AN ECOLOGICAL INTERPRETATION OF MESOLITHIC SHELLFISH
REMAINS ON THE ISLAND OF ORONSAV, INNER HEBRIDES

VOLUME 2 OF 2 VOLUMES

DAVID ALYN JONES

Submitted for the degree of PhD in the
Department of Prehistory and Archaeology,
the University of Sheffield,
January 1984
FIGURE 1: THE LOCATION OF ORONsay AND COlONsAY.
FIGURE 2: ORONASY AND THE SOUTHERN PART OF COLONSAY.
FIGURE 3: MEAN GROWTH RATES OF *PATELLA VULGATA* OF VARYING SIZES AT BOULOGNE. After Choquet 1968.
FIGURE 4: MEAN GROWTH RATES OF PATELLA VULGATA IN DIFFERENT HABITATS AT ROBIN HOOD'S BAY. After Lewis and Bowman 1975.

<table>
<thead>
<tr>
<th>Level</th>
<th>Habitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>a-low</td>
<td>bare</td>
</tr>
<tr>
<td>b-low</td>
<td>bare/fucus</td>
</tr>
<tr>
<td>c-mid</td>
<td>bare/fucus</td>
</tr>
<tr>
<td>d-low</td>
<td>bare</td>
</tr>
<tr>
<td>e-high</td>
<td>bare</td>
</tr>
<tr>
<td>f-mid</td>
<td>mussels/barnacles</td>
</tr>
<tr>
<td>g-mid</td>
<td>barnacles</td>
</tr>
<tr>
<td>h-mid</td>
<td>barnacles</td>
</tr>
<tr>
<td>i-high</td>
<td>barnacles/mussels</td>
</tr>
<tr>
<td>j-high</td>
<td>barnacles</td>
</tr>
</tbody>
</table>

Dotted line = less than 10 individuals.
FIGURE 5: MEAN GROWTH RATES OF PATELLA VULGATA IN DIFFERENT HABITATS AT BOULOGNE. After Choquet 1968.
FIGURE 7: THE SUGGESTED PROBABLE LENGTH-FREQUENCY STRUCTURE OF PATELLA VULGATA POPULATIONS FROM DIFFERENT TIDAL LEVELS AND DIFFERENT BIOLOGICAL HABITATS AT ROBIN HOOD’S BAY.

After Lewis and Bowman 1975.
FIGURE 8: MEAN GROWTH RATES OF PERIWINKLES OF VARYING SIZES AT CRAIG-YR-WILFA. After Williams 1964.
FIGURE 9: THE ORONASY SHELLFISH COLLECTION AREA, SHOWING LOWER AND UPPER SHORE ROCK SKERRIES.
FIGURE 10: THE RELATIONSHIP BETWEEN DRY MEAT WEIGHT AND SHELL WEIGHT FOR ORONSAY LOW SHORE LIMPETS IN NOVEMBER.
FIGURE 11: THE RELATIONSHIP BETWEEN DRY MEAT WEIGHT AND SHELL WEIGHT FOR COLONSAY HIGH SHORE LIMPETS IN SEPTEMBER.
FIGURE 12: THE RELATIONSHIP BETWEEN DRY MEAT WEIGHT AND SHELL WEIGHT
FOR ORONSAY LOW SHORE DOGWHELKS IN MARCH.

FIGURE 13: THE RELATIONSHIP BETWEEN DRY MEAT WEIGHT AND SHELL WEIGHT
FOR ORONSAY LOW SHORE PERIWINKLES IN MAY–JUNE.
Figure 14: Mean Ratio Shell/Meat Weight (Ratio S/M) per month in Ornsay Low Shore Limpets.
FIGURE 15: MEAN RATIO S/M PER MONTH IN ORONSAV HIGH SHORE LIMPETS.
FIGURE 16: MEAN RATIO S/M PER MONTH IN COLONSAY LOW SHORE LIMPETS.
FIGURE 17: MEAN RATIO S/M PER MONTH IN COLONSAE HIGH SHORE LIMPETS.
KEY TO FIGURES 18, 19, 20, and 21.

_________________ SMALL ANIMALS

_________________ MEDIUM ANIMALS

_________________ LARGE ANIMALS

KEY TO FIGURES 27, 28, 29, 35, 36, and 37.

_________________ SMALL ANIMALS

_________________ LARGE ANIMALS
FIGURE 18: MEAN RATIO S/M PER MONTH FOR SMALL, MEDIUM AND LARGE ORONASY HIGH SHORE LIMPETS.
FIGURE 19: MEAN RATIO S/M PER MONTH FOR SMALL, MEDIUM AND LARGE ORONSA Y HIGH SHORE LIMPETS.
FIGURE 20: MEAN RATIO S/M PER MONTH FOR SMALL, MEDIUM AND LARGE COLONOSAY LOW SHORE LIMPETS.
FIGURE 21: MEAN RATIO S/M PER MONTH FOR SMALL, MEDIUM AND LARGE COLONASAY HIGH SHORE LIMPETS.
FIGURE 22: VARIATION IN ASH-FREE DRY WEIGHT OF A STANDARD LIMPET (36 mm SHELL LENGTH) FROM LOW WATER DURING 1966 AT ROBIN HOOD'S BAY.

After Blackmore 1969b.

--- Neuter

--- Female

--- Male

FIGURE 23: VARIATION IN DRY MEAT WEIGHT OF A STANDARD LIMPET (50 mm SHELL LENGTH) FROM LOW WATER DURING 1974 TO 1975 AT EASTHAVEN, TAYSIDE.

After Jones et al 1979.

(In both figures vertical bars represent standard error.)
FIGURE 24: MEAN RATIO S/M PER MONTH IN ORONSAY LOW SHORE PERIWINKLES.
FIGURE 25: MEAN RATIO S/M PER MONTH IN ORONSAY HIGH SHORE PERIWINKLES.
FIGURE 26: MEAN RATIO S/M PER MONTH IN COLONSAY PERIWINKLES.
FIGURE 27: MEAN RATIO S/M PER MONTH FOR SMALL AND LARGE ORONSAY LOW SHORE PERIWINKLES.
FIGURE 28: MEAN RATIO S/M PER MONTH FOR SMALL AND LARGE ORONSAY HIGH SHORE PERIWINKLES.
FIGURE 29: MEAN RATIO S/M PER MONTH FOR SMALL AND LARGE COLONSAV PERIWINKLES.
Figure 30: Seasonal variation in dry body weight of a standard periwinkle (20 mm shell length) from Anglesey.

○ 1967
● 1968
▲ 1969
× Seasonal mean
FIGURE 31: MEAN DRY MEAT WEIGHT VALUES OF PERIWINKLES FROM ROBIN HOO'D'S BAY (SIZE 20-25 mm SHELL LENGTH).

After Williams, 1970.

VERTICAL BARS REPRESENT STANDARD ERROR. CORRECTED DRY WEIGHT = DRY WEIGHT LESS ASH WEIGHT.
FIGURE 32: MEAN RATIO S/M PER MONTH IN ORONSAW LOW SHORE DOGWHELKS.
FIGURE 33: MEAN RATIO S/M PER MONTH IN ORONSAY HIGH SHORE DOGWHELKS.
FIGURE 34: MEAN RATIO S/M PER MONTH IN COLONSAY LOW SHORE DOGHELKS.
Figure 25: Mean ratio S/M per month for small and large Oronsay low shore dogwhelks.
FIGURE 36: MEAN RATIO S/M PER MONTH FOR SMALL AND LARGE ORONSAY HIGH SHORE DOGWHELKS.
FIGURE 37: MEAN RATIO S/M PER MONTH FOR SMALL AND LARGE COLONISAY LOW SHORE DOGWHELKS.
FIGURE 38: MEAN DRY MEAT WEIGHT PER MONTH FOR ORONSAW LOW SHORE DOGWHELKS.
FIGURE 39: MEAN DRY MEAT WEIGHT PER MONTH FOR ORONSAW HIGH SHORE DOGWHELKS.

MONTH

J M MJ J S N

MEAN DRY MEAT WEIGHT g.

0.1 0.2 0.3 0.4

> 4g shell weight

= 4g shell weight
FIGURE 40: MEAN DRY MEAT WEIGHT PER MONTH FOR COLONSA\nLOW SHORE DOGWHELKS.

> 4g shell weight

< 4g shell weight

MONTH
Figure 41: Seasonal variation in dry meat weight of a standard dogwhelk (25.5mm shell length) from Yealm.

After Moore 1938a.
FIGURE 42: SEASONAL VARIATION IN POLYSACCHARIDE, LIPID AND PROTEIN NITROGEN CONTENT OF LIMPETS IN ROBIN HOOD'S BAY. (All refer to standard animals of 36mm shell length). After Blackmore 1969b.
FIGURE 43: SEASONAL VARIATION IN MEAN BLOOD GLUCOSE CONCENTRATION OF LIMPETS FROM SWANAGE.
After Barry and Munday 1959.

Vertical bars represent standard error.
FIGURE 44: SEASONAL VARIATION IN MEAN LIPID AND CARBOHYDRATE LEVELS OF LOW TIDE PERIWINKLES OF BETWEEN 20 AND 25mm SHELL LENGTH FROM ROBIN HOOD'S BAY.

After Williams 1970.

Males

Females

Vertical bars represent standard error. All results expressed as a % of dry weight less ash weight.
FIGURE 45: SEASONAL VARIATION IN CALORIES PER ASH-FREE GRAM OF PERIWINKLE TISSUE FROM ANGLESEY.

Vertical bars represent standard error.

Vertical bars represent standard error
FIGURE 47: MEASUREMENTS TAKEN ON LIMPETS, PERIWINKLES AND DOGWHELKS.

LIMPETS

PERIWINKLES

DOGWHELKS
<table>
<thead>
<tr>
<th></th>
<th>SHELL LENGTH (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19.0 - 21.9</td>
</tr>
<tr>
<td>2</td>
<td>22.0 - 24.9</td>
</tr>
<tr>
<td>3</td>
<td>25.0 - 27.9</td>
</tr>
<tr>
<td>4</td>
<td>28.0 - 30.9</td>
</tr>
<tr>
<td>5</td>
<td>31.0 - 33.9</td>
</tr>
<tr>
<td>6</td>
<td>34.0 - 36.9</td>
</tr>
<tr>
<td>7</td>
<td>37.0 - 39.9</td>
</tr>
<tr>
<td>8</td>
<td>40.0 - 42.9</td>
</tr>
<tr>
<td>9</td>
<td>43.0 - 45.9</td>
</tr>
<tr>
<td>10</td>
<td>46.0 - 48.9</td>
</tr>
<tr>
<td>11</td>
<td>above 49.0</td>
</tr>
</tbody>
</table>
FIGURE 49: LIMPET LENGTH DISTRIBUTIONS IN UNIT 1A

{Graph showing length distribution with n = 190}

FIGURE 50: LIMPET LENGTH DISTRIBUTIONS IN UNIT 1B

{Graph showing length distribution with n = 161}
FIGURE 51: LIMIT LENGTH DISTRIBUTIONS IN UNIT 1B-C
\[n = 164 \]

FIGURE 52: LIMIT LENGTH DISTRIBUTIONS IN UNIT 1C
\[n = 455 \]
FIGURE 53: LIMPET LENGTH DISTRIBUTIONS IN UNIT 1C-1
n = 64

FIGURE 54: LIMPET LENGTH DISTRIBUTIONS IN UNIT 2
n = 187
FIGURE 55: LIMPET LENGTH DISTRIBUTIONS IN UNIT 3

n = 152

FIGURE 56: LIMPET LENGTH DISTRIBUTIONS IN UNIT 4

n = 118
FIGURE 57: LIMPET LENGTH DISTRIBUTIONS IN UNIT 5
n = 137

FIGURE 58: LIMPET LENGTH DISTRIBUTIONS IN UNIT 6
n = 163
FIGURE 59: LIMPET LENGTH DISTRIBUTIONS IN UNIT 7
n = 157

FIGURE 60: LIMPET LENGTH DISTRIBUTIONS IN A COMBINATION OF ALL UNITS.
n = 1948
KEY TO FIGURES 61 TO 66

SHELL LENGTH (mm)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18.0 - 19.9</td>
</tr>
<tr>
<td>2</td>
<td>20.0 - 21.9</td>
</tr>
<tr>
<td>3</td>
<td>22.0 - 23.9</td>
</tr>
<tr>
<td>4</td>
<td>24.0 - 25.9</td>
</tr>
<tr>
<td>5</td>
<td>26.0 - 27.9</td>
</tr>
<tr>
<td>6</td>
<td>28.0 - 29.9</td>
</tr>
<tr>
<td>7</td>
<td>30.0 - 31.9</td>
</tr>
<tr>
<td>8</td>
<td>32.0 - 33.9</td>
</tr>
<tr>
<td>9</td>
<td>above 34.0</td>
</tr>
</tbody>
</table>
FIGURE 61: PERIWINKLE LENGTH DISTRIBUTIONS IN UNIT 1A
n = 146

FIGURE 62: PERIWINKLE LENGTH DISTRIBUTIONS IN UNIT 1C
n = 149
FIGURE 63: PERIWINKLE LENGTH DISTRIBUTIONS IN UNIT 2
\(n = 300 \)

FIGURE 64: PERIWINKLE LENGTH DISTRIBUTIONS IN UNIT 3
\(n = 83 \)
FIGURE 65: PERIWINKLE LENGTH DISTRIBUTIONS IN UNIT 4
n = 30

FIGURE 66: PERIWINKLE LENGTH DISTRIBUTIONS IN UNIT 7
n = 56
KEY TO FIGURES 67 TO 74

SHELL LENGTH (mm)

<table>
<thead>
<tr>
<th></th>
<th>Shell Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>under 21.9</td>
</tr>
<tr>
<td>2</td>
<td>22.0 - 23.9</td>
</tr>
<tr>
<td>3</td>
<td>24.0 - 25.9</td>
</tr>
<tr>
<td>4</td>
<td>26.0 - 27.9</td>
</tr>
<tr>
<td>5</td>
<td>28.0 - 29.9</td>
</tr>
<tr>
<td>6</td>
<td>30.0 - 31.9</td>
</tr>
<tr>
<td>7</td>
<td>32.0 - 33.9</td>
</tr>
<tr>
<td>8</td>
<td>34.0 - 35.9</td>
</tr>
<tr>
<td>9</td>
<td>36.0 - 37.9</td>
</tr>
<tr>
<td>10</td>
<td>38.0 - 39.9</td>
</tr>
<tr>
<td>11</td>
<td>above 40.0</td>
</tr>
</tbody>
</table>
FIGURE 67: DOGWHELK LENGTH DISTRIBUTIONS IN A COMBINATION OF ALL UNITS. n = 1,349
FIGURE 68: DOGWHELK LENGTH DISTRIBUTIONS IN UNIT 1A
n = 123

FIGURE 69: DOGWHELK LENGTH DISTRIBUTIONS IN UNITS 1B & 1B-C
n = 320

LENGTH (see key)
FIGURE 70: DOGWHELK LENGTH DISTRIBUTIONS IN UNIT 1C
n = 431

FIGURE 71: DOGWHELK LENGTH DISTRIBUTIONS IN UNIT 2
n = 181
FIGURE 72: DOGWHELK LENGTH DISTRIBUTIONS IN UNIT 3

n = 174

FIGURE 73: DOGWHELK LENGTH DISTRIBUTIONS IN UNITS 4, 5 and 6

n = 25
FIGURE 74: DOGWHELM LENGTH DISTRIBUTIONS IN UNIT 7
n = 95
Key to Figures 75 to 82

Aperture Length (mm)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>under 14.9</td>
</tr>
<tr>
<td>2</td>
<td>15.0 - 16.9</td>
</tr>
<tr>
<td>3</td>
<td>17.0 - 18.9</td>
</tr>
<tr>
<td>4</td>
<td>19.0 - 20.9</td>
</tr>
<tr>
<td>5</td>
<td>21.0 - 22.9</td>
</tr>
<tr>
<td>6</td>
<td>23.0 - 24.9</td>
</tr>
<tr>
<td>7</td>
<td>25.0 - 26.9</td>
</tr>
<tr>
<td>8</td>
<td>above 27.0</td>
</tr>
</tbody>
</table>
FIGURE 75: DOGWHELK APERTURE LENGTH DISTRIBUTIONS IN A COMBINATION OF ALL UNITS. \(n = 1,349 \)
Figure 76: Dogwhelk Aperture Length Distributions in Unit 1a

\[n = 123 \]

Figure 77: Dogwhelk Aperture Length Distributions in Units 1b & 1b-c

\[n = 320 \]

LENGTH (see key)
FIGURE 78: DOGWHELK APERTURE LENGTH DISTRIBUTIONS IN UNIT 1C
n = 431

FIGURE 79: DOGWHELK APERTURE LENGTH DISTRIBUTIONS IN UNIT 2
n = 181
FIGURE 80: DOGWHELK APERTURE LENGTH DISTRIBUTIONS IN UNIT 3
n = 134

FIGURE 81: DOGWHELK APERTURE LENGTH DISTRIBUTIONS IN UNITS 4, 5 AND 6
n = 25

LENGTH (see key)
FIGURE 82: DOGWHELK APERTURE LENGTH DISTRIBUTIONS IN UNIT 7

n = 95

LENGTH (see key)
FIGURE 83: LENGTH DISTRIBUTIONS OF OPEN COAST AND ESTUARINE PERIWINKLES AT DIFFERENT TIDAL LEVELS FROM WEST WALES. After Fish 1972.
FIGURE 94: THE PERCENTAGE OF DIFFERENT SHAPED LIMPETS ON THE
UPPER AND LOWER ORONSAY SHORE.

\[\text{HIGH SHORE} \]
\[\text{LOW SHORE} \]

\begin{align*}
1 &= \text{Below 1.49} \\
2 &= 1.50 - 1.99 \\
3 &= 2.00 - 2.49 \\
4 &= 2.50 - 2.99 \\
5 &= 3.00 - 3.49 \\
6 &= 3.50 - 3.99 \\
7 &= 4.00 - 4.49 \\
8 &= \text{Above 4.50}
\end{align*}
KEY TO FIGURES 85 TO 122

SHELL LENGTH (mm)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>under 18.9</td>
</tr>
<tr>
<td>1</td>
<td>19.0 - 21.9</td>
</tr>
<tr>
<td>2</td>
<td>22.0 - 24.9</td>
</tr>
<tr>
<td>3</td>
<td>25.0 - 27.9</td>
</tr>
<tr>
<td>4</td>
<td>28.0 - 30.9</td>
</tr>
<tr>
<td>5</td>
<td>31.0 - 33.9</td>
</tr>
<tr>
<td>6</td>
<td>34.0 - 36.9</td>
</tr>
<tr>
<td>7</td>
<td>37.0 - 39.9</td>
</tr>
<tr>
<td>8</td>
<td>40.0 - 42.9</td>
</tr>
<tr>
<td>9</td>
<td>43.0 - 45.9</td>
</tr>
<tr>
<td>10</td>
<td>46.0 - 48.9</td>
</tr>
<tr>
<td>11</td>
<td>above 49.0</td>
</tr>
</tbody>
</table>
FIGURE 85: LIMPET LENGTH DISTRIBUTIONS IN CNOC COIG PIT 10

n = 500

FIGURE 86: LIMPET LENGTH DISTRIBUTIONS IN CNOC COIG PIT 6

n = 423
FIGURE 87: LIMPET LENGTH DISTRIBUTIONS IN BOTH COLUMNS
FROM CNOC COIG.

n = 923

FIGURE 88: LIMPET LENGTH DISTRIBUTIONS IN CNIC I

n = 338

LENGTH (see key)
FIGURE 89: LIMPET LENGTH DISTRIBUTIONS IN CNG II
\[n = 546 \]

FIGURE 90: LIMPET LENGTH DISTRIBUTIONS IN CNOC SLIGEACH
\[n = 467 \]
FIGURE 91: LIMPET LENGTH DISTRIBUTIONS IN PRIORY MIDDEN

n = 1399
FIGURE 24: LIMPET LENGTH DISTRIBUTIONS IN CNOC COIG PIT 10, LEVEL 11
n = 125

FIGURE 25: LIMPET LENGTH DISTRIBUTIONS IN CNOC COIG PIT 10, LEVEL 12
n = 125

LENGTH (see key)
FIGURE 96: LIMPET LENGTH DISTRIBUTIONS IN Cnoc Coig Pit 6, LEVEL 17
n = 48

FIGURE 97: LIMPET LENGTH DISTRIBUTIONS IN Cnoc Coig Pit 6, LEVEL 18
n = 125
FIGURE 98: LIMPET LENGTH DISTRIBUTIONS IN CNOC COIG PIT 6, LEVEL 20
n = 125

FIGURE 99: LIMPET LENGTH DISTRIBUTIONS IN CNOC COIG PIT 6, LEVEL 21
n = 125

LENGTH (see key)
FIGURE 100: LIMPET LENGTH DISTRIBUTIONS IN CNOC COIG, PREMIDDEN

n = 109
FIGURE 101: LIMPET LENGTH DISTRIBUTIONS IN CNG I, LEVEL 1
n = 120

FIGURE 102: LIMPET LENGTH DISTRIBUTIONS IN CNG I, LEVEL 2
n = 108
FIGURE 103: LIMPET LENGTH DISTRIBUTIONS IN CNG I, LEVEL 3

n = 110
FIGURE 104 : LIMPET LENGTH DISTRIBUTIONS IN CNG II, LEVEL E
n = 46

FIGURE 105 : LIMPET LENGTH DISTRIBUTIONS IN CNG II, LEVEL F
n = 125
FIGURE 106: LIMPET LENGTH DISTRIBUTIONS IN CNG II, LEVEL G
n = 125

FIGURE 107: LIMPET LENGTH DISTRIBUTIONS IN CNG II, LEVEL H
n = 125

LENGTH (see key)
FIGURE 108: LIMPET LENGTH DISTRIBUTIONS IN CNG II, LEVEL J

n = 125

LENGTH (see key)
FIGURE 111: LIMPET LENGTH DISTRIBUTIONS IN CNOC SLIGEACH, LEVEL 30
n = 125

FIGURE 112: LIMPET LENGTH DISTRIBUTIONS IN CNOC SLIGEACH, LEVEL 31
n = 125
FIGURE 113: LIMPET LENGTH DISTRIBUTIONS IN PRIORY MIDDEN, LEVEL 1
n = 129

FIGURE 114: LIMPET LENGTH DISTRIBUTIONS IN PRIORY MIDDEN, LEVEL 2
n = 112

LENGTH (see key)
FIGURE 115: LIMPET LENGTH DISTRIBUTIONS IN PRIORY MIDDEN, LEVEL 3

n = 119

FIGURE 116: LIMPET LENGTH DISTRIBUTIONS IN PRIORY MIDDEN, LEVEL 4

n = 164

LENGTH (see key)
FIGURE 117: LIMPET LENGTH DISTRIBUTIONS IN PRIORY MIDDEN, LEVEL 5
n = 101

FIGURE 118: LIMPET LENGTH DISTRIBUTIONS IN PRIORY MIDDEN, LEVEL 6
n = 120
FIGURE 119: LIMPET LENGTH DISTRIBUTIONS IN PRIORY Midden, Level 7
\[n = 159 \]

FIGURE 120: LIMPET LENGTH DISTRIBUTIONS IN PRIORY Midden, Level 8
\[n = 122 \]

LENGTH (see key)
FIGURE 121: LIMPET LENGTH DISTRIBUTIONS IN PRIORY MIDDEN, LEVEL 2

n = 190

FIGURE 122: LIMPET LENGTH DISTRIBUTIONS IN PRIORY MIDDEN, LEVEL 10

n = 183

LENGTH (see key)
FIGURE 123: THE PERCENTAGE OF SMALLEST AND LARGEST LIMPETS IN EACH MIDDEN. (% expresses the % of all midden samples except the Premidden.)

SMALLEST 10% (ie ≤ 25.6 mm shell length)

n = 424

LARGEST 10% (ie ≥ 37.5 mm shell length)

n = 370
Figure 124: The percentage of smallest and largest limpets in each midden level. (% expresses the % of all midden samples except the Premidden.)

CNOC COIG PIT 10

CNOC COIG PIT 6

% 20

Smallest

% 30

Largest

9 10 11 12

18 20 21

9 10 11 12

18 20 21
FIGURE 125: DEGREES OF LIMPET FRAGMENTATION IN CNOC COIG PIT 10
Expressed as the number of apices as a % of the number of whole limpets.
FIGURE 126: DEGREES OF LIMPET FRAGMENTATION IN CNOC COIG, PIT 6
Expressed as the number of apices as a % of the number of whole limpets.
FIGURE 127: DEGREES OF LIMPET FRAGMENTATION IN CNG I. Expressed as the number of apices as a % of the number of whole limpets.
FIGURE 128: DEGREES OF LIMPET FRAGMENTATION IN CNG II.

--- = Number of apices as a % of the number of whole limpets.

--- = Weight of fragments as a % of the weight of whole limpets.
FIGURE 129: DEGREES OF LIMPET FRAGMENTATION IN CNOC SLIGEACH

___ = Number of apices as a % of the number of whole limpets.

___ = Weight of fragments as a % of the weight of whole limpets.
FIGURE 120: THE DISTRIBUTION OF DIFFERENT SHAPED LIMPETS IN THE MIDDENS COMPARED TO THE MODERN SHORE.

- modern low shore
- modern high shore
- midden

Length/height
1 = \leq 1.49
2 = 1.5 - 1.99
3 = 2.0 - 2.49
4 = 2.5 - 2.99
5 = 3.0 - 3.49
6 = 3.5 - 3.99
7 = 4.0 - 4.49
8 = \geq 4.5
KEY TO FIGURES 131 TO 150

SHELL LENGTH (mm)

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>under 17.9</td>
</tr>
<tr>
<td>1</td>
<td>18.0 - 19.9</td>
</tr>
<tr>
<td>2</td>
<td>20.0 - 21.9</td>
</tr>
<tr>
<td>3</td>
<td>22.0 - 23.9</td>
</tr>
<tr>
<td>4</td>
<td>24.0 - 25.9</td>
</tr>
<tr>
<td>5</td>
<td>26.0 - 27.9</td>
</tr>
<tr>
<td>6</td>
<td>28.0 - 29.9</td>
</tr>
<tr>
<td>7</td>
<td>above 30.0</td>
</tr>
</tbody>
</table>
FIGURE 131: PERIWINKLE LENGTH DISTRIBUTIONS IN CNOC COIG, PIT 10
\[n = 111 \]

FIGURE 132: PERIWINKLE LENGTH DISTRIBUTIONS IN CNOC COIG, PIT 6
\[n = 73 \]
Figure 133: Periwinkle length distributions in both columns from CNOC COIG. n = 184

Figure 134: Periwinkle length distributions in CNIG I. n = 87
FIGURE 135: PERIWINKLE LENGTH DISTRIBUTIONS IN CNG II
n = 29

FIGURE 136: PERIWINKLE LENGTH DISTRIBUTIONS IN PRIORY MIDDEN
n = 197
FIGURE 137: PERIWINKLE LENGTH DISTRIBUTIONS IN CNOC COIG PIT 10

LEVEL 2

n = 37

FIGURE 138: PERIWINKLE LENGTH DISTRIBUTIONS IN CNOC COIG PIT 10

LEVEL 10

n = 47

LENGTH (see key)
FIGURE 139: PERIWINKLE LENGTH DISTRIBUTIONS IN CNOC COIG PIT 10
LEVEL 17. n = 23

LENGTH (see key)
FIGURE 140: PERIWINKLE LENGTH DISTRIBUTIONS IN CNOC COIG PIT 6
LEVEL 20
\(n = 46 \)

FIGURE 141: PERIWINKLE LENGTH DISTRIBUTIONS IN CNOC COIG PIT 6
LEVEL 21
\(n = 11 \)
FIGURE 142: PERIWINKLE LENGTH DISTRIBUTIONS IN CNG I, LEVEL 2
n = 68

FIGURE 143: PERIWINKLE LENGTH DISTRIBUTIONS IN CNG I, LEVEL 3
n = 16
FIGURE 144: PERIWINKLE LENGTH DISTRIBUTIONS IN CNG II, LEVEL G
n = 13

FIGURE 145: PERIWINKLE LENGTH DISTRIBUTIONS IN PRIORY MIDDEN
LEVEL 1. n = 53
FIGURE 146: PERIWINKLE LENGTH DISTRIBUTIONS IN PRIORY MIDDEN
LEVEL 2. \[n = 54 \]

FIGURE 147: PERIWINKLE LENGTH DISTRIBUTIONS IN PRIORY MIDDEN
LEVEL 3. \[n = 30 \]

LENGTH (see key)
FIGURE 148: PERIWINKLE LENGTH DISTRIBUTIONS IN PRIORY MIDDEN

LEVEL 5.

n = 14

FIGURE 149: PERIWINKLE LENGTH DISTRIBUTIONS IN PRIORY MIDDEN

LEVEL 6.

n = 22

LENGTH (see key)
FIGURE 150: PERIWINKLE LENGTH DISTRIBUTIONS IN PRIORY MIDDEN LEVEL 7.

n = 17

LENGTH (see key)
KEY TO FIGURES 151 TO 175

APERTURE LENGTH (mm)

1 under 14.9
2 15.0 - 16.9
3 17.0 - 18.9
4 19.0 - 20.9
5 21.0 - 22.9
6 above 23.0
Figure 151: Dogwhelk Aperture Length Distributions in Cnoc Coig
Pit 10
n = 35

Figure 152: Dogwhelk Aperture Length Distributions in Cnoc Coig
Pit 6
n = 130
FIGURE 153: DOGWHELK APERTURE LENGTH DISTRIBUTIONS IN CLOG SLICEACH
n = 127

FIGURE 154: DOGWHELK APERTURE LENGTH DISTRIBUTIONS IN CNG I
n = 91
FIGURE 155: DOGWHELK APERTURE LENGTH DISTRIBUTIONS IN CNG II
\[n = 36 \]

FIGURE 156: DOGWHELK APERTURE LENGTH DISTRIBUTIONS IN PRIORY MIDDEN
\[n = 68 \]
FIGURE 157: APERTURE LENGTH DISTRIBUTIONS OF ALL WHOLE DOGWHELKS

n = 60

LENGTH (see key)
FIGURE 158: DOGWHELK APERTURE LENGTH DISTRIBUTIONS IN CNOC COIG
PIT 10, LEVEL 2. n = 23

FIGURE 159: DOGWHELK APERTURE LENGTH DISTRIBUTIONS IN CNOC COIG
PIT 6, LEVEL 17. n = 14
Figure 160: Dogwhelk Aperture Length Distributions in Cnoc Coig Pit 6
Level 18
n = 23

Figure 161: Dogwhelk Aperture Length Distributions in Cnoc Coig Pit 6
Level 20
n = 70

LENGTH (see key)
FIGURE 162: DOGWHELK APERTURE LENGTH DISTRIBUTIONS IN Cnoc Coig Pit 6

LEVEL 21

n = 23

LENGTH (see key)
FIGURE 163: DOGWHELK APERTURE LENGTH DISTRIBUTIONS IN CNOC SLIGEACH

LEVEL 28

n = 44

FIGURE 164: DOGWHELK APERTURE LENGTH DISTRIBUTIONS IN CNOC SLIGEACH

LEVEL 29

n = 44

LENGTH (see key)
FIGURE 167: DOGWHELK APERTURE LENGTH DISTRIBUTIONS IN CNG I, LEVEL 1
n = 30

FIGURE 168: DOGWHELK APERTURE LENGTH DISTRIBUTIONS IN CNG I, LEVEL 2
n = 29

LENGTH (see key)
FIGURE 169: DOGWHELK APERTURE LENGTH DISTRIBUTIONS IN CNG I, LEVEL 3

n = 32

LENGTH (see key)
FIGURE 172: DOGWHELK APERTURE LENGTH DISTRIBUTIONS IN PRIORY MIDDEN

LEVEL 1

n = 15

FIGURE 173: DOGWHELK APERTURE LENGTH DISTRIBUTIONS IN PRIORY MIDDEN

LEVEL 2

n = 18

LENGTH (see key)
FIGURE 174: DOGWHELK APERTURE LENGTH DISTRIBUTIONS IN PRIORY MIDDEN
LEVEL 6
n = 11

FIGURE 175: DOGWHELK APERTURE LENGTH DISTRIBUTIONS IN PRIORY MIDDEN
LEVEL 7
n = 15

LENGTH (see key)
KEY TO FIGURE 176

SHELL LENGTH (mm)

1 under 21.9
2 22.0 - 23.9
3 24.0 - 25.9
4 26.0 - 27.9
5 28.0 - 29.9
6 30.0 - 31.9
7 above 32.0
FIGURE 176: LENGTH DISTRIBUTIONS OF ALL WHOLE DOGWHELKS

n = 60

LENGTH (see key)
FIGURE 177: MEAN WEIGHT OF DRY MEAT IN FIVE SHELL WEIGHT CATEGORIES OF ORONSAY LOW SHORE LIMPETS PER MONTH, USED FOR THE CALCULATION OF MIDDEN MEAT WEIGHT VALUES.

Shell weight g.

- ≥ 9.51
- 5.51 - 9.50
- 3.51 - 5.50
- 1.76 - 3.50
- ≤ 1.75

MONTH

J M MJ J S N
FIGURE 178: MEAN DRY MEAT WEIGHT OF THE SMALL LOW SHORE AND ALL HIGH SHORE PERIWINKLES.
Figure 179: Mean Dry Meat Weights of All Low and High Shore Dogwhelks

Figure 180: Mean Dry Meat Weights of Low Shore Dogwhelks
Figure 181: The relative proportions of meat weight contributed by the three species from CNOC COIG pit 10.
Figure 182: The relative proportions of meat weight contributed by the three species from CNOC COIG Pit 6.
FIGURE 183: THE RELATIVE PROPORTIONS OF MEAT WEIGHT CONTRIBUTED BY THE THREE SPECIES FROM CNOC SLIGEACH

% SPECIES CONTRIBUTION TO TOTAL SHELFISH DRY MEAT WEIGHT

MONTH

J M MJ J S N

L. D. P.
Figure 184: The relative proportions of meat weight contributed by the three species from CNG I.
Figure 185: The relative proportions of meat weight contributed by the three species from CNG II.
Figure 186: The relative proportions of meat weight contributed by the three species from Priory Midden.
THE MIDDENS.

PLATE 1: CNOC COIG

PLATE 2: CNG I
PLATE 7: PERIWINKLES (below) AND DOGWHELKS

PLATE 8: THE BARNACLE LINE
THE ORONSAY COLLECTION AREA FOR AN EXAMINATION OF SEASONAL CHANGES IN MEAT WEIGHT

PLATE 9: FROM UPPER TO LOWER SHORE, WATER AT MLWS
PLATE 14: FROM UPPER TO LOWER SHORE
PLATE 15: THE LOWER SHORE

PLATE 16: THE LOWER SHORE
PLATE 17: FROM UPPER TO LOWER SHORE

PLATE 18: THE UPPER SHORE
SAMPLE UNITS FOR AN EXAMINATION OF SHELLFISH POPULATION STRUCTURES AROUND THE ORONSAY COAST

PLATE 19: UNIT 1A
PLATE 20: UNITS 1B, and 1B-C
PLATE 23: UNITS 1C, and 1C-1
PLATE 24: THE BARNACLE LINE, MARKING THE BOUNDARY OF UNITS 1C AND 1C-1
PLATE 25: UNITS 2 (foreground) and 3