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ABSTRACT 

Raman, resonance Raman (RR) and surface enhanced Raman (SER) 

spectroscopies have been applied to the study of the dehydrogenase 

enzymes and their coenzyme nicotinamide adenine dinucleotide (NAD*). 

RR and time-resolved RR (TR3) spectroscopic techniques have been 

used to study the heure enzyme catalase and a heure model system, 

iron(III)tetraphenylporphyrin, (TPP)Fe(III). 

Three methods for the analysis of the Raman amide I band 

have been used to estimate secondary structure in the apo- and holo- 

forms of the enzyme glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH). The three methods were critically assessed. and compared 

with the corresponding X-ray data. Despite the apparent flaws in the 

methods, there was a generally good agreement with the X-ray data, 

reflecting a very small (almost negligible) secondary structure 

change between apo- and holo- GAPDH. 

Ultraviolet RR (UVRR) spectra of the enzymes lactate, 

malate, and alcohol dehydrogenase and GAPDH have been obtained. UVRR 

spectra obtained using 260 nm excitation showed the spectrum of the 

enzyme-bound coenzyme. The spectral differences between enzyme-bound 

and free coenzyme were discussed. UVRR spectra were also obtained 

for an enzyme-substrate intermediate of GAPDH. 

SER spectra have been obtained for the coenzyme NAD+ and 

related compounds adsorbed onto colloidal silver. The surface 

selection rules that have been used to deduce orientational 

information from SER spectra were discussed in the light of the 

probable contributions to Raman enhancement from both an 

electromagnetic and a chemical mechanism. From data obtained at 

different coenzyme concentrations, and at different pH's, the form 

of NAD+ adsorption was deduced. NADf appears to adsorb primarily via 



its negatively charged phosphate groups, with secondary binding via 

adenine. The nicotinamide moiety approaches closer to the silver 

surface at lower coenzyme concentrations. 

RR and UV-vis. absorption spectra of catalase and various 

catalase complexes were obtained. In particular, attempts were made 

to obtain the RR spectrum of catalase compound I. While the UV-vis. 

spectrum showed complete conversion to compound I. the RR spectrum 

was more complex, probably reflecting some photodecomposition to 

compound II. The photoreactions of a heure model system, (TPP)Fe(III) 

were investigated on the nanosecond timescale. The dimeric species 

[(TPP)Fe(III)]20 did not appear to photodissociate in large enough 

amounts to observe any spectral changes. However. a triplet state 

species was observed for both the dimer and the monomer 

species, (TPP)Fe(III)C1. 
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ABBREVIATIONS 

Listed in alphabetical order. 

A Adenine 

ADH Alcohol dehydrogenase 

ADP Adenosine diphosphate 
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AR Analytical reagent 

Asp Aspartic acid 
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Cyt cytochrome 
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EM Electromagnetic 

EDTA Ethylenediaminetetraacetic acid 

FBP Fructose 1,6-bisphosphate 

G- Guanosine 

GAP Glyceraldehyde-3-phosphate 

GAPDH Glyceraldehyde-3-phosphate dehydrogenase 



Gin Glutamine 

Glu Glutamic acid 

Hb Hemoglobin 

Hb02 Oxyhemoglobin 

His Histidine 

HRP Horseradish peroxidase 

Ile Isoleucine 

IR Infrared 

LADH Liver alcohol dehydrogenase 

LDH Lactate dehydrogenase 

Mb Myoglobin 

MDH Malate dehydrogenase 

MEM Maximum Entropy Method 

Met Methionine 

M. W. Molecular weight 

NAD Nicotinamide adenine dinucleotide 

NADH Nicotinamide adenine dinucleotide (reduced) 

NR Normal Raman 

OEP Octaethylporphyrin 

PAA Peroxyacetic acid 

Phe Phenylalanine 

PP Protoporphyrin 



PZC Potential of zero charge 

RIP Reference intensity profile 

RR Resonance Raman 

SCE Saturated calomel electrode 

SER Surface enhanced Raman 

Ser Serine 

SERBS Surface enhanced resonance Raman 

SERS Surface enhanced Raman spectroscopy 

T Thymine 

TPP Tetraphenylporphyrin 

Tris Tris(hydroxymethyl)aminomethane 

Trp Tryptophan 

TR3 Time resolved resonance Raman 

Tyr Tyrosine 

U Uracil 

W Ultraviolet 

UVRR Ultraviolet resonance Raman 

UV-vis. Ultraviolet-visible 

Val Valine 

YADH Yeast alcohol dehydrogenase 
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1.1 GENERAL INTRODUCTION 

Raman spectroscopy has been increasingly used over the past 

two decades for the study of biological systems. Its suitability to 

certain biological problems has been amply demonstrated by the many 

recent reviews and texts on the subject [1-7]. Its advantages and 

limitations have been discussed at length in refs. [2], [5] and [7]. 

Normal Raman (NR) scattering is an intrinsically weak 

process; however. resonance Raman (RR) and surface enhanced Raman 

(SER) scattering can be orders of magnitude stronger. Both RR and 

SER spectroscopy have been applied (in addition to NR spectroscopy) 

to the study of the biological systems discussed in the following 

chapters. A brief general introduction to NR, RR, and SER 

spectroscopies is given below. in sections 1.2,1.3 and 1.4, 

respectively. Particular attention has been given to the type of 

information that can be gained from the study of biological systems. 

The work presented in this thesis is concerned with the 

application of NR. RR and SER spectroscopies to the dehydrogenase 

enzymes and to the heure enzyme, catalase. The general biochemistry 

of these systems is briefly described in sections 1.5 and-1.6 

following. A separate section (1.7) is devoted to the description of 

the molecule nicotinamide-adenine dinucleotide (NAD`), which is the 

coenzyme for many dehydrogenase'enzymes. 

1.2 NR SPECTROSCOPY OF PROTEINS 

The NR spectrum of a protein will'show characteristic bands 

due to the vibrations of the'aromatic amino acid-side chains; "and 

due to`the vibrations of the polypeptide backbone [8, "9]. 'If-there 

are disulphide"links=in the protein, the, NR spectrum will also show 

bands characteristic of vibrations ofýthese. ý-Information can thus be 
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obtained on the environment and bonding of tyrosine and tryptophan 

residues in a protein. For example, the relative intensities of the 

two bands in the 850/830 cm- 'Fermi' doublet of tyrosine is 

considered to be an accurate indicator of tyrosine hydrogen bonding 

[9]. NR bands arising from phenylalanine vibrations are generally 

considered to be insensitive to such environmental effects [9]. 

Disulphide links give rise to bands in the region 500-550 cm-1. The 

band position(s) can be used to determine the precise geometry of 

the C-C-S-S-C-C linkage [9]. Further details of other bands that are 

useful in yielding such specific information are given in ref. [9]. 

Table 1.1 provides a summary of the most commonly used bands in the 

NR spectra of proteins. 

The vibrations of the polypeptide backbone of a protein give 

rise to the bands in the NR spectrum called the amide I and amide 

III bands [9]. The amide II band is not Raman active, but is 

observed in the infrared (IR) spectrum at ca. 1550 cm-1. The amide I 

band arises predominantly from the peptide carbonyl stretching 

vibration (see Fig. 1.1 (a)) and is found at around 1660 cm-1. The 

amide III band arises from a vibration consisting of ca. 40% C-N 

stretch and 30% N-H in plane bend, with smaller contributions from 

C-Ca and C=0 stretching (see Fig. 1.1 (b)). The amide III band is 

found between 1230 and 1300 cm-1. The amide I and III bands have 

both been shown to be sensitive to the secondary structure of the 

polypeptide backbone (see Fig. 1. '1 (c)) [8,9]. In recent years, 

these bands have been used to give quantitative estimates of 

cc-helix, ß -sheet, and undefined structure in proteins [10-12]. 

Amide I bands have also been assigned to the various types of 

-turn [13.14], "and other types of helix [151. However, no 

completely satisfactory method of analysing the quantity of these 
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Table 1.1 Commonly Used Diagnostic Bands in the NR Spectra of 

Proteins 

Band position 

Disulphide links 

500-550 cm-1 

Phenylalanine 

1006 cm-1 

Tyrosine 

850/830 cm-1 

doublet 

Tryptophan 

1360-1365 cm-1 

Peptide Backbone 

Amide III, 

1230-1300 cm-1 

Amide I, 

1645-1680 cm -1 

Sulphydryl (SH) 

Use 

Indicator of the geometry of 

the C-C-S-S-C-C linkage. 

Intensity standard- 

considered to be relatively 

invariant in NR spectra. 

Indicator of tyrosine hydrogen 

bonding. 

Indicator of tryptophan 

solvent exposure. 

Indicator of protein secondary 

structure. 

Indicator of protein secondary 

structure. 

2560-2580 cm-1 Identification of 'masked' SH 

groups in proteins. 

-4- 



Figure 1.1 Representations of (a) the amide I and (b) amide 

III vibrations of a peptide. 
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Amide III 
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Figure 1.1 (c) Amide I and III band positions for different 

protein conformations. From ref. (9]. 
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other structures in proteins has yet evolved from the NR studies of 

proteins. Williams claims accuracy in estimating the amount of 

ß -turn structure in proteins. but does not attempt to subdivide this 

class into the different types of 8 -turn that may be present [10]. 

Chapter 3 of this thesis is concerned with the estimation of 

secondary structure types in the enzyme glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH). In this study, several methods of amide I 

band analysis are used and critically assessed, together with the 

problem of defining the different types of secondary structure in 

terms of available X-ray crystallographic data. 

1.3 RR SPECTROSCOPY OF BIOLOGICAL SYSTEMS 

RR scattering occurs when the incident (exciting) laser 

wavelength is coincident with (or close to) an electronic absorption 

band of the molecule under study [2]. Under optimum conditions, the 

intensity of certain Raman bands may be increased by a factor of 

106. This allows collection of Raman spectra at low concentrations 

(typically 10-4-10-5 M). The intensity enhancement is selective for 

Raman bands of the chromophoric part of the molecule. Thus with a 

heure protein, the RR spectrum obtained with visibleexcitation will 

show only bands due to the heure moiety, and no bands from the 

protein. 4- 

There are four different types of RR scattering-which may 

contribute to RR intensity, these-being called; A-, B-, 'C-, and 

D-term scattering. [16]., -A-term=RR scattering. is generally the 

dominant process. It; involves just-one excited"(vibronic)-state, ' and 

enhances totally-symmetric: vibrational modes. Overtone and i" 

combination bands are also-enhanced (activated) by the'A-term. RR 

process. 
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B-term RR scattering involves vibronic coupling of two 

resonant excited states. The active vibrations are those that have 

any symmetry contained by the direct product of the representation 

of the two excited electronic states. Thus, depending on the 

symmetries of the two excited states, both non-totally symmetric and 

totally symmetric modes may be active. 

C-term RR scattering involves vibronic coupling of the 

ground state to other excited states and is normally expected to be 

very small. Similarly, D-term RR scattering is not thought to make a 

significant contribution to RR intensity in most situations, and 

need not be considered further here. In addition to the selectivity 

in RR enhancement that may arise from the contribution of a certain 

type of RR scattering process, it is generally true that there is a 

further selectivity which originates from the geometries of the 

excited (resonant) and ground electronic states. The RR bands that 

are most enhanced arise from those vibrations along whose normal 

co-ordinates the molecular geometry would distort on going from the 

ground electronic state to the resonant excited electronic state 

[17]. 

Many biological molecules have convenient visible or 

near-ultraviolet chromophores which can be relatively easily studied 

by RR spectroscopy. . 
Hemeproteins, flavoproteins, 'photosynthetic 

reaction centres, and rhodopsins have all been studied by RR 

spectroscopy, producing a wealth of detailed structural and kinetic 

information on these systems [1,2,3.18]. However, many biological 

systems, including the dehydrogenase enzymes, do not contain visible 

chromophores, although in some cases, artificial substrates have 

been used to provide suitable chromophoric labels [2,19,20]. The 

recent development of ultraviolet lasers has,. initiated a new growth 
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in the use of RR spectroscopy of biological systems. Aromatic amino 

acids absorb in the wavelength regions 250-280 nm and 200-230 nm, 

and the amide group absorbs at ca. 190 nm, so all proteins can be 

studied by ultraviolet RR (UVRR) spectroscopy. Chapter 4 of this 

thesis is concerned with the use of UVRR spectroscopy to study the 

dehydrogenase enzymes and their coenzyme NAD+, which also absorbs 

strongly in the ultraviolet (UV) region. 

In chapter 6 of this thesis, nn spectra are presented for 

the heure enzyme catalase, and for a model heure system. RR 

spectroscopy is particularly suited to the study of heure proteins 

and metalloporphyrin models. This is in part due to the fact that 

they are strong Raman scatterers, and their electronic absorption 

bands are easily accessible to Ar` and Kr+ lasers. It is now also 

true that their RR spectra are generally well understood; there is a 

wealth of published information available to aid the interpretation 

of spectra [1,3,21,22]. Normal co-ordinate analyses of nickel 

octaethylporphyrin (NiOEP) and nickel tetraphenylporphyrin (NiTPP) 

have provided accurate mode descriptions of metalloporphyrin 

vibrations, as well as a systematic mode labelling system [23,24]. 

The NiOEP species is considered to be the better model for - 

biological hemes, such as protoporphyrin (PP) IX. The sensitivity of 

heure RR spectra to various' factors have been discussed at length in 

various reviews [21,22,25], a short summary will-be given in 

section 1.3.1 below. z 

1.3.1 RR Spectroscopy of heure systems 

General Principles 

Fig. 1.2 shows a generalised porphyrin structure. with, - 
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substituents X, Y, and Z on the Cß atoms of the pyrrole rings, and W 

on the methine bridging Cm atoms. The subsituents vary widely 

between the various biological heure and model metalloporphyrin 

systems; a few examples are listed at the bottom of the figure. One 

or two ligands may co-ordinate the heure iron in the axial positions 

above and below the plane of the porphyrin nitrogens. In heure 

proteins one ligand is provided by the protein itself, e. g. 

histidine in hemoglobin (Hb) and myoglobin (Mb). tyrosine in 

catalase. 

The electronic absorption spectrum of a metalloporphyrin in 

the near-UV and visible regions shows a strong 'Soret' absorption 

band (E z: 105 M-lcm 1) in the near-UV, and generally two weaker 

bands in the visible region called the a and .8 
bands 

(e 104 M-lcm 1). The two fundamental electronic transitions giving 

rise to the Soret and a bands are due to the TT -> 17 electronic 

transitions of Eu symmetry, in which no change of vibrational 

quantum number occurs (i. e. 0 -> 0 transitions). The a band, found 

between the Soret and <x bands, is due to the envelope of all the 

active vibronic transitions in which the vibrational quantum number 

changes from 0 to 1. The electronic absorption spectra of some iron 

porphyrins are more complex than this [26], due to contributions 

from porphyrin to metal 1T -> d 7T charge transfer transitions, the 

0 -> 2 vibronic envelope (counterpart of the:, 6 band), and very weak 

contributions from metal d, ->, d transitions. The absorption spectra 

have been fully discussed elsewhere [26,27], and will not be 

discussed further here. 

The RR spectrum of a heure is strongly dependent on the 

absorption band used for resonance enhancement. Laser excitation in 

the Soret region gives rise to A-term RR scattering (see section 
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Figure 1.2 Structure of an iron porphyrin. For tetraphenyl- 

porphyrin (TPP), X=Y=Z=H. W=phenyl. For octaethyl- 

porphyrin (OEP), X=Y=Z=ethyl. `W=H. 

For protoporphyrin IX (PP), X=vinyl. "Y=methyl. 

Z=propionyl. W=H..., 
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1.3); the RR spectrum is thus dominated by the totally symmetric Alg 

modes of the heure. Excitation in the visible cc, B region gives rise 

to enhancement by the B-term process; the RR spectrum then becomes 

dominated by non-totally symmetric Blg, B2g and A2g modes of the 

heure. Further discussion of this phenomenon is given in refs. 

[2,7,22,28]. The vibrations of the different symmetries give rise 

to different depolarizarion ratios of the scattered light. 

Vibrations of Alg symmetry give rise to 'polarized' RR bands 

(depolarization ratio, p60.75). Vibrations of Big and B2g symmetry 

give rise to 'depolarized' RR bands (p = 0.75), and A2g vibrations 

give rise to 'anomalously' polarized (p A 0.75) RR bands [28]. 

Measurement of the depolarization ratio of a band gives a simple 

indication of the symmetry and thus assignment of any RR band [2]. 

For right-angle scattering, the ratio o is measured as I1/ IU, the 

intensities of Raman radiation polarized perpendicular and parallel 

to the plane normal to the incident beam. 

Herne structure and RR spectra 

The high wavenumber (1000-1700 cm-1) region of a heure RR 

spectrum shows bands that are mostly due to stretching vibrations of 

the porphyrin ring [22,23]. The-. lower wavenumber region below 

1000 cm-1 contains bands that arise'from iron-ligand stretching 

vibrations and porphyrin deformation vibrations. 

It was noticed in the. early-days of heure RR, spectroscopy 

that the wavenumbers. of bands above 1300"cm-1 were-. particularly, 

sensitive to the oxidation and-spin state of the heure iron [28]. 

Choi. et al. later correlated-these changes with the-change in 

porphyrin core size, -measured from crystallographic studies as the 

distance Ct-N, the average distance from thesfour pyrrole N. atoms to 
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the centre of the ring [29]. Some of these correlations are shown in 

Fig. 1.3. which shows the wavenumber dependence of vibrations of 

various protoporphyrin complexes with Ct-N. In addition to the core 

size effect, there are also superimposed effects of heure doming and 

back-donation of d 7T electrons from metal to porphyrin [22]. The core 

size and doming effects have recently been reviewed and updated to 

include new data [30]. 

The spin state of the heure iron has a large effect on the 

porphyrin core size. High spin Fe(III) and Fe(il) have substantially 

larger radii than the corresponding low spin species; the porphyrin 

core size reflects this change. When there is only one axial ligand, 

the iron atom is displaced out of the porphyrin plane, allowing the 

core size to decrease to some extent despite the effects of spin 

state. 

Herne doming is thought to cause the deviations from core 

size correlation observed for the 2-methylimidazole adducts of 

Fe(Il) porphyrins (see Fig. 1.3) [22]. Herne doming has been observed 

in the crystal structures of deoxyHb and deoxyMb, showing the 

pyrrole rings tilted out of the porphyrin plane, following the 

out-of-plane Fe. 

The oxidation state of the iron has a small effect of the 

porphyrin core size, as Fei; has a higher effective nuclear charge, ' 

and thus smaller radius, than Fe2`. However, in the region above 

1450 cm 
1, the effects of'spin state are dominant. The v4 band (V n 

assignments as in refs. [22] and [23]). which occurs between 1345 

and 1380 cm has been found to be the most sensitive oxidation 

state marker, and is often called the oxidation state marker band. -.. 

The reasons for its sensitivity are not entirely straightforward, 

and are given in detail in ref. [22]. However, in heure proteins, it 
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Table 1.2 RR bands of selected Heme Proteins and Model Compounds: 

Correlations with iron spin and oxidation state. 

Wavenumber/cm-1 

Low spin Fe(III) v4 v3 - 10 

core (6c) Hb(CN) 1374 1508 1642 

size HRP(CN) 1375 1497 1642 

Low spin Fe(II) 

(6c) HRP(CN) 1362 1498 1620 

(PP)Fe(Im)2 1359 1493 1617 

High spin Fe(III) 

(5c) (PP)FeC1 1373 1495 1632 

(6c) aquometHb 1373 1481 1623 

(6c) (PP)Fe(DMSO)2 1370 1475 1610 

High spin Fe(II) 

(5c) deoxyHb 1358 . 1473 1607 

(5c) reduced HRP 1358 1472 1605 

Data obtained from refs. [2] and [82]. 

LSt-/i 
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is generally true that Fe(', 
) hemes have 21 4 at ca. 1360 cm-1, 

whilst Fe(III) hemes have v4 at ca. 1375 cm-1. There are some 

notable exceptions to this rule. For example, Hb02 has v4 at 

1377 cm 
1, but is considered to be an Fe(II) heure. This has been 

explained in terms of effective back-donation of the iron dn 

electrons into low lying 02 11 
orbitals instead of into the 

porphyrin orbitals [22]. 

As indicated above, an excellent review of heure RR spectra 

interpretation can be found in ref. [22]. Table 1.2 presents some 

typical data for a few exemplary heure systems. indicating 'at a 

glance' the correlations between the RR spectra and heure iron 

oxidation and spin state. 

1.4 SERS OF BIOLOGICAL MOLECULES 

By adsorption onto a metal surface (usually silver), the 

Raman scattering of the adsorbed molecule may be enhanced by 3 to 6 

orders of magnitude [31]. This effect, named surface enhanced Raman 

scattering, or SERS, and was recognised in 1977 [32] after an 

earlier experiment by Fleischmann et al. [33]. SERS has been the 

focus of many theoretical discussions over the last decade; many 

reviews have been published [31.34-37]. A brief overview of the 

theories for SERS is given in chapter 5, section 5.1 of this thesis. 

Due to the large enhancements that can be observed, many 

workers have used SERS (often in conjunction with RR) in the study 

of biological molecules [7,38,391. For example. the SERBS (SERS 

and RR combined) spectrum of hemoglobin can be obtained at 

hemoglobin concentrations in the range 10-6 to 10-8 M. with no 

apparent loss in its ability to reversibly bind ligands [7]. 

However. there have been many 'casualties', especially in the early 
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days of SERS [40-43]. These have been in part due to undesirable 

chemical effects such as heure loss from Hb [40] (which can be 

largely avoided [7]). but also due to the lack of understanding of 

the effect itself. 

Chapter 5 of this thesis is concerned with the SERS study of 

NAD and the possible application of SERS to the study of the 

dehydrogenase enzymes is discussed. 

1.5 THE NAD`-LINKED DEHYDROGENASE ENZYMES 

The NAD+-linked dehydrogenases belong to a large class of 

enzymes that catalyse the reversible oxidation of a wide range of 

substrates using the coenzyme. NAD*. which is reduced to NADH in the 

substrate oxidising reaction. The coenzyme is reduced by a 

stereospecific hydride transfer from the substrate to the coenzyme 

nicotinamide ring. viz.. 

/ý 
/ CONN2 

I 

`N \ 

R 

H`+ýH 

CONH z 

N 
1 
R 

Studies using deuterium labelling have shown that the hydride 

transfer can occur to different 'faces' of the nicotinamide ring in 

different enzymes [441. ' This is controlled by the orientation of the 

ring in the coenzyme binding pocket of the enzyme (see section 1. %). 
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The dehydrogenases are divided into two classes. A and B. depending 

on the stereochemistry of the hydride transfer. 

The X-ray structures of the dehydrogenase enzymes (several 

have been solved) show a degree of structural homology [45]. All the 

enzymes appear to consist of two or more identical subunits, within 

which there are two domains, a catalytic and a nucleotide binding 

domain. While the catalytic domain varies widely from enzyme to 

enzyme, the nucleotide binding domain shows a remarkable structural 

(but not sequence) homology. In all cases. the NAD` molecule binds 

in approximately similar extended conformation (see chapter 4, 

section 4.4.2. and this chapter, section 1.7, for further details of 

NAD+ structure and enzyme binding). Being an important class of 

enzymes, several thorough reviews have been published on various 

aspects of dehydrogenase kinetics, mechanism, and structure [45-47]. 

A brief summary of some characteristics of the enzymes 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol 

dehydrogenase (ADH), lactate dehydrogenase (LDH) and malate 

dehydrogenase (MDH) is given in the subsections below. 

1.5.1 Glyceraldehyde-3-phosphate dehydrogenase 

The glycolytic pathway enzyme GAPDH catalyses the oxidation 

and phosphorylation of D-glyceraldehyde-3-phosphate (GAP) to 

1,3-diphosphoglycerate-, (DPG), as depicted in Fig. 1.4. 
_[48, _49]. 

The 

reaction of the SH group of the active cysteine-149 residue with the 

substrate forms the hemithioacetal (A). The OH of the thioacetal is 

deprotonated by the base action of the nearby histidine-176 residue. 

The simultaneous hydride transfer to the nicotinamide ring from the 

hemithioacetal causes the formation of a relatively stable 

intermediate species (B). This acylenzyme intermediate contains the 
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Figure 1.4 Mechanism of GAPDH catalysis. 
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thioester moiety R(CO)SR. The acylenzyme may be broken down by 

nucleophilic attack by phosphate (or hydroxide) only after the loss 

of NADH and subsequent replacement by NAD+. 

Although GAPDH is a tetrameric enzyme consisting of four 

identical subunits. many workers claim that the enzyme shows only 

half-of-site reactivity [50 and references therein], i. e. that the 

enzyme acylates at only two out of its four possible catalytic 

sites. This phenomenon has not yet been adequately explained, 

although the medium resolution X-ray structure of the enzyme from 

lobster muscle indicated a 'dimer of dimers' structure [51], in 

contrast to the subsequent (higher resolution) bacterial enzyme 

structure [52]. The coenzyme can bind at all four sites, but 

coenzyme binding (to all but the yeast enzyme) shows strong negative 

co-operativity, the fourth coenzyme molecule being very easily 

dissociated. X-ray structures of the apoenzyme (no bound coenzyme) 

[53], holoenzyme (fully coenzyme bound) [52], and 1-NAD`-bound 

holoenzyme [54], show that there are sequential coenzyme-induced 

conformational changes which are the root of the observed 

co-operativity. The structural changes observed on coenzyme binding 

are fairly small (see chapters 3 and 4): no large change in 

secondary structure is observed. 

1.5.2 Alcohol dehydrogenases, 

ADH from horse liver (liver ADH, LADH) has been extensively 

studied by both spectroscopists and crystallographers, providing a 

detailed picture of the intricate working of this enzyme [55]. As 

its name suggests, ADH catalyses the oxidation of a wide range of 

alcohols to aldehydes. In this respect. it is a much less specific 

enzyme than GAPDH; both aliphatic and aromatic alcohols (with very 
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different sizes and properties) may be oxidised. 

Unlike GAPDH, ADH does not form a covalent intermediate with 

its substrate. Moreover, a metal ion. Zn2', is a principal part of 

the active site and is involved in the catalytic mechanism. It has 

been proposed that the zinc co-ordinates directly to the alcohol via 

the alcohol's oxygen atom; crystallographic studies of a ternary 

complex support this view [56]. The X-ray structures [56-59] have 

also allowed a plausible mechanism to evolve with considerable 

detail. It has been postulated that the alcohol becomes largely 

ionised (i. e. R-0 " 'Zn) when enzyme bound, which may in turn be 

facilitated by an effective proton-relay chain, involving the 

histidine-51 and serine-48 residues of the enzyme [60]. 

Spectroscopic studies using stable ternary complexes have attempted 

to clarify the nature of the substrate after it has become bound at 

the active site [20,61]. 

LADH is a dimeric enzyme, with two identical subunits; 

whereas the yeast enzyme (YADH) is a tetramer. The 3D structure of 

LADH has been obtained in various forms, holo [57], apo [59], and 

inhibitor complexed-forms-[62,62], as well as substrate-bound forms 

as mentioned above [56,58]. The enzyme shows large. tertiary and 

quaternary structure changes on binding coenzyme, [571, and again-, on 

binding an aldehyde substrate with the coenzyme analogue H2NADH, 

[58]. A thorough review of the basic kinetics and mechanism of ADH's 

can be found in ref. [55]; a shorter, but more up to date account 

can be found in ref. [60]. 

-20- 



1.5.3 Lactate dehydroLenase 

The tetrameric enzyme LDH catalyses the oxidation of 

L-lactate to pyruvate, viz. 

H 

CH3 

-C - 

Co " 
2 

OH + NAD'F' 
% 

CH3 

C= O+ NADH + H+ 

co; 

As in ADH, there is no covalent enzyme-substrate 

intermediate for the reaction. The mammalian enzyme can exist in two 

slightly different forms, H (predominant in heart muscle) and M 

(predominant in skeletal muscle). There are small differences in 

primary sequence between the two forms, but they associate readily 

to form mixed tetramers. The structures of the dogfish M4 apoenzyme 

and various ternary complexes have been established [64]. and with 

information from other studies (65], show the possible importance of 

the amino acid residues histidine-195. arginine-171 and 

aspartate-168 in the catalytic mechanism. A thorough review of the 

structure and of kinetic aspects of LDH reactions is given in ref. 

[66]. 
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1.5.4 Malate dehydrogenase 

The dimeric enzyme MDH catalyses the oxidation of malate to 

oxaloacetate, viz. 

C02 
I 

HC OH + NAD+ 

CH2C02 

cot 
I 

ý-= C= o+ NADH + H+ 

CH2Co 

MDH is thought to be very similar in structure and mechanism 

to LDH; indeed, both MDH and LDH have been shown to contain 

catalytically important histidine and aspartate residues. An X-ray 

structure of (porcine) cytoplasmic MDH was obtained without 

knowledge of the amino acid sequence [67]; a tentative 'X-ray' 

primary structure was originally deduced largely from refinements of 

the X-ray data [68]. More recent experiments have resulted in 

publication of a further refined MDH structure [83]. A review of the 

properties and structure of MDH can be found in ref. [69]. 

1.6 CATALASE 

Catalase is an extremely common enzyme, occurring in almost 

all aerobically respiring organisms. It is a large tetrameric enzyme 

(M. W. = 2.1=2.7x105 gmol-l). with each identical subunit containing 

a heure moiety (protoporphyrin IX, see Fig. 1.2). The X-ray structure 

of the enzyme from bovine liver has been published [70] and shows 

(Unusually) a tyrosine residue as the fifth ligand to the heure iron. 

The heure in its protein environment catalyses the decomposition of 
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peroxides, particularly hydrogen peroxide, through a catalytic 

intermediate called compound I [71]. This compound I intermediate 

has distinctive spectral properties (see chapter 6), and was long 

ago identified as being an intermediate that is common to the 

peroxidase-catalase family of enzymes [72]. 

The reaction of the peroxide molecule with the Fe(III) heure 

in catalase or peroxidase leaves an oxygen atom on the heure centre, 

and H2O is released. The compound I intermediate formed by this 

initial oxidation process is nominally an Fe(V) species. However. 

spectroscopic measurements have shown that compound I has an 

Fe(IV)=0 (ferryl) centre [73]. The extra oxidising equivalent is 

generally thought to be stored as a cation radical of the porphyrin 

in horse radish peroxidase (HRP) and catalase [73]. Cytochrome c 

peroxidase (CcP) has a compound I spectrum that is quite unlike 

other compound I species; indeed, e. s. r. studies have shown that 

although it has the Fe(IV)=0 centre. the extra oxidising equivalent 

is not stored on the porphyrin, but on a nearby amino acid residue 

[74l. 

In HRP, compound I reacts with, a substrate (usually phenol 

or amine) to forma radical species. Compound II is one oxidising 

equivalent below compound I. and is believed to be a non-radical 

heme'species with the ferryl Fe(IV)=0 heure centre [73]. - Compound-II 

then reacts-with another substrate molecule, to regenerate the 

native enzyme, viz. 

E+ H202'----> Compound I+ H20 

Compound'I + AH2, ----> Compound IL+ 
, 
'AH 

Compound II + AH2 
. ---->. E'+ : 'AH 

2: "AH ----> A; +, AH2 

-<"-In catalase; the reaction of compound I with a second 
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molecule of H202 does not produce an observable compound II 

intermediate; free catalase is apparently generated without the 

production of another stable intermediate. Indeed, catalysis of H202 

decomposition by catalase is inhibited by compound II formation 

[72]. Catalase compound II is formed under conditions of excess 

ethyl or methyl hydroperoxide [75], or under conditions where H202 

is generated slowly and continuously [76]. It is also formed in the 

presence of a large excess of peroxyacetic acid (PAA) [72]. Catalase 

compound II is only slowly regenerated to native catalase. 

In chapter 6 of this thesis the RR spectra of catalase and 

various catalase derivatives are reported. Particular efforts have 

been made to establish the RR spectrum of catalase compound I. 

1.7 STRUCTURAL ASPECTS OF NAD+ 

The X-ray structure of Li+. NAD+ was determined by Reddy et 

al. [77], and is shown in Fig. 1.5 (a). A schematic representation, 

showing the atom numbering used in this thesis is given in Fig. 1.5 

(b). The Li+. NAD' structure shows the negatively charged 

pyrophosphate moieties co-ordinated to lithium ions, preventing 

intramolecular stacking of the adenine and nicotinamide rings. This 

extended conformation is generally similar to that found when NAD+ 

is bound to the dehydrogenases [45,78]. The crystal conformation of 

NAD+ differs from the solution conformation. Spectroscopic studies 

(almost exclusively n. m. r. ) have shown that the adenine and 

nicotinamide rings of NAD+ may stack in solution, to produce a 

folded conformation [79,801. The folded conformation is believed to 

be in equilibrium with the extended conformation (see chapter 4). 

The angle "(N indicated in Fig. 1.5 (b) can vary by 180° to 

produce 'syn' and 'anti' conformers of NAD+. The anti orientation, 

-24- 



C7 

C7 
Ca 

H7 

(b) C Nicotinamide 
Q CS 

OP IN NI 

OPZ1 O? zN 
PH 

05'" 
CON 

C2'N 

PG OPA 
ýN C2, N 

OS"A OPIA CS"N C; 'N c"N Ribose 
' 03"N 

cA 
OVA C3, A 

C4 A, 

a"A "A Ribose 
02"A 1. A 

N9 
CIS 

ti. 

N3 C4 

N7 Adenine C2 
ü ýný} 

r. 
L: 

i. 
PA11 

i 
_. - 1 .. 

C6 
N1, f,? 

Figure 1.5 (a) Structure of NAD' in Li+. NAD+. from ref. [77). 

* (b) Representation , showing the atom of NAD 

numbering usedýin this thesis. 
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found in Li`. NAD+ and in the A-type dehydrogenases (LADH, LDH, MDH, 

see section 1.5), has the amide group of nicotinamide pointing away 

from the ribose moiety [78]. In the syn orientation, found in the 

B-type dehydrogenases (GAPDH), the amide group lies above the ribose 

moiety. Both syn and anti nicotinamide orientations are thought to 

exist in solution [81]. The terms syn and anti are also used to 

refer to the orientation of the adenine ring with respect to its 

adjacent ribose moiety. In the dehydrogenases, the adenine assumes 

an approximate syn orientation. 
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2.1 INSTRUMENTATION AT YORK UNIVERSITY 

2.1.1 Jobin-Yvon (JY) Ramanor HG2 Spectrometer System 

This spectrometer and its detection system has been fully 

described in a previous thesis [1], where details of spectral 

response and sampling optics are also given. The spectrometer was 

controlled by a Nicolet 1074 computer, which was interfaced to the 

University of York mainframe computer (VAX) via a PDP-11 (DEC) 

minicomputer. For both this system and the Spex (see 2.1.2 

following) all specific details of the instrumental settings and 

sample handling relevant to the work described are given in the 

experimental sections of each chapter. 

2.1.2 Spex Model 1403 Spectrometer System 

This spectrometer system has been described in detail in a 

previous thesis [1], and will not be discussed further, here. 

2.1.3 Lasers at the University of York 

An Argon ion laser (Spectra Physics model 2025) was used for 

obtaining laser light of selected wavelengths between 351.1 and 

514.5 nm. A Krypton ion laser (Spectra Physics model 170) was used 

for obtaining laser light of selected wavelengths between 350.6 and 

647.1 nm. 

2.1.4 The CCD Raman system - 

The potential of a charge, -coupled device (CCD) as a 

sensitive detector for Raman spectroscopy was noted by Murray [2J. 

The CCD Raman system recently developed at York has been designed to 

combine the extremely sensitive detection with good light collection 
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efficiency. It is thus ideal for use with weak Raman scatterers, low 

laser powers, or for studies where spectra need to be collected 

quickly (1-200 seconds). Its limitations are (1) it does not have 

very good spectral resolution at near-uv or uv wavelengths, and (2) 

the system does not have very efficient stray light rejection (it 

only has a single grating), thus hampering analysis of low 

wavenumber spectral regions. 

The system uses a single grating spectrograph (JY HR640) 

equipped with a high efficiency holographic grating (1200 

groove/mm). The detector is a CCD camera (Wright Instruments), which 

is interfaced to a microcomputer (Tandon TM7002), where control of 

data collection and manipulation of data can be carried out (using 

Wright Instruments Software). The detailed characteristics and 

performance of this system are given elsewhere [3]. 

The sampling optics used were simple; the laser beam was 

focussed onto the sample at 900 to the collected scattered light. 

The scattered light was collected and focussed by two lenses onto 

the entrance slit of the spectrometer. A polarization scrambler was 

placed in front of the entrance slit of the spectrograph. 

2.2 INSTRUMENTATION AT THE LASER SUPPORT FACILITY, RUTHERFORD 

APPLETON LABORATORY 

2.2.1 Laser Radiation 

Visble laser light was obtained from. a XeC1 excimer 

(Lumonics`HX460) -pumped dye-laser (Lambda Physik FL3002), or a KrF 

excimer"laser'(Lumonics-HX460)-- pumped dye laser (Lambda Physik 

FL3002). W radiation in the range 220 to 260 nm was produced by 

frequency doubling-the dye laser output, using, a O-barium'borate- 
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crystal (Laser Line, Banbury, UK). The excimer lasers were generally 

run at 30 Hz, and the laser pulse width was ca. 10 ns (FWHH). 

2.2.2 The Spex Triplemate Spectrometer and Multichannel 

Detection System 

The Spex Triplemate spectrometer has been described in a 

previous thesis [1]. For UVRR experiments, 1200 groove/mm 

holographic gratings were used in the filter stage of the 

spectrometer, and 2400 or 3600 groove/mm holographic gratings in the 

spectrograph stage. For visible-RR experiments, 600 groove/mm 

gratings were used in the filter stage, and 1200 groove/mm gratings 

in the spectrograph stage. The internal mirrors were all coated with 

MgF2 for optimum UV reflectivity. 

The OSMA (Spectroscopic Instruments) intensified diode array 

was used to detect scattered light. The intensifier could be gated 

synchronously so as to allow collection of scattered light only at 

the time of the probe laser pulse (see section 2.2.3 below). The 

data collection and limited data handling were controlled by a 

dedicated minicomputer and software. For more extensive data 

handling, the data was transferred to a BBC minicomputer, for which 

Raman software has been written [4]. 

2.2.3 Gating/Timing System for WRR and TR3 Experiments 

A gating and timing set-up for two-colour TO experiments is 

shown in Fig. 2.1. It allows independent control of both laser 

pulses with respect to the gate pulse, and can thus be used for 

single laser experiments equally well. 

A pulse generator sends a To pulse (C) to charge up the pump 

laser (1). This pulse generator also sends, a fire pulse (F) delayed 
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by set time, X, after To (to the same laser) and a gate pulse (to a 

second pulse generator) at a different delay time, Y. The second 

laser (if used) is also controlled from this pulse generator: a 

charge pulse is sent at To, and a fire pulse at some specified time, 

Z, after To. This last fire pulse may then be used to control the 

delay between the two laser pulses. The second pulse generator, on 

receiving the gate pulse from the first pulse generator. sends a 

gate pulse (labelled 'trig. out' in Fig. 2.1) of controllable width 

and delay to the OSMA controller ('trig. in'). This allows the OSMA 

detector to be intensified for only the duration of the gate pulse. 

The other connection from the second pulse generator (2) to the OSMA 

controller ('async. ') avoids spectral artefacts that can be 

introduced by the gating process. The gate pulse is monitored by an 

oscilloscope. The two laser pulses are monitored by a. photodiode 

(connected to the oscilloscope) at a point where the beams are 

co-linear. A beam splitter can be used to send a small proportion of 

the laser pulses to the photodiode, so that the timing of the two 

pulses with respect to the gate can be monitored throughout the 

experiment. 

The model numbers and suppliers of the various items shown 

in Fig. 2.1 are listed below. 

Pulse generator (1): Stanford Research Systems DG535 

Pulse generator (2): Princeton Instruments FG100 

350 Mz Oscilloscope: Tektronix 2467 

Photodiode: ITL Instrument Technology 

Photodiode power supply: EMI PM28B 
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3.1 INTRODUCTION 

The analysis of Raman and IR amide I bands to yield 

quantitative estimates of protein secondary structure is now 

commonplace. The technique is being usefully applied to give 

preliminary information on proteins that have not had their 3D 

structures determined by X-ray crystallography. It also has allowed 

the observation of secondary structure changes caused by pH, the 

presence of metal ions. or coenzyme or substrate binding. A number 

of examples may serve to illustrate the range of applications and 

differing procedures. 

The pH and temperature-induced changes in g-Iactoglobulin B 

have been studied by analysis of the IR amide I band [1]. 

Deconvolution of this band revealed five components, due to 

antiparallel a -sheet structure, a -turns, « -helix and random 

structure. Changes were observed in bands due to a -sheet structure 

that reflected dimerization of the protein at low pH. Thomas and 

Agard [2] have used Fourier deconvolution of the Raman amide I bands 

of viruses, where bands from DNA can overlap the amide I band. The 

same method was subsequently applied to the protein phosvitin [3], 

to determine its structure in the solid state, and in solution at 

several different pHs. Phosvitin appeared to be a rather unusual 

protein, with large, unidentified changes in structure on raising 

the pH. The solid state structure was most similar to the structure 

found at low pH,, and not similar to the structure found at ,j 

physiological pHs. A study of two different forms of lysozyme (human 

airway and hen-egg white lysozymes) found subtle differences in 

secondary structure [4]. These, and other differences in the Raman 

spectra `were'disscussed in the light'of the-quite different 

activities of the two lysozymes. Some groups have concentrated their 
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efforts on the application of amide I analysis to membrane proteins. 

The proteins gramicidin A [5], melittin [6], and Na+ and K+ ATPases 

[7] have all been investigated by various methods, with convincing 

results. 

Perhaps a bewildering factor in this rapidly expanding field 

is the diversity of methods used for the analysis of the amide I 

band. Most of the above examples have used different approaches; 

these will be outlined below. 

3.1.1 The Reference Intensity Profiles (RIP) Method r8l. 

The reference intensity profiles (RIP's) are model Raman 

amide I bands corresponding to bands of pure classes of secondary 

structure. The RIP's are fitted to any amide I band, and the 

quantitative estimate of secondary structure made from the relative 

amounts of the RIP's. The RIP's were generated using the amide I 

bands of a number of proteins with well defined structures (as 

determined by X-ray crystallography). The authors found that better 

results were obtained when four RIPs were used (as opposed to 

three). The four RIPs correspond to the structure types cd and cQ 

(cc-helix structure), 8 -sheet and undefined. The differences 

between the two cc-helical structures is not-entirely clear. -The 

band positions are quite different (crl at 1640 cm-l. cQ at 

1652. cm-1). but the division is not related-to clear structural 

differences. it is more of an experimentally determined improvement. 

The authors found that for proteins of mainly c -helical structure, 

the amide I band could still vary enormously. The Fd-phage protein 

(100%, a -helix) had an amide I band at 1649 cm-. 
1, 

-whereas 

poly-L-lysine (100% a -helical form at pH 12) had, a much lower, amide 

I band, near 1640 cm-1. 
_ 

Clearly, these amide I bands would have been 
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difficult to 'fit' using just one a -helix RIP, so two were 

employed. However, there were apparently no correlations between the 

two cc-helix RIPs and the ordered and disordered helix structures 

defined by Williams [9]. A recent review by Krimm has included a 

discussion of the vibrational frequencies of a -helix structures 

[10]. Vibrational spectra and normal co-ordinate analyses of two 

model (x -helical polypeptides, a(Ala)n and c(GluH)n showed 

significant differences in the amide band positions. This was 

interpreted as a demonstration of the sensitivity of such 

vibrational modes of cc-helices to side chain structure. Clearly, 

other factors (environment, length of helix) may also affect 

backbone vibrational modes. Hopefully, further work will accurately 

establish the source of the experimentally observed variation in 

amide I band positions. 

3.1.2 The Williams Method f91 

This earlier method is similar to the RIP method, in as much 

as it uses reference amide I spectra for proteins with well defined 

structures. However, it avoids the calculation and use-of reference 

intensity profiles, by directly fitting a linear combination of 

amide I bands of the reference proteins to the amide I band of the 

'unknown' protein. The solution of this fit is then used to 

calculate the fraction of each structure type. Essentially, the 

fraction of any one'structure type is determined by summing the 

products Cp. Fsp.! where Cp is-the contribution of-the spectrum, of 

reference protein`p-to-the fit, and Fsp is the fraction. of structure 

s-in protein p. Six structure types-are defined"in the Williams. - 

analysis: disordered and ordered « -helix,: parallel and antiparallel 

,a -sheet, turns and undefined structure. - --, 
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3.1.3 Deconvolution Methods 

Many groups have used Fourier self deconvolution to resolve 

the components of the amide I band. The strategies for obtaining 

secondary structure estimates after this point fall into three 

categories: (1) direct measurement of areas of deconvolved bands 

[2], (2) curve fitting to the deconvolved spectrum and subsequent 

measurement of the areas of fitted bands [11], and (3) 

identification of bands from deconvolution, followed by curve 

fitting to the original spectrum. Method (2) and the method used in 

this chapter (3) also use second derivative spectra to increase the 

confidence of band assignments. No group has yet used the maximum 

entropy method (MEM) to resolve the amide I band, although other 

applications of the MEM look promising [12]. 

3.2 EXPERIMENTAL 

3.2.1 Enzyme Preparation 

GAPDH from rabbit and porcine muscle were obtained from 

Sigma, as suspensions in solutions containing 4M ammonium sulphate, 

1mM EDTA and 4mM mercaptoethanol. Purity of the enzyme from rabbit 

muscle was estimated by SDS-PAGE to be above 98% (with respect to 

protein contamination). The GAPDH suspension was centrifuged and the 

supernatant removed. The wet solid was then dissolved in either en 

(0.01 M 1,2-diaminoethane hydrochloride) or-phosphate buffer, 

pH 6.0 - 7.0, with NaN03 orKN03 added to 0.1 M as an internal 

intensity standard in some preparations. The amount of buffer added 

was less': than or equal to the volume required to equal the original 

volume of suspension taken. The final". concentration of enzyme was 

estimated from the absorption at 280 nm using. E=1.38 x 105 M-lcm-1 
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[13]. Enzyme concentrations were typically 1-2 x 10-4 M. Dilute 

(0.2 M) dithiothreitol (Sigma) was added to enzyme solutions (50 91 

to 1 ml) to restore maximum enzyme activity (see Chapter 4). 

The NAD' content of untreated enzyme preparations was 

estimated spectroscopically by the absorption ratio A280/A260 (see 

Fig. 3.1). Holo-enzyme preparations were found to contain 2-3 NAD+ 

per tetramer. Apo-GAPDH was prepared by incubation of the holo-GAPDH 

solutions with activated charcoal (5% w/v) for ca. 20 minutes. The 

charcoal was removed by centrifugation. 

Deuterated GAPDH was prepared by dissolving the 'solid' 

enzyme in an excess (at least lOx excess compared with the normal 

volume of buffer added) volume of D20. The solution was allowed to 

exchange for 2 hours, then was reconcentrated to an appropriate 

concentration (i. e. final volume less than or equal to the original 

suspension volume) for Raman spectroscopy using an Amicon 

concentrator. All enzyme preparations were used immediately and 

discarded after one day. The holoenzyme is reasonably stable in 

solution for 1-2 days at 0-4°C. The apoenzyme is less stable; 

solutions start to turn cloudy within a day (at 0-4°C). 

3.2.2 Raman Spectroscopy 

The instrumentation at York has been described in detail 

elsewhere [14] and outlined in chapter 2 of this thesis. For amide I 

band analysis, laser excitation of wavelength 488 or 514.5 nm was 

used, at, -laser powers of not more than 100 mW at the sample. 

Right-angle illumination was employed in all cases. using the Spex 

instrument with a6 cm-1-spectral slit width. Spectra were collected 

for long times (8 hours or more) to obtain good signal-to-noise 

ratios. To prevent enzyme denaturation over the collection period, 
s^ 
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Figure 3.1 Dependence of absorbance ratio A280/A260 on the 

number of NAD+'molecules bound per CAPDH tetramer. 

f=data from [36]. "-data from [37]. 

 = data from [38] .j: data point calculated using c 

for GAPDH from [13] and E280 for NAD as 

4500 M-1cm-1, E260 for NAD+ as 17800 M-1cm-1. 
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Figure 3.2 Diagram of water-cooled block capillary holder. 
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small (10gl) volumes of enzyme were put into thin (ca. lmm internal 

diameter) capillary tubes, and the bulk of the enzyme preparation 

kept in the 'fridge (0-4°C). Fresh samples could then be used as 

required. Moreover, the capillaries were cooled during laser 

illumination by placing them in an ice-water-cooled block (see Fig. 

3.2). Denaturation was easily identified by an increase in 

fluorescence and a shift in the amide I band to higher wavenumber. 

In addition, gross denaturation caused the accumulation of 

coagulated enzyme (white solid) on the walls of the tube. 

3.2.3 Processing of S ectra 

Initially, spectra were calibrated for accurate wavenumber 

positions using the CC14 peak at 459 cm-1. and assuming a linear 

spectrometer response. This was later found to be inadequate, and an 

indene spectrum was run to more accurately establish wavenumber 

values in the amide I region (see Fig. 3.3). The implications of 

this are discussed later in this chapter. 

Before analysis by any method, the contribution to the 

amide I spectrum from the water deformation mode at ca. 1640 cm-1 

must be removed. This was achieved in most cases by subtraction of a 

buffer spectrum (also 0.1 M in nitrate) until the nitrate peak at 

ca. 1047 cm -1 was completely removed. The accuracy of this method is 

discussed later in this chapter-An alternative method for removal 

of the water contribution used the 3400 cml'0-H stretching band as 

an estimate of water content in`the'enzyme preparation; subtraction 

of the buffer spectrum was accomplished by normalising to the 

3400 cm- band of the enzyme spectrum. 

In the deuterated sample, the transformation of residual H2O 

to HOD was essentially complete. The HOD content was estimated to be 
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ca. 5% by measurement of the D20 and HOD peak heights at ca. 2400 

and 3300 cm-1. Since the HOD deformation mode occurs at 1455 cm-1. 

it does not interfere with the amide I band, so a subtraction is not 

necessary. 

For analysis by the RIP [8] and Williams [9] methods. 

contributions to the 1500-1800 cm-1 region of the enzyme spectrum 

from amino acid side chain vibrations need to be removed. This was 

accomplished using the NEWRES least squares curve fitting program 

[15], which fits peaks with varying widths, heights and fractions of 

Gaussian and Lorentzian character. Best fits were obtained when 

peaks were assumed to be ca. 900 Lorentzian, 10ä Gaussian. The 

widths of the bands due to aromatic amino acid side chains were 

assumed to be ca. 20 cm-1, but were allowed to vary by 5 cm-1 in the 

iterative procedure. The smaller bands above 1685 cm-1 (for 

discussion of assignment, see results section) were assumed to have 

half widths of ca. 17 cm-1, and again were allowed to vary by 

5 cm-1. The general procedure for amide I analysis by these two 

methods and a detailed description of the running of the programs 

has been written by Hari Virdee [16]. 

The alternative method of analysis used the curve fitting 

program to fit bands to the individual structure types (cc-helix, 

ß -sheet and undefined), as well as to the amino acid side chain 

bands. -, The-percentage of each secondary structure type was 

calculated from the integrated intensities of-the fitted bands 

(assuming that the total %`of a. ,B and u structures = 100%). 

Judgement of-band positions to be used for curve fitting was made 

after careful examination of the second derivative and Fourier 

self-deconvolved spectra. The latter spectra were obtained using the 

FORTRAN programs developed at York [17.18]., The Fourier. 
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deconvolution program is based on an original procedure by Kauppinen 

et. al. [19]. The derivative spectrum program was written by Stewart 

[18]. Such spectra are prone to the formation of spurious 'bands'; 

also wavenumber values from such spectra may be distorted. Thus 

comparison of both second derivative and Fourier self-deconvolved 

spectra is necessary for accurate assignments. Comparison with the 

corresponding deuterated spectra also aided the assignment of the 

structural components. 

The choice of a band width for each secondary structure type 

is difficult. From comparison with the RIP's used by Berjot et. 

a]. [8], a suitable band width appeared to be 30-35 cm-1. In fact, 

'best fits' were generally obtained with somewhat higher (up to 

40 cm-1) widths for cc, 8 and u bands. However. there appeared to be 

a general problem with curve fitting so many closely overlapping 

bands. Depending on the amount of variation allowed on initial 

estimated values for positions, heights and widths, quite different 

results could be obtained. Thus, quite different relative areas of 

a, a and u bands could arise from two apparently equally good 

curve-fits. Generally, the positions of a, 8 and u bands were 

allowed to vary within only 1 cm -1 of the values obtained from 

analysis of deconvolved and derivative spectra, and the 1687 cm- 

band was restrained to a small height. If more variation was 

allowed, then there was a tendency for the a band to dominate the 

curve fit, with bands due to u and B structures upshifted and 

reduced in size, and thus (probably) underestimated. This problem is 

discussed further below. 

3.3 RESULTS 

In cases where the nitrate peak was used to estimate water 
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Figure 3.5 (a) Raman spectrum of rabbitYmuscle holo-CAPDH. 

(b) Raman spectrum of`porcine holo-GAPDH. 

(c) Raman spectrum of rabbit muscle holo-GAPDH in 

D20. 
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and (c) Fourier self-deconvolved spectra of GAPDH 

in D20. 
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Table 3.1: Assignments of bands in the GAPDH Raman spectrum 

(a) Assignments for apo-GAPDH, 1000-1500 cm-1 region. 

Wavenumber/cm-1 Assignment [2,20,21] 

1047 Nitrate 
1105 
1124 )y (C-N) 
1207 Phe, Tyr 
1240-1300 Amide III 
1339 s (C-H), Trp 
1405 (Coo-) 
1448 (CH2) 

(b) Assignments for apo-GAPDH and holo-GAPDH in both H2O and D20L 

1500-1800 cm- L. L 
1 

re ion* 

apo holo holo(D20) Assignment 

Wavenumber/cm-1 

1554 1554 1554 Trp 
1570 

1587 1584 1587 Phe, Tyr 
1604 1605 1605 Phe, Tyr 
1619 1621 - Trp, Tyr 
1647 1650 1639 cc-helix, 
1660 1661 1657 undefined 
1674 1674 1669 e -sheet 
1691 1695 1687 Gln, Asn 
1709 a a Glu,, Asp, 

# Values corrected using Fig. '3.3. identification from deconvolved 
and derivative spectra (see text). 

a Bands were'not observed clearly in the derivative or deconvolved 
spectra, but were assumed to be, present. 
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contribution to enzyme spectra, the spectral region from 1000 to 

1800 cm-1 was collected. Fig. 3.4(a) shows the spectrum of 

apo-GAPDH, and compares the buffer spectrum (b) with the (a)-(b) 

subtraction spectrum, (c). Band assignments are given in Table 

3.1(a) for the peaks in the 1000-1500 cm 
1 

region. Fig. 3.5 shows 

the amide I region (1500-1800 cm-1) of (a)rabbit holo-GAPDH, (b) 

porcine holo-GAPDH and (c) GAPDH in D20. The band assignments for 

this region are given in Table 3.1(b). The assignments have been 

made by comparison with data from the literature [2,20,21]. The 

most debatable assignments are those of the bands above 1685 cm- 

Bands due to vibrations of COOH moieties are expected to contribute 

some intensity between 1700 and 1750 cm-1. Thus, it is possible that 

the side chains of glutamic and aspartic acid residues contribute to 

the observed intensity in the region 1700-1710 cm-1. Bands around 

1690 cm-1 have in the past been assigned to 8 -turn structures [22, 

23]. However, it is likely that significant intensity in this region 

arises from the amide vibrations of glutamine and asparagine side 

chains [2]. It should be noted that such bands would be expected to 

be weak, as these residues constitute only a small proportion of the 

total number of amide groups. As previously discussed, the 

overlapping bands in this region are best identified by the careful 

comparison of second derivative and Fourier deconvolved spectra. 

Such a comparison is shown in Fig. 3.6 for holo-GAPDH in D20. The 

curve fitting procedure for processing spectra before RIP and 

Williams analyses was found to be most successful when bands due to 

both aromatic amino acid vibrations (below 1625 cm-1) and to other 

vibrations (above 1685 cm 
1) 

were taken into account. A typical 

NEWRES fit is shown in Fig. `3.7(a) for holo-GAPDH. A similar curve 

fit result is shown in Fig. '3.7(b) , but with bands due to a. , B, and 
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Figure 3.7 Typical NEWRES curve-fits to holo-GAPDH spectrum, 

(a) without individual secondary structure 

components, 

(b) including fitting of individual secondary 

structure components. 

-56- 



.r 

C 
N 

C 

1690 1700 

Figure 3.8 Typical fit of RIP'S to; apo-GAPDH spectrum. 

... hý -ý-ýýi 
x'. ýý xýý., _ý-ý, 

s-'. ýi ý .:... 

fý-. a ,_ý. ý`r_. -. _ 

Tý-t... cý ._=t 

-57- 

1630 16410 1650 " 1bbo "1b/ u Ib u 
'Wavenumber/cm-1. 



undefined structures also included. The curve fitting of the RIP's 

for a 1, a 2. a and undefined structures to the processed apo-GAPDH 

data is shown in Fig. 3.8. The quantitative results, and the 

corresponding X-ray and CD data are summarized in Table 3.2. 

3.4 DISCUSSION 

The results summarised in Table 3.2 show that there is at 

most only a small change in overall secondary structure in GAPDH on 

binding NAD+. There appears to be an approximate 2% shift towards 

less cc-helix, and more S -sheet structure on coenzyme binding. This 

is in agreement with the X-ray crystallographic data for holo- and 

apo- GAPDH [24,25,26]; which show that, although there are 

significant conformational changes, the underlying secondary 

structure is not affected. The main changes appear to be in the 

detailed structure of the catalytic domain, and in the relative 

positions of structural elements in the coenzyme binding domain. 

There are some differences in the positions of the NAD+ binding site 

residues: the coenzyme binding seems to induce a 'tightening' or 

contraction of the immediate area around the coenzyme. It is perhaps 

this contraction that precipitates the other structural changes. The 

absolute"quantitative values for holo- and apo- GAPDH agree well 

with the secondary structure values given by the original authors of 

the lobster holo-CAPDH structure [27] (see Table 3.2). However, the 

definition of a`certain type of secondary structure is not 

absolutely , 
fixed, and the values ` given; by the original' authors are 

subjective values, made by simple inspection of the structure. 

Other groups have tried to make the quantitative values for 

secondary structure in proteins more objective by the use of 

recognition algorithms. 
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Table 3.2: Comparison of secondary structure estimates. 

(a) Apo-GAPDHa 

Structure t! 

a1a2 at 

RIP 26.0 7.8 33.8 

Williams' 30.2 4.4 34.7 

Curve fits -- 41.0 

'pe/ 0.1 

, Bt ub t 

37.6 22.2 - 

34.1 25.6 13.4 

37.0 22.0 - 

(b) Holo-GAPDHa 

a1a2 at Bt ub t 

RIP 22.9 9.5 32.4 38.3 23.1 - 

Williams', 27.5 4.6 32.1 35.1 25.7 13.8 

Curve fit -- 39.0 41.0 20.0 - 

X-ray (1) -- 35.0 39.0 -- 

(2) -- 30.5 36.9 -- 

(3) -- 22.0 21.0 -- 

ORDd -- 40.0 - 
a Unless otherwise specified, values given are' 'for rabbit muscle 

GAPDH. 
b For the Williams' analysis this figure is the sum of the turn 

and undefined structure types. The separate turn, contribution is 
also given (t). 

c The curve fit that generated these results wa_ restrained to 
avoid over-estimation of the band at 1687 cm ; wavenumber 
positions were also restrained.; d From [39]; the authors admit that their value maybe in error 
due to interfering effects from coenzyme. 

(1), Values given by the original authors [27]. 

.. (2) Values from structure in [40], using, secondary structure 
definition defined by Levitt and Greer [28]. 

'(3) Values, from structure-in [27], using secondary, structure 
definition defined by Kabsch and Sanders [29]. 
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Levitt and Greer first developed an algorithm for 

recognising cc, , B, and reverse turn structures [28]. Various 

algorithms were tested on a set of proteins with structures known to 

high, medium and low resolution. The algorithms were based on 

recognition of either (1)inter Cä Ca distances, (2) H-bond patterns 

or (3) inter Ccc torsion angles. By comparing the amounts of 

structure recognised by the various methods with the original 

authors estimates, they concluded that the best objective method 

combined both Coý-C« distance and H-bonding pattern recognition. It 

has been suggested that this method is not realistic and 

overestimates the amounts of a and structure types. Subsequently, 

Kabsch and Sanders developed a different secondary structure 

recognition algorithm based solely on the recognition of hydrogen 

bonding patterns [29]. It is generally accepted that this method, in 

contrast to that of Levitt and Greer, tends to underestimate the 

amount of secondary structure (see Table 3.2). 

The two established methods for estimating secondary 

structure content from Raman amide I bands are both largely based on 

the use of secondary structure values determined by Levitt and 

Greer. The Williams method further modifies the structure values to 

incorporate further division of structure types into two types of 

helix'(disordered and ordered), and two types of sheet (parallel and 

antiparallel). Consequently,, the Raman data from these two methods 

correlates well with the secondary structure values from Levitt and 

Greer. -;, The method. using simple curve fitting would not necessarily 

be expected to show such a good, correlation with Levitt and Greer; 

values. In-the case of amide I analysis. since the amide I, mode 

consists mainly of, C=O stretching vibration. 'it might. 
_be; expected 

that-the (amide I, band and thus) -secondary -structure estimates would 
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be most sensitive to hydrogen bonding, and thus best reflect the 

Kabsch-Sanders values. However, it is clear from Table 3.2 that this 

is not the case. The 'undefined' structure estimates are much lower 

in the curve fitting analysis, leading to a correspondingly larger 

estimate for a and 8 structures. since total structure=1007.. 

3.4.1 Accuracy/Reliability of Data 

As outlined in the experimental section. the amide I band 

analysis is subject to two major sources of error: the wavenumber 

accuracy and the subtraction of the water band. The 'error' induced 

by the subjectivity of the curve fitting procedures used is 

difficult to quantify (see following section). The wavenumber 

accuracy of the data is extremely important when using either of the 

two literature methods that use reference spectra. It was found 

(from the standard indene spectrum) that the Spex spectrometer gave 

wavenumber values that were ca. 4 cm-1 'low' at 1600 cm 
1; thus the 

original data had to be corrected to allow for this. At best, the 

spectra are likely to be accurate to 1 cm-1, which would induce an 

error in the structure estimate of 1-1.5%. 

The subtraction of the water spectrum by normalisation to 

the nitrate peak (see experimental section)-should be accurate to 

better than 5%. However, the sample was wet before the buffer was 

added; this may have affected the water content considerably (and 

unquantifiably). The, best approach to the subtraction of the water 

band is by normalisation'to the water band'at 3400 cm 
1-(see 

experimental section). An incomplete. subtraction of the water band 

would be. expected'to lead-to falsely high a -helix-structure 

estimates. A 5% 'over-subtraction' of - the estimated water content 

was made, in one- set of data: this was found to decrease the a -helix 
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content by less than 1%. 

3.4.2 Assessment of Methods 

RIP and Williams Analyses 

Once problems of accuracy (wavenumber position and water 

subtraction) have been overcome. these methods both appear to 

produce plausible and reproducible estimates for protein secondary 

structure. Because the methods both rely on Levitt and Greer data, 

the secondary structure estimates are really only comparable with 

other Levitt and Greer data; i. e they reflect the secondary 

structure as defined by Levitt and Greer. The methods have the 

advantage of being reasonably objective. Some subjectivity is 

introduced in the subtraction of bands due to amino acid side 

chains. 

The major drawback of the two methods is their inability to 

cope with 'abnormal' data. For example, the methods would not have 

produced meaningful estimates for the protein phosvitin. which has 

an amide I band reported at 1685 cm 
1 [3]. As yet, no satisfactory 

explanation has been proposed to explain this unusual amide I band. 

A less extreme example is that of insulin. This protein has 

an amide I band with two distinct components at 1662 and 1680 cm-1 

(Bovine Zn insulin) [30,31]. The two components have been assigned 

to CC-helix-and undefined structures, respectively. Both band 

positions are unusually high,, (the RIP band positions are 1640(«), 

1652(x); and 1660(u)) and would therefore lead to inaccurate 

secondary, structure, values. "The a -helix estimate would be. too low 

and. the a -sheet estimate too high. There does indeed seem to be a 

large difference between-the X-ray and Raman estimates for a and a 
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structure in the Porcine Zn-free enzyme, as reported by Stewart et. 

al. [32]. The Williams analysis does in fact use insulin in the 

reference data set (amide I bands at 1656 and 1677 cm-1, lower than 

the other literature values. but the insulin used may not have been 

the Bovine Zn form). The correlation between X-ray and Raman data 

for insulin reported by Williams is quite satisfactory [9]. This is 

in part due to the fact that modified Levitt and Greer criteria were 

used for insulin, so as to reduce the amount of a -helix and 

increase the amount of B -sheet. This may be perfectly valid. The 

RIP method also uses insulin in the generation of the RIP's. After 

RIP generation, the authors tested their method by applying it to 

their reference proteins. For insulin, again the structure 

correlation was good, but the statistical parameters (judging the 

error from the curve-fit) were by far the worst of the. data set of 

17 proteins. 

Deconvolution and Curve-fitting methods 

Such methods are potentially more satisfactory than either 

RIP or Williams' methods. They allow greater flexibility (would be 

applicable to 'extreme'. cases), and do not rely on the use of 

arbitrary secondary structure criteria, which may not be suitable 

for Raman spectroscopy, nor realistic in the absolute sense. They 

are also less prone to error from wavenumber inaccuracy. Several 

different approaches haveemployed deconvolution and/or curve 

fitting procedures. Thomas and Agard used a constrained, iterative 

deconvolution procedure to directly yield quantitative estimates for 

a and g structures [2]. They claim that their deconvolution 

procedure maintains the, correct areas for resolved peaks, sand thusr' 

simply calculate quantities of a and .8 structures from, the areas of 
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the Fourier deconvolved bands. Byler and Susi [11], in their 

analysis of IR data, used 'unrestrained' deconvolution and second 

derivative spectra to identify the number and positions of bands in 

the Amide I region, similar to the approach outlined in this 

chapter. However, curve-fitting was applied to the deconvolved 

spectra and not to the original spectra. Although the authors note 

the possibility of area changes during their deconvolution 

procedure, they claim that if the deconvolution is kept to a 

minimum, then areas are negligibly affected [19.331. 

The method described in this thesis does not suffer from 

adverse effects of deconvolution, but appears to suffer from the 

possibility of erroneous results (see experimental section). In the 

worst cases, there was a difference in the estimated amount of 

cc-helix structure of 7n, and 10% in the amount of 8�-sheet 

structure. This can be avoided by the use of 'sensible' restraints, 

but the procedure then becomes rather subjective. 

All three methods described are based on the assumption that 

the integrated areas of bands of 'pure' structure type are 

equivalent; 'i. e. that the overall amide I band intensity does not 

change with conformation. The Williams' analysis also makes-this,, 

assumption, based on the experimental results of Yu et al. L34]. 

Berjot et al: [8] have criticised: this assumption, and have tried 

using normalisation coefficients in their RIP analysis. This did not 

appear to. have a significant effect on the end results of the 

analysis. 

3.5 CONCLUSIONS.. - ... - t. 

This chapter has pinpointed two major problems with most of 

the'presently used methodsTfor-Raman amide_I band analysis: the use 
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of reference proteins, and the difficulties of curve-fitting. The 

RIP and Williams methods that use reference spectra and 

corresponding secondary structure values are limited by the 

structure definitions that are used. As more comprehensive secondary 

structure data sets become available. with better secondary 

structure recognition algorithms, the latter two analysis methods 

could be revised. Such a data system is currently being constructed 

[35]. 

The curve-fitting method presented in this chapter clearly 

suffers greatly from being too subjective. The restraints imposed to 

make the curve-fit apparently more realistic were useful, and had 

some reasonable foundation. However, it would be better to test the 

method on a larger set of proteins to test the reliability of the 

procedure. The related work of Byler and Susi [11]. analysing IR 

amide I bands has established good results for 21 proteins. 

Perhaps the most straightforward method for amide I band 

analysis is the iterative Fourier deconvolution method of Thomas and 

Agard [2]. It bypasses any need for time consuming and problematic 

curve-fitting, and does not require the subtraction of amino acid 

side chain bands. -It is a pity'that the method has not apparently 

been tested on a set of proteins with well defined structures, nor 

has been used for protein structure studies outside the Thomas 

group. The method has been tested by Palmo et al. [12], and compared 

with other deconvolution methods., The authors pointed out the 

slowness of the iterative procedure and the need for very high 

signal to noise ratios (or external smoothing). A last point about 

the method is its apparent,, lack of success in identifying more than 

two component bands in any amide'I profile. "However, "this may merely 

reflect the character of the proteins studied by this method. 
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CHAPTER FOUR: ULTRAVIOLET RESONANCE RAMAN STUDIES OF 

THE DEHYDROGENASE ENZYMES 

-An_ 



4.1 INTRODUCTION 

UVRR spectroscopy is a rapidly developing new field in 

vibrational spectroscopy. Problems of sensitivity, fluorescence and 

of interference from visible chromophores may be overcome by 

judicious choice of the excitation wavelength. A small number of 

groups are now presenting novel and promising results from 

biological systems, but there is still much fundamental work to be 

covered [1]. The UVRR spectra of the individual aromatic amino acids 

and of nucleic acids have now been determined [1-7]. Initial 

misassignments of certain bands arising from transient 

photodecomposition products to new bands of the aromatic amino acids 

have been corrected [5,8]; now these bands are clear markers of the 

loss of spectral integrity. 

The study of proteins by UVRR spectroscopy is still at a 

preliminary stage, with new structure-spectra relationships 

continually being established. Although many of the bands that are 

present in normal Raman (NR) spectra can also be observed in UVRR 

spectra, they do not always retain the same sensitivity to 

environment and bonding. Secondary structure estimates have been 

made from the UVRR amide II band, using 192-nm excitation [9]. The 

amide I band, which is used in NR spectroscopy (see chapter 3), is 

comparatively'weak in UVRR spectra, and no longer an accurate guide 

to secondary structure [9]. 

Difficulties in correlating changes in UVRR spectra with 

known structural changes were pinpointed by Rava and Spiro in an 

early study of insulin and a -lastalbumin, using 200 and 218 nm 

excitation [10]. The two systems were chosen for their known changes 

of conformation with pH, which result in changes in exposure of 

various aromatic amino acids of the protein to solvent, The authors 
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experienced problems in correlating relative intensities in the 

Fermi resonance doublet of tyrosine (850 and 830 cm-1) to tyrosine 

hydrogen bonding, due to the different enhancements of the two 

bands. Hildebrandt et al. subsequently established the new 

dependence of the ratio of the two bands (when excited with 229 nm 

radiation) on tyrosine environment and bonding [11]. Other 

relationships between tyrosine environment and RR bands were also 

established in this study. By exciting at 229 nm, where the spectrum 

of tyrosine in the 1580 to 1620 cm-1 region dominates contributions 

from phenylalanine and tryptophan, tyrosine band intensities and 

wavenumbers could more clearly be followed. The position of the v 8b 

(ca. 1601 cm 
1) 

tyrosine band was found to depend sensitively on 

tyrosine hydrogen bond strength, varying from 1600 cm-1 for aqueous 

tyrosine to 1587 cm-1 for tyrosine in the protein OMACHA3(-) 

(ovomucoid third domain protein from chachalaca), at neutral pH. Two 

further conclusions were drawn from this study: (1) the intensity of 

the band due to the tyrosine v 9a ring mode depends on the hydrogen 

bonding, and (2) the phenylalanine i 12 band changes in intensity as 

its environment changes. In general, it appears from this study that 

environmental effects play a large role in determining the UVRR band 

intensities associated with aromatic ring modes, and such effects 

may obscure the effects of hydrogen bonding on certain marker bands. 

In this chapter. UVRR spectra of the enzyme GAPDH obtained 

using 220 and 240 nm excitation are described. These show strong 

enhancement of bands due to aromatic amino acid vibrations. 

Unfortunately, without the insights provided by the recent papers 

cited above, the excitation wavelengths chosen did not give 

complete selectivity of enhancement. However, the spectra enable 

some conclusions to be drawn about the effects of substrate and 
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coenzyme binding to GAPDH. 

The coenzyme NADH has UV chromophores at ca. 220,260 and 

340 nm. It was realised in the early days of UVRR spectroscopy that 

different parts of this coenzyme could be selectively studied by 

UVRR, by choice of the excitation wavelength. The UVRR spectra of 

NADH excited at 273 and at 330 nm have been presented by Rodgers and 

Peticolas [12]. The 273 nm-excited spectrum showed bands due to the 

adenine ring, whereas the 330 nm-excited spectrum showed bands due 

to the nicotinamide moiety [12.13]. This selectivity and intensity 

enhancement has not previously been exploited to study the 

interactions between this coenzyme and enzymes. The results of 

preliminary investigations of such coenzyme-enzyme interactions by 

UVRR spectroscopy are presented in this chapter. 

The adenine ring is, of course, a fundamental structural 

component of the coenzyme NADH. UVRR studies of nucleic acids. DNA 

and RNA are thus closely related to the present study.. The UVRR 

spectra of the nucleosides [14] and nucleotides [15] have been 

obtained with excitation wavelengths from 200 to 266 nm, allowing 

the resonance enhancement patterns to be analysed. This has yielded 

information about the character of the modes active in the RR 

spectra [16]. Following on from this point, efforts have been 

directed at establishing correlations between nucleotide UVRR 

spectra and factors such as base stacking, hydrogen bonding, and 

conformation. Fodor and Spiro obtained UVRR spectra of the. nucleic 

acid duplexes poly(dA-dT) and poly(dG-dC) that showed clear 

differences from the spectra of the free nucleotides'[17,18]. Base 

stacking was found, to cause Raman hypochromism (associated with a 

corresponding shift in the UV absorption maximum), which affected 
the overall intensities of the ring modes of the: nucleotides. 
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Attempts were also made to identify marker bands for the different 

conformations A. B and Z, found in DNA [17]. Subsequent studies by 

Grygon and Spiro [19], and by Grygon et al. [20] have examined in 

more detail the effects of base stacking and hydrogen bonding on the 

UVRR spectra of adenine (A), uracil (U). and thymine (T) - based 

systems. The observed Raman hypochromism on base stacking was 

quantified for various modes of different duplexes. It was found 

that stacking between identical bases gave rise to stronger 

hypochromism than stacking between non-identical bases [19]. 

Significant wavenumber shifts were observed for bands due to 

exocyclic modes of the bases when hydrogen bonded in the duplex 

structures. However, only small wavenumber shifts on duplex 

formation were observed for bands due to ring modes [17,19]. 

4.2 EXPERIMENTAL 

4.2.1 Enzyme preparations 

All enzymes and coenzymes (NAD+ and NADH) for the WRR 

(220-260 nm) studies were purchased from the Sigma Chemical Co. and 

used without further purification. Holo-GAPDH was obtained from 

rabbit muscle (see chapter 3, section 3.2.1). LADH (horse liver) and 

YADH were obtained in crystalline form, with specific activities of 

2.1 and 310 units, respectively, where 1 unit is equal to 1 Jmol of 

NADH released per minute per milligram of protein, at pH 8.8. LDH- 

(porcine heart, type XVIII), was obtained as a crystalline suspension 

in a solution containing 1.9 M ammonium sulphate. The specific.. 

activity of this preparation was 400-600 units per. mg of protein, 

where one unit converts 1 umol of-pyruvate to L-lactate per minute 
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at pH 7.5,37°C. MDH (porcine heart cytoplasmic) was obtained as a 

crystalline suspension in a solution containing 3.2 M ammonium 

sulphate and 0.1 M potassium dihydrogen phosphate. MDH activity was 

400 units per mg protein, where one unit converts 1 umol of 

oxalacetate and NADH to L-malate and NAD per minute at pH 7.5,25°C. 

The use of these proteins (excepting GAPDH) without checking purity 

was far from ideal. However, only contamination with other 

dehydrogenase enzymes would affect the studies of coenzyme binding; 

this is unlikely. Low molecular weight contaminants should largely 

be removed by the charcoal treatment. 

For the UVRR experiments undertaken using 350.6 nm 

excitation, LDH (Bacillus Sterothermophilus) of high purity was a 

generous gift from Dr. Tony Clarke (Bristol University). Oxamate 

inhibitor and D-fructose-l. 6-diphosphate (FBP) were also provided by 

Dr. Clarke as their mono- and tri- sodium salts, respectively, and 

were both at least 98% pure. 

For the GAPDH acylenzyme experiments, the substrate GAP was 

prepared by hydrolysis of the ethyl acetal (Sigma, mono-barium 

salt), as described by Sigma. Exhaustive washing of the Dowex resin 

was necessary to avoid artefacts in the UVRR spectra. GAP solutions 

were stored at 0°C, pH 3. Immediately prior to use, GAP solutions 

were adjusted to pH 6.0-6.5 with dilute HC1. 

GAPDH activity was determined by a single turnover 

experiment, which directly measures'the number of active sites that 

are acylated per GAPDH tetramer. -This was achieved by measuring the 

amount. of NADH released when an excess of GAP was added to GAPDH at 

pH 6.0 in the absence-of phosphate. Under such conditions the amount 

of NADH released can be assumed to be equivalent to the amount of 

acylation.. The amount, of NADH-released was measured: -', 
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spectrophotometrically at 340 nm, using c=6.2x103 M-1cm-1 [21]. 

The extent of acylation is sensitive to the amount of NAD+ present 

in solution, and to the redox state of the cysteine thiol groups of 

the active sites. Both EDTA (0.001M) and dithiothreitol were found 

to maintain the cysteine groups in the reduced state. and thus 

ensure maximum enzyme activity. However. EDTA was found to be 

unsatisfactory for use in UVRR experiments, as it absorbs in the UV 

region. Dithiothreitol was used in all UVRR experiments, at a final 

concentration of 0.01 M. The dependence of the extent of acylation 

on the amount of NAD+ present in solution is shown in Figure 4.1. 

Clearly, a minimum amount of NAD+ in solution is preferable for UVRR 

experiments, to avoid large spectral contributions from free NAD+, 

but maximum acylation is also desirable. A six-fold excess of free 

NAD` was used in preparations for the acylenzyme experiments. Under 

these conditions, the number of acylated sites per GAPDH tetramer 

was found to be between 1.7 and 2.0. Although there is still some 

controversy, many other groups have found a maximum of two-site 

acylation of GAPDH under these conditions [22]. Thus GAPDH activity 

appears to be close to its maximum. 

The ammonium sulphate suspensions of GAPDH, LDH (Sigma) and 

MDH were centrifuged, and the supernatant solutions removed. The 

centrifuged enzymes (and LADH and YADH powders) were dissolved in 

0.05 M tris(hydroxymethyl)amine (tris) buffer to final 

concentrations in the range 5x10-5 to 6x10-6 M. GAPDH solutions were 

pH 6.0-6.5, ADH solutions pH 7.0-7.5. MDH and LDH solutions were 

made with pH 6.5 buffer, but mixed with alkaline NADH solutions so 

as to produce holoenzyme solutions of pH 7.0-7.2. LADH, GAPDH, YADH 

and bacterial-LDH concentrations were determined from their UV 

absorptions, using the absorption coefficients in Table 4.1. MDH and 
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Table 4.1: Absorption coefficients for enzymes and coenzymes in 

the far ultraviolet. 

10-3EýM-lam-1 

220 nma 240 nma 260 nm 

NAD+ 11 10 17.8 

NADH 12.7 7.8 14.9 

GAPDH 2000 240 100b 

LADH 800 50 20.40 

YADH - 187 104' 

LDH (bacterial) E280 = 6x104 M-lcm-l. 

a Values estimated from absorption spectra,, using 

260 nm absorption coefficients. 

b Values for holoenzyme with ca. 2-NAD+ per-tetramer, 

using e280 = 1.38x105 M-lcm 1 (3.25 NAD` per 

tetramer [49]). 

C Values for apoenzyme using 280 nm absorption 

coefficients from Sund and Theorell [50]. 
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porcine-LDH concentrations were estimated from the volume of 

suspension used (with known concentration in mg/ml) and their known 

molecular weights. The bacterial LDH was also stored as a suspension 

in ammonium sulphate (430 mg to 1 ml of solution), but for use. 

sulphate was removed, as it is thought to interfere with coenzyme 

and oxamate binding. The LDH suspension was dialysed against 10 mM 

tris buffer containing ca. 1% w/v charcoal outside the dialysis sac. 

The dialysed enzyme was reconcentrated using a Centricon 

concentrator (M. W. cut-off 30000 gmol-1). 

Apoenzymes were prepared by incubation of the enzyme with 

activated charcoal at room temperature for 15-20 minutes (see also 

chapter 3 section 3.2.1). Holoenzymes of YADH, LADH, MDH. and LDH 

were prepared by stoichiometric addition of NADH to the enzymes, so 

as to occupy half the coenzyme binding sites (i. e 2 NADH per YADH, 

one NADH per LADH), and thus ensure complete binding of the coenzyme 

if estimates of concentration (from inaccurate E values or mass of 

enzyme used) are inaccurate. In the case of LADH and YADH, NADH was 

added to the enzymes a few minutes before laser irradiation. MDH and 

LDH were mixed with NADH a few seconds before laser irradiation, 

using the flow-mixing device described below (see also Fig. 4.2). 

The UV absorption spectrum of the MDH holoenzyme was recorded after 

collection of the Raman spectrum. The peak of the nicotinamide 

absorption was found at 335 nm. 

The extent of coenzyme binding at any concentration can be 

estimated, if necessary, by using the dissociation constant Ke. nadh 

or Ke. nad. However, the literature values for these constants vary 

quite widely [23], and may only give an approximate estimate of the 

extent of coenzyme binding. 

The estimation of the extent of coenzyme binding to YADH is 
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made as follows: 

Kd = [N]. [E] [N]=concentration of coenzyme 

[NE] [E]=concentration of enzyme 

[NE]=concentration of complex 

[N]=[N]initial-y = (2.4x10-5M)-y 

[E]=[E]initial-Y = (4.8x10-5M)-y 

[NE] =y 

Thus. Kd. y = 11.5x10-10 - y2 - 7.2x10-5y 

and 0= 11.5x10-10 -y2 - (7.2x10-5 - Kd)y 

The quadratic equation is solved using Kd=ll uM [231, then [NE] can 

be found. In the above case of YADH, the % of coenzyme binding is 

approximately 
40%. For LADH Kd is much lower (see Table 4.2), so 

that, at the concentration employed, the coenzyme is entirely bound. 

This was confirmed spectroscopically by observing the shift of the 

nicotinamide absorption from 340 to 325 nm. The binding of NAD` to 

GAPDH is negatively co-operative [24]. The Kd value for the first 

coenzyme molecule binding is thus very low, and gradually increases 

(see Table 4.2). It is again likely that all the NAD+ is bound to 

GAPDH in the holoenzyme preparations. Table 4.2 lists the Kd values 

for other holoenzymes that can usefully be compared with the enzymes 

used in this study. 

The LDH ternary complex, LDH. NADH. oxamate was produced by 

the addition of excess oxamate and FBP to the holoenzyme. FBP 

enhances the affinity of the enzyme for oxamate. A 10-20 fold excess 

of oxamate. and a 2-3 fold excess of FBP were used in the LDH 

ternary complex preparations. 

The relative activities of holo- and apo- GAPDH were 
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Table 4.2 Dissociation constants for enzyme. NAD+ or NADH) 

complexes. 

Enzyme pH Ke. nad/uM Ke. nadh/UM 

LADH 6.0 266 0.23 

7.0 16o 0.3 

9.0 12 0.66 

YADH 7.0 350 11.0 

MDHa 6.0-8.0 280 1.0 

LDHb 7.2 300 0.9 

GAPDH, Klc 7.4 0.023 - 

GAPDH, K2d 7.4 0.2 - 

GAPDH, K3e 7.4 0.55 - 

All values obtained from ref. [23]. 

a Value for mitochondrial porcine hea rt enzyme. 

b Value for porcine heart enzyme. 

cde Values for first, second and third bound NAD; molecule (to 

rabbit muscle enzyme), respec tively. 
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monitored before and after esposure to pulsed 260 nm irradiation. 

The initial rates of NADH production during the reaction of enzyme 

with GAP and phosphate in the presence of excess NAD+ at pH 7.5 were 

compared. Holo-GAPDH lost only 4% activity after laser irradiation 

for the duration of the Raman experiments, whereas apo-GAPDH lost 

16-20% activity. These results were assumed to also reflect the 

stability of the other enzymes to pulsed laser irradiation. 

Holoenzymes were sometimes passed through the laser beam more than 

once. Apoenzymes were never re-used. as effects on spectra from 

denatured enzyme could become significant. 

WRR experiments using 220-260 nm-excitation were undertaken 

at the Rutherford Appleton Laboratory. The general experimental 

set-up and instrumentation is described in chapter 2 of this thesis. 

Samples were flowed through a quartz capillary tube at a rate 

sufficient to present a fresh sample to each pulse of-the laser 

(generally ca. I ml per minute). In addition, the capillary tube was 

slowly translated through-the beam to avoid any build up of 

decomposed enzyme on the walls of the tube. The acylenzyme'was 

flowed in the same manner, but a simple mixing device was employed 

so as to freshly form acylenzyme shortly before laser irradiation 

(see Fig. 4.2). 

Experiments using the 340 nm absorption band of NADH for 

resonance. enhancementwere undertaken at York. The 350.6 nm line of 

a c. w. Kr'ion laser was-always used, with the experimental set-up 

and instrumentation described in chapter, 2, section 2.1.4 of this 

thesis. Samples were placed, in a spinning cell and irradiated using, 

. conventional right angle scattering geometry. ' 
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4.3 RESULTS 

4.3.1 Coenzyme binding study using 260 nm excitation 

Both NAD` and NADH gave strong, fluorescence free RR spectra 

with 260 nm excitation (see Figs. 4.3(a) and 4.4(a)). Consistent 

with the fact that the 260 nm absorption bands of NAD+ and NADH are 

mainly due to the absorption by the adenine moiety, the 260 nm RR 

spectra of NAD+ and NADH are virtually identical. The bands in the 

RR spectra are, with the exception of a small nicotinamide band at 

ca. 1030 cm-1 (Fig. 4.3(a)), assigned to adenine vibrations [16,25]. 

The spectrum of NAD` in Fig. 4.3(a) is also closely similar to that 

of NADH excited at 273.0 nm [12]. The wavenumber values for NAD+ are 

listed in Table 4.3. 

The 260 nm excited RR spectra of holo- and apo- GAPDH are 

shown in Fig. 4.3. Both spectra had large fluorescence backgrounds 

which have been subtracted as simply as possible. However, a broad 

'hump', centred at 1300 cm 
1, is an indication of an imperfect 

subtraction. This appeared as a major problem in all the 

dehydrogenase spectra obtained using 260 nm-excitation. The 

fluorescence was short-lived (could not be reduced by gating), and 

was not removed by the charcoal treatment. Fortunately, the apo- and 

holo- enzyme spectra had very similar fluorescence backgrounds, so 

that a holo- minus apo- subtraction not only removed enzyme bands, 

but also conveniently removed the large backgrounds. As can be seen 

from Fig. 4.3(b) and (c), interference from aromatic amino acid 

bands is not a major problem. but`'a (b)-(c) subtraction was used to 

obtain accurate wavenumber values for bound NAD The latter values 

are given in Table 4.3. 

The spectra of NADH bound to the alcohol dehydrogenases are 
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Wavenumber/cm-1 

Figure 4.3 260 'nm-excited RR spectra of 

(a) NAD+ (3x10-4 M. pH 6.8) 

;,. ,:,, -,, 
(b) holo-GAPDH (2x10-5 M, 

_ pH 6) , 

(c) apo-GAPDH (2x10-5 M. pH 6) 

i: ýj "- 

-84- 

1050 1250 1450 1650 



c 
aý 
c 

800 1000 1200 1400 1600 1800 
Wavenumber/cm-1 

Figure 4.4 260 nm-excited RR spectrum of NADH (8x10-4 M, 

pH 7.5). (a). and 260 nm-excited RR difference 

spectra of 

(b) NADH bound to LADH (4.3x10-5 M. pH 7.5) 

(c) NADH bound to YADH (4.8x10-5 M, pH 7.5); ca. 40: 

of NADH is not enzyme bound. In (b) and (c) the 

holoenzyme minus apoenzyme difference spectra are 

shown. 
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Table 4.3: Wavenumber values (cm-1) for NAD+ and NADH in solution 

and enzyme bound. 

free NAD+ (NR)1 free NAD} (RR) NAD+. GAPD'r. NADH. YADH NADF. LADE's 

730 S 730 w - - 

1032 vs 1030 w - - 

- 1170 mw ca. 1172 w 11601 
1173 w 1166 mw 

1254 mw 1243 mw - - - 

1303 in 1303 m 1314 m c:. 1304 ca. 1301 
Sh. m sh. w 

125 s 1325 s 

1333 s 1335 s 1336 s 1335 s 1335 s 

1373 m 1372 m 1373 m 1371 m 1369 m 

1422 m 1427 mw 1422 m ca. 1420 M-4 1420 w 

14S4 mw 1433 s 14S3 s 14S0-1 s 1450 

1510 mw 1507 1509 m 1505 m 1510 W 

1580 m 1536 m 1590 m 1552 r. -,. v 1534 m 

- 1609 mw - ca. 1607 mw 1609 m ., 

a 

w=weak, m=medium, s=strong, v=very, sh=shoulder 

a Taken from Yue et al. [25] 
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(a) 
1307 

1506 
i 

(b) 1335 

1307 
1480 

1257 
1512 

1100 1200 1300 1400 1500 
Wavenumber/cm-1 

Figure, 4.6 260 nm-excited RR difference spectra of 

(a)"NADH (5x10-5 M) bound to LDH (2x10 5 M). pH 7. 

(b) 
_ 
NADH (5x10 

.5M), 
bound to r1DH (5x10-5 M), pH 7. 

The holoenzyme minus, apoenzyme difference. spectra are 

shown in. both, cases., 
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shown in Figs. 4.4(b) (LADH) and (c) (YADH). The spectrum in Fig. 

4.4(c) shows a superposition of spectra of bound and free coenzyme; 

only ca. 40% of the coenzyme is bound (see experimental section). 

The band wavenumbers are listed in Table 4.3. The aromatic amino 

acid bands in the 1580-1630 cm-1 region of the ADH spectra were 

quite strong (see Fig. 4.5), and imperfect subtractions may have left 

spurious bands and slight negative peaks in this region. 

The corresponding spectra of NADH bound to MDH and LDH were 

of poorer quality than the ADH- bound NADH spectra. This was mainly 

due to poor alignment of the Triplemate spectrometer and the 

degradation of the mirror coatings in its spectrograph stage. 

Consequently, the difference spectra only clearly showed the major 

bands at ca. 1330 and 1480 cm 
1. The two difference spectra are 

shown in Fig. 4.6. 

4.3.2 Acvlenzyme study using 240 and 248 nm excitation 

The 240 nm excited RR spectra of holo-GAPDH. with and 

without substrate. GAP, are shown in Fig. 4.7. The spectra show 

bands due to tryptophan (trp) and tyrosine (tyr) vibrations of 

GAPDH, and also due to the free NAD in solution. The corresponding 

248 nm excited spectra were dominated by the contribution from free 

NAD+, but still showed a band at ca. 1620 cm-1 due to tyr and trp. 

Previous experiments using the 248 nm pulsed output of a 

line-narrowed KrF excimer laser had apparently revealed a new band 

in the acylenzyme'spectrum at 1590 cm-1 [26]. This band was only 

present in the acylenzyme spectrum. and disappeared as expected on 

the addition of arsenate (arsenate converts acylenzyme back to 

enzyme and substrate). This result was'not reproduced by the ' 

subsequent (more'reliable) experiments presented in this section. It 

-89- 



ii 

900 1100 1300 1500 . 1700 1900 
Wavenumber/cm-1 

Figure 4.7 240 nm-excited RR spectra of 

(a)GAPDH (2x10-5 M)with. NAD` (1.2x10 4 
M) at 

pH 6.0 

(b) GAPDH, - (2x10-5 M) with, NAD' 
, 
(1.2x10-4 M ),, and ,., 

. substrate. GAP ca. 10T4 M) at pH 6.0. 

In both (a) =and (b), a small amount, of_ di thiothreitol 

(DTT) was added-to the. GAPDH to restore full enzyme 

activity. 
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is difficult to explain the result which showed a 1590 cm-1 band in 

the acylenzyme spectrum, but a peak was observed in this region when 

samples of GAP were contaminated with a substance of unknown 

composition that originated from the Dowex resin used in GAP 

preparation. 

4.3.3 Coenzyme binding to GAPDH: 220 nm RR study 

The 220 nm excited RR spectra of holo- and apo- GAPDH are 

shown in Fig. 4.8. The spectra show only bands due to vibrations of 

the aromatic amino acid residues of GAPDH. The wavenumbers and 

assignments of the bands in Fig. 4.8 are given in Table 4.4. The 

spectra are essentially identical, with only a slight distortion of 

the intensity of the broad band at 1613 cm-1, due to slightly 

differing contributions from the water band at 1640 cm-1. 

4.3.4 Coenzyme and inhibitor binding to LDH: 350.6 nm study 

The 350.6 nm excited RR spectra of free NADH could easily be 

obtained on the Spex monochannel system (see chapter 2, section 

2.1.2), as decomposition was slow at c. w. laser powers of 100 mW 

(focused) at the sample. No significant NADH decomposition was 

observed after 1.5 hours in the laser beam. However, the 

photodecomposition of NADH when bound to enzyme (either GAPDH or 

LDH) was much faster (from 5 to 30 minutes), and fluorescence from 

enzyme obscured NADH bands. In the case of LDH, the NADH absorption 

at 350.6 nm (and thus resonance enhancement) decreased significantly 

on binding to enzyme. Thus, an entire spectrum with an adequate 

signal-to-noise ratio could not be obtained using monochannel 

detection. Problems with fluorescence (and decomposition) completely 

prevented any 350.6 nm UVRR study of NADH bound to GAPDH. The LDH 
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Figure 4.8 220 nm-excited RR spectra of 

(a) holo-GAPDH (6x10-6 M. pH 6) 

(b) apo-GAPDH (6x10-6 M, pH 6). 
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Table 4.4 Assignments and positions of bands in the 

220 nm-excited spectrum of GAPDH. 

Wavenumber/cm-1 Assignment 

760 trp 

1001 phe 

1010 (shoulder) trp 

1178 tyra, phe 

1231 trp 

1355 trp 

1461 trp 

1554 trp 

1613 (broad) tyr, phe 

a Tyr is probably the dominant component [5]. 

-93- 



system was less fluorescent, and seemed to be less susceptible to 

photodecomposition. Thus attempts were made to record RR spectra of 

NADH bound to LDH using the multichannel CCD system (see chapter 2, 

section 2.1.4). The complex of LDH. NADH with inhibitor, oxamate, is 

reported to be very (thermally) stable, with a low quantum yield for 

fluorescence [27], making it the preferred candidate for such a 

study. 

The 350.6 nm-excited RR spectrum of NADH is shown in Fig. 

4.9. The resolution and wavenumber accuracy of the spectrum is not 

as good as could be obtained using the monochannel system, but the 

acquisition time was only 60 seconds, as compared with 30 minutes 

for monochannel collection. The spectrum is similar to that reported 

by Bowman and Spiro [131, and shows bands due to vibrations of the 

nicotinamide moiety. 

The LDH. NADH complex was very fluorescent, and saturated the 

detector within 30-60 seconds (depending on the power used, and 

perhaps on the cleanliness of the preparation; see section 4.4.5). A 

spectrum of NADH bound to LDH is shown in Fig. 4.9, and is the sum 

of sixteen 60-second accumulations. The ternary complex with oxamate 

was slightly less fluorescent. The rate of photodecomposition seemed 

to be variable, sometimes taking about 30 minutes to completely 

decompose (see discussion). The short acquisition time and large 

fluorescence background resulted in a very poor signal-to-noise 

ratio, and differences in either relative intensities or band 

wavenumbers were not thought to be reliable. When just a small 

region of the spectrum'(1650 to 1%00 cm-1) was scanned using the 

monchannel system, an apparent downshift from 1687 to 1683 cm-1 was 

observed when NADH bound to LDH with oxamate. However, the spectra 

obtained on the multichannel system did not confirm this result. 
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Figure 4.9 350.6 nm-excited RR spectra of 

(a) NADH, ca. 1 mm 

(b) NADH (0.2 mM) bound to LDH (0.2 mM). Fluorescence 

backgrounds have been subtracted from both spectra. 

A contribution from the water band at 1640 cm 
1 

can 

be observed in (b). 
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4.4 DISCUSSION 

4.4.1 Saturation phenomena 

Johnson at at. have pointed out that it is common for 

saturation phenomena to occur in UVRR experiments using pulsed 

lasers [8]. Both non-linear effects (such as stimulated Raman 

scattering [28]) and saturation of absorption come under the rather 

general term of saturation phenomena, although they have quite 

different effects on the Raman spectrum. In the case of non-linear 

effects, some Raman bands show an increased dependence (e. g. square 

dependence) on the laser power density. In the case of absorption 

saturation, all the Raman bands show a decrease in their dependence 

on the laser power density as the ground state of the molecule is 

depleted. No power dependence studies were made in the WRR 

experiments presented in this thesis. It is thus difficult to judge 

whether such phenomena could be affecting our results. However, it 

is clear from the results of Johnson et al. that it is absorption 

saturation (not the onset of non-linear effects) that is most likely 

in UVRR experiments. This would affect all the Raman bands to the 

same extent. Thus, while this phenomenon would affect a Raman 

excitation profile measurement, the comparison of relative 

intensities of NADH bands is not affected. 

In the case of tyrosine and tyrosinate, -saturation is 

preceded by reversible photodecomposition, which is characterised by 

the appearance of new peaks in'the RR spectrum [8]. The transient 

species produced, thought'to be the'tyrosinyl-radical, has a 

lifetime of ca. 10 ns, and absorbs strongly at 240 nm. A 240 nm- 

excited RR spectrum should show the extent of photodecomposition, 

and thus whether saturation may be occurring. RR spectra of aqueous 
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tyrosine obtained using 240 nm-excitation, under similar conditions 

to the enzyme experiments, show quite a significant 

photodecomposition peak at 1516 cm- see Fig. 4.10. However, the 

spectra presented in Fig. 4.7 show only a small peak at 1510 cm-1, 

which is partly due to free NAD+. It is possible that the tyrosine 

residues in the enzyme are less susceptible to radical anion 

formation. Because of this, it is difficult to say with certainty 

whether the spectra are free from saturation effects or not. It is 

even more difficult to estimate possible effects at other laser 

wavelengths, where the transient photoproduct peaks are not 

resonantly enhanced. It seems likely that, in these experiments in 

which samples were partly shielded by the capillary tube and the 

laser beam only loosely focused, saturation was not taking place. 

Tyrosinate is clearly very susceptible to reversible 

photodecomposition in UVRR experiments. It is not known whether NAD` 

and NADH undergo any similar reversible photo-decomposition. The 

experiments on bound coenzyme were conducted at lower concentration, 

and thus higher photon-per-molecule levels, than the experiments on 

free coenzyme (there is an estimated 6-fold difference in 

photon-per-molecule level). It is possible that some of the changes 

in the bound coenzyme spectra are due to the formation of new 

photo-induced transient species. However, the spectra of NADH bound 

to LADH and YADH show different amounts of the bands at 1335 cm-1 

and 1325 cm-1, despite being obtained under very similar 

experimental conditions. This difference is more likely to be due to 

diffences in the amount of coenzyme bound to enzyme (see section 

4.2.1) than to variation in laser intensity. 
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4.4.2 Coenzyme binding: 
-260-nm-study 

The RR spectrum of NAD+ bound to GAPDH is somewhat different 

from that of free NAD* (Fig. 4.3(a) and (b)). The 1308 cm-1 band is 

upshifted to 1314 cm-1. and the 1372 cm-' band upshifted to 

1378 cm-1 on binding enzyme. The 1335 cm-1 band remains unshifted 

but lowered in intensity relative to its neighbouring bands (but see 

previous section). The 1483 cm-1 and 1509 cm-1 bands appear little 

changed, although the 1483 cm-1 band is lowered in intensity in the 

bound NAD+ spectrum. The overall spectrum of GAPDH-bound coenzyme is 

seen to be significantly though only subtly changed from that of the 

free coenzyme. 

On binding LADH or YADH. the coenzyme bands are more 

dramatically changed. A strong new band is observed at 1325 cm-1ý 

alongside the 1335 cm-1 band. The 1308 cm-1 band becomes a weak 

shoulder at 1301 cm-1. The 1372 cm-1 band is indistinct, but appears 

to downshift slightly (1-3 cm-1). `The main band in the LDH-bound 

NADH spectrum also appears to take this general form; the 1308 cm-1 

band is unresolved. and the main band is centred at 1331 cm-1. The 

MDH-bound NADH spectrum is arguably most like the spectrum of NAD* 

bound'to GAPDH, shown in Fig. 4.3(b). The main band is unshifted, 

and: the 1307 cm-1 band is clearly resolved (but not upshifted). 

The X-ray structures and detailed conformational parameters 

have been determined for crystalline Li`. NAD+ [29], NAD+-bound to 

GAPDH [30], and NADH bound to LADH [31]. 'The general form of 

coenzyme binding to LDH'is known, but a high resolution structure 

for the holoenzyme has not been published [32]. 'A high resolution 

X-ray structure, for holo-LDH has been determined (but not published 

[33]). -Molecular. graphics representations of the adenine binding 

site of. LDH have been made using the new co-ordinates. The 
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similarity of the LDH and MDH structures allows a reasonably 

meaningful representation of the adenine binding site of MDH to be 

made by superposition of the MDH primary structure onto the LDH 

co-ordinates [34]. The modelling of the MDH 'structure' was 

performed to provide a guide to the MDH coenzyme pocket, as the most 

recent X-ray data for MDH [51] are not yet available. A comparison 

of the LDH and (postulated) MDH adenine-binding sites is made in 

Figs. 4.11,4.12,4.13 and Table 4.5. 

NAD+ (and NADH) binds to all the above dehydrogenases in an 

'open', extended conformation [32]. This is in contrast to the 

generally accepted solution conformation, where the open form is in 

equilibrium with a folded (ring-stacked) conformer [35,36]. Some of 

the changes in coenzyme spectra on binding to enzyme could be due to 

this shift in conformation from predominantly folded (in solution) 

to entirely open (in enzyme). In particular, changes in overall 

intensity might be expected, as the loss of ring stacking could give 

rise to hyperchromism.: The solution equilibrium is thought to be 

shifted in favour of-the open form at high. temperatures (above 70°C 

[36]). RR spectra of NADH at both 20 and 75°C were found to be 

virtually identical, in, both relative and absolute intensities, and 

in band positions. This is in general agreement with'the results of 

Grygon and'Spiro_[19], who studied the effects of adenine (A) and 

thymine (T) base stacking on the WRR spectrum of adenine. Little 

change was observed in the positions of bands, or in relative 

intensities when adenine was stacked with thymine. However, strong 

Raman hypochromism was observed, suggesting that the A-T stacking 

interaction is still much greater than between the adenine and 

nicotinamide rings of NADH. Alternatively, the evidence for a 

significant change in the amount of stacking in NADH accompanying 
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Figure 4.11 Molecular graphics representation of LDH (upper) and 

MDH (lower) adenine binding sites. View (1). 
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Figure 4.12 Molecular graphics representation of LDH (upper) and 

MDH (lower) adenine binding sites. View (2). In LDH, 

two residues (Ile and Ala) are shown in gold. 
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Table 4.5 Estimates of selected protein - coenzyme distances 

(in A) in MDHa 

Adenine Ser (0) Gln (0 or N) amide 

N1 3.5 2.7 

N3 4.3 3.4 

NiO 4.2 4.8 

N7 5.1 6.0 

N9 5.4 5.6 

a The distances shown are estimated from the molecular 

graphics representation, and are not taken from an X-ray 

structure. 

Figure 4.13 Space filling representation of LDH adenine binding 

site, view (2). 
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the temperature change from 20 to 75°C [36] could be incorrect. 

In Li+. NAD+ crystals, both the adenine and nicotinamide 

heterocycles are in anti orientation (x = 30° for anti conformation, 

x= -150° for a syn conformation. see Fig. 1.5) [29]. This 

conformation is also approximately assumed by the coenzyme in LADH, 

LDH and MDH. which are A-type dehydrogenases. In GAPDH, the 

nicotinamide ring is in a syn orientation and the enzyme is called a 

B-type dehydrogenase. In solution, there is evidence from nmr that 

NAD+ exists with its nicotinamide ring in a 2: 1 ratio of syn and 

anti conformations [371. Accordingly, some of the RR spectral 

differences could be due to the differences in nicotinamide ring 

orientation. Assuming the solution spectrum is that of a 2: 1 mix of 

syn and anti conformers, then in the simplest view, a superposition 

of 1 'A-type' and 2'B-type' bound coenzyme spectra should produce a 

free coenzyme spectrum. This is clearly not the case, as one might 

expect considering the remoteness of the conformational change from 

the 260 nm RR active centre. 

Recent normal Raman (NR) studies of NADH bound. to LDH and 

LADH have been interpreted as showing protonation of the adenine N3 

nitrogen atom on binding to enzyme [381. The NR spectra, produced by 

careful subtraction of the apoenzyme spectrum from the holoenzyme 

spectrum, are quite different from the corresponding RR spectra 

presented in this chapter. There are some general similarities; for 

example, a weak feature at 1325 cm-1 appears in the NR spectrum on 

binding to enzyme. However, the 1335 cm-1 band, which persists as a 

strong band in all the RR spectra (except in that of LDH, where it 

shifts) completely disappears in the NR spectra. It is difficult to 

reconcile. these two widely differing results, and perhaps it is 

reasonable to be sceptical about the accuracy of the NR data in 
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reporting the complete disappearance of this band. Being the 

strongest band in the RR spectrum allows clear distinction from 

protein bands, in contrast to the NR spectra, where the band is 

weak. 

The NR data have been interpreted as indicating protonation 

of adenine on binding to enzyme [38]. The evidence cited for 

protonation is the observed change in the 1300-1400 cm-1 region of 

the spectrum; the loss of the 1335 cm-1 band and the appearance of 

weak features at 1325 and 1340 cm-1. When the adenine ring of NAD+ 

is protonated at Ni (at pH 3.9 or less), substantial changes occur 

in this region of the spectrum (see Fig. 4.14 and ref. [25]). Since 

the changes observed in the NR spectra on Ni protonation were not 

exactly the same as the changes observed on enzyme binding, the 

authors proposed that N3, and not N1, was protonated.. They indicated 

the possibility of forming a stabilising salt bridge between Asp 

(COO-) and the protonated N3. However, there are no Raman data for 

NAD+ (or NADH) where N3 is protonated, as N3 is not protonated until 

below pH 1 [39](see Fig. 4.15 for pKa values for the closely related 

molecule, ADP). Although changes in pKa's of groups buried in 

enzymes are well documented, a change of pKa of 8 or more units (the 

LADH NR experiments were conducted at pH 9.6) is extremely unlikely. 

The proposed protonation of adenine at N3, is therefore a poor 

explanation of the observed spectral changes. 

In agreement with the NR data. the RR data do not support Ni 

protonation. The similarities with the protonated spectra (compare 

the band in Fig. -4.14 I at 1329 cm-l'with the band in Fig. 4.4(b) at 

1325 cm-1) could perhaps indicate specific hydrogen bonding between 

adenine and protein. Deng et al. [38] have suggested that N3 

hydrogen bonding to a protonated'Asp (COON) residue is an 
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Figure 4.14 NR spectrum of NAD*. 50 mM, pH 2-3. The spectrum 

was recorded using the Spex instrument, 488 nm-excitation 
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alternative to protonation. The pKa of the Asp residue would need to 

shift to pKa >9.6 (for LADH). which again is well outside the 

normally observed range in proteins of pKa 3.0 to 4.7 [40]. Hydrogen 

bonding to N1 is an alternative possibility. However, UVRR studies 

of Ni hydrogen bonded adenine in nucleic acid duplexes do not show 

similar spectral changes to those observed in NAD; and NADH on 

binding to enzyme [17,191. In the nucleic acid experiments, the 

adenine band at 1338 cm-1 is unchanged, the band at 1310 cm-1 shifts 

to 1305 cm-1, and the band at 1374 cm-1 shifts up to 1380 cm-1. No 

new band is observed at 1325 cm-1 that could be characteristic of N1 

hydrogen bonding. The changes that are observed are not strikingly 

similar to the changes observed on coenzyme binding to the enzymes 

studied here, and may be largely due to stacking interactions, not 

hydrogen bonding. 

The X-ray structure of GAPDH has indicated hydrogen bonding 

to Ni and N10 (NH2) of adenine [30]. In LADH, N10 may be hydrogen 

bonded to Asp 273 and/or Arg 271 [31]. Asp 223, which is conserved 

in other dehydrogenases, may hydrogen bond to both 02 of adenine 

ribose. and to an adenine ring nitrogen. The latter contact is not 

specified by Eklund et al. [31], but could be to N7 or possibly (as 

Deng et al. suggest [38]) to N3. In LDH, the conserved Asp residue 

(Asp 53) is also close to the adenine ring, and may hydrogen bond, 

see Fig. 4.11 [34]. The molecular graphics representation of MDH 

highlighted a possible important difference between the adenine 

binding sites of LDH and MDH [34]. In LDH, residues 98 and 123 are 

hydrophobic (isoleucine-and alanine, respectively), whilst in MDH 

they are relatively hydrophilic (glutamine'and serine); This 

difference can be seen in'Figs. 4.11 and 4.12. 
-In MDH, the serine 

oxygen is close to adenine Ni (3.5A), and the glutamine 0 or N (of, 
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the amide) is close to N1 and N3 (2.7A to Ni, 3.4 to N3); all the 

pertinent distances are given in Table 4.5. Whilst these unconfirmed 

'structures' must be viewed critically, there is a strong 

possibility for hydrogen bonding in MDH which is not present in LDH. 

Clearly, a degree of hydrogen bonding to adenine is likely 

to be present in all the enzymes studied. However, it is not easy 

(or indeed even possible) to correlate the observed RR spectral 

changes with differences in hydrogen bonding. In addition, other 

UVRR data appear to show that hydrogen bonding has only a small 

effect on the RR spectrum of adenine. Of course, adenine (in NAD+) 

would be hydrogen bonded to solvent when not bound to enzyme, and it 

is possible that the hydrogen bonds which it makes to enzyme are of 

similar strength to the bonds to solvent. 

The positive charge of Arg 271 in LADH, which is close to 

the adenine ring, could be the cause of the particular spectral 

changes observed when NADH binds to LADH. This can-be discounted on 

inspection of the YADH primary structure [411. YADH does not have a 

positively charged residue in the position of Arg-271. However, the 

spectrum of NADH bound to YADH is closely similar (apart from the 

contribution from free NADH) to the corresponding NADH spectrum when 

bound to LADH. Thus, the presence of the 1325 cm 
1 

shoulder (in both 

Fig. 4.4(c) and (b)) cannot be due to this charge effect. 

The polarity of the adenine binding pocket varies quite 

widely-between the enzymes studied. and may be a major factor in 

determining the coenzyme RR spectrum. LADH and LDII provide a 

generally more hydrophobic adenine binding environment for coenzyme 

than do GAPDH and MDH. Consistent with this. the spectra of the 

coenzyme when bound to MDH. and particularly GAPDH. resemble the 

solution spectra more closely than do the =corresponding LADH and LDH 
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spectra. Deng et al. have recorded the NR spectra of 9-ethyladenine 

(a suitable model) in various solvents, including water, propanol, 

chloroform and p-dioxane [38]. The spectra were said to be very 

similar. the spectrum recorded in chloroform being the most changed. 

In chloroform. the 1338 cm-1 band shifted to 1330 cm-1. the 

1368 cm-1 band to 1360 cm-1. and the 1311 cm-1 to 1303 cm-1. The 

authors interpreted their results as an indication of the lack of 

importance of polarity in determining the NR spectrum. However, 

these shifts show some similarities to those observed in the RR 

spectra when NADH binds to ADH and LDH. It is conceivable that 

polarity changes have a more marked effect on the RR spectra than on 

the NR spectra, and that the RR spectra obtained reflect largely the 

polarity differences experienced when the coenzyme binds to 

different enzymes. 

4.4.3 Acylenzyme formation: effects on 240 nm RR spectra. 

The spectra in Fig. 4.7 show no differences that could be 

attributable to a thioester vibration of the acylenzyme 

intermediate. Despite the proximity of the excitation wavelength to 

the estimated absorption maximum of the thioester group, the 

intensity of the thioester absorption is still extremely low 

(e'= 3x103 M-lcm-l [42]) compared with combined absorption of NAD+ 

and GAPDH (e = 3x105 M-1cm-1). Thus, it would be surprising if the 

thioester band could be resolved above the noise level in these 

spectra. This is in contrast-to the successful study of the 

thioester acylenzyme', intemediate in papain, which showed a new band 

in the acylenzyme spectrum at 1678 cm-l, attributed to the thioester 

carbonyl vibration [43]. In papain,. the, problems ýof, absorbtion by 

the protein are much reduced, as papain is a much smaller protein 
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than GAPDH, and does not need NAD+ to drive the formation of 

acylenzyme. 

Some changes in relative intensities of trp and tyr bands 

are observed on forming the acylenzyme. The 1206 cm-1 band of 

tyrosine decreases in intensity relative to other tyr bands at 1174 

and 1620 cm-1. The 1007 cm-1 band of trp appears to increase 

slightly in relative intensity on forming the acylenzyme. The 

changes observed are not consistent with the photodecomposition 

effects noted by Johnson et al. [8]. The 1007 cm-1 trp band 

intensity increases in the spectrum of the trp photodecomposition 

product as the 1549 cm-1 (1557) band decreases. In the acylenzyme 

the 1007 cm-1 band increases as the 1557 cm-1 band remains unchanged 

(or increases slightly), and the 1510 cm-1 band, another 

decomposition indicator, decreases. Similarly, none of the 1206, 

1620, and 1174 cm-1 bands of tyr are associated with photoproduct 

peaks, so relative intensities of these bands would not be expected 

to vary, except under conditions of change in environment and 

bonding. 

In GAPDH, tyr-311. which is conserved in all dehydrogenases. 

is present in the active site pocket. No tryptophan residues appear 

to be important. The structure of lobster. GAPDH at 2.9 A resolution 

indicated hydrogen bonding between tyr-311 and the essential His-176 

residue [44], while the structure of bacterial GAPDH at 1.8 A 

resolution indicated no such bonding [30]. The RR data can be 

tentatively interpreted. as showing that one-or more tyr residues are 

undergoing some change on-forming the acylenzyme. However, it is 

impossible to determine whether it is the active site tyr that is 

perturbed, or whether it is'a more general -structural change 

affecting one"or, mmore . of'the remaining eight tyr,, residues. 
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4.4.4 Coenzyme binding: effects on GAPDH 

Structures of apo- and holo- GAPDH from thermophilic 

bacteria give strong evidence for NAD+-induced sequential 

conformational changes in the overall tertiary and quaternary 

structure [30,45,46]. The similarity of the two spectra in Fig. 

4.8 may be interpreted as showing that the aromatic amino acid 

residues (14 phe, 9 tyr and 2 trp per subunit) are not significantly 

perturbed by the conformational changes accompanying binding, or by 

direct interactions with coenzyme. Raman bands of phenylalanine have 

not previously been found to be sensitive to environmental changes 

in studies of other proteins, so the lack of spectral changes here 

may not be significant. The v 12 (1000 cm-l) band of phenylalanine 

has recently been shown to be sensitive to environmental effects in 

the RR spectra of proteins [11]. However, this band is-not strongly 

enhanced in the RR spectra shown in Fig. 4.8, and is partly 

overlapped by the tryptophan band at ca. 1010 cm-1. Two phe residues 

(phe 34 and 99) clearly do contribute to the hydrophobic character 

of the adenine binding pocket. Tyrosine bands in UVRR spectra are 

sensitive to hydrogen bonding and environment changes; however, only 

the average tyrosine state is shown in the UVRR spectra. Since-there 

are nine tyr residues per subunit, changes accompanying coenzyme 

binding would have to be substantial before changes could be 

accurately pinpointed in the' WRR spectra. In fact, tyr and trp 

residues are not found in the coenzyme binding site of GAPDFI, nor 

are they implicated as being an integral part of the conformational 

change observed in the X-ray studies. 

4.4.5 NADÜ binding to LDH: 350.6 nm RR study 

The NR data published for'NADH and NAD+ bound to LDH show 
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marked differences in the nicotinamide bands of the coenzyme spectra 

on binding enzyme [38]. This would again appear to be in direct 

contrast to the results obtained from the 350.6 nm excited RR 

spectra. where the bound and free NADH spectra appear to be 

generally very similar. The NR data are claimed to show the complete 

loss of a strong nicotinamide band at 1546 cm-l, and of a weaker 

band at 1458 cm-l. This is not the case in the RR spectra. It might 

be expected that the nicotinamide bands. especially in the 

oxamate-inhibited complex, would show more dramatic differences than 

have been observed in these RR spectra. 

The limiting factors in the collection of the RR data are 

the high fluorescence, low absorption strength, and 

photodecomposition. Tuning to the shifted absorption maximum 

(325 nm) pr reducing fluorescence would probably allow. spectra of 

adequate quality to be collected before photodecomposition. The 

enzyme-accelerated photodecomposition mechanism is unknown, and 

hitherto not reported. The photodecomposition of NADH in solution 

has been studied by Raman scattering [47] and by transient 

absorption methods [48]. While there is some controversy over the 

exact mechanism (mono- or bi- photonic), and quantum yield, the 

general process is: - 

NADH NADH -ýj NADH+ +e aq' 

NAD + H+ 

NAD+ - -E 

,, The, accelerated rate-, of photodecomposition of NADH bound to 
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LDH (and GAPDH) could indicate either (a) some sort of effect of the 

binding pocket (e. g. changed polarity or conformation) on NADH or 

(b) a completely different mechanism. In view of the observed 

variation in rates of decomposition it appears quite likely that 

there is a new mechanism, involving some other species. The species 

could be a residue in the enzyme or a contaminant of the solution. 

4.5 CONCLUSIONS 

4.5.1 Coenzyme binding to dehydrogenase enzymes: adenine environment 

and bondinp,. 

The following conclusions can be drawn from the 260 nm-UVRR 

study of NAD` and NADH binding to dehydrogenases. 

(1) Although there are problems with fluorescence, the spectra of 

bound coenzyme are largely free from interference from the enzyme 

spectra, in contrast to the NR spectra. 

(2) The factors which may influence the coenzyme spectrum when bound 

to the dehydrogenase enzymes are numerous, and further studies would 

be desirable to establish further the relationships between coenzyme 

spectra, and structure, environment and bonding. 

(3) The conformation of%the coenzyme when bound to the different 

enzymes LADH, LDH, GAPDH and MDH does not seem to have a large 

effect on the 260-nm RR spectrum. Neither the loss of ring stacking, 

nor the A/B conformational difference (see section 4.4.2) shows a 

significant influence on the RR spectrum of the adenine moiety. 

(4) Protonation of the N3 (or N7) nitrogen of adenine is extremely 

unlikely on the basis of, the unusually large pKa-shifts that would 

be required. Similarly,: protonation. of Asp-53 in LDH (and 

corresponding Asp residues found in other dehydrogenases),, and 
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subsequent hydrogen bonding to N3 or N7 is unlikely due to the large 

pKa shift required. It is possible that a water molecule could fit 

between adenine and the Asp residue, and hydrogen bond to both. 

(5) Hydrogen bonding to adenine Ni and NiO is possible in GAPDH, 

MDH, and LADH (Nlp only). However, there is little evidence to 

suggest that the RR spectral changes reflect differences in hydrogen 

bonding. In UVRR studies of adenine hydrogen bonding through N1 and 

NiO to thymine or uracil. effects on adenine ring modes were small, 

and not similar to the effects observed in the coenzyme UVRR spectra 

discussed in section 4.4.2. 

(6) Coenzyme environment polarity differences do seem to correlate 

quite well with differences in the UVRR spectra. LADH and LDH have 

considerably more hydrophobic adenine binding environments than 

GAPDH and MDH. Consistent with this, the reported NR spectrum of 

9-ethyladenine in chloroform is similar to the spectrum of NADH 

bound to LADH and LDH. 

4.5.2 Effects of coenzyme and substrate binding on the UVRR spectra 

of GAPDH. 

While it has been shown that many UVRR bands of aromatic 

amino acids are sensitive to changes in their environment and 

bonding [10,11] it is clear, from the 220 and 240 nm-RR spectra 

presented in this chapter. that there are problems with overall 

sensitivity and selectivity. The recent work of Fodor et al. 15) 

established the Raman excitation profiles of many bands of the 

aromatic amino acids between 192 and 240 nm. This will be useful in 

future studies for choosing a suitable excitation wavelength to 

yield information, on a particular, type of amino acid. In the study 

of GAPDH, the abundance of phe and tyr residues (14. and 9 per 
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subunit, respectively) makes the task of looking for changes in 

their spectra difficult. The assignment of UVRR spectral changes to 

the environment or bonding differences of a particular residue is 

almost impossible, unless there is some other evidence for change 

(e. g. from crystallographic studies). The combination of UVRR with 

site-directed mutagenesis techniques would be a very powerful tool 

in determining the precise environment and bonding of particular 

amino acid residues in proteins. 

4.5.3 Coenzyme binding to LDH: nicotinamide environment and bonding. 

From the preliminary results presented in this chapter 

(section 4.3.5), the study (by WRR) of the nicotinamide moiety when 

bound to enzymes looks promising, if difficult. The UVRR spectrum of 

the nicotinamide moiety bound to LDH has no spectral contribution 

from LDH. Problems of fluorescence would be reduced by using an 

excitation wavelength closer to the absorption maximum of the 

enzyme-bound nicotinamide moiety. The nicotinamide moiety of NADH is 

the 'active' part of the coenzyme, and must undergo significant 

changes on binding to certain enzymes, especially when a substrate 

(or analogue) is also bound. This is already partly proved by the 

large shifts that can be induced in the nicotinamide absorption - 

for example on binding to LADH. or to LDH and oxamate. 
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CHAPTER FIVE: SURFACE ENHANCED RAMAN SPECTROSCOPY OF NAD+ 
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5.1 INTRODUCTION 

Surface-enhanced Raman spectroscopy (SERS) has proved to be 

an excellent tool for obtaining the vibrational spectra of molecular 

species at very low concentration (see chapter 1 for a resume of 

recent studies). Many controversies about SERS still persist, from 

fundamental arguments about the enhancement mechanism to more 

'applied' arguments about the changes induced in species on 

adsorption onto metal surfaces, including the possibility of 

denaturation of proteins [1]. In the SERS study of NAD*, NADH and 

GAPDH described in this chapter, many of these questions about SERS 

have been addressed, including the interpretation of SERS spectra in 

terms of molecular orientation and the possible denaturing effects 

of colloidal silver. 

Other SERS studies of nucleic acids and NAD+ have been 

reported [2-6], and orientations of these species at the metal 

surface have been suggested. The information on molecular 

orientation has been deduced on the basis of surface enhancement 

selection rules; these determine which vibrational modes of a 

molecule will be surface active in a particular molecular 

orientation. The theoretical and experimental bases for these rules 

have recently been reviewed [7], and it has been shown that these 

are, in general, considerably more complex than the corresponding 

rules for infrared reflectance spectra. In this chapter it is shown 

that the commonly used' simplification of"these rules may"give 

incorrect information on surface orientation. -It is also pointed out 

that it is impossible to " determine` surface orientation from SERS 

data where the relative intensity contributions from the charge 

transfer (CT)`mechanism and the electromagnetic (EM) enhancement 

mechanism are unknown. 
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Since the discussion in this chapter revolves largely around 

the relative contributions of the SERS enhancement mechanism, a 

brief outline of the two major enhancement theories will be given. 

Classical Raman theory treats polarisability as the 

proportionality constant linking the incident electric field. E. 

with the electric dipole, 9. induced in the molecule, viz. 

u=«. ý .... (1) 

Raman band intensities are proportional to the square of the 

mean molecular polarisability derivatives associated with each of 

the normal modes of vibration, viz. 

I cc (dccldQ)2 
.... (2) 

Taken together with the direct dependence of scattering intensity on 

the incident light intensity (proportional to Ei1 ), this provides the 

basis for two distinct mechanisms of surface enhancement. The SERS 

enhancement mechanisms are divided into those that increase E, 

'electromagnetic' mechanisms, and those that increase. a, 'chemical' 

mechanisms. 

5.1.1 Electromagnetic (EM) enhancement 

Many workers have developed the basic EM theory in attempts 

to explain the very high enhancements observed in SERS. Quantitative 

field enhancement factors have been calculated for spheres [8], 

spheroids [9], rough surfaces [10] and clusters [11]. These 

treatments have been reviewed in detail in [12], and most recently 

in [7,13]. Strictly speaking, ' there are other EM theories apart 

from those considered here, including the image field theory, and 

reflectivity modulation theory. -However, the most-successful EM 

theory presented to date (that which is specific to rough surfaces) 

is the localised surface plasmon-theory., 
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For small spheres (smaller than the wavelength of the 

incident light), the enhancement factor. G. is given by 

[8,14], viz. 

z 
G=1+ 2(E i- 1) 1+ 2(E s- 1} .... (3) 

(E i+2 (E g 

where ei and Es are the complex dielectric function of the metal 

with respect to the surrounding medium at incident and scattered 

wavelengths, respectively. Thus, enhancement is at a maximum when 

ei =, E s= -2. This condition is satisfied for silver, gold and 

copper with wavelengths in the visible region. The frequency for 

E= -2 is called the surface plasmon resonance frequency. This 

resonance frequency has been shown to depend sensitively on the 

shape of the spheroid (or surface feature) [8], although the simple 

equation (2) above does not give a dependence. Similarly, the 

absolute enhancement factor has been shown to depend critically on 

the shape of the spheroid. due to what is generally referred to as 

the 'lightning-rod' effect, where the E field is dramatically 

increased at sharp features (e. g. tips of spheroids)[9]. 

Using this theory, various experimental features have been 

predicted, including a non-specific enhancement of all adsorbed 

molecules, and a distance dependence of (c/r)12, where c is the 

local radius of curvature and r=c+ molecule to surface distance. 

While the distance dependence has been confirmed by spacer 

experiments [15], itis clear that SERS is not molecule specific. 

This latter inconsistency has been taken up, by Pettinger in a recent 

paper and used as a starting point for his 'modified, EM'model [16]. 

The modified EM model attempts to introduce. a_chemical 

nature into EM theory. An energy- transfer '(ET) mechanism; is proposed 
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(overlaying the classical EM mechanism), that enhances SERS for only 

those molecules that have available electronic transitions (either 

already existing or induced on adsorption) that can couple with the 

transitions of the metal. For such molecules. Pettinger derives an 

enhancement factor of 

G=0.00143.8-18. E eff-6"a m6 .... (4) 

where am is a function of the dielectric. E. of the metal, and R is 

the molecule-metal distance. For 'non-excitable' molecules such as 

water, a different enhancement factor is derived, 

G=0.0127. R-12. E eff-4. « M4. *fl dd """"(5) 

where I dd is a 'yield for radiative transitions' and is estimated 

to be ca. 0.01, so as to yield an enhancement factor for water of 

300-1500. 

Pettinger has provided some experimental evidence for his 

theories [17], but as yet they remain unevaluated by the SERS 

community. While the theory is appealing, in as much as it 

introduces large enhancement factors for coloured species, or 

species like pyridine that can create new charge-transfer 

transitions on chemisorption. enhancement does not depend explicitly 

on any properties of the molecule. It does not try to diminish the 

contribution from the 'true' chemical enhancement that is outlined 

below. 

5.1.2 Chemical enhancement-,. - 

It is generally believed that'a distinct charge-transfer 

(CT) process contributes to SERS enhancement for certain 

molecule-metal"systems. While many workers describe chemical 

enhancement rather-loosely: as a 'RR enhancement arising from new 

electronic transitions either, from- molecule to'metal or vice versa 
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[18-20], Otto has described a process that is more specific [21]. In 

his model, a photon generates an electron in the sp band of the 

metal, above the Fermi level, and leaves a hole below the Fermi 

level (step 1). The electron jumps or tunnels to the molecule to 

form a temporary negative molecular complex (step 2). The electron 

jumps or tunnels back to the metal (step 3), and combines 

radiatively (producing Raman shifted radiation) with the electron. 

Chang [13] has noted that the formation of the negative ion complex 

by step 2 above is not a prerequisite for this mechanism of 

enhancement. A photoexcited electron could tunnel or jump into the 

first excited electronic level of the molecule (more like a 

molecular RR process). Since the photoexcitation of metal electrons 

(step 1) is much more favourable at sites of atomic scale roughness 

[21], then the roughness requirement for SERS is also-explained. 

Recent experimental work has been undertaken to estimate the 

relative contributions of the charge-transfer (CT) and EM effects 

[18,22-24]. There must be no absolute answer for all molecule-metal 

systems, as there is clearly a 'spectrum' of cases, from the extreme 

case of water. where there appears to be little possibility for CT 

enhancement, to the strongly enhanced pyridine on silver (for which 

adistinct CT band has been observed [18]). The methods of 

estimation have varied in emphasis, using complex SERS substrates 

[22], and using chemical quenching of 'active sites' [231. The 

estimates of the CT enhancement factor vary from 10 to 103 for the 

case of pyridine on silver, where there is-an overall enhancement 

factor of 105-106. 

Consideration has been given to the type of RR scattering 

that may occur in CT SERS [7,20]. 
-There'are four types of RR 

scattering that may-contribute to band intensities [25], commonly 

-125- 



referred to as A-. B-. C-, and D- term RR scattering. These are 

described in chapter 1, section 1.3 of this thesis. The terms all 

introduce different selectivity of enhancement into CT SERS, and may 

account for some of the observed enhancement selectivity in SERS. 

5.2 EXPERIMENTAL 

5.2.1 Preparation of_silvercolloids 

A detailed description of different methods of preparation 

of silver colloids is given in ref. [26]. Two methods were employed 

for the SERS study of NAD+; using borohydride or citrate reduction 

of silver. Silver nitrate (May and Baker, AR grade), trisodium 

citrate (Fisons, AR grade). and sodium borohydride (Fisons, SLR 

grade) were used without further purification. Water was doubly or 

triply distilled, using carefully cleaned Pyrex glassware. 

"Citrate sols" were prepared by reduction of a boiling 

solution of silver nitrate (90 mg in 500 cm3 water) by trisodium 

citrate (10 cm3 of a 1% w/v solution). as in the method described by 

Lee and Meisel [27]. These citrate sols were murky grey in 

appearance, with strong absorption maxima at 405-410 nm, and were 

stable for many months. "Borohydride sols" were prepared by the 

addition of 5 cm3 aqueous silver nitrate` solution (1x10-3 M) to 

10 cm3 ice-cold aqueous sodium borohydride solution (8x10-3 M). The 

sols produced by this method were bright yellow, again with a strong 

absorption maximum at 405-410nm. -; The borohydride sols were stable 

only-for. a few days (at room temperature) and were only used for 

purposes of comparison. Rapid. aggregation was often observed on 

additionof adsorbates to borohydride sols. - making - control- of , 

experimental conditions difficult. 
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5.2.2 Samples for Raman Spectroscopy. 

NADH, NAD and ADP (adenosine diphosphate) were purchased 

from the Sigma Chemical Co. and used without further purification. 

GAPDH (Sigma) was obtained as a lyophilised powder and added 

directly to the silver sols (at least 2 mg to 5 cm3). Alternatively, 

the ammonium sulphate suspension of GAPDH (Sigma) was centrifuged, 

and the solid resuspended in silver sol. This procedure led to 

rapid aggregation of the sol, due to the high concentration of 

sulphate present in the mixture. Desalting was performed by passing 

0.1 cm3 highly concentrated GAPDH down a prepacked Sephadex G25 

column (PD-10 column, Pharmacia, UK). The desalted GAPDH solution 

was added to silver sol; these mixtures were more stable. The NAD* 

content of GAPDH was determined spectroscopically (see chapter 4� 

section 4.2.1). The above procedures for producing solutions of 

holo-GAPDH in silver sols resulted in final GAPDH concentrations 

of > 3x10-6 M. With ca. 3 NAD+ per tetramer, the resulting NAD+ 

concentrations in the GAPDH-sol mixtures were ca. 10-5 M. 

Addition of the SERS adsorbate and/or salts to silver sols 

caused the sols to darken in colour. These sols gave broad 

absorption maxima at 550-650 nm in addition to that at 405- 

410 nm, this former band being attributable to aggregation [28]. 

Strong SERS was not obtained without aggregation, so potassium 

nitrate was added (in varying amounts) as necessary to optimise the 

SERS"signal. Other salts (Cl-, 
-S04 

2,1-) 
also enhanced the SERS 

signal by causing. aggregation. However. use of halide ions (chloride 

in particular) gave rise to problems of contamination. Despite 

extreme care in solution preparation, the use of fresh chemicals, 

and thorough washing of the Raman cell, use of C1 always gave rise 
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to a SERS spectrum of trisbipyridylruthenium(II). 

Sol pH was measured after addition of SERS adsorbates, and 

adjusted as necessary by addition of dilute potassium hydroxide 

solution or dilute nitric acid. At extremes of pH (above pH 10, or 

below pH 3) the sols quickly precipitated. Estimates of surface 

potential were made according to the method of Wetzel et al. [29]. 

which involves measurement of the relative intensities of the v1 

and v 12 bands of pyridine. For these measurements samples were made 

up in the normal manner in the presence of a low concentration 

(ca. 10-4 M) of pyridine. This procedure is given in detail in ref. 

[26]. 
For measurement of spectra at different NAD* concentrations, 

and at different excitation wavelengths, acetone was added to 20% 

v/v as an internal intensity standard. All NAD+ Raman band 

intensities were normalised to the acetone peak at ca. 800 cm-1. 

Further corrections were made for differential spectrometer response 

at wavenumber values far from 800 cm-. 
1 

Raman spectra were obtained using laser excitation from 

either an Ar+ (Spectra Physics model 2025) or a Kr` (Spectra Physics 

model 170) laser. Raman scattered light was dispersed and detected 

using either the Jobin-Yvon or Spex instruments as described in 

chapter 2 of this thesis. In all, cases, 90° illumination was used, 

with the sample in a rotating cell. The cell was spun as fast as was 

possible, whilst still avoiding sedimentation of sol onto the walls 

of the cell. Laser powers of up to 100 mWat the sample were used, 

with a spectrometer- band pass of_ca. -6, cm-1. I 
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5.3 RESULTS 

The NR spectrum of NAD~ (50 mm) is compared with the spectra 

of NAD` and ADP (both at 1 mM) on colloidal silver in Fig. 5.1. No 

Raman signal could be obtained for NAD} alone at 1 mM under 

comparable conditions; thus the spectra in Figs-5.1(b) and (c) are 

assumed to be entirely the SERS spectra. Table 5.1 lists all the 

wavenumber values for the spectra in Fig. 5.1. The NAD` SERS 

spectrum shows particular enhancement of bands at 730,1030 and 

1320-1340 cm-1, with weaker bands at 620,790,820,925,955,1115, 

1244,1399,1463,1509,1570 and 2940 cm-1. Broad features at 620 

and 925 cm-1 were not observed in all spectra; these bands were 

attributed to the sol itself. The 1320-1340 cm -1 band in the SERS 

spectrum is broad, and consists of two unresolved components, one at 

ca. 1325 cm-1 and one at 1335 cm 
1. 

see Fig. 5.2(b). The 1378 cm-1 

band in the NR spectrum of NAD+ is not prominent in the SERS 

spectrum. The pH's of NAD+- and ADP-containing sols were in the 

range 4.5-6. The spectra did not appear to change with pH above 

pH 4.5, although some changes were observed below pH4. The SERS 

spectrum of NAD` at pH 3 showed enhancement of a band at ca. 

1410 cm 
1. 

consistent with the changes observed in the NR spectrum 

on protonation of adenine Ni nitrogen [301. At pH 4.5 the surface 

potential of the silver was estimated (see experimental section) to 

be in the range -0.1 to -0: 3 Vvs SCE. At pH 9.5 the surface 

potential dropped to -0.55 V vs SCE. Since the PZC for 

polycrystalline silver is ca. -0.9 V vs SCE, the silver surface 

potentials reflect an absolute positive charge at the silver 

surface. 

The SERS spectra obtained using borohydride sols were 
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700 1000-1300 1600 3000 3400 
. Wavenumber/cm-1 

Figure, 5.1_ (a)_, NR. spectrum of, NAD+ ý(50 mM, pH 6.0) 

(b) SER, spectrum, of NAD±,. (1` mM) 

(c) SER spectrum of ADP (1 mtMI). Acetone (20: V/v) 

peaks are marked (+). 
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Figure 5.2 (a) NR spectrum of NAD', 1300 cm-1 region only 

(b) SERS spectrum of NAD` 1300 cm-1 region only 
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Table 5.1 Wavenumber valuesa and assignments of bands in NR and 
SERS spectra of NAD+ and ADP. 

NR SERS Assignmentd 
NAD+ NAD+ ADP 
538wb 537w 542w A 6-ring 
564wb 561w 562w P/R 

- 619w 625w Sol contaminant, A 5-ring 
deformation 

642wb --A out-of-plane 
730ms 730s 732s A6 and 5-ring breathing 
802w 790w - R2/N, out-of-plane A 
834w 820w -P 
888w --P, out-of-plane A 
914wb - 922m P. sol contaminant 

- 955m - citrate, A 5-ring 

-- 961mw 
1029s 1030s -N ring mode (in-plane) 

-- 1037m R/P 
1087w --P 
1114m 1115m - R2/P 
1254w 1244m 1247m A 6-ring 
1304ms --A 6-ring 

- 1325s 1326s A 
1336s 1335sh 1335sh A 6-ring 
1377ms --A exocyclic (C2-H, N9-R) 

- 1399m 1395m 
1410m -- 
1462wb 1463m 1465m A 6-ring, N9-R 
1480m --A 
1507m 1509m 1512w A 5-ring 

-- 1554sh 
1582ms 1570m 1575m A 

- 2930m cR 

w=weak, m=medium, s=strong, sh=shoulder, A=adenine, P=phospate, 
R=ribose (R2=ribose near N), N=nicotinamide. 

a Values not corrected for instrument inaccuracy (see chapter 3. 
section 3.2.3 and Fig. 3.3). 

b Reported by Yue et al. [30]. 
c Not measured. d Tentative assignments made with additional information from 

refs. [30,33-36]. The predominant character of the vibration is 
denoted where possible, e. g. -'6-ring' implies a vibration of the 
6-membered ring. Most of the vibrations appear to involve more 
than just one specific group of atoms`(or"ring). Where the 
vibration is more localised, the assignment is bold-typed. 
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similar to those obtained using citrate sols, but of inferior 

quality, only showing the same main features at 730 and 1330 cm- 

Due to the greater stability and greater enhancements achieved with 

the citrate sols, these were used for all experiments in which 

concentration and excitation wavelength were varied. The spectra 

presented in Figs. 5.1.5.2 and 5.5 result from the use of citrate 

sols. 

Fig. 5.3 shows the dependence of the corrected SERS band 

intensities on excitation wavelength for the 730,1030 and 1330 cm-1 

bands of NAD+ (Raman excitation profiles). No significant changes in 

the relative intensities of any other NAD+ bands were observed over 

this wavelength range; i. e. all bands showed a similar wavelength 

dependence to that of the three bands shown in Fig. 5.3. Fig-5.4 

shows the dependence of the SERS band intensity on NAD+ 

concentration for the 1030 (b) and 1330 cm 
1 (a) SERS, bands of NAD`. 

The 1330 cm-1 band shows a general decrease in intensity with 

decreasing concentration. but the intercept is non-zero. A similar 

decrease in intensity with concentration was observed for the 

730 cm-1 band, the corresponding plot (not shown) having the same 

intercept value. Fig. 5.5 shows a SERS spectrum of NAD` at very low 

(2x10-5 M) concentration. 

NADH did not give comparable SERS signals at millimolar 

concentrations on silver. At neutral pH, weak SERS bands were 

observed at ca. 730 and 1330 cm-1. At higher pH's (>7,5) little or 

no SERS signals were observed. 

NAD+ gave no SERS spectrum when bound to GAPDH at NAD` 

concentrations of 10-4 to 10-5 M, although good spectra could be 

obtained at these NAD+ concentrations in the absence of the enzyme 

(see Fig. 5.5). At higher enzyme concentrations, the sols 
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Figure 5.4 Concentration dependance of (a)1330 and 

(b)1030 cm -1 SERS bands of NAD`. 
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precipitated. 

5.4 DISCUSSION 

5.4.1 SERS spectra: assignment of bands. 

The SERS spectrum of NAD+ shows strongest enhancement of the 

adenine in-plane ring vibration at 730 cm-1. The aliphatic C-H 

stretching vibrations (2940 cm-1) of the ribose moiety are strongly 

enhanced, whereas the aromatic C-H stretching vibrations (expected 

at ca. 3080 cm-1) are not. The high wavenumber regions of the 

spectra shown in Fig. 5.1 (a) and (b) are not shown to their correct 

relative intensities (with respect to the low wavenumber region). 

The 3400 cm-1 band of the NR spectrum in Fig. 5.1 (a) is ca. 4 times 

more intense than the band at 1030 cm-1. The ca. 3300 cm-l band in 

the SERS spectrum in Fig. 5.1 (b) is 2.6 times less intense than the 

730 cm-1 band. Thus the 2940 cml band in the SERS spectrum of NAD; 

is in fact only of moderate to weak intensity. This still reflects 

strong enhancement of the ribose C-H modes with respect to the NR 

spectrum. where they are too weak to be observed. It should be noted 

that citrate in solution could give rise to a band at ca. 2930 cm- 

(311. However, in the SERS spectrum, of citrate, this band is not 

enhanced [31], and in the NR spectrum it is weaker than other 

citrate bands at 956 and 1415 cm-1.. -In addition, no 2930 cm-1 band 

was observed for the spectrum of aggregated` citrate. sol without 

NAD+. The 1030`cm-1 band in the SERS spectrum of NAD'=. (Fig. 5.1(b)) 

is far weaker-than the corresponding band in the NR spectrum, in 

which it has been assigned to an in-plane vibration of the oxidised 

nicotinamide ring [30]. -Since the SERS. spectrum of ADP shows no 

similar band. at'1030 cm-1, we may assume. that the band at 1030 cm-1 
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in the NAD+ SERS spectrum is due to nicotinamide and is not a 

coincidentally close adenine or ribose band. 

The change observed in the 1335 cm-l band of the NAD` 

spectrum on adsorption onto the silver surface (compare Figs. 5.2(a) 

and (b)) is qualitatively similar to those observed in the NR 

spectrum of NAD+ when the pH is lowered to below pH 4. The NR 

spectrum at low pH shows one band at ca. 1328 cm-1 (see Fig. 4.14 

and [30]), whereas the SERS spectrum shows two bands, at 1335 and 

1325 cm-1. The Ni of adenine becomes protonated below pH 4 (pKa 3.8 

[32]); this is assumed to be the cause of the spectral changes. 

However, as previously stated, the pH of the NAD+-containing sol is 

above 4.5; thus the changes are unlikely to be due to adenine Ni 

protonation. It is possible that the pKa for Ni protonation could 

change when NAD+ is adsorbed on a silver surface. However. 

protonation is dismissed. as the SERS spectrum does not change in 

the pH range 4.5-6, but does change. below pH 4. The different SERS 

spectrum obtained below pH 
,4 

is consistent with protonation only in 

this lower pH range. The fact that the spectrum in Fig. 5.1(b) is 

similar to the protonated NAD+ spectrum may indicate strong 

interaction between the silver surface and the adenine ring, with a 

particular involvement of adenine Ni. At first glance, it might 

appear that there are two types-of adenine binding at silver that 

cause the two bands at 1335 and 1325 cm- Although other SERS bands 

are broad, it is difficult to see evidence for other 'doublets', and 

thus evidence for two binding modes. A more thorough understanding 

of the vibrational, modes of NAD*, both in N1-protonated and 

unprotonated forms,, would, clearly help, to assign the band observed 

at 1325 cm-1. For the purposes of the discussion below (section 

5.4.2), the 1325 cm-1 band has, been assumed to be an adenine 
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in-plane ring vibration, due to its high SERS intensity (similar to 

the 730 cm -1 band). 

Apart from the change observed in the main 1335 cm -1 band of 

the NAD+ spectrum on adsorption of the molecule onto colloidal 

silver, there are other significant differences between the NR and 

SERS spectra of NAD+. A band at 1399 cm-1 (at 1395 cm-1, and more 

intense in the SERS of ADP) could be the strongest band in the 

citrate SERS spectrum [31]. However, citrate bands at 805 and 

953 cm-1 would also be expected at medium intensity; these bands do 

not always appear together in the SERS spectra. Moreover, when the 

concentration of NAD+ is lowered, it might be expected that citrate 

bands should become relatively more intense. However, in Fig. 5.5. 

where NAD* is 2x10-5 M. the band at 1400 cm-1 is weak. Thus, while 

it not certain whether the band at 1399 cm-1 is due to adenine or 

ribose, it does not appear to be a citrate band. 

Bands at 1244 (1247 in ADP), 1463 and 1570 cm-1 in the NAD` 

SERS spectrum also do not have clear counterparts in the NR 

spectrum. The bands at 1244 and 1570 cm-l are probably simply 

downshifted from the bands in the NR spectrum at 1254 and 1582 cm- 

However, these are considerable shifts compared with the 

nicotinamide and adenine'ring modes at 1030 and 730 cm-1, 

respectively, which are unshifted in the SERS spectrum. At low pH, 

where Ni is protonated, the 1580 cm-1 band in the NR spectrum of 

NAD+ decreases in intensity and a new band grows in at 1560 cm -1 

[30]. The apparent shift from 1580 to 1570 cm on adsorption onto 

colloidal silver perhaps again reflects some sort of 'electrostatic 

interaction of the adenine ring with the silver surface. possibly 

specifically with Ni as previously suggested. The band at'1463 cm-1 
+ in the SERS 'spectrum of NAD (at 1465 cm-1, and more intense in the 
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corresponding ADP spectrum) could be due to a large enhancement of 

the very weak band at ca. 1462 cm-1 found in the spectra of NAD+. 

AMP. and ADPR [30,33.34]. A similar band at 1454 cm-1 in the SERS 

spectrum of adenine has been reported as being both a weak [3,6] 

and a strong [2,6] band in the SERS spectrum, and assigned to an 

adenine ring vibration [2]. The assignments are summarised in Table 

5.1, with the additional information from the data in ref. [30], and 

from normal co-ordinate analyses [33-36]. 

5.4.2 NAD+ on silver: orientational information 

The SERS spectrum of NAD+ on colloidal silver is 

substantially different from that reported for NAD+ adsorbed on a 

silver electrode at potentials between 0 and -1.0 V vs SCE [51; the 

electrode spectrum showed strong bands only at 735 and 1335 cm-1. No 

enhancement of the nicotinamide band at 1030 cm-1 was reported and 

other features were weak. Since our value for the silver surface 

potential (-0.1 to -0.3 V vs SCE) is well within the range used in 

the electrode study, a simple potential-induced re-orientation 

cannot be used to explain the differences between colloid and 

electrode spectra. Indeed, in the same electrode study, a 1030 cm- 

nicotinamide band was observed when gold electrodes were used. 

Evidently, the nicotinamide ring approaches more closely, and 

possibly with a different orientation, to the colloidal silver 

surface than to the silver electrode' surface. The results from the 

electrode study were interpreted as. showing a close contact between 

adenine and the silver surface. with the adenine ring in`a 

perpendicular orientation, binding, to the surface via its N112 and N7 

nitrogens. This contradicts a surface reflectivity study, the 

results-from which-were interpreted in terms of a'flat orientation 
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of the adenine ring [37]. The basis for the assignment of a 

perpendicular orientation of adenine on the silver electrode was a 

simplified view of the surface electromagnetic enhancement selection 

rules; namely, that only vibrations in a plane containing the 

surface normal, z, are enhanced. Since both strong bands observed in 

the electrode study were in-plane ring vibrations [33,34], it was 

assumed that the plane of the ring must be normal to the surface. 

However, we shall show that the surface selection rules cannot 

generally be interpreted in such a simple manner. 

The surface selection rules arising from the classical 

electromagnetic enhancement theory [7,38-40] state that with 

excitation at, or to the red of the dipole resonance maximum of the 

silver particle, vibrations with polarisability derivative 

components a xz and a yz will be enhanced by a factor, of up to IEI2. 

Bands from the polarisability derivative component a zz will be 

enhanced by a factor of up to IE14 compared with those vibrations 

with only a xy, a xx, or a yy components. where E is the effective 

dielectric constant of the metal relative to the surrounding medium 

(the difference in values of e at incident and scattered wavelengths 

being neglected). In the case of adenine (Cs symmetry, molecule in 

xy plane), the totally symmetric (in-plane) modes may contain a 

varying degree of a zz character. Considering a vibration involving 

the whole TT-electron system, i. e., a vibration of the C-N skeleton, 

there might be expected to be a small degree of a zz character out 

of the ring plane as the TT-electron-distribution expands and 

contracts, over the ring. An exocyclic vibration, e. g. C-H or C-Ni12. 

involving. only-a -type electrons, would contain, far less ä zz, 

character. -Accordingly. adsorption of -adenine: flat onto 'a surface 

would, result, in the C-H in-plane modes in"particular not being 
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enhanced. whereas C-N skeleton modes may be enhanced to varying 

extents. Such a treatment has been developed for benzene and 

extended to adenine SERS by Suh and Moskovits [2]. Out-of-plane 

adenine modes would, of course, be more enhanced. but still might be 

weak in the SERS spectrum as they are very weak in the NR spectrum 

(due to low polarisability derivative values). Conversely, 

adsorption perpendicular (or partially so) to the surface would 

result in the in-plane modes, especially C-H modes, becoming much 

more enhanced (as the bulk of their polarisability derivative would 

become a zz)" Out-of-plane modes would show no enhancement. 

The data presented in the electrode study unfortunately do 

not show the high wavenumber region where, if the adenine moiety of 

NAD+ is indeed perpendicular to the surface, C-H stretching modes at 

ca. 3080 cm-1 would be expected to be strongly enhanced. The 

observation of enhancement of only in-plane ring modes does fit with 

the electromagnetic surface-enhancement selection rules, assuming a 

perpendicular orientation. but it is not the only possible 

explanation. Indeed a totally different explanation of a similar 

spectrum, that of adenine itself-on a silver colloid. has been 

proposed [2]. Using the same selection rules, adenine was deduced to 

be, adsorbed parallel to-the surface. The main evidence cited for 

this flat orientation was the^observation that the C-H mode at ca. 

3080 cm-1 was not enhanced. However, out-of-plane modes also were 

not enhanced in this SERS spectrum. contrary -to expectations. The 

739 and 1339 cm-1 bands were strongly enhanced and. although they 

both arise from similar vibrations involving-the C-N skeleton in the 

NR: spectrum (see-Table 5.1). the authors reassigned the 739 cm-1 

band to a coincidentally close strongly enhanced band.. The new 

assignment-of this, band to a coupled NH2 deformation and ring 
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vibration seems rather contrived, since the amount of a zz character 

in these ring vibrations is unquantified. It might be expected that, 

similar to the example of benzene [41], these modes might contain 

sufficient a zz character to be considerably enhanced when the 

molecule is adsorbed flat on to the surface. 

The SERS spectrum of NAD+ presented in Fig-5.1(b) presents 

an equally confusing picture. The exocyclic C-H stretching 

vibrations of adenine, expected at 3080 cm-1. and the predominantly 

exocyclic C2-H deformation vibration at 1377 cm-1 (see Table 5.1) 

are not enhanced, whereas most of the other adenine ring vibrations 

are enhanced. The out-of-plane modes do not appear to be strongly 

enhanced; in fact, on the contrary, -, the ca. 790 cm-1 band is the 

only band in the SERS spectrum that can be assigned to an 

out-of-plane adenine vibration [34,36]. These observations appear 

to be in conflict if the electromagnetic enhancement selection rules 

are rigidly interpreted. 

Complicating the picture is the wavelength dependence of the 

electromagnetic enhancement selection rules. At wavelengths to the 

blue of the dipole resonance maximum, modes containing a xx, cc yy, 

and cc xy polarisability derivative components may become more 

enhanced, and indeed the situation can be reached, where the rules 

are completely reversed. The lack of major changes in relative 

intensities of the-SERS bands of: NAD`- with- excitation wavelength 

implies that this 'reversal'situationlis not reached for silver 

sols using excitation wavelengths greater than 457.9 nm, or that 

SERS intensity from other enhancement mechanisms is dominating the 

excitation profile. � .. 

Neither of_the two mentioned, studies (2 51 have ' made use of 

a 'chemical', enhancement theory. (see Introduction) to explain their 
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results. As previously discussed, there is much evidence to suggest 

that chemical enhancement contributes significantly to the overall 

SERS enhancement; it cannot be dismissed from the studies in refs. 

[2] and [5]. Since this enhancement mechanism arises from an RR 

process involving charge transfer (from metal to molecule or vice 

versa), the chemical enhancement mechanism is often called the CT 

mechanism. This distinguishes it from other molecule-specific or 

chemisorption-specific EM models [16]. 

The selection rules for the CT mechanism are not as 

clear-cut as those that arise from the EM mechanism. Creighton 

argues that, being an RR process, the CT mechanism will principally 

enhance totally symmetric vibrations via an A-term RR process [7]. 

It would also select those vibrations in the 'chromophoric' part of 

the molecule; in particular those vibrations along whose normal 

co-ordinates the molecule would relax if the (virtual) electronic 

transition involved in the RR process were real. Otto: has pointed 

out that since the transient states produced in the CT process are 

negative ion states (see section 5.1.2),. there -should be a 

similarity between the SERS spectrum of benzene and the EELS 

spectrum of benzene [21]. Although there appears to be some correlation 

between the spectra, there are many strongly enhanced modes in the 

SERS spectrum of benzene that are, not present in-the EELS spectrum. 

Lombardi et al. have discussed the contribution of B and C'term RR 

scattering : to SERS [20]. They suggest that for molecule-> metal CT, 

both A and B terms are"important; and that for metal-> molecule CT A 

and C terms are. important, thus allowing for enhancement of 

non-totally symmetric modes. The arguments for.; introducing these 

terms are largely based"on' the, authors observations, ofý(1) lack of 

enhancement of overtones and (2) enhancement of. non- totally' 
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symmetric vibrations in SERS spectra. However, after Lombardi's 

publication, a SERS spectrum of pyridine clearly showing overtone 

enhancement was published [42]. Moreover, in all experiments cited 

by Lombardi. EM enhancement (which must always be present) would 

enhance some of the non-totally symmetric modes. None of the more 

recent studies have suggested any orientation selectivity. Yamada 

and Yamamoto [43] have deviated somewhat from the RR-selectivity. 

They argued that the CT from the metal to the n orbital of pyridine 

necessarily involves a component of the electric field vector 

perpendicular to the surface, and might thus be expected to result 

in the selective enhancement of vibrational modes which also have 

oscillating polarizablility derivative components in this direction. 

Yamada has claimed that support for this surface-orientation 

selection rule is found in her results from pyridine on silver. 

For NAD+ or adenine. with the CT mechanism (and assuming 

metal->molecule CT), vibrations of the ring skeleton can be 

enhanced, whereas exocyclic vibrations (e. g. C-H) cannot. It is 

likely that the CT contributions to the SERS spectra of NAD+ 

presented here, and to the SERS spectra of NAD+ and adenine 

previously reported [2,5], are large: Recent estimates of the size 

of CT enhancement in SERS have varied. A SERS study of pyridine 

adsorbed on a silver-rhodium substrate attributed an absolute 

enhancement factor of 15-65 to the CT mechanism [22]. Another silver 

island film study estimated a CT enhancement factor of 103, compared 

with a factor of 10-102 from an EM mechanism [18a]. 
ýThe observation 

of-good, SERS spectra at very low NAD+ concentrations (Fig 5.5) is 

in itself evidence for a significant contribution from a CT 

enhancement mechanism. Such strong enhancement'is unlikely to arise 

from the EM mechanism alone. In addition, the observation of 
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enhancement of only ring modes (not exocyclic C-H modes) of the 

adenine moiety is in harmony with a CT mechanism. A large CT 

enhancement contribution would also adequately explain both previous 

studies of the adenine moiety at silver, similar enhancements of 

adenine bands being observed. Particular evidence for the presence 

of a CT mechanism arises from studies of SERS band intensity 

variations with electrode potential [19]. At strongly negative 

potentials the metal donor level is raised closer to the ligand 

acceptor level. Thus SERS CT bands are able to gain intensity with 

lower energy red excitation as the electrode potential is made more 

negative. The electrode study of NAD`, which used red excitation, 

does in fact appear to show an increase in band intensities as the 

electrode potential is lowered from 0 to -0.6 V vs SCE. After this 

point, the spectra start to lose intensity - probably: due to 

counteracting desorption effects. It is clear that unless the CT 

mechanism can somehow be dismissed as not contributing to the SERS 

intensity, the orientation of adenine on silver cannot be determined 

with certainty. Our low concentration (10-5 M) data point"to a 

substantial contribution from a-CT mechanism. as does the strong 

selective enhancement of just two adenine totally symmetric modes. 

Thus the surface selection rules provided by the EM mechanism cannot 

be used in isolation to deduce the orientation of the adenine ring 

with respect to the silver surface. 

The evidence cited previously for a strong interaction 

between the adenine ring and the silver surface does not imply ,a 

particular orientation. 'unless, the results are' interpreted as 

showing particular involvement`of N1. The'evidence presented does 

not rule out, interactionwith N3 or'N7; since NR spectra do not, 

provide any information about the effects on the'spectrum of 

-146- 



complexation/protonation at N7 or N3. Most of the adenine 

vibrational modes are thought to be very delocalized [33-36]; it is 

thus difficult to correlate specific shifts with perturbation around 

one atom. A completely flat geometry would be expected to affect the 

vibrational modes involving not only Ni, N7 and N3, but also N9 and 

the exocyclic amino group. According to Tsuboi et at., modes 

involving a significant contribution from the amino group are found 

at 1606 and 1484 cm-1 for AMP [331. These modes are not strongly 

enhanced in the SERS spectrum. If the adenine ring were tilted to 

interact with the surface via N1. the amino group would also come 

close to the surface. It is difficult to envisage what sort of 

interaction may be occurring. 

The data shown in Fig-5.4 shed some light on the nature of 

the relative proximity to the surface of the adenine and 

nicotinamide rings. The adenine band intensities show a clear 

concentration dependence (Fig-5.4(a)), but the nicotinamide band 

(Fig-5.4(b)) does not. The only adequate explanation for this 

observation is that the NAD` molecule undergoes reorientation as the 

concentration is lowered. At high concentrations the nicotinamide 

ring is further away from the surface than the adenine, and so its 

Raman spectrum is relatively, weakly, eenhanced. -As the concentration 

is lowered, the nicotinamide moiety is able to. get closer to the 

surface andýits SERS-band becomes more-enhanced. This counteracts 

the loss of, signal-due, to the lowering of- concentration-, resulting 

in the apparent independence of the 1030 cm-1, band intensity on 

concentration (Fig-5.4(b)). Also of interest from Fig-5.4 is the 

non-zero intercept value (see Results section). This indicates that 

only molecules giving-relatively weakly enhanced Raman bands are 

being lost over the- concentration range 10-3, - 10-5 M, and that these 

-147- 



are the less strongly bound NAD+ molecules. This is consistent with 

previous observations of just a few very strongly enhancing sites on 

the silver surface amongst many moderately enhancing sites [23,44]. 

If the sols were being overloaded at high concentration, and there 

were a significant spectral contribution from free NAD+, the 

nicotinamide band would be larger with respect to the adenine bands 

at high concentration, which is opposite to the observed trend. Any 

explanation based on multilayer adsorption would have to involve a 

faster loss of adenine signal than nicotinamide signal, which would 

only arise if different layers of NAD' took different orientations. 

The observation of no SERS enhancement for NADH at alkaline 

pH's is difficult to explain at first sight in terms of adsorption 

via adenine and nicotinamide. Above pH 4 the adenine moiety carries 

no charge in either NAD+ or NADH. The nicotinamide moiety is 

positively charged in NAD+. but uncharged in NADH. The surface of 

the colloidal particles has a distinctly positive character at 

pH 4-5 (PZC for silver is ca. -0.9 V vs SCE) but loses its surface 

charge at alkaline pH (see Results section), presumably due to the 

formation of co-ordinated hydroxide. Superficially, NADH might be 

expected to adsorb as readily. to the silver surface as NAD+, giving 

a similar SERS spectrum, excepting the-1030 cm-1 nicotinamide band. 

In order to account for, the observed behaviour, we propose that the 

primary binding of NAD+. and. NADH to silver is via the negatively 

charged phosphate groups, with only weaker binding via adenine. At 

alkaline pH, the reduction of'the positive charge on silver inhibits 

adsorption of'NADH; adenine binding, alone being too weak for 

effective adsorption to, take place. Co-ordination, via the phosphate 

groups also can explain the strong. enhancement of the. -ribose C-H 

vibrations. With adsorption, via phosphate,, the adenine ribose of 
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NAD+ is necessarily located very close to the surface. SERS spectra 

of NADH have been reported by Siiman et al. [6]. At pH 8-9. and high 

NADH concentrations, the spectra showed no bands at 730 or 

1330 cm-1. but did show bands at 1137,1180.1268 and 1363 cm-1, and 

bands due to citrate. No nicotinamide bands were observed at 1540 or 

1688 cm-1. The authors concluded a co-ordination via adenine through 

N7 and NH2. and 'end-on' to nicotinamide. At pH 6.5-7 and with lower 

concentration, only bands due to citrate and a band at 739 cm-1 were 

observed. Although Siiman et al. made careful assignments using 

SERS spectra of nicotinamide. adenine. histidine and imidazole. 

their data seem to be plagued by citrate SERS. In addition. the sols 

(with NADH) were left for 1-4 days before running SERS spectra, thus 

increasing the likelihood of decomposition. Finally, the authors 

appear to be inconsistent in their interpretations of the EM theory 

selection rules. 

5.4.3 SERS of GAPDH 

In the tetrameric enzyme GAPDH, NAD+ is deeply buried (see 

Fig. 5.6). Although the X-ray structure [45] shows it to be located 

at the edge of a subunit, each subunit shields the others from 

solvent (and the silver surface) and thus entrains the coenzyme 

within the protein envelope. Accordingly, any SERS signal would have 

to arise from either a large electromagnetic enhancement or from 

protein denaturation (either gross structure change or mere 

dissociation into monomer units). The lack of SERS signals thus 

provides further proof that silver colloids prepared by citrate 

reduction do not denature proteins. It is possible that the lack of 

SERS enhancement is due to a lack of adsorption onto silver. In view 

of the numerous charged groups at the exterior of the enzyme. 
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Figure 5.6 Representation of GAPDH tetramer (G carbon backbone 

only). NAD+ is highlighted. 
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however. adsorption seems probable. The lack of enhancement 

demonstrates rather that the separation of the NAD* from the silver 

surface is too great for even electromagnetic enhancement to be 

effective. 

5.5 CONCLUSION 

NAD+ adsorbs to silver primarily via its phosphate groups, 

with weaker adsorption via the adenine ring. As the solution 

concentration is reduced, the nicotinamide moiety approaches closer 

to the siver surface. as shown by its greater relative SERS 

enhancement. Thus, at low concentrations, the NAD` molecule is quite 

extended along the silver surface, with nicotinamide. phosphate, 

ribose and adenine groups all in close proximity to the surface. In 

contrast to the strong enhancement seen for NAD+ on silver, little 

enhancement is seen for NADH. This is due to adsorption being 

prevented by co-ordination of hydroxide ions to the silver at the 

alkaline pH needed for stability of NADH in solution, resulting in a 

more negative surface potential at the higher pH values. 

NAD+ did not give a SER spectrum when bound to GAPDH. The 

separation between silver and NAD+ caused by the protein completely 

prevents enhancement by any CT mechanism. The separation is 

sufficiently large for enhancement by the electromagnetic 

enhancement mechanism to be negligible. The future for study of NAD+ 

by SERS when bound to similar large dehydrogenase enzymes appears 

bleak. 
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CHAPTER SIX: A RESONANCE RAMAN STUDY OF CATALASE AND 

A HEME MODEL SYSTEM 

4A 
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6.1 INTRODUCTION 

Resonance Raman spectroscopy of heure systems has become an 

extremely incisive method of determining the environment and bonding 

of the heure prosthetic group in heure enzymes and other heure 

proteins. The assignment of the porphyrin vibrational modes, and 

their sensitivity to factors such as co-ordination, oxidation, and 

spin state of the metal atom have been discussed in chapter 1. The 

heme enzymes and their catalytic intermediates have been studied by 

a number of spectroscopic methods, including RR spectroscopy. The 

general catalytic mechanism of catalase and of other heure enzymes 

has been presented in chapter 1, section 1.6. where the compound I 

and II intermediates were introduced. Two recent reviews 

[1,2] have focused on the RR studies of the intermediates of heure 

enzymes and. in particular, on the intermediates of horseradish 

peroxidase (HRP), cytochrome c peroxidase (CcP) and cytochrome c 

oxidase (CcO). Surprisingly few RR (or indeed other spectroscopic) 

studies have been undertaken on catalase. despite its importance and 

ubiquity (see chapter 1). In fact, only two RR studies have been 

presented to date [3,4], only one of which presents data on a 

catalase intermediate [3]. A brief review of some of the most recent 

heure enzyme studies, including the catalase studies. is given in 

section 6.1.1 below. The conclusions that have been drawn from the 

work in this chapter will not be mentioned in section 6.1.1. 

There is-a need for an accurate guide to the effects-of 

environment and-bonding on the heure enzyme intermediates, but it is 

difficult to obtain data on a- large range of enzymes. The use of 

porphyrin models for heme'enzyme intermediates is, thus important, as 

they (and their ligands) can be systematically varied, and studied 

in different solvents. Many spectroscopic studies'have been ` 
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undertaken on such model porphyrins; reviews can be found in ref. 

[5]. A short overview of some of the recent RR studies on these 

model systems (but not including the studies presented in this 

chapter) is given in section 6.1.2 below. The results from the 

time-resolved RR (TR3) study of a model heure system are presented in 

section 6.3.3 below. 

6.1.1 The intermediate compounds I and II of catalase and other heure 

enzymes. 

The relatively stable compound II intermediate of HRP and 

other peroxidases has been well characterised by spectroscopic 

methods, including RR spectroscopy [1,6-8]. The intermediate is 

e. s. r silent. and has UV-vis. and RR spectra that are consistent 

with the formulation Fe(IV)=O, low spin [9]. While the corresponding 

compound II of catalase is not an intermediate of the normal 

catalytic cycle, it is easily formed by the reaction of compound I 

with donors such as phenols and alcohols [10]. Compound II of 

catalase has not been extensively characterised by RR spectroscopy. 

Only one study has produced any data for this species, and these are 

incomplete [3]. 

The RR spectrum"of HRP compound II shows the oxidation and 

spin state marker bands characteristically shifted from their 

postions in native HRP (see also chapter 1) [1,3.11,12]. The 

oxidation state marker, 'V 4. shifts from 1374-to 1381 cm-1. The core 

size (or oxidation and. spin state) markers v 3,, v 2. v 10 and v 11 

shift from 1499,1574,: 1630 and 1550 cm-1 l;. to'1509,1584-9, -1644 and 

1560 cm-1. As discussed in. chapter 1, these positions are 

characteristic of a low spin heure. The-7 cm 
1 

shift of -, theoxidation 

state marker 21 4, is not, as large as the (ca.: 15. cm 1) 
shift observed 
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in 2-)4 when Fe(II) is oxidised to Fe(II1). This has been 

rationalised by Kitagawa in his recent review in terms of effective 

backdonation from the porphyrin to the metal [1]. The even smaller 

shifts (2 cm-1) in y4 on forming compounds II of catalase and CcP 

are discussed by Spiro [13]. The Raman band due to Fe(IV)=O (ferryl) 

stretching in HRP has been identified [14,15], and has been shown 

to be affected by changes in pH, which cause a change in hydrogen 

bonding to the ferryl oxygen [16,17]. 

The study of compound I intermediates of peroxidases and 

catalases is more difficult than the study of compound II. due to 

the greater reactivity (instability) of compound I. Catalase and 

chloroperoxidase have, however, been shown to react with 

peroxyacetic acid (PAA) to form relatively stable (lifetime of 

minutes) compound I preparations [10,18.19]; HRP compound I can be 

formed with reasonable yield and stability under appropriate 

conditions (of substrate stoichiometry). The e. s. r spectra of both 

chloroperoxidase [20] and HRP compound I [21] confirm proposals that 

compound I is a cation radical of the porphyrin. which is weakly 

coupled to the Fe(IV)=O centre. Catalase compound I has not been 

studied by e. s. r (excepting preliminary studies at York), but the 

similarity of its UV-vis spectrum `to other compound I species 

suggests that it is also a porphyrin cation radical species with an 

Fe(IV)=O centre. 

Several groups: have attempted to obtain and characterise the 

RR spectra of HRP compound I_, [22-24]. 'A11 of them have experienced 

difficulty in obtaining. the RR spectrum of the intact-porphyrin 

cation radical species; °HRP compound I appears to be'photolabile. 

Paeng-and Kincaid [24] have recently published -convincing` spectra of 

HRP compound I, which agree reasonably well - with model- compound 
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studies, if the porphyrin radical cation is assumed to be in an Alu 

ground state (see below). The RR spectrum of HRP compound I has been 

shown to be quite different from the spectra of native HRP and HRP 

compound II. Previous reports of HRP compound I RR spectra were very 

similar to the spectra of HRP compound II [22,231. These spectra of 

HRP compound I under higher irradiance conditions are thought to 

arise from a photoproduct of compound I that has lost the radical 

from the porphyrin, i. e. that is more like compound II [23b]. 

6.1.2 The use of hememodels for compounds I and II. 

The use of porphyrin models for the enzyme intermediates 

compounds I and II allows relatively easy determination of the 

effects of ligation, solvation and porphyrin ring substituents. A 

number of studies have been undertaken on model compound II ferryl 

intermediates [25-28]. Gold et al. [29] have presented spectra 

(UV-vis, nmr, RR) of the ferryl complex of (tetrakis(2,6- 

dichlorophenyl)porphinato) iron, and have compared their results 

with spectral data from other ferryl porphyrins. These water- 

insoluble model systems are very-unstable, and all spectra have been 

recorded in non-aqueous solvents at low temperatures. Water soluble 

ferryl porphyrins have been shown to be more stable [30,31] and 

room temperature RR [30]. and UV-vis. -spectra [31] have been 

reported. 

All the above studies have employed either chemical 

oxidising agents or electrochemical methods. to generate-the ferryl 

species. Peterson et. al. -instead photochemically generated the 

ferryl tetraphenylporphine (TPP): complex, (TPP)Fe(tV)=0 by 

photodisproportionation of the u-oxo-dimer, [(TPP)Fe(1U )]20 [32], 

The FeM4O and Fe(P) 
-species, - produced were characterised by their 
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transient absorption spectra, and by trapping the ferryl fragment 

with triphenylphosphine. The ferryl species could still be observed 

5 is after the photolysis flash, but was only formed with a quantum 

yield of 10-4. Another transient absorption study [33] of this 

process has contradicted the observations and interpretation of 

Peterson et al.. Guest et al. instead report photodissociation of 

the u-oxo dimer to form an ion pair, which then undergoes geminate 

recombination within 4 ns [33]. 

In this chapter, time resolved resonance Raman (TR3) results 

are presented for the g-oxo dimer, [(TPP)Fe(III)]20, and the 

monomer, (TPP)Fe(III)Cl, in an attempt to clarify the contradicting 

results of Peterson et al. and Guest et al.. 

The RR study of porphyrin cation radicals has generated much 

interest, as these are models for a large range of heure enzymes. 

Porphyrin cation radicals are known to be able to exist in either an 

Alu or Alu ground state; this difference has a large effect on the 

RR spectra [34]. The character (Alu or Alu) of the cation radical is 

determined by the nature of the"porphyrin, the central metal, and 

its axial ligands. Predictions of-cation radical ground states have 

been made by M. O. calculations and from e. s. r and W-vis. spectra 

[35]. Until very recently,. there was°confusion in the interpretation 

of the RR spectra of porphyrin cation radicals, which did not appear 

to follow the predictions. from the expected ground state character 

(Alu or Alu) [36]. Some of the early confusion appears to have 

arisen from the presence of impurities in the sample* [37]., 

Subsequently, Czernuszewicz et at, have made a careful study of the 

RR spectra of metallated octaethylporphine species, MOEP*' and 

metallated TPP'species, MTPP+'rand have found their, results 

consistent with predictions of ground state, character [34]. The 
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MOEP+' species are found to have electronic ground states of 

predominantly Alu character, whereas the MTPP+' species have 

predominantly Alu character. These results have already proved 

useful in interpreting the most recent RR data on HRP compound I 

[24]. 

6.2 EXPERIMENTAL 

6.2.1 Materials and methods for catalase experiments 

Materials 

The chemicals and other items used for catalase experiments 

are listed below: 

Catalase (Sigma C-100. suspension containing 0.1% thymol) 

Catalase (Boehringer, crystalline high purity 'calibration 

standard') 

Ce2SO4, cerium sulphate (BDH, AR grade) 

Ferroin indicator (BDH) 

KI, potassium iodide (Fisons. AR grade) 

NaCl, sodium chloride (Fisons, SLR. grade) 

NaCN, sodium cyanide (BDH, SLR grade) 

NaN3, sodium azide (Fisons. SLR grade) 

Na2HP04.12H20, disodium hydrogen phosphate (Merck, AR grade) 

NaH2PO4. H20, sodium dihydrogen phosphate (Merck, AR grade) 

Na2S203.5H20. sodium. thiosulphate (BDH, AR grade) 

Peroxyacetic (peracetic) acid, 320, *' 
W/v in dilute acetic acid 

(Aldrich) 
I ..:. 

Starch indicator (BDH) 

Tris(hydroxymethyl)aminomethane buffer, ', tris' (BDII. GPR) 

Visking. (dialysis) tubing, 8/32 (Medicell. international) 
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Buffers 

Phosphate and tris buffers were used for all experiments, at 

0.01 M, between pH 6.0 and 7.8. Phosphate buffers of varying pH were 

made from different mixtures of solutions of disodium hydrogen 

phosphate and sodium dihydrogen phosphate, as described in ref. [38]. 

Tris buffers of pH 7.0 to 7.8 were made by adjusting tris solutions 

with dilute HC1. 

Peroxyacetic acid (PAA) pretreatment and estimation 

As noted by Middlemiss [10], commercial PAA preparations 

contain varying amounts of hydrogen peroxide, which will react 

rapidly with catalase to liberate oxygen. Relatively high 

proportions of H202 in PAA solutions are undesirable, as they will 

affect the kinetics of the reaction to form compounds I and II, and 

will cause bubbles to form in the Raman (or W-vis. ) cell. 

PAA stock was diluted 400- to 800- fold (i. e. to 

concentrations in the range 5-10x10-3 M), and the resulting 

solutions titrated with solutions of 0.01 M Ce2SO4 in 1M H2SO4, 

using Ferroin indicator to detect the endpoint. Untreated solutions 

were found to contain as much H202 as PAA. To reduce the H202 

content of PAA solutions, :a pretreatment procedure was employed, as 

in ref. [10]. 

Dilute PAA`solutions were pretreated by the addition of 

dilute catalase solutions. Typically. 5091 of stock (dialysed) 

catalase was added to 250 ml of -, 
800x diluted PAA stock, i. e. to a 

catalase concentration, of ca. 10-7'M. After 
_30. minutes at room 

temperature, nearly all, the. H202 was destroyed by such pretreatment. 

Pretreated PAA solutions could be kept at 0-4°C for up to l 
, 
day 

before significant amounts: of. H2O2 were-. formed. - 
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The concentrations of pretreated PAA solutions were 

determined iodometrically. A known volume (10 to 25 cm3) of PAA was 

added to an excess of acidic KI (ly KI in 5M H2SO4), then the 

liberated iodine was titrated with 0.01 M sodium thiosulphate. using 

starch indicator. 

Catalase preparations 

Several catalase sources were investigated. but most were 

too impure and too fluorescent to be suitable for spectroscopic 

studies. The Boehringer catalase (a generous gift from the company) 

was the most pure. but still produced significant fluorescence with 

excitation wavelengths longer than 413.1 nm. The Sigma catalase was 

suitable for use after dialysis to remove thymol (preservative) and 

other small impurities. To 1 cm3 catalase suspension, 1-2 drops of 

5% ammonia was added to dissolve the catalase. This solution was 

then dialysed overnight at 0-4°C against 0.01 M tris or phosphate 

buffer containing 0.1 M NaCl'and a. small amount of charcoal (added 

in an attempt to remove fluorescent impurities). The catalase 

solutions prepared by this method had purity values of ca. 0.9 or 

above, where purity is judged by the ratio A4o5/A28o [10]. 

Fluorescence was prohibitive with excitation out of the Soret band. 

The concentration of the stock solution produced was calculated from 

the absorption at 405 run, using e4o5 = 3.4x105 M-lcm-1 [10]. 

Attempts were made to purify dialysed catalase solutions 

further by column chromatography, using Sephadex G-25. G-50. G-100, 

G-150 and G-300 columns. ' None of - the columns used were successful in 

either reducing fluorescence or,, increasing the purity value, so 

further purification was abandoned. Other workers have nevertheless 

reported success using Sephacryl S-20044] and, Sephadex°G-150 
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columns [10]. 

Preparation of catalase derivatives 

The azide derivative of catalase was produced by the 

addition of small amounts of solid sodium azide to catalase 

solutions at pH 6.0. The formation of the catalase-azide complex was 

confirmed spectroscopically by observing the shift in the Soret band 

from 405 to 411 nm [39]. The cyanide derivative was similarly 

produced by the addition of small amounts of solid sodium cyanide (1 

small crystal to 1 cm3) to catalase in neutral or slightly alkaline 

solutions. The formation of the catalase-CN complex was confirmed by 

the shift in the Soret band from 405 to 424 run [39]. 

Compound I of catalase was prepared by the addition of a ca. 

10x excess of PAA to catalase. Typically, 30 91 of 1x10-3 M PAA was 

added to 1 cm3 3.5x10-5 M catalase. The-reaction could be monitored 

either by Raman spectroscopy or by W-vis. spectroscopy (using a 

1 mm path length cell)., The formation of compound I is immediate in 

the time resolution of these '. experiments. Middlemiss has shown that 

a 9: 1 PAA to catalase ratio is necessary to maximise the formation 

of compound I, and that at this ratio, all catalase heure groups 

react [10]. At higher PAA to catalase ratios, it appears (from these 

experiments, and from those. of Middlemiss [10]) that larger amounts 

of compound II are formed.. _. 

Raman spectroscopy 

Raman spectra of the stable species, catalase-CN, 

catalase-azide and of native catalase were obtained using the Spex 

spectrometer system described in chapter 2, with 413.1 or 406.7 nm 

excitation. Typical laser powers were less than 40 mW at the sample. 
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A spinning cell was generally used for Raman experiments. although 

some spectra were recorded using thin (1 mm i. d. ) capillaries, low 

(less than 10 mW) laser powers and a defocussed beam to avoid local 

heating. 

Raman spectra of compound I (and II) were obtained using the 

multichannel CCD system described in chapter 2, with 413.1 or 406.7 

excitation. Conventional right angle illumination and a spinning 

cell were used for all experiments. Calibration of spectra was 

performed using dioxan or dimethylformamide standards. 

6.2.2 Materials and methods for porphyrin heme-model 

experiments. 

(TPP)Fe(III)Cl and [(TPP)FeýIII)]2_ 

Iron(III)tetraphenylporphine chloride (TPP)Fe(III)Cl was a 

generous gift from Dr. J. R. Lindsay-Smith (York). The u-oxo dimer. 

[(TPP)Fe(III)]20, was prepared by shaking solutions of 

( TPP)Fe(III)C1 in dichloromethane (SLR grade) with 2M NaOFi (Fisons 

AR grade), followed by-repetitive washing with distilled water. The 

formation of the dimer was not immediate. The UV-vis. (and Raman) 

spectra showed that (TPP)Fe(lII)OH was first-formed, which slowly 

(over one or more days) converted to [(TPP)Fe(III)]20. The UV-vis. 

absorptions of these species"in- dichloromethane are given in 

Table 6.1... 
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Table 6.1 UV-vis. absorption maxima for FeTPP derivatives in 

dichloromethane. 

Sample a max/nm 

(TPP)Fe(III)C1 378 412 506 569 608 

(TPP)Fe(III)OH 327 412 - 571 612 

[(TPP)Fe(III)120 317 407 - 569 609 

Raman spectroscopy 

All time-resolved resonance Raman (TR3) experiments were 

undertaken at the laser support facility, Rutherford Appleton 

Laboratory. The Triplemate spectrometer, OSMA detection system, and 

lasers used are described in chapter 2. The timing system necessary 

for one- and two- colour TR3 experiments is also described in 

chapter 2. i 

Samples of (TPP)FecIII)Cl and [(TPP)Fe(III)]20 were made to 

appropriate concentrations (usually ca. A=10 per cm at the pump 

wavelength) in SLR dichloromethane. Further purification of 

dichioromethane did not affect the spectra or. the amount of 

photodecomposition. In all experiments, samples were flowed through 

a quartz capillary tube'. (l mm i. d. ). Solutions were normally 

recycled, as the flow rate. of! the pump was fast -. ca. 1 cm3 per 

second. The capillary tube was translated slowly through the beam in 

pump-probe experiments to avoid excessive, tube damage and build up 

of damaged porphyrin. ,, 

- 

- ?. 

-166- 



6.3 RESULTS 

6.3.1 RR spectra of catalase and stable derivatives. 

The RR spectra of native catalase (406.7 nm excitation), 

catalase-CN and of catalase-azide (413.1 nm excitation) are shown in 

Figs. 6.1 and 6.2. The spectra are typically accumulations of 4 or 

more scans, with a1 second integration time. Fluorescence 

backgrounds have been subtracted where necessary. The wavenumber 

values and assignments are given in Table 6.2. The RR spectra of 

catalase from Boehringer and from Sigma were identical, and did not 

change markedly with pH in the range 6.0 to 7.8. There was a small 

change with pH in the 450-600 cm-1 region; in the high pH spectrum, 

a new band appeared at 502 cm-1. 

6.3.2 RR and UV-vis. spectra of catalase compounds I and II. 

The UV-vis. spectrum of catalase in the Soret region is 

shown in Fig. 6.3, and shows a strong absorption maximum at 405 nm. 

Fig. 6.4 shows the visible absorption region with the weaker bands 

at ca. 500,540 and 622 nm. Fig. 6.3 and 6.4 also show the spectrum 

of catalase immediately (i. e. < 15's) after the addition of a lOx 

excess of PAA (---), i. e. the spectrum of compound I. and the 

spectra taken at intervals (-"-", `2 minutes, 
- ,6 minutes) after 

the addition of PAA. Compound Il absorbs comparatively weakly at 

405 nm, and also at 540 and 660 nm (n. b. the 660 nm band is just 

offscale in Fig. 6., 4). -The original absorbance is never completely 

regained, there always appears to be an irreversible loss that is 

attributed to oxidation of ferrihaem to biliverdin [10], and, in the 

medium term, some. loss is due to the formation of compound II. The 

presence of biliverdin does not affect the RR spectra; its 
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Figure 6.1 RR spectra of (a) native catalase, pH 7.8,406.7 nm 

excitation, '(b) catalase-azide, pH 6.0.413.1 nm 

excitation, and (c) catalase-CIV, pH 7.8,413.1 nm 

excitation. 
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Figure 6.2 RR spectra. as Fig. 6.1. low wavenumber region. 
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Table 6.2: RR assignments for catalase and catalase derivatives 

Wavenumber/cm-1 

Catalaseb Cat-N3 Cat-CN 
205 212 

237 239 
267 268 277 
307 301 
331 333 330 
348 349 347 
384 385 380 
415 417 415 
425sh 424sh 433 

476 
504' 506 

530 
554 556 

646 
677 680 679 
723 722 
756 759 751 
8014 797 799 
833 835 834w 
927 923 
992 
1006 1007w 
1129 1120) 1121 

1132) 1130 
1176 1177 1176 
1215 1215 
1233 1229sh 1233 

1342 1340 1347 
1373 137 -2 1376-7 

1394sh 1404sh 
1428 1426 1435 
1486 1480 1503 
1523 1520 
1549sh 1566 

1555'- 
1569 1566 1584 
1588 1584 1605 
1612sh 1610 
1626 1624 -1624"' 

1641 

Assignmenta 

v9 
Y (CmCa) 
6 (CbCaC, e)(2) 
v8 
y (CbS ) 
6 (CbCaC. 8) (1) 
pyr fold 

v(Fe-OH ) 

v 49 

v7 
v 16 
2)33 + 2)34 

y(CmH) 
v 46 
v 45 

(CH=) 

v6 + v8 
v (CbCoc) (1) 

v 13 
4s (=CH2)(2) 

4. 
v29 
-6s (=CH2)(1) 
v3 
V 38, tyr 
v ll 
v 38 
v2, v19 
v 37 
v 10 (or tyr) 
v (C=C) 
v 10 

a Assignments made using refs. [4., '13a]' 
b Catalase at pH 7.8 in tris buffer, unless otherwise stated. o Not observed at pH 6.0. 
d Only observed at pH 6.0. 

,. -. ii 
Ä 
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absorption is weak compared with that of catalase. 

Catalase compound I decays to form both native catalase and, 

depending on the precise conditions, compound II. The formation of 

small amounts of compound II was almost unavoidable. The spectra in 

Figs. 6.3 and-6.4 show very little compound II, which absorbs 

characteristically at ca. 425 and 567 nm. The formation of compound 

II from compound I is increased in the presence of phenols, 

alcohols. anions, or simply in a large excess of PAA. Fig. 6.5 shows 

the effects of adding an excess of PAA to the absorption spectrum of 

catalase. Clear bands appear at 425 and 567 nm. 

The RR spectrum of catalase obtained with the CCD system and 

ca. 30 mW 406.7 nm excitation is shown in Fig. 6.6 (a). The spectrum 

of the same sample taken immediately after the addition of a lOx 

excess of PAA is shown in Fig. 6.6 (b). Spectra are shown to scale, 

and are the averaged result of two separate experiments. The spectra 

were accumulated for 40 seconds, under the same conditions of laser 

power, focus and spectral resolution. The spectrum of catalase 

immediately after the addition of PAA is about one-quarter of the 

intensity of the native catalase spectrum, but has a higher 

background. The positions of the main bands at 1374 (v 4). 1487 

-1 ,., (v 3) and 1571 cm (2J2) remain unchanged. although the relative 

intensity of the 1571 cm 
1 band drops markedly. The only new bands 

in the spectrum are those at'1645 and. 1511'cm-1. The latter changes 

are accompanied by the loss of the band at 1522 cm-1. The RR 

spectrum gradually recovers to that of the original catalase. 

regaining most of the original intensity. The band at 1645 cm-1 

disappears as the original spectrum recovers. although some 

intensity persists at 1511 cm-1 even after 10 minutes. Spectra of 

catalase before and after the addition 
of PAA were also recorded at 
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Figure 6.3 Soret region absorption spectrum of native catalase 

(. - ). and of catalase immediately (---- ). 2 

minutes (-"-"-") 
, and 6 minutes (- - --) after the 

addition of a lox excess of PAA. The dashed trace 

------ ) shows the absorption spectrum of compound I. 
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Figure 6.4 Visible absorption spectrum of catalase. and catalase 

after the addition of PAA. as Fig. 6.3. 
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Figure 6.5 Soret region absorption spectra of catalase. and of 

catalase at varying time intervals after the addition 

of a 20x excess of FAA (a)', and after the addition of 

a> 20x excess of PAA (b). 
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(c) Visible. absorption region of catalase ( ). and 

of catalase after the addition of a ca. 20x excess of 

PAA (------ 10 s. -. -"-"-. 2 minutes. -------- 
.' 

minutes) -174- 



a 

.N 
C 
N 

G 

Wavenumber/cm-1. 

Figure 6.6 406.7 nm-excited RR spectra of native catalase (a), 

and catalase"immediately after the addition of a lOx 

excess -ofPAA 
(b). Spectra were recorded under 

identical conditions of laser power (30 mW). focus. 

" accumulation time, and are shown to scale. 
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Figure 6.7 413.1 nm-excited RR spectra of (a)'native catalase. 

(b) catalase immediately after the addition of a 10x 

excess of PAA. and (c), catalase after the addition 

of a> 30x excess of PM. Fluorescence backgrounds 

have been subtracted. 
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much lower laser power (2 mW at sample). and appeared to be very 

similar to those obtained at high power. 

On the addition of a second aliquot of PAA to the (mostly) 

regenerated catalase. the RR spectrum again dropped in intensity. In 

this spectrum, however, bands at 1645 and 1511 cm-1 were more 

prominent than in the spectrum in Fig. 6.6 (b). 

The RR experiments were repeated using 413.1 nm excitation, 

closer to the absorption maximum of compound II (ca. 425 nm). Fig. 

6.7 shows the RR spectra of (a) catalase. (b) catalase after the 

addition of PAA (10x excess). and (c) after the addition of a large 

excess of PAA. The UV-vis. spectrum taken after recording the 

spectrum shown in Fig. 6.7 (c) showed a large proportion of compound 

II in the sample. The results in Fig. 6.7 are essentially very 

similar to those in Fig. 6.6. However. a band at 1550, cm 
1 in Fig. 

6.7 (a) is distinct, and becomes relatively more intense, shifting 

to 1547 cm-1 on the addition of PAA. The bands at 1644 and 1512 cm- 

are surprisingly not vastly different in relative intensity in the 

spectra in Fig. 6.7 (b) and (c). 

6.3.3 Model heure systems 

The 406.7 nm (cw laser), 408 and 424 nm (pulsed laser) Rß 

spectra of (TPP)Fe(III)C1 and [(TPP)Fe(dIIi)]20 in dichloromethane 

agree reasonably well with other reported spectra (40.411. the 

dimer showing a characteristic Fe-O-Fe band at 363 cm-1, see Fig. 

6.8. This band was not observed immediately after shaking 

(TPP)Fe(Ilj)C1 with NaOH; its absence was attributed to the slow 

formation of dimer from (TPP)Fe(III)0i1 (which has a similar UV-ViS. 

absorption, see Table 6.1). The 363 cm-1 band is not as resonantly 

enhanced at 406.7 nm as Burke et al. suggest (401, its Raman 
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Figure 6.8 (a) 406.7 nm-excited RR spectrum of 

[(TPP)Fe(III)]20 in dichloromethane. 

(b) 457.9. nm-excited RR spectrum of [(TPP)Fe(IIZ)]20 

in dichloromethane. 
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excitation profile (REP) maximum appears to be to the red of the 

Soret absorption maximum (see Fig. 6.8). Fig. 6.9 shows the high 

wavenumber region of the 424 nm-excited RR spectra of (TPP)Fe(III)C1 

(a). (TPP)Fe(lLI)0H (b), and [(TPP)Fe(III)]20 (c). The wavenumber 

values of the bands are listed in Table 6.3. 

Exciting into the Soret absorption maximum using 408 nm. 

10 ns laser pulses, large differences in porphyrin band intensities 

with respect to the solvent band intensities were observed between 

spectra obtained using high (0.25-0.5 mJ/pulse) and low 

(3-10 pJ/pulse) laser power. Fig. 6.10 shows the 408 nm excited RR 

spectra of [(TPP)Fe(III)]20 at high (a) and low (b) laser power, and 

of (TPP)Fe(III)C1 at high (c) and low (d) laser power. The solvent 

(dichloromethane) bands are marked S. The reduction in the intensity 

of the porpyrin RR bands with respect to the solvent bands at high 

laser powers represents a large 'bleaching'. or loss of the ground 

state porphyrin. Using 424 nm, 10 ns laser pulses, a similar 

bleaching effect was observed, but no large new peaks appeared to 

grow in at high laser powers. 

A 406 nm pump pulse was used with a 424 nm probe pulse to 

probe at a wavelength where both Fe(II)and Fe(IV)=O species absorb 

strongly. With the pulses temporally overlapped (pt =0 ns), the 

bleaching effect was confirmed - loss in intensity of all the ground 

state porphyrin bands, and gain in.. intensity of solvent bands was 

observed. No new peaks were observed that could be attributed to 

Fe(II) or Fe(1V)=0. Most of the bleaching appeared to be reversible; 

at At = 15 ns, the bleaching was much reduced. However, the residual 

bleaching observed at 15 ns was still present at 1 µs, and is 

probably due to some sort of permanent photodecomposition. Indeed, 

after exhaustively recycling the sample in the pump beam, shifts in 
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Figure 6.10 408 nm-excited RR spectra of 

(a) [(TPP)Fe(ZII)120. high laser power. 

(b) [(TPP)Fe(II1)]20. low laser power. 

TPP)Fe(z11)C1. high laser (c). ( power, 

(d) (TPP)Fe(III)C1. low laser power. 

Dichloromethane (solvent) bands are marked S. 
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Table 6.3 Wavenumber values and assignmentsa of bands in the 

spectra of the (TPP)Fe(III) derivatives (Fig. 6.9). 

Wavenumber/cm-1 Assignment 

(TPP)Fe(III)C1 (TPP)Fe(III)OH [(TPP)Fe(iii)]20 

1557 1556 1556 v 2 
1450 1450 1450 v 3 
1360 1360 1358 V 4 
1231 1231 1231 v 1, v (Cm-P) 

1077 1077 1075 s (CfH)sym 
1001 1001 1001 y 6, y (pyr br) 
886 884 883 v 7,6 (pyr def)sym 

pyr=pyrrole. def=deformation. br=breathing. sym=symmetric. 

P=phenyl. 

a Assignments made using refs. [34] and [57]. there is however, 

considerable conflict in some assignments between refs. [34] and 
[57]. 

.. 

:. ' 
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Figure 6.11 (a) 448 nm-excited (probe only) RR spectrum of 

(TPP)Fe(III)C1 in dichloromethane. 

(b) 406 nm pump. 448 nm probe (At s'0 ns) TR3 spectrum 

of (TPP)Fe(III)C1 in dichloromethane. 

Dichloromethane bands are marked S. 
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UV-vis. absorption maxima could be observed for both monomer (Soret 

shift from 412 to 415 nm) and dimer (Soret shift from 407 to 

415 nm). The change in the dimer absorption spectrum also indicated 

that photodissociation had taken place. Similar problems of 

photodecomposition of ZnTPP in dichloromethane have been reported 

[42]. 

A 408 nm pump pulse. to induce loss of ground state 

porphyrin was used with a 448 nm probe pulse, to probe at a 

wavelength where the porphyrin triplet state has been reported to 

absorb strongly [43]. At At =0 ns, bleaching was accompanied by the 

growth of new bands. The probe only (i. e. ground state) spectrum. 

and the pump+probe spectrum (pt =0 ns) of (TPP)Fe(III)C1 are shown 

in Fig. 6.11 (a) and (b). The band positions are given on the 

figure. Similar results were obtained with the dimer, although the 

new band at 1344 cm-1 shown in Fig. 6.11 (b) could not be observed 

in the corresponding dimer spectrum. In the pump probe dimer 

spectrum, bands were observed at 1544 and 1229 cm-1, with a very 

weak feature at ca. 1356 cm 
1. In the TO spectra of both monomer 

and dimer, the new bands were not observed at Ot = 15 ns. 

6.4 DISCUSSION 

6.4.1 RR spectra of catalase and stable derivatives 

The RR spectrum of catalase obtained at pft 7.8 (Fig. 6.1 (a) 

and 6.2 (a)) agrees well with the recently published RR spectrum of 

bovine liver-catalase at p11 7.5_[4]. The positions of the oxidation, 

spin, and co-ordination state ( or core size [13]) marker bands 4, 

v 3. v 2. and v 37 confirm the identity of the heure iron in catalase 

as ferric high spin (see chapter 1, section 1.8). 
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The co-ordination of the iron, and the effects of 

co-ordination on the catalase RR spectrum are still debatable. On 

the proximal side, the heme iron is thought to be ligated to 

tyrosine [44]. Chuang et al. [4] have measured the Raman excitation 

profiles of catalase RR bands, and have tentatively assigned two 

bands. at 1612 and 1522 cm-1, to tyrosine modes. The two bands are 

assigned to tyrosine modes on the basis of their positions and their 

excitation profile maxima at ca. 488 nm. Similar results have been 

observed for mutant Hb's with proximal tyrosines [45]. However. in 

the catalase spectrum, in contrast to the mutant lib spectra. these 

two bands are weak and overlapped, and other tyrosine marker bands 

expected at ca.. 600 and 1280-1310 cm-1 are not observed. It is 

possible that the intensity of the two bands arises almost entirely 

from v 10 and v 38. which are found in these positions for iron(III) 

high-spin, six-coordinate hemes such as aquomet Hb and: Mb. and the 

model protoheme (Me2SO)2Fe(III)PP [46.47]. These depolarised bands 

would be most enhanced with excitation in the visible region. 

The sixth co-ordination position of catalase could be 

unoccupied in native catalase or occupied by a hydroxyl or aquo 

ligand. As pointed out above, the bands at 1612 and 1522 cm -1 can be 

assigned to v 10 and v 38 of a six-co-ordinate heure. The positions 

of the marker bands v3 (1486 cm-1) and v2 (1569 cm-1 ). in 

particular indicate a six-_ rather than a five- co-ordinate iron. 

Callaghan and Babcock, in their study of model homes and 

hemeproteins (including aquomet lib and Mb). assigned v3 and L2 

bands occurring'near 1482 and 1575 cm-1. respectively, as indicating 

a'six-coordinate-iron [48]. The five-coordinate high spin species 

Fe(III)PPC1. has v3 at 1495 cm-1 [46]. much higher than V 3. in. 

catalase., 
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Recent X-ray studies resulted in the conclusion that native 

bovine liver catalase is five-coordinate [44]. Chuang et al. have 

also taken this view in their RR study [4]. It is also true that the 

six-co-ordinate catalase azide complex has 2-13 and .2 at 

significantly lower values than native catalase. at 1480 and 

1566 cm-1, respectively. The pH induced changes in the low 

wavenumber region of the catalase spectrum, and the lack of change 

in the high wavenumber region, are significant. The RR spectrum of 

HRP changes dramatically with pH as it changes from a 

five-coordinate high spin to a six-coordinate low spin [49] 

iron(III) heure. All the high wavenumber co-ordination and spin state 

marker bands shift to characteristic new positions and, 

significantly, a new band is observed at 503 cm 
1, 

which has been 

assigned to the Fe(II1)-OH stretching vibration [49]. 

The fact that the high wavenumber bands of catalase do not 

change with pH suggests that either (1) at all pH's catalase is 

five-coordinate, or (2). that catalase in solution is six-coordinate 

but the change between a hydroxyl and an aquo ligand (expected as p11 

is decreased) does not affect the core-size. and thus the marker 

bands of the heure. There is a band at 504 cm-1 in the RR spectrum of 

catalase at pH. 7.8., -which disappears in the spectrum obtained at 

pH 6.0. This could, be indicative of a Fe(IiI! -OH stretching band 

disappearing, as the hydroxyl ligand is-replaced by water. There is a 

band at 506 cm-l, in the catalase-azide RR spectrum, but this may be 

a coincidentally close porphyrin, ring vibration.. 

In conclusion, although the core-size marker bands above 

1400 cm-1 indicate a six-coordinate high-spin ferric iron, further, 

work. (e. g. isotope substitution) is needed to determine whether the 

band at 504. cm-l. in the spectrum of alkaline catalase is due to an 
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Fe-OH stretching vibration, or a co-ordination sensitive porphyrin 

vibration. 

The RR spectrum of catalase-azide is firmly indicative of an 

Fe(III) six-coordinate high-spin heure. There is no evidence to 

suggest that the catalase-azide exists as a spin-state mixture. as 

suggested by Chuang et al. [31, and as exists for metMb-azide [50]. 

The very weak v3 and v 10 bands at 1505 and 1638 cm-1 reported by 

Chuang et al. as indicators of some low spin catalase-azide are not 

observed in the spectrum shown in Fig. 6.1 (b). The low wavenumber 

region of the catalase-azide spectrum in Fig. 6.2 (b) does not show 

any bands that can be firmly assigned as Fe-N or internal azide 

modes. Asher and Schuster [51] have suggested that two bands at 413 

and 570 cm-1 observed in the spectrum of metMb-azide are due to 

i (Fe-N) of the low- and high- spin forms of the complex. 

respectively. Tsubaki et al. [52] have, on the other hand, assigned 

the bands to v (Fe-N) and azide bending modes of the low spin 

complex. The spectrum in Fig. 6.2 (b) does not show a band at 

573 cm-1. A band at 417 cm-1 is strong. but also appears as a strong 

band in the native catalase and catalase-cyanide spectra. Thus. the 

lack of a band near 570 cm-1., and the lack of a band that can be 

associated with azide at 413 cm-1, supports the view of Tsubaki et 

al.. that these bands in. the catalase-azide apectrum are due to low 

spin forms of the azide complex. The catalase-azide complex appears 

to be-totally high. spin. Attempts were made to confirm'this by 

recording the IR spectra of catalase-azide in the region 2000- 

2100 cm-1, whereýazide-stretching modes can be observed [53]. In 

metMb-azide, two bands have been observed, at 2045 and'2023 cm-1, and 

attributed to high- and low- spin complexes, ' respectively. In the 

catalase-azide IR spectrum, no band was observed at 2023 cm-1, 
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whilst a weak band was observed at ca. 2045 cm-l. However. the 

spectra were troubled by the large absorption of water in this 

region, and also by the possibility of absorption of residual free 

azide at 2045 cm-1. 

The RR spectrum of catalase-cyanide shown in Figs. 6.1 (c) 

and 6.2 (c) is characteristic of a six-coordinate low spin ferric 

heure. The core size marker bands y 3, v 2, v 37. and v 10 are all 

upshifted from their positions in native catalase (see Table 6.2). 

Yu et al. [54] have recently assigned two bands in the spectrum of 

insect HbCN to 6 (Fe(III)-C-N) bending (at 410 cm-1) and to 

2j(Fe(lII)-CN) stretching (at 453 cm-1). The low wavenumber region 

of catalase-cyanide in Fig. 6.2 (c) shows marked differences from 

the spectra shown in Figs. 6.2 (a) and (b). However, there are no 

bands that can be unambiguously assigned as Fe-CN modes. 

6.4.2 Spectra of catalase compounds I and II 

The RR spectrum presented in Fig. 6.6 (b) was taken under 

conditions where the sample was almost entirely in the form of 

compound I, as can be seen from the corresponding UV-vis. spectra in 

Fig. 6.3 and 6.4.. The RR spectrum. in Fig. 6.6 (b) did show an 

overall-loss of intensity, as expected from the corresponding loss 

of absorption. The spectrum does not show any large shift in y4 

(1374 cm-1), in contrast to-the recently reported spectrum of IIRP 

compound'i [24J. and the spectra of the MTPP cation radicals (34] 

(see section 6.1: 2).. The v 4. V3 and v2 bands do change in: 

relative intensity, the v3 and v2 bands dropping in intensity with 

respect to the y4 band. This could be due to the partial shift in 

y3 from 1487 cm _1 to 1511 cm-1, and the partial shift in V 2" from 

1571 to ca. 1585. cm 
1, 

coincident with y 37- These changes, and the , 
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appearance of a band at ca. 1645 cm-1 are reasonably consistent with 

the formation of a compound II-type species. The RR spectrum of 

bovine liver catalase compound II has not been published, but the 

v 4. V2 and v 10 positions of horse blood catalase compound II have 

been reported to be at 1376,1587 and 1641 cm-1, respectively [4]. 

As discussed in section 6.1. studies of HRP compound I have been 

problematic, due to the apparent photolability of compound I 

[23b, 24]. The RR spectrum of compound I taken at relatively high 

irradiance bears a marked similarity to the spectrum of compound II 

(see section 6.1.1). In an attempt to avoid problems of compound I 

photodecomposition. spectra were obtained at 2 mW laser power; 

conditions which should have approached those of the 'successful' 

experiments of Paeng and Kincaid [24]. However, no differences could 

be observed between the results obtained at high and low power; 

thus. either the conditions were still inducing photodecomposition. 

or the spectrum in Fig. 6.6 (b) is that of compound I. 

The spectra in Fig. 6.7, taken with 413.1 nm excitation, 

should show greater enhancement of any bands which might be due to 

the presence of compound II in the sample. But if compound I were to 

be immediately and entirely converted to compound II in the laser 

beam, then all that would be observed would be a greater overall 

enhancement of the spectrum after adding PAA (compared to the 

spectrum taken with 406.7 nm excitation). The latter change is 

difficult to measure. as the precise alignment of the sample and its 

concentration will affect the relative intensities of the catalase 

and compound I or II spectra, due to the differing absorption 

losses. -- 

The spectra in Fig. 6.7. show catalase after the addition of 

a lOx excess-(b), and a much larger excess (c) of PAA. These spectra 
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might be expected to show different, and generally greater 

intensities of the bands at 1642 and 1510 cm-1. which increased in 

intensity under corresponding conditions with 406.7 nm excitation. 

Although there is some difference in the intensities of these bands 

between Figs. 6.7 (b) and (c), and between Figs. 6.7 (b) and 6.6 (b) 

the difference is not as large as the UV-vis. data (see Fig. 6.5) 

might lead us to expect. The main difference between the spectra 

taken with 413.1 nm and with 406.7 nm excitation is the appearance 

of a band of moderate intensity at 1547 cm-1 (see section 6.3). The 

band at 1550 cm-1 in the spectrum of native catalase can be assigned 

to v 11 (see Table 6.2). In the case of HRP, v 11 shifts up from 

1550 cm-1 in native HRP to 1562 cm -1 in HRP compound II [11,24]; a 

corresponding shift is not apparent in the catalase spectra in Fig. 

6.7. In HRP compound I, however, a new band is observed at 

1545 cm-1, similar to the band at 1547 cm-1 in Fig. 6.7 (b). The 

1545 cm-1 band in the HRP compound I spectrum has not. been assigned, 

but is possibly v 11. The model heure studies tentatively assign a 

5 cm -1 downshift in y 11 for the Alu CuTPP'' species. although there 

is a reported upshift in v 11 for the Alu MOEP`" species [34]. 

In both spectra shown in Figs. 6.6 (b) and 6.7 (b), the 2J3 

mode persists (with reduced intensity) at its original position of 

1487 cm7l. while a new band. previously assigned to V3 (of compound 

II), appears at 1511 cm- 
1. The remaining intensity at 1487 cm -1 

shows that either significant amounts of native catalase are 

regenerated in'the laser beam, or that the L3 band in the spectrum 

of catalase compound I is not significantly shifted from 11187 cm 
1. 

The spectrum of FIRP: compound I'shows v3 upshifted by only 3 cm-l 

[24]. 

The lack of shift in the v4 band in the catalase spectra is 
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quite different from the observed shifts in the spectra of both 

compounds I and II of HRP [24]. As mentioned above, the only 

published data for catalase compound II also show V4 to be 

relatively unshifted [3]. It appears that the v4 band in catalase 

is unusually insensitive to the oxidation state changes accompanying 

the formation of compounds I and II, and thus comparisons with other 

compound I data may be misleading. 

Summarising, there is strong evidence for some 

photodecomposition of catalase compound I to produce a compound 

II-type species, with associated RR bands at 1645 and 1511 cm-1. 

However, there is still some evidence to suggest that there may be a 

significant spectral contribution from the compound I species. In 

particular the downshift of the band at 1550 cm 
1 

to 1547 cm-1 is 

similar to a shift observed on forming HRP compound 1 [24]. 

6.4.3 Spectra of model hemes 

The observation of similar reversible loss (with 408 nm 

pump) of porphyrin ground state bands in both [(TPP)Fe(III)]20 and 

(TPP)Fe(III)Cl shows that the largest changes that are occurring are 

not associated with fragmentation of the u-oxo dimer. The lack of 

any new bands appearing in the dimer spectrum, or loss in solvent 

band intensity when a 424 nm probe is used (pt =0 ns) suggests that 

the process reported by Guest et al. (23] is not occurring in these 

experiments. Guest et al. observed an increase in absorption at 

420 nm at 25 ps after a photolysis flash, the increase being of 

equal size to the loss irr absorption at 408 nm. If this was 

occurring in the experiments presented here, then the 424 nm. probe, 

408 nm pump experiment would show loss of original porphyrin bands. 

accompanied by, a loss in the intensity of the solvent spectrum. 
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Growth of new bands due to the 'ion-pair' species would also be 

expected if the absorption at 424 nm was indeed of equal magnitude 

to the loss in 408 nm absorption. Using ns pulses, it is also true 

that the laser pulse energy and quantum yield for the photoprocess 

must be sufficiently high to observe a species with a 25-250 ps 

lifetime. 

Cornelius et al. have observed reversible bleaching of the 

Soret absorption in (TPP)Fe(111)C1. with a concomitant new 

absorption appearing at 445 nm [43]. The absorption at 445 nm had a 

lifetime of K= 30 ps, and was assigned to the first excited triplet 

state of (TPP)Fe(l1I)C1. By probing at 448 nm. at At =0 ns after a 

408 run pump pulse, the spectrum of this triplet state might be 

expected to be-observed. Fig. 6.11 indeed shows that new bands are 

observed for (TPP)Fe(Ill)C1 under these conditions. Thus. the bands 

at 1541 and 1344 cm -1 can probably be assigned to y 2^and v4 of the 

triplet state of (TPP)Fe(III)C1. These values are considerably 

downshifted from the original positions at 1557 and 1360 cm-l. This 

downshift reflects a large increase in the porphyrin core size (see 

chapter 1 and (131). 

The dimer also behaves in a similar manner. the ground state 

bands being replaced by new bands as the triplet state is formed. 

From the lack of ground state bands in the pump+probe spectrum it 

appears that both rings of the dimer molecule are excited to the 

triplet state. The changes in bands on forming the. dimer triplet 

state are similar to those observed for the monomer, but the triplet 

state spectra are not identical. In the dimer triplet spectrum, y2 

shifts, from 1556 to 1544 cm_l, but V t{ almost completely disappears. 

This is quite different from the case of the monomer, where v2 and 

v 4. retain roughly the same relative intensities in 'the triplet 

-192- 



spectrum. 

Both triplet state spectra are quite different from those 

reported recently for ZnTPP, which has a much longer triplet state 

lifetime [55.56]. 

6.5 CONCLUSIONS 

6.5.1 Catalase and stable derivatives 

The balance of evidence from the RR spectra reported here 

indicates that the heure iron is 6-coordinate in native catalase. 

This contrasts with the conclusion from X-ray crystallography [44] 

and with the assumption of 5-coordination made by previous workers 

[4]. The spectra do however confirm that catalase contains iron in a 

ferric high-spin state at both alkaline and acidic pH. The spectra 

of catalase in alkaline (pH 7.8) and acidic (pH 6.0) solutions show 

differences that could be due to hydroxyl ligation at. alkaline p11. 

The RR spectrum of catalase-azide does not show any 

contribution from a low-spin ferric heure. This is in contrast to the 

conclusion of Chuang et al.. [4] who propose that catalase-azide 

exists as a spin state mixture. with the high spin form predominant. 

6.5.2 Catalase and its reaction with PAA 

There is strong evidence to suggest'that catalase compound I 

is'photolabile, and'that the RR spectra of compound I contain a 

contribution from a species that is more like compound II. A similar 

photoprocess has been observed in iIRP, and is thought to involve the 

transfer of the radical=from the porphyrin to the protein, so as to 

leave the heure centre in anon-radical. 'compound II' ferryl form 
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[23b, 241. There is some evidence for the contribution of a true 

compound I spectrum. However, if this contribution is significant. 

then it is surprising that v4 is not apparently affected. as it is 

in both the model heure radical cation species, and in HRP 

compound I. 

6.5.3 Me models 

With 408 nm excitation, the dominant process in both 

(TPP)Fe(lIi)C1 and [(TPP)Fe(III)]20 appears to be formation of the 

short lived triplet state. There is no evidence to suggest that the 

photodissocation of the dimer to produce an ion-pair which absorbs 

at 420 nm, observed by Guest et al. [33], is occuring in these 

experiments. The photodissociation of the g-oxo-dimer to produce 

long lived FeO (IV)=and Fe(II) species, as observed by. Peterson et 

al. [32], does not appear to be amajor process. Photodissociation 

does take place, as evidenced by the gradual photodecomposition of 

the dimer to a monomer species. However. no Raman bands of the 

primary photoproduct species, Fe(IV)=O and Fe"'). could be 

observed. 

6.6 FUTURE WORK 

6.6.1. Catalase and stable derivatives 

The coordination of hydroxide or. water to the heure iron in 

native catalase could be confirmed by isotope substitution 

experiments using 112180. The spin state equilibrium of the 

catalase-azide complex could be more unambiguously established by a 

number of experiments, including a careful measurement of the 

2000-2100 cm-' (azide stretching) region of both the IR and RR 

-1911- 



spectra, and measurement of spectra at low temperature, where the 

low spin form may be favoured. 

6.6.2 Catalase compounds I and II 

The low wavenumber region of the spectrum of compound I 

should show the Fe(IV)=O stretching band at ca. 737 cm-1 for a 

compound I species, but at 775-787 cm-1 for a compound II species. 

Unfortunately, attempts at obtaining low wavenumber region RR 

spectra of catalase with the CCD system have so far failed, due to 

problems with light scattering and other spectral artefacts. Using a 

low temperature Raman cell, the compound I species could probably be 

stabilised for long enough to record a spectrum on the Spex system, 

which gives better stray light rejection. 

An experiment using a fast flow system, giving a gs 

residence time of the sample, in_the laser beam. might also show 

whether photodecomposition is taking place. 

6.6.3 Heme models 

It would be useful to confirm the identity of the species 

assigned to a triplet state with experiments using a picosecond 

laser. Power-dependence studies on the dimer would be particularly 

useful in determining whether I there really is a two photon process 

occurring that excites both-rings of-the dimer to separate triplet 

states. Polarisation measurements would also help in the assignment 

of the bands of-Ithe transient species. 
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