02 [Lloyd and 

Cunningham, 1963]. More importantly, it attempted to address the problem of matching model 

inputs and outputs to quantifiable physiological parameters that could be measured in man or 

animals to facilitate thorough testing of the simulations. 

The benefits of such a system for self-instruction were highlighted by Modell et al (1974) who 

created a collection of 15 programs written in BASIC for teaching the principles of lung 

mechanics, general gas exchange, ventilation-perfusion relationships and acid-base balance. Their 

approach was to split the system into separate modules, providing assumptions about the 

boundary conditions. 

Dickinson (1979) took the next logical step and integrated all of these aspects of respiration into a 

comprehensive computer model called MacPuf, specifically for the purposes of teaching and self

instruction. It was a difficult model to interpret, due to its constant use of computational 

approximations and the explanation of the physiology in FORTRAN statements rather than using 

mathematical conventions. It was based strongly on the work of Farrel and Siegel, although the 

alveolar-pulmonary gas exchange was described using a much simpler 3-compartment model 

[Riley and Cournard, 1949], with ideal alveolus, dead space and shunt compartments. No attempt 
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was made to model the respiratory dynamics, and although ventilation was divided into 

inspiratory, gas exchange and expiratory phases, the net result approximated to a continuous 

ventilation model with average gas tensions in the ideal alveolus. Whilst it did contain a 

respiratory control model, this could be bi-passed to allow the simulation of assisted ventilation. 

This appears to be the first attempt to provide modelling of both spontaneously ventilated and 

mechanically ventilated subjects. It allowed respiratory rate, tidal volume and inspired O2 fraction 

to be specified with allowances for the addition of positive end-expiratory pressure (PEEP) and its 

effect on both venous admixture and cardiac output were modelled. The usefulness of the model 

for the purposes of teaching was evaluated by Hinds et al (1982) at in-service training courses 

for anaesthetists and specialists in intensive care, and for the undergraduate teaching of 

anaesthesia [Skinner et ai, 1983]. 

The ultimate extension of a teaching model is one that encompasses all aspects of human 

physiology [Coleman and Randall, 1983] and these have been developed to aid anaesthesiology 

training [Schwid 1987; Schwid and O'Donnell, 1992]. However models of this complexity and 

depth are not required for the testing of the advisor developed in this thesis. Of particular interest 

are models developed specifically to simulate patients on artificial ventilation in leu. Dickinson's 

MacPuf model has been used by other researchers as a basis for such development. 

Whilst comprehensive, integrated models can exhibit a high level of realism, matching the number of 

. system parameters to available data becomes more difficult with increased complexity. So although 

physiological model development will continue to increase in complexity as further understanding is 

gained, the true usefulness of a model is its applicability to the problem in hand. Selecting the right 

level of complexity is often a matter of trial and error. One might start with simple models, moving on 

to more complex ones if inadequacies are identified, or a complex model can be reduced in a principled 

manner to arrive at a model that can be matched to the data available. 

3.2.6 Models of Respiration During Artificial Ventilation 

Using Dickinson's model with the respiratory control stimulus disengaged, attempts were made to 

match the parameters of the model to clinically available data [Hinds et ai, 1980]. This was done 

in an attempt to predict the steady-state arterial and venous blood-gases and hence check the 

physiological meaning of the model. Twelve patients ventilated after uncomplicated cardiac 

surgery were studied. The basic information required to simulate an individual patient was 

measured or derived and then the model unknowns adjusted iteratively to match the model 

predictions to the clinical measurements. The variables computed were then compared with those 

measured or derived clinically. Correlation between predicted and measured variables was 

generally good (r > 0.9) although PV02 correlated less well (r = 0.85). 

This study was extended [Hinds et ai, 1984] by tuning the steady-state model to individual 

patient data (as above) and then assessing its ability to predict changes caused by adjustments to 

the ventilator settings. The predictions were deemed acceptable given clinical variability and 

routine measurement inaccuracies. 
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A much simpler model, describing the mass transport of O2 and CO2 through a 3-compartmcnt 

alveolus [Riley & Cournard, 1949] and lumped arterial, tissue, venous and pulmonary pools was 

used as an integral part of a system combining qualitative and quantitative data for mechanical

ventilator management, known as VentPlan [Thomsen & Sheiner, 1989]. The paper only 

described the O2 transport equations fully, inferring that the CO2 transport equations were 

analogous. Two alternative O2 gas dissociation functions (GDF) were used depending upon the 

complexity of the problem. If corrections for temperature and pH were required then Kelman's 

(1966) function was used, and its inverse derived using a solution-searching algorithm. When 

these corrections were not needed an explicit inverse function was employed [Severinghaus, 

1979], greatly reducing computational overheads. 

More recently this model was extended to include better ventilator modelling, airway mechanics, and 

representation of ventilation-perfusion (V /Q) mismatch [Rutledge, 1994, 1995]. The ventilator model 

explicitly simulates volwne-<:yclcd, constant-flow ventilation. During inspiration the default setting 

represents a plunger moving at constant velocity to deliver the desired tidal volwne. The simulator then 

leaves a short inspiratory hold time after the plunger stops, to allow remaining pressure to equilibrate 

with the airway. Then during expiration the pressure drops to the value of PEEP, and the outflow of air 

from the patient is limited by a variable outflow resistor (retard setting). The default configuration is 

for constant mandatory volwne (CMY) mode of ventilation, but adjustable parameters allow it to 

simulate many volume-cycled constant-flow ventilators. 

Instead of the Riley 3-compartmcnt alveolar-pulmonary diffusion model there are 5-

compartments: a series anatomical dead space, a parallel physiological dead space, a shunt and 

two alveolar compartments. The alveolar compartments can have different V /Q ratios to 

represent asymmetric ventilation perfusion distributions. Each alveolar compartment can also 

have different resistance and compliance values meaning that the distribution of ventilation will 

vary as a function of frequency of ventilation. Kelman's O2 gas dissociation function was 

replaced by that of Hill et al (1973). 

All of these models have used continuous rather than breath-by-breath models of the ventilation 

process, since the time scale of interest is in the order of 10 seconds rather than milliseconds. 

What matters is the change in average blood-gases, and not fluctuations during the breath-cycle. 

3.2.7 Model-based Nomograms 

These are really a sub-category of the models described previously, developed with the specific purpose 

of producing curves of practical use to clinical staff. We have already come across one example in the 

CO2 dissociation models, that of the Singer-Hastings nomogram (1948). Severinghaus (1966) 

developed a similar tool for O2 dissociation in the form of the "blood gas calculator". 

Many other such nomograms have been developed to aid the understanding of respiratory 

physiology and assist clinical decision making. However, the iso-shunt diagrams of Benetar et al 

(1983) is of particular interest, since it enables the prescription of changes to inspired O2 fraction 

(FI02) to achieve a desired Pa02 (see Figure 3.2). This can be thought of as a crude therapy 

advisor tool. In Chapter 6 the relationships behind the iso-shunt lines are used to construct simple 
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rules pertaining to the maintenance of Pa02 via adjustment of FI02. Because of this a detailed 

description of the equations behind the nomogram is given below. 
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Figure 3.2: Iso-shunt diagram (redrawn from Benatar, Hewlett and Nunn (1973». Iso-shunt 
bands have been drawn to include all values of Hb, PaC02 and arterial-venous oxygen content 
difference shown above. 

Iso-Shunt Lines 

The calculations used to construct the iso-shunt lines are as follows; 

Calculate PAD) (alveolar oXYgen tension) 

(kPa) (3.3) 

where PBdry is the dry barometric pressure (assumed to be PB - PH20, where PB is standard 

barometric pressure (101.325 kPa) and PU20 is the saturated water vapour pressure at body 

temperature (6.27 kPa)), R is the respiratory exchange ratio (assumed 0.8) and PaC02 IS 

assumed to be 5.33 kPa. 
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Calculate Sc '02 (pulmonary end-capillary saturation) 

(3.4) 

This assumes there is negligible alveolar/pulmonary end-capillary P02 gradient. It is the 

Severinghaus et al (1978) equation, a modified and more convenient alternative to the Kelman 

(1966) ODC. 

Calculate Cc '02 (pulmonary end-capillary oD'gen content) 

(mUdl) (3.5) 

where Hb is the haemoglobin concentration, Ph is the Hb O2 carrying capacity (assumed 1.31 

mUg) and ab is the solubility of O2 in blood (assumed 0.024 ml/dl/kPa). 

Calculate CaOz (arterial omen content) fOr a given shunt 

(mUdl) (3.6) 

where Qs /Qt is the shunt and C(a-v)02 is the arterial-mixed venous O2 content difference 

(assume 5 mUdl). 

Calculate Pa02 (arterial o~en tension) 

(mUdl) 

where Sa02 is the arterial O2 saturation as given by the Severinghaus equation; 

Sa0
2 

= p~o/ +2.667 xPa02 

Pa02 + 2.667 x Pa02 + 55.4 7 

(3.7) 

(3.8) 

Pa02 is calculated by substituting equation 3.8 for Sa02 into equation 3.7 and obtaining the 

positive, real root of the following quadratic equation; 

ab .Pa024 +(Hb· Ph -Ca02)-PaO/ +(2.667 .ab)·PaO/ + 
(55.47·ab +2.667·Hb·Ph -2.667·Ca02)·Pa02 -55.47·Ca02 =0 

• 

using an iterative programme capable of solving such equations. 

(3.9) 

The iso-shunt lines produced by these equations were found to give satisfactory prediction of 

Pa02 for Fr02 in the range 35 to 100 %. Petros et al (1993) extended the model behind the iso

shunt lines so that it would behave correctly for FI02 below 35 %, as found during O2 delivery 

via a ventimask. This required the inclusion of a 2-compartment representation of mismatch of 

ventilation-perfusion ratios in addition to shunt. 
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3.3 Black-Box Models 

An altogether different approach to the prediction of alveolar oxygen and carbon dioxide tensions 

from those previously mentioned has been proposed by Rudowski et al [1991]. They have used 

linear multiple regression techniques with Pa02 and PaC02 as the dependent variables to construct 

statistical models for individual patients, specific diagnostic groups and general patients. The 

usefulness of the approach is that such analysis may bring about a better understanding of the 

factors influencing arterial gas tensions in ventilated patients with acute respiratory failure. This 

can be thought of as clinically-based sensitivity analysis. 

Twenty patients were assessed falling into three patients groups; those with pneumonia, chronic 

obstructive pulmonary disease (COPD) and left ventricular failure (L VF). The equations used for 

regression analysis were of the form; 

Pa02 =Yl =allx1+ .. ·+a1nxn +alO 

PaC02 = Y2 = a21xl + ... +a2nxn + a20 
(3.10) 

where yare the predicted values, Xi are the independent variables (i.e. the settings and measured 

variables) and aij are the regression coefficients, determining the significance of each variable. 

The variables initially included in the regression for PaC02 models were as follows; VT (tidal 

volume), RR (respiratory rate), slope-C02 (phase III capnogram slope), Cetco2 (end-tidal CO2 

concentration), VC02 (C02 production), HR (heart rate), BPsys (systolic blood pressure), and 

BPDIAS (diastolic blood pressure). For the Pa02 models; VT, RR, HR, BPSYS, BPDIAS, slope

CO2, VD (dead space volume) and PEEP (end expiratory pressure) were considered. 

The pertinent variables were selected after regression using the full variable set, using the F

statistic set at a certain threshold. The regression coefficients were then re-calculated. 

Correlation coefficients for the models obtained were highly variable, ranging from 0.22 to 0.98. 

This variability is unacceptable and highlights the major problem with linear regression analysis 

applied to what is after all a non-linear system. Also, any models arrived at do not readily imply 

information about the various physiological states, since parameters such as dead space are not 

always included in the final equation. 

3.4 Summary & Conclusions 

This chapter has described the classification of respiratory models according to process and 

implementation. Models of lung mechanics, gas exchange, gas dissociation and respiratory 

control have been described, as well as integrated models combining aspects of the 

aforementioned elements. Particular attention has been drawn to integrated models describing 

respiration during mechanical ventilation of patients performing no breathing for themselves, 

since such a model is required to test the ventilator advisor developed in this thesis. The next 

chapter describes the development of just such a patient model, followed in Chapter 5 by its 

clinical validation. 
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Chapter 4: SOPA Vent - Patient Model Development 

4.1 Introduction 

This chapter describes the development of SOP AVent (Simulation Of Patient under Artificial 

Ventilation), a patient model suitable for the validation of the ventilator therapy advisor. The model 

equations are presented first. However these do not constitute the final model, since improvements 

were required in order to provide patient observations not initially fore seen. These modifications are 

discussed in Chapter 7. The prototype model equations fall into five broad categories; 

1). Oxygen transport equations. 

2). Oxygen dissociation function and the calculation of its inverse. 

3). Carbon dioxide transport equations. 

4). Carbon dioxide dissociation function, again with the calculation of its inverse. 

5). Airway mechanics and ventilator equations. 

The model elements were implemented using MArLAB and SIMULINK, with the O2 and CO2 

systems developed independently since cross coupling only occurs within the gas dissociation 

functions. In this way each model subsystem could be tested for functional validity before 

finally integrating them. The O2 gas dissociation function was developed first and tested against 

available data. Since the transport equations require the inverse of this function a suitable 

solution-searching algorithm is discussed. This was then incorporated into the O2 transport 

equations. In order to derive confidence in the O2 subsystem, a normal healthy patient scenario 

was constructed using available empirical formulae to set the parameters of the system. This 

was found to give reasonable arterial P02 figures and using known physical relationships the 

functional validity of the system is shown. 

This was then repeated for the CO2 subsystem, starting first with the development of the CO2 

dissociation function and its 'inverse. Again this was tested against published data. The CO2 

transport dynamics were tested using the normal patient scenario and gave realistic values for 

arterial Peo2. The two subsystems were then integrated and tested to see if normal patient 

values were maintained. 

4.2 Patient Model Architecture 

4.2.1 Overview 

Model complexity can soon escalate, as deeper physiological concepts are included, consequently 

a balance needs to be made between model complexity and functionality. A model with over 

simplifications will become unrealistic, providing little in the way of patient specificity. 

Conversely a complex model incorporating all known physiology becomes unusable, since model 

parameters cannot be matched to real patient data for the simple reason that they cannot be easily 

measured. Statistical models could be used but these cannot be physically interpreted. 
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Consequently the chosen model needed to be physiologically based but simple enough so that the 

majority of its parameters could be routinely measured within ICU. In this way the model could be 

matched to real patient data and would therefore be clinically meaningful. 

Based on these trade-offs, models describing the respiratory process on a breath-by-breath basis 

were rejected in preference for a continuous ventilation model describing the transport of gas 

volumes around the body using compartmental models. Also the modelling of the neurogenic 

drive was abandoned since the patients were assumed to be fully sedated and therefore unable to 

perform normal respiratory drive. The model constructed needed to respond to changes in the 

following ventilator settings; RR, Vr, F102, PEEP and I:E. It then needed to provide output of 

arterial and venous P02 and Pe02. Later this would be extended to include arterial and venous 

pH and PIP since they were required by the advisor (information that was not available during 

initial model development). 

The transport of O2 within the patient is described by a set of five linked differential equations 

and the CO2 transport by a set of five similar equations [Thomsen el al , 1989]. These represent 

a seven-compartment model that can be divided into two main groups, the lung system and the 

circulatory system, see Figure 4.1. 

The lung system is sub-divided into three functional areas (or compartments); the ideal alveolus 

where all gas exchange takes place (ideal perfusion-diffusion, V /0. = 1), dead space 

representing lungs that are ventilated but not perfused (V /0. = 00 ) and shunt representing those 

area that are perfused but not diffused as well as the anatomical shunts (V /0 = 0). This three

compartment model of the lung was devised by Riley (1949) and is now well accepted, although 

it does not enable the modelling of V /0. mismatch. 

The circulatory system is made up of four compartments representing the arterial pool, venous 

pool, pulmonary capillary bed and systemic tissue capillary bed. The venous pool behaves as a 

first order exponential time lag, emulating venous return. The arterial pool provides mixing of the 

shunted venous blood with the oxygenated blood from the lungs. The tissue capillary bed allows 

for the consumption of O2 and the production of CO2 as a result of the metabolic processes. The 

pulmonary capillary bed provides diffusion of the respiratory gases to and from the alveolar space. 

Embedded in the model are two inverse gas dissociation functions (GDFs) that convert O2 and 

CO2 contents to partial pressures. This facilitates the calculation of diffusion rates across the 

alveolar membrane since diffusion is driven by pressure gradient, whereas gas transport in the 

blood is described in terms of concentrations. These functions turn what is apparently a linear 

model into a non-linear one. 
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4.2.2 Oxygen Transport Equations 

The O2 transport dynamics are described by the following set of five linked differential 

equations, each describing the transport process of one circulatory compartment. 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

[ml O:zll blood] (4.6) 

(4.7) 

where 

Vx Where x = A, a, t, v, P - Volumes of alveolar, arterial, tissue, venous, and pulmonary 

compartments, respectively (litres) 

Qt Cardiac output (ml blood/min) 

X Fraction of blood shunted past lungs 

V0 2 Oxygen consumption by tissues (ml O/min, BTPS) 

VD Alveolar dead-space volume (ml, BTPS) 

VT Tidal volume (ml, BTPS) 

RR Respiratory rate (breath / min) 

CA02 Alveolar O2 content (ml O:zll alveolar gas) 

Cx02 Where x = a, t, v, p - Arterial, tissue, venous and pulmonary O2 content, respectively 

(ml O:zll blood) 

Pp02 Pulmonary partial pressure of O2 (kPa) 

t Time (min) 

F102 Inspired O2 gas fraction 

PB Barometric pressure (kPa) 

B02 Diffusion constant (ml 02lkPa/l blood) 
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Equation 4.1 describes the rate of change of arterial O2 content (Ca02) and can be thought of as a 

fixed volume compartment (Va), with two inputs and a single output, see Figure 4.2. Oxygenated 

blood from the pulmonary capillaries mixes with shunted blood from the venous pool to form the 

arterial blood. Blood flow rate through the arterial pool is determined by the cardiac output. 

The size of the arterial volume affects the transient response of the compartment, with larger Va giving 

a slower response. Dickinson [1977] used a pool volume of I litre, but this is a purely notional volume, 

since systemic blood volumes are well distributed and not easily separable. Estimates of compartment 

blood volumes taking into account a patient's mass are discussed in Section 4.4.2 
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----------------------------~ .-----. 

Oxygenated Blood .--" 
(I-X).Cp02 
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Mixed Blood 
Arterial Pool 

Va 

Blood Flow Rate Q/ 

Figure 4.2: Schematic of gas transport in the arterial compartment 

The rate of change of O2 content within the tissue capillary bed is described by equation 4.2. It 

represents a single input, dual output compartment with a fixed volume Vt. Mixed arterial blood 

(Ca02) enters the compartment and loses O2 as it diffuses into the neighbouring tissue, resulting 

in de-oxygenated blood flowing out of the tissue capillary bed, see Figure 4.3. The diffusion 

occurs because of a positive pressure gradient across the capillary membrane, and the rate of 

transfer is determined by Vo2 • 

CO2 Production 
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Blood Flow Rate Q/ 

Figure 4.3: Schematic of gas transport in the tissue compartment 
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Equation 4.3 describes the rate of change of venous O2 content (CV02) within the venous pool. It 

represents a simple compartment of volume Vv, with tissue O2 content (Ct02) as the input and venous 

02 content (Cv02) as the output, see Figure 4.4. This simply behaves as an exponential time lag. 

De-Oxygenated 
Blood Venous Pool 

Vv 

Blood Flow Rate Qt 

Venous Blood 

Figure 4.4: Schematic of gas transport in the venous compartment 

Equation 4.4 corresponds to the pulmonary capillary bed and describes a compartment of 

volume Vp, with two inputs and a single output. The inputs are; (1) non-shunted venous O2 

content (CV02), and (2) the O2 diffusing across the lung membrane (02Diff). The compartment 

output is the mixed and oxygenated pulmonary O2 content (Cp02). The blood flow rate through 

the compartment is (1- X)· Ot (Vmin), i.e. only non-shunted blood, see Figure 4.5. 
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Figure 4.5: Schematic of gas transport in the pulmonary compartment 

Equation 4.5 represents the change of alveolar O2 content (CA02) within the alveolar space, where 

the input is the inspired O2 fraction (FI02) and two outputs are; (I) the alveolar O2 content and (2) 

the O2 diffusing across the lung membrane (02Diff). It IS apparent from 

Figure 4.6 that this does not represent the bi-directional nature of the lung (i.e. the same input and 

output path), but describes the lung in terms of a fixed volume compartment (VA) with continuous 

input and output. Consequently the lung ventilation rate does not vary for each breath but remains 

constant so long as the tidal volume (VI) and the respiratory rate (RR) remain constant. 
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Figure 4.6: Schematic of gas transport in alveolar compartment 

The alveolar ventilation (VA) depends upon the size of the dead space (VD), corresponding to 

the anatomical dead space lumped together with other physiological dead space components, 

and is given in the first part of the equation 4.5 as; 

VA =RR·(Vr-VD) (ml/min) (4.8) 

Equation 4.6 calculates the rate of O2 diffusing into the capillary bed per litre of blood flowing 

through it and is derived from Fick's first law of diffusion. This law states that the volume of 

gas that diffuses per unit time (V) across a membrane, is directly proportional to the surface 

area of the membrane (A), the partial pressure difference of gas on either side of the membrane 

(PI - P2) and the diffusion coefficient for a particular gas (D), and is inversely proportional to 

the thickness of the membrane (~X); 

V = _D_._A_. _( R....:.I_-_P...:2_) 
LU'" 

(ml/min) (4.9) 

However, A and ~x remain unknown since the thickness and surface area of the alveolar

capillary membrane cannot be measured in a living subject. By rearranging equation 4.9 we 

arrive at an expression for the diffusion capacity as uptake of gas per minute (V) per kPa 

pressure difference (PA - Pp) with units of conductance (ml/minlkPa); 

D·A V 
DL =--=----

LU'" ( P A - Pp) 
[ml/minlkPa] (4.10) 

where 

PA Alveolar partial pressure of gas (kPa) 

Pp Pulmonary capillary partial pressure of gas (kPa) 
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Dividing the diffusion coefficient for O2 (D02) by the pulmonary blood flow gives the rate of O2 

diffusion per kPa difference per litre of blood; 

Eo = . D02 

2 Qdl-X) 
[ml 02lkPaJi blood] (4.11 ) 

Since de-oxygenated blood that flows into the pulmonary capillaries is at a lower partial 

pressure of O2 than in the alveolar space, the resulting negative pressure differential causes O2 

to diffuse into the pulmonary capillaries. Conversely the pulmonary blood contains lower Pe02 

than the alveolar space, causing a positive differential with the consequent diffusion of CO2 

from the blood into the alveolar space. 

The pressure gradient across the lung membrane is the difference between the alveolar O2 

partial pressure (PA02) and the pulmonary compartment O2 partial pressure (Pp02)' The alveolar 

POz is simply the alveolar Oz fraction multiplied by the airway pressure, which is assumed to be 

atmospheric pressure (PB); 

[kPa] (4.12) 

However, calculation of the Pp02 is not a straightforward matter. It is derived by calculating the 

inverse of the O2 gas dissociation function (02 GDF), adding non-linearity into a system, which 

has so far only been described in terms of linear first order differential equations. The O2 GDF 

derives Oz content from O2 partial pressure. However no explicit solution exists for the 

calculation of partial pressures from contents. Consequently an iterative procedure is required to 

calculate the inverse function. The next section describes the explicit O2 dissociation function 

and the method used to compute it's inverse. 

4.2.3 Oxygen Dissociation Function 

The O2 content of blood consists predominantly of oxygen in combination with haemoglobin 

plus a smaller component dissolved in the blood plasma; 

C (02) = Ph . Hb . S02 + a b . P02 [mIll blood] (4.13) 

The O2 combined with the haemoglobin is the product of the haemoglobin concentration (Hb), 

the O2 saturation fraction (S02) and the haemoglobin O2 combining capacity ( Ph)' The O2 

dissolved in the plasma is the product of the O2 carrying capacity of blood plasma (a b) and the 

partial pressure of O2 (P02). 

Values for ab are normally quoted as 0.225 m1lllkPa [Nunn, 1993; Taylor et ai, 1989 and others] and 

its effect is small, accounting for approximately 2% of the total ~ content. Typically haemoglobin 

content is 148 gil for men and 135 gil for women [Dickinson, 1977, p.l23]. Values for Ph vary 

considerably and the following levels have been quoted; 1.34 [Dickinson, 1977; Severinghaus, 1979; 

Nunn, 1993], 1.38 [Taylor, 1989], 1.39 [Alwan, 1992; Nunn, 1993] and 1.306 ml/g [Nunn, 1993; 

Gregory, 1974]. Of these 1.34 ml/g is the most widely accepted and has been used within the patient 

model developed here; where as 1.39 mllg is the theoretical maximum. 
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The saturation fraction is a function of O2 partial pressure. Several attempts to formulate this 

curve have been made [Severinghaus, 1979; Sharan, 1989; Alwan, 1992] but the most widely 

accepted formulation is the empirical set of equations derived by Kelman (1966) as used in the 

works of Dickinson (1977); Thomsen et al (1989) and Hinds et al (1984). His equation 

generates a curve indistinguishable from the true curve above a P02 of about 1 kPa (7.5 mmHg), 

and is given as; 

where 

al = -8.5322289 x 103 

a2 =21214010xl03 

a3 = -6.7073989 

and x is the virtual P~ as given by; 

x ~ 10 mmHg [fraction] 

a4 = 9.3596087 x lOS 

as = -3.1346258 x 104 

a6 = 2.3961674 x 103 

a7 = -6.7104406 

(4.14) 

Virtual P0 2 =[3.5774 ,Po2 XIO(A+B+C)]x[ 760 ] [mmHg] (4.15) 
Pso 101.325 

A = 0.024(37 - T) (4.16) 

B = 0.40( pH -7.4) (4.17) 

C = 0.06· log (5. 3329/Pco2 ) (4.18) 

Shifts in the dissociation curve due to abnormal pH, Pc~ and temperature (known as the Bohr 

effect) are accounted for by the modifiers A, B and C. A normal curve is produced when the 

temperature is 37°C, pH is 7.4, and Pc~ is 5.3329 kPa (40 mmHg). An increase in temperature or 

Pc~ right shifts the curve where as a reduction shifts the curve to the left. Conversely an increase in 

pH shifts the curve to the left and a reduction in pH shifts it to the right, see Figure 4.7 (b) to (c). 

Also included within the virtual P~ equation, and not originally included by Kelman is an 

effect due to shifts in the Pso point [Ingram & Bloch, 1986]. This is the 50% saturation normal 

operating point of the curve and can be offset by various pathological conditions. It is normally 

3.5774 kPa but can have higher values in haemoglobin abnormalities such as San Diego and 

Chesapeake, or lower values in sickle and Kansas. The presence of the organic phosphate 2,3-

diphosphoglycerate in the erythrocyte can also have a pronounced effect on Pso , with higher 

levels increasing the Pso point. 

Finally, the ratio 760/101.325 converts the virtual P02 from kPa to mmHg since equation 4.14 

expects the partial pressures in rnrnHg. 
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However, Kelman's original polynomial expression produces negative values for virtual p~ 

below 1 kPa (see Figure 4.7a). He suggested an improved formulation of saturation for virtual 

p~ below 1.33 kPa (10 mmHg), [Sharan etal, 1989]; 

S02 = 0.003683x + 0.000584x2 x < 10 mmHg [fraction] (4.19) 
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20 
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Figure 4.7: (a) Errors associated with Kelman's GDF and their correction using the improved 
formulae below 10 mmHg; (b) Shifts in the GDF curve associated with changes in Pc~ from 
the normal of 5.333 kPa; (c) Shifts in the GDF curve associated with changes in pH from 7.4; 
(d) Shifts in the GDF curve associated with changes in temperature from 37 °e. 
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4.2.4 Inverse O2 Dissociation Function. 

However, the inverse of the O2 GDF is required, since diffusion across the pulmonary-alveolar 

membrane is driven by the pressure gradient across it and O2 in the pulmonary compartment is 

modelled as content (ml 0711 blood). Explicit solutions do not exist and therefore an iterative 

approximation method must be employed. For the sake of simplicity a simple secant gradient 

approach method was used [Atkinson et ai, 1989]. This uses an estimate of the curve's gradient to 

derive a new approximation ofPo2 (Pest), given a target value of O2 content (Cr), see Figure 4.8. 
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Figure 4.8: Secant approximation ofPo2 from C(02). 

14 

The gradient estimate is established from starting values of P~ (Po and PI) and their 

corresponding O2 contents (Co and CI), calculated using the O2 GDF. A new estimate ofP~ is 

then given by; 

(4.20) 

The initial estimates of Po and PI are then updated; 

(4.21) 

This procedure is then repeated until; 

Ipest - Po I::; err (4.22) 

where err is the convergence error tolerance (kPa). For each calculation of O2 content the other 

blood parameters must be specified; i.e. temperature, pH, Peo2 and Hb. 
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4.2.5 Carbon Dioxide Transport Equations 

The CO2 transport equations are analogous to those of the O2 system and are given as; 

_o_Ct_C_O.::..2 • Vt = Qt . [CaC02 - CtCo2 ] + Veo2 
ot 

_O_CV_C_O.=..2 . Vv = Q, . [CtC02 - CvC0
2 

] 

ot 

where all parameters are as before except for; 

[ml CO~ blood] 

Veo2 Carbon dioxide production by tissues (ml COimin, BTPS) 

CAC02 Alveolar CO2 content (rnl COil alveolar gas) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

CxC02 Where x = a, t, v, P - Arterial, tissue, venous and pulmonary CO2 content, 

respectively (ml COil blood) 

PpC02 Pulmonary partial pressure of CO2 (kPa) 

HC02 Inspired CO2 gas fraction (BTPS) 

Bco2 Diffusion constant (ml COz/kPa/1 blood) 

Within the pulmonary compartment the pressure gradient is reversed with PC~ higher in the 

pulmonary capillaries than in the alveolar space, since inspired air contains effectively zero CO2 

(FIC02 = 0.04% [Martini, 1992]). As a consequence, CO2 diffuses out of the blood into the 

lungs, see Figure 4.5. This is expressed via the sign changes in the C02Diff components of 

Equations 4.26 and 4.27. 

Similarly within the tissue compartment (equation 4.24) the pressure gradient is reversed since 

CO2 is produced by the metabolised tissue at a rate of Veo2 (mllmin) and diffuses into the 

tissue capillaries, see Figure 4.3. 

As with 02Diff, the calculation of C02Diff requires the inverse calculation of the CO2 gas 

dissociation function. The explicit dissociation function for computation of C(c~) from Pc~ is 

described in the next section. 
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4.2.6 Carbon Dioxide Dissociation Function 

The CO2 gas dissociation function was based upon Kelman's algorithm [1967]. This first 

derives the total CO2 content of the plasma (square brackets indicate total CO2 concentration, 

i.e. dissolved plus combined CO2 within this algorithm description) from its pH and PCCh, using 

the Henderson-Hasselbalch equation; 

[mVlitre] (4.30) 

where a is the solubility of CO2 in plasma. Both a and pK are temperature dependent, and in 

addition pK varies with pH. The temperature dependence of a is expressed as; 

a = (0.0307 + 0.00057· (37 - T) + 0.00002· (37 - T i). ( 760 ) 
101.325 

[mM/litre/kPa] (4.31) 

where T is blood temperature and the fraction (7601101.325) converts the units from 

mMlL/mmHg to mMlLlkPa. The expression for pK is given by; 

pK = 6.086 + 0.042· (7.4 - pH) +(38 - T) ·(0.0047 + 0.0014· (7.4 - pH)) (4.32) 

The ratio of [C02] in the cells to [C02] in plasma is thcn computed by linearly interpolating 

bctween experimentally derived quadratic expressions of the ratio for fully oxygenated and 

reduced blood; 

Re duced Ratio=0.664+0.2275(7.4 - pH) - 0.0938(7.4 - pH) 1 (4.33) 

Oxygenated Ratio = 0.590 + 0.2913(7.4 - pH) - 0.0844(7.4 - pHi (4.34) 

The ratio is then determined using the observed oxyhaemoglobin saturation fraction (S02), as 

calculated within the O2 GDF; 

d = {(Oxygenated -Reduced) xSo1 } +Reduced (4.35) 

Finally the whole blood CO2 content is then calculated from the expression; 

(4.36) 

Substituting d and re-arranging, gives; 

[C01]BLOOD = 22.2·[C0 2]PLASMA· {d,pcv+(l-pcv) [mIlL] (4.37) 

where pcv is the packed cell volume fraction (or haematocrit), and the factor 22.2 converts 

final units from mMllitre to mIlL. 

A typical dissociation curve produced using these formulae is given in Figure 4.9. The blood 

temperature was assumed to be 37 °C, the O2 saturation 90 % and the haematocrit 40%. 
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Figure 4.9: The CO2 dissociation curve with pH derived using the modified Henderson
Hasselbalch equation [Taylor et ai, 1989, p244] (see Section 6.7.3); since increased PC~ will 
reduce the effective pH 

4.2.7 Ventilator Model 

In the gas transport equations 4.6 and 4.28, the partial pressures of O2 and CO2 within the 

alveolar space are calculated using barometric pressure (PB) as given by; 

(kPa) (4.38) 

where PAx and CAx are the partial pressures and contents of gas x respectively. This is used to 

detennine the pressure gradient across the lung membrane. A better solution is to use the mean 

airway pressure (PMEAN) instead of PB, since during inspiration and expiration the pressure in the 

alveoli will vary, but the transport dynamics model does not operate on a breath-by-breath basis. 

Since the patient model will only represent ventilated patients (and of these only the subset 

under volume controlled ventilation) the pressure wavefonn can be described by a square wave. 

This represents intennittent positive pressure ventilation (IPPV) and will deliver a fixed volume 

(VT) within time tl, see Figure 4.10. 

PMEAN is therefore given by; 

PMEAN == {(PIP - PEEP) x t I } + PEEP + PB 
tl + tE 

(kPa) (4.39) 

tl I: E 
and --"-- = ---
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where; 

PEEP is positive end-expiratory pressure (kPa) 

PIP is peak-inspiratory pressure (kPa) 

I:E is inspiratory-expiratory ratio 

tl inspiratory time (sec) 

tE expiratory time (sec) 

tr 
I ta tl I 

iii iI,_ IIi 
Pip 1--' 

PMEAN ,. ..-.. -. ..-.. - .. - .. -" ._ .. _ .. _ .. - _ .. _ .. _ .. _ .. _.. "-"-"-"- .-.. - .. 

Peep" .......... ---

Time 

Figure 4.10: Pressure waveform of mechanical ventilator 

In a fixed volume delivery system PIP will depend upon the resistance of the airway (RAW) and the 

compliance of the lung (CAW). This influences ventilator strategy since high ventilation pressures 

can lead to clinical complications. In spontaneously breathing patients this would lead to reduced 

tidal volumes and increased respiratory frequency due to the increased work of breathing. 

This ventilator model assumes that PIP can be measured. However, if the model is to be useful 

for advisor validation then it must be able to model changes in PIP due to changes in ventilator 

strategy. This and other model improvements are dealt with in Section 7.3. 

4.2.8 Unit Conversion 

Many of the observations made in ICU are recorded using units and observation conditions that 

do not match those assumed within the patient model equations. The patient model assumes that 

all measures of gas volume, fraction and flow-rate are expressed at BTPS (body temperature 

pressure saturated) in standard international (S.I.) units, and that all other model parameters are 

in S.I. units. For example inspired O2 fraction is routinely expressed as percentage of inspired 

gas at STPD (standard temperature pressure dry), but the model assumes it to be fraction of 

inspired gas at BTPS. Therefore conversion is required from one unit to another and from one 

set of observation conditions to another. 

In order to keep track of what units and conditions an observation is expressed in, a three-valued 

representation for each patient parameter was employed, thus [value, unit, conditions J . The 

first term represents the value of the parameter, the second term an index corresponding to the 

units of the value (e.g. CMH20=1, MMHG=2, KPA=3, etc) and the third term an index 

referring to the observation conditions (STPD=l, BTPS=2, etc). 
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Gas Volumes & Flow Rates 

Three factors affect the actual volume of a gas (I) the temperature of the sample, (2) the water 

vapour pressure of the sample and (3) the atmospheric pressure at which the sample was made. 

If a volume of gas is measured at STPD then the temperature is 0 °C, the water vapour pressure 

is 0 kPa and the atmospheric pressure is 101.325 kPa. 

At increased temperature the volume of the gas increases. If the gas sample is saturated with 

water vapour (i.e. 100 % relative humidity) then any increase in temperature, will increases the 

water vapour pressure, which will reduce the gas volume. The level of water vapour pressure 

(PH20) is dependent upon temperature, because the warmer the air the more water it can retain. 

This is the reason why it rains when a cold air front meets warm air since the cooling air is less 

able to retain the water vapour. 

Using these relationships it is possible to derive an expression that converts a volume of gas 

from one set of observation conditions to another; 

(
273.15+T(NEW))(PB(OW)- PH20(OW) ) 

volume (NEW) = volume (OW) 
273.15 + T(oW) PB(NEW) - PI!20(NEW) 

(4.40) 

where volume(ow;. T(ow) and PB(ow) are the observed volume and conditions under which it was 

measured, and PH~(ow) is the water vapour pressure at the observation temperature and relative 

humidity (RH). Similarly, T(ow), PB(ow) and PH~(ow) are the new conditions under which the volume 

needs to be expressed. Temperature is given in units ofoC and PB and PH20 are given in kPa. 

PH20 is calculated using the polynomial expression of equation 4.41, derived from the empirical 

relationship between temperature (1) and PI-hO (see Figure 4.11). The additional term RHllOO 
accounts for the relative humidity of the sample. 

PH20 = (683.67 x 10-3 T3 -12985 x 10-3 T2 + 673.55T + 49.269)x (RH) (kPa) (4.41) 
100 
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Figure 4.11: Relationship between air temperature and saturated water vapour pressure. 
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m STPD to BTPS Conversion 

If a volume is to be converted from STPD to BTPS equation 4.40 reduces to; 

volume( BTPS) = volume(sTPD) (
273.15+T(BODY)J( PB ) 

273.15 PB-PH20(BODY) 
(4.42) 

where T (BODY) is the patient's temperature and PH}O(BODY) is the saturated water vapour pressure at 

body temperature (approximately 6.27 kPa). O2 consumption and CO2 production are normally 

given in STPD and therefore require this conversion before being used by the model equations. 

OJ) ATPS to BTPS Conversion 

If a volume is converted from ATPS (atmospheric temperature pressure dry) to BTPS then 

equation 4.40 becomes; 

(
273.15+T(BODY)) ( PB-PH20(AIR) ) 

volume( BTPS) = volume(STPD) 
273.15+T(AIR) PB- PH20(BODY) 

where T(A/II) is the ambient temperature (0C) and PH}O(A//I) is the PH20 at T(AJI?). 

Parameter Typical Observation Model 

Units & Conditions Units & Conditions 

F102 percent, STPD fraction, BTPS 

FIC02 percent, STPD fraction, BTPS 

PEEP cmH20 kPa 

VT ml, ATPS ml, BTPS 

BPsys mmHg kPa 

17°2 ml/min, STPD ml/min, BTPS 

Ve02 ml/min, STPD ml/min, BTPS 

QJQ, percent fraction 

RAW cmH20llitre/s kPailitre/s 

CAW Iitre/cmH20 IitrelkPa 

PIP cmH20 kPa 

PB mmHg kPa 

PCV percent fraction 

(4.43) 

Table 4.1: Summary of observation units and conditions of various parameters used within the 
patient model, together with the units and conditions required by the model equations. 
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Gas Fractions 

With gas volumes expressed as percentages (or fractions) of total volume then assuming that all 

the atmospheric gases obey an ideal gas law, the fraction of gas will remain constant with 

increase in temperature. However, increased water vapour pressure will reduce the effective gas 

fraction as given by; 

. . (PB-PH 20(OW) J 
jraCtion( NEW) = jractlOn(OW) 

PB-PH 20(NEW) 
(4.44) 

Table 4.1 summanses those parameters used within the patient model that are routinely 

measured using different units and/or conditions. 

That concludes the descriptions of the equations behind the original model architecture and the next 

sections 4.3 through 4.7 describe the implementation of the equations and there functional validation. 

4.3 O2 Dissociation Function Developmen t 

4.3.1 Functional Validity 

The O2 gas dissociation equations described in Section 4.2.3 were implemented as a MA1LAB 

function with the input-output structure as shown in Figure 4.12 and tested for functional 

validity. The results obtained using the MATI..AB function matched published results of the 

Kelman algorithm [Sharan et ai, 1989], indicating correct functional implementation. 

Primary Input Oxygen GDF 

Pe02 pH Temp Hb PSG 

Secondary Inputs 

Primary Output 

Secondary Outputs 

S02 

Figure 4.12: Schematic representation of the O2 GDF showing inputs and output parameters. 

4.3.2 Clinical Validity 

No papers could be located in which the O2 dissociation function was validated against clinical 

data. Instead those that were found continued to compare new curves against a series of older and 

assumed GDFs. The one source of clinical data that was found (Sharan et ai, 1989) used assumed 

or calculated values of pH rather then directly measured values, neither of which was wholly 

satisfactory. However, in order to gain a 'feel' of the GDF's validity, two tests were made. 
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Validation against Severinghaus Data 

The first of these used the data of Roughton & Severinghaus (1973) which they termed the 

Standard Human Blood O2 Dissociation Curve (SHBODC), see Table 4.2. The difference 

between the computed saturation using the MATLAB GDF and that of the SHBODC were 

calculated, see Figure 4.13. Peo2 was assumed to be 5.333 kPa (the normal position of the 

dissociation curve), pH to be 7.4 and blood temperature to be 37 °C, as per the SHBODC. Also 

compared against the SHBODC were saturations estimated using the modified Hill equation 

described by Severinghaus, as expressed by the following equation; 

Sat=~--_____ l ______ ~_ 

( 
3 1 x 23.400) + 1 

(POz +IS0POz ) 

(4.45) 

P~ Saturation POl Saturation P~ Saturation 
(mmHg) (%) (mmHg) (%) (mmHg) (%) 

1 0.60 34 65.16 80 95.84 

2 1.19 36 68.63 85 96.42 

4 2.56 38 71.94 90 96.88 

6 4.37 40 74.69 95 97.25 

8 6.68 42 77.29 100 97.49 

10 9.58 44 79.55 110 97.91 

12 12.96 46 81.71 120 98.21 

14 16.89 48 83.52 130 98.44 

16 21.40 50 85.08 140 98.62 

18 26.50 52 86.59 150 98.77 

20 32.12 54 87.70 175 99.03 

22 37.60 56 88.93 200 99.20 

24 43.14 58 89.95 225 99.32 

26 48.27 60 90.85 250 99.41 

28 53.16 65 92.73 300 99.53 

30 57.54 70 94.06 400 99.65 

32 61.69 75 95.10 500 '99.72 

Table 4.2: Values for the Standard Blood O2 Dissociation Curve @ 37 °C, pH = 7.4 
[Severinghaus, 1979] 
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Figure 4.13: Errors between Standard Human Blood O2 Dissociation Curve and computed 
values using Kelman equations (1966) and Hill equations [Severinghaus, 1979] 

% Saturation 

No P(Ol) P(COl) pH Measured Calculated Error % Error . (mmHg) (mmHg) (Sharan et af) (Kelman) 

1 96.0 43.0 7.40 98.00 97.23 0.77 0.78 

2 66.0 36.5 7.40 91.00 93.22 -2.22 -2.43 

3 52.0 34.8 7.40 84.90 86.97 -2.07 -2.43 

4 41.0 33.8 7.40 76.20 76.07 0.13 0.17 

5 36.0 31.8 7.40 71.20 68.73 2.47 3.46 

6 35.0 29.4 7.40 70.80 67.30 3.50 4.94 

7 74.0 40.6 7.40 94.00 94.90 -0.90 -0.95 

8 57.0 39.4 7.40 88.70 89.70 -1.00 -1.13 

9 55.0 35.0 7.40 88.10 88.84 -0.74 -0.84 

10 49.0 40.0 7.40 83.00 84.31 -1.31 -1.58 

11 36.0 33.2 7.40 72.20 68.57 3.63 5.03 

12 94.0 41.0 7.39 98.00 97.05 0.95 0.97 

13 60.0 33.9 7.44 91.00 92.14 -1.14 -1.25 

14 51.7 28.8 7.49 86.70 89.82 -3.12 -3.60 

15 47.6 29.5 7.48 84.50 86.79 -2.29 -2.93 

16 44.6 27.1 7.51 78.00 85.56 -7.56 -9.69 

Table 4.3: Comparison of experimental and calculated saturation using data ofSharan (1989) 
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It would appear from these graphs that the Modified Hill equation performed better than the 

Kelman algorithm, having a maximum error of 0.546 % saturation, compared to 2.229 % 

saturation using the Kelman algorithm. However, this merely indicates that the Modified Hill 

equation fits the Standard Human Blood data more accurately. Since the SHBODC was of 

unknown source and validity, it does not tell us much. Also the Hill equation does not provide 

correction for pH, temperature and Peo2 and therefore the Kelman algorithm provides a more 

comprehensive interpretation of the dissociation curve. 

Validation against Sharan Data 

The second pseudo-clinical validation was performed against the data of Sharan et al (1989). 

These data were taken from Environmental Biology (1966, Ed. Altman P.L. & Dittmer D.S., 

Pub. Federation of American Societies for Experimental Biology, Bethesda, Maryland, pp.362-

364). The first eleven values correspond to simulated altitude, where they have assumed pH is 

equal to 7.4. The remaining values correspond to incomplete acclimation, where pH was 

calculated from the Peo2, using the procedure described by Kelman (1968), see Table 4.3. 

Excluding entry 16, which appears to indicate experimental error, the largest observed 

saturation error was 3.63 % saturation (entry 11), compared to 2.32 % using the Sharan data. 

The mean absolute error was 1.75 % ± 0.84 (confidence interval 99 %), compared to 1.03 % ± 
0.56 (confidence interval 99 %) using the Sharan O2 GDF equation. Given possible inaccuracies 

in the experimental data, the Kelman function has performed with a similar degree of accuracy. 

Whilst these assessments do not provide a complete picture of the dissociation function's 

clinical validity, they do show that its behaviour matches expected dissociation curve 

characteristics. 

4.3.3 Inverse O2 GDF Validity 

The inverse of the explicit dissociation function was implemented as a MAlLAB function with 

the input-output structure as shown in Figure 4.14. 

In order to assess the validity, accuracy and performance of its implementation, a range of O2 

contents were calculated from known O2 partial pressures using the previously validated O2 

GDF. These were then applied to the IGDF. Any differences between the known and estimated 

P02 were recorded, along with the number of iterations taken to reach the solution and the final 

pressure error. The original P02 values used for this test were 1 to 50 kPa in 1 kPa steps. 

As expected the resulting P02 errors fell below the iteration error tolerance (err), see 

Figure 4.15, which in this case was 0.01 kPa. This was repeated for convergence error 

tolerances of 0.001, 0.1 and 0.5 kPa. The function call times and number of iterations required 

to converge were recorded for each P02 step. These were then averaged to give a measure of 

function performance. In this way the effect of increasing err could be assessed, see Table 4.4 

(test 1 to 4). Improvements in iteration performance were not large, even with an err of 0.5 kPa. 
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Figure 4.14: Schematic representation of the inverse O2 GOP showing inputs and outputs. 
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Figure 4.15: Observed errors in P02 across the P02 space generated using the IGDF. 

Test err Po PI Run Time Ave. No. 
(mill) (kPa) (kPa) (sec) Iteration 

1 0.001 4 6 12.69 8.28 

1 0.01 4 6 12.57 8.10 

3 0.1 4 6 11.26 7.20 

4 0.5 4 6 9.72 6.38 

5 0.01 ± 1O%t S.28 3.22 

6 0.1 ± 10%t 3.95 2.34 

t Po and PI updated using bounded tracking 

Table 4.4: Comparison of average computation times and number of iterations for various 
convergence error tolerances. Performed using normal (1 to 4) and bounded P02 tracking (5-6). 
[Hb = 140 gil, pH = 7.4, T = 37°C, PC02 = 5.333 kPa, Pso = 3.577 kPa]. Run times are based 
upon a 4860X 33 MHz computer. 
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Improved Algorithm: (Bounded POz Tracking) 

During simulation C(~) values are unlikely to make rapid changes as they are restricted by a 

first order differential law. Consequently the last P02 estimate may be utilised to give improved 

convergence times. 

New values for Po and PI are obtained by subtracting and adding respectively, a fraction of the 

last P~ estimate, thus encapsulating the last P02 estimate and providing a good initial estimate 

of the function gradient near to the expected solution, see Figure 4.16; 

Po = (1- fraction) x last P02 

PI = (1 + fraction) x last P02 

Possible Position of Ne>.t Solution 

Last Estimate ofPo2 

-10%:+10% • 

I 1 
:-----1 
I 

I 1 
I 
I 

~: 

O2 Partial Pressure 

(4.46) 

Figure 4.16: Diagram showing how bounded P02 tracking improves solution targeting by 
bracketing the next theoretical P02 estimate. 
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Figure 4.17: Graphs comparing the number of iterations required to arrive at P~ solution 
across the P02 space with an iteration error tolerance of 0.0 1 kPa;. (a), with normal iteration and 
(b). with 10 % bounded P~ tracking. 
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With a bracketing fraction of ± 1 0 % the average number of iterations reduced from 8.1 0 to 3.22 

for an error tolerances of 0.0 1 kPa and from 7.20 to 2.34 for an error tolerance of 0.1 kPa. 

Examination of the iteration performance across the P~ space for normal and bounded iteration 

(see Figure 4.17) indicated a broad band improvement in performance by utilising bounded P~ 

tracking. Normal iteration provides optimal performance between 2 and 8 kPa. However, typical 

p02 values in ventilated patients tend to be higher, between 8 and 20 kPa. This would lead to 

poor function performance. A more uniform iteration distribution was achieved with bounded 

P02 tracking, giving less than 5 iterations in the range 2 to 50 kPa, hence a greater likelihood of 

reduced call times. 

4.4 O2 Transport Dynamics Development 

4.4.1 Model Implementation 

The equations describing the O2 transport were implemented using the MATLAB and SIMULINK 

environment described in Appendix A. Each transport equation was converted into a state space 

form where the compartment output is expressed in terms of the integral of the partial 

derivative. This is best explained by way of an example. Consider the equation for O2 transport 

in the venous compartment (see equation 4.3); this can be rearranged to give; 

(mlllitre) (4.47) 

Using this equation an analogue computer of the compartmcnt can be constructed, see 

Figure 4.18. It is then a simple matter to build such a model using SIMULINK (see Figure 4.19) 

which can be solved using numerical integration tcchniques. 

+ 

Figure 4.18: Analogue computer representation of venous compartment equation. 

Of the methods provided by SIMULINK the Adams/Gear [The Math Works Inc, 1991] approach 

was used, being well suited to systems with both fast and slow dynamics. It is a variable step

length method switching between Adams and Gear algorithms depending upon the rate of 

change of the state variables. This gives good accuracy during periods of rapid change (e.g. after 

a step change in input) and fast simulation times once the transients of a system have settled. 

Using the block diagram approach it was possible to rapidly construct state space models for 
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each of the model equations, see Appendix A (note these are the final model diagrams and not 

the prototype model). Since SIMULINK enables the construction of sub-systems the 

compartmental models can be linked to form a complete patient model. 

Figure 4.19: Venous compartment modelled using SIMULINK (see Appendix A) for explanation 
of model components. 

The SIMULINK model (BROPUS - Block Representation of Patient Under Simulation) is 

controlled from the MAlLAB workspace via program scripts. These scripts declare the patient 

parameters appertaining to a given patient scenario and are passed into the SIMULINK 

environment via variable declarations within the SIMULINK blocks. For example in the venous 

compartment there is a block that defines the cardiac output (labelled sCQ). This is a gain block 

and by double clicking on the block a dialogue box appears enabling the value of the gain block 

to be defined. Instead of it containing a value, it contains a pointer (seO) to a value in a globally 

declared patient scenario array. In this way a value for cardiac output can be declared within 

MAlLAB and passed into BROPUS before simulation commences. 

4.4.2 Derivation & Source of System Parameters 

There were a lot of parameters to be defined within the O2 dynamics model. Some of these 

would be provided by patient measurements and some would be derived from other parameters. 

In order to clarify this the following section describes each system parameter according to its 

classification (e.g. Blood, Patient, Ventilator paramcter) and to what clinical sources it can be 

attributed. This was done so that a 'normal' patient could be constructed in order to assess the 

'ball park' accuracy of the model. Some of the paramcters are based on quoted values, whilst 

others are obtained using empirical formulae. 

Blood Parameters 

{iJ Temperature & pH 

Normal values for these parameters are widely accepted to be 37°C and 7.4 respectively. These 

are the values that cause no left or right shifting of the gas dissociation curves [Kelman, 1967]. 

00 Haemoglobin 

Values for the standard average haemoglobin (Hb) contents are given as 148 gIL for males and 

135 gIL for females [Dickinson, 1977, p.l23]. 
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OW p50: 50 % Saturation Point 

This is simply the 50 % saturation operating point of the 02 GDF curve. It is calculated empirically 

from the normal blood GDF curve, produced using the Kelman equations [Kelman, 1967]. The 

normal curve is produced when pH = 7.4, temperature = 37°C and P(C02) = 5.333 kPa. The default 

value for P50 is 3.5774 kPa, and this is the value assumed for a normal healthy patient. 

Patient Parameters 

0) Oxygen Consumption 

Early tendencies have been to assume that patients consume approx. 250 ml of O2 per minute 

(V02 ) [Nunn, 1993, p.259], but many factors co-exist that often lift it above this basal level in a 

patient supposedly at rest. It is not possible to deal with these here, but the empirical 

relationship between V02 and weight is dealt with by Dickinson (1977, p.122), and is given by; 

V0 2REST = 10.33xWTo.7s (mllmin, STPD)(4.48) 

where V0 2REST is the O2 consumption at rest and WT is the patient's weight in kg. 

(iO Cardiac Output 

Typical values for cardiac output, Ot, are quoted at 5 lImin [Selvakumar el ai, 1992], but a more 

useful formula exists [Dickinson, 1977, p.l22] using the previously described term, V0 2REST; 

Ot(nom) = 0.0195 x Vo 2 REST 

where Qt(nom) is the nominal resting cardiac output. 

(iii) Dead Space 

(11m in) (4.49) 

Typical values for dead space (VD) are quoted as between 150 and 170 ml [Dickinson, 1977]. 

A more useful empirical solution is provided by Taylor el al [1989, p.33]; 

Vo = 2.205 x WT 

where WT is body weight in kilograms. 

(iv) Shunt or Venous Admixture 

(ml) (4.50) 

Estimates of normal shunt (Os/Ot) vary from source to source; Dickinson (1977, p.51) gives < 
3 %; Taylor el al (1989, p.130) gives < 2-3 %; and Nunn (1993, p.l80) gives ~ 1-2 %. A 

Osl Qt of 3 % of cardiac output has been assumed for the purposes of 'ball park' validation. 

~ Diffusion Rate 

A formula to estimate O2 diffusion capacity (D02) using estimates of the functional residual 

capacity (FRC) and age (AGE), is given by Dickinson (1977, p.l23); 

002 = (7.6XFRC+5)X(100-~AGE) 
100 

~AGE = 120 - AGEl 
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where MGE is the difference in age from 20 years old and FRC is calculated using 

equation 4.56. A 6' 0" tall (183-cm), 20-year-old male will have an FRC of3.81Iitres, giving a 

D02 of34 mVminlmmHg (or 255 mVminlkPa). This is lower than the normal D02 values quoted 

by Selvakumar et al (1992) of 60 mVminlmmHg (450 mVminlkPa) and Piiper & Scheid (1981, 

p.204) of 54 mlIminlmmHg (405 mVminlkPa). 

(vi) Age. Height. Weight & Sex 

These are self-explanatory and for the purposes of 'ball park' validation a 20 year old male, 

weighing 75 kg and of height 183 cm (6' Oil) was assumed. 

(vii) Compartmental Volumes 

Venous Blood Volume: is typically quoted as 3 litres, which is given as approximately 60 % of 

the whole blood volume (VWB) [Dickinson, 1977, p.44]. VWB (in litres) can be estimated by 

taking 7 % of body weight (WT) in kilograms [Martini, 1992, p.607]~ 

VWB = 0.07xWT (litre) (4.52) 

Alternatively, VWB can be considered equal to the resting nominal cardiac output, Qt(nom), in 

normal healthy patients [Dickinson, 1977, p.122] as given by equation (4.49). 

Then if we know VWB' the venous blood volume (VV) is simply; 

Vv = O.6xVWB (litre) (4.53) 

Given a patient of weight 75-kg, VWB is 5.25 litres using equation (4.52), which gives a Vv of 

3.15 litres. This compares to a VWB of 5.13 litres using Qt(nom), which gives a Vv of 3.08 

litres; a difference of 2.2 %. This indicates that the equations are comparable and can be 

substituted in place of one another. Both results agree well with the V v rule of thumb value of 3 

litres. 

Figure 4.20 shows the relative distribution of blood in the circulatory system [Martini, 1992]. 

The venous blood volume includes the venous reservoirs (21 %), the large veins (18 %) and the 

venules (25 %), giving a total systemic venous volume of 64 %. This agrees closely with 

Dickinson's approximation of 60 %. 

Arterial Blood Volume: By referring again to Figure 4.20, we can consider the heart, aorta, 

elastic arteries, muscular arteries and arterioles to constitute the arterial blood volume (Va) , 

giving a percentage of whole blood of 20 %. Again by taking 20 % of 5.25 litres we arrive at a 

Va of 1.08 litres, which correlates well with Dickinson's [1977, p.22] approximation of 1 litre. 

The heart was included as part of the systemic arterial system since its volume is not modelled 

anywhere else in the O2 dynamics model. 

Tissue Blood Volume: This includes all the blood in the capillaries, excluding those of the 

pulmonary circuit and approximates to about 7 % of the total blood volume. Based on a VWB of 

5.25 litres this gives a tissue blood volume (Vt) of 0.368 litres. 
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Figure 4.20: Distribution of blood in the circulatory system [Martini, 1992, p.672] 

Pulmonary Blood Volume: Approximately 9 % of the total blood volume is contained within the 

pulmonary circuit (or 10 % according to Nunn et ai, 1993), giving a pulmonary blood volume (Vp) 

of 0.473 Iitres, based on a VWB of 5.25 Iitres. Table 4.5 summarises the percentages of total blood 

volume for each compartment and gives expected volumes based on a V WB of 5.25 litres. 

Alveolar Volume: can be derived from functional residual capacity (FRC), which can be 

predicted using one of the following pairs of empirical formulae. The first of these calculates 

total lung capacity (TLC) [Taylor et ai, 1989, p.162]. The equations below are divided by a 

factor of two since FRC is widely considered to be 50 % of the TLC; 

Male FRC = (O.076H - 6.69)/2 

Female FRC = (O.0646H - 5.44)/2 
(Iitres, BTPS) (4.54) 

where H is height in centimetres. The second formula calculates the functional residual capacity 

(FRC) or resting lung volume directly [Dickinson, 1977, p.122 and p.204]; 

Male FRC = 0.047H - 0.0075A - 4.583 
Female FRC = 0.026H - 0.0090A - 2.180 

where A is age in years. 

(\itres, BTPS) (4.55) 

Figure 4.21 shows the resultant TLCs (results multiplied by 2) computed using these equations 

for a 40 year-old over a range of heights. Curves are shown for both males and females. It can 

be seen that there were some disparities between the curves for each equation. In males, 

equation 4.55 produced a higher gradient, leading to larger TLC values for taller subjects 

(a difference of -12.8 % at H = 200 cm). In females there was a negative bias using equation 

4.55 of24.7 % at H = 200 em). 
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Compartment %ofVWB Effective Volume (I) VWB = S.2S I 

VENOUS 64 3.360 

ARTERIAL 20 1.050 

TISSUE 7 0.368 

PULMONARY 9 0.473 

Table 4.5: Summary of estimated compartment blood volumes based on percentage ofVWB. 
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Figure 4.21: Computed total lung capacity for a 40 year-old (a) male and (b) female at various 
heights, using Dickinson's, Taylor's and average empirical formulae. 

Since no clinical validity was provided for either of these equations, it was decided to average 

the two functions for each sex. The effect of age on predicted TLC using Dickinson's equation, 

is approximately 2.6 % from 20 to 100 years. When one considers the differences between the 

Dickinson and Taylor curves, this age effect is small and can be ignored. It was therefore 

possible to think of both sets of equations as simply functions of height. The average functions 

were calculated by taking the mean results from each function over a range of heights, and 

applying simple first order least squares polynomial fitting, resulting in; 

Male FRC = O.0425H - 3.968 

Female FRC = O.0292H - 2.455 
(litres, BTPS) (4.56) 

The TLC curves produced using these equations are also shown in Figure 4.21. In order to 

derive the alveolar volume (V A), dead space (VD) has to be subtracted from TLC; 

Alveolar Volume (V A)= FRC - VD (litres) (4.57) 

Ventilator Parameters 

m Inspired 0, Fraction 

Table 4.6 shows the composition of the earth's atmosphere. Only the primary gases are shown 

and are quoted in percentage by volume in dry gas (STPD - standard temperature pressure dry). 
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Since under normal conditions (i.e. not half way up a mountain) a person will breath this 

composition of air, the inspired 02 fraction (FI02) is assumed to be 0.20946 (or 20.946 %). For 

this to be of use in the blood-gas dynamics model it needs to be converted to BTPS (body 

temperature pressure saturated). This is because inspired air is warmed as it travels through the 

nasal cavities and humidified by the mucus linings. The equations for this conversion are given 

in Section 4.2.8. Expressed at BTPS the atmospheric inspired O2 fraction is 0.1964. 

GAS NAME PERCENTAGE (%) 

Nitrogen 78.084 

Oxygen 20.946 

Argon 0.934 

Carbon Dioxide 0.035 

Table 4.6: Composition of the atmosphere of earth (by volume in dry gas) [Nunn, 1993, p.4] 

OJ) Respiratory Rate 

Typically the respiratory rate (RR) is assumed to be 15 breaths/min [West, 1979, p.13; Nunn, 

1993, p.127]. Variations from this value depend upon many factors, such as CO2 neurogenic 

drive, patient size, etc., which is too complicated to model for these purposes, and since the 

patients will be artificially ventilated can be ignored. 

Oii) Tidal Volume 

Normal values for tidal volume (VI) are quoted at 500 ml [West, 1979, p.13, etc.] or 1I6th of 

the functional residual capacity (FRC). By implementing tidal volume as; 

FRe 
VT=--xIOOO 

6 
(ml) (4.58) 

where the 1000 multiplier converts FRC in litres to ml, the expected increase in alveolar 

ventilation (ml/min) with height is modelled. 

Ov) PEEP. PIP & I:E 

These are not normally used for a spontaneously breathing subject, but are available during 

artificial ventilation and are set by the ventilator. However, a peak inspiratory pressure (PIP) is 

generated by the lifting action of the rib cage and there is also a normal inspiratory/expiratory 

ratio (I:E) of approx. 0.66 (i.e. the inspiratory time is two thirds of the expiratory time) 

[Dickinson, 1977, p.61). During inspiration PIP is approximately equal to the transmural l 

pressure gradient; normally between 6 and 7 cmH20 (or 0.6 to 0.7 kPa). 

1 transmural. between the intrapleuml space and the upper airway tract. 
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4.4.3 Ball Park Validation 

A typical healthy 20-year-old male subject, 183 cm tall and weighing 75-kg was constructed using 

the empirical formulae and normal values outlined in the previous section, see Table 4.7. Since the 

CO2 transport was not yet modelled PaC~ was assumed to be 5.333 kPa when using the O2 GDF to 

calculate Cp02 from Pp~. This represents the normal CO2 position of the dissociation curve. 

The PaOz was calculated by using the inverse O2 dissociation function with Ca02 as the input. 

The other blood parameters required by this calculation were assumed to be the same as for the 

pulmonary compartment. This is not entirely valid since the mixing of shunted blood will 

reduce the pH slightly from the pulmonary end-capillary value. 

BREATHING PARAMETERS (VENTILATOR SETTINGS) 
FI02 = 0.2095 STPD Tv (ml) = 634.9 
RR (rpm) = 15 PEEP (cmH20) = 0 
PIP (cmH20) = 6 I:E ratio = 0.6667 

BLOOD PARAMETERS 
Temp. eC) = 37 
Hb (g/ell) = 148 
Pac02 (kPa) = 5.333 
~h (gil) = 1.34 

PATIENT PARAMETERS 
Height (cm) = 183 
Age (years) = 20 
dV02 (ml/min) = 263.3 
Vo (ml) = 165.4 
Daz (mllminIkPa) = 254.7 

ATMOSPHERIC CONSTANTS 
Air Temp (DC) = 20 
PMEAN (kPa) = 10l.56 

COMPARTMENT VOLUMES 

pH = 7.4 
P50 (kPa) = 3.577 
<X.b (mllllkPa) = 0.225 

Weight (kg) = 75 
Sex = male 
C.O. (I/rnin) = 5.134 
Shunt (%) = 3 
B02 (mVllkPa) = 51.14 

PB (kPa) = 101.325 

FRC (I) = 3.81 VWB (I) = 5.25 
VA (1) = 3.644 Vp (1) = 0.4725 
Va (I) = l.05 Vt (I) = 0.3675 
Vv (I) = 3.36 

Table 4.7: Patient parameters used in the ballpark assessment of the O2 transport dynamics model 

4.4.4 Results & Analysis 

Using the patient described above, the simulated steady state PaOz was 13.318 kPa. This falls 

nicely into the expected range of Pa02 values for a 20 year old subject derived using the 

relationship suggested by Marshall and Wyche (1972) [Nunn 1993, p.269]; 

Mean Pa02 = 13.6 - 0.044 x AGE (kPa) (4.59) 

where AGE is in years. About this line there are 95 % confidence limits (2 S.D.) of ±1.33 kPa. 

Using this equation the expected range of PaOz values for a 20-year-old is 11.39 to 14.05 kPa 

(12.72 ± 1.33 kPa). 
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The steady state compartment O2 contents for the 'normal' subject were; CpOz = 197.31 mVL, 

CaOz = 196.33 mIlL, CtOz = 145.05 mIlL, CvOz = 145.05 mIlL and CAOz = 159.09 mVL. 

By using well accepted simple physiological relationships some of the parameters defined using 

the empirical formulae can be derived, thus confirming the functional validity of the Oz model. 

Oxygen Consumption 

Oxygen consumption can be derived from the classic Fick equation [Taylor et aI, 1989, p.55]. This is 

simply the product of the arterial-venous content difference, (Ca~-C~) and the cardiac output, Qt; 

(mVmin) (4.60) 

Using the steady-state values for arterial and venous Oz content; 

V02=(Ca02-Cv02) x QI 

=(196.33-145.05) x 5.134 = 263.3 mIl min 

which matches the calculated value. 

Qz Diffusion Constant 

The rate of Oz uptake from the lungs can be calculated from the pulmonary-venous content 

difference, (Cp~-Cvoz) and the pulmonary blood flow, Ot.( 1- Os/Ot); 

(mVmin) (4.61) 

Where (1- Qs/Qt) is the non-shunted blood fraction, i.e. that which flows through the 

pulmonary circuit. Again using the steady state values for CpOz and CvOz; 

V021ung=(Cp02-CV02) x Qt. (1- QsIQt) 
= (197.91-145.05)x5.134(1-0.03) = 263.24mVmin 

Dividing V0 21ung by the alveolar-pulmonary pressure difference, (PAOz-PpOz) will give us the 

Oz diffusion constant. The pulmonary O2 tension, ppoz. was measured from the model using the 

inverse Oz GDF module and gave a value of 15.123 kPa. The alveolar Oz tension, PAOz can be 

calculated from the alveolar Oz content, CAOz and the mean inspiratory pressure, PMEAN; 

CAO 159.09 
PA02 = __ 2 XPMEAN= xlO1.56=16.157 

1000 1000 
(kPa) (4.62) 

Therefore the alveolar-pulmonary pressure difference is; 

PA02 - Ppo2 = 16.157 -15.123 = 1.034 (kPa) (4.63) 

from which DOz can be calculated; 

(mVminlkPa) (4.64) 

The predicted Doz was 254.7 mVminlkPa, indicating correct functioning of the diffusion mechanics. 
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Shunt Fraction 

The arterial O2 content, Ca02 can be calculated from the sum of the non-shunted pulmonary 

blood content, Cp02 and the shunted venous blood content, CV02 as follows~ 

Ca02 = (1- Qs/Qt).Cp0 2 +Qs/Qt. CV02 (mIlL) (4.65) 

By expanding the Cp02 term, collecting together the Qs/Qt terms and rearranging we arrive at 

the following expression for shunt; 

QS/Qf = Ca02 -Cp02 = 196.33-197.91 0.0299 
Cv02 -Cp02 145.05-197.91 

(4.66) 

This correlates with the set value of 0.3, indicating that the shunt modelling is performing correctly. 

4.5 CO2 Dissociation Function Development 

4.5.1 Functional Validity 

The CO2 gas dissociation algorithm (see Section 4.2.6), as with the O2 gas dissociation was 

implemented as a MA1LAB function with the input-output structure as shown in Figure 4.22 and 

was tested for functional validity. 

Kelman's paper (1967) included a comparison of C(C02) results obtained using this algorithm 

with the nomograms of Singer & Hastings (1948). For comparison purposes the dissociation 

constant, pK was fixed at 6.11 ~ rather than making use of the algebraic expression given in 

equation 4.32, since this was the value used in the construction of the original Singer-Hastings 

nomogram. Table 4.8 shows the results of Kelman's comparison together with results obtained 

using the MA1LAB GDF. It can be seen that the MA1LAB implementation matched Kelman's 

data exactly (allowing for rounding errors) and gave good correlation with the Singer-Hastings 

nomogram (R=O.999), see Figure 4.23. As expected this correlation fell slightly when using 

algebraically derived pK (R=O.998), although its inclusion is likely to produce more accurate 

results in real patients since there is an inter-dependence between pK and pH (Dickinson, 1977; 

Kelman, 1967~ Nunn, 1993). 

Primary Output 

Primary Input Carbon 

~ 
CO2 Content 

Dioxide GDF 
Pe02 

S02 pH Temp PCV 

Secondary Inputs 

Figure 4.22: Schematic representation of the carbon dioxide GDF showing inputs and output. 
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Pc~ pH SOl PCV Singer- Kelman MAT LAB MATLAB 

(mmHg) (0/0) (0/0) Hastings (mUdl) pK=6.11 Algebraic pK 
(mild!) (mlldl) (mlldl) 

14.5 7.01 60 40 67.0 78.0 78.1 78.5 

11.8 7.59 80 59 188.0 184.0 184.1 195.8 

26.0 7.43 66 55 320.0 304.0 304.1 318.2 

44.2 7.25 97 42 384.0 377.0 377.3 387.9 

28.5 7.53 60 40 460.0 442.0 442.0 467.2 

27.7 7.64 95 51 508.0 497.0 497.2 531.4 

132.0 6.89 99 50 546.0 543.0 542.6 539.6 

66.0 7.25 97 48 564.0 559.0 548.8 564.1 

48.0 7.48 97 48 643.0 634.0 634.0 666.7 

55.8 7.41 60 40 696.0 675.0 674.7 704.6 

62.3 7.41 89 59 700.0 677.0 677.2 707.2 

45.5 7.54 60 40 718.0 720.0 720.5 762.3 

Table 4.8: Comparison between whole blood [C02] derived using the Singer-Hastings nomogram. 
the Kelman algorithm and the MATLAB implemented GDF (with both fixed and algebraic pK). 

800 

700 

-~ 600 
'-" ....... 8 500 
...... 

8 400 -a:l 

'3 300 

= ~ 200 8 
100 

0 

Fixed pK: R= 0.9991; Error Distrib. 0.9 -20.8 milL (Conf99.9 %) 

Variable pK: R = 0.9981; Error Distrib. 4.5 - 17.1 mllL (Conf99.9 %) 
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Figure 4.23: Graph showing the correlation between CO2 contents calculated using the Singer
Hastings nomogram and the Kelman algorithm implemented using a fixed pK of 6.11 (as used 
by Singer) and an algebraic pK. 
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4.5.2 Inverse CO2 Dissociation Function (IGDF) 

The CO2 IGDF was implemented in much the same way as its O2 counter part (see Section 4.3.3). 

The shell of the secant iteration function was maintained, with the differences being internal calls 

to the CO2 GDF and fewer parameters passed into the iteration shell (7 instead of 10), as shown in 

Figure 4.24. The function was shown to perform correctly and gave convergence to solution in 

only 2 iterations, due to the almost linear nature of the CO2 GDF curve. 

Primal)' Input 

CO2 Content 

Iteration Controls 

Entol pO pI 

, ___ ....1.-__ -"-;;==========;, Primal)' Output 

Pe02 Carbon 
Dioxide 

Inverse GDF Secondal)' Outputs 

L---...,----r~::;:==::::::;=====~ [No.lterations, Error] 

S02 pH Temp rcv 
Secondal)' Inputs 

Figure 4.24: Schematic representation of the inverse carbon dioxide GDF showing its 
inputs and outputs. 

4.6 CO2 Transport Dynamics Development 

The general structure of the CO2 equations is identical to that of the O2 equations and was 

duplicated to form the CO2 transport model. Some of the O2 system specific parameters were 

replaced with their CO2 counterparts as follows; 

CO2 production, Veo2 replaces 

CO2 diffusion constant, Deo2 replaces 

Inspired CO2 fraction, FIC02 replaces 

O2 consumption, V02 

O2 diffusion constant, D02 

inspired O2 fraction, FI02 

This made the SIMULINK implementation simply a matter of duplicating the basic model 

structure and inserting the relevant parameter or module differences. Again the subsystem was 

validated using a normal patient scenario. This required the derivation of additional parameters, 

which are given below. 
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(i) Packed Cell Volume 

Packed cell volume (PCV) or haematocrit is related to haemoglobin by the following simple 

formula [NOVA SP2 mobile blood analyser, User's handbook]; 

PCV =HbxO.3 

where Hb is in gIL. This is required by the CO2 dissociation function. 

00 Inspired C02 Fraction 

(%) (4.67) 

The inspired CO2 is negligible and can be assumed to be zero. It is actually 0.035 % [Nunn 

1993, pAl, which is the value used for the purposes of the model validation. 

ou) C02 Production 

The respiratory quotient (RQ) describes the ratio of CO2 production to O2 consumption and has 

a normal value of 0.8 [West 1979, p.164; Petros et a11993; Taylor et al 1989, p.133, etc.]. 

Therefore having established V0 2 from Dickinson's empirical formula (see equation 4.48), we 

can derive Ve02 at rest; 

Ve02 = RQ x V02rest 

= RQ x 10.33.WTo.7s 
(ml/min) (4.68) 

RQ has been shown to correlate to the type of substrate that is being oxidised by the metabolic 

process. An RQ of 0.8 corresponds to the oxidation of protein. A slightly higher value than this 

might be expected, to reflect the addition of carbohydrate oxidation in the metabolic process (an 

RQ of 1.0 indicates that only carbohydrates are being burnt). A value of 0.9 would reflect a 

mixed substrate oxidation. 

Typical values for Ve02 are given as approximately 200 ml/min [Taylor et ai, 1989, p.60]. 

This is based on a V0 2 of250 ml/min and an RQ of 0.8 

Ov) CO2 Diffusion Constant 

Quoted values for the CO2 diffusion constant vary. In McPuf [Dickinson 1977] De02 is assumed 

equal to D~, which when calculated for a typical male (183 cm, 75 kg, 20 yr.) is 254.7 mVminlkPa. 

Selvakumar et al (1992) gives a much larger value of 1500 ml/minlkPa. The theoretical diffusion 

constant of CO2 across an aqueous membrane is approximately 20.5 times greater than that for O2, 

giving a De02 of approx. 5220 mVmin/kPa (based on a ~ of 254.7 mVminlkPa). There is not a lot 

of agreement between these estimates, so for the ballpark validation De02 was assumed equal to 

Do2• However, it will be seen that the final choice of ~ and De~ had to be altered due to model 

sensitivity issues during tuning to clinical data (see Section 5.4.4). 

fJi.QJ Saturation 

A typical O2 saturation, S02 was hard to come by, as it is dependent upon many factors. Since at a 

later stage the O2 and CO2 sub-systems would be integrated some relationship with the former would 

be necessary. As a consequence it was decided to use the S02 derived from the standard patient 

scenario used in the assessment of the O2 sub-system. This was calculated to be 98.08 %. 
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4.6.1 Ball Park Validity 

The patient simulation was set up as in Table 4.7 with the inclusion of the parameters mentioned 

above and run until steady state was reached. Since the S(02) value was derived from a fixed 

PacC02) value of 5.333 kPa this becomes the target arterial pressure for the sub-system. In the 

first test Dco2 was assumed equal to 002. 

The resulting steady state arterial PC02 was 4.396 kPa. This was 0.953 kPa (17.9 %) below the 

target pressure. This was deemed unacceptable. Now, since only four parameter changes had 

been made in the CO2 sub-system equations; S02, Dco2, FIC02 and Vco2 ; this error could only 

be due to one of these parameters or the CO2 dissociation function. 

Under normal blood conditions (which is true for this test) a change of S02 from 100 % to 90 % 
only causes a change in PC02 of 0.021 kPa (approx. 0.4 % error). This does not account for the 

large observed error of 17.9 % 

The sensitivity of the model to changes in FIC02 was also small. A doubling of FIC02 from its 

atmospheric value gave rise to an increase in PaC02 of only 0.034 kPa (approx. 0.8 % error). 

Again this error is small and does not account for the large error observed. 

The level of C02 production may give rise to this error since this was dependent upon the 

respiratory quotient (RQ). An increase of RQ from 0.9 to 1.0, giving an effective increase in 

Vco 2 from 237 to 263 mVmin (an 11 % increase), gave an increase of 0.485 kPa in PaCo2 (an 

11 % increase). This would account for more than half of the observed error but since RQ cannot 

be increased beyond 1.0 in normal patient scenarios, this leaves approx. 8 % unaccounted for. It 

could equally be argued that an RQ of more than 0.9 is unrealistic in an intensive care setting. 

This leaves one of two possible hypotheses; 

1). Dco2 is too high, giving rise to increased CO2 elimination. 

2). Alveolar ventilation is too high, leading to the same effect. 

The first of these seems improbable since other sources have quoted larger Dc02 than used here. 

The latter is plausible when one considers that a reduction in alveolar ventilation can be 

achieved by reducing the respiratory rate (RR). 

By reducing RR to 11 b.p.m., the Pac02 is increased to 5.64 kPa and Pa02 is reduced to 12.32 kPa. 

The PaC02 error is now acceptable at 5.8 %, and Pa~ has not fallen outside of its normal range. 

4.7 O2 and CO2 Model Integration 

Having constructed and assessed the gas sub-systems the next obvious step was to integrate them. 

Rather than have two large block diagrams strapped together to form the model, it was decided to 

exploit the symmetry of the problem. Both gases travel through the same physiological structures of 

the model and therefore a vector can represent the state of the gases at any point in the model; 

(4.69) 
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Any subsequent computations within the SIMULINK block diagram are applied to each vector 

element. If there are different parameters associated with each gas, as in the case of diffusion at 

the lung membrane, then these are implemented within the given block as vectors, see Figure 4.25 

Block with parameters implemented vectorally 

Figure 4.25: SIMULINK gain block showing implementation of parameters as vectors 

In this way the gas models function independently whilst making use of the same process structure. 

Cross coupling betwcen the two gas systems occurs within the dissociation functions, where P(h is 

affected by PC<h, which is in tum affected by S(h (being a function of P<h). pH is also affected by 

PC(hwhich will modify Po2, however this was not represented in the prototype model. 

The parameters of the two sub-systems were combined and a standard 20-year-old male subject 

generated as before. This was then run to steady state resulting in a Pao20f 12.33 kPa and PaC02 

of 5.33 kPa. These results are promising with Pa02 within its normal range and PaC(h matching 

the target of5.33 kPa. 

4.8 Summary & Conclusions 

!b Dissociation Function 

The O2 GDF based on Kelman's algorithm (1966) was found to be functionally valid, matching 

published function results exactly. 

It performed moderately well against the SHBODC of Severinghaus (1979), with an observed 

maximum saturation error of 2.23 % compared to 0.55 % for the Hill equation. The larger errors 

occurred below 40 % saturation which is well below the normal operating point for either 

arterial or venous blood, except in cases of critical blood loss. Both of these equations were 

tested against Severinghaus' data, however, no indication of how the Hill equation should be 

modified to account for shifts in pH, temperature and PC02 were given. 

The GDF performed well against the experimcntal data of Sharan et al with a mean absolute 

saturation error of 1.75 % ± 0.84 (confidence interval 99 %) compared to 1.03 % ± 0.56 

(confidence interval 99 %) using the Sharan O2 GDF equation. The maximum observed 

saturation error was 3.63 % compared to 2.32 % using the Sharan equation. 

The Kelman algorithm was deemed suitable for incorporation into the O2 transport model. 
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Inverse 02 GDF 

The inverse O2 GDF was resolved using an iterative secant based method and proved 

functionally valid. It arrived at a target solution in an average of 8.1 iterations, when tested 

across a PCh test space of between 1 and 50 kPa. This was with an iteration error tolerance of 

0.01 kPa and initial pressure estimates of 4 and 6 kPa for pO and pI respectively. 

An improved secant algorithm using bounded P~ tracking was proposed and gave improved 

iteration performance. The average number of iterations reduced to 3.22 with little change in 

P~ accuracy. 

21 Transport Dynamics 

Normal patient-values and appropriate formulae to calculate them were elicited from the 

available literature, for each parameter used within the O2 transport model. 

The O2 transport model was successfully implcmentcd using SIMULINK and gave an artcrial P~ of 

13.32 kPa for a pre-defincd 20-year-old male subjcct, weighing 75 kg and of height 183 cm. This 

fell within the range of typical values for a 20 to 29 year old age group, quotcd by Nunn (1993). 

It would appear from this assessmcnt that the O2 transport model has been constructed correctly 

and was functioning in a reasonably predictive manner. The assessment was of course mainly 

qualitative and the CO2 transport was not included, but the indications of a useful working 

patient model were promising. 

C02 Dissociation Function 

The implemented CO2 GDF, based on Kelman's algorithm (1967) was found to be functionally 

correct matching the published results exactly. Comparison with the results obtained using the 

Singer-Hastings nomogram showed excellent correlation with both fixed pK (R=0.999) and 

algebraically derived pK (R=O.998). 

Inverse C02 GDF 

The inverse function was implemented using the same shell as the O2 IGDF and was proven to 

be functionally correct, giving convergence to solution in 2 iterations, due to the near-linear 

properties of the function. 

CO2 Transport Dynamics 

All parameter values were identical to those for the O2 sub-system with the exception of FIC02, 

Deo2, and S02. Suitable values or derivation formulae were located for all of these, although 

there was some uncertainty regarding Deo2. 

With Dc02 equal to 002 (255 mVminlkPa) and an RQ of 0.9 the model gave a PaCCh of 4.396 

kPa, 17.9 % below the target value of 5.333 kPa. This was with a pre-defined 20-year-old male 

subject as used for the O2 sub-system ballpark assessmcnt. 

Reasons for this were considered and the main source pinpointed to a high RR. This was 

reduced from 15 b.p.m. to 11 b.p.m. and gave a PaC02 of 5.64 kPa, reducing the error to 5.8 %. 

In normal patients such compensation is performed via neurogenic drive, with the alveolar 
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ventilation changing in response to the level of PC02 in the brain. Therefore the discrepancies 

observed could be ignored and the CO2 sub-system deemed to be functioning correctly. 

System Integration 

The O2 and CO2 sub-systems were combined into the same model shell by representing the 

gases through out the system in a vector form. This negated the need for replicated model block 

diagrams and greatly simplified interaction with the model inputs and outputs. 

Using the standard healthy patient scenario the resultant Pa02 was 12.32 kPa and the PaC02 was 

5.33 kPa, both being within normal ranges. 

SOPAVent was now ready for validation using real clinical data and this is discussed in the next 

chapter, together with an investigation of the parameter sensitivity of the model. 
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Chapter 5: Clinical Validation of Patient Model 

5.1 Introduction 

So far it has been shown that the patient model produces normal blood-gases when simulated 

using parameters representing a healthy male patient breathing atmospheric air. However, if it is 

to be useful for advisor development and validation, it must be able to correctly predict blood

gases when changes are made to the ventilator settings. This must be possible for the types of 

patient routinely found in ICU. This chapter presents the clinical validation of the model's 

predictive performance using data collected from patients in leu at the Hull Royal Infirmary. 

Before attempting any clinical validation the parameter sensitivity of the model was investigated 

(see Section 5.2), in order to identify those parameters within the model that required accurate 

measurement, or indeed parameters that because of measurement inaccuracies might contribute 

to poor predictive performance. 

In Section 5.3, the data collection methods and protocol are presented, and the problems 

encountered in trying to meet them discussed. This is followed by a brief summary of the 

patient data collected (full details are given in Appendix B). These data were processed to 

generate the parameters required by the patient model, see Section 5.4. This involved the 

calculation of prior and post patient parameters to facilitate tuning of the model unknowns, i.e. 

Qs/Q/ , Vo and Pso• The model-tuning algorithm is described and the estimated unknowns for 

each patient presented. 

The model-predicted and actual blood-gases produced in response to ventilator changes are 

compared, see Section 5.S. These comparisons are made using qualitative trend analysis and 

conventional statistical analysis. Finally the possible causes of response mismatch are explored. 

5.2 Model Sensitivity Analysis 

Before commencing clinical validation of the model, attention was given to the behaviour of the 

patient model in response to control and parameter disturbances. This is known as sensitivity 

analysis and is used to identify those parameters that have greatest influence over the model 

outputs. If a model is to reflect a patient's state realistically, parameters identified as sensitive 

will need to be measured accurately for good patient-model matching. However, this may not 

always be possible, and the combination of measurement errors coupled with parameter 

sensitivity may lead to poor blood gas prediction. This reflects problems with the data quality 

rather than the inability of the model to represent true physiology. 

Sensitivity analysis can be complex and therefore a simple methodology was employed. Even so, 

it was still able to provide useful information about the model. The following section describes the 

analysis used and presents the limitations associated with it, when applied to larger models. 
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5.2.1 Theory 

There are many approaches to sensitivity analysis. The simplest is known as c1assieal sensitivity 

analysis and looks at the changes in the state variable Xi with respect to a parameter Pj 

[Tomovic, 1963], and can be expressed thus; 

(5.1) 

Where S ij (t) is the sensitivity ofthe state variable i to parameter j, and is time dependant. Since at this 

stage of model development we are only concerned with steady state sensitivity (i.e. the influence of a 

parameter when there is no change in model inputs), the sensitivity can be rewritten as; 

s .. = oX; 
IJ oP. 

J t=co 

(5.2) 

The simplest implementation of this approach is to vary each parameter by a fixed percentage, 

say 10 % and compare the effects on a given state output. However, it will be seen that this 

leads to problems when interpreting the results. 

Within the blood-gas model the state variables (X,) are the arterial and venous blood-gas 

tensions, Pao2, Paco2, PV02 and PVC02; and the disturbance parameters are (listed by category); 

I). Patient Parameters: cardiac output, haemoglobin content, body temperature, pH, 

O2 consumption, CO2 production, peak inspiratory pressure, O2 diffusion constant, 

CO2 diffusion constant. 

2). Atmm.pheric Constants: barometric pressure, air temperature. 

3). Ventilator Parameters: inspired O2 and CO2 fraction, respiratory rate, tidal 

volume, inspiratory-expiratory ratio, and positive end-expiratory pressure. 

4). Unknown (taned) Parameters: shunt and dead-space. 

Not included in this list are the patient's age, weight, height, sex, O2 haemoglobin binding 

capacity (Ph), plasma O2 absorption constant (Ub) and 50 % saturation point (Pso); since these 

were assumed constant for a given patient during data collection. In retrospect there may be a 

good argument to have included Ph, and Pso since inaccurate values may skew the patients 

physiology. However, these are not routinely measured and their values are often theoretical. 

Also not included in this analysis were the compartment volumes since these are concerned with 

the time constants of the compartments and do not affect steady-state gases. However, short 

time intervals between blood-gas samples could lead to insufficient settling of the CO2 

dynamics (since they are slower than the O2 dynamics) leading to model-patient mismatch. 

In total, 19 parameters were considered. The model was therefore large and the following 

problems can arise when sensitivity analysis is attempted on such a model [Rose, 1987]. 
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Excessive computation requirements 

The computational cost of repeated simulation runs of a large model can become excessive, due 

to the large number of possible permutations required. 

Strong parameter interaction effects 

In some models there is a strong interaction between parameter influences, such that the scnsitivity 

of a given state to paramctcr changc, dcpcnds upon the value of some othcr paramctcr. Lct us 

considcr a simple two-parameter example (see Figure 5.1). The output of a model state X is 

observed under two conditions for a fixed parameter P l. One with P2 = K, and the other with P2 = 
K'. Whcn observed under the condition P2 = K the scnsitivity of X to param(.,'tcr P I is low and 

therefore "unimportant", but when P2 = K' then its sensitivity becomes "significant". 

P2=K' 
:>< 
v -~ V; 

-= ~ 
0 

'0 P2=K 
v 
= 
~ 

Value of parameter PI 

Figure 5.1: Hypothetical responses depicting an interactive effect between paranleters PI and 
P2, upon the output X. 

Size and shape of the parameter space for valid sensitivity conclusions 

The size and shape of the paramcter space will dramatically affcct the rcsults of a sensitivity 

analysis. For example a 10 % change in all parameters, irrespective of their nominal values and 

standard deviation estimates will give very different results to changes based on the average 

amount each parameter is normally varied. Figure 5.2, illustrates this point by considering the 

variability distributions PDFI and PDF2 for two parameters PI and P2, with nominal values NI 

and N2. If each parameter is changed by ± 10 % of their nominal values then PI is being 

searched across considerably more of its probable values than P2, since its nominal (average) 

value is positively offset. This will result in a lower sensitivity score for PI than if a similar 

proportion of the PDF was tested. 

It might seem reasonable, on the basis of these problems to employ a more rigorous sensitivity 

technique than provided by the classical sensitivity analysis, and this may well be the case for a 

truly quantitative analysis. However, the time and effort required for this would be prohibitive 

and we were forced to settle for a qualitative picture of the respective parameter sensitivities. 

69 



o 

N1 

10 20 

+/- 10 % of 
nominal value 

30 40 

PI Parameter Range 

(a) 

! N2 

+/-10%of 
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Figure 5.2: Hypothetical parameter space variability showing how this can lead to inaccurate 
sensitivity conclusions, when the parameter disturbance is much smaller than the normal 
parameter distribution. 

5.2.2 Sensitivity Analysis Method 

The model sensitivity analysis (SA) was performed as follows~ 

1). A single real patient data set was used for the test, in this case Patient 1 Record 1 

(obtained during the clinical data collection). This provided the initial parameter 

values and blood gas levels before any parameters were disturbed. 

2). Only one parameter was varied at a time with all other parameters remaining at 

their initial value. Each parameter was varied by ± 10 % of its original value, 

irrespective of its normal range and initial value. 

3). The effect of each parameter disturbance on the blood gases Pa02. PaC02, PV02 and 

PVC02 was recorded, giving a positive and negative response for each. 

4). The magnitudes of the output responses were then averaged to give a sensitivity 

measure for each parameter on each output. This was expressed in terms of 

percentage change from original blood gas levels. 

Figure 5.3 compares the output sensitivities for each blood gas to each parameter disturbance. 

The responses are grouped according to the parameter type (i.e. patient, atmospheric, input and 

unknown). Blood pH was expressed in terms of hydrogen ion concentration [ttl, since pH is 

logarithmic and would otherwise result in non-linear disturbance behaviour. 
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Figure 5.3: Comparison of Pa02 and PaC02 (top chart) and Pvo2and PVC02 (lower chart) output 
sensitivities to 10 % changes in model parameters. Parameters are grouped by type and 
sensitivities are expressed as a percentage change from initial blood gases. Initial parameter and 
gases are based upon patient 1 record 1 (see Appendix B). 
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5.2.3 Analysis 

Over Sensitivity to Barometric Pressure 

Initial inspection of the results indicated a larger than expected sensitivity to changes in Pn. 

However the applied change of ±I 0.26 kPa is equivalent to changes in altitude of approximately 

±3000 feet (914 m). An individual breathing atmospheric air at sea level would experience a 

drop in Pa02 of approximately 2 kPa when elevated to 3000 feet (interpolated from the data of 

West et al (1938) [Nunn, 1993, p340]), a reduction of about 15 %. This is in line with the 

observed change of 18.11%. Since the sensitivity scores for Pn are exaggerated they have been 

ignored for all of the subsequent comparisons. 

Under Sensitivity to PEEP 

Conversely PEEP exhibited a very low score, which does not support expected therapeutic effects. 

This may simply be due to its small disturbance size. However, PEEP also increases Pa02 by 

increasing the resting volume of the lung. Reduced lung volumes are often due to the closure of 

small airways, which are then not ventilated and thus leads to arterial hypoxaemia (Nunn, 1993, 

p.451). PEEP can hold the airways open throughout the entire respiratory cycle and may therefore 

restore ventilation to previously perfused but unventilated regions, improving oxygenation. Since 

the model at this stage does not account for this behaviour, PEEP has no net effect. This effect 

needs to be included in the model before it can be used for advisor development (see Model 

Improvements - Section 7.3). Consequently PEEP has been omitted from any subsequent analysis. 

Comparison of Parameter Sensitivity Scores 

In order to compare the relative sensitivity of the O2 and CO2 systems the parameter sensitivity 

scores (PSS) for the arterial and venous blood gases were averaged; 

(5.3) 

where i is the parameter under consideration and S,(x) is the sensitivity of output x to parameter i. 

Having calculated the PSS for each parameter, they were then ranked according to size and 

grouped using semantic classifiers (e.g. 'very sensitive', 'sensitive', etc.). By doing this it was 

then possible to construct a visual representation of the sensitivity groupings, see Table 5.1. 

The boundaries for the classification were as follows; 

• Very Sensitive PSSi(x) > 10 

• Sensitive 5 < PSSi(x) ~ 10 

• Slightly Sensitive 0.5 < P5:S'i(X) ~ 5 

• Insensitive PSSi(x) ~ 0.5 
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OXYGEN SYSTEM CARBON DIOXIDE SYSTEM 

INSENSITIVE 

FIC02 (0.000) 002 (0.000) 

De02 (0.015) FIC02 (0.000) 

PIP (0.120) FI02 (0.020) 

002(0.140) Hb (0.085) 

TAlR (0.320) ~;'a2 (0.090) 

Vea 2 (0.410) PIP (0.100) 

Shunt (0.120) 

TBODY (0.225) 

De02 (0.415) 

Qt (0.490) 

SLIGHTLY SENSITIVE 

RR (0.860) [W] (0.575) 

VD (1.110) TAlR (3.270) 

VT (2.010) 

[W] (2.770) 

Hb (4.120) 

SENSITIVE 

Shunt (7.140) RR (8.960) 

Qt (9.500) Vea 2 (9.890) 

FI02 (9.550) 

VERY SENSITIVE 

V0 2 (10.510) VD (11.605) 

TBODY (11.580) 
VT (21.420) 

Table 5.1: Comparison of the parameter sensitivity ranking for the O2 and CO2 systems. 

As expected gas specific parameters were more sensitive in their native system than in the 

opposite system. For example Vea 2 was sensitive in the CO2 system but insensitive in the O2 

system. Similarly, V0 2 was very sensitive in the O2 systcm but insensitive in the CO2 system. 

This pattern was repeated for the diffusion constants 002, De02 and Fr02. However FrC02 was 

also insensitive in the CO2 system. This can be attributed to poor parameter disturbance, since 

FIC02 was effectively zero to begin with. 

Alveolar Ventilation 

Respiratory rate, tidal volume and dead space changes influenced O2 tensions less than CO2 

tcnsions by about a factor of 10. All of these parameters affect alveolar ventilation, which will 

increase the rate of O2 flowing into the lung and CO2 flowing out of it. This has the effect of 

raising the alveolar O2 content and reducing the alveolar CO2 content. The diffusion gradient 
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across the lung membrane is higher for CO2 than for O2 and therefore the effect is greatest in the 

CO2 system. This is in keeping with the therapeutic benefits of changing the ventilation rate to 

bring CO2 tensions to normal. 

The O2 system was sensitive to shunt changes, where as the CO2 system was insensitive. 

Qualitatively, venous shunt reduces the overall efficiency of gas exchange and results in arterial 

blood gases closer to venous levels, depending on the level of shunt involved. Considering the 

gases in terms of content the mixing is easily explained by the mass transport equations; 

Cao2 = Qs /Qt .CV02 + (1- Qs /Qt ).Cp02 

Caco2 = Qs / Qt .CVC02 + (1- Qs / Qt ).CpC02 
(mill) (5.4) 

As (JjQt increases, the arterial O2 content will be reduced by mixing with the lower venous O2 

content level. Conversely the arterial CO2 content will be increased slightly by the higher venous 

level. This effect is linear, so does not explain the difference in sensitivities. However, due to the 

steep gradient of the CO2 dissociation curve ncar the arterial point, the effect on the CO2 tension is 

small. The O2 dissociation curve is almost flat at the arterial point (assuming good saturations) and 

therefore small changes in content produce large differences in O2 tension. If the blood is poorly 

oxygenated then the effects of changes in shunt are reduced and Pa02 remains relatively 

unaffected since the arterial point now lies on a steeper part of the O2 dissociation curve. 

Air Temperature 

Changes in air temperature had little effect on the O2 system but a more marked effect on the 

CO2 system. This is because tidal volumes are expressed at ATPS and require conversion to 

BTPS. Since tidal volume exerts a greater influence on the CO2 system then the increased CO2 

sensitivity was expected. 

Acid I Base System 

Changes in pH (reflected here as changes in hydrogen ion concentration) exert their effect 

through the gas dissociation functions. The effect on each system depends very much on the 

position of the content-pressure point on the curves. Again because the CO2 GDF tends to be 

steeper than the O2 GDF the shifting of the curves produces a larger effect in the O2 system than 

the CO2 system 

Body Temperature 

This affects both of the gas dissociation functions, but was more marked in the O2 system. 

Again the relative position of the content-pressure point on the gas dissociation curves explains 

this difference. 
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Haemoglobin Concentration 

Haemoglobin concentration determines the carriage of O2 in the blood as given by equation 4.13 

and therefore its greater sensitivity in the O2 system would be expected. The small effect it does 

exert on the CO2 system, is through the CO2 dissociation function, since changes to O2 

saturation affect the CO2 cell to plasma content ratio (see equation 4.35). 

Cardiac Output 

O2 system sensitivity to Qt makes problems for patient-model matching since Q, is very 

difficult to measure reliably. It is probably this single factor alone that will negate the possibility 

of patient matching. The reason being that an erroneous Qt measurement, say 10 % below true 

Q, , would give rise to a reduced shunt estimate when the model was tuned. This would increase 

the model's sensitivity to step changes in Fr02 and impair its predictive performance. 

Cardiac output measurements are normally made using thermo dilution and at the time of data 

collection, was only made on a need to know basis. Almost continuous Q, measurement is now 

possible enabling sample precision to be improved. However, measurement accuracy is still 

uncertain and anaesthetists tend to use changes in Qt as an indication of changing cardiac 

performance rather than rely on the values themselves. 

This does not however mean the model is unsuitable, just that validation against patient data is 

difficult using current measurement technologies. 

Peak Airway Pressure 

Neither system is very sensitive to changes in PIP. In truth this parameter should not be viewed 

as a model-input, since it is really a product of the airway dynamics and the ventilator driving 

waveform. Later improvements to the model derive PIP as a model output (see Section 7.3.2). 

5.2.4 Conclusions of Sensitivity Analysis 

So what can be concluded from all of this? Firstly, the greater sensitivity of the O2 system to 

shunt and the CO2 system to dead space meant that shunt could be adjusted to match Pa02 with 

little disturbance of PaC02, and VD could be adjusted to match PaCQz, with only a slight 

disturbance of Pa02. This made model tuning a lot simpler to implement. 

Secondly, the high P02 sensitivity to cardiac output changes posed the biggest obstacle to 

patient matching, since this measurement suffers from the largest measurement errors. Similarly 

the high sensitivity of the model to O2 consumption and CO2 production meant they required 

accurate measurement. Unfortunately at the time of the data collection, metabolic performance 

was not routinely monitored at the target ICUs and therefore a metabolic computer needed to be 

borrowed. This provided accurate measurement abilities, but unfortunately could only be loaned 

for a limited period. Forearmed with this knowledge of the model's sensitivity, the patient data 

were collected. 

75 



5.3 Data Collection 

The primary objective of the data collection period (and consequently its major restricting factor) 

was to collect enough patient measurements such that the number of unknowns in the patient 

model was kept to a minimum. Most of the patient parameters could be obtained from routine 

measurements made within the ICU. However cardiac output (Qt), O2 consumption (Vo2 ) and 

CO2 production (Veo 2 ) were also required by the model and these were not as readily available. 

Arterial blood samples were taken via a radial artery catheter (RAC) which is routinely inserted 

into most patients. However, patients with circulatory problems such as those suffering from 

shock may require a femoral artery catheter (F AC) instead. The use of radial catheters is 

preferable to femoral ones both in terms of accessibility and associated risks, since the femoral 

artery has an increased risk of catastrophic bleeding, being more central to the heart. All patients 

in this study were catheterised at the radial artery. 

Venous blood samples were taken from either a central venous catheter (CVC) inserted into the right 

atrium or from a pulmonary artery catheter (PAC). Samples taken via a PAC will give true mixed 

venous blood readings, whereas CVC samples may not, since there is no guarantee that they have 

mixed fully. Both pulmonary artery and central venous catheters carry a degree of risk with their use, 

but this level is not unacceptable. Figure 5.4 indicates the positions of the radial artery, central venous 

and pulmonary artery catheters within the patient when viewed from a model-based perspective. 

Blood samples taken were analysed using an IL System 1302 pHIBlood Gas Analyser, which 

gives direct measurement of pH, P02 and Peo2. This system also measures haemoglobin content 

and calculates standard bicarbonate, base excess and O2 saturation amongst other variables. 

The radial artery catheter was also used to carry a pressure transducer from the M I006A 

Pressure Module (part of the HP Component Monitoring System) to measure systolic, diastolic 

and mean arterial blood pressure as well as pulse rate. A similar module was used to measure 

mean pulmonary blood pressure and wedge pressure via a transducer inserted down the 

pulmonary artery catheter. Wedge pressure measurement required the COl module option with 

an intra-aortic balloon pump. If a central venous catheter was connected then a third similar 

module was used to measure the central venous blood pressure. 

Cardiac output was measured using the MIOl2A C.O. Module (HP Component Monitoring 

System - HPCMS). This measures Qt using the thermal dilution method and requires the use of 

a Swan-Ganz catheter inserted down the PAC. However, this measurement technique is usually 

only reserved for unstable patients. 

This posed a dilemma since the patients needed to be stable but catheterised. This was overcome 

by opting for patients in the period prior to removal of the PAC when they had stabilised; a 

window of between 1-3 days. In reality this was not always practicable and all catheterised 

patients were recorded. Also on occasions during the data collection period there were no 

suitable patients available. In order to maximise the available time with the metabolic computer, 

patients without a PAC were recorded and Qt was estimated using O2 consumption and the 

arterial-venous O2 content difference. 
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Figure 5.4: Schematic of Model Circulation Showing Patient Measurement Points. 

Blood temperature was measured using the temperature probe that forms part of a Swan-Ganz 

catheter. In the absence of a Swan-Ganz catheter, rectal or skin temperature was recorded. 

These provide good estimates of actual blood temperature in stable patients. However, collapse 

of periphery circulation in a post-operative patient may cause a blood-rectal temperature 

differential of as much as 6°C. 

O2 consumption and CO2 production were measured using a metabolic computer (MC). Since 

neither of the ICU's involved in the study possessed one, a DeItatrac-II had to be loaned from 

Datex for a limited period of 3 weeks. This was the largest restricting factor on the data 

collection study and explains why the data set was so small. V0 2 and Vco 2 can be calculated 

indirectly from the arterial-venous blood-gas difference and Qt, but this can lead to large errors 

due to the inaccuracies associated with Qt measurement. 

The M1020A Sa021Plcthysmography Module (HPCMS) was uscd to give a continuous non

invasive measurement of Sa02, using pulseoximetry techniques. It actually measures end 

capillary O2 saturation and gives poor accuracy ifthcre is peripheral shut down. 
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As mentioned previously there still remained a number of unknowns of which some had to be 

asswned, namely haemoglobin O2 binding capacity, O2 dissolved in plasma coefficient and 

haematocrit, since their measurement would be impractical in such a study. This left QslQ, , VD 

and Pso, which were estimated using an iterative solution searching method. 

5.3.1 Data Collection Protocol 

1) Identify suitable patients for data collection purposes and record where possible two sets of 

measurements prior to and after a ventilator change, see Figure 5.5. The prior 

measurements should be approximately 30 minutes apart in order to establish the steady 

state of the patient. The second measurement should directly precede the ventilator change. 

The first post measurement should occur 30 minutes after the ventilator change and be 

followed 30 minutes later by a second measurement. 

Patient State X Sample Point 

30 mins 

3 
30 mins 

30 mins 

2 t Step Change in Ventilator Setting 

Time 

SAMPLING PROTOCOL: FOUR SAMPLE POINTS 

[1] 30 min before ventilator change. 
[2] Just before ventilator change. 
[3] 30 min after ventilator change 
[4] 60 min after ventilator change. 

Figure 5.5: Steady state sampling protocol. 

2) A suitable patient should ideally have a PAC inserted and be beyond any period of 

instability, but prior to removal of the PAC. This constitutes a window of approximately 1-3 

days when the patient should be stable and cardiac output can be measured, see Figure 5.6. 

Rapid change in S hI . d 

~ r bl_::~oW 1 
Surgery or 
Admission 

PAC removed 

Figure 5.6: Stable period during which measurements can be made. 
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3) A set of measurements comprises the following (those measurements required by the 

patient model are indicated by"', all others to be recorded for completeness); 

General Patient Details 

Height"', Weight"', Age'" 

Patient diagnosis, supporting therapies (drugs, dialysis, etc.)'" 

From Radial Artery Catheter 

PaCh"', PaC02"', arterial pH"', Hb"', Sa02, standard bicarbonate (SBC), base excess (BE) 

Systolic, diastolic and mean arterial pressure. 

From Central Venous Catheter 

PV02, PVC02"', venous pH, SBC, BE and SV02 

From Pulmonary Artery Catheter 

PV02 "', Pvco 2 "', mixed-venous pH"', SBC, BE, S v Ch. ToLOoo"', Qt '" 

Mean pulmonary blood pressure and wedge pressure. 

Using Metabolic Computer 

O2 consumption"', CO2 production"', respiratory quotient (RQ) and metabolic rate (MR). 

Air temperature"', ambient pressure'" and ambient CO2''' 

Basal metabolic rate, non-protein RQ, energy substrate utilisation, body surface area 

Ventilator Settings / Measurements 

FI02"', RR"', VT"', PEEP"', PIP"', PMEAN, I:E ratio'" 

Driving waveform characteristics, ventilator type, ventilation modc. 

Tubing and filter arrangement. 

Miscellaneous 

Pulseoximeter O2 saturation, heart rate, rectal temperature, skin temperature 

4) A ventilator change comprises a step changes in one of the 5 primary ventilator settings; 

FI02, RR, VT, PEEP and I:E ratio. These changes are to be madc within the ethical 

committee guidelines, see Appendix B. An optimal test regime will be to make at least two 

changes in a ventilator setting, idealIy in opposite directions and not returning to its 

original value. Figure 5.7 gives an optimal regime, with Fr02 increased to 45 % but then 

reduced to 30 % rather than its original value. 
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It was found through interaction with ICU staff and observation of the patient management 

methodologies that trying to restrict the collection of the data to this protocol would be very 

limiting. Consequently; 

• Sometimes only one PRIOR and POST measurement were made, where the 

protocol stipulated two, in order to establish the steady state condition of the patient 

before and after therapy change. 

• Sometimes not all of the measurements required were recorded due to the time 

constraints on the anaesthetists making the measurements. 

• Sometimes the patients were very unstable and not really suitable for validation 

purposes, but were recorded anyway. 

• Sometimes the patients were not connected to a PAC, thus negating the possibility 

of cardiac output measurements. 

• Sometimes drug maintenance or physiotherapy interfered with a study, introducing 

a further unknown artefact into the data. 

5.3.2 Summary of Collected Data 

Four patients were identified as suitable for study during the 3-week data collection window, 

and from these 9 ventilator changes were recorded. These are detailed in full in Appendix B, 

with a synopsis of each patient, a description of the ventilator arrangement used, atmospheric 

conditions derived from the metabolic computer and full records of the patient measurements 

and ventilator settings. 
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5.4 Data Processing & Model Tuning 

In order to produce parameter values usable by the patient model, the measurements prior to the 

ventilator change needed to be averaged to give a single snapshot of the patient, which could be 

entered into the model. Similarly the post measurements needed to be averaged to give a 

snapshot of what happened after the ventilator change. However before this could be done the 

metabolic computer results for O2 consumption and CO2 production rates needed to be 

processed to produce a single value at each measurement time. In addition to this certain 

patients did not have a Swan-Ganz cathcter inserted. This prevented the measurement of cardiac 

output and it therefore had to be derived using other patient measurements. 

Once the data sets were complete and had been averaged to produce the prior and post paticnt 

snapshots, it was then possible to tune the prior duta to match the measured gases. This was 

done by iteratively adjusting shunt, dead space and P50. It was only after this that the 

performance of the model could be assessed. 

5.4.1 Metabolic Computer Results 

The O2 consumption rate (Vo2 ) and CO2 production rate (Vco2 ) of the patient at the sample 

time (i.e. when the venous and arterial blood gas samples were taken) were obtained by taking a 

lO-point average of the metabolic computer (MC) data centred on the sample time. Since the 

metabolic computer takes measurements once every minute, this gave an average based upon 5 

minutes prior to and 5 minutes after the sample point. During the measurement period the MC 

would sometimes generate artefact flags indicating that V0 2 and Vco 2 measurements were 

unstable and therefore to be treated with caution, see Figure 5.8. If these caused deviations of 

greater than 5 % from mean when calculating the sample average, then the next nearest non

artefact data were used. 

5.4.2 Calculation of Cardiac Output 

In records Pl-3, Pl-4 and P2-1 the patients were not fitted with a pulmonary artery catheter 

(PAC) and therefore it was not possible to measure cardiac output using thermo-dilution 

techniques. However, Qt can be estimated using O2 consumption (Vo 2 ) and the arterial-venous 

O2 content difference (Ca02 - CV02) via the following equation; 

(5.5) 

This is only possible because of the use of the metabolic computer to measure Vo 2 . The 

arterial-venous content difference was calculated from the blood gas tensions using the O2 gas 

dissociation function together with the other blood measurements (haemoglobin, blood 

temperature, etc). The haemoglobin binding capacity was assumed to be 1.34 gil, the plasma O2 

carrying coefficient to be 0.225 ml/llkPa and the P50 point to be 3.5774 kPa. Table 5.2 shows the 

results of these calculations. 
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Figure 5.8: Example of output generated by Dcltatrac II Metabolic Computer for O2 

consumption and CO2 production in Patient 1-2. The computer indicates regions of artefact (x) 
when the measurements cannot be relied upon since they vary well beyond expected ranges. 
Averages taken around the sample points (0) need to avoid these artefacts. 

Reference CaOz CvOz C(a-v)Oz V02 Q/ 
(mIll) (mVI) (mM) (mVrnin) (I/min) 

PI-Ill 123.21 101.55 2l.66 289.4 13.36 

2 123.04 1Ol.64 2l.40 282.1 13.l8 

3 127.36 106.51 20.85 279.1 13.38 

4 131.25 109.64 2l.61 284.4 13.16 

Pl-2/1 127.36 106.51 20.85 279.1 13.38 

2 131.25 109.64 21.61 284.4 13.16 

3 132.30 11l.99 20.31 266.2 13.11 

P2-1/1 148.06 100.18 47.88 368.5 7.70 

2 148.07 94.98 53.09 314.2 5.91 

3 15l.69 106.46 45.23 309.7 6.85 

4 143.18 104.98 38.20 308.4 8.07 

Table 5.2: Estimated cardiac output for patients without pulmonary artery catheters. Arterial
venous content difference calculated using O2 gas dissociation function and arterial/venous 
measurements. O2 consumption measured using metabolic computer. 

82 



14 

~ 12 X ;' 
;' 

X ;' 
;' 

Identity ;' :::::. X "",,/ -- X 0 10 
U 
"'0 

8 a.> 
S /X ~ 
a.> """ :; 6 xX~,/'X 

'-X X 

4 
4 6 8 10 12 14 

Calculated C.O. (l/min) 

Figure 5.9: Correlation between measured cardiac output (using thermo-dilution) and calculated 
cardiac output using O2 consumption and arterial-venous O2 content difference. 

However, deriving Ot in this manner is very approximate as illustrated when measured Ot 
(using thermo-dilution) was compared with that calculated using equation 5.5, for those patient 

records where Ot was measured, see Figure 5.9. 

Indeed, the values derived for P 1-3 and P 1-4 appear to be a lot higher than previous measurements 

would suggest. However, the absence of any other measure for Ot meant that these values had to 

be used. By implication this will lead to larger estimates of shunt than might be expected, reducing 

the sensitivity of the model and therefore perhaps the accuracy of the model. 

5.4.3 Generation of PRIOR and POST Data 

In order to apply the data to the patient model, measurements made prior to a ventilator change were 

averaged to give a starting patient scenario. This was repeated for measurements made after the 

ventilator change. Two prior and two post measurements were not always available and in these 

instances a single measurement had to suffice. No consideration was taken of the data quality and all 

points were considered. The data resulting from this averaging is given in Table 5.3 and Table 5.4. 

This generated most of the parameters required to run a patient simulation with the exception of 

those which were not easily measured (because they are not routinely monitored or because of 

the physical difficulties in measuring them). This includes shunt, dead space and Pso, which 

were adjusted to match the simulated blood gases to the measured values. The parameters 

obtained form the data collection, were as follows; 

• F102, RR, VI, PEEP, I:E and PIP 

• pH(art), pH(ven), Hb, blood temperature, Ot, V0 2 and Veo 2 

• PB, air temperature and FIC02 (ambient CO2) 

• Height, weight, age and sex. 
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P1-1 P1-2 P1-3 P1-4 P2-1 P3-1 P3-2 P3-3 P4-1 
VENTILATOR SETTINGS 
FI02(%) 55 50 55 60 40 65 70 75 50 
Respiratory Rate (rpm) 24 20 18 18 17 16 16 16 14 
Tidal Volume (ml) 680 670 870 870 700 618 615 590 693 
PEEP (cmH20) 10 5 7.5 7.5 2 10 10 10.3 5 
I:E Ratio (liE) 0.8 1.1 1 1 0.333 2 2 1.43 1.56 
PIP (cmH20) 30.2* 22.6* 24* 24* 36* 35* 33.8* 39.6* 31 
ARTERIAL 
Pa02 (kPa) 17.55 12.35 8.65 9.25 20.9 8.1* 7.8* 11.7 11.5 
PaC02 (kPa) 4.3 5.48 4.795 4.735 5.255 5.12* 5.31* 5.245 3.79 
pH 7.535 7.4725 7.4635 7.487 7.376 7.349* 7.356* 7.3655 7.3535 
Hb (g/100ml) 11.6* 10.6* 9.6* 9.95 10.8* 10.4* 10.1* 10.4* 13.6 
VENOUS 
Pv02 (kPa) 4.5 4.9 5.3 5.5 4.85 4.5* 4.6* 4.6 5.95 
PvC02 (kPa) 4.95 5.905 5.465 5.315 6.405 5.61* 5.48* 5.67 4.125 
pH 7.49 7.4595 7.468 7.467 7.3225 7.359* 7.351* 7.3565 7.3515 
OTHER MEASUREMENTS 
Blood Temperature (OC) 36.45 36.45 36.7 36.6* 36.25 38.8* 38.8* 37.2 37.95 
Cardiac Output (llmin) 5.35 7.75 13.27 13.27 6.805 7.5* 7.2* 5.8 11.15 
02 Consumption (mllmin) 276 286.35 285.75 281.75 341.35 218.6* 202.1* 214.7 237.9 
C02 Production (mllmin) 239 249 252.9 242.8 273.55 179.6* 162.1* 190.2 203.55 
ATMOSPHERIC CONSTANTS 
Air Temperature (OC) 28.4* 28.4* 29.2* 29.2* 29.1* 29.6* 29.3* 29.3* 25.4 
Ambient Pressure (kPa) 102.525* 100.391* 100.791* 100.791* 100.658* 100.658* 100.658' 100.658' 100.395 
Ambient C02 (%) 0.05* 0.06' 0.04* 0.04* 0.05* 0.05* 0.06' 0.06' 0.04 

Table 5.3: Averaged PRIOR patient data (* indicates only a single measurement was available). 

P1-1 P1-2 P1-3 P1-4 P2-1 P3-1 P3-2 P3-3 P4-1 
VENTILATOR SETTINGS 
FI02(%) 55 45 60 65 35 70 75 70 50 
Respiratory Rate (rpm) 26 20 18 18 16 16 16 16 12 
Tidal Volume (ml) 680 670 870 880 700 615 615 590 689 
PEEP (cmH20) 10 5 7.5 7.5 3 10 10 10.2 5 
I:E Ratio (liE) 0.6 1.1 1 1 0.333 2 2 1.43 1.85 
PIP (cmH20) 36.2* 22.7* 24* 24* 32* 33.8* 33.8* 38.8' 35 
ARTERIAL 
Pa02 (kPa) 16.9 10.45 9.25 9.7* 17.8 7.8* 10* 11.5 11.7 
PaC02 (kPa) 3.95 4.9 4.735 4.79* 4.685 5.31" 5.28* 5.345 4.095 
pH 7.56 7.501 7.487 7.503* 7.4175 7.356" 7.348* 7.3685 7.3735 
Hb (gIl OOml) 11.6" 10.6* 9.95 10.1" 10.85 10.1" 9.9* 10.6* 11.75 
VENOUS 
Pv02 (kPa) 4.2 5.47 5.5 5.6* 5.35 4.6* 4.8* 4.7 5.9 
PvC02 (kPa) 4.65 4.7 5.315 5.29* 5.675 5.48" 5.15* 5.835 4.42 
pH 7.52 7.482 7.467 7.476" 7.3695 7.351" 7.346* 7.3615 7.361 
OTHER MEASUREMENTS 
Blood Temperature (OC) 36.55 36.5 36.6* 36.5* 37.05 38.8* 38.8* 37.2 37.9 
Cardiac Output (llmin) 5.05 8.15 13.27 13.11 * 7.46 7.2* 5.9* 6.2 10.6 
02 Consumption (mllmin) 281.65 289.7 281.75 266.2* 309.05 202.1" 210.5* 216.8 265.6 
C02 Production (mllmin) 240.5 245.25 242.8 235.6* 267.55 162.1* 173.3* 186.75 203.9 
ATMOSPHERIC CONSTANTS 
Air Temperature (OC) 28.4* 28.4* 29.2* 29.2* 29.1* 29.6* 29.3* 29.3* 25.4 
Ambient Pressure (kPa) 102.525* 100.391* 100.791* 100.791* 100.658* 100.658* 100.658* 100.658* 100.395 
Ambient C02 (%) 0.05* 0.06* 0.04* 0.04* 0.05* 0.05* 0.06* 0.06* 0.04 

Table 5.4: Averaged POST patient data (* indicates only a single measurement was available). 
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From these the patient model calculated the following additional parameters; 

• Haematocrit (or PCY) from Hb (see equation 4.67). 

• Mean airway pressure from ventilator settings (see equation 4.39). 

• Compartment volumes from weight (see equation 4.52). 

• Functional residual capacity (FRC) from height (see equation 4.56). 

• Gas diffusion coefficients from FRC and age (these were latcr replaced by fixed 

coefficients). 

This left the model unknowns; 

• PSQ, Qs /Qt and VD to be derived during model tuning. 

• Hb O2 combining capacity, assume to be 1.34 mVg (see Section 4.2.3). 

• Plasma O2 solubility coefficient, assumed to be 0.225 mVl/kPa 

Applying these measured, calculated and tuned parameters for each patient to the model, it can 

then be used to predict the effects of ventilator changes on the blood gases. However, before this 

can be done the PRIOR model snapshot needs to be tuned, such that the arterial and venous 

blood gases match with those measured. 

5.4.4 Model Tuning 

The tuning of the model's steady-state blood-gases to match those measurcd was performed in 

an iterative manner as shown in Figure 5.10. Shunt was adjusted to match Pa02, dead space to 

match PaC02 and P50 to match PV02. The parameter tuning was performed using a secant

searching algorithm similar to that used in Section 4.2.4. Due to parameter interaction the 

matching procedure had to be repeated until the error between the model and measured blood

gases was less than 0.01 kPa. Tuning of Pvc02 was not possible and the value arrived at by 

tuning the other variables was accepted. 

Convergence was possible because shunt primarily affects Pa02 and dead space primarily 

affects PaC02. The tuning of P50 to match PV02 accommodates errors in the position of the 

saturation curve. This is similar to the approach used by Hinds et al (1983). 

Problems were encountered during the initial attempts to tune the model. In some cases VD 

estimates were unrealistically high, in others the search algorithm was unable to find a positive 

solution for shunt. Investigation of possible causes showed that the empirical formula used to 

calculate the gas diffusion constant (see equation 4.51) was giving very low values for some of the 

patients. This resulted in higher PaC02 levels requiring larger VD estimates and lower Pa02 levels 

requiring lower or negative shunts. It was decided to remove this variable factor and use a fixed 

D02 of 450 mVkPalmin and Dc02 of 1500 mVkPalmin as quoted by Selvakumar et al (1992). 

Examination of the effects of changing D02 and Dc~ supported this assumption and also 

showed that the new fixed values sat within an less sensitive region of the curves, see Figure 

5.11. In some cases the model was arriving at D02 and Dc02 values of less than 
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200 ml/minlkPa, which according to the graphs would give deviations in the predicted O2 and 

CO2 of greater than 5 %. The results of the model tuning, using fixed D02 and De02 values, are 

shown in Table 5.5. 

All known patient parameters 
entered into model 

Calculation of PC V, 002, DC02, 

PRe and compartment volumes 

.... 

.. 
Shunt tuned to match Pa02 .. 

Dead space tuned to match PaC02 .. 
P50 tuned to match Pv02 

Repeated until 
error < 0.01 kPa 

.. 
Matched steady state representation 

of patient 

.. 
Model prediction of effect of 
proposed venti lator changes 

Figure 5.10: Flow diagram of the model tuning algorithm. 

PI-I PI-2 Pl-3 Pl-4 P2-l P3-1 P3-2 P3-3 P4-1 

Iso shunt (%) 14.76 19.38 31.47 30.22 6.42 36.02 38.38 27.47 21.13 

Shunt (%) 12.84 18.90 40.63 39.55 4.96 36.92 41.12 26.91 31.17 

Vn (ml) 405.22 404.16 516.40 528.45 331.31 352.35 389.73 311.77 219.37 

Pso (kPa) 4.2242 4.0577 3.9315 3.9066 3.9934 2.9473 3.0729 3.3773 3.2383 

Table 5.5: Shunt, VD and P50 estimates obtained by matching the model to the measured PRIOR 
blood-gases. Also sho\\'n for comparative purposes are the shunt estimates arrived at using the 
iso-shunt diagram of Benetar et af (1973). 
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Figure 5.11: (a) The effect of changes in D02 on the arterial gases. As D02 falls below 200 
mllminIkPa the Pa02 is more affected. A low D02 would create lower model Pa02 and therefore 
the possibility of negative venous shunt if the simulated and measured Pa02 are to match. DC02 
was fixed at 1500 ml/minlkPa; (b) the effect of changes in Dc~ on the arterial blood gases. As 
DC02 falls below 1000 mllminlkPa the PaC02 becomes more affected. A low DC02 would create 
higher model PaC02 and therefore the possibility of excessively large dead space estimates. D~ 
was fixed at 450 mllminlkPa and all other parameters were taken from patient PI-I. 
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5.5 Clinical Validity 

So far we have; (1) examined the model's sensitivity to parameter disturbances enabling the 

identification of those parameters that may contribute to poor predictive performance; 

(2) defined a data collection protocol and used this to collect 4 patient records (containing 9 

ventilator changes); (3) processed the collected data to form snap-shots of the patient's state, 

prior to and after a ventilator change; and (4) tuned the model unknowns for each prior data set 

to match the measured blood gases. 

It was now possible to assess the model's predictive performance by changing the ventilator 

settings of the model, as per the changes made on the real patients. The simulated patient 

responses can then be compared with those measured. The measured and model-predicted 

responses are shown in Figure 5.13, with the actual response values given in Table 5.7. 

There are clearly some instances when the model-predicted responses match the measured 

responses, some when the direction is the same but the magnitudes are different and others 

when the changes are in opposite directions. There also appears to be a greater disturbance of 

the O2 system than the CO2 system as shown by the overall difference in magnitude of the Pa02 

and PaC02 changes. 

Two methods of analysis were employed to assess the accuracy of these model predictions. The 

first of these, qualitative trend analysis looks at the direction of the responses rather than their 

magnitude [Leaning, 1980; Leaning et aI, 1983]. This gives an indication of whether the patient 

and/or model are responding to ventilator changes as expected. 

The second method uses statistical measures such as standard error and correlation coefficient to 

quantify the model's predictive performance. A similar (though not identical model) was 

assessed by Hinds et al (1983), and the results of their analysis are used as a yard stick against 

which to gauge the model's performance. 

5.5.1 Qualitative Trend Analysis 

Three qualitative trend comparisons were made. The first of these compared the measured 

trends with the expected trends. The expected trends (or intuitive trends) were derived from the 

simple rules used by an anaesthetist to achieve blood-gas management, see Table 5.6. By 

comparing these intuitive trends with the measured trends it was possible to assess the quality 

of the measured responses. This was not an indicator of measurement error, more a means of 

distinguishing between well behaved and poorly behaved patient responses. 

Note that the effects of ventilator changes on PV02 and PVC02 were not considered. However, 

PV02 changes will normally match the Pao2 changes in terms of direction but with much smaller 

magnitude (lower sensitivity) and PVC02 will change in a similar manner to PaCo2. 

This can be explained by the relative positions of the dissociation curves. Because the O2 
dissociation curve is non-linear, the arterial points lie on a flatter portion of the curve than the 

venous points. Therefore when the haemoglobin saturation changes by a small amount at the 
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arterial point, it results in large shift in Po2, where as at the venous point, where the curve is 

much steeper the effect is greatly reduced (see Figure 5.l2). The CO2 dissociation curve on the 

other hand is fairly linear and therefore changes in CO2 content cause similar changes in CO2 

tension at the arterial and venous points. 

This behaviour is confirmed in Figure 5.l3, where the model-predicted PV02 responses match 

the Pa02 responses in terms of direction but are considerably smaller in magnitude. The PVC02 

and PaC02 responses on the other hand are almost identical. 

Direct Therapy Trends Cross-coupled Therapy Trends 

An increase in Fr02 will increase Pa02 An increase in RR will increase Pa02 

A decrease in FI02 will decrease Pa02 A decrease in RR will decrease PaOz 

An increase in PEEP will increase Pa02 An increase in VT will increase PaOz 

A decrease in PEEP will decrease Pa02 A decrease in VT will decrease Pa02 

An increase in RR will decrease PaCOz An increase in FI02 gives no change in PaC02 

A decrease in RR will increase PaC02 A decrease in Fr02 gives no change in PaC02 

An increase in VT will decrease PaC02 An increase in PEEP gives no change in PaCo2 

A decrease in VI will increase PaC02 A decrease in PEEP gives no change in PaC02 

Table 5.6: Summary of intuitive responses to ventilator changes. Direct therapy trends 
correspond to the intended therapeutic effects of a ventilator change, and cross-coupled trends 
are the indirect consequences of a ventilator change. 
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Figure 5.12: Sensitivity of the oxygen dissociation curve at typical arterial and venous points, 
illustrating how shifts in the haemoglobin saturation cause larger shifts in O2 tension at the 
arterial point (13.3 kPa) than at the venous point (5 kPa). 
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The second comparison was made between the intuitive trends and the model predictions (or 

predicted trends). Since the patient model should reflect a well-behaved patient, it was 

anticipated that the model predicted trends would match the intuitive trends in all cases. 

By implication therefore patients deemed well behaved from the first trend comparison should 

match the predicted trends. This constitutes the third and final comparison bctween the 

measured trends and the predicted trends. 

Scoring of Intuitive Trends 

Using the following symbolic notation the expected patient trends were scored for each patient 

record based upon the ventilator changes, see Table 5.8~ 

• t Increase in gas tension expected. 

• t Small increase in gas tension expected. 

• ~ No change in gas tension expected. 

• ,j.. Small decrease in gas tension expected. 

• J, Decrease in gas tension expected. 

Scoring of Measured and Model-Predicted Trends 

The measured and predicted responses were scored using the following classification 

boundaries to give the measured trends and predicted trends~ 

• t Increase in gas tension: response ~ 0.1 kPa 

• ~ No change: -0.1 < response < 0.1 kPa 

• J, Decrease in gas tension: response ~ -0.1 kPa 

The choice of classification threshold was somewhat arbitrary but was made such that very small 

changes would be classes as no change whilst retaining information about the direction of smaller 

but not insignificant responses. Setting the threshold too high would lead to a broad classification 

of ~ (no change). The measured and predicted trend classification is also given in Table 5.8. 

Comparison of Measured and Intuitive Trends 

The measured trends were found to match the intuitive trends in; 

6 cases for Pa02 (PI-2, PI-3, PI-4, P2-1, P3-2, P3-3) 

4 cases for PaC~ (PI-I, PI-3, P3-2, P4-I) 

The venous gases were not considered. 

The reasons for mismatch were not always obvious, but each measurement that failed to match 

was assessed and possible reasons identified. 
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Figure 5.13: Comparison of the POST-PRIOR difference between measured and model 
predicted responses to ventilator changes for Pa02, PaCo2, PV02 and PVC02. See Table 5.7 for 
actual values. 
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Pl-l Pl-2 Pl-3 Pl-4 P2-1 P3-1 P3-2 P3-3 P4-1 

PRIOR Measured Gases 

Pa02 (kPa) 17.55 12.35 8.65 9.25 20.90 8.10 7.80 11.70 11.50 

PaC02 (kPa) 4.30 5.48 4.80 4.74 5.26 5.12 5.31 5.25 3.79 

Pv02 (kPa) 4.50 4.90 5.30 5.50 4.85 4.50 4.60 4.60 5.95 

PVC02 (kPa) 4.95 5.91 5.47 5.32 6.41 5.61 5.48 5.67 4.13 

POST Measured Gases 

Pa02 (kPa) 16.90 10.45 9.25 9.70 17.80 7.80 10.00 11.50 11.70 

PaC02 (kPa) 3.95 4.90 4.74 4.79 4.69 5.31 5.28 5.35 4.10 

Pv02 (kPa) 4.20 5.47 5.50 5.60 5.35 4.60 4.80 4.70 5.90 

PvC02 (kPa) 4.65 4.70 5.32 5.29 5.68 5.48 5.15 5.84 4.42 

POST Model-Predicted Gases 

Pa02 (kPa) 17.69 11.38 9.03 9.79 17.66 8.41 8.04 10.77 11.44 

PaC02 (kPa) 4.00 5.48 4.80 4.62 5.56 5.16 5.31 5.24 4.40 

PV02 (kPa) 4.49 4.83 5.38 5.58 4.79 4.56 4.66 4.54 5.98 

PvC02 (kPa) 4.63 5.90 5.47 5.19 6.75 5.66 5.48 5.67 4.74 

POST Model-Predicted (+pH changes) Gases 

Pa02 (kPa) 17.50 11.15 8.86 9.66 17.45 8.36 8.10 10.74 11.27 

PaC02 (kPa) 3.99 5.48 4.79 4.62 5.56 5.16 5.31 5.24 4.39 

PV02 (kPa) 4.36 4.74 5.40 5.54 4.59 4.60 4.68 4.52 5.94 

PVC02 (kPa) 4.54 5.95 5.75 5.26 6.62 5.84 5.46 5.64 4.83 

PRIOR-POST Measured Difference 

Pa02 (kPa) -0.65 -1.90 0.60 0.45 -3.10 -0.30 2.20 -0.20 0.20 

PaC02 (kPa) -0.35 -0.58 -0.06 0.05 -0.57 0.19 -0.03 0.10 0.31 

PV02 (kPa) -0.30 0.57 0.20 0.10 0.50 0.10 0.20 0.10 -0.05 

PvC02 (kPa) -0.30 -1.21 -0.15 -0.02 -0.73 -0.13 -0.33 0.17 0.30 

PRIOR-POST Model-Predicted Difference 

Pa02 (kPa) 0.14 -0.97 0.38 0.54 -3.24 0.31 0.24 -0.93 -0.06 

PaC02 (kPa) -0.30 0.00 0.00 -0.12 0.31 0.04 0.00 0.00 0.61 

PV02 (kPa) -0.01 -0.07 0.08 0.08 -0.06 0.06 0.06 -0.06 0.03 

PvC02 (kPa) -0.32 0.00 0.00 -0.12 0.35 0.05 0.00 0.00 0.62 

PRIOR-POST Model-Predicted (+pH changes) Difference 

Pa02 (kPa) 0.60 0.70 -0.40 -0.04 -0.35 0.56 -1.90 -0.76 -0.43 

PaC02 (kPa) 0.04 0.57 0.05 -0.18 0.88 -0.15 0.03 -0.11 0.29 

Pv02 (kPa) 0.16 -0.73 -0.10 -0.06 -0.77 0.00 -0.12 -0.18 0.04 

PvC02 (kPa) -0.11 1.25 0.43 -0.03 0.94 0.36 0.31 -0.19 0.41 

Table 5.7: Measured and model-predicted responses resulting from the ventilator changes 
(see Table 5.8 for the ventilator changes made) 

92 



P1-1 P1-2 P1-3 P1-4 P2-1 P3-1 P3-2 P3-3 P4-1 

red. Fi02 red. RR 
inc. RR inc. Fi02 sm. red. RR sm. red. Vt I 

Ventilator Change sm. red. I:E red. Fi02 inc. Fi02 sm. inc. Vt sm. inc. Peep inc. Fi02 inc. Fi02 red. Fi02 sm. inc. I:E J 
Pa02 I 

Intuitive t .!- t t .!- t t .!- .j. I 

Measured .!- .!- t t .!- .!- t .!- t 
I 

Model Predicted t .!- t t .!- t t .!- ++ 
PaC02 

I Intuitive .!- ~ ++ .j. t ++ ++ ++ t 
Measured .!- .!- ++ ++ .!- t ++ t t I 

Model Predicted .!- ~ ++ .!- t ++ ~ ~ t 
PV02 

Intuitive t .j. t t .j. t t .j. .j. 

Measured .!- t t ~ t ++ t t ++ 
Model Predicted ~ ~ ++ ++ ~ ++ ++ ~ ++ 
PvC02 

Intuitive .!- ~ ++ .j. t ++ ++ ~ t 
Measured .!- .!- .!- ~ .!- .!- .!- t t 
Model Predicted .!- ~ ~ .!- t ++ ++ ~ t 

--

Key: t increase .!- reduction ++ no change t sm. increase .j. sm. reduction 

Table 5.8: Comparison of measured and model predicted response trends to therapy changes. 



PaD] mismatch in PI-I: the post measurements for Pa02 varied by 2.2 kPa indicating either a 

measurement error in one of the measurements or patient instability. Ignoring point 3 (the most 

likely candidate for measurement error) the measured response would be t, matching the 

intuitive trend. Additionally V02 increased from 276 mVmin to 281.6 mVmin, contributing 

further to the negative trend in Pa02. 

PaD] mismatch in P3-1: only a single sample was available for this measurement and therefore 

may be subject to patient instability. The dip in O2 saturation (recorded using a pulse-oxymeter) 

from 96% to 94% seems to support this hypothesis. Since the FI02 was increased it follows that 

the O2 saturation should increase, but it does not. 

PaD] mismatch in P4-1: the increase in Pa02 was very small (0.2 kPa) and since the intuitive 

trend was J, (a small reduction). Such a discrepancy is well within possible measurement errors, 

especially when it is observed that there was a 12.5% variation in prior Ot measurements and a 

9.9% in post Qt measurements. 

PoCO] mismatch in Pl-2: the main cause of this mismatch seems to be a general instability in 

the acid-base balance as indicated by the spread of pH and standard HCO; values. Since only 

F102 was adjusted these should remain constant across the whole test. The pH range was 7.452 

to 7.507 (a difference of 0.055) and the standard HCO; range was 28.4 to 30.7 mmoVl (a 

difference of 2.3 mmoVI). Since this patient was known to be clinically unstable and did 

eventually die (after withdrawal of treatment) the instability observed and resulting trend 

mismatch were expected. 

PoCO] mismatch in Pl-4: the measured response was zero (actually +0.055 kPa), and was 

based upon a single post measurement. The intuitive trend was a small Paco2 reduction, which 

given possible measurement errors, means that the trends are similar. 
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Figure 5.14: Improvement in patient P2-1, caused by re-inflation of collapsed alveoli through 
the application of PEEP. The increased alveolar ventilation gives rise to increased Pa02 and 
reduced PaC02. The drop in Pa02 occurring after 15:40 is due to a reduction in F102. 

PoCO] mismatch in P2-1: this patient was improving after an emergency operation and 

therefore it seems likely that airways will have collapsed during anaesthesia. This explains the 

application of a small amount of PEEP. Since the collapsed alveoli will begin to re-inflate, 

alveolar ventilation will improve and consequently CO2 elimination will improve. This is 
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confirmed if we plot the PaC02 data, see Figure 5.14. Supporting this theory is the general 

increase in O2 tension, which would be expected as the physiological shunt reduces. The 

intuitive trend should be modified to -1-, to reflect this more complex and dynamic physiology. 

PaC02 mismatch in P3-1: the intuitive trend was ~, but the measured trend was t. However 

the increase in PaC02 was only 0.19 kPa. Given possible measurement errors and only one 

prior/post data point this can be considered reasonable trend matching. 

PaC02 mismatch in P3-3: the measured increase was small (0.305 kPa) and appears to be an 

artefact of gradually rising PaC02 levels, see Figure 5.15. Reasons for this are unclear. 
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Figure 5.15: Arterial PaC02 measurements for patient P3-3 showing gradually increasing trend. 

Comparison of Model Predicted and Intuitive Trends 

The predicted trends were found to match the intuitive trends in all cases with the exception of 

the Pa02 trend in patient P4-1, where because of the classification boundary used, the model 

trend was classed as ~, instead of -1-. 

Comparison of Model Predicted and Measured Trends 

As anticipated, it was found that those measured trends, which matched the intuitive trends, also 

matched the model-predicted trends. 

To summarise then~ the model was able to match the intuitive rules in all cases, although some 

of the responses were small, due to low model stimulation. The model matched the measured 

trends in all cases when the measured trends behaved intuitively. This is encouraging as a first 

indicator of model performance. However, a measured response may be in the same direction as 

a model response yet of such varying sizes to consider the match poor. 
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5.5.2 Statistical Analysis 

Before attempting any statistical analysis of the model's performance it has to be noted that the 

data set was very small and therefore likely to be statistically unrepresentative. The accumulated 

effect of measurement errors on the model means that large numbers of patient observations 

would be required to make the analysis meaningful. This proviso aside it was important to 

obtain a quantitative indication of the model's performance using the limited data collected. 

The accuracy of the model predictions was assessed using correlation analysis. Figure 5.16 shows 

the comparison between the model predicted and measured blood gas tensions for the arterial and 

venous gases. Predictions for Pa02 showed a good correlation (r = 0.97), which was slightly better 

than the correlation obtained by Hinds et al (1983), see Table 5.9. However PaC02 predictions 

gave much poorer correlation (r = 0.76) than Pa02 and was worse than Hinds et a/. 

Two possible explanations for this reduced performance in PaC02 correlation are; 

1) At this point in the model development the pH was assumed constant and was set at 

the prior value, even after changes in the ventilator settings. This does not reflect 

what actually happens, especially after changes to minute volume which directly 

affect the pH. 

2) Changes made to minute volume were small and therefore the CO2 system was 

under stimulated. This is evident when we compare the size of changes observed in 

the Pao2 and PaCo2 systems (see Figure 5.13) This coupled with possible patient 

instability masks any underlying changes. 

The first of these was simple enough to confirm by including the post pH values with the 

ventilator changes before simulating. However this gave no improvement in Pa02 correlation (r = 
0.97) or PaC02 correlation (r = 0.76), see Table 5.9. Therefore, it can be concluded that patient 

instability coupled with under stimulation was the major contributing factor to response mismatch. 

The situation was much the same for the venous gases. The predicted PV02 correlation 

(r = 0.86) whilst not as good as the arterial case was much better than that observed by Hinds et 

al. The PVC02 correlation (r = 0.65) was the worst of all four gases, comparing unfavourably 

with Hinds et al. Inclusion of post pH values slightly degraded the PV02 correlation (r = 0.83) 

and made no difference to PVC02 correlation (r = 0.65). 

PaOl PaCOl PVOl PVCOl 

r CJE r CJE r CJE r CJE 

Hinds et al 0.94 2.31 0.89 0.27 0.61 0.51 0.88 0.29 

Model Predicted 0.97 0.89 0.76 0.36 0.86 0.29 0.65 0.39 

Model Predicted 0.97 2.l0 0.76 0.63 0.83 0.58 0.65 0.89 
(with updated pH) 

Table 5.9: Comparison between correlation coefficients (r) and standard deviation of the mean 
response error (CJE) for the predicted model responses. 
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Figure 5.16: Regression analysis of predicted model responses against measured responses for 
arterial and venous O2 and CO2• The dashed line indicates the ideal correlation and the dark line 
the calculated regression line. 

5.5.3 Causes of Response Errors 

There are many reasons why the measured and predicted responses do not match and obviously 

poor representation of patient physiology within the model may be one of those reasons. 

However, other sources of error exist and need to be considered. The purpose of this section is 

not to quantify such errors but simply to identify them. Four possible sources of response errors 

have been identified; 

1). Patient instability: 

The patient state may be changing erratically over relatively short time periods. In such cases 

the measured data may be accurate but the patient is pathologically unsuited to this type of 

validation. The model will be unable to predict such behaviour, even if its complexity is 

increased. 

2). Physiological glitches at measurement time: 

The overall trend of the patient response may be in the correct direction or of the correct 

magnitude but momentary fluctuations in the patients physiological states (such as a cardiac 
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surge) give the appearance of incorrect response. Problems such as these are removed with rapid 

data sampling and response filtering. 

3). Drift in underlying patient state: 

Patient parameters such as Qt or V0 2 may have changed over the period of the patient test. 

However, these changes are not caused by patient instability, but by slow trends in one or more 

of the patient parameters. Maybe Qt was stabilising after the infusion of a stimulant, or there 

was lessening of internal bleeding in response to a drug. Pe02 has a much slower time constant 

than P0:2 and may not have stabilised by the time POST blood-gases are taken. 

4). Measurement errors: 

Differences caused by human error, clinical error or instrumental error may all conspire to 

obscure the underlying patient response and therefore cause poor response behaviour. 

Of these hypotheses the first three can be classified as physiological, since they are due to 

changes in the patient state. A clearer separation of these effects would be established with an 

increased measurement rate and longer test length. However, close involvement with the data 

collection process has indicated that there would be many problems in trying to establish a more 

rigorous collection regime. 

The measurement errors can be classified as one of three primary types; 

1). Clinical measurement errors: 

Even if the patient state was assumed to be stable throughout the period of the test, there will 

always be errors due to the nature of the physiological processes and how they can be measured. 

For example, blood sample lines cannot be inserted at any location, and consequently their 

position may cause errors associated with blood mixing. This is certainly true with samples taken 

using a central venous line where venous return will not always have mixed properly. Other 

examples of this error include breath-by-breath fluctuations observed in the arterial Pae~. The 

contribution of these effects is unknown. 

2). Experimental measurement errors. 

This probably accounts for the largest contribution to the overall error since they are caused by 

the human factor. Intensive care patient management is such that many people will be involved 

in the patient blood sampling and measurement acquisition. Therefore problems are likely to 

occur due to poor or inconsistent blood sampling techniques, inconstant thermo-dilution 

injections, incorrect instrument calibration, etc. 

For example Gosling (1995) described the following errors associated with blood-gas sampling; 

• The incomplete withdrawal of hepar ani sed saline solution (anticoagulant) from line 

before sampling of the blood may cause dilution errors. However about 0.05 ml 

will always remain in the syringe dead space, which for a 1 ml blood sample will 

give an overall dilution of 5%. Plasma constituents that can easily pass into the red 

blood cells such as CO2 will be reduced by about 5%. Blood pH is less effected 
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since it is dependent upon the ratio between dissolved CO2 and plasma bicarbonate, 

which dilution does not greatly disturb. 

• Bubbles introduced into the syringe during sampling, which is usually unavoidable, 

will if allowed to equilibrate with the blood increase Pa02. For example, 1 % of 

introduced air (0.01 ml in a 1 ml sample) can increase Pa02 by up to 15 % if 

allowed to equilibrate. 

• The delay between sample and analysis time, should be less than 10 min's. For 

example, a measured Pa02 of 13.3 kPa after 10 min's, will be approx. 0.7 kPa lower 

than at sample time, the Pe02 approx. 0.08 kPa higher and pH 0.006 lower (0.98 

increase in [tt]), [Nunn 1993, p.570). 

• Red cells settle out of the plasma rapidly, especially in critically ill patients. If the 

sample is not shaken thoroughly before introduction into the analyser, 

measurements will be made on a red cell rich or red cell deficient sample, leading 

to inaccurate Hb, pH, Pe02 and P02 results. 

• Violent injection into the analyser can cause haemolysis increasing potassium and 

in some instruments p02 results. 

Similar analysis could be applied to the other measurement procedures and potential errors 

identified. However, their likelihood and degree of influence of each error source for each 

measurement are a matter of speculation. We can merely identify their potential and hope that 

reasonable precautions are taken by clinical staff to minimise their effects. 

3). Instrumental measurement errors. 

Assuming correct calibration these will tend to be the smaller of the error contributions. Typical 

machine accuracy is given below; 

IL System 1302 pH/Blood Gas Analyser 

pH 

Accuracy 

Precision 

-0.007 ± 0.007 

0.0046 ± 0.0026 

([tt) -0.984 ± 0.984) 

([In -0.989 ± 0.994) 

Pe02 

@ 4.666 kPa (35 mmHg) Accuracy +0.067 ± 0.047 

Precision 0.093 ± 0.027 

@ 6.666 kPa (50 mmHg) Accuracy -0.067 ± 0.053 

Precision 0.080 ± 0.040 

@ 12.666 kPa (95 mmHg) Accuracy o ± 0.240 

Precision 0.107 ± 0.040 
P02 

@ 6.666 kPa (50 mmHg) Accuracy -0.133 ± 0.067 

Precision 0.093 ± 0.067 
@ 12.666 kPa (95 mmHg) Accuracy +0.160 ± 0.133 

Precision 0.080 ± 0.040 
@ 18.665 kPa (140 mmHg) Accuracy -0.133 ± 0.040 

Precision 0.080 ± 0.053 
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C.O. Module: HP Component Monitoring System 

Cardiac Output Accuracy 

2 % standard deviation @ blood / injectate temp. diff. > 10 °C 
Temperature Accuracy 

±0.1 °C (0.2 OF) 

The interaction of the above physiological and measurement errors (and others not considered) 

is complex. It would be a large undertaking to establish the approximate effects of most of them 

and then to arrive at an estimate of their combined effect. However, as a crude rule of thumb, a 

physiological measurement is deemed to have changed if it increases or decreases by at least 

10%. Turning the argument around, we can say that physiological measurements might have 

combined errors of up to 10 %. With careful measurement procedures, errors should be much 

less than this, but they do remain the overriding factor in being able to accurately assess the 

performance of the model. 

5.6 Summary & Conclusions 

Sensitivity Analysis of the Model 

A simple sensitivity analysis methodology was used in preference to more involved methods. 

This provided a preliminary indication of the relative parameter sensitivities of the model. The 

method used is known as 'Classical Sensitivity Analysis' and ignores parameter interaction and 

variability in the size of the parameter's disturbance space. 

Direct comparison between sensitivities of the state outputs was possible since they were 

expressed in the same units (i.e. all measures of partial pressure and in kPa), and it was 

observed that Pa02 was more sensitive than the other state outputs by a factor of 5:1. Since this 

is one of the primary therapy decision variables, it has important considerations in terms of 

model-patient matching. 

The O2 system was found to be most sensitive to FI02, with much smaller sensitivities to VT 

and RR. Conversely, the CO2 system was most sensitive to VT and RR, with little response to 

Fr02 changes. This matched the changes in blood-gases predicted by the intuitive therapy rules. 

The O2 system was found to be very sensitive to Qs/Qt' but insensitive to VD, whilst the CO2 

system was sensitive to VD and insensitive to Q s / Qt . The tuning of the patient model used this 

difference to arrive at unique solutions of Qs /Qt and VD that produced blood-gases to match 

those observed clinically. 

Sensitivity to PEEP and I:E was extremely low which does not correlate with their known 

therapeutic effects. This was because the model did not simulate the effect of PEEP and I:E on 

the physiology of the lung. The inclusion of PEEP, opens up more airways and has the result of 

reducing the dead space to alveolar volume ratio (an effective increase in ventilation rate), and 

reduces the effective physiological shunt. 
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Cardiac output was found to be very sensitive in the O2 system, and since this parameter is 

subject to large measurement uncertainties, poses the likeliest cause of model-patient mismatch. 

Quality of Measured Data 

Not all of the patients responded in an intuitive manner to changes in ventilator therapy; only 69 

% of cases for the Pa02 and PaC02 trends. This indicates either underlying measurement 

problems or instability in the patient. 

The amount of data collected was very small and highlights the problems associated with 

clinical data collection. The following restrictions to successful data collection were identified; 

1). The lack of suitable patients. 

2). The need to use a PAC to measure Qt in the absence of non-invasive methods. 

This set up a contradiction between the need to measure many parameters, which 

are only routinely monitored in highly critical patients, and the need for 'stable' 

patients. Consequently many of the records obtained were unsuitable due to their 

unstable nature. 

3). Lack of equipment to measure metabolic function (namely O2 consumption and 

CO2 production), hence the need to hire a metabolic computer. 

4). Restrictions imposed by ethical considerations; 

5). Number of measurements on any given patient restricted, especially with reference 

to Qt measurements. 

6). Limitation on size of ventilator therapy change causing under stimulation of both 

the patient and the model. 

7). Interference during a patient record by priority treatments such as physiotherapy 

and drug changes, which could dramatically alter patient state. 

8). The difficulty of asking clinical staff to perform extra work, albeit small. 

9). The time consuming nature of the data collection itself, waiting for the therapy 

changes to be made and for suitable patients to become available. Since overseeing 

the collection itself is not always practicable, there is a need to stimulate enough 

interest and understanding of the data collection objectives to maintain collection 

over long periods. 

The problem of Qt measurement should improve as alternatives to thermal dilution begin to 

emerge, such as partial CO2 re breathing [Mahutte et ai, 1991; Vidal Melo et ai, 1992; Gedeon 

et ai, 1980; Capek et ai, 1988]; thoracic electrical bioimpedance [Young & McQuillan, 1993]; 

and doppler ultrasound. Such methods would increase the pool of available patients, and might 

be considered in a more extended study. 
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Clinical Validity 

Given the limitations of the patient data and the unsuitability of the available patients the model 

was shown to predict the therapy responses well. The model responded intuitively to all therapy 

changes, although some responses were small due to the small therapy step sizes, or large 

Qa/Qt and VD estimates. Consequently the model trends matched the measured trends in all 

cases when the measured trends behaved intuitively (69 % of cases). 

The overall impression of this analysis is that the model behaves well to therapy changes, with 

the exception of PEEP and I:E which require the inclusion of additional model elements. 

However, its ability to match real patient data is limited, primarily because of the errors 

attributable to physiological measurement. To validate the model more rigorously would require 

either accurate data from a lung function lab on healthy patients that are known to be stable; or 

observation of ICU patients using continuous and where possible non-invasive measurement 

techniques. This is especially necessary with respect to cardiac output. By having continuous 

data, local instabilities in the data can be rejected or averaged out. The use of non-invasive 

techniques eliminates the problem associated with say PACs, which are usually only used on 

very unstable patients. Since unstable patients are not likely to behave predictably, they can 

hardly be used for model validation purposes. 

The introduction of automated data collection techniques within the ICU and the non-invasive 

measurement of certain critical parameters will facilitate a more rigorous statistical analysis of 

the model in the future. 

The model still needs some improvement for it to be truly useful for advisor validation, and 

these modifications are presented in Chapter 7. The next chapter presents the prototype 

development of the ventilator advisor itself. 
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Chapter 6: FAVeM - Advisor Development 

6.1 Introduction 

Thus far development and testing of a patient model suitable for the simulation of patients on 

volume control (VC) and pressure regulated volume control (PRVC) modes of ventilation has 

been presented. This model has been shown to provide a reasonable level of patient realism, and 

together with the improvements discussed in Section 7.3, can be used to validate and improve 

the fuzzy advisor via simulated closed-loop control. 

This chapter provides a comprehensive account of the fuzzy advisor's prototype development. It 

includes an overview of the advisor architecture (see Section 6.2) followed by a discussion of the 

reasons behind the choice of membership functions, inference algorithm and defuzzification method 

employed (see Section 6.3). 

In Section 6.4 the methods used to implement the advisor rules are presented. This includes 

reasons for the avoidance of rule-holes and approaches taken to avoid them, the method of 

representation of the rule-consequents and a description ofa rule-reduction algorithm. 

Sections 6.5 to 6.8 present the initial attempts to encapsulate the anaesthetist's decision process 

for the FI02, PEEP, VT and RR controls when ventilating patients using ve and PRve. FI02 

and PEEP are described first, representing the controls used for Pa02 maintenance. The FI02 rule 

development shows how the iso-shunt diagrams were used to produce the first rule-map, and 

then how this was modified according to feedback from an anaesthetist. Next the PEEP rule 

development is presented, introducing the benefits and disadvantages of PEEP and how these 

might be encapsulated. 

The Mv and RR-Vt control rules provided Paco2 and PIP maintenance. The elicitation of the Mv 

control rules with particular reference to PaC02 and pH imbalance is described, followed by their 

improvement via the introduction of rules pertaining to high levels of PIP. Finally the balancing of 

RR and VT settings through the use of rules derived from normalised iso-MY lines is described. 

6.2 Advisor Architectu re 

6.2.1 Overview 

The advisor comprises four primary maintenance pathways; 

1). Safe control of Pa02. 

2). Normalisation ofPaco2 and to a lesser degree arterial pH. 

3). Prevention of harmful PIP levels. 

4). Establishing of ideal VT and RR settings. 

These maintenance objectives are accomplished via the manipulation of five ventilator controls 

FI02, PEEP, RR, VT and TIN, and are associated with volume-cycled modes of ventilation, such as 
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volume control (VC) and pressure-regulated volume control (PRVC). The fuzzy knowledge-based 

controller (FKBC) advises changes to these settings based upon the following information; 

1). Current Ventilator Settings; F102, PEEP, RR, VT and TIN. 

2). Patient Observations; Pa02, PaC02, pH, PIP and weight. 

3). Patient Goals; PaCo2 and pH set points. 

4). Patient Alarms; high PIP. 

These inputs are processed by the observation processing module (OPM) to produce the crisp 

values used in the rule-antecedents of the advisor sub-systems, see Figure 6.1. In the prototype 

version of FA VeM, there were four advisor sub-systems, each with its own set of control rules. 

The FI02 and PEEP sub-systems combine to provide Pa~ maintenance. The Mv and VT-RR 

sub-systems combine to provide PaC02, pH and PIP maintenance with consideration to 

normalisation of VT and RR settings. These sub-systems operate independently of one another, 

with the exception of the VT-RR sub-system, which relies upon the output of the Mv sub

system to calculate the new observed RR (one of the VT-RR sub-system antecedents). The 

reasoning being that changes in Mv affects how changes to VT and RR are distributed. 

After analysing the close-loop performance of the FAVeM (see Section 7.5) it was deemed 

necessary to introduce a fifth advisor subsystem for the control of TIN. 
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Figure 6.1: Overview ofFAVeM's architecture. Note that the TIN subsystem was not present in 
the prototype version ofFAVeM. 
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Each sub-system generates the required change in ventilator setting (i.e. ~FI02' ~PEEP, ~RR, 

~VT and ~TIN). This is quantised and added to the current ventilator settings to give the new 

settings. The quantisation or rounding of the advice enables the changes to be expressed in steps 

that match the ventilator resolution or the smallest changes likely to be made by a clinician. 

6.2.2 Observation Processing Module (OPM) 

This uses the patient observations, ventilator settings and patient goals/alarms to derive the 

inputs required by the advisor subsystems. This process was abstracted from the subsystem 

modules themselves, since some antecedents are used by more than one module (see Table 6.]). 

It also meant that the modules themselves could be based upon the same code structure, 

simplifying and speeding up system development. 

Two processes are performed by the OPM; (i) the calculation of normal ventilator settings and 

(ii) the calculation of observation errors. 

Advisor Inputs required by Inputs required by 
Sub-system Prototype Advisor Modified Advisor 

FI02 Pa02, FI02 Pao2, FI02 

PEEP Pa02, FI02, PEEP Pa02, FI02, PEEP 

Mv ePaC020, epH 0, ePIP § ePaC02 0, PIP, eVTNORM § 

VT-RR eVTNORM 0, RR, ePIP § eVTNORM 0, RR, PIP 

TIN N/A PIP, TIN 

§ Calculated by Observation Processing Module 

Table 6.]: Rule-antecedents required by each sub-system, for the prototype and modified advisor 

Calculation of Normal Ventilation Settings 

For the majority of patients (approx. 80%) their prescribed normal tidal volume (VTNORM) is 

proportional to their weight, being about 10 - 15 ml/kg body weight [Anderson, 1988, pI2]. 

FA VeM assumes VT NORM to be 10 ml/kg. The use of VT NORM enables an optimal VT to be 

defined for any given patient irrespective of their weight. 

Calculation of Observation Errors 

Of the 9 fuzzy variables used by the advisor sub-systems (see Table 6.1); 2 represent errors 

from set point level (ePaco2 and epH); 1 represents error from alarm level (ePIP); and 1 

represents distance from normal ventilation levels (eVTNORM). 

These are all measures of distance from some pre-defined norm and are calculated as follows; 

pH Error (epH): this represents how far the observed pH is from the normal pH of 7.4; 

epH = Observed pH - 7.4 (6.1) 

PIP Error (ePIP): this represents the distance from the maximum PIP threshold or alarm; 

ePIP = Observed PIP - PIP Alarm (6.2) 
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PaC02 Error (ePaCOJ: this represents the distance from the target PaC02 and is expressed as a 

percentage error, rather than an absolute error since there is a roughly inverse proportional 

relationship between PaC02 and Mv (see Section 6.7.1)~ 

P 
Observed Paco2 - Paco2 Set Po int 100 

e aco2 = x 
Set Point 

(%) (6.3) 

For example if the PaC02 set point is 5 kPa and the observed PaC02 is 6 kPa this gives an ePaC~ 

of 20 %. If the Mv is raised by 20 %, the new PaC02 should be approximately 5 kPa, i.e. a 20 % 

increase in Mv produces a 20 % reduction in PaC02. If PaC~ error were expressed in kPa the 

change required in Mv for different PaC02 set points would vary for the same PaC02 error. 

VT Error (eVTNomd: represents distance of observed VI from normal VI. This is expressed as 

a percentage error, since a 100 ml discrepancy in a large patient with a high VINORM would be of 

less significance than in a smaller patient with low VINORM. By using a percentage error the 

relative significance of such a volume difference can be inferred~ 

v; _ Observed VT - VTNORM 100 
eyTNoRM - x 

VTNORM 
(%) (6.4) 

6.2.3 Subsystems Architecture 

Each advisor sub-system follows the same basic structure, see Figure 6.2. The crisp inputs 

required by each module are passed to the inference module, which uses individual rule-based 

inference with Larsen's implication and the arithmetic product liaison operator. The fuzzy 

consequent generated by this inference is then defuzzified using the Centre-of-Sums method to 

produce the crisp controller output. The choice of inference method, liaison operator and 

defuzzification strategy is discussed in detail in Section 6.3. 

~ ~ Crisp Inputs 

Rule Base 

Fuzzy Inference 
Engine 

LARSEN (S up-Prod) 
MAX-DOT 

Fuzzy 

Output 

Crisp 

Output 

Centre of Sums 

Figure 6.2: Ventilator control sub-system architecture. 
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6.2.4 Output Quantisation 

Once the advice has been de-fuzzified it is then quantised. Three quantisation options were 

defined; raw, ventilator and clinician, see Table 6.2. The first of these raw, returns the 

unprocessed output of the inference engine, although a small amount of quantisation is applied 

to prevent very small changes that result from the defuzzification process. The second option 

ventilator, sets the quantisation to the expected resolution of the ventilator, thus preventing 

advice that cannot be implemented because the step change is too small. The final option 

clinician sets the quantisation to the minimum step change routinely made by an anaesthetist. 

Advisor Output raw ventilator clinician 

F10z (%) 0.1 1 5 

PEEP (cmH2O) 0.01 0.5 1 

RR(r.p.m.) 0.01 0.5 1 

VI (ml) 0.1 10 50 

TIN (%) 10 10 10 

Table 6.2: Advice quantisation levels provided by FAVeM. The fixed quantisation level for TIN 
reflects the winner-takes-all strategy employed when computing the generated advice (see 
Section 7.5.5). 

6.3 Inference Methodology 

Early advisor development was more concerned with rule construction and little focus was 

given to the choice of inference method. It was felt that this over sight needed to be addressed, 

and the influence of differing methodology on advisor behaviour investigated. In this way 

subsequent rule construction would correctly reflect the implementation chosen. Seven elements 

of the inference process were identified that might impact controller behaviour; 

1). Choice of membership function. 

2). Membership function geometry. 

3). Choice of inference algorithm. 

4). Choice of implication operator. 

5). Choice of liaison operator. 

6). Choice of defuzzification method. 

7). Choice of output quantisation level. 

A more detailed description of membership function geometry and the mechanics of fuzzy 

inference are given in Chapter 2. This section will only give a brief outline of the options 

available to each process element, together with justification of the selcction madc. 
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6.3.1 Choice of Membership Function 

Six main types of fuzzy membership function are referred to throughout the literature; 

1). sigmoid or S-functions 

2). bell-shaped or 1t-functions 

3). triangular form or T-functions I A-functions 

4). trapezoid form or n-functions 

5). exponential forms; includes variants of 1t-functions and S-functions 

6). crisp sets and singletons 

Crisp sets and singletons are used for binary logic, i.e. true or false; and with the exception of 

fuzzy singletons, which are used to represent crisp inputs upon a fuzzy domain, are not useful 

for fuzzy control. Sigmoid and bell-shaped sets (and their exponential variants) provide 

membership functions that gradually reduce to zero. These may have advantages in strongly 

linguistic operators such as dilation and concentration and are frequently used in fuzzy logic, 

but seldom in fuzzy control. 

Triangular and trapezoid membership functions have become the norm in fuzzy control 

applications, since they are functionally simple to represent and are computationally efficient. 

Due to this convention in fuzzy control and in the absence of strong evidence for the use of 

alternative representations; n-functions and T -functions were chosen as the method of set 

representation for the antecedent and consequent terms in FA VeM. 

6.3.2 Membership Function Geometry 

The way in which linguistic terms of a fuzzy variable are mapped onto its domain (or universe 

of discourse, UoD) can affect the performance of the controller in a number of ways. Three 

characteristics of membership function geometry were identified as having greatest impact upon 

the inference process. These were (1) cross point; (2) symmetry and (3) condition width. 

Influence of Cross-Point Level and Ratio 

The cross-point level (as defined in Section 2.2.1) for any two neighbouring membership 

functions must be greater than zero, such that a crisp observation upon that domain will belong 

to at least one membership function. If this condition is not met, input values will exist that do 

not match a rule-antecedent, leading to incompleteness in the control space. This can cause 

discontinuities in the controller output. Furthermore if the cross-point ratio (i.e. the number of 

cross-points between neighbouring membership functions) is zero then only one rule at a time 

will fire, since a crisp observation will only have membership in at most one set. In a rule-base 

with only a single antecedent, this behaves as though the observation universe is defined using 

crisp linguistic sets. 

Boverie et al (1991) has shown that for linear systems up to 3rd order with symmetrical 

membership functions there exists "optimal" values for the cross-point level and ratio, although 
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this evidence was only empirical. A cross-point level of 0.5 and a ratio of 1 provide for 

significantly less overshoot, undershoot and faster rise times. The shape does not play an 

important role, although trapezoid functions are responsible for slower rise times. This choice of 

values matches those reported elsewhere in the literature. 

The choice of cross-point parameters has greatest influence over system behaviour when applied 

to antecedent set definitions. Consequent sets are able to have a cross-point ratio of zero, so long 

as the sets have equal area and are symmetrical. However, this may affect the plausibility of the 

crisp control output (see Section 6.3.5). 

J.l 
1 

0.=0.7 

Upeak u 
Figure 6.3: The membership function of NM and its clipped version caused by a firing weight 
of 0.7 (shaded area). 

J.l 
1 

_________________________ , / JiNkF f.1CNM 

! 
i , 

I 
! 
! 

I 
! 
Upeak UcoG u 

Figure 6.4: When the degree of membership is 1 the clipped consequent and the original 
consequent are the same. In the case of asymmetric membership functions the peak value is 
different from the Centre-of-Gravity. 

Influence of Symmetry and Width 

Inference performed using single rule firing, may produce as a result of some crisp observation 

xo, a "clipped" control output. Consider the rule "if x is Z then u is NM", and Xo has a degree of 

membership a in J.lz of 0.7. If the membership function describing the consequent NM is 

asymmetrical then the meaning represented by f.JNM is given in Figure 6.3 and the certainty of 

the rule (a) results in the clipped version of the consequent J1cNM. 

Calculation of the crisp control output u* requires the application of a defuzzification method, 

for example the Centre-of Gravity (CoG) method. This obtains a single control output by 
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averaging across every element of the output domain U. Ifwe consider the case when the degree 

of match in the rule antecedent is 1 (i.e. ex. = 1) then the fuzzy consequent jlCNM is a triangular 

shape. Only one element of U satisfies to a degree of 1, namely Jlpeak. Thus it makes 

interpretative sense to take jlpeak to be the actual value of u*. However, if we take the CoG of 

jlCNM then jlpeak '* jlcoG as shown in Figure 6.4. 
\ 

Different defuzzification methods such as Centre-of-Maxima (CoM) are able to resolve this conflict 

but as discussed in Section 6.3.5, these can themselves have a disadvantageous effect on the control 

output. The simplest way to resolve this problem is by making the consequent f.JNM symmetrical about 

jtpe;,k. Symmetry is not important in the rule antecedent, however condition width must be satisfied. 

Condition Width 

Two neighbouring membership functions on the same universe of discourse must have left 

width equal to right width in the interval between the two peak values. Also, the widths must 

equal the interval between the peak values. 

To illustrate how contravention of condition width can affect control behaviour, consider the 

following example. A proportional FKBC has two rules; 

1). If e is PM then u is PB 

2). If e is PS then U is PM 

Let the meaning of the linguistic terms PM and PS in the rule-antecedent be denoted by jlpM and 

jlPS. These are mapped onto the observation universe E in two different manners, see antecedent 

universe in Figure 6.5 and Figure 6.6. In version 1, the condition width is met. In version 2 jlPs 

has a left width less than the interval between epeakl and epeak2 and the condition width is not met. 

In version 1 when e changes smoothly from epeakl to e pcak2, and after inference and CoG 

defuzzification, one observes that u* also changes smoothly from Upeakl to upeak2 as illustrated in 

Figure 6.5. However in version 2, u* changes step wise from Upeakl to upeak2, see Figure 6.6. It is 

therefore preferable that condition width be met by two adjacent membership functions 

describing the meaning of the linguistic values in the rule-antecedent. 

6.3.3 Choice of Inference Algorithm & Implication Operator 

The inference-engine or rule-firing algorithm can be of two basic types; 

1). Compositional Rule oflnference (CRI) 

2). Individual-Rule based Inference (IRI) 

IRI is preferred as the method of reasoning since it is computationally very efficient and saves 

on the memory required to express the fuzzy relation of a large rule-base using CRI. It can also 

be shown that compositional based inference is equivalent to individual rule-based inference for 

crisp observations [Driankov et aI, 1993, p 129] and therefore there is no loss of meaning using 

IRI. Although the FISMA T toolbox provides both compositional and individual rule-based 

inference, the latter was chosen for its simplicity and computational efficiency. 
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Figure 6.5: The smooth (continuous) change in control output when condition width is satisfied 
-version 1. 

u 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

: ----- .... -.. -----:-----------------~----- ... -.. ----
I 

---"!----....I-----1-----------------
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

E 

Figure 6.6: The step-wise (discontinuous) change in control output when condition width is not 
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Of the various fuzzy-inference methods available, the most commonly used in today's industrial 

fuzzy logic controllers are; 

1). Mamdani's implication operation: Also known as sup-min inference, 'clipped' 

inference and MAX-MIN inference. 

2). Larsen's implication operation: Also known as sup-product inference, 'scaled' 

inference and MAX-DOT inference. 

It will be shown in Section 6.3.6 that the choice of inference method has very little impact upon 

the resulting crisp consequent. A far greater impact on controller output is caused by the choice 

of defuzzification strategy and the antecedent liaison operator. 

6.3.4 Choice of Liaison Operator 

Conventionally the firing weight of a rule using individual rule inference is defined as; 

ex = min ( .... A(XO), .... B(yO) ) or 

ex = .... A(XO) 1\ .... B(yO) (6.5) 

However, any number of alternative liaison operators could be used, namely algebraic product, 

bounded sum, bounded product, and drastic-product. Of these only algebraic product is 

routinely used and is defined as; 

(6.6) 

Remember that XO and Yo are crisp and therefore equations 6.5 and 6.6 resolve to scalar 

operations. The algebraic product liaison operator was chosen since it avoided the exaggeration 

of rule importance observed using the min operator. 

6.3.5 Choice of Defuzzification Method 

The six most often-used defuzzification methods are; 

1). Centre of Area or Centre of Gravity (CoG) 

2). Centre of Sums (CoS) 

3). Centre of Largest Area (CoLA) 

4). First of Maxima (FoM) I Last of Maxima (LoM) 

5). Middle of Maxima (MID oM) 

6). Height or Mean of Maxima (MoM) 

The choice of method depends on whether it meets certain 'ideal' criteria for the application it is 

intended. Driankov et at [1993] describes the most important of these criteria, and for fuzzy 

control in general and FAVeM in particular, these criteria should have the following properties; 

Continuity:- a small change in the input should not result in a large change in output, since such 

behaviour may cause instability in the system being controlled (i.e. the patient). 
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Disambiguity:- defuzzification must be able to arrive at a single crisp value. 

Plausibility:- the crisp defuzzified output should lie approximately in the middle of the support of 

the fuzzy output and have a high degree of membership within it. This is not always possible if the 

consequent sets are to remain symmetrical in a system with non-uniformly spaced control actions. 

Computational Complexity:- the method must be suited to the time constraints of the problem. 

Advice will be required approximately every 30 minutes so this is not really of any significance. 

Weight Counting:- all fired rules are reflected in the aggregated control output. This is thought 

to provide a more intuitive control profile. 

The CoS method was chosen since it met all of the above criteria. Although this assumes the use 

of symmetrical and uniformly spaced consequent set declarations. 

6.3.6 Analysis of Inference Methods 

The effect of the various methods of reasoning upon the advisor output was investigated by 

examining a subset of the PEEP control space. The crisp output dPEEP was plotted for Pa02 

between 5 and 12 kPa, with values for the other observations as specified in Table 6.3. These 

values were chosen such that multiple rule firing occurred, thus enabling the comparison of 

weight and non-weight counting methods. 

Decision plots (see Figure 6.7) were generated for the following combinations of inference method; 

1). Mamdani's implication (sup-min). 

2). Larsen's implication (sup-prod). 

and with the following combinations of defuzzification method and liaison operator; 

I). Centre of sums, product liaison (CoS-prod). 

2). Centre of sums, min liaison (CoS-min). 

3). Centre of gravity, product liaison (CoG-prod). 

4). Centre of gravity, min liaison (CoG-min). 

Observation Value Set Membership 

PaOl 5 -12 kPa VLOWtoNORM 

eBPsys -10 mmHg LOW (0.5), OKAY (0.5) 

Fi01 60% MEDIUM (1) 

PEEP 6 em H20 LOW (0,5), MEDIUM (0.5) 

Table 6.3: Observation settings for a subset of the dPEEP control space, indicating grade of 
membership within the appropriate linguistic sets. 

There was little observed difference between the sup-min and sup-prod inference 

methodologies. This would result in a negligible difference in any advice given. Consequently 

the remainder of this analysis only focuses on the plots generated using Larsen's implication. 
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Figure 6.7: Comparison of control output for various combinations of inference method, 
defuzzification method and liaison operator. 

Fire Weigbt for Eacb Rule 

Rule No. COG-min COS-min COG-prod COS-prod Rule CSQ Label 

27 0.5 0.5 0.125 0.125 PM27
) 

29 0.5 0.5 0.125 0.125 PS(29) 

32 0.5 0.5 0.25 0.25 NS(32) 

42 0.5 0.5 0.125 0.125 Z(42) 

44 0.5 0.5 0.125 0.125 PS(44) 

48 0.5 0.5 0.25 0.25 NS(48) 

Total Consequent Weight 

PM 0.5 0.5 0.125 0.125 

PS 0.5 1 0.125 0.25 

Z 0.5 0.5 0.125 0.125 

NS 0.5 1 0.25 0.5 

Crisp Output 

u· 1.25 0.833 0.4 -0.125 

Table 6.4: Comparison of rule-firing weight, aggregated consequent weight and crisp output 
using different combinations of defuzzification method and liaison operator. These are based 
upon observations made at Paco2 = 6 kPa. 

In order to compare each method, the rule firing weights for each were generated for an 

observed Pa02 of 6 kPa (membership VLOW = 0.5, LOW = 0.5). This point was chosen since it 

corresponds to the point of largest difference between the curves. 
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Min Liaison, Centre-of-Gravity 

This method generates the most positive output relative to the other methods. It can be seen that 

in this example, the min-operator results in equal plausibility for all of the rules (Table 6.4, col. 

2). It is felt that this does not meaningfully reflect the certainty of the rule, since more than one 

observation has a certainty less than one and therefore the evidence to support the rule is further 

diminished. Using the min-operator only the smallest evidence is considered, which means the 

observations could have values ranging from this minima up to one (certainty) without affecting 

the rules credibility. 

Using CoG defuzzification, contributions made by rules PS(44) and NS(48) are lost, since this is a 

non-weight counting method. The loss of these rule-consequents coupled with exaggeration of 

PM(27) caused by the min liaison operator, lead to a crisp output (u *) of 1.25 cmH20. 

Min Liaison, Centre-of-Sums 

The exaggeration of rule plausibility imparted by the min-operator leads to regions of increased 

control. However, this is offset against the fact that CoS defuzzification, being a weight 

counting method, re-introduces the effects ofPS(44) and NS(48). Now since these consequents are 

themselves exaggerated by the min-operator, it leads to oscillations in the control space not 

consistent with changes to the input. 

Product Liaison, Centre-of-Gravity 

The measure of rule certainty is now reflected through the product of the antecedent 

memberships. However, using CoG the influences of PS(44) and NS(48) are again no longer felt. 

This accounts for the rise in dPEEP as Pa02 increases towards 8 kPa, since PM(27) is provided 

proportionally greater significance. 

Product Liaison, Centre-of-Sums 

This approach appears to have the balance between scaling of the rule significance and inclusion 

of lesser rule-consequents. The result is a smooth fuzzy control space, consistent with input 

changes and without apparent bias. This combination of liaison operator and defuzzifieation 

method matches those finally chosen for use in the advisor. 

6.3.7 Choice of Output Quantisation 

Once the advice has been generated and the proposed changes to the ventilator settings 

computed from it, they then need to be quantised. It was found that changes derived using the 

raw quantisation levels would occasionally produce decision creep. This was caused by very 

small firing weights in rules with non-zero consequents. The advised change was not enough to 

prevent the rule from firing at the next decision point but large enough to cause gradual increase 

or decrease in the controller output. This behaviour is symptomatic of systems using only 

proportional control. Creep does eventually stop, once the rule-antecedents fall wholly within a 

region of zero consequent. However, the anaesthetist's decision process is discrete and therefore 

a method of preventing unnecessarily small changes from being made is required. 
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The solution was to use larger quantisation levels, which only allow changes to the controller 

output when the advised change is at least as large as the quantisation level. However, make the 

quantisation interval too large and the control can become crude, with the possibility of limit

cycle behaviour. The ventilator quantisation levels were felt to be the best compromise between 

decision creep and crude control that also allowed the true behaviour of the rules to be observed. 

6.4 Rule Development Methodology 

6.4.1 Rule Prototyping and Completeness 

In safety critical systems there should never exist a combination of input values that result in no 

rule being fired. This is especially true with patients in the intensive care environment, when acute 

events can occur that give unexpected controller inputs. Incomplete rule definition in such 

circumstances may prove fatal. 

Linguistic rule statements of the form 'If A is x and B is y then C is z' provide a rapid method 

for rule-base construction, especially when elicited from a knowledge expert (i.e. an 

anaesthetist), and are simple to interpret. However, construction of a rule-base using only rule

statements can be susceptible to rule holes or incompleteness, see Figure 6.8. 

Rules 

If(X. is N) and (X2 is Z) then (Y is PS) 

If(X. is N) and (X2 is P) then (Y is Z) 

If (X. is Z) and (X2 is Z) then (Y is Z) 

If(X. is Z) and (X2 is P) then (Y is NS) 

If (X. is P) and (X2 is N) then (Y is PB) 

If(X. is P) and (X2 is Z) then (Y is PS) 

If (X. is P) and (X2 is P) then (Y is NS) 

Rule Map 

... 
~ 

P 

Z 

N 

Xl 

P Z N 

NS PS PB 

NS Z 

Z PS 

Figure 6.8: Using the above rule-statements the resulting rule-map is incomplete. Whilst it 
would be a simple matter to spot such occurrences in a small knowledge-base like this, in a 
large n-dimensional system it is easy to see how rule-holes might be missed. 

These rule-holes were avoided by declaring the rule-base using a matrix rather than via rule

statements. In this way every possible observation event will have a consequent action defined 

for it. For example, consider the subset of the minute volume control rules, see Figure 6.22, this 

is declared in the MATLAB environment using a 5-by-5 matrix~ 

-60 -30 -15 0 0 
-45 -30 -5 0 0 

R= -30 -15 0 +25 +50 (6.7) 

0 0 0 +50 +75 
0 0 +15 +50 +100 
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This does not mean that elicitation of rule-statements from an expert was negated. Merely that these 

statements were mapped onto the rule-matrix and then all empty elements given a consequent action, 

in order to complete it. The choice of consequent action at these hole-regions was estimated from the 

values in neighbouring cells by either (I) averaging the values at neighbouring regions or (2) by 

making intuitive guesses. This prevented decision space discontinuity. 

Rule prototyping was also made using known physiological relationships and nomograms 

regularly referred to in the literature. This resulted in fewer if any holes, but did require 

modification of the consequents at the observation extremes. This was done via discussion with 

an anaesthetist. 

6.4.2 Fuzzy Consequent Construction 

The values defined for the consequent actions in equation 6.7, represent the peak value of the 

fuzzy consequent sets. The sets themselves were defined with a support twice the smallest 

interval between neighbouring peaks and were made to be symmetrical about the peak value. So 

in the above example the fuzzy sets will have a support of 10 (twice the distance bctween N 1 

and Z). The result is narrow fuzzy sets, distributed across the output domain with only NI and Z 

having intersection, see Figure 6.9b. 

This approach could be criticised in that the dcfuzzified output may be implausible, falling at a 

point in the output domain with no set membership. However, if the cross-points are fixed at 0.5 

and the peak values are non-uniformly distributed, then the resulting membership functions 

become asymmetrical, see Figure 6.9a. Using the centre-of-gravity or centre-of-sums 

defuzzification methods, this approach skews the crisp output in favour of the heavier side of 

the sct's support. This gives rise to biased controller output and is best avoided rather than 

adhering strictly to the notion of plausibility. 

In the worst case scenario, that of very narrow consequent support with a cross-point ratio of zero, 

the defuzzification behaves as though it were a mean-of-maxima (or height) method. When the 

cross-point is 0.5 the defuzzification behaves as a centre-of-sums method. Both of these methods 

provide a smooth control space and therefore the approach taken was considered appropriate. 

6.4.3 Rule Reduction Algorithm 

In order for the rule-matrices to be used by the inference engine they have to be converted back 

into rule statements of the form; 

If [x/ is A] and [X2 is B] and [xJ is C] then [y is D] 

This appears to be reverting back to the original expert rule-statements. However, it is more a 

symptom of the FISMAT toolbox than part of the rule design process. The design of the rule-map 

using the matrix defmition is by far the most practical method of declaring the rules, but the 

rules are more easily processed by the fuzzy toolbox when declared as rule-statements. 
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Figure 6.9: Comparison of consequent set declaration methods using (a) asymmetrical sets with 
a cross-point of 0.5 and (b) symmetrical sets with a support of twice the smallest distance 
between consequent neighbours. 

It would be possible to generate a rule-statement for every observation co-ordinate. However, in 

large rule-maps this would result in nIx n] x , .. x nj rule-statements, where i is the number of 

fuzzy input variables and n is the number of fuzzy sets for each input i. Whilst theoretically not 

a problem, computationally it would be excessive, since every rule must be checked to 

determine its firing weight. Therefore a rule reduction algorithm was written enabling regions of 

neighbouring and identical consequent action to be described via a single rule-statement. 

The algorithm works by taking a 2-dimensional slice (or hyper-plane) of the n-dimensional 

decision space (see Figure 6.10) and searches for blocks of identical neighbours within it. So 

returning again to the example of equation 6.7. This represents a hyper-plane obtained from the 

3-dimensional rule-map for the condition when ePlP is OKAY. The reduction algorithm will 

identify 16 regions, of which 5 contain more than one identical neighbour, see Figure 6.11. 

These regions are then coded using a co-ordinate system. So for example region 'c' will be 

coded as [2,2,4,5, 1, 1, -30]. The first two elements are the start and stop co-ordinates in the X 

direction (ePaco2) and correspond to the observation class NS. The second value pair is the start 

and stop co-ordinates in the Y direction (epH) and corresponds to the observation classes ALK 

to VALK. The third pair is the start and stop co-ordinates in the Z direction (ePlP) which 

corresponds to the hyper-plane axis and an observation class of OKAY. The last value is the 

consequent action attributed to this region. 
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The codes resulting from the rule-reduction were then used to generate the rule statements. So 

considering region c again, this is described by the rule "If [ePaC02 is NS] and [epH is ALK to 

VALK] and [ePIP is OKAy] then [dMv is N3 (-30 %)]" 

L./:////1 
/// ///// 

I I I I 
/7//// ./ 

./ V 

/' / 

y / V 

V V 
~ 

V 

x 
Figure 6.10: A 2-dimensional hyper-plane taken from the 3-dimensional rule-map along the Z
axis. Hyper-plane slices can be taken along any of the observation axes. 

-60 a -30 -15 f 0 0 

-45 b -30 c -5 g 0 0 j 

-30 d -15 e 0 25 I 50 n 

0 0 0 i 50 75 
0 

0 0 h 15 k 50 m lOOp 

Figure 6.11: Regions of identical and neighbouring consequent action identified by the rule
reduction algorithm. 
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Phrase Construction 

The phrase [epH is ALK to V ALK] is expressed as a bounded sum of the fuzzy sets ALK and V ALK; 

(6.8) 

This gives an augmented membership functions (see Figure 6.12) that will return a membership 

weight of 1 for all epH observation in the range alkaline to very alkaline. 

1.0 
:a 
~ 

~ 
~ 0.5 

""' 0 
QJ 

] 
0.0 

0.00 0.10 0.20 0.30 0.40 0.50 
Universe of Discource for epH 

Figure 6.12: Representation of the phrase "epH is ALK to VALK" using bounded sum. 

Algorithm Improvements 

This rule-reduction algorithm was optimised by the inclusion of hyper-cube searching. This 

enabled large regions with identical consequents spanning n-dimensions to be described by a 

single rule. This greatly reduces the number of rules required to describe more complex rule

maps and therefore improves computation times. Typically a 60 % reduction in the number of 

rules required to describe the rule-map was achieved. 

6.5 FI02 Rule Development 

6.5.1 Elicitation ofPa02 Membership Functions 

Inspired O2 fraction is the main mechanism for the maintenance of blood gas oxygenation and 

the normal indicator of this is arterial O2 tension (Pa~). In order to construct rules for the 

control of Pa02 it was first necessary to identify and elicit the fuzzy set membership functions 

for it. This was achieved via discussion with a consultant anaesthetist. 

They were asked to assign values to the linguistic classes very low (VL), low (L), slightly low 

(SL), normal (N), slightly high (SH), high (H) and very high (VH). This was performed with 

reference to the iso-shunt diagrams since they were to be used to prototype the control rules. 

The fuzzy sets arrived at are shown in Figure 6.13. The cross-points were fixed at 0.5 and the cross

point ratio at 1. It can be seen that VH lies at some distance from the other sets and reflects the level of 

Pa~ that might be observed when a patient has little or no effective shunt and a FI02 of between 50 

and 70 %. The remaining sets are very similar to those derived in a later study [Kwok et ai, 2000]. 
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Figure 6.13: Fuzzy set defmition for Pa02. 

6.5.2 Rule Prototyping Using Iso-Shunt Diagram 

The iso-shunt diagram (see Figure 3.2) of Benetar et al (1973) and Pedros et al (1993) is used 

by some anacsthetists to adjust inspired O2 concentration to obtain a required level of Pa02 that 

prevents hypoxia while avoiding the administration of unnecessarily high O2 concentrations. 

This follows a goal-orientated approach similar to that required by FA VeM. 

Using the equations behind the iso-shunt curves, it was possible to estimate the changes required 

in Fr02 needed to bring Pa02 towards the set point for a range of initial Pa02 and FI02 levels. The 

set point was assumed to be 12 kPa, corresponding to expected normal values defined previously. 

Ifwe take the iso-shunt equation for arterial O2 content (Ca02), see Section 3.2.7; 

where Cc '02 is the end pulmonary capillary O2 content (mIldl) 

C(a-v)02 is the arterial-venous O2 difference (mIld I) 

Q)Qt is the shunt fraction 

This can be re-arranged to calculate the shunt fraction; 

. /. R Qs Qt =--xlOO 
R-l 

h R 
Ca02 -CC'02 

w ere = ---=-----=-
C(a-v)02 

(ml/l) (6.9) 

(%) (6.10) 

Assuming C(a-v)02 to be 50 ml/l and using the equations given by Pedros et al for Ca02 and 

Cc '02 (see equations 3.7 and 3.5), it is possible to estimate a patient's shunt, based upon 

observations of PaOz and B02. For example, given an observed PaOz of 19 kPa and a Fr02 of 

0.9, the calculated shunt would be 24.3 %. The Pao2-Fi02 relationship for this shunt can then be 

computed using the original iso-shunt equations and interpolated to estimate the new Fr02 

required to achieve a given Pa02 set point, see Figure 6.14. Subtracting this from the observed 

FI02 gives the change required in F102. 

121 



30~-----------------------------------, 

-cu 
0.. 
~ 

25 

20 

-- 15 N o 
cu 
a.. 

10 

5 

0.2431 Shunt Curve 

Initial Pa02 

-:~~~~: -:~~~------r-~;i~-- ------ -- -- -- ----- ------ -- --- -- ----
................................................. 

dFi02 
0.19% 

o +---~----~----~---r----~--~----~--~ 
0.2 0.3 0.4 0.5 0.6 

Fi02 (%) 

0.7 0.8 0.9 1.0 

Figure 6.14: Iso-shunt curve calculated for an observed Pa02 of 19 kPa and F102 of 0.9, showing 
how the Fi02 change can be estimated for a given Pa02 target. 

30 50 70 90 100 

:E 
1.0 

~ 
aJ 

~ 
aJ 

0.5 :E 
'Cl 
.g 
~ 
0 0.0 

30 40 50 60 70 80 90 100 
Universe of Discource forFI02 (kPa) 

Figure 6.15: Fuzzy set defmition for FI02. 

By repeating this process for every peak value of the Pa02 and F102 fuzzy variables, an array of 

consequent actions was produced. The choice of fuzzy membership functions for FI02 are shown 

in Figure 6.15. The classes MIN and MAX reflect the lower and upper limits of deliverable FI02, 

since an FI02 below 30 % will be almost atmospheric air and an FI02 of 100 % is a pure oxygen. 

The class MED reflects the default level of O2 support for healthy post-operative patients and the 

remaining classes HI and VHI were chosen to have increments of 20 % above MED. 
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The calculated consequent actions were rounded to the nearest 5 % in order to reduce the number 

of consequent classes required to specify the rule-map. Any derived dFI02 estimates that would 

cause the new Fi02 levei to exceed the upper or lower limits (l00 % and 30 % respectively) were 

reduced accordingly. The resulting 7-by-5, prototype rule map is shown in Figure 6.16. 

Fi01 

MIN MED HI VHI MAX 

VH 0 -20 -40 -50 -50 

H 0 -20 -35 -35 -35 

SH 0 -15 -20 -20 -20 
.... 

0 N 0 0 0 0 0 CIS 
~ 

SL +30 +35 +30 +10 0 

L +70 +50 +30 +10 0 

VL +70 +50 +30 +10 0 

Figure 6.16: Prototype Fi02 rule map derived from iso-shunt diagram. 

6.5.3 Evaluation of Iso-Shunt Rules 

The main criticism of the rule-map derived using the iso-shunt equations, was that it attempted 

to drive Pa(h towards the target regardless of other therapeutic considerations, such as the need 

to balance Pa02 against undesirable levels of FI02. In an attempt to identify these weaknesses in 

the rule-map, an anaesthetist was presented with random observations of Pa(h and FI02 together 

with the changes proposed by the advisor, and asked the following; 

1). Whether they agreed with the advice? 

2). What action they would take? 

3). What additional therapy might they consider? 

However, in order to cover as much of the observation space as possible without resorting to large 

numbers of observations, the random selection of observation data was regionalised, by defining 

three target regions for F102; 30-50 %, 55-75 % and 80-100 %. Each peak value of Pa02 (see 

Figure 6.13) was then given an observed F102 falling randomly within each of these three ranges, 

resulting in 21 observations. The observation data, iso-shunt responses and the clinician's 

comments are shown in Table 6.5. 

Since the primary objective of the advisor was to mimic clinical decision making, the differences 

outlined by the anaesthetist were incorporated into a modified set of rules, see Figure 6.17. 
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Obsen'ed Obsen'ed Proposed Anaesthetist's Comments 
PaOl Fi01 Fi01 

(kPa) (%) (%) 

12 30 30 No action - adequate oxygenation 

9 35 65 Increase Fr02 to 50%. 65% appears rather excessive 

7 40 100 Increase FIOz to 70% and increase PEEP unless 
contraindicated. FrOz greater than 70% are used cautiously 
and only if absolutely required to maintain oxygenation 
because of the risk of oxygen toxicity 

16 45 30 Decrease O2 to 35% The proposed step seems a bit large as 
the Pao2 is only slightly above nonnal 

25 50 30 Agree 

5 50 100 Agree and increase PEEP if not contraindicated 

40 50 30 Agree 

9 55 90 Increase to 70% The proposed increase seems large 
considering that the Paaz is not too far below nonnal 

40 55 30 Agree 

12 65 65 Agree 

16 65 45 Decrease to 50% The proposed reduction seems a little 
generous. It is better when reducing FI02 to err on the side 
of caution to avoid inadvertent hypoxia 

25 75 40 Reduce to 50% for the same reason as above 

5 75 100 Agree and increase PEEP if not contraindicated 

7 75 100 Agree and increase PEEP if not contraindicated 

40 80 30 Reduce to 40% to be cautious 

9 85 100 Agree and increase PEEP if possible 

25 90 55 Agree 

12 95 95 Agree. Increase PEEP if not contraindicated 

5 95 100 Agree. Increase PEEP if not contraindicated 

16 95 75 Agree 

7 95 100 Agree. Increase PEEP if not contraindicated 

Table 6.5: Comments made by anaesthetist to prescribed FI02 changes derived from iso-shunt 
diagram using randomly generated Pao2-FIOz obsen'ations (see text). 
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Fi01 

MIN MED HI VHI MAX 

VH 0 -20 !:;i~i~?±i -50 -50 
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VL +70 +50 +30 +10 0 

Figure 6.17: Modified FiOz rule map based upon knowledge derived from anaesthetist. The 
shaded regions indicate those regions that have been modified from the original rule-map of 
Figure 6.16. 

6.6 PEEP Rule Development 

Whilst FI02 provides the principal mechanism for O2 maintenance, PEEP also plays an important 

role in certain patient conditions. In order to construct sensible control rules it was necessary to 

understand the clinical benefits and disadvantages of PEEP. 

6.6.1 Clinical Benefits of PEEP 

The clinical benefits of PEEP can be summarised as follows; 

1). Opens up closed alveoli improving arterial oxygenation. This allows lower levels 

ofFI02 to be used, reducing the risks of O2 toxicity. 

2). Increases functional residual capacity (FRC), preventing air trapping and lowering 

airway resistance caused by alveolar collapse. This has the overall effect of reducing 

peak inspiratory pressure (PIP). 

3). Increases lung compliance as collapsed alveoli are recruited, again lowering PIP 

From these benefits it is possible to identify three potential observation variables; PaOz, PIP and 

F102. PEEP can be increased in response to low Pa02 levels to prevent excessively high F102 or 

reduced as Pa02 levels improve. However the degree to which PEEP is modified will also 

depend upon the current level of PEEP applied. As PEEP approaches 15 - 20 cmH20 the 

suitability of PEEP reduces as the risks associated with PEEP increase. 

The possible reduction in PIP associated with PEEP (see benefits 2 and 3) will depend upon the 

nature of the patient condition. However a single observation of PIP imparts no knowledge about the 

effect that additional PEEP will have on subsequent airway pressures. This makes construction of 

rules pertaining to PIP optimisation via PEEP adjustment difficult to realise, since the calculation of 

'mechanical-best PEEP' requires the step-wise increase of PEEP without adjusting other ventilator 
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settings. Such a manoeuvre whilst occasionally necessary does not fit within the initial objectives of 

FA VeM and would require a hierarchical decision process, see Chapter 9: Future Work. 

Using Pa02, FI02 and PEEP as the observation variables, it was possible to construct a simple set 

of guidelines for PEEP change. 

1). IfPa02 is low then increase level of Peep. 

2). IfPa02 is high then reduce level of Peep. 

3). IfFi02 is high then increase level of Peep. 

4). If Fi02 is low then reduce level of Peep. 

5). If Peep is high then limit any Peep increases. 

6). If Peep is high then increase any Peep reductions. 

7). If Peep is low then limit any Peep reductions. 

8). If Peep is low then increase any Peep increases. 

The membership functions for Pa02 and Fi02 observations were kept as for the Fr02 control 

rules (see Figure 6.13 and Figure 6.15 respectively) and the membership functions for PEEP was 

defined as in Figure 6.18. 

:El 1.0 
~ 

~ 
~ 
~ 

~ 0.0 -r-----~----_¥_----_¥_----~ 

o 4 8 12 16 
Universe ofDiscource for PEEP (cmH20) 

Figure 6.18: Fuzzy set definition for PEEP 

Using these fuzzy set definitions and the simple guidelines outlined above, a draught sct of rule

consequents was constructed, see Figure 6.19. This includes modifications made to the consequents 

based upon discussions with an anaesthetist. However, most of these were limited to the regions 

PEEP is OFF and LOW. 

6.6.2 Disadvantages of PEEP 

The benefits of PEEP are often contraindicated by other patient observations or it does not 

impart any benefit to the patient at all. Such instances can be summarised as follows; 

1). Alveolar recruitment does not occur in healthy lungs, therefore little improvement 

to Pa02 will be seen. 

2). PEEP is additive to airway pressure and at high levels can increase risk of barotrauma. 
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3). Hyperinflation of open alveoli can lead to impaired perfusion, increasing the 

effective dead space. However, this only usually occurs in lungs with regions of 

differing compliance. 

4). Increases intrathoracic pressure, which impedes venous return, increasing 

pulmonary vascular resistance and thus reducing cardiac output. This effect is least 

when the lungs are stiff, and therefore more of a problem in healthy lungs. 

Consequently low systolic blood pressure (BPsys) contraindicates the use of PEEP. 

F10z 

MIN MED HI VHI MAX 

VHI 0 0 0 0 0 

HI 0 0 0 0 0 

SHI 0 0 0 0 0 

N 0 0 0 4 4 

SLO 0 4 4 4 4 

LO 4 4 4 4 8 

VLO 4 4 4 8 8 

(a) PEEP = OFF 

F10z 

MIN MED HI VHI MAX 

VHI -4 -3 -3 -2 -2 

HI -3 -2 -1 0 0 

SHI -3 0 0 0 0 

N -2 0 0 0 0 

SLO 0 0 0 2 4 

LO 0 2 2 4 4 

VLO 2 2 4 4 4 

(b) PEEP = LOW 

F10z 

MIN MED HI VHI MAX 

VHf -6 -6 -6 -6 -6 

HI -4 -4 -4 -4 -2 

SHI -4 -4 -2 -2 2 

N -4 -4 -2 0 2 

SLO -2 0 0 2 4 

LO -2 0 0 2 4 

VLO 0 2 2 4 4 

(c) PEEP=MED 
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F10z 

MIN MED HI VHI MAX 

VHI -8 -8 -8 -8 -8 

HI -6 -6 -6 -4 -4 

SHI -6 -4 -4 -4 -2 

~ N -4 -4 -4 -2 0 
~ 

SLO -2 -2 0 0 2 

LO -2 -2 0 0 2 

VLO 0 0 2 2 4 

(d) PEEP = HIGH 

F10z 

MIN MED HI VHI MAX 

VHI -16 -12 -12 -12 -12 

HI -12 -8 -8 -8 -8 

SHI -12 -8 -8 -8 -8 

0 N -8 -6 -4 -4 -4 ~ 
~ 

SLO -4 -4 0 0 0 

LO -4 -4 0 0 0 

VLO -2 0 0 0 0 

(e) PEEP = MAX 

Figure 6.19: Prototype rule-map for PEEP 
changes based upon observations of Pa02, 
F102 and current PEEP. 



The disadvantages of PEEP are less easily converted into a set of rules. The first statement is not 

so much a disadvantage, more a reason for not increasing PEEP, since patients with no collapsed 

alveoli will not benefit from it. Therefore increasing PEEP will only serve to raise PIP, although 

some reduction in airway pressure may result due to dilation of the bronchioles. The risk of 

barotrauma is more likely with high PIP (statement 2) and there is some argument for limiting 

PEEP in such circumstances. 

At this stage in the advisor development it was felt best to forgo the inclusion of PEEP rules 

pertaining to BPsys and/or PIP, since the rule set was already quite large and hand-crafting of 

larger sets is very time consuming. It was considered best to optimised the current rules adding 

the new observation variables afterwards, time permitting. 

6.7 Mv Rule Development 

6.7.l Ventilation-Paco2 Relationship 

It is known that Paco2 follows an approximately inverse-proportional relationship with alveolar 

ventilation ( VA ) [Mushin et aI, 1980, p39]. Hence if VA is doubled then PaC02 will be halved. 

Alveolar ventilation can be expressed as the total ventilation or minute volume (MV) minus the 

dead space ventilation (Vo ); 

VA=Mv-VD 

or VA = ( RR . Vr) - ( RR . VD) 
(ml/min) (6.11) 

where RR is the respiratory rate (r.p.m.), Vr is the tidal volume (ml) and VD is the dead space 

volume (mI). Consequently a doubling of Vr will not result in a doubling of VA (unless VD is 

very small), but a doubling of RR will. If we assume that Mv is adjusted using RR only, then 

we can say that VA is proportional to Mv. For example, a 50% increase in Mv will result in a 

50% reduction in PaC02. 

Clinical practice requires that Paco2 maintenance be goal driven, since conditions exist when it 

needs to held artificially above or below its normal level (e.g. during the care of head injury 

patients). Consequently FAVeM expresses the observed PaC02 as error from the PaC02 set point 

(ePaCQz). However, expressing ePaC02 in kPa will not allow the implementation of the above 

inverse relationship since the size of Mv depends upon the PaC02 set point. Therefore ePaC02 is 

expressed as a percentage error from set point (see equation 6.3). 

During mechanical ventilation the primary objective is to normalise Paco2 levels. Consideration 

can then be given to acid-base imbalances indicated by abnormal pH values. It is therefore 

possible to construct a simple set of rules using the above inverse PaCo2-Mv relationship, which 

will normalise PaC02 (see Table 6.6). 

The choice of fuzzy classes was made to reflect the range of normally observed PaC02 values. 

Based upon a target of 5.3 kPa, the minimum observed Paco2 error (NB) corresponds to an 

observed PaCQz of approximately 2 kPa. Levels below this are rarely seen. The maximum PaC02 
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error (PB) was set to + 1 00% corresponding to an observed Pac02 of approximately 10 kPa. 

Whilst PaC02 levels greater than this are common in ventilatory failure, it was fclt appropriate to 

restrict Mv changes to + 100% (effectively a doubling of the lung ventilation) so as to prevent 

possible problems with high inspiratory pressures. The intermediate classes PS and NS were sct 

to lie halfway between PB and zero (Z) and NB and Z respectively (see Figure 6.20). 

However, it is unlikely that these simple rules would give good control behaviour since a trade

off often has to be made between ideal PaC02 levels and the type of acid-base imbalance 

present. In the next section the various types of imbalance are discussed and how they were 

used to extend the simple Paco2 correction rules. 
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~ 0.5 
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PB 

-50 -25 0 25 50 75 100 125 
Universe ofDiscource for ePaC02 (%) 

Figure 6.20: Fuzzy set definition for ePaC02. 

ePacO] 

NB NS Z PS PB 

-60% -30% 0% +50% +100% 

Table 6.6: Simple rule map for PaC02 correction using inverse MV-Pac~ relationship 

6.7.2 Acid-Base Balance 

Several causes of acid-base imbalance can occur and are categorised as either respiratory or 

metabolic in nature. Respiratory acid-base disturbances are related to CO2 elimination, where 

elevated Pac02 causes reduced pH (acidaemia) and low PaC02 causes high pH (alkalaemia). 

These are known respectively as respiratory acidosis and respiratory alkalosis. Metabolic acid

base disturbances involve either gain or loss of fixed acid It or buffer (predominantly HCO;-) 

in the extra-cellular fluid. The causes are varied but the net result is either acidaemia or 

alkalaemia, known as metabolic acidosis and metabolic alkalosis respectively. A single type of 

acid-base disturbance is rarely seen, being normally of mixed origin. 

Usually changes in pH are compensated for by either metabolic or respiratory mechanisms 

depending upon the type and duration of the disturbance. Respiratory mechanisms involve the 

increase or decrease of alveolar ventilation via the influence of plasma pH on the central 

chemoreceptors. Metabolic mechanisms involve HCO;- salvage and excretion of excess acid or 
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base into the urine. Patients under mandatory mechanical ventilation will not perform any 

respiratory compensation, since this is controlled by the ventilator and is at the discretion of the 

attending anaesthetist. 

Figure 6.21 attempts to summarise the physiological compensation mechanisms and therapeutic 

correction methods of acid-base and PaC02 disturbances. A more detailed explanation of each of 

these regions is given below. 

1). Normal pH I Paco2 (Region E) 

Both respiratory and metabolic components are in balance, resulting in normal pH and normal 

PaC02. Under normal circumstances such a patient would require no intervention. However, 

preservation of the airway in obstructive airway disease may require permissive hypocapnia in 

order to prevent excessive inflation pressures. Also, patients coming off of sedation post

operatively sometimes require their ventilatory drive kick started by increasing the brain PC02. 

This is often the case in patients that have suffered from chronic hypoventilation. 

2). Respiratory Acidosis (Region I) 

This is indicated by high PaC~ (hypercapnia) and plasma pH below 7.4 caused by hypoventilation. 

In mechanically ventilated patients this may simply be the result of under ventilation and is corrected 

very easily by increasing the minute volume (patient moves from region I to E). 

Prolonged under ventilation, perhaps as a consequence of obstructive lung disease, will be 

compensated for by the kidneys. Bicarbonate is conserved and I-t secretion into the urine is 

increased. These renal effects cause the pH to approach normal (patient moves from region I to 

F) resulting in respiratory acidosis with renal compensation. Chronic respiratory disorders such 

as chronic bronchitis will exhibit hypercapnia with normal pH. It might also arise from 

prolonged prescriptive under ventilation. In this case the patient can be returned to normal by 

gradually increasing the ventilation. This has to be done in small steps since the metabolic 

compensation changes slowly compared to the respiratory effects and rapid respiratory 

correction would give rise to sudden temporary alkalosis. 

3). Respiratory Alkalosis (Region A) 

This is indicated by low PaC02 (hypocapnia) and plasma pH above 7.4 caused by 

hyperventilation. In mandatory ventilation, correction is made by reduction of Mv (patient 

moves from region A to E). Chronic hyperventilation produces reduced HCO:; absorption and 

less I-t secretion into the urine by the kidneys, both of which cause the pH to become more 

acidic (patient moves from region A to D). This condition is defined as respiratory alkalosis 

with renal compensation. 

4). Metabolic Acidosis (Region H) 

This is indicated by normal PaC02 together with acidaemia caused by abnormal accumulation of 

fixed acids in the plasma. The central chemoreceptors are activated and the alveolar ventilation 

increases (patient moves from region H to D). This increases CO2 elimination and raises plasma 

pH, known as metabolic acidosis with respiratory compensation. 
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Obviously in mechanically ventilated patients the respiratory compensation will remain at the 

discretion of the anaesthetist. Mild acidosis will be tolerated and may be preferable to elevated 

airway pressures associated with increased ventilation. 

5). Metabolic Alkalosis (Region B) 

This is indicated by normal Paco2 with alkalaemia and results from the loss of It due to 

nasogastric suction. The high pH depresses the central chemoreceptors and alveolar ventilation 

decreases, causing pH to fall as PaC02 builds up in the plasma (patient moves from region B to 

F). This defines metabolic alkalosis with respiratory compensation. 

6). Acute Metabolic Acidosis + Hyperventilation (Region G) 

This occurs when acute metabolic acidosis produces a compensatory hyperventilation (air 

hunger), as described for normal levels of metabolic acidosis (region H), but is not sufficient to 

normalise pH. Treatment requires correction of the underlying metabolic acidosis first, since 

respiratory correction of PaC02 would only further antagonise the acidaemia. 

7). Acute Metabolic Alkalosis + Hypoventilation (Region C) 

This time the patient is chronically under ventilating with metabolic alkalosis. Again normal 

compensatory mechanisms are insufficient and the underlying metabolic alkalosis must be 

treated first before normalising PaC02. 

When the normal compensatory mechanisms fail, clinical intervention is necessary. However 

not all pH I PaC02 abnormalities can be controlled via changes to the ventilator regime. Others 

require intervention at a metabolic level with the introduction of buffers or acids. Table 6.7 

summarises the clinical actions required for the conditions detailed above in terms of ventilator 

and/or intravenous correction. This forms a framework around which pH aspects of the Mv rule 

construction were made. 

6.7.3 Calculation of pH Fuzzy Sets 

In order to implement the Mv rules sensible values for the pH fuzzy classes had to be chosen. These 

were expressed as error from normal pH (epH). As with the F102 rule development there are 

physiological relationships that can be utilised to provide meaningful fuzzy sets and rule constructs. 

It is possible to derive approximations of pH using the logarithmic form of the modified 

Henderson-Hasselbalch equation [Nunn, 1993, p222]; 

{HCO- J 
pH=pK + log 3 

a·Peo2 

(6.12) 

where PC02 is in kPa, [HeOl ] is in mmolll and pK is the logarithm of the inverse of the 

apparent first dissociation constant of carbonic acid, and has an experimentally derived value of 

approximately 6.1. However, it is variable with both pH and blood-temperature (T) and can be 

derived using equation 4.32 (see Section 4.2.6). 
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Region Imbalance & Clinical Action 

A Respiratory Alkalosis 

Reduce My to increase PaCo2 and normalise pH 

B Metabolic Alkalosis 

Reduce My slightly in short term and treat alkalosis with intravenous saline and 
potassium or as appropriate for pathology. 

C Acute Metabolic Alkalosis + Hypoventilation 

Treat underlying metabolic alkalosis first with intravenous saline/potassium, 
which will reduce pH and move patient into region F where small increases in 
ventilation can be made whilst continuing to treat the alkalosis. 

D Respiratory Alkalosis with Renal Compensation or 
Metabolic Acidosis with Respiratory Compensation 

Difficult to identify cause of condition and compensatory mechanism in 
operation. Consequently a cautious reduction of My is required. In compensated 
respiratory alkalosis a temporary acidosis will occur until renal compensation 
normalises pH (see curve (i), Figure 6.21). In metabolic acidosis with respiratory 
compensation the pH will not normalise and may require bicarbonate therapy or 
other therapy of the underlying cause of the metabolic acidosis. 

E Normal pH I Pacoz 

No changes normally required 

F Respiratory Acidosis with Renal Compensation or 
Metabolic Alkalosis with Respiratory Compensation 

As with region D it is difficult to identify the cause, therefore tentative increases 
in My will be required, only treating the resultant alkalaemia ifrenal 
compensation not evident. Respiratory acidosis with renal compensation will 
return pH to normal via counter renal compensation (see curve (ii), Figure 6.21). 

G Acute Metabolic Acidosis + Hyperventilation 

Treat the underlying acidosis first by treating the cause and administering 
bicarbonate if appropriate, so increasing pH and moving the patient into region 
D. 

H Metabolic Acidosis 

Increase My slightly and treat the acidaemia by treating the cause of the 
metabolic acidosis and administering bicarbonate if appropriate. 

I Respiratory Acidosis 

Increase My to reduce Paco2 and normalise pH 

Table 6.7: Summary of ventilator therapy decisions associated with pH / PaC02 observations. 
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The solubility of CO2 in plasma (a) has an experimentally derived value of 0.231 mmollllkPa 

but is variable with blood temperature as given by equation 4.31. Since pK is itself dependent 

upon pH we have to substitute equation 4.32 into equation 6.12 and solve for pH; 

6.3968 + 0.01506· (38 - T) + log [HCO:;] 
H- a.Peo2 

p - 1.042+0.0014·(38-T) 
(6.13) 

This equation enables the calculation of pH for observed PaC02 and [HCO:;]. This makes it 

possible to estimate a patient's pH at the observed ePaC~ points defined earlier (see Table 6.6). 

However before this can be done, the [HCOi] at the nonnal pH-PaC02 point must be calculated 

by using the rearranged form of equation 6.12; 

rHCO:; J = a· Peo2 .10( pH-pK) (mmolll) (6.14) 

At a normal pH of 7.4 and PaC02 of 5.3 kPa, the bicarbonate concentration will be 24.878 

mmoill. We can now use this value to estimate the pH at the ePaC02 point. For example let us 

assume the observed PaC02 is 60% below the nominal target of 5.3 kPa (i.e. ePaC02 = -60 %) . 

Therefore the actual observed PaC02 is calculated as; 

( 
epac0 2 ) (-60») Paco2 =5.3· 1+ =5.3· 1+-- =2.12kPa 

100 100 
(kPa) (6.15) 

Using equation 6.13 with an assumed blood temperature of 37 °C, the pH will be 7.781. 

Subtracting this from the normal pH of 7.4, we arrive at a value of 0.381 for epH. 

This process was repeated for each peak value of the ePaC02 fuzzy sets. The epH values obtained 

were assigned to the linguistic classes V.ALK, ALK, NORM, ACID, and V.ACID (see Figure 

6.23), and were found not to be symmetrical about zero due to the logarithmic nature of pH. 

The ePaco2-epH observation points [NB, V.ALK], [NS, ALK], [Z, NORM], [PS, ACID] and [PB, 

V.ACID] describe the line of normal pH-Paco2 relationship and have consequents as per the 

initial PaC02 correction rules. These fonn the diagonal of the ePaCorepH rule map (see Figure 

6.22 shaded area). The remaining rules were inferred from the principles outlined in Table 6.7. 

ePaC02 (%) -60 -30 0 50 100 

PaC02 (kPa) 2.12 3.71 5.30 7.95 10.60 

pH 7.781 7.549 7.400 7.231 7.112 

epH 0.38 0.15 0.00 -0.17 -0.29 

Table 6.8: Estimated epH values at the ePaCo2 points using equation 6.13. Assumes a nominal 

PaC~ of5.3 kPa, nominal pH of 7.4, [HCOi] of24.878 mmolll and blood temp. of37 °C. 
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ePaco2 

NB NS Z PS PB 

V.ALK ~O··' -30 -15 0 0 

ALK -45 ·~30 .. -5 0 0 

== NORM -30 -15 ':0 25 50 c. 
~ 

ACID 0 0 0 ',50'i 75 

V.ACID 0 0 15 50 100 

Figure 6.22: Mv rule map for observed epH and ePaC02. Shaded region indicates normal 
respiratory correction as per inverse Mv-Paco2 relationship. The ePaC02 fuzzy sets are as per 
Figure 6.20 and the epH fuzzy sets as per 

-0.29 -0.17 0 +0.15 +0.38 
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Figure 6.23: Fuzzy set definition for epH. 

6.7.4 Volume Constraints 

The acid-base / PaC02 rules thus far do not account for limitations that might be imposed on 

upper and lower ventilation volumes. It is important not to under ventilate a patient as this may 

cause hypoxia, especially in patients with high shunt andlor dead space volumes. Conversely 

over ventilation can lead to high inspiratory pressures with the possibility of airway damage. 

PIP Alarm 

There are times when a need to increase Mv (normally due to high Paco2) is precluded by high 

peak inspiratory pressures (PIP). In such cases anaesthetists allow permissive hypercapnia in order 

to reduce the risks of barotrauma. The level of PIP that can be toleratcd very much dcpends upon 

the pathology or trauma present. It was therefore necessary to introduce a PIP alarm. If this PIP 

threshold is approached or exceeded then the original Mv rules can be modified to prevent further 

increases in Mv. The proximity to the alarm threshold was expressed as an error (ePIP) such that 

PIP values below the alarm are negative and above it they are positive. 
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Five decision regions were identified, corresponding to five fuzzy classes of observed PIP error; 

1). Pip is well below the given alarm threshold and therefore the Mv rules can remain 

unchanged. Typically the alarm threshold will be 35-40 cmH20. 

2). Pip is below but approaching the alarm threshold and any increases in Mv must be 

moderated. 

3). Pip is at the alarm threshold and all Mv increases must be drastically reduced. 

Some increase may still be necessary, especially in cases of acute hypercapnia. 

4). Pip is just above the alarm threshold and Mv should be reduced in all but extreme 

cases of hypercapnia. 

5). Pip is well above the alarm threshold and Mv must be reduced regardless of the 

current Pac02 to reduce the chance of barotrauma. 

Using the original epH-ePaC02 rule map as a template the regions 2 to 5 were created by 

modifying the appropriate rules (see shaded areas Figure 6.24). This resulted in a 5-by-5-by-5 

set of rules for Mv control. The choice of peak values for the membership functions of ePIP (see 

Figure 6.25) were estimated from observations made during clinical data collection for the 

validation of the patient model. 

ePaco2 ePaco2 

NB NS Z PS PB NB NS Z PS PB 

V.ALK -60 -30 -15 0 0 V.ALK -60 -30 -15 -10 -10 

ALK -45 -30 -5 0 0 ALK -45 -30 -10 -10 -10 

== NORM -30 -15 0 25 '25 Q,. == NORM -30 -15 -10 0 0 =-401 401 

ACID 0 0 0 25 25 ACID -10 -10 -10 0 ,0 

V.ACID 0 0 15 :25 50 V.ACID -10 -10 -10 0 0 

(a) ePip = NR_ALARM (c) ePIP = mGH 

ePaco2 ePaco2 

NB NS Z PS PB NB NS Z PS PB 

V.AU< -60 -30 -15 0 0 V.AU< -60 -30 -15 -15 -15 

ALK -45 -30 -5 0 0 ALK -45 -30 -15 -15 -15 

== NORM -30 -15 0 0 ,:,IS' =-401 == NORM -30 -15 -15 0 15 =-401 

ACID 0 0 0 15 15 ACID -15 -15 -15 ·10 -10 

V.ACID 0 0 0 f/15' ,25 V.ACID -15 -15 -15 ·10 .. 10 

(b) ePip = ALARM 

Figure 6.24: Extensions to the Mv rule map to include proximity to PIP alarm. Shaded regions 

indicate areas of rule map that have been altered from the original map of Figure 6.22. 
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Figure 6.25: Fuzzy set defmition for ePIP. 

Mv Constraints 

As mentioned in Section 6.2.2 the majority of patients (approx. 80%) have a prescribed normal 

tidal volume (VTNORM) that is proportional to their weight, being about 10 - 15 mIlkg body 

weight [Anderson, 1988, p12]. Similarly approximately 80% of all patients will have a 

prescribed RR of 12 to 16 r.p.m. Since My is the product of VT and RR, this corresponds to a 

prescribed normal Mv range of 120 - 240 mVminlkg body weight. 

Situations will require ventilation outside of this range and therefore the safe upper and lower 

limits of My were set to +/- 50 % of normal My. This gives a minimum of 60 mVminlkg and a 

maximum of 360 ml/minlkg. By expressing these limits in units per kilo of body weight the 

upper and lower limits will reflect differences in patient size such that a minimum My for a 

heavy male patient will be appropriate for a smaller female patient. This limit was not 

incorporated as a rule-antecedent, since it was a simple matter to limit any advice generated by 

the MY rules so that these limits were not exceeded. The advisor reports the limiting of Mv 

advice, so that rule behaviour can be properly understood. 

As explained previously the product of RR and Vt determines Mv, and therefore any changes to My 

must be met by changes to one or both of these ventilator controls. Choosing in which way they are 

adjusted is a complex matter and required careful rule construction. This is discussed in the next section. 

6.8 Vr-RR Rule Development 

Having established a new minute volume using the MY advisor rules, this has to be translated 

into changes in one or both of the ventilator settings RR and VT. It has already been seen that 

RR is the best parameter for adjusting My since it ignores any losses in ventilation attributable 

to dead space volumes (be they physiological or apparatus based). However, adjustments to 

patient ventilation based solely on RR changes do not reflect the actions made in practice. At 

small My it is also necessary to reduce VT in order to prevent periods of prolonged expiration 

and at higher Mv the increased volume load is better met by increases in both RR and VT. 

For any given MY there exist a large number of possible RR-VT combinations that will generate the 

same ventilation, as illustrated in Figure 6.26. However certain combinations are unsuitable. For 

example very small VT should be avoided, due to dead space effects, and very high VT may generate 
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excessive inflation pressures. Therefore for any given Mv there will exist preferred RR and Vr values. 

By establishing this ideal VI -RR relationship the best settings can be calculated for any observed Mv. 
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Figure 6.26: Iso-MV lines showing how for any given Mv there exist a wide range of theoretical 
respiratory rate and tidal volume combinations. 

6.8.1 Normalised VT 

In normal clinical practise tidal volume is maintained at approximately 10 ml/kg body weight 

and therefore varies form patient to patient. Unfortunately this would affect any Vr-RR 

relationship since what might be prescriptively normal for one patient will not be appropriate for 

another. Similarly classification of the observed Vr will differ. For example, a Vr of 600 ml for 

a 60 kg patient would be classed as normal, but for an 80 kg patient this would best be classed 

as small. This was resolved by representing observed VI as percentage error from normal 

prescriptive Vr (eVINORM); 

V - VT-VTNORM 100 e TNORM - x 
VTNORM 

(%) (6.16) 

where VTNORM = 10 x Weight (ml) (6.17) 

A similar approach to normalisation of Vr was implemented by Schaublin et al (1996), see 

Section 2.3.3. 

6.8.2 Normalised Iso-Mv Lines 

The iso-MY lines of Figure 6.26 assume an explicit value for Vr and RR. However, by using 

eVrNORM to represent any vr, it is possible to generate normalised iso-MY lines (iso-MvNoRM) 

that hold true for all patients independent of weight. Normalised Mv is given by; 
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(
eVTNORM ) 

MVNORM =RRx +1 
100 

(6.18) 

The eVINORM is normalised about 1 to avoid zero iso-MYNoRM points. By rearranging this 

equation it is possible to calculate eVINORM for any RR on a given iso-MYNoRM line; 

TJ: 100 x Mv NORM 1 
eyTNoRM = -

RR 
(%) (6.19) 

Using these normalised iso-MY lines and the normalised VI error it was possible to construct an 

ideal VI -RR relationship curve applicable to any patient. 
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Figure 6.27: Anticipated normal RR-VI relationship as My increases. 

6.8.3 Ideal VT-RR Relationship 

Based upon dialogue with a consultant anaesthetist, through preliminary observations made in 

ICU and some personal assumptions, the ideal VI-RR relationship was constructed 

(see Figure 6.27). It comprises four regions as detailed below 

1). Approximately 80 % of all patients have a prescribed RR of 12 to 16 r.p.m. Under 

normal circumstances this would be accompanied by a normal tidal volume. 

Clinical observations confirmed that this relationship often extended to RR as low 

as 10 r.p.m. This defines region B of the ideal Vt-RR curve and implies that 

changes in MV falling between 100 - 160 mllmin/kg will be met by increases or 

decreases in RR only. 

2). At MV above 160 mllmin/kg, increases are met by proportional increases in RR 

and VI up to a maximum VI of 1.5 times VINORM (or 15 ml/kg). It was assumed 

that the ratio between VI and RR should remain constant as Mv increases. At the 

beginning of region B the ratio is; 
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r= VT = lO·W =0.625.W 
RR 16 

(6.20) 

where W is weight (kg). Therefore at the upper VT limit RR can be calculated as~ 

RR = 1.5· VTNORM = 15· W = 24 
r 0.625·W 

(r.p.m.) (6.21) 

3). Beyond this further My increase is met by increases in RR only, to avoid 

excessive tidal volumes (see region C). 

4). Below 100 mVminlkg (the lower extent of region B), further reductions in My 

again require a proportional reduction in RR and VT (see region A) 

The e VT NORM obtained using the ideal VT -RR relationship is a function of observed RR, and can 

be described mathematically as~ 

e VTNORM = 6.25 . RR - 62.5 

=0 

= 6.25 ·RR-IOO 

=50 

RR<lO 

10 ~ RR ~ 16 

16 <RR~24 

RR>24 

(%) (6.22) 

Let us call this functional relationship f(RR}. Now by substituting it into equation 6.18 the 

normalised My for any observed RR can be calculated; 

(
f(RR) ) 

MVNORM =RRx +1 
100 

(6.23) 

However, the original problem was to derive the ideal VT and RR settings given an observed 

Mv. It was therefore necessary to calculate the inverse relationship between MYNoRM and RR. 

This was done by calculating the cubic spline polynomial of this inverse relationship~ 

pp = spline(MYNoRM, RR)t (6.24) 

It is then possible to calculate the ideal RR for any observed MYNORM using the function; 

RR = f(MVNoRM ) = ppval (pp, MYNORM) tt (r.p.m.) (6.25) 

t pp = spline(x,y) - MATLAB function that calculates a piece-wise cubic polynomial expression of the 

relationship between x and y, where x must be monotonically increasing and x and y are equal size 

vectors. 

tt Y = ppva/(pp,x) - MATLAB function that uses the polynomial expression pp derived using splineO to 

derive an estimate of y based upon observation x. 

140 



RR 

MIN LO MED HI VHI MAX 

PVB -38 -38 -26 -16 -7 -6 

PB -35 -31 -22 -12 -3 3 

~ PM -30 -23 -18 -7 3 12 

~ PS -24 -13 -13 -1 9 19 
~ Z -17 0 0 6 17 27 

NS -8 11 18 18 27 38 

NM 5 25 42 43 43 52 

Figure 6.28: Rule map describing percentage change required in VT to normalise RR-VT 
relationship. Consequent values were derived using the rule estimation algorithm given in 
section 0, and based upon observations of respiratory rate (RR) and percentage error, from 
normal tidal volume (eVTNORM). 
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Figure 6.29: Fuzzy set definition for eVTNORM. 
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Figure 6.30: Fuzzy set defmition for RR 
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6.8.4 Rule Estimation 

Using the above polynomial expression of f(MVNoRMJ it was possible to calculate for any 

observed RR and VT the change required in VT to bring the VT-RR relationship in line with the 

VT -RR curve. The estimation algorithm is as follows; 

1). Calculate VT NORM from patient's weight using equation 6.17. 

2). Calculate eVTNORM from VTNORM using equation 6.16. 

3). Calculate MVNORM from observed RR and eVTNORM using equation 6.18. 

4). Estimate ideal RR (RRi) form MVNORM using f(MvNoRM), see equation 6.25. 

5). Calculate VT change required from RRi, original Mv (Mvo) and original VT (VTo); 

Mvo 
~VT=---Vr. 

RR. 0 
I 

(ml) (6.26) 

6). Expressing this as a percentage change from VTo, means that the consequent 

action holds true for all VT irrespective of patient weight; 

ilVT= 

Mvo -Vr. 
RR. 0 

I xl00 (%) 

7). The result is then rounded to the nearest percent. 

(6.27) 

By applying this algorithm to every combination of peak values for the RR and eVTNORM fuzzy 

sets, a rule map of changes required in VT to achieve optimal VT-RR settings was produced (see 

Figure 6.28). Initially, seven equal-spaced fuzzy classes were defined for eVTNORM, ranging 

from -30% to +60% in 15% steps (see Figure 6.29). These were the expected limits of VT 

settings. Therefore a 60 kg-patient will have a VT rage of 420 - 960 mt. Similarly the initial RR 

fuzzy classes ranged from 6 to 26 r.p.m. in 4 r.p.m. steps (see Figure 6.30), giving six sets. 

From this preliminary rule map, attempts were made to reduce the number of sets without 

adversely affecting the advisor performance. It was found that; 

I). The number of eVTNORM sets could be reduced from 7 to 5 with little perceptible 

difference in advisor subsystem outcomes. This involved the removal of the fuzzy 

sets PS and PB. 

2). The number of RR sets could not be reduced. In fact the addition of RR = 8 (VLO) 

was required to give better curve matching, see Figure 6.31. 

3). The number of consequent sets could be reduced from 26 to 15 by rounding the 

advice to the nearest 5 % change where possible. This was performed judiciously 

in an attempt to prevent estimate overshoot. Consequently if the original advise 

was to increase VT, the consequent was rounded down. Conversely reductions 

were rounded up, to give smaller VT changes. 
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~ 

The revised rule-map is shown in Figure 6.32. 
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Figure 6.31: Modified fuzzy set definition for RR. 

RR 

MIN VLO LO MED HI VHI MAX 

PVB -35 -35 -35 -25 -15 -5 -5 

~ 
PM -30 -20 -20 -15 -5 2 10 

0 
-15 -5 0 0 5 15 25 z Z ~ 

> QoI NS -5 2 10 15 15 25 35 

NM 5 15 25 40 40 40 50 

Figure 6.32: Modified VT rule map after set reduction and consequent rounding. 

6.8.5 Handling My Changes 

The rule-map described thus far has assumed fixed observations of initial RR-VT. However, a 

prescribed change in My (as derived using the Mv advisor sub-system) will result in a different 

set of observation conditions. However, we only have knowledge of the original RR-VT 

observations. In order to provide the VT advisor with sufficient information, it was assumed that 

any changes in My are implemented as changes in RR. This new RR estimate (RRnew) and the 

original VT observation (VTo) are used to stimulate the VT-RR rules. 

The advantages of this approach are; 

1). The rules are applicable for initial patient observations as well as for when Mv 

changes. 

2). Unnecessary refinements to VT are avoided by first changing RR and then using 

the rules to ascertain if the new observations require VT to be modified. 

143 



RR 

MIN VLO LO MED HI VHI MAX 

PVB -35 -35 -35 -25 -15 -5 -5 

~ 
PM -30 

Z -15 
~ 

~ NS -5 

NM 5 

(a). ePIP = NR_ALARM 

RR 

MIN VLO LO MED HI VHI MAX 

PVB -35 -35 -35 -25 -15 -5 -5 

~ 
PM 

0 

~ Z 
~ NS 

NM 

(b). ePIP = ALARM 

RR 

MIN VLO LO MED HI VHI MAX 

PVB -35 -35 -35 -25 -15 -5 -5 

~ 
PM 

Z > ~ NS 

NM 

(c). ePIP = HIGH 

RR 

MIN VLO LO MED HI VHI MAX 

PVB 

~ 
PM 

Z ~ 

~ NS 

NM 

(d). ePIP = V_HIGH 

Figure 6.33: Extensions made to the VT rule-map of Figure 6.32. The shaded regions indicate 
areas of the rule-map that have been altered. 
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6.8.6 Volume Constraints 

As identified during the My rule construction, there are occasions when prescribed increases in 

delivered volume cannot be realised due to the risks associated with high airway pressures. 

When the observed PIP was high, increases to My were moderated or restricted. A similar 

restriction has to be applied to any proposed increases in VI. Whilst the Mv rules will prevent 

inappropriate increases in MY, there will exist situations when a lower VI with higher RR will 

produce a reduced airway pressure (assumes a fixed volume cycle ventilation regime). 

It was therefore possible to modify the original rules of Figure 6.32 to account for observations 

of PIP. Observed PIP was expressed as error from a prescribed alarm threshold (ePIP), as per the 

Mv rules and the same fuzzy classes were used (see Figure 6.25), describing ePIP as OKAY, 

NR_ALARM, ALARM, HIGH and Y _HIGH. 

When observed PIP is well below the alarm threshold (ePIP is OKAY) the normal VI rule-map of 

Figure 6.32 applies. However, as observed PIP approaches and then exceeds the alarm threshold 

the rules pertaining to VI increases are moderated and eventually stopped. The extended rule

maps (see Figure 6.33) were derived using intuitive guess work, since rapid rule refinement 

would be made during the closed loop simulation of the advisor. 

6.9 Summary & Conclusions 

This chapter has described the development of the prototype advisor. 

Inference Methodology 

By comparing the pros and cons of different methods it was proposed to use individual rule-based 

inference with Larsen's implication. Rule significance will be imparted using the product 

antecedent liaison operator and the crisp control output will be derived using the Centre of Sums 

defuzzification method, a weight counting approach. Membership functions in the rule-antecedent 

are to be constructed using triangular and trapezoid functions. They must meet condition width 

criteria, have cross-point levels of 0.5 and a cross-point ratio of 1. Membership functions in the 

rule-consequent must be symmetrical, have equal area but do not necessarily require a cross-point 

ratio of 1. With non-uniformly spaced control actions (as observed within elements of FA VeM) 

plausibility is negated. However this approach will still produce smooth decision surfaces. 

Rule Development Methodology 

The importance of rule completeness was highlighted, and rule-holes were avoided by declaring 

the rule-base using a matrix rather than rule-statements. This rule-matrix was converted into 

rule-statements using a rule-reduction algorithm in order to minimise the number of rules 

required. This greatly reduced the amount of memory required to code the rule-matrix and also 

minimised the computational overheads of calculating the advice. 

FIOz Rule Development 

Suitable membership functions for the Pa02 observations were elicited from an anaesthetist, and 

these were found to be similar to those reported by Kwok et al (2000). These classifications 
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were then used in a modified form of the iso-shunt diagram to derive an initial prototype version 

of the FI02 control rules. When assessed by an anaesthetist these preliminary rules were found 

to advise excessive FI02 changes, and were modified accordingly. 

PEEP Rule Development 

The clinical benefits and disadvantages of PEEP were identified and from these a preliminary set 

of rules drafted. Areas of improvement were proposed but these required the addition of new 

antecedents. It was considered best to establish some validity in the prototype rules before 

attempting any rule-base modifications. 

Mv Rule Development 

MY was used to adjust PaC02 since there is an inverse proportional relationship between them. 

PaC02 was represented in the rule-antecedent as error from PaC02 set point (ePaco2) enabling 

goal-orientated control. This allowed different therapeutic needs to be met; for example in head 

injury patients when PaC(h must be kept low to help reduce brain swelling. 

The causes of respiratory and metabolic pH imbalance were discussed and possible therapeutic 

actions identified. Suitable peak values for the pH membership function were derived using the 

Henderson-Hasselbalch equation and represented in the rule-antecedent as error from normal 

pH. An initial rule-map was generated using the ePaC02 and epH fuzzy classes, coupled with the 

inverse MY-PaC02 relationship and the therapeutic actions previously identified. 

This preliminary rule-base was extended to include consideration of PIP, preventing increases in 

My as the risk of barotrauma increases. Volume constraints were also applied to the maximum 

and minimum aIlowable My that can be suggested. 

VT-RR Rule Development 

Having established a new level of MY, this was converted by the Vr-RR rules into the best 

combination ofRR and Vr setting. However any given My can be generated using a wide range 

of possible RR and Vr combinations as explained by the concept of iso-MY lines. This idea was 

extended using the representation of Vr as error from normal (e Vr NORM) to produce normal iso

MY lines, applicable to any patient irrespective of weight. Normal Vr was derived as 10 mllkg. 

Using the normal iso-MY lines an ideal eVrNORM-RR relationship was proposed. This was used 

to calculate the changes required in Vr based upon observations of eVrNORM and RR. Fuzzy 

classes for eVrNORM and RR were chosen to give a good approximation of the ideal eVrNO~ 

RR curve. Changes in My were handled by expressing all of the change via RR only and then 

using this new RR together with the old Vr to drive the Vr -RR rules. 

The Vr-RR rule-base was extended to include consideration of PIP, with Vr reduced and RR 

increased preferentially when PIP was high. 

The prototype advisor now required validating and refming. This was best achieved using the 

patient model to facilitate simulated closed-loop control, and is the subject of the next chapter. 
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Chapter 7: Closed Loop Advisor Validation 

7.1 Introduction 

Having established a prototype set of rules for the advisor, their validity needed to be tested. It 

has already been demonstrated in the F102 control rules that what might appear a good control 

strategy (in this case based upon the iso-shunt models), falls short of what is actually practised. 

Predominantly this is exhibited as greater caution on the part of the anaesthetist. It is likely 

therefore that rule refinement will be required as a consequence of advisor testing. Identifying 

the reasons for any rule modifications requires a clear understanding of the context within which 

the observations were made. After all, a given set of observations may lead to ventilator changes 

in one class of patient that would be inappropriate for another, based upon the same 

observations. Isolating these differences helps to identify insufficiency in the rule-base and may 

highlight new observations required to better separate the decision space. 

This chapter describes the closed-loop validation of the prototype advisor using the patient 

model described earlier (see Chapter 4). The next section discusses the rationale behind the 

choice of validation methodology, together with an overview of the validation process itself. 

However, before model-based validation could be performed, improvements needed to be made 

to the patient model (see Section 7.3). Using this improved patient model, virtual scenarios were 

constructed via dialogue with an anaesthetist (see Section 7.4), and employed to test the closed

loop performance of the prototype advisor. Decision histories generated by the advisor were 

compared with those produced by an anaesthetist (see Section 7.5) and modifications made to 

the rules where necessary. The new rule-base was then re-evaluated using the same patient 

scenarios in simulated closed-loop. 

7.2 Rationale & Overview 

The simplest method to test rule validity would be to generate random observations, apply these 

to the advisor and then test the response generated against that of an anaesthetist. However, this 

method has two major disadvantages. Firstly, and perhaps most importantly, all therapeutic 

decisions are based not only upon the key observations, but also upon the context within which 

they occur. This includes factors such as patient pathology or trauma, their treatment history and 

recent response characteristics, all of which may contribute to an anaesthetist's prescribed 

course of action. This information would be absent using randomly generated observations and 

therefore the clinician's response would be ill informed. Secondly, the number of possible 

permutations required to exhaustively test the rule-base is large and not all combinations would 

be meaningful. 

A preferable approach would be to use real clinical data that can be carefully recorded so as to 

preserve as much contextual information as possible. This provides not only observation context 

but also information regarding the actual course of action taken. Records thus obtained can be 

used not only to compare actual and advised responses, but also provide a means for third party 

appraisal. An independent anaesthetist can be recruited to give the decisions they would have 
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made, based upon the observations recorded. This would not be intended to assess the 

credibility of the observed anaesthetist (highly unethical without prior consent), but rather to 

highlight that differing approaches are equally valid. One anaesthetist's decision may better 

match the computed advice. This would say more about the variability of anaesthetist practice 

within ICU, than of weaknesses in the advisor. 

Whilst clinical validation is an important stage in the assessment of the advisor, it does have 

distinct disadvantages. Most significantly are the difficulties associated with data collection. 

These problems have been highlighted previously during the clinical validation of SOPAVent 

and focused principally on the time involved to accurately record all relevant information. The 

type of patient available for study is very much luck of the draw, although there will be different 

potential groups depending on the ICU site. Of the two JCUs used in this research, one focused 

predominantly on post-operative cardio-thoracic care and the other dealt with all possible 

scenarios including post-operative care, accident and emergency and acute pathology. 

Approximately 90% of the data were collected from the latter. 

Even if the data collection issues could be overcome and a large sample set was available, it still 

would not provide a flexible framework for advisor testing and validation. This arises because 

differences between actual and advised decisions cannot be explored beyond the fact that they 

differ. Ideally we would want to apply the computer-advised changes as well as the actual 

changes to the patient, in order to compare patient outcomes. Ethically this would not be 

possible and it would still not enable comparison of patient outcomes beyond a single decision, 

since we cannot repeat the patient's history. More importantly, small differences between actual 

and computed advice (which might be considered as a good decision match) may mask any 

divergent instability or limit cycle behaviour within the rules. This has very real safety 

implications and can only be investigated using a simulated closed loop methodology. 

By using a computer-based patient model, scenarios can be constructed that are both repeatable 

and unaffected by measurement errors. An anaesthetist can then attempt to ventilate these virtual 

patients to produce benchmark decision profiles that can then be compared against computer

generated advice. If the advisor and patient model are connected together to simulate closed-loop 

control then patient outcomes can be compared in a manner not possible using real patients. 

The patient model also provides the flexibility to incorporate measurement errors and process 

disturbances that would aid the understanding of the clinician's response to poor observations as 

well as the robustness of the advisor. Also, because every element of the patient's behaviour is 

repeatable, any rule modifications can be tested to see if the expected improvements have occurred. 

However, in order to provide simulated closed loop behaviour the patient model must generate 

all of the observations required by the advisor, and they must respond to ventilator changes in a 

manner appropriate to the pathology or trauma being considered. Throughout the rule 

prototyping certain inadequacies and omissions in the patient model became apparent. These 

can be summarised as follows~ 
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pH Modelling: The prototype minute volume (Mv) control rules required observation of pH. In 

the early SOP AVent model, pH was assumed fixed which clearly does not model changes in pH 

caused by respiratory acidosis and alkalosis, as well as changes due to metabolic dysfunction. 

PIP Modelling: PIP was required by both the Mvand RR-VT control rules as a measure of the 

possible risk of barotrauma. As the ventilation is adjusted the airway pressures changes 

according to the mechanics of the lung. No mechanical modelling had been included in the 

original patient model. 

PEEP Effects: PEEP is applied to open up previously closed airways, but can also have 

disadvantageous effects on cardiac output and arterial blood pressure. These require the 

inclusion of modifiers to shunt and cardiac output respectively. 

BPSYS Index: Low systolic blood pressure contraindicates the use of PEEP and therefore any 

relationships governing its behaviour needed to be considered. 

Miscellaneous Improvements: Empirical relationships governing O2 consumption, CO2 

production and cardiac output may improve model behaviour. These include the effects of body 

temperature, metabolic activity, weight and hypoxia. 

These improvements together with the introduction of a graphical user interface (GUJ) to 

improve the usability of the model and event profiling to facilitate time variations in certain 

model parameters are discussed in detail in the next section. 

The updated SOP AVent model was then used to construct patients with a variety of trauma and 

pathology (e.g. head injury, lobar pneumonia, etc). This was done with direct input from an 

anaesthetist in order to generate as much clinical realism in the scenarios as possible. They were 

then asked to ventilate these virtual patients to produce 'ideal' decision histories. At each 

decision point they were asked to state when they would next take a blood-gas sample. The 

patient would then be simulated to this point and the process repeated until weaning from the 

ventilator was proposed or the patient was stable and no further action was possible, e.g. waiting 

for a patient to regain consciousness. For each patient simulated, the anaesthetist was also asked 

to identify their therapeutic objectives and define set-point goals. 

The prototype advisor was then connected to these patient scenarios and allowed to run in 

simulated closed-loop control, see Figure 7.1. New advice was generated at the blood-gas 

sample times established by the anaesthetist when they ventilated the virtual patients. At each 

advice cycle a report was generated, stating the antecedent set membership and rules fired, with 

their respective weightings to help identify the causes of any decision mismatch. 

The performance of the prototype advisor in simulated closed-loop control was analysed and 

refinements made to the rules accordingly. In some instances this only required changes to be 

made to the rule-consequent, in others new fuzzy classes were required and occasionally a new 

observation variable was identified. The modification process was performed in an iterative 

manner with each change or group of changes being evaluated by re-running the closed-loop 

simulation and comparing the patient outcomes. In most cases the rules were modified so that 
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they matched the anaesthetists, but sometimes advised decisions were deemed preferable to 

those of the clinician and no further rule-modification was made. 

Modifications made in response to a scenario sometimes caused errors in other scenarios that 

were previously giving good decision matching. In such circumstances either a compromise was 

made in the consequent action or a new fuzzy class or variable was introduced to better separate 

the decision space. The modified rule-base was then re-evaluated using closed-loop simulation 

and the performance of the advice analysed. 
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Figure 7.1: Closed loop simulation of advisor performance using a process model of a ventilated 
patient (SOPAVent). The dashed connections from the anaesthetist indicate input prior to the 
closed-loop simulation (Le. definition of the patient scenario, blood-gas sample times and set
point goals). 

7.3 Model Improvements 

7.3.1 pH Modelling 

Perhaps the single most significant omission from SOPAVent was the ability to model changes 

in pH. This shortfall affected not only its ability to match real patient behaviour, but also its 

usefulness for advisor rule testing. The prototype Mv advisor rules (see Section 6.7) use the 

observed error from normal pH as one of the controller's antecedents. Without pH modelling 

there is no feedback from the process model in response to advised ventilator changes. 

Consequently, the controller will continue to generate advice based upon the initial pH 

observation. It is not difficult to see how this will lead to erroneous and possibly dangerous 

ventilator changes (albeit simulated). 
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Modelling of pH behaviour was achieved using the modified Henderson-Hasselbalch equation; 

6.3968+ 0.01506·(38 -T )+log [HC03'] 
H- dW2 

P - 1.042+0.0014.(38-T) 
(7.1) 

where peo] is partial pressure of CO2 (kPa), a is the solubility of CO2 in plasma (mmolll/kPa), 

T is blood temperature eC) and [HC03'] is bicarbonate concentration (mmolll). This equation 

is identical to that used in the Mv rule prototyping, see Section 6.7.3 for details. 

The pH calculation was performed within the gas dissociation function (GDF) prior to the 

calculation of O2 and CO2 contents, since both algorithms have a pH dependent component. In 

the O2 GDF this is in the equation for virtual P02 (see Section 4.2.3) and in the CO2 GDF this is 

in the Henderson-Hasselbalch equation, the pK formula and the equations deriving the reduced 

and oxygenated cell to plasma [C02] ratio (see Section 4.2.6). 

A similar approach has been taken by Dickinson (1977) in his McPufpatient model, although in 

this case he used a much simpler form of the Henderson-Hassclbalch equation with no 

adjustments made to pK and a. based upon pH and temperature. 

SOPAVent requires the inverse of the GDF (i.e. calculation of gas tensions from contents) which 

was implemented using a simple secant-searching algorithm (see Section 4.7). Unfortunately the 

inclusion of the pH modification meant that it was possible for the inverse GDF to get stuck 

within an iterative loop. This occurred when changes in PC02 estimate generated changes in pH 

that itself produced changes in the P02 and PC02 estimates that would not converge. 

This was overcome by adopting the 2-dimensional secant-searching algorithm as employed in the 

tuning of shunt and dead space. In this case the PC~ was estimated first (being the more sensitive 

variable to pH) and then Po2. This was repeated until the estimation error fell below a predetermined 

level in both P~ and Pc~. 

Clinical Validation 

The predictive performance of equation 7.1 was tested by using 151 observations of PaC02, pH, 

bicarbonate and temperature taken as part of a second data collection phase (see Chapter 8). 

Allowing for measurement and recording errors, the equation performed well with a correlation 

coefficient ofr = 0.967 (standard error of estimate 0.0281), see Figure 7.2. 

Pulmonary Bicarbonate Approximation 

The inverse GDFs are used not only to calculate arterial and venous P02 and PC02, but also to 

derive the pulmonary gas tensions that drive diffusion across the lung membrane. However, the 

calculation of pH requires knowledge of [HCO;] which is easily measured in the arterial and 

venous circulation but is not available in the pulmonary compartment. It was therefore 

necessary to assume pulmonary [HCO;] to be equal to arterial [HCO;]. 
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Figure 7.2: Correlation bctween observed pH and predictcd pH, using data collected during the 
clinical validation of the advisor (see Appendix H). 

7.3.2 Airway Modelling 

Prescriptive changes in mechanical ventilation (e.g. Vr, RR, driving waveform, etc) impact on 

the pressure at the mouth and the pressure in the alveoli. The relationship between these 

ventilator settings and observed pressures is dctermined by the respiratory mechanics of the 

patient and ventilator. The two main properties that characterise breathing mechanics are total 

compliance (C) being a measure of lung and chest-wall elasticity, and total flow resistance (R), 

which reflects properties of both the tissue and the peripheral airways. Compliance is measurcd 

in litres/cmH20 or litreslkPa and flow resistance in cmH20llitre/sec or kPaIlitre/scc. 

This can be represented using a simple two-element rcsistance-compliance linear model. 

However, in such a model it has to be remembered that the lumpcd paramctcrs R and C includc 

any resistance and compliance between the ventilator and the patient as well as bctwecn the 

mouth and the alveoli. A first order approximation of this nature is sufficicnt for pscudo

realistic simulation of various mechanical abnormalities (e.g. stiff lungs associated with ARDS 

and high flow resistance associated with chronic obstructive airway disease), However there is 

good evidence that a three-element model with additional parallel compliance will give bettcr 

matching to observed pressure and flow data in routine post-operative ICU [Barbini et ai, 1994]. 

Making physical sense of a three-element model in physiological or mechanical terms is 

difficult even if it does give better frequency and time domain response characteristics, whcreas 

the two-element model is readily understood by clinicians. 

PIP Modellin! 

The prototype MY and Vr-RR rules require that consideration be made of PIP. In theory this 

should be measured at the mouth, but in practice the manometer is almost invariably situated on 

the ventilator. However, resistance between the ventilator and the patient's mouth, and hence 

the pressure difference between the two is usually negligible. Therefore for all practical 
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purposes, the pressure at the ventilator can usually be taken to be the same as the mouth. In 

order to determine the simulated PIP we have to derive the equations describing the pressure at 

the mouth (Pm) during the inspiratory phase of the respiratory cycle. 

R 

c 

Figure 7.3: Electrical analogue of the respiratory mechanics during the inspiratory phase of the 
respiratory cycle. 

The ventilator is assumed to be in volume control mode and delivers a certain pre-set volume 

during a pre-set time with a constant flow. This is analogous to a constant current generator in 

electrical terms. Similarly the flow resistance is analogous to electrical resistance and lung 

compliance to capacitance, see Figure 7.3. 

The pressure at the mouth will be the sum of pressure drop across the flow resistance and the 

lung compliance; 

. 1 J . Pm(t) =PR(t)+PC(t) =VR+ C V.dt 

where the flow V is given by; 

. Vr 
V=

t[ 

Substituting equation 7.3 in equation 7.2 and integrating we arrive at; 

(7.2) 

(Vsec) (7.3) 

(cmfJzO) (7.4) 

The additional term PEEP represents the initial conditions of the system due to applied positive 

end-expiratory pressure. 

The peak: inspiratory pressure is simply this equation calculated at the end of inspiration (t = tJ; 

Vr Vr 
P[p=-·R+-+PEEP 

t[ C 
(cmH20) (7.5) 

Using this equation it is then possible to model the effect of changes in ventilator setting and 

patient lung mechanics on the observed PIP. 
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Mean Alveolar Pressure 

Originally, mean alveolar pressure was approximated using equation 4.39 (see section 4.2.7). 

However, this equation is incorrect in three respects. Firstly, it does not actually represent the 

alveolar pressure but the pressure at the mouth; secondly the ventilator is a constant flow source, 

which does not result in a square pressure waveform; and finally it takes no account whatsoever 

of the respiratory mechanics. 

The mean alveolar pressure is calculated by integrating the alveolar pressure across the whole 

ventilation cycle. However, this requires definitions of the equations describing the alveolar 

pressure wave. This ventilation cycle can be divided into three distinct regions; the inspiratory 

phase, the pause phase and the expiratory phase. 

1}. Inspiratory Phase 

During the inspiratory phase the respiratory mechanics behave as in Figure 7.3 with a constant 

flow source connected to a lumped compliance and flow resistance network. The alveolar 

pressure (PA) is equal to the pressure drop across the lung compliance; 

1 f' Vr PArt} = Pc(t} =- V.dt =--'I+PEEP 
C C·tl 

(7.6) 

The mouth pressure during inspiration is as described previously in equation 7.4. 

2}. Pause phase 

During the pause phase (which is optional) the constant flow generator stops, but a non-return 

valve prevents gas from leaving the system. This is provided to allow the alveolar pressure to 

equilibrate with the mouth pressure and gives better gas mixing in the alveolar space. The model 

now behaves as though the mouth is effectively a fixed volume at pressure Pm(tj) discharging 

via the R-C network into the alveolar space which is already at pressure P A(tj). 

The relationship between Pm and PA is described by a pair of simultaneous differential equations, 

since the pressure difference driving the equilibration decays as the pressures equalise.; 

(7.7) 

Using Laplace transforms these equations resolve to; 

(7.8) 

where Ip is the length of the pause phase in seconds and PAO and PmO are the alveolar and mouth 

pressures at the end of inspiration as given by; 
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VT 
PAO =-+PEEP 

C 

VT VT 
PmO =-·R+-+PEEP 

II C 

3). Expiratory phase 

(7.9) 

(cmH20) (7.10) 

Assuming that the internal resistance of the ventilator (r) during expiration is low (typically 2 

cmH20) the alveolar pressure during the expiratory phase is given by; 

-(t-(t[Hp )) 

PA(t) = (PAl -PEEP)'e (R+r)C +PEEP (cmH20) (7.11) 

where PAl is the alveolar pressure at the end of the pause phase as given by; 

(7.12) 

The pressure at the mouth is only restricted by the intcrnal resistance of the ventilator and 

therefore falls much more rapidly; 

-(t-(t[+tp )) 

Pm(f)=(Pml-PEEP)'e rC +PEEP (7.13) 

where P ml is the pressure at the mouth at the end of the pause phase. A typical pressure 

waveform generated by these equations is shown in Figure 7.4. 
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Figure 7.4: Typical pressure waveforms generated at the mouth and in the alveolar space using 
the airway mechanics model. The ventilator settings used were VT = 0.71itres, RR = 12 r.p.m., 
PEEP = 5 cmH20 (0.49 kPa), tl = 33 %, tp = 10 %, and the ventilator-airway mechanics were 
defined by R = 5 cmH20/l/sec (0.49 kPalVsec), C = 0.1 VcmH20 (1.02 VkPa), r = 2 cmH20/Vscc 
(0.2 kPalVsec). 
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Calculation of the mean alveolar pressure PA (I ) (or PMEAN) requires integrating the equations 

for PArt) in the three respiratory phases and averaging over a single respiratory cycle; 

1 foT PMEAN = - PA(I).dt+PB 
IT 0 

1 {for J,tr+tP fT } =- PA(insp).dt+ PA(pause).dt+ PA(exp)dt +PB 
~ 0 ~ ~~ 

(7.14) 

It should be noted that the units ofPMEAN are in kPa and therefore the average PA(t) value must 

first be converted from cmH20 to kPa to be meaningful in this expression. The difference b<.:twecn 

the original and new estimates of mean alveolar pressure depends upon what the ventilator and airway 

mechanical parameters are set to. When the airway resistance is high (e.g. 120 cmtl20IVscc as secn in 

patients with acute asthma) the difference in estimates can be as much as 50 %. 

7.3.3 Modelling Benefits and Disadvantages of PEEP 

Since FAVeM will be advising changes to PEEP, some attempt needs to be made to model the 

advantages and disadvantages that it can impart upon the patient. The two most significant effects 

of PEEP are known to be: (1) the improvement in arterial oxygenation probably attributable to the 

opening up of collapsed alveoli - this can be modelled by a reduction in the effective shunt; and 

(2) a reduction in cardiac output known as cardiac tamponade. The latter is brought about by a 

reduction in venous return because of an increase in mean right atrial pressure. 

Reduction in Shunt 

The physiological shunt fraction is reduced from its nominal value (Xphys) as PEEP is applied. 

The amount of PEEP required to reduce Xphys to zero is determined by a notional threshold term 

(THpEEP), see equation 7.15. So for example with THpEEP set to 40 cmH20 (3.92 kPa) the 

application of 15 cmH20 (1.47 kPa) of PEEP has the effect of reducing the physiological shunt 

to 25/40 of its nominal value. Any fixed or anatomical shunt (Xjixed) remains unaffected by PEEP. 

(
THpEEP -PEEP) X elf = X nom • + X fixed 

THpEEP 
(7.15) 

Cardiac Tamponade 

The reduction of cardiac output due to PEEP depends upon the compliance of the lungs. If the 

compliance is low (i.e. stiff lungs) then there is little effect. If they are compliant then cardiac 

pumping is brought virtually to zero at maximum PEEP. Dickinson used the following equation 

to modify the resting cardiac output estimate (this forms part of a more involved formula to 

estimate changes in cardiac output, see equation 7.23); 

P CO AI dill 30- (PEEP x5 x C) 
EEP JV10 l.!.er=---"----..:... 

30 
(7.16) 

where C is the lumped compliance of the airway and lungs (lIcmH20). In the conscious subject 

compliance is approximately 0.2 litre/cmH20, which with 15 cmH20 of PEEP would reduce the 

resting cardiac output by almost half. 
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This effect will underestimate the disadvantage of PEEP on cardiac output if filling of the right 

atrium is already inadequate and overestimate it if cardiac filling is adequate. Dickinson made 

no attempt to model this influence merely stating; 

"The user of the artificial ventilation option has a choice: either he accepts the empirical 

formulation of the effects of PEEP as a reasonably realistic package correct for average 

conditions; or he fixes PEEP at zero, and uses the manually-changeable controls to make his 

own more appropriate changes in dead space, venous admixture, and cardiac output . .. 

As mentioned in Section 6.6.2, systolic blood pressure (BPSYS) is used as an indicator of 

cardiovascular suppression (i.e. inadequate right atrium filling), and when it is low contra-indicates 

the use of PEEP. Since the model wants to be used for simulated closed-loop control, the application 

of PEEP should produce an increased cardiac tamponade effect when BPsys is low. Conversely, 

adequate filling (as indicated by a good level ofBPsys) should reduce the tamponade effect. 

The problem is further complicated by the fact that arterial blood pressure also declines with 

increasing PEEP in a manner which closely follows the change in cardiac output [Jardin et aI, 

1981]. This further compromises filling, increasing the sensitivity of the tamponade effect to 

further increases in PEEP. The relationship between PEEP and BPsys and their effect on cardiac 

output is the parameter feedback required by FA VeM to stimulate and test the PEEP advisor 

rules. Unfortunately, equations tying together PEEP, cardiac tamponade and arterial blood 

pressure could not be found. 

The solution therefore was to include a sensitivity term (Stamp) within the PEEP modifier expression; 

30-(PEEP x5 x C x Stamp) 
PEEP CO Modifier = -----------!.-

30 
(7.17) 

The user then has the option of modifying the tamponade effect as required. Similarly any further 

reduction in arterial pressure as a consequence of increased PEEP will have to be adjusted 

manually. This wasn't a satisfactory solution but will have to be accepted until a better tamponade 

model can be found. By setting Stamp to 0, the tamponade model is turned off. 

Miscellaneous Effects of PEEP 

Whilst the above effects constitute the primary influences of PEEP, other effects should perhaps 

be mentioned, although they are not modelled here. These include amongst others; 

1). Lung Volume. PEEP increases functional residual capacity (FRC), which in tum 

reduces the airway resistance (R) according to the inverse relationship between lung 

volume and airway resistance as reported by Mead and Agostoni (1964) and Zamel et 

al (1974). This will reduce the calculated PIP although little net increase will be 

observed since PEEP itself raises the inspiratory pressure. 

2). Dead Space. There is indirect evidence that prolonged application of PEEP may cause 

a very large increase in the dead space, probably because of bronchiolar dilation 

[Slavin, 1982]. 
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7.3.4 Cardiac Output & Metabolic Function 

Oxygen Consumption 

In the earlier SOPAVent model cardiac output, O2 consumption and CO2 production were defined 

explicitly by the user. Dickinson used a different approach whereby nominal values were derived 

using simple empirical formulae, which could then be adjusted using modifiers that related to 

other physiological aspects of the patient. So for example the nominal O2 consumption at rest is 

dependent upon patient weight in kg (WT), and is given by [Dickinson, 1977, p122]~ 

V02 REST = 10.33 X WTO.7S (mllmin, STPD) (7.18) 

This is the same formula as used to create a standard-normal patient for ballpark testing of the 
model (see Section 4.4.2). However, patient measurements may indicate a wholly different level 

of O2 consumption. Dickinson dealt with this by adding two modifiers to account for increases 

in patient temperature (leading to increased metabolic activity), and a manual control for 

adjusting metabolic rate (MR). The modified O2 consumption is then represented by the 

following expression [Dickinson, 1977, P 11 0]; 

. . (T -26 )1.05 MR 
V0 2 = V0 2REST X x-

37 -26 100 
(ml/min, STPD) (7.19) 

where Tis temperature (0C) andMR is the percentage from normal metabolic activity. Using the 

above two equations the user can specify the patient weight and temperature to derive an 

estimate of O2 consumption. If this value does not match the desired rate of O2 consumption, or 

if the model is being tuned to some observed clinical data, then MR can be reduced or increased 

as required. If the user specifies a target V0 2 thenMR is calculated automatically. 

Carbon Dioxide Production 

The modified O2 consumption can then be used to calculate the CO2 production using the tissue 

respiratory quotient (normally 0.8)~ 

(mllmin, STPD) 

Again if a certain CO2 production is required then RQ can be adjusted accordingly. 

Cardiac Output 

(7.20) 

As with the estimation of O2 consumption, Dickinson gives an expression for the resting cardiac 

output. However this is itself dependent upon the resting O2 consumption; 

QtREST = 0.0195 X V0 2REST (llmin) (7.21) 

If the patient is female then this estimate is reduced by a factor of 0.9. 

The effective cardiac output is influenced by various factors and Dickinson included the effects 

of exercise, temperature, cardiac tamponade and hypoxia in his McPuf model [Dickinson. 1997, 

pl00-l03]. Cardiac tamponade has been dealt with previously (see above). 
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His equation for effective cardiac output was given as; 

Q =(A+~)XCP 
t Y y2 100 

(litres/min) (7.22) 

This comprises two primary components; one pertaining to resting cardiac output - modified 

according to temperature and tamponade (AN), and the other to the effects of exercise as 

represented by the difference between the O2 consumption at rest and during exercise (BN2
). 

These are additive and can be tuned to give the desired cardiac output using the percentage 

modifier CP. This can be taken to represent 'percentage normal cardiac function' and setting it 

to 200 % will give twice the normal average value for those conditions. 

Tamponade and Temperature Effects 

The modified cardiac output component is given by equation 7.23; 

A = (30 -PEEP x 5 XC)x( T -12.2 )x 1.1904 . Qt REST 
30 37 -12.2 

(7.23) 

where the first bracketed element is the tamponade model as presented in equation 7.16; the 

second element is the effect of body temperature on resting cardiac output; and the additional 

coefficient 1.1904 was not clearly identified in Dickinson's work. 

Exercise E(fect 

The exercise component of equation 7.22 is given by; 

B = ('°2 - V02REST 

100 
(7.24) 

Whilst it may seem unnecessary to include a factor that accounts for exercise, the increase in 

metabolic function and body temperature associated with infection exhibit an increase in O2 

consumption and cardiac output. This can be thought of as increased work and therefore in 

nature very similar to exercise. Relating changes in cardiac output to increased O2 consumption 

in this way enables the changes to apply not only to normal subjects but also to those of 

different age, sex and size. 

Hypoxia Effect 

Both the cardiac component (A) and the O2 consumption component (B) are modified by the 

divisor Y; 

y = max{0.35,Ca02 x 0.0056) (7.25) 

This models the increase in cardiac output when arterial oxygen content falls, up to a realistic 

limit. The effect on the exercise component is smaller as indicated by squaring of the devisor. 

Figure 7.5 shows the effective cardiac output with changing arterial O2 content at various body 

temperatures. 
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Figure 7.5: Effective cardiac output for varying artcrial O2 content and body temperature based 
on a resting cardiac output of 5 IImin. 

It was dccided to omit modelling of the hypoxia effcct since its implcmcntation would be 

problematic. Arterial O2 content is constantly changing in response to ventilator adjustmcnts and 

therefore cardiac output would constantly nced recalculating .The model structure would not easily 

accommodate dynamic cardiac output without large scale rcdesign, although such an improvemcnt 

may well need to be considered in the future. This feature was switched off by setting Y equal to 1. 

7.3.5 Event Profiling 

When constructing patient scenarios there are physiological parameters, which will vary over 

time. For example a patient suffering from pneumonia will initially begin with a high level of 

physiological shunt. Over a period of 24 hours this would reduce as the infcction subsidcs. In 

addition there will be episodes of suddcn shunt improvement, as plugs of consolidatcd sputum 

are removed during physiotherapy. 

These changes are modelled in SOPAVent using a table of parameter events. The initial 

condition of the patient represents the first event, with each subsequent event bcing described by 

the following five term structure; 

[Value, Unit, Condition, Time, Function] 

where; 

Value is the new setting that the parameter will have at the event time. 

Unit is the observation unit for the parameter value (e.g. kPa, cmH20, %, etc) and enables event 

values to be declared in units other than those required by the patient model. A conversion 

program ensures that these event values are in the correct units before commencing simulation. 

Condition is the observation conditions for the parameter value (e.g. STPD, BTPS, etc). Again this 

is because the model requires all parameters to be in BTPS, but events may be declared otherwise. 
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Time is the point in the simulation in minutes at which the event value takes effect. 

Function is the manner in which the new event value is arrived at from the previous one. This 

can be either step or ramp. Step provides discrete level changes and ramp gives a linear increase 

or decrease in the parameter value. 

So considering the pneumonia example given above, the changes in physiological shunt could 

be described by the event profile of Table 7.1, producing the parameter history of Figure 7.6. 

This is converted into a lookup matrix with time values in the first column and parameter values 

in the second column. In our example this would look like; 

o 40 
120 30 

P.PhysShunt = 
120 25 
360 21 

(7.26) 

This matrix is then placed in a SIMULINK block called 'From Workspace' which interpolates 

between rows to derive the physiological shunt value at any given simulation time. Whilst only 

ramp and step functions have been implemented here, it would obviously be possible to extend 

this to include any number of alternative functions, e.g. exponential, random, etc. 

Value Unit Condition Time Function 

40 % nla 0 initial value 

30 % nla 120 ramp 

25 % nJa 120 step 

21 % nJa 360 ramp 

Continued as necessary ... 

Table 7.1: Example of an event profile to describe changes in physiological shunt for a patient 
with pneumonia undergoing physiotherapy. 
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Figure 7.6: Time history of physiological shunt produced using the event profile of Table 7.1. 
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7.3.6 Graphical User Interface 

In order to aid the usability of the patient model a graphical user interface (GUI) was designed 

using the GUI construction modules provided by MATLAB. This front-end to the model enabled 

rapid definition and modification of patient scenarios, as well as access to graphical reports and 

text summaries of simulations performed, see Figure 7.7. 
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Figure 7.7: Patient defmition screen used to create and modify patient scenarios. From here 
scenarios can be saved and loaded; simulations run; and reports generated. Links are available 
for closed loop simulation; patient tuning; airway calcu lator and simulation control options. 

7.4 Patient Scenario Development 

In order to test the simulated closed-loop performance of the advisor and hence facilitate rule 

refinement it was necessary to construct scenarios that would represent specific classes of 

patient. The range of possible pathologies, their severity and the nature of any complicating 

factors provide an almost endless number of potential scenarios. However, it was decided to 

limit thjs to five frequently encountered patient groups so that major rule-anomalies could be 

identified and corrected rapidly without the need for exhaustive scenario development. 

The five patient classes modelled were; 

Normal lungs - this describes a post-operative elective ventilation following abdominal 

surgery. The patient's lungs are healthy and there are no major complications to consider. This 

should be the simplest of the scenarios to control. 
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Lobar pneumonia - a long-term infection has weakened the patient and they require ventilatory 

support whilst antibiotics and physiotherapy can be administered. They are hypoxic due to large 

physiological shunts, resulting from the infection. The lungs are stiff with slightly elevated 

airway resistance, leading to raised PIP and a possible risk of barotrauma. Such patients provide 

a good balance of therapeutic needs but are normally fairly straightforward to ventilate. 

Acute asthmatic - an acute episode induced by severe allergy. The predominant feature is high 

flow resistance culminating in dangerously high levels of PIP. The primary challenge here is to 

give adequate ventilation whilst avoiding barotrauma. 

Head injury - this describes a motorcyclist admitted to leu following a road traffic accident 

(RTA). They have received severe head injuries and are unconscious. Apart from the injuries 

sustained they can be thought of as healthy. They are being ventilated to control brain PC02 in 

order to reduce cerebral oedema (brain swelling) and to give good brain oxygenation to reduce the 

risk of possible brain damage. Ventilation is continued until the patient regains consciousness. 

Adult respiratory distress syndrome (ARDS) - the patient has developed lung shock resulting 

from the inhalation of smoke and chemicals. This represents the most difficult scenario since the 

lungs are very stiff, the patient is hypoxic and hypercapnic. It is difficult to provide adequate 

ventilation due to very high inspiratory pressures and excessive FI02 can exacerbate the lung 

shock due to O2 toxicity. The condition improves only very slowly. 

These patient scenarios were developed with the help of a consultant anaesthetist and were 

constructed to be as realistic as possible. The initial conditions and event profiles for each 

patient are given in Appendix C. 

7.4.1 Anaesthetist Decision Histories 

Having developed the patient scenarios, an anaesthetist was then asked to ventilate them, basing 

their decisions upon the current simulated patient state and ventilator settings. The changes that 

they proposed were then entered into the patient model and the simulation continued until the 

next blood-gas sample time (for example 30 minutes or 3 hours) as agreed by the anaesthetist. 

In this way a decision history for each patient was created against which any computer 

generated advice could be compared. Of course these decision histories do not represent a 

definitive solution to the patient ventilation problem and other clinicians may arrive at different 

but equally valid ventilation strategies. However, they do enable glaring errors in the advisor 

rules to be identified and provide a standard against which subsequent advisor versions can be 

judged. 

Throughout this process, the anaesthetist involved felt that the patient model behaved in a 

convincing manner to the ventilator changes made. The simulated anaesthetist's decision 

histories are shown in Figure 7.29 to Figure 7.33 (see pages 187 to 201) and the actual response 

values are given in Appendix D. 
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7.5 Closed-Loop Validation & Rule Refinement 

The virtual patient scenarios were then connected to the prototype rules and allowed to run in 

simulated closed-loop control, see Figure 7.8. New advice was generated at the predetermined 

blood-gas sample times that were established by the anaesthetist during their simulated 

ventilation of the virtual patients. At each decision point the advisor produced a report similar to 

that of Figure 7.10, enabling the rule-firing behaviour to be inspected and the causes of decision 

differences to be understood and if possible corrected. 

Patient & Ventilator Observations 

r------..... Anaesthetist's 

Anaesthetist 
Ventilalor Changes 

: Blood-Gas 
I Sample Times 
I 

r-----I.--..... Advisor's 
L..--1~ Ventilator Changes 

Advisor 

Simulated 
Patient 

Simulated 
Patient 

Patient & Ventilator Observations 

Closed-Loop Decision 
Histories and Patient 
Responses Compared 

Figure 7.8: Block diagram showing how the simulated closed-loop behaviour of the advisor and that 
of the anaesthetist were compared. 

The performance of the prototype rules was measured by calculating (i) the mean absolute error 

1 E 1 between the ventilator settings made by the anaesthetist and those made by the advisor; (ii) 

the standard error of this mean aiEl; and (iii) the maximum absolute error 1 E I. The maximum 

error helps to highlight any extreme decision differences that may be dangerous to the patient. 

These three measures were made for each patient individually, as well as across the entire data 

set, enabling patient specific errors to be identified. 

Careful inspection of the anaesthetist's decision histories identified occasions when they prescribed 

new ventilator settings outside of normally expected ranges. These were omitted from the statistical 

analysis, since they caused decision errors inconsistent with the advisor's performance. The 

following points were dropped from the Mv, RR, VI and PaC~ error calculations; 

1). Normal lung patient at 2.5 hours:- the anaesthetist made an Mv change from 5.6 to 

7 litres causing the Paco2 to drop to 4.73 kPa. This change was too large and was 

corrected by the anaesthetist at the next blood-gas sample time. 

2). Acute asthmatic patient at 8.5 hours:- again the anaesthetist increased Mv by too 

much, reducing PaC02 0.62 kPa below the set-point goal. 

3). Head injury patient at 2.5 hours:- again the Mv was increased by too much 

reducing PaC02 0.6 kPa below set-point goal. A decision that was corrected by the 

anaesthetist at the next blood-gas sample time. 
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4). ARDS patient at 26.5 and 34.5 hours:- the Mv reduction caused an increase in the 

level of hypercapnia with only marginal improvement in PIP. Since PIP is already 

reducing and the patient is acidotic the decision appears inconsistent with previous 

behaviour. 

Modifications were made to the advisor rules based upon the errors observed. The ventilator 

controls were considered in tum, starting with the FI02 subsystem. Each patient was dealt with 

separately and modifications were made to the rules in an attempt to reduce I E I, aiEl and I E I 
where possible. The effect of each change on the remaining virtual patients was checked to 

ensure that the modification would not adversely affect their decision performance. Any 

changes that resulted in an overall improvement in decision matching were implemented. Those 

that didn't required either~ 

1). Better separation of the of the observation space via the inclusion of (i) new fuzzy 

classes or (ii) new observation variables. 

2). OR a compromise in the final value of the rule-consequent to minimise the overall 

decision error. 

The performance of the modified rule-base was then assessed and the causes of any remaining 

decision mismatch explored. The I E I, aiEl and I E I of the prototype and modified advisor are 

given in Table 7.2. 

The correlation between the anaesthetist and advisor's decisions was also assessed. This 

required the observation data produced by the anaesthetist during simulated closed-loop 

ventilation, to be applied to the advisor. By using the same observation data a direct comparison 

of decision difference could be made, see Figure 7.9. This was not possible using the data that 

resulted from the advisor's closed-loop ventilation, because the observations were different 

(resulting from slight variations in the decision histories). 

... 

.. .. 

Patient & Ventilator Observations 

,..---------., Anaesthetist IS 

Anaesthetist 
Ventilator Changes .. 

... , 
Simulated 

Patient 
-

Set-Point 

,Ir 
Adv

' I Ventilator Changes 
,..-----''------., Isor S Compared 

Advisor 
Ventilator Change~ / 

Figure 7.9: Block diagram showing how the data generated during the anaesthetist's closed-loop 
control was applied to the advisor in order to directly compare ventilator decisions. 
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Rule Versions: 1.2 1.1 2.1 3.1 
Inference Methodology: 
Larsen (Sup-Prod), Prod-Liaison 
Centre of Sums Defuzzification, Ventilator-Quantisation 
F~ Rules Fired 
13 [0.56) IF (Pa0:2 = SLO) AND (F102 = MIN-HI) THEN [dFI~ = P2 (20») 
12 [0.25) IF (Pa0:2 = VLO-SLO) AND (FI02 = VHI) THEN [dFI~ = P1 (10») 
14 [0.19) IF (Pa0:2 = LO) AND (FI~ = MED-HI) THEN [dFI~ = P3 (30») 
PEEP Rules Fired 
38 [0.56) IF (Pa0:2 = SLO) AND (FI~ = MED-HI) AND (PEEP = LOW-MED) THEN [dPEEP = Z (0») 
50 [0.19) IF (Pa0:2 = LO) AND (FI~ = MED-HI) AND (PEEP = LOW) THEN [dPEEP = P1 (2») 
51 [0.19) IF (Pa0:2 = SLO) AND (FI~ = VHI) AND (PEEP = LOW-MED) THEN [dPEEP = P1 (2») 
59 [0.06) IF (Pa0:2 = LO) AND (FI~ = VHI) AND (PEEP = OFF-LOW) THEN [DPEEP = P2 (4») 
Mv Rules Fired 
20 [0.64) IF (ePaC0:2 = PS-PB) AND (epH = VACID-ACID) AND (ePIP = HIGH) THEN [dMv = Z (0») 
10 [0.19) IF (ePaC0:2 = NB-Z) AND (epH = VACID-ACID) AND (ePIP = HIGH) THEN [dMv = N2 (-10») 
19 [0.09) IF (ePaC0:2 = PS) AND (epH = NORM) AND (ePIP = ALARM-HIGH) THEN [dMv = Z (0») 
23 [0.04) IF (ePaC0:2 = PS) AND (epH = VACID-ACID) AND (ePip = ALARM) THEN [dMv = P1 (15») 
11 [0.03) IF (ePac0:2 = Z) AND (epH = NORM-AU<) AND (ePIP = HIGH) THEN [dMv = N2 (-10») 
16 [0.01) IF (ePac0:2 = Z) AND (epH = ACID-NORM) AND (ePIP = OKAY-ALARM) THEN [dMv = Z (0») 
VT Rules Fired 
21 [0.63) IF (RR = MED-VHIGH) AND (eVTnorm = NS) AND (ePIP = HIGH) THEN [dVT = N1 (-5») 
10 [0.28) IF (RR = LOW-MED) AND (eVTnorm = Z) AND (ePIP = HIGH) THEN [dVT = N2 (-10») 
29 [0.04) IF (RR = MED-MAX) AND (eVTnorm = NS) AND (ePIP = ALARM) THEN [eNT = Z (0») 
18 [0.03) IF (RR = VLOW-LOW) AND (eVTnorm = NS) AND (ePIP = ALARM-HIGH) THEN [dVT = N1 (-5») 
19 [0.02) IF (RR = LOW-HIGH) AND (eVTnorm = Z) AND (ePIP = ALARM) THEN [dVT = N1 (-5») 

Advice old ~ change Goals 
FI02 (%) 75.0 94.0 19.0 Paco2 (kPa) 5.3 
PEEP (emH2O) 4.00 5.00 1.00 pH 7.4 
RR (rpm) 14.0 14.5 0.5 
VT (ml) 670.0 640.0 -30.0 
Mv (ml) 9380 9235 -145 

Antecedent Observations Patient Observations Ventilator Observations 
Pao2 8.49 kPa Pao2 8.49 kPa FI02 75.0 % 
FI02 75.0 % Paco2 7.34 kPa PEEP 4.0 em H20 
PEEP 4.0 em H20 pH 7.252 RR 14.0 rpm 
ePaco2 38.6 % PIP 54.7 emH20 VT 670 ml 
epH -0.148 Weight 75.0 kg Normal VT 750 ml 
ePIP 4.7 em H20 
RR1 13.8 rpm 
eVTnorm -10.7 % 

Membership for FI02 Observations 
Pa~ = 8.49 kPa: LO (0.25) SLO(0.75) 
FI02 = 75.0 %: HI (0.75) VHI(0.25) 

Membership for PEEP Control Observations 
Pa~ = 8.49 kPa: LO (0.25) SLO(0.75) 
FI02 = 75.0 %: HI (0.75) VHI(0.25) 
PEEP = 4.0 cmH20: LOW (1) 

Membership for Mv Control Observations 
ePaco2 = 38.56 %: Z (0.23) PS(0.77) 
epH = -0.148 : ACID (0.88) NORM (0.12) 
ePIP = 4.7 cmH20: ALARM (0.06) HIGH (0.94) 
Membership for Vt Control Observations 
RR = 13.8 rpm: LOW (0.05) MED (0.95) 
eVTnorm = -10.7 %: NS(O.7) Z (0.3) 
ePIP = 4.7 cmH20: ALARM (0.06) HIGH (0.94) 

Figure 7.10: Typical report generated by the advisor at each blood-gas sample time during the 
closed-loop validation of the advisor rules. The report includes (i) the rule-base version 
numbers, (ii) the inference methodology and advice quantisation level used, (iii) the subsystem 
rules fired together with their weights (ordered according to significance), (iv) the crisp 
quantised advice, (v) the therapeutic goals, (vi) the patient observations, (vii) the antecedent 
observations and (viii) the antecedent set membership. 
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Normal Lung Lobar Pneumonia Acute Asthmatic Head Injury ARDS Total 

lEI aiEl lEI lEI aiEl lEI lEI aiEl lEI lEI a!EI lEI lEI aiEl lEI lEI aiEl lEI 
Prototype Advisor 

Pa02 (kPa) 3.68 2.22 5.98 1.94 1.56 4.56 5.30 1.25 6.51 5.66 2.43 8.67 1.57 1.03 3.93 2.88 2.21 8.67 

PaC02(kPa) 0.16 0.19 0.44 0.28 0.18 0.50 0.36 0.07 0.43 0.23 0.09 0.31 1.05 0.88 2.98 0.55 0.66 2.98 

pH 0.013 0.016 0.037 0.025 0.018 0.049 0.028 0.005 0.034 0.020 0.007 0.028 0.053 0.037 0.130 0.033 0.029 0.130 I 

PIP (cmH20) 2.29 0.85 3.77 1.79 0.77 3.41 5.22 1.87 7.10 0.93 0.45 1.50 11.50 2.91 15.64 5.68 5.01 15.64 

FI02 (%) 3.80 2.17 5.00 6.10 3.18 10.00 8.75 2.50 10.00 7.80 2.59 10.00 19.00 9.67 30.00 11.05 8.76 30.00 

PEEP (cmH2O) 2.10 0.55 3.00 0.50 0.62 2.00 0.00 0.00 0.00 0.00 0.00 0.00 2.29 1.35 4.00 1.25 1.34 4.00 I 

MY (litres) 0.165 0.173 0.400 0.388 0.365 1.125 0.128 0.063 0.185 0.620 0.068 0.705 1.643 1.217 3.740 0.822 0.983 3.740 

VT(ml) 20.0 21.6 50.0 44.0 15.8 60.0 120.0 50.0 170.0 85.0 35.1 120.0 126.7 59.9 250.0 83.0 58.6 250.0 

RR(rpm) 0.13 0.25 0.50 0.65 0.58 1.50 3.17 1.53 4.50 2.00 0.58 2.50 6.50 3.39 11.00 3.11 3.42 11.00 

TIN (%) nla nla nla nla nla nla nla nla nla nla nla nla nla nla nla nla nla nla 

Modified Advisor 

Pa02 (kPa) 1.40 1.60 4.06 0.59 0.69 2.04 1.66 1.81 3.40 1.07 1.61 3.93 0.47 0.54 1.97 0.83 1.11 4.06 

PaC02 (kPa) 0.27 0.26 0.66 0.08 0.08 0.27 0.12 0.13 0.26 0.12 0.23 0.47 0.16 0.14 0.48 0.14 0.16 0.66 I 

pH 0.022 0.022 0.055 0.007 0.008 0.026 0.009 O.OlD 0.020 0.011 0.020 0.042 0.009 0.008 0.025 0.010 0.012 0.055 i 

PIP (cmH20) 2.00 0.48 2.74 1.40 0.45 2.00 1.13 0.88 2.11 0.35 0.22 0.50 1.67 0.97 3.85 1.41 0.84 3.85 I 

FI02 (%) 1.00 2.24 5.00 2.10 1.45 4.00 2.50 2.89 5.00 1.00 2.24 5.00 6.79 4.15 12.00 3.58 3.84 12.00 ! 

PEEP (cmH2O) 1.70 0.27 2.00 0.15 0.34 1.00 0.38 0.25 0.50 0.20 0.27 0.50 0.89 0.86 3.00 0.66 0.76 3.00 J 
MY (litres) 0.278 0.278 0.675 0.330 0.406 1.200 0.042 0.052 0.100 0.175 0.350 0.700 0.245 0.252 0.820 0.248 0.306 1.200 I 

VT(ml) 17.5 15.0 40.0 15.0 24.2 50.0 30.0 26.5 50.0 0.0 0.0 0.0 26.7 22.2 70.0 19.1 22.0 70.0 ! 

RR(rpm) 0.25 0.29 0.50 0.85 0.67 2.00 1.00 0.87 1.50 0.25 0.50 1.00 1.13 0.96 2.50 0.82 0.80 2.50 

TIN (%) 0.00 0.00 0.00 4.20 3.61 7.00 2.50 5.00 10.00 0.00 0.00 0.00 3.57 4.97 10.00 2.68 4.09 10.00 
--

Table 7.2: Mean absolute error I E I , standard error of estimate 0' lEI and maximum absolute error I E I for the prototype and modified advisors. Values have been calculated 

for each individual patient as well as across the complete data set. Numbers in italic indicate calculations made with anomalous anaesthetist decisions excluded - see text. 



The next sections describe the prototype closed-loop performance of the advisor for each 

ventilator control. Possible causes of any decision mismatch are discussed and the modifications 

made to the rules presented. The modified advisor closed-loop performance is then re-evaluated 

and the causes of any remaining inaccuracies are discussed. Finally the correlation between the 

advisor and anaesthetist decisions is assessed. 

The closed-loop behaviour of the prototype and modified advisor is shown in Figure 7.29 to 

Figure 7.33 (see pages 187 to 201). The Pao2, PaC02, arterial pH, PIP, FI02, PEEP, RR, VT, Mv 

and TIN responses are compared against those produced by the anaesthetist. Tables of the actual 

decision history values are given in Appendix D. Lists of the prototype and modified rules are 

given in Appendix E, together with plots showing how the shape of the decision space was 

modified by the changes made to the control rules. 

7.5.1 FI02 Advisor Performance Analysis 

Prototype Rule Closed-Loop Performance 

It was found that the F102 control rules repeatedly advised bigger changes than the anaesthetist, 

and accepted F102 levels lower than and higher than those tolerated by the anaesthetist. This 

was evident in the normal lung, acute asthmatic and head injury patients where the anaesthetist 

executed more caution when reducing FI02, whereas the advisor rapidly reduced the FI02 to its 

minimum of 30 % (see Figure 7.2ge, Figure 7.3le and Figure 7.32e). Also in the lobar 

pneumonia and ARDS patients the anaesthetist did not increase FI02 above 80 % despite low 

PaOz levels, whereas the advisor continued to make increases up to 90 % in the pneumonia 

patient and 100 % in the ARDS patient (see Figure 7.30e and Figure 7.33e). This explains the 

large overall decision errors observed (IE I = 11.05 %, (J =8.76 %, 1£1 = 30.0 %)1. A 

difference in prescribed FIOz of 30 % as indicated by I £ I , would be unacceptable. 

Rule Modifications 

However, these errors do not indicate poor Pa02 control. In fact, in every scenario the advisor 

maintained a PaOz closer to the normal level of 12 kPa than the clinician. The difference is that the 

clinician is not always attempting to maintain PaOz at this level. They will be constantly revising 

the Pa02 goal based upon the current state of the patient. Three rules-of-thumb were observed; 

1). A margin of safety should be maintained in the Paoz levels when reducing FI02. 

At Oz levels of 40 % or lower a PaOz of approximately 20 kPa was desired. At 60 

% FrOz the PaOz goal was lower at about 15 kPa, since higher FIOz levels should 

be avoided where possible. These safety margins can be lowered if the patient 

exhibits good stability over several hours, since the likelihood of sudden patient 

de-saturation is reduced. 

1 percentage refers to actual FIOz and not percentage error. 
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2). Fr02 should not be increased above 80 % due to the toxic effects of high O2 levels. 

Consequently a degree of hypoxia should be tolerated. In the pneumonia patient a 

Pa02 of 10 kPa was tolerable and in the ARDS patient this was slightly lower at 

between 8 and 9 kPa. The lower value in the ARDS patient reflects the fact that the 

lungs are already shocked and further damage may result from the use of high O2 

levels. 

3). FI02 is not normally reduced below 35 %, except when weaning is likely and the 

patient has produced good Pa02 for several hours . 

These new rules required the addition of 4 new Fr02 fuzzy classes at 35, 40, 60 and 80 % 

giving 9 fuzzy classes in all, see Figure 7.12. The linguistic classes very low (VLO), low (LO), 

medium-high (M_ffi) and very high (VID) are new, and the prototype class v:m was renamed as 

extremely high (Effi). The modified rule-map is shown in Figure 7. 1.1. 

FIOl 

MIN VLO LO MED MID ID VHI Em MAX 

VH 0 -5 -5 -10 -20 -20 .,30 -40 -50 
'!''"-

H 0 0 -5 -10 -15 -20 -25 -35 -35 

SH 0 ,I Ib '!' ' !I!' !S i'11 ,!, 
-10 0' II -10 ;1 1 

.. 16 -10 -20 

0 N 0 0 0 0 0 0 0 -5 -5 CIS 
~ 

SL +20 +20 +20 +20 + 15 +10 0 0 0 

L +40 +35 +20 +20 +20 +10 +5 0 0 

VL +70 +65 +50 +50 +40 +30 + 10 +10 0 

Key: D New consequents Modified consequents 

Figure 7.11: Refinements made to FI02 rule-map based upon closed-loop behaviour of the 
prototype rules. 
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Universe ofDiscource for FI02 (%) 

Figure 7.12: Modified fuzzy set definition for the Fr02 antecedent in the Fr02 advisor sub-system. 
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Modified Rule Closed-Loop Performance 

The FI02 advice for the normal lung patient now matched the anaesthetist's decision history in 

all but the last change (at 5 Yz hours) when the clinician reduced the FI02 from 35 to 30 % (see 

Figure 7.2ge). The anaesthetist did state that such a reduction was not entirely necessary and 

therefore this small difference can be ignored. The mean decision error was small (I E 1 = 1.00 

%, a =2.24 %), and the maximum decision error (I E 1 = 5.0 %) was well within safe limits. 

In the lobar pneumonia patient, the advisor performance improved and closely matched the 

anaesthetist's decisions (I E 1 = 2.10 %, a =1.45 %, 1 E 1 = 4.00 %). Unlike the prototype rules, 

the 80 % maximum F102 prescribed by the anaesthetist was not exceeded (see Figure 7.30e). 

Good decision matching was also observed in the acute asthmatic paticnt ( 1 E 1 = 2.50 %, (J 

=2.89 %, 1 E 1 = 5.00 %) and the head injury patient (I E 1 = 1.00 %, a =2.24 %, 1 E 1 = 5.00 

%), see Figure 7.31e and Figure 7.32e. 

The ARDS patient produced the worst advisor performance ( 1 E 1 = 6.78 %, a = 4.15 %, 1 E 1 = 

12.00 %), although it was considerably better than that produced by the prototype rules, with the 

advisor only marginally exceeded the 80 % FiOz limit. However, the anaesthetist was more 

reluctant to increase F102 beyond 70 % and preferred to reduce it again sooner than the advisor. 

The anaesthetist appears to be waiting to see if the patient condition improves before increasing 

FI02, and the reduction was made as soon as the Pa02 had increased to approximately 10 kPa. 

This reduction in Fr02 cannot be incorporated into the rules without conflicting with the lobar 

pneumonia patient decisions, since at 10 kPa the anaesthetist was still suggesting FI02 

increases. These differences in Fr02 decisions appear to be specific to the ARDS patient and 

would require unique rules to give the decision separation required. 

The overall FI02 decision errors (I E 1 = 3.58 %, (J = 3.84 %, 1 E 1 = 12.00 %) showed an 

improvement of approximately 50 % over the prototype rules. 

Comparison between the prototype and modified FI02 decision space plots (see Figure E.l in 

Appendix E), clearly demonstrates that the rule modification process has altered the fuzzy 

control algorithm, adding small regions of non-linearity. It is also reflected in the increase in the 

number of rules required to describe the rule-map, from 18 to 34. Whether this is significant in 

therapeutic terms is unclear. 

Correlation Analysis 

The correlation between the anaesthetist and advisors' decisions for the prototype and modified 

FI02 rules is shown in the scatter diagrams of Figure 7.13. The observation data used to 

stimulate the advisor rules was the same as that presented to the anaesthetist during their 

simulated patient ventilation. As already indicated in the closed-loop performance analysis, the 

modified FI02 control rules gave improved decision matching (r = 0.891) when compared with 

the prototype rules (r = 0.754). This represents a significant improvement. 
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Figure 7.13: Scatter diagrams of the advisor's FI02 changes plotted against the anaesthetist's 
changes for (a) the prototype rules and (b) the modified prototype rules. 

7.5.2 PEEP Advisor Performance Analysis 

Prototype Rule Closed-Loop Performance 

The prototype PEEP control rules correctly maintained zero PEEP in the acute asthmatic and head 

injury patients since its application was contraindicated. In the acute asthmatic this was because of 

high PIP and in the head injury patient it was to avoid raising the intra-cranial pressure. However, the 

advisor was avoiding increases in PEEP because the oxygenation was good and the FI02 1ow, and not 

for the reasons given above. This was why in the normal lung patient the PEEP was rapidly turned 

off and the advice matching was poor (I E 1 = 2.10 cnll-hO, cr = 0.55 cmH20, 1 E l = 3.00 cmH20). 

The lobar pneumonia patient gave good decision matching ( 1 E 1 = 0.50 cmH20, cr = 0.62 

cmH20, 1 E 1 = 2.00 cmH20). However, the anaesthetist reduced the PEEP sooner than the 

advisor, basing their decision upon an observed F102 of 60 % (moderately high) and a Pa02 of 

20 kPa (a good margin of safety above normal levels), see Figure 7.30a and Figure 7.30f. The 

ARDS patient gave the worst decision matching ( 1 E 1 = 2.29 cmH20, cr = 1.36 cmHzO, 1 E I = 

4.00 cmH20). This was caused predominantly by the poor FI02 advice and hence different 

observation data upon which PEEP decisions were based. 
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Rule Modifications 

Only limited changes were made to the PEEP control rules, see Figure 7.14, since indications 

were that the advisor sub-system needed a complete re-think of its structure. The suitability of 

PEEP appears to be very patient specific as does the length of time it is maintained. As 

mentioned in Section 6.6.2, PEEP is also contraindicated by low BPSYs. This therefore needs to 

be included as an antecedent. None of these factors were implemented due to the lack of 

available time and are considerations for future work (see Chapter 9). 

FIOz 
MIN MED HI VHl MAX 

VH 0 0 0 0 0 

H 0 0 0 0 0 
L! I: , 

N SH 0 rl"2 0 0 0 
0 

N 0 +2 0 +4 +4 e= 
~ 

SL 0 +4 +4 +4 +4 

L +4 +4 +4 +4 +8 

VL +4 +4 +4 +8 +8 

(a) PEEP = OFF (0 cmH20) 

FIOz 

MIN MED HI VHI MAX 
I 

VH -4 -2 -2 0 0 
H ,.4 -2 l'". -2 , 0 0 

N SH "lI' i "'i:;!il! 'ill'_ I 0 0 0 0 
0 

N -2 0 0 0 0 e= 
~ 

SL 0 0 0 0 +4 

L 0 +2 liII :+4 if) , +6 11 

VL +2 +2 iltH) ' I '" !1!" ~jll'i'Ii' 
I +6 I I"':'~ '''' ' -'!L ' 

(b) PEEP = LOW (4 cmH20) 

Figure 7.14: Refinements made to PEEP rule-maps based upon closed-loop behaviour of the 
prototype rules . Shaded regions indicate modified regions of the rule-map , 

Modified Rule Closed-Loop Performance 

The acute asthmatic and head injury patients now incorrectly included a small increase in PEEP 

of 0.5 cmH20 , see Figure 7.3lf and Figure 7.32f. This is not significant, but does refl ect a 

reduction in performance from that of the prototype rules . This was caused by the modifications 

made to the PEEP rules at Pa02 = N/sH, FI02 = MED and PEEP = OFF (see Figure 7.14a), in an 

attempt to correct the excessive PEEP reductions observed in the normal lung patient. It is clear 

that the maintenance of PEEP for post-operative patients cannot be determined solely from 

observations ofPao2, FI02 and PEEP. Therefore the modifications made will need to be reversed 

and a new observation variable defined determining whether PEEP is advantageous or not. 
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The lobar pneumonia patient now gave better matching than with the prototype rules ( 1 E 1 = 0.15 

cmH20, cr = 0.34 cmH20, 1 E 1 = 1.00 cmH20) as did the ARDS patient ( 1 E 1 = 0.89 cmH20, cr = 
0.86 cmH20, 1 E 1 = 3.00 cmH20), although this was still the worst of the five patients assessed, 

see Figure 7.30f and Figure 7.33f. These differences may well result from the errors generated in 

the FI02 control, since the advisor was being presented with slightly different observation data than 

the anaesthetist. Inspection of decision errors generated when using the same observation data as 

the anaesthetist showed that this was not the case, and the decision matching was worse in the 

ARDS patient (I E 1 = l.03 cmH20, cr = 0.75 cmH20, 1 E 1 = 4.00 cmH20). 

Overall the modified PEEP rules gave only slight improvement (I E 1 = 0.66 cmH20, cr = 0.76 

cmH20, 1 E 1 = 3.00 cmH20) over the prototype rules. 

Correlation Analysis 

The correlation between the advised and anaesthetist's PEEP changes was only average, see Figure 

7.15. There was some improvement from the prototype (r = 0.696) to the modified control rules (r 

= 0.781) but the modified rules still contained occasional large errors (I EI = 4.0 cmH20). This 

was to be expected since as already stated the PEEP rules need significant re-structuring. 
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Figure 7.15: Scatter diagrams of the advisor's PEEP changes plotted against the anaesthetist's 
changes for (a) the prototype rules and (b) the modified prototype rules. 
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7.5.3 Mv Advisor Performance Analysis 

Prototype Rule Closed-Loop Performance 

The normal lung and acute asthmatic patients exhibited good PaC~ maintenance (see Figure 

7.29b and Figure 7.31b) via Mv changes, and the decision matching was good (I E 1 = 0.165 

litres, C1 = 0.173 litres, 1 E 1 = O. 400 ljtres~ and 1 E 1 = 0.128 litres, C1 = 0.063 litres, 1 E 1 = 0.185 

litres respectively). 

The head injury patient regularly gave My decisions lower than that of the anaesthetist (see 

Figure 7.32i), resulting in larger decision differences (I E 1 = 0.620 litres, C1 = 0.068 litres, 1 E 1 

= 0.705 litres). This was caused by smaller My increases, triggered by the presence of mild 

alkalosis. The rules responsible for this behaviour were incorrect, since the normalisation of 

PaC02 is made via adjustments to the ventilation with the causes of any underlying acidosis or 

alkalosis treated separately. The correction of acute metabolic imbalance is sometimes 

necessary but is made through the administration of intravenous therapy and not through 

changes to the ventilation. This is contrary to the initial understanding outlined in Section 6.7.2 

The moderation of My changes observed above was repeated in the lobar pneumonia patient. In 

this case the underlying metabolic acidosis caused the My reductions to be smaller than those 

made by the anaesthetist (I E 1 = 0.388 litres, C1 = 0.365 litres, 1 E 1 = l.125 litres). The rules 

were attempting to balance pH and Paco2 around normal values, resulting in normal pH with 

mild hypocapnia. This was clearly not the approach taken by the anaesthetist. They attempted to 

normalise PaC02 using changes in ventilation and letting the metabolic acidosis reduce as the 

infection subsided (treated via antibiotics). 

My decision matching in the ARDS patient was extremely poor (I E 1 = 1.643 litres, C1 = 1.217 

litres, 1 E 1 = 3.740 litres) and was triggered by a combination of factors. The advisor continued 

to reduce My down to below 6 litres in response to the dangerously high levels of PIP being 

generated, see Figure 7.33i and Figure 7.33d. The anaesthetist was achieving much better PIP 

levels and therefore could tolerate higher My settings. 

The elevated PIP produced by the closed-loop behaviour of the advisor was caused by (i) the 

absence of TIN control rules and (ii) the reluctance of the VI -RR rules to reduce VI below 

500 ml (or eVINORM of -30 %). The anaesthetist used a TIN of60 % and VI of 425 ml to keep 

PIP as low as possible and then tolerated permissive hypercapnia. 

Rule Modifications 

There were four major changes made to the My control rules; 

1). The removal of epH as an observation variable since the normalisation of PaC~ appears 

to be the primary maintenance consideration when making changes to ventilation. 

2). The replacement of ePIP, with direct observations of PIP, since the anaesthetist was 

shown to alter the PIP goal as the patient condition changed. The specification of a 

unique PIP alarm led to poor PaCo2 and PIP maintenance. The new fuzzy set 

definition for PIP is shown in Figure 7.16. 

174 



3). The addition of eVrNORM as an antecedent (Figure 7.17), allowing permissive 

hypercapnia in patients that have low Vr caused by high PIP. This was needed 

because the VT-RR rules would not reduce VT below -45 % of VTNORM and 

therefore any prescribed increase to Mv would cause an inappropriate increase in 

RR. Such behaviour was prevented by reducing the Mv consequents (or setting 

them to zero) when the following observation criteria were met (i) PIP was greater 

than 40 cmH20, (ii) the patient was hypercapnic and (iii) eVrNORM was bclow -35 

%. By defining the peak of eVTNORM = OKAY to be -15 % the use of permissive 

hypercapnia is restricted to those patients with poor respiratory mechanics (and 

consequently high PIP), since only these patients will normally have Vr this low. 

4). The inclusion of three new fuzzy sets at -15 0/0, +15 % and +30 % in the ePaC02 

universe, as well as redefining the peak values of the +50 % and + I 00 % to be +60 

% and +90 % respectively, see Figure 7.18. The set names have been altered to 

accommodate these changes. The new sets NS and PS (±I5 %) were included to 

improve control near to the PaC02 set point. These changes were necessary to 

better describe the Mv decisions made. 

The Mv modifications were made at the same time as the Vr-RR rules and after the inclusion of 

the simple TIN controller (see Section 7.5.5). The consequents were then handcrafted to give the 

best apparent decision matching across the virtual patient scenarios, see Figure 7.19. 
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Figure 7.16: New fuzzy set definition for PIP, replacing ePIP. 
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Figure 7 .18: Modified fuzzy set definition for ePaC02. 
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Figure 7.19: New rule maps for the modified Mvadvisor. Shade regions indicate the changes 
required, to facilitate permissive hypercapnia when Vr is already low. 

Modified Rule Closed-Loop Performance 

The greatest improvement was made in the ARDS patient ( I E 1 = 0.245 litres, 0' = 0.252 Jitres, 1 E 1 = 
0.820 Jitres), with a perfonnance now better than that observed in the pneumonia patient. The pneumonia 

patient showed a slight improvement in Mv decision matching (I E 1 = 0.330 litres, 0' = 0.406 litres, 

1 E 1 = 1.20 litres) with excellent matching ofPacOz ( I E 1 = 0.08 kPa, 0' = 0.08 kPa, 1 E 1 = 0.27 kPa). 
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The head injury patient no longer underestimated the required My and gave good decision matching 

(I E 1 = 0.175 litres, 0' = 0.350 litres, 1 E 1 = 0.70 litres). However, the advisor did overestimate the 

initial My change with the anaesthetist arriving closer to the PaC~ goal of 4.5 kPa, 

see Figure 7.32b. This suggests that the consequents around ePaC~ = NS and NM might need 

making a little less negative. 

The already good decision matching in the asthmatic patient was improved (I E 1 = 0.042 litres, 

0' = 0.052Iitres, lEI = 0.10 litres), but the normal lung patient gave marginally worse matching 

(I E 1 = 0.278 litres, 0' = 0.278 litres, lEI = 0.675 litres). However, inspections of the closed

loop PaC02 behaviour (see Figure 7.29b) shows less overshoot and undershoot of the PaC02 goal 

than produced by the anaesthetist. 

Correlation Analysis 

The prototype rules only gave moderate My decision correlation (r = 0.710). This was due 

mainly to the poor ARDS decision matching. The modified My rules gave significantly bcttcr 

correlation (r = 0.937), with the best performance of all the ventilator controls, see Figure 7.20. 
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7.5.4 RR-VT Advisor Performance Analysis 

Prototype Rule Closed-Loop Performance 

The dependence of RR and VT upon the advised Mv means that poor decision in the later will be 

reflected in the VT and/or RR decisions. Consequently in the ARDS patient the large decision 

errors (VT: I E I = 126.7 ml, (J = 59.9 ml, I E I = 250.0 ml; RR: I E I = 6.50 rpm, (J = 3.39 rpm, 

I E I = 11.0 rpm) are to be expected, since the Mv errors were large (see Figure 7.33g and Figure 

7.33h). The situation is made worse by the fact that the VT-RR rules only allow a maximum 

reduction in VT of -30 %, whereas the anaesthetist reduces it by nearly 45 % ofVTNORM. 

In the normal lung patient the Mv decision matching was good and this is reflected in the small 

VT and RR decision errors (VT: I E I = 20.0 ml, (J = 2l.6 ml, I it I = 50.0 ml; RR: I E I = 0.13 

rpm, (J = 0.25 rpm, I E I = 0.50 rpm). There was a tendency for the advisor to increase VT in 

preference to RR, even though RR was on the low side (8 to 8.5 rpm). This preferential increase 

in VT was repeated in the asthmatic, head injury and pneumonia patients. The anaesthetist was 

more inclined to adjust RR in the range 8-14 rpm than to make changes to VT. 

Rule Modifications 

The following changes were made to the VT-RR rules giving the VT-RR rule maps of Figure 7.22; 

1). The fuzzy class PVB (+60 %) was dropped from the eVTNORM universe, since tidal 

volumes this high are seldom required. An eVTNORM of +30 % gives a VT of 975 

ml on a 75-kg patient, which should be more than adequate. 

2). The inclusion of eVTNORM = NB (-45 %), because a greater reduction in VT was required 

than provided by the prototype rules. Also, inclusion of eVTNORM = NS (+ 15 %) to give 

better control near to normal VT. These modifications are shown in Figure 7.21. 

3). The calculation of VTNORM was restricted to a maximum of 750 ml, since in the 

head injury patient VT was incorrectly increased towards a VTNORM of 850 ml. 

What constitutes a normal VT appears to change from the 10 ml/kg rule of thumb 

as the patient size and weight increases. 

4). The fuzzy variable ePIP was replaced by PIP as in the Mv rules. The same 

membership functions were used as given in Figure 7.16. 

5). A broadening of the region that represents normal VT and RR settings when no 

change is required. This is a region defined by RR = 8 to 14 rpm, eVTNORM = -15 

to 0 % and PIP is LOW (20 cmH20). This is better explained by comparing the 

decision behaviour of the prototype and modified VT-RR rules, see Figure 7.23. It 

can be seen that the decision behaviour is much more relaxed than the optimal VT

RR settings proposed by the prototype rules. However, they do still roughly follow 

the ideal VT -RR relationship. 

6). A greater reduction in VT with increased PIP. This helps to improve the PIP 

maintenance by using smaller volumes to inflate the lungs. 
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Figure 7.2 1: Modified fuzzy set definition for eVTNORM in VT-RR advisor subsystem. 
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Figure 7.22: Modified rule maps for the VI-RR advisor. 

Modified Rule Closed-Loop Performance 

The normal lung patient showed a small improvement in VI decision matching (I E 1 = 17.5 ml, 

cr = 15 .0 ml, 1 E 1 = 40.0 ml), with the tendency to increase VI later in the simulation removed. 

The RR matching was slightly worse than with the prototype rules (I E 1 = 0.25 rpm, cr = 0.29 

rpm, 1 E 1 = 0.50 rpm) but the error was still only small. 

The pneumonia patient had improved VT matching ( I E 1 = 15.0 ml, cr = 24.2 ml, 1 E 1 = 50.0 

ml) although the advisor did not reduce VI at 12 Yz hours as the anaesthetist did, 

see Figure 7.30g. This decision by the anaesthetist appears unnecessary since the PIP had 

already reduced to 20 cmH20 and the RR was almost normal (16 rpm). The advisor' s decisions 

can therefore be considered safe. The RR matching was only slightly worse (I E 1 = 0.85 rpm, cr 

= 0.67 rpm, 1 E 1 = 2.00 rpm) and the differences were still small. 

The asthmatic patient gave significantly improved decision matching in both VI and RR 

(VT: 1 E 1 = 30.0 ml, cr = 26.5 ml, 1 E 1 = 50.0 ml; RR: 1 E 1 = 1.00 rpm, cr = 0.87 rpm, 1 E 1 = 
1.50 rpm) although the anaesthetist preferred to opt for slightly lower VI (by about 50 ml) and 

higher RR (by about 2 rpm). However, the PaC~ and PIP maintenance achieved was very good 

(see Figure 7.3 1b and Figure 7.31d) . 
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Figure 7.23: The decision behaviour of (a) the modified and (b) the prototype VT-RR rules 
when PIP is low (i.e. not affecting VT changes). The graphs were generated by applying every 
combination of eVTNORM in the range -45 to +45 % (in 2.5 % steps) and RR observations in the 
range 6 to 24 rpm (in 1 rpm steps) to the VT-RR advisor subsystem. The advised VT change was 
then used to calculate the new RR and VT (expressed as eVTNO~ values. 
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The head injury patient exhibited exact VI matching and excellent RR matching (I E I = 0.25 

rpm, cr = 0.50 rpm, I E I = 1.00 rpm). The ARDS patient exhibited greatly improved VI and RR 

matching (VT: I E I = 26.7 ml, cr = 22.2 ml, I E I = 70.0 ml; RR: I E I = 1.13 rpm, a = 0.96 

rpm, I E I = 2.50 rpm), although the anaesthetist was more cautious than the advisor when 

increasing VI and reducing RR in the later stages of the closed-loop simulation (see Figure 

7.33g and Figure 7.33h). 

Correlation Analysis 

Both the VI and RR decisions showed significant improvements in correlation from the 

prototype to the modified rules. For VI this was an improvement from r = 0.542 to r= 0.884, 

and for RR, an improvement from r = 0.688 to r= 0.889, see Figure 7.24. 

7.5.5 TIN Advisor Performance Analysis 

As mentioned in the assessment of the Mv advisor performance some of the differences in Mv 

decisions were attributable to the lack of control rules for TIN. The anaesthetist would increase 

the I:E ratio (by increasing TIN) in patients with high PIP in an attempt to lower airway pressure 

and reduce the risk of barotrauma. A very simple set of rules was constructed to emulate this 

aspect of PIP maintenance, see Figure 7.27. The antecedents for this advisor were PIP (see 

Figure 7.26) and the current level of TIN (see Figure 7.25). 
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Figure 7.25: Prototype fuzzy set definition for TIN in the TIN controller. 
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Figure 7.26: Prototype fuzzy set definition for PIP in the TIN controller. 
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Tin 

NRM MED HI MAX 

VHI 20 10 10 0 
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HI 10 0 0 -10 
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OK 0 -10 -10 -20 

Figure 7.27: Prototype rule map for the TIN advisor subsystem. 

The advice generated was quanti sed at 10 % intervals, producing a winner-takes-all 

defuzzification strategy, avoiding intermediate settings. 

Modified Rules Closed-Loop Performance 

TIN was correctly maintained at 33 % in the normal lung and head injury patients, giving perfect 

decision matching. In the lobar pneumonia patient the advisor incorrectly prescribed an increase in 

TIN to 40 %, whereas the anaesthetist maintained a TIN of 33 %. This explains the large decision 

errors calculated (I E 1 = 4.20 %, (J = 3.61 %, 1 E 1 = 7.00 %)2. It is a simple matter to resolve this 

by changing the consequent of the rule 'If PIP =HI and TIN = NRM'fromPS (10 %) to Z (0 %). 

The asthmatic patient saw a correct increase in TIN to 50 % at the start of the simulation, but 

reduced it back to 40 % at 8.5 hours, whereas the anaesthetist maintained it at 50%. This may be 

an oversight on the part of the anaesthetist since the PIP has reduced below 20 cmH20. Similarly 

with the ARDS patient the advisor matched the TIN increases but made reductions sooner than 

the anaesthetist. This can be corrected by increasing the consequent of the rule 

'lfPIP = HI and TIN =M4X' from NS (-10 %) to Z (0 %). 
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Figure 7.28: Scatter diagram of the advisor's TIN changes plotted against the anaesthetist's 
changes for the preliminary TIN control rules. 

2 percentage refers to actual TIN and not percentage error. 
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Correlation Analysis 

The correlation between the advisor and anaesthetist's TIN changes was not striking (r = 0.653), 

see Figure 7.28. However, the correlation test is not entirely suitable, since a large proportion of 

the changes are zero which skews the results produced by the correlation coefficient formula. 

7.6 Summary & Conclusions 

Inadequacies in the patient model were identified and the improvements required were 

successfully implemented. The resulting model was then used to construct virtual patient 

scenarios that exhibited physiological behaviour similar to that observed in real patients. It was 

possible to model a wide range of physiological disturbances using event profiling to control 

model parameters such as shunt, airway resistance, etc. 

Five patient scenarios were constructed (via discussion with an anaesthetist) representing 

patients with normal lungs, lobar pneumonia, acute asthma, head injury and ARDS. These 

facilitated simulated closed-loop validation of the advisor, and comparison with the 

anaesthetist's decision behaviour. This enabled rapid identification of possible rule errors and 

the subsequent assessment of the effectiveness of any modifications made. The virtual patient 

scenarios had the advantage over real clinical data of being rcpeatable and free from 

measurement errors. The true flexibility of using a model to test the advisor is that even 

measurement errors can be incorporated if so desired. The behaviour of the virtual patients to 

changes in the ventilation regime was deemed realistic by the anaesthetist. 

Overall, the modified advisor exhibited significant improvement in decision matching and in 

closed-loop control, when compared with the prototype advisor. This was particularly evident 

for the FI02, MV, VT and RR sub-systems. 

The F102 rules only required modification to the size of some of the rule-consequents, in order 

to match the more conservative approach to F102 changes made by the anaesthetist. F102 

decision matching using the modified advisor was good (r = 0.891), with the only noticeable 

exception occurring in the ARDS patient. In this scenario the anaesthetist was reluctant to 

increase F102 above 70 % due to the increased risk of O2 toxicity. Such behaviour could not be 

incorporated into the rules without compromising the decisions required by the other scenarios. 

Therefore the controller's behaviour needs to be modified according to the type of pathology or 

trauma presented. 

The Mv rules were modified quite radically, with the removal of pH as an observation variable 

(although it will be seen in the next chapter that this needs to be reversed). In addition, PIP no 

longer required an upper alarm threshold and was instead handled by the advisor directly as PIP 

rather than ePIP (i.e. distance from alarm). This reflected the trade-off by the anaesthetist 

between acceptable PIP and desired PacQz. The final MV modification was the addition of 

e VT NORM as a rule-antecedent. This was included to prevent Mv increases, in patients requiring 

permissive hypercapnia due to high PIP, and consequently with low prescribed VT. 

The Mv rules were shown to give better Paco2 maintenance than the anaesthetist in the 

pneumonia and normal lung patients, and overall the level of decision matching was excellent 
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(r= 0.937). The improvements in the Mv performance were also influenced by changes made to 

the RR-VT rules and the inclusion of TIN control rules. 

The TIN advisor helped to reduce the problems associated with high PIP and its affect on the Mv 

and RR-VT rules. However, this was only a crude first attempt to define the TIN rules and gave 

only moderate decision matching (r = 0.653). This was due predominantly to the advisor's 

tendency to increase TIN sooner than the anaesthetist, and keep it at an elevated level for longer. 

Modifications required to the RR-VT rules included the limiting of VTNORM to a maximum of 

750 ml to prevent excessive VT and the addition of lower acceptable VT. The representation of 

PIP was also changed as per the Mv rules. Overall the changes made to the rule-consequents and 

set membership produced a broadening in the range of RR and VT values that were deemed 

normal, and therefore not requiring adjustment. The decision matching was good for both RR 

and VT (r= 0.889 and r = 0.884 respectively). 

The PEEP control rules behaved less convincingly, with only a moderate level of decision 

matching (r= 0.781). The advisor did not contain knowledge pertaining to the prophylactic use 

of PEEP in post-operative patients with healthy lungs, and therefore when presented with low 

F102 and normal Pa02 did not prescribe PEEP (or reduced any currently applied). Attempts to 

modify the rule-consequents to prevent this only resulted in the inappropriate application of 

PEEP in the asthmatic and head injury patients. It will therefore be necessary to incorporate rules 

that determine the suitability of PEEP and modify any changes accordingly. 

The closed-loop behaviour of the modified advisor is promising. However, the patients used to 

test it only represent a sub-set of the possible scenarios that can be encountered and 

consequently only a small percentage of the rules were tested. This has important safety 

implications and is best resolved by the construction of patient scenarios, which further explore 

the advisor's behaviour especially at the physiological extremes. 

Whilst simulated closed-loop validation is a good methodology for rule testing, and provides 

rapid insights into patient-advisor interaction, the advisor must also demonstrate good decision 

matching using real patient data. The validation of the advisor using clinical data is presented in 

the next chapter. 
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Figure 7.29: Comparison of anaesthetist, prototype advisor and refined advisor decision 
histories for the Normal Lung patient scenario. Patient responses are shown for (a) Pa02, 
(b) PaC~, (c) arterial pH and (c) PIP. Ventilator changes are shown for (e) Fr02, (f) PEEP, 
(g) VT, (h) RR. (i) Mvand (j) TIN. 
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Figure 7.31: Comparison of anaesthetist, prototype advisor and refined advisor decision 
histories for the Acute Asthmatic patient scenario. Patient responses are shown for (a) Pa02, 
(b) PaC02, (c) arterial pH and (c) PIP. Ventilator changes are shown for (e) FI02, (t) PEEP, 
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Figure 7.32: Comparison of anaesthetist, prototype advisor and refined advisor decision 
histories for the Head Injury patient scenario. Patient responses are shown for (a) Pa02, 
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Chapter 8: Clinical Validation of Advisor 

8.1 Introduction 

The simulated closed-loop behaviour of the modified advisor was shown to give improved 

decision matching over the prototype rules, and in the majority of cases gave good patient 

maintenance. However, this was only based upon a sub-set of the possible patient scenarios. It 

remains to be seen whether the advisor can match decisions made by an anaesthetist using real 

patient data. 

This chapter describes the clinical validation of the advisor using data collected during routine 

care in ICU. The validation procedure is presented first (see Section 8.2), followed by a 

synopsis of the data collected (see Section 8.3). This data was then applied to the advisor and 

the error between the anaesthetists' decisions and the advised decisions was analysed 

quantitatively using statistical techniques (see Section 8.4) and qualitatively using linguistic 

scoring (see Section 8.5). The reasons for any decision mismatch observed are then discussed 

(see Section 8.6). 

8.2 Procedure 

Ideally clinical validation would be done in an alongside advisory capaeity, with the anaesthetist 

explaining the reasons for each and every change they make, and then commenting on the advice 

given by FA VeM. However such an exercise would be very time consuming and perhaps not 

justifiable with the advisor still in its infancy. 

Instead data were collected over a 3-week period at the Hull Royal Infirmary ICU, with only 

patients on volume control (VC) or pressure regulated volume control (PRVC) being recorded. 

The attending anaesthetists were asked to explain their reasons for the care given and specify 

patient goals. All available details were recorded for the suitable patients, including admission 

details, therapeutic objectives, blood-gases, ventilator changes, drugs administered, 

investigations undertaken and any care events (such as physiotherapy, suctioning, turning, etc). 

Whilst this amount of information was not required by the advisor, it was felt that it may prove 

useful in identifying the causes of any decision mismatch observed. 

The ventilator/patient observations and PaCo2 goal required by the advisor were extracted from 

this data, and the changes advised were then compared with those made by the anaesthetist, see 

Appendix F. The decision differences were assessed using statistical and qualitative analysis. 

In order to provide a yardstick against which the clinical performance could be measured, the 

statistical and qualitative analysis was also performed on the closed-loop advisor responses, see 

Figure 8.1. These were the ventilator changes prescribed by the advisor in response to the 

observations generated by the anaesthetist during their simulated maintenance of the virtual 

patients (this is the same data used in the correlation analysis of the advisor's closed-loop 

performance, see Section 7.5). The possible causes of decision mismatch using the clinical data 

are then discussed. 
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Figure 8.1: Block diagram showing the comparison made between the decision performance of 
the advisor based on data collected in ICU, and using the data generated by the anaesthetist 
when performing simulated closed-loop of the virtual patients (yardstick performance). Ideally 
the clinical performance should be similar to the simulated performance. 

8.3 Synopsis of Collected Data 

Eleven patients were recorded in total. Ten of these were during the 3-week period at HRI and the 

eleventh was recorded at Castle Hill Hospital ICU. A brief description of each patient follows, 

with an indication of the number of usable blood-gas observation and ventilator changes made. 

Patient 1: A 58-year-old, male smoker with known COPD (chronic obstructive pulmonary 

disease) and emphysema electively ventilated following an aorto bi-femoral graft. He required 

warm-up and fluid support and was placed on PRVC mode of ventilation. This constituted a 

fairly straightforward ventilation problem with no major lung complications. However, they 

were haemodynamically challenged. The patient was eventually weaned from the ventilator 

after a brief spell on pressure support (PS) mode of ventilation. 6 sets of observation data; 6 

ventilator changes (2 FIO]. 2 Mv, 2 VT) 

Patient 2: A 27-year-old male admitted to ICU following a motorcycle accident. He had sustained 

multiple head, chest and limb injuries and was intubated at the scene. The head had massive 

contusions (swelling) and the pupils were fixed. The chest was bleeding with broken ribs and a 

pneumothorax (for which 2 chest drains were inserted). He was placed on VC mode of ventilation. 

The head injury and chest damage were the primary considerations, together with oxygen 

management. The head injury required good ventilation in order to reduce PaC02 and help 

minimise inter-cranial pressure. However the presence of the pneumothorax complicated matters. 

The performance of the lung fluctuated depending upon the effectiveness of the drain and also the 
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amount of air that was being directed into usable lung space. The use of too much ventilation just 

blew the pneumothorax open. The lungs were also filling due to internal bleeding. Consequently 

the shunt fraction was increasing, requiring constant suctioning. After suctioning the lung function 

would improve allowing the FI02 to be maintained or reduced as appropriate. Data collection was 

stopped when the patient was transferred onto high-frequency jet ventilation (HFJV). 39 sets of 

observation data; 48 ventilator changes (18 FI02, 3 PEEP, 8 Mv, 2 RR, 7 VT) 

Patient 3: A 57-year-old female with COPD, admitted with ventilatory failure after a chest 

infection. She had also incurred a superior lateral myocardial infarction. Her blood pressure was 

very low and she had an elevated heart rate (120 b.p.m.). She had probably had a central vascular 

stroke. Both the heart and lungs were deficient. The lungs were stiff due to COPD and therefore 

provide a challenge in terms of PIP. She was ventilated using PRVC mode of ventilation. 

Treatment was eventually withdrawn and the patient died. 25 sets of observation data; 12 

ventilator changes (5 FI02, 1 PEEP, 2 Mv, 2 RR, 2 VT) 

Patient 4: A 28-year-old male admitted following a pedestrian road traffic accident, with possible 

drugs/drink involvement. He had sustained multiple head injuries and a chest drain was inserted 

since there was a high risk of pneumothorax. He had no hyperventilation response, and a fixed 

dilated pupil response, the prognosis was poor. He was ventilated using VC mode of ventilation. 

Treatment was eventually withdrawn and the patient died. 13 sets of observation data; 13 

ventilator changes (3 FI02, 4 Mv, 3 RR, 3 VT) 

Patient 5: A 74-year-old female with post-ventricular failure, having arrested at home. Her lung 

condition was good, and she was ventilated using VC mode of ventilation. The patient's 

progress was poor and she became acutely acidotic with Sa02 below 95 %. The relatives agreed 

to withdraw treatment and the patient died. 12 sets of observation data; 13 ventilator changes (4 

FI02, 1 PEEP, 2 MV, 2 RR, 4 VT) 

Patient 6: A 71-year-old female with sepsis in the lung or abdominal region, occurring after 

surgery. The patient was beginning to show evidence of ARDS, with general stiffening of the 

lungs as exhibited by elevated PIP levels. Patient was initially ventilated using VC, which was 

later changed to PRVC. She made steady improvement and were weaned after 3-days. 12 sets of 

observation data; 14 ventilator changes (8 FI02, 3 Mv, 3 RR) 

Patient 7: A 76-year-old male with complications, following hindquarter amputation. This 

amputation was required, after surgery to remove an aneurysm resulted in vascular failure. The 

patient had become slightly sceptic with bilateral chest consolidation. They were ventilated using 

PRVC mode of ventilation. His condition became progressively worse with increased shunt and 

reduced Pa02. The patient died after 10-days of treatment. However only the first two days were 

recorded. 8 sets of observation data; 13 ventilator changes (4 FI02, 2 PEEP, 2 Mv, 2 RR, 1 VT) 

Patient 8: A 71-year-old female requiring ventilation after an operation to repair a perforated 

bowel. Only one ventilator change was usable since the patient soon began triggering breaths 

for themselves. The patient was eventually weaned from ventilator. 1 set of observation data;1 

ventilator change (1 FIOJ.J 
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Patient 9: A 59-year-old male being ventilated post-operatively, following a right carotid 

endarterectomy. Patient had a mild stroke during surgery and periods of bradycardia « 40 

b.p.m). They had a myocardial infarction 3-years ago and a history of hypertension. His lungs 

were healthy and he was ventilated initially using VC mode of ventilation then switched to PS 

(pressure support). The patient was weaned after over night observation. 3 sets of observation 

data; 2 ventilator changes (2 FIOJoJ 

Patient 10: A 48-year-old female heavy smoker with hypertension, admitted after arrest at 

home. Lungs stiff requiring PRVC mode of ventilation. Cardio function was initially unstable 

and the patient arrested at the first attempt to wean. Patient successfully weaned after cardiac 

function stabilised. 5 sets of observation data; 3 ventilator changes (1 FI02, 1 Mv, 1 VT) 

Patient 11: A previously healthy 75-year-old male admitted from theatre, following an elective 

aortic aneurysm repair. Initially ventilated using VC, then switched to PC (pressure control). 

Patient was mildly acidotic, with moderate lung stiffness. 2 sets of observation data; 4 

ventilator changes (2 Mv, 2 RR) 

8.4 Statistical Performance Analysis 

The mean error (E ), standard error (a lEI)' mean absolute error (I E I), maximum error (I E I ) 
and correlation coefficient (r) between the changes made by the anaesthetist and those proposed 

by the advisor, were calculated for each ventilator control. The results of this analysis are shown 

in Table 8.1, and was repeated using the simulated closed-loop data, to provide a measure against 

which the clinical performance could be compared, see Table 8.2. A value for the TIN correlation 

coefficient using the clinical data is not given since no changes were made by the anaesthetist, 

causing the sum of the squared deviations to be zero and hence the result of the correlation 

formula to be 00. It should also be noted that in 25 cases the TIN was not recorded and therefore 

no TIN advice could be generated in these instances. 

It is clear from this analysis that the advisor's ability to match the anaesthetist's decisions was 

measurably worse than observed using the closed-loop data. This is not unexpected since the 

virtual patients are well behaved and not subject to the measurement errors that occur in the real 

ICU setting. 

The best performance was observed in the FI02 decisions, with a correlation of r = 0.751. 

However, I E I was almost twice that observed using the closed-loop data and I E I of 21 % was 

unacceptably large. 

In addition to the increased absolute mean and standard deviation of the errors, there was also a 

bias observed in the VT and RR decisions. The advisor was tending to prescribe lower VT and 

higher RR than the anaesthetist did. This is confirmed if we compare the frequency distribution 

of the decision errors produced using the clinical and closed-loop data, see Figure 8.2. In some 

cases this was caused by therapeutic considerations outside of the advisor's knowledge. In 

others it appears to be simply a question of different treatment styles, see Section 8.6. 
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Control -
lEI lEI E (jff r 

F10l (%) -0.75 6.37 4.37 21.00 0.751 

PEEP (cmH1O) -0.40 l.93 l.44 7.00 0.176 

Mv (11m in) -0.23 1.58 1.13 5.40 0.430 

RR(rpm) 1.04 1.82 1.70 6.00 0.276 

VT (ml) -77.0 69.9 85.9 270.0 0.258 

TIN (%) 4.72 4.07 4.72 15.00 -
Table 8.1: Statistical analysis of decision errors between actual ventilator changes and those 
proposed by the advisor using the clinical data. 

Control -
lEI lEI E (jI! r 

FIOl (%) 0.89 3.97 2.37 10.00 0.891 

PEEP (cmH1O) -0.24 0.95 0.55 4.00 0.781 

Mv (llmin) -0.10 0.48 0.34 1.37 0.909 

RR(rpm) -0.43 1.07 0.80 2.50 0.860 

VT (ml) 8.68 25.00 15.26 70.00 0.891 

TIN(%) -0.76 4.72 2.39 10.00 0.653 

Table 8.2: Statistical analysis of decision errors between actual ventilator changes and those 
proposed by the advisor, using the simulated closed-loop data (see Figure 8.1 for clarification 
of the difference between clinical and simulated closed-loop data). 
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Figure 8.2: Frequency distribution of the decision errors for (a) tidal volume and (b) respiratory 
rate between the actual and advised changes using the clinical data (grey bars) and simulated 
closed-loop data (black line). 
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8.5 Qualitative Performance Analysis 

Whilst the statistical analysis gives us a measure of the relative performance of the advisor, it 

does not indicate what number of the decisions match the anaesthetists exactly, how many are 

good approximations and how many are just not acceptable. 

Calculating the frequency distribution of the errors does not identify decisions that have 

relatively small errors but represent ventilator changes in different directions. These are more 

likely to be unsafe than changes being made in the same direction. It was therefore proposed to 

use a qualitative scoring approach. The computed advice was classed as either exact, good, 

moderate or poor (Xl, with the classification criteria defined as follows; 

1). exact - when the advised decision (x) exactly matches the anaesthetist's (y); 

x-y=O (8.1) 

2). good - when the error between the advised (x) and anaesthetist decision (y) is less 

than or equal to some threshold (A); 

(8.2) 

The choice of threshold for each ventilator setting is given in Table 8.3. These 

were chosen to be equal to the smallest ventilator changes normally made by an 

anaesthetist. 

3). moderate - when the decision error is less than some higher threshold (B) and the 

change is not in opposing directions; 

1 x - y I:::; B AND (sign( x) = sign( y) OR no change in either x or y ) (8.3) 

The threshold (B) for each ventilator setting was double that for A, see Table 8.3. 

4). poor (X) - the decision error is greater than B, or greater than A and in the 

opposite direction; 

1 x- y 1 > B OR (I x- yl > A AND sign(x) = -sign(y)) (8.4) 

Ventilator A B 
Control 

F10l (%) 5 10 

PEEP (cmH1O) 1 2 

Mv (llmin) 0.5 1 

RR(rpm) 50 100 

VT (ml) 1.5 3 

TIN(%) 5 10 

Table 8.3: Qualitative scoring thresholds good (A) and moderate (B), for each ventilator control. 
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Each decision was scored using these classification criteria and the individual results are shown in 

Appendix F, together with the scoring frequency for each ventilator control across the entire data 

set (see Table F.2). 

Obviously the choice of scoring threshold will greatly affect the frequency distribution. Therefore, 

in order to provide a standard against which the clinical performance can be measured the above 

scoring algorithm was also applied to the closed-loop decisions, see Table F.3. 

Figure 8.3 compares the percentage distribution of the decision scoring for the clinical and 

simulated data. It can be clearly seen that the clinical performance was worse than the simulated 

performance in every ventilator control. Considering all the decisions together, the advisor gave 

exact or good matching in only 48.6 % of cases, compared to 82.5 % using the closed-loop data. 

Of greater concern though is that 23.5 % of the advice given was a poor match. Such a level of 

mismatch is not tolerable. 

8.6 Discussion 

This poor level of performance is perhaps to be expected since examination of the clinical data 

identified several possible causes of decision mismatch. These are as follows~ 

Anomalous Decisions 

This includes changes made by the anaesthetist that seem contrary to all the clinical indications, 

and are often corrected at the next blood-gas sample or sooner. This occurs relatively 

infrequently, although similar decision errors were observed during the simulated closed-loop 

ventilation (see Section 7.4). 

An obvious example occurred in the clinical data at observation 1 in Patient 1, when the 

anaesthetist increased MV from 7.5 up to 8.0 lImin despite the Paco2 being on the low side of 

normal. This was corrected one hour later, at the next blood-gas sample time. 

Advisor Naivety 

This is when the anaesthetist's decisions are based upon information outside of the advisor's 

knowledge paradigm. This often includes reluctance by the anaesthetist to make ventilator 

changes until other treatment possibilities have been considered, even when presented with 

measurements that would suggest otherwise. This probably constitutes the main cause of 

decision mismatch and was highlighted in the motor-cycle accident patient (Patient 2), where 

many of the decisions were delayed or contraindicated by extenuating factors. For example; 

1). A larger Vr was employed to maintain the level of ventilation necessary to keep 

PaC02 at approximately 4 kPa. This was a difficult compromise between the need 

for low PaC02 (because of head injury) and air being lost through the 

pneumothorax and chest drain. 

2). Fr02 was not increased in response to falling Pa02 as this was caused by blood 

filling the lungs. This was suctioned first, with the F102 only being increased if the 

Pa02 did not improve. 
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Differing Therapeutic Styles 

Anaesthetists do not approach patient treatment in the same way. Therefore the advisor's 

decisions may score less favourably against one anaesthetist than another. What is important is 

that the computed advice is safe, and has a variance smaller than the variability in the 

anaesthetists' decisions. This is an important consideration for future work (see Chapter 9). 

For example the advisor always increased TIN from 25 % to 33 %. Some anaesthetists set a 

normal I:E ratio using a TIN of 33 %, ignoring any pause time. Others include TPAUSE (usually 

set at 10 %) and therefore reduce TIN to 25 % accordingly. Which one is correct? The advisor is 

correct using the first case, but wrong with respect to the second. 

Measurement Rejection 

The advisor takes the observation data at face value, where as the anaesthetist may be suspicious 

of sudden changes. For example a sudden fall in Pa02 if not met by a similar drop in Sa02 would 

be rejected as a measurement error and the blood-gases reanalysed. 

Anaesthetist Not Present 

During the night when an anaesthetist is on-call they will only be requested to make changes to 

the ventilator settings if the patient condition worsens. The patient measurements are still 

recorded and may indicate an improvement that the advisor would respond to, but do not require 

intervention by an anaesthetist. Obviously the time at which an observation is made has an 

important bearing on any changes made. This would need including into the advisor rules and 

highlights the need for hierarchical control (see Chapter 9). 

Set-point Ranges 

The advisor uses a single set point for Pac~ whereas the anaesthetist will stop making changes to Mv 

when the PaC~ is within an acceptable range. Consequently the advisor continues to make 

unnecessary refinements to the level ofMv. A similar problem exists for nonnal RR and VT settings. 

Genuine Rule Errors 

Despite the above causes of decision mismatch, there will be occasions when the difference is 

simply a matter of an incorrect rule-consequent or the need of a new observation class I 

variable, to better separate the decision space. Possible examples of these and suggested 

modifications are given below; 

1). In Patient 2, at the beginning of ventilation the clinician was more cautious in 

reducing the F102 than the advisor. This seems to correspond to the margin of 

safety observed during the closed-loop validation. The Pa02 is reasonable at 

approx. 20 kPa but not high enough to warrant the size of changes proposed by the 

advisor. The consequents at PaO] = HI and FlO] = EHIIMAx need reducing from 

-35 % to -10 % and atPaO] = 8HI and flO] = EHlfrom -20 % to -10 %. 

2). The inclusion of a new Pa~ set at 20 kPa, or the peak of HIGH changed from 25 

kPa to 20 kPa, since this seems to be a common Pao2 level giving a margin of 

safety in the patient's oxygenation. 

210 



3). In Patient 6 the clinician is allowing pennissive hypocapnia to compensate for the 

acute acidosis and keep pH above 7.25, as defined in the therapeutic goals. This 

indicates the need for pH as an observation variable, as originally proposed in the 

prototype Mv control rules. This had been removed in the modified advisor. It 

appears to be the set definitions that were incorrect, requiring instead a much 

wider set membership for nonnal pH. 

8.7 Summary & Conclusions 

The clinical perfonnance of the advisor was disappointing, with only the FI02 control giving a 

reasonable level of decision matching. However, the validation process has highlighted areas 

that need to be addressed before the advisor can be considered safe. It is only when a certain 

level of safety has been achieved, that bedside clinical trial can be commenced. The following 

features need to be incorporated into the advisor if it is to perform safely. 

1). The advisor must be able to detect and ignore possible measurement errors. This is 

a measure of its robustness. 

2). Changes need to be negated when the patient's gases lie within a set-point range. 

This is more critical in patients where unnecessary modification to the ventilation 

can destabilise their condition. As it stands the advisor is too sensitive to input 

changes close to the PaC02 set-point goal. 

3). The ability to wait to see if a patient's condition is making slight improvement 

before adopting a more aggressive ventilation regime. Again this is more critical in 

patients that may be destabilised by changes in their ventilation. 

The best strategy to meet these shortfalls is through the use of carefully constructed patient 

scenarios that match some of the complex clinical behaviour observed. These will be repeatable 

and enable the improvements in advisor performance to be quantified. 

This concludes the description of all work undertaken thus far. The final conclusions are given 

in the next chapter together with considerations for future work. 
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Chapter 9: Conclusions & Future Work 

This thesis has described the development of a fuzzy-based advisor for the maintenance of 

patients on artificial ventilation in ICU. It has been shown that the use of a computer-model of 

the respiratory process provides a rapid methodology for rule-elicitation, validation and 

refinement. Simulated closed-loop assessment of the advisor performance, together with 

feedback from a clinical expert, rapidly highlighted rule errors. It also enabled the identification 

of non-convergent and limit-cycle behaviour in the rules, a function not possible using real 

clinical data. The model allowed the representation of a wide range of patient patho-physiology 

and unlike recorded patient data enabled quantitative evaluation of the efficacy of alternative 

advisor rules. This model-based approach forms a strong platform for future advisor 

development and testing, enabling confidence to be established in the advice generated before 

bedside testing is commenced. 

Patient Model Development & Validation 

About half of the research project involved the selection and development of a suitable patient 

model and its validation against clinical data. The model developed was selected for its ability to 

represent a variety of respiratory pathology and trauma whilst avoiding excessive complexity. The 

majority of its parameters are routinely monitored in a typical ICU environment, therefore 

minimising the number of system unknowns. By keeping these unknowns to a minimum it was 

possible to match the model to real patient data using a solution-searching algorithm. This model 

can be classed as a white-box model since it is physiologically meaningful and interpretable. 

The model selected used a compartmental structure similar to that employed by Dickinson (1977) 

in earlier work and by Thomsen et al (1989) in recent extensive studies. It described pulmonary 

gas exchange in the lungs using three functional areas or compartments (Riley & Cournard, 1949); 

an ideal alveolus, where all gas exchange takes place, a dead space representing lung areas that are 

ventilated but not perfused, and a shunt that is a fraction of cardiac output, representing both 

anatomical shunts and lung areas that are perfused but not ventilated. The circulatory system was 

divided into 4 additional compartments representing the alveolar, tissue, venous and pulmonary 

pools. Only the transport of O2 and CO2 were modelled and these were linked through the inverse 

gas dissociation functions (Kelman 1966 and 1967). These functions were used to derive the 

partial gas pressures that drive diffusion across the lung membrane from gas contents, as well as 

generate the model outputs of arterial and venous P02 and Peo2. 

No attempt was made to model the respiratory control of ventilation since it was assumed that 

the patients were on mandatory ventilation and performing no breathing for themselves. A 

continuos-ventilation model of the lung was chosen over breath-by-breath models since it more 

than adequately described the changes in Pa02 and Paeo2 routinely monitored in ICU. The use 

of a breath-by-breath model would only have added unnecessary complexity. 

Classical sensitivity analysis of the model parameters was performed, and it identified cardiac 

output (0,), O2 consumption (Vo2 ), CO2 production (Veo2 ), shunt (Os /0, ) and dead space 

(VD) to be of particular importance to blood-gas outcomes. Since these parameters are not 
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routinely measured, clinical validation of the model was difficult. Cardiac output is subject to 

large measurement errors and is only monitored in patients with unstable cardiac function making 

them less suitable for study. The measurement of V0 2 and Vco 2 requires the use of a metabolic 

computer and it was therefore necessary to borrow one for the purposes of the study. 

Unfortunately it was only available for a limited period, greatly reducing the amount of clinical 

data that could be collected. Four patients were recorded in all, representing 9 ventilator changes. 

The data collected were used to investigate the model's ability to predict arterial and venous 

blood-gases in response to changes in ventilator settings. This was achieved by applying the 

patient measurements prior to any ventilator change to the model, and then iteratively adjusting 

shunt, dead space and Pso until the simulated steady-state blood-gases matched those measured. 

The ventilator changes made on the real patients were then applied to the tuned model, and the 

simulated and actual responses compared. 

The model was shown to be qualitatively correct. However, establishing whether it can give 

accurate quantitative blood-gas predictions is unlikely without the collection of further clinical 

data that is both well behaved and free from measurement error. Until regular and accurate 

measurement of Ot. V0 2 and Veo 2 become available and data are routinely logged on a 

patient data management system for easy retrieval, true clinical validation will be difficult. Thc 

correlation coefficients and standard deviation of the response errors indicated only modcratc 

predictive performance, but these results were comparable with those obtained by Hinds et al 

(1983) in a similar study. 

However this did not undermine the suitability of the model for advisor rule-validation, since it 

was possible to construct virtual patient scenarios that exhibited behaviour similar to the types of 

patient encountered in ICU. Five virtual patient scenarios were modelled in order to test the 

advisor rules. These represented routinely encountered patient types and included; a patient with 

healthy lungs being ventilated post-operatively, an acute asthmatic, a patient with lobar 

pneumonia, a patient with head injuries and a patient with acute ARDS. The scenarios were 

constructed to be as realistic as possible but also typical of the patient-types they represented. 

When an anaesthetist was asked to ventilate the virtual patients, they felt that the model responded 

as expected to ventilator changes and were representative of the pathologies simulated. 

The model was originally developed to simulate patients on continuous mandatory ventilation 

(CMY); in particular volume control (VC) and pressure regulated volume control (PRVC). 

Obviously this only represents a sub-set of the modes currently in use. Other ventilation modes 

include synchronised intermittent mandatory ventilation (SIMV) where the breaths are 

synchronised to patient effort, and continuous positive airway pressure (CPAP) where the 

patient is breathing for themselves but is given support to maintain lung volume and 

oxygenation. If the advisor is to be valid in all possible scenarios, then the model used for 

simulated closed-loop validation will only be useful if it can represent these modes of 

ventilation and the majority of pathologies encountered in ICU. This will require better 

modelling of the airway dynamics and their interaction with the ventilator, as well as better 

models of the ventilators themselves. It may also require the inclusion of models relating to the 

respiratory control of ventilation, since as the patient moves from CMV (perhaps via SIMV) to 
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CP AP the patient begins to breath unaided. However, the inclusion of greater model complexity 

must be carefully balanced against its ability to be tuned to real patient data. 

Other areas for possible model improvement and investigation include; the addition of alveolar 

compartments representing 11/ Q mismatch and the investigation of the causes of steady-state 

PY02 error and identification of methods to tune it to observed values. Finally, the manner in 

which shunt and dead space respond in different disease states or traumas may best be modelled 

using statistical or neuro-fuzzy sub-systems. In this way the basic model structure will remain 

simple, with more complex behaviour being switched in and out as required. This will create a 

grey-box model of a patient's patho-physiology and provide a balance bctween physically 

describable physiology and more complex variable interactions. 

Advisor Development & Validation 

Initial control rules were handcrafted using known physiological relationships, nomograms and 

via discussion with an anaesthetist. Individual rule-bases were constructed for F102, PEEP, My and 

VT-RR control. This was later extended to include rules for I:E control through changes to TIN. 

The prototype advisor was then connected to the virtual patients described earlicr, and allowed 

to run in simulated closed-loop control. New advice was generated at the blood-gas sample 

times established by the anaesthetist during their simulated ventilation of the virtual patients. In 

this way direct comparison of the patient histories was possible. 

The prototype advisor gave poor decision matching when compared with the ventilator changes 

prescribed by the anaesthetist. In some cases the patient diverged from acceptable levels. 

However the causes of decision error were easily identified via inspection of the rules that were 

contributing to the mismatch. In some instances it was simply a matter of changing the value of 

the rule-consequent, in others new fuzzy classes or even new rule-antecedents were required to 

better separate the decision space. Improvements to the advisor were implemented where 

possible, and its performance re-evaluated using simulated closed-loop control. 

The modified advisor showed significant improvement in decision matching for the FI02, Mv 

and RR-VT sub-systems. There was no longer any divergent behaviour, and Pao2, PaC02 and 

PIP maintenance closely followed that produced by the anaesthetist, although some differences 

in prescribed ventilator setting still existed. In some instances the advisor suggested My 

changes that avoided the PaC02 undershoot or overshoot produced by the anaesthetist. Also of 

note is that the ARDS patient required more cautious ventilation in terms of FI02 increases and 

RR and VI changes. These differences were clearly identified using the simulated closed-loop 

approach. However, encapsulating them in the rules was not possible without compromising the 

decisions required for normal ventilation. This decision dichotomy and others like it 

encountered during the evaluation are pathology specific. They require different rules depending 

upon the presenting condition and are best handled using a hierarchical control structure. Such 

an approach has been successfully implemented in the control of neuro-muscular block [Shieh 

et aI, 1996,1997] and anaesthesia [Link ens 1993; Shieh et aI, 1998]. 
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The closed-loop simulation only provided limited stimulation of the available control rules and 

it will therefore be necessary to construction additional virtual patients that fire different rules, 

including those at the observation extremes. 

Clinical validation of the advisor against ventilator changes made in ICU resulted in a poor 

level of decision matching. This was disappointing, but careful examination showed that 

decision mismatch was caused by one of or a combination of the following; (1) an inability to 

reject measurement errors; (2) the use of broader ranges of acceptable gases that require no 

refinement of the ventilator settings; (3) decisions based on information outside of the advisor 

paradigm and (4) a tendency on the part of an anaesthetist to wait to see if a patient's condition 

improves before making ventilator changes that might destabilise certain patients. These add 

further weight to the need for hierarchical control. 

The ability to create pseudo-realistic patient scenarios may have other advantages for 

knowledge elicitation. One of the biggest problems in producing an advisory system is that 

treatment styles vary between hospital ICUs and even between individual anaesthetists. This 

often reflects the ventilation strategies and accepted norms in vogue at the time they did their 

initial training, as well as the variability in patient types encountered. Using the patient model, a 

library of patient scenarios can be created that represent a wide range of pathology and trauma. 

These can include critical events, untenable scenarios and measurement errors. Different 

anaesthetists could then be asked to care for the patients as they would a real patient and the 

variation in treatment styles recorded. Because the scenarios are repeatable, direct comparison 

between anaesthetist styles would be possible. The consensus or average care profiles can then 

be identified and the data used to train the advisor. It should also help to isolate pathology

specific strategies that require different control rules from those required for normal control. 

If the model can be successfully tuned to real patient data, then the generation of scenario 

libraries will be much simpler. It will also be possible to use the model on-line to predict the 

outcomes of advice given and therefore assess its suitability. 

Initial advisor development used handcrafting of the rules. However, when there are more than 

3 rule-antecedents this quickly becomes cumbersome, and is bctter achieved using automatcd 

techniques such as self-organising fuzzy-logic control (SOFLC). Using the patient-model and a 

library of virtual patients a SOFLC based advisor can quickly be trained and its performance 

compared directly against other advisor rule-bases. 

A major restricting factor to rule testing and development was the speed at which patient 

simulations could be performed. The model was written using MATLAB and SIMULINK, which 

provides benefits in terms of rapid research and development but are slow to run. This is 

because they are interpretative run-time languages and are by nature much slower than compiler 

languages such as C. Compilers are available for MATIAB and SIMULINK but the improvement 

in performance experienced by other researchers was not significant. Therefore before 

predictive-control or self-learning fuzzy logic can be explored using the patient-model, it will 

require implementing in C or C++. MATLAB supports the integration of C programs and 

therefore advisor development can be continued using this platform. 
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If an advisor is to become truly useful it must form an integral part of any computerised patient 

data management system currently in place. It is not reasonable to expect clinicians or nursing 

staff to enter information into a separate stand-alone system [Standage, 1997]. Therefore any 

future development must consider data transfer protocols between existing management systems. 

In conclusion, model-based advisor validation has demonstrated advantages over decision 

comparisons made using clinical data alone. It provided a method for assessing the closed-loop 

stability of the advisor, and successfully highlighted differences in decision behaviour from that of 

an anaesthetist. This enabled rapid refinement of handcrafted rules and will form a validation 

platform for the development of new rules for future ventilation strategies. However, the advisor is 

not yet in a usable finished form, and will require enhancing before bedside validation can be 

considered. A hierarchical control strategy will be needed, since universal control rules cannot 

adequately encapsulate the entire decision processes of an anaesthetist. 

216 



Appendix A 

SIMULINK Block Diagrams of the Patient Model 
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Figure A.l: Top level diagram of the SIMULINK model, with FROM blocks passing all of the model 
parameters and output variables to the MA TLAB workspace for inspection and manipulation. The 
Blood Gas Model Subsystem contains the actual model representations and has a global call in its 
input mask to a MAlLAB structure that contains all of the required input parameters. 
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Figure A.2: Blood Gas Model Subsystem - showing the compartments of the patient model. The 
Input Parameters module copies the MATLAB input structure into the local parameter labels 
used within the compartment subsystems. The Steady State Error Check module, stops the 
simulation when the blood-gas content and pressures have reached steady-state, or the 
simulation stop time has been reached. 
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CONSTANT INPUTS ONLY 

P.Weight k WEIGHT 

P.Sex k SEX 

P.Hb02Binding k BETAH 

P.Plasma02 k ALPHAB 

P.Pb k PB 

P .voLPulmonary k Vp 

P .VoLArterial k Va 

P .VoL Tissue k Vt 

P .VoLVenous k Vv 

P.LungVol kLUNGVOLI 

P.02Diffusion k 002 I 
P.C02Diffusion k DC02 I 

BLOOD MATRIX INPUTS 

P.BodyTemp k BTEMP 

P.Haemoglobin k HB 

P.P50 k PSO 

P.BicarbArt k HC03 

P.PackCeliVol k PCV 

P.pHArt k PH 
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VENTILATOR MATRIX INPUTS 
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MISC MATRIX INPUTS 
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P.CP K-cp~ 
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Figure A.3: Input Parameters -
this subsystem, maps the values in 
the MATLAB input structure (e.g. 
P.FI02) into GOW blocks. These 
enable the parameters to be used 
elsewhere in the system by using a 
corresponding FROM block. This 
module also derives parameter 
values used by the model, from 
various input values (e.g. AVENT 
from TVOL (VT), RR and 
DEADSP (VD). 
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Figure A.4: Alveolar Compartment - representation of the mass transport equations 4.5 and 4.27. 
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Figure A.5: Pulmonary Compartment - representation of the mass transport equations 4.4 and 4.26. 
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Figure A.6: Lung Membrane - representation of model equations 4.6 and 4.28. 
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Figure A7: Subsystem C-to-P - converts the pulmonary gas contents to partial pressures using 
the MATLAB inverse gas dissociation function gasinv.m. 
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Figure AlO: Arterial Compartmenf- representation of mass transport equations 4.1 and 4.23. 
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Figure A12: Venous Compartment - representation of mass transport equations 4.3 and 4.25. 

[paIV02» 

[palvco2!> 

[Calv02» 

[CalvCo2!> 

[Ca02)> 

[C&C02» 

[Ct02) > 
[CtC02» 

[Cv02) > 
[CVC02» 

[Cp02)> 

[CPC02» 

• 
• 
• 
• 
• 
• -. 
• 
• 
• 
• 
• 

Mux r----I SERRSTOP~S 
Steady State Stop Stop 
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Appendix B 

Data Collected For Patient-Model Validation 

and Ethical Committee Guidlines 
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B.l Patient Data 

PATIENT 1 RECORD 1 (14/2/94) 

GENERAL INFORMATION 

Status: Cardiogenic shock, Sepsis, Multi-system failure. 

Drugs: Adrenaline, Flolan, Dopamine 

Support: SIMV Ventilation, Dialysis, Fluid balance, Blood infusions 

Measurements: PAC, CVC, SAC, Deltatrac II, Thermo-dilution CO Measurements 

Female, 65 years, 165 cm, 69 kg 

VENTILATOR ARRANGEMENT 

Puritan -Bennett nOOa, Disposable Tubing (2.5m insp., 2m exp.) 

Bennett Cascade Filter (gives good humidification.), SIMV mode with sloping square wave driving 
waveform 

METABOLIC COMPUTER (DELTATRAC II) RESULTS 

Gas Temperature (0C) 28.4 

Ambient Pressure (kPa) 102.525 

Ambient CO2 (% STPD) 0.05 

Non-Protein RQ 0.86 

Body Surface Area (m2): Deltatrac2 l.76 

SAMPLE RESULTS 

TIME 14:18 14:48 15:32 16:17 

VENTILATOR SETTINGS 

FI02 (%) 55 

Respiratory Rate (rpm) 24 26 

Tidal Volume (mI) [set (measured)] 700 (680) 

PEEP (cmH2O) 10 

I:E Ratio (lIE) 0.8 0.6 

PIP (cmH2O) 30.2 36.2 

Mean Airway Pressure (cmH2O) 2l.0 24.5 

SYSTEMIC ARTERY BLOOD (Arterial Catheter) 

Pa02 (kPa) 17.2 17.9 '! 15.8 18.0 

PaC02 (kPa) 4.30 4.30 3.90 4.00 

Co-oximeter O2 Saturation (%) 99.0 99.0 99.0 99.0 

pH 7.540 7.530 7.560 7.560 

Standard Bicarbonate (mmolll) 3l.0 30.0 30.0 3l.0 

Base Excess (mmolll) +7 +6 +6 +7 

Hb (g/lOOml) 11.6 
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PULMONARY ARTERY BLOOD (pulmonary Artery Catheter) 

Pv02 (kPa) 4.4 4.6 4.1 4.3 

PvC02 (kPa) 5.00 4.90 4.70 4.60 

Co-oximeter O2 Saturation (%) 69.0 71.0 65.0 68.0 

Standard Bicarbonate (mmol/l) 29.0 29.0 30.0 30.0 

pH 7.490 7.490 7.520 7.520 

OTHER MEASUREMENTS 

Blood Temperature (OC) 36.5 36.4 36.5 36.6 

O2 Saturation (%) Oximeter 96 97 95 98 

Cardiac Output (Vmin) 4.9 5.8 4.9 5.2 

Cardiac Index 2.75 3.25 2.75 2.92 

Heart Rate (bpm) 106 103 103 105 

O2 Consumption (mVmin) 273.8 278.2 278.6 284.7 

CO2 Production (ml/min) 239.1 238.9 238.2 242.8 

Metabolic Rate (kcaV24hr) 1901 1923 1924 1969 

Respiratory Quotient 0.878 0.860 0.855 0.854 

PRESSURES 

Systolic B.P. (mmHg) 116 138 152 132 

Diastolic B.P. (mmHg) - - - -
Mean Arterial B.P. (mmHg) 64 73 81 70 

Central Venous B.P. (mmHg) 12 13 14 12 

Mean Pulmonary B.P. (mmHg) 27 28 31 29 

Wedge Pressure (mmHg) 10 11 12 11 

Notes: 

Measurement 3 for Pa02 appears to be too low, probably a measurement error. 
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PATIENT 1 RECORD 2 (15/2/94) 

GENERAL INFORMATION 

Status: Cardiogenie shock, Sepsis, Multi-system failure. 

Drugs: Adrenaline, Flolan, Dopamine; Reduction of sedation during test but no arousal. 

Support: SIMV Ventilation, Dialysis, Fluid balance, Blood infusions 

Measurements: PAC, SAC, Deltatrac II, Thermo-dilution CO Measurements 

Female, 65 years, 165 em, 69 kg 

VENTILATOR ARRANGEMENT 

Puritan -Bennett nOOa, Disposable Tubing (2.5m insp., 2m exp.) 

Bennett Cascade Filter (gives good humidification.) 

SIMV mode with sloping square wave driving waveform 

METABOLIC COMPUTER (DELTATRAC II) RESULTS 

Gas Temperature (DC) 2S.4 

Ambient Pressure (kPa) 100.391 

Ambient CO2 (% STPD) 0.06 

Non-Protein RQ 0.S6 

Body Surface Area (m2): Deltatrac2 1.76 

SAMPLE RESULTS 

TIME 15:03 15:28 16:03 16:53 

VENTILATOR SETTINGS 

FI02 (%) 50 45 

Respiratory Rate (rpm) 20 

Tidal Volume (ml) [set (measured)] 700 (670) 

PEEP (cmH2O) 5 

I:E Ratio (lIE) 1.I 

PIP (cmH2O) 22.6 22.7 

Mean Airway Pressure (cmH2O) 11.9 13.1 

SYSTEMIC ARTERY BLOOD (Arterial Catheter) 

Pa02 (kPa) 12.4 12.3 10.4 10.5 

PaC02 (kPa) 5.S0 5.16 4.n 5.0S 

Co-oximeter O2 Saturation (%) 95.6 97.S 95.4 95.0 

pH 7.452 7.493 7.507 7.495 

Standard Bicarbonate (mmolll) 30.7 30.1 2S.4 29.7 

Base Excess (mmol/I) +6.7 +7.0 +5.S +6.7 

Hb (g/lOOml) 10.6 
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PULMONARY ARTERY BLOOD (pulmonary Artery Catheter) 

Pv02 (kPa) 4.80 5.00 5.36 5.58 

PvC02 (kPa) 6.06 5.75 4.70 4.70 

Co-oximeter O2 Saturation (%) 71.2 74.2 72.9 70.6 

Standard Bicarbonate (mmol/l) 32.0 31.7 31.0 31.1 

pH 7.450 7.469 7.490 7.474 

OTHER MEASUREMENTS 

Blood Temperature (OC) 36.5 36.4 36.5 36.5 

O2 Saturation (%) Oximeter 98 98 97 97 

Cardiac Output (Vrnin) 7.2 8.3 8.3 8.0 

Cardiac Index 4.04 4.66 4.66 4.49 

Heart Rate (bpm) 97 97 98 98 

O2 Consumption (mVmin) 279.0 293.7 286.9 292.5 

CO2 Production (mVmin) 244.7 253.3 245.7 244.8 

Metabolic Rate (kcal/24hr) 1940 2035 1985 2012 

Respiratory Quotient 0.879 0.865 0.857 0.838 

PRESSURES 

Systolic B.P. (mmHg) III 146 145 127 

Diastolic B.P. (rrunHg) 45 64 53 45 

Mean Arterial B.P. (mmHg) 66 81 77 71 

Central Venous B.P. (mmHg) 14 15 14 12 

Mean Pulmonary B.P. (mmHg) 29 38 31 30 

Wedge Pressure (mmHg) 16 18 17 15 

Instability in PRIOR PaC02 measurements (11.03 % variation), also reflected in arterial 

pH change. Unable to say which point is incorrect therefore the average has to be used. 

This may lead to bad VD estimate and hence poor response matching. 

Instability in PRIOR Qt (15.1 % variation). 
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PATIENT 1 RECORD 3 (21/2/94) 

GENERAL INFORMATION 

Status: Cardiogenic shock, Sepsis, Multi-system failure. 

Drugs: Adrenaline (being reduced), Flolan, Dopamine 

Support: SIMV Ventilation, Dialysis, Fluid balance, Blood infusions 

Measurements: PAC, SAC, Deltatrac II, Cardiac output calculated. 

Female, 65 years, 165 cm, 60 kg (reduced) 

VENTILATOR ARRANGEMENT 

Puritan -Bennett nOOa, Disposable Tubing (2.5m insp., 2m exp.) 

Bennett Cascade Filter (gives good humidification.) 

SIMV mode with sloping square wave driving waveform 

METABOLIC COMPUTER (DELTATRAC II) RESULTS 

Gas Temperature eq 29.2 

Ambient Pressure (kPa) 100.791 

Ambient CO2 (% STPD) 0.04 

Non-Protein RQ 0.89 

Body Surface Area (m2): Deltatrac2 1.65 

SAMPLE RESULTS 

TIME 11:49 12:13 12:39 13:22 

VENTILATOR SETTINGS 

FI02 (%) 55 60 

Respiratory Rate (rpm) 18 

Tidal Volume (mI) [set (measured») 900 (870) 

PEEP (cmH2O) 7.5 

I:E Ratio (lIE) 1.0 

PIP (cmH2O) 24.0 24.0 

Mean Airway Pressure (cmH2O) 13.6 13.7 

SYSTEMIC ARTERY BLOOD (Arterial Catheter) 

Pa02 (kPa) 8.5 8.8 9.2 9.3 

PaC02 (kPa) 4.87 4.72 4.69 4.78 

Co-oximeter O2 Saturation (%) - - - -
pH 7.490 ? 7.437 7.494 7.480 

Standard Bicarbonate (mmol/l) 29 ? 25.5 28.5 28.1 

Base Excess (mmol/l) 5.3 ? 1 4.7 4.2 

Hb (gllOOml) 9.6 - 9.8 10.1 
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PULMONARY ARTERY BLOOD (pulmonary Artery Catheter) 

Pv02 (kPa) 5.3 5.3 5.5 5.5 

PvC02 (kPa) 5.52 5.41 5.17 5.46 

Co-oximcter O2 Saturation (%) - - - -
Standard Bicarbonate (mmol/l) 29.5 29.1 28.4 29.1 

pH 7.468 7.468 7.469 7.465 

OTHER MEASUREMENTS 

Blood Temperature (OC) 36.7 36.7 - 36.6 

O2 Saturation (%) Oximeter 100 100 - 100 

Cardiac Output (Vrnin) derived 13.36 13.18 13.38 13.16 

Cardiac Index - - - -
Heart Rate (bpm) 100 102 - 100 

O2 Consumption (mVmin) 289.4 282.1 279.1 284.4 

CO2 Production (mVmin) 253.6 252.2 242.2 243.4 

Metabolic Rate (kcaV24hr) 2012 1970 1934 1966 

Respiratory Quotient 0.879 0.896 0.869 0.860 

PRESSURES 

Systolic B.P. (mmHg) 140 134 - 114 

Diastolic B.P. (mmHg) 50 49 - 44 

Mean Arterial B.P. (mmHg) 80 76 - 65 

Central Venous B.P. (mmHg) 13 13 - 12 

Mean Pulmonary B.P. (mmHg) 32 31 - 29 

Wedge Pressure (mmHg) 15 15 - 16 

Possible measurement error in arterial pH, standard bicarbonate and BE results for point 

2. Drop in pH would normally be due to PaC02 increase over short time periods, but in 

this case PaC02 reduces. 

Cardiac output derived using Ot = V0 2 with Ca02 and CV02 derived from gas 
C(a-v)o2 

tensions using the gas dissociation functions. Estimates seem large, giving rise to large 
shunt estimates. 
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PATIENT 1 RECORD 4 (2112/94) 

GENERAL INFORMATION 

Status: Cardiogenic shock, Sepsis, Multi-system failure. 

Drugs: Adrenaline (being reduced), FIolan, Dopamine 

Support: SIMV Ventilation, Dialysis, Fluid balance, Blood infusions 

Measurements: PAC, SAC, Deltatrac II 

Female, 65 years, 165 cm, 60 kg (reduced) 

VENTILATOR ARRANGEMENT 

Puritan -Bennett nOOa, Disposable Tubing (2.5m insp., 2m exp.) 

Bennett Cascade Filter (gives good humidification.) 

SIMV mode with sloping square wave driving waveform 

METABOLIC COMPUTER (DELTATRAC In RESULTS 

Gas Temperature (DC) 29.2 

Ambient Pressure (kPa) 100.791 

Ambient CO2 (% STPD) 0.04 

Non-Protein RQ 0.89 

Body Surface Area (m2): Deltatrac2 1.65 

SAMPLE RESULTS 

TIME 12:39 13:22 14:13 -
VENTILATOR SETTINGS 

F10z (%) 60 65 

Respiratory Rate (rpm) 18 

Tidal Volume (ml) [set (measured)] 900 (870) 900 (880) 

PEEP (cmH2O) 7.5 

I:E Ratio (lIE) 1.0 

PIP (cmH2O) 24.0 24.0 

Mean Airway Pressure (cmH2O) 13.7 13.7 

SYSTEMIC ARTERY BLOOD (Arterial Catheter) 

Pa02 (kPa) 9.2 9.3 9.7 -
PaC02 (kPa) 4.69 4.78 4.79 -
Co-oximeter O2 Saturation (%) - - - -
PH 7.494 7.480 7.503 -
Standard Bicarbonate (mmol/l) 28.5 28.1 29.4 -
Base Excess (mmol/l) 4.7 4.2 5.9 -
Hb (g/100ml) 9.8 10.1 10.l -
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PULMONARY ARTERY BLOOD (pulmonary Artery Catheter) 

Pv02 (kPa) 5.5 5.5 5.6 -
PvC02 (kPa) 5.17 5.46 5.29 -
Co-oximeter O2 Saturation (%) - - - -
Standard Bicarbonate (mrnol/l) 28.4 29.1 29.3 -
pH 7.469 7.465 7.476 -
OTHER MEASUREMENTS 

Blood Temperature (0C) - 36.6 36.5 -
O2 Saturation (%) Oximeter - 100 100 -
Cardiac Output (Vrnin) derived 13.38 13.16 13.11 -
Cardiac Index - - - -
Heart Rate (bpm) - 100 96 -
O2 Consumption (mVrnin) 279.1 284.4 266.2 -
CO2 Production (mVrnin) 242.2 243.4 235.6 -
Metabolic Rate (kcaV24hr) 1934 1966 1853 -
Respiratory Quotient 0.869 0.860 0.889 -
PRESSURES 

Systolic B.P. (rnmHg) - 114 129 -
Diastolic B.P. (mmHg) - 44 47 -
Mean Arterial B.P. (mmHg) - 65 72 -
Central Venous B.P. (rnmHg) , - 12 12 -
Mean Pulmonary B.P. (mmHg) - 29 31 -
Wedge Pressure (mmHg) - 16 16 -

Notes: 

Cardiac output derived using Qt = V0 2 with Ca02 and CV02 derived from gas 
e(a -v)02 

tensions using the gas dissociation functions. Estimates seem large, giving rise to large 
shunt estimates. 
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PATIENT 2 RECORD 1 (22/2/94) 

GENERAL INFORMATION 

Status: Post operative emergency with acute aortic anurism. 

Drugs: Dopamine 200mg/50ml @ 2mllhr. Incresed to 5ml/L at 15:30 

Support: Ventilation, Blood and plasma infusions at 15:35 

Measurements: CVC, SAC, Dcltatrac II. 

Male, 69 years, 180 cm, 82 kg 

VENTILATOR ARRANGEMENT 

Siemens Servo 300, Standard Non-disposable tubing + PALL Filter 

CMV mode with square wave driving waveform 

METABOLIC COMPUTER (DELTATRAC II) RESULTS 

Gas Temperature (0C) 29.1 

Ambient Pressure (kPa) 100.658 

Ambient CO2 (% STPD) 0.05 

Non-Protein RQ 0.82 

Body Surface Area (m2): Deltatrac2 2.01 

SAMPLE RESULTS 

TIME 15:00 15:35 16:05 16:40 

VENTILATOR SETTINGS 

FI02 (%)* 40 35 

Respiratory Rate (rpm) 17 16 

Tidal Volume (ml) [set (measured)] 700 700 

PEEP (cmHzO) 2 3 

I:E Ratio (lIE) 0.333 

PIP (cmH2O) 36.0 32.0 

Mean Airway Pressure (cmH2O) - -
SYSTEMIC ARTERY BLOOD (Arterial Catheter) 

Pa02 (kPa) 20.5 21.3 17.1 18.5 

PaC02 (kPa) 5.36 5.15 4.93 4.44 

Co-oximeter O2 Saturation (%) - - - -
pH 7.369 7.383 7.400 7.435 

Standard Bicarbonate (mmol/l) 24.1 24.2 24.4 24.6 

Base Excess (mmol/l) -1.1 -0.9 -0.7 -0.5 

Hb (g/100ml) 10.8 - 11.2 10.5 

CENTRAL VENOUS BLOOD (Central Venous Catheter) 

Pv02 (kPa) 4.70 5.00 5.20 5.50 
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PvC02 (kPa) 6.36 6.45 5.95 5.40 

Co-oximeter O2 Saturation (%) - - - -
Standard Bicarbonate (mmol/l) 24.4 24.4 24.4 24.4 

pH 7.325 7.320 7.367 7.372 

OTHER MEASUREMENTS 

Blood Temperature - rectal (0C) 35.9 36.6 36.9 37.2 

O2 Saturation (%) Oximeter 100 100 97 97 

Cardiac Output (Vrnin) derived 7.70 5.91 6.85 8.07 

Cardiac Index - - - -
Heart Rate (bpm) 94 96 95 97 

O2 Consumption (mVrnin) 368.5 314.2 309.7 308.4 

CO2 Production (mllmin) 282.3 264.8 267.8 267.3 

Metabolic Rate (kcal/24hr) 2499 2168 2149 2141 

Respiratory Quotient 0.766 0.845 0.865 0.866 

PRESSURES 

Systolic B.P. (mmHg) 115 95 110 130 

Diastolic B.P. (mmHg) 60 50 60 65 

Mean Arterial B.P. (mmHg) 85 65 75 90 

Central Venous B.P. (mmHg) 12 9 10 12 

Mean Pulmonary B.P. (mmHg) - - - -
Wedge Pressure (mmHg) - - - -

Notes: 

Cardiac output derived using Qt = V02 with Ca02 and CV02 derived from gas 
C(a-v)o2 

tensions using the gas dissociation functions. Estimates seem large, giving rise to large 
shunt estimates. 
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PATIENT 3 RECORD 1 (01/3/94) 

GENERAL INFORMATION 

Status: Paraplegic with post operative complications, septic shock, kidney failure 

Drugs: Paracetarnol, Renal Dopamine 

Support: Ventilation 

Measurements: PAC, SAC, Deltatrac II, Thermodilution C.O. measurements. 

Female, 47 years, 154 crn. 50 kg 

VENTILATOR ARRANGEMENT 

Siemens Servo 900c, Standard disposable tubing (2.5m insp, l.5m exp) + Bennett Cascade II Filter 

SIMV mode + pressure support (inspiratory time 67 %, pause time 10 %). 

METABOLIC COMPUTER (DELTATRAC II) RESULTS 

Gas Temperature eC) 29.6 

Ambient Pressure (kPa) 100.658 

Ambient CO2 (% STPD) 0.05 

Non-Protein RQ 0.82 

Body Surface Area (m2): Deltatrac2 1.46 

SAMPLE RESULTS 

TIME 13:01 -- 13:37 --
VENTILATOR SETTINGS 

F102 (%) 65 70 

Respiratory Rate (rpm) 16 

Tidal Volume (rnl) [set (measured)] 618 615 

PEEP (crnH2O) 10 

I:E Ratio (lIE) 2.0 

PIP (crnH2O) 35.0 33.8 

Mean Airway Pressure (crnH2O) - 20 

SYSTEMIC ARTERY BLOOD (Arterial Catheter) 

Pa02 (kPa) 8.1 - 7.8 -
PaC02 (kPa) 5.12 - 5.31 -
Co-oximeter O2 Saturation (%) 95 - 90 -
PH 7.349 - 7.356 -
Standard Bicarbonate (mmolll) 22.3 - 23.2 -
Base Excess (rnrnolll) -3.2 - -2.1 -
Hb (gllOOrnl) 10.4 - 10.1 -
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PULMONARY ARTERY BLOOD (pulmonary Artery Catheter) 

Pv02 (kPa) 4.5 - 4.6 -
PvC02 (kPa) 5.61 - 5.48 -
Co-oximeter O2 Saturation (%) - - - -
Standard Bicarbonate (mmol/l) 23.2 - 22.5 -
pH 7.359 - 7.351 -
OTHER MEASUREMENTS 

Blood Temperature (0C) 38.8 - 38.8 · 
O2 Saturation (%) Oximeter 96 - 94 · 
Cardiac Output (Vmin) 7.5 - 7.2 -
Cardiac Index 5.1 - 4.89 -
Heart Rate (bpm) 130 - 128 · 
O2 Consumption (mVmin) 218.6 - 202.1 -
CO2 Production (mVmin) 179.6 - 162.1 -
Metabolic Rate (kcaV24hr) 1491 - 1372 -
Respiratory Quotient 0.824 - 0.802 -
PRESSURES 

Systolic B.P. (mmHg) 110 . 114 -
Diastolic B.P. (mmHg) 50 - 52 · 
Mean Arterial B.P. (mmHg) 72 - 70 -
Central Venous B.P. (mmHg) 8 - 14 -
Mean Pulmonary B.P. (mmHg) 20 - 24 -
Wedge Pressure (mmHg) 8 - 8 · 
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PATIENT 3 RECORD 2 (01/3/94) 

GENERAL INFORMATION 

Status: Paraplegic with post operative complications, septic shock, kidney failure 

Drugs: Paracetamol, Renal Dopamine 

Support: Ventilation, Plasma infusions stopped at 13:42 

Measurements: PAC, SAC, Deltatrac II, Thermodilution C.O. measurements. 

Female, 47 years, 154 em, 50 kg 

VENTILATOR ARRANGEMENT 

Siemens Servo 900c, Standard disposable tubing (25m insp, 105m exp) + Bennett Cascade II Filter 

SIMV mode + pressure support (inspiratory time 67 %, pause time 10 %). 

METABOLIC COMPUTER (DELTATRAC II) RESULTS 

Gas Temperature (OC) 29.6 

Ambient Pressure (kPa) 100.658 

Ambient CO2 (% STPD) 0.05 

Non-Protein RQ 0.82 

Body Surface Area (m2): Deltatrac2 1.46 

SAMPLE RESULTS 

TIME 13:37 -- 14:30 --
VENTILATOR SETTINGS 

FI02 (%) 70 75 

Respiratory Rate (rpm) 16 

Tidal Volume (ml) [set (measured)] 615 

PEEP (cmH2O) 10 

I:E Ratio (lIE) 2.0 

PIP (cmH2O) 33.8 

Mean Airway Pressure (cmH2O) 20 

SYSTEMIC ARTERY BLOOD (Arterial Catheter) 

Pa0 2 (kPa) 7.8 - 10.0 -
PaC02 (kPa) 5.31 - 5.28 -
Co-oximeter O2 Saturation (%) 90 - 93 -
PH 7.356 - 7.348 -
Standard Bicarbonate (mmolll) 23.2 - 22.7 -
Base Excess (mmolll) -2.1 - -2.7 -
Hb (g/lOOml) 10.1 - 9.9 -
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PULMONARY ARTERY BLOOD (pulmonary Artery Catheter) 

PvOz (kPa) 4.6 · 4.8 · 
PvC02 (kPa) 5.48 · 5.15 · 
Co-oximeter O2 Saturation (%) . · . · 
Standard Bicarbonate (mmol/l) 22.5 · - -
pH 7.351 · 7.346 · 
OTHER MEASUREMENTS 

Blood Temperature (DC) 38.8 · 38.8 · 
Oz Saturation (%) Oximeter 94 · 96 · 
Cardiac Output (Umin) 7.2 · 5.9 · 
Cardiac Index 4.89 4.01 

Heart Rate (bpm) 128 112 

Oz Consumption (mUrnin) 202.1 · 210.5 · 
CO2 Production (mVmin) 162.1 · 173.3 · 
Metabolic Rate (kcaV24hr) 1372 · 1437 · 
Respiratory Quotient 0.802 · 0.826 -
PRESSURES 

Systolic B.P. (mmHg) 114 · 100 · 
Diastolic B.P. (mmHg) 52 · 50 · 
Mean Arterial B.P. (mmHg) 70 · 66 · 
Central Venous B.P. (mmHg) 14 · 16 · 
Mean Pulmonary B.P. (mmHg) 24 - 26 · 
Wedge Pressure (mmHg) 8 · 11 · 
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PATIENT 3 RECORD 3 (0213/94) 

GENERAL INFORMATION 

Status: Paraplegic with post operative complications, septic shock, kidney failure 

Drugs: Renal Dopamine, Patient becoming more aware at last measurement. 

Support: Ventilation 

Measurements: PAC, CVC, SAC, DeItatrac II, Thermodilution C.O. measurements. 

Female, 47 years, 154 cm. 50 kg 

VENTILATOR ARRANGEMENT 

Puritan Bennett nOOA, Standard disposable tubing (2.5m insp, 1.5m exp) + Bennett Cascade II 
Filter 

SIMV mode (sloping square wave) 

METABOLIC COMPUTER (DELTATRAC II) RESULTS 

Gas Temperature (0C) 29.3 

Ambient Pressure (kPa) 100.658 

Ambient CO2 (% STPD) 0.06 

Non-Protein RQ 0.88 

Body Surface Area (m2): Deltatrac2 1.46 

SAMPLE RESULTS 

TIME 11:13 11:45 12:54 13:28 

VENTILATOR SETTINGS 

FI02 (%) 75 70 

Respiratory Rate (rpm) 16 

Tidal Volume (ml) [set (measured)] 590 

PEEP (cmH2O) 10.3 10.2 

I:E Ratio (lJE) 1.43 

PIP (cmH2O) 39.6 38.8 

Mean Airway Pressure (cmH2O) - -
SYSTEMIC ARTERY BLOOD (Arterial Catheter) 

Pa02 (kPa) 1l.6 11.8 11.3 11.7 

PaC02 (kPa) 5.22 5.27 5.30 5.39 

Co-oximeter O2 Saturation (%) - - - -
pH 7.363 7.368 7.378 7.359 

Standard Bicarbonate (mmolll) 23.3 23.7 24.3 23.6 

Base Excess (mmolll) -2 -1.5 -0.7 -1.6 

Hb (gl100ml) 10.4 10.6 
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CENTRAL VENOUS BLOOD (Central Venous Catheter) 

Pv02 (kPa) 4.5 5.0 5.0 4.8 

PvC02 (kPa) 5.82 5.79 5.70 5.87 

Co-oximeter O2 Saturation (%) - - - -
Standard Bicarbonate (mmol/l) 23.8 23.2 23.6 23.8 

pH 7.360 7.347 7.360 7.355 

PULMONARY ARTERY BLOOD (pulmonary Artery Catheter) 

Pv02 (kPa) 4.6 4.6 4.7 4.7 

PvC02 (kPa) 5.69 5.65 5.84 5.83 

Co-oximeter O2 Saturation (%) - - - -
Standard Bicarbonate (mmol/l) - 23.3 24.0 24.0 

pH 7.354 7.359 7.361 7.362 

OTHER MEASUREMENTS 

Blood Temperature (0C) 37.2 37.2 37.2 37.2 

O2 Saturation (%) Oximeter 98 98 98 98 

Cardiac Output (llmin) 5.6 6.0 5.8 6.6 

Cardiac Index 3.80 4.08 3.94 4.48 

Heart Rate (bpm) 105 108 109 112 

O2 Consumption (mllmin) 217.6 211.8 214.6 219.0 

CO2 Production (mllmin) 193.5 186.9 186.1 187.4 

Metabolic Rate (kcaIl24hr) 1511 1471 1481 1508 

Respiratory Quotient 0.894 0.883 0.869 0.857 

PRESSURES 

Systolic B.P. (mmHg) 145 148 140 149 

Diastolic B.P. (mmHg) 65 67 65 67 

Mean Arterial B.P. (mmHg) 95 100 94 100 

Central Venous B.P. (mmHg) 8 8 6 9 

Mean Pulmonary B.P. (mmHg) 24 23 22 23 

Wedge Pressure (mmHg) ? 18 7 7 7 
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PATIENT 4 RECORD 1 (03/3/94) 

GENERAL INFORMATION 

Status: Septic shock. kidney problems 

Drugs: Unknown 

Support: Ventilation, Fluid balance, PlasmaiColoid infusions 

Measurements: PAC, SAC, Deltatrac II, Thermodilution C.O. measurements. 

Female, 56 years, 157 em, 76 kg 

VENTILATOR ARRANGEMENT 

Siemens Servo 300, Standard disposable tubing (Urn insp, 1.5m exp) + Fisher & Packel MR600 
Filter 

CMV (pressure regulated volume control) 

METABOLIC COMPUTER (DELTATRAC II) RESULTS 

Gas Temperature (0C) 25.4 

Ambient Pressure (kPa) 100.395 

Ambient CO2 (% STPD) 0.04 

Non-Protein RQ 0.79 

Body Surface Area (m2): Deltatrac2 l.77 

SAMPLE RESULTS 

TIME 13:33 14:26 13:07 13:43 

VENTILATOR SETTINGS 

FIOz (%) 50 

Respiratory Rate (rpm) 14 12 

Tidal Volume (mI) [set (measured)] 700 (693) 700 (689) 

PEEP (cmH2O) 5 

I:E Ratio (lIE) 1.56 1.85 

PIP (cmH2O) 31.0 35.0 

Mean Airway Pressure (cmH2O) 14 15 

SYSTEMIC ARTERY BLOOD (Arterial Catheter) 

PaOz (kPa) 11.9 11.1 11.5 11.9 

PaC02 (kPa) 3.9 3.68 4.16 4.03 

Co-oximeter O2 Saturation (%) 96.9 96.6 96.8 97.0 

pH 7.333 7.374 7.363 7.384 

Standard Bicarbonate (mmolll) 18.6 19.5 20.4 21.0 

Base Excess (mmolll) -8.0 -9.1 -5.8 -5.1 

Hb (gilOOml) ? 15.4 11.8 11.6 1l.9 
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PULMONARY ARTERY BLOOD (Pulmonary Artery Catheter) 

Pv02 (kPa) 6.0 5.9 5.9 5.9 

PvC02 (kPa) 4.21 4.04 4.35 4.49 

Co-oximeter O2 Saturation (%) 82.9 83.8 83.2 83.9 

Standard Bicarbonate (mmolll) 19.8 19.2 20.0 21.4 

pH 7.353 7.350 7.350 7.372 

OTHER MEASUREMENTS 

Blood Temperature (DC) 38.0 37.9 37.9 37.9 

O2 Saturation (%) Oximeter 95 96 97 97 

Cardiac Output (Vmin) 10.5 11.8 10.1 11.1 

Cardiac Index 5.76 6.48 5.54 6.09 

Heart Rate (bpm) 150 146 148 148 

O2 Consumption (mVmin) 242.5 233.3 269.0 262.2 

CO2 Production (mVmin) 208.4 198.7 207.5 200.3 

Metabolic Rate (kcaV24hr) 1674 1607 1819 1768 

Respiratory Quotient 0.862 0.852 0.771 0.765 

PRESSURES 

Systolic B.P. (rrunHg) 100 100 101 99 

Diastolic B.P. (rrunHg) 50 51 52 52 

Mean Arterial B.P. (rrunHg) 68 70 69 69 

Central Venous B.P. (mmHg) 14 18 17 17 

Mean Pulmonary B.P. (mmHg) 32 34 34 35 

Wedge Pressure (mmHg) 15 16 17 19 
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B.2 Ethical Committee Guidelines 

Location of Research 

To be carried out at two centres; (I) Intensive Care Unit, Hull Royal Infinnary (2) Intensive Care 

Unit, Castle Hill Hospital 

Subjects 

The clinical investigation will be based on patients who are being mechanically ventilated in the 

above intensive care units. 

Informed Consent 

At the initial stages of the work no changes will be made to patient treatment. The study will be 

based on accurate recording of nonnal therapy. 

At a later stage alterations may be made to ventilator settings. These will be restricted to changes 

within the nonnal range for therapy in the specific clinical situation. Predictions from the system 

as to optimum therapy will be regarded as advisory only. Any change to ventilator therapy will be 

made on the basis of the clinical judgement of the anaesthetist in charge. However during this 

stage of the work, where therapy may be influenced by the trial, infonned consent will be 

obtained from the patient where possible. 

Permission of other Professionals 

The consultant in overall charge of the cases will be asked for permission for their patients to be 

entered into the trial. 

Substances to be Given 

No changes to drugs, etc given will be made for the study. 

Samples 

Blood gases will be measured by the nonnal methods employed for intensive care using nonnal 

sample sizes for the equipment employed. More regular samples, up to 4 time per hour, may be 

taken but no more than might be required in an individual anaesthetist's nonnal practice during 

ventilation. 

It is not considered that there are any special risks to the patients or staff involved in the study. 

Benefits 

There will be no financial benefit to subjects or staff involved. 

Facilities 

There will be no significant affect on nursing or laboratory workload. 
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Appendix C 

Simulated Patient Definitions 

243 



C.l Normal Lung Patient 

NORMAL LUNGS 

Physiological Shunt (%) 

Time (min) Value 

0 8 

30 2 

300 0 

Body Temperature eC) 

Time (min) Value 

o 35 

120 37 

Function 

init value 

ramp 

ramp 

Functions 

initial 
value 

ramp 

10 

I~~ I i i i i i 

0 SO 100 ISO 200 2S0 300 
Time (min) 

o so 100 ISO 200 2S0 300 
Time (min) 

Table C.I: Event profiles for Normal Lung patient scenario. 

C.2 Lobar Pneumonia Patient 

LOBAR PNEUMONIA 

Physiological Shunt (%) 

Time (min) Value Function 3S 

0 32 init value :i 30 

~ ~ 2S 
120 30 ramp ..a 20 

v.> 
. IS 

120 25 step 110 
S -240 23 ramp 

0 200 400 600 800 1000 1200 1400 

360 21 ramp Time (min) 

360 16 step 

1440 7 ramp 

Body Temperature (OC) 

Time (min) Value Function 
""' 39 

0 35 init value ~ -i 38 
120 37 ramp ~ 37 --------~ 36 

0 200 400 600 800 1000 1200 1400 
Time (min) 

Table C.2 Continued Overleaf ... 
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LOBAR PNEUMONIA Continued ••• 

Metabolic Rate (%) 

Time (min) Value Function 

o 135 mit value 

1440 100 ramp 

Respiratory Quotient 

Time (min) Value Function 

o 0.75 mit value 

1440 0.8 ramp 

Airway Resistance (cmHzO/JIsec) 

Time (min) Value Function 

o 15 mit value 

1440 10 ramp 

Lung Compliance OIcmHzO) 

Time (min) Value Function 

o 0.02 mit value 

120 0.03 step 

360 0.04 step 

720 0.05 step 

Arterial Bicarbonate (mmol/l) 

Time (min) Value Function 

o 16 mit value 

1440 24 ramp 

Table C.2 Continues Overleaf ... 

~!~C:::;:I 
o 200 400 600 800 1000 1200 1400 

Time (min) 

0.81L:::J 0.80 
0.79 

cy 0.78 
~ 0.77 

0.76 
0.75 
0.74 +---r--...,..---...----.----,r---r--.,.J 

o 200 400 600 800 1000 1200 1400 
Time (min) 

~ 16~--------------~ 

! 14 r----------
] 12 

'-' 10 

~ 8~--T---T---~--~--~--~--~ 
o 200 400 600 800 1000 1200 1400 

Time (min) 

0'06~ 
Q;0.05 ~ 
] 0.04 . 
C 0.03 .---...... 
~ 0.02 
u 0.01 " I , 

o 200 400 600 800 1000 1200 1400 

~ 2S 

120~ 
115 
~ 

Time (min) 

-
~ 10+---~--~--~--~--__ --__ --~ 

o 200 400 600 800 1000 1200 1400 
Time (min) 
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LOBAR PNEUMONIA Continued .•• 

Venous Bicarbonate (mmolll) 

Time (min) Value Function 

~;;~ 0 17.8 init value ~ 23 

1440 25.8 ramp I;! 
~ 17 
~ IS 

0 200 400 600 800 1000 1200 1400 
Time (min) 

Table C.2: Event profiles for Lobar Pneumonia patient scenario. 

C.3 Acute Asthmatic Patient 

ACUTE ASTHMA TIC 

Physiological Shunt (%) 

Time (min) Value Function 

o 5 init value 

1440 0 ramp 

Airway Resistance (cmH10lllsec) 

Time (min) Value Function 

o 120 inil value 

360 50 ramp 

1080 10 ramp 

Lung Compliance (IIcmB1O) 

Time (min) Value Function 

0 0.04 inil value 

360 0.055 ramp 

1080 0.06 ramp 

o 200 400 600 800 1000 1200 1400 
Time (min) 

r~ ~+--'---r---r---r--=;:::::::;,=:::;:I, I 
o 200 400 600 800 1000 1200 1400 

Time (min) 

0.07 .,....-------------_. 

q: 0.06 1 0.05 I ./'" 
5 0.04 V" 

0.03 +--.,...-_r_--.--....,...---..--.....,.----.J 
o 200 400 600 800 1000 1200 1400 

Time (min) 

Table C.3: Event profiles for Acute Asthmatic patient scenario. 
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C.4 Head Injury Patient 

HEAD INJURY 

Body Temperature COC) 

Time (min) Value Function 

i::k:: 0 34.5 init value 

I 
120 37 ramp 

i 3S 
34 • i i 

0 40 80 120 160 200 240 
Time (min) 

Table C.4: Event profiles for Head Injury patient scenario. 

C.S ARDS Patient 

ARDS 

Physiological Shunt (%) 

Time (min) Value Function 

o 40 init value 

360 50 ramp 

2880 20 ramp 

....... 

60t:::::d t so 
§ 40 
~ 30 

&20 
10+---~--~--~--~--~--~--~ 

o 400 800 1200 1600 2000 2400 2800 
Time (min) 

Lung Compliance (I/cmH10) 

o 
Time (min) Value Function 

init value 0.015 

360 0.01 ramp 

1080 0.03 ramp 

0.046:: =:::j i 0.03 

e 0.02 _ 

~ 0.01 

u 0.00 +----r---r----r"i --r----r----~ 
o 400 800 1200 1600 2000 2400 2800 

Time (min) 

Table C.5: Event profiles for ARDS patient scenario. 
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C.6 Patient Initial Conditions 

Normal Lobar Acute Head ARDS 
Lungs Pneumon. Asthmatic Injury 

Patient Parameters 

Sex male female female male male 

Weight (kg) 75 60 60 85 75 

Height (cm) 165 150 150 190 180 

Age (years) 50 65 47 22 50 

Body Temperature (OC) 35 38.5 37 34.5 38 

Cardiac Output (Vrnin) t 4.82 6.15 4.65 5.35 6.90 

O2 Consum. (mVmin: STPD) t 213.2 343.8 222.7 220.6 317.3 

CO2 Prod. (ml/min: STPD) t 170.6 257.9 178.2 176.5 253.8 

Metabolic Rate (%) 100 135 100 100 110 

Respiratory Quotient 0.8 0.75 0.8 0.8 0.8 

Cardiac Efficiency (%) 100 100 100 100 100 

Tamponade Sensitivity (%) 100 100 100 100 100 

Dead Space (ml: ATPS) t 165 132 132 187 165 

Physiological Shunt rio) 8 32 5 3 40 

Fixed Shunt (%) 2 3 1 2 2 

PEEP Threshold (cmH2O) 6 60 100 4 70 

Haemoglobin (gil) 140 116 130 140 140 

Arterial Bicarbonate (mmol/l) 24 16 24 24 24 

Venous Bicarbonate (mmol/l) 25.8 17.8 25.8 25.8 25.8 

Packed Cell Volume (%)t 42 34.8 39 42 42 

Airway Resist. (cmH2OlVsec) 7 15 120 7 10 

Lung Compliance (VcmH2O) 0.08 0.02 0.04 0.07 0.015 

Ventilator Settings 

F102 (%: STPD) 60 50 50 70 50 

PEEP (cmH2O) 4 0 0 0 0 

VT (ml: ATPS) 750 600 600 700 700 

RR(rpm) 12 14 12 12 12 

TIN (%) 33 33 40 33 33 

TPAUSE (%) 10 10 10 10 10 

Atmospberic Conditions 

Barometric Pressure (kPa) 101.325 101.325 101.325 101.325 101.325 

Air Temperature (DC) 25 20 20 20 20 

Inspired FIC02 (%: STPD) 0.05 0.05 0.05 0.05 0.05 

Table C.6 continued overleaf ... 
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Continued ... Normal Lobar Acute Head ARDS 
Lungs Pneumon. Asthmatic Injury 

Fixed Parameters 

Hb O2 Binding Capacity (ml/g) 1.34 1.34 1.34 1.34 1.34 

Plasma ~ Solubility (ml/l/kPa) 0.225 0.225 0.225 0.225 0.225 

P50 (kPa) 3.5774 3.5774 3.5774 3.5774 3.5774 

O2 Lung Diff. (mJ/kPalmin) 450 450 450 450 450 

CO2 Lung Diff. (mJ/kPalmin) 1500 1500 1500 1500 1500 

Reference Only 

Systolic Blood Press. (mmHg) 135 120 120 120 120 

t Calculated from empirical formulae 

Table C.6: Initial patient parameters and ventilator settings for the Normal Lung, Lobar 
Pneumonia, Asthmatic, Head Injury and ARDS virtual patient scenarios. 
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Appendix D 

Closed Loop Decision History Data 
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1 2 3 4 5 6 

Time (hours) 0.0 0.5 1.0 2.5 5.5 8.5 

Patient Observations 

Pa02 (kPa) 42.90 27.24 21.67 21.82 23.86 19.28 

PaC02 (kPa) 3.08 4.68 5.36 5.93 4.73 5.23 

Arterial pH 7.60 7.43 7.38 7.34 7.43 7.39 

PIP (cmH2O) 16.6 15.5 12.7 12.7 13.2 13.0 

Sa02 (0/0) 99.9 99.5 99.1 99.0 99.3 98.8 

T BODY (OC) 35.0 35.5 36.0 37.0 37.0 37.0 

Cardiac Output (llmin) 4.82 5.06 5.46 5.95 5.95 5.95 

O2 Consump. (mllmin) 213 226 238 263 263 263 

CO2 Prod. (mllmin) 171 181 191 211 211 211 

Effective Shunt (0/0) 4.7 2.7 3.2 2.7 2.0 2.0 

Metab. Rate (%) 100 100 100 100 100 100 

Respiratory Quotient 0.80 0.80 0.80 0.80 0.80 0.80 

Raw (cmH2Oll/sec) 7.0 7.0 7.0 7.0 7.0 7.0 

Caw (lIcmH2O) 0.08 0.08 0.08 0.08 0.08 0.08 

Ventilator Settings 

FI02 (%) 60 40 35 35 35 30 

PEEP (cmH2O) 4.0 4.0 2.0 2.0 2.0 2.0 

Vr (ml) 750 750 700 700 700 700 

RR (rpm) 12.0 8.0 8.0 8.0 10.0 9.0 

Mv (llmin) 9.00 6.00 5.60 5.60 7.00 6.30 

TIN (%) 33 33 33 33 33 33 

Advised Ventilator Settings 

FI02 (%) 40 35 35 35 30 

PEEP (cmH 2O) 4.0 2.0 2.0 2.0 2.0 

Vr (ml) 750 700 700 700 700 
WEAN 

RR (rpm) 8.0 8.0 8.0 10.0 9.0 

Mv (llmin) 6.00 5.60 5.60 7.00 6.30 

TIN (%) 33 33 33 33 33 

Table 0.1: Anaesthetist decision history for Normal Lung patient. 
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1 2 3 4 5 6 

Time (hours) 0.0 0.5 1.0 2.5 5.5 8.5 

Patient Observations 

Pa02 (kPa) 42.90 21.26 18.14 17.74 19.14 19.22 

PaC02 (kPa) 3.08 5.11 5.49 5.93 5.41 5.32 

Arterial pH 7.60 7.39 7.37 7.34 7.38 7.38 

PIP (cmH2O) 16.6 11.7 11.1 10.7 11.0 11.2 

Sa02 (%) 99.9 99.2 98.7 98.4 98.8 98.8 

TaODY rC) 35.0 35.5 36.0 37.0 37.0 37.0 

Cardiac Output (I/min) 4.82 5.30 5.60 6.11 6.11 6.11 

O2 Consump. (ml/min) 213 226 239 263 263 263 

CO2 Prod. (ml/min) 171 181 191 211 211 211 

Effective Shunt (%) 4.7 3.6 3.6 3.1 2.0 2.0 

Metab. Rate (%) 100 100 100 100 100 100 

Respiratory Quotient 0.80 0.80 0.80 0.80 0.80 0.80 

Raw (cmH2O/l/sec) 7.0 7.0 7.0 7.0 7.0 7.0 

Caw (1/cmH2O) 0.08 0.08 0.08 0.08 0.08 0.08 

Ventilator Settings 

FI02 (%) 60 35 31 30 30 30 

PEEP (cmH2O) 4.0 1.0 0.5 0.0 0.0 0.0 

Vr (ml) 750 700 690 700 710 720 

RR (rpm) 12.0 8.0 8.0 8.0 8.5 8.5 

Mv (I/min) 9.00 5.60 5.52 5.60 6.04 6.12 

TIN (%) 33 33 33 33 33 33 

Advised Ventilator Settings 

FI02 (%) 35 31 30 30 30 30 

PEEP (cmH 2O) 1.0 0.5 0.0 0.0 0.0 0.0 

Vr (ml) 700 690 700 710 720 720 

RR (rpm) 8.0 8.0 8.0 8.5 8.5 8.5 

Mv (I/min) 5.60 5.52 5.60 6.04 6.12 6.12 

TIN (%) 33 33 33 33 33 33 

Table D.2: Prototype advisor decision history for Normal Lung patient. 
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1 2 3 4 5 6 

Time (hours) 0.0 0.5 1.0 2.5 5.5 8.5 

Patient Observations 

Pa02 (kPa) 42.90 25.57 21.04 21.71 23.34 23.35 

PaC02 (kPa) 3.08 5.34 5.49 5.70 5.31 5.31 

Arterial pH 7.60 7.38 7.37 7.35 7.38 7.38 
PIP (cmH2O) 16.6 12.8 11.1 11.2 11.3 10.8 
5a02 (0/0) 99.9 99.4 99.1 99.0 99.2 99.2 
T BODY (Oe) 35.0 35.5 36.0 37.0 37.0 37.0 

Cardiac Output (I/min) 4.82 5.22 5.60 6.07 6.07 6.11 

O2 Consump. (ml/min) 213 226 239 263 263 263 

CO2 Prod. (ml/min) 171 181 191 211 211 211 

Effective Shunt (%) 0.0 0.0 0.0 0.0 0.0 0.0 

Metab. Rate (%) 100 100 100 100 100 100 

Respiratory Quotient 0.80 0.80 0.80 0.80 0.80 0.80 

Raw (cmH2O/l/sec) 0.7 0.7 0.7 0.7 0.7 0.7 
Caw (1/cmH2O) 0.82 0.82 0.82 0.82 0.82 0.82 

Ventilator Settings 

FI02 (%) 60 40 35 35 35 35 

PEEP (cmH2O) 4.0 2.0 0.5 0.5 0.5 0.0 

Vr (ml) 750 710 690 690 690 690 

RR (rpm) 12.0 7.5 8.0 8.5 9.0 9.0 

Mv (I/min) 9.00 5.33 5.52 5.87 6.21 6.21 

TIN (%) 33 33 33 33 33 33 

Advised Ventilator Settings 

FI0 2 (%) 40 35 35 35 35 35 

PEEP (cmH2O) 2.0 0.5 0.5 0.5 0.0 0.0 

Vr (ml) 710 690 690 690 690 700 

RR (rpm) 7.5 8.0 8.5 9.0 9.0 9.0 

Mv (I/min) 5.33 5.52 5.87 6.21 6.21 6.30 

TIN (%) 33 33 33 33 33 33 

Table 0.3: Refined advisor decision history for Normal Lung patient. 
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1 2 3 4 5 6 7 8 9 10 11 

lirre (hcus) 0.0 0.5 1.5 2.5 4.5 6.5 9.5 12.5 18.5 24.5 25.5 

Palent ObsefvatIoos 

~(kPa) 9.54 9.79 9.91 11.11 11.65 18.05 16.00 15.25 20.22 19.70 14.93 

~(kPa) 8.58 6.88 6.17 5.31 4.91 4.16 4.61 4.68 4.54 4.55 5.38 

Merial pH 7.02 7.12 7.17 7.24 7.29 7.37 7.35 7.37 7.42 7.45 7.38 

PIP (art-iP) 36.4 42.1 42.9 32.8 32.5 27.3 25.3 22.0 19.3 16.3 15.8 

SaOz(%) 80.5 86.2 88.7 93.4 94.9 98.5 98.2 97.8 98.9 99.0 97.9 

TIDJI'(°C) 38.5 38.5 38.4 38.3 38.2 38.1 37.9 37.7 37.3 37.0 37.0 

Qrda:: QJtput (linin) 6.15 6.05 5.98 5.88 5.75 5.59 5.40 5.18 4.82 4.57 4.57 

Oz Cmsurrp. (n1/nin) 344 341 335 3:D 319 309 293 278 248 223 223 

~ Prod. (n1/mn) 258 256 253 249 243 213 Z!3 216 100 178 178 

Effective SU1t (%) 35.0 32.4 31.5 25.9 24.0 17.7 16.3 14.9 121 9.8 9.8 

MetaI:>. Rate (%) 135 134 133 131 128 1:;E 121 117 108 100 100 

Respiratory OJotiert 0.75 0.75 0.75 0.76 0.76 0.76 0.77 0.78 0.79 0.80 0.80 

Raw (CI"f""I-1PI/sec) 15.0 14.9 14.7 14.5 14.1 13.6 13.0 124 11.1 10.0 10.0 

CaN (lIartiPl 0.02 0.02 0.02 0.03 0.03 0.04 0.04 0.05 0.05 0.05 0.05 

VentIlator SettIngs 

FIOz(%) 50 70 80 80 80 80 70 60 60 50 40 

PEEP (c:rrHP) 0.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 2.0 2.0 

Vr(n1) 600 600 600 600 600 600 600 600 550 550 550 

RR(lPnV 14.0 18.0 20.0 20.0 20.0 20.0 16.0 16.0 14.0 120 10.0 

MlOImn) 8.40 10.00 1200 1200 1200 1200 9.60 9.60 7.70 6.60 5.50 

T1N (%) 33 33 33 33 33 33 33 33 33 33 33 

AdvIsed VentIlator SettIngs 

FIOz(%) 70 80 80 80 80 70 60 60 50 40 

PEEP (art-iP) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 2.0 2.0 

Vr(n1) 600 600 600 600 600 600 600 550 550 550 
VI.EAN 

RR(rpnV 18.0 20.0 20.0 20.0 20.0 16.0 16.0 14.0 120 10.0 

M.t (limn) 10.00 12.00 12.00 1200 1200 9.60 9.60 7.70 6.60 5.50 

TIN(%) 33 33 33 33 33 33 33 33 33 33 

Table 0.4: Anaesthetist decision history for Lobar Pneumonia patient. 

254 



1 2 3 4 5 6 7 8 9 10 11 

lirre (hcus) 0.0 0.5 1.5 25 4.5 6.5 9.5 125 1&5 24.5 25.5 

pajert Q:xser\&joos 

PaQ(kPa) 9.54 9.70 10.18 1228 1279 20.23 13.43 13.80 15.00 15.64 13.83 

~(kPa) 8.58 7.00 6.44 5.45 4.83 4.15 4.13 4.20 4.03 4.20 5.00 

Melia P-l 7.(12 7.11 7.15 7.23 7.:1> 7.'51 7.40 7.41 7.C 7.48 7.41 

Ap(arHP) 35.4 41.0 41.0 31.8 34.7 2&7 ZT.3 22.8 21.0 19.7 18.1 

SaO.z(o/~ 80.5 85.5 88.9 94.7 00.0 98.8 97.3 97.6 98.4 98.5 97.7 

TEJ::Vv(°C) 38.5 38.5 38.4 38.3 38.2 38.1 '51.9 '51.7 37.3 37.0 37.0 

Cadac 0JIp..t Olrrin) 6.15 6.(l; 5.98 5.ff7 5.74 5.57 5.40 5.18 4.82 4.50 4.54 

D.1 Corsurrp. (mlrrin) 344 341 335 3:l) 319 :m 293 ZT8 248 223 223 

CD.1 Prod. (m/nin) 258 256 253 249 243 235 223 216 100 178 178 

Effective Sui (%~ 35.0 327 31.4 25.6 23.8 17.6 16.3 14.9 121 9.5 9.7 

~Ra:eW~ 135 134 133 131 128 123 121 117 100 100 100 

ResPratay Q..diert 0.75 075 075 0.76 0.76 076 0.77 078 0.79 080 080 

RaN (aTtWIlsec) 15.0 14.9 14.7 14.5 14.1 13.6 13.0 124 11.1 10.0 10.0 

C:aN(I/cntiP) 0.02 0.02 0.02 0.03 0.03 0.04 0.04 O.(l; O.(l; O.(l; O.(l; 

Vertilcmr Settirv; 

FID.1(o/~ 50 67 82 00 88 84 00 55 51 42 '51 

PeEP(arHP) 0.0 3.5 4.0 4.5 4.5 4.5 4.0 4.0 4.0 4.0 3.0 

VT(m) OOJ 500 570 fro 650 640 650 640 610 610 610 

RR(~ 14.0 18.0 20.0 21.0 18.5 18.5 16.5 15.0 14.0 11.5 9.5 

MJ O/nin) 8.40 10.62 11.40 11.76 1203 11.84 10.73 9.00 8.54 7.02 5.80 

TINW~ 33 33 33 33 33 33 33 33 33 33 33 

Pdvised Veliilaa Settirv; 

FID.1(o/~ 67 82 00 88 84 00 55 51 42 '51 35 
PeEP(arHP) 3.5 4.0 4.5 4.5 4.5 4.0 4.0 4.0 4.0 3.0 20 

VT(m) 500 570 fro 650 640 650 640 610 610 610 500 

RR(~ 18.0 20.0 21.0 18.5 1&5 16.5 15.0 14.0 11.5 9.5 9.5 

MJO/nin) 10.62 11.40 11.76 1203 11.84 10.73 9.00 8.54 7.02 5.80 5.61 

liNW~ 33 33 33 33 33 33 33 33 33 33 33 

Table D.5: Prototype advisor decision history for Lobar Pneumonia patient. 
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1 2 3 4 5 6 7 8 9 10 11 

lirre(hcus) 0.0 0.5 1.5 25 4.5 6.5 9.5 125 18.5 24.5 25.5 

?Uri Cllservc:mms 

f>aO.1 (kPa) 9.54 9.65 9.69 10.97 11.56 17.78 15.49 15.65 20.23 21.74 16.14 

~(kPa) 8.58 6.91 6.03 5.21 4.91 4.43 4.73 4.78 4.55 4.46 5.33 

Melia p-i 7.02 7.11 7.18 7.25 7.':!J 7.35 7.34 7.33 7.42 7.46 7.38 

AP(art-W) 33.4 40.2 41.5 31.4 31.0 25.3 24.0 21.3 20.2 18.3 16.7 

SaD.! (o/~ 80.5 85.5 88.2 93.3 94.8 98.3 97.8 97.9 00.0 00.2 98.3 
TIOJ'((°C) 38.5 38.5 38.4 38.3 38.2 38.1 37.9 37.7 37.3 37.0 37.0 

Cadac Q.JIplt (Ilrrin) 6.15 6.05 5.98 5.88 5.75 5.59 5.40 5.18 4.82 4.54 4.57 

~ CorsuTp. (rrllrrin) 344 341 333 3:I) 319 :m 293 278 248 223 223 

CX>z Prod. (rrl/nin) 258 253 253 249 243 233 2a3 216 193 178 178 

Bfedive Sui (%~ 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.1 

M:.ta>. Rae (O/~ 135 134 133 131 128 123 121 117 108 100 100 

ResPratay Q.diert 075 0.75 075 076 076 076 077 078 079 0.80 080 

Ra.v{arHPllsec) 1.5 1.5 1.4 1.4 1.4 1.3 1.3 1.2 1.1 1.0 1.0 

CaN (I/art-W) 0.20 0.20 0.20 0.31 0.31 0.41 0.41 0.51 0.51 0.51 0.51 

Vertilatcr Settirvo 

FI~(o/~ 50 fJ1 76 79 79 79 as 61 00 53 43 

A:B> (art-W) 0.0 3.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 3.0 20 

Vr(n1) Em Em Em 600 600 600 600 Em Em Em Em 

RR(fPTO 14.0 18.0 20.5 20.5 20.0 18.5 15.5 14.0 125 11.0 9.0 

MtOlnin) 8.40 10.80 12]) 12]) 1200 11.10 9.]) 8.40 7.50 6.00 5.40 

liN(o/~ 33 40 40 40 40 40 40 33 33 33 33 

PdIised VertiI<*J" Settirvo 

FI~(O/~ fJ1 76 79 79 79 as 61 00 53 43 33 
A:B> (art-W) 3.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 3.0 20 25 

Vr(n1) 600 600 Em 600 600 600 Em Em Em Em Em 

RR(fPTO 18.0 20.5 20.5 20.0 18.5 15.5 14.0 125 11.0 9.0 9.0 

Mt (linin) 10.80 12]) 12]) 1200 11.10 9.]) 8.40 7.50 6.00 5.40 5.40 

liN (O/~ 40 40 40 40 40 40 33 33 33 33 33 

Table D.6: Revised advisor decision history for Lobar Pneumonia patient. 
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1 2 3 4 5 

Time (hours) 0.0 0.5 2.5 8.5 10.5 

Patient Observations 

Pa02 (kPa) 28.68 20.43 21.01 23.08 20.58 

PaC02 (kPa) 3.93 5.55 5.57 5.49 4.68 

Arterial pH 7.51 7.37 7.36 7.37 7.44 

PIP (cmH2O) 51.1 31.5 25.6 14.9 15.2 

Sa02 (%) 99.6 98.9 98.9 99.1 99.1 

T BODY (0C) 37.0 37.0 37.0 37.0 37.0 

Cardiac Output (llmin) 4.65 4.65 4.65 4.65 4.65 

O2 Consump. (mllmin) 223 223 223 223 223 

CO2 Prod. (mllmin) 178 178 178 178 178 

Effective Shunt (%) 6.0 5.9 5.5 4.2 3.8 

Metab. Rate (%) 100 100 100 100 100 

Respiratory Quotient 0.80 0.80 0.80 0.80 0.80 

Raw (cmH2Oll/sec) 120.3 114.2 90.8 41.8 34.7 

Caw (lIcmH2O) 0.04 0.04 0.05 0.06 0.06 

Ventilator Settings 

FI02 (%) 50 40 40 40 35 

PEEP (cmH2O) 0.0 0.0 0.0 0.0 0.0 

VT (ml) 600 450 400 400 450 

RR (rpm) 12.0 12.0 14.0 14.0 14.0 

Mv (llmin) 7.20 5.40 5.60 5.60 6.30 

TIN (%) 40 50 50 50 50 

Advised Ventilator Settings 

FI02 (%) 40 40 40 35 

PEEP (cmH2O) 0.0 0.0 0.0 0.0 

Vr (ml) 450 400 400 450 
WEAN 

RR (rpm) 12.0 14.0 14.0 14.0 

Mv (llmin) 5.40 5.60 5.60 6.30 

TIN (%) 50 50 50 50 

Table D.7: Anaesthetist decision history for Acute Asthmatic patient. 
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1 2 3 4 5 

Time (hours) 0.0 0.5 2.5 8.5 10.5 

Patient Observations 

Pa02 (kPa) 28.68 14.97 15.32 16.57 17.03 

PaC02 (kPa) 3.93 5.25 5.22 5.06 5.09 

Arterial pH 7.51 7.39 7.39 7.40 7.40 

PIP (cmH2O) 51.0 38.6 31.9 19.5 18.1 
5a02 (0/0) 99.6 98.0 98.1 98.4 98.5 

T BODY (DC) 37.0 37.0 37.0 37.0 37.0 

Cardiac Output (I/min) 4.65 4.65 4.65 4.65 4.65 

O2 Consump. (ml/min) 223 223 223 223 223 

CO2 Prod. (ml/min) 178 178 178 178 178 

Effective Shunt (0/0) 6.0 5.9 5.5 4.2 3.8 

Metab. Rate (%) 100 100 100 100 100 

Respiratory Quotient 0.80 0.80 0.80 0.80 0.80 

Raw (cmH2O/l/sec) 120.0 114.1 90.7 41.6 34.9 

Caw (lIcmH2O) 0.04 0.04 0.05 0.06 0.06 

Ventilator Settings 

FI02 (%) 50 30 30 30 30 

PEEP (cmH2O) 0.0 0.0 0.0 0.0 0.0 

Vr (ml) 600 520 520 570 590 

RR (rpm) 12.0 10.5 10.5 9.5 9.0 

Mv (I/min) 7.20 5.46 5.46 5.42 5.31 

TIN (%) 40 40 40 40 40 

Advised Ventilator Settings 

FI02 (%) 30 30 30 30 30 

PEEP (cmH2O) 0.0 0.0 0.0 0.0 0.0 

VT (ml) 520 520 570 590 580 

RR (rpm) 10.5 10.5 9.5 9.0 9.0 

Mv (I/min) 5.46 5.46 5.42 5.31 5.22 

TIN (%) 40 40 40 40 40 

Table 0.8: Prototype advisor decision history for Acute Asthmatic patient. 
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1 2 3 4 5 

Time (hours) 0.0 0.5 2.5 8.5 10.5 

Patient Observations 

Pa02 (kPa) 28.68 20.43 17.98 19.68 20.38 

PaC02 (kPa) 3.93 5.55 5.46 5.24 5.07 

Arterial pH 7.51 7.37 7.37 7.39 7.40 

PIP (cmH2O) 51.0 31.5 26.6 16.3 17.3 

5a02 (%) 99.6 98.9 98.6 98.9 99.0 

T BODY (OC) 37.0 37.0 37.0 37.0 37.0 

Cardiac Output (limin) 4.65 4.65 4.63 4.63 4.63 

O2 Consump. (mllmin) 223 223 223 223 223 

CO2 Prod. (ml/min) 178 178 178 178 178 

Effective Shunt (%) 0.1 0.1 0.1 0.0 0.0 

Metab. Rate (%) 100 100 100 100 100 

Respiratory Quotient 0.80 0.80 0.80 0.80 0.80 

Raw (cmH2O/l/sec) 11.8 11.2 8.9 4.1 3.4 

Caw (IIcmH2O) 0.41 0.42 0.47 0.57 0.58 

Ventilator Settings 

FI02 (%) 50 40 35 35 35 

PEEP (cmH2O) 0.0 0.0 0.5 0.5 0.5 

VT (ml) 600 450 440 450 490 

RR (rpm) 12.0 12.0 12.5 12.5 11.5 

Mv (I/min) 7.20 5.40 5.50 5.63 5.64 

TIN (%) 40 50 50 50 40 

Advised Ventilator Settings 

FI02 (%) 40 35 35 35 35 

PEEP (cmH2O) 0.0 0.5 0.5 0.5 0.5 

VT (ml) 450 440 450 490 500 

RR (rpm) 12.0 12.5 12.5 11.5 11.0 

Mv (I/min) 5.40 5.50 5.63 5.64 5.50 

TIN (%) 50 50 50 40 33 

Table 0.9: Revised advisor decision history for Acute Asthmatic patient. 
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1 2 3 4 5 6 

Time (hours) 0.0 0.5 2.5 3.5 5.5 11.5 

Patient Observations 

Pa02 (kPa) 51.82 32.04 22.88 23.58 19.66 19.66 

PaC02 (kPa) 3.47 4.42 5.42 3.90 4.50 4.50 

Arterial pH 7.55 7.45 7.38 7.51 7.45 7.45 
PIP (cmH 2O) 13.0 12.5 12.5 13.5 13.0 13.0 

Sa02 (%) 99.9 99.7 99.1 99.4 99.0 99.0 
TBODY(OC) 34.5 35.1 37.0 37.0 37.0 37.0 

Cardiac Output (I/min) 5.35 5.69 6.71 6.71 6.71 6.71 
O2 Consump. (ml/min) 221 238 289 289 289 289 

CO2 Prod. (ml/min) 176 190 231 231 231 231 

Effective Shunt (%) 5.0 5.0 5.0 5.0 5.0 5.0 

Metab. Rate (%) 100 100 100 100 100 100 
Respiratory Quotient 0.80 0.80 0.80 0.80 0.80 0.80 

Raw (cmH 2O/l/sec) 7.0 7.0 7.0 7.0 7.0 7.0 

Caw (lIcmH2O) 0.07 0.07 0.07 0.07 0.07 0.07 

Ventilator Settings 

FI0 2 (%) 70 50 40 40 35 35 

PEEP (cmH 2O) 0.0 0.0 0.0 0.0 0.0 0.0 

Vr (ml) 700 700 700 700 700 700 

RR (rpm) 12.0 10.0 10.0 14.0 12.0 12.0 

Mv (llmin) 8.40 7.00 7.00 9.80 8.40 8.40 

TIN (%) 33 33 33 33 33 33 

Advised Ventilator Settings 

FI0 2 (%) 50 40 40 35 35 :::!CJ) 
PEEP (cmH 2O) 0.0 0.0 0.0 0.0 0.0 I-UJ < z~ :::E ::::>< 
Vr (ml) 700 700 700 700 700 UJ~ 0 

u 
RR (rpm) 10.0 10.0 14.0 12.0 12.0 ::::>I-:::E 

~ZO 
I-UJ~ 

Mv (I/min) 7.00 7.00 9.80 8.40 8.40 z-
o~LL. 

TIN (%) 33 33 33 33 33 ua.. 

Table 0.10: Anaesthetist decision history for Head Injury patient. 
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1 2 3 4 5 6 7 

Time (hours) 0.0 0.5 2.5 3.5 5.5 11.5 17.5 

Patient Observations 

Pa02 (kPa) 51.82 23.38 16.81 16.43 16.45 16.47 16.47 

PaC02 (kPa) 3.47 4.73 5.70 4.76 4.69 4.63 4.63 

Arterial pH 7.55 7.43 7.35 7.43 7.44 7.44 7.44 
PIP (cmH 2O) 13.0 13.0 13.1 14.1 14.3 14.5 14.5 

8a02 (%) 99.9 99.4 98.3 98.5 98.5 98.5 98.5 
T BODY (DC) 34.5 35.1 37.0 37.0 37.0 37.0 37.0 
Cardiac Output (I/min) 5.35 5.70 6.71 6.71 6.71 6.71 6.71 
O 2 Consump. (ml/min) 221 238 289 289 289 289 289 

C02 Prod. (ml/min) 176 190 231 231 231 231 231 

Effective Shunt (%) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 

Metab. Rate (%) 100 100 100 100 100 100 100 

Respiratory Quotient 0.80 0.80 0.80 0.80 0.80 0.80 0.80 

Raw (cmH 2Oll/sec) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 

Caw (lIcmH 2O) 0.07 0.07 0.07 0.07 0.07 0.07 0.07 

Ventilator Settings 

FI0 2 (%) 70 40 31 30 30 30 30 

PEEP (cmH 2O) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Vr (ml) 700 750 760 800 810 820 820 

RR (rpm) 12.0 8.5 8.5 9.5 9.5 9.5 9.5 

Mv (I/min) 8.40 6.38 6.46 7.60 7.70 7.79 7.79 

TIN (%) 33 33 33 33 33 33 33 

Advised Ventilator Settings 

FI0 2 (%) 40 31 30 30 30 30 30 
PEEP (cmH 2O) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Vr (ml) 750 760 800 810 820 820 820 

RR (rpm) 8.5 8.5 9.5 9.5 9.5 9.5 10.0 

Mv (I/min) 6.38 6.46 7.60 7.70 7.79 7.79 8.20 

TIN (%) 33 33 33 33 33 33 33 

Table 0.11: Prototype advisor decision history for Head Injury patient. 
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1 2 3 4 5 6 7 

Time (hours) 0.0 0.5 2.5 3.5 5.5 11.5 17.5 

Patient Observations 

Pa02 (kPa) 51.82 31.60 22.88 19.66 20.15 20.15 20.15 

PaC02 (kPa) 3.47 4.88 5.42 4.50 4.49 4.49 4.49 

Arterial pH 7.55 7.41 7.38 7.45 7.45 7.45 7.45 

PIP (cmH 2O) 13.0 12.2 12.5 13.0 13.5 13.5 13.5 

Sa02 (%) 99.9 99.7 99.1 99.0 99.0 99.0 99.0 

TeODY (OC) 34.5 35.1 37.0 37.0 37.0 37.0 37.0 

Cardiac Output (llmin) 5.35 5.70 6.71 6.71 6.67 6.67 6.67 

O2 Consump. (mllmin) 221 238 289 289 289 289 289 

C02 Prod. (mllmin) 176 190 231 231 231 231 231 

Effective Shunt (%) 0.1 0.1 0.1 0.1 0.0 0.0 0.0 

Metab. Rate (%) 100 100 100 100 100 100 100 

Respiratory Quotient 0.80 0.80 0.80 0.80 0.80 0.80 0.80 

Raw (cmH 2Olllsec) 0.7 0.7 0.7 0.7 0.7 0.7 0.7 

Caw (lIcmH2O) 0.71 0.71 0.71 0.71 0.71 0.71 0.71 

Ventilator Settings 

FI0 2 (%) 70 50 40 35 35 35 35 

PEEP (cmH 2O) 0.0 0.0 0.0 0.0 0.5 0.5 0.5 

Vr (ml) 700 700 700 700 700 700 700 

RR (rpm) 12.0 9.0 10.0 12.0 12.0 12.0 12.0 

Mv (I/min) 8.40 6.30 7.00 8.40 8.40 8.40 8.40 

TIN (%) 33 33 33 33 33 33 33 

Advised Ventilator Settings 

FI0 2 (%) 50 40 35 35 35 35 35 

PEEP (cmH 2O) 0.0 0.0 0.0 0.5 0.5 0.5 0.5 

Vr (ml) 700 700 700 700 700 700 700 

RR (rpm) 9.0 10.0 12.0 12.0 12.0 12.0 12.0 

Mv (llmin) 6.30 7.00 8.40 8.40 8.40 8.40 8.40 

TIN (%) 33 33 33 33 33 33 33 

Table 0.12: Revised advisor decision history for Head Injury patient. 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Time (hours) 0.0 0.5 1.5 3.5 4.5 5.5 7.5 11.5 17.5 23.5 26.5 34.5 42.5 46.5 50.5 

Patient Observations 

Pa02 (kPa) 8.00 8.76 8.54 8.03 8.41 8.73 8.75 9.01 9.49 10.12 10.29 11.27 12.82 14.00 12.69 

PaC0 2 (kPa) 8.04 8.20 8.35 8.36 8.35 9.19 9.16 8.72 8.14 7.64 7.99 7.50 6.09 5.55 5.33 

Arterial pH 7.21 7.21 7.20 7.20 7.20 7.16 7.16 7.18 7.21 7.24 7.22 7.24 7.33 7.37 7.39 

PIP (cmH 2O) 50.9 47.9 46.8 48.1 52.9 53.5 52.3 46.3 40.0 35.8 33.8 28.4 28.0 25.8 27.6 

Sa02 (%) 82.2 85.7 84.3 81.5 83.7 83.4 83.6 85.7 88.6 91.2 91.2 93.6 96.3 97.3 96.7 

T BODY ("C) 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 

Cardiac Output (11m in) 6.90 6.84 6.84 6.85 6.78 6.79 6.78 6.76 6.73 6.70 6.69 6.70 6.67 6.71 6.71 

O 2 Con sump. (ml/min) 317 317 317 317 317 317 317 317 317 317 317 317 317 317 317 

CO2 Prod. (ml/min) 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 

Effective Shunt (%) 42.0 40.5 42.1 45.2 42.7 44.1 43.9 41.5 37.8 34.1 32.3 28.3 23.2 21.3 20.3 

Metab. Rate (G,{,) 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 

Respiratory Quotient 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 

Raw (cmH 2Olllsec) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 

Caw (1/cmH 2O) 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.03 0.03 

Ventilator Settings 

FI0 2 (%) 50 70 70 70 70 80 80 80 80 80 70 70 70 70 60 

PEEP (cmH 2O) 0.0 4.0 4.0 4.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 8.0 8.0 6.0 6.0 

VT (ml) 700 600 550 500 450 425 425 425 425 425 425 425 475 500 550 

R R (rpm) 12.0 14.0 16.0 20.0 22.0 22.0 22.0 22.0 22.0 22.0 20.0 20.0 20.0 20.0 18.0 

Mv (I/min) 8.40 8.40 8.80 10.00 9.90 9.35 9.35 9.35 9.35 9.35 8.50 8.50 9.50 10.00 9.90 

TIN (%) 33 50 50 60 60 60 60 60 60 60 60 60 60 60 50 

Advised Ventilator Settings 

FI0 2 (%) 70 70 70 70 80 80 80 80 80 70 70 70 70 60 

PEEP (cmH 2O) 4.0 4.0 4.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 8.0 8.0 6.0 6.0 

550 500 450 425 425 425 425 425 425 425 475 500 550 
w 

VT (ml) 600 :::I 
z 

RR (rpm) 14.0 16.0 20.0 22.0 22.0 22.0 22.0 22.0 22.0 20.0 20.0 20.0 20.0 18.0 i= z 
Mv (11m in) 8.40 8.80 10.00 9.90 9.35 9.35 9.35 9.35 9.35 8.50 8.50 9.50 10.00 9.90 0 

0 
TIN (%) 50 50 60 60 60 60 60 60 60 60 60 60 60 50 

- - - - -~----

Table 0.13: Anaesthetist decision history for ARDS patient. 



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Time (hours) 0.0 0.5 1.5 3.5 4.5 5.5 7.5 11.5 17.5 23.5 26.5 34.5 42.5 46.5 50.5 

Patient Observations 

Pa02 (kPa) 8.00 8.49 8.99 9.15 9.70 10.01 10.49 11.20 12.02 12.08 11.78 15.20 15.52 13.19 12.99 

PaC0 2 (kPa) 8.05 7.34 7.69 8.23 8.88 9.80 10.68 11.23 11.12 8.40 6.41 5.60 4.96 4.89 5.06 

Arterial pH 7.21 7.25 7.23 7.20 7.17 7.13 7.10 7.07 7.08 7.20 7.31 7.37 7.42 7.42 7.41 , 

PIP (cmH 2O) 50.9 54.6 56.4 62.1 66.1 69.1 65.9 56.9 48.2 44.7 47.2 43.4 40.9 37.7 35.0 

Sa02 (%) 82.2 86.4 87.7 87.3 88.1 87.7 88.0 89.3 91.4 93.9 95.3 97.7 98.0 97.3 97.1 

T BODY (OC) 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 

Cardiac Output (I/min) 6.90 6.84 6.83 6.80 6.76 6.75 6.74 6.72 6.69 6.66 6.65 6.60 6.61 6.68 6.72 

O 2 Consump. (ml/min) 317 317 317 317 317 317 317 317 317 317 317 317 317 317 317 

CO 2 Prod. (mllmin) 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 

Effective Shunt (%) 42.0 40.5 41.5 42.6 41.4 41.7 41.1 39.2 36.3 33.1 31.3 26.5 22.5 20.9 20.4 

M etab. Rate (%) 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 

Respiratory Quotient 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 

Raw (cmH 2Olllsec) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 

Caw (1/cmH20) 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.03 0.03 

Ventilator Settings 

F 102 (%) 50 75 94 100 100 100 100 100 100 100 99 99 83 67 63 

PEEP (cmH 2O) 0.0 4.0 5.0 8.0 12.0 13.5 14.0 13.5 12.5 12.0 12.0 12.0 10.0 7.0 5.5 

VT (ml) 700 670 640 600 560 540 520 510 510 530 600 620 700 750 740 

RR (rpm) 12.0 14.0 14.5 15.0 14.5 13.5 12.5 11.5 11.0 14.0 16.0 16.5 15.0 13.5 13.0 

M v (11m in) 8.40 9.38 9.28 9.00 8.12 7.29 6.50 5.87 5.61 7.42 9.60 10.23 10.50 10.13 9.62 

TIN (%) 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 

Advised Ventilator Settings 

F 102 (%) 75 94 100 100 100 100 100 100 100 99 99 83 67 63 60 

PEEP (cmH20) 4.0 5.0 8.0 12.0 13.5 14.0 13.5 12.5 12.0 12.0 12.0 10.0 7.0 5.5 4.5 

VT (m I) 670 640 600 560 540 520 510 510 530 600 620 700 750 740 750 

RR (rpm) 14.0 14.5 15.0 14.5 13.5 12.5 11.5 11.0 14.0 16.0 16.5 15.0 13.5 13.0 12.5 

Mv(lImin) 9.38 9.28 9.00 8.12 7.29 6.50 5.87 5.61 7.42 9.60 10.23 10.50 10.13 9.62 9.38 

TIN (%) 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 
~~ - ~ - _ .. - - ~ - ~-.-

Table D.14: Prototype advisor decision history for ARDS patient. 



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Time (hours) 0.0 0.5 1.5 3.5 4.5 5.5 7.5 11.5 17.5 23.5 26.5 34.5 42.5 46.5 50.5 

Patient Observations 

Pa02 (k Pal 8.00 8.62 8.69 8.47 8.44 8.52 8.73 9.19 9.75 10.34 10.55 11.92 14.79 15.05 13.66 

PaC0 2 (kPa) 8.05 7.91 7.87 8.36 8.60 8.97 9.03 8.71 8.10 7.65 7.24 6.50 5.86 5.43 5.15 

Arterial pH 7.21 7.22 7.22 7.20 7.19 7.17 7.17 7.18 7.21 7.24 7.26 7.30 7.35 7.38 7.40 

PIP (cmHzO) 50.9 44.7 46.0 49.3 51.6 54.5 53.1 47.1 41.3 37.0 35.4 32.2 29.5 28.9 29.5 

Sa02 (%) 82.2 85.7 86.1 84.0 83.2 82.8 83.8 86.5 89.5 91.7 92.7 95.3 97.5 97.7 97.3 

TaODyeC) 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 

Cardiac Output (11m in) 6.90 6.84 6.83 6.82 6.81 6.80 6.79 6.76 6.72 6.69 6.69 6.66 6.67 6.70 6.72 

0z Consump. (mllmin) 317 317 317 317 317 317 317 317 317 317 317 317 317 317 317 

CO 2 Prod. (mllmin) 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 

Effective Shunt (%) 0.4 0.4 0.4 0.4 0.4 0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.2 

Metab. Rate (%) 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 

Respiratory Quotient 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 

Raw (cm H2Oll/sec) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Caw (ltcm HzO) 0.15 0.15 0.14 0.12 0.11 0.11 0.11 0.13 0.16 0.19 0.20 0.24 0.28 0.30 0.31 

Ventilator Settings 

F!02 (%) 50 70 80 81 82 83 84 84 84 83 82 81 81 74 66 I 

PEEP (cmHzO) 0.0 4.0 5.0 6.0 7.0 8.5 9.5 10.5 11.0 10.5 10.0 9.5 8.0 6.5 5.5 

VT (ml) 700 550 520 490 470 450 440 430 430 430 440 460 500 560 620 

RR (rpm) 12.0 16.5 18.5 20.0 21.0 21.5 21.5 21.5 21.5 21.5 21.5 21.0 19.5 17.5 16.0 

M v (11m in) 8.40 9.08 9.62 9.80 9.87 9.68 9.46 9.25 9.25 9.25 9.46 9.66 9.75 9.80 9.92 I 

TIN (%) 33 50 50 60 60 60 60 60 60 50 50 50 50 50 50 

Advised Ventilator Settings 

F!02 (%) 70 80 81 82 83 84 84 84 83 82 81 81 74 66 63 

PEEP (cmHzO) 4.0 5.0 6.0 7.0 8.5 9.5 10.5 11.0 10.5 10.0 9.5 8.0 6.5 5.5 4.5 

VT (ml) 550 520 490 470 450 440 430 430 430 440 460 500 560 620 620 

RR (rpm) 16.5 18.5 20.0 21.0 21.5 21.5 21.5 21.5 21.5 21.5 21.0 19.5 17.5 16.0 15.5 

Mv (llmin) 9.08 9.62 9.80 9.87 9.68 9.46 9.25 9.25 9.25 9.46 9.66 9.75 9.80 9.92 9.61 

TIN (%) 50 50 60 60 60 60 60 60 50 50 50 50 50 50 50 
--

Table 0.15: Refined advisor decision history for ARDS patient 
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E.t Prototype Control Rules 

FI02 Prototvpe Control Rules 

[I] If(Pa02 = VHI) AND (Fi02 = VHI-MAX) mEN [dFi02 = N6 (-50)] 
[2] If(Pa02= Ill) AND (Fi02= VHI-MAX)nJEN [dFi02= N5 (-35)] 
[3] If (Pa02 = VHI) AND (Fi02 = Ill) mEN [dFi02 = N4 (-30)] 
[4] If(Pa02= HI-VHI) AND (Fi02= MED)THEN [dFi02= N3 (-20)] 
[5] If (Pa02 = Ill) AND (Fi02 = Ill) mEN [dFi02 = N3 (-20)] 
[6) If (Pa02 = SHI) AND (Fi02 = VHI-MAX) mEN [dFi02 = N3 (-20)] 
[7] 1f(Pa02 = SHI) AND (Fi02 = HI) mEN [dFi02= N2 (-15)] 
[8] If(Pa02 = SHI) AND (Fi02 = MED) mEN [dFi02 = NI (-10)] 
[9] 1f(Pa02 = N) mEN [dFi02 = Z (0)] 
[10] If(Pa02= SID-VHI) AND (Fi02= MIN) mEN [dFi02 = Z(O)] 

[U] If(Pa02= VLO-SLO) AND (Fi02 = MAX) mEN [dFi02 = Z (0)] 
[12] If(Pa02 = VLO-SLO) AND (Fi02 = VHI) mEN [dFi02 = PI (10)] 
[13] If(Pa02 = SLO) AND (Fi02 = MIN-Ill) mEN [dFi02 = P2 (20)] 
[14] If(Pa02 = LO) AND (Fi02 = MED-HI) mEN [dFi02 = P3 (30)] 
[15] If(Pa02 = VLO) AND (Fi02 = Ill) mEN [dFi02 = P3 (30)] 
[16) If(Pa02 = LO) AND (Fi02 = MIN) mEN [dFi02 = P4 (40)] 
[17] If(Pa02 = VLO) AND (Fi02 = MED) THEN [dFi02 = P5 (50)] 
[18] If(Pa02= VLO) AND (Fi02 = MIN) mEN (dFi02 = P6 (70)] 

PEEP Prototvpe Control Rules 

[I] If(Pa02 = VHI) AND (Fi02 = MIN) AND (PEEP = MAX) TI-IEN (dPEEP = N8 (-16)] 
[2] If (Pa02 = SID-Ill) AND (Fi02 = MIN) AND (PEEP = MAX) mEN [dPEEP = N7 (-12)] 
[3] If (Pa02 = VHI) AND (Fi02 = MED-MAX) AND (PEEP = MAX) mEN [dPEEP = N7 (-12)] 
[4] If (Pa02 = VHI) AND (PEEP = IDGH) TI-IEN [dPEEP = N6 (-S)] 
[5] If (Pa02 = N) AND (Fi02 = MIN) AND (PEEP = MAX) 1HEN (dPEEP = N6 (-S)] 
(6) 1f(Pa02 = SID-Ill) AND (Fi02 = MED-MAX) AND (PEEP = MAX) mEN [dPEEP= N6 (-S)] 
[7] If(Pa02 = VHI) AND (PEEP = MED) mEN [dPEEP = N5 (~)] 
[8] If (Pa02 = SHI-Ill) AND (Fi02 = MIN) AND (PEEP = IDGH) 1HEN [dPEEP = N5 (~)] 
[9] If(p"a02 = Ill) AND (Fi02 = MED-Ill) AND (PEEP = HIGH) mEN [dPEEP = N5 (-6)] 

[IOJ If(Pa02 = N) AND (Fi02 = MED) AND (PEEP = MAX) mEN [dPEEP = N5 (~)J 
[l1J If(Pa02 = VHI) AND (Fi02 = MIN) AND (PEEP = LOW) mEN [dPEEP = N4 (4)] 
[12] If(Pa02 = N-Ill) AND (Ft02 = MIN-MED) AND (PEEP = MED) 1HEN [dPEEP= N4 (4)J 
[13] If(Pa02=HI) AND (Fi02 =ID-VHI) AND (PEEP = MED) mEN [dPEEP=N4(4)] 
[14] If(Pa02=N)AND (Fi02=MIN-1ll) AND (PEEP = IDGH)mEN [dPEEP=N4 (-4)] 
[15] If(Pa02 = Sill) AND (Fi02 = MED-VHI) AND (PEEP = IDGH) mEN [dPEEP = N4 (4)] 
[16) If(Pa02 = Ill) AND (Ft02 = VHI-MAX) AND (PEEP = IDGH) THEN [dPEEP = N4 (4)] 
[17] If(Pa02 = LO-SLO) AND (Fi02 = MIN-MED) AND (PEEP = MAX) TIiEN [dPEEP = N4 (-4)] 
[18] If(Pa02 = N) AND (Fi02 = HI-MAX) AND (PEEP = MAX) 1HEN [dPEEP = N4 (4)] 
[19] If(Pa02 = SID-HI) AND (Ft02 = MIN) AND (PEEP = LOW) 1HEN (dPEEP = N3 (-3)] 
[20] If(Pa02= VHl)AND (Fi02= MED-HI)AND (PEEP = LOW)TIIEN [dPEEP= N3 (-3)] 
[21] If(Pa02 = N) AND (Fi02 = MIN) AND (PEEP = LOW) mEN [dPEEP = N2 (-2)] 
[22] If(Pa02 = Ill) AND (Fi02 = MED) AND (PEEP = LOW) mEN [dPEEP= N2 (-2)] 
[23] If(Pa02 = VHI) AND (Fi02 = VHI-MAX) AND (PEEP = LOW) TIIEN (dPEEP = N2 (-2)] 
[24] If (Pa02 = LO-SLO) AND (Fi02 = MIN) AND (pEEP = MED-IDGH) TIiEN [dPEEP = N2 (-2)] 
[25] If(Pa02 = N-SID) AND (Fi02 = Ill) AND (PEEP = MEO) THEN [dPEEP = N2 (-2)] 
[26) If(Pa02 = SID) AND (Fi02= VHI) AND (PEEP = MED)THEN [dPEEP= N2 (-2)] 
[27] 1f(Pa02 = ID) AND (Fi02 = MAX) AND (PEEP = MEO) TIIEN (dPEEP = N2 (-2)] 
[28J 1f(Pa02 = LO-SLO) AND (Fi02 = MEO) AND (PEEP = IDGH) TIIEN [dPEEP = N2 (-2)] 
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[29] If(Pa02 = N) AND (Fi02 = VIll) AND (PEEP = HIGH) 1HEN [dPEEP = N2 (-2)] 
[30J If(Pa02 = SHI) AND (Fi02 = MAX) AND (PEEP = HIGH) 1HEN [dPEEP = N2 (-2)J 
[31 J If(Pa02 = VLO) AND (Fi02 = MIN) AND (PEEP = MAX) 1HEN [dPEEP = N2 (-2)] 
[32J If(Pa02 = HI) AND (Fi02 = HI) AND (PEEP = LOW) 1HEN [dPEEP = Nl (-I)J 
[33J If(Pa02 = SLO-VIll) AND (Fi02 = MIN) AND (PEEP = OFF) 1HEN [dPEEP= Z (0)] 
[34] If(Pa02= N-SHI) AND (Fi02 = MID-HI) AND (PEEP = OFF-LOW)1HEN [dPEEP= Z(O)] 
[35] If(Pa02= HI-VIll) AND (Fi02= MED-MAX) AND (PEEP = OFF) 1HEN [dPEEP= Z (0)] 
[36] If(Pa02= SHI) AND (Fi02= VHI-MAX) AND (PEEP = OFF-LOW)1HEN [dPEEP= Z(O)] 
[37] If(Pa02 = LO-SLO) AND (Fi02 = MIN) AND (PEEP = LOW) 1HEN [dPEEP = Z (O)J 
[38J If(Pa02 = SLO) AND (Fi02 = MED-HI) AND (PEEP = LOW-MED) 1HEN [dPEEP = Z (0)] 
[39J If(Pa02 = N) AND (Fi02 = VHI-MAX) AND (PEEP = LOW) mEN [dPEEP = Z (O)J 
[40] If(Pa02 = HI) AND (Fi02 = VHI-MAX) AND (PEEP = LOW) 1HEN [dPEEP = Z (O)J 
[41] If(Pa02 = VLO) AND (Fi02 = MIN) AND (PEEP = MED-HIGH) 1HEN [dPEEP= Z (0)] 
[42J If(Pa02 = LO) AND (Fi02 = MFD-HI) AND (PEEP = MED) mEN [dPEEP = Z (0») 
[43] If(Pa02 = N) AND (Fi02 = VIll) AND (PEEP = MED) 1HEN [dPEEP = Z (0») 
[44J If(Pa02 = VLO) AND (Fi02 = MED) AND (PEEP = HIGH-MAX) 1HEN [dPEEP = Z (0)] 
[45J Jf(Pa02 = LO-SLO) AND (Fi02 = HI-VHI) AND (PEEP = IDGH-MAX) THEN [dPEEP = Z (0)] 
[46] If(Pa02 = N) AND (Fi02 = MAX) AND (PffiP= HIGH) 1HEN [dPEEP= Z (0)] 
[47] Jf(Pa02 = VLO) AND (Fi02 = HI-MAX) AND (PEEP = MAX) 1HEN [dPEEP = Z (0)] 
[48] Jf(Pa02 = LO-SLO) AND (Fi02 = MAX) AND (PEEP = MAX) 1HEN [dPEEP = Z (0)] 
[49J If(Pa02 = VLO) AND (Fi02 = MlN-MED) AND (PEEP = LOW) 1HEN [dPEEP = PI (2)] 
[50] If(Pa02 = LO) AND (Fi02 = MED-HI) AND (PEEP = LOW) mEN [dPEEP = PI (2)J 
[51] If(Pa02 = SLO) AND (Fi02 = VHI) AND (PEEP = LOW-MED) 1HEN [dPEEP = PI (2)] 

[52] Jf(Pa02 = VLO) AND (Fi02 = MED-HI) AND (PEEP = MED) 1HEN [dPEEP = PI (2)] 
[53] Jf(Pa02 = LO) AND (Fi02 = VIll) AND (PEEP = MED) 1HEN [dPEEP = PI (2») 
[54] If(Pa02 = N-SHI) AND (Fi02 = MAX) AND (PEEP = MED) mEN [dPEEP = PI (2)] 
[55] If(Pa02 = VLO) AND (Fi02 = HI-VIll) AND (PEEP = HIGH) 1HEN [dPEEP = PI (2») 
[56J If(Pa02= LO-SLO) AND (Fi02= MAX) AND (PEEP = HIGH) mEN [dPEEP= PI (2») 
[57] If(Pa02= VLO-LO) AND (Fi02 = MlN-HI) AND (PEEP = OFF) mEN [dPEEP= P2 (4)J 
[58] If(Pa02= SLO) AND (Fi02 = MED-MAX) AND (PEEP = OFF) 1HEN [dPEEP = P2 (4)] 
[59] If(Pa02 = LO) AND (Fi02 = VIll) AND (PEEP = OFF-LOW) 1HEN [dPEEP = P2 (4») 
[60] If(Pa02=N) AND (Fi02= VHI-MAX) AND (PEEP = OFF) mEN [dPEEP= P2 (4») 
[61] If(Pa02 = VLO) AND (Fi02 = HI-MAX) AND (PEEP = LOW) 1HEN [dPEEP = P2 (4)] 
[62J If(Pa02 = LO-SLO) AND (Fi02 = MAX) AND (PEEP = LOW-MED) mEN [dPEEP = P2 (4)J 
[63] If(Pa02 = VLO) AND (Fi02 = VHI-MAX) AND (PEEP = MED) 1HEN [dPEEP = P2 (4)] 
[64] If(Pa02 = VLO) AND (Fi02 = MAX) AND (PEEP = HIGH) mEN [dPEEP = P2 (4)] 
[65] If(Pa02= VLO) AND (Fi02 = VHI-MAX) AND (PEEP = OFF) TI-IEN [dPEEP= P3 (8)] 

[66] If(Pa02 = LO) AND (Fi02 = MAX) AND (PEEP = OFF) 1HEN [dPEEP = P3 (8») 

Mv PrototyPe Control Rules 

[1] Jf(cPaC02 = NB) AND (cPh= VALK)1HEN[dMv= N6 (-60)] 
[2] Jf(ePaC02 = NB) AND (cPh = ALK) 1HEN [dMv = N5 (-45)] 
[3] Jf(ePaC02 = NB) AND (cPh=NORM)1HEN [dMv=N4 (-30)] 
[4] Jf(ePaC02 =NS) AND (cPh=ALK-VALK)1HEN [dMv= N4 (-30)] 
[5] Jf(ePaC02=NS) AND (ePh= NORM) 1HEN [dMv=N3 (-15)] 
[6] Jf(ePaC02=Z) AND(ePh=VALK)1HEN[dMv= N3 (-15)] 
[7] Jf(ePaC02 = NB-Z) AND (ePh = VACID-ACID) AND (ePip = VHIGH) TIffiN [dMv = N3 (-15)] 
[8] Jf(ePaC02=Z) AND (ePh = NORM-ALK) AND (ePip=VHIGH)1HEN[dMv=N3 (-15)] 
[9] Jf(ePaC02 =PS-PB) AND (ePh=ALK-VALK) AND(ePip=VHIGH)1HEN[dMv=N3 (-15)] 
(lO]Jf(ePaC02=NB-Z)AND(ePh=VACID-ACID)AND(cPip=HIGH)1HEN[dMv=N2(-IO)] 
[11] If(ePaC02 = Z) AND (cPh = NORM-ALK) AND (ePip= HIGH) mEN [dMv= N2 (-10)] 
[12] Jf(ePaC02 = PS-PB) AND (ePh = ALK-V ALK) AND (ePip= HIGH) 1HEN [dMv= N2 (-10)] 
[13] Jf(ePaC02 = PS-PB) AND (ePh = VACID-NORM) AND (ePip= VHIGH) THEN [dMv= N2 (-10)] 
[14] If(ePaC02 = Z) AND (ePh = ALK) AND (ePip = OKA Y-ALARM) mEN [dMv= Nl (-5)] 
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[15] Jf(ePa(X)2= NB-NS) AND (ePh = VACID-ACID) AND (ePip=OK-ALARM) mEN [dMv= Z(O)] 
[16] Jf(cPa(X)2=Z) AND (ePh=ACID-NORM) AND (cPip=OKAY-ALARM)TIffiN [dMv= Z (0)] 
[17] Jf(cPa(X)2 = PS-PB) AND (ePh = ALK-VALK) AND (cPip=OK-ALARM) THEN [dMv=Z (0)] 
[18] Jf(ePa(X)2=Z) AND (ePh= VACID) AND (ePip= ALARM) TIffiN [dMv= Z (0)] 
[19] Jf(ePa(X)2= PS) AND (ePh = NORM) AND (ePip= ALARM-HIGH)TI-JEN [dMv= Z (0)] 
[20] Jf(ePa(X)2 = PS-PB) AND (ePh = VACID-ACID) AND (ePip= HIGH) mEN [dMv = Z (0)] 
[21] Jf(ePa(X)2 = PB) AND (ePh = NORM) AND (ePip = HIGH) 1HEN [dMv= Z (0)] 
[22] Jf(cPa(X)2 = Z) AND (ePh = VACID) AND (ePip = OKA Y-NRALARM) TI-JEN [dMv = PI (15)] 
[23] Jf(cPa(X)2 = PS) AND (ePh = V ACID-ACID) AND (cPip = ALARM) mEN [dMv = PI (15)] 
[24] Jf(cPa(X)2 = PB) AND (ePh= ACID-NORM) AND (cPip= ALARM) mEN [dMv= PI (15)] 
[25] Jf(ePaC02 = PS) AND (ePh = NORM) AND (cPip = OKA Y-NRALARM) mEN [dMv= P2 (25)] 

[26] Jf(cPaC02 = PS) AND (ePh = VACID-ACID) AND (cPip = NRALARM) mEN [dMv = P2 (25)] 
[27] Jf(cPa(X)2 = PB) AND (ePh = ACID-NORM) AND (cPip = NRALARM) TI-JEN [dMv = P2 (25)] 

[28] Jf(ePaC02 = PB) AND (ePh = VACID) AND (ePip = ALARM) TIffiN [dMv = P2 (25)] 

[29] Jf(ePaC02= PS)AND (ePh= VACID-ACID) AND (cPip= OKAy) mEN [dMv= P3 (50)] 
[30] Jf(ePa(X)2 = PB) AND (ePh = NORM) AND (ePip= OKAy) TIffiN [dMv= P3 (50)] 
[31] Jf(ePaC02 = PB) AND (ePh= VACID) AND(cPip= NRALARM) TIffiN [dMv= P3 (50)] 
[32] Jf(ePa(X)2 = PB) AND (cPh= ACID) AND (cPip= OKAy) mEN [dMv= P4 (7S)] 
[33] Jf(ePaC02 = PB) AND (cPh = VACID) AND (ePip= OKAy) TIffiN [dMv= PS (100)] 

VT-RR Prototvpe Control Rules 

[1] Jf(RR = MIN-LOW) AND (eVfnonn = PB)TIffiN [dVt= N7 (-35)] 
[2] If(RR = MIN) AND (eVfoonn = PS) 1lIEN [dVt= N6 (-30)J 

[3J If(RR = MED) AND (eVfnonn = PB) 1lIEN [dVt = N5 (-25)J 
[4] If(RR= VLOW-LOW) AND (eVfnonn=ps)1lIEN [dVt=N4(-20)] 
[5] Jf(RR = MIN) AND (eVfnonn=Z)1HEN [dVt=N3 (-IS)] 
[6] Jf(RR =MED) AND (eVfnonn=PS)1HEN [dVt= N3 (-15)] 
[7] Jf(RR= HIGH) AND (eVfnonn=PB)1HEN [dVt=N3 (-15)] 
[8] Jf{RR=VLOW-VHIGH)AND (eVfnonn=Z) AND (cPip= VHIGH)1HEN [dVt=N3 (-15)] 
[9] Jf(RR=VLOW)AND (cVfnonn=Z) AND (cPip= ALARM-HIGH)1H8N [dVt= N2(-10)] 
[10] Jf(RR = LOW-MED) AND (eVfnonn=Z) AND (ePip = HIGH) mEN [dVt=N2 (-10)] 
[11] Jf(RR=M1N-VHIGH)AND (eVfnonn= NS)AND (cPip=VHIGH)TI-JEN [dVt=N2 (-10)] 
[12] Jf(RR=HIGH-MAX) AND (eVfnonn=PS) AND (cPip= VHIGH)mEN [dVt=N2 (-10)] 
[13] Jf(RR = VHIGH-MAX) AND (eVfnonn = PB) AND (cPip = VHIGH) mEN [dVt = N2 (-10)] 
[14] Jf(RR=MIN) AND (eVfnonn=NS)AND (cPip=OKAY-HIGH)mEN [dVt=Nl (-S)] 
[15] If{RR=VLOW) AND (eVfnonn=Z) AND (cPip=OKAY-NRALARM)1HEN[dVt=Nl (-S)] 

[16] Jf(RR = HIGH) AND (eVfnonn=PS) AND (cPip= OKAY-HIGH)1lIEN [dVt=Nl (-5)] 
[17] Jf(RR= VHIGH-MAX) AND (eVfnonn=PB) AND (cPip=OKAY-HIGH)1HEN [dVt= Nl (-5)] 
[18] Jf(RR=VLOW-LOW) AND (eVfnonn=NS) AND (cPip=ALARM-HIGH)1HEN[dVt=Nl (-S») 

[19] Jf(RR=LOW-HIGH) AND (eVfnonn=Z) AND (cPip=ALARM)1H8N [dVt=Nl (-5)] 
[20] Jf(RR=VHIGH) AND (eVfnonn = PS) AND (cPip=ALARM-HIGH)TI-JEN [dVt=NI (-5») 
[21] Jf(RR = MED-VHIGH) AND (eVfnonn=NS) AND (cPip= HIGH) 1HEN [dVt=Nl (-S)] 

[22] Jf(RR =HIGH-VHIGH) AND (eVfnonn=Z) AND (cPip= HIGH) mEN [dVt=Nl (-S)J 
[23] Jf(RR=MAX) AND (eVfnonn=PS) AND (cPip= HIGH) 1lIEN [dVt=Nl (-S)J 

[24] Jf(RR=LOW-MED) AND (eVfnonn=Z) AND (ePip=OKAY-NRALARM)1HEN [dVt=Z(O)] 
[25] Jf(RR = VLOW) AND (eVfnonn = NS) AND (cPip = NRALARM) mEN [dVt = Z (O)J 
[26] Jf(RR = HIGH) AND (eVfnonn = Z) AND (ePip= NRALARM) mEN [dVt = Z (0)] 
[27] Jf(RR=VHIGH) AND (eVfnonn = PS) AND (cPip=NRALARM)mEN [dVt=Z(O)J 
[28] Jf(eVfnonn = NB) AND (cPip= ALARM-VHIGH) 1lIEN [dVt= Z (0)] 
[29] Jf(RR = MED-MAX) AND (eVfnonn = NS) AND (cPip= ALARM) mEN [dVt = Z (0)] 
[30] Jf(RR = VHIGH-MAX) AND (eVfnonn = Z) AND (ePip = ALARM) lliEN [dVt = Z (0)] 
(31] Jf(RR = MAX) AND (eVfnonn = PS) AND (cPip= ALARM) mEN [dVt = Z (0)] 
(32] Jf(RR = MAX) AND (eVfnonn=NS-Z) AND (cPip= HIGH-VHIGH)lliEN [dVt= Z (0)] 
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[33] If(RR = VLOW) AND (eVfoonn = NS) AND (ePip = OKAy) TI-IEN [dVt = PI (2)] 
[34] If(RR= VIllGH) AND (eVfnonn=PS) AND (cl>ip=OKAy)1HEN [dVt=Pl (2)] 
[35] If(RR = MIN) AND (eVfnonn = NB) AND (ePip= OKA Y-NRALARM) mEN [dVt = P2 (5)] 
[36] If(RR = IDGH) AND (eVfoonn = Z) AND (ePip = OKAy) TI-IEN [dVt = P2 (5)] 
[37] If(RR = LOW) AND (eVfnonn = NS) AND (cPip = NRALARM) 1HEN [dVt = P2 (5)] 
[38] If(RR = MAX) AND (eVfnonn = PS) AND (ePip = NRALARM) mEN [dVt = P2 (5)] 
[39] If(RR = LOW) AND (eVfnonn = NS) AND (cPip = OKAy) 1HEN [dVt = P3 (10)] 
[40] If(RR = MAX) AND (eVfnonn = PS) AND (cPip = OKAy) 1HEN [dVt = P3 (10)] 
[41] If(RR = VLOW-MAX) AND (eVfoonn = NB) AND (cl>ip=NRALARM) mEN [dVt= P3 (10)] 
[42] If(RR = MED-MAX) AND (eVfoonn = NS) AND (ePip = NRALARM) 1HEN [dVt = P3 (10)] 
[43] If(RR=VIllGH-MAX) AND (cVfnonn=Z) AND (cPip=NRALARM)mEN [dVt=P3 (10)] 
[44] If(RR=VLOW) AND (eVfnonn =NB) AND (ePip=OKAy)TI-IEN[dVt=P4(lS)] 
[45] If(RR = MED-IDGH) AND (eVfnonn = NS)AND (cPip=OKA Y)TI-IEN [dVt= P4 (IS)] 
[46] If(RR=VIllGH) AND (eVfnonn=Z) AND (ePip= OKAY)1HEN [dVt= P4 (15)] 
[47] If(RR = LOW) AND (eVfnonn = NB) AND (cPip = OKAy) 1HEN [dVt = PS (25)] 
[48] If(RR = VIllGH) AND (eVfnonn = NS)AND (cPip=OKAY)1HEN [dVt= P5 (25)] 

[49] If(RR = MAX) AND (eVfnonn = Z) AND (ePip = OKAy) mEN [dVt = PS (25)] 

[50] If(RR = MAX) AND (eVfnonn=NS) AND (cPip=OKAY)1HEN [dVt=fY) (3S)] 
[SI] If(RR = MED-VIllGH) AND (eVfnonn = NB) AND (cPip= OKAy) mEN [dVt = P7 (40)] 
[52] If(RR = MAX) AND (eVfnonn = NB) AND (cPip= OKA Y)1HEN [dVt= P8 (50)] 

E.2 Refined Control Rules 

FI02 Refined Control Rules 

[I] If (Pa02 = VIll) AND (Fi02 = MAX) mEN [dFi02 = N9 (-50)] 

[2] If(Pa02 = VIll) AND (Fi02 = EHI) 1HEN [dFi02 = N8 (-40)] 
[3] If(Pa02 = Ill) AND (Fi02= EIll-MAX)mEN [dFi02= N7 (-35)] 
[4] If(Pa02 = VIll) AND(Fi02 = VHI) 1HEN [dFi02= N6 (-30)] 
[5] If(Pa02 = Ill) AND (Fi02= VHl)TI-IEN [dFi02= NS (-25)] 
[6] If(Pa02 = VIll) AND (Fi02 = MED_ID-HI)1HEN [dFi02= N4 (-20)] 
[7] If(Pa02 = Ill) AND (Fi02 = ID) TIffiN [dFi02 = N4 (-20)] 
[8] If(Pa02 = SHI) AND (Fi02 = MAX)1HEN [dFi02 = N4 (-20)] 
[9] If(Pa02 = Ill) AND (Fi02 = MED _HI) TI-IEN [dFi02 = N3 (-IS)] 
[10] If(Pa02= SID-VHI) AND (Fi02 =MED)1HEN [dFi02=N2 (-10)] 
[U] If(Pa02= Sill) AND (Fi02= ID-EHI)1HEN [dFi02 = N2 (-10)] 
[12] If(Pa02= VHI) AND (Fi02= VLOW-LOW)1HEN [dFi02= NI (-S)] 

[13] If(Pa02= SID-HI) AND (Fi02=LOW)TI-IEN [dFi02=NI (-S)] 

[14] If(Pa02 = N) AND (Fi02 = Ern-MAX) TI-IEN [dFi02 = NI (-5)] 
[15] If(Pa02 = N) AND (Fi02 = MIN-VHl) TIffiN [dFi02 = Z (0)] 
[16) If(Pa02 = SID-HI) AND (Fi02 = MIN-VLOW) TI-IEN [dFi02 = Z (0)] 
[17] If(Pa02= VHl)AND (Fi02 = MlN)1HEN [dFi02 = Z(O)] 
[18] If(Pa02= SID) AND (Fi02= MED _HI)TI-IEN [dFi02 = Z(O)] 
[19] If(Pa02 = SLO) AND (Fi02 = VID-MAX) TI-IEN [dFi02 = Z (0)] 
[20] If(Pa02 = 10) AND (Fi02 = Ern-MAX) 1HEN [dFi02 = Z (0)] 
[21] If(Pa02= VLO) AND (Fi02= MAX) TIffiN [dFi02= Z(O)] 
[22] If(Pa02 = LO) AND (Fi02 = VHI) TIffiN [dFi02 = PI (5)] 
[23] If(Pa02 = LO-SLO) AND (Fi02 = HI) TI-IEN [dFi02 = P2 (10)] 

[24] If(Pa02 = VLO) AND (Fi02 = VIll-EHI) TI-IEN [dFi02 = P2 (10)] 
[25] If(Pa02 = SLO) AND (Fi02 = MED _Ill) TI-IEN [dF102 = P3 (IS)] 
[26] If(Pa02 = SLO) AND (Fi02 = MIN-MED) TI-IEN [dFi02 = P4 (20)] 
[27] If(Pa02 = LO) AND (Fi02 = LOW-MED _ HI) TI-IEN [dFi02 = P4 (20)] 
[28] If(Pa02 = VLO) AND (Fi02 = HI) TIffiN [dFi02 = P5 (30)] 
[29] If(Pa02 = LO) AND (Fi02 = VLOW) TI-IEN [dFi02 = fY) (35)] 
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[30] If(Pa02 = LO) AND (Fi02 = MIN) TIIEN [dFi02 = P7 (40)] 
[31] If(Pa02= VLO) AND (Fi02 = MED_HI)1HEN [dFi02 = P7 (40)] 
[32] If(Pa02 = VLO) AND (Fi02 = LOW-MED) TIIEN [dFi02 = P8 (50)] 
[33] If(Pa02 = VLO) AND (Fi02 = VLOW) TIIEN [dFi02 = P9 (65)] 
[34] If(Pa02 = VLO) AND (Fi02 = MIN) TIIEN [dFi02 = PIO (70)] 

PEEP Refined Control Rules 

[1] Jf(Pa02 = VHI) AND (Fi02 = MIN) AND (PEEP = MAX) THEN [dPEEP = N6 (-16)] 
[2] Jf(Pa02 = SHI-HI) AND (Fi02 = MIN) AND (PEEP = MAX) 1HEN [dPEEP = N5 (-12)] 
[3] Jf(Pa02 = VHI) AND (Fi02 = MEO-MAX) AND (PEEP = MAX) 1HEN [dPEEP = N5 (-12)] 
[4] If(Pa02 = VHI) AND (PEEP = HIGH) TIIEN [dPEEP = N4 (~)] 

[5] If(Pa02 = N) AND (Fi02 = MIN) AND (PEEP = MAX) TIIEN [dPEEP = N4 (~)] 
[6] Jf(Pa02 = SHI-HI) AND (Fi02 = MED-MAX) AND (PEEP = MAX) TIIEN [dPEEP= N4 (~)] 
[7] If(Pa02 = VHI) AND (PEEP = MED) mEN [dPFEP = N3 (-6)] 
[8] If (Pa02 = SHI-HI) AND (Fi02 = MIN) AND (PEEP = IDGH) 1HEN [dPEEP = N3 (-6)] 

[9] If (Pa02 = HI) AND (Fi02 = MEO-HI) AND (PEEP = HIGH) 1HEN [dPEEP = N3 (-6)] 
[10] If(Pa02 = N) AND (Fi02 = MED) AND (PEEP = MAX) mEN [dPEEP = N3 (-6)] 

[11] If(Pa02 = ID-VHI) AND (Fi02 = MIN) AND (PEEP = LOW) TIIEN [dPEEP = N2 (4)] 
[12] Jf(Pa02= N-HI) AND (H02 = MIN-MED) AND (PEEP = MED)1HEN [dPEEP= N2 (4)] 

[13] If(Pa02 = HI) AND (Fi02 = HI-VHI) AND (PEEP = MED) 1HEN [dPEEP = N2 (4)] 
[14] If(Pa02=N) AND (Fi02=MIN-HI) AND (PEEP = HIGH) TIIEN [dPEEP=N2 (4)] 
[15] If(Pa02 = SHI) AND (Fi02 = MEO-VHI) AND (PEEP = IDGH) mEN [dPEEP = N2 (4)] 
[16] If(Pa02 = HI) AND (Fi02 = VIII-MAX) AND (PEEP = HIGH) TIIEN [dPEEP = N2 (4)] 

[17] If(Pa02 = LO-SLO) AND (Fi02 = MIN-MED) AND (PEEP = MAX) mEN [dPEEP = N2 (4)] 
[18] If(Pa02 = N) AND (Fi02 = HI-MAX) AND (PEEP = MAX) mEN [dPEEP = N2 (4)] 
[19] If(Pa02 = N-SHI) AND (Fi02 = MIN) AND (PEEP = LOW) mEN [dPFEP = Nl (-2)] 
[20] If(Pa02= HI-VHI) AND (Fi02 =MEO-HI) AND (PEEP = LOW)TI-fEN [dPEEP= Nl (-2)] 
[21] If(Pa02 = LO-SLO) AND (Fi02 = MIN) AND (PEEP = MED-HIGH) mEN [dPEEP = Nl (-2)] 
[22] If(Pa02 = N-SHI) AND (Fi02 = HI) AND (PEEP = MED) mEN [dPEEP = Nl (-2)] 
[23] If(Pa02= SHI) AND (Fi02= VHI) AND (PEEP = MED) mEN [dPEEP= Nt (-2)] 
[24] If(Pa02 = HI) AND (VI02 = MAX) AND (PEEP = MED) TIIEN [dPEEP = Nl (-2)] 
[25] If(Pa02=LO-SLO) AND (Fi02=MED) AND (PEEP = HIGH) mEN [dPEEP=Nt (-2)] 
[26] If(Pa02 = N) AND (Fi02 = VHI) AND (PEEP = HIGH) mEN [dPEEP = Nl (-2)] 
[27] If(Pa02 = SHI) AND (Fi02 = MAX) AND (PEEP = HIGH) 1HEN [dPEEP = Nt (-2)] 
[28] If(Pa02= VLO) AND (Fi02 = MIN) AND (PEEP = MAX) mEN [dPEEP= Nt (-2)] 
[29] If(Pa02 = SL(). VHI) AND (Fi02 = MIN) AND (PEEP = OFF) TIIEN [dPEEP = Z (0)] 
(30] If(Pa02 = HI-VHI) AND (Fi02 = MED-MAX) AND (PEEP = OFF) TIIEN [dPEEP = Z (0)] 
(31] If(Pa02 = N-SHI) AND (Fi02 = HI) AND (PEEP = OFF-LOW) 1HEN [dPEEP = Z (0)] 
(32] If(Pa02 = SHI) AND (Fi02 = VIII-MAX) AND (PEEP = OFF-LOW) 1HEN [dPEEP = Z (0)] 
[33] If(Pa02 = LO-SLO) AND (Fi02 = MIN) AND (PEEP = LOW) TIIEN [dPEEP = Z (0)] 
[34] If(Pa02 = SLO) AND (Fi02 = MEO-HI) AND (PEEP = LOW-MED) TIIEN [dPEEP = Z (0)] 
[35] If(Pa02 = N-SHI) AND (Fi02 = MEn) AND (PEEP = LOW) mEN [dPEEP = Z (0)] 
(36] If(Pa02 = SL().N) AND (Fi02 = VHI) AND (PEEP = LOW) mEN [dPEEP = Z (0)] 
(37] If(Pa02 = HI-VHI) AND (V02 = VHI-MAX) AND (PEEP = LOW) 1HEN [dPEEP = Z (0)] 

[38] If(Pa02 = N) AND (Fi02 = MAX) AND (PEEP = LOW) mEN [dPEEP = Z (0)] 
[39] If(Pa02 = VLO) AND (Fi02 = MIN) AND (PEEP = MED-HIGH) TI-IEN [dPEEP = Z (0)] 
[40] If(Pa02= LO) AND (Fi02 = MEn-HI) AND (PEEP = MED)1HEN [dPEEP= Z(O)] 
[41] If(Pa02 = N) AND (Fi02 = VHI) AND (PEEP = MED) mEN [dPEEP = Z (0)] 
[42] If(Pa02 = VLO) AND (Fi02 = MED) AND (PEEP = HIGH-MAX) TI-fEN [dPEEP = Z (0)] 
[43] If(Pa02 = LO-SLO) AND (Fi02 = HI-VHI) AND (PEEP = HIGH-MAX) mEN [dPEEP = Z (0)] 
[44] If(Pa02 = N) AND (Fi02 = MAX) AND (PEEP = HIGH) TIIEN [dPEEP = Z (0)] 

[45] If(Pa02 = VLO) AND (Fi02 = HI-MAX) AND (PEEP = MAX) 1HEN [dPEEP = Z (0)] 
[46] If(Pa02 = LO-SLO) AND (Fi02 = MAX) AND (PEEP = MAX) 1HEN [dPEEP = Z (0)] 
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[47] 1f(Pa02 = N-SHI) AND (Fi02 = MED) AND (PEEP = OFF) 1HEN [dPEEP = PI (2)] 
[48] 1f(Pa02= VLO) AND (Fi02=MIN-MED) AND (PEEP = LOW) THEN [dPEEP= PI (2)] 
[49] 1f(Pa02= LO) AND (Fi02= MED) AND (PEEP = LOW)1HEN [dPEEP= PI (2)] 
[SO] 1f(Pa02 = VLO) AND (Fi02 = MED-HI) AND (PEEP = MED) 1HEN [dPEEP = PI (2)] 
[51] 1f(Pa02 = LO-SLO) AND (Fi02 = VHl) AND (PEEP = MEO) THEN [dPEEP = PI (2)] 
[52] 1f(Pa02 = N-SHI) AND (Fi02 = MAX) AND (PEEP = MEO) 1HEN [dPEEP = PI (2)] 
[53] 1f(Pa02 = VLO) AND (Fi02 = Ill-VHl) AND (PEEP = IllGH) 1HEN [dPEEP = PI (2)] 
[54] 1f(Pa02= LO-SLO) AND (Fi02 = MAX) AND (PEEP=IllGH) mEN [dPEEP=PI (2)] 
[55] 1f(Pa02= VLO-LO) AND (Fi02=MIN-HI) AND (PEEP = 0FF)1HEN (dPEEP=P2 (4)] 
[56] 1f(Pa02 = SLO) AND (Fi02 = MED-MAX) AND (PEEP = OFF) THEN (dPEEP = P2 (4)] 
[57] 1f(Pa02 = LO) AND (Fi02 = VHl) AND (PEEP = OFF) 1HEN [dPEEP = P2 (4)] 
[58] 1f(Pa02 = N) AND (Fi02 = VIll-MAX) AND (PEEP = OFF) mEN [dPEEP = P2 (4)] 
[59] 1f(Pa02 = LO) AND (Fi02 = HI) AND (PEEP = LOW) 1HEN [dPEEP = P2 (4)] 
(60] 1f(Pa02 = SLO) AND (Fi02 = MAX) AND (PEEP = LOW-MEO) THEN [dPEEP = P2 (4)] 
[61] 1f(Pa02 = VLO) AND (Fi02 = VIll-MAX) AND (PEEP = MED) 1HEN [dPEEP = P2 (4)] 
[62] 1f(Pa02 = LO) AND (Fi02 = MAX) AND (PEEP = MEO) mEN [dPEEP = P2 (4)] 
[63] 1f(Pa02 = VLO) AND (Fi02 = MAX) AND (PEEP = IllGH) 1HEN [dPEEP = P2 (4)] 
[64] 1f(Pa02 = VLO) AND (Fi02 = Ill-MAX) AND (PEEP = LOW) 1HEN [dPEEP = P3 (6)] 
[65] 1f(Pa02 = LO) AND (Fi02 = VIll-MAX) AND (PEEP = LOW) mEN [dPEEP = P3 (6)] 
[66] 1f(Pa02 = VLO) AND (Fi02 = VIll-MAX) AND (PEEP = OFF) THEN [dPEEP = P4 (8)] 
[67] If(P'd02 = LO) AND (Fi02 = MAX) AND (PEEP = OFF) 1HEN [dPEEP = P4 (8)] 

Mv Refined Control Rules 

[1] If(ePaC02 = NB) AND (Pip = VHIGH-EIDGH) 1HEN [dMv = N6 (-60)] 
[2] If(ePaC02 = NB) AND (Pip = LOW-HIGH)1HEN [dMv= N5 (-55)] 
[3] If(ePaC02=NM) THEN [dMv=N4 (-30)] 
[4] If(ePaC02 = NS) 1HEN [dMv = N3 (-15)] 
[5] If(ePaC02= ZrPM) AND (Pip=EHIGH) THEN [dMv= N3 (-15)] 
[6] If(cPaC02= PB) AND (Pip = EHIGH)1HEN [dMv= N2 (-10)] 
[7] If(ePaC02 = Z) AND (Pip = VIllGH) mEN [dMv = Nl (-5)] 
[8] If(ePaC02 = Z) AND (Pip = LOW-IllGH) 1HEN [dMv = Z (0)] 
[9] If (ePaC02 = PS-PM) AND (Pip = MED-VIDGH) AND (eVI'nonn = NB) 1HEN [dMv = Z (0)] 
[10] If(ePaC02 = PB-PVB) AND (Pip = IllGH-VHIGH) AND (eVI'nonn = NB) 1HEN [dMv = Z (0)] 
[11] If(ePaC02 = PVB) AND (Pip = EHIGH) AND (eVI'oonn = NB) mEN [dMv= Z(O)] 
[12] If(ePaC02 = PS) AND (Pip = IllGH-VHIGH) AND (eVI'oonn=OK)THEN [dMv= Z (0)] 
[13] If(ePaC02= PS)AND (Pip=MED) AND (eVI'oonn= OK) 1HEN [dMv=PI (5)] 
[14] If(ePaC02 = PM) AND (Pip=VHIGH) AND (eVI'nonn= OK) 1HEN [dMv=PI (5)] 
[15] If(ePaC02 = PVB) AND (Pip = EHIGH) AND (eVI'oonn = OK) THEN [dMv= PI (5)] 
[16] If(ePaC02 = PB) AND (Pip=MED) AND (eVI'nonn=NB)1HEN[dMv=P2 (10)] 

[17] If(ePaC02=PB-PVB) AND (Pip = VIDGH) AND (eVI'nonn = OK) mEN [dMv= P2 (10)] 
[18] If(ePaC02= PS)AND (Pip=LOW)1HEN [dMv=P3 (15)] 
[19] If(ePaC02 = PM) AND (Pip = MED-IllGH) AND (eVI'nonn = OK) 1HEN [dMv = P3 (15)] 
[20] If(ePaC02 = PVB) AND (Pip = MEO) AND (eVI'oonn = NB) mEN [dMv = P4 (20)] 
[21] If(ePaC02 = PB-PVB) AND (Pip = IllGH) AND (eVI'nonn = OK) 1HEN [dMv= P5 (25)] 
[22] If(ePaC02 = PM) AND (Pip = LOW) 1HEN [dMv = P6 (30)] 
[23] If(ePaC02 = PB-PVB) AND (Pip = MEO) AND (eVI'nonn = OK) 1HEN [dMv = P6 (30)] 
[24] If(ePaC02 = PB) AND (Pip = LOW) 1HEN [dMv = P7 (60)] 
[25] If(ePaC02 = PVB) AND (Pip = LOW) mEN [dMv= P8 (90)] 
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VT-RR Refined Control Rules 

[I] If(RR = MIN-LOW) AND (eVTnonn = PM) AND (Pip = EillGH) mEN [dVt = N7 (-35)] 
[2] If(RR = MIN) AND (eVTnonn = PM) AND (Pip = LOW-VlllGH) THEN [dVt = N6 (-30)] 
[3] If(RR=MIN-MED)AND (eVTnonn= Z-PS) AND (Pip = VlllGH-EHIGH) mEN [dVt=N5 (-25)] 
[4] If(RR= IllGH) AND (eVTnonn=P5-PM) AND (Pip = VlllGH-EHIGH) THEN [dVt= N5 (-25)] 
[5) If(RR=VLOW-MED) AND (eVTnonn=PM) AND (Pip = VlllGH) THEN [dVt= N5 (-25)] 
[6) If(RR=IllGH)AND (eVTnonn=Z) AND (Pip=EillGH)TIJEN [dVt=N5 (-25)] 
[7] If(RR = MED) AND (eVfnonn = PM) AND (Pip = El-llGH) THEN [dVt = N5 (-25)] 
[8] If(RR=MIN) AND (eVfnonn=PS) AND (Pip = LOW-HIGH) TIffiN [dVt=N4 (-20)] 
[9] If(RR=VLOW-LOW) AND (eVTnonn=PM) AND (Pip = LOW-HIGH) mEN [dVt=N4 (-20)] 
[10] If(RR = MIN-HIGH) AND (eVTnonn= NM-NS) AND (Pip = El-llGH) TIffiN [dVt = N4 (-20)] 
[11] If(RR=MIN) AND (eVTnonn=Z) AND (Pip=LOW-IllGH)1lIEN [dYt=N3 (-15)] 
[12] If(RR = MED) AND (eVTnonn= PM) AND (Pip = LOW-I-UGH) mEN [dVt=N3 (-15)] 
[13] If(RR=MIN-HIGH) AND (eVTnonn=NS) AND (Pip=VlllGH)1lIEN [dVt= N3 (-15)] 
[14] If(RR = VlllGH) AND (eVTnonn =Z-PS) AND (Pip = EillGH) THEN [dVt=N3 (-I5)J 
[15JIf(RR=VLOW-LOW)AND(eVTnonn=PS)AND(Pip=LOW-HIGH)THEN[dVt=N2(-1O)] 
[16) If(RR = MED) AND (eVfnonn=PS) AND (Pip = MEO)1lIEN [dVt=N2 (-10)] 
[17] If(RR = MIN-VLOW) AND (eVTnonn = NM-NS) AND (Pip = HIGH) THEN [dVt = N2 (-10)] 
[18] If(RR=LOW-MED) AND (eVTnonn= NS) AND (Pip=HIGH)THEN[dVt=N2(-lO)] 
[19] If(RR= VLOW-LOW) AND (eVTnonn=Z) AND (Pip = HlGH) THEN [dVt=N2 (-10)] 
[20] If(RR = MIN-HIGH) AND (eVfoonn = NM) AND (Pip = VlllGH) THEN [dVt = N2 (-10)] 
[21] If(RR = VlllGH) AND (eVTnonn=NM-NS) AND (Pip = EillGH) THEN [dVt=N2 (-10)] 
[22] If(RR = MAX) AND (eVTnonn = PS-PM) AND (Pip = EillGH) 1lIEN [dVt = N2 (-10)] 
[23] If(RR = VlllGH) AND (eVTnonn = PM) AND (Pip = EHIGH) 1lIEN [dVt = N2 (-10)] 
[24] If(RR = MIN) AND (eVTnonn = NS) AND (Pip=LOW-MED)1lIEN [dVt=NI (-5)] 
[25] If(RR =MED) AND (eVTnonn= PS) AND (Pip = LOW)lHEN [dVt=NI (-5)] 
[26) If(RR = HIGH) AND (eVTnonn=PM) AND (Pip = LOW-HIGH) TIffiN [dVt= Nl (-5)] 
[27] If(RR = VLOW-LOW) AND (eVfnonn= NS-Z) AND (Pip = MED) TIffiN IdYl = Nl (-5)] 
[28] If(RR = MED) AND (eVTnonn=NS) AND (Pip = MED) TIffiN [dVt=NI (-5)] 
[29] If(RR=LOW-MED) AND (eVfnonn=NM) AND (Pip = HlGH) TIffiN [dVt= NI (-5)] 
[30] If(RR = MED) AND (eVfnonn=PS) AND (Pip = I-UGH)lHEN [dVt=NI (-5)] 
[31] If(RR= VlllGH) AND (eVfnonn= PM) AND (Pip = HIGH-VlllGH)1lIEN [dVt= Nl (-5)] 
[32] If(RR = VlllGH) AND (eVTnonn = NM-NS) AND (Pip = VlllGH) 1lIEN [dVt= NI (-5)] 
[33] If(RR = VlllGH-MAX) AND (eVTnonn = PS) AND (Pip = VlllGH) THEN [dVt = Nl (-5)J 
[34] If(RR = MAX) AND (eVTnonn= PM) AND (Pip = VlllGH)nIEN [dVt=NI (-5)] 
(35) If(RR = MIN) AND (eVTnonn = NB) 1lIEN [dYt = Z (0)] 
[36) If(RR=MIN-VLOW) AND (eVTnonn=NM) AND (Pip=LOW-MED)1lIEN[dVt=Z(O)] 
[37] If(RR = VLOW-MED) AND (eVTnonn=Ns-Z) AND (Pip = LOW)1lIEN [dYt= Z (0)] 
[38] If(RR = HlGH-VlllGH) AND (eVTnonn = PS) AND (Pip = LOW-HlGH) 1lIEN [dVt = Z (0)] 
[39] If(RR = LOW-MED) AND (eVTnonn = NM) AND (Pip = MEO) THEN [dVt = Z (0)] 
[40] If(RR = MED-VlllGH) AND (eVTnonn = Z) AND (Pip = MED-HIGH) mEN [dVt = Z (0)] 
[4l] If(RR=VlllGH) AND (eVTnonn=PM) AND (Pip = MED) nIEN [dVt= Z (0)] 
[42] If(RR = VLOW-MAX) AND (eVTnonn = NB) AND (Pip = HlGH-EHIGH) mEN [dVt = Z (0)] 
[43] If(RR = HIGH-MAX) AND (eVfnonn= NM-NS) AND (Pip = I-UGH) THEN [dVt=Z(O)] 
[44] If(RR = MAX) AND (eVTnonn = Z-PM) AND (Pip = HlGH) nIEN [dVt = Z (0)] 
(45) If(RR = MAX) AND (eVTnonn = NM-Z) AND (Pip = VlllGH-EHIGH) 1lIEN [dYt = Z (0)] 
[46] If(RR = HlGH-VlllGH) AND (eVTnonn = Z) AND (Pip = VlllGH) THEN [dVt = Z (0)] 
[47] If(RR = VlllGH) AND (eVTnonn = PM) AND (Pip = LOW) nIEN [dYt= PI (2)] 
[48] If(RR = LOW) AND (eVTnonn = NM) AND (Pip = LOW) THEN [dVt = P2 (5)] 
[49] If(RR = HIGH) AND (eVTnonn =Z) AND (Pip = LOW) TIffiN [dVt= P2 (5)] 
[50] If(RR = HlGH-VlllGH) AND (eVTnonn = NS) AND (Pip = MED)lliEN [dVt=P2 (5)] 
[51] If(RR = MAX) AND (eVTnonn = PS-PM) AND (Pip = MED) TIffiN [dVt = P2 (5)] 
[52] If(RR = MAX) AND (eVfnonn = PM) AND (Pip = LOW) mEN [dYt = P3 (10)] 
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[53] Jf(RR=VLOW-MAX) AND (eVToonn= NB) AND (Pip=MED)mEN[dVt=P3 (10)] 
[54] Jf(RR=IDGH-MAX) AND (eVTnonn=NM) AND (Pip=MED)1HEN [dVt=P3 (10)] 
[55] Jf(RR = MAX) AND (eVTnonn = NS-Z) AND (Pip = MED) mEN [dVt = P3 (10)] 
(56) Jf(RR = VLOW) AND (eVTnonn = NB) AND (Pip = LOW) 1HEN [dVt = P4 (15)] 
[57] Jf(RR = IDGH) AND (eVTnonn = NS) AND (Pip = LOW) TI-IEN [dVt = P4 (15)] 
[58] Jf(RR = VIDGH) AND (eVTnonn = Z) AND (Pip = LOW) THEN [dVt= P4 (15)] 
[59] Jf(RR = MAX) AND (eVTnonn = PS) AND (Pip = LOW) 1HEN [dVt = P4 (15)J 
[60J Jf(RR=MED) AND (eVTnonn=NM) AND (Pip = LOW) THEN [dVt=P5 (20)] 
[6IJ Jf(RR = LOW) AND (eVTnonn = NB) AND (Pip = LOW) THEN [dVt= P6 (25)J 
[62] Jf(RR= VIDGH) AND (eVTnonn= NS) AND (Pip=LOW)1HEN [dYt=P6 (25)J 
[63] Jf(RR = MAX) AND (eVTnonn = Z) AND (Pip = LOW) TIffiN [dVt= P6 (25)] 

[64] Jf(RR = MAX) AND (eVTnonn = NS) AND (Pip = LOW) 1HEN [dYt = P7 (35)] 
[65] Jf(RR = MED) AND (eVTnonn = NB) AND (Pip = LOW) 1HEN [dYt = P8 (4O)J 
[66] Jf(RR = IDGH-VIDGH) AND (eVTnonn = NM) AND (Pip = LOW) THEN [dVt= P8 (40») 
[67] Jf(RR = IDGH) AND (eVToonn = NB) AND (Pip = LOW) 1HEN [dVt = P9 (50)] 
[68] Jf(RR = MAX) AND (eVTnonn = NM) AND (Pip = LOW) 1HEN [dVt = P9 (50)J 
[69] Jf(RR = VIDGH-MAX) AND (eVTnonn = NB) AND (Pip = LOW) THEN [dVt = PIO «(ll)J 

TIN New Control Rules 

[1] Jf(Pip= OKAy) AND (Tm = MAX) THEN [dTin = N2 (-20)J 
[2] Jf(Pip= OKAy) AND (Tm = MED-ID)mEN [dTin = NI (-10)] 
[3] Jf(Pip= MED-ID) AND (fin = MAX) mEN [dTin = NI (-10») 
[4J Jf(Pip= OKAY -MED) AND(Tm= NORM) mEN [dTin= Z (0)] 

[5] Jf (Pip = MED-ID) AND (fin = MEO-ID) mEN [arm = Z (0)] 
[6] Jf (Pip = VID) AND (fin = MAX) mEN [dTin = Z (0)] 
[7] Jf(Pip= ID) AND (Tm = NORM) mEN [dTin = PI (10)] 
[8J Jf (Pip = VID) AND (fin = MEO-ID) TI-IEN [arm = PI (10)] 
[9] Jf(Pip = VID) AND (Tm = NORM) mEN [arm = P2 (20») 
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Figure E.2: The output behaviour of the prototype PEEP advisor, for all possible combinations 
of Pa02 and FI02 input. Control space plots are shown for each PEEP fuzzy linguistic class; 
(a) OFF (0 cmH20), (b) LOW (4 cmH20), (c) MEDIUM (8 cmH20), (d) IlIOII 
(12 cmH20) and (e) MAX (16 cmH20). 
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Figure E.3: The output behaviour of the modified PEEP advisor, for all possible combinations of 
Pa0 2 and FI02 input. Control space plots are shown for the PEEP fuzzy linguistic classes; 
(a) OFF (0 cmH20) and (b) LOW (4 cmH20). The plots for MEDIUM, HIGH, and MAX are not 
shown since they are identical to those of Figure E.2 (c) to (e). 

278 



Figure continued overleaf ... 
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Figure E.4: The output behaviour of the prototype Mv advisor, for all possible combinations of 
ePaC02 and ePIP input. Control space plots are shown for the epH fuzzy linguistic classes; 
(a) V.ACID (-0.29), (b) ACID (-0.17), (c) NORMAL (0), (d) ALK (+0.15) and (e) V.ALK (+0.38). 
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(c) 

•. Figure E.5: The output 
•• behaviour of the modified Mv 
•.. advisor, for all possible 
Combinations of ePaC(h and 
rIP input. Control space plots 

.. are shown for each e VI NORM 

fuzzy linguistic class; (a) OK (
i 15 %) and 
\~) NB (-35 %). The region of 

output between ±30 % has 
. been expanded in (c) and (d) 
to give a c1eare picture of the 
controller behaviour due to the 
variability of scale in the 
&tvice given. 
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Figure E.6: The output behaviour of the prototype VT-RR advisor, for all possible combinations of 
eVTNORM and RR input. Control space plots are shown for the ePIP fuzzy linguistic classes; 
(a) OKAY (-10 cmH20), (b) NEAR ALARM (-5 cmH20), (c) ALARM (0 cmH20), (d) mGH (+5 cmH20) and 
(e) V.HIGH (+ 10 cmH20). 
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Figure continued overleaf. .. 
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Figure E.7: The output behaviour of the modified VT-RR advisor, for all possible combinations of 
eVTNORM and RR input. Control space plots are shown for the PIP fuzzy linguistic classes; 
(a) LOW (20 cmH20), (b) MEDillM (30 cmH20), (c) mGH (40 cmH20), (d) v.mGH (50 cmH20) and (c) 
E.tnGH (60 cmH20). 
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Figure E.8: The output behaviour of the modified TIN advisor, for all possible combinations of TIN and 
PIP input. This advisor subsystem was not present in the prototype advisor. 
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Appendix F 

Advisor Responses to Clinical Data 

and Decision Scoring 
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Patient 1: , 1 2 

Observations 

Pa~(kPa) 25.8 23.5 

PaC02 (kPa) 5.14 5.02 

pH 7.36 7.37 

PIP (cmHP) 13.0 11.0 

Weight (kg) 60.3 60.3 

Fi02 (%) 40 35 

Peep (cmHP) 0 0 

Mv(lImin) 7.50 8.00 

RR (rpm) 11 11 

vt(ml) 682 727 

Tin(%) - -
Target PaC02 (kPa) 5.3 5.3 

Anaesthetisfs New Settings 

Fi02 (%) 35 35 
Peep (cmHP) 0.0 0.0 

Mv(lImin) 8.00 7.50 

RR (rpm) 11.0 11.0 

Vt(ml) 727 682 

Tin(%) - -
Advisor New Settings 

Fi02 (%) 35 35 

PEEP (cmHP) 0.0 0.0 

MY (llmin) 7.28 7.56 

RR (rpm) 11.5 12.0 

vt(ml) 630 630 

Tin(%) 33 33 

Decision Difference 

Fi02 (%) 0 0 

Peep (cmHP) 00 0.0 

Mv(lImin) -0.72 0.06 

RR (rpm) 0.5 1.0 

vt(ml) -97 -52 

Tin(%) - -
Scoring 

Fi02 score exact exact 

Peep score exact exact 

Mvsoore X good 

RR score good good 

VI soore X mod 

Tin score nla nla 

3 I 4 

20.3 12.9 

5.50 5.53 

7.39 7.38 

11.0 11.0 

60.3 60.3 

35 30 

0 0 

7.50 7.50 

11 11 

682 682 

- -
5.3 5.3 

30 30 

0.0 0.0 

7.50 7.50 

11.0 11.0 

682 682 

- -

35 30 

0.5 0.0 

7.80 7.84 

12.5 12.5 

630 630 

33 33 

5 0 

0.5 00 

0.30 0.34 

1.5 1.5 

-52 -52 

- -

good exact 

good exact 

good good 

good good 

mod mod 

nJa nla 

I Patient 2: 

I 5 I 6 I 1 I 2 I 3 I 

15.0 16.0 20.6 20.0 16.3 

5.18 5.27 8.87 6.60 7.04 

7.42 7.40 7.10 7.25 7.24 

12.0 14.0 22.0 27.0 29.0 

60.3 60.3 65.0 65.0 65.0 

30 30 100 90 80 

0 0 0 5 5 

7.50 7.50 7.99 10.50 10.50 

11 11 14 14 14 

682 682 571 750 750 

- - 33 33 33 

5.3 5.3 3.8 3.8 3.8 

30 30 90 80 70 

0.0 0.0 5.0 5.0 5.0 

7.50 7.50 10.50 10.50 15.00 

110 11.0 14.0 14.0 15.0 

682 682 750 750 1000 

- - 33 33 33 

30 30 72 69 69 

0.0 0.0 0.0 4.5 4.5 

7.31 7.46 14.23 15.02 14.23 

115 12.0 20.0 20.0 19.0 

630 630 720 750 750 

33 33 33 33 33 

0 0 -18 -11 -1 

0.0 0.0 -5.0 -0.5 -0.5 

-0.19 -0.04 3.73 4.52 -0.77 

0.5 1.0 60 6.0 40 

-52 -52 -30 0 -250 

- - 0 0 0 

exact exact X X good 

exact exact X good good 

good good X X mod 

good good X X X 

mod mod good exact X 

nla nla exact exact exact 

4 5 6 I 7 8 9 I 10 I 11 I 12 I 13 I 14 I 

21.8 17.5 18.1 17.6 18.5 13.1 10.4 13.1 11.8 9.1 17.3 

4.87 4.47 4.20 3.60 3.69 3.70 3.83 3.80 3.75 3.73 3.50 

7.40 7.45 7.47 7.53 7.56 7.55 7.50 7.53 7.53 7.56 7.59 

32.0 31.0 28.0 30.0 30.0 28.0 28.0 30.0 30.0 27.5 27.4 

65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0 

70 60 60 60 50 40 40 40 40 40 40 

5 5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 

15.00 15.00 15.00 16.50 16.50 14.54 14.54 14.54 14.54 14.54 14.54 

15 15 15 15 15 16 16 16 16 16 16 

1000 1000 1000 1100 1100 938 938 938 938 938 938 

33 33 33 33 33 33 33 33 33 33 33 
3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 

60 60 60 50 40 40 40 40 40 40 40 

5.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 

15.00 15.00 1650 16.50 14.54 14.54 14.54 14.54 14.54 14.54 14.54 

15.0 15.0 15.0 15.0 15.5 15.5 15.5 15.5 15.5 15.5 15.5 

1000 1000 1100 1100 938 938 938 938 938 938 938 

33 33 33 33 33 33 33 33 33 33 33 

54 57 56 57 40 39 51 39 41 59 35 
3.0 4.0 4.5 4.5 4.0 4.0 5.5 4.0 4.0 6.5 4.0 

17.03 15.94 15.74 15.59 16.01 14.63 15.08 15.01 14.78 14.71 13.81 

18.5 17.5 17.5 16.5 17.0 17.5 17.5 18.0 17.5 17.5 17.0 

930 900 890 940 950 830 850 840 840 840 810 

33 33 33 33 33 33 33 33 33 33 33 

-6 -3 -4 7 0 -1 11 -1 1 19 -5 

-2.0 -3.5 -3.0 -3.0 -3.5 -3.5 -2.0 -3.5 -3.5 -1.0 -3.5 

2.03 0.94 -0.77 -0.91 1.47 0.09 0.54 0.47 0.24 0.17 -0.73 

35 2.5 2.5 1.5 15 2.0 2.0 2.5 2.0 2.0 1.5 

-70 -100 -210 -160 12 -108 -88 -98 -98 -98 -128 

0 0 0 0 0 0 0 0 0 0 0 

mod good good mod exact good X good good X good 

mod X X X X X mod X X good X 

X mod mod mod X good mod good good good mod 

X mod mod good good mod mod mod mod mod good 

mod mod X X good X mod mod mod mod X 

exact exact exact exact exact exact exact exact exact exact exact 
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I 15 I 16 I 

Observations 

Pa02(kPa) 21.4 10.3 

Pa~(kPa) 3.70 3.54 

pH 7.57 7.57 

PIP (cmHzO) 27.0 28.0 

Weight (kg) 65_0 65.0 

FiOz(%) 40 35 

Peep (cmHzO) 7_5 7_5 

MY (llmin) 14.54 15_01 

RR (rpm) 16 16 

vt(ml) 938 938 

Tin(%) 33 33 

Target PaCOz (kPa) 3.8 3_8 

Anaesthetist's New Settings 

FiOz(%) 35 35 

Peep(cmH~) 7.5 7.5 

MY (I/min) 1501 15_01 

RR (rpm) 16.0 16_0 

vt(ml) 938 938 

Tin(%) 33 33 

Advisor New Settings 

Fi02 (%) 35 46 

PEEP (cmHp) 3.5 5_0 

MV(Vmin) 14.63 13_96 

RR (rpm) 17.5 17_0 

vt(ml) 830 820 

Tin(%) 33 33 

Decision Difference 

Fi02 (%) 0 11 

Peep(cm~) -4.0 -2_5 

MY (Vmin) -0_38 -105 

RR(rpm) 1.5 1_0 

vt(ml) -108 -118 

Tin(%) 0 0 

Scoring 

Fi02score exact X 

Peep score X X 

MY score good X 

RRscore good good 

vt score X X 

Tin score exact exact 
-

171 18 I 

13.1 10.3 

3.40 3.50 

7_60 7_58 

27.0 27.0 

65_0 65_0 

35 35 

7_5 0 

15_01 15.01 

16 16 

938 938 

33 33 

3_8 3_8 

35 40 

0_0 0.0 

15_01 1501 

16_0 16.0 

938 938 

33 33 

35 46 

4_0 1_0 

13_43 13_81 

17_0 17_0 
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33 33 
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40 1_0 

-1_58 -1.20 
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-138 -128 

0 0 

exact mod 

X good 

X X 

good good 

X X 

exact exact 

19 I 20 21 I 22 I 23 I 24 I 

18.0 10.9 19.7 12.5 14.3 10.6 

3.82 3.70 4.18 3.63 4.17 4.00 

7_54 7_57 7.56 7_54 7_53 7_51 

29.0 25_0 25.0 24.0 25.0 29_0 

65.0 65_0 65_0 65.0 65_0 65_0 

40 40 45 45 45 45 

0 0 0 0 0 0 

1501 15.01 1501 1501 1501 15_01 

16 16 16 16 16 16 

938 938 938 938 938 938 

33 33 33 33 33 33 

3.6 3_6 3.8 3.8 3.8 3.8 

40 45 45 45 45 45 

0.0 0.0 00 0.0 0.0 0_0 

1501 15_01 15_01 15_01 15.01 15_01 

16.0 16_0 16_0 160 16.0 16.0 

938 938 938 938 938 938 

33 33 33 33 33 33 

35 47 37 44 41 54 

1_0 1_5 1_0 1.5 1_5 2_0 

15.04 14_63 1601 15_12 15_96 15_34 

18.0 17_5 18_5 18.0 18.5 18.0 

840 830 870 850 870 850 

33 33 33 33 33 33 

-5 2 -8 -1 -4 9 

1.0 1_5 1_0 1_5 1_5 2.0 

0.03 -0.38 1_00 0_11 0.95 0_33 

2.0 1.5 2.5 2.0 2.5 2.0 

-98 -108 -68 -88 -68 --88 

0 0 0 0 0 0 

good good mod good good mod 

good mod good mod mod mod 

good good X good mod good 

mod good mod mod mod mod 

mod X mod mod mod mod 

exact exact exact exact exact exact 

25 I 26 I 27 I 28 I 29 30 31 I 32 33 341 

11.7 11.1 11.1 10.1 10.1 14.1 14.1 13.8 10.7 9.8 ' 
4.10 400 4.00 4.35 4.35 4.90 4.67 4.64 4.86 4.93 

7.49 7_51 7.51 7.50 7_50 7.43 7.44 7.45 7_43 7.42 

29.0 29_0 29.0 29.0 29.0 28.0 29_0 38.0 29.0 35_0 

65_0 65_0 65.0 65_0 65_0 65_0 65.0 65_0 65.0 65.0 

45 50 55 50 55 80 75 70 70 70 

0 0 0 0 0 0 0 0 0 0 

15_01 15_01 1501 15_01 15.Q1 15_01 15_01 16.50 16.50 16_50 

16 16 16 16 16 16 16 16 16 16 

938 938 938 938 938 938 938 1031 1031 1031 

33 33 33 33 33 33 33 33 33 33 

3_8 3.8 3.8 38 3_8 3.8 3_8 3.8 3_8 3.8 

50 55 50 55 80 75 70 70 70 70 

0.0 0.0 0_0 0_0 0_0 0_0 0_0 0.0 0.0 0_0 

15.01 15_01 15.01 15.01 15.01 15_01 16.50 16.50 16_50 20.00 

16_0 16_0 16_0 16.0 16.0 16.0 16.0 16_0 16_0 16.0 

938 938 938 938 938 938 1031 1031 1031 1250 

33 33 33 33 33 33 33 33 33 33 

47 56 60 63 66 75 70 65 74 77 
1_5 25 2_0 3_5 3_0 1_0 0.5 0.0 1_5 3_0 

15_49 15.34 15_34 15_88 15.88 17_80 16_75 18.59 18_99 18.90 

18.0 18.0 18.0 185 18_5 195 19.0 19.0 19.5 19.5 

860 850 850 870 870 900 890 980 980 980 

33 33 33 33 33 33 33 40 33 40 

-3 1 10 8 -14 0 0 -5 4 7 

1.5 2.5 2.0 3.5 3.0 1_0 0_5 00 1.5 3_0 

0.48 0_33 0.33 0.87 0_87 2.59 0.25 2_09 2.49 -1.10 

2_0 2.0 2_0 2.5 2.5 3.5 3_0 3.0 3_5 3_5 

-78 -88 -88 -68 -68 -38 -141 -51 -51 -270 

0 0 0 0 0 0 0 7 0 7 

good good X mod X exact exact good good mod 

mod X mod X X good good exact mod X 

good good good mod mod X good X X X 

mod mod mod mod mod X mod mod X X 

mod mod mod mod mod good X mod mod X 

exact exact exact exact exact exact exact mod exact mod 
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Observations 

Pa02(kPa) 12.6 29.5 11.6 

PaC~(kPa) 4.90 5.20 4.80 

pH 7.42 7.42 7.45 

PIP (cmH2O) 27.0 26.0 25.0 

Weight (kg) 65.0 65.0 65.0 

Fi02(%) 85 85 75 

Peep (cmHp) 0 0 0 

MY (Vmin) 19.00 19.00 18.00 

RR (rpm) 20 20 20 

Vt(ml) 950 950 900 
Tin(%) 33 33 33 
Target PaC02 (kPa) 3.8 3.8 3.8 

Anaesthetist's New Settings 

Fi02(%) 85 75 75 

Peep (cmHP) 0.0 00 0.0 

MY (Vmin) 19.00 18.00 18.00 

RR(rpm) 20.0 20.0 20.0 

Vt(ml) 950 900 900 
Tin(%) 33 33 33 

Advisor New Settings 

Fi02 (%) 81 54 76 

PEEP (cmHp) 2.5 0.0 1.5 

MV(Vmin) 22.56 23.40 21.53 

RR(rpm) 23.0 23.5 23.0 

Vt(ml) 980 1000 940 

Tin(%) 33 33 33 

Decision Difference 

Fi02(%) -4 -21 1 

Peep(cmH~) 2.5 0.0 1.5 

MY (Vmin) 3.56 5.40 3.53 

RR (rpm) 3.0 3.5 3.0 

Vt(ml) 30 100 40 

Tin(%) 0 0 0 

Scoring 

Fi02scone good X good 

Peep score X exact mod 

MY scone X X X 

RRscone mod X mod 

Vt score good X good 

Tin score exact exact exact 

I Patient 3: 

38 I 39 I 1 I 2 I 3 4 

31.7 25.4 60.5 40.0 23.3 19.8 

4.70 4.70 5.85 5.12 4.90 5.56 

7.46 7.45 7.27 7.30 7.35 7.32 

25.0 27.0 34.0 34.0 28.0 28.0 

65.0 65.0 50.5 50.5 50.5 50.5 

75 60 100 50 45 45 

0 0 1 1 1 1 

18.00 18.00 14.00 14.00 12.75 12.75 

20 20 20 20 15 15 

900 900 700 700 850 850 

33 33 25 25 25 25 

3.8 3.8 5.50 5.50 5.50 5.50 

60 60 50 45 45 45 

00 00 1.0 1.0 1.0 1.0 

18.00 18.00 14.00 12.75 12.75 12.75 

20.0 20.0 20.0 15.0 15.0 15.0 

900 900 700 850 850 850 

33 33 25 25 25 25 

51 45 50 40 37 37 

0.0 0.0 1.0 0.5 0.5 1.5 

21.08 20.61 14.18 13.02 11.35 12.81 

22.5 22.5 21.0 19.5 16.0 17.0 

930 920 680 670 720 750 

33 33 33 33 33 33 

-9 -15 0 -5 .a ..a 
0.0 0.0 0.0 '()5 '()5 0.5 

3.08 2.61 0.18 0.27 -1.40 0.06 

2.5 25 1.0 4.5 1.0 2.0 

30 20 -20 -180 -130 -100 

0 0 8 8 8 8 

mod X exact good mod mod 

exact exact exact good good good 

X X good good X good 

mod mod good X good mod 

good good good X X mod 

exact exact mod mod mod mod 

5 6 I 7 I 8 I 9 I 10 I 11 I 12 I 13 I 14 I 15 I 

24.8 17.1 25.0 16.4 17.6 13.7 14.7 15.4 13.6 13.0 14.4 

5.21 5.05 5.94 5.30 3.17 4.53 4.47 4.76 503 4.90 4.49 

7.36 7.38 7.30 7.33 7.31 7.45 7.48 7.43 7.39 7.41 7.49 

25.0 25.0 31.0 31.0 30.0 30.0 32.0 27.0 30.0 27.0 26.0 

50.5 50.5 50.5 50.5 50.5 50.5 50.5 50.5 50.5 50.5 50.5 

45 35 50 40 35 35 35 35 35 35 35 

1 1 1 1 1 1 1 1 5 5 5 

12.75 12.75 12.75 12.75 12.75 12.75 12.75 12.75 12.75 12.75 12.75 

15 15 15 15 15 15 15 15 15 15 15 

850 850 850 850 850 850 850 850 850 850 850 

25 25 25 25 25 25 25 25 25 25 25 

5.50 5.50 550 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 

35 35 40 35 35 35 35 35 35 35 35 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 5.0 5.0 5.0 5.0 

12.75 12.75 12.75 12.75 12.75 12.75 12.75 12.75 12.75 12.75 12.75 

15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 

850 850 850 850 850 850 850 850 850 850 850 

25 25 25 25 25 25 25 25 25 25 25 

37 35 40 35 35 35 35 35 35 35 35 

0.5 1.0 0.5 1.5 1.0 1.0 1.0 1.0 3.0 3.0 3.0 

12.05 11.73 13.06 12.30 7.60 10.52 10.39 11.03 11.67 11.35 10.39 

16.5 16.5 17.5 17.0 11.0 15.0 15.0 15.5 16.0 16.0 15.0 

730 720 750 730 680 710 700 710 720 720 700 

33 33 33 33 33 33 33 33 33 33 33 

2 0 0 0 0 0 0 0 0 0 0 
'()5 00 '()5 0.5 0.0 0.0 0.0 -4.0 -2.0 -2.0 -2.0 

.().70 -1.02 0.31 '()45 -5.15 -2.23 -2.36 -1.72 -1.08 -1.40 -2.36 

1.5 1.5 25 2.0 -4.0 0.0 0.0 0.5 1.0 1.0 00 

-120 -130 -100 -120 -170 -140 -150 -140 -130 -130 -150 

8 8 8 8 8 8 8 8 8 8 8 

good exact exact exact exact exact exact exact exact exact exact 

good exact good good exact exact exact X mod mod mod 

mod X good good X X X X X X X 
good good mod mod X exact exact good good good exact 

X X mod X X X X X X X X 

mod mod mod mod mod mod mod mod mod mod mod 
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Observations 

Pa02(kPa) 15.3 

Pa~(kPa) 4.52 

pH 7.50 

PIP (anHp) 28.0 

Weight (kg) 50.5 

Fi02(%) 35 

Peep (anH2O) 5 

MY (Vmin) 12.75 

RR(rpm) 15 

Vt(ml) 850 

Tin(%) 25 

Target Pa~ (!<Pol) 550 

Anaesthetisfs New Settings 

Fi02(%) 35 

Peep (anH2O) 5.0 

Mv (Vmin) 12.75 

RR (rpm) 15.0 

Vt(ml) 850 

Tin(%) 25 

Advisor New Settings 

Fi02 (%) 35 

PEEP (anHp) 3.0 

MV (llmin) 1046 

RR (rpm) 15.0 

Vt(ml) 700 

Tin (%) 33 

Decision Difference 

Fi02 (%) 0 

Peep (anH,o) -2.0 

Mv (Vmin) -2.30 

RR(rpm) 00 

Vt(ml) -150 

Tin(%) 8 

Scoring 

Fi02score exact 

Peep score mod 

Mv score X 

RRscore exact 

Vt score X 

Tin score mod 

17 I 18 I 

14.7 16.9 

4.52 4.18 

7.53 7.52 

27.0 28.0 

50.5 50.5 

35 35 

5 5 

12.75 12.75 

15 15 

850 850 

25 25 

5.50 5.50 

35 35 

5.0 5.0 

12.75 12.75 

15.0 15.0 

850 850 

25 25 

35 35 

3.0 2.5 

10.46 9.69 

15.0 14.0 

700 690 

33 33 

0 0 

-2.0 -2.5 

-230 -3.06 

0.0 -1.0 

-150 -160 

8 8 

exact exact 

mod X 

X X 

exact good 

X X 

mod mod 

I Patient 4: 

19 I 20 I 21 I 22 I 23 I 24 I 25 I 1 I 2 I 

16.2 17.0 19.4 12.7 15.9 12.5 12.0 31.5 16.8 

4.57 4.80 5.30 5.20 5.10 5.00 4.70 4.50 4.03 

7.52 7.49 7.45 7.45 7.47 7.45 7.47 7.36 7.35 

29.0 21.0 22.0 22.0 23.0 24.0 23.0 30.0 26.0 

50.5 50.5 50.5 50.5 50.5 50.5 50.5 70.0 70.0 

35 35 35 30 30 30 30 50 45 

5 5 5 5 5 5 5 0 0 

12.75 9.00 9.00 9.00 9.00 9.00 9.00 12.60 12.60 

15 12 12 12 12 12 12 14 14 

850 750 750 750 750 750 750 900 900 

25 25 25 25 25 25 25 - -
5.50 5.50 550 5.50 5.50 5.50 5.50 4.00 4.00 

35 35 30 30 30 30 30 45 45 

5.0 5.0 5.0 5.0 5.0 5.0 5.0 0.0 0.0 

9.00 9.00 9.00 9.00 9.00 9.00 9.00 12.60 12.60 

12.0 12.0 12.0 12.0 12.0 12.0 12.0 14.0 14.0 

750 750 750 750 750 750 750 900 900 

25 25 25 25 25 25 25 - -

35 35 35 30 30 30 30 40 37 

3.0 2.5 2.5 2.5 2.5 2.5 2.5 0.0 1.5 

10.58 7.68 8.69 8.51 8.33 8.19 7.70 13.13 12.68 

15.0 13.0 14.0 14.0 13.5 13.5 130 17.0 16.5 

710 600 620 610 610 610 600 780 770 

33 33 33 33 33 33 33 33 33 

0 0 5 0 0 0 0 -5 -8 

-2.0 -2.5 -2.5 -25 -2.5 -2.5 -2.5 0.0 1.5 

1.58 -1.13 -0.32 -049 -0.68 -081 -1.31 053 0.08 

30 1.0 2.0 2.0 1.5 1.5 1.0 3.0 2.5 

-40 -150 -130 -140 -140 -140 -150 -120 -130 

8 8 8 8 8 8 8 - -

exact exact good exact exact exact exact good mod 

mod X X X X X X exact mod 

X X good good mod mod X mod good 

mod good mod mod good good good mod mod 

good X X X X X X X X 

mod mod mod mod mod mod mod nla nJa 

3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 

25.3 24.5 20.2 14.6 21.1 17.9 21.2 18.3 

4.04 4.10 4.40 4.00 4.03 3.58 3.59 3.17 

7.37 7.38 7.40 7.48 7.48 7.51 7.56 7.57 

24.0 23.0 27.0 27.0 33.00 23.00 30.00 28.00 

70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 

45 50 50 50 40 40 40 40 

0 0 0 0 0 0 0 0 

12.60 12.60 12.80 13.60 16.80 16.50 16.50 16.50 

14 14 16 16 21 22 22 22 

900 900 800 850 800 750 750 750 

- - - - - - - -
4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 

50 50 50 40 40 40 40 40 

0.0 0.0 0.0 0.0 0 0 0 0 

12.60 12.80 13.60 15.30 16.50 16.50 16.50 16.50 

14.0 16.0 16.0 18.0 22 22 22 22 

900 800 850 850 750 750 750 750 

- - - - - - - -

37 40 40 43 35 35 35 35 

0.0 00 1.0 2.0 0.5 1.0 0.5 0.5 

1269 12.85 13.48 13.60 16.84 14.77 14.77 13.12 

16.5 16.5 17.5 17.0 21.0 19.0 19.5 17.5 

770 780 780 790 800 780 750 750 

33 33 33 33 40 33 33 33 

-13 -10 -10 3 -5 -5 -5 -5 

0.0 00 1.0 2.0 05 1.0 0.5 0.5 

0.09 0.05 -0.12 -1.70 034 -1.73 -1.73 -3.38 

2.5 0.5 15 -1.0 -1.0 -3.0 -2.5 -4.5 

-130 -20 -70 -60 50 30 0 0 

- - - - - - - -

X mod mod good good good good good 

exact exact good mod good good good good 

good good good X good X X X 
mod good good good good mod mod X 

X good X mod good good exact exact 

nJa nla nJa nJa nJa nJa nla nla 
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Observations 

Pa02(kPa) 18.3 

PaCC>,(kPa) 3.33 

pH 7.58 

PIP (cmH2O) 36.00 

Weight (kg) 70.0 

Fi02 (%) 40 

Peep (cmH2O) 0 

Mv (Vrnin) 16.50 

RR(rpm) 22 

vt(ml) 750 

Tin(%) -
Target PaC02 (kPa) 4.00 

Anaesthetisfs New Settings 

Fi02 (%) 40 

Peep (cmHp) 0 

Mv(Vmin) 16.50 

RR(rpm) 22 

vt(ml) 750 

Tin(%) -
Advisor New Settings 

Fi02 (%) 35 

PEEP (cmHp) 0.5 

MV(Vmin) 13.78 

RR(rpm) 18.5 

vt(ml) 750 

Tin(%) 40 

Decision Difference 

Fi02 (%) -5 

Peep (cmHP) 05 

Mv(Vmin) -2.72 

RR(rpm) -3.5 

vt(ml) 0 

Tin(%) -
Scoring 

Fi02 score good 

Peep score good 

Mvscore X 

RRscore X 

vt score exact 

Tin score nJa 

12 13 

24.2 14.3 

3.50 404 

7.56 7.50 

34.00 32.00 

70.0 70.0 

40 40 

0 0 

16.50 16.50 

22 22 

750 750 

- -
4.00 4.00 

40 40 

0 0 

16.50 16.50 

22 22 

750 750 
. -

35 37 

00 1.0 

14.44 16.54 

195 22.0 

750 750 

40 33 

-5 -3 

00 10 

-2.06 0.04 

-2.5 00 

0 0 

. -

good good 

exact good 

X good 

mod exact 

exact exact 

n/a nJa 

Patient 5: 

1 I 2 I 3 I 4 5 6 

78.5 26.4 24.6 13.6 9.9 9.2 

2.74 3.39 2.88 3.80 4.19 4.72 

7.54 7A5 7.41 7.34 7.30 7.27 

33.0 25.0 24.0 21.0 24.0 23.0 

78.3 78.3 78.3 78.3 78.3 78.3 

80 50 50 45 45 45 

0 0 0 0 0 0 

12.50 9.00 9.00 7.99 7.99 7.99 

17 12 12 12 12 12 

735 750 750 666 666 666 

25 25 25 25 25 25 

4.00 4.00 4.00 4.00 4.00 4.00 

50 50 45 45 45 60 

0.0 0.0 0.0 0.0 0.0 0.0 

9.00 9.00 7.99 7.99 7.99 8.00 

12.0 12.0 12.0 12.0 12.0 130 

750 750 666 666 666 615 

25 25 25 25 25 25 

50 40 40 42 59 64 

0.0 0.0 0.0 1.5 2.5 3.0 

8.59 7.65 6.48 7.59 8.29 9.17 

12.5 10.5 9.0 11.5 12.5 14.0 

700 730 740 660 650 660 

33 33 33 33 33 33 

0 -10 -5 -3 14 4 

00 0.0 0.0 1.5 2.5 3.0 

-0.41 -1.35 -1.51 -0.40 0.29 1.17 

0.5 -1.5 -3.0 -0.5 0.5 1.0 

-50 -20 74 ~ -16 45 

8 8 8 8 8 8 

exact mod good good X good 

exact exact exact mod X X 

good X X good good X 

good good mod good good good 

good good mod good good good 

mod mod mod mod mod mod 

Patient 6: 

7 8 9 I 10 11 12 1 2 3 4 5 

10.2 10.6 10.5 11.8 12 11.8 14.7 14.6 15.1 11.8 11.2 

4.00 3.92 4.00 3.93 3.98 406 4.17 3.71 3.64 3.47 3.43 

7.33 7.32 7.28 7.26 7.24 7.18 7.18 7.22 7.24 7.27 7.37 

26.0 26.0 26.0 26.0 26.0 27.0 44.0 31.0 32.0 31.0 29.0 

78.3 78.3 78.3 78.3 78.3 78.3 54.0 54.0 54.0 54.0 54.0 

60 70 70 70 70 70 95 95 80 70 60 

0 0 0 5 5 5 4 4 4 4 4 

8.00 9.49 9.49 9.49 9.49 9.49 10.50 11.20 10.50 10.50 10.50 

13 13 13 13 13 13 15 16 15 15 15 , 

615 730 730 730 730 730 700 700 700 700 700 

25 25 25 25 25 25 25 25 25 25 25 

4.00 400 400 400 4.00 4.00 5.3 5.3 5.3 5.3 5.3 

70 70 70 70 70 70 95 80 70 60 50 

0.0 0.0 5.0 5.0 5.0 5.0 4.0 4.0 4.0 4.0 4.0 

9.49 9.49 9.49 9.49 9.49 9.49 11.20 10.50 10.50 10.50 7.00 

13.0 13.0 13.0 13.0 13.0 13.0 16.0 15.0 15.0 15.0 10.0 

730 730 730 730 730 730 700 700 700 700 700 

25 25 25 25 25 25 25 25 25 25 25 

69 75 75 71 70 71 83 84 72 71 64 

3.0 2.0 2.0 4.5 4.5 4.5 4.0 4.0 4.0 4.0 4.0 

8.00 9.30 9.49 9.35 9.44 9.57 8.24 7.84 7.22 6.96 6.87 

13.0 130 13.0 13.0 13.0 13.5 14.5 14.0 130 12.5 12.5 

610 720 720 720 720 720 560 570 560 560 560 

33 33 33 33 33 33 40 33 33 33 33 

-1 5 5 1 0 1 -12 4 2 11 14 

3.0 2.0 -3.0 -0.5 -0.5 -0.5 00 0.0 00 00 00 

-1.50 -0.19 0.00 -0.14 -0.05 0.08 -2.96 -2.66 -3.28 -3.54 -0.13 

0.0 00 00 00 00 0.5 -1.5 -1.0 -2.0 -2.5 2.5 

-120 -10 ·10 -10 -10 -10 -140 -130 -140 -140 -140 

8 8 8 8 8 8 15 8 8 8 8 

good good good good exact good X good good X X 

X mod X good good good exact exact exact exact exact 

X good exact good good good X X X X good 

exact exact exact exact exact good good good mod mod mod 

X good good good good good X X X X X 

mod mod mod mod mod mod X mod mod mod mod 
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Pa02(kPa) 11.2 

Pa~(kPa) 4.50 

pH 7.30 

PIP (cmH2O) 25.0 

Weight (kg) 54.0 

Fi02(%) 50 

Peep (cmH2O) 4 

MY (I/min) 7.00 

RR(rpm) 10 

Vt(ml) 700 

Tin(%) 25 

Target PaOO, (kPa) 5.3 

Anaesthetist's New Settings 

Fi02(%) 60 

Peep (cmH,o) 4.0 

MY (I/min) 7.00 

RR(rpm) 10.0 

Vt(ml) 700 

Tin(%) 25 

Advisor New Settings 

Fi02 (%) 55 
PEEP (cmHp) 4.0 

MY (I/min) 5.95 

RR(rpm) 10.5 

Vt(ml) 560 

Tin(%) 33 

Decision Difference 

Fi02(%) -5 

Peep (cmH,o) 00 

MY (I/min) -1.05 

RR(rpm) 0.5 

Vt(ml) -140 

Tin(%) 8 

Scoring 

Fi02score good 

Peep score exact 

MY score X 

RR score good 

Vt score X 

Tin score mod 

13.9 20.2 15.7 

4.62 4.39 4.60 

7.32 7.21 7.36 

25.0 23.0 23.0 

54.0 54.0 54.0 

60 60 55 

4 5 4 

7.00 7.00 7.00 

10 10 10 

700 700 700 

25 25 25 

5.3 5.3 5.3 

60 55 55 

4.0 4.0 4.0 

7.00 7.00 7.00 

10.0 10.0 10.0 

700 700 700 

25 25 25 

60 53 50 

4.0 3.5 4.0 

609 5.81 6.09 

11.0 10.5 11.0 

560 560 560 

33 33 33 

0 -2 -5 

0.0 -0.5 0.0 

-0.91 -1.19 -0.91 

1.0 0.5 1.0 

-140 -140 -140 

8 8 B 

exact good good 

exact good exact 

mod X mod 

good good good 

X X )( 

mod mod mod 

18.6 19 15.6 7.8 11.4 

4.58 4.82 4.63 5.54 5.70 

7.30 7.28 7.29 7.38 7.36 

22.0 230 23.0 21.0 21.0 

54.0 54.0 54.0 80.0 80.0 

55 55 50 60 70 

4 4 4 5 5 

7.00 7.00 7.00 9.80 9.80 

10 10 10 14 14 

700 700 700 700 700 

25 25 25 25 25 

5.3 5.3 5.3 5.50 5.50 

55 50 45 70 70 

4.0 4.0 4.0 5.0 7.0 

7.00 7.00 7.00 980 9.80 

10.0 10.0 10.0 14.0 14.0 

700 700 700 700 700 

25 25 25 25 25 

48 48 41 78 72 

3.5 3.5 4.0 6.5 4.5 

6.06 6.37 6.13 9.85 10.12 

11.0 11.5 11.0 14.0 14.5 

560 560 560 700 710 

33 33 33 33 33 

-7 -2 -4 8 2 

-0.5 -0.5 00 1.5 -2.5 

-0.95 -0.63 -0.88 0.05 0.32 

1.0 1.5 1.0 00 0.5 

-140 -140 -140 0 10 

B B B B 8 

mod good good mod good 

good good exact mod X 

mod mod mod good good 

good good good exact good 

X )( X exact good 

mod mod mod mod mod 

9.3 11.6 9.2 7.3 7.9 8.4 22.5 19.7 13.4 9.8 

6.00 5.68 6.50 6.11 5.94 5.15 5.60 4.81 4.88 4.70 

7.31 7.35 7.31 7.38 7.38 7.43 7.47 7.42 7.42 7.40 

21.0 22.0 21.0 23.0 23.0 25.0 29.0 19.0 19.0 18.0 

80.0 80.0 80.0 80.0 80.0 80.0 55.0 97.9 97.9 97.9 

70 70 65 70 80 80 55 45 40 40 

7 7 7 7 7 7 5 0 0 0 

9.80 9.80 9.80 10.50 10.50 12.00 6.00 9.00 9.00 9.00 

14 14 14 15 15 15 10 12 12 12 

700 700 700 700 700 800 600 750 750 750 

25 25 25 25 25 25 - - - -
5.50 5.50 5.50 5.50 5.50 5.50 4.60 460 4.60 4.60 

70 65 70 80 80 80 45 40 40 45 

7.0 7.0 7.0 7.0 7.0 15.0 5.0 0.0 0.0 0.0 

9.80 9.80 10.50 10.50 12.00 12.00 6.00 9.00 9.00 900 

14.0 14.0 15.0 15.0 15.0 15.0 10.0 12.0 12.0 12.0 

700 700 700 700 800 800 600 750 750 750 

25 25 25 25 25 25 - - - -

79 71 77 80 83 81 45 37 38 55 

7.0 5.5 7.0 8.0 8.5 8.0 3.0 1.0 1.0 1.5 

10.62 10.10 11.46 11.42 11.17 11.22 6.63 9.41 9.54 9.18 

15.0 14.5 15.5 15.5 155 14.5 12.0 12.5 12.5 12.0 

720 700 740 730 720 770 560 750 750 750 

33 33 33 33 33 33 33 33 33 33 

9 6 7 0 3 1 0 -3 -2 10 

0.0 -1.5 00 1.0 1.5 -7.0 -2.0 1.0 1.0 1.5 

082 030 0.96 0.92 -083 -0.78 0.63 0.40 0.54 0.18 

1.0 0.5 0.5 0.5 0.5 -0.5 2.0 0.5 0.5 00 

20 0 40 30 -80 -30 -40 0 0 0 

B 8 8 8 8 8 - - - -

mod X mod exact good good exact good good mod 

exact mod exact good mod X mod good good mod 

mod good mod mod mod mod mod good mod good 

good good good good good good mod good good exact 

good exact good good mod good good exact exact exact 

mod mod mod mod mod mod nla nla nla nla 



IV 
\0 

"'" 

I Patient 10: 

I 1 I 2 

Observations 

Pa~(kPa) 12.9 19.6 

Pa~(kPa) 4.87 4.09 

pH 7A3 7.50 

PIP (cmHPl 37.0 37.0 

Weight (kg) 54.2 54.2 

Fi02 (%) 75 75 

Peep (cmHPl 9 9 

MY (I/min) 9.60 9.60 

RR (rpm) 12 12 

Vt(ml) 800 800 

Tin(%l 50 50 

Target PaCO. (kPa) 4.60 4.60 

Anaesthetist's New Settings 

Fi02 (%) 75 75 

Peep (cmHP) 9.0 9.0 

MY (llmin) 9.60 9.60 

RR (rpm) 12.0 12.0 

Vt(ml) 800 800 
Tin(%) 50 50 

Advisor New Settings 

Fi02 (%) 73 60 

PEEP (cmHP) 7.0 5.5 

MY (11m in) 9.66 8.54 

RR (rpm) 14.5 13.0 

Vt(ml) 660 650 

Tin(%) 50 50 

Decision Difference 

Fi02 (%) -2 -15 

Peep (cmHP) -2.0 -3.5 

Mv (llmin) 006 -1.06 

RR (rpm) 2.5 1.0 

Vt(ml) -140 -150 

Tin(%) 0 0 

Scoring 

Fi02 score good X 

Peep score mod X 

Mvscore good X 

RRscore mod good 

Vtscore X X 

Tin score exact exact 

I 3 I 

17.3 

4.38 

7.51 

38.0 

54.2 

75 

9 

9.60 

12 

800 

50 

4.60 

65 

9.0 

9.00 

12.0 

750 

50 

63 

6.0 

9.12 

14.0 

650 

50 

-2 

-3.0 

0.12 

2.0 

-100 

0 

good 

X 
good 

mod 

mod 

exact 

4 I 

14.1 

4.50 

7.52 

35.0 

54.2 

65 

9 

900 

12 

750 

50 

4.60 

65 

9.0 

9.00 

12.0 

750 

50 

62 

6.0 

8.82 

14.0 

620 

50 

-3 

-3.0 

-0.18 

2.0 

-130 

0 

good 

X 
good 

mod 

X 

exact 

I Patient 11: 

5 I 1 I 2 

13.2 11.9 12.3 

4.73 6.55 5.81 

7.50 7.12 7.18 

36.0 28.0 31.0 

54.2 76.0 76.0 

65 40 40 

9 4 4 

9.00 5.72 7.80 

12 11 15 

750 520 520 

50 - -
4.60 4.80 4.80 

, 

55 40 40 ! 

9.0 4.0 4.0 ! 

9.00 7.80 9.36 I 

12.0 15.0 18.0 

750 520 520 

50 - -

63 41 40 

6.0 3.0 3.0 

9.04 6.40 7.95 

14.5 120 15.0 

620 540 530 

50 33 33 

8 1 0 

-3.0 -1.0 -1.0 

004 -1.40 -1.41 

2.5 -3.0 -3.0 

-130 20 10 

0 - -
mod good exact 

X good good 

good X X 
mod mod mod 

X good good 

exact nla nla 

Table F.l: The observation data required by the modified advisor 
exstracted from the clinical records collected (see Section 8.2 for a brief 
synopsis of the patients recorded). All records were from patients on VC 
or PRVC modes of ventilation. The changes to the ventilator settings made 
by the attending anaesthetist are compared against those proposed by the 
advisor. The decision difference is shown together with the results of the 
qualitative scoring, see Section 8.4. 



Frequency 

Exact Good Moderate Poor 

F10l 36 54 20 16 

PEEP 32 33 26 35 

Mv 1 48 25 52 

RR 13 55 46 12 

VT 11 30 29 56 

TIN 42 0 58 1 

Total 135 220 204 172 

Percentage of Total 

Exact Good Moderate Poor 

FI01 28.6 42.9 15.9 12.6 

PEEP 25.4 26.2 20.6 27.8 

Mv 0.9 38.1 19.8 41.2 

RR 10.3 43.7 36.5 9.5 

VT 8.8 23.8 23.0 44.4 

TIN 41.6 0.0 57.4 1.0 

Total 18.5 30.1 27.9 23.5 

Table F.2: The qualitative scoring frequency distribution of the decision 
matching achieved by the advisor in response to the clinical data. 

Frequency 

Exact Good Moderate Poor 

FI01 20 13 5 0 

PEEP 18 14 5 1 

Mv 14 19 5 0 

RR 19 16 3 0 

VT 4 23 8 3 

TIN 28 0 10 0 

Total 103 85 36 4 

Percentage of Total 

Exact Good Moderate Poor 

FI01 52.6 34.2 13.2 0.0 

PEEP 47.4 36.8 13.2 2.6 

Mv 36.8 50.0 13.2 0.0 

RR 50.0 42.1 7.9 0.0 

VT 10.5 60.5 21.1 7.9 

TIN 73.7 0.0 26.3 0.0 

Total 45.2 37.3 15.8 1.7 

Table F.3: The qualitative scoring frequency distribution of the decision 
matching achieved by the advisor in response to the simulated closed
loop data. 



Nomenclature 

Ph 
2,3-DPG 

ARDS 
ATPS 
BC02 

BPDIAS 
BPsyS 
BROPUS 
BTPS 
C.O. 

CaC02 

CAC02 

Ca02 

CA0 2 

CAW 

CC0 2 / C( C02) 

CetC02 

CMV 

C02 / C(0 2) 

CoG 

CoLA 
COPD 
CoS 

CP 
CPAP 
CpC02 

Cp02 

CRI 

CtC02 

Ct02 

CVC 

CVC02 

CV02 

DC02 

002 

oxygen carrying capacity of the blood plasma 

oxygen combining capacity of haemoglobin 

organ ic phosphate 2,3-d iphosphoglycerate 

adult respiratory distress syndrome 

atmospheric temperature pressure saturated 

diffusion capacity of the lung for carbon dioxide (per litre of blood flowing in 
pulmonary capillaries) 
diffusion capacity of the lung for oxygen (per litre of blood flowing in 
pulmonary capillaries) 
diastolic blood pressure 

systolic blood pressure 

block diagram representations of patient under simulation 

body temperature pressure saturated 

cardiac output (same as Qt) 

concentration of carbon dioxide in arterial blood 

concentration of carbon dioxide in alveolar gas 

concentration of oxygen in arterial blood 

concentration of oxygen in alveolar gas 

airway compliance 

concentration of carbon dioxide 

end-tidal concentration of carbon dioxide 

continuous mandatory ventilation 

concentration of oxygen 

centre-of-gravity 

centre-of-Iargest area 

chronic obstructive pulmonary disease 

centre-of-sums 

percentage of normal cardiac output 

continuous positive airway pressure 

concentration of carbon dioxide in pulmonary blood 

concentration of oxygen in pulmonary blood 

compositional rule of inference 

concentration of carbon dioxide in tissue blood 

concentration of oxygen in tissue blood 

central venous catheter 

concentration of carbon dioxide in venous blood 

concentration of oxygen in venous blood 

diffusion capacity of the lung for carbon dioxide 

diffusion capacity of the lung for oxygen 
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ePaC02 

epH 

ePIP 

eVTNORM 

FAC 
FAVeM 

FrC02 

FrOz 

FrSMAT 
FKBC 
FoM 

FRC 
GDF 

GUI 

[If] 

Hb 

HCOj 

HR 

I:E 

ICU 

IGDF 

IPPV 

IRI 

LoM 

LVF 

MATLAB 

MIDoM 

MoM 

MR 

Mv 

ODC 

OPM 

P50 

PAC 

PaC02 

PAC02 

Pa02 

PA0 2 

PB 

error from PaC02 set-point 

error from normal pH 

error from PIP set-point 

error from normal tidal volume 

femoral artery catheter 

fuzzy-logic based advisor for ventilation management 

fractional concentration of inspired carbon dioxide 

fractional concentration of oxygen in inspired breath 

fuzzy logic public domain toolbox for MATLAB 

fuzzy knowledge based controller 

first of maxima 

functional residual capacity 

gas dissociation function 

graphical user interface 

concentration of hydrogen ions 

haemoglobin concentration 

bicarbonate 

heart rate 

inspiratory-expiratory time ratio 

intensive care unit 

inverse gas dissociation function 

intermittent positive pressure ventilation 

individual rule of inference 

last of maxima 

left ventricular failure 

Matrix Laboratory - proprietary software for mathematical development 

middle of maxima 

mean of maxima 

percentage of normal metabolic rate 

minute volume 

normal minute volume (based on weight) 

oxygen dissociation curve 

observation processing module 

50 % saturation normal operating point of the oxygen dissociation curve 

pulmonary artery catheter 

partial pressure of carbon dioxide in arterial blood 

partial pressure of carbon dioxide in alveolar gas 

partial pressure of oxygen in arterial blood 

partial pressure of oxygen in alveolar gas 

atmospheric pressure 
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Pbco2 

Pbo2 

Pc~ 

PCV 

PEEP 

PH20 

PlP 

pK 

PMEAN 

P02 

PpC02 

Pp~ 

PRVC 

PSS 

PVC02 

PV C02 

PV02 

Qs/Qt 

Qs 

Qt 
RAC 

RAW 

RH 

RQ 

RR 

RTA 

SA 

SHBODC 

SIMULINK 

SIMV 

S0 2 

SOPAVent 

STPD 

TLC 

TIN 

TPAUSE 

UoD 

partial pressure of carbon dioxide in brain tissue 

partial pressure of oxygen in brain tissue 

partial pressure of carbon dioxide 

packed cell volume or haematocrit 

positive end expiratory pressure 

partial pressure of water 

peak inspiratory pressure 

logarithm of the inverse of the apparent first dissociation constant 

mean alveolar or airway pressure 

partial pressure of oxygen 

partial pressure of carbon dioxide in pulmonary blood 

partial pressure of oxygen in pulmonary blood 

pressure regulated volume control 

parameter sensitivity score 

partial pressure of carbon dioxide in venous blood 

partial pressure of carbon dioxide in mixed venous blood 

partial pressure of oxygen in venous blood 

shunt fraction (same as X) 

shunt blood flow 

cardiac output (same as C.O.) 

radial artery catheter 

airway resistance 

relative humidity 

respiratory gas exchange ratio or respiratory quotient 

respiratory rate 

road traffic accident 

sensitivity analysis 

standard human blood oxygen dissociation curve 

proprietary software for block diagram model development and simulation 

synchronised intermittent mandatory ventilation 

percent saturation of haemoglobin with oxygen 

simulation of patient under artificial ventilation 

standard temperature pressure dry 

total lung capacity 

expiratory time 

inspiratory time 

inspiratory time as percentage of whole breath 

pause time after inspiration as percentage of whole breath 

universe of discourse 

298 



Va 

VA 
VA 
VC 

V C02 

VD 
VD 
V0 2 

Vp 

VT 

Vt 

VTNORM 

Vv 

VWB 

V/Q 
WT 

X 

volume of ventilation per minute 

arterial blood volume 

alveolar gas volume 

alveolar ventilation per minute 

volume control 

rate of carbon dioxide production per minute 

dead space volume 

dead space ventilation per minute 

rate of oxygen consumption per minute 

pulmonary blood volume 

tidal volume 

tissue blood volume 

normal tidal volume (based upon patient weight) 

venous blood volume 

whole blood volume 

ventilation-perfusion ratio 

weight 

shunt fraction (same as Qs/Qt ) 
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