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Abstract 

Human Papillomavirus (HPV)-related oropharyngeal carcinoma is considered to be in the 

early stages of an epidemic1-12. A marked rise in the incidence of this sexually-transmissible 

cancer has captured the public interest, and much debate exists over both the prophylactic 

and therapeutic strategies currently employed to manage this healthcare priority. 

HPV-positive oropharyngeal carcinoma is associated with highly favourable oncological 

outcomes. Clinical attention over recent years has been paid to the potential de-escalation of 

therapy in order to account for the disease’s favourable prognosis, in addition to reducing 

therapeutic burden in a well-prognosticating, younger patient cohort, for which 

consequences of radical chemo-radiotherapy strategies may disproportionately impact on 

longer-term quality of life. Whilst optimising the management of the ever-increasing 

proportion of HPV-positive oropharyngeal carcinomas is desirable and highly justifiable, it 

appears the poorer prognosticating HPV-negative oropharyngeal carcinoma has at least in 

part become overlooked. 

Oropharyngeal carcinoma is unique in comparison to many other established HPV-related 

cancers inasmuch as a clear HPV-negative subset exists, to which established aetiological 

factors (tobacco smoking and alcohol consumption) strongly correlate. For most other HPV-

related carcinomas, such as cervical, anal and penile, tumours classified as HPV-negative 

are either regarded as potentially-virus containing, or else cannot be correlated to a definitive 

aetiological agent. Comparison of HPV-positive and -negative oropharyngeal carcinoma 

therefore offers unprecedented insight into the biological significance of each aetiological 

agent, and how prognostication of each disease may relate to tumour behaviour at a 

molecular level.  Whilst improved outcomes may be attributable in part to greater radio-

sensitivity due to preservation of key wild-type genes in HPV-positive tumours, more 

comprehensive biological differences are likely to underpin the overall behaviour of disease 

– indeed, surgical outcomes are also favourable in HPV-positive disease. 

This thesis explores the potential for the tumour microenvironment to differ between HPV-

positive and -negative disease. We hypothesised that due to the strictly epitheliotropic nature 

of the Human Papillomavirus, activation of the tumour microenvironment would potentially be 

suppressed in order to avoid host clearance of pathogen during the natural history of viral 

infection, whereas penetrating carcinogens linked to tobacco smoking and alcohol 

consumption may either directly derange the stroma or, less contentiously, induce an 

increased mutational load which in turn in turn may offer greater opportunity for tumour 

evolution towards deranged microenvironmental signalling.  
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A 2D tissue culture model of the tumour microenvironment was created and used to test the 

hypothesis of a difference in microenvironmental interactions between HPV-positive versus 

HPV-negative disease, and normal stroma. Confirmation of an increase in migration-

inducing signals from the modelled normal fibroblast stroma in HPV-negative disease led to 

further investigation at a molecular level using cytokine array technology. Further ELISA 

quantification and recombinant protein dose-response analysis ultimately identified Human 

Hepatocyte Growth Factor (HGF) as a primary candidate molecule for driving the additional 

migration observed in response to activated stroma. IL-6, co-secreted with HGF by 

stimulated fibroblasts, was also found to have a supporting role through the co-induction of 

STAT3. Final confirmation of HGF’s principal role in inducing HPV-negative tumour migration 

was undertaken using the clinically relevant c-Met inhibitors, foretinib & INCB28060 (recently 

rebranded as capmatinib). 

Further experimentation using 3D models of HPV-negative tumour spheroid invasion found 

fibroblast co-culture with tumour lines a necessary prerequisite for invasion. Moreover, 

disruption of HGF signalling within co-cultures led to near-total abrogation of invasion.  
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Foreword 

A significant body of the work presented in this thesis relates to the experimental use of conditioned 

media. Where reference has been made to “normal media”, the plural term of “media” has been 

used exclusively in order to avoid any unnecessary confusion.  Although “medium” may well be a 

more grammatically correct term for use in the singular, “normal media” is a commonly accepted 

phrase and was felt to avoid confusion with alternative definitions of “normal” and “medium”, which 

both relate to measures of central tendency. 
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1. Introduction 
The Human Papillomavirus (HPV) is a non-enveloped, double stranded DNA virus capable 

of infecting skin and mucosa13, 14. HPV infection has not been identified outside of the skin, 

oropharynx and anogenital mucosa, leading to the virus being considered as strictly 

epitheliotropic15. The reason for this is unknown although the virus has limited capacity for 

host invasion, requiring a breach in the continuity of epithelial lining in order to access and 

infect cells of the basal layer13. A prerequisite for successful host invasion also appears to be 

maintenance of an intact basement membrane in order for the virus to evade the immune 

response; sub-epithelial exposure to the virus appears to act as a stimulus to the adaptive 

immune system16, whilst has capacity to suppress underlying inflammation whilst residing in 

epithelia17. 

The HPV particle consists of an icosahedral capsid that acts to enclose and also assist in 

packaging of the viral genome, as well as contributing to host entry by interacting with cell 

surface heparan sulfate to trigger endosomal absorption18. The major component of this 

shell is the L1 protein, so-called due to the “late” expression of the gene encoding this 

protein during the viral life cycle14. A further viral protein, L2, also has a minor contribution to 

the viral capsid structure. 

To date, over 100 HPV “types” have been identified, with estimates of around 200 types 

being in existence19, 20. A type is defined as having at least a 10% difference in the 

nucleotide sequence encoding the major viral capsid component (L1 gene) when compared 

to any other known HPV type19. Specific types have been heavily implicated with 

carcinogenesis, and have therefore been ascribed the term “high-risk”. 

The HPV genome is very slowly evolving, and has remained relatively unchanged since the 

origin of the human species. It is estimated that between 1-5% of the HPV nucleotide 

sequence has evolved with the human species, leading to “variants” within each HPV type19. 

A variant of a specific HPV type is considered as having 2% variation in coding regions of 

the HPV genome, and 5% in non-coding regions19, 21. Diversity between HPV types is 

thought to have evolved over several millions of years22. 
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Figure 0.1: The Human Papillomavirus Genome 

 

 

The HPV genome comprises a circular DNA sequence of approximately 8 kilobase pairs, 

complexed by host cellular histones14. A total of 9 genes exist, encoding 7 early (“E”) and 2 

late (“L”) proteins23 (Figure 0.1). As aforementioned, the 2 “L” proteins form the viral capsid, 

and their late expression reflects the requirements of capsid production; virally infected 

keratinocytes must progress to the more superficial layers of epithelium before virion release 

can occur. In fact, L1 production is governed by the maturation process of basal to 

superficial epithelial cells, hence much stronger L1 expression is seen in the superficial 

epithelial layers24-26. The release of viral particles is assisted by the expression of the E4 

protein (also expressed relatively late in the viral cycle despite its nomenclature), which acts 

to disrupt intermediate filaments of the cell cytoskeleton27. 

The other “E” proteins are largely involved in influencing viral replication. The E1 gene 

encodes a protein that binds to the viral origin of replication and acts as a helicase, 

separating the viral DNA strands so that replication can occur through the use of host cell 

factors14. The E2 protein acts as a major transcriptional regulator, in addition to tethering 

viral DNA to host chromosomes28. The E2 protein further acts as a negative regulator of E6 

and E7 expression – genes heavily implicated with carcinogenesis29, 30. Inactivation of E2, 

which is thought to occur as a result of integration of viral DNA into the host chromosome, 

leads to the increased expression of E6 and E731. 

The E3 gene is not known to have any important function. E5, although oncogenic in some 

animal papillomavirus types, is generally regarded as having only an early destabilising 

function within human cells; a substantial portion of the E5 gene is deleted during viral 

Viral Genome 
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integration32. E5 does however act to upregulate EGFR in the early stages of infection, 

leading to the downregulation of p2133; the potential for E5 to have a carcinogenic effect is 

therefore not entirely ruled out34. 

The E6 and E7 genes encode oncoproteins that disregulate cell cycle control31, 32. Although 

both E6 and E7 proteins have effects on multiple intracellular signalling pathways, their 

major actions are on the tumour suppressor proteins p53 and pRb, respectively23, 35, 36. E6 

complexes with E6AP (“E6-associated protein” – a cellular protein ligase), which then binds 

P53 and induces Ubiquitin-mediated degradation15, 29. E7 binds to hypophosphorylated pRb; 

this form of the pRb protein exists complexed with E2F37. The interactions between E7 and 

pRb leads to the release of E2F, a factor that promotes DNA synthesis and cell cycle 

progression when in its free form14. Release of E2F by pRb usually only occurs as a result of 

phosphorylation, most notably by CDK4 (a cyclin-dependant kinase that is activated during 

cell proliferation)38. This is summarised in Figure 0.2b. 

The functional sequestration of p53 and pRb leads to the loss of important pathways in cell 

cycle control; p53 normally acts to hold the cell at the G1/S regulation point when DNA 

damage is detected, along with mediating DNA repair and when appropriate inducing 

apoptosis29. Free E2F further compounds this through the activation of genes linked to cell 

cycle progression and turnover.  

It is important to note that there is some degree of conflict between the actions of the E2 

protein and E6&7. In addition to repressing E6&7, E2 also acts to arrest the cell cycle in S-

phase29. Arrest in S-phase allows replication of viral DNA, which would otherwise be limited 

if cell cycle were to progress. 
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Figure 0.2 Normal versus HPV-infected regulation of p53, pRB and p16  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a). Normal tumour suppressor production. Note that 

pRb is normally hypophosphorylated and complexed 

to E2F. CDK4, when active, can phosphorylate pRb, 

leading to disassociation of E2F, which promotes 

cellular proliferation in its unbound form. 

 A negative regulatory loop exists whereby an 

increase in unbound, phosphorylated pRb increases 

p16 expression through release of E2F, which in turn 

reduces available CDK4, thereby preventing further 

phosphorylation of bound pRb. 

 

b). Effects of HPV E6 and E7 oncogenes. E6 acts on 

p53 to induce Ubiquitin-mediated degradation. E7 

acts on pRb, leading to Ubiquitin-mediated 

degradation of pRb and the release of free E2F. 

Note the rise in p16 gene expression in response to 

this – overexpression of p16 is a feature well 

documented in HPV-related head and neck 

carcinoma. 

 

a).       b). 
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2. HPV as a Causal Agent in Cancer 
 

In 1983 Harald Zur Hausen announced his discovery of HPV type 16 as the major causal 

agent in cervical carcinoma39. Despite widespread recognition of Zur Hausen’s 

groundbreaking work, the role of HPV-related lesions in carcinogenesis had for some time 

already been acknowledged. Malignant transformation of condyloma acuminata had been 

reported in the literature as far back as 195040, with Siegel’s 1962 review concluding a role 

for such lesions in occasional malignancies of the anogenital region41. Dun et al described 

the presence of intranuclear viral particles in human genital wart tissue in 196842, with Zur 

Hausen himself postulating the role of the as-yet undiscovered “condyloma agent” in 

carcinomas of the anogenital tract in a brief correspondence published in Cancer Research 

in 197643. Perhaps the greatest leap Zur Hausen took was to acknowledge the numerous 

reports of malignant transformation of condyloma acuminata, and divert his efforts away 

from attempting to confirm a then-popularised role of HSV-2 in carcinogenesis and instead 

search for the presence of the condyloma agent in cervical malignancies44-48. 

 

Following the publication of Zur Hausen’s paper, a snowballing of further research linking 

HPV to anogenital and other epithelial malignancies ensued. Whilst there was rapid 

acceptance of the role of the virus in other carcinomas, suggestions of its role in cancers of 

the orofacial region were met with some resistance. The International Agency for Research 

on Cancer (IARC) now recognises HPV as a risk factor for oropharyngeal carcinoma 

(OPC)49-51. The acceptance of HPV as a causal agent in OPC has been delayed in 

comparison to its cervical cancer counterpart, largely due to the latter being almost 

exclusively linked to preceding HPV infection (Table 0.1). In contrast, the major risk factors 

for OPC are historically tobacco smoking and alcohol intake, with HPV (until recently) being 

linked to a small subset of carcinomas. Compounding this, HPV related OPC is linked to 

specific anatomical sub-sites, namely base of tongue and tonsils; inclusion of these tumours 

in the more generic group of “oropharyngeal carcinoma” leads to dilution of any correlative 

findings5. 
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Table 0.1: Proportion & Prognostic Significance of Tumours with a HPV-positive Status in Relation to 

Anatomical Location 

Site Proportion (%) of 

cancers HPV+ 

HPV Types occurring with  

significant frequency 

(descending order) 

Proportion of virus-

positive cancers 

HPV 16 (%) 

HPV Prognostic 

Significance 

Cervix52, 53  79-89 16, 18 60 HPV 16 favourable 

HPV 18 unfavourable 

Vagina54  70 16, 18 77 Favourable in late s tage 

disease 

Vulva 52, 54  40 16, 33 79 Favourable 

Penis55  48 16, 6, 18 64 Inconclusive 

Anus 54  84 16, 18, 33 87 Favourable 

Oropharynx56, 57  36 16 90 Favourable 

 

 

There is now a good body of evidence for a causal relationship between HPV and OPC. 

Several studies have addressed many of the criteria set out by Bradford-Hill for the 

demonstration of causality58. These are discussed below; 

 

Strength of Association 

Although there is clearly a much lower strength of association between HPV and OPC in 

comparison to cervical carcinoma, there is a marked increase in the relative risk of OPC in 

the base of tongue and tonsillar regions related to sexual practice. A higher number of 

lifetime sexual partners, younger age of sexual debut, higher number of oral sexual partners 

and history of oral-anal intercourse have all been implicated with an increase in relative risk 

of OPC59-65. Risk is particularly linked to males65, 66; it is postulated that this is due to 

exposure to a higher HPV viral load in cervical secretions during oral sex in comparison to 

oral contact with penile tissue12. 
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A further interesting relationship which reinforces direct evidence of association is the 

increased risk of OPC in husbands of females with a history of cervical carcinoma67. Joint 

disease mapping of cervical carcinoma and male OPC also infers a shared risk68. 

 

Consistency 

The presence of high risk HPV within a tonsillar/tongue base subset of OPC has been 

consistently demonstrated in a number of studies, a systematic review and a large 

multicentre trial49, 50, 56, 62, 69. Serological markers of HPV infection have also been repeatedly 

linked to head and neck cancer risk70. Furthermore, the improved prognosis of HPV-positive 

OPC is well documented, and has been subject to meta-analysis in addition to prospective 

clinical trial71-77. A summary of studies assessing the prognostic significance of HPV status is 

given in Table 0.2. 
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Table 0.2: A Summary of Clinical Studies assessing HPV as a Prognostic Marker in OPC 

Year First Author n Method of analysis O utcome 

measures 

Treatment       HPV+ 

survival 

HPV-  

survival 

Conclusions 

1996 Snijders
78

  63 C-PCR OS, RR S - - No 
difference* 

1997 Paz
79

  167 C-PCR OS Not stated 43.1  (3) 48.8  (3) No 
difference* 

1999 Pintos
80

  117 C-PCR OS, DFS Not stated 66.7  (5) 58.3  (5) No 
difference* 

2000 Gillison
81

  253 C-PCR, TS-PCR, 
ISH 

DSS S/ RT/ CRT 91  (3) 79  (3) Favourable 

2000 Mellin
82

  60 C-PCR SR, CSMR RT 53.5  (5) 31.5  (5) Favourable 

2001 Friesland
83

  40 C-PCR OS RT 30 (5) 19 (5) Favourable 

2002 Ringstrom
84

  89 C-PCR DSS Not stated 94.1  (5) 54  (5) Favourable 

2003 Klussmann
85

  34 C-PCR, p16 OS, DFS S +/- CRT 62  (4) 33  (4) Favourable 

2003 Li
86

  86 C-PCR, TS-PCR, 
p16 

DSS S/ RT/ SRT 89  (5) 65  (5) Favourable 

2003 Ritchie
65

  139 C-PCR SR S/ RT/ CRT 71  (5) 49  (5) Favourable 

2004 Baez
87

  118 TS-PCR OS, DFS Not stated 50  (3) 31.8  (3) No 

difference* 
2005 Wittekindt

88  34 C-PCR, p16 DFS, RR Not stated 72  (4) 23  (4) Favourable 

2006 Licitra
89

  90 RT-PCR OS S +/- RT  79
§
 (5) 46  (5) Favourable 

2006 Weinberger
90

  79 RT-PCR, p16 OS, DFS SRT/ RT  79  (5) 20  (5) Favourable 

2007 Badaracco
91  115 TS-PCR DFS, OS S 66.1  (2) 53.2  (2) No 

difference* 

2007 Reimers
92

  106 C-PCR, p16 OS, DFS S +/-RT / 
CRT 

84  (5) 49  (5) Favourable 

2007 Na
93

  108 C-PCR SR S/ RT +/- C 100  (5) 44  (5) Favourable 

2008 Fakhry
94

  96 C-PCR, ISH OS, RR CRT 95  (2) 62  (2) Favourable 

2008 Klozar
95

 81 C-PCR OS, DSS S +/- RT  73  (3) 35  (3) Favourable 

2008 Smith
96

  294 C-PCR DSS, RFS S/ RT/ SRT 58  (5) 15  (5) Favourable 

2009 Chung
97

  46 RT-PCR, ISH OS, LRR, 

MFS 

CRT 86  (5) 35  (5) Favourable 

2009 Kong
98

  82 C-PCR OS Not stated 79  (5) 50  (5) Favourable 

2009 Lassen
99

  195 ISH, p16 OS, DSS, 

LRR 

RT 62  (5) 26  (5) Favourable 

2009 Shi100  111 RT-PCR, ISH, p16 OS, DFS RT +/- C 88  (3) 67  (3) Favourable 

2009 Hafkamp
101

  77 PCR, ISH, p16 DSS Not stated 69  (5) 31  (5) Favourable 

2010 Rischin
102

  172 ISH, p16, PCR OS, FFS CRT 91  (2) 74  (2) Favourable 

2010 Hannisdal
103

  137 C-PCR CS S +/- RT  54  (5) 33  (5) Favourable 

2010 Fischer104  365 p16 OS S/ CRT 76.7  (5) 41.5  (5) Favourable 

2010 Ang
105

  323 ISH, p16 OS CRT 82.4  (3) 57.1  (3) Favourable 

2010 Fischer
106

  102 p16 OS S/ RT +/- C 59.3  (5) 24.5  (5) Favourable 

2010 Smith
107

  237 C-PCR, p16 OS, DSS Not stated 83
§
  (2) 54  (2) Favourable 

2010 Lewis108  239 ISH, C-PCR, p16 OS, DFS, 

DSS 

S/ S +RT/ S 

+ C 

86.2 (2) 44.2 (2) Favourable 

2011 Chernock
109

  148 ISH, p16 DFS RT HR 0.41 - Favourable 

2012 Kim
110

  33 PCR, p16 DFS S/(C)RT HR 9.53 - No 

difference 
2012 Holzinger111  199 PCR OS, PFS S/(C)RT HR 0.55 - Favourable 

2012 Cheng 112  60 PCR OS, DFS, PFS (C)RT HR 0.23 - Favourable 

2012 Huang
113  

(Chinese: 
abstract only) 

66 PCR OS, DSS Not stated 90 (3) 52 (3) Favourable 

2013 Lin
114

 176 ISH, p16 OS, DFS S/RT/CRT 89 (5) - N/A 
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2013 Mizumachi
115

  71 PCR OS S/RT/CRT 79 (5) 51 (5) Favourable 

2013 Semrau
116

  52 PCR, p16 OS, PFS CRT 70 (3) 37 (3) Improved 

PFS, no 
difference in 
OS; 
advanced 

disease 
2013 Hong

117
  489 PCR, p16 OS RT +/- S/C N/A N/A Favourable 

2013 Oguejiofor
118

  217 PCR, p16 CSS, RFS, 

LRR 

RT +/- All 77 (5) 39 (5) Favourable 

2013 Kawakami
119

  104 PCR, p16 OS RT/CRT HR 0.21  Favourable 

2013 Evans
120

  
 

138 PCR, ISH, p16 OS, PFS S/RT/CRT 75 (5) 25 (5) Favourable 

2013 Bledsoe
121

  121 ISH +/- p16 OS, DFS, 
LRR 

CRT 94 (2) 73 (2) Favourable 

2013 Cerezo
122

  102 p16 OS, DFS, 
LRC 

CRT 67 50 Favourable 

2013 Tural
123

  81 PCR OS RT+/- S/C   HR 2.4 Favourable 

2013 Nichols
124

  95 PCR, p16 OS, DFS Not stated 90 (3) 65 (3) Favourable 

2013 Psychogios
125  83** p16 DSS S +/- C/RT 81 80 No 

difference 
2014 Melkane

126
  133 RT-PCR OS, PFS S/RT/CRT 68 (5) 40 (5) Favourable 

2014 Deng
127

  53 PCR,p16 RFS, DFS Not stated 100 (3) 77 (3) Favourable 

2014 Meyer
128

  106 PCR, p16 OS All 71 (5) 56 (5) Favourable 

2014 Elgoff
129

  69 ISH OS CRT + 
Cetuximab 

90 (5) 33 (5) Favourable 

2014 Hasegawa130  39 PCR, p16 DFS, TTF CRT +/- S 94 (3) 67 (3) Favourable 

2014 Nomura
131

  77 PCR, p16 DSS All 89.1/ 90.3 
(3) 

76.8/74.5 
(3) 

Favourable 

2014 Cai
132

  54 RNA-ISH, p16 OS S/R/CRT 86 30 Favourable 

2014 Vermorken
133

  416 Cervista, p16 OS CRT + 
Cetuximab 

HR 0.59-
0.83 

 Favourable 

2015 Lorch
134

  500 PCR/p16/both OS CRT 91 (3) 85 (3) Favourable 

2015 Goodman
135

  529 PCR OS S+/- 
RT/CRT 

65 (5) 
HPV16 
46 (5) 
HPV other 

28 (5) Favourable 

2015 Lam136  207 PCR OS, DSS  63 (5) 30 (5) Favourable 

2015 Rosenthal 182 p16, ISH OS, LRC, 
PFS 

RT +/- 
Cetuximab 

HR 0.40 - Favourable 

2007 Ragin
71

 N/A Systematic Review OS, DFS All HR 0.72, 

0.51 

- Favourable 

2012 O’Rorke
73

 N/A Systematic Review OS, DSS, PFS All HR 0.46, 
0.28, 0.40 

- Favourable 

2013 Rainsbury
75

  N/A Systematic Review OS All HR 0.39 - Favourable 

2014 Petrelli
74

   N/A Systematic Review OS, DSS, 
DFS 

RT +/- S/C HR 0.33, 
0.24, 0.31 

- Favourable 

2015 Wang
76

  N/A Systematic Review OS Surgery Vs 

CRT 

HR 0.283 

Tongue, 
0.475 
Tonsil 

- Favourable 

2015 Yuanyuan
77

  N/A Meta Analysis 

(article in Chinese; 
abstract reviewed) 

DSS, DFS, 

PFS 

Not reported 

in abstract  

HR 0.31, 

0.38, 0.46 

- Favourable 

 

Table 0.2: OS – Overall Survival, PFS – Progression-Free Survival, DHR – Death Hazard Ratio, CS – 

Cumulative Survival, CSS – Cancer Specific Survival DSS – Disease-Specific Survival, DR – Disease 

Recurrence, FFS – Failure-Free Survival, SR – Survival Rate, CSMR – Cause Specific Mortality Risk, RFS 

– Recurrence Free Survival, PFS – Progression Free Survival, RR – Response Rate, LRR – Locoregional 
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Recurrence, MFS – Metastasis Free Survival, TTF – Time to Treatment Failure, HR – Hazard Ratio of 

respective outcome measure.      (Legend continued overleaf) 

* majority of samples not oropharyngeal 

**only 31% of overall study population assessed for p16 status without reason given  

 

Techniques: TS-PCR – Type-specific PCR, C-PCR – Consensus PCR, RT-PCR – Real-time PCR, ISH – In-

situ hybridization, p16 – p16 Immunohistochemistry, SAb – Serum antibodies 

 

Where multiple outcome measures have been utilised, the first quoted outcome measure has been 

used for HPV-positive/-negative disease survival 
 

 

 

Specificity 

There is a high degree of anatomical specificity seen in HPV-positive tumours. As previously 

stated, HPV-positive OPC is site-specific to the base of tongue and tonsils, although HPV is 

also detectable in a smaller proportion of oral carcinomas66, 137.  In-situ hybridization studies 

have further helped to demonstrate the specificity of HPV distribution to the nuclei of 

carcinoma cells, with absence of staining within the surrounding stroma/ invaded tissue. 

p16 staining, a surrogate marker of HPV infection, is now an accepted method of 

determining a likely oropharyngeal primary in patients presenting with nodal disease from an 

occult source, due to its specificity to HPV-positive OPC. 

A further marker of specificity is the viral type found in HPV-positive OPC. HPV 16 (a high 

risk HPV heavily implicated with cervical carcinoma) has consistently been found to be the 

predominant type detected (around 90% of HPV-positive tumours)56, 57, 81, 138. 

 

Temporality 

The temporal sequence of events in proposed HPV-related carcinogenesis is supportive of a 

causal relationship (i.e. HPV infection as a result of sexual exposure will precede clinical 

carcinoma by several decades). Temporality is also supported through the findings that an 

earlier age of sexual debut and cumulative number of sexual/oral sexual partners increases 

HPV-positive OPC risk.  
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It should be noted, however, that some studies citing these relationships have detected 

positive markers of HPV infection within known tumours and then correlated HPV status to 

sexual history59. This in isolation is not synonymous with evidence for HPV increasing risk of 

tumourigenesis; that is, it would be possible that previous HPV exposure could result in sub-

clinical carriage in the oropharyngeal region, which, in the presence of phenotypically 

aberrant epithelium (i.e. tumour) leads to localised HPV invasion. However, further evidence 

through case-control study of OPC demonstrates that there is a statistically significant 

difference in sexual history for all cases of OPC when compared to a control group62; this 

shows a specific increase in cancer risk associated with sexual behaviour rather than simple 

correlation of tumour-laden virus to sexual history. 

 

Biological Gradient 

There is little data available to support a clear dose-response relationship between HPV and 

OPC. Determining an appropriate objective measure of “dose” is more difficult than may be 

assumed in the first instance. For example, studies demonstrating the increased risk of OPC 

linked to number of oral/vaginal sexual partners present some evidence of a dose-

dependent relationship (i.e. higher numbers of partners increases OPC risk), but utilise what 

is essentially a surrogate and non-specific marker of a sexually transmitted factor that may 

or may not be HPV. Furthermore, by utilising sexual history alone, there is no true 

quantitative measure of HPV “dose” – higher numbers of partners would increase the risk of 

exposure to HPV rather than influence the viral load within an individual. 

Quantitative analysis of virus within tumour is difficult, as many methods of assessing for 

HPV involvement are dichotomous – for example PCR demonstrates presence or absence 

of viral DNA, in-situ hybridization assesses presence or absence of hybridization signals 

within tumour cell nuclei and p16 immunohistochemistry is ultimately interpreted as either 

positive or negative. Real time PCR is perhaps the only established method of quantitative 

analysis of viral load, although it has been found to have only 92% sensitivity in a small 

study assessing the reliability of HPV-positive OPC detection methods138. 

The sample to be assessed adds further complication, as viral load needs to be measured 

prior to tumour formation to demonstrate dose-response. Due to the relatively rare event of 

OPC formation, it may be concluded that assessing precursor lesions such as dysplasia may 
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be the most appropriate method, so as to isolate a population within which malignant 

transformation is more likely, and also allowing access to relevant tissue samples for viral 

quantification. However, even with a higher risk group such as dysplasia, one must bear in 

mind that not all dysplasia progresses to carcinoma, and in addition HPV-positive OPC 

accounts for only a proportion of OPCs – this, in combination with any therapeutic measures 

applied to dysplastic lesions, would lead to a high data set being required for dose-response 

to be demonstrable. 

 

Plausibility 

There is a highly plausible mechanism through which HPV infection can lead to 

carcinogenesis – this is discussed later. Molecular studies have corroborated a significant 

proportion of what is thought to be the early events in a multi-stage process139. It is generally 

accepted that HPV infection is not capable of causing malignant transformation in isolation, 

but rather eliminates the need to acquire genetic mutations in two tumour suppressor genes 

important for the progression of head and neck carcinogenesis, namely p53 and pRb, and in 

addition sends the cell into unrestrained turnover whereby the acquisition of further 

mutations is more likely. 

 

Coherence 

There has been a recent increase in incidence of OPC in subsites linked to HPV positivity 

(i.e. tonsils and tongue base), whereas this trend has not been seen in other head and neck 

sites12, 140-142. This rise in tonsillar and tongue base OPC has been coupled with an increase 

in the proportion of tumours identified as HPV-positive, demonstrating a level of coherence 

between the two variables143. The rise is thought to be linked to changes in sexual 

behaviours subsequent to the 1960s, such as increased premarital sex and oral sex12, 140, 144, 

145. 

Experiment 

Due to the latent period between HPV inoculation and onset of OPC, any beneficial effect of 

preventive measures such as HPV vaccination on OPC incidence would take a significant 
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period of time to demonstrate. In addition to this, current estimates of cost-benefit preclude 

the introduction of a population-based male HPV vaccine, even with the assumption of high 

efficacy at preventing oral HPV infection and subsequent carcinogenesis146, 147. However, 

cost-utility analyses have historically underestimated the contribution of HPV to carcinomas 

in males; more recent work also suggests that vaccination is cost-effective for men who have 

sex with men, and Australian vaccination programmes have now introduced male HPV 

vaccination148-150. It is therefore possible that future data may be available to demonstrate 

that HPV vaccination reduces OPC incidence in males. 

Current proof of causality through preventive experiment is difficult due to the widespread 

limitation of vaccination programmes to females, although the effects of herd immunity as a 

consequence of female HPV immunisation may indeed be demonstrable. Assuming oral 

exposure to HPV in cervical secretions is the major source of inoculation in the male 

oropharynx, highly efficacious vaccination of females should theoretically reduce male 

exposure to HPV, with a demonstrable effect on OPC incidence in the future.  

Therapeutic trials may go some way to provide experimental evidence for HPV as a 

causative agent. Improved outcome of OPC as a result of HPV-targeted therapy would infer 

causation, although one would have to consider the possibility of an idiosyncratic response. 

 

Analogy 

There are many similarities between HPV-positive OPC and cervical carcinoma. 

Comparable mucosal structure, the potential for sexual exposure, along with the HPV types 

associated with risk, makes both sites highly analogous. There is also recognition of distinct 

lesions that precede carcinoma formation by many years in both oropharyngeal and cervical 

tissues, within which HPV has been detected66– lending to a common concept of a 

multistage process of carcinogenesis which may be initiated but not entirely achieved 

through the actions of HPV. 

 

 

 



 

14 
 
 

 

3. Epidemiology of OPC 

 

OPC in the UK 

CRUK’s summary statistics for UK cancers, taken from data provided by the Office of 

National Statistics, ISD Scotland, Welsh Cancer Intelligence and Surveillance Unit and 

Northern Ireland Cancer Registry, currently groups OPC under the umbrella term of “oral 

cancer”151. The rationale for CRUK’s grouping of oral/oropharyngeal/pharyngeal tumours 

relates to a large proportion of cases failing to have a specific site recorded in the cancer 

registry data. Although the summary utilises a definition of oral cancer disparate to that used 

in direct clinical context, CRUK’s statistics offer a comprehensive review of UK-specific data, 

and also contextualises the proportion of oral/pharyngeal tumours attributable to OPC. OPC 

was found to account for 38% of male, and 24.9% of female tumours occurring in this 

region151. Conway et al reviewed 12 UK cancer registries from 1990-1999, finding an 

average annual rise in oral/oropharyngeal cancer incidence of approximately 3%152. Louie et 

al found a marginally higher annual rise of 3.7% in an English population from 1995-2011, 

and predicted a further 45% increase by 2025153. UK oral and oropharyngeal incidence rates 

are currently estimated at around 11:100,000 people yr-1 154, and account for 2% of all new 

cancers151. 

 

Prevalence of HPV within Oropharyngeal Tumours 

The reported prevalence of HPV in head and neck cancer varies considerably, with findings 

of 0-100% of all head and neck tumours testing positive56. Several variables influence the 

proportion of tumour specimens testing positive for HPV, notably anatomical sub-site, 

method used to detect HPV, study date and geographic location. 

As discussed above, HPV has carcinogenic site specificity, with a predilection for causing 

tonsillar and base of tongue tumours. Despite this, the reported prevalence of HPV-positive 

OPC still varies widely (11-100%)155, 156. A systematic review conducted in 2005 found 

overall HPV prevalence to be 35.6%, with a 95% confidence interval of 32.6-38.7%56. Data 

analysed suggested a higher prevalence in North America and Asia (47.0% and 46.3%, 
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respectively), and a lower prevalence in Europe (28.2%). More recent UK data suggest 

prevalence has now risen to around 45-57%157. 

HPV-positive OPC is felt by many authors to be on the increase, accounting for the 0.5%-4% 

per year rise in incidence rate of OPC seen over recent years5, 12, 100, 140, 141, 143, 154, 158. 

Conversely, there has been a general decrease in incidence of head and neck cancers at 

sites other than oropharynx, largely attributed to changing trends in tobacco smoking5. 

These temporal changes will undoubtedly have an effect on the proportion of OPC 

specimens testing HPV-positive. Indeed, Nasman et al have found such a change in tonsillar 

specimens collected from 1970-2007, with a rise in HPV prevalence from 23% of tumour 

specimens taken between 1970-1979, to 79% of specimens taken between 2000-2007143. 

 

Incidence of HPV-Positive OPC 

There is difficulty in directly assessing the incidence of HPV-positive OPC due to the 

absence of a reliable and rapidly applied test, compounded by the relatively rare event of 

OPC formation. However, it is possible to extrapolate data available from cancer registries 

with respect to overall oral/OPC incidence, taking into account the likely percentage of 

tumours attributable to HPV. US and UK age-adjusted rates of oral/OPC are 1.87:100,000 

and 11:100,000 respectively154. Using the European prevalence of HPV as determined by 

Kreimer et al’s systematic review, in addition to CRUK statistics on the proportion of 

oropharyngeal carcinomas contributing to tumours of the oral/pharyngeal region, the age-

adjusted rate of HPV-positive OPC can be estimated at 1.2:100,000 people yr-1 in the UK56, 

151. 

 

Age, Sex, Risk Factors and Ethnicity 

HPV-positive OPC has been generally found to occur in a younger cohort than HPV negative 

OPC65, 72, 84, 89, 107, 159, 160, although this relationship has not been shown by some authors106, 

161. In those studies demonstrating an age difference, patients are around 3-5 years younger 

than HPV negative cases140. As with HPV negative OPC, a significant male predominance is 

seen65, 72, 162. 
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Risk factors appear to be significantly different for HPV-positive OPC. Many studies have 

shown that patients with HPV-positive tumours are less likely to smoke when compared to 

their HPV negative counterparts65, 72, 107, although not all studies have found this 

relationship84. Alcohol exposure is also thought to be less in this group72, 160, although this 

finding is not as statistically significant or as consistently demonstrated as for smoking84 107, 

159. 

Sexual exposure is the major risk factor for HPV-positive OPC. Risk from oral sexual 

exposure has a reported odds ratio of between 1.6-3.9 for developing HPV-positive OPC59, 

62, 63, 65. Higher numbers of vaginal sexual partners is also implicated, with a history of over 6 

lifetime vaginal sex partners being of increased risk (odds ratio 2.7-6.4)62, 63, 65. Less than 6 

lifetime vaginal sex partners has only been implicated in some studies65. History of oral-anal 

contact is associated with marked risk (adjusted odds ratio 19.5)59. 

A number of US studies have found a significant difference in the proportion of HPV-positive 

OPCs demonstrated in White and African-American patients160, 163, 164. A greater percentage 

of HPV-negative tumours helps to account for the reduced prognosis of OPC seen in 

African-Americans when compared to Whites165, 166. Overall survival of HPV-positive and 

negative OPC appears comparable for both ethnic groups, further supporting the notion that 

HPV is the responsible variable for the differences seen163. It is thought that differences in 

oral sexual behaviour may account for this disparity61. 
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4. Mechanism of Carcinogenesis 
 

As alluded to above, viral oncogenes E6 and E7 are known to have a critical role in HPV-

related carcinogenesis. The major effect of E6/7 is a functional blockade of tumour 

suppressor genes encoding p53 and pRb; this is in stark contrast to HPV negative OPC, 

whereby genetic aberration must occur to result in loss of p53/pRb expression. Such losses 

of heterozygosity are acquired as a result of exposure to chemical carcinogens, principally 

as a result of tobacco smoking and alcohol intake167. 

 

Sporadic (HPV-negative) head and neck carcinogenesis is accepted as a multistage 

process, with clearly identified precursor lesions. Cumulative chromosomal loss and proto-

oncogene mutations are thought to occur through the phenotypic stages from hyperplasia to 

dysplasia, carcinoma in situ and then invasive carcinoma168 (Figure 0.3). TP53 (i.e. the gene 

encoding p53) aberration occurs early at chromosome 17p13, as does p16 (encoded on 

chromosome 9p21)168, 169. Loss of heterozygosity at chromosome region 3p21 is also an 

early event that involves loss of tumour suppressor function mapped to that locus 169. 

Chromosome 3p has been shown to contain at least three distinct regions that represent 

tumour suppressor loci, all of which can be affected during carcinogenesis170. Latter events 

include alterations of chromosome regions 11q13, encoding Cyclin D1 (a proto-oncogene), 

and 13q (housing Retinoblastoma)168, 171. A characteristic feature of events seen in non-HPV 

related carcinogenesis is the loss of whole or large portions of chromosomal arms that result 

in gross deletions inclusive of the aforementioned regions. 
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Figure 0.3: A summary of the genomic events associated with carcinogenesis in the head and neck 

region, adapted from Califano et al168. Rectangles represents clinico-histopathologically classifiable 

lesions, arrows denote genomic aberrations (principally losses of heterozygosity) that are linked to 

progression into the next clinically discernible stage. It should be noted that Califano’s original model 

made careful reference to the fact that it is the accumulation of genetic aberrations and not the 

order of acquisition that is important to cancer progression; arrows illustrate the point at which the 

frequency of each aberration plateaus in a cohort of lesions. Although no recognised precursor 

lesion exists in the case of HPV-related oropharyngeal carcinoma, the model proposes either 

hyperplasia or an alternative precursor lesion precedes clinical dysplasia. 

Califano’s analysis of areas of apparently benign mucosa adjacent to premalignant lesions suggested 

that early genetic events are shared by cells in the anatomical region, inferring a common clonal 

ancestor. This feature supports the concept of field cancerisation. Chromosome 9p encodes the 

tumour suppressor protein p16; loss of heterozygosity may therefore be linked to reduced binding of 

E2F (please refer to Figure 0.2 for a summary of p16’s regulatory function of E2F), allowing 

promotion of cell turnover leading to hyperplasia. Loss of p53 (located on chromosome 17p) may 

permit the transition from hyperplasia into dysplasia, with subsequent genomic aberrations 

progressing unchecked. The subsequent aberrations may be illustrated by the progressive haphazard 

cellular arrangements and visible cellular atypia observed in dysplasia as lesions progress from 

“mild” through to “severe”. Additional allelic losses may mark the transition from dysplasia to 

carcinoma, with further aberrations linked to regulators of E2F – Retinoblastoma protein (an E2F-

binder) and cyclin D1 (a controller of CDKs 4&6, which in turn regulate Retinoblastoma binding to 

E2F) are encoded within chromosomes 11q and 13q; loss may therefore exaggerate the 

derangements in cell turnover, in addition to further accrual of derangements that select for an 

invasive phenotype.  
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Figure 0.3: Genomic events seen in the multistep process of head and neck cancer formation 
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Conversely, HPV-related carcinogenesis involves much fewer genetic events, as 

demonstrated in microsatellite analysis of HPV-positive OPC in comparison to HPV negative 

OPC169. Genetic aberrations are also more conservative in comparison to the gross 

deletions seen in HPV negative OPC. Deletions of 17p, 9p and 13q are unnecessary due to 

the actions of viral oncogenes E6 and E7, which is reflected by infrequent allelic loss in 

these regions169. Chromosome 3p aberrations are also rare in HPV-positive OPC (whereas 

common in HPV negative OPC) – this is not easily explained through the classical functions 

of E6 and E7, although it has been hypothesised that there may be further inhibitory effects 

of HPV proteins on the tumour suppressor proteins encoded in this region, which would 

account for the lack of aberrations seen169. 

If there is indeed a viral mechanism of inhibiting the tumour suppressor proteins encoded by 

chromosome 3p, all important mutational events seen in the carcinogenesis model proposed 

by Califano et al are bypassed to the stage of dysplasia (Figure LR3). In cervical carcinoma 

models, expression of E6 and E7 is considered as necessary but not independently 

sufficient to achieve cell immortalisation without further genetic events15, 172. The features of 

HPV related carcinogenesis described above would suggest that this is also true in the case 

of OPC, with virally infected cells requiring subsequent genetic events to progress beyond 

dysplasia. 

The loss of p53 and pRb activity promotes the acquisition of such aberrations, as cellular 

proliferation is allowed to proceed unchecked. High risk HPV E7 causes further instability by 

inducing centromere over-duplication during cell division, an effect independent of its actions 

on pRb20. Accumulation of relatively small chromosomal changes (in both size and number 

when compared to the large deletions seen in non-HPV OPC) may ultimately lead to 

phenotype change from dyplasia through carcinoma in situ, to invasive carcinoma. 

Viral integration into host chromosomes has been implicated with carcinogenesis, 

particularly in cervical cancer14. It is considered that the major effect of integration is through 

the loss of E2, which subsequently leads to E6 and E7 expression as discussed earlier. Viral 

integration does not normally occur in benign HPV lesions; HPV is usually episomal and in 

low copy number20, 173. As keratinocytes terminally differentiate during their progress through 

the more superficial epithelial layers, E2 expression is switched off; this allows for florid viral 

replication and release20. By restricting replication within the basal layer, viral 

immunogenicity is kept to a minimum, avoiding a host response173. This also has the host 
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advantage of avoiding potentially mutagenic cellular turnover through the actions of E6 and 

E7; integration of virus bypasses this protective effect. 

Although the change in viral proteins triggered by chromosomal integration is adequate to 

account for HPV’s carcinogenic potential, it is unclear as to whether this is the sole 

mechanism by which the virus has its effect. The role of insertional mutagenesis at viral 

integration sites may also be of importance, although this is of contention. A systematic 

review of genomic integration sites of HPV in cervical dysplasia and invasive cancer showed 

a random distribution of viral integration over the whole genome, albeit with a strong 

predilection for common fragile sites174. A study included in the systematic review 

corroborated this specifically for HPV16, the viral type most heavily implicated with OPC175. 

However, subsequent studies have concluded that although there is indeed a spread seen 

throughout the genome, integration occurred commonly around cytogenetic bands 4q13.3, 

8q24.21, 13q.22.1 and 17q21 (23% of integrations detected)176, 177. Of particular note is 

8q24.21, as integrations in this region were found to be 1-860kb upstream of the MYC gene 

– a gene commonly disregulated in cancer176. Furthermore, in vitro study of genital tumour-

derived cell lines have shown MYC overexpression to only occur in cell lines that contain 

integrated viral DNA at the 8q24 region178. Whether these findings are reliable, and if so, 

whether they translate to OPC is yet to be determined. Relatively little data is available from 

the direct study of HPV related head and neck cancer, although it appears that integration at 

common fragile sites is also likely in these tumours179, 180. 

In addition to bypassing need for losses of heterozygosity through the activity of viral 

oncoproteins, virus-related epigenetic aberrations also occur. A key function of HPV E6 

oncoprotein appears to be activation of the hTERT promoter181, leading to activation of the 

telomerase complex182. Capacity of E6 to activate telomerase via increased expression of 

hTERT appears to be one of the defining features of virally-induced immortalisation; this 

telomerase activity is regarded as independent of E6’s effect on p53, and moreover has 

been documented as a crucial process in combination with p16 abrogation for 

immortalisation183. This view is not shared by all authors, however – McMurray et al found 

that keratinocyte transfection with a combination of wild-type E7 plus a mutant form of E6 

capable of inducing telomerase but incapable of inducing p53 degradation, did not induce 

immortalisation, whereas mutant E6 capable of inducing p53 degradation without telomerase 

function retained capacity to induce immortalisation. The authors concluded that p53 

degradation was therefore the necessary process via which E6 induces immortalisation 
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when in combination with E7. There are however some limitations of McMurray’s work; 

telomerase-inducing-but-p53-retaining E6 clones demonstrated an extended lifespan 

compared to control (53 population doublings versus 28 for control), and measurements to 

confirm cell crisis leading to mortality was difficult; p16 elevation, a usual marker of cell crisis 

was appropriately deemed irrelevant due to the effects of E7, and the authors therefore 

assessed accumulation of p21CIP1 – a product of p53 activity. Whist this may be a reasonable 

marker of cell crisis, a caveat is that results may by definition be confounded by those lines 

expressing E6 capable of degrading p53; cell crisis may not necessarily be ascertained 

using this marker in the presence of wild-type or p53-degrading E6. A final comment 

regarding McMurray’s findings also lies in the fact that in vivo, wild-type E6 oncoprotein will 

exert an effect on both telomerase and p53 simultaneously; concomitant lack of p53 activity 

may support E6’s telomerase-inducing effects. 

Irrespective of the absolute nature of virally-induced immortalisation, increased telomerase 

activity has been identified as being linked to an increased risk of progression of cervical 

premalignant lesions184. Moreover, telomerase activity has been found to be stringently 

repressed in mortal tissue and reactivated in approximately 90% of cancers185. The 

telomerase-inducing activity of the E6 protein is therefore a clinically significant parameter 

which may contribute to the process of carcinogenesis.  
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5. Accounting for Prognosis 
 

The favourable prognosis of HPV-positive OPC is well documented (Table 0.2). It was 

initially thought that the improvement seen in outcome was a function of increased tumour 

radiosensitivity. Although HPV-positive OPCs are indeed more responsive to radiotherapy, 

the improved outcome of these tumours appears to also be translated to surgery89, 104. A 

more comprehensive effect of viral carcinogenesis must therefore be responsible for tumour 

behaviour. The contemporary view is that the improved prognosis of HPV-positive cancers is 

largely accounted for by the lack of genetic aberration seen in tumour tissue169; persistence 

of wild-type TP53 and RB1 genes is thought to underpin the altered behaviour in response to 

therapy. It has been proposed that the cellular insult sustained as a result of radiotherapy 

may send the cell beyond a critical threshold necessary to overcome the effects of viral 

oncogenes, allowing p53 expression to become re-established186. Indeed, use of siRNA to 

TP53 in E6/E7 expressing lines led to increased radioresistance187. 

Despite the generic effects of viral infection on treatment success, modality-specific effects 

have also been noted. Gubanova et al recently demonstrated the downregulation of SMG-1, 

a potential tumour suppressor protein, in a small cohort of patients with HPV-positive OPC. 

This downregulation also occurred in both normal keratinocytes and HPV-negative cell lines 

in response to E6/E7 transfection as a consequence of SMG-1 promoter hypermethylation. 

Gubanova went on to demonstrate that experimentally downregulating SMG-1 in HPV-

negative cell lines led to increased radiosensitivity, whereas upregulating SMG-1 in HPV-

positive cells decreased sensitivity188. SMG-1 is a Phosphatidylinositol 3-kinase-related 

kinase (PIKK), and one of many regulators of the DNA damage reponse (DDR). It is itself 

activated in response to ionising radiation189. In the absence of SMG-1, the accumulation of 

irreparable DNA double strand breaks triggers apoptosis; HPV-positive tumour depletion of 

SMG-1 may therefore account for a significant proportion of its radiosensitivity. 

Tumour repopulation after radiotherapy also appears compromised in HPV-positive 

disease186. Signalling cascades which drive surviving tumour cells to proliferate may be an 

important aspect of radioresistance. Conflicting reports exists as to the degree of EGFR 

signalling in HPV-positive versus HPV-negative head and neck cancer, although 

experimental data suggest that Akt (downstream of EGFR signalling) is less active in HPV-

positive disease186, 190. 
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Immunomodulation may also play an important role in the HPV-positive tumour response to 

therapy; it has been proposed that radiotherapy may cause an increased immune response 

through many potential pathways. These pathways include increased antigen presentation 

as a result of uptake of necrotic, viral-loaded cells; improved penetrance of immune cells into 

tumour as a result of reduced cellular adhesion post-radiotherapy; upregulation of MHC 

class I; and induction of pro-inflammatory cytokines such as TNF, which may act to reverse 

viral tolerance191. Alterations in viral antigenicity as a response to therapy may also explain 

improvements in outcome seen in the surgical management of HPV-positive OPC. Local 

inflammatory response to the trauma of tissue excision, in addition to the release of cellular 

contents at incomplete surgical margins may very well influence immunity in a similar way. 

One must also consider the potential for a phenotypically less aggressive tumour, which by 

virtue is more responsive to treatment, irrespective of the therapeutic modality chosen. Lack 

of field cancerization is well recognised in HPV-positive tumours, and may contribute in part 

to the improved outcome seen192. The true cause of survival benefit will have implications on 

providing targeted treatment for HPV-positive OPC, as HPV infection may ultimately be a 

non-manipulable prognostic factor. 

Ang et al identified a reduction in the prognostic benefit of a HPV-positive status when 

associated with OPCs occurring in smokers; Ang et al proposed an “intermediate” group, 

where prognosis lay in between that of non-smoker HPV-positive disease and that of HPV-

negative disease in heavy smokers105. The underlying mechanism through which outcome is 

reduced in this intermediate group is unclear – again, this may represent a change in cellular 

process triggered in response to smoking which is subject to targeted therapy, or 

alternatively may represent more general accrual of genetic aberrations which cannot be 

targeted with a standardised approach but may offer opportunity for the development of 

stratified medicine in the management of HPV-negative disease. 
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6. Methods of HPV Detection 

 

There is currently no accepted standard test for the detection of HPV in OPC specimens 193. 

No single method is available that can be applied to both frozen and formalin-fixed paraffin-

embedded (FFPE) specimens, that is also 100% sensitive and specific. Proxy measures of 

HPV infection, such as serum analysis of antibodies to E6, E7 and L1, are poorly specific 

due to the potential for HPV infection at other sites13. No other systemic markers of HPV 

infection exist, as there is no blood-borne phase of HPV infection51. 

Reverse transcriptase polymerase chain reaction (PCR) amplification of viral E6/E7 mRNA is 

now considered as “gold standard” for the detection of clinically significant HPV infection 

within tumour specimens100, 194. However, the method is only reliable when applied to fresh 

frozen specimens, with an estimated 50% reduction in sensitivity when applied to FFPE 

samples195. This reduction in sensitivity is related to RNA instability in specimens which have 

not been fresh frozen196. 

PCR amplification of viral DNA is a highly sensitive method of HPV detection, and can be 

applied to either a single HPV type by amplification of a sequence specific to that type, or 

can be used less specifically to assess presence of multiple HPV types by use of a 

consensus primer195. Despite this, there are significant limitations of the method due to its 

inability to distinguish clinically relevant HPV infection. Presence of latent virus leads to false 

positive results due to the ability of PCR to detect just a few copies of HPV DNA per cell138. 

Attempts have been made to resolve this issue through use of real-time PCR, which 

provides a quantitative analysis of viral load. However, a criticism of this method is that it still 

provides no direct evidence of viral integration or oncogene expression. Furthermore, 

sensitivity is estimated at 92% and specificity 97% when using a cut-off viral load of >0.5 

copies per cell; false positives and false negatives therefore still exist138. Increasing the cut-

off for viral load improves the specificity of this method, but at the expense of further 

reductions in sensitivity. 

DNA in-situ hybridization (DNA-ISH) is felt to overcome some of the limitations of PCR in 

detecting only clinically relevant infection. Nuclear hybridization signals can be visually 

inspected for punctuate or diffuse staining, representing integrated and episomal viral DNA 

respectively197, 198. Presence of a punctate hybridization signal, either alone or in 
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combination with diffuse nuclear signals, therefore reflects clinically relevant HPV infection. 

Although specificity of this method is high (100%), sensitivity is not ideal (83%)138. It has 

been estimated that around 10 copies of virus per cell must be present in order for DNA-ISH 

to detect HPV, although newer ISH kits are thought to be more sensitive195. 

p16 immunohistochemistry (IHC) has become an established surrogate marker of HPV 

infection and has been used in studies to determine HPV-positive OPC. The method 

identifies clinically relevant infection, as p16 overexpression is in response to the loss of 

bound pRb (Figure 0.2b), which in turn implies active transcription of viral oncogene E7. 

However, there appears to be a number of HPV negative tumours that also overexpress 

p16, leading to false positives195. Although sensitivity is quoted as high (100%)138, 195, 

Weinberger et al. have reported a subset of HPV-positive tumours which do not overexpress 

p16; this would infer a sensitivity of less than 100%199. However, Weinberger used real time 

PCR as conclusive evidence of HPV infection, with a lower cut-off of 1 viral copy per 10 cell 

genomes’ worth of DNA90. Given the specificity of 97% for a lower cut-off of 0.5 copies per 

cell, Weinberger’s work would almost certainly include a number of false positives. The 

existence of true HPV-positive tumours that do not overexpress p16 is therefore contentious, 

as it may be such false positives that are p16 negative. However, Wiest et al also noted HPV 

E6/E7 positive, p16 negative tumours, albeit with a lower prevalence than that seen by 

Weinberger et al (14% versus 37%)200. Those tumours of multifactorial aetiology (that is, 

HPV-positive tumours arising in smoker/drinkers) would indeed appear to offer a route 

through which the p16 axis can be abrogated through mutagenesis whilst otherwise 

maintaining DNA/mRNA features of viral infection. Irrespective of the existence of a non-p16 

overexpressing subset of HPV-positive tumours, p16 IHC is not an ideal test in isolation due 

to its low specificity (79%)138, 195, in addition to variability in defining what constitutes a 

positive test201. A number of authors have suggested criteria for a p16 IHC H-scoring 

system, although proposals have not been in full agreement. Jordan et al proposed a system 

of multiplying semi-quantitative IHC intensity staining score by percentage of tumour 

positivity in order to achieve a final H-score, with ROC analysis against HPV16E6/E7 gold 

standard – leading to a proposed cut-off of 60 on a scale of 0-300, yielding a sensitivity of 

91.6% and specificity of 90.4%202. El Naggar & Westra on the contrary have advised a more 

generic definition until a consensus view is agreed, limiting their definition to “strong and 

uniform” p16 staining and recommending additional HPV testing for weak/negative p16 

staining tumours203. A number of recent articles have utilised a definition of 70% or more 

tumour staining strongly positive204-206; indeed, a systematic review correlating human 
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papillomavirus and p16 status also advocated a 70% cut-off201. Although this cut-off may 

infer greatest correlation between p16 IHC and other HPV-specific tests, this is not 

necessarily synonymous with the clinically most valuable point at which to ascribe positivity. 

In the absence of a single, ideal method of HPV detection, some authors have applied a 

combination of tests to improve reliability. Smeets et al recommended p16 immunostaining, 

followed by GP5+/6+ PCR (general primer consensus PCR) in those samples p16 

positive138. Their rationale for using this method was based on data suggesting 100% 

sensitivity and specificity when compared to an E6 mRNA gold standard. However, it should 

be noted that there were independently several false positives for both p16 IHC and 

GP5+/6+ PCR, and the size of the study (48 samples) makes interpretation difficult, as the 

absence of simultaneous false positive results for p16/general primer analysis may have 

occurred by chance. Smeets et al acknowledged this, and calculated a likely 2% chance of 

concurrent false positives when using the technique. 

The combination of two tests considered 100% sensitive should improve specificity with no 

detriment to sensitivity and is therefore commendable. As discussed above, p16 IHC is not 

necessarily 100% sensitive and one must therefore consider the potential for false negatives 

in using this technique. Despite this, p16 IHC is perhaps the most appropriate marker to use 

in combination with another test, as it assesses a very different parameter to other available 

techniques. HPV16 PCR, GP5+/6+ PCR and in-situ hybridization all assess for presence of 

viral DNA; combining such tests is therefore of questionable value. 

Determining the most appropriate DNA-based method to compliment p16 immunostaining 

should take into account the relative merits of each available test. For PCR, the use of 

consensus primers such as GP5+/6+ has an advantage over HPV16-specific primers in that 

any tumours attributable to HPV types other than HPV16 will also be detected as positive. 

The disadvantage of GP5+/6+ is the reduction in specificity in comparison to HPV 16 PCR, 

due to false positive results that would occur from the other viral types. DNA-ISH is a highly 

(100%) specific test, and combining p16 IHC with this test therefore has no benefit. 

It therefore follows that many authors have adopted a PCR-based technique in combination 

with p16 IHC to identify HPV-positive tumours. Whilst E6/E7 mRNA detection remains the 

gold standard, its limitations with FFPE specimens have thus far precluded the technique 

from becoming universally adopted. DNA-ISH also has its advantages due to a high 
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specificity, and is therefore an appropriate test for research in which sensitivity is not of 

paramount concern.  

RNA-ISH is a recent advancement which allows detection of transcriptionally active HPV 

infection and offers (in combination with p16-IHC) the most accurate prognostication of 

patient outcome to date207. E6/E7 mRNA hybridization is achieved using a number of “Z” 

stranded DNA probes complimentary to the target mRNA sequence. Once aligned, two 

adjacent “Z” strands can be subjected to a sequential chromogenic amplification reaction. 

This process circumvents the inherent difficulties with RNA instability in FFPE specimens. 

Schache et al found RNAScope RNA-ISH to have a sensitivity and specificity of 97% and 

93%, respectively196. Schache also found that all RNAScope RNA-ISH false negatives and 

false positives were similarly misclassified using p16 IHC, when compared to the E6/E7 

mRNA qPCR standard196. These findings may suggest there is no additional benefit of 

undertaking p16 IHC in conjunction with RNA-ISH, although the relatively small data set in 

Schache’s study (n=79) precludes any definitive judgement in this respect. 

 

HPV Typing 

The HPV detection techniques described above are generally incapable of discerning HPV 

type. Type specificity is often sacrificed in order to achieve a single test capable of 

determining tumour HPV status through the use of consensus probes capable of flagging a 

number of high-risk HPV types. It is possible to achieve specific HPV typing by use of 

multiple type-specific, rather than pooled probes. Alternative methods of typing include the 

use of western blot or through use of newer techniques such as INNO LiPA HPV genotyping 

or next generation sequencing208. 

Studies into cervical carcinoma suggest HPV 18 infection imparts a poorer prognosis than 

even sporadic cancers, whereas HPV 16 infection is associated with a highly favourable 

prognosis209-211. HPV typing therefore has direct clinical implications in the management of 

cervical carcinoma. However, due to the almost exclusive role of HPV16 in OPC, the 

prognostic influence of HPV 18 remains less clear in head and neck disease, although 

recent work suggests HPV types other than 16 carry less survival benefit212. 
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7. Management of HPV-Positive Disease 

Current oropharyngeal cancer chemo-radiotherapy regimens have been established through 

the addition of concurrent chemotherapy to radical radiotherapy prior to any appreciation of 

the existence of a HPV-related subset213. Whilst this has improved the overall survival of 

non-surgically managed oropharyngeal carcinoma per se214, it remains unclear whether 

current standard therapy is necessary to treat HPV-positive disease successfully; there is at 

present no high-quality evidence to either support or refute the de-escalation of therapy in 

HPV-positive disease215. As previously discussed, HPV-positive oropharyngeal carcinomas 

are extremely radiosensitive216, calling the role of concomitant systemic treatment into 

question. Proposals for de-escalation of therapy have been met with reservation within the 

head and neck oncology community, due to the potential for a worsened outcome should 

withdrawn therapy in fact prove beneficial. Despite this, it is accepted that there is an urgent 

need for evaluation of de-escalated therapy through clinical research217. It is essential to 

research potential withdrawal of treatment through either successive prospective 

randomised trials, or to retrospectively assess clinical outcome of HPV-positive disease prior 

to and after the introduction of therapeutic escalation. 

Two large clinical trials are currently underway to address the feasibility of therapeutic de-

escalation in HPV-positive disease; RTOG 1016 and DeESCALaTE-HPV218, 219. Both studies 

aim to compare standard cisplatin-based chemotherapeutic regimens against cetuximab, an 

EGFR inhibitor. Although not specified, the approach of each trial appears consistent with 

non-inferiority assessment of cetuximab when analysing overall survival rates. A criticism of 

this approach relates to the assumption of definite benefit from current chemotherapeutic 

strategies in HPV-positive disease; cisplatin-based treatment is therefore defined as a 

“positive” control against which to demonstrate cetuximab’s non-inferiority. Should 

chemotherapy in fact provide no additional benefit over radiotherapy alone in HPV-positive 

disease, both trials actually compare two unnecessary treatments, and vindication of 

cetuximab’s use in HPV-positive disease will ensue on the grounds of lower toxicity in 

comparison to cisplatin – irrespective of any true effect of this expensive drug220-222. Indeed, 

there is some evidence that in the case of T1-3 HPV-positive tumours with N0-2c nodal 

status, chemotherapy may be of little benefit223. Fortunately, both RTOG 1016 and 

DeESCALaTE have exclusion criteria of all T0-2 N0 carcinomas; this may reduce the 

potential confounding population of tumours to those of T3 N0 status. 
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8. Management of HPV-Negative Disease 

 

Blanchard et al recently published an updated meta-analysis of the efficacy of chemotherapy 

as additional treatment in head and neck cancer224. Preceding meta-analyses by Pignon et 

al, as part of the same “meta-analysis of chemotherapy in head and neck cancer” (MACH-

NC) collaborative group found “only a small significant survival benefit in favour of 

chemotherapy” when compared to radiotherapy alone, corresponding to an absolute survival 

benefit of 4% over 2-5 years225. Pignon et al failed to recommend chemotherapy for routine 

use on this basis. Interestingly, a further updated MACH-NC meta-analysis published in 

2009 found a more appreciable 6.5% absolute survival advantage of additional 

chemotherapy226. Blanchard’s most recent update included analysis of benefit to specific 

anatomical sub-sites, confirming a 5 year absolute survival benefit of 8.1% in oropharyngeal 

carcinoma. The period reviewed by the 2011 study was from 1965-2000, inferring that the 

majority of carcinomas within the oropharyngeal sub-group were HPV-negative. Brotherston 

et al recently published data to show that 69% of oropharyngeal carcinoma patients 

considered a survival benefit of 5% or less as reason to switch from radiotherapy alone to 

chemoradiotherapy; the data from MACH-NC’s reviews therefore provide evidence for both a 

clinically and statistically significant increase in survival rates with chemoradiotherapeutic 

regimens227. 

On the basis of MACH-NC’s analyses, platinum-based chemoradiotherapy remains 

treatment as standard for the management of oropharyngeal carcinoma in the UK. A number 

of alternative therapeutic approaches are available including transoral laser microsurgery 

(TLM) & transoral robotic surgery (TORS), although no studies directly comparing surgery to 

chemoradiotherapy in a randomised fashion have been undertaken228. The ORATOR trial 

may offer preliminary evidence of TORS efficacy, although primary outcome measures are 

quality of life, with overall survival and progression-free survival being limited to secondary 

outcome measures229. Surgery is generally limited to stage I and II disease230, and is reliant 

on access to both specialist surgical equipment and highly skilled operators. Some operators 

reserve this approach to HPV-positive disease, driven by calls to de-escalate management 

in order to reduce post-therapeutic sequelae231, although others have presented data to 

suggest that oncological outcomes are not sacrificed regardless of HPV status232.  
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It remains beyond the scope of this thesis to discuss the intricacies of current therapy 

beyond that outlined above, other than to make passing reference to the vast combinations 

of modified chemotherapeutic and radiotherapeutic strategies which are available. A number 

of these techniques have been subject of further recent meta-analyses, including altered 

fractionation in locoregionally advanced disease (improved outcome)233, induction 

chemotherapy in locoregionally advanced disease(no difference in outcome)234, cetuximab 

versus platinum-based chemotherapy in locally advanced disease (platinum more 

effective)235 and use of intensity-modulated radiotherapy (IMRT; reduced incidence of grade 

2-4 xerostomias)236. What is clear even in this brief summary is that although 

chemoradiotherapeutic strategies for HPV-negative oropharyngeal carcinoma have 

developed as part of the management of head and neck cancer as a single entity, 

contemporary data suggest that current management strategies offer greater absolute 

survival benefit than most other cancers of the head and neck region224, and furthermore 

survival benefit is of paramount importance227. Therapeutic advances in HPV-negative 

disease are therefore likely to be aimed at therapeutic escalation; indeed, the current 

CompARE trial (Institute of Head and Neck Studies and Education, University of 

Birmingham, UK) aims to validate the benefit of therapeutic escalation by comparing 3 

treatment arms against a concomitant cisplatin plus IMRT standard in intermediate and high 

risk disease, as classified by Ang105. Treatment arms will investigate the benefits of induction 

chemotherapy, dose-escalated radiotherapy and primary resection as addition to current 

standard therapy, offering great scope in refining outcomes in oropharyngeal-specific cohort. 
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9. Stromal Derangement 

 

Differences in the molecular characterisation of HPV-positive tumours may not be limited to 

the epithelium; the importance of epithelial-connective tissue interplay in the progression of 

cancer is becoming increasingly recognised.  Thurlow et al 237 used a combination of spectral 

clustering and gene ontology analysis to determine the most significant pathways influencing 

prognostication in head and neck cancer. Expression of genes associated with the 

composition of the extracellular environment, along with genes linked to cytokine-cytokine 

receptor interaction, highly correlated with clinical outcome. Notably, the over-expression of 

genes encoding a number of matrix metalloproteinases (discussed below in the context of 

fibroblast senescence) was found to be linked with poor clinical outcome. Similarly, Lim et al 

noted a fibroblast gene expression profile that correlated with tumour progression; fibroblast 

expression of -SMA and ITGA6 correlated with survival, and furthermore IGFBP7 (a marker 

of the fibroblast senescence-associated secretory profile) was upregulated in those tumours 

demonstrating greatest genetic aberration. Roepman et al also demonstrated a metastasis-

associated pattern of stromal-specific genes in head and neck cancers through laser capture 

microdissection. Upregulated stromal genes included CTGF, MMP-2, Thrombospondin 2 (a 

TGF- inducer) and ADAM12238, inferring a strong role of the microenvironment in 

supporting tumour metastasis. 

HPV is a strictly epitheliotropic virus and tumour stroma may therefore remain relatively 

undisturbed, in stark contrast to tumours of tobacco/ alcohol origin in which the associated 

connective tissue has been chronically exposed to penetrating carcinogens. Recent 

progress in assessing the role of epithelial-connective tissue interaction in cancer formation 

suggests that penetrating carcinogens may lead to oxidative damage of the principal cell 

residing in connective tissue, the fibroblast239. Furthermore, the instructive capacity of HPV-

related carcinomas may be less than that of their sporadic counterparts; Hassona et al found 

that conditioned medium from genetically unstable oral squamous cell carcinoma lines 

(defined as those lines carrying greater chromosomal damage) more readily instructed 

fibroblasts to acquire a secretory phenotype supportive of tumour invasion compared to 

genetically stable comparators, with TGF- central to this process240. The lack of 

chromosomal damage linked to HPV-positive OPC may lead to a weaker instructive capacity 
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of tumour epithelia, which may in turn lead to a disparity between stromal behaviour in virus-

positive and -negative disease. 

There is some conflict against the concept of decreased stromal support in HPV-positive 

disease; Erez et al found that in cervical carcinoma, epithelial-stromal interaction was active 

through the NF-B pathway241. Moreover, HPV-positive OPCs present at a more advanced 

stage than sporadic tumours, with nodal metastases being more frequent2. In isolation, this 

observation could be attributed to the invasive capacity of the epithelia alone, or may 

alternatively reflect patient demographics. However, recognised difficulties with culturing 

non-smoker, non-drinker HPV-positive cell lines in-vitro would suggest that virus-positive 

tumours are highly reliant on the support of their microenvironment. 

Those connective tissue markers linked to cancer progression and prognostication, such as 

smooth muscle actin (SMA)242 and markers of fibroblast senescence (HIRA and SA-Gal)243 

are yet to be characterised for HPV positive disease. Similarly, epithelial-stromal interaction 

in-vitro remains undocumented. 

 

 

Fibroblast Senescence 

Penetrating carcinogens from cigarette smoke and smokeless tobacco have been shown to 

raise levels of reactive oxygen species (ROS) within fibroblasts244. Oxidative damage occurs 

within the cell, driving entry into a viable, but replicatively quiescent state, known as 

senescence245.  In addition to cell cycle arrest, an altered secretory phenotype has been 

demonstrated in a number of senescent cells246, including fibroblasts associated with various 

oral cavity lesions244. Pitiyage et al observed that in oral submucous fibrosis (OSMF), 

senescent fibroblasts accumulate as lesions progress; 1.9% of fibroblasts from early OSMF 

were noted to be senescent (compared to 0.4% of control fibroblasts), increasing to 3.7% of 

fibroblasts in cases of advanced OSMF with dysplasia243. Pitiyage demonstrated cell culture 

evidence that oxidative stress resulting from mitochondrial damage was the major process 

through which senescence had been induced, and furthermore demonstrated that the 

senescent population expressed high levels of MMP-1 and MMP-2. Increased secretion of 

osteopontin and matrix metalloproteinases (particularly MMP-3), in addition to a reduction in 

tissue regulators have been identified as a characteristic feature of tumour-associated 
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senescent fibroblasts, leading to a connective tissue microenvironment that is supportive of 

tumour invasion244, 245, 247. The findings of Thurlow et al suggest that poor prognosis head 

and neck tumours have increased genetic expression of these aforementioned factors, 

further corroborating the influence of the microenvironment on tumour behaviour237. There is 

also evidence that gene expression varies greatly between HPV-positive and -negative 

tumours, with marked differences seen in expression of genes involved in cell cycle 

control248. Although these analyses of gene expression have fundamentally addressed the 

cellular processes undertaken within neoplastic epithelium, the influence this has on the 

surrounding connective tissue and associated microenvironment is anticipated to be 

appreciable. 

Senescent fibroblasts, due to their lack of mitotic activity, become highly resistant to 

radiotherapy and chemotherapeutic strategies. Thus, following (chemo)radiotherapy, an 

environment highly supportive of any surviving tumour cells will persist. Experimentally-

induced senescent fibroblasts have been shown to infer radio-resistance to co-cultured 

breast carcinoma cells in such a manner249. 

 

 

Myofibroblast Activation and Smooth Muscle Actin (SMA) 

Carcinogen exposure may potentiate fibroblast differentiation into myofibroblasts within 

tissue stroma. Myofibroblast secretory function differs from that of the native fibroblast, 

demonstrating a change in epithelial-connective tissue interplay through vβ6 integrin-

dependent activation TGF-1, of which SMA acts as a marker242. This altered secretory 

function appears to support tumours in an analogous way to the altered secretory function 

induced through fibroblast senescence. 

Stromal smooth muscle actin (SMA) expression has recently been demonstrated as the 

single most reliable predictor of mortality in oral squamous cell carcinoma, superseding even 

established measures such as tumour staging and grading242. SMA therefore represents a 

highly robust measure of stromal derangement, and characterisation of SMA expression in 

HPV-positive disease is of importance in establishing the role of epithelial-connective tissue 

interplay. HPV-positive and negative disease may also show a difference in epithelial-

connective tissue interplay relating to vβ6 integrin dependent activation TGF-1. 
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10. Hypothesis, Aims & Objectives 

 

Hypothesis 

HPV-positive oropharyngeal carcinoma is microenvironmentally less active than HPV-

negative disease. This feature may account for prognosis and may be reflected in how 

conditioned medium from representative oropharyngeal carcinoma cell lines interact with 

fibroblasts. A characteristic, tumour-supportive fibroblast secretory response may be 

accomplished de novo in normal oral fibroblasts exposed to cell line conditioned medium, 

rather than requiring the presence of “pre-conditioned” cancer-associated fibroblasts. Those 

factors secreted by fibroblasts in response to oropharyngeal cancer cell lines may be a 

definitive feature in distinguishing HPV-positive and -negative disease, and may furthermore 

be subject to clinical blockade. 

 

(A) Aims & (O) Objectives  

A1. To acquire and authenticate two HPV-positive and two HPV-negative oropharyngeal 

carcinoma cell lines in order to model microenviromental interactions in HPV-positive and 

HPV-negative disease 

O1. Acquisition and successfully culture a number of oropharyngeal carcinoma lines of 

mixed HPV status, validate the HPV status of each cell line using PCR in addition to external 

validation of cell lines to confirm authenticity – inclusive of STR profiling. Determine the most 

representative HPV-positive and -negative cell lines to take forward in experiments by 

reviewing the available literature 

 

A2. To optimise a 2D tissue culture model of microenvironmental interactions between cell 

lines and fibroblasts, using conditioned medium incubations 

O2. Collect optimised and normalised conditioned medium from cell lines in order to 

stimulate normal oral fibroblast cultures. Stimulate fibroblasts and collect a second 

normalised conditioned medium containing the secretory response. Determine the most 
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suitable periods over which conditioned medium should be collected, along with the most 

suitable concentrations of conditioned medium in order to observe biological effect 

 

A3. To determine any changes in biological activity of oropharyngeal carcinoma lines in 

response to conditioned medium taken from fibroblasts stimulated by cell line conditioned 

medium 

O3. Optimise and undertake suitable 2D migration and proliferation experiments of cell lines 

exposed to stimulated fibroblast conditioned medium versus unstimulated fibroblast control 

 

A4. To determine any difference between HPV-positive and HPV-negative cell lines in terms 

of their interactions with fibroblasts in conditioned medium experiments 

O4. Statistically compare HPV-positive and HPV-negative cell line behaviour in 2D migration 

and proliferation assays following exposure to stimulated fibroblast conditioned medium. Use 

a triplicate of fibroblast cultures in order to robustly validate in-vitro findings 

 

A5. To determine the underlying molecular profile of any changes observed 

O5. Undertake cytokine array analysis of cell line and fibroblast conditioned medium, identify 

key factors expressed differently in HPV-positive versus HPV-negative cell lines and/or 

stimulated fibroblasts 

 

A6. To identify potential therapeutic targets for the management of disease stratified by virus 

status and microenvironmental biomarkers 

O6. Validate those candidate factors identified by cytokine array in order to identify 

molecules responsible for driving any changes observed. Use clinically-relevant inhibitor 

drugs in order to confirm therapeutic potential of targeting the respective molecules and also 

to further validate the respective candidates 
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A7. To apply 2D findings to a 3D model of disease 

O7. Successfully culture cell lines in an appropriate 3D model of invasion using either DED, 

matrigel or alternative 3D matrix. Repeat inhibitor experiments in 3D as appropriate 

 

A8. To validate tissue culture findings in a pilot cohort of oropharyngeal carcinomas 

O8. Collate biopsy specimens taken from a pilot cohort of oropharyngeal carcinomas, 

confirm HPV status using a combination of p16 immunohistochemistry and RNA in-situ 

hybridization, undertake biomarker analysis relevant to tissue culture findings using standard 

immunohistochemistry and/or RNA in-situ hybridization 
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Chapter 1: Confirmation of HPV Status, Validation of 

Cell Lines & Optimisation of Migration Assay 

 

Introduction 

Analysis of HPV Status in Cell Lines 

Analysis of HPV status remains a contentious issue within the realms of the clinical 

assessment of oropharyngeal tumour specimens. Contention largely lies around the analysis 

of formalin fixed tissue – whilst a gold standard exists for fresh specimens (E6/E7 mRNA 

analysis)138, 196, this method of analysing formalin-fixed tissue specimens is recognised as 

highly unreliable. For means of cohort analysis (see Chapter 8), a combination of p16 IHC 

and RNAScope RNA ISH have been determined as providing the most clinically valuable 

index of HPV status, as these two tests carry the greatest prognostic significance of all HPV 

analyses207. 

HPV analysis of oropharyngeal cell lines using PCR remains less disputed, presumably due 

to PCR analysis being a common standard in the validation of any gene in vitro, along with 

access to an unlimited source of “fresh tissue” equivalent and use of multiple probes 250. 

Unlike pathological specimens, cell cultures should contain a pure sample of the carcinoma 

line and therefore a positive finding of HPV DNA infers infection within that specific line; 

there is no potential for incidental infection of surrounding tissue as may be seen in the 

former. 

PCR analysis of clinical specimens has commonly involved the use of general primers in 

order to improve sensitivity251, although type-specific probes are available138. Irrespective of 

which probe is used in the clinical environment, as extensive an approach to PCR analysis 

as in-vitro is likely prohibited by the fixation process and the cost of clinically-validated kits. 

An HPV16 E1 PCR Taqman probe, based on DNA sequencing work by Seedorf et al and 

Kennedy et al has been validated and is commercially available (Applied Biosystems, UK) 

for use in cell culture252, 253, whereas PCR involving other HPV genes/ types has been 

undertaken using custom probes180, 250, 254.  
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Analysis of Migration In-Vitro 

Invasion is considered a hallmark of malignancy255; clinical “invasion” of tumour relies on a 

group of aberrant characteristics including motility, directionality and enzymatic digestion of 

extracellular matrix. Whilst not reflecting the comprehensive properties of invasion, analysis 

of cellular migration remains an accessible method of tissue culture tumour modelling. It is 

therefore an important component in the analysis of carcinoma behaviour in-vitro, although 

methods used to undertake such migration analyses vary. A common approach is to review 

cellular movement in two dimensions; that is, migration of a confluent cell culture across a 

predetermined gap. Perhaps the most intuitive method of introducing such a gap in an 

otherwise confluent cell culture is to mechanically debride a portion of the confluent culture 

using an instrument tip – the so-called “scratch” assay. Whilst this method is an established, 

cheap and readily accessible technique256, there are some limitations in its validity. 

One major factor in the validity of any migration assay lies in deciphering true cellular 

migration from the net effects of cellular proliferation within an already-confluent culture 

leading to passive gap infill. Whilst a recent Nature Protocols publication bears no reference 

to addressing cellular proliferation whist undertaking the scratch assay technique256, and 

indeed many publications do not take proliferation into account257-259, the literature also 

commonly sites serum starvation or the use of an inhibitor of cellular turnover such as 

mitomycin C or DMSO260-263. The variability in choice of technique may reside in whether a 

particular piece of research needs to distinguish cell turnover from true migration. Some 

authors have undertaken migration assays both with and without mitomycin C in order to 

more accurately reflect migratory and proliferative contributions to wound closure260, 261, 264. 

Mitomycin C is an aziridine-containing isolate from Streptomyces spp, and is a potent DNA 

crosslinker. DNA crosslinking leads to replication arrest, thereby inhibiting cellular 

proliferation. Whilst mitomycin C’s anti-proliferative effect offers a reproducible method of 

isolating true migration, a truly representative migration profile is not guaranteed – there may 

be subtherapeutic mitomycin dosing, or conversely toxic effects leading to cell death. 

Moreover, the intracellular consequences of DNA crosslinking may adversely affect cellular 

motility. These features may have dissuaded some authors from its use. 

The method of “scratch” introduction may also present a challenge in terms of disturbing the 

immediate cellular milieu. Cell rupture during the mechanical scratch may lead to release of 

a number of factors, thereby creating variability in subsequent migrational behaviour. The 
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force at which the scratch is introduced may not only influence the behaviour of cells, but 

also determine the width of scratch that is produced. Methods to circumvent these issues 

include the use of silicone stoppers attached to the base of a culture well prior to cell 

seeding and subsequent confluence; the removal of the stopper at the start of the assay 

aims to avoid cell rupture and may potentially offer a process of creating a uniform gap. 

Manufacturer’s data suggest that in fact the reproducibility of gap size is comparable 

between mechanical scratches introduced using a pipette tip and voids left by silicone 

stoppers. The reproducibility of the subsequent cellular migration does however appear to be 

superior using the silicone stopper technique265. 

 

This chapter addresses the initial confirmation of HPV status & validation of cell lines, and 

optimisation of a contemporary silicone stopper migration assay technique, taking into 

account the limitations discussed above in order to achieve a method which is both 

reproducible and representative of cellular migration in isolation from proliferation. 
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Methods 

 

Retrieval of Cell Lines 

Seven head and neck cancer cell lines (UD SCC 02, UPCI SCC 072, UPCI SCC 089, UPCI 

SCC090, UPCI SCC 152, UPCI SCC154 and VU 147T) were received as a kind gift from Dr. 

S. Thavaraj, London following completion of appropriate Material Transfer Agreement with 

Prof. S. Gollin, University of Pittsburgh School of Public Health, Pittsburgh for lines with the 

prefix “UPCI”. VU 147T (also known as 93-VU-147T) was originally cultured at the Free 

University Hospital, Amsterdam179, and UD SCC 02 (UD SCC-2) was originally cultured at 

the University of Dusseldorf, Germany266. A further Human Tonsillar Epithelium (HTE) line, 

experimentally-immortalised though insertion of HPV 16 E6 and E7 oncogenes (HTE E6 E7) 

was received as a kind gift from Prof. E. Blair, Leeds, serving as a positive control for the 

HPV16 E6/E7 oncogenes, and negative control for all other viral genes. 

All lines were expanded in the recommended media (Tables 1.1 & 1.2) and then frozen in 

liquid nitrogen for stock. Lines were then carefully observed and weaned onto normal media 

(DMEM plus 10 % FCS, with 2 mM L-glutamine & 50 IU/50 g mL-1 penicillin-streptomycin) 

in order for conditioned medium experiments outlined in Chapter 2 to be undertaken using 

identical media in all cell lines and primary cultures. The literature was then reviewed to 

confirm reported HPV status and to determine the most representative HPV-positive and 

HPV-negative oropharyngeal carcinoma lines to be used in experimentation. Table 1.3 

summarises the HPV status and demographics linked to each cell line, as reported in the 

literature179, 180, 250, 254, 267-269. UPCI SCC072 and UPCI SCC 089 were chosen as 

representative HPV-negative lines, whereas UD SCC2, and UPCI SCC090 were chosen as 

representative HPV-positive lines. A further cell line, FaDu was initially trialled in the 

migration experiments described later in the chapter, but was discarded from use in further 

work due to failure of trial ORISTM migration assays, whereby cells retracted to form thin 

anastomosing strands of non-viable cells. 

All cell lines were tested for mycoplasma on a monthly basis using the Ez-PCR mycoplasma 

test kit (Biological Industries, Kibbutz Beit Haemek, Israel). 
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Table 1.1: Composition of Modified E-media, used for culture of HTE E6 E7 

Additive Volume & 
Concentration 

Final 
Concentration 

Storage Supplier 

DMEM 330 mL 67% 4 oC Sigma, Poole UK 
Ham’s F12 108 mL 22% 4 oC Sigma, Poole UK 
FBS 50 mL 10% 4 oC Sigma, Poole UK 
L-glutamine 5 mL: 200 mM 2 mM -20 oC Sigma, Poole UK 

3, 3, 5- Tri-
iodothyronine 

500 L; 1.36 g mL-1 1.36 ng mL-1 -20 oC Sigma, Poole UK 

Apo-Transferrin 500 L; 5 mg mL-1 5 g mL-1 -20 oC Sigma, Poole UK 

Hydrocortisone 80 L; 2.5 mg mL-1 4 g mL-1 4 oC Sigma, Poole UK 

EGF 25 L; 100 g mL-1 5 ng mL-1 -20 oC Sigma, Poole UK 

Cholera Toxin 500 L; 8.47 ng mL-1 8.47 ng mL-1 4 oC Sigma, Poole UK 

 

 

 

 

Table 1.2: Composition of Media Used for expansion of Cell Lines UD SCC02, UPCI SCC072, UPCI 

SCC089 and UPCI SCC090 

Additive Volume & 
Concentration 

Final 
Concentration 

Storage Supplier 

MEM with Earle’s 
salts 

450 mL 87 % 4oC Sigma, Poole UK 

FBS 50 mL 10 % 4oC Sigma, Poole UK 
L-glutamine 5 mL; 200 mM 2 mM -20oC Sigma, Poole UK 

Penicillin/ 
streptomycin 

5 mL; 5,000 U penicillin 
and 5 mg streptomycin  
mL-1 

50 U mL-1 

50 g mL-1 

-20oC Sigma, Poole UK 

NEAA 5 mL; 100X solution 1X 4oC Sigma, Poole UK 
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Table 1.3: Summary of Retrieved Cell Lines  

Cell line Site Nature 
HPV 
status p53 status 11q13 Smoker Drinker 

UPCI SCC090180, 250, 267, 269  Base of tongue Recurrence Positive Wild Type Not Y Y 

UPCI SCC072267-269  Tonsil New primary Negative Mut (179) Amplified Y Y 

UPCI SCC089267-269  Tonsil New primary Negative - (**) Amplified Y Y 

UPCI SCC154267, 269  Tongue New primary Positive Wild Type Not Y Y 

UPCI SCC152180, 267  Hypopharynx New primary* Positive Wild Type Not Y Y 

93-VU-147T 179, 254 Floor of Mouth New primary Positive Wild Type   Y Y 

UD SCC2254, 266, 269  Hypopharynx   Positive Wild Type   
  HTE E6 E7 N/A Experimental Positive     
  

 

Cell line 
Family 
History Outcome Age Gender Histology Grade Stage 

UPCI SCC 090 Y No evidence of disease (*) 46 M Poorly differentiated, basaloid 3 T2N0 

UPCI SCC 072 Y No evidence of disease   61 F Moderately differentiated 2 T3N2b 

UPCI SCC 089 N Died of disease 58 M Moderately differentiated 2 T4N2b 

UPCI SCC 154 N   54 M   3 T4N2 

UPCI SCC 152 Y   47 M   2 - (**) 

93-VU-147T 
 

  58 M Moderately differentiated 
 

T4N2 

UD SCC 2 
 

  
 

M   
 

T1N2M0 

HTE E6 E7 
 

        
 

  
 

* despite reports of no recurrence of disease in papers l inked to UPCI SCC090, UPCI SCC152 is  widely documented as a  cell line derived from a recurrence in the same patient267. Conflicting 

reports  of the origins and viability of UPCI SCC152 can be found, whereby the line was considered as a new primary and even failed to grow in cell culture 180. UPCI SCC152 was a 

hypopharyngeal tumour occurring 1 year following UPCI SCC090; the timescale and proximity to the anatomical origin of UPCI SCC090 may have led to the conflicting reports of 

recurrence/new primary. ** reported with a  strikethrough in the literature, without explanation267
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M1.1: Validation of Cell Line HPV Status 

 

Cell Pellet 

For each cell line, a confluent 75 cm2 flask was trypsinised and the cell suspension 

centrifuged at 1,000 rpm for 5 minutes. The supernatant was then discarded, and remaining 

cell pellet resuspended in PBS and centrifuged for a further 2 mins at 3,000 rpm. The final 

cell pellet was immediately stored at -80 oC until use. Triplicate biological repeats were 

undertaken for each cell line (HTE E6 E7, UD SCC02, UPCI SCC072, UPCI SCC089, UPCI 

SCC090). 

 

RNA Extraction 

RNA extraction was undertaken for each cell line (ISOLATE RNA kit, Bioline Reagents Ltd. 

London, UK). Cell pellets were suspended using 450 L lysis buffer and incubated for 3 mins 

at room temperature. The cell suspension was then centrifuged for 2 mins at 10,000 x g in a 

spin column, allowing separation of filtrate from cellular debris. 450 L 70% Ethanol was 

then added as an antisolvent. The ethanolised filtrate was then transferred to a second spin 

column, and again centrifuged for 2 mins at 10,000 x g. The filtrate was discarded, and the 

spin column placed over a fresh collection tube, 700 L wash buffer added and then 

centrifuged at 10,000 x g for 1 min to remove co-precipitated salts. The collection tube was 

then discarded and a further centrifugation process undertaken at 10,000 x g for 3 mins. 50 

L RNAase-free water was then added to the spin column membrane to dissolve 

precipitated RNA, incubated at room temperature for 1 min and then centrifuged at 6,000 x g 

for 1 minute to elute the retained RNA. Successful RNA extraction was then confirmed using 

a Nanodrop 1000 Spectrophotometer (Thermo Fischer Scientific), quantifying RNA 

concentration and comparing absorbencies at 230, 260 and 280 nm to assess RNA purity. A 

260 nm:280 nm absorbance ratio of approximately 2.0, in addition to a monophasic 

absorption peak, were used as criteria to confirm RNA purity. 

 

 



 

44 
 
 

 

cDNA Formation 

Each RNA sample was diluted to 500 ng L-1 prior to cDNA formation. An initial PCR run 

using cDNA from 100 ng L-1 RNA led to late amplification, and therefore prompted the use 

of 500 ng L-1 RNA samples. cDNA reverse transcription reactions were undertaken using 

10 L RNA samples from each cell line in combination with 10 L reverse transcription 

reagent mixture, prepared according to manufacturer’s instructions (Applied Biosystems 

UK). Components of the final reagent mixture are summarised in Table 1.4, below. cDNA 

formation was undertaken using a DYADTM “DNA Engine” PCR machine, using a thermal 

cycling program summarised in Table 1.5. 

 

Table 1.4: Reagents used in Reverse Transcription reaction 

Component Volume (L) per reaction 

10 X RT buffer 2.0 
25X dNTP mix (100mM) 0.8 
10 X RT random primers 2.0 
MultiscribeTM reverse transcriptase 1.0 
Nuclease-free H2O 4.2 

500 ng L-1 RNA sample 10.0 

Total 20.0 

 

Table 1.5: Thermal Cycle Program for cDNA Formation 

Temperature Time 

25 oC 10 mins 
37 oC 2 hrs 
85 oC 5 mins 
4 oC Indefinite 
 

 

HPV16 E1 qPCR 

A commercially available Taqman probe for HPV16 E1 (FAM reporter) was purchased from 

Applied Biosystems, UK. A probe for the B2M housekeeping gene was used in parallel to the 

E1 probe (VIC reporter). Concomitant 10 L experiments on cDNA extracted from each cell 

line were run in a 96-well PCR plate; each experiment was undertaken in triplicate repeat. 

Table 1.6, below, summarises the components of the 10 L PCR mixture. Reagents were 
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centrifuged for 1 min at 1,000 rpm and then exposed to PCR reaction conditions of 50 oC for 

2 mins, 95 oC for 10 mins, followed by 40 cycles of 15 s at 95 oC/ 1 min at 60 oC using a 

7900 Fast real-time PCR Machine. 

 

Table 1.6: PCR Reagents 

 Volume (L) 
Mastermix                 (Applied Biosystems, UK) 5 
Nuclease free H2O 3.5 
B2M reporter            (Applied Biosystems, UK) 0.5 
E1 probe                    (Applied Biosystems, UK) 0.5 
cDNA sample 0.5 

 

 

 

HPV16 E6 qPCR 

A custom Taqman probe for HPV16 E6 (FAM reporter) was purchased from Applied 

Biosystems, UK, using a previously published sequence of 5′-(FAM)- 

CCCAGAAAGTTACCACAGTTATGCACAGAGCT-(TAMRA)-3′ 270. The following primers 

were used for HPV 16-specific E6 amplification: HPV 16 E6 forward primer, 5′-

TCAGGACCCACAGGAGCG-3′ HPV 16 E6 reverse primer, 5′-

CCTCACGTCGCAGTAACTGTTG-3′. 

rtPCR was undertaken using a 7900 Fast real-time PCR Machine. A probe for the B2M 

housekeeping gene was initially used in parallel to the E6 probe using a VIC reporter. 

Concomitant 10 L experiments on cDNA extracted from each cell line were run in a 96-well 

PCR plate; each experiment was undertaken in triplicate repeat. Reagents were prepared as 

summarised in Table 1.7, centrifuged for 1 min at 1,000 rpm and then exposed to PCR 

reaction conditions of 50 oC for 2 mins, 95 oC for 10 mins, followed by 40 cycles of 15 s at 95 

oC/ 1 min at 60 oC. Due to parabolic amplification plots encountered during initial 

experimentation (see results section), PCR was initially re-run with increasing dilutions of 

HPV16 E6 probe/primer to rule out a “hook” effect from using an over-concentrated 

probe/primer solution and then further repeated without B2M reporter; identical amplification 

plot patterns occurred in all experiments. Amplification products were therefore finally run 
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under agarose gel electrophoresis to confirm presence/absence of PCR products of the 

correct molecular weight, as described below. 

 

Table 1.7: PCR Reagents 

 Volume (L) with B2M Volume (L) without B2M 
for agarose electrophoresis 

Mastermix       (Applied Biosystems, UK) 5 5 
Nuclease free H2O 3.5 4 

B2M reporter  (Applied Biosystems, UK) 0.5 - 
E1 probe          (Applied Biosystems, UK) 0.5 0.5 
cDNA sample 0.5 0.5 
 

 

2.5 % Agarose Gel Electrophoresis 

Parabolic graphs obtained from HPV16 E6 Taqman PCR in cell lines HTE E6 E7, UD SCC2 

and UPCI SCC090 prompted further investigation to determine whether correct amplification 

products had been created. Final confirmation of reaction products was achieved by means 

of agarose gel electrophoresis appropriate to <100 kbp271. A 2.5% agarose gel was created 

by dissolving 2.5 g anhydrous agarose in 100 mL X1 TAE (TAE constituents are 

summarised in Table 1.8). 1 L Ethidium Bromide was added to the solution before allowing 

the gel to set in an electrophoresis tray. 2 L loading dye was added to each 10 L PCR 

well, before loading separate lanes of the gel. A 100 bp DNA ladder was used as reference. 

PCR reaction products from E1/B2M and E6 amplification were run for all cell lines. 

Electrophoresis was undertaken at 120 V for 45 minutes. 

 

Table 1.8: TAE Constituents (X50 solution) 

Constituent Amount 

Tris base 242 g 
Glacial acetic acid 57.1 mL 
EDTA 0.5M (pH8) 100 mL 
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DNA Extraction for STR Profiling 

Cell pellet formation was undertaken as described in PCR analysis, above, for each cell line. 

DNA extraction was then performed on a cell pellet for each line using a WizardR Genomic 

DNA Purification Kit (Promega, Madison, USA). Cells were washed and resuspended in 

PBS, then exposed to 600 L Nuclei Lysis Solution and pipetted until all visible cell clumps 

were dissolved. 3 L RNase Solution was then added to the nuclear lysate and mixed by 

inverting 5 times, followed by incubation at 37 oC for 20 mins. After 5 mins cooling to RT, 

200 L Protein Precipitation Solution was added to the sample and vortexed for 20 s. The 

sample was then chilled on ice for 5 mins, followed by centrifugation at 13,000 X g for 4 

mins. The DNA-containing supernatant was then removed and pipetted into a 

microcentrifuge tube containing 600 L isopropanol. The solution was mixed through gentle 

inversion until strands of precipitated DNA became visible, and then centrifuged for 1 min at 

13,000 X g. The supernatant was then discarded and 600 L 70% Ethanol added in order to 

wash the precipitated DNA. The tube was then centrifuged at 13,000 X g for 1 min, and the 

Ethanol supernatant carefully removed before allowing the DNA pellet to dry for 15 mins at 

50 oC. The DNA pellet was then resuspended in 50 mL dH2O and stored at -20 oC until use. 

DNA samples were then transported on ice for external STR profiling by the CRUK Cancer 

Centre Genomics Facility, Leeds Institute of Cancer and Pathology. STR profiling summaries 

are given in Appendix 1. 
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M1.2: Optimisation of ORISTM Migration Assays 

Trial Seeding Densities 

The appropriate seeding densities for each cell line to be used in experimentation were 

determined using serial dilutions of each cell line cultured to approximately 80 % confluence, 

trypsinised and then resuspended in media. All cells lines were initially suspended to a 

concentration of 1 million cells mL-1, other than UD SCC02 and UPCI SCC 090 (suspended 

at 2.5 million cells mL-1). The increased concentration used for UD SCC02 and UPCI SCC 

090 was in response to initial practice seeding, for which 1 million cells mL-1 was inadequate 

for achieving overnight confluent seeding into assay wells. 

For each cell line, 100 L of suspension was pipetted into a well of a manufacturer-supplied 

96-well ORISTM assay-compatible plate at target concentration, with 100 L of subsequent 

dilutions from 90 % to 10 % of initial concentration pipetted into adjacent wells. Each well 

was reviewed after overnight incubation to determine which dilution corresponded to the 

optimal cellular confluence at the given time. 

 

Optimisation of Mitomycin C Concentration for Migration Assay 

Due to potential cellular toxicity at higher doses, optimal lowest dose of mitomycin C 

concentration for the inhibition of proliferation in each cell line (UD SCC02, UPCI SCC072, 

UPCI SCC089, UPCI SCC090) was confirmed through flow cytometry, using plots of cell 

replication (CellTraceTM, Far Red Invitrogen, Life Technologies, Paisley, UK). mitomycin C 

was purchased from Sigma (Poole, UK, Cat number M4287-2MG), reconstituted in distilled 

water to a concentration of 0.5 mg mL-1, filter sterilised, snap-frozen in liquid nitrogen and 

stored in a light-protected container at -80 oC. The available literature was then used as a 

guide for appropriate mitomycin exposure period and concentrations in order to inhibit cell 

proliferation272, 273. 

CellTraceTM was added to separate 70 % confluent 75 cm2 flasks containing each cell line at 

a concentration of 0.5 M in PBS, and incubated at 37 oC for 15 mins. The flasks were then 

washed in PBS before adding standard media for 30 mins in order for cells to recover. Each 

cell line was then trypsinised and seeded into 15 wells, using multiple 12-well plates, at a 

concentration of 100,000 cells per well and left overnight to adhere. A 3.5 hr incubation with 
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mitomycin C at concentrations of 10, 2, 0.5, 0.25 and 0 gmL-1 in triplicate repeat was then 

undertaken 24 hrs post-seeding. A PBS wash was then undertaken before adding fresh 

standard media into each well and then incubating at 37 oC for 3 days. 

After 3 days’ incubation at 37 oC, each experimental well was trypsinised, centrifuged at 

6,000 rpm for 2 mins, supernatant carefully aspirated, washed X 2 by resuspension of pellet 

in 1 mL PBS, repeat centrifugation for 2 mins at 6,000 rpm and supernatant aspiration. The 

final pellet was resuspended in 300 L 37 % formaldehyde, stored overnight at 4 oC 

protected from light and then analysed using a Calibur flow cytometer, recording absorbance 

at 660 nm. 

Trial ORISTM Migration Assay 

Following optimisation of mitomycin C exposure and seeding densities for each cell line, a 

trial ORISTM migration assay was run in normal media (DMEM plus 10 % FCS, with 2 mM L-

glutamine & 50 IU/50 g mL-1 penicillin-streptomycin) in order to determine the optimal 

period over which to run each migration assay. 

Cell lines UD SCC02, UPCI SCC072, UPCI SCC089 and UPCI SCC090 were grown to 70 

% confluence in separate 75 cm2 flasks. Cells were washed twice in PBS, trypsinised, 

centrifuged at 1,000 rpm and then resuspended in normal media. Each cell suspension was 

then counted using a haemocytometer, appropriately diluted using normal media, and re-

counted in order to achieve the preoptimised seeding concentrations summarised in Table 

1.10. ORISTM assay plates were prepared under sterile conditions, mounting silicone 

stoppers into each well using the manufacturer-supplied location device. 100 L of each cell 

suspension was then pipetted into respective ORISTM assay wells and left overnight to 

adhere. 

Following cell adherence and confirmation of well confluency using an inverted lens 

microscope, preoptimised mitomycin C suspension in normal media (please refer to Table 

1.9) was prepared for each cell line from snap-frozen 0.5 mg mL-1 aliquots of mitomycin C 

stored at -80 oC. All handling of mitomycin C was undertaken in a darkened tissue culture 

hood in order to avoid excessive light exposure.  

Silicone stoppers were then removed from assay wells using the manufacturer supplied 

retrieval tool, exposing the respective cell exclusion zone, and normal media carefully 

aspirated off each well ensuring contact was avoided with the well base. 2 X 100 L PBS 
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washes were then undertaken, and then 100 L mitomycin C in normal media carefully 

pipetted into respective wells and incubated for 3.5 hours at 37 oC in the dark. Following 3.5 

hours incubation in mitomycin C, baseline void photomicrographs were taken using a X4 

objective lens. 

Following mitomycin C incubation, assay wells were washed X2 in PBS and then 100 L 

HGF/inhibitor suspension carefully pipetted into respective wells. ORISTM assay plates were 

then incubated and visually inspected at 10 h, 15 h, 20 h, 24 h, 48 h and 72 h. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

51 
 
 

 

Results 

Figure 1.1: NanodropTM Analysis of extracted RNA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: NanodropTM analysis of extracted RNA, demonstrating a monophasic peak plus 260/230 

nm light absorption ratios of approximately 2.0 in all specimens, confirming high quality RNA 

extraction throughout. 
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Figure 1.2: HPV16 E1 qPCR amplification plot 

 

 

 

Figure 1.2: HPV16 E1 qPCR amplification plots for cell lines  HTE E6 E7, UD SCC02, UPCI SCC072, UPCI 

SCC089 and UPCI SCC090. X-axis denotes time, Y-axis denotes absorbance. Note HPV16 E1 

expression in lines UD SCC2 and UPCI SCC090, consistent with their reported HPV16-positive status. 

Note the absence of amplification of HPV16 E1 in the HPV negative cell lines UPCI SCC072 and UPCI 

SCC089, in addition to HTE E6 E7 negative control. B2M control gene expression can be seen as tight 

amplification plots for triplicate repeats in all cell lines.  
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Figure 1.3: HPV16 E6 qPCR amplification plot 

 

 

 

Figure 1.3: HPV16 E6 qPCR amplification plots for cell lines HTE E6 E7, UD SCC02, UPCI SCC072, UPCI 

SCC089 and UPCI SCC090. X-axis denotes time, Y-axis denotes absorbance. Note the parabolic shape 

of amplification curves for HTE E6 E7, UD SCC02 and UPCI SCC090, prompting further validation 

through agarose gel electrophoresis. As discussed further in the methods section, PCR was repeated 

using a range of primer/probe concentrations to rule out “hook effect”, without change to 

amplification plot pattern. Note the complete absence of amplification of HPV16 E6 in the HPV 

negative cell lines UPCI SCC072 and UPCI SCC089. 
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Figure 1.4: Agarose Gel Electrophoresis of HPV16 E6 and E1 qPCR Reaction Products. Inverted 

image. 

 

 

 

Figure 1.4: Agarose Gel Electrophoresis of qPCR reaction products for cell lines HTE E6 E7, UD SCC02, 

UPCI SCC72, UPCI SCC089 and UPCI SCC090.  

HTE  – HTE E6 E7  2  – UD SCC02 

72  – UPCI SCC072  89  – UPCI SCC089 

90  – UPCI SCC090 

DNA ladder reference depicted to the left of each experiment; numerical figures denote size of ladder 

bands, in base pairs (bp). 

 

HPV16 E6 PCR products: 

Note that a dense 150 bp band can be observed for HPV16 E6 reaction products of cell lines HTE E6 

E7, UD SCC02 and UPCI SCC090. A faint band can also be observed for cell line UPCI SCC089; 

although this band represents a very low amount of PCR product, as PCR amplification was 

undertaken from a high initial RNA sample concentration of 500 ng mL-1, even a small amount of 

amplification product relating to a viral gene is an aberrant finding in a reputedly HPV-negative cell 

line. 

HPV16 E1 PCR products: 

Note the presence of a 75 bp band in all cell lines, consistent with B2M reaction products. Note also 

presence of a 200 bp band in HPV-positive cell lines UD SCC02 and UPCI SCC090, consistent with 

HPV16 E1 amplification products. Note also the absence of any bands additional to B2M in cell lines 

HTE E6 E7, UPCI SCC072 and UPCI SCC089, consistent with a HPV-negative status of the latter two 

lines and E6/E7 oncogene-specific status of HTE E6 E7. 
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Due to the weak band noted for UPCI SCC089 on HPV16 E6 electrophoresis, samples of each cell line 

were finally sent for external PCR validation of HPV status, confirming a HPV -positive status of UPCI 

SCC02 and UPCI SCC090, and HPV negative status of UPCI SCC072 and UPCI SCC089.  External 

validation was undertaken by the Royal Hallamshire Hospital department of cytology, using the 

Cobas® HPV Test multiplex assay (Roche, New Jersey, USA). 
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Figure 1.5: Flow Cytometry Analysis of Cell Lines Exposed to a Range of Mitomycin C 

Concentrations.  

a). HTE E6 E7 

 

 

b). UD SCC02 
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c). UPCI SCC090 

 

 

d). UPCI SCC072 
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e). UPCI SCC089 

 

 

 

f). UPCI SCC090        g). UPCI SCC072 

  
  

 

Figure 1.5: Flow cytometry analysis of cell turnover using CellTraceTM following pre-incubation with 

mitomycin C at respective concentrations for 3.5 h. 

a). HTE E6 E7 (E6/E7 immortalised tonsillar keratinocyte control)  

b). UD SCC02 (HPV-positive line) 

c). UPCI SCC090 (HPV-positive line) 
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d). UPCI SCC072 (HPV-negative line) 

e). UPCI SCC089 (HPV-negative line) 

f). & g). Optimal mitomycin C histogram compared to 0 g mL-1 negative control and 10 g mL-1 

positive control 

Left images depict raw data of forward/side scatter and positioning of gating to exclude regions of 

debris. Right images depict flow cytometric fluorescence histogram at 660 nm, corresponding to 

CellTraceTM emission spectra. Figure legends adjacent to histogram denote corresponding mitomycin 

C concentrations; “0” represents negative control sample incubated without mitomycin C prior to 

analysis, and is depicted in red. “10” represents 10 g mL-1 positive control, and is depicted in blue. 

All other numerical postscripts denote mitomycin C concentration in g mL-1, and are illustrated by 

progressively dark greyscale histograms corresponding to increasing concentrations.  HTE E6 E7 was 

used as an immortalised tonsillar keratinocyte control. 

Note the clear separation of histogram distributions between 0 and 10 g mL-1 mitomycin C 

incubations in cell lines HTE E6 E7, UPCI SCC089 and UD SCC02. A left histogram shift denotes 

continued proliferation following mitomycin C exposure, with CellTraceTM content halving with each 

cell division. The lowest mitomycin C concentration inducing a histogram distribution comparable to 

that observed with 10 g mL-1 mitomycin C was therefore determined as the optimal dose for each 

cell line: this is summarised in Table 1.9, below. 

A less discernible split between peaks is noted in the slower growing cell lines UPCI SCC072 and UPCI 

SCC090, reflecting a lower rate of cell division, and therefore reduced histogram shift between 0 and 

10 g mL-1 mitomycin C. Data relating to intermediate mitomycin C doses for these lines has been 

censored in figures f & g for ease of viewing, with lowest adequate dose of mitomycin C illustrated; 

note the general mirroring of 10 g mL-1 mitomycin C histograms with 2g mL-1 mitomycin C for cell 

line UPCI SCC072 and 0.5 g mL-1 mitomycin C for cell line UPCI SCC090. 

 

N.B. Optimisation of mitomycin C exposure in cell line UD SCC02 was undertaken with the kind 

guidance of Dr. V. Hearnden 

 

Table 1.9: Optimal Mitomycin concentration determined for each cell line 

 Mitomycin C Concentration, g mL-1 

HTE E6 E7 2 
UD SCC 02 0.25 

UPCI SCC 072 2 
UPCI SCC 089 2 

UPCI SCC 090 0.5 
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Figure 1.6: Trial Cell Seeding Densities for ORISTM Assay Loading 

 

 

 

 

Figure 1.6: ORISTM assay confluence following overnight seeding of cell lines UD SCC02, UPCI SCC072, 

UPCI SCC089 and UPCI SCC090 at progressive dilutions. Numbers denote percentage concentration 

of original cell suspension – e.g. “100” denotes 100%, “90” denotes 90%. The following cell 

concentrations were used for each cell line: 

UD SCC02- 2.2 million cells mL-1 

UPCI SCC072 – 3.2 million cells mL-1 

UPCI SCC089 – 1.76 million cells mL-1 

UPCI SCC090 – 1.93 million cells mL-1 

 

Red squares denote the percentage dilution for each cell line that provided optimal confluent 

seeding. Note that concentrations exceeding the optimal seeding density le d to non-adherent cells 

being visible overlying the confluent monolayer (visualised as blackened areas in the above images), 

whereas cell-free regions can be noted at concentrations lower than highlighted in red. Images taken 

at X10 magnification, width of each square denotes 400 m. 
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Table 1.10: Optimal seeding densities determined following trial seeding in ORISTM assay wells. 

 

 Concentration, cells mL-1 Number of Cells in 100L Aliquot 
UD SCC 02 2,200,000 220,000 
UPCI SCC 072 1,600,000 160,000 

UPCI SCC 089 880,000 88,000 

UPCI SCC 090 1,160,000 116,000 
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Discussion 

 

HPV Status of Cell Lines 

The HPV status of all cell lines has been comprehensively assessed using recognised PCR 

and electrophoresis techniques to confirm presence/absence of HPV16 E1 & E6 mRNA. All 

oropharyngeal carcinoma cell lines were validated as retaining a HPV status as described in 

the literature179, 180, 250, 254, 267-269. Although the experimentally-induced HTE E6 E7 control 

remains poorly described in the literature, validation of viral E6 oncogene expression in the 

absence of E1 infers experimental induction of E6 rather than acquisition through viral 

infection, and is therefore consistent with the mRNA expression pattern expected of this cell 

line. One limitation of using this line as a control is that whilst the line adequately acts as a 

positive control for E6 mRNA expression, it is limited to being a negative control for E1 

mRNA expression. Unfortunately, HeLa, the commonly available HPV-positive cervical 

carcinoma line is HPV18 infected and therefore could not be used as a positive control due 

to primer specificity to the HPV16 sequence. HTE E6 E7 therefore offered a pragmatic and 

accessible control for PCR analysis. 

In order to fully validate UPCI SCC089 given the faint band noted with electrophoresis of E6 

PCR products (Figure 1.4), a cell sample of each line was sent for external PCR validation 

against a panel of HPV types including HPV16 and 18, confirming UPCI SCC089’s HPV-

negative status. The faint band seen on agarose E6 electrophoresis is therefore not of 

biological significance. This is also in keeping with the complete absence of E1 banding 

noted in agarose gel electrophoresis of PCR products derived from this line (Figure 1.4), In 

addition to external validation of HPV status using the Cobas® HPV Test. 

Final confirmation of cell line authenticity was achieved through STR profiling, allowing the 

confident use of the cell lines in further experimentation. 

Difficulties in Obtaining Representative HPV-Positive Cell Lines for Use in Cell 

Culture 

As detailed in Table 1.3, all HPV-positive cell lines have been established from tumours of 

mixed aetiology; that is, HPV-positive disease arising in known smoker/drinkers. As 

discussed in more detail in the preceding literature review, data from Ang et al’s seminal 
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paper suggests tumours of mixed aetiology carry a prognosis intermediate to that seen in 

HPV-positive and -negative disease105. Caution must be therefore employed not to over-

interpret cell culture findings relating to these cell lines, as they may not be fully 

representative of HPV-positive disease. There are however, no reports in the literature of an 

established HPV-positive oropharyngeal line derived from a non-smoker, due to sensitivities 

leading to cell culture failure. This likely represents the less aggressive clinical nature of 

HPV-positive disease. The obtained lines therefore offer the only pragmatic approach to in-

vitro comparisons between HPV-positive and -negative disease, although they do offer the 

prospect that any observable difference between the available HPV-positive lines and HPV-

negative lines may in fact be more pronounced had a non-smoker/drinker HPV-positive line 

been available. 

ORISTM Assay Optimisation 

Each cell line has been optimised for application in ORISTM migration assay. Mitomycin C 

exposure has been optimised for each line, albeit with limited effect noted in flow cytometric 

analysis of cell lines UPCI SCC072 and UPCI SCC090 due to their inherently low basal 

proliferative rate. It is important however, to bear in mind that cell line incubation with 

conditioned medium containing tumour-supportive factors could potentially alter proliferation 

rate during the assay: the use of mitomycin C for these two lines is therefore critical to 

ensure void closure relates to migration alone, and not passive infill as a result of cell 

division. Cell lines UD SCC02 and UPCI SCC089 demonstrated marked shift of flow 

cytometry histograms in response to appropriate doses of mitomycin C, demonstrating 

unambiguous requirements of mitomycin C in order to assess migration alone.  

Use of 10 g mL-1 mitomycin C throughout the duration of migration assay in order to inhibit 

proliferation has been cited in the literature260, however this concentration led to marked cell 

death during initial optimisation. Two possible explanations may account for the cell death 

seen – perhaps the most forthcoming relates to the drug being incorrectly stored by other 

authors, leading to loss of activity. Storage instability of mitomycin C has indeed been noted 

by co-researchers in our group. The oropharyngeal carcinoma cell lines used may 

alternatively exhibit greater sensitivity to mitomycin C in comparison to other lines quoted in 

the literature, an effect which may become particularly notable due to the relatively 

protracted time taken for cell migration to be observed in these lines256. 
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Optimal ORISTM assay cell seeding densities have been established for each cell line under 

investigation. Lines demonstrated appreciable differences in seeding density requirements, 

with UD SCC02 requiring seeding at an approximate 2-fold cell density in comparison to 

other lines. This variation in seeding density in part appears to correlate to cell size, although 

attempts to optimise seeding on cheaper, non-fibronectin coated 96-well assay plates 

derived lower seeding densities than were necessary in ORISTM assay wells. Well coating/ 

wettability may therefore also determine the final optimal seeding density for a given cell line. 

ORISTM assay void closure was noted to be near complete at 24 h using cell line UPCI 

SCC089. An optimal migration end-point for this line was therefore determined as 20 h. All 

other cell lines (UD SCC02, UPCI SCC072, UPCI SCC090) demonstrated progressive 

migration to 48 h, with apparent migration arrest at 72 h: an optimal migration end-point for 

these 3 lines was therefore determined as 48 h. 

The ORISTM assay offers a reproducible method of creating a standardised cell exclusion 

zone for migration analysis through the removal of a silicone barrier rather than inducing 

cellular trauma through the use of pipette scratches, as has historically been applied to the 

“scratch” assay. Cell number and media requirements are also greatly reduced using this 

method in comparison to individual scratches being introduced into a confluent 12-well plate. 

The assay appears to have additional advantages over other commercially available assays 

in that high throughput analysis may be undertaken due to the incorporation of the assay into 

a 96-well plate set-up. Introduction of a circular void rather than linear scratch also offers 

greater reproducibility with respect to measuring closure: void margins can be measured in 

their entirety, and the assay therefore avoids risk of measuring different regions between 

baseline and end-point. 

Limitations of the assay include the more labour-intensive analysis necessary in order to 

accurately measure the volume of an often irregular-shaped void, as compared to 

measurement of distance across a simple scratch assay margin. The assay is also limited to 

providing 2D migration data, and cannot readily distinguish between migration with 

directionality versus the more random process of cell scatter; it does, however offer a 

reproducible method of assessing cellular motility which may thereafter be analysed further 

using more complex models. 
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Chapter 2: 2D Modelling of the Microenvironment in 

HPV-positive & -negative Disease 

Introduction 

The tumour microenvironment comprises a complex molecular network derived from the 

dynamic interactions between tumour cells, surrounding stroma and immigrating vascular 

and immune cell populations. Little has been reported on the role of the microenvironment in 

HPV-positive versus HPV-negative oropharyngeal carcinoma, although a wealth of data is 

available regarding the heterogenous group of diseases that fall under the umbrella term of 

“head and neck cancer”. More generically, activation of the microenvironment has been 

linked to aggressive behaviour in a wide range of cancers, and has major prognostic 

implications. 

Much data is available on the capacity of tumours to hijack acute inflammatory pathways 

linked to wound healing. Such inflammatory factors have the capacity to promote epithelial 

proliferation, migration and Epithelial to Mesenchymal Transition (EMT), angiogenesis and 

immune cell infiltration - properties that under the correct conditions, can all lead to the 

progression of cancer through acquisition of an evolutionary advantage. Common 

derangements in biomarkers linked to wound healing have been noted in a range of tumour 

types; for example, elevated EGF is a feature of a number of head and neck, 

hepatocellular256, breast274 and lung275 carcinomas, and has a characteristic activity of 

promoting proliferation, migration and invasion of all these tumour types. It appears however, 

that certain microenvironmental factors have more varied effect on different cancer types; 

this often reflects the varied physiological influence the given factor has on normal tissue, in 

addition to the biology of the specific neoplastic disease. 

In oropharyngeal carcinoma, HPV-positive tumour status is established as offering 

favourable prognosis, and has been discussed in greater detail in the literature review. 

Although the role of the microenvironment has yet to be confirmed, it is intuitive that given 

the favourable prognosis of HPV-positive disease; in addition to the strictly epitheliotropic 

nature of the virus, which actively evades immune recognition; that differences in HPV-

positive and -negative tumour microenvironments could offer insight into not only the reason 

for the favourable prognosis in HPV-positive disease, but also offer therapeutic targets in the 

management of HPV-negative disease. 
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Hassona et al investigated the role of oral squamous cell carcinoma genetic instability in the 

tumour microenvironment240. Hassona defined those oral cancers expressing significant 

genetic mutation, with specific reference to loss of p53, as “genetically unstable” (GU-

OSCC). Conversely, those cancers retaining wild type p53 and having fewer mutations were 

considered “genetically stable” (GS-OSCC). Hassona found that conditioned medium from 

GU-OSCC cell lines more readily induced fibroblast expression of SA -Gal, a marker of 

senescence, than did conditioned medium taken from GS-OSCC or dysplastic cell lines. 

Conditioned medium taken from senescent versus normal oral fibroblasts was also 

demonstrated as having a more profound effect on GU-OSCC cell line invasion into collagen 

gels, whereas normal oral keratinocytes failed to demonstrate a change. It should be noted 

however, that only a single normal oral keratinocyte cell line was assessed in this latter 

experiment, and moreover no GS-OSCC lines were assessed. Hassona also went on to 

demonstrate that normal oral fibroblasts could be induced into a senescent state through 4 

hourly pulsatile exposure to TGF-1; conditioned medium taken from the induced senescent 

state increased invasion in a similar manner to senescent fibroblasts retrieved from 

genetically unstable tumours. 

Several inferences can be made from Hassona’s article in terms of HPV-positive 

oropharyngeal carcinoma; the low number of genetic mutations seen in HPV-positive 

tumours, in addition to a characteristic preservation of wild-type p53 and p16, render these 

tumours analogous to GS-OSCC. HPV-negative tumours contain the genetic aberrations 

surmised by Hassona as GU-OSCC. It is therefore feasible that conditioned medium taken 

from HPV-positive oropharyngeal cell lines have less ability to induce a fibroblast response 

in comparison to HPV-negative counterparts, and thereafter HPV-positive tumours may not 

be as responsive to instruction from fibroblast-derived conditioned medium. 

This chapter explores the potential for HPV-positive versus HPV-negative tumours to induce 

a secretory phenotype in normal oral fibroblasts and the potential for this phenotype to 

instruct the tumours to migrate and proliferate. 
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Methods 

Overview 

In order to model tumour-stroma microenvironmental interactions, a conceptual model was 

translated into a 2D tissue culture duplicate model (Figure 2.1). We hypothesised those 

tumours with greatest microenvironmental interactions in vivo would be, at a molecular level, 

more instructive to the normal stroma; exposure of stromal fibroblasts to tumour conditioned 

medium should therefore precipitate a fibroblast response to such instructions. 

In order to precipitate the fibroblast response in vitro, tumour cell line conditioned medium 

was first collected and then incubated with fibroblast cultures for 24 h (a more detailed 

methodology is given below). Tumour conditioned medium was then aspirated from 

fibroblast cultures, cultures washed, and then fresh normal media incubated with the 

activated fibroblast cultures for a further 24 h to collect a “stimulated fibroblast” conditioned 

medium. It became apparent that in fact an initial fibroblast secretory response could occur 

concurrently with the initial 24 h incubation in tumour conditioned medium. Two sets of 

conditioned media were therefore collected from each experiment: firstly, the original tumour 

conditioned medium subsequently incubated with fibroblasts and therefore containing the 

initial fibroblast response, hereon referred to as “Medium 1”; and a second conditioned 

medium collected after washing activated fibroblasts and then incubating with fresh normal 

media for the 24-48 h post-stimulation period – exclusively contributed to by stimulated 

fibroblasts, hereon referred to as “Medium 2”. Media 1 & 2 were then use to determine 

whether stimulating fibroblasts in such manner could lead to altered behaviour in the original 

tumour cell line by assessing migration and proliferation compared to unstimulated fibroblast 

conditioned medium control. 

Conditioned medium was therefore collected from each cell line (UD SCC02, UPCI SCC072, 

UPCI SCC089, UPCI SCC090), and used to induce cell line-specific stimulated fibroblast 

Medium 1 & 2; each cell line was then exposed to its own respective stimulated fibroblast 

medium in the ensuing experiments. 
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Figure 2.1: Conceptual Model of Tumour-Stroma Microenvironmental Interactions, Plus 2D Tissue 

Culture Duplicate Model 

a). Conceptual Model 

 

b). 2D Tissue Culture Duplicate Model 

 

Figure 2.1a: Conceptual model of microenvironmental interactions. The above model proposes that 

microenvironmentally-active tumours (represented by blue cell) secrete activating factors (1), which 

may lead to stromal activation (stromal fibroblast represented by red cell). This in turn leads to 

stromal release of further factors (2), which may reinforce the hallmarks of malignancy, such as 

tumour proliferation, migration and invasion. 

Figure 2.1b: Tissue culture duplicate model. Tumour cell lines are cultured to near confluence (step 

1) and conditioned medium retrieved (step 2); this initial conditioned medium hypothetically 

contains the activating factors depicted in Figure 2.1a (labelled “1” on diagram). Subsequent 

incubation with fibroblast cultures (step 3) may lead to similar activation as occurs in vivo, leading to 

a fibroblast secretory response that can be collected in further conditioned medium (step 4) that 

also reflects the response in vivo, as labelled “2” in Figure 2.1a. 
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M2.1: ORISTM Assay Migration Analysis of Modelled 

Microenvironmental Interactions 

 

Collection of Cell Line Conditioned Medium 

Cell lines UD SCC02, UPCI SCC072, UPCI SCC089 and UPCI SCC090 were cultured in 75 

cm2 flasks using normal media (DMEM with 10 % FCS, plus 2 mM L-glutamine & 50 IU/50 

g mL-1 penicillin-streptomycin) until near-confluent. Flasks were then washed X3 in PBS 

and then incubated for 24 h with 7 mL normal media. After 24 h, conditioned medium was 

aspirated from each flask and centrifuged for 5 minutes at 3,000 rpm in order to remove 

cellular debris. 6 mL supernatant was then carefully aspirated in order to avoid resuspension 

of precipitated debris, and then immediately stored in a universal container at -21 oC until 

use in experiments. 

Flasks were washed X2 in PBS, trypsinised and then cells counted in order to calculate the 

number of cells contributing to each mL of conditioned medium. Only conditioned media of a 

cell count of 3 (+/- 1) million cells mL-1 conditioned medium 24 h-1 were kept for use in 

experiments. A record of the exact cell count was maintained to allow conditioned medium to 

be normalised to exactly 3 million cells mL-1 immediately prior to experiments. Where 

necessary, normalisation was undertaken by thawing two separate vials of conditioned 

media from the same cell line (one vial over-concentrated and one vial under-concentrated) 

and mixing media at a ratio that equalled a final conditioned medium concentration of 3 

million cells mL-1. All remaining thawed media was then discarded. 

 

Fibroblast Stimulation with Cell Line Conditioned Medium and Collection of Media 1 & 2 

Passage 6 DENOF08 normal oral fibroblasts were cultured in a 75 cm2 flask to 

approximately 80 % confluence. Cells were then washed X2 in PBS, trypsinised, centrifuged 

and resuspended in approximately 6 mL normal media. In order to establish equal seeding 

densities in multiple 75 cm2 flasks for the subsequent passage, a sterile 1,000 L pipette 

was used to aspirate 1 mL of cell suspension and thereafter transfer the suspension into 5 

separate 75 cm2 flasks containing normal media. 
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The 5 separate 75 cm2 flasks of passage 7 DENOF08 fibroblasts were then cultured to early 

confluence. Flasks were visually inspected on a daily basis using a X10 objective lens until 

intracellular spaces had been obliterated due to fibroblast culture confluence. Flasks were 

also visually compared to confirm cell density was equal in each separate culture. 

Confluent fibroblast cultures were then washed X3 in PBS and then incubated with 6 mL cell 

line conditioned medium for 24 h to create “Medium 1”. Medium 1 was aspirated, centrifuged 

at 3,000 rpm and 5 mL of supernatant carefully aspirated and immediately stored at -21 oC 

until use in experiments. The fibroblast cultures were then washed X3 in PBS and then 6 mL 

normal media added and incubated for a further 24 h to create “Medium 2”. Medium 2 was 

then aspirated, centrifuged at 3,000 rpm and 5mL of supernatant carefully aspirated and 

immediately stored at -21 oC until use in experiments. Fibroblast cultures were then washed 

X2 in PBS, trypsinised and counted using a haemocytometer to confirm a final cell density of 

4 X 105 cells per mL conditioned medium collected. 

 

Preparation of Migration Assays & Inhibition of Cell Division 

Two HPV-negative oropharyngeal carcinoma cell lines UPCI SCC072 and UPCI SCC089, 

and two HPV-positive oropharyngeal carcinoma cell lines UD SCC02 and UPCI SCC089 

were grown to 70 % confluence in separate 75 cm2 flasks. Cells were washed twice in PBS, 

trypsinised, centrifuged at 1,000 rpm for 5 minutes and then resuspended in normal media. 

Each cell suspension was then counted using a haemocytometer, appropriately diluted using 

normal media, and re-counted in order to achieve the pre-optimised seeding concentrations 

of 1.6 X 106 cells mL-1 for UPCI SCC072, 8.8 X 105 cells mL-1 for UPCI SCC089, 2.2 X 106 

cells mL-1 for UD SCC02 & 1.2 X 106 cells mL-1 for UPCI SCC090, allowing confluent ORISTM 

assay well loading as described in Chapter 1. ORISTM assay plates were prepared under 

sterile conditions, mounting silicone stoppers into each well using the manufacturer-supplied 

location device. 100 L of each cell suspension was then pipetted into respective ORISTM 

assay wells and left overnight to adhere. 

Following cell adherence and confirmation of well confluency using an inverted lens 

microscope, preoptimised (please refer to Chapter 1, Table 1.9) concentrations of 2, 0.5 & 

0.25 g mL-1 mitomycin C suspension in normal media were prepared from snap-frozen 0.5 

mg mL-1 aliquots of mitomycin C stored at -80 oC. All handling of mitomycin C was 

undertaken in a darkened tissue culture hood in order to avoid excessive light exposure. 



 

71 
 
 

 

Silicone stoppers were then removed from assay wells using the manufacturer supplied 

retrieval tool, exposing the respective cell exclusion zone, and normal media carefully 

aspirated off each well ensuring contact was avoided with the well base. 2 X 100 L PBS 

washes were then undertaken, and then 100 L mitomycin C carefully pipetted into 

respective wells at preoptimised concentrations for each respective cell line (please refer to 

Chapter 1, Table 1.9) and incubated for 3.5 hours at 37 oC in the dark. Following 3.5 hours 

incubation in mitomycin C, baseline void photomicrographs were taken using a X4 objective 

lens. 

Following mitomycin C incubation, assay wells were washed X2 in PBS and then 100 L of 

either Medium 1, Medium 2 or unstimulated fibroblast conditioned medium control carefully 

pipetted into respective wells. ORISTM assay plates were then incubated for either 20 h 

(UPCI SCC089) or 48 h (UD SCC02, UPCI SCC072, UPCI SCC090) in order for migration to 

occur, and then endpoint photomicrographs taken using a X4 objective lens. 

 

Analysis of Cell Migration 

Analysis of cell migration was undertaken by comparison of baseline versus endpoint 

micrograph images taken at X4 objective. The area of each stopper-induced cell exclusion 

zone at baseline and endpoint was measured with ImageJ software (freeware, NIH, USA), 

using the polygon selection tool. Percentage void closure was then calculated by dividing 

area of closure at experimental endpoint by total baseline area of cell exclusion zone. 
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M2.2: MTS Assay Analysis of Cell Proliferation 

Following the observed results in ORISTM assay migrations, Medium 2 was selected as the 

most appropriate conditioned medium to assess the effects of stimulated fibroblast 

conditioned medium on cell line proliferation. Further stimulated fibroblast Medium 2 was 

collected as described above for migration assays, and immediately stored at -21 oC until 

use in experiments.  

Cell proliferation of UD SCC2, UPCI SCC72, UPCI SCC89 and UPCI SCC90 in the 

presence of either respective stimulated fibroblast Medium 2 or unstimulated fibroblast 

conditioned medium control was assessed by means of MTS proliferation assay. Cells were 

grown to 70-80 % confluence in 75 cm2 flasks, trypsinised, counted using a 

haemocytometer, divided, centrifuged at 1,000 rpm for 5 minutes, resuspended in the 

respective Medium 2 or control medium, re-counted and then 100 L of cell suspension 

seeded at a density of 10,000 cells per well into a 96-well plate, using triplicate repeats for 

each condition. Wells were incubated at 37 oC in a 5 % CO2 environment, and time points 

taken at baseline, 24, 48, 72 and 96 h in order to assess proliferation over the observed 

period. At each time point of interest, respective triplicate wells were rinsed with 100 L 

PBS, then 100 L normal media added. 20 L MTS (CellTiter, Promega, Madison, USA) was 

then added in each well to be analysed, and incubated for 1.5 hours. Light absorbance at 

492 nm was then assessed using a Tecan Infinite M200 plate reader. 

 

M2.3 Repetition of Migration Assay Work to Include Tonsillar 

Fibroblast Cultures 

In order to ensure reproducibility of cell line/fibroblast interactions, migration experiments 

were repeated to include two further fibroblast cultures derived from normal human tonsils. 

Colleagues from the Murdoch research group recently isolated two tonsillar fibroblast 

cultures from a total of 13 tonsillar excisions, named NTF01 and NTF06. These cultures 

offered anatomically representative stromal fibroblasts, and allowed experimentation to be 

undertaken in triplicate biological and experimental repeat, on triplicate cell cultures. 

All experimental methods were repeated as described above, substituting DENOF08 

cultures with NTF1/NTF6. Again, where specified, fibroblast cultures were taken to early 

confluence prior to incubation with cell line conditioned medium. A cell count was again 
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undertaken following the collection of Medium 2; returning final conditioned medium 

concentrations of 1 X 106 cells mL-1 conditioned medium for NTF1, and 5 X 105 cells mL-1 

conditioned medium for NTF6. Although NTF1-derived conditioned medium had been 

contributed to by a greater cell population compared to DENOF08 & NTF6, normalisation 

was not undertaken due to the potential influence of media nutrient repletion on migratory 

behaviour. 
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Results 

Figure 2.2: Additional ORISTM Assay Migration of Cell Lines Exposed to Respective Stimulated 

Fibroblast Medium 1 

 

 

Figure 2.2: Additional ORISTM Assay Migration of cell lines UD SCC02, UPCI SCC072, UPCI SCC089 and 

UPCI 090 exposed to respective stimulated fibroblast Medium 1, compared to unstimulated 

fibroblast control conditioned medium, expressed as additional percentage void area closure. Blue 

bars represent HPV-negative cell lines; red bars represent HPV-positive cell lines. Postscripts denote 

the respective fibroblast culture contributing to Medium 1 (derived from either DENOF08, NTF1 or 

NTF6). Error bars denote SEM. Asterisks denote statistical significance: * p<0.05, ** p<0.01, 

***p<0.001, Mann-Whitney U-test (Levene’s test demonstrates unequal variance between 

treatment and control). Note that the HPV-negative cell line UPCI SCC072 consistently demonstrates 

increased migration throughout the range of fibroblast cultures tested. All other cell lines 

demonstrate either insignificant change in migration compared to control, or a reduced migration 

consistent with nutrient exhaustion within the conditioned medium. 

Migration analyses were assessed against appropriate unstimulated fibroblast control medium 

which had not been pre-incubated with an equivalent epithelial control, due to difficulty incubating 

mortal epithelia or appropriate comparator in media other than KGM; early optimisation 

experiments had also demonstrated that cell line migration in 24 h cell line conditioned medium not 

exposed to fibroblasts led to inferior migration compared to DMEM control; this general reduction in 

migration was regarded as due to depletion of nutrients within conditioned medium. 
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Note that for cell line UPCI SCC072, migration in DENOF08-derived stimulated fibroblast Medium 1 

vastly out-competed all migrations observed with other fibroblast cultures, and also for the data 

presented in Figure 2.3 relating to Medium 2. 
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Figure 2.3: Additional ORISTM Assay Migration of Cell Lines Exposed to Respective Stimulated 

Fibroblast Medium 2 

 

Figure 2.3: Additional ORISTM Assay Migration of cell lines UD SCC02, UPCI SCC072, UPCI SCC089 and 

UPCI 090 exposed to respective stimulated fibroblast Medium 2, compared to unstimulated 

fibroblast control conditioned medium. Blue bars represent HPV-negative cell lines; red bars 

represent HPV-positive cell lines. Postscripts denote the respective fibroblast culture contributing to 

Medium 2 (derived from either DENOF08, NTF1 or NTF6). Error bars denote SEM, n=9. Asterisks 

denote statistical significance: * p<0.05, ** p<0.01, ***p<0.001, Mann-Whitney U-test (Levene’s test 

demonstrates unequal variance between treatment and control). Note the absence of any consistent 

pattern of additional migration in HPV-negative cell lines throughout the range of fibroblast media 

tested, whereas all HPV-negative cell line-stimulated Medium 2 led to consistent additional 

migration in both HPV-negative lines. Note also the reproducible trends in the degree of migration 

observed with each Medium 2 in both HPV negative lines (i.e. greatest degree of migration with 

DENOF08 Medium 2, least migration with NTF1). 
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Figure 2.4: Overlay Images of ORISTM Assay Cell Migration Following Exposure to Medium 1, 

Compared to Unstimulated Fibroblast Conditioned Medium Control & Cell Line Conditioned 

Medium Control 
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Figure 2.4:  

a). Example of Image J analysis undertaken to obtain overlay plot of void margin. Left image denotes 

original micrograph, centre image denotes Image J polygon selection tool mark-up with 

approximately 200 mark-up squares identifying the void margin, right image denotes retrieved 

overlay plot following subtraction of original micrograph. 

b). Overlay images of first experimental repeat of ORISTM assay migrations for DENOF8 Medium 1-

induced migration versus unstimulated fibroblast control. Note the marked additional migration 

observed with Medium 1 compared to control (green area) in cell line UPCI SCC072 only. Baseline 

void positions have been excluded from this overlay image for ease of visual interpretation, but were 

comparable for all three experimental conditions for each cell line. All migration endpoints taken at 

48 h, other than UPCI SCC089 (taken at 20 h). 

Green squares – end position of void margin, cell line conditioned medium control  
Red squares – end position of void margin, unstimulated fibroblast conditioned medium control 
Blue squares – end position of void margin, Medium 1 not exposed to fibroblasts 
Green area – additional closure with Medium 1 
Pink area – additional closure with Control 
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Figure 2.5: Overlay Images of ORISTM Assay Cell Migration Following Exposure to Medium 2, 

Compared to Unstimulated Fibroblast Conditioned Medium Control 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Overlay images of first experimental repeat of ORISTM assay migrations for DENOF8 

Medium 2-induced migrations versus unstimulated fibroblast control. Note that both HPV -positive 

cell lines (UPCI SCC072, UPCI SCC089) demonstrate a clear net increase in migration compared to 

control, whereas both HPV-positive lines (UD SCC02, UPCI SCC090) show no evidence of additional 

migration, despite control migration being intermediate to that observed in the two HPV -negative 

cell lines. All migration endpoints taken at 48 h, other than UPCI SCC089 (taken at 20 h). 

Black squares - position of void margin at baseline for incubation with Medium 2  
White squares – position of void margin at baseline for control medium 
Blue squares – end position of void margin, Medium 2 
Red squares – end position of void margin, control medium 
Green area – additional closure with Medium 2 
Pink area – additional closure with control 
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Figure 2.6: MTS Assay of HPV-positive Cell Line Proliferation in Response to Stimulated Fibroblast 

Medium 2 Versus Unstimulated Fibroblast Control 

 

 

Figure 2.6: Graphs depicting MTS assay absorbance of HPV-positive cell lines UD SCC02 (a) and UPCI 

SCC090 (b), following incubation with DENOF08 stimulated fibroblast Medium 2 versus control (light 

absorption at 492 nm). Blue lines denote absorbance following incubation in stimulated fibroblast 

Medium 2, red lines denote absorbance using control medium. Error bars denote S.E.M. * = 

significance at 0.05, **= significance at 0.01 (Independent samples T-test, following Levene’s test to 

confirm equal variance). n=9 

Note that baseline absorbance was measured using respective conditioned medium due to cells 

remaining in suspension, whereas all other timepoints were measured following PBS wash and 

replacement with normal media: variation at baseline may therefore be attributed to differences in 

conditioned medium background absorbance. Note the significant increase in absorbance (P<0.01) 

with cell line UPCI SCC090 at 96 hours. No significant change was noted for cell line UD SCC02.  
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Figure 2.7: MTS Assay of HPV-negative Cell Line Proliferation in Response to Stimulated Fibroblast 

Medium 2 Versus Unstimulated Fibroblast Control 

 

 

Figure 2.7: Graphs depicting MTS assay absorbance of HPV-negative cell lines UPCI SCC072 (a) and 

UPCI SCC089 (b), following incubation with DENOF08 stimulated fibroblast Medium 2 versus control 

(light absorption at 492 nm). Blue lines denote absorbance following incubation in stimulated 

fibroblast Medium 2, red lines denote absorbance using control medium. Error bars denote S.E.M. * 

= significance at 0.05, **= significance at 0.01 (Independent samples T-test, following Levene’s test 

to confirm equal variance). n=9 

Note that baseline absorbance was measured using respective conditioned medium due to cells 

remaining in suspension, whereas all other timepoints were measured following PBS wash and 

replacement with normal media: variation at baseline may therefore be attributed to differences in 

conditioned medium background absorbance. Note the significant increase in absorbance (P<0.05) 

with cell line UPCI SCC072 at 96 hours. No significant change was noted for cell line UPCI SCC089.  
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Discussion 

 

HPV-negative cell lines were observed to induce a fibroblast response capable of promoting 

additional void closure in contemporary 2D migration assays. Although Medium 2 

consistently induced migration in both HPV-negative cell lines throughout the range of 

fibroblasts tested, Medium 1 was observed to also induce migration in the cell line UPCI 

SCC072. The significance of the additional migration in UPCI SCC072 Medium 1 is 

uncertain based on the data presented in this chapter; although this phenomenon may be 

linked to an inductive pathway unique to UPCI SCC072/fibroblast interactions, it is also 

plausible that the underlying molecular basis of increased migration with UPCI SCC072 

Medium 1 is the same as that observed for Medium 2. The temporality of factor secretion in 

response to UPCI SCC072 versus UPCI SCC089 conditioned medium may either differ, or 

alternatively UPCI SCC089 Medium 1 may constitutively repress additional migration 

through factor inhibition or alternatively nutrient depletion. 

All cell lines other that UPCI SCC072 demonstrated a general trend of reduced migration in 

the presence of Medium 1 compared to control medium, suggesting that media exhaustion 

may have occurred as a result of the preceding 48 h incubation with near confluent cell 

lines/fibroblast cultures. Due to limitations relating to keratinocyte incompatibility with normal 

media, control media was not exposed to a suitable epithelial equivalent prior to incubation 

with fibroblasts: control conditioned medium nutrient and metabolite content may therefore 

be more favourable than experimental media, leading to the suboptimal migrations observed 

in cell lines other than UPCI SCC072. 

HPV-positive cell lines demonstrated no additional migration in response to either Medium 1 

or 2. Lack of response may reflect either inability to induce fibroblast secretion of factors 

supportive of migration, inability of the cell lines to respond in the same manner as HPV-

negative cell lines, or alternatively a combination of both reduced fibroblast induction and 

also reduced cell line responsiveness. 

An apparent anomaly exists between the behaviour of the HPV-positive cell lines observed 

in-vitro in response to stimulated fibroblast medium and the clinical observation that HPV-

positive disease presents at a more advanced stage than HPV-negative disease. Whist this 

conflict may arguably undermine the validity of our model of HPV-positive disease, which as 

previously stated undoubtedly carries the flaws associated with the acquired cell lines being 
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derived from smokers, a number of points exist to corroborate the model. Foremost, our 

model references additional, rather than absolute migration; therefore, whilst HPV-positive 

cell lines demonstrated no additional migration compared to their own respective internal 

control exposed to unstimulated fibroblast medium (Figure 2.3), the cell lines can clearly be 

seen to outstrip the absolute migration of HPV-negative cell line UPCI SCC072 in the 

overlay images presented in Figure 2.5. Our data therefore offer the proposition that HPV-

negative disease utilises factors from the microenvironment to assist migration whereas HPV 

positive disease does not; it should be made clear that the absolute invasiveness of HPV-

positive versus HPV-negative disease bears no direct relation to these observations.  

Furthermore, the overall migratory rates of each cell line in the presence of stimulated 

fibroblast medium may not be robustly comparable in 2D, and may also translate poorly to a 

three dimensional, anatomical setting; the presented data therefore more appropriately 

demonstrate the ability of HPV-negative lines to induce stromal support, and respond to that 

support through increased motility. This interaction may have major implications in the 

distant spread of disease, whereby HPV-negative tumour cells may retain potential to more 

rapidly prime and respond to the stromal milieu, leading to greater potential for cancer 

progression through extracapsular spread and production of viable metastasis, and may also 

provide local resilience to conventional therapeutics277. 

The biological significance of the finding that HPV-positive disease presents at a more 

advanced stage than its HPV-negative counterpart remains uncertain. Indeed, this finding 

does not translate to the most pertinent of clinical measures, that is, patient survival. A 

number of socio-economic and cultural confounders, in addition to greater anatomical 

plasticity linked to the more youthful HPV-positive patient base, may lead to a more delayed 

period from carcinogenesis to the threshold at which symptoms prompt clinical assessment. 

The static measure of tumour stage at the time of clinical presentation may therefore not 

correlate with migration/invasion at a cellular level, which may markedly influence outcome 

in the manner described above. 

MTS assay data (Figure 2.7) demonstrated no characteristic difference in proliferation 

between HPV-positive and -negative cell lines in response to respective stimulated fibroblast 

medium. Cell lines UPCI SCC072 and UPCI SCC90 showed evidence of increased cell 

proliferation at 96 h in the presence of conditioned media, although all other timepoints 

showed no significant difference to control. Cell lines UD SCC02 and UPCI SCC089 

demonstrated no significant difference to control throughout all timepoints. It was however 
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noted that all cell lines demonstrated a general trend of increased proliferation at 96 h, albeit 

not statistically significant for cell lines UD SCC02 and UPCI SCC090. 

The magnitude of effect linked to the DENOF08 fibroblast culture warrants its use in further 

experiments to ascertain the nature of the observed migratory phenomenon. The marked 

influence of UPCI SCC072-activated DENOF08 Medium 1, in addition to UPCI SCC089-

activated DENOF08 Medium 2 outcompeting NTF1 and NTF6, allows DENOF08 to be 

considered the most useful fibroblast culture of the three cultures used in this chapter. 
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Chapter 3: Cytokine Array Analysis of Tumour & 

Fibroblast Conditioned Media 

Introduction 

Data presented in Chapter 2 demonstrated that conditioned media from the HPV-negative 

cell lines UPCI SCC072 and UPCI SCC089 induced a fibroblast secretory response 

supportive of cell migration. In terms of the microenvironment in head and neck disease, 

much interest resides in TGF- as a major factor underlying microenvironmental activity and 

tumour motility through the induction of EMT278-281. Moreover, studies have highlighted a link 

between TGFR1 gene expression and susceptibility to HPV-positive oropharyngeal 

carcinoma282, in addition to TGF1 T869C polymorphisms being linked to a HPV-positive 

oropharyngeal carcinoma status283, and viral oncoproteins E6 & E7 inducing TGF1 

promoter activation284. TGF is therefore an enticing factor to study in relation to our data, 

although this HPV-specific relationship infers that greater EMT (and therefore motility) would 

be expected in HPV-positive tumours. Conversely, recent data suggest that HPV-negative 

tumours more commonly express markers of EMT285; this is more in keeping with the 

findings of Chapter 2. Levovitz et al found TGF1 to be expressed greater in oropharyngeal 

carcinoma than in HPV-positive head and neck cancer; the virally heterogenous status of the 

“oropharyngeal carcinoma”, as opposed to “HPV-positive head and neck cancer” could 

suggest that in fact HPV-negative oropharyngeal tumours therefore express greater TGF1 

than HPV-positive tumours282. 

As briefly reviewed in Chapter 2, a recent article by Hassona et al found that conditioned 

medium from genetically unstable oral cancer cell lines (“GU-OSCC”; defined as those lines 

carrying greater mutations, with particular reference to p53 and p16) readily induced 

fibroblast expression of markers of cellular senescence240. Conditioned medium taken from 

senescent fibroblasts also had a more profound effect on GU-OSCC cell line invasion into 

collagen gels when compared to media taken from normal oral fibroblasts. A key feature of 

genetically unstable head and neck cancers as a group of heterogenous, yet comparably 

aggressive diseases may therefore be the ability to instruct underlying stroma to create an 

environment supportive of tumour cell invasion; this is in-keeping with our observations for 

HPV-negative cell lines. As has been discussed in the literature review, HPV-positive 

oropharyngeal carcinomas carry fewer mutations than their HPV-negative counterparts due 
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to viral E6 and E7 proteins acting to bypass a number of critical mutational steps necessary 

for carcinogenesis. In addition to the avoidance of highly specific gene mutations, namely 

that of p53 and RB1, HPV-positive disease has also been shown to carry lower overall 

genetic aberrations, both in terms of number and degree of mutations169. The relative 

genetic stability of HPV-positive oropharyngeal carcinoma suggests that behaviour may be 

comparable to other genetically stable tumours, and microenvironmental interactions may 

therefore be reduced. Hassona’s principal conclusions were that the induction of TGF-

expression by fibroblasts occurred in response to Reactive Oxygen Species (ROS), and 

was linked to the support of tumour invasion. 

Whilst the definition of genetically stable and unstable cancers closely parallel the features 

that characteristically distinguish HPV-positive versus -negative oropharyngeal carcinoma as 

a result of viral oncogene activity (that is, wild-type p53 and elevated p16), and therefore 

make TGF- an enticing factor for consideration of the migratory phenomena discussed in 

Chapter 2, a proportion of Hassona et al’s work on the mechanisms of migratory support is 

circumstantial. For example, the authors found 8-oxo-dG (a marker of oxidative stress) to be 

elevated in fibroblasts expressing SA β-Gal and p16 – from this, Hassona concluded that 

senescence was a direct result of the oxidative stress. Whilst oxidative stress is indeed a 

recognised aetiological agent in the precipitation of fibroblast senescence286, Hassona 

merely supplied evidence of correlation rather than causality in terms of fibroblast 

senescence, although did demonstrate that malignant keratinocyte collagen gel invasion in 

response to senescent fibroblast conditioned medium became partially inhibited with the 

addition of the antioxidant, PBN (phenyl-alpha-tert-butyl nitrone). A further factor could 

however plausibly contribute to a significant proportion of the senescence observed by the 

authors. Similarly, anti-TGF- antibody led to an approximate 50% reduction of fibroblast 

senescence in the presence of conditioned medium (the remainder of senescence induction 

left unaccounted for), as measured in the presence of conditioned medium from only a single 

cell line; H357. Furthermore, although data presented with respect to 3D collagen gel 

invasion correlated to the fibroblast senescence profile, the data were neither demonstrated 

to be reliant on senescence, nor was it demonstrated to be linked to any specific factor. 

Given the uncertainty underlying the final effectors driving cell line migration in Hassona’s 

work, in addition to confirmation of a number of correlations rather than causal links, 

potential for a factor other than TGF- was considered in relation to our data. Whilst TGF- 

remained of interest as a potential driver of the observed migrations, a broader screen of 
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conditioned media appeared a measured approach compared to more specific analyses 

such as TGF- ELISA. 

A number of techniques offered a broader screen for candidate molecules, including mass 

spectrometry, cytokine array and cytometric bead array. Of the available tests, cytokine 

array analysis was considered the most suitable, due to the ability to screen for several 

hundred factors in a single experiment, in addition to being comparatively cheap and 

requiring only standard laboratory equipment. Each technique listed above, including 

cytokine array, has a number of limitations. Mass spectrometry requires highly specialist 

equipment and technician time, along with generating data that relate to the probability of 

each spectrometry peak being due to a specific factor, rather than displaying absolute factor 

specificity. Cytometric bead array analysis, whilst still requiring relatively specialist 

equipment, is a more accessible option and maintains the advantage over standard cytokine 

array techniques in that data are quantitative, with a high degree of intra- and inter-assay 

precision287; the number of factors included in a single screen is however limited to around 

30288. Whilst cytokine array advantages have been discussed above, a limitation is the 

generation of semi-quantitative data – further quantitative analysis of factors of interest, for 

example, via ELISA, is therefore necessary. As an initial screen, the advantages of cytokine 

array analysis were considered to outweigh the disadvantages relating to semi-quantitative 

analysis and was therefore undertaken on cell line conditioned medium, in addition to 

stimulated fibroblast Medium 2 for lines UD SCC02,UPCI SCC072, UPCI SCC089 and UPCI 

SCC090. A further cytokine array analysis of UPCI SCC072-stimulated fibroblast Medium 1 

was also considered of value, due to the unique capacity of this conditioned medium to 

induce additional cell line migration in ORISTM assay (please refer to Chapter 2, Figures 2.2 

& 2.4). 
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Methods 

Collection of Serum-Free Cell Line Conditioned Medium 

Cell lines UD SCC02, UPCI SCC072, UPCI SCC089 and UPCI SCC090 were grown to near confluence in 

normal media (DMEM plus 10 % FCS, with 2mM L-glutamine & 50 IU/50 g mL-1 penicillin-

streptomycin), washed X3 in PBS and then incubated with 7 mL serum-free normal media for 24 h. 

After 24 h, conditioned medium was aspirated from each flask and centrifuged for 5 minutes at 

3,000 rpm in order to remove cellular debris. 6 mL supernatant was then carefully aspirated in order 

to avoid resuspension of precipitated debris, and then immediately stored at -21 oC in a universal 

container until use in experiments. 

Flasks were washed X2 in PBS, trypsinised and then cells counted in order to calculate the number of 

cells contributing to each mL of conditioned media. Conditioned medium was then normalised in the 

same manner as described in Chapter 2, methods section M2.1, with a final normalised count of 2.7 

million cells mL-1 conditioned medium. A slightly reduced count compared to serum-containing 

conditioned medium was accounted for as a result of serum starvation over the incubation period. 

Collection of Serum-Free Stimulated DENOF08 Conditioned 

Medium 

Serum-free cell line conditioned medium was collected as described above. 75 cm2 flasks of passage 

7 DENOF08 fibroblasts were cultured to early confluence washed X3 in PBS and then incubated for 

24 h with 6 mL respective serum-free cell line conditioned medium, or a serum-free normal media 

control. After 24 h, serum-free Medium 1 was aspirated from each flask and centrifuged for 5 

minutes at 3,000 rpm in order to remove cellular debris. 5 mL supernatant was then carefully 

aspirated in order to avoid resuspension of precipitated debris, and then immediately stored at -21 

oC in a universal container until use in experiments. Fibroblast cultures were then washed X3 in PBS 

and incubated with 6mL fresh serum-free normal media for a further 24 h in order to retrieve a 

serum-free Medium 2. Again, Medium 2 was aspirated, centrifuged and stored as outlined for 

Medium 1. Fibroblast cultures were then washed X2 in PBS, trypsinised and a final cell count 

undertaken to confirm equal cell population sizes in each flask, contributing to conditioned medium 

of 4 X 105 cells mL-1. 
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Serum-free normal media from the same stock was used for all conditioned media collected from 

both cell lines and fibroblast cultures. 

Cytokine Array Analysis of Conditioned Media 

Cell line conditioned media and Medium 2 for all cell lines were thawed immediately prior to 

experiments, along with Medium 1 derived from cell line UPCI SCC072, due to its exclusive capacity 

to induce cell migration compared to Medium 1 derived from all other cell lines. A more 

comprehensive approach of cytokine array analysis of Medium 1 for all lines was deemed cost-

prohibitive. Respective controls were also thawed, namely, serum-free normal media (cell line 

conditioned medium control) and unstimulated fibroblast conditioned medium control (control for 

Media 1/2). 

Raybiotech C2000 Human Cytokine Arrays (Raybiotechnology, Norcross, USA, cat number: AAH-CYT-

2000) were purchased from a UK distributor (Insight Biotechnology, Middlesex, UK). Each C2000 kit 

comprised a 174-probe assay derived from 3 separate assay membranes (C6, C7 and C8) also 

available for separate purchase from Raybiotech. Manufacturer’s instructions were adhered to 

throughout experimentation. 

Each Raybiotech cytokine array kit was thawed to room temperature, and cytokine array 

membranes placed in separate wells of the manufacturer-supplied Incubation Tray. 2 mL Blocking 

Buffer was then pipetted over each membrane and incubated for 20 minutes at room temperature 

using a rocking machine. Blocking buffer was then aspirated, and 1 mL undiluted conditioned 

medium pipetted into each respective well and incubated overnight for 18 h at 4 oC on a rocking 

machine. Samples were then aspirated from each well, and membranes washed with 2 mL 1 X Wash 

Buffer 1, and incubated at room temperature for 5 minutes on a rocking machine. A further two 

repeat washes using Wash Buffer 1 were undertaken, followed by two further 5 minute washes 

using Wash Buffer 2. Complete buffer aspiration was carefully undertaken between washes. 1 mL 

freshly-prepared biotinylated antibody cocktail was then pipetted into each well and incubated for 

1.5 hours at room temperature. The antibody cocktail was then carefully aspirated, and a further 3 X 

Wash Buffer 1 & 2 X Wash Buffer 2 washes undertaken as outlined above. 2 mL 1 X HRP-streptavidin 

solution was then incubated with each membrane for 2 h at room temperature and then carefully 

aspirated from each well. A third wash using Wash Buffers 1 & 2 as outlined above was then 

undertaken, and then membranes transferred printed side up onto tissue paper. Excess wash buffer 
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was then carefully blotted along the edges of each membrane to retrieve excess wash buffer, and 

membranes transferred onto cling film. Detection Buffer items C & D were then mixed in equal 

volumes and 500 L solution carefully pipetted onto each membrane for 2 minutes before covering 

and then processed using standard radiographic film following 1, 2 and 5 minute exposures. 

Developed films were then scanned at high resolution and analysed using Quantity One software 

(Version 4.5.0; Bio-Rad, Hertfordshire, UK). Densitometry data were then normalised to 

positive/negative control spot densitometry undertaken on appropriate control arrays (serum-free 

normal media for cell line conditioned medium arrays, serum-free unstimulated fibroblast 

conditioned medium for Media 1&2 arrays). 
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Results 

Figure 3.1: Raybiotech C6 Cytokine Array Analysis of Tumour Line Conditioned Media 

  

 

 

Figure 3.1: RayBiotech cytokine array C6 analysis of serum-free conditioned medium taken from cell 

lines UD SCC02, UPCI SCC072, UPCI SCC089 and UPCI SCC090. 

a. Serum-free DMEM control 

b. UPCI SCC072 conditioned medium (HPV-negative) 

c. UPCI SCC089 conditioned medium (HPV-negative) 

d. UD SCC02 conditioned medium (HPV-positive) 

e. UPCI SCC090 conditioned medium (HPV-positive) 

a 

 

 

b              c 

 

 

d              e 
RANTES 

BDNF 

CCL23 

IL-1beta 

MCP-4 

 

ANG 

IGFBP2 

EGF 

IL-1ra 

M-CSF 
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Inferior table: array map, reproduced with kind permission of Raybiotechnology (Norcross,  USA). 

Red text denotes positive spots on normal media control array, signifying high background 

absorbance, blue text denotes RANTES upregulated more significantly in a single HPV-negative cell 

line medium, black text denotes factors present in all cell l ine-derived media but absent from normal 

media control. 

Note the absence of any consistent trend in cytokine release by HPV-positive, versus HPV-negative 

cell lines (images d & e versus b & c, respectively). An isolated, yet marked, uptake for RANTES was 

noted in line UPCI SCC089 (image c). Note also absence of TGF- 1/3 absorption throughout the 

samples. 

C6 arrays for cell lines UPCI SCC072 (HPV-negative, image b) and UD SCC02 (HPV-positive, image d) 

demonstrate no significant uptake other than for ANG, BDNF, EGF, CLL23, IL-1ra and IGFBP2 

(densitometries summarised along with RANTES in Figure 3.7), all of which do not demonstrate any 

pattern of uptake between HPV-positive and -negative cell lines. Although high intensity uptake is 

noted for BDNF in all cell line conditioned media, a comparable densitometry measurement of BDNF 

can also be observed in serum-free DMEM control (image a, above, also illustrated in figure 3.7). The 

absorbance for BDNF was therefore regarded as background uptake. Similar background  

absorbencies can also be seen for EGF, CCL23, IL-1beta and MCP-4. Indeed, further investigation by 

ELISA (please refer to Chapter 6, Figure 6.9) proved all cell line conditioned media to contain 

undetectable levels of EGF. 

Cell lines UPCI SCC072 (image c, HPV-negative) and UPCI SCC090 (image e, HPV-positive) can be 

observed to have a small degree of uptake in most array spots. This was regarded as background 

uptake, and did not follow a consistent pattern with the other cell line conditioned media (images b 

and d). 
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Figure 3.2: Raybiotech C7 Cytokine Array Analysis of Tumour Line Conditioned Media 

 

 

 

Figure 3.2: RayBiotech cytokine array C7 analysis of serum-free conditioned medium taken from cell 

lines UD SCC02, UPCI SCC072, UPCI SCC089 and UPCI SCC090. 

a. Serum-free DMEM control 

b. UPCI SCC072 conditioned medium (HPV-negative) 

c. UPCI SCC089 conditioned medium (HPV-negative) 

d. UD SCC02 conditioned medium (HPV-positive) 

e. UPCI SCC090 conditioned medium (HPV-positive) 

Inferior table: array map, reproduced with kind permission of Raybiotechnology (Norcross, USA). 

Red text denotes positive spots on normal media control array, signifying high background 

absorbance, blue text denotes factors upregulated more significantly in HPV-negative cell line media, 

a 

 

 

b             c 

 

 

d             e 

GRO 

uPAR, VEGF 

 

EGFR 

 

IL-6R 

MIF 

 

TIMP-1, TIMP-2 

 

GRO 
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IL-8 
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black text denotes factors present in all cell line-derived media but absent from normal media 

control. 

Note presence of developer solution contamination and “bleed-through” from positive control spots 

in the lower right quadrant of the serum-free DMEM control array (image a). More nebulous regions 

of developer contamination can also be observed in the superior and i nferior central aspects of the 

control array. This led to a high control densitometry reading of array spots in each of the 3 

aforementioned regions (C7 densitometry is summarised in Figure 3.8). The marked contamination 

of the lower right quadrant prompted censorship of the respective positive control spots, with the 4 

positive control spots sited in the upper left quadrant being used in isolation for means of 

densitometry normalisation. All other spots directly contaminated by the main point of developer 

uptake represented blank arrays, as depicted in the lower right quadrant of the C7 array map 

(inferior image, courtesy of Raybiotechnology, Norcross, USA). The contamination therefore led to 

minor over-representation of control medium cytokine content for the associated spots. Minimal 

evidence of developer contamination is noted for cell line conditioned media other than the superior 

right region of cell line UPCI SCC072 and the inferior central region of cell line UPCI SCC089. 

Despite the limitations linked to contamination of the control array, background uptake can be 

observed in control array spots for GRO and (more notably) OSM. The comparabl e uptake of OSM in 

control medium in proportion to cell line conditioned media, undermines the significance of th is 

cytokine array spot, as can be further observed in the unstimulated fibroblast control C7 array 

(Figure 3.5); the high background cytokine array absorbance for OSM shall be discussed further in 

Chapter 5, in the context of OSM ELISA findings (Figure 5.2). 

Note marked uptake in both HPV-negative cell line conditioned media (images b & c) for GRO, IL-6R 

and IL-8. IL-8 uptake is also noted in the conditioned medium of the HPV-positive cell line UPCI 

SCC02, although GRO and IL-6R uptake is minimal in both HPV-positive cell line conditioned medium 

arrays (images d & e). As the GRO- specific array spot remains unstained, it can be inferred that the 

non-specific GRO array spot uptake in HPV-negative cell line conditioned media is a result of GRO-/ 

GRO. EGFR, uPAR and VEGF are also elevated in HPV-negative cell line conditioned media. 

In summary, a number of factors characteristic of all cell line conditioned media were noted, 

including MIF, TIMP-1 and TIMP-2. HPV-negative lines UPCI SCC072 and UPCI SCC089 secreted a 

number of additional factors, including GRO, IL-6R, EGFR, uPAR and VEGF. These additional factors 

are consistent with a more aggressive tumour profile (please refer to the discussion section for 

further consideration of these factors). 

A number of the aforementioned factors, namely GRO, uPAR and VEGF, were also noted to be 

induced in fibroblast populations as a result of stimulation with cell line -derived conditioned media 

(please refer to Figure 3.5), suggesting that both autocrine and paracrine stimulation by a common 

inducing factor may be responsible for the release of these cytokines in both cell lines and 

fibroblasts.  
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Figure 3.3: Raybiotech C8 Cytokine Array Analysis of Tumour Line Conditioned Media 

 

 

 

Figure 3.3: RayBiotech cytokine array C8 analysis of serum-free conditioned medium taken from cell 

lines UD SCC02, UPCI SCC072, UPCI SCC089 and UPCI SCC090. 

a. Serum-free DMEM control 

b. UPCI SCC072 conditioned medium (HPV-negative) 

c. UPCI SCC089 conditioned medium (HPV-negative) 

d. UD SCC02 conditioned medium (HPV-positive) 

e. UPCI SCC090 conditioned medium (HPV-positive) 

Inferior table: array map, reproduced with kind permission of Raybiotechnology (Norcross, USA). 

a 

 

 

b          c 

 

 

d          e 

PDGFAA     LAP 

BMP 5 

ICAM2 
 

SCF R 

VEGF R3 
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Red text denotes positive spots on normal media control array, signifying high background 

absorbance, blue text denotes factors upregulated more significantly in HPV -negative cell line media, 

black text denotes factors present in all cell line-derived media but absent from normal media 

control. 

Note again, presence of developer solution contamination in the superior right field of image e (UPCI 

SCC089). Contamination did not preclude overall interpretation of the C8 array, due to absence of 

any pattern of array uptake being noted between images a-d in this region of the assay membrane 

other than for MMP 3, as discussed below. 

A number of array spots appear to have background absorbencies, as observed in serum-free media 

(image a), including BMP-5, ICAM-2, IL-13 R alpha 2, IL-18R beta, MMP1, SCF R and VEGF R3. 

Findings of the C8 array are by and large unremarkable under direct visual scrutiny, with much 

uptake in cell line conditioned medium being comparable to normal media control (image a). Uptake 

of PDGFAA and LAP did however appear to be consistently upregulated in cell line conditioned 

media, with some evidence of HPV-status specific effect (as shall be discussed further with respect 

to densitometry, Figure 3.9). 

MMP 3, LIF and SCFR also returned HPV-status specific differences, although visual inspection of 

UPCI SCC90 cytokine array (image e) confirms that developer contamination is in the vicinity of the 

respective MMP 3 array spot, leading to censorship of data for this cell line. HPV-negative cell line 

MMP 3 densitometry was therefore only directly compared to UD SCC02, and status-specific 

differences cannot be considered as a reliable on this basis. LIF and SCFR both return ed 

densitometry measures that were elevated for HPV-negative lines, although LIF densitometry was of 

a low magnitude, and SCFR background densitometry was relatively high, leaving potential for these 

observations to be artefactual. 
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Figure 3.4: Raybiotech C6 Cytokine Array Analysis of Simulated Fibroblast Conditioned Media 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: RayBiotech cytokine array C6 analysis of serum-free stimulated fibroblast medium taken 

after stimulation with cell lines UD SCC02, UPCI SCC072, UPCI SCC089 and UPCI SCC090. 

a. Serum-free unstimulated DENOF08 fibroblast conditioned medium control 

b. UPCI SCC072-stimulated DENOF08 Medium 2 (HPV-negative stimulated) 

c. UPCI SCC089-stimulated DENOF08 Medium 2 (HPV-negative stimulated) 

d. UPCI SCC072-stimulated DENOF08 Medium 1 (HPV-negative stimulated) 

e. UD SCC02-stimulated DENOF08 Medium 2 (HPV-positive stimulated) 

f. UPCI SCC090-stimulated DENOF08 Medium 2 (HPV-positive stimulated) 

Inferior table: array map, reproduced with kind permission of Raybiotechnology (Norcross, USA). 
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Red text denotes positive spots on unstimulated fibroblast medium control array, signifying basal 

secretion (please compare to Figure 3.1, which illustrates background absorbance due to normal 

media and excludes factors highlighted in red), blue text denotes factors upregulated more 

significantly in HPV-negative cell line media, black text denotes factors present in all cell line derived 

media but absent from normal media control. 

Note the absence of BDNF, IL-1beta and MCP-4 background signals observed with serum free media 

(depicted in Figure 3.1) in the unstimulated fibroblast control (image a); this finding is inconsistent 

and not readily explained other than by experimental variability. IGFBP2 and MCP-1 (aka CCL2) are 

however observed to be present in unstimulated fibroblast control and absent in no rmal media 

control, suggesting that unstimulated fibroblasts secreted these two factors basally. BDNF is noted in 

all other media, which, on the basis of background uptake with the normal media control depicted in 

Figure 3.1, may be considered as further background uptake, although due consideration to the fact 

that this array spot is not observed in the unstimulated fibroblast control must be taken. Lack of 

developer solution on the unstimulated fibroblast control membrane could account for the absence 

of signal for BDNF, IL-1beta and MCP-4, although this appears unlikely given the consistent uptake in 

positive control spots, in addition to positive signals noted in all four quadrants of the array.  

IL-6 and GCP2 can be observed to be elevated in all fibroblast conditioned media stimulated by HPV-

negative lines, whereas these two factors are minimal in conditioned media stimulated by HPV -

positive lines. RANTES and MCPs 2 & 3 (aka CCL8 and CCL7, respectively) can also be observed to be 

elevated in UPCI SCC089 Medium 2 (image c) and UPCI SCC072 Medium 1 (image d). The absence of 

RANTES and MCPs 2&3 from UPCI SCC072 Medium 2 suggests that the factors are secreted early in 

response to fibroblast stimulation. This finding, albeit with the lack of array data for Medium 1 

derived from HPV-positive cell lines, infers that MCP 2&3 may still potentially be released from 

fibroblasts in response to HPV-negative cell line conditioned medium only. 

UPCI SCC072 Medium 1 also demonstrated marked uptake of GM-CSF; again, the significance of this 

finding is uncertain without interrogating Medium 1 induced by the other cell lines. 
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Figure 3.5: Raybiotech C7 Cytokine Array Analysis of Simulated Fibroblast Conditioned Media 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: RayBiotech cytokine array C7 analysis of serum-free stimulated fibroblast medium taken 

after stimulation with cell lines UD SCC02, UPCI SCC072, UPCI SCC089 and UPCI SCC090. 

 

a. Serum-free unstimulated DENOF08 fibroblast conditioned media control  

b. UPCI SCC072-stimulated DENOF08 Medium 2 (HPV-negative stimulated) 

c. UPCI SCC089-stimulated DENOF08 Medium 2 (HPV-negative stimulated) 

d. UPCI SCC072-stimulated DENOF08 Medium 1 (HPV-negative stimulated) 

e. UD SCC02-stimulated DENOF08 Medium 2 (HPV-positive stimulated) 

f. UPCI SCC090-stimulated DENOF08 Medium 2 (HPV-positive stimulated) 

Inferior table: array map, reproduced with kind permission of Raybiotechnology (Norcross, USA).  
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Red text denotes positive spots on unstimulated fibroblast medium control array, signifying basal 

secretion (please compare to Figure 3.2, image a, which illustrates background absorbance due to 

normal media and excludes factors highlighted in red other than OSM), blue text denotes factors 

upregulated more significantly in HPV-negative cell line media, black text denotes factors present in 

all cell line derived media but absent from normal media control. 

 

Note that a number of ligands which interact with CXCR-1/2 are released in HPV-negative stimulated 

fibroblast conditioned media, namely ENA78, GRO and IL-8. GCP2, noted to be elevated in HPV-

negative stimulated media in Figure 3.4, is a further ligand of CXCRs 1 & 2. The overall secretory 

profile of HPV-negative cell line-stimulated fibroblasts, inclusive CXCR-1/2 ligands shall be 

considered further in the discussion with specific reference to senescence. uPAR and VEGF, although 

noted in HPV-positive cell line-stimulated fibroblast media, are also more upregulated in HPV-

negative cell line-stimulated fibroblast media. In addition to ligands upregulated HPV-negative cell 

line-stimulated fibroblast media, IGFBP6 was noted to be upregulated in all stimulated fibroblast 

media, although more so for HPV-positive lines (please refer to Figure 3.11 for densitometry 

analysis). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

101 
 
 

 

Figure 3.6: Raybiotech C8 Cytokine Array Analysis of Simulated Fibroblast Conditioned Media 

 

 

Figure 3.6: RayBiotech cytokine array C8 analysis of serum-free stimulated fibroblast medium taken 

after stimulation with cell lines UD SCC02, UPCI SCC072, UPCI SCC089 and UPCI SCC090. 

a. Serum-free unstimulated DENOF08 fibroblast conditioned media control  

b. UPCI SCC072-stimulated DENOF08 Medium 2 (HPV-negative stimulated) 

c. UPCI SCC089-stimulated DENOF08 Medium 2 (HPV-negative stimulated) 

d. UPCI SCC072-stimulated DENOF08 Medium 1 (HPV-negative stimulated) 

e. UD SCC02-stimulated DENOF08 Medium 2 (HPV-positive stimulated) 

f. UPCI SCC090-stimulated DENOF08 Medium 2 (HPV-positive stimulated) 

Inferior table: array map, reproduced with kind permission of Raybiotechnology (Norcross, USA). 
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Red text denotes positive spots on unstimulated fibroblast medium control array. Black text denotes 

factors present in all cell line derived media but absent from normal media control. Note that a 

number of positive spots in the unstimulated fibroblast medium control array were also observed to 

be positive in normal media (please refer to Figure 3.3), namely ICAM2, SCF R and VEGF R3. These 

“positive” spots were therefore concluded as a result of background absorbance. Array spots for 

MMPs 1 & 3 do however appear to be positive in the unstimulated fibroblast medium control (a), 

but negative for the normal media control illustrated in Figure 3.3, suggesting that MMPs 1&3 are 

secreted basally by unstimulated fibroblasts. 

No factor was noted to be elevated in only HPV-negative stimulated fibroblast media (please refer to 

densitometry, Figure 3.12), although LAP (latency associated peptide) can be observed to be 

elevated in all stimulated fibroblast media. 
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Figure 3.7: Densitometry Analysis of Tumour Line Conditioned Media Raybiotech C6 Cytokine Array  

 

Figure 3.7: Densitometry analysis of cell line conditioned media Raybiotech C6 cytokine array. Blue bars denote HPV-negative cell lines (light blue: UPCI 

SCC072, dark blue: UPCI SCC089), whereas red bars denote HPV-positive cell lines (pink/light red: UD SCC02, dark red: UPCI SCC090). Grey bars denote 

serum-free medium control. Y-axis in arbitrary units, all bars derived from the average densitometry of each array’s duplicate repeat spot. All densitometry 

is normalised to control medium positive control spots. Array spots with complete absence of uptake in at least one HPV-positive and one HPV-negative cell 

line have been excluded for ease of viewing (please refer to Figure 3.1, images b & d). POS/NEG – normalised positive and negative control spots, 

respectively. 

Note that BDNF, CCL23, IL-1beta and MCP4 array uptake is generally comparable to control in all cell lines, confirming visual features of array films 

presented in Figure 3.1. As noted from visual inspection of cell line medium C6 arrays, ANG, IGFBP2, IL-1ra, M-CSF and RANTES all demonstrate uptake that 

exceeds control spot uptake, although no consistent pattern of difference is noted between HPV-positive (UD SCC02, UPCI SCC090) and HPV-negative (UPCI 

SCC072, UPCI SCC089) cell lines. 
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Figure 3.8: Densitometry Analysis of Tumour Line Conditioned Media Raybiotech C7 Cytokine Array  

 

Figure 3.8: Densitometry analysis of cell line conditioned media Raybiotech C7 cytokine array. Blue bars denote HPV-negative cell lines (light blue: UPCI 

SCC072, dark blue: UPCI SCC089), whereas red bars denote HPV-positive cell lines (pink/light red: UD SCC02, dark red: UPCI SCC090). Grey bars denote 

serum-free medium control. Y-axis in arbitrary units, all bars derived from the average densitometry of each array’s duplicate repeat spot. All densitometry 

is normalised to control medium positive control spots. All densitometry is normalised to control medium positive control spots. Array spots with complete 

absence of uptake in at least one HPV-positive and one HPV-negative cell line have been excluded for ease of viewing (please refer to Figure 3.2, images b & 

d). POS/NEG – normalised positive and negative control spots, respectively. 

As noted in Figure 3.2, a clear increase in HPV-negative cell line conditioned media densitometry is noted in the following array spots: EGFR, GRO, IL-6R 

(asterisked). Control absorbance can be observed to be high in uPAR and VEGF spots, although correlating the densitometry of control spots to images 

presented in Figure 3.2 identifies bleed-through of developer as the source of high control absorbance: it is therefore likely that HPV-negative cell lines truly 

release higher concentrations of these two factors. As also noted in Figure 3.2, all cell lines can be observed to release MIF. Densitometry of IL-8 suggests 

that, although significantly raised, does not follow a consistent pattern between HPV-positive and HPV-negative lines. 
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Figure 3.9: Densitometry Analysis of Tumour Line Conditioned Media Raybiotech C8 Cytokine Array 

 

Figure 3.9: Densitometry analysis of cell line conditioned media Raybiotech C8 cytokine array. Blue bars denote HPV-negative cell lines (light blue: UPCI 

SCC072, dark blue: UPCI SCC089), whereas red bars denote HPV-positive cell lines (pink/light red: UD SCC02, dark red: UPCI SCC090). Grey bars denote 

serum-free medium control. Y-axis in arbitrary units, all bars derived from the average densitometry of each array’s duplicate repeat spot. All densitometry 

is normalised to control medium positive control spots. POS/NEG – normalised positive and negative control spots, respectively. Noteworthy array features 

asterisked. Array spots with complete absence of uptake in at least one HPV-positive and one HPV-negative cell line have been excluded for ease of viewing. 

ᵟDenotes array spots for which UPCI SCC090 densitometry was not possible due to developer bleed-through. 

Note that for most array spots, densitometry is comparable to normal media control. MMP-3, PDGFAA and VEGFR3 demonstrated absorbencies that 

exceeded control, although a definitive relationship to HPV status is not apparent. Although PDGFAA does not perfe ctly demonstrate a clear difference 

between HPV-positive and -negative cell line stimulation, the magnitude of absorbance approximates the pattern seen for IL-6 and IL-8 ELISA undertaken on 
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stimulated fibroblast medium in Chapter 4 (please refer to Figures 4.1 & 4.2), retaining potential for the factor to be linked to the mechanism of fibroblast 

stimulation. The limitations in valid MMP-3 interpretation due to UPCI SCC090 array developer bleed have been discussed in Figure 3.3.  LAP appears to be 

more upregulated in HPV-positive cell line conditioned media, as did PRL (albeit with low readings throughout).  
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Figure 3.10: Densitometry Analysis of Simulated Fibroblast Media Raybiotech C6 Cytokine Array  

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Densitometry analysis of stimulated fibroblast conditioned media Raybiotech C6 cytokine array.  

Figure a: Stimulated fibroblast medium 2, all cell lines. Blue bars denote HPV-negative cell lines (light blue: UPCI SCC072, dark blue: UPCI SCC089), whereas 

red bars denote HPV-positive cell lines (pink/light red: UD SCC02, dark red: UPCI SCC090). Grey bars denote unstimulated fibroblast conditioned medium 

control. Y-axis in arbitrary units, all bars derived from the average densitometry of each array’s duplicate repeat spot. All densitometry is normalised to 

control medium positive control spots. Consistently negative array spots have been excluded for ease of viewing. POS/NEG – normalised positive and 

negative control spots, respectively. 
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Note that for ANG, GCP2 and IL-6, marked upregulation is seen in HPV-negative stimulated fibroblast media. For BDNF, all stimulated fibroblast media 

uptake exceeded control, although background absorbance noted in serum-free normal media (Figure 3.1) suggests this finding may be artefactual. 

Although positive absorbencies were recorded for IL-5, MCP1, M-CSF, GM-CSF and IGFBP2, densitometry did not differ significantly from control. MCP2, 

MCP3 and RANTES were noted to be only elevated in Medium 2 derived from cell line UPCI SCC089, although please refer to findings in Figure b relating to 

UPCI SCC072 stimulated fibroblast Medium 1. 

Figure b: Stimulated fibroblast Media 1&2, HPV-negative cell lines. Light blue bar denotes UPCI SCC072 Medium 2, medium blue bar denotes UPCI SCC072 

Medium 1, dark blue bar denotes UPCI SCC089 Medium 2. Grey bars denote unstimulated fibroblast conditioned medium control. Y-axis in arbitrary units, 

all bars derived from the average densitometry of each array’s duplicate repeat spot. All densitometry is normalised to control medium positive control 

spots. 

Note that for UPCI SCC072 stimulated fibroblast Medium 1, MCP-2, MCP-3 and RANTES all approximate closer to UPCI SCC089 Medium 2 absorbencies. This 

can also be observed in Figure 3.4. 

 

 

 

 

 

 

 

 



 

109 
 
 

 

Figure 3.11: Densitometry Analysis of Simulated Fibroblast Media Raybiotech C7 Cytokine Array 

 

Figure 3.11: Densitometry analysis of stimulated fibroblast conditioned media Raybiotech C6 cytokine array, stimulated fibroblast medium 2, all cell lines. 

Blue bars denote HPV-negative cell lines (light blue: UPCI SCC072, dark blue: UPCI SCC089), whereas red bars denote HPV-positive cell lines (pink/light red: 

UD SCC02, dark red: UPCI SCC090). Grey bars denote unstimulated fibroblast conditioned medium control. Y-axis in arbitrary units, all bars derived from the 

average densitometry of each array’s duplicate repeat spot. All densitometry is normalised to control medium positive control spots. Consistently negative 

array spots have been excluded for ease of viewing. POS/NEG – normalised positive and negative control spots, respectively. 

Note the considerable upregulation of IL-8, GRO, ENA-78 and VEGF, all of which demonstrate a pattern of increased densitometry with fibroblasts activated 

by HPV-negative cell line conditioned media. Consistent patterns of increased fibroblast secretion following HPV -negative cell line stimulation can also be 

observed for uPAR, GRO, sgp130, STNFRI, IL-6R, PLGF and HGF, albeit with lower densitometry. MIF and IL-12p40 appear upregulated, although no 

consistent difference is noted between HPV-positive and -negative stimulated media. IGFBP2 may be moderately upregulated in HPV-positive cell lines. Fas, 

AREG, EGFR, ICAM-1, OPG and OSM demonstrated no significant difference from control absorbance despite positive array uptake. TIMP -1 and TIMP-2 

demonstrated a small increase in absorbance in HPV-positive stimulated media, whereas HPV-negative stimulated media approximate to control 

absorbance. 
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Figure 3.12: Densitometry Analysis of Simulated Fibroblast Media Raybiotech C8 Cytokine Array 

 

 

Figure 3.12: Densitometry analysis of stimulated fibroblast conditioned media Raybiotech C6 cytokine array, stimulated fibroblast medium 2, all cell lines. 

Blue bars denote HPV-negative cell lines (dark blue: UPCI SCC072, light blue: UPCI SCC089), whereas red bars denote HPV-positive cell lines (dark red: UD 

SCC02, pink/light red: UPCI SCC090). Grey bars denote unstimulated fibroblast conditioned medium control. Y-axis in arbitrary units, all bars derived from 

the average densitometry of each array’s duplicate repeat spot. All densitometry is normalised to control medium positive control spots. Consistently 

negative array spots have been excluded for ease of viewing. POS/NEG – normalised positive and negative control spots, respectively. 

Note that no convincing distinction between HPV-positive and -negative stimulated fibroblasts can be seen. Although ICAM 2 does show increased 

densitometry for HPV-negative stimulated fibroblasts, this difference is small in comparison to absorbencies from HPV-positive stimulated fibroblasts and is 

likely artefactual. 
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Table 3.1: Summary of Factors Present in Cell Line Conditioned Media 

 

 

Present in All Cell Line 
Conditioned Media Without 

Evidence of HPV Status 
Specificity 

More Elevated in HPV-positive 
Cell Line Conditioned Media 

More Elevated in HPV-negative 
Cell Line Conditioned Media 

ANG LAP EGFR 
IGFBP2 PRL IL-6R 
IL-1ra  GRO 
M-CSF  uPAR 

IL-8  VEGF 
MIF   

TIMP-1   
TIMP-2   

PDGFAA   

 

 

 

Table 3.1: Summary of factors present in cell line conditioned media, data taken from cytokine array 

densitometry presented in Figures 3.7-3.9. Data have been divided into those factors secreted by all 

cell lines investigated, those factors secreted in greater concentrations by HPV -positive lines, and 

those factors secreted in greater concentrations by HPV-negative lines. 
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Table 3.2: Summary of Factors Present in (Stimulated) Fibroblast Media 

 

 

Basal 
Fibroblast 
Secretion 

Elevated in All 
Stimulated Fibroblast 

Media 

More Elevated in HPV-
positive Stimulated 

Fibroblast Media 

More Elevated in HPV-
negative Stimulated 

Fibroblast Media 

IGFBP2 ANG TIMP-1 RANTES* 
MCP-1 BDNF TIMP-2 MCP-2* 
TIMP-1 MCP-1 IGFBP6 MCP-3* 
TIMP-2 LAP  GCP2 

OPG MMP3  ENA78 
PLGF   GRO 

MMP3   IL-8 
MMP1   uPAR 

   VEGF 
   ICAM2 
   sgp-130 
   STNFRI 
   STNFRII 
   IL-6R 
   HGF 
   PLGF 
   IL-6 

 

 

 

Table 3.2: Summary of factors present in stimulated/unstimulated fibroblast conditioned media; 

data taken from cytokine array densitometry presented in Figures 3.10-3.12. Data have been divided 

into those factors secreted basally by unstimulated fibroblasts (positive  uptake on unstimulated 

fibroblast control array without comparable uptake on normal media control array), those factors 

secreted by fibroblasts in response to all cell line conditioned media, and those factors released in 

greater concentrations following HPV-positive/-negative cell line stimulation. 

 

*Signifies those factors which demonstrate upregulation in UPCI SCC089-stimulated Medium 2 and 

UPCI SCC072 Medium 1, but not UPCI SCC072 Medium 2. 
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Discussion 

Cytokine array analysis demonstrated a consistent cell line secretory profile based on HPV 

status. Conditioned media from all oropharyngeal carcinoma lines demonstrated positive 

array uptake for ANG, IGFBP2, IL-1ra, IL-8, MIF, TIMP 1&2, PDGFAA and M-CSF. In 

addition to those factors apparently ubiquitous to the oropharyngeal carcinoma lines, a 

further group of factors, namely EGFR, IL-6R, GRO, uPAR and VEGF – were noted to be 

released in greater concentrations by HPV-negative cell lines. These latter factors clearly 

have potential to be implicated in the mechanism of additional cell line migrations discussed 

in Chapter 2, due to a correlation between cytokine array densitometry and cell migration in 

response to conditioned media. The preceding factors common to all cell lines may however, 

also be implicated if the lack of HPV-positive cell line migration is linked to tumour line 

responsiveness to a given factor that becomes generically released upon fibroblast 

stimulation. Viral inhibition of tumour response remains a plausible mechanism through 

which only virus-negative cell lines migrate in the presence of a factor found in all stimulated 

fibroblast media. 

Only two factors, prolactin (PRL) and latency-associated peptide (LAP) were found to be 

more upregulated in HPV-positive cell line conditioned media. Although LAP densitometry 

for the HPV-positive cell line UD SCC02 does appear appreciably elevated compared to the 

HPV-negative cell lines (please refer to Figure 3.9), the relatively high sensitivity of the LAP 

array spot (1 pg mL-1) along with the low magnitude of difference in densitometry between 

the HPV-positive cell line UPCI SCC090 and the HPV-negative cell lines suggests that this 

relationship may be a result of experimental error rather than a bona fide upregulation in 

HPV-positive lines. Conversely, the PRL array spot has low sensitivity (1,000 pg mL-1), 

inferring that a small difference in densitometry between HPV-positive and -negative line 

conditioned media translates to a significant biological difference. It is however, important to 

note that all cell line conditioned media PRL densitometries were particularly low, and 

densitometry cannot therefore be guaranteed to be an accurate reflection of absolute 

concentrations. A key limitation of cytokine array densitometry is its semi-quantitative nature, 

and the difficulties in interpreting weak densitometry uptake, as illustrated for PRL along with 

a number of other factors discussed below, warrants quantitative follow-up of data of interest 

through supplemental methods, such as ELISA analysis. 

Fibroblast conditioned media again contained a number of common factors secreted in 

response to stimulation by all cell lines, namely ANG, BDNF, MCP-1, LAP and MMP-3. As 
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with cell line conditioned media, HPV-negative cell line-stimulated fibroblasts secreted a 

number of additional factors leading to observable differences in array absorbencies, namely 

GCP2, GM-CSF, IL-6, ENA78, GRO, VEGF, IL-6 and IL-8. Densitometry demonstrated a 

further sub-set of factors that again produced low intensity absorbencies, yet a consistent 

upregulation in HPV-negative stimulated fibroblast media, including uPAR, sgp-130, 

STNFRI, STNFRII, IL-6r, PLGF and HGF. Whilst the relationship of these latter factors retain 

higher potential to have occurred as a result of relatively high experimental variance in 

relation to their low overall absorbance, as was discussed for PRL above, their potential to 

underlie the migratory phenomenon in Chapter 2 is not ruled out; particularly given the low 

array sensitivity to a number of these latter factors. A small number of factors were noted to 

be more elevated in HPV-positive cell line-stimulated fibroblast media, namely TIMP-1, 

TIMP-2 and IGFBP6. Again, experimental variability may account for the higher densitometry 

of these latter 3 factors, particularly given the high control absorbance noted for TIMP-1 and 

TIMP-2.  

To summarise cytokine array findings, there are 3 remarkable features of the additional 

secretory profile of HPV-negative cell lines and their respective fibroblast response: firstly, a 

number of the factors released by fibroblasts in response to HPV-negative lines signal via 

CXCRs 1&2 (GCP2, ENA78, GRO and IL-8) – the implication of this observation is that 

CXCR-expressing cellular populations are likely to become more activated in HPV-negative 

disease. Secondly, an inflammatory profile, reflected by marked array uptake of IL-6 and IL-

8, is induced in response to HPV-negative cell line conditioned media. Thirdly, a number of 

receptor ectodomains are observed in HPV-negative cell line conditioned media, including 

EGFR and IL-6R (further examples shall also be discussed in Chapter 5). A common source 

of membrane cleavage, as shall be discussed in Chapter 4, may underlie this feature of 

HPV-negative cell line conditioned media. 

As shall be discussed further in Chapter 4, Acosta et al noted a near-identical secretory 

profile to our HPV-negative-induced fibroblast findings, whereby fibroblasts undergoing 

oncogene-induced senescence (via MEK-1) developed expression of CXCR-2, in addition to 

release of IL-6, IL-8, GRO-, IL-1 and increased mRNA transcription of all known CXCR2 

ligands289. The induction of fibroblast senescence as a process through which HPV-negative 

cell lines induce fibroblast support of migration therefore appears plausible. Rudisch et al 

also noted a similar “cytokine fingerprint” of GM-CSF, GRO-, GCP2, VEGF, RANTES and 

IL-8 following co-culture of NSCLC lines with fibroblasts290, attributing canonical NFB 
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signalling to fibroblast secretion of the aforementioned factors – albeit that the authors only 

formally demonstrated canonical NFB signalling with respect to GM-CSF. Coppe et al also 

induced an IL-6, IL-8, GRO, GM-CSF and HGF-expressing fibroblast phenotype following 

the induction of senescence through both oxidative stress and ionising radiation246. 

A further limitation of cytokine array technology is that due to relatively high expense, 

triplicate repeat analysis is unfeasible for the large amount of data presented in this chapter. 

Duplicate repeat spots are however included for each factor within a single array membrane, 

and high concordance was noted between spots throughout the arrays, other than for sites 

of developer excess, as can be observed for uPAR, VEGF & VEGFD in the Raybiotech C7 

control array (Figure 3.2) and densitometry plot (Figure 3.8), Figure C8 cytokine arrays were 

noted as producing considerable background absorbance in most array spots; the use of 

appropriate controls allowed standardisation of results to this background absorbance, 

although concern remained as to the risk of background absorbance varying between 

membranes, thereby inducing experimental error. Indeed, BDNF, IL-1 and MCP-4 were all 

noted to be represented by positive array uptake on serum-free normal media control (Figure 

3.1), whereas factors were observed to be absent in unstimulated fibroblast control medium 

(Figure 3.4). There is no simple explanation for this difference; DMEM with serum-free 

supplements should not have capacity to contain the aforementioned proteins, and a 

conclusion of background absorbance is consistent with the similar pattern of BDNF/IL-

1/MCP-4 uptake in cell line conditioned media. Background uptake should however be 

expected in the unstimulated fibroblast control medium array, which is seen to be devoid of 

any positive uptake in the aforementioned spots. Enzymatic breakdown of BDNF/IL-1/MCP-

4 by fibroblasts remains a feasible, yet unlikely alternative explanation. 

Interestingly, neither cell line conditioned media nor stimulated fibroblast media 

demonstrated any evidence of TGF expression, despite comprehensive array spots for 

TGF1, TGF2 and TGF3. It was however, observed that latency-associated peptide (LAP) 

densitometry was increased in both cell line conditioned media and stimulated fibroblast 

media compared to respective controls. Latency-associated peptide is a protein derived from 

the N-terminal region of the TGF gene, forming part of the latent TGFcomplex prior to 

extracellular secretion291. Personal correspondence with Raybiotech confirmed the C8 “LAP” 

array spot consists of two antibody pairs, responsive to both human LAP and the latent TGF-

1 complex. A residual possibility of TGF existing in a latent form is therefore feasible, 
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although a functional role of TGF in conditioned medium-induced migration appears 

unlikely given the absence of uptake in array spots responsive to its active forms. 

A broad range of the factors (IL-6R, GRO, GRO, GRO, ENA78, GCP2, IL-6, IL-8, OSM, 

OPG, HGF, identified through cytokine array analysis shall be considered in Chapters 4-6; 

review of these respective factors can be found in the introduction of Chapter 5. 

Consideration here shall therefore be limited to those factors not directly followed up in this 

thesis, and the impact they may have on disease progression. 

 

EGF Receptor (EGFR) 

EGFR was noted to be elevated in HPV-negative cell line conditioned media. Although this 

may well be an inadvertent consequence of more generic membranous receptor and factor 

shedding via upregulated ADAM activity292, as shall be discussed later in the thesis, there 

may be significant implications of EGFR release on the therapeutic management of 

oropharyngeal carcinoma. Interestingly, among other factors, ADAM17 is capable of 

inducing the release of EGFR ligands293, inferring a balance may be necessary between 

tumour EGFR shedding and EGF upregulation via ADAM17 activity. Cetuximab, a 

monoclonal antibody to the EGF receptor ectodomain294, has been FDA approved for 

management of patients with head and neck disease that have had prior platinum-based 

chemotherapy. Cetuximab has proven efficacy in locoregionally advanced295, recurrent and 

metastatic disease296. EU approval has been given for use of cetuximab in combination with 

radiation therapy for the management of locally advanced head and neck disease, and also 

in combination with platinum-based chemotherapy for the treatment of recurrent and/or 

metastatic disease297. Unfortunately, although cetuximab has benefit in the management of 

advanced head and neck cancer, its cost efficacy has been brought into question222. A more 

accurate method of determining patient response to therapy may therefore be warranted. 

Several trials of cetuximab in the management of HPV-positive oropharyngeal carcinoma are 

ongoing, including DeESCALaTE, RTOG 1016, UMCC 2009.078, ECOG-E1308 and TROG 

12.01298. Indeed, experimental evidence suggests that the HPV E5 protein has capacity to 

amplify ligand-dependent EGFR signalling299, 300, providing a scientific rationale for the 

application of cetuximab in the management of HPV-positive oropharyngeal cancer. 

Moreover, our data suggest that receptor decoy, in the form of cleaved EGFR ectodomain is 

less likely to be of concern in HPV-positive disease. Despite this, care has to be taken when 
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interpreting the results of the ongoing trials; O’Sullivan et al have reported comparable 

efficacy of radiotherapy alone compared to chemoradiotherapy in HPV-positive N0-N2a 

oropharyngeal disease and in N2b disease related to <10 pack years cigarette exposure223; 

those studies such as DeESCALaTE (clinicaltrials.gov identifier: NCT01874171), which 

include N0 – N2b disease, are designed to report survival data as a secondary outcome 

measure in terms of non-inferiority to a potentially flawed chemoradiotherapy “standard”, on 

the assumption that standard chemotherapy in the control group has adjunctive benefit over 

radiotherapy alone. Measuring cetuximab efficacy in a study skewed to local disease or early 

nodal spread may therefore deliver a result of comparable effect to chemotherapy, 

irrespective of any true benefit from either therapeutic. 

Irrespective of the findings of ongoing trials, our data identify soluble EGFR as a potential 

supplemental biomarker for response to cetuximab. Historically, attempts at biomarker-

driven cetuximab therapy through analysis of membranous EGFR status have been 

unsuccessful301; membranous receptor status does not appear to accurately predict 

response to cetuximab therapy. Indeed, it has also been noted that high concentrations of 

EGF and TGFα may compete with cetuximab for EGFR binding301; a more complex 

relationship between membranous and solubilised receptor status, in combination with 

ligand concentration may underlie the limitations in predicting efficacy of cetuximab, and 

response may be discerned more accurately by use of an index of tumour EGFR status 

based on serum soluble EGFR status as a ratio to tumour membranous EGFR status and 

ligand concentration. 

The use of concurrent erlotinib, a kinase domain EGF inhibitor which is therefore not 

competitively inhibited by the shed EGFR ectodomain, nor EGFR ligand concentration, may 

also help circumvent some of the limitations of cetuximab alone. Cetuximab plus erlotinib 

therapy has delivered promising results in the management of colon cancer302, and may be 

an appropriate therapeutic strategy in HPV-negative disease. Further research using 

xenograft models has also identified the benefit of combining cetuximab with gefitinib, a 

small molecule tyrosine kinase domain inhibitor of EGF303; researchers found that combined 

therapy led to tumour regression and maintenance of a disease-free state 4 months after 

drug withdrawal, whereas monotherapy, even at higher concentrations, led to tumour 

progression upon drug withdrawal. 
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uPAR 

Urokinase plasminogen activator (uPA), a component of the plasminogen system, acts 

through the uPAR receptor in order to catalyse plasminogen to plasmin. Activation of the 

membranous receptor therefore directs proteolysis at the margin of carcinomas, leading to 

invasion and metastasis304. A study of breast cancers using laser capture microdissection 

found both tumour and stroma act as sources of uPA and uPAR, although there appears to 

be slightly greater production by stroma305. Membranous cleavage of uPAR may occur after 

receptor binding, leading to release of the solubilised form of the receptor, which also has 

capacity to induce chemotaxis306. Serum uPAR has been found to be a determinant of 

survival in both malignancy305, 307 and also infective diseases such as TB and HIV308, 309, 

although some conflicting reports exist as to its role in specific cancers310.  

Available data on the role of uPAR in head and neck disease is limited. Ying-na et al found 

uPAR to promote nasopharyngeal carcinoma cell growth and migration in vitro, and also 

found uPAR to be elevated in metastatic disease compared to normal tissue controls in a 

small cohort of 36 patients311. Recent work by Magnussen et al has also demonstrated that 

uPAR and uPA are both predictors of mortality in T1 oral tumours312. 

Our findings are consistent with the above publications, whereby the characteristically poor-

prognosticating HPV-negative carcinoma lines both expressed uPAR, and also induced 

more significant fibroblast release of uPAR compared to HPV-positive lines. The overall 

densitometry of cell line conditioned media (Figure 3.8) did however exceed the 

densitometry of fibroblast conditioned media (Figure 3.11) suggesting fibroblast secretion of 

uPAR may be less significant than tumour secretion, although it is important to bear in mind 

that densitometry is a semi-quantitative measure, and also that cell line conditioned media 

was contributed to by a cellular population 7.5 times greater than the fibroblast population 

contributing to Media 1&2. 

 

RANTES 

RANTES (CCL5, Regulated on Activation, Normal T Cell Expressed and Secreted) was 

noted to be elevated in both UPCI SC089 cell line medium and also UPCI SCC089 

stimulated fibroblast Medium 2. Although UPCI SCC072 did not release RANTES into cell 

line conditioned medium or Medium 2, RANTES was observed in UPCI SCC072 Medium 1. 
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As has been discussed for previous factors noted in UPCI SCC072 Medium 1, the absolute 

significance of RANTES in UPCI SCC072 Medium 1 is indeterminate without further analysis 

of Medium 1 for other cell lines. Despite this limitation, it can be concluded that both HPV-

negative line conditioned media showed evidence of RANTES induction in fibroblasts, albeit 

over different timepoints. 

RANTES is a chemotactic factor, with a principal physiological function of attracting immune 

cells to sites of inflammation. It has been implicated in the attraction of tumour-associated 

macrophages and progression of breast carcinoma313, and has been reported as 

concomitantly expressed with MCP-1314, a factor noted to be only modestly upregulated in 

cytokine array densitometry of stimulated fibroblast media (Figure 3.10). HPV-negative 

oropharyngeal carcinomas may contain a macrophage subpopulation more supportive of 

tumour progression should RANTES be a distinguishing feature between HPV-positive and -

negative disease. Considerable further follow-up of our data would be necessary to confirm 

this role in both an experimental and clinical setting. 

 

 VEGF 

VEGF has a well-documented role in the progression of cancer. Head and neck-specific data 

generally support an association between VEGF status and poor prognosis/ nodal 

metastasis315, although some reviews have not found such a relationship with nodal 

metastasis316, and a role of VEGF in laryngeal & pharyngeal carcinoma is disputed316, 317. 

VEGF has been reported to adversely affect prognosis in both HPV-positive and HPV-

negative oropharyngeal carcinoma318, although no relationship was noted between tumour 

VEGF and HPV status318; conflicting data has been reported, whereby HPV-negative 

tumours are associated with higher circulating levels of VEGF319. Our data appear to concur 

with this latter study, and suggests that although VEGF is induced in fibroblast populations 

by both HPV-positive and -negative cell lines, HPV-negative cell lines induced greater 

amounts of VEGF release by fibroblasts (Figure 3.11), and moreover, HPV-negative cell 

lines also secreted modest amounts of VEFG into conditioned media (Figure 3.8). Whilst the 

inconsistency between our observed data and some clinically reported data may be a result 

of the lack of external validity of the employed in-vitro methodology, and also may reflect the 

limited number of cell lines analysed, the inconsistency may also be a consequence of 

qualitative assessment of VEGF immunohistochemistry status as opposed to quantitative 
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analysis of circulating VEGF, which closely mirrored our findings. Indeed, experimental 

overexpression of HPV16 oncoproteins E6 & E7 via transfection of non-small cell lung 

cancer lines has been demonstrated to upregulate VEGF secretion320, suggesting VEGF is 

not exclusive to HPV-negative cancers. 

 

MCP-2 & MCP-3 

Monocyte chemotactic proteins (MCP) 2 & 3 (CCL8 and CCL7, respectively) act as 

monocytic chemoattractants321. Cytokine array data infer rapid release of these factors from 

fibroblasts in response to exposure to conditioned medium from the cell line UPCI SCC072 

(please refer to Medium 1 C6 array densitometry data, Figure 3.10), although release rapidly 

declined after washing and media change – leading to minimal levels of both factors in UPCI 

SCC072 stimulated fibroblast Medium 2.  The second experimental HPV-negative cell line, 

UPCI-SCC089, demonstrated induction of MCP 2&3 release in the respective stimulated 

fibroblast Medium 2. 

As cytokine array assessment of HPV-positive cell line-stimulated fibroblast Media 1 was not 

undertaken, it is not possible to confirm whether MCP-2/3 release was specific to HPV-

negative cell lines. It is feasible that in assessing only HPV-positive stimulated Media 2, 

transient MCP 2/3 release, as was observed with the cell line UPCI SCC072, has been 

overlooked. Speculation is therefore made in this discussion on the assumption, rather than 

confirmation, of MCP-2/3 release as a HPV-negative tumour phenomenon. 

Whilst there are clear connotations linked to the release of monocytic chemoattractants, 

which may act to develop a favourable leukocytic population within the mature tumour 

microenvironment, there is little clinical data available on the role of MCP-2/3 in cancer 

progression. A study of both factors in gastric carcinoma progression found MCP-3 (CCL7) 

to be linked to lymph node metastasis and poor outcome, whilst MCP-2 (CCL8) was not322. 

Jung et al used a range of oral carcinoma lines in co-culture with cancer-associated 

fibroblasts (CAF) to show that IL-1 secreted by carcinoma lines promoted MCP-3 release 

by fibroblasts in a similar manner to our data323. Perhaps what is most novel about our 

finding is that MCP-3 can be induced within a normal fibroblast population, and therefore 

fibroblast priming to a CAF phenotype is unnecessary. Jung et al further discussed their 

findings of upregulated GRO ,& , along with IL-8 in their co-culture experiments, further 

corroborating the findings of our cytokine array data. 
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STNFR I & II 

Soluble TNF receptors 1&2 were upregulated in HPV-negative cell line-stimulated fibroblast 

media. These soluble receptors are known to be cleaved from membranes by proteolytic 

enzymes324 and may be elevated in both malignant325-327 and inflammatory processes328-330. 

Dong et al (article in Chinese, abstract accessed via PubMed) also reported elevation for 

sTNFRI in head and neck cancer331, although little further data are available for the head 

and neck region. 

 

Conclusion 

Cytokine array assessment of HPV-negative cell line and HPV-negative stimulated fibroblast 

media confirmed upregulation of a number of factors consistent with a senescence-

associated secretory phenotype. Little evidence was found to support a TGF- linked 

induction of cell migration, although differences in the data presented by Hassona et al 240 

may be explained by a separate biology of oropharyngeal and oral carcinoma. 

Whilst cytokine array data have offered considerable insight into the potential nature of 

microenvironmental interactions within HPV-positive versus HPV-negative oropharyngeal 

disease, one must bear in mind a number of limitations relating to the technology. Foremost, 

although a comprehensive list of chemokines has been studied, this list is not exhaustive, 

and the migrations observed in Chapter 2 may be attributable to a factor absent from the 

Raybiotechnology C2000 array. Moreover, the previously discussed limitations relating to 

variations in cytokine array spot sensitivity and semi-quantitative analysis necessitate further 

follow-up and validation. Despite these limitations, the array data presented in this chapter 

offer directionality for subsequent research and also affirms a “signature” secretory profile in 

HPV-negative cell lines and stimulated fibroblasts, which is consistent with the more 

aggressive nature of HPV-negative disease. 
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Chapter 4: Investigation of a CXCR-2/IL-6 Basis of 

Fibroblast Recruitment and Support 

 

Introduction 

Cytokine array densitometry data presented in Chapter 3 demonstrated a signature 

secretory profile of DENOF08 fibroblasts in response to HPV-negative cell line conditioned 

media. A number of the principal findings of densitometry related to an inflammatory 

secretome, with IL-6 and IL-8 dominating the overall picture of stimulated fibroblast array 

data in terms of array spot intensity. The findings of IL-6 and IL-8 upregulation prompted a 

review of the available literature; both factors are quoted as having capacity to induce 

EMT280, 332, 333, and furthermore IL-6 has recently been found to induce migration in oral 

cancer cell lines334 and invasion in colorectal carcinoma lines335. Conversely, no current data 

are available on the role of IL-8 in inducing tumour migration. Activation of the receptor 

CXCR-2 by ligands such as GRO (found in HPV-negative cell line conditioned media – 

please refer to Chapter 3, Figures 3.2 & 3.8) has been found to induce senescence via a 

p53-dependent pathway in human fibroblasts289. The exact mechanism by which CXCR-2 

activation leads to senescence is unresolved, although there is evidence that Rac activation 

through CXCR-2 leads to NAPDH oxidases producing reactive oxygen species, which in turn 

trigger DNA damage and thereafter a p53 response that drives senescence336. Irrespective 

of the intricacies of the CXCR-2 induced pathway to senescence, the result is an established 

senescence-associated secretory profile (SASP), which includes products such as IL-6, IL-8 

and GRO; factors noted in HPV-negative stimulated fibroblast Media 2 cytokine arrays. A 

senescence-induced pathway may therefore underlie the secretory response noted in HPV-

negative stimulated fibroblast media cytokine arrays (Chapter 3, Figures 3.4-3.6 and 3.10-

3.12), and may also act as a basis for the additional migrations noted in ORISTM assay 

experiments (Chapter 2, Figures 2.2 & 2.3). Reinforcing signals for further paracrine CXCR-2 

activation of senescence have also been described in response to initial CXCR-2 induction; 

Acosta et al reported that mRNA for most known CXCR-2 ligands becomes upregulated, 

including ENA78, GCP2, IL-8 and GRO; factors again noted to be upregulated in HPV-

negative stimulated fibroblast media cytokine arrays. CXCR-2 itself also becomes 

upregulated in this process. Non-canonical cytokines such as IL-6 have also been implicated 

in establishing the senescent response336. A hypothetical model of GRO-activated CXCR-2 
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leading to fibroblast release of reinforcing factors, in addition to production of IL-6, which 

thereafter has the capacity to induce cell line migration is summarised in Figure 4.0. 

Underlying this hypothesis is the potential for IL-6 to act as a principal driver of the additional 

migrations observed in HPV-negative cell lines in response to stimulated fibroblast media. 

Conditioned media collected from HPV-negative cell lines demonstrated increased cytokine 

array uptake of the solubilised form of the IL-6 receptor (sIL-6R). Whilst it is not uncommon 

for solubilised receptor release to be upregulated in tumours as a result of ADAM snippase 

activity leading to generic shedding of Type I membranous receptor ectodomains337, sIL-6R 

is relatively unique in that it retains capacity to have biological effect following cleavage, 

through a route referred to as “trans-signalling”. Most other receptors cleaved by ADAM 

snippases become deactivated, as signalling is reliant on the integrity of the receptor’s 

intracellular tyrosine kinase domain for signal transduction; cleaved receptor ectodomains 

therefore commonly act as competitive inhibitors of their membranous precursors, as they 

retain capacity for ligand binding without capacity for signalling. IL-6 is an exception due to 

its ability to signal via gp130, a transmembrane protein which can complex with either 

membranous or solubilised IL-6R in order for signal transduction to occur. It appears that 

there are subtle differences in biological effect between sIL-6R trans-signalling and 

canonical signalling via the membranous receptor. Limited data are available on the 

significance of sIL-6R trans-signalling in either carcinomas or normal epithelia, although the 

observation that HPV-negative cell lines actively released sIL-6R as well as inducing stromal 

production of IL-6 offers an enticing receptor-ligand relationship that could bear significance 

to the migratory phenomena in the presence of HPV-negative stimulated fibroblast media. 

This chapter seeks to test the hypothesis that fibroblast release of IL-6 is responsible for the 

additional migrations observed in HPV-negative cell lines in the ORISTM assay experiments 

discussed in Chapter 2, and that fibroblast CXCR-2 activation in response to cell line-

released GRO leads to fibroblast release of IL-6. 

 

 

 

 



 

124 
 
 

 

Figure 4.0: Hypothesised Route through Which HPV-negative Cell Lines Derive Increased 

Migrational Activity from Fibroblasts 

 

Figure 4.0: Schematic to illustrate hypothetical pathway through which HPV-negative cell lines may 

derive increased migrational activity from Stimulated Fibroblast Media 1 & 2 in ORIS TM assay 

experiments (Chapter 2, Figures 2.2 & 2.3). 

a). HPV-negative cell lines release a factor capable of inducing CXCR2 expression in stromal 

fibroblasts 

b). HPV-negative lines also release Growth Regulated Oncogene, either independently or in 

combination with IL-8. Fibroblast-induced secretion of other CXCR2-stimulating factors may 

supplement IL-8 and Growth Regulated Oncogene 

c). The net effect of CXCR stimulation is the release of IL-6, which binds to solubilised IL-6 receptor 

released by HPV-negative lines, stimulating cell motility through the IL-6 trans-signalling pathway 

 

 

 

 

 

 

 

 

a).    b).    c). 
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Methods 

M4.1: ELISA Analysis of IL-6 in Cell Line and Stimulated Fibroblast 

Conditioned Media 

Conditioned media was collected, normalised and stored at -21 oC in an identical manner as 

described in Chapter 2, methods section M2.1.  

A Human IL-6 OptEIATM ELISA Set was purchased from BD Bioscience (California, USA, 

Cat number 555220). Immediately prior to ELISA experiments, all conditioned media was 

thawed and homogenised on an agitator. Standards were prepared according to 

manufacturer’s instructions (serial 50 % dilutions of 300 pg mL-1 standard). ELISA-

compatible 96-well plates were coated with 100 L diluted stock capture antibody (1:250 in 

PBS). Plates were then sealed with adherent film and incubated overnight at 4 oC. Following 

overnight incubation, capture antibody was discarded and wells carefully washed X3 using a 

minimum of 300 L wash buffer per well (freshly prepared PBS with 0.05 % Tween-20), with 

blotting of upturned wells undertaken between each wash. Plates were then blocked with 

200 L Assay Diluent (PBS with 10 % FBS) and incubated at room temperature for 1 hr. 

Assay diluent was then discarded and a further 3X washes undertaken with blotting between 

washes. 100 L appropriately diluted assay standard or sample was then pipetted into each 

respective well, the 96-well plate sealed with adherent film and then incubated for 2 h at 

room temperature. All conditioned media samples were prepared to 1:20 and 1:50 dilution. 

Following incubation, media was aspirated and a further 5X washes undertaken with blotting 

between each wash. 100 L detection antibody plus streptavidin reagent was then prepared 

according to manufacturer’s instructions, pipetted into each well, sealed and then incubated 

for a further 1 h at room temperature. Antibody/streptavidin reagent was then aspirated and 

a further 7X washes undertaken with blotting between washes. 100 L TMB substrate (BD 

Biosciences, Franklin Lakes, New Jersey, USA, Cat number 555214) was then added to 

each well, and incubated in the dark for 30 minutes with periodic observation to ensure 

excessive chromogenic reaction did not occur. 50 L 2N sulphuric acid “stop” solution was 

then added to terminate the chromogenic reaction, and absorbance immediately measured 

at 450 nm using a Tecan Infinite M200 plate reader, with correction at 570 nm. Plate reader 

absorbencies were tabulated in Microsoft Excel, then imported into DeltaSoft ELISA analysis 

software (BioMetallics, Princeton, New Jersey, USA), and interpreted using manufacturer-

advised log-log plot. 
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M4.2: ELISA Analysis of IL-8 in Cell Line and Stimulated Fibroblast 

Conditioned Media 

 

Conditioned media was collected, normalised and stored at -21 oC in an identical manner as 

described in Chapter 2, methods section M2.1.  

A Human IL-8 OptEIATM ELISA Set was purchased from BD Bioscience (California, USA, 

Cat number 555244). Immediately prior to ELISA experiments, all conditioned media was 

thawed and homogenised on an agitator. Standards were prepared according to 

manufacturer’s instructions (serial 50 % dilutions of 200 pg mL-1 standard). ELISA-

compatible 96-well plates were coated with 100 L capture antibody diluted 1:250 in PBS. 

Plates were then sealed with adherent film and incubated overnight at 4 oC. Following 

overnight incubation, capture antibody was discarded and wells carefully washed X3 using a 

minimum of 300 L wash buffer per well (freshly prepared PBS with 0.05 % Tween-20), with 

blotting of upturned wells undertaken between each wash. Plates were then blocked with 

200 L Assay Diluent (PBS with 10 % FBS) and incubated at room temperature for 1 hr. 

Assay diluent was then discarded and a further 3X washes undertaken with blotting between 

washes. 100 L appropriately diluted assay standard or sample was then pipetted into each 

respective well, the 96-well plate sealed with adherent film and then incubated for 2 h at 

room temperature. All conditioned media samples were prepared to 1:20 and 1:50 dilution, 

with UPCI SCC089 stimulated fibroblast medium analysed at a further dilution of 1:100 (due 

to exceeding standard curve absorbance during initial optimisation). Following incubation, 

media was aspirated and a further 5X washes undertaken with blotting between each wash. 

100 L detection antibody plus streptavidin reagent was then prepared according to 

manufacturer’s instructions, pipetted into each well, sealed and then incubated for a further 1 

h at room temperature. Antibody/streptavidin reagent was then aspirated and a further 7X 

washes undertaken with blotting between washes. 100 L TMB substrate (BD Biosciences) 

was then added to each well, and incubated in the dark for 30 minutes with periodic 

observation to ensure excessive chromogenic reaction did not occur. 50 L 2N sulphuric 

acid “stop” solution was then added to terminate the chromogenic reaction, and absorbance 

immediately measured at 450 nm using a Tecan Infinite M200 plate reader, with correction 

at 570 nm. Plate reader absorbencies were tabulated in Microsoft Excel, then imported into 

DeltaSoft ELISA analysis software, and interpreted using manufacturer-advised log-log plot. 
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M4.3: ELISA Analysis of IL-6R in Cell Line Conditioned Media 

 

Conditioned media was collected, normalised and stored at -21 oC in an identical manner as 

described in Chapter 2, methods section M2.1.  

A Human IL-6R Raybiotech pre-coated IL-6R ELISA kit was purchased from Raybiotech 

(Raybiotechnology, Norcross, USA, cat number: ELH-IL6sR). Immediately prior to ELISA 

experiments, all conditioned media was thawed and then homogenised on an agitator. 

Standards were prepared according to manufacturer’s instructions (serial 60 % dilutions of 

1,000 pg mL-1 standard), using manufacturer-supplied Assay Diluent B. 100 L assay 

standard, or cell line conditioned media sample diluted 1:20 using Assay Diluent B, was then 

pipetted into each respective well. The plate was then covered and incubated overnight at 4 

oC on a rocking machine. Following overnight incubation, wells were aspirated and washed 

X4 using 300 L manufacturer-supplied wash buffer, with careful blotting between washes. 

100 L prepared biotinylated antibody was then added to each well, sealed and incubated 

for 1 h at room temperature on a rocking machine. Plates were again aspirated and 

subjected to 4X washes as described above. 100 L prepared streptavidin solution was then 

added to each well and incubated at room temperature for 45 mins. A further 4X washes 

were then undertaken as described above, and then 100 µL manufacturer-supplied TMB 

One-Step Substrate Reagent added to each well and incubated for 30 mins in the dark. 50 

µL manufacturer-supplied Stop Solution was then used to terminate the chromogenic 

reaction, and absorbance immediately measured at 450 nm using a Tecan Infinite M200 

plate reader. Plate reader absorbencies were tabulated in Microsoft Excel, then imported 

into DeltaSoft ELISA analysis software, and interpreted using 4-parametric analysis. 
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M4.4 – 4.5: Flow Cytometric Analysis of CXCR-1 and CXCR-2 Status in 

Stimulated and Unstimulated DENOF08 Fibroblast Cultures 

 

Cell line conditioned media was collected, normalised and stored at -21 oC in an identical 

manner as described in Chapter 2, methods section 2.1. 

DENOF08 normal oral fibroblasts were grown to approximately 70 % confluence in T75 

flasks. Human peripheral blood monocytes were used as a positive control. Flasks were then 

washed X3 in PBS and then incubated at 37 oC for 24 h with either cell line conditioned 

media or normal media control. Cells were then washed, non-enzymatically retrieved using 

cell dissociation solution (Sigma-Aldrich, Dorset, England, Cat C5914-100ML), diluted in cold 

FACS buffer (PBS with 0.1 % Sodium Azide and 1 % BSA) and then centrifuged at 1,000 

rpm for 5 minutes to form a pellet. Cells were then resuspended in cold FACS buffer, and 

then centrifuged again at 1,000 rpm for 5 minutes. Cell pellets were then resuspended in 

FACS buffer and 50 L suspension transferred to a microtube and incubated on ice for 45 

minutes with either 50 L monoclonal mouse anti CXCR-1 antibody (R&D Systems, 

Minneapolis, USA, Cat. number MAB330), monoclonal mouse CXCR-2 antibody (R&D 

Systems, Minneapolis, USA, Cat. Number MAB331) or FACS buffer control. Final antibody 

concentrations over the incubation period were 10 g mL-1 for both anti-CXCR-1 and anti-

CXCR-2. Suspensions were then washed with 1 mL cold FACS buffer, centrifuged at 6,000 

rpm for 2 minutes, supernatant discarded and then resuspended in 50 L fluorescent 

conjugated secondary antibody (Life Technologies, AlexaFluor 488 labelled goat anti-mouse 

antibody, Cat A11001) at a 1:50 dilution in cold FACS buffer. Cells were then washed X2 in 

cold FACS buffer, with centrifugation at 6,000 rpm for 2 minutes between washes. The final 

pellet was resuspended in 300 L FACS buffer and immediately analysed using a Calibur 

flow cytometer set to analyse 10,000 events. Flow cytometry data were then plotted and 

converted into overlay histogram images using Flowing 2.5.1 software (freeware, Turku, 

Finland). 
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M4.6: PCR analysis of Cell Line GRO-and GRO-  mRNA Expression 

 

Cytokine array data presented in Chapter 3, Figure 3.2 demonstrated elevated non-specific 

GRO (reactive to GRO -, - & -) array densitometry in cell line conditioned media without 

comparable elevation of GRO- specific array densitometry. Cytokine arrays did not include 

GRO- or GRO- specific spots; upregulation of GRO- and/or GRO- expression was 

therefore inferred. Due to prohibitively high ELISA costs, preliminary analysis of GRO- and 

GRO- was instead undertaken at the mRNA level in order to determine which candidate 

molecules demonstrated promise in accounting for the non-specific GRO signal uptake on 

cytokine array. 

cDNA for cell lines UD SCC02, UPCI SCC072, UPCI SCC089 and UPCI SCC090 was 

prepared as described in Chapter 1, methods section 1.1. 

Commercially available Taqman probes for GRO- and GRO- (FAM reporter) were 

purchased from Applied Biosystems, UK (Cat numbers Hs00601975_m1 and 

Hs00171061_m1). A probe for the B2M housekeeping gene was used in parallel to each 

GRO probe (VIC reporter). Concomitant 10 L experiments on cDNA extracted from each 

cell line were run in a 96-well PCR plate; each experiment was undertaken in triplicate 

repeat. Table 1.5, Chapter 1, summarises the components of the 10 L PCR mixture. 

Reagents were centrifuged for 1 minute at 1,000 rpm and then exposed to PCR reaction 

conditions of 50 oC for 2 mins, 95 oC for 10 minutes, followed by 40 cycles of 15 s at 95 oC/ 1 

min at 60 oC using a 7900 Fast real-time PCR Machine. 

Results were tabulated using Microsoft Excel, and relative expression calculated, normalised 

to the cell line UPCI SCC090. 
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M4.7: ELISA Analysis of Media 2 IL-6 Content Following 

Experimental Blockade of Fibroblast CXCR-2 

Cell line conditioned media was collected, normalised and stored at -21 oC in an identical 

manner as described in Chapter 2, methods section 2.1. 

DENOF08 normal oral fibroblasts were grown to early confluence in T75 flasks and then 

washed X3 in PBS. 6 mL conditioned media from HPV-negative cell lines UPCI SCC072 and 

UPCI SCC089 was then added to separate flasks and incubated for 24 h in the presence of 

either the CXCR-2 antagonist SB265610, or DMSO control. SB265610 had been pre-

optimised by co-workers to a concentration of 500 ng mL-1 when used to block CXCR2 

activity in keratinocyte cultures; in order to safeguard adequate CXCR inhibition, a ten-fold 

increase in inhibitor concentration was used, with intention to repeat experiments using 

dose-response analysis and cytotoxicity assays should inhibition of IL-6 secretion occur. 

Cells were then washed X3 in PBS, and incubated with normal media for a further 24 h to 

obtain a stimulated fibroblast Medium 2 in a similar manner as described in Chapter 2. 

Medium 2 was therefore collected from fibroblasts exposed to each HPV-negative cell line 

conditioned medium in the presence or absence of SB265610. Conditioned media were then 

subjected to ELISA analysis of IL-6 concentration, as described in methods section 4.1, 

above. 

 

 

M4.8: ELISA Analysis of Fibroblast Conditioned Media IL-6 Content 

Following Co-Incubation with Recombinant Human GRO/ GRO 

Following the inability of CXCR inhibition to restrain IL-6 release in stimulated DENOF08 

normal fibroblasts, the role of GRO- and GRO- were directly assessed using recombinant 

human proteins. Due to the potential for IL-6 to induce positive feedback of its own secretion 

when in combination with other IL-6-inducing factors such as IL-17A 338, 2 ng mL-1 IL-6 plus 

2 ng mL-1 sIL-6R (the solubilised receptor observed in HPV-negative cell line cytokine array 

analysis) were also added to experimental media. 
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Recombinant human IL-6, sIL-6R, GRO- and GRO- were purchased from Insight 

Biotechnology (Cat numbers 10-1018-C, 10-1252-C, 10-1118-B and 10-1157-B, 

respectively). 

DENOF08 normal fibroblasts were grown to early confluence, washed X3 in PBS and then 

co-incubated with either normal media control or normal media containing 2 ng mL-1 IL-6 

plus/minus IL-6R, plus/minus GRO- or GRO-. 

Experimental medium recombinant GRO-/GRO- concentration was 2 ng mL-1, comparable 

in magnitude to the limited experimental data available on GRO- release by head and neck 

cell lines333. Recombinant sIL-6R was added at a concentration of 2 ng mL-1, which is 

comparable to UPCI SCC072 sIL-6R release into cell line conditioned medium when taking 

into account 3 million cells contributing to 1 mL cell line conditioned media (please refer to 

Figure 4.3). 

Following 24 h incubation, media were retrieved and stored as a recombinant Medium 1 

equivalent. Fibroblasts were then washed X3 in PBS and then 6 mL normal media added. 

Stimulated fibroblasts were incubated with the normal media for 24 h and then recombinant 

protein-stimulated Medium 2 retrieved. All media was stored immediately at -21 oC. Media 

were subsequently thawed and assessed via IL-6 ELISA analysis as described in M4.1, 

above. 

 

M4.9: Use of GRO-Stimulated Fibroblast Conditioned Media in ORISTM Assay 

Experiments 

After failure to demonstrate an IL-6 secretory response in DENOF08 fibroblasts following 

exposure to recombinant GRO-/, the collected recombinant protein-stimulated Medium 2 

was used in ORISTM migration experiments to rule out the induction of an alternative factor 

via GRO-stimulation that could account for the migratory phenomenon observed in Chapter 

2. 

ORISTM assays were undertaken in an illustrative cell line and recombinant protein-

stimulated Medium 2 in order to reduce overall experimental costs and workload, due to the 

low anticipation of significant effect. Recombinant GRO--stimulated Medium 2 was 

therefore used against unstimulated fibroblast conditioned medium control in cell line UPCI 
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SCC072 ORISTM assay migrations. In brief, ORISTM assay methods were identical to that 

described in Chapter 2, experimental methods 2.1, albeit with recombinant GRO--

stimulated fibroblasts replacing cell line-stimulated fibroblast media. 

 

M4.10: ORISTM Assay Analysis of Cell Line UPCI SCC072 Migration in Response 

to IL-6 

In order to fully assess a role of IL-6 in HPV-negative cell line migrations, irrespective of the 

underlying precipitant of the HPV-negative stimulated fibroblast IL-6 response, ORISTM 

assays were repeated for cell line UPCI SCC072 in the presence of either normal media 

control or logarithmically-increasing doses of recombinant human IL-6 in normal media. 

Experimental methods were again identical to that described in Chapter 2, experimental 

methods 2.1, other than for the use of recombinant IL-6-containing media in place of 

stimulated fibroblast conditioned medium. 
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Results 

Figure 4.1: IL-6 ELISA Analysis of Cell Line Conditioned Media and Stimulated Fibroblast Media 1&2 

 

 

 

 

 

 

 

 

Figure 4.1: IL-6 ELISA analysis of cell line 24 h conditioned media and stimulated DENOF08 fibroblast 

Media 1 & 2. n=9, Y-axis denotes standardised IL-6 concentration, in ng per mL, per million cells. 

Grey bars denote cell line conditioned media/ unstimulated fibroblast control Media 1 & 2. Red bars 

denote HPV-positive cell line-stimulated fibroblast Media 1 & 2, blue bars denote HPV-negative cell 

line-stimulated fibroblast Media 1 & 2. All conditioned media contained significantly greater IL-6 

compared to respective fibroblast control medium (Mann-Whitney U-test, P<0.05), other than UPCI 

SCC02 stimulated fibroblast Medium 1. 

Cell line – denotes cell line-derived 24 h conditioned media, numerical suffix denotes specific cell line 

(2 – UD SCC02, 72 – UPCI SCC072, 89 – UPCI SCC089, 90 – UPCI SCC090) 

Ctrl – unstimulated fibroblast conditioned medium control 

Media 1 – stimulated fibroblast Media 1 (please refer to Chapter 2 for definitions of Media 1 & 2). 

Numerical prefix denotes specific cell line (2 – UD SCC02, 72 – UPCI SCC072, 89 – UPCI SCC089, 90 – 

UPCI SCC090) 

Media 2 – stimulated fibroblast Media 2 

Consistent with cytokine array findings (please refer to Chapter 3, Figures 3.4 & 3.10), HPV-negative 

cell lines induced marked IL-6 secretion by DENOF08 fibroblasts. An initial secretory response can be 

observed in Media 1, with a subsequent tail-off of response in Media 2. HPV-positive cell lines can be 

observed to also induce an IL-6 response, although the magnitude of the response is low compared 

to HPV-negative cell lines. 

All cell line and unstimulated fibroblast control media demonstrated minimal IL-6 release, confirming 

fibroblast stimulation by conditioned media had led to the secretory response observed in Media 1 

& 2. 
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Figure 4.2: IL-8 ELISA Analysis of Cell Line Conditioned Media and Stimulated Fibroblast Media 1&2 

 

Figure 4.2: IL-8 ELISA analysis of cell line 24 h conditioned media and stimulated DENOF08 fibroblast 

Media 1 & 2. n=9, Y-axis denotes standardised IL-8 concentration, in ng per mL, per million cells. 

Grey bars denote cell line conditioned media/ unstimulated fibroblast control Media 1 & 2. Red bars 

denote HPV-positive cell line-stimulated fibroblast Media 1 & 2, blue bars denote HPV-negative cell 

line-stimulated fibroblast Media 1 & 2. All conditioned media contained significantly greater IL-8 

compared to respective fibroblast control medium (Mann-Whitney U-test, P<0.05). 

Cell line – denotes cell line-derived 24h conditioned media, numerical suffix denotes specific cell line 

(2 – UD SCC02, 72 – UPCI SCC072, 89 – UPCI SCC089, 90 – UPCI SCC090) 

Ctrl – unstimulated fibroblast conditioned medium control 

Media 1 – stimulated fibroblast Media 1. Numerical prefix denotes specific cell line ( 2 – UD SCC02, 

72 – UPCI SCC072, 89 – UPCI SCC089, 90 – UPCI SCC090) 

Media 2 – stimulated fibroblast Media 2 

As seen for IL-6 ELISA, HPV-negative cell lines induced marked IL-8 secretion by DENOF08 fibroblasts. 

An initial secretory response can be observed in Media 1, with a subsequent tail -off of response in 

Media 2. HPV-positive cell lines can be observed to also induce an IL-8 response, although the 

magnitude of the response is low compared to HPV-negative cell lines. The mirrored pattern of 

fibroblast secretion of IL-8 compared to IL-6 infers that a common stimulatory mechanism may 

underlie the release of both factors. 
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All cell line and unstimulated fibroblast control media demonstrated minimal IL-8 release compared 

to the observed concentrations of IL-8 produced in Media 1 & 2, confirming that fibroblast 

stimulation by cell line conditioned media had led to the secretory response observed in Media 1 & 

2. Note that although dwarfed by the degree of fibroblast secretory response, UD SCC02 basally 

secreted 2,000 pg mL-1 million cells-1 IL-8, which vastly exceeded other cell line basal IL-8 secretion of 

approximately 50 pg mL-1 million cells-1. 
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Figure 4.3: Solubilised IL-6R ELISA Analysis of Cell Line-Derived Conditioned Media 

 

 

 

Figure 4.3: ELISA analysis of 24 hours Soluble IL-6 Receptor release into conditioned media, 

standardised to pg per mL, per million cells. n=9, error bars denote +/- 1 S.E. *UD SCC02 levels 

undetectable in all triplicate samples and all triplicate repeats using 4-para analysis (Raybiotech 

Human IL-6sR ELISA sensitivity reported at <3 pg mL-1). Red bars denote HPV-positive cell lines (UD 

SCC2; SCC2, UPCI SCC090; SCC90), blue bars denote HPV-negative cell lines (UPCI SCC072; SCC72, 

UPCI SCC089; SCC89). 

Marked release of the solubilised IL-6 receptor is observed in both HPV-negative cell lines, whereas 

HPV-positive cell lines produce little or no solubilised receptor. A statistically significant increase in 

IL-6R secretion was observed in both HPV-negative cell line conditioned media compared to UPCI 

SCC090 (Mann-Whitney U-test, P<0.05). Note the particularly elevated release of sIL-6R by cell line 

UPCI SCC072, which may be postulated as having a role in the increased migrations observed in UPCI 

SCC072 Medium 1 compared to UPCI SCC072 Medium 2 – Media 1 contained 24 h cell line-derived 

secretions which includes sIL-6R; Media 1 therefore retains greater potential for IL-6 trans-signalling 

via sIL-6R compared to Media 2, which may only contain sIL-6R following commencement of the 

migration assay, whereby assay-containing cells may secrete sIL-6R into the medium. 
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Figure 4.4: Flow Cytometry Analysis of CXCR-1 Expression in DENOF08 Normal Oral Fibroblasts 

Following Exposure to Cell Line Conditioned Media 

 

a).UD SSC02      b).UPCI SCC090 

 

 

 

 

 

 

 

c). UPCI SCCC072     d). UPCI SCC089 
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Figure 4.4: Flow cytometry analysis of CXCR-1 expression in DENOF08 normal oral fibroblast cultures 

following 24 h exposure to conditioned media taken from cell lines UD SCC02, UPCI SCC072, UPCI 

SCC089 and UPCI SCC090 (n=3 biological repeats). Figures a, b, c and d: flow cytometry FL1-H (488 

nm) overlay histograms for DENOF08 fibroblast CXCR-1 expression after 24 h incubation with tumour 

line conditioned media (blue) versus CXCR-1 expression in unstimulated fibroblast control (red) for 

respective cell lines. Figure e: flow cytometry FL1-H overlay histogram for monocyte positive control; 

red denotes incubation with IgG control, blue denotes incubation with CXCR-1 specific antibody. 

CXCR-1 is seen to be constitutively absent in the unstimulated fibroblast population. Following 24 h 

incubation with both HPV-negative cell line conditioned media (Figures c and d), a CXCR-1 positive 

subpopulation is established - observed as a second peak. Conversely, HPV-positive cell line 

conditioned media did not induce a clear subpopulation of CXCR-1 positive fibroblasts (Figures a and 

b). 
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Figure 4.5: Flow Cytometry Analysis of CXCR-2 Expression in DENOF08 Normal Oral Fibroblasts 

Following Exposure to Cell Line Conditioned Media 

 

a).UD SSC02      b).UPCI SCC090 
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Figure 4.5: Flow cytometry analysis of CXCR-2 expression in DENOF08 normal oral fibroblast cultures 

following 24 h exposure to conditioned media taken from cell lines UD SCC02, UPCI SCC072, UPCI 

SCC089 and UPCI SCC090(n=3 biological repeats). Figures a, b, c and d: flow cytometry FL1-H (488 

nm) overlay histograms for DENOF08 fibroblast CXCR-2 expression after 24 h incubation with tumour 

line conditioned media (blue) versus CXCR-2 expression in unstimulated fibroblast control (red) for 

respective cell lines. Figure e: flow cytometry FL1-H overlay histogram for monocyte positive control; 

red denotes incubation with IgG control, blue denotes incubation with CXCR-2 specific antibody. 

In a similar manner to CXCR-1, CXCR-2 is seen to be constitutively absent in the unstimulated 

fibroblast population. Following 24 h incubation with both HPV-negative cell line conditioned media 

(Figures c and d), a CXCR-2 positive subpopulation is established - observed as a second peak. 

Conversely, HPV-positive cell line conditioned media again did not induce a clear subpopulation of 

CXCR2 positive fibroblasts (Figures a and b). 
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Figure 4.6 GRO-and GRO- mNRA Expression in HPV-positive Versus HPV-negative Cell Lines 

 

 

 

 

 

 

 

 

Figure 4.6 a). PCR analysis of GRO- expression in respective cell lines. Error Bars denote +/-1 SEM, 

n=9. Red bars denote HPV-positive cell lines, Blue bars denote HPV-negative cell lines. Y-axis 

represents GRO- mRNA expression relative to UPCI SCC090. Note the marked increase in GRO-

expression seen in both HPV-negative lines (blue bars) compared to HPV-positive lines (red bars). 

Figure 4.6 b). PCR analysis of GRO- expression in respective cell lines. Error Bars denote +/-1 SEM, 

n=9. Red bars denote HPV-positive cell lines, Blue bars denote HPV-negative cell lines. Y-axis 

represents GRO- mRNA expression relative to UPCI SCC090.  There is again an increased expression 

of GRO- compared to HPV-positive lines, although the proportional relationship between 

expression in UPCI SCC072 and UPCI SCC089 is the inverse of that seen for GRO-. It was postulated 

that the increased GRO- expression in cell line UPCI SCC072 compared to UPCI SCC089 may account 

for the increased migration observed in the respective fibroblast Medium 1, as GRO- is known to 

have a greater avidity and stimulatory capacity for CXCR-2339. 

A highly significant difference in both GRO- and GRO- expression was observed for both HPV-

negative cell lines compared to UPCI SCC090, whereas UD SCC02 demonstrated no significant 

difference (Mann-Whitney U-test, ***P<0.001). 
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Figure 4.7: ELISA Analysis of Media 2 IL-6 Content Following Co-incubation of Fibroblasts with 5 g 

mL-1 SB265610 Versus DMSO Control. 

 

Figure 4.7: IL-6 ELISA analysis of HPV-negative cell line-stimulated DENOF08 Media 2 following co-

incubation with the CXCR-2 inhibitor SB265610, versus DMSO control. Error bars denote SEM, n=9. 

CXCRi – co-incubation with 5 g mL-1 SB265610 

DMSO – co-incubation with DMSO control 

72 – UPCI SCC072-stimulated DENOF08 Medium 2 

89 – UPCI SCC089-stimulated DENOF08 Medium 2 

Note that for both cell lines tested, no significant difference  (Mann-Whitney U-test, P>0.05) in IL-6 

secretion was found following co-incubation with SB265610, versus DMSO control. Note also that IL-

6 concentration is plotted in pg mL-1, and therefore does not directly correlate to data presented in 

Figure 4.1, which is displayed in pg mL-1 million cells-1 in order to normalise data between cell line 

and fibroblast conditioned media. DENOF08 concentration was 4 X 105 cells mL-1, accounting for the 

approximate 2.5 fold change in magnitude between the two figures.  

Lack of change in IL-6 secretion following co-incubation with the CXCR-2 inhibitor SB265610 suggests 

that CXCR-2 receptor stimulation is not important in the induction of the IL-6 response by HPV-

negative cell lines. 
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Figure 4.8: ELISA Analysis of IL-6 Content Following Stimulation of Fibroblasts with Permutations 

of sIL-6R, IL-6, GRO and GRO 

 

Figure 4.8: Fibroblast IL-6 secretory response, measured by ELISA, following incubation with 2ng ml -1 

GRO- or GRO- in combination with 2 ng mL-1 IL-6 plus recombinant 2 ng mL-1 solubilised IL-6 

receptor in order to allow for any potential positive feedback interaction with IL-6 via the trans-

signalling route. Error bars denote SD, n=3 (single biological repeat) for all recombinant protein 

conditions. 

Ctrl – unstimulated fibroblast control medium 
sIL6R – 50 ng mL-1 sIL-6R added to medium 
IL6 – 2 ng mL-1 IL-6 added to medium 

GROB  - 2 ng mL-1 GRO added to medium 

GROG – 2 ng mL-1 GROadded to medium 
SCC72 – UPCI SCC072 stimulated positive control 
SCC89 – UPCI SCC089 stimulated positive control 
 

Note that no combination of GRO/GRO/IL-6/sIL-6R precipitated a fibroblast secretory response 

comparable to that observed in positive control media. Statistical testing was not undertaken due to 

n=3, in addition to the magnitude of change observed in HPV-negative cell line Media 1&2 versus 

that observed in all recombinant protein groups. Minor rises of IL-6 concentration in Media 1 of all 

experimental groups other than sIL-6R alone, are attributable to the presence of 2 ng mL-1 

recombinant human IL-6 in respective conditions and therefore do not infer a fibroblast secretory 

response. In conclusion, the above data suggest that GRO-/ GRO- are not responsible for inducing 

the IL-6 secretory response in stimulated fibroblast media. 
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Figure 4.9: ORISTM Assay of UPCI SCC072 Migration in Response to recombinant GRO-/- 

Stimulated Fibroblast Media 2 

 

 

 

Figure 4.9: ORISTM migration assay of cell line UPCI SCC072 cultured in the presence of recombinant 

GRO-/- stimulated fibroblast Medium 2 versus unstimulated fibroblast control. n=9, error bars 

denote SEM. GRO-stimulated fibroblast medium induced no additional migration compared to 

unstimulated fibroblast medium control, and no significant difference in migration was noted 

between experimental and control groups (Mann-Whitney U-test, P>0.05), suggesting that GRO-

/are not responsible for inducing the migratory response observed in HPV -negative cell line-

stimulated fibroblast conditioned media. Note that both treatment and control media led to the 

same degree of void closure observed in control migrations for cell line UPCI SCC072 in preceding 

experiments, and were much less than that observed for UPCI SCC072-stimulated fibroblast medium 

(please refer to Chapter 2, Figure 2.3). 
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Figure 4.10: Recombinant IL-6 Dose-Response Curve for Additional ORISTM Assay Migration, 

Compared to DMEM Control 

 

 

Figure 4.10: Dose-response curve for additional ORISTM assay migration in cell line UPCI SCC072 in 

the presence of recombinant IL-6. Y-axis denotes additional percentage void closure, compared to 

respective control. Blue line denotes median additional closure following incubation with 

logarithmically-increasing concentrations of recombinant human IL-6 in normal media, error bars 

denote range. Stock concentration of IL-6 was 2 g mL-1. Control medium was normal media 

(compare to Medium 2, below). Repeats were limited to n=3 (3 biological repeats of n=1).  

As a comparison, red line denotes average additional percentage migration observed in UPCI  

SCC072-stimulated DENOF08 Medium 2 compared to unstimulated fibroblast control (please refer to 

Chapter 2, Figure 2.3). 

IL-6 can be observed to have a weak overall influence on additional migration, illustrated by lower 

range of error bars nearing zero. Note that irrespective of any meaningful additional migration in the 

presence of recombinant IL-6 in at concentrations between 1 X 10-3 – 1 X 10-2 stock (reflecting a 

biologically-relevant range of recombinant IL-6 concentrations; please refer to Figure 4.1), migration 

did not approach the degree of additional migration that was achieved with Medium 2. 

Note that although the respective controls differ between Medium 2 and recombinant IL-6 

experiments, the unstimulated fibroblast control for Medium 2 was ultimately found to outperform 

normal media in inducing cell migration (please refer to Chapter 6, Figures 6.5-6.6), and therefore 

the difference in controls weakens the illustrated difference in effect size between recombinant IL-

6/Medium 2 induced additional migrations, whereas the true difference in effect is greater.  

It was therefore concluded that IL-6 did not have the capacity to act as a sole driver of the HPV-

negative cell line migrations observed in Media 1 &2. 
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Discussion 

Discussion of Results 

This chapter has tested and disproved the hypothesis that IL-6 acts as a principal inducer of 

the additional migrations observed in HPV-negative cell lines. Intense cytokine array uptake 

of both IL-6 & IL-8 in HPV-negative stimulated fibroblast media (Chapter 3, Figures 3.4 & 

3.5) had initially prompted both molecules to be regarded as alluring candidates on which to 

form a hypothetical basis for the observed migrations. This saliently illustrates a major 

shortcoming of cytokine array technology, which is to lead the unassuming researcher to 

ascribe greatest significance to the most intense spot densities noted within an array. There 

is considerable variation in array spot sensitivities; RayBiotech cytokine array minimum 

sensitivities for both IL-6 & IL-8 are 1 pg mL-1, whereas sensitivity to HGF is 200 pg mL-1, 

and thrombospodin-1 is 100 ng mL-1; a 100,000-fold difference in sensitivity (Raybiotech 

cytokine array manufacturer-supplied data). Moreover, variance in spot sensitivity may be 

further complicated by variations in the bioactivity of each candidate molecule; spot 

sensitivity is not directly calibrated to bioactivity and these two variables may therefore 

compound each other. 

Presence of intense array uptake for the solubilised IL-6 receptor in HPV-negative cell line 

conditioned media prompted further assumptions relating to the significance of IL-6 release 

by HPV-negative stimulated fibroblasts in the context of migration, as a potential receptor-

ligand relationship that correlated to the conditioned medium-induced migrations was 

evident. ELISA quantification of IL-6 and sIL-6R in the respective media (Figures 4.1 & 4.3), 

added emotional weighting to the notion that IL-6 may have potential to drive cell migration. 

Whilst IL-6 & sIL-6R ELISAs allowed more accurate quantification of cytokine array findings, 

and are indeed valuable in combination with IL-8 ELISA data to confirm the inflammasome of 

the HPV-negative microenvironment suggested by our experimental model, ELISA 

quantification offered no additional evidence over cytokine array data to support IL-6 driven 

migration. Caution has to be taken to remain impartial to such supplementary data, which 

can only offer a pseudoscientific “theory-confirmation approach” to an established 

hypothesis, as was originally outlined by Popper340. Application of a more appropriate 

“theory falsification approach” to hypothesis testing, as addressed by subsequent 

experiments, has provided evidence to robustly disprove a principal IL-6 basis for 

microenvironmentally-supported tumour migration, with repeated acceptance of the null 

hypothesis of no significant effect throughout latter experimentation. 
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Initial work regarding GRO- and/or GRO- as a hypothetical basis for stromal induction 

offered promising results. PCR analysis of both GRO- and GRO- mRNA demonstrated 

upregulation of both sequences in HPV-negative cell lines in comparison to HPV-positive cell 

lines (Figures 4.6 a & b). Due to the lack of reliable, commercially-available ELISA kits for 

GRO- and GRO-, ELISA was not undertaken to confirm GRO- and GRO- concentrations 

at the protein level in the first instance; the role of both molecules in inducing migration was 

disproved prior to the purchasing and optimisation of custom GRO-ELISA plates. Cytokine 

array data confirming upregulated “non-” GRO secretion by cell lines (Figure 3.2), in 

combination with PCR data, suggested that increased levels of both GRO- and GRO- 

secretion at a protein level by HPV-negative lines was highly probable. This prompted further 

analysis of a potential GRO-based interaction with fibroblasts via confirmation of fibroblast 

CXCR receptor status. 

Whilst basal fibroblast CXCR-1 & CXCR-2 receptor status was found to be negative, 

stimulation with HPV-negative cell line conditioned media led to a fibroblast subpopulation 

expressing both CXCRs (Figures 4.4 & 4.5). It is unclear whether the same cellular 

subpopulation expressed both CXCR-1 and CXCR-2, although further investigation using 

multiple-colour flow cytometry would allow confirmation had this been desirable. The 

induction of CXCR-1/2 expression, along with release of GRO from HPV-negative cell lines, 

offered initial evidence to confirm the hypothesis of IL-6 induction via GRO stimulation of 

CXCR2. 

Despite the initial findings, fibroblast stimulation with recombinant GRO- or GRO- in 

combination with recombinant solubilised IL-6 receptor led to no release of IL-6 (Figure 4.8). 

A limitation of this experiment was that it had been assumed that fibroblast expression of 

CXCR-1/2 would be induced during either GRO stimulation or IL-6/sIL-6R stimulation, 

although this had not been confirmed as the process via which HPV-negative cell line 

conditioned media induced CXCR expression. It therefore remained feasible that CXCR 

expression may be triggered by an alternative route, thereby not completely ruling out the 

potential for GRO to be responsible for stimulating IL-6 release by fibroblasts. Furthermore, 

experimental GRO- and GRO- recombinant protein concentrations had been estimated 

using cytokine array sensitivities and densitometry comparison to positive array spots, along 

with the limited data available in the literature333, and therefore may not have been within 

biologically relevant concentrations. Supplemental experimentation was therefore 

undertaken using a CXCR inhibitor at concentrations previously optimised by colleagues 
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within the research group, in order to determine whether blockade of CXCR-2 would inhibit 

IL-6 release from fibroblasts when stimulated by HPV-negative cell line conditioned media 

(Figure 4.7). Again, incubation of fibroblasts in the presence of 5 g mL-1 of the CXCR-

inhibitor SB265610 in both SCC72 and SCC89 cell line conditioned media led to no 

decrease in IL-6 release when compared to conditioned media containing DMSO control 

(Mann-Whitney U-test, P=0.270 2-tailed, P=0.297 1-tailed). In combination with the 

preceding recombinant protein stimulation data, this provided satisfactory evidence to reject 

the hypothesis that GRO-/ was responsible for inducing significant fibroblast release of IL-

6. 

Indeed, a relatively recent paper, Guo et al provided evidence to refute an interdependent 

relationship between CXCR-2 expression and release of both IL-6 & IL-8341. The authors 

noted that following exposure to 10 Gy ionising radiation, peaks in CXCR-2 mRNA 

expression and IL-6/IL-8 mRNA expression followed differing temporal relationships. This 

work did however involve non-oncogenic induction of senescence in U2OS osteosarcoma 

cells, and one must also take care to avoid interpreting Guo’s data in a dogmatic fashion not 

only due to the experimental conditions, but also due to the fact that Guo assessed the 

relationship of induction of CXCR-2 expression and IL-6/IL-8 release rather than the 

relationship between CXCR-2 stimulation and IL-6/IL-8 release. 

Final experimentation in order to disprove a role of GRO in inducing fibroblast support for 

cell migration was to use Medium 2 taken from fibroblasts stimulated by GRO- and assess 

whether this medium promoted cell migration via a factor other than IL-6 that had been 

induced by the respective GRO molecule. Again, migration data failed to demonstrate an 

effect in response to recombinant proteins; repeats were therefore limited to n=3 due to 

assay expense. 

Following the abandonment of GRO-/ as potential inducers of fibroblast activation, 

attention was placed on determining the role of IL-6 as a candidate molecule for inducing cell 

migration. The presence of the solubilised form of the receptor in HPV-negative cell line 

conditioned media (Figure 4.3) as quantified via ELISA, offered support for a potential IL-6-

based role in cell line migration. This solubilised form of the IL-6 receptor has been 

extensively studied for its unusual capacity to signal in a similar manner to its membranous 

counterpart once bound to its ligand, via trans-signalling – as discussed in the chapter 

introduction. Furthermore, the absence of solubilised IL-6 receptor release by HPV-positive 
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cell lines offered an explanation for the specificity of fibroblast stimulated media to induce 

HPV-negative cell line migration alone. 

In order to confirm a role for IL-6 in inducing cell migration, dose-response curves were 

constructed using ORIS migration assays of the HPV-negative cell line UPCI SCC072, 

exposed to logarithmic dilutions of recombinant human IL-6 in normal media. Those 

concentrations of recombinant IL-6 that approximated to the levels quantified in SCC72 

stimulated fibroblast Media 1&2 (40-100 ng mL-1; Figure 4.1) induced punitive additional 

migration compared to that observed when exposing cell lines to UPCI SCC072-stimulated 

fibroblast medium (red line, Figure 4.1). Furthermore, even at IL-6 doses excessive to that 

observed in conditioned media, cell line migration was inferior to that observed with 

stimulated fibroblast medium. It was therefore concluded that as recombinant IL-6 did not 

retain potential to induce comparable levels of migration to that seen using SCC72-

stimulated fibroblast Medium 1&2, even when using concentrations of recombinant IL-6 

higher than was determined in SCC72-stimulated fibroblast Media 1&2, IL-6 was not the 

primary factor responsible for inducing the additional cell migration. 

 

Conclusions 

Following the rejection of all aspects of the hypothetical model illustrated in Figure 4.0, the 

following conclusions could be drawn: 

Whilst there is evidence of both GRO- and GRO- upregulation in HPV-negative cell lines in 

comparison to HPV-positive cell lines, GRO does not appear to be responsible for 

stimulating fibroblasts to provide secretory support for HPV-negative cell line migration. 

Fibroblasts do not basally express canonical receptors to GRO, although expression of 

CXCRs 1&2 appears to be induced by HPV-negative cell line conditioned media. The 

importance of GRO in microenvironmental fibroblast stimulation cannot therefore be ruled 

out, although it remains unimportant to the migratory phenomenon under investigation. IL-6 

appears to have a low capacity for inducing cell line migration; irrespective of whether this 

capacity is biologically significant, IL-6 is incapable of independently inducing the degree of 

cell migration observed with stimulated fibroblast conditioned media. 

HPV-negative cell line conditioned media has the capacity to rapidly induce fibroblast 

secretion of significant levels of both IL-6 and IL-8 in-vitro; these molecules are potent 
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inflammatory mediators and have been implicated in a number of processes important to the 

tumour microenvironment, including leukocyte recruitment and neovascularisation342-347. The 

release of solubilised IL-6 receptor by HPV-negative cell lines allows potential for non-

canonical IL-6 signalling to take place in those cells lacking the membranous form of the IL-6 

receptor, and may therefore have the consequence of a broader number of cells in the 

microenvironment becoming stimulated, and contentiously could even offer potential for 

endocrine-like effects on distant organs via sIL-6R/IL-6 complexes absorbed into the 

systemic circulation. Indeed, systemic effects derived from a cancer-associated fibroblast 

population has been proposed348. Membranous cleavage of sIL-6R may however be a 

biologically unimportant consequence of ADAM snippase activation, of which may have 

greater significance in the cleavage of unrelated factors, as discussed in Chapters 5 & 9. 

Whether solubilised IL-6 receptor trans-signalling offers a competitive advantage over 

canonical IL-6 signalling via a direct effect on tumour cells is uncertain; a number of 

downstream effects unique to IL-6 trans-signalling have indeed been reported – particularly 

with respect to pro-inflammatory as opposed to reparative activity349, although it is difficult to 

confirm the significance of this in terms of tumour benefit without measurable biological 

effects equated to the hallmarks of cancer255, 350. 

 

 

Plan for Further Experimentation 

Aside from the exclusion of IL-6 as the principal molecule for inducing cell line migration, the 

experimental conclusions of this chapter unfortunately provide minimal progress in 

determining the molecular basis for the additional migrations observed in HPV-negative cell 

lines when exposed to stimulated fibroblast media. Whilst disappointing, a compilation of 

candidate molecules identified by cytokine array remained untested and offered further 

promise. A key limitation to the experimental approach within this chapter was to concentrate 

on extensively testing a single hypothesis regarding a small number of factors taken from a 

wider selection of potential candidates. Although comprehensive analysis of any identified 

molecule/ pathway driving migration remains an ultimate necessity, undertaking extensive 

experimentation on further candidate pathways in a similar manner to that described in this 

chapter would remain unfeasibly time-consuming and inefficient. A decision was therefore 
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made to concentrate on validating the constituent(s) of the stimulated fibroblast secretome 

responsible for inducing cell line migration rather than determine a more extensive pathway 

inclusive of the factor(s) responsible for initiating that fibroblast secretory response. 

Review of stimulated fibroblast cytokine array data allowed segregation of candidate 

molecules into four groups, namely: i. those factors displaying markedly upregulated 

densitometry exclusively following the stimulation with HPV-negative cell line conditioned 

media, ii. those factors with a clear trend of increased array uptake following stimulation with 

HPV-negative cell line conditioned media in comparison to HPV-positive cell line conditioned 

media, iii. those factors upregulated by all cell lines in comparison to control, and iv. those 

factors inducing positive densitometry readouts yet showing no frank pattern of their 

secretion from HPV-positive versus -negative cell lines, or densitometry not exceeding that 

of control. Factors from all four groups were considered as potential drivers of cell migration, 

despite groups iii. and iv. not directly correlating with the observed migrations; although less 

likely, molecules within these two groups were still considered as retaining potential to 

induce migration in HPV-negative lines only, should HPV-positive cell lines demonstrate a 

comparative downregulation of the respective receptor. Further consideration was given to 

factors not included in the cytokine arrays, but also reported in the literature to induce cell 

migration. A final list of the following factors was compiled: IL-6, IL-8, GRO-, GRO-, GRO-

, ENA78, GCP2, uPAR, solubilised GP130, solubilised IL6-R, STNFR1 STNFR2, PLGF, 

HGF, IGFBP6, OPG, OSM, TMP1, TMP2 and CTGF; the latter having been absent from 

cytokine arrays, but reported in the literature as promoting cell migration and having been 

linked to factors present in cell line conditioned media; it has also been noted to be 

upregulated in the stroma of metastatic head and neck cancer238, 351, 352. From this list, 

solubilised receptors and carrier proteins were initially excluded, in addition to those factors 

for which purchase of the recombinant protein was deemed cost-prohibitive (PLGF and 

uPAR). This allowed a working list of 11 candidate molecules inclusive of IL-6 to be carried 

forward for initial assessment via recombinant protein dose-response analysis of migration. 
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Chapter 5: Progressive Analysis of Candidate 

Molecules Identified by Cytokine Array 

 

Introduction 

 

A total of 11 candidate molecules identified by cytokine array as potential drivers of HPV-

negative oropharyngeal cell line migrations were selected for further analysis. Initial 

experimental plans included assessment of each of the 11 candidate molecules through 

dose-dependent effect on cell line migration using recombinant proteins. Those recombinant 

proteins showing a convincing dose-response relationship with cell migration in HPV-

negative cell lines would then be analysed further to determine biological plausibility of 

driving migration, by flow cytometric analysis of membranous receptors to that specific factor 

in HPV-negative cell lines in addition to analysis of stimulated fibroblast media 1 & 2 for 

presence of that factor. In doing so, many of the criteria for providing adequate evidence of 

causality, as originally described by Bradford-Hill, are satisfied – namely: 

Strength – a marked increase in ORISTM assay cell migration when exposed to the 

respective recombinant protein, comparable to that observed in conditioned medium 

experiments, would be required for any candidate molecule to retain its position as a 

plausible driver of migration in the stimulated fibroblast media. Previous experimentation with 

recombinant IL-6 led to a minor degree of cell migration that was not consistent with the 

overall effect of conditioned media. One would have to consider the prospect of multiple 

secreted factors contributing to cell migration in conditioned medium experiments, although 

in the first instance a convincing prime candidate would be sought. 

Consistency – the candidate molecule would have to demonstrate capacity to drive migration 

in both cell lines SCC72 and SCC89 throughout triplicate biological repeat of dose response 

experimentation. Additional reference to the candidate molecule in the literature for driving 

tumour migration would offer further support of consistency. 

Temporality – an increase in cell migration should be demonstrated following exposure of 

each cell line to the candidate molecule. 
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Biological Gradient – the candidate molecule should show evidence of a clear dose-

response relationship with cell migration. 

Plausibility – confirmation of canonical membranous receptor expression in HPV-negative 

oropharyngeal cell lines, in addition to quantitative confirmation of presence of the respective 

candidate molecule in a biologically active concentration in HPV-negative stimulated 

fibroblast media would provide evidence of plausibility. 

Further experimentation to confirm a final criterion set by Bradford-Hill, Specificity, shall be 

addressed in Chapter 6. Individual consideration of the literature for each of the 10 

remaining candidate molecules (following exclusion of IL-6 in Chapter 4) with respect to 

inducing cellular migration shall now be given. 

 

CTGF 

Connective tissue growth factor (CTGF, CCN2), although not included in the Raybiotech 

cytokine array panel, has been found to be upregulated in tumour-fibroblast co-culture, and 

correlates with EMT changes353. CTGF has been observed to induce lung fibroblast 

migration and myofibroblast differentiation354. Interestingly, stromal release of CTGF in 

models of pancreatic tumour-stromal interactions has been attributed to CXCR-2 activation, 

and tumour progression can be abrogated in a xenograft model via CXCR-2 inhibition352. 

These findings offer a potential explanation for driving both HPV-negative oropharyngeal 

carcinoma migration (Chapter 2, Figure 2.3), in addition to upregulation of CXCR-2 in 

stimulated fibroblasts (Chapter 4, Figure 4.5). CTGF was therefore considered a noteworthy 

addition to those candidate molecules identified via cytokine array for further analysis. 

 

IL-8 

IL-8 (interleukin 8) is a chemokine secreted by a broad range of cells, including 

keratinocytes, head and neck carcinoma lines and fibroblasts. IL-8 had been observed to be 

markedly elevated in HPV-negative stimulated fibroblast cytokine array data (Figure 3.5), 

and had been further quantified by ELISA (Figure 4.2). Intriguingly, IL-8 signals via the 

CXCR receptors 1 & 2, which had been noted to be induced in a sub-population of 

fibroblasts following exposure to HPV-negative cell line conditioned media (Figures 4.4 & 
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4.5). CXCR-1 & 2 expression was not formally assessed in cell lines, although it remained 

plausible that CXCR induction as an exclusive property of the HPV-negative cell lines could 

be linked to the additional migrations observed in conditioned medium experiments. 

Moreover, IL-8 stimulation has been found to transiently induce EGFR tyrosine kinase 

activity via promoting the release of heparin-binding EGF-like growth factor, leading to colon 

carcinoma cell line migration355. EGFR transactivation via IL-8 has been further reported in 

small cell lung carcinoma lines, albeit with respect to induction of proliferation rather than 

migration356, in addition to acting as a mechanism of inducing motility in endothelia357. 

Furthermore, conditioned media taken from iNKT cells, a T-cell subset was found to induce 

both EGFR transactivation in endothelia this manner, in addition to inducing CXCR-2 

expression357. 

 

GRO-  

Growth-regulated oncogene- (GRO-, CXCL1), is a chemokine that signals via the CXCR2 

receptor. Its role in cancer has largely been reported with respect to the induction of 

mitogenesis in melanoma, although has also been found to induce neutrophil chemotaxis in 

a similar manner to IL-8 358. GRO- has been linked to thrombin-induced angiogenesis and 

chemotaxis of endothelia359, although a direct role in cancer cell migration has not been 

shown. Despite the lack of direct evidence relating to migration, GRO- has been found to 

be more elevated in metastatic colonic carcinoma lines compared to non-metastatic lines360. 

Despite this observation, its role in tumour progression is largely attributed to 

angiogenesis361, and moreover clinical data suggest GRO- may in fact correlate with 

favourable outcome in colonic carcinoma362. Bieche et al found through PCR analysis of 

tumour specimens that upregulation of GRO-, GRO- and IL-8 in breast carcinoma 

correlated with metastasis and poor disease control with Tamoxifen. Whilst IL-8 was 

identified in a number of tissue types in Bieche’s study, GRO- and - were noted to be 

produced by cells of vascular origin, a finding consistent with the consensus view of GROs’ 

role in cancer progression363. Limited data exist on the role of GRO- in oropharyngeal 

carcinoma, although a rise in concentration of this cytokine, along with VEGF, HGF, IL-6 and 

IL-8, has been noted to precede mortality in advanced disease364. Its exclusive receptor, 

CXCR-2, is clinically implicated with oral cancer and also cell line invasion and metastasis 365, 

366. Although CXCR-2 exists as an exclusive receptor to the GRO- ligand, the converse is 
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not true; in fact, a number of candidate chemokines addressed in this chapter, including IL-8, 

GCP2, GRO-, GRO- and ENA78 signal via this receptor. Implication of this receptor in 

disease therefore, is not necessarily specific to any single ligand. Irrespective of the 

available literature, GRO- was found to be elevated in HPV-negative stimulated fibroblast 

media (Figure 3.5), retaining it as a potential candidate molecule in the induction of the 

observed migrations with stimulated fibroblast media. 

 

GRO-

Growth-regulated oncogene- (GRO-, CXCL2), as with GRO-, signals via the CXCR2 

receptor and has been similarly implicated with early neutrophil recruitment in 

inflammation367. Although tumour migration has not been reported in response to GRO-, the 

molecule has been linked with poor prognosis in GISTs368, and the degree of GRO- 

expression in colonic carcinoma correlates with staging, although has no bearing on 

metastasis or survival369. GRO- has no reported influence on carcinoma migration, and its 

effects appear to be limited to inducing proliferation in-vitro 370, 371. 

 

GRO- 

Growth-regulated oncogene- (GRO- CXCL3, MIP2b) is a known regulator of migration of 

neutrophils372, monocytes373, airway smooth muscle cells374 and cerebellar neurones375. 

Although GRO- has a much greater affinity for CXCR-2339, it has been reported that activity 

of both CXCR-1 and CXCR-2 are necessary for its effects on migration; neutralising antibody 

to either receptor reduced the migratory effect of GRO- on airway smooth muscle in-vitro374. 

There are no data to support its direct role in carcinoma migration. 

 

ENA78 

Epithelial-derived neutrophil-activating peptide 78 (ENA78, CXCL5) is a further CXC 

cytokine that signals via the CXCR-2 receptor. ENA78 has been reported as 

chemoattractant to neutrophils372 and endothelia376, although has no reported effects on 

carcinoma migration. 
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GCP2 

Granulocyte chemotactic protein 2 (GCP2, CXCL6) has the capacity to signal via both 

CXCR-1 & 2 377. Although regarded as a neutrophil chemoattractant372, 378, GCP2 has 

recently been found to induce hepatocellular carcinoma line migration379, although there are 

no reports of a role in head and neck carcinoma migration. 

 

HGF 

HGF (Hepatocyte growth factor, scatter factor, SF) is a highly motogenic cytokine released 

principally by fibroblasts in wound repair379. Its effect on keratinocyte motility is achieved via 

STAT3 upregulation and can be inhibited by the SOCS3 protein380, 381. Head and neck 

carcinoma line migration in response to HGF has been well documented382, 383, and 

downregulation of c-Met (HGF’s classical receptor) by miR-143 has been shown to inhibit 

migration in-vitro384. Similar experimentation using RNA interference of c-Met also led to 

reduced tumour size and improved survival in an animal model of head and neck cancer385. 

Cytokine array densitometry data showed upregulation of HGF in HPV-negative cell line-

stimulated fibroblast media compared to HPV-positive stimulated fibroblast media (Chapter 

3, Figure 3.11). Although all HGF densitometry measures were low compared to positive 

control, low densitometry uptake may be attributed to reduced array HGF sensitivity as 

discussed in Chapter 4, and a proportionate relationship between HPV-positive and -

negative stimulated fibroblast media is therefore more valid than overall array spot density. 

Low array uptake does however introduce greater potential for background variability to 

account for variance between HPV-positive and -negative stimulated media, although one 

can conclude that the correct relationship exists for HGF to be considered a candidate 

molecule. HGF’s profile of acting as a highly motogenic cytokine, in addition to being 

characteristically released by fibroblasts, further supports the potential for this cytokine to 

underlie the additional migrations observed in the conditioned medium experiments (Chapter 

2). 
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OPG 

Osteoprotegerin (OPG) is a secreted glycoprotein that has capacity to block osteoclast 

differentiation386. Its principal role is to act as a receptor decoy to the RANK ligand. OPG has 

no reported role in head and neck cancer, and moreover OPG has been proposed as a 

potential cancer therapeutic in the management of bone tumours387. OPG therefore retains 

minimal potential as a driver of the observed cell migrations, although one cannot rule out 

the potential for OPG to downregulate a basally-secreted inhibitor of migration through its 

receptor decoy activity. Despite this, RANK ligand, the only ligand known to bind to OPG, 

has a pro-tumourigenic effect and blockade of stromal release of OPG appears important for 

bone tumour progression388. 

 

OSM 

Oncostatin M (OSM) is a pleiotropic cytokine, sharing a similar amino acid sequence to 

cytokines CTNF, G-CSF, IL-6, IL-11 and LIF 389. It is thought that a common evolutionary 

ancestor gave rise to OSM and these homologous cytokines, which led to a shared receptor 

signal transduction system between OSM, IL-6, IL-11 and LIF involving the gp130 

transmembrane protein. OSM characteristically activates two intracellular signalling 

pathways, namely JAK/STAT and MAPK 390. Despite characteristic signalling cascades, 

OSM can bind to two receptors capable of complexing with gp130; the exclusive OSM 

receptor (OSMR)391, and a “shared” LIF-receptor, which is capable of being activated by both 

OSM and LIF 392. OSM also directly binds gp130 with low affinity393. 

OSM’s pleiotropic nature leaves uncertainty with respect to its potential activity on 

oropharyngeal carcinoma lines. OSM has been noted to act as a potent mitogen in myeloma 

and Kaposi’s sarcoma, yet has been found to inhibit gastric, ovarian, lung and breast 

carcinoma line proliferation394. There are some data to support a role for OSM in cell 

migration; OSM has been found to induce migration of extravillous trophoblasts395, as well as 

inducing matrigel invasion of osteosarcoma lines396, and has been recently found to induce 

endometrial carcinoma cell migration397. 
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Methods 

M5.1: Recombinant Protein Dose-Response Analysis 

Recombinant human CTGF, ENA78, GCP2, GRO-, GRO-, GRO-, HGF, IL-6, IL-8, OPG 

and OSM were purchased from Insight Biotechnology (Wembley, UK). Each vial of 

lyophilised protein was reconstituted with 1,000 L normal media (DMEM plus 10 % FCS, 

plus 50 U mL-1/50 g mL-1 penicillin-streptomycin, plus 2mM l-glutamine) to produce a stock 

solution, aliquoted and stored at -21 oC prior to use in experiments. All stock solutions were 

prepared to a micro-gram per millilitre concentration, although absolute concentrations 

varied as depicted in Table 5.1, below; use of a standardised soluent volume to ensure 

accurate dilution of each recombinant protein, in addition to achieving an adequate volume 

to run triplicate experimental repeats was considered more critical than achieving identical 

concentrations of each biologically distinct recombinant protein. Serial 1:10 dilutions were 

then undertaken using normal media to obtain logarithmically decreasing doses of each 

recombinant protein. Normal media containing identical DMEM, penicillin-streptomycin, L-

glutamine and FCS batches were used for all serial dilutions, in order to maintain 

experimental consistency. 

 

Table 5.1: Details of recombinant proteins used in dose-response analysis 

Recombinant 
Protein 

Supplier Catalogue 
Number 

Manufacturer 
supplied 

amount, g 

Concentration of 
Stock Solution, 

g mL-1 
CTGF Insight Biotechnology 10-1811-B 5 5 
ENA78 Insight Biotechnology 10-1050-B 5 5 
GCP2 Insight Biotechnology 10-1115-B 5 5 

GRO- Insight Biotechnology 10-1052-B 5 5 

GRO- Insight Biotechnology 10-1118-B 2 2 

GRO- Insight Biotechnology 10-1157-B 2 2 

HGF Insight Biotechnology 10-1194-B 2 2 
IL-6 Insight Biotechnology 10-1018-C 20 20 
IL-8 Insight Biotechnology 10-1054-C 25 25 
OPG Insight Biotechnology 10-1191-B 10 10 
OSM Insight Biotechnology 10-1740-B 2 2 

 

UPCI SCC072 was selected as a representative HPV-negative cell line for initial 

investigation, and was grown to 70 % confluence in a T75 flask. Cells were washed twice in 



 

159 
 
 

 

PBS, trypsinised, centrifuged at 1,000 rpm and then resuspended in normal media. The cell 

suspension was then counted using a haemocytometer, with appropriate dilutions using 

normal media in order to achieve the preoptimised seeding concentration of 1.6 X 106 cells 

mL-1 for confluent ORISTM assay well loading, as described in Chapter 1. ORISTM assay 

plates were prepared under sterile conditions, mounting silicone stoppers into each well 

using the manufacturer-supplied location device. 100 L of each cell suspension was then 

pipetted into respective ORISTM assay wells and left overnight to adhere. 

Following cell adherence and confirmation of well confluency using an inverted lens 

microscope, a preoptimised (please refer to Chapter 1, Figure 1.5) 2 g mL-1 mitomycin C 

suspension in normal media was created from snap-frozen 0.5 mg mL-1 aliquots of 

mitomycin C stored at -80 oC. All handling of mitomycin C was undertaken in a darkened 

tissue culture hood in order to avoid excessive light exposure. Silicone stoppers were then 

removed from assay wells using the manufacturer supplied retrieval tool, exposing the 

respective cell exclusion zone, and normal media carefully aspirated off each well ensuring 

contact was avoided with the well base. 2 X 100 L PBS washes were then undertaken. 100 

L mitomycin C at preoptimised concentrations to inhibit cell proliferation was then pipetted 

into each well and incubated for 3.5 hours at 37 oC in the dark. Following 3.5 hours 

incubation in mitomycin C, baseline void photomicrographs were taken under X4 

magnification. Wells were then immediately washed X 2 with 100 L PBS and then 

incubated with 100 L normal media control/serially-diluted recombinant protein-containing 

media for 48 h. End-point migration photomicrographs were taken of each cell exclusion 

zone at 48 h. 

Analysis of cell migration was undertaken by comparison of baseline versus 48 h micrograph 

images taken at X4 objective. The area of each stopper-induced cell exclusion zone at 

baseline and 48 h was measured using ImageJ using the polygon selection tool (freeware, 

NIH, USA). Percentage void closure was then calculated by dividing area of closure over 48 

h by total baseline area of cell exclusion zone. 

Each recombinant protein was tested at serial dilutions of 100, 10-1, 10-2 and 10-3 stock 

solution concentrations, in addition to normal media control. Triplicate biological repeats of 

each experimental condition (n=1) were undertaken, with median additional percentage void 

closure (compared to closure in control medium) calculated and plotted graphically (Figure 

5.1). 
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Collection of Conditioned Media for ELISA Analysis of Candidate Cytokines 

 

Collection of Conditioned Media for ELISA Analysis: Cell Line Conditioned Media 

Cell lines UD SCC02, UPCI SCC072, UPCI SCC089 and UPCI 090 were grown to near 

confluence in T75 flasks, washed X3 in PBS and incubated with 7 mL normal media for 24 h. 

Following 24 h incubation, conditioned media were retrieved, centrifuged at 3,000 rpm for 5 

minutes and then supernatant retrieved taking care to avoid resuspension of precipitated 

cellular debris, and then stored at -21 oC. The respective T75 flask was trypsinised and a cell 

count undertaken to confirm collection of a conditioned medium that had been contributed to 

by 3 million cells per mL of media. 

 

Collection of Conditioned Media for ELISA Analysis: Stimulated Fibroblast Media 

Passage 7 DENOF08 normal oral fibroblasts were cultured in T75 flasks to confluence, 

washed X3 in PBS and then incubated with 6ml cell line conditioned medium, derived in the 

same manner as described above for ELISA analysis, again normalised to 3 million cells mL-

1. Following incubation with either cell line conditioned media taken from UD SCC02, UPCI 

SCC072, UPCI SCC089, UPCI 090 or normal media control, the medium was retrieved, 

centrifuged and the supernatant (hereon referred to as stimulated fibroblast Medium 1) 

comprising the initial cell line conditioned medium plus immediate fibroblast response, stored 

at -21 oC. Fibroblast cultures were then washed X3 in PBS, and then 6 mL normal media co-

incubated for a further 24 hours in order to collect the tail-off of any fibroblast response to 

stimulation (hereon referred to as stimulated fibroblast Medium 2). Following incubation, 

stimulated fibroblast Medium 2 was retrieved, centrifuged at 3,000 rpm and then supernatant 

collected and stored at -21 oC. 

Following collection of fibroblast media 2, fibroblast cultures were washed X3 in PBS, 

trypsinised and counted. All flasks were counted to confirm stimulated fibroblast media had 

been collected at a standard count of 400,000 fibroblasts per mL of conditioned medium. 
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M5.2: OSM ELISA Analysis 

Oncostatin M quantification of cell line conditioned media and stimulated fibroblast Media 1 

& 2 was undertaken using Raybiotech OSM ELISA kits (Raybiotech, Norcross, USA, Cat 

ELH-OSM). Manufacturer instructions were adhered to throughout ELISA analysis. In brief, 

manufacturer-supplied recombinant human OSM standard was prepared to a 1,000 pg mL-1 

concentration in assay buffer. Serial 1:3 dilutions were then undertaken using assay buffer in 

order to achieve a control reference range. Assay buffer was used as a zero standard. All 

conditioned media were diluted in assay buffer using a manufacturer-suggested 1:20 

dilution. A further biologically-active 2 ng mL-1 recombinant OSM protein control (Insight 

Biotechnology, cat 10-1740-B) was assayed in 1:20 dilution order to validate ELISA plates. 

100 L standard/sample was added to each well of the Raybiotech OSM capture antibody 

preconditioned ELISA plates and incubated overnight with gentle rocking. The conditioned 

media/standard were then discarded and each well washed X4 with 300 L manufacturer-

supplied wash buffer using a multi-channel pipette, ensuring complete removal of solution 

after each wash through blotting of the inverted plate against tissue paper. Each well was 

then incubated at room temperature with 100 L 1X biotinylated detection antibody for 1 

hour on an automated rocker machine. Following incubation, the biotinylated antibody 

solution was discarded and again wells washed X4 with 300 L manufacturer-supplied wash 

buffer using a multi-channel pipette, ensuring complete removal of solution after each wash 

through blotting of the inverted plate against tissue paper. 

100 L freshly-prepared 1X streptavidin solution (concentrate diluted 300-fold in assay 

diluent) was then pipetted into each well using a multi-channel pipette and incubated for 45 

minutes at room temperature on an automated rocker machine. Following incubation, the 

streptavidin solution was discarded and a further X4 washes undertaken as described 

above. 

100 L of manufacturer-supplied TMB One-Step Substrate Reagent was then added to each 

well and incubated for 30 minutes at room temperature, protected from light, on an 

automated rocker machine. 50 L of manufacturer-supplied Stop Solution was then added to 

each well and the plate read at 450 nm using a Tecan Infinite M200 plate reader. Results 

were tabulated using Microsoft Excel and imported into DeltaSoft ELISA analysis software 

(BioMetallics, Princeton, New Jersey, USA), and interpreted using 4-parameter best-fit plot. 



 

162 
 
 

 

M5.3: HGF ELISA Analysis 

 

HGF quantification of cell line conditioned media and stimulated fibroblast Media 1 & 2 was 

undertaken using Raybiotech HGF ELISA kits (Raybiotech, Norcross, USA, Cat ELH-HGF). 

Manufacturer instructions were adhered to throughout ELISA analysis. In brief, 

manufacturer-supplied recombinant human HGF standard was prepared to a 2,000 pg mL-1 

concentration in assay buffer. Serial 1:3 dilutions were then undertaken using assay buffer in 

order to achieve a control reference range. Assay buffer was used as a zero standard. All 

conditioned media were diluted in assay buffer using a manufacturer-suggested 1:20 

dilution. 

100 L standard/sample was added to each well of the Raybiotech HGF capture antibody 

preconditioned ELISA plates and incubated overnight with gentle rocking. The conditioned 

media/standard were then discarded and each well washed X4 with 300 L manufacturer-

supplied wash buffer using a multi-channel pipette, ensuring complete removal of solution 

after each wash through blotting of the inverted plate against tissue paper. Each well was 

then incubated at room temperature with 100 L 1X biotinylated detection antibody for 1 

hour on an automated rocker machine. Following incubation, the biotinylated antibody 

solution was discarded and again wells washed X4 with 300 L manufacturer-supplied wash 

buffer using a multi-channel pipette, ensuring complete removal of solution after each wash 

through blotting of the inverted plate against tissue paper. 

100 L freshly-prepared 1X streptavidin solution (concentrate diluted 300-fold in assay 

diluent) was then pipetted into each well using a multi-channel pipette and incubated for 45 

minutes at room temperature on an automated rocker machine. Following incubation, the 

streptavidin solution was discarded and a further X4 washes undertaken as described 

above. 

100 L manufacturer-supplied TMB One-Step Substrate Reagent was then added to each 

well and incubated for 30 minutes at room temperature, protected from light, on an 

automated rocker machine. 50 L of manufacturer-supplied Stop Solution was then added to 

each well and the plate read at 450 nm using a Tecan Infinite M200 plate reader. Results 

were tabulated using Microsoft Excel and imported into DeltaSoft ELISA analysis software, 

and interpreted using 4-parameter best-fit plot. 
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M5.4: Dose-Response Analysis of HGF in HPV-Negative Cell Line UPCI SCC089 

Following identification of HGF as a principal candidate for driving migration in cell line UPCI 

SCC072, dose-response analysis was repeated for a second HPV-negative cell line, UPCI 

SCC089. Cell line UPCI SCC089 was grown to 70-80 % confluence in a T75 flask. Cells 

were washed twice in PBS, trypsinised, centrifuged at 1,000 rpm and then resuspended in 

normal media. The cell suspension was then counted using a haemocytometer, with 

appropriate dilutions using normal media in order to achieve the preoptimised seeding 

concentration of 8.8 X 105 cells mL-1 for confluent ORISTM assay well loading, as described 

in Chapter 1. ORISTM assay plates were prepared under sterile conditions, mounting silicone 

stoppers into each well using the manufacturer-supplied location device. 100 L of each cell 

suspension was then pipetted into respective ORISTM assay wells and left overnight to 

adhere. 

Following cell adherence and confirmation of well confluency using an inverted lens 

microscope, a preoptimised (please refer to Chapter 1, Figure 1.5) 2 g mL-1 mitomycin C 

suspension in normal media was created from snap-frozen 0.5 mg mL-1 aliquots of 

mitomycin C stored at -80 oC. All handling of mitomycin C was undertaken in a darkened 

tissue culture hood in order to avoid excessive light exposure. Silicone stoppers were then 

removed from assay wells using the manufacturer supplied retrieval tool, exposing the 

respective cell exclusion zone, and normal media carefully aspirated off each well ensuring 

contact was avoided with the well base. 2 X 100 L PBS washes were then undertaken. 100 

L mitomycin C at preoptimised concentrations to inhibit cell proliferation was then pipetted 

into each well and incubated for 3.5 hours at 37 oC in the dark. Following 3.5 hours 

incubation in mitomycin C, baseline void photomicrographs were taken under X4 

magnification. Wells were then immediately washed X 2 with 100 L PBS and then 

incubated with 100 L normal media control/serially-diluted recombinant protein-containing 

medium for 20 hours. End-point migration photomicrographs were taken of each cell 

exclusion zone at 20 h. 

Analysis of cell migration was undertaken by comparison of baseline versus 20h micrograph 

images taken at X4 objective. The area of each stopper-induced cell exclusion zone at 

baseline and 20 h was measured with ImageJ software, using the polygon selection tool 

(freeware, NIH, USA). Percentage void closure was then calculated by dividing area of 

closure over 20 h by total baseline area of cell exclusion zone. 
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Recombinant HGF was tested at serial dilutions of 100, 10-1, 10-2,10-3 10-4 and 10-5 stock 

solution concentration (2 g mL-1), in addition to normal media control. Triplicate biological 

repeats of each experimental condition were undertaken, with median additional percentage 

void closure (compared to migration with control media) calculated and plotted graphically 

(Figure 5.4). 

 

M5.5: Flow Cytometric Analysis of c-Met Status Oropharyngeal Carcinoma 

Cell Lines 

FITC-conjugated anti-human c-Met antibody for use in flow cytometry was purchased from 

Affymetrix e-Bioscience (Hatfield, UK, Cat number 11-8858-41), along with rat IgG1 isotype 

control probe (Cat number 11-4301-81). 

Cell lines UD SCC2, UPCI SCC072, UPCI SCC089 and UPCI SCC090 were grown to 70-80 

% confluence in T75 flasks, along with HeLa (cervical carcinoma) and HepG2 

(hepatocellular carcinoma) lines to act as c-Met positive controls. Cells were dissociated 

from respective flasks using EDTA cell dissociation solution (Sigma-Aldrich, Dorset, 

England, Cat C5914-100ML), suspended in FACS buffer (PBS with 0.1 % Sodium Azide 

plus 1 % BSA) cooled on ice, and centrifuged at 1,000 rpm for 5 minutes. The supernatant 

was then decanted and cells resuspended in 900 L cooled FACS buffer. Each cell 

suspension was then divided equally into three Eppendorph containers and again 

centrifuged at 2,000 rpm for 2 minutes. Following careful aspiration of supernatant, cells 

were resuspended in 100 L cooled FACS buffer containing either no additive, 5 L (1.0g) 

FITC-conjugated c-Met probe, or 5 mL (1.0 g) rat IgG1 isotype control. Each suspension 

was then incubated on ice and in the dark for 40 minutes. Following incubation, cells were 

centrifuged at 2,000 rpm for 2 minutes, supernatants carefully aspirated and cell pellets 

resuspended in 1,000 L cold FACS buffer. A repeat centrifugation and cold FACS buffer 

wash was undertaken, followed by final centrifugation at 2,000 rpm for 2 minutes, aspiration 

of supernatant and then resuspension in 300 L cold FACS buffer. Cells were then 

immediately stored on ice and analysed using a Calibur flow cytometer. Flow cytometry data 

were then plotted and converted into overlay histogram images using Flowing 2.5.1 software 

(freeware, Turku, Finland). 
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M5.6: Western Blot Analysis of Total & Phosphorylated STAT3 

Following ELISA confirmation of presence of HGF in elevated concentrations in HPV-

negative cell line-stimulated fibroblast media, in addition to recombinant HGF retaining 

capacity to drive migration, activation of the secondary messenger STAT3 was interrogated 

by western blot analysis. 

 

Collection of Conditioned Media 

Stimulated Fibroblast Media 2 were collected from DENOF08 normal fibroblasts as 

described in Chapter 2, methods section 2.1 for cell lines UD SCC02, UPCI SCC072, UPCI 

SCC089 and UPCI SCC090. 

 

Exposure of Cell Lines to Stimulated Fibroblast Media and Collection of Protein for Western 

Blot Analysis  

Cell lines UD SCC02, UPCI SCC072, UPCI SCC089 and UPCI 090 were grown in T75 

flasks to approximately 70 % confluence. Cultures were washed X3 in PBS and then 

exposed to either unstimulated fibroblast conditioned medium control or stimulated fibroblast 

Media 2 for 0 mins, 20 mins or 12 hrs. On completion of each respective incubation period, 

flasks were washed X3 in cold TBS and then incubated with 1 mL cell dissociation solution 

at 4 oC on a rocking machine for 10 mins. Cells were then removed with the assistance of a 

cell scraper, the suspension transferred to an Eppendorph container, centrifuged at 1,000 

rpm 5 mins, supernatant removed and then immediately stored at -80 oC. 

 

 

Protein extraction 

 

Cell pellets were lysed on ice in a buffer containing 50 mM Tris HCL pH 7.4, 250 mM NaCl, 5 

mM EDTA, 0.3% Triton X-100 and protease inhibitor (Complete mini EDTA free protease 

inhibitor cocktail, Roche, Cat 05892791001). 
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Western Blotting 

 

Samples were boiled for 5 minutes in an equal volume of Laemmli sample buffer (125 mM 

Tris HCl pH 6.8, 20 % glycerol, 4 % SDS, 0.005 % Bromophenol blue and 5 % Beta 

Mercaptoethanol). Samples were separated using 4-15 % pre-cast gels (Mini-Protean TGX, 

Bio-Rad, California, USA, Cat  4561081) run at 75 mV for 10 mins and 90 mV for 80 mins. 

Separated samples were transferred to a nitrocellulose membrane (Amersham Hybond ECL, 

GE Healthcare, Cat RPN2020D) at 85 mV for 1 hour 20 minutes. Membranes were blocked 

for thirty minutes in 5 % skimmed milk in Tris buffered saline (pH 7.4) with 0.1 % Tween-20, 

then incubated with either Tyr 705-phosphorylated/non-phospho specific STAT3 antibodies 

(Cell Signalling Technology, Danvers, USA, Cat 9145 & 9139 respectively; both antibodies 

used at 1: 1,000 dilution) or anti-Beta Actin control (1:2,000 dilution) in 5 % BSA/TBST 

overnight at 4 oC. Membranes were then incubated in horseradish peroxidase conjugated 

secondary antibodies at a dilution of 1:10,000 for 45 minutes and imaged using ECL reagent 

(GE Healthcare, Cat RPN2106). 

 

 

M5.7: Soluble c-Met ELISA Analysis of Oropharyngeal Carcinoma Cell Lines 

Collection of Conditioned Media  

Cell lines UD SCC02, UPCI SCC072, UPCI SCC089 and UPCI 090 were grown to near 

confluence in T75 flasks, washed X3 in PBS and incubated with 7 mL normal media for 24 h. 

Following 24 h incubation, conditioned media were retrieved, centrifuged at 3,000 rpm for 5 

minutes and then supernatant retrieved taking care to avoid resuspension of precipitated 

cellular debris, and then stored at -21 oC. The respective T75 flask was trypsinised and a cell 

count undertaken to confirm collection of a conditioned medium that had been contributed to 

by 3 million cells per mL. 

ELISA Analysis 

Soluble c-Met quantification of cell line conditioned media and stimulated fibroblast Media 1 

& 2 was undertaken using Life Technologies soluble c-Met ELISA kit (Life Technologies, 

Paisley, UK, cat number KHO2031). Manufacturer instructions were adhered to throughout 
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ELISA analysis. In brief, manufacturer-supplied recombinant human soluble c-Met standard 

was prepared to a 50 ng mL-1 concentration in standard diluent buffer. Serial 1:2 dilutions 

were then undertaken using standard diluent buffer in order to achieve a control reference 

range. Standard diluent buffer was used as a zero standard. All conditioned media were 

diluted in standard diluent buffer using a 1:20 dilution. 

100 L standard/sample was added to each well of the Life Technologies soluble c-Met 

capture antibody preconditioned ELISA plates and incubated at room temperature for 2 

hours. The conditioned media/standard were then discarded and each well washed X4 with 

300 L manufacturer-supplied wash buffer using a multi-channel pipette, ensuring complete 

removal of solution after each wash through blotting of the inverted microtitre plate against 

tissue paper. Each well was then incubated at room temperature for 1 hour with 100 L 

biotinylated detection antibody, after an initial 30 seconds agitation through gentle tapping of 

the side of the microtitre plate. Following incubation, the biotinylated antibody solution was 

discarded and again wells washed X4 with 300 L manufacturer-supplied wash buffer using 

a multi-channel pipette, ensuring complete removal of solution after each wash through 

blotting of the inverted plate against tissue paper. 

100 L freshly-prepared streptavidin-HRP working solution was then pipetted into each well 

using a multi-channel pipette and incubated for 30 minutes at room temperature. Following 

incubation, the streptavidin solution was discarded and a further X4 washes undertaken as 

described above. 

100 L manufacturer-supplied Stabilised Chromogen was then added to each well and 

incubated for 30 minutes at room temperature, protected from light using a non-metallic 

cover. 100 µL of manufacturer-supplied Stop Solution was then added to each well and the 

plate read at 450 nm using a Tecan Infinite M200 plate reader. Results were tabulated using 

Microsoft Excel and imported into DeltaSoft ELISA analysis software (BioMetallics, 

Princeton, New Jersey, USA), and interpreted using 4-parameter best-fit plot. 
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Results 

Figure 5.1: Dose-Response Curves for Candidate Recombinant Proteins Identified by Cytokine 

Array    

 

 

 

 

 

 

 

 

 

-10

0

10

20

30

40

50

-3 -2 -1 0

GRO b

GRO g

GRO a

GCP2

ENA78

CTGF

HGF

 Ctrl

OSM

OPG

IL-6

IL-8

A
d

d
it

io
n

al
 P

e
re

n
ta

ge
 C

lo
su

re
,C

o
m

p
ar

ed
 

to
 C

o
n

tr
o

l

log10 stock recombinant protein concentration

-20

-10

0

10

20

30

40

-3 -2 -1 0

-10

0

10

20

30

40

50

-3 -2 -1 0

0

20

40

60

80

-3 -2 -1 0

-20

0

20

40

60

80

-3 -2 -1 0A
d

d
it

io
n

al
 P

e
rc

en
ta

ge
  

C
lo

su
re

log10 stock concentration

a 

e d 

c b 
HGF 

OSM 

HGF 

OSM 

HGF 

OSM HGF 

OSM 



 

169 
 
 

 

Figure 5.1: Dose-response curves for candidate recombinant proteins identified by cytokine array: 

 
a). Median dose-response curve for ORISTM assay migration over 48h in cell line SCC72 using 
candidate recombinant proteins identified by cytokine array of stimulated fibroblast medium. Error 
bars omitted for clarity, but reproduced in figure e). for proteins HGF and OSM. X-axis represents 
log10 stock recombinant protein concentration. Stock recombinant protein concentrations used in 
experiments (created through dissolution of commercially-supplied lyophilised protein in 1ml 
standard medium) were as follows: 

25 g mL-1: IL-8 

10 g mL-1: OPG 

5 g mL-1: GRO, GRO, ENA78, CTGF 

2 g mL-1: HGF, GRO, OSM, GCP2, IL-6 
 
Figure a). demonstrates a clear dose-response relationship between recombinant proteins HGF and 
OSM with increased cell migration. All other recombinant proteins demonstrated no reproducible 
dose-response relationship. 
Please note that as median data has been presented, the same data appear in the subsequent graphs 
 
b), c) & d). Data for biological repeats 1,2 & 3 (n=1), illustrating the reproducible dose -response 
relationship between migration and HGF/OSM concentration (axes same as Figure a). 
 
e). Triplicate biological repeats for recombinant OSM and HGF dose -response data. Error bars 
denote range – note the skewed distribution of HGF data. Variance for OSM and HGF has been 
illustrated in a separate graph for ease of interpretation. 
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Figure 5.2: OSM ELISA Analysis of Cell Line Conditioned Media and Respective Media 1 & 2 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: OSM ELISA analysis of cell line conditioned media and respective stimulated fibroblast 

media 1 & 2 

a). ELISA analysis of OSM concentration in cell line conditioned media and fibroblast Media 1 & 2 for 
cell lines UD SCC02, UPCI SCC072, UPCI SCC089 and UPCI SCC090, plus respective unstimulated 
fibroblast controls (n=9).  *represents a reading below detectable levels in all triplicate experimental 
and biological repeats, as interpreted by 4-parameter best-fit plot. Note that all conditioned media 
returned negative findings. In addition to ELISA standards, a second positi ve control of recombinant, 
biologically active 2 ng mL-1 OSM in normal media used for migration dose-response curves in Figure 
4.1 (Insight Biotechnology, Wembley, UK.) was incubated with fibroblasts, collected and washed at 
24 h and then replaced with normal media in the same manner as cell line media in order to get a 
comparable recombinant OSM co-incubated fibroblast Media 1&2. OSM co-incubated fibroblast 
Medium 1 (containing the recombinant protein) returned a positive ELISA reading (exceeded 
detectable levels and therefore censored from the above graph), and fibroblast Medium 2 returned 
a negative ELISA reading (below detectable levels), helping confirm the reliability of the ELISA kit. 
Standard curves using 4-parameter plotting are illustrated (insets b and c) in order to further 
illustrate the validity and accuracy of the ELISA analysis despite ubiquitous sample negatives.  
 

b). & c). 4-parametric-fit curve of ELISA standards for OSM ELISA plates 1 & 2, respectively. Y-axis 

denotes absorbance, X-axis denotes recombinant OSM concentration in pg mL-1. Note a high 

correlation coefficient (r=0.999, both plates), confirming a highly reproducible ELISA system despite 

the absence of OSM detection in all media. 
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Figure 5.3: HGF ELISA Analysis of Cell Line Conditioned Media and Respective Media 1 & 2 

 

Figure 5.3: ELISA analysis of HGF concentration in cell line conditioned media and fibroblast Media 1 
& 2 for cell lines UD SCC02, UPCI SCC072, UPCI SCC089 and UPCI SCC090, plus respective 
unstimulated fibroblast controls (n=9). Y-axis is not normalised to number of cells contributing to the 
media due to differences between cell line media concentrations (3.5 X 106 cells contributing to 1 mL 
of conditioned media) and fibroblast concentrations (3.5X105 cells contributing to 1 mL of 
conditioned media); presenting the concentration of HGF in non-normalised format allows direct 
comparison of the HGF content of each conditioned medium. Error bars denote SEM, Blue columns 
denote data for HPV-negative cell line/ stimulated fibroblast media, red bars denote HPV-positive 
cell line/ stimulated fibroblast media. Grey columns denote unstimulated fibroblast controls.  
 

Note that irrespective of a 10-fold increase in cell numbers contributing to the cell line conditioned 
media, HGF release from cell lines was low/absent. Log-log interpretation of ELISA data have been 
undertaken as per manufacturers’ instructions: very low ELISA readings, such as for all cell line 
conditioned media, may therefore represent variance in background absorbance.  
 
Although all cell lines induced a significant increase in HGF secretion i n Media 1 (Mann-Whitney U-
test, P<0.05), a higher amount of HGF release was observed in fibroblasts stimulated by HPV -
negative cell lines (UPCI SCC072 and UPCI SCC089 versus UPCI SCC090; Mann-Whitney U-test 
P<0.05), with the majority of the HGF release occurring within the first 24 h (Media 1 data). A tail-off 
of the HGF response can be seen in Medium 2 for each line (representing the 24-48 h period post-
initial stimulation). Only HPV-negative lines induced a significantly increased concentration of HGF in 
Media 2 (Mann-Whitney U-test, p<0.05). 
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Note the lower, yet still significant increase in HGF release from fibroblasts stimulated by cell lines 
UD SCC02 and UPCI SCC090, as observed in respective fibroblast Medium 1. Also note a small basal 
release of HGF by fibroblasts in both unstimulated control Media 1 & 2. 
 

It can be observed that the concentration of HGF measured in stimulated fibroblast Media 1&2 for 
cell line UPCI SCC072 is below the concentration of recombinant HGF necessary to induce the degree 
of migration comparable to that seen using conditioned media. Mean HGF concentration in UPCI 
SCC072 Media 1&2 is 1.38 ng mL-1 and 0.27 ng mL-1 respectively, whereas migration comparable to 
that observed in Medium 1 (approximately 35 % overall void closure) was observed at an 
approximate 10-fold increase in recombinant HGF concentration (Figure 4.1). 
 

Despite the mean HGF concentration of UPCI SCC089-stimulated fibroblast Medium 1 (0.83 ng mL-1) 
being within the range of recombinant HGF concentrations observed to induce significant additional 
ORISTM assay migration (Figure 5.4, below), no additional migration compared to control was noted 
using this conditioned medium. Lack of effect was postulated to be due to either conditioned 
medium exhaustion of nutrients, or may alternatively represent inhibition of HGF by another factor 
present within the conditioned medium. 
 
The above inconsistency suggests that whilst HGF is present in a biologically active concentration in 
HPV-negative stimulated fibroblast media, the measured concentrations of HGF do not fully account 
for the degree of migrations observed with stimulated fibroblast media, and moreover raises the 
potential for an HGF-inhibiting factor to be present, further complicating the relationship between 
HGF and cell migration. 
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Figure 5.4: Dose-Response Analysis of Recombinant Human HGF for HPV-Negative Oropharyngeal 

Carcinoma Line UPCI SCC089  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Dose-response curve of additional ORISTM assay migration observed in cell line UPCI 
SCC089 in response to logarithmic dilutions of 2 g mL-1 stock recombinant HGF in normal media. 
Error bars denote range (n=3: triplicate biological repeats of n=1), with median used as measure of 
central tendency (blue line). Migration expressed as additional percentage closure of baseline void, 
compared to control. 
Note that a parabolic increase in migration occurs between 0.2-2 ng mL-1  HGF (stock HGF 
concentration X 10-4 - 10-3), and peak stimulation of cell line SCC89 occurs at 20 ng mL-1 HGF (stock 
HGF concentration X 10-2); an approximate 10-fold increase in responsiveness compared to cell line 

UPCI SCC072 (Figure 5.1). 
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Figure 5.5: Flow Cytometric Analysis of c-Met Status in Oropharyngeal Carcinoma Cell Lines  
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Figure 5.5: Flow cytometric analysis of membranous c-Met versus untreated standard & isotype 

control (n=3 biological repeats). Left images: overlay histograms summarising c-Met status of each 

cell line. X-axis: FL1-H, absorption using Alexafluor488 conjugated c-Met and isotype control probes. 

Y-axis: cell count. Black line represents untreated standard, red line represents isotype control, blue 

line/shaded area represents absorption following incubation with c-Met probe. Right images: dot 

plot of raw data: isotype control and c-Met probe. 

a). HPV-positive oropharyngeal carcinoma cell lines UD SCC02 (superior images) and UPCI SCC090 

(inferior images). Note the separation of absorption peaks for c-Met probe versus isotype control, 

consistent with c-Met expression in both lines. 

b). HPV-negative oropharyngeal carcinoma cell lines UPCI SCC072 (superior images)  and UPCI 

SCC089 (inferior images). Note the separation of absorption peaks in each line is comparable to HPV-

positive cell lines illustrated in a). 

c). Positive control cell lines HepG2 (superior images) and HeLa (inferior images). Note the marked 

separation of absorption peaks for Hela c-Met versus isotype control. HepG2, a low c-Met-

expressing hepatocellular carcinoma line398, 399 can be seen to have minimal separation of absorption 

peaks between c-Met probe and isotype control. All oropharyngeal carcinoma cell lines 

demonstrated c-Met probe absorption that exceeds HepG2 and is less than Hela, confirming c-Met 

expression in all lines. 

c 
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Median absorption shift was calculated using Flowing software by subtracting median absorption of 

control from median absorption with c-Met probe, with an average of three values taken from 

triplicate repeats. No significant pattern was noted between HPV-positive and HPV-negative lines, 

although all oropharyngeal lines other than UD SCC02 demonstrated greater absorption shift than 

the low c-Met-expressing cell line HepG2. Hela demonstrated a marked shift in absorption compared 

with all other lines. Additional absorption values are summarised in Table 5.2.  

 

Table 5.2: Additional Flow Cytometric Absorption of Cell Lines Co-incubated with c-Met Probe, 

Compared to Control 

Cel l  Line UD SCC02 UPCI SCC72 UPCI SCC89 UPCI SCC90 HepG2 Hela  
Median additional absorption 2.62 7.88 16.4 8.65 3.12 35.02 
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Figure 5.6: Total and Phospho-STAT3 Western Blot Analysis of Cell Lines Following Exposure to 

Stimulated Fibroblast Media 2 

 

a). Phospho-STAT3 

 

 

 

b). Total STAT3 

 

 

 

Figure 5.6: Western blot analysis of phosphorylated versus total STAT3 in cell lines UD SCC02, UPCI 

SCC072, UPCI SCC089 and UPCI SCC090 (n=3 biological repeats). 

SCC02 – UPCI SCC02 (HPV-positive cell line) 

SCC072 – UPCI SCC072 (HPV-negative cell line) 

SCC089 – UPCI SCC089 (HPV-negative cell line) 

SCC090 – UPCI SCC090 (HPV-positive cell line) 

C – “Control”; 20 minute exposure to normal media control  

I – “Immediate effect”: 20 minute exposure to respective stimulated fibroblast Medium 2 

D – “Delayed effect”: 12 hour exposure to respective stimulated fibroblast Medium 2 
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a). Phospho-STAT3 western blot analysis of cell lines following exposure to their respective 

stimulated fibroblast Medium 2. Note that for HPV-negative cell lines, a marked increase in blot 

density can be observed following 20 minutes’ exposure to stimulated fibroblast Media 2, whereas 

HPV-positive cell lines demonstrate an observable, yet much lower amount of pSTAT3 at 20 minutes. 

This finding is consistent with HPV-negative stimulated fibroblast Media 2 containing higher 

concentrations of one or more factors which signal via STAT3, such as HGF. Note that UPCI SCC089 

demonstrated basal expression of pSTAT3, which may represent constitutive activation of a STAT3-

signalling receptor. A smaller amount of sustained phospho-STAT3 elevation can be observed for cell 

lines at 12 h, although this is reduced compared to the marked elevation observed in HPV -negative 

lines at 20 mins. -actin control bands can be observed to be consistent throughout, other than for 

UPCI SCC089, for which a minor decrease in concentration is apparent in the “immediate 

stimulation” lane – despite the reduction, the proportion of phospho-STAT3 is markedly elevated in 

this sample. 

 

b). Total STAT3 western blot analysis of cell lines following exposure to their respective stimulated 

fibroblast Medium 2, identical experimental repeat to Figure a. No frank pattern of change in total 

STAT3 expression over each time-point can be observed in HPV-positive or -negative cell lines. 

Despite an apparent reduction in total STAT3 in cell line UPCI SCC089 at baseline and 20 mins, 

overall total STAT3 expression remained comparable in all cell lines, and at all time -points, when 

taking experimental repeats into account. Reductions of total STAT3 observed in the illustrated 

experimental repeat appear consistent in part with a reduction in respective -actin band intensity. 

 

Western blotting undertaken in collaboration with Dr. S. Thomas, who kindly undertook initial 

western blot analysis of first experimental repeat, and provided supervision and guidance for 

subsequent experimental repeats. 
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Figure 5.7: ELISA analysis of Soluble c-Met release from Oropharyngeal Carcinoma Cell Lines 

 

 

 

 

 

Figure 5.7: ELISA analysis of the concentration of the soluble form of the HGF receptor, c-Met in cell 
line conditioned media. Y-axis is normalised to ng million cells-1

 

(original media concentration 3.5 X 
106

 

 cells mL-1). Error bars denote SEM, n=9. Red bars denote HPV-positive cell lines, blue bars 
denote HPV-negative cell lines. 
 

Note that all cell lines release soluble c-Met. The two HPV-negative lines (UPCI SCC072 and UPCI 
SCC089) release an appreciable level of c-Met compared to UD SCC02. UPCI SCC090 demonstrates 
the greatest level of soluble c-Met release of all cell lines. Data for cell lines UPCI SCC072 and UPCI 
SCC089 are consistent with upregulated receptor cleavage, as noted for other ADAM-cleaved 
receptors (see Figures 3.2 and 4.3), although this statement is only proportional to the amount of c-
Met released from cell line UD SCC02. The considerable c-Met release by UPCI SCC90 is noteworthy 
due to the absence of other ADAM-cleaved receptors noted in the cell line conditioned medium 
(Figures 3.2 and 4.3), suggesting soluble c-Met release may be due to an alternative mechanism to 
that seen in the HPV-negative lines, such as alternate splicing. The marked c-Met released by UPCI 

SCC090 may act as a competitive inhibitor to HGF stimulation of this cell line. 

Statistical significance testing deemed inappropriate due to HPV-positive cell line c-Met release 

(UDSCC02 and UPCI SCC090) lying either side of HPV-negative cell line c-Met secretion (UPCI SCC072 

and UPCI SCC089), inferring no overall trend. 
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Discussion 

 

Initial experimentation using recombinant forms of candidate proteins identified by cytokine 

array analysis in Chapter 3 demonstrated two factors exhibiting a clear dose-response 

relationship with migration in cell line UPCI SCC072, namely HGF and OSM (Figure 5.1). All 

other recombinant proteins, excluding IL-6, showed no convincing dose-response effect on 

migration. As discussed in Chapter 4, although IL-6 did appear to induce a modest amount 

of additional migration at concentrations exceeding 2 ng mL-1, this effect was not consistent 

with the degree of migration noted with cell line UPCI SCC072 when exposed to stimulated 

fibroblast medium. Moreover, the entire dose-response curve for recombinant IL-6 illustrated 

in Figure 5.1 can be observed to lie within the range of apparent background variability in 

migration linked to all other recombinant proteins tested. Statistical significance testing was 

not undertaken on the dose-response results, as the limited number of overall repeats (n=3) 

precluded significance testing from being an appropriate method of data analysis. Figures 

5.1 b, c & d therefore includes all three biological repeats of n=1, to further illustrate a 

consistent trend of dose-response by HGF and OSM throughout all biological repeats, and 

unconvincing effects relating to all other factors tested. Undertaking triplicate biological and 

experimental repeats (n=9) was not feasible for the broad range of recombinant proteins 

tested due to high costs. HGF and OSM were therefore considered principal candidates for 

further investigation, with intent to subsequently validate migration using the recombinant 

version of each protein if presence was confirmed in conditioned media via ELISA. 

Recombinant HGF-induced migration was therefore ultimately repeated in dose-response 

experiments for both cell lines UPCI SCC072 and UPCI SCC089 in triplicate experimental 

and biological repeats, as shall be discussed in Chapter 6. 

ELISA analysis of HGF & OSM allowed exclusion of OSM as a candidate molecule for 

inducing migrations: all conditioned media taken from both cell lines and stimulated 

fibroblasts contained undetectable levels of OSM (Figure 5.2). OSM had initially been 

regarded as a candidate molecule based on cytokine array densitometry data (Chapter 3, 

Figure 3.5); the inconsistency between cytokine array and ELISA analysis was due to high 

background absorption for OSM in the unstimulated fibroblast control medium. The 

background absorbance registered for normal media control (Figure 3.2) could not be 

confirmed as valid due to bleed-through of developer solution in that respective portion of the 

cytokine array and therefore was regarded as a potential false positive. In retrospect, the 
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OSM densitometry measurement for normal media control appears consistent with ELISA 

results; this reflects a clear limitation of the cytokine array experiments, whereby lack of 

biological repeats due to high array costs led to ambiguous results. Raybiotech OSM ELISA 

minimum sensitivity is quoted as 1 pg mL-1; as a 1:20 dilution of conditioned media was used 

to perform ELISA analysis, this represents a minimum overall sensitivity of 20 pg mL-1. 

Recombinant OSM dose-response analysis of ORISTM assay migration (Figure 5.1) 

demonstrated that an OSM concentration of approximately 10 ng mL-1 was necessary to 

induce the degree of migration seen in stimulated fibroblast media, and a concentration of 

approximately 2 ng mL-1 in order to achieve any appreciable difference from control 

migration. It can therefore be concluded that ELISA sensitivity is of an appropriate degree to 

exclude OSM as a candidate molecule. 

Although OSM appears to have no role in driving the additional migrations in HPV-negative 

stimulated fibroblast Media 1 & 2, the observation of a dose-dependent increase in migration 

with exposure of cell line UPCI SCC072 to recombinant OSM is in itself a novel finding. The 

capacity of OSM to drive EMT has been reported in breast carcinoma lines400, although the 

role of OSM in cancer progression is contentious – with reports of OSM having capacity to 

both reinforce and obstruct cancer progression401-404. There is some level of consistency 

between findings relating to cancer type, and OSM may therefore have variable effects 

depending on cancer site of origin. Authors have suggested the use of OSM in therapeutic 

management of cancer405 – our data suggest management of oropharyngeal carcinoma in 

this manner may lead to catastrophic consequences through induction of tumour migration. 

Indeed, OSM is recognised as mediating cell migration through STAT3 induction and E-

Cadherin downregulation395. 

Conversely, HGF ELISA analysis confirmed all stimulated fibroblast media contained 

elevated amounts of HGF compared to unstimulated fibroblast control, with HPV-negative 

stimulated fibroblast media containing markedly higher amounts of HGF compared to HPV-

positive stimulated fibroblast media (Figure 5.3). An intriguing observation was that for all 

stimulated fibroblast media, Medium 1 contained a greater concentration of HGF. This 

feature was inconsistent with the biological effects of Media 1 & 2 on migration in cell line 

UPCI SCC089, whereby Medium 2, albeit with a lower concentration of HGF, induced 

marked additional cell migration whereas Medium 1 did not. Moreover, the HPV-positive cell 

line UPCI SCC090 induced greater HGF release by fibroblasts in the respective Medium 1 

compared to UPCI SCC089-stimulated fibroblast Medium 2. A general relationship 
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consistent with the observed migratory phenomenon was therefore established for HGF, 

although the absolute amount of HGF in each specific medium did not directly correlate with 

effect. This relationship mirrored earlier findings relating to IL-6 and IL-8 (Chapter 4, Figures 

4.1 and 4.2), and therefore HGF’s role in driving cell migration could not be assumed, 

despite its capacity to induce migration in the preceding recombinant protein experiments. 

A number of explanations were considered for the inconsistencies between HGF 

concentration and cell migration, including potential nutrient exhaustion in Media 1 as a 

result of pre-incubation for 24 h with near-confluent cell lines followed by a further 24 h 

incubation with confluent fibroblasts. Indeed, the reduction in migration of cell lines UD 

SCC02, UPCI SCC089 and UPCI SCC090 when exposed to stimulated fibroblast Media 1 

derived from the tonsillar fibroblast lines NTF06 and NTF01 (Chapter 2, Figure 2.2) 

suggested media exhaustion may have taken place. 

An alternative explanation included release of a HGF-inhibiting agent by either cell lines 

(therefore present in Media 1) or by stimulated fibroblasts. Indeed, C7 cytokine array 

densitometry data for both HPV-negative cell line-stimulated fibroblast media indicates the 

presence of sgp130. The soluble gp130 receptor subunit is recognised as having an 

inhibitory effect on IL-6 trans-signalling406, and may have been released as a control 

mechanism following fibroblast stimulation through the trans-signalling route. Although this 

observation is not confirmatory of any factor being released with the capacity of directly 

blocking HGF signalling, it does illustrate the potential for inhibitory molecules to be released 

in response to stimulation.  

The prospect of soluble c-Met release interfering with HPV-negative cell line response to 

stimulated fibroblast media was therefore considered given the confirmed release of sIL-6R 

in HPV-negative cell line conditioned media (cytokine array data: Figure 3.2, ELISA data: 

Figure 4.3), and also release of sEGFR (cytokine array data: Figure 3.2); both EFGR and IL-

6R are type I tyrosine kinase receptors, and may be potentially cleaved by the snippase 

enzymes ADAMs 10 & 17 407, 408. Variable release of soluble TNFR1 & TNFR2 was also 

noted in HPV-negative line conditioned medium cytokine arrays; again, these soluble 

receptors are cleaved by ADAM17 409.The scope for ADAM upregulation in HPV-negative 

cell lines therefore offered promise for cleavage of other type I receptors, including c-Met. 

Due to Medium 1 containing secretions from pre-incubation with each respective cell line, 

release of solubilised c-Met by HPV-negative lines, in combination with media exhaustion 

offered a feasible explanation for Media 2 more readily promoting migration despite 
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containing a lower concentration of HGF. Soluble c-Met ELISA (Figure 5.7) did indeed 

confirm the presence of this factor in HPV-negative cell line media, in addition to a 

surprisingly elevated amount of solubilised c-Met released by cell line UPCI SCC090. It may 

be postulated that as UPCI SCC090 did not release solubilised IL-6R and EGFR in the same 

manner as HPV-negative cell lines, the cellular mechanism for soluble c-Met release may 

differ. In addition to snippase cleavage, it is recognised that soluble c-Met may be formed 

from differentially-spliced mRNA410; this would account for soluble c-Met release in UPCI 

SCC090 without release of EGFR/sIL-6R. Alternatively, UPCI SCC090 may simply express 

a lower membranous receptor density of sIL-6R and EGFR; although flow cytometry analysis 

of membranous IL-6R expression was found to bear no relationship to cell line HPV-status 

(data are presented in the subsequent chapter to maintain an appropriate narrative, Figure 

6.14), this finding is in the context of receptor release by HPV-negative cell lines; basal 

membrane expression may therefore not reflect the true membranous receptor load 

preceding enzyme activity. ADAMs 10 & 17 are known to cleave type 1 receptors at 

threshold receptor densities; this may have only been exceeded by HPV-negative cell lines. 

The biological relevance of soluble c-Met release in Media 1 was not formally tested, 

although any soluble c-Met may be assumed to have bound and competitively inhibited a 

proportion of available HGF on the basis of the findings of Coxon et al 411, who noted avid 

HGF binding by the human c-Met ectodomain leading to HGF inhibition in human prostate 

and glioblastoma cell lines at a concentration of 2 nM and greater, when exposed to 50 ng 

mL-1 HGF. Although Coxon did not analyse soluble c-Met at concentrations below 2 nM, a 

tail-off of efficacy of soluble c-Met as an HGF inhibitor was noted at this concentration in 

comparison to logarithmically increasing doses of 20 nM and 200 nM soluble c-Met.  ELISA 

analysis of HPV-negative line derived conditioned media confirmed soluble c-Met 

concentrations of approximately 40 ng mL-1, which equates to approximately 0.5 picoM of 

this 75-85 kDa cleaved protein412, 413; a significantly lower concentration than used by Coxon. 

Despite this, HGF concentration in stimulated fibroblast media was approximately 25-50 

times more dilute than utilised by Coxon, and therefore the absolute ratio of c-Met:HGF is 

approximately 40 times higher in Coxon’s work; it therefore remains plausible that soluble c-

Met release could have a partial, yet biologically significant effect on the in-vitro migration 

experiments. 

Although HPV-negative cell line release of c-Met was regarded as insufficient to create any 

meaningful blockade of HGF, and therefore did not account for the lower migrations 
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observed with HPV-negative Media 1, the release of soluble c-Met in HPV-negative cell lines 

was a finding counterintuitive to a generalised view of HGF-driven migration exclusive to 

HPV-negative tumours. Retention of membranous c-Met would be more advantageous in 

HGF-induced migration; it may therefore be that partial membranous c-Met cleavage is a 

result of generalised ADAM snippase activity, the net effect of which is beneficial to tumour 

progression. It may be postulated that partial c-Met cleavage is a necessary consequence of 

ADAM-induced release of soluble mediators of tumour progression, such as sIL-6R, TNF-

,TGF- and IL-1. 

Following confirmation of HGF in stimulated fibroblast media, dose-response analysis of cell 

line UPCI SCC089 was undertaken in a similar manner to line UPCI SCC072 (Figure 5.4). 

Again, a clear dose-response relationship was observed in this cell line, although the line 

was noted to be approximately 10-fold more responsive to HGF compared to UPCI SCC072, 

with a parabolic increase in migration occurring between 0.2-2 ng mL-1 HGF for UPCI 

SCC089, whereas UPCI SCC072 displayed a similar trend in migration between 2-20 ng mL-

1 HGF. Furthermore, it was noted that whilst the amount of HGF quantified via ELISA for 

SCC089-stimulated fibroblast Medium 2 was consistent with the dose of recombinant HGF 

necessary to induce ORISTM assay migrations observed with UPCI SCC089-stimulated 

Medium 2, the amount of HGF measured in UPCI SCC072 Medium 2 was approximately 10-

fold less than the dose of recombinant HGF required to induce the degree of migration 

observed with UPCI SCC072 Medium 2. It was therefore unclear whether HGF was a key 

inducer of the additional migrations observed in the conditioned media experiments, and if 

so, whether HGF acted alone or in combination with other factors. 

To confirm that c-Met stimulation was a plausible mechanism of inducing HPV-negative cell 

line migration, flow cytometry was used to assess the amount of membranous c-Met 

expressed by each cell line. Surprisingly, all HPV-positive and -negative cell lines expressed 

comparable levels of membrane-bound c-Met (Figure 5.5), which exceeded that of HepG2 

positive398 control (Figure 5.5c). Although hepatocellular carcinoma represents a classic 

disease of parenchymal HGF overexpression, HepG2 is known to produce relatively low 

levels of c-Met in comparison to other hepatocellular carcinoma lines399; the Hela cell line 

was therefore run as a second positive control, due to its confirmed membranous expression 

of c-Met via immunocytochemistry415. Hela c-Met expression exceeded that of all 

oropharyngeal lines (Figure 5.5c). This comparable expression of c-Met in all oropharyngeal 

cell lines was consistent with clinical findings of Kwon et al 276, who noted that although HGF 
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expression in HPV-negative oropharyngeal carcinomas is linked to poor prognosis, the 

degree of cell bound c-Met expression has no correlation with outcome. A study conducted 

by Choe et al 416 further demonstrated no correlation between tumour p16 status and c-Met 

expression, although only 17 of the 82 tumours sampled were oropharyngeal in origin. 

A number of in-vitro studies have found HGF to be an important component of tumour-

stromal interactions in HNSCC417-419, and have linked stromal HGF release to the induction 

of tumour migration and invasion in a similar manner to our findings with respect to HPV-

negative oropharyngeal carcinoma lines418, 419. A key difference however, is that our data 

suggest that pre-conditioned tumour-associated fibroblasts are unnecessary for tumour-

stromal interactions to occur, and that normal stromal fibroblasts may be recruited to adopt a 

supportive secretory profile within 24 h. 

HGF and its classical receptor, c-Met, have been implicated with poor survival in a wide 

range of malignancies, including non-small cell lung cancer420, ovarian carcinoma421, gastric 

carcinoma422, 423 and colon carcinoma424, 425. Although HGF/c-Met status has been 

contentious in predicting head and neck cancer outcomes75, 129, 426, 427, recent data suggest 

that c-Met status may be important in predicting outcome in locally-advanced, HPV-negative 

(p16-negative) disease428. Recent oropharyngeal-specific data suggest that HGF status 

predicts outcome in HPV-negative disease, although c-Met status was found to have no 

prognostic value276. c-Met expression has also been linked to poor outcome in 

nasopharyngeal tumours429. 

 

Conclusion 

Following recombinant protein dose-response experimentation, along with interrogation of 

both cell lines and conditioned media, HGF remained as a single most plausible candidate 

for driving cell line migrations. A number of inconsistencies were observed with regards to 

potential HGF-induced migration, including the high concentrations of HGF in UPCI SCC089 

Medium 1 which did not appear to induce migration as readily as UPCI SCC089 Medium 2, 

and lower concentrations of HGF in all UPCI SCC072 stimulated fibroblast media compared 

to the concentration of recombinant HGF required to drive migration comparable to that 

observed in conditioned media experiments. Analysis of migration blockade by use of c-Met 

inhibitors was determined as a method of both confirming HGF as a responsible molecule, in 
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addition to potentially validating clinically available drugs in the management of HPV-

negative disease. 
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Chapter 6: The Role of HGF in 2D Modelled 

Migrations 

Introduction 

 

Many of the Bradford-Hill criteria58 for affirmation of a causal relationship between fibroblast 

HGF release and cell line migration have been addressed in Chapter 5, with the exclusion of 

Specificity. Bradford-Hill stated that the more specific the association between a factor and 

the effect of concern, the more likely a causal relationship exists. Repetition of stimulated 

fibroblast media migrations with experimental inhibition of HGF signalling offers both 

validation of specificity, as well as offering a theory-falsification approach to assessing 

whether HGF is a major driver of the stimulated fibroblast media-induced migrations. Much 

of the data relating to HGF presented in Chapter 5, albeit valuable, may be regarded as 

circumstantial; although HGF has been measured by ELISA in conditioned media and is 

indeed present in higher concentrations in HPV-negative cell line stimulated media, and 

although HGF has been demonstrated to induce HPV-negative cell line migration, no 

conclusive evidence has been put forward to confirm a direct relationship between presence 

of HGF in stimulated fibroblast media and the induction of cell migration. This chapter 

therefore seeks to theory test the role of HGF in driving stimulated fibroblast media-induced 

migrations.  

An established approach to the obstruction of cellular signalling pathways is the use of small 

molecule inhibitor drugs/blocking antibodies. In addition to demonstrating the biological 

relevance of pathway inhibition, clinically valid inhibitors have the additional benefit of 

offering insight into how currently available therapeutic agents may be used to take 

advantage of in-vitro phenomena in a clinical setting. Blockade of the HGF receptor, c-Met, 

provides an accessible method of analysing the role of HGF in driving cell migrations in the 

stimulated fibroblast conditioned media experiments through a theory falsification approach; 

if HGF stimulation of c-Met is responsible for cell migration in response to stimulated 

fibroblast media, then obstructing c-Met signalling should lead to abrogation of media-

induced migrations – any failure of c-Met inhibitors to restrain cell migration in stimulated 

fibroblast media therefore acts as a method of theory falsification. 
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A considerable number of small molecule and monoclonal antibody inhibitors to c-Met are 

available (please refer to Table 6.1), each of which demonstrate marked variation in c-Met 

affinity and specificity. Of all available c-Met-specific inhibitors, INCB28060 offers greatest 

potency, with an IC50 of 0.13 nM 430. INCB28060 is also a highly specific inhibitor of c-Met, 

and shows no reported cross-reactivity with other receptors. Although a single dose-

escalation study has been completed for INCB28060 (further discussed below), no Phase II 

trials have yet been undertaken. Foretinib, a c-Met inhibitor capable of blocking a range of 

cytokine receptors with tyrosine kinase activity, has been trialled in a number of Phase II 

studies431-433, and shows promise in the management of cancer. Foretinib moreover 

demonstrates the greatest potency of all inhibitors that have currently completed Phase II 

trial. The highly active and specific inhibitor INCB28060, and the clinically-relevant, yet less 

specific inhibitor foretinib, shall be considered in further detail; experimental inhibition of c-

Met activity using these two drugs offers both comprehensive analysis of HGF’s role in 

conditioned media-induced migrations, in addition to assessing the ability of a clinically-

applicable drug (i.e. foretinib) to inhibit microenvironmental interactions. 
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Table 6.1: List of available small molecule/monoclonal antibody inhibitors of c-Met (arranged in 

descending order of potency, expressed as IC50).430, 434-455 

Inhibitor c-Met IC50, nM Other Targets Reference 

INCB28060 0.13    2011 Lui  

TAK-701 0.3   2012 Cecchi  

Foretinib 0.4  KDR, Tie-2,VEGFR1 &3, EGFR, RON 2009 Qian 

Exel ixis 0.4 VEGFR2 2009 Eder 

MGCD-265 1  RON,VEGFR2,VEGFR1 2012 Bonfils 

AMG-458 1.2  VEGFR2 2008 Liu 

Cabozantinib 1.3  VEGFR2/KDR,Kit,VEGFR3/FLT4 2011 You 

RP1040 1.3   2012 Cecchi  

MK8033 1.3 Ron 2012 Cecchi  

BMS-794833 1.7  VEGFR2 
referenced by Selleckchem without va lid 
article 

Ri lotumumab 2.1   2012 Cecchi  

MK-2461 0.4-2.6  c-Met mutants, Flt1, RON 2010 Pan, 2012 Cecchi  

Tepotinib 3  IRAK4,TrkA,Axl  2013 Bladt 

BMS-777607 3.9  Axl ,RON,Tyro3, VEGFR2 2009 Schroeder 

JNJ-38877605 4    

referenced by Selleckchem without va lid 

article 

SGX-523 4    2009 Buchanan 

PF-04217903 4.8    2009 Timofeevski 

EMD1214063 1.0-6.0   2012 Cecchi  
Onartuzumab 
(MetMab) 2.6-8.7   2012 Cecchi  

BMS-754807 6  Insulin Receptor,IGF-1R,TrkB 2009 Carboni 

AMG-208 9    2008 Albrecht 

PHA-665752 9  RON,Flk1,c-Abl 2006 Smolen 

PHA-665752 9 RON, VEGFR2 2003 Chris tensen 

Crizotinib 11  ALK 2007 Zou 

CEP-A 13   2012 Cecchi  

Golvatinib 14  VEGFR2 2010 Nakagawa 

NVP-BVU972 14    PMID: 21697284  

SU11274 20  Flk1,RON,FGFR1 2012 Cecchi  

SU11271 40 RON, FGFR1, FLK-1 PMID: 14617781 

ARQ197 100   PMID: 21632449 (?Tivatinib) 

S 49076 1-200 FGFR1,2 & 3, AXL 2012 Cecchi  

SU11606 170 RON, FGFR1, FLK-1 2003 Wang 

Tivantinib 100-550    2010 Munshi, 2011 Eathiraj 

Amuvatinib 4,790 c-Ki t, PDGFR a lpha 2010 Taverna 

MP470 5,000 c-KIT, MET, PDGFR, Fl t3, and AXL 2009 Welsh 

K252a 10,000 
c-Met mutant M1268T, partial 
PDGFR 2002 Morotti  
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Foretinib 

Foretinib is a Class II ATP-competitive small molecule inhibitor of c-Met. Inhibitor 

classification has been derived from the historical development of small molecule c-Met-

inhibiting drugs: two of the forerunners of the vast number of currently available compounds 

were SU-11274 and AM7. SU-11274’s activity relies on an acyl thiourea group, which allows 

penetration into a hydrophobic pocket expressed by the c-Met receptor’s ATP binding site in 

order to cause blockade; those modern drugs demonstrating a similar activity to SU-11274 

are referred to as “Class I” c-Met inhibitors. AM7 attaches to the kinase linker domain of c-

Met, leading to a conformation change of a C-helix456 within the tyrosine kinase domain, 

which in turn exposes an alternative hydrophobic region that AM7 is capable binding457. The 

conformation change occurring in c-Met’s ATP processing site in response to AM7 binding 

renders it inactive. Drugs acting in a similar fashion to AM7 are termed “Class II” inhibitors. 

Both Class I and II drugs act through initially binding to c-Met and then lodging a further 

domain within the kinase subunit’s ATP processing region; they are therefore termed “ATP-

competitive” inhibitors. A further class has been discovered, which acts as a non-ATP 

competitive inhibitor – this group of drugs prevent kinase activity by inducing a conformation 

change that either prevents ATP & substrate binding (for example, ARQ197 452), or prevents 

catalytic residues interacting (for example, tivantinib). 

As for other Class II ATP-competitive small molecule inhibitors, foretinib’s activity is not 

limited to inhibition of c-Met; similar inhibitory properties have been noted for VEGFR and 

EGFR, among other receptors. It appears the nature of Class II inhibitor interactions with the 

tyrosine kinase domain is less specific than Class I inhibitors, leading to cross reactivity with 

other tyrosine kinase receptors. Indeed, Class II c-Met inhibitors were initially derived from 

modified PDGFR and VEGFR2 inhibitors458. 

Foretinib has been subject to a number of Phase II trials, including a trial in advanced head 

and neck cancer433. Seiwert et al trialled oral foretinib 240 mg, administered for 5 

consecutive days of a 14-day cycle in patients with recurrent/metastatic head and neck 

cancer. The trial was of a two-stage design; stage 1 of the trial involved enrolment and 

treatment of 14 patients. Stage 2 of the trial was halted due to progression criteria requiring 

at least one patient demonstrating either complete or partial regression of disease. Despite 

the lack of progression to stage 2, the study demonstrated that 50 % of patients had 

stabilisation of their disease, with mean stabilisation of 4.1 months. Two patients 

demonstrated prolonged stabilisation of disease of 13 and 13.9 months. 
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Foretinib dosing has been reviewed in a Phase II study of 74 patients with metastatic gastric 

carcinoma431; Manish et al compared daily 80 mg dosing to the 240 mg cyclic regimen used 

by Siewert et al, and found that daily dosing led to lower incidence of adverse reactions, 

whilst maintaining comparable effect. Again, best response was found to be stable disease, 

with no evidence of complete/partial response to therapy431. 

Further Phase II trials of foretinib include the management of papillary renal carcinoma459 

and advanced hepatocellular carcinoma460. Both trials demonstrated evidence of tumour 

regression in select patients; whilst this was limited to 2 of 13 patients in the case of 

advanced hepatocellular carcinoma, a more profound effect was noted in papillary renal 

carcinoma, with 50 of 68 patients demonstrating some decrease in tumour size, and 21 % of 

tumours decreasing in size by 30 % or more. This profound influence on tumour size in renal 

carcinoma may reflect HGF’s known effects on renal cell proliferation in vivo and in vitro, 

which include induction of DNA synthesis and promotion of resilience to ischaemia461. 

 

INCB28060 (Capmatinib) 

INCB28060, recently rebranded as capmatinib, is a Class I ATP-competitive small molecule 

inhibitor of c-Met. As with other Class I competitors INCB28060 demonstrates marked c-Met 

specificity compared to foretinib and other Class II inhibitors. Despite INCB28060’s highly 

specific activity against the c-Met receptor, it has been shown to have inhibitory effects on 

downstream cross-talk with EGFR and HER-3 via receptor activation and ligand release430. 

As with foretinib, INCB 28060 has been found to reduce tumour size in specific xenograft 

models of cancer in combination with gemcitabine462. Again, the authors reported prolonged 

survival rather than tumour regression, and noted that although tumour cell proliferation was 

reduced, apoptosis was absent; the authors further stated that INCB28060 had no effect on 

advanced tumour growth, findings that appear consistent with clinical studies of c-Met 

inhibition with foretinib. To date, no clinical trial data have been published for INCB28060, 

although a Phase Ia trial has been completed (ClinicalTrials.gov identifier: NCT01072266), 

and a Phase Ib trial in combination with bevacizumab is planned (ClinicalTrials.gov identifier: 

NCT02386826). 
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HGF/c-Met Signalling 

The role of HGF in cancer progression has been discussed in Chapter 5. Consideration shall 

therefore be limited here to the HGF receptor, c-Met (also known as MET, AUTS9, HGFR, 

RCCP2 and DFNB97) and the related intracellular migratory signalling pathways which may 

be influenced by c-Met inhibition. Conflicting reports exist as to the source of c-Met’s 

nomenclature, with some citing that the receptor was initially identified as an oncogenic 

fusion protein in cells treated with N-methyl-N’-nitronitrosoguanidine, from which the receptor 

derives its name458. Alternative reports include “MET” acting as shorthand for mesenchymal 

epithelial transition factor receptor433, although this appears a misnomer given that 

“mesenchymal-epithelial transition” refers to a process reverse to that of “epithelial-

mesenchymal transition”, which is more characteristically ascribed to epithelial stimulation 

with HGF278, 463. 

c-Met is a transmembrane protein consisting of an extracellular receptor domain and an 

intracellular tyrosine kinase domain. The tyrosine kinase domain has capacity to activate a 

complicated network of secondary messenger signalling pathways including Beta-catenin, 

Notch, PI3K, Raf-MEK-ERK, RAS, STAT1 and STAT3464-470. RAS, PI3K and STAT3 appear 

responsible for inducing HGF-mediated cellular motility470-472. STAT3, specifically, has been 

identified as a key pathway for induction of tumour migration/invasion in response to HGF472-

475. In addition to the somewhat prolific effects on intracellular signalling cascades, c-Met has 

numerous synergistic interactions with other cellular receptors: this shall be reviewed in 

further detail in the discussion. 

 

Multi-Cytokine Control of Cell Migration 

As discussed in Chapter 5 (please refer to discussion section and Figures 5.1 & 5.3), the cell 

line UPCI SCC072 demonstrated a convincing dose-response relationship of additional 

ORISTM assay migration in the presence of logarithmically increasing doses of recombinant 

human HGF. Despite this relationship, ELISA-assayed HGF concentration in UPCI SCC072-

stimulated Medium 2 was below that required to induce an equivalent degree of migration 

when using recombinant HGF protein. A number of explanations may underlie the disparity 

between the two observations; HGF may either be entirely unimportant to the migratory 

phenomenon; or alternatively may be central to the migratory phenomenon, yet biologically 

more active when produced in-situ in comparison to recombinant protein. It is moreover 
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feasible that reconstituted recombinant HGF may lack the same degree of effect as the 

equivalent concentration of in-situ protein for a number of technical reasons, including 

protein sequence, degradation during transportation and storage, or as a result of 

reconstitution/ dilution errors. A third possibility, as shall be addressed in this chapter, is that 

HGF may influence cell migration in combination with (a) further factor(s) secreted by 

fibroblasts in response to stimulation by HPV-negative cell lines. 

The most plausible factor which may supplement HGF’s effect, based on data presented in 

Chapter 4, is IL-6; Figure 4.10 illustrates a potential dose-response relationship, albeit 

punitive in comparison to conditioned media experiments, between IL-6 concentration and 

cell migration. All other factors tested (excluding OSM) failed to demonstrate a convincing 

dose-response relationship throughout triplicate biological repeat experimentation. IL-6 has 

also been measured as elevated in HPV-negative cell line-stimulated fibroblast media 

(please refer to Figure 4.1), and characteristically stimulates EMT, a process that would be 

favourable for migration to occur, as discussed in more detail in Chapter 4. Whilst the 

conclusion of Chapter 4 was that IL-6 did not appear to have a principal effect on driving the 

migratory phenomenon observed in conditioned media experiments, the factor does retain 

potential to interact with HGF-driven cell migration. Recombinant IL-6 has also been 

reported as inducing HGF release in cancer patients476, and furthermore signals via STAT3, 

offering scope for HGF-reinforcing signals to occur in response to IL-6 stimulation. 

 

Secondary Targets of Foretinib 

As discussed above, both EGFR and VEGFR have been identified as secondary targets of 

foretinib. The IC50 for each respective receptor is reported by commercial suppliers, 

Selleckchem, as 2.99 M and 2.8 nM; some tenfold higher than for c-Met477. Although 

Selleckchem appropriately quote work by Fawn et al as establishing data for the IC50 of 

VEGFR, no reference is made to EGFR in their article435. Other researchers referenced by 

suppliers have indeed found EGFR to be inhibited by foretinib, although interpretation has 

been via semi-quantitative Phospho-RTK array in the presence a standardised dose of 1 M 

foretinib478. Furthermore, IC50 for receptor phosphorylation versus biological effect have been 

found by the same authors to vary by approximately 100-fold435. The quoted inhibitory 

concentration of foretinib for each tyrosine kinase receptor therefore acts as a noteworthy 

reference point rather than an absolute; biologically relevant effect certainly appears to 
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exceed receptor phosphorylation data435 and therefore a phosphorylation-based IC50 cannot 

be relied upon for functional assays. 

The comparable IC50 quoted for both c-Met and VEGFR does however illustrate the potential 

for receptor inhibition to occur simultaneously in c-Met-inhibition experiments using the drug. 

This is further complicated by uncertainties surrounding the supplier-quoted IC50 of EGFR, 

which cannot be identified in the respective literature and therefore may approximate closer 

than expected to the inhibitory concentrations required for c-Met and VEGF. 

Although VEGF/VEGFR signalling has been historically regarded as an angiogenic 

phenomenon, more recent work have identified that tumour-expressed VEGFR is important 

for progression of many cancers, including those of the head and neck316, 479. Whilst the 

current body of research does not necessarily support the role of VEGF signalling in tumour 

motility, cross-reactivity of foretinib with this receptor must be borne in mind as an alternative 

mechanism to c-Met inhibition when analysing restraint of conditioned media-induced cell 

migration. Much data are available to support EGFR-induced cellular motility in both 

keratinocytes and head and neck cancer480-483; foretinib’s cross-reactivity with EGFR 

signalling must therefore also be considered alongside VEGFR. 

This chapter shall therefore theory-test the role of HGF in HPV-negative cell line-stimulated 

fibroblast conditioned media induced migration through c-Met blockade, using the inhibitors 

INCB28060 and foretinib. Further consideration shall be paid to potential bystander effects of 

each of these drugs on EGF and VEGF signalling, and further experimental methods 

undertaken to rule out EGF/ VEGF signalling as a contributor to the observed migrations. 

The role of IL-6 shall be revisited in the context of HGF-induced migration, with specific 

consideration of the cell line UPCI SCC072, for which HGF in isolation may not account fully 

for the effects of stimulated fibroblast conditioned media on cell migration. 
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Methods 

M6.1-6.2: Analysis of Effect of c-Met Inhibitors on Migration of HPV-Negative 

Oropharyngeal Carcinoma Cell Lines Exposed to Recombinant Human HGF  

 

Purchasing, Preparation and Storage of HGF and c-Met Inhibitors 

Foretinib and INCB28060 were purchased from Selleckchem (Stratech Scientific Ltd, 

Newmarket, Suffolk: UK distributors to Selleckchem). Each vial of anhydrous drug was 

dissolved in DMSO to a stock concentration of 4 mM and 1 mM for foretinib and INCB28060, 

respectively. Each stock solution was aliquoted and stored immediately at -80 oC until use in 

experiments.  

Recombinant human HGF was purchased from Insight Biotechnology (Wembley, UK. 

Catalogue number 10-1194-C). The lyophilised protein was briefly centrifuged and then 

reconstituted with 1,000 L normal media (DMEM plus 10 % FCS, plus 50 U mL-1/50 g mL-1 

penicillin-streptomycin, plus 2 mM L-glutamine) to produce a stock solution of 10 g mL-1, 

aliquoted and stored at -21 oC prior to use in experiments.  

 

Preparation of Migration Assays, Inhibition of Cell Division and Pre-experimental 

Conditioning with c-Met Inhibitors/DMSO Control 

HPV-negative cell lines UPCI SCC072 and UPCI SCC089 were grown to 70 % confluence in 

separate T75 flasks. Cells were washed twice in PBS, trypsinised, centrifuged at 1,000 rpm 

and then resuspended in normal media. Each cell suspension was then counted using a 

haemocytometer, appropriately diluted using normal media, and re-counted in order to 

achieve the preoptimised seeding concentration of 1.6 X 106 cells mL-1 for UPCI SCC072, 

and 8.8 X 105 cells mL-1 for UPCI SCC089, allowing confluent ORISTM assay well loading as 

described in Chapter 1. ORISTM assay plates were prepared under sterile conditions, 

mounting silicone stoppers into each well using the manufacturer-supplied location device. 

100 L of each cell suspension was then pipetted into respective ORIS tm assay wells and left 

overnight to adhere. 
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Following cell adherence and confirmation of well confluency using an inverted lens 

microscope, a preoptimised (please refer to Chapter 1, Figure 1.9) 2 g mL-1 mitomycin C 

suspension in normal media was prepared from snap-frozen 0.5 mg mL-1 aliquots of 

mitomycin C stored at -80 oC. All handling of mitomycin C was undertaken in a darkened 

tissue culture hood in order to avoid excessive light exposure. The mitomycin C suspension 

was then divided into multiple universal containers, and either foretinib/INCB28060/DMSO 

control added from stock solutions in order to achieve the desired concentrations of 0.4, 4 & 

40nM foretinib, 0.1, 1 & 10nM INCB28060, or DMSO control. Foretinib and INCB28060 stock 

solutions were diluted 10-fold and 100-fold in DMSO in order to achieve three initial solutions 

that each required a 1:100,000 dilution to achieve desired working concentrations in 

mitomycin C, thereby retaining equal levels of DMSO solvent in each final dilution. Foretinib 

and INCB28060 concentrations were determined using the available literature on receptor 

IC50 and also data on biologically relevant effect430, 435. 

Silicone stoppers were then removed from assay wells using the manufacturer supplied 

retrieval tool, exposing the respective cell exclusion zone, and normal media carefully 

aspirated off each well ensuring contact was avoided with the well base. 2 X 100 L PBS 

washes were then undertaken, and then 100 L mitomycin C with 

foretinib/INCB28060/DMSO control was then carefully pipetted into respective wells and 

incubated for 3.5 hours at 37 oC in the dark. Following 3.5 hours incubation in mitomycin C, 

baseline void photomicrographs were taken using a X4 objective lens. 

 

 

Preparation of 0.5g ml-1 HGF Plus c-Met Inhibitor/ DMSO Control Solutions, Completion of 

ORISTM Assay 

0.5 g mL-1 HGF was determined as an optimal concentration for analysing blockade of 

HPV-negative cell migration based on data presented in Figure 5.1, whereby higher 

concentrations of HGF led to a decline in migration in cell line UPCI SCC072. Although cell 

line UPCI SCC089 demonstrated a slight reduction in additional migration at concentrations 

above 0.2 g mL-1 HGF, 0.5 g mL-1 was still considered a favourable concentration as more 

rapid migration of UPCI SCC089 had potential to result in complete ORISTM assay void 

closure, thereby obscuring minor changes in migration that may occur in the presence of 

foretinib/ INCB28060. 
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Thawed stock 10 g mL-1 HGF was diluted in normal media to a concentration of 0.5 g mL-1 

immediately prior to experimentation. The 0.5 g mL-1 HGF suspension was then divided 

into multiple universal containers, and either foretinib/INCB28060/DMSO control added from 

stock solutions in order to achieve the desired concentrations of 0.4, 4 & 40 nM foretinib, 0.1, 

1 & 10 nM INCB28060, or DMSO control. Foretinib and INCB28060 stock solutions were 

again diluted 10-fold and 100-fold in DMSO in order to achieve three initial solutions that 

each required a 1:100,000 dilution to achieve desired working concentrations in mitomycin 

C, thereby retaining equal levels of DMSO solvent in each final dilution. 

Following mitomycin C incubation, assay wells were washed X2 in PBS and then 100 L 

HGF/inhibitor suspension carefully pipetted into respective wells. ORISTM assay plates were 

then incubated for either 20 h (UPCI SCC089) or 48 h (UPCI SCC072) in order for migration 

to occur, and then endpoint photomicrographs taken using a X4 objective lens. 

 

Analysis of Cell Migration 

Analysis of cell migration was undertaken by comparison of baseline versus endpoint 

micrograph images taken at X4 objective. The area of each stopper-induced cell exclusion 

zone at baseline and endpoint was measured with ImageJ software (freeware, NIH, USA), 

using the polygon selection tool. Percentage void closure was then calculated by dividing 

area of closure at experimental endpoint by total baseline area of cell exclusion zone. 
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M6.3-6.4: Foretinib/INCB28060 Cytotoxicity Assays using Cell Lines UPCI 

SCC072 and UPCI SCC089 

 

 LDH Assay 

Cytotox 96® Non-Radioactive Cytotoxicity Assays were purchased from Promega 

Corporation (Madison, USA, Cat number G1780). Manufacturer’s instructions were adhered 

to throughout experimentation, although are summarised below. 

HPV-negative Cell Lines UPCI SCC072 and UPCI SCC089 were grown to approximately 70-

80 % confluence in T75 flasks, trypsinised, resuspended in normal media, counted using a 

haemocytometer, diluted to 1 X 105 cells mL-1 and then re-counted. 10,000 cells in 100 L 

normal media were then pipetted into wells of a 96-well plate and left overnight to adhere. 

Foretinib/INCB28060/DMSO control was then added to normal media to achieve the desired 

concentrations of 0.4, 4, 40, 400 and 4,000 nM foretinib, 0.1, 1, 10, 100, 1,000 & 10,000 nM 

INCB28060, or DMSO control. Following overnight adherence, each 96-well plate was 

washed X2 in PBS and then 100 L normal media containing foretinib/INCB28060/DMSO 

control added and incubated at 37 oC for 24 hours. Normal media containing 

foretinib/INCB28060/DMSO control was also incubated in cell-free wells in order to act as 

background absorbance controls. 

Following 24 h incubation, target maximum LDH release control was prepared using wells 

incubated with DMSO-containing normal media control. 10 µL manufacturer-supplied lysis 

buffer was added cellular “target maximum” and acellular “volume control” wells and 

incubated for 45 minutes at 37 oC. 50 L media from each assay well was then transferred to 

a fresh 96-well plate and co-incubated with 50 L reconstituted substrate solution (prepared 

through dissolution of manufacturer-supplied substrate mix in 12 mL assay buffer) at room 

temperature for 30 minutes, protected from light. 50 L manufacturer-supplied stop solution 

was then added to each well, and absorbance at 492 nm measured using a Tecan Infinite 

M200 plate reader. 

Percentage cytotoxicity for each dose of foretinib/INCB28060 was then calculated using the 

following manufacturer-advised formula: 
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% Cytotoxicity=
(Experimental absorption   –  Spontaneous absorption) × 100

Target Maximum – Spontaneous absorption
 

 

 

MTS Assay 

CellTiter 96® AQueous One Solution Cell Proliferation Assay was purchased from Promega 

Corporation (Madison, USA, Cat number G3580). Manufacturer’s instructions were adhered 

to throughout experimentation, although are summarised below. 

HPV_negative Cell Lines UPCI SCC072 and UPCI SCC089 were grown to approximately 

70-80 % confluence in T75 flasks, trypsinised, resuspended in normal media, counted using 

a haemocytometer, diluted to 1 X 105 cells mL-1 and then re-counted. 10,000 cells in 100 L 

normal media were then pipetted into wells of a 96-well plate and left overnight to adhere. 

Foretinib/INCB28060/DMSO control was then added to normal media to achieve the desired 

concentrations of 0.4, 4, 40, 400 and 4,000 nM foretinib, 0.1, 1, 10, 100, 1,000 & 10,000 nM 

INCB28060, or DMSO control. Following overnight adherence, each 96-well plate was 

washed X2 in PBS and then 100 L normal media containing foretinib/INCB28060/DMSO 

control added and incubated at 37 oC for 24 hours. Normal media containing 

foretinib/INCB28060/DMSO control was also incubated in cell-free wells in order to act as 

background absorbance controls. 

Following 24 h incubation, media were aspirated and wells washed X2 in PBS. 100 mL 

normal media was then added to each well and co-incubated with 20 mL MTS solution for 

1.5 hours. Absorption was then immediately read at 490 nm using a Tecan Infinite M200 

plate reader. 
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M6.5 - 6.6: Analysis of Effect of c-Met Inhibitors on Migration of HPV-

Negative Oropharyngeal Carcinoma Cell Lines Exposed to Stimulated 

Fibroblast Media  

 

Preparation of Migration Assays, Inhibition of Cell Division and Pre-experimental 

Conditioning with c-Met Inhibitors/DMSO Control 

HPV-negative cell lines UPCI SCC072 and UPCI SCC089 were grown to 70 % confluence in 

separate T75 flasks. Cells were washed twice in PBS, trypsinised, centrifuged at 1,000 rpm 

and then resuspended in normal media. Each cell suspension was then counted using a 

haemocytometer, appropriately diluted using normal media, and re-counted in order to 

achieve the preoptimised seeding concentration of 1.6 X 106 cells mL-1 for UPCI SCC072, 

and 8.8 X 105 cells mL-1 for UPCI SCC089, allowing confluent ORISTM assay well loading as 

described in Chapter 1. ORISTM assay plates were prepared under sterile conditions, 

mounting silicone stoppers into each well using the manufacturer-supplied location device. 

100 L of each cell suspension was then pipetted into respective ORISTM assay wells and 

left overnight to adhere. 

Following cell adherence and confirmation of well confluency using an inverted lens 

microscope, a pre-optimised (please refer to Chapter 1, Figure 1.5) 2 g mL-1 mitomycin C 

suspension in normal media was prepared from snap-frozen 0.5 mg mL-1 aliquots of 

mitomycin C stored at -80 oC. All handling of mitomycin was undertaken in a darkened tissue 

culture hood in order to avoid excessive light exposure. The mitomycin C suspension was 

then divided into multiple universal containers, and either foretinib/INCB28060/DMSO control 

added from stock solutions in order to achieve the desired concentrations of 0.4, 4 & 40 nM 

foretinib, 0.1, 1 & 10 nM INCB28060, or DMSO control. Foretinib and INCB28060 stock 

solutions were diluted 10-fold and 100-fold in DMSO in order to achieve three initial solutions 

that each required a 1:100,000 dilution to achieve desired working concentrations in 

mitomycin C, thereby retaining equal levels of DMSO solvent in each final dilution. 

Silicone stoppers were then removed from assay wells using the manufacturer supplied 

retrieval tool, exposing the respective cell exclusion zone, and normal media carefully 

aspirated off each well ensuring contact was avoided with the well base. 2 X 100 L PBS 

washes were then undertaken, and then 100 L mitomycin C with 

foretinib/INCB28060/DMSO control was then carefully pipetted into respective wells and 
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incubated for 3.5 hours at 37 oC in the dark. Following 3.5 hours incubation in mitomycin C, 

baseline void photomicrographs were taken using a X4 objective lens. 

 

 

 

Preparation of Stimulated Fibroblast Media Plus c-Met Inhibitor/ DMSO Control Solutions, 

Completion of ORISTM Assay 

The most experimentally-inductive stimulated fibroblast media for cell lines UPCI SCC072 

(DENOF08 stimulated fibroblast Medium 1) and UPCI SCC089 (DENOF08 stimulated 

fibroblast Medium 2) were collected and immediately stored at -21 oC ahead of experiments, 

as outlined in Chapter 2. Stimulated fibroblast media were then thawed, aliquoted and either 

foretinib/INCB28060/DMSO control added from stock solutions in order to achieve the 

desired concentrations of 0.4, 4 & 40 nM foretinib, 0.1, 1 & 10 nM INCB28060, or DMSO 

control. Foretinib and INCB28060 stock solutions were diluted 10-fold and 100-fold in DMSO 

in order to achieve three initial solutions that each required a 1:100,000 dilution to achieve 

desired working concentrations in the fibroblast conditioned media, thereby retaining equal 

levels of DMSO solvent in each final dilution. 

Following mitomycin C incubation, assay wells were washed X2 in PBS and then 100 L 

Stimulated fibroblast medium with foretinib/INCB28060/DMSO control carefully pipetted into 

respective wells. ORISTM assay plates were then incubated for either 20 h (UPCI SCC089) 

or 48 h (UPCI SCC072) in order for migration to occur, and then endpoint photomicrographs 

taken using a X4 objective lens. 

 

Analysis of Cell Migration 

Analysis of cell migration was undertaken by comparison of baseline versus endpoint 

micrograph images taken using a X4 objective lens. The area of each stopper-induced cell 

exclusion zone at baseline and endpoint was measured with ImageJ software (freeware, 

NIH, USA), using the polygon selection tool. Percentage void closure was then calculated by 

dividing area of closure at experimental endpoint by total baseline area of cell exclusion 

zone. 
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M6.7-6.8: Dose-response Analysis of HPV-Negative Cell Lines to Ligands of 

Non-c-Met Receptors Known to be Inhibited by Foretinib 

 

Following the inhibition of cell line migration in response to non-toxic doses of foretinib & 

INCB28060, we analysed the potential for other receptors known to be inhibited by foretinib 

(but not INCB28060) to have a role in the migrations induced by stimulated fibroblast media. 

EGF and VEGF were identified as two further candidate molecules due to their known role in 

head and neck cancer progression319, 484-490, in addition to an increased densitometry of 

VEGF in HPV-negative stimulated fibroblast medium cytokine arrays (Figures 3.5 & 3.11) 

and were therefore subjected to the dose-response analyses undertaken for candidate 

molecules discussed in Chapter 5 (please refer to Figure 5.1). 

Recombinant human EGF and VEGF were purchased from Insight Biotechnology (Wembley, 

UK. Catalogue number 10-1001 and 10-1037-C, respectively). Each vial of lyophilised 

protein was reconstituted with 1,000 L normal media (DMEM plus 10 % FCS, plus 50 U mL-

1 /50 g mL-1 penicillin-streptomycin, plus 2 mM L-glutamine) to produce a 2 g mL-1 stock 

solution, aliquoted and stored at -21 oC prior to use in experiments. Serial 1:10 dilutions 

were then undertaken using normal media to obtain logarithmically decreasing doses of 

each recombinant protein. Normal media containing identical DMEM, penicillin-streptomycin, 

L-glutamine and FCS batches were used for all serial dilutions in order to maintain 

experimental consistency. 

UPCI SCC072 was selected as a representative HPV-negative cell line for initial 

investigation, and was grown to 70 % confluence in a T75 flask. Cells were washed twice in 

PBS, trypsinised, centrifuged at 1,000 rpm and then resuspended in normal media. The cell 

suspension was then counted using a haemocytometer, with appropriate dilutions using 

normal media in order to achieve the preoptimised seeding concentration of 1.6 X 106 cells 

mL-1 for confluent ORISTM assay well loading, as described in Chapter 1. ORISTM assay 

plates were prepared under sterile conditions, mounting silicone stoppers into each well 

using the manufacturer-supplied location device. 100 L of each cell suspension was then 

pipetted into respective ORISTM assay wells and left overnight to adhere. 

Following cell adherence and confirmation of well confluency using an inverted lens 

microscope, a preoptimised (please refer to Chapter 1, Figure 1.5) 2 g mL-1 mitomycin C 

suspension in normal media was created from snap-frozen 0.5 mg mL-1 aliquots of 



 

203 
 
 

 

mitomycin C stored at -80 oC. All handling of mitomycin C was undertaken in a darkened 

tissue culture hood in order to avoid excessive light exposure. Silicone stoppers were then 

removed from assay wells using the manufacturer supplied retrieval tool, exposing the 

respective cell exclusion zone, and normal media carefully aspirated off each well ensuring 

contact was avoided with the well base. 2 X 100 L PBS washes were then undertaken. 100 

L mitomycin C 2 g mL-1 was then pipetted into each well and incubated for 3.5 hours at 37 

oC in the dark. Following 3.5 hours incubation in mitomycin C, baseline void 

photomicrographs were taken under X4 magnification. Wells were then immediately washed 

X 2 with 100 L PBS and then incubated with 100 L normal media control/serially-diluted 

recombinant EGF/VEGF-containing media for 48 h. End-point migration photomicrographs 

were taken of each cell exclusion zone at 48 h. 

Analysis of cell migration was undertaken by comparison of baseline versus 48 h micrograph 

images taken at X4 objective. The area of each stopper-induced cell exclusion zone at 

baseline and 48 h was measured with ImageJ (freeware, NIH, USA) using the polygon 

selection tool. Percentage void closure was then calculated by dividing area of closure at 48 

h by total baseline area of cell exclusion zone. 

Both recombinant proteins were tested at serial dilutions of 100, 10-1, 10-2, 10-3 and 10-4 stock 

solution concentrations, in addition to normal media control. Triplicate biological repeats of 

each experimental condition (n=1) were undertaken, with median additional percentage void 

closure (compared to closure in control media) calculated and plotted graphically. 

Due to EGF response in cell line UPCI SCC072, experimental methods were then repeated 

for cell line UPCI SCC089, using a 20 h endpoint in place of 48 h. 
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M6.9: EGF ELISA Analysis 

Cell line and stimulated fibroblast Media 1 & 2 were collected for cell lines UD SCC02, UPCI 

SCC072, UPCI SCC089 and UPCI SCC090, as described for ELISA analysis in Chapter 5. 

EGF quantification of cell line conditioned media and stimulated fibroblast Media 1 & 2 was 

undertaken using Raybiotech HGF ELISA kits (Raybiotech, Norcross, USA, Cat ELH-EGF). 

Manufacturer instructions were adhered to throughout ELISA analysis. In brief, 

manufacturer-supplied recombinant human EGF standard was prepared to a 200 pg mL-1 

concentration in assay buffer. Serial 1:2.5 dilutions were then undertaken using assay buffer 

in order to achieve a control reference range. Assay buffer was used as a zero standard. All 

conditioned media were diluted in assay buffer using a manufacturer-suggested 1:20 

dilution. 

100 L standard/sample was added to each well of the Raybiotech EGF capture antibody 

preconditioned ELISA plates and incubated overnight with gentle rocking. The conditioned 

media/standard were then discarded and each well washed X4 with 300 L manufacturer-

supplied wash buffer using a multi-channel pipette, ensuring complete removal of solution 

after each wash through blotting of the inverted plate against tissue paper. Each well was 

then incubated at room temperature with 100 L 1X biotinylated detection antibody for 1 

hour on an automated rocker machine. Following incubation, the biotinylated antibody 

solution was discarded and again wells washed X4 with 300 L manufacturer-supplied wash 

buffer using a multi-channel pipette, ensuring complete removal of solution after each wash 

through blotting of the inverted plate against tissue paper. 

100 L freshly-prepared 1X streptavidin solution (concentrate diluted 300-fold in assay 

diluent) was then pipetted into each well using a multi-channel pipette and incubated for 45 

minutes at room temperature on an automated rocker machine. Following incubation, the 

streptavidin solution was discarded and a further X4 washes undertaken as described 

above.100 L manufacturer-supplied TMB One-Step Substrate Reagent was then added to 

each well and incubated for 30 minutes at room temperature, protected from light, on an 

automated rocker machine. 50 L of manufacturer-supplied Stop Solution was then added to 

each well and the plate read at 450 nm using a Tecan Infinite M200 plate reader. Results 

were tabulated using Microsoft Excel and imported into DeltaSoft ELISA analysis software 

(BioMetallics, Princeton, New Jersey, USA), and interpreted using 4-parameter best-fit plot. 
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M6.10-6.11: Analysis of Effect of c-Met Inhibitors on Migration of HPV-

Negative Oropharyngeal Carcinoma Cell Lines Exposed to 2 ng mL-1 

Recombinant Human EGF 

 

To further exclude the role of EGF in the observed stimulated fibroblast media/c-Met inhibitor 

experiments, in addition to providing a functional cytotoxicity assay of c-Met inhibitors, 

experimental method 6.1 was repeated using 2 ng mL-1 EGF in place of 0.5 g mL-1 

recombinant human HGF.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

206 
 
 

 

M6.12 – 6.13: Co-Stimulation of Cell Lines UPCI SCC072 and UPCI SCC089 with 

Recombinant Human IL-6 and HGF 

 

Recombinant human IL-6 and HGF were purchased from Insight Biotechnology as detailed 

above. Logarithmic dilutions of HGF in normal media, ranging from 0.2-200 ng mL-1 were 

prepared, aliquoted and then recombinant IL-6 added at concentrations of 0, 5, 50 or 500 ng 

mL-1. 

HPV-negative cell lines UPCI SCC072 and UPCI SCC089 were grown to 70 % confluence in 

separate T75 flasks. Cells were washed twice in PBS, trypsinised, centrifuged at 1,000 rpm 

and then resuspended in normal media. Each cell suspension was then counted using a 

haemocytometer, appropriately diluted using normal media, and re-counted in order to 

achieve the preoptimised seeding concentration of 1.6 X 106 cells mL-1 for UPCI SCC072, 

and 8.8 X 105 cells mL-1 for UPCI SCC089, allowing confluent ORISTM assay well loading as 

described in Chapter 1. ORISTM assay plates were prepared under sterile conditions, 

mounting silicone stoppers into each well using the manufacturer-supplied location device. 

100 L of each cell suspension was then pipetted into respective ORISTM assay wells and 

left overnight to adhere. 

Following cell adherence and confirmation of well confluency using an inverted lens 

microscope, a pre-optimised (please refer to Chapter 1, Figure 1.5) 2 g mL-1 mitomycin C 

suspension in normal media was prepared from snap-frozen 0.5 mg mL-1 aliquots of 

mitomycin C stored at -80 oC. All handling of mitomycin C was undertaken in a darkened 

tissue culture hood in order to avoid excessive light exposure. Silicone stoppers were then 

removed from assay wells using the manufacturer supplied retrieval tool, exposing the 

respective cell exclusion zone, and normal media carefully aspirated off each well ensuring 

contact was avoided with the well base. 2 X 100 L PBS washes were then undertaken, and 

then 100 L mitomycin C 2 g mL-1 in normal media was then carefully pipetted into 

respective wells and incubated for 3.5 hours at 37 oC in the dark. Following 3.5 hours 

incubation in mitomycin C, baseline void photomicrographs were taken using a X4 objective 

lens. 

Following mitomycin C incubation, assay wells were washed X2 in PBS and then 100 l 

HGF 0.2-200 ng mL-1 with IL-6 0-500 ng mL-1 in normal media carefully pipetted into 

respective wells. ORISTM assay plates were then incubated for either 20 h (UPCI SCC089) 
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or 48 h (UPCI SCC072) in order for migration to occur, and then endpoint photomicrographs 

taken using a X4 objective lens. 

Analysis of cell migration was undertaken by comparison of baseline versus endpoint 

micrograph images taken at X4 objective. The area of each stopper-induced cell exclusion 

zone at baseline and endpoint was measured with ImageJ software (freeware, NIH, USA), 

using the polygon selection tool. Percentage void closure was then calculated by dividing 

area of closure at experimental endpoint by total baseline area of cell exclusion zone. 
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M6.14: Flow Cytometry Analysis of Membranous IL-6 Receptor Status 

Anti-human IL-6 receptor antibody for use in flow cytometry was purchased Abcam 

(Cambridge, UK, Catalogue number ab47215), along with mouse monoclonal IgG isotype 

control probe and anti-mouse Alexa-Fluor 488 secondary probe (Life Technologies/ Thermo 

Fisher Scientific, Massachusetts, USA, Cat A11001) 

 Cell lines UD SCC2, UPCI SCC072, UPCI SCC089 and UPCI SCC090 were grown to 70-

80 % confluence in T75 flasks. Further flasks of DENOF08 normal oral fibroblasts were 

cultured to comparable confluence, and also the THP-1 monocytic line to act as an IL-6R 

positive control line491, 492. Excluding the non-adherent THP-1 line, cells were dissociated 

from respective flasks using EDTA cell dissociation solution (Sigma-Aldrich, Dorset, 

England, Cat C5914-100ML), suspended in FACS buffer (PBS with 0.1 % Sodium Azide 

plus 1 % BSA) cooled on ice, and centrifuged at 1,000 rpm for 5 minutes. The supernatant 

was then decanted and cells resuspended in 900 L cooled FACS buffer. Each cell 

suspension was then divided equally into three Eppendorph containers and again 

centrifuged at 2,000 rpm for 2 minutes. Following careful aspiration of supernatant, cells 

were resuspended in 100 L cold FACS buffer containing either no additive, monoclonal 

mouse anti-IL-6R antibody (1:250 dilution), or mouse IgG isotype control. Each suspension 

was then incubated on ice and in the dark for 40 minutes. Following incubation, cells were 

centrifuged at 2,000 rpm for 2 minutes, supernatants carefully aspirated and cell pellets 

resuspended in 1,000 L cold FACS buffer. A repeat centrifugation and cold FACS buffer 

wash was undertaken, and then pellets resuspended in 50 L cold FACS buffer and 50 L 

Alexafluor488-labelled anti-mouse secondary antibody added (final dilution of 1:50), before 

incubating on ice for a further 30 minutes. After secondary antibody incubation, a further 2X 

FACS buffer wash/ centrifugation steps were undertaken, followed by a final centrifugation at 

2,000 rpm for 2 minutes, aspiration of supernatant and then resuspension in 300 L cold 

FACS buffer. Eppendorph containers were then immediately placed on ice and cells 

analysed using a Calibur flow cytometer set to analyse 10,000 events. Flow cytometry data 

were then plotted and converted into overlay histogram images using Flowing 2.5.1 software 

(freeware, Turku, Finland). 
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Results 
Figure 6.1: Effect of c-Met Inhibitors on UPCI SCC089 Migration Using 0.5 g mL-1 Recombinant 
Human HGF in Normal Media 
 

a). 

 

b).  
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Figure 6.1: Bar graphs depicting the effect of adding c-Met inhibitors to normal media containing 0.5 

g mL-1 
recombinant HGF on SCC89 migration in ORISTM assays over a 20 h period. Error bars 

represent SEM, Y-axis represents additional migration compared to HGF-free normal media DMSO 
control, expressed as additional percentage closure of baseline void.  *** = Mann-Whitney U-test, 
compared to normal media control, P<0.001. n=9 

 

Note that both foretinib (Figure a) and INCB28060 (Figure b) inhibit HGF-induced migration to levels 
not significantly different to control (Mann-Whitney U-test, P= 0.453 foretinib, P=0.142 INCB28060) 
with drug concentrations of 40 nM and 10 nM, respectively. These results are consistent with the 
literature, with Fawn et al reporting an IC50 of 0.4 nM and a biologically-relevant IC50 for HGF-
mediated growth in cell lines B16F10, A549, and HT29 at 40nM with foretinib435, and an IC50 of 0.13 
nM and complete inhibition of c-Met phosphorylation at 3.9 nM using western blot with 
INCB28060430. 

 

Note the important observation that migration is brought to baseline in both experiments; this 
differs from the control presented in Figure 6.5 (unstimulated fibroblast conditioned medium), 
which demonstrates a reduction in migration to below that of the unstimulated fibroblast control, 
but again comparable to normal media, suggesting that HGF is secreted at low levels by the 
unstimulated fibroblast population and therefore basal fibroblast secretions reinforcing of cell line 
movement are also inhibited by foretinib and INCB28060. Basal secretion of HGF is consistent with 
ELISA data presented in Figure 5.3. 

 

(HGF Ctrl; normal media containing DMSO and 0.5 g mL
-1

 recombinant HGF as positive control, For; 
foretinib, INCB; INCB28060, all numerical postscripts refer to drug concentration in nM)  
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Figure 6.2 Effect of c-Met Inhibitors on UPCI SCC072 Migration Using 0.5 g mL-1 Recombinant 
Human HGF in Normal Media 
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c). 

 

 

 

Figure 6.2:  

 

a). Micrographs illustrating effect of 40 nM foretinib on cell migration. Note that a basal rate of 
migration is observed in control medium with little optically discernible change in the presence of 40 

nM foretinib. Addition of normal media containing 0.5 g mL-1 recombinant HGF leads to visually 
notable additional migration (lower left image), which is restrained upon co-incubation with 40 nM 
foretinib (lower right image) 

 

b). & c). Bar graphs depicting the effect of adding c-Met inhibitors to normal media containing 0.5 g 
mL-1 recombinant HGF on SCC72 migration in ORISTM assays over a 48 h period. Error bars represent 
SEM, Y-axis represents additional migration compared to HGF-free normal media DMSO control, 
expressed as additional percentage closure of baseline void. Mann-Whitney U-test, compared to 
normal media control, ** P<0.05, *** P<0.001, n=9 

 

Note that both foretinib (Figure b) and INCB28060 (Figure c) inhibit HGF-induced migration to levels 
not significantly different to control (Mann Whitney U-test, P= 0.171 foretinib, P=0.895 INCB28060) 
with drug concentrations of 40 nM and 10 nM, respectively. These results are consistent with data 
presented for UPCI SCC089 and also the literature, as discussed in Figure Legend 6.1.  

(HGF Ctrl; normal media containing DMSO and 0.5 g mL-1 recombinant HGF as positive control, For; 
foretinib, INCB; INCB28060, all numerical postscripts refer to drug concentration in nM)  
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Figure 6.3: Cytotoxicity Assays of Foretinib and INCB28060 for Cell Line UPCI SCC072 

  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Cytotoxicity assays of foretinib and INCB28060 for cell line UPCI SCC072. All numerical 

post-scripts along X-axis denote foretinib/INCB28060 concentration, in nM. “Lysis buffer” denotes 

LDH positive control with use of manufacturer-supplied lysis buffer (100 % cytotoxicity reference), 
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Ctrl/Control Media denote cells incubated in normal media with DMSO. Error bars denote SEM. For – 

foretinib, INC(B) – INCB28060. n=9 

* Mann Whitney U-test, P<0.05 

** Mann Whitney U-test, P<0.01 

*** Mann Whitney U-test, P<0.001 

Figures a & b: LDH and MTS assays, respectively, of cell line UPCI SCC072 exposed to logarithmically 

increasing doses of foretinib. Note that there is no evidence of change in LDH assay from baseline 

with all doses of foretinib tested (Figure a). There is a gradual decrease in MTS assay absorbance at 

doses greater than 4 nM, however this pattern is not consistent with the precipitous drop in 

migration noted at 40 nM foretinib for cell line UPCI SCC072 (Figure 6.2a). Although a statistically 

significant drop in MTS absorbance is seen only of 400 nM foretinib and above (Mann Whitney U-

test, compared to control), there is a weakly significant reduction in absorbance at 40 nM (P=0.07). 

No statistically significant change was noted in LDH assay over the range of foretinib tested (Mann 

Whitney U-test, P>0.05, compared to control). 

Figures c & d: LDH and MTS assays, respectively, of cell line UPCI SCC072 exposed to logarithmically 

increasing doses of INCB28060. Note that there is no evidence of change in LDH assay from baseline 

with all doses of INCB2860 tested (Figure c). There is a gradual decrease in MTS assay absorbance , 

with statistical significance achieved at doses greater than 0.1 nM INCB28060 (Mann Whitney U-

test), however this pattern is not consistent with the precipitous drop in migration noted at 10 nM 

INCB28060 for cell line UPCI SCC072 (Figure 6.2b). This drop is consistent with the gradual growth-

inhibiting effects of INCB28060 noted in pancreatic carcinoma lines, producing a similar pattern 

using MTT assay462. No statistically significant change was noted in LDH assay over the range of 

INCB28060 tested (Mann Whitney U-test, P>0.05, compared to control). 

In combination, Figures a-d suggest that the inhibition of cell migration noted with 40 nM foretinib 

and 10 nM INCB2806 in Figure 6.2 is due to receptor-specific effects rather than direct cytotoxicity. 
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Figure 6.4: Cytotoxicity Assays of Foretinib and INCB28060 for Cell Line UPCI SCC089 
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Figure 6.4: Cytotoxicity assays of foretinib and INCB28060 for cell line UPCI SCC089. All numerical 

post-scripts along X-axis denote foretinib/INCB28060 concentration, in nM. “Lysis buffer” denotes 

LDH positive control with use of manufacturer-supplied lysis buffer (100 % cytotoxicity reference), 

Ctrl/Control Media denote cells incubated in normal media with DMSO. Error bars denote SEM. For – 

foretinib, INC(B) – INCB28060. n=9  

* P<0.05, Mann Whitney U-test 

Figures a & b: LDH and MTS assays, respectively, of cell line UPCI SCC089 exposed to logarithmically 

increasing doses of foretinib. Note that there is no evidence of increase in LDH assay from baseline 

with all doses of foretinib tested (Figure a). There is a decrease in MTS assay absorbance with all 

doses of foretinib; this decrease is statistically significant (Mann Whitney U-test, P<0.05) for all 

foretinib doses other than 0.4 nM and 40 nM (P=0.077 and 0.050, respectively). It should be noted 

however, that there is no MTS assay absorbance drop coinciding with the inhibition of migration 

noted at 40 nM foretinib for cell line UPCI SCC089 (Figure 6.1a); all tested doses of foretinib 

demonstrated no significant difference in assay absorption when compared to foretinib 0.4 nM 

(Mann Whitney U-test, P>0.05). This suggests that whilst a difference in absorbance may be noted 

between foretinib and control, any change in cellular metabolism linked to that difference does not 

correlate with the inhibition of migration observed at 40 nM in ORISTM assay experiments, and may 

again be linked to growth-inhibiting effects as discussed in Figure 6.3. 

Figures c & d: LDH and MTS assays, respectively, of cell line UPCI SCC089 exposed to logarithmically 

increasing doses of INCB28060. Note that again, there is no evidence of increased LDH release from 

baseline with exposure of cell lines to all doses of INCB2860 tested (Figure c). There is again a small 

decrease in MTS assay absorbance for all concentrations of INCB28060 compared to that of control, 

achieving significance at 1 nM and 10 nM INCB28060, however this pattern is again not consistent 

with the precipitous drop in migration noted at 10 nM INCB28060 for cell line UPCI SCC089 (Figure 

6.1b), and MTS assay at higher INCB28060 concentrations demonstrated no significant difference to 

control. 

In combination, Figures a-d suggest that, as for UPCI SCC072, the inhibition of cell migration noted 

with 40 nM foretinib and 10 nM INCB2806 in Figure 6.1 is due to receptor-specific effects rather 

than direct cytotoxicity. 
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Figure 6.5: Effect of c-Met inhibitors on UPCI SCC089 ORISTM Assay Migration Using DENOF08 

Stimulated Fibroblast Medium 2 

a). 

b).  
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Figure 6.5: Bar graphs depicting the effect of adding c-Met inhibitors to UPCI SCC089 exposed to 
UPCI SCC089 stimulated DENOF08-derived Medium 2, on migration in ORISTM assays over a 20 h 
period. Error bars represent SEM, Y-axis represents additional migration compared to unstimulated 
fibroblast DMSO control, expressed as additional percentage closure of baseline void.  n=9 

 

** - P<0.01, Mann Whitney U-test 

*** - P<0.001, Mann Whitney U-test 

 

Note that both foretinib (Figure a) and INCB28060 (Figure b) inhibit migration to levels lower than 
unstimulated control, with foretinib achieving restriction of migration to that seen using normal 
media (“DMEM” on graphs, Mann Whitney U-test P>0.05). This characteristic suggests presence of a 
foretinib/INCB28060-sensitive factor which is basally secreted by the fibroblast population, hence 
reduction of migration to below that of unstimulated fibroblast medium control. This finding is 
consistent with the basal release of HGF noted in ELISA analysis of unstimulated fibroblast media 
(Figure 5.3). INCB28060 did not abrogate migration to the same level as normal media control; this 
may be due to either suboptimal dosing, or alternatively the presence of a second, foretinib -
sensitive factor in the conditioned medium such as EGF. 

 

(Unistim Ctrl; unstimulated fibroblast conditioned medium control containing DMSO, CM DMSO; 
SCC89-stimulated fibroblast conditioned medium positive control containing DMSO, DMEM – 
normal media plus DMSO negative control, For; foretinib, INCB; INCB28060, all numerical postscripts 
refer to drug concentration in nM). 
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Figure 6.6: Effect of c-Met inhibitors on UPCI SCC072 ORISTM Assay Migration Using DENOF08 

Stimulated Fibroblast Medium 2 
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Figure 6.6: Bar graphs depicting the effect of adding c-Met inhibitors to UPCI SCC72 exposed to UPCI 
SCC072 Medium 1, on migration in ORISTM assays over a 48 h period. Error bars represent SEM, Y-
axis represents additional migration compared to unstimulated fibroblast DMSO control, expressed 
as additional percentage closure of baseline void. n=9 

 

*** - P<0.01, Mann Whitney U-test 

 

Note that both foretinib (Figure a) and INCB28060 (Figure b) inhibit migration to levels lower than 
unstimulated control, as observed for cell line UPCI SCC089. Again, this finding is consistent with 
basal secretion of HGF by the unstimulated fibroblast population. No significant difference was 
found between either foretinib 40 nM/ INCB28060 10 nM versus DMEM control, although a near-
significant difference was observed for INCB28060 (Mann Whitney U-test P=0.054). 

 

(Unistim Ctrl; unstimulated fibroblast conditioned medium control containing DMSO, CM DMSO; 
UPCI SCC072-stimulated fibroblast conditioned medium positive control containing DMSO, DMEM – 
normal media plus DMSO negative control, For; foretinib, INCB; INCB28060, all numerical postscripts 
refer to drug concentration in nM). 
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Figure 6.7: Dose-Response Analysis of HPV-negative Cell Lines Exposed to Logarithmically 

Increasing Concentrations of Recombinant Human EGF 

 

a) Cell line UPCI SCC072 
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Figure 6.7: Dose response curves of additional ORISTM assay migration over 48 h and 20 h in cell lines 
UPCI SCC072 (Figure a) and UPCI SCC089 (Figure b), respectively in response to logarithmic dilutions 

of 2 g mL-1 stock recombinant EGF in normal media (n=3 biological repeats). Error bars denote 
range, with median used as measure of central tendency (blue line). Migration expressed as 
additional percentage closure of baseline void, compared to control void closure.  

 
Both of the HPV-negative cell lines are observed to migrate in response to stimulation wi th 
recombinant human EGF, rendering EGF as a candidate driver of cell migration in the conditioned 
media experiments, albeit with less consistency than HGF due to reported EGFR inhibition  only 
occurring in response to foretinib, and not INCB28060. 
 
Note the peak stimulation of cell line UPCI SCC072 occurring at 20 ng mL-1 EGF (stock EGF 
concentration X 10-2), inferring receptor saturation has occurred at higher doses, whereas no peak is 
observed in UPCI SCC089 due to complete void closure at all doses above  2 ng mL-1 EGF (stock EGF 
concentration X 10-3), masking any potential decrease in effect at higher concentrations. 2 ng mL-1 
EGF (stock concentration X 10-3) was determined as the optimal concentration for subsequent 
inhibitor experiments to assess the effect of foretinib and INCB28060 on the EGF pathway, due to 
subtotal migration at this concentration in both HPV-negative cell lines, as illustrated in Figures a & 
b, above. Full void closure in cell line UPCI SCC089 could potentially mask partial inhibition of an EGF-
stimulated positive control due to potential concomitant closure of both control and inhibitor voids 
at 20 h. 
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Figure 6.8: Dose-Response Analysis of HPV-negative Cell Line UPCI SCC072 Exposed to 

Logarithmically Increasing Concentrations of Recombinant Human VEGF 

a). 

b).  
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Figure 6.8a: Dose response curves of additional  ORISTM assay migration observed in cell line UPCI 

SCC072 in response to logarithmic dilutions of 2 g mL-1 stock recombinant human VEGF in normal 
media (n=3 biological repeats). Error bars denote range, with median used as measure of central 
tendency (blue line). Migration expressed as additional percentage closure of baseline void, 
compared to control.  
 
Figure b: comparison of VEGF-induced migration (same data as presented in a) against HGF & EGF in 
normal media. Error bars denote range, with median used as measure of central tendency (coloured 
lines). Migration expressed as additional percentage closure of baseline void, compared to control. 
 
Figure c: comparison of VEGF-induced migration against all candidate molecules tested in Chapter 5. 
Coloured lines represent median. Migration expressed as additional percentage closure of baseline 
void, compared to control. 
 
VEGF can be observed to have negligible effect on migration at concentrations of 200 ng mL-1 and 

less. 2 g mL-1 VEGF (1 X 100) led to a median additional closure of 12.6 %. This modest additional 
closure at high concentrations may be regarded as biologically irrelevant, particularly in the context 
of the degree of additional migration observed with recombinant EGF & HGF (Figure b), and also 
with the background variability noted for all candidate cytokines tested in Chapter 5 (Figure c). VEGF 
was therefore excluded as a potential foretinib-sensitive cytokine with capacity to drive migration in 
the conditioned media experiments, and not followed up with ELISA analysis in the manner that is 
described for EGF. 
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Figure 6.9: EGF ELISA Analysis of Cell Line Conditioned Media and Stimulated DENOF08 Fibroblast 

Media 1 & 2. 

a). 

 

 

 

 

 

 

 

 

 

b).  

 

 

 

 

 

 

 

 

 

 

Figure 6.9a: EGF ELISA analysis of cell line conditioned media and stimulated fibroblast Media 1&2 

(n=9). Y-axis: EGF concentration in pg mL-1 million cells-1. X-axis denotes medium type; SCC2, SCC72, 

SCC89 and SCC90 represent cell line conditioned media derived from the respecti ve UD/UPCI line, 

suffix of Media1/Media2 denote stimulated DENOF08 fibroblast media derived from respective 

UD/UPCI line. Note that all media contained undetectable levels of EGF using 4-parametric analysis. 
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Figure b illustrates a highly consistent standard curve for the respective Raybiotech EGF ELISA kit 

(r2=0.999). 

One limitation of the ELISA data presented is the absence of a positive control other than 

manufacturer-supplied standard. In the unlikely event that the highly reproducible EGF standard had 

been an inappropriate control, and in order to fully exclude EGF as a driver of cell migrati on which 

had been inhibited by foretinib/ INCB28060 in Figures 6.5 & 6.6, inhibitor experiments were 

repeated using 2 ng mL-1 EGF (please refer to Figure 6.10). 
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Figure 6.10: Effect of c-Met Inhibitors on UPCI SCC072 ORISTM Assay Migration with 2 ng mL-1 EGF 
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Figure 6.10: Effect of c-Met inhibitors on UPCI SCC072 ORISTM assay migration over a 48 hour period 

using 2 ng mL-1 EGF (n=9). Figure a – logarithmically increasing concentrations of foretinib, Figure b: 

logarithmically increasing concentrations of INCB28060. Y-axis: additional percentage closure of 

assay void, compared to normal media control. X-axis: Normal Media – normal media with DMSO 

control, EGF Ctrl – 2 ng mL-1 EGF in normal media with DMSO, For – foretinib, INCB – INCB28060, all 

numerical postscripts refer to drug concentration in nM. 

Note that for both foretinib and INCB, there is no decrease in cell line migration within the range of 

concentrations tested. Furthermore, no significant difference was found between 2 ng mL-1 EGF 

positive control and EGF with inhibitor over the range of concentrations tested (Mann Whitney U-

test, P>0.05). This finding is in contrast to the inhibition of all stimulated fibroblast media with 40 nM 

foretinib and 10 nM INCB28060. The inability of foretinib/ INCB28060 to inhibit cell migration in 

Figure 6.10 not only further discounts EGF as a candidate driver of cell migration in the conditioned 

media experiments, but also offers functional evidence that the effects of foretinib/INCB28060 on 

inhibiting cell line migration in Figures 6.5 & 6.6 are due to receptor-specific inhibition rather than 

direct cellular cytotoxicity. 

As previously discussed, foretinib is in reported to inhibit EGF, with a reported IC50 of 2.99 μM435. The 

lack of significant inhibition in Figure 6.10 is consistent with the use of foretinib at a maximum 

concentration of approximately 75-fold lower than this reported IC50. Moreover, a biologically 

relevant degree of EGFR inhibition may require a significantly higher foretinib concentration than 

the reported IC50 for receptor phosphorylation, as noted for recombinant HGF experiments in 

Figures 6.1 & 6.2. 
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Figure 6.11: Effect of c-Met Inhibitors on UPCI SCC089 ORISTM Assay Migration with 2 ng mL-1 EGF 
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Figure 6.11: Effect of c-Met inhibitors on UPCI SCC089 ORISTM assay migration over a 20 hour period 

using 2 ng mL-1 EGF (n=9). Figure a – logarithmically increasing concentrations of foretinib, Figure b: 

logarithmically increasing concentrations of INCB28060. Y-axis: additional percentage closure of 

assay void, compared to normal media control. X-axis: Normal Media – normal media with DMSO 

control, EGF Ctrl – 2 ng mL-1 EGF in normal media with DMSO, For – foretinib, INCB – INCB28060, all 

numerical postscripts refer to drug concentration in nM. 

Note that, as for cell line UPCI SCC072 (Figure 6.10), there is no significant decrease in cell line 

migration within the range of foretinib/ INCB28060 concentrations tested (Mann Whitney U-test, 

P>0.05).  
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Figure 6.12: ORISTM Assay Migration of Cell Line UPCI SCC072 under Conditions of Co-incubation 

with Varying Concentrations of HGF and IL-6 
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Figure 6.12a: Graph to show percentage ORISTM assay void closure attributable to co-stimulation of 

cell line UPCI SCC072 with HGF plus IL-6 at respective doses. X-axis denotes HGF concentration in ng 

mL-1; Y-axis denotes percentage closure of ORIS assay void by cell line UPCI SCC072 over 48 h. Error 

bars denote SEM, n=9. Note the marked variability in void closure linked to stimulation with HGF 

alone (red line), contributing to overlapping error bars when comparing to plots for HGF with IL-6 at 

5, 50 & 500 ng mL-1. Despite the variability linked to HGF, the addition of IL-6 was consistently 

observed to increase cell line migration compared to HGF alone: wide error bars were attributed to 

variability between biological repeats. 

 

Figure 6.12b: Graph to show additional percentage void closure in cell line UPCI SCC072 (percentage 

closure minus control), normalised to account for HGF variability. Average migration for each HGF 

concentration plus 0 ng mL-1 IL-6 for each triplicate biological repeat was normalised to the overall 

experimental average for each respective HGF concentration, hence error bars equal zero for IL-6=0 

ng mL-1. IL-6 containing media were then normalised to the respective HGF concentration using the 

same ratio. Note the tighter error bars (denoting SEM) attributable to IL-6 alone, inferring 95 % 

confidence intervals (1.96 X SEM) which do not overlap HGF + 0 ng mL-1 IL-6; a significant increase in 

migration with all concentrations of IL-6 was therefore observed. Note the separation of each IL-6 

plot (grey lines) from the HGF control (red line): a difference of approximately 10 % additional 

closure can be seen at HGF=0.2 ng mL-1, whereas a difference of approximately 25-35 % additional 

closure can be seen at HGF=20 ng mL-1. This separation of curves suggests that HGF and IL-6 are 

acting in a synergistic manner. 
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Figure 6.13: ORISTM Assay Migration of Cell Line UPCI SCC089 under Conditions of Co-incubation 

with Varying Concentrations of HGF and IL-6 
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Figure 6.13a: Graph to show percentage ORISTM assay void closure attributable to co-stimulation of 

cell line UPCI SCC089 with HGF plus IL-6 at respective doses. X-axis denotes HGF concentration in ng 

mL-1; Y-axis denotes percentage closure of ORIS assay void by cell line UPCI SCC089 over 20 h. Error 

bars denote SEM, n=9. Note the marked variability in void closure linked to stimulation with HGF 

alone (red line), contributing to overlapping error bars when comparing to plots for HGF with IL-6 at 

5, 50 & 500 ng mL-1. Note that in contrast to cell line UPCI SCC072, cell line UPCI SCC089 

demonstrated minimal increase in migration in response to addition of IL-6, with negligible effect at 

higher concentrations. 

 

Figure 6.13b: Graph to show additional percentage void closure in cell line UPCI SCC089 (percentage 

closure minus control), normalised to account for HGF variability. Average migration for each HGF 

concentration plus 0 ng mL-1 IL-6 for each triplicate biological repeat was normalised to the overall 

experimental average for each respective HGF concentration, hence error bars equal zero for IL-6=0 

ng mL-1. IL-6 containing media were then normalised to the respective HGF concentration using the 

same ratio.  

Error bars denote SEM, demonstrating 95 % confidence intervals (1.96 X SEM) which overlap control, 

therefore inferring no significant difference between treatment and control groups.  
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Figure 6.14: Flow Cytometry Analysis of IL-6 Receptor Expression on Oropharyngeal Carcinoma Cell 

Lines 

 

 

 

 

 

Figure 6.14: Flow cytometry analysis of DENOF08 fibroblast culture/ oropharyngeal carcinoma cell 

line membranous IL-6 receptor status. FL1-H (X-axis) plotted against cell count (Y-axis); red lines 

denote IgG isotype control, black lines denote co-incubation with IL-6R primary antibody. Note low 

expression of IL-6 receptor in cell lines UD SCC02, UPCI SCC089 and UPCI SCC090. UPCI SCC072 

demonstrated a more appreciable expression of IL-6 receptor, as did DENOF08 fibroblasts. 
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a. UD SCC02 (HPV-positive oropharyngeal carcinoma cell line) 

b. UPCI SCC090 (HPV-positive oropharyngeal carcinoma cell line) 

c. UPCI SCC 072 (HPV-negative oropharyngeal carcinoma cell line) 

d. UPCI SCC089 (HPV-negative oropharyngeal carcinoma cell line) 

e. DENOF08 (normal oral fibroblast culture) 

f. THP-1 (acute monocytic leukaemia IL-6R positive control) 
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Discussion 

 

In order to determine whether HGF had a principal role in inducing the additional migrations 

observed with stimulated fibroblast media, migration experiments were repeated using the 

clinically relevant c-Met inhibitors foretinib and INCB28060. Manufacturer data report a c-Met 

IC50 of 0.4 nM and 0.13 nM for foretinib435 and INCB28060430, respectively; the literature, 

however, reports that biologically relevant inhibition is achieved at levels approximately 100-

fold higher than the IC50 of each drug430, 435, 478. Dose-response curves were therefore 

created to assess ORISTM assay migration of HPV-negative cell lines UPCI SCC072 and 

UPCI SCC089 in response to 0.5 g mL-1 recombinant HGF in the presence of varying 

amounts of each inhibitor (Figures 6.1 & 6.2). Experiments were then repeated using the 

most potent stimulated fibroblast medium for each HPV-negative cell line (SCC72-stimulated 

DENOF08 Medium 1, and SCC089-stimulated DENOF08 Medium 2) to determine the 

overall role of HGF in driving the additional migrations. As reported in the literature, a 

marked decrease in migration was noted in both recombinant HGF-induced migration and 

stimulated fibroblast medium-induced migration at concentrations of 40 ng mL-1 foretinib and 

10 ng mL-1 INCB28060 (Figures 6.1, 6.2, 6.5 & 6.6). 

Although INCB28060 is regarded as a highly specific c-Met inhibitor, foretinib has the 

capacity to inhibit further cytokine receptors in high concentrations, namely EGFR (at 

approximately 3 M) and VEGFR (at approximately 3 nM)435, 478. Whilst inhibition 

experiments were undertaken using concentrations of foretinib capable of blocking only 

VEGFR, both EGF and VEGF have been implicated in head and neck cancer progression 

and were therefore assessed further. 

Initial recombinant protein dose-response analysis of cell migration was undertaken in a 

similar manner to recombinant HGF. Whilst recombinant EGF induced comparable dose-

response curves to HGF in both cell lines UPCI SCC072 and UPCI SCC089 (Figure 6.7), 

recombinant VEGF demonstrated minimal evidence of inducing cell migration and was 

therefore discounted as a candidate molecule. Again, cell line UPCI SCC089 responded to 

EGF at concentrations approximately 10-fold lower than required for UPCI SCC072; this 

phenomenon shall be discussed in further detail later in the chapter. To provide final analysis 

of EGF’s role in Media 1&2 -induced migrations, EGF ELISA was undertaken on DENOF8 

Media 1&2 for all cell lines, along with cell line-derived conditioned media (Figure 6.9). EGF 
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was undetectable in all conditioned media despite a highly robust recombinant human EGF 

standard curve. Although ELISA analysis had effectively ruled out EGF as a candidate for 

contributing to the stimulated fibroblast media-induced migrations, EGF served as a 

functional comparator in the confirmation of inhibitor specificity rather than toxicity. Foretinib 

and INCB28060 were therefore co-incubated with EGF at doses used to inhibit cell line 

migration in the preceding experiments (Figures 6.5 & 6.6), with no observable change in 

migration in the presence of foretinib or INCB28060 throughout the dose range tested. It was 

therefore concluded that foretinib and INCB28060 were acting in a receptor-specific manner 

rather than inhibiting migration as a consequence of exposing cell lines to a toxic dose of 

inhibitor. 

The inconsistency between HGF ELISA-quantified HGF concentrations in UPCI SCC072-

stimulated fibroblast media and the concentration of recombinant HGF necessary to induce 

an identical response prompted further toxicity assays, in order to confirm foretinib and 

INCB28060 had inhibited cell migration in a receptor-specific manner. LDH and MTA assays 

were therefore undertaken to supplement the functional evidence provided by co-incubation 

of inhibitors with recombinant EGF. LDH assay following co-incubation of both inhibitors with 

cell lines UPCI SCC072 and UPCI SCC089 demonstrated no evidence of toxicity throughout 

the dose range utilised in the preceding experiments. Similarly, MTS assay demonstrated no 

frank evidence of change in mitochondrial activity over this dose range for cell line UPCI 

SCC089 (Figure 6.4), although a gradual decline in activity was noted in cell line UPCI 

SCC072 (Figure 6.3). The decline in MTS assay absorbance noted in cell line UPCI SCC072 

did not correlate with the precipitous drop in migration observed with 40 nM foretinib/ 10 nM 

INCB28060, and was therefore considered as unimportant to the inhibition of cell migration. 

It was therefore concluded that foretinib and INCB28060 had acted in a receptor-specific 

manner, and that HGF blockade through c-Met inhibition had led to the restraint of 

stimulated fibroblast media-induced migrations. Two final considerations were however left 

unresolved. Foremost, HGF appeared an unlikely sole inducer of migration in cell line UPCI 

SCC072 due to a significant mismatch between conditioned medium HGF concentration and 

the concentration of recombinant HGF required to drive comparable migration; a second 

factor was therefore likely to be interacting alongside HGF. Secondly, it was noted that c-Met 

inhibition did not completely reduce cell migration to that of DMEM control in either cell line 

(Figures 6.5 & 6.6) – although subtotal c-Met inhibition could explain this phenomenon, a 
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further factor could in part have contributed to the residual migration induced by stimulated 

fibroblast conditioned media following c-Met inhibition. 

Of all recombinant proteins initially assessed for dose-response effect on migration, IL-6 

retained the greatest potential as a second factor to supplement HGF. Preceding ELISA 

quantification (Chapter 4, Figure 4.1) had confirmed a significant amount of this factor to be 

present in stimulated fibroblast conditioned media, and moreover IL-6 has been reported to 

synergise both HGF and EGF signalling, albeit in a non-migratory context493, 494. Dose-

response curves were therefore constructed using logarithmically increasing doses of IL-6 

co-incubated with recombinant HGF (Figures 6.12 & 6.13). Due to the significant background 

variability of migration induced by HGF, graphs were normalised to each respective HGF 

dose in order to demonstrate the independent influence of IL-6 on migration. IL-6 was noted 

to synergise HGF’s effect of cell line UPCI SCC072 in a similar manner to that reported for 

EGF, as can be observed by the divergent gradients of IL-6 containing media with increasing 

HGF concentrations, compared to HGF in the absence of IL-6 (Figure 6.12). UPCI SCC089 

demonstrated minimal response to supplementation of HGF with IL-6 (Figure 6.13), although 

migrations using IL-6 containing media consistently outcompeted HGF alone, as again is 

illustrated following normalisation for HGF variability. The capacity of IL-6 to induce migration 

in cell line UPCI SCC072 and not cell line UPCI SCC089 correlates well with membrane-

bound IL-6 receptor status (Figure 6.14), although UPCI SCC089’s lack of response may 

also be attributable to constitutional STAT activation, negating the requirement for IL-6 

supplementation via a paracrine route. 

A model of HGF induction, with supplementation of the HGF signal via STAT activation 

through either IL-6 signalling, constitutional STAT activation, or both, was devised as an 

underlying mechanism through which HPV-negative cell line stimulated fibroblast media may 

induce additional migration (please see Figure 6.15, below for a diagrammatic 

representation of this interaction). Constitutional STAT activation in this theoretical model 

affirms the observed increased sensitivity of line SCC089 to HGF, and also explains the 

minimal response of UPCI SCC089 to IL-6 in combination with HGF despite a similar sIL-6R 

secretome compared to cell line UPCI SCC072. 

Co-incubation of recombinant IL-6 plus HGF at concentrations comparable to that measured 

in UPCI SCC072-stimulated fibroblast media led to a comparable degree of migration to that 

of the conditioned media, further validating the potential for HGF/IL-6 interactions to account 

for migration of cell line UPCI SCC072 in response to stimulated fibroblast media. Moreover, 
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synergism between IL-6/ constitutional STAT activation and HGF (which also signals via 

STAT) supports the observation that the majority of stimulated fibroblast medium-induced 

migration could be restrained using c-Met inhibitors alone. 

 

 

Cooperation between HGF and IL-6 trans-signalling has been reported in models of acute 

liver injury495, although findings were linked to hepatocyte mitosis rather than cellular 

migration. The authors found however, that PI3K/AKT was necessary for the cooperative 

effects on mitosis rather than STAT3 or MAPK, the main alternative intracellular pathways 

linked to IL-6 signalling496. Although the authors conclusively demonstrated that blockade of 

PI3K/AKT with the inhibitor wortmannin led to obstruction of this cooperative effect, co-

transfection of HGF with either IL-6 or HIL-6 (an IL-6-bound soluble IL-6 receptor analogue) 

was associated with less PI3K/AKT upregulation compared to IL-6 or HIL-6 alone. The 

authors appropriately concluded that PI3K/AKT activation was necessary for the cooperative 

 

 

 

 

 

 

 

Figure 6.15. Model of Microenvironmental Pathway of Inducing HPV-Negative Tumour 

Migration 

a). Cell-cell interactions between HPV-negative tumour and stroma. The tumour induces normal 

stroma to release a combination of IL-6 and HGF. HGF acts directly on tumour cells to induce 

migration. IL-6 may act via a canonical route in the presence of membranous receptor to 

supplement HGF signalling. sIL-6R released by tumour cells is permissive of IL-6 trans-signalling, 

which may further be supportive of HGF-induced migration. 

b). Intracellular consequences of canonical c-Met signalling in combination with IL-6 trans-

signalling. c-Met activation leads to a rise in JAK-independent intracellular phospho-STAT3. sIL-6R 

supplements the HGF signal by coupling with membranous gp130 and activating intracellular 

phospho-STAT3 in a JAK-dependent manner. 

 

a).               b). 
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effect of HIL-6 on proliferation, but conceded that AKT activation was not linked to HGF-

induced proliferation. AKT activation therefore appears to be a single component of a more 

complex interactive pathway between IL-6 trans-signalling and HGF. There are several 

limitations in contextualising the authors’ work to the interactions between IL-6 and HGF in 

HPV-negative cell line migration, not least that a proportion of experimental methods 

involved transfection of HGF rather than protein exposure, in addition to the fact that mitosis 

was under scrutiny rather than migration. The article does however illustrate the potential for 

HGF and IL-6 to interact synergistically, and moreover provides an insight into the fact that 

the secondary messenger system through which interactions occur may be a complex 

relationship involving multiple pathways. In a Nature correspondence, Boccaccio et al also 

noted the complex relationship between HGF-induced STAT activation and other secondary 

messenger pathways, remarking that although the STAT pathway is necessary in HGF-

induced tubulogenesis, STAT signalling alone is insufficient, and likely relies on crosstalk 

from other pathways in order to have its morphogenetic effects381. Boccaccio went on to cite 

that MAP kinase activity positively reinforces STAT DNA-binding through serine 

phosphorylation, and concluded that the HGF receptor families’ unique ability to induce 

branching morphogenesis may be explained by its ability to activate both STAT and other 

intracellular signalling pathways. It is therefore feasible that IL-6 derived support observed in 

HPV-negative cell line migrations relies on a similar activation of STAT-supportive 

messenger pathways rather than relying on the incidental additional rise in STAT that occurs 

with IL-6 stimulation. 

A 2012 Nature review of c-Met in cancer also noted that crosstalk between c-Met and other 

signalling systems had “emerged as a major mechanism in human cancer”. Established 

interactions include cooperation between c-Met and EGFR493, and WNT--catenin 

signalling497. Further experimental data suggest cooperation of HGF with TGF-b, IGF-1 and 

EGF in keratinocyte migration in-vitro498. More specifically, Hov et al noted c-Met signalling 

potentiated the effect of IL-6 on proliferation in myeloma cell lines494. Hov et al also 

assessed cell line migration in response to HGF in combination with IL-6, and although a 

trend of increased migration was noted, findings failed significance testing (P=0.14). Unlike 

Nechemia-Arbely et al’s work on acute liver injury, Hov et al concluded that synergy in the 

context of proliferation may be due to further HGF being produced in response to IL-6 (an 

established consequence of IL-6 signalling499, 500 or may be due to MAPK activation. The 

authors did not, however, derive any suitable evidence that their observed changes in levels 
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of MAPK following HGF/IL-6 co-stimulation were directly responsible for changes in 

proliferation. 

HGF-induced keratinocyte migration has been comprehensively analysed and attributed to 

STAT3 activation380, 381. Although HGF does not directly induce SOCS proteins, both SOCS 

1&3 are capable of negatively regulating phosphorylated STAT3 produced by HGF 

stimulation380. IL-6, an inducer of SOCS3501, has therefore been postulated to act as a 

restraining mechanism for HGF-induced migration380. Our data refute this proposition and 

suggests that, at least in the concentrations relevant to 2D tissue culture, IL-6 supports HGF-

induced migration. IL-6 induced carcinoma migration has been recently confirmed in oral 

squamous cell carcinoma lines334, although longitudinal serum IL-6 has been implicated with 

survival for many years129, 364, 502. Chuang et al found that IL-6 mediated migration was linked 

to membranous IL-6 receptor stimulation, with subsequent activation of Syk and JNK 

intracellular signalling pathways, leading to ICAM-1 expression. Interfering with ICAM-1 

using siRNA led to abrogation of IL-6 mediated migration334. 

It is uncertain as to the role of sIL-6R in driving migration in the stimulated fibroblast media 

experiments. Whilst it is enticing that the release of significant levels of sIL-6R is limited to 

HPV-negative cell lines (Chapter 4, Figure 4.3), this process may be a less significant 

consequence of global ADAM snippase activity leading to the release of a number of 

membrane-harboured cytokines which thereafter drive cancer progression, as previously 

discussed. Analysis of the relative contributions of sIL-6R and mIL-6R activity is testable via 

universal receptor inhibition using tocilizumab, versus solubilised receptor inhibition using 

sgp130. Due to difficulties in accessing both tocilizumab and validated sgp130, this 

consideration shall be discussed in “future work”. 

Trans-signalling via the solubilised IL-6 receptor may offer advantages over canonical 

signalling via the membranous form of the receptor, such as IL-6 activation of non-IL-6R 

expressing cells503, differences in effector function of canonical and non-canonical 

pathways504 and more contentiously endocrine-like effects on target organs capable of 

releasing further HGF in response to trans-signalling, such as the liver476. Furthermore, there 

is evidence that early STAT3 phosphorylation is more pronounced via the IL-6 trans-

signalling route505, 506 and has been found to be prolonged compared to canonical signalling 

in a model of murine liver regeneration507, although experimental data relate to use of a 

covalently bonded IL-6/sIL-6R designer cytokine complex to replicate IL-6 trans-signalling 

rather than use of IL-6 in combination with sIL-6R; the experimental use of a permanently-
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bound receptor-ligand complex may have implications for bioactivity and sustained signal 

transduction. Greater induction of STAT would offer a clear benefit of solubilised IL-6 

receptor signalling in the potential support of HGF activity.  

Dominitzki et al 508 concluded that IL-6 trans-signalling via the soluble IL-6R diminishes 

induction of adaptive regulatory T-cells (Treg) in a murine model, blocking immune 

tolerance. Dominitzki et al also found that whilst stimulating naïve CD4+CD25- T-cells with 

high levels of IL-6 in primary cell culture led to only partial inhibition of FoxP3 induction (a 

key regulator of CD4+CD25+ Treg cell development509, IL-6 trans-signalling almost 

completely abolished FoxP3. The consequence of FoxP3 abrogation is to induce T-helper17 

(TH17) subset development349, 510. From a pathogenic perspective, switching from Treg 

immune tolerance to a pro-inflammatory TH17 phenotype may be unfavourable for 

persistence of HPV infection, and may offer further insight into the HPV-negative status-

specific nature of soluble IL-6R release observed in our data. Indeed, Treg frequency in 

isolated peripheral blood mononuclear cells has been found to correlate with HPV 

persistence in cervical premalignant lesions511. 

 It remains unclear whether alternative receptors that also signal via STAT3 could have a 

similar supplemental effect on HGF-induced migration, or whether this is a property 

exclusive to IL-6. Although STAT signalling is one of the best understood intracellular 

signalling pathways, much is still elusive as to how numerous cytokine receptors can utilise 

the same small number of phosphoproteins to elicit characteristic cellular responses. The 

SOCS 3 protein may account in part for the specific nature of IL-6 signalling505, 512, 513, 

although again it is unclear as to whether this could drive IL-6-specific tumour evolution or 

whether more generic STAT activation is as effective in supporting HGF. Constitutional 

STAT activation may be a final process of achieving cell-autonomous responsiveness to 

HGF; this may account for marked sIL-6R secretion by cell line SCC089 despite a low 

migratory response to co-incubation with HGF and IL-6 – UPCI SCC089’s solubilised 

receptor secretion may represent an evolutionary artefact that was accrued prior to gaining 

subsequent mutations that led to constitutionally activated STAT signalling. 

STAT supplementation of HGF signalling offers a valuable biological explanation for recent 

clinical observations relating to the role of HGF in HPV-positive versus -negative disease. 

Kwon et al 276 concluded that tumour HGF status correlated with overall survival rates in only 

HPV-negative oropharyngeal carcinomas; HGF status was not a prognosticator for HPV-

positive tumours. Our data suggest that the degree of HGF release, along with further 
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derangements in tumour biology, namely IL-6 activation, are necessary in order for tumour 

cells to gain full migratory benefit from the microenvironment. sIL-6/mIL-6 receptor status, 

microenvironmental IL-6 release, STAT activity and soluble c-Met release may all have 

impact on a more comprehensive HGF/IL-6 synergistic pathway, and multiple cellular 

derangements may be necessary in order for these variables to become evolutionarily 

optimised. HPV-positive tumours are well recognised for carrying low overall mutational 

loads, and may under the majority of circumstances never accrue the degree of mutations 

necessary to fully take advantage of microenvironmental HGF. One may also postulate that 

the prognostic implications of smoking in HPV-positive disease could in part be linked to 

either introducing mutations that may support HGF signalling, or more alluringly, may directly 

induce STAT. Indeed, cigarette smoke extract has been found to increase JAK2 and STAT3 

activation in a vascular smooth muscle model 514; similar effects on HGF-expressing, HPV-

positive carcinomas could be profound. Tumour reliance on maintained cigarette smoking in 

order to derive STAT activation could have major therapeutic implications; smoking 

cessation upon diagnosis of HPV-positive, HGF-positive disease would be a paramount 

clinical consideration. 

The ability of foretinib and INCB28060 to inhibit the migration induced by stimulated 

fibroblast media in both cell lines UPCI SCC072 and UPCI SCC089 demonstrates their 

potential value in the clinical setting. As previously discussed, foretinib has the additional 

advantage of blocking EGFR in higher concentrations, and therefore may be a suitable 

alternative to cetuximab; an EGFR blocking drug currently under randomised trial against 

platinum-based chemotherapy in the management of HPV-positive oropharyngeal 

carcinoma, in addition to having received NICE approval for locally-advanced head and neck 

cancer where platinum-based chemotherapy is considered inappropriate515. c-Met mutations 

have become an established escape mechanism through which progression can occur in 

EGF-blocked tumours516-522, as has IL-6/STAT3 signalling523. Primary therapy with a Class II 

ATP-competitive small molecule inhibitor such as foretinib, offers not only dual restraint of 

any microenvironmental derangements in EGF & HGF release, but also obstructs potential 

c-Met mutation as an escape mechanism of EGF blockade due to foretinib’s activity on the 

intracellular tyrosine kinase component of the c-Met receptor. Moreover, cytokine array data 

(Figure 3.8) suggest that HPV-negative cell lines released soluble EGFR; this may act as a 

decoy to EGF inhibitors such as cetuximab that act through binding the extracellular domain. 
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A number of recent studies on the efficacy of foretinib have investigated co-delivery of the 

drug with a further inhibitor524-526. Potential co-delivery of tocilizumab with foretinib may 

provide a valuable combination of receptor inhibiting effects that blockade EGF signalling, 

along with IL-6 and HGF signalling pathways; restraining migration in addition to obstructing 

known EGF-inhibitor tumour escape-routes for cancer progression. 

As discussed in the introduction, Seiwert et al‘s trial of oral foretinib in recurrent/metastatic 

head and neck cancer failed to progress to stage 2 of the study, although reassuring findings 

were noted on the stabilisation of disease. Our data support the application of c-Met 

inhibitors in order to refrain tumour migration rather than proliferation, and the finding of 

foretinib-induced stabilisation rather than tumour regression is therefore intuitive. A more 

viable application of foretinib, or indeed any c-Met inhibitor in the management of head and 

neck cancer, is likely to be in the management of early disease rather than late, whereby 

inhibition of invasion and micrometastasis through the blockade of c-Met-driven tumour 

motility could offer significant improvements to outcome.  
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Chapter 7: Conditioned Media Induction of Fibroblast 

Senescence 

 

Introduction 

There has been increasing recognition of the role of fibroblasts in cancer over the past two 

decades527, both in terms of tumour initiation and progression527-529. Cancer-associated 

fibroblasts (CAFs) comprise a variety of tumour-supportive altered fibroblast phenotypes, 

including myofibroblasts and senescent fibroblasts; the former cell type referring to 

fibroblasts that have undergone partial smooth muscle differentiation530 and thereafter 

support tumour progression through the release of numerous growth factors including VEGF, 

IGF-1, EGF, HGF and TGF-1 531, in addition to mechanically deranging stroma to create 

force- and protease- mediated tracks through which tumour cells may invade532, 533. 

Fibroblasts entering a senescence pathway may also acquire a more active secretome. The 

so-called senescence-associated secretory phenotype (SASP) offers an alternative route to 

support tumour progression, and also includes the production of a number of factors 

supportive of tumour progression, as outlined in the preceding chapters. Senescent 

fibroblasts undergo a process termed “autophagy”, whereby oxidative stress drives 

lysosomal degradation and mitochondrial dysfunction, leading to induction of a catabolic 

state, and thereafter transfer of high energy products such as L-lactate, ketone bodies, 

glutamine, and free fatty acids to tumour cells534, 535, providing further support for tumour 

progression. 

The overall taxonomy of CAF subsets remains somewhat ill-defined348, with additional 

complexities with in-vivo classification linked to CAF heterogeneity occurring both within a 

single tumour and also between tumour types. Such heterogeneity is thought to account for 

difficulties in conclusively demonstrating a prognostic link between individual CAF markers 

and cancer prognosis527, with a general assumption that multiple yet-to-be-identified CAF 

subtypes may express similar markers, of which only some may bear prognostic 

significance. 

CAFs are reported to originate from a number of sources, including resident fibroblasts, 

marrow-derived progenitors and also epithelia/endothelia via trans-differentiation348. Our 

model of tumour-stromal interactions has demonstrated that HPV-negative oropharyngeal 
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carcinoma lines have capacity to induce the resident fibroblast population to support tumour 

progression. Cytokine array data presented in Chapter 3 suggest that in addition to inducing 

a fibroblast secretory profile supportive of tumour migration, HPV-negative cell lines also 

induced a secretory profile typical of a SASP. Many factors linked by Elkhattouti et al to an 

age-related senescent profile, such as IL-6, IL-8 and stimulators of CXCR-2 (GRO, GCP-2, 

ENA-78)536 have been observed to be elevated in fibroblast cultures in response to HPV-

negative cell line conditioned media. Furthermore, GRO- expression, in addition to CXCR-2 

expression, have been found to be linked to entry into a senescent pathway289, 537, and have 

also been noted to contribute to a positive feedback loop536. Further factors linked to a SASP 

include MCP-1, MCP-2, HGF and VEGF538, all of which were upregulated in cytokine array 

analysis of HPV-negative stimulated fibroblast media. Data presented in Chapter 3 therefore 

suggest a senescent route of fibroblast induction. 

From the perspective of tumour evolution, induction of an immediate fibroblast secretory 

profile offers clear selection pressure for expansion of those cellular populations with 

greatest capacity to drive senescence; there is less tangible evolutionary advantage of 

inducing the features of senescence which become observed only after protracted 

stimulation, although these latter features may allow establishment of a permanently 

supportive secretory profile. Many of the characteristic features of senescence (although 

beneficial to tumour progression) may therefore be a consequence of the immediate process 

of deriving evolutionary benefit from the initial secretory profile we have observed, rather 

than representing the characteristic evolutionary end-point of selection pressure. 

Nonetheless, an established senescent fibroblast phenotype is reflective of those tumours 

which are microenvironmentally active, and may offer clinically accessible measures of 

tumour-stromal interaction, which in turn may help define the prognostic disparity between 

HPV-positive and -negative disease. 

This brief chapter examines whether protracted exposure to HPV-negative cell line 

conditioned media leads to fibroblast senescence, as an assumed biological end-point of the 

process linked to the initial secretory profile discussed in Chapter 3. 
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Methods 

 

M7.1: Analysis of Senescence Following Culture of DENOF08 

Fibroblasts in Cell Line Conditioned Media 

Culture of DENOF08 Fibroblasts in Cell Line Conditioned Media 

24 h conditioned media from cell lines UD SCC02, UPCI SCC072, UPCI SCC089 and UPCI 

SCC090 were collected at a concentration of 3 million cells mL-1 conditioned medium and 

stored in an identical manner to that described in Chapter 2. Following initial trials of 

protracted incubation of DENOF08 fibroblasts in cell line conditioned media, it was 

determined that conditioned media required supplementation with normal media in order to 

avoid nutrient exhaustion over the period of a 13-day incubation. Cell line conditioned media 

were therefore diluted with 30 % normal media (DMEM plus 10 % FCS, plus 50 U mL-1/50 

g mL-1 penicillin-streptomycin, plus 2mM L-glutamine) immediately prior to use in the 

experiment, achieving a working concentration of 2.13 million cells mL-1. 

Passage 7 DENOF08 fibroblasts were grown in 25 cm tissue culture flasks to a confluence 

of approximately 15 %, washed X3 and then incubated with cell line conditioned media 

diluted with 30 % normal media. Concurrent flasks were incubated for each respective cell 

line (UD SCC02, UPCI SCC072, UPCI SCC089 and UPCI SCC090) conditioned media, 

along with separate normal media negative control and 10 M cisplatin in normal media 

positive control. Medium change was undertaken every 48 h, with an additional medium 

change undertaken for cisplatin positive control after 24 h exposure. Cell cultures were 

reviewed for confluence daily, with sub-culture of flasks undertaken at day 8, except for 

cisplatin control due to low confluence throughout the experiment. 

 

SA-Gal Analysis of Senescence  

At day 13, media were removed, each flask washed in PBS, and then 1 mL fixative added 

from a commercial SA-Gal staining kit (Abcam, Cambridge, UK) for 15 mins. Each flask 

was then washed X2 with PBS and then proprietary SA- Gal staining solution added using 

manufacturer’s guidelines for preparation. Wells were then incubated at 37 oC for 20 hrs, 

protected from light exposure. Flasks were subsequently reviewed using a light microscope, 
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and 3 random areas photographed using a USB camera under X10 objective. The total 

number of cells in each field were then counted, along with total number of cells staining SA-

Gal positive – defined as all cells demonstrating distinct uptake of chromogen in the 

perinuclear region of the respective fibroblast cell body. Results were then expressed as 

percentage of total cells in each field staining SA-Gal positive, and triplicate experimental 

and biological repeats summarised graphically. 
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Results 

 

Figure 7.1: Representative Micrographs of DENOF08 Fibroblast Cultures Following 13-Day 

Exposure to Cell Line Conditioned Media 

 

 

a). UD SCC02     b). UPCI SCC072 

 

 

 

 

 

 

c). UPCI SCC090     d). UPCI SCC089 

 

 

 

 

 

 

e). Cisplatin Ctrl    f). Normal Media Ctrl 
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Figure 7.1: Representative micrographs of DENOF08 fibroblast cultures following 13-day exposure to 

conditioned media taken from cell lines UD SCC02, UPCI SCC072, UPCI SCC089 and UPCI SCC090 

(Figures a-d). Red arrows denote cells displaying SA-Gal positive staining. Cisplatin positive and 

normal media negative controls illustrated in figures e & f, respectively. Note the marked SA -Gal 

positivity (blue perinuclear uptake of stain) observed in a significant number of fibroblasts in the 

cisplatin group. Note also clear SA-Gal positivity can be seen in a proportion of fibroblasts exposed 

to HPV-negative cell line conditioned media (UPCI SCC072 and UPCI SCC089; Figures b &d). Note that 

weak staining can be observed in a number of fibroblasts exposed to UPCI SCC090 conditioned 

medium (Figure c), although the proportion of cells expressing weak positivity were less than the 

proportion of cells expressing strong positivity (please refer to Figure 7.2).  
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Figure 7.2: Percentage SA-Gal Positive DENOF08 Fibroblasts in Cultures Following 13-Day 

Exposure to Cell Line Conditioned Media 

 

 

 

Figure 7.2: Bar graph to show percentage of total fibroblast population SA-Gal positive following 

13-day exposure to cell line conditioned media. n=9, error bars denote SEM. 

* - Mann Whitney U-test, P<0.05 (compared to control) 

** - Mann Whitney U-test, P<0.01 (compared to control) 

*** - Mann Whitney U-test, P<0.001 (compared to control) 

 

Cisplatin  – cisplatin positive control; 24 h exposure to cisplatin 

Ctrl   – Normal media negative control 

SCC2   – Following 13-day exposure to UD SCC02 (HPV-positive) conditioned media 

SCC90   – Following 13-day exposure to UPCI SCC090 (HPV-positive) conditioned media 

SCC72   – Following 13-day exposure to UPCI SCC072 (HPV-negative) conditioned media 

SCC89   – Following 13-day exposure to UPCI SCC089 (HPV-negative) conditioned media 
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Note the greater proportion of fibroblasts exposed to HPV-negative cell line conditioned media that 

express SA-Gal, reflecting a greater proportion of cells entering senescence. As discussed in Figure 

7.1, fibroblasts exposed to UPCI SCC090 conditioned media also demonstrated a proportion of cells 

entering senescence, although this proportion remained less than that induced by HPV -negative 

conditioned media, moreover the intensity of stain in response to UPCI SCCC090 conditioned media 

(please refer back to legend of Figure 7.1) was less than observed in fibroblasts e xposed to HPV-

negative line conditioned media. 

Note also that graphs for fibroblast senescence in response to cell lines UD SCC02, UPCI SCC072, 

UPCI SCC089 and UPCI SCC090 follow a similar trend to that seen for ELISA analysis of HGF, IL-6 and 

IL-8 (please refer to Figures 5.3, 4.1 & 4.2, respectively), whereby HPV-negative lines UPCI SCC072 

and UPCI SCC089 secrete high levels of the aforementioned cytokines, with UPCI SCC090 producing 

modest amounts, and UD SCC02 inducing minimal response. 
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Discussion 

As anticipated, HPV-negative cell line conditioned media demonstrated greater capacity to 

induce fibroblast senescence over the 13-day period of experimentation. Although a direct 

link between SA-Gal expression and the initial secretory profile observed in stimulated 

fibroblast Media 1&2 (Chapters 2-5) is not confirmed, the observed pattern of SA-Gal 

staining does appear consistent with a common process linking the initial secretory response 

and latter expression of markers of senescence. Further markers of senescence, such as 

HIRA foci, could be used to further validate our findings relating to SA-Gal, although a more 

pertinent challenge is to identify the factor(s) released by cell lines which are responsible for 

driving the HGF response observed in stimulated fibroblasts. The findings of this chapter, in 

addition to the fibroblast secretory profile summarised in Chapters 3-5, offer clues as to the 

likely nature of the characteristic HPV-negative tumour secretome driving the fibroblast 

response. Identification of an established senescence-inducing factor may ultimately 

preclude the necessity for more comprehensive analyses of fibroblast senescence, although 

analysis of the transformed fibroblast phenotype is discussed further in Chapter 9. 

Despite fibroblast senescence being generally regarded as a consequence of either cellular 

ageing or protracted exposure to oncogenes or alternative stressors, HPV-negative tumour 

conditioned media induced a comparable secretory profile in a normal fibroblast population 

within a 24-hour period (Chapters 2-5). Moreover, senescence is considered linked to an 

established cellular subpopulation distinct from the normal stroma, often referred to 

collectively as cancer-associated fibroblasts (CAFs); our data suggest the secretory profile 

classically ascribed to such populations is inducible within a comparatively short period of 

time, with markers of senescence occurring after protracted exposure. 

Interestingly, CXCR-1 and CXCR-2 expression occurred in a subpopulation of normal 

fibroblasts stimulated by HPV-negative tumour conditioned media for 24h (Please refer to 

Chapter 4, Figures 4.4 & 4.5); this may reflect the initial stages of cellular entry into 

senescence, and may signify those fibroblasts which proceed to positive SA-Gal staining at 

13 days. This process would be consistent with the GRO/CXCR-2 feedback loop discussed 

in the chapter introduction. CXCR-2 linked flow cytometric cell sorting may allow for such 

populations to be isolated and studied in greater detail, allowing direct correlation of early 

CXCR expression to entry into senescence, although such further experimentation is beyond 

the scope of this thesis. 
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The function of only partial fibroblast entry into senescence (Figure 7.2) may relate to the 

physiological role of this process outside the context of the tumour microenvironment; it is 

intuitive that senescence of an entire fibroblast population would lead to loss of tissue 

dynamics and capacity to remodel/recover from a highly inflammatory milieu, and therefore 

only partial fibroblast population entry into senescence is desirable at a tissue level. 

Alternatively, entry may relate to either stage of cell cycle, or an alternative phenotypic 

difference occurring between fibroblasts within a given population. A higher proportion of 

cells entering senescence may therefore be observed over more protracted conditioned 

media incubations, as more fibroblast subpopulations enter a phenotypic state responsive to 

senescence induction. 

A senescent profile may offer some light on the lack of TGF-related findings linked to our 

model of the microenvironment. Although TGF has been linked to the acquisition of both 

myofibroblastic and senescent fibroblastic profiles, the molecule may act as both a tumour 

suppressor and tumour promoter539-541. Notably, loss of TGF responsiveness has been 

linked to HGF expression542, with inhibition of TGF also potentiating HGF-induced 

invasion543. Our model may therefore illustrate entry into senescence via a route alternative 

to TGF, such as IL-17A or IL-1544, 545, thereby retaining greater capacity to induce 

microenvironmental benefit from HGF. 

Cytokine array and PCR data presented in Figures 3.2, 3.5 and 4.6 demonstrate that GRO-

,&  all appear elevated in the HPV-negative microenvironment as a result of both tumour 

and stromal release. GRO therefore offers both autocrine and paracrine CXCR-2 reinforcing 

signals for maintaining a persistent senescence profile. Indeed, the role of GRO- in the 

induction of a SASP is clearly documented537, 546. 

In summary, the confirmation of a greater degree of senescence in HPV-negative 

conditioned media-stimulated fibroblasts provides further insight into the likely process 

through which HGF release has been induced. A number of reinforcing signals released by 

HPV-negative tumours, such as GRO, may supplement the induction of fibroblast 

senescence, although data presented in Chapter 4 suggest that GRO-/ alone did not 

retain capacity to drive HGF secretion. Candidate pathways other than GRO capable of 

driving the fibroblast response shall be discussed in “Further Work”, Chapter 9. 



 

256 
 
 

 

Chapter 8: Determining Validity of 2D Experimental 

Findings 

Introduction 

Invasion Assay 

The experimental data presented in Chapters 2-6 confirm a principal role of HGF in inducing 

cell migration within a 2D culture model. There are clear limitations with respect to the 

external validity of 2D modelling, and therefore a 3D model was sought for analysis of HGF’s 

role in an anatomically representative setting. Our initial trials of De-Epithelialised Dermis 

(DED) and collagen matrix-based organotypic models appeared unrepresentative of tumour 

invasion; although cell lines UD SCC02, UPCI SCC090, UPCI SCC72 and UPCI SCC089 all 

created viable 3D cultures at 14 days, this was restricted to a stratified squamous-type lining 

being established in each model at the air-liquid interface. No reliable evidence of cell 

invasiveness was noted within any experimental repeat of each model, suggesting that the 

model was not representative of the known biology of the original disease from which each 

cell line was established (please refer to Chapter 1 Table 1.3, itemising published clinical 

data for cell lines UD SCC02, UPCI SCC090, UPCI SCC072 and UPCI SCC089). One major 

limitation of the use of anatomically-derived tissue as a platform for in-vitro modelling is that 

in-vivo carcinomas do not necessarily demonstrate significant progression over a period of 2 

weeks, and it is therefore unsurprising that 3D culture often fails to reproduce the pattern of 

invasion characteristic of the original disease over the feasible period for which such 

experiments can be run. Moreover, difficulties have been encountered with respect to 

quantitatively analysing results of many organotypic models547, particularly in the presence of 

anatomical artefacts within DED such as sweat pores, which can lead to ingress of 

carcinoma lines and create an appearance similar to that of invasion. 

Co-workers have been unsuccessful in culturing cell lines UPCI SCC072 and UPCI SCC089 

into cell spheroids for means of 3D modelling by use of agar-based techniques routine to the 

department. Although colleagues found cell lines to be partially viable, the results of 

experimentation precluded any meaningful research being undertaken due to breakdown of 

the incubated cell mass. Alternative methods are available in order to form spheroids within 

3D culture, including the use of low-adherence plates and hanging-drop models548, 549, 

although the lack of cohesion noted in agar-based experiments may transfer to alternative, 
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de-novo methods of spheroid formation. AMSBIO (Abingdon, Oxford, UK) have recently 

produced a 3D “CultrexTM” spheroid invasion assay kit (Cat number 3500-096-K), which 

incorporates an extracellular matrix (ECM) constituent; this constituent is initially co-

incubated with cell lines in a low adherence plate in order to help promote spheroid 

formation. The opportunity to supplement spheroid formation in cell lines UPCI SCC072 and 

UPCI SCC089 using commercially pre-optimised ECM supplements, given colleagues’ 

observations using agar techniques, therefore offered a viable alternative to the limitations of 

DED/collagen models we had also encountered, and offered the ability to simultaneously 

apply an invasion assay to each spheroid after formation, which could be adopted to 

investigate the role of HGF inhibition in restricting tumour invasion. 

This chapter applies 2D in-vitro findings relating to HGF to a 3D CultrexTM model of invasion, 

as further assessment of HGF as a potential biomarker of aggressive HPV-negative disease 

and also the potential clinical value of HGF inhibitors using an anatomically representative 

model. 
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Methods 

 

M8.1: Trial DED Organotypic Models 

 

Organotypic models were created using standardised protocols previously established by 

co-workers550. 

 

Preparation of DED 

Sterilised cadaveric dermis stored in glycerol was washed repeatedly in PBS and then 

hydrated at 37 oC for 48 h in fresh PBS, with further washing and PBS changes at 24 h. A 

final overnight incubation was then performed using 1 M NaCl to promote epidermal 

separation from the underlying dermis. Final epidermal removal was undertaken using sterile 

forceps. The DED was then stored in PBS at 4 oC until use in organotypic culture. 

Immediately prior to use in organotypic culture, DED was divided into 1.5 cm2 segments and 

placed in a 6-well plate with papillary surface orientated superiorly, and a sterilised 1 cm 

diameter stainless steel ring firmly abutted to the surface. A total of 10 sections were 

prepared in order to provide 7-day and 14-day timepoints for each cell line of interest. 

 

Seeding of Fibroblast Population 

Passage 4 DENOF8 Normal Oral Fibroblasts were grown to 60-80 % confluence, trypsinised 

and resuspended in normal media at a concentration of 2.5 million cells mL-1. 200 L of cell 

suspension was then pipetted into the inner aspect of each 1 cm diameter stainless steel 

ring, in order to seed 5 X 105 fibroblasts onto each isolated DED surface. The DED/cell 

suspension was then incubated for 24 h at 37 oC in order to allow fibroblast redistribution 

within the model and conditioning of media. 
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Seeding of Cell Lines 

Cell lines UD SCC2, UPCI SCC 072, UPCI SCC089, UPCI SCC090 and HTE E6E7 were 

grown to 60-80 % confluence, trypsinised and resuspended in normal media. For each cell 

line, 2.5 X 105 cells suspended in a small volume of normal media were then pipetted into 

the inner aspect of the 1 cm stainless steel ring for each duplicate repeat. Models were 

incubated at 37 oC for 24 h and then the superficial 400 L of medium removed from each 

well and replaced with fresh medium. 

 

Establishing an Air-Liquid Interface (ALI) 

Models were raised to ALI 72h after seeding cell lines. In brief, each DED model was 

carefully transferred onto a stainless steel grid sited in a 6-well plate, and normal media 

pipetted into each well to the level at which the inferior aspect of the DED was submerged, 

whilst leaving the superficial aspect of the DED exposed. Media were changed every 3 days 

until the models were harvested. 

 

Harvesting of Organotypic Models 

At the relevant timepoint (7 or 14 days), a single model for each cell line was submersed in 

10 % formalin and stored overnight to ensure adequate fixation. The model was then 

bisected, paraffin-embedded and mounted in 5m sections on histological slides in the usual 

manner. Sections were then stained with H&E, examined under light microscopy, and 

photomicrographs taken from representative portions of each model. 
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M8.2: Trial Collagen-based Models 

 

Collagen-based 3D models were created using standardised protocols previously 

established by co-workers and based on recommendations by Dongari-Bagtzoglou & 

Kashleva’s Nature protocol551, 552. UD SCC02 and UPCI SCC072 were selected as 

representative HPV-positive and HPV-negative lines, respectively, in order to undertake 

preliminary analysis of collagen models prior to extending experimentation to include UPCI 

SCC089 and UPCI SCC090 should models appear superior to that observed using DED. 

Passage 7 DENOF08 normal oral fibroblasts were grown to 80% confluence, trypsinised, 

centrifuged at 1,000 rpm for 5 mins and then resuspended in CDMEM (DMEM 

supplemented with 10 % foetal calf serum, 50 U mL-1 penicillin, 50 U mL-1 streptomycin and 

625 ng mL-1 amphotericin B). A final fibroblast concentration of 1.25 X 106 mL-1 was 

achieved and confirmed using a haemocytometer. 

The fibroblast/DMEM suspension was then mixed with reagents itemised in Table 8.1, using 

pipette tips pre-cooled at -21 oC overnight and ensuring thorough mixing of reagents by 

gentle swirling prior to addition of the fibroblast suspension, taking care to avoid introduction 

of air bubbles into the gel. All reagents were stored on ice during preparation. 1 M NaOH 

was then carefully titrated into the suspension in order to neutralise collagen acidity, 

confirmed using phenol red indicator (colour change from orange to pink). 800 L 

suspension was then pipetted into 24 well plate tissue culture inserts using pipette tips pre-

cooled at -21 oC overnight. Gels were then incubated at 37 oC for 2 hrs in order to set. Gels 

were then submerged in CDMEM and incubated at 37 oC overnight. Media change was 

undertaken the following day, followed by a further 24 hrs incubation at 37 oC. 

UD SCC02 and UPCI SCC072 were grown to approximately 60-80 % confluence, 

trypsinised, centrifuged and resuspended in Green’s media (constituents summarised in 

Table 8.2) in order to achieve a count of 5 X 106 cells ml-1. 200 L suspension was then 

carefully pipetted onto the surface of respective collagen gels. Further Green’s media was 

carefully pipetted to surround the collagen insert to the level of the keratinocyte suspension 

and incubated overnight at 37 oC. Media change was then undertaken, fully submerging 

models with medium and incubating for a further 24 hrs at 37 oC. Models were then raised to 

the air-liquid interface using stainless steel mesh supports and incubated at 37 oC for 2 
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weeks, undertaking media change every 2-3 days in order to maintain air-liquid interface at 

the level of the collagen/keratinocyte junction. 

Models were retrieved at a 2-week endpoint, formalin fixed and paraffin embedded, 5 m 

sections mounted on standard histological slides, stained with haemotoxylin & eosin and 

then imaged at X20 objective. 

 

Table 8.1: Collagen Gel Constituents  

Volume (µL) Constituent 

940 DMEM (10x)  
940 Reconstitution buffer (10x) (22 mg mL-1 sodium bicarbonate and 20 

mM HEPES in 0.062 N NaOH) 
780 FCS  
96 L-glutamine  

6060 Rat tail collagen (5 mg mL-1) 
360 Fibroblasts 1.25x106 mL-1 in DMEM supplemented with 10 % FCS, 

50 U ml-1 penicillin/streptomycin, 625 ng mL-1 amphotericin B 

 

 

Table 8.2: Constituents of Green’s Media 

Volume Constituent, Stock Concentration Final Concentration 

330 mL DMEM 66 % 
108 mL Ham’s F12 nutrient mixture 21.6 % 

50 mL Fetal calf serum 10 % 
5 mL Penicillin/streptomycin 10,000 IU/10,000 g mL-1 100 IU/100 mg L-1 

1.25 mL Amphotericin B 250 g mL-1 0.625 g mL-1 

2 mL Adenine 6.25 g mL-1 0.025 g mL-1 
2.5 mL Insulin 1 mg mL-1 5 g mL-1 
0.5 mL 3,3,5 Tri-iodo thyronine/ apo-transferrin 1.36 mg 

ml-1/ 5 mg mL-1 
1.36 ng mL-1 / 5 g mL-1 

80 L Hydrocortisone 2.5 mg mL-1 4g mL-1 

25 L Epidermal growth factor 100g mL-1 5 ng mL-1 

500 L Cholera toxin 8.47g mL-1 8.47 ng mL-1 
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M8.3: CultrexTM 3D Spheroid Invasion Assay 

 

Following successful trials, in addition to completion of experimental findings discussed in 

the preceding chapters, the CultrexTM 3D spheroid invasion assay (AMSBio, Oxford, UK) 

was determined as the most suitable method of 3D modelling HPV negative tumour invasion 

in the presence/absence of fibroblasts. 

Passage 7 DENOF08 normal oral fibroblasts and HPV-negative cell lines UPCI SCC072 & 

UPCI SCC089 were grown to approximately 70 % confluence in separate 75 cm2 flasks. 

Each cell culture was trypsinised, centrifuged at 1,000 rpm for 5 mins, resuspended in 

normal media and counted using a haemocytometer, achieving an accurately counted stock 

cell suspension to the order of 1 million cells mL-1. An appropriate volume of each cell 

suspension was then pipetted into universal containers along with 4 mL normal media minus 

the volume of cell suspension pipetted, in order to achieve a final exact 4 mL suspension 

with accurate cell concentration of 60,000 cells mL-1. Two further cell suspensions containing 

both DENOF08 normal oral fibroblasts mixed with each cell line were created in an identical 

manner; each DENOF08/ cell line stock suspension was pipetted into a universal container 

and then made to exactly 4 mL by adding 4 mL normal media minus the sum volume of the 

two pipetted volumes. DENOF08 fibroblasts were admixed to each cell line in a ratio of 1:6 – 

that is, a final suspension of 60,000 cells ml-1 was created containing 10,000 fibroblasts mL-1 

and 50,000 carcinoma cells mL-1. 

60 L CultrexTM ECM solution, thawed on ice, was then added to a 1,140L aliquot of each 

suspension in order to achieve a 5 % ECM supplement. 100 L of each solution was then 

pipetted into respective wells of a CultrexTM low-adherence 96-well plate and then incubated 

for 3 days, with review every 24 h to confirm spheroid formation and growth. At day 3, 

CultrexTM invasion matrix was thawed on ice and the 96 well plate transiently cooled on ice 

before adding 50 L invasion matrix to each respective well. The 96-well plate was then 

centrifuged at 1,000 rpm for 3 minutes and then incubated at 37 oC for 1 hour in order to 

allow the invasion matrix to set. 100 L normal media containing 120 nM foretinib or DMSO 

control was then pipetted into each respective well. This provided a final well concentration 

of 60 nM foretinib, when allowing for dilution in the preceding 100 L volume of 

medium/invasion matrix added to each well. Final foretinib concentration was elevated 

slightly from that optimised for ORISTM migration assays (40 nM; see Chapter 6, Figures 6.1-
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6.6) in order to compensate for any pipetting error or concentration gradient introduced by 

the invasion matrix; the 60 nM concentration remained well within appropriate limits of the 

toxicity assays discussed in Chapter 6, and also reflected 3D findings by other groups, who 

had found restraint of HGF-induced invasion at concentrations exceeding 40 nM, with 

borderline inhibition at 40 nM 435. 

Wells were then cultured at 37 oC and monitored with daily micrographs at X4 objective for 6 

days to assess invasion. At the end of the experiment, the medium supernatant was 

carefully aspirated and 200 L 30 % formaldehyde pipetted over the residual invasion matrix 

in order to fix and liberate the intact spheroid-containing matrix from the base of each well. 

Each fixed matrix was then carefully aspirated into a 1,000 L pipette using a cut pipette tip 

to allow atraumatic retrieval, and then stored in formalin to complete the fixation process. 

Day 6 Inverted lens micrographs were analysed using ImageJ software, utilising single cell 

invasion counting, as recently described by Rudisch et al 290. An example selection tool 

mark-up of cells escaping tumour spheroid can be observed in Figure 8.0. 

Formalin-fixed spheroid-containing matrices were paraffin embedded, cut in 5 m sections 

and mounted on standard histological slides. H&E staining was undertaken for all conditions 

where spheroids survived the embedding process. Invasive co-culture models were also 

subjected to Cytokeratin AE1/3 immunohistochemistry to confirm the nature of cells 

escaping the body of the main tumour spheroid. Immunohistochemical staining was 

undertaken by the STH Histopathology Service, using validated positive and negative tissue 

controls. 
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Figure 8.0: Example Selection Tool Mark-Up of Cells in Escape Zone 

 

 

 

 

 

 

 

 

 

 

Figure 8.0: Photomicrograph demonstrating Image J count of in-focus cells in peri-spheroid escape 

zone (defined as the region without direct cellular contact against the established tumour spheroid 

surface). UPCI SCC072 co-cultured with fibroblasts in the absence of inhibitor has been used for 

illustrative purposes. Numbered cross-hashes indicate each counted cell; note that single cell bodies 

versus tight cell clusters are likely to be indistinguishable. 
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Results 

Figure 8.1: Representative Photomicrographs of DED Organotypic Models at 7 & 14 Days in Cell 

Lines HTE E6E7, UPCI SCC02, UPCI SCC072, UPCI SCC089 and UPCI SCC090 

 

Cell Line 7 days 14 days 

HTE E6 E7 

  
UPCI SCC 02 
 

  
UPCI SCC072 
 

  
UPCI SCC089 
 

  
UPCI SCC090 
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Figure 8.1: Representative photomicrographs of DED organotypic models (n=3) of cell lines UD 

SCC02, UPCI SCC072, UPCI SCC089, UPCI SCC090, plus HTE E6 E7 immortalised tonsillar keratinocytes 

at days 7 & 14, taken under X10 objective lens. Note that all cell lines developed a stratified 

squamous-type epithelial layer. Minimal evidence of frank invasion can be observed; pseudo-

invasion was observed in cell line UPCI SCC02 at 14 days, whereby a hair follicle became populated 

by tumour, although the remainder of the specimen comprised a stratified surface lining. No islands 

of bona fide invasion can be observed in any of the lines. A number of isolated cells can be observed 

beneath the basal layer in the 14-day models for lines UD SCC02 and UPCI SCC072, although the 

significance of this is uncertain; concern was raised that the small ce ll size of UD SCC02 may have 

allowed apparent invasion as a result of progression through artefactual porosities in the DED as a 

result of processing prior to use. Irrespective of the true nature of the sub-basal cells, a quantitative 

measure of invasion was deemed unfeasible. 

The appearance of 14-day models for cell lines UPCI SCC072 and UPCI SCC089 was consistent with 

H&E sections of CultrexTM spheroid models presented in Figures 8.6 & 8.7. Cell line UPCI SCC072 can 

be observed as densely packed cells with poor, yet discernible basal organisation, along with 

microcystic regions appearing in the equivalent of the spinous layer – attempts at basal layer 

formation along with microcystic regions are also visible in H&E sections of CultrexTM models (Figure 

8.6). Similarly, UPCI SCC089 adopted a comparable profile to that observed in CultrexTM models, with 

numerous intercellular spaces and haphazard cell arrangement throughout (Figure 8.7). 
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Figure 8.2: Representative Photomicrographs of Collagen-based Organotypic Models at 14 Days in 

Cell Lines UPCI SCC02 and UPCI SCC072 

 

 

Figure 8.2: Representative photomicrographs of collagen-based organotypic models of cell l ines UD 

a). SCC02 and b).UPCI SCC072 at 14 days, taken under X10 objective lens (n=3). Note that both lines 

developed a stratified squamous-type epithelial layer comparable to DED models, albeit with a 

general trend towards thinner overall stratification. Cell line UPCI SCC072 separated from underlying 

collagen matrix on processing in all repeats, although the matrix was reviewed separately to confirm 

absence of invading cells/epithelial islands. As with DED-based models, minimal evidence of bona 

fide islands of cellular invasion can be observed with both lines. Again, a quantitative measure of 

invasion was deemed unfeasible. 
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Figure 8.3: CultrexTM Tumour Spheroid Invasion Assay, Cell Line UPCI SCC089 
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Figure 8.3: CultrexTM spheroid invasion assay, cell line UPCI SCC089. Baseline (a-d) and invasion day 6 

endpoint (e-h) micrographs taken at X4 objective. Note that for endpoint micrographs, a different 

filter was used with identical microscope and objective lens in order for more accurate imaging as a 

result of increased spheroid density over the experimental period. Representative images selected, 

based on quantitative data presented in Figure 8.5, images of baseline and endpoint invasions are 

paired. 

a). & e).  Spheroid comprising cell line UPCI SCC089 alone, exposed to DMSO control over the 

invasion period 

b). & f). Spheroid comprising cell line UPCI SCC089 alone, exposed to 60 nM foretinib over the 

invasion period 

c). & g). Spheroid comprising cell line UPCI SCC089 with 1:6 admixed DENOF08 fibroblasts, exposed 

to DMSO control over the invasion period 

d). & h). Spheroid comprising cell line UPCI SCC089 with 1:6 admixed DENOF08 fibroblasts, exposed 

to 60 nM foretinib over the invasion period 

 

Note that spheroids comprising cell lines alone demonstrated minimal evidence of migration, both in 

foretinib and control experiments (Figures e & f). Spheroids comprising both cell lines and admixed 

fibroblasts can be seen to clearly invade the surrounding matrix in the presence of DMSO control 

(Figure g). This invasion is abrogated in the presence of 60 nM foretinib (Figure h), although a 

smaller proportion of invading cells is still observed. 
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Figure 8.4: CultrexTM Tumour Spheroid Invasion Assay, Cell Line UPCI SCC072 
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Figure 8.4: CultrexTM spheroid invasion assay, cell line UPCI SCC072. Baseline (a-d) and invasion day 6 

endpoint (e-h) micrographs taken at X4 objective. Note that for endpoint micrographs, a different 

filter was used with identical microscope and objective lens in order for more accurate imaging as a 

result of increased spheroid density over the experimental period. Representative images selected, 

based on quantitative data presented in Figure 8.5, images of baseline and endpoint invasions are 

paired. 

a). & e).  Spheroid comprising cell line UPCI SCC072 alone, exposed to DMSO control over the 

invasion period 

b). & f). Spheroid comprising cell line UPCI SCC072 alone, exposed to 60 nM foretinib over the 

invasion period 

c). & g). Spheroid comprising cell line UPCI SCC072 with 1:6 admixed DENOF08 fibroblasts, exposed 

to DMSO control over the invasion period 

d). & h). Spheroid comprising cell line UPCI SCC072 with 1:6 admixed DENOF08 fibroblasts, exposed 

to 60 nM foretinib over the invasion period 

 

Note that spheroids comprising cell lines alone demonstrated minimal evidence of migration, both in 

foretinib and control experiments (figures e & f). Spheroids comprising both cell lines and admixed 

fibroblasts can be seen to clearly invade the surrounding matrix in the presence of DMSO control 

(figure g). This invasion is abrogated in the presence of 60 nM foretinib (figure h), although a small 

number of invading cells are still observed. 
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Figure 8.5a: CultrexTM Assay Invasion of Cell Line UPCI SCC089  

 

 

Figure 8.5b: CultrexTM Assay Invasion of Cell Line UPCI SCC072  
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Figure 8.5a & b: Bar charts summarising CultrexTM invasion assay of cell lines UPCI SCC089 (a) and 

UPCI SCC072 (b). Y-axis denotes number of in-focus cells counted in the peri-spheroid escape zone. 

n=9, Error bars denote Standard Deviation. Pink bars denote Co-culture spheroids (cell line plus 

fibroblasts), blue bars denote cell line monoculture. 

*** - P<0.001, Mann Whitney U-test, comparison between indicated groups 

Note that in the case of both cell lines, minimal evidence of invasion was observed in the absence of 

co-cultured fibroblasts (blue bars). Co-culture of cell lines with admixed fibroblasts led to significant 

invasion (pink bars), although exposure to inhibitor over the experimental period led to marked 

abrogation of the number of cells counted in the peri -spheroid escape zone. 
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Figure 8.6: H&E Sections of CultrexTM Tumour Spheroids, Cell Line UPCI SCC072 

 

 

Figure 8.6: H&E sections of day 6 CultrexTM spheroid invasion assay, cell line UPCI SCC072. 

Micrographs taken at X10 objective. Representative images selected, based on those inspection of 

spheroids surviving the paraffin embedding process. 

a). Spheroid comprising cell line UPCI SCC072 alone, exposed to DMSO control over the invasion 

period. Note that a single eosinophilic cell can be observed free of the tumour spheroid in the lower 

right region of the micrograph. No other evidence of invasion into the surrounding matrix can be 

observed. 

b). Spheroid comprising cell line UPCI SCC072 alone, exposed to 60 nM foretinib over the invasion 

period. Note that a single cell can be observed free of the tumour spheroid in the upper right region 

of the micrograph. No other evidence of invasion into the surrounding matrix can be observed. 

c). Spheroid comprising cell line UPCI SCC072 with 1:6 admixed DENOF08 fibroblasts, exposed to 

DMSO control over the invasion period. Note that a number of cells free of the tumour spheroid can 

be observed to the lower right of the image, in addition to occasional cells to the lower left of the 

image. This is consistent with inverted lens microscope findings presented in Figure 8.4. 

a).             b). 

 

 

 

 

 

 

 

c).             d). 
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d). Spheroid comprising cell line UPCI SCC072 with 1:6 admixed DENOF08 fibroblasts, exposed to 60 

nM foretinib over the invasion period. Note that again, there is minimal evidence of invasion into the 

surrounding matrix. Two isolated cells can be observed to the left of the image.  

Note also that the gross histological features of the spheroids are cons istent with organotypic 

models presented in Figures 8.1 & 8.2, whereby microcystic lesions in combination with attempts of 

cellular organisation at the spheroid periphery can be observed. 
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Figure 8.7: H&E Section of CultrexTM Tumour Spheroid, Cell Line UPCI SCC089 

 

 

Figure 8.7: H&E section of day 6 CultrexTM spheroid invasion assay, cell line UPCI SCC089. 

Micrographs taken at X10 objective. Representative image selected of single experimental condition; 

all other conditions did not survive the paraffin embedding process. 

Spheroid comprising cell line UPCI SCC089 with 1:6 admixed DENOF08 fibroblasts, exposed to DMSO 

control over the invasion period. Note that a number of cells free of the tumour spheroid can be 

observed to the left of the image, in addition to occasional cells to the lower right of the image. A 

further eosinophilic cell can be observed in the upper region of the image. As for cell line UPCI 

SCC072, H&E sectioning are again consistent with inverted lens microscope findings presented in 

Figures 8.1 and 8.2. 

Note that all other conditions relating to Figure 8.3 failed to survive the paraffin embedding process.  
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Figure 8.8: Cytokeratin AE1/3 Staining of UPCI SCC072 Co-Culture Model 
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Figure 8.8: Cytokeratin AE1/3 immunohistochemistry staining of UPCI SCC072/DENOF08 spheroid 

co-culture in the presence of DMSO control. 

a). & b). Lung & colorectal control tissue – note the highly specific positive staining of lining 

epithelium 

c). Negative control (direct incubation with secondary antibody without exposure to primary), X10 

objective view – note the absence of staining throughout the specimen 

d). & e). X20 objective views of UPCI SCC072/DENOF08 spheroid co-culture models. A number of 

cytokeratin-positive cells can be observed free of the main spheroids 

f). X10 objective view of UPCI SCC072/DENOF08 spheroid co-culture model. Again, a number of 

cytokeratin-positive cells can be observed free of the main spheroid 

g). X10 object view of co-culture model illustrated in f, manipulated to -30 % brightness & +30 % 

contrast in order to visualise invasion matrix surrounding the main tumour spheroid. Note that 

although a small portion of invasion matrix tearing and retraction can be observed from the main 

tumour spheroid (green arrows), a number of cytokeratin-positive cells are embedded within the 

invasion matrix, confirming cellular escape from the tumour spheroid rather than a processing 

artefact. Positive cytokeratin staining of cells escaping the main tumour spheroid confirms that the 

imaged cells are tumour lines rather than fibroblasts 
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Discussion 

 

The limitations of 3D organotypic modelling of tumour invasion have been broached in the 

introduction section of this chapter. A major drawback of using anatomically representative 

tissue such as DED is that inherent variations in tissue structure may influence the 

interpretation of apparent differences between treatment and control groups. Even the use of 

more homogenous dermal substitutes, such as collagen and/or matrigel are often limited to 

qualitative interpretation553. Jenei et al developed a computer-assisted method of analysing 

organotypic model invasion in order to ascribe quantitative analysis to such models 553, 

although the distinct lack of invasion observed with the oropharyngeal carcinoma lines 

studied, as illustrated in Figures 8.1 & 8.2 rendered attempts of quantifying invasion as futile. 

Far greater success in quantifying 3D interactions was achieved using CultrexTM 3D spheroid 

models, where quantitative, measurable differences were observed between experimental 

conditions. 

3D spheroids comprising the HPV-negative carcinoma lines UPCI SCC072 or UPCI 

SCCC089 with admixed DENOF08 fibroblasts undertook marked invasion in CultrexTM 

assays, which became significantly restricted in the presence of 60 nM foretinib. Those 

spheroids containing carcinoma lines alone demonstrated almost no evidence of invasion, 

irrespective of the presence of c-Met inhibitor. These findings suggest that as observed in 

2D migration experiments, invasion is reliant on microenvironmental support, and HGF 

appears to be a fundamental mechanism by which cellular escape from the body of a HPV-

negative tumour may occur. 

Ideally, dose-response analysis of foretinib in 3D spheroid invasion assays for both cell lines, 

including greater concentrations of foretinib than were utilised in the presented data, would 

allow more comprehensive assessment of foretinib’s capacity to fully refrain invasion in-vitro. 

Unfortunately, due to assay expense, extending work to include 3D dose-response analysis 

was not feasible. Irrespective of this limitation, foretinib demonstrated a profound capacity to 

inhibit invasion at concentrations relevant to both our 2D tissue culture experiments and also 

work by Qian et al, who found inhibition of matrigel invasion of the melanoma line B16F10 at 

concentrations above 40 nM 435. 

Cytokeratin AE1/3 analysis of UPCI SCC072/DENOF08 spheroid co-cultures presented in 

Figures 8.8d-g confirm the invading population imaged in Figure 8.6c comprises cells of 
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epithelial origin, and therefore represent bona-fide tumour cell invasion rather than simple 

migration of stroma. Rudisch et al 290 undertook invasion assay analyses of NSCLC 

spheroids in a comparable manner to our work; the group found similar promotion of 

invasiveness upon co-culture of two NSCLC cell lines with a range of stromal fibroblasts. 

Rudisch et al also employed a method of counting single cells to quantify invasion into the 

surrounding matrix; as with our data, the size of the spheroid mass presented in Rudisch’s 

paper varied little between treatment and control groups, whereas profound cellular invasion 

and scatter can be observed in response to co-culture. The group undertook tagRFP (red) 

stable transfection of fibroblasts, along with TurboGFP (green) stable transfection of cell 

lines; whilst this method offered immediate visual distinction between tumour lines and 

fibroblasts, the additional steps of undertaking stable transfection were necessary in place of 

a relatively simple process of cytokeratin analysis. This method does however represent an 

expensive, yet robust alternative to the cytokeratin analysis undertaken in this chapter. 

Rudisch also referred to a “cytokine fingerprint” of GM-CSF, GRO-, GCP-2, VEGF, IL6, 

RANTES and IL8 occurring in co-cultures, which is again consistent with the findings of our 

cytokine array data, and furthermore went on to demonstrate that a c-Met inhibitor, crizotinib, 

led to a reduction of cell line invasion. 

 

Many authors have noted significant differences in drug performance when transferring work 

from a 2D to 3D in-vitro setting, due to the introduction of concentration gradients and 

hypoxic barriers to therapeutic effect that are not of concern in 2D culture. Foretinib appears 

to have been exceptional to this phenomenon, with significant biological effects occurring at 

comparable concentrations in both 2D and 3D cultures. This finding is not entirely 

idiosyncratic, as the functional effect of foretinib has been measured through analysis of 

cellular escape from tumour spheroid surface, whereby a number of the features of 3D 

tumour drug resistance which protect cells at the central core of the spheroid are no longer 

relevant. This finding may infer a clinical benefit from foretinib irrespective of tumour size, as 

it appears that unimpeded drug access to the tumour surface alone may be adequate for 

efficacy. It is however, likely that the greatest therapeutic benefit of foretinib may be in the 

management of early disease, whereby the arrest of cellular escape from the leading front of 

a tumour may translate into avoidance of micrometastasis and therefore a greater chance of 

tumour clearance with standard therapy. Induction therapy may therefore offer additional 

value in the clinical application of this drug; a strategy which has not been employed to 



 

282 
 
 

 

date554, 555. Indeed, the prognostic significance of a discohesive-type invasive front in oral 

carcinoma has for some time been acknowledged556, and steps to therapeutically 

downgrade this invasive pattern through restraint of HGF in early tumours prior to standard 

therapy appear sensible, in addition to a post-therapeutic maintenance schedule. This 

concept may also have significant implications for the broader context of surgical 

management of head and neck disease, whereby marginal integrity of excisions are hard to 

confirm in terms of single /small cell populations. 

Use of foretinib in the management of early disease in the manner described above may 

limit disease relapse to local recurrences rather than regional or metastatic spread, due to 

restriction of cellular motility. Care must therefore be taken to ensure appropriate primary 

outcome measures are selected for any prospective clinical study of early disease 

management; for example, analysis of locoregional control may potentially infer an 

insignificant or even deleterious effect of foretinib, whereas metastatic spread may be 

reduced, or overall survival improved. 

In conclusion, 3D modelling of the microenvironment has confirmed findings relating to 

earlier 2D experiments. HGF inhibition in 3D models has the alluring prospect of retaining as 

great an efficacy in 3D as was observed in 2D experiments. HGF inhibitors offer great scope 

in the management of HPV-negative oropharyngeal carcinoma, although our findings 

suggest an application in the prevention of early cancer spread, rather than delivery of c-Met 

inhibition with curative intent. It is therefore not surprising that HGF inhibitor trials conducted 

on late stage, chemo- and/or radiotherapy-resistant disease have often demonstrated 

modest results. Combination of HGF inhibitors with standard chemo-radiotherapy protocols 

in early disease is an intuitive method of integrating the benefits of motility inhibition into 

treatment that can still be delivered with curative intent. 
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Chapter 9: Further Work 

 

Introduction 

A number of findings discussed within this thesis warrant further investigation. In-vitro 

modelled tumour-stromal interactions have been investigated in terms of the fibroblast 

secretory response to tumour stimulation and the effect thereafter on tumour behaviour, yet 

we have not assessed the factor(s) responsible for initial fibroblast stimulation. Whilst the 

mechanism of the fibroblast response to HPV-negative cell line conditioned media appears 

linked to induction of a senescence-associated secretory profile, offering insight into likely 

factors released by HPV-negative carcinoma lines, much work is necessary to confirm the 

basis of initial fibroblast recruitment. Discerning key fibroblast-inducing factors may offer 

exciting therapeutic opportunity, which may in turn be progressed to clinical trial in a similar 

manner is outlined for HGF inhibitors (discussed below). 

In addition to analysing upstream regulators of the fibroblast response, further investigation 

of the nature of IL-6 synergism with HGF may also offer greater insight into the most 

favourable tailored therapeutics to manage HPV-negative disease. Chapter 6 has presented 

the hypothesis of STAT3 induction by both HGF and IL-6 leading to a synergistic effect on 

cell migration. STAT3 is one of many possible secondary messenger systems that could be 

responsible for the synergism, due to the pleiotropic nature of the cytokine IL-6. A number of 

alternative pathways remain plausible, as have been described by Nechemia-Arbely et al in 

the context of acute liver injury495 (reviewed in further detail in Chapter 6). Deciphering the 

secondary messenger pathway responsible for the IL-6 bolstering of HGF-induced migration 

may again offer scope for therapeutics – a common migratory pathway of synergistic STAT3 

signalling by both IL-6 and HGF would offer a single target for therapeutic blockade, 

whereas interactions between HGF and IL-6 via alternative pathways as reported by 

Nechemia-Arbely et al would infer that upstream blockade of the chief fibroblast inducing 

factor may be more appropriate in order to control IL-6/HGF signalling using a single drug. 

We have alluded to the potential role of ADAMs 17 & 10 in driving the membranous release 

of activating factors from HPV-negative lines. A number of soluble receptors were found to 

be released into HPV-negative cell line conditioned media, including sIL-6R, sEGFR and 

uPAR. As well as offering scope for further investigation, membrane snippase activity may 
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contribute to a disparity between transcriptome and secretome – care must therefore be 

taken when employing strategies to determine fibroblast activating factors released by HPV-

negative lines; simple PCR quantification, although insightful, may not directly correlate to 

the secretome and therefore insignificant findings at the RNA level may represent false 

negatives. 

We have also discussed the cytokine array finding of sEGFR within HPV-negative tumour 

conditioned media, and have discussed the potentially complex relationship between 

membranous EGFR, EGFR activating mutations and solubilised receptor “decoy” release; 

each of these variables may influence the overall value of cetuximab in the management of 

resistant oropharyngeal carcinoma. Erlotinib, a tyrosine kinase inhibitor active against EGFR 

signalling, offers a therapeutic strategy to circumnavigate limitations of cetuximab with 

respect to receptor decoy release and also potentially with respect to activating mutations. 

ELISA analysis of oropharyngeal carcinoma line release of sEGFR in combination with 

analysis of cetuximab/erlotinib toxicities may help determine whether targeting the tyrosine 

kinase domain of EGFR (erlotinib) has advantages over receptor domain blockade 

(cetuximab). 

Indeed, there is recent evidence published by Hartmann et al that oral and laryngeal HNSCC 

cell lines may be more responsive to the EGFR tyrosine kinase domain-inhibitors, erlotinib 

and gefitinib, than to the ectodomain-inhibitor cetuximab557, although much of the improved 

response may be attributable to the investigated cell lines expressing EGF-independent 

receptor activations rather than a consequence of tyrosine kinase domain inhibitors 

circumnavigating the influence of receptor decoy release. Clinical data have for some time 

iterated the role of tyrosine kinase domain activating mutations in predicting therapeutic 

response to gefitinib in NSCLC558; an evidence-based analysis commissioned by Medical 

Advisory Secretariat, Ontario, found moderate-quality evidence to support EGFR activating 

mutations in predicting gefitinib response and similar, low-quality evidence to support 

erlotinib’s use in a comparable manner559. It is therefore feasible that the aforementioned 

observations linked to HNSCC cell lines relate in part to a self-selecting group responsive to 

erlotinib/gefitinib, as 4/5 cell lines in Hartmann’s study displayed EGF-independent growth 

behaviour due to receptor activation. Nonetheless, EGFR mutations are common in HNSCC, 

and therefore the findings of Hartmann et al may have direct applicability to this common 

mutated subset of tumours.  



 

285 
 
 

 

We propose that as an ectodomain-targeting therapeutic, cetuximab’s activity may be 

obstructed by sEGFR decoy; suggesting that in the case of high sEGFR load, tyrosine 

kinase domain-inhibitors may be more effective at restraining EFGR signalling. Conversely, 

cetuximab’s efficacy would be anticipated to be greater against non-sEGFR secreting 

tumours. This proposition has a subtle, yet important difference to the experimental 

questions posed by Hartmann et al, as sEGFR status may be a prognosticator independent 

of EGFR mutation status, and may be used as a predictor of cetuximab efficacy, and 

potentially as decision aid in determining whether to deliver cetuximab versus 

erlotinib/gefitinib. Importantly, kinase-domain inhibitors appear to have limited benefit in the 

management of wild-type EGFR-expressing tumours558, and cetuximab may therefore have 

a greater role in managing low sEGFR secreting, wild-type mEGFR disease. These features 

may also be characteristic of HPV-positive oropharyngeal carcinoma due to low mutational 

load in addition to our findings of low sEGFR secretion in HPV-positive cell lines. 

 Lococo et al found sEGFR to be elevated in the serum of patients with NSCLC in 

comparison to a normal cohort, and further found sEGFR concentration to correlate with 

tumour grade560. No prognostic impact of sEGFR was noted by the group despite careful 

analysis of plasma sEGFR concentration as both a continuous variable and using a 

minimum cut-off value. It should however be noted that the therapeutic regime used for the 

patient cohort was unreported – it is therefore feasible that treatment either excluded EGFR 

inhibitor therapy, or alternatively involved the use of erlotinib/gefitinib, whereby soluble 

receptor decoy may be irrelevant to therapeutic effect. The function of sEGFR in predicting 

tumour response to cetuximab may be somewhat disparate from that of gefitinib and erlotinib 

for the reasons outlined above. Moreover, experimental data presented in Lococo’s paper 

further demonstrated an inhibitory effect of sEGFR on cell line proliferation and migration – it 

is therefore feasible that in addition to acting as a receptor decoy, cetuximab binding of 

sEGFR may negate the intrinsic inhibitory properties of the solubilised receptor. 

HGF as a principal molecule for microenvironmental support of cell migration offers great 

scope in therapeutic management of HPV-negative disease. The potential for HGF inhibition 

in the management of early, rather than late disease, has been discussed in Chapter 8. In 

order to progress to a Phase II clinical trial, xenograft modelling of HGF inhibitors in HPV-

negative tumours for both early and late disease is an important step. Previous Phase II 

trials of HGF inhibition in late stage solid tumours inclusive of the head and neck region have 

shown limited benefit433, and therefore may undermine support for clinical trial of the 
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respective inhibitors in early disease without further evidence from an animal model, in order 

to distinguish the role of treatment in early rather than late stage disease. Xenograft data are 

available with respect to the use of HGF inhibitors in the management of murine model of 

HNSCC, although the primary outcome measure assessed was tumour xenograft volume at 

12 days418. The authors found a 60-70 % reduction in tumour volume in the presence of 

crizotinib; whilst this finding suggests further benefit of HGF inhibitors in the management of 

HPV-negative oropharyngeal disease through the inhibition of tumour growth, no direct 

analysis of tumour invasion and metastasis was undertaken. 

IL-6 support of HGF-induced migration has not been conclusively demonstrated in response 

to stimulated fibroblast media; its role has been assumed on the basis of ELISA 

quantification and co-incubation of biologically relevant concentrations of recombinant IL-6 

with HGF in migration experiments – the use of an IL-6 inhibitor such as tocilizumab may 

offer confirmation of this initial evidence in a similar manner to foretinib/INCB28060 for HGF 

(please refer to Chapter 6). Tocilizumab is a monoclonal IL-6 receptor antibody, and is the 

first drug in its class to have progressed to late clinical trial561. Negotiation of supply of 

tocilizumab for use in research is ongoing, although provisional scientific approval has been 

granted by Roche (St. Albans UK); supply of the drug for use in research has been 

hampered by international supply agreements between US and European branches. 

As discussed in Chapters 3 & 7, induction of fibroblast senescence appears central to the 

secretory profile observed in conditioned media experiments. Although fibroblast 

senescence has been investigated in detail, broader analysis of the fibroblast phenotypic 

change in response to conditioned media may be beneficial. Markers of myofibroblast 

formation, such as -SMA, may help determine whether the fibroblast response is purely 

senescent, or whether further aberrations occur in non-senescent sub-populations, leading 

to a more complex fibroblast profile. Provisional work suggests that TGF-, a classic inducer 

of myofibroblast formation, is absent from conditioned media (please refer to Chapter 3); a 

negative finding in terms of a HPV-negative cell line induced myofibroblastic profile may 

therefore be as insightful as a positive result, as this would offer further evidence of a 

microenvironmental pathway exclusive of TGF-. 

Histopathological analysis of markers of both senescence and myofibroblastic differentiation 

in tumour specimens, in combination with IL-6/HGF/STAT status, may allow clinical 

validation of our in-vitro work. To date, we have progressed to retrieval of approximately 150 

oropharyngeal carcinoma biopsies dating from 2004-2012, representing all oropharyngeal 
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carcinomas diagnosed at Sheffield Teaching Hospitals NHS Trust over an 8 year period, all 

of which have 3 year survival data available. Tissue microarray construction shall allow high-

throughput analysis of the aforementioned biomarkers, and can be linked to outcome data 

which have already been collated. 

The remainder of this section shall present initial data relating to a number of the above 

areas of further investigation and detail a plan of further experimentation. 
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I. STAT Signalling in Fibroblasts Following Exposure to Cell Line 

Conditioned Media 

In addition to cell lines exposed to stimulated fibroblast media, provisional western blot 

analysis of STAT3 signalling in fibroblasts exposed to HPV-negative cell line conditioned 

media was undertaken (single experimental repeat). 

 

Methods 

Cell line conditioned media were collected as described in Chapter 2, methods section M2.1. 

DENOF08 fibroblast cultures were raised in T75 flasks to near confluence, washed X3 in 

PBS and then incubated with either 6 ml normal media or cell line conditioned media for 0 

mins, 20 mins or 12 hours. On completion of each respective incubation period, flasks were 

washed X3 in cold TBS and then incubated with 1 mL cell dissociation solution at 4o C on a 

rocking machine for 10 mins. Cells were then removed with the assistance of a cell scraper, 

the suspension transferred to an Eppendorph container, centrifuged at 1,000 rpm 5 mins and 

then supernatant removed and immediately stored at -80 oC. Protein extraction and western 

blotting were then undertaken as detailed in Chapter 5, section M5.6. 

Experiments were undertaken separately for HPV-positive cell line conditioned media (UD 

SCC02 and UPCI SCC090) and HPV-negative cell line conditioned media (UPCI SCC072 

and UPCI SCC089). Data presented relate to a single experimental repeat, and requires 

validation. 
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Results 

Figure 9.1: Western Blot Analysis of Fibroblast Total(t) and Phospho(p) STAT3 in Response to HPV-

Positive Cell Line Conditioned Media 

 

 

 

 

 

 

 

 

Figure 9.1: Provisional western blot analysis (n=1) of DENOF08 fibroblast cultures in response to 

HPV-positive cell line conditioned media 

Ctrl – DENOF08 fibroblasts incubated for 20 mins in normal media control 

SCC02 20 mins – DENOF08 fibroblasts exposed to UD SCC02 cell line conditioned medium for 20 

mins 

SCC02 12 hrs – DENOF08 fibroblasts exposed to UD SCC02 cell line conditioned medium for 12 hours 

SCC90 20 mins – DENOF08 fibroblasts exposed to UPCI SCC090 cell line conditioned medium for 20 

mins 

SCC90 12 hrs – DENOF08 fibroblasts exposed to UPCI SCC090 cell line conditioned medium for 12 

hours 

 

Note that there is minimal evidence of STAT3 phosphorylation in response to UPCI SCC090 

conditioned medium at 20 mins, and modest increase in response to UD SCC02 conditioned 

medium. STAT3 phosphorylation at 12 hours is more pronounced. Total STAT3 appears relatively 

constant throughout all conditions (Figure b), although uneven loading can be noted in the -Actin 

bands, and tSTAT3 bands are overexposed. 
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Figure 9.2: Western Blot Analysis of Fibroblast Total(t) and Phospho(p) STAT3 in Response to HPV-

Negative Cell Line Conditioned Media 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.2: Provisional western blot analysis (n=1) of DENOF08 fibroblast cultures in response to 

HPV-negative cell line conditioned media 

Ctrl 20 mins – DENOF08 fibroblasts incubated for 20 mins in normal media control 

Ctrl 12 hrs – DENOF08 fibroblasts incubated for 12 hrs in normal media control 

SCC72 20 mins – DENOF08 fibroblasts exposed to UPCI SCC072 cell line conditioned medium for 20 

mins 

SCC72 12 hrs – DENOF08 fibroblasts exposed to UPCI SCC072 cell line conditioned medium for 12 

hours 
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SCC89 20 mins – DENOF08 fibroblasts exposed to UPCI SCC089 cell line conditioned medium for 20 

mins 

SCC89 12 hrs – DENOF08 fibroblasts exposed to UPCI SCC089 cell line conditioned medium for 12 

hours 

 

Note that there is minimal evidence of STAT3 phosphorylation i n DENOF08 fibroblasts in the 20-

minute control band, whereas there is marked upregulation with exposure to UPCI SCC072 

conditioned medium. A moderate degree of STAT3 phosphorylation is also noted with cell line UPCI 

SCC089 at 20 minutes. At 12 h, conditioned medium control expresses a similar degree of 

phosphorylated STAT3 as fibroblasts exposed to UPCI SCC072 and UPCI SCC089 cell line conditioned 

media; the significance of this in relation to 20-minute stimulations is uncertain. This preliminary 

data suggest that cell lines UPCI SCC072 and UPCI SCC089 may be activating fibroblasts via STAT3, 

although rises in STAT3 may not necessarily be related to the pathway through which HGF release is 

promoted. Although the preliminary blots for HPV-negative line-stimulated fibroblasts were 

undertaken separately from the HPV-positive blots depicted in Figure 9.1, there is a suggestion that 

STAT3 activation may be more pronounced at 20 mins in HPV-negative line-stimulated fibroblasts. 

STAT3 signalling may therefore represent a feature of the activating factor responsible for driving 

fibroblast HGF release, although this evidence is circumstantial. Further work directly comparing 

HPV-negative and HPV-positive stimulated fibroblasts is necessary to confirm the proportional 

relationship of STAT3 signalling in response to each respective conditioned medium. 
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Discussion 

On the assumption that STAT3 activation is important to the observed fibroblast response to 

HPV-negative cell line conditioned media, interrogation of the STAT3 pathway may provide 

an indication of likely factors driving HGF and/or IL-6 secretion. As discussed in Figure 9.2, 

one has to bear in mind that even with validation of elevated STAT3 in response to HPV-

negative cell line conditioned media, a direct relationship with induction of the HGF response 

cannot be assumed. However, a number of factors capable of inducing a secretory response 

similar to that presented in cytokine array data influence intracellular STAT3 levels, such as 

PDGFA562, 563 and IL-17A338; the finding of STAT3 elevation in response to cell line 

conditioned media may therefore direct further investigation towards such factors. 

The role of STAT3 in driving the secretion of pro-inflammatory factors appears complex and 

potentially cell-specific; for example IL-8 (a factor noted to be markedly upregulated in the 

fibroblast response to HPV-negative cell line conditioned media) has been found to be 

elevated as a result of STAT3-induced Ox-PAPC transcription of IL-8 in aortic endothelia564, 

whereas direct repression of IL-8 by STAT3 has also been reported in Gleioma565. The 

subtleties of STAT3 signalling in response to varying cytokines may further account for this 

discrepancy, with repressors such as SOCS potentially reducing direct STAT3 effects, 

whereas permitting earlier cellular events in response to STAT3 which may be responsible 

for IL-8 upregulation. A basis for STAT3 being correlated to upregulation of IL-6 and HGF 

appears less contentious, as both IL-6 itself and HGF may be upregulated in response to IL-

6 signalling, which is known to lead to increased STAT3 (as discussed in Chapters 4 & 6). 

Preliminary work has been undertaken through two experimental runs, in which fibroblasts 

exposed to HPV-positive and HPV-negative lines were separately assessed. HPV-positive 

versus -negative cell lines cannot therefore be reliably compared, although STAT3 

expression does appear increased in fibroblasts stimulated by HPV-negative cell lines at 20 

mins. Western blots for HPV-positive stimulated fibroblasts at 20 mins however, do not 

correlate with the proportionate secretion of HGF, IL-6 or IL-8 in response to cell lines UD 

SCC02 and UPCI SCC090 (please refer to Chapters 4 & 6 for ELISA data); UPCI SCC090 

induced greater fibroblast secretion of HGF/IL-6/IL-8 than did UD SCC02, and therefore a 

greater amount of STAT3 phosphorylation of fibroblasts would be anticipated at 20 mins 

should STAT3 signalling underlie the induction of the fibroblast secretory response. 
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One cannot however fully assume that STAT3 phosphorylation within fibroblasts is occurring 

through a single mechanism in response to all cell lines. Whilst the fibroblasts response to 

HPV-negative cell lines is characteristic, and therefore may indeed be the result of a specific 

STAT3-inducing molecule, there remains potential for the HPV-positive cell line UD SCC02 

to release an alternative STAT3 inducing factor which does not have the same effect as 

seen in HPV-negative stimulated fibroblasts. Indeed, UD SCC02 was noted to release 

significantly greater amounts of IL-8 compared to all other cell lines studied (dwarfed in 

ELISA data in Chapter 4 due to the marked rise seen in fibroblasts); whilst IL-8 does not 

induce STAT3 phosphorylation, the increased secretion of this factor by UD SCC02 does 

illustrate how another, unrelated factor could occur, leading to STAT3 activation in 

fibroblasts which is not significant to the process through which HGF and IL-6 are ultimately 

released. 

Data relating to 12 h STAT3 expression are difficult to interpret; it is feasible that autocrine 

stimulation through fibroblast production of IL-6 by 12 hours may account for STAT3 

elevation by 12 hours – this phenomenon has been reported by Gu et al in response to IL-

17, and may be noted by as little as 3 hours post-stimulation566. As both HPV-positive and -

negative lines induced some degree of IL-6 release by fibroblasts, autocrine stimulation by 

IL-6 is a feasible explanation for the elevation of pSTAT3 observed at 12 h with all cell line 

conditioned media, albeit that one would expect a greater degree of pSTAT3 elevation in 

response to HPV-negative cell line media due to a greater release of IL-6. It should be noted 

that the 12 h unstimulated fibroblast control in Figure 9.2 also demonstrated pSTAT3 by a 

similar degree to HPV-negative cell lines – it is therefore feasible that 12 h data represent a 

false positive. 

Validation of western blots presented in Figures 9.1 & 9.2 is therefore required through 

appropriate triplicate experimental repeat of both HPV-positive and HPV-negative 

conditioned media stimulations, using a single gel for direct comparison. Should HPV-

negative-stimulated fibroblasts consistently demonstrate upregulated STAT3 at 20 mins, 

STAT3 expression may be experimentally blocked with an appropriate inhibitor in order to 

determine its role in both the HGF and IL-6 response. As discussed above, “stattic” is a 

potent small molecule inhibitor of STAT3, demonstrating high selectivity over STAT1 & 

STAT5. Cell line conditioned media stimulation of fibroblasts in the presence/absence of 

stattic would therefore allow confirmation of the role of STAT3 in the fibroblast response, and 

could be measured through HGF and IL-6 ELISA. Further investigation of secondary 
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messenger pathways could be undertaken with ruxolitinib (as discussed below for inhibition 

of cell line migration), which would allow determination of whether STAT3 activation is reliant 

on Janus Kinase activity; further narrowing the list of plausible factors driving the fibroblast 

response. In addition to direct STAT3 blockade with stattic, more comprehensive STAT 

inhibition using nifuroxazide (Selleckchem, USA, Cat S41820) – an inhibitor of STAT1, 3 & 5 

– would allow thorough determination of the role of STAT in driving the fibroblast secretory 

response. ELISA analysis of fibroblast secretion of HGF, IL-6 & IL-8 in the 

presence/absence of inhibitor would act as a rapid measure of inhibitor efficacy, with more 

protracted analyses of cell migration in response to respective fibroblast conditioned media 

being reserved for those conditions in which HGF, IL-6 & IL-8 secretion appear to have been 

influenced. 

In addition to validation of the preliminary STAT3 data presented above, PCR analysis of a 

panel of HGF activating factors may also assist in identifying the chief inducer of the 

fibroblast HGF response. As already discussed with respect to ADAMs, post-transcriptional 

differences between HPV-positive and HPV-negative disease may account for HGF 

activation rather than a detectable difference in activating factors at the level of the 

transcriptome, although again, a marked difference in HPV-positive versus -negative 

expression of a recognised HGF activating factor may help identify a principal candidate. 

Viable candidate molecules for further investigation include HGFA (HGF activator), IL-17A, 

IL-17D, PDGF/PDGFA, bFGF and IL-1/IL-1, based on capacity to induce either direct 

release of HGF or alternatively a reported secretory profile consistent with our cytokine array 

data563, 566.  
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II. Investigation of Secondary Messenger Pathways Linked to IL-6/ 

HGF Synergy 

 

As discussed above, we are currently in the process of negotiating access to the IL-6 

inhibitor, tocilizumab, for use in research. Whilst tocilizumab offers direct confirmation of the 

role of IL-6 in supporting HGF-mediated migration, difficulty in gaining access to this drug 

has prompted further investigation using more readily accessible inhibitors. Ruxolitinib is a 

selective JAK1/JAK2 inhibitor567 which offers a method of assessing IL-6 mediated support 

of HGF-induced migration in conditioned media, as well as interrogating the secondary 

messenger system responsible for the synergy between the two factors. 

 

Although both HGF and IL-6 signal via STAT3, among other messenger systems, a 

distinguishing feature of HGF is that it promotes direct STAT3 phosphorylation via the c-Met 

receptor, whereas IL-6 activates STAT3 via JAK1 (Figure 9.3). Experimental blockade with 

ruxolitinib therefore offers the capacity to selectively inhibit IL-6-induced STAT3 signalling 

(blocked by ruxolitinib via JAK1 inhibition) whilst preserving HGF-induced STAT3 signalling. 

A number of other signalling pathways are also reliant on JAK1, including STAT5 and 

STAM2 568-570; inhibition of IL-6-promoted support of HGF-mediated migration is therefore not 

direct proof of STAT3 supplementation driving the synergy between IL-6 and HGF-induced 

migration, although offers initial evidence to support or refute our hypothesis. 
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Figure 9.3: Effects of Ruxolitinib on HGF/IL-6 Signalling via STAT3 

 

 

 

 

 

 

 

 

 

 

Figure 9.3: Effects of ruxolitinib on HGF/IL-6 signalling via the STAT3 secondary messenger system. 

Ruxolitinib is a JAK1/JAK2 selective inhibitor, and therefore inhibits JAK-dependent phosphorylation 

of STAT3. As HGF induces STAT3 phosphorylation in the absence of JAK, ruxolitinib has no effect on 

HGF-induced STAT3 activation, whereas IL-6 activation of STAT3 is JAK-dependent, and is therefore 

inhibited by ruxolitinib. 
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Methods 

 

Inhibition of Cell Line Migration Using Ruxolitinib 1 M 

Preparation of Migration Assays, Inhibition of Cell Division and Pre-experimental 

Conditioning with Ruxolitinib/DMSO Control 

HPV-negative cell lines UPCI SCC072 and UPCI SCC089 were grown to 70 % confluence in 

separate T75 flasks. Cells were washed twice in PBS, trypsinised, centrifuged at 1,000 rpm 

and then resuspended in normal media. Each cell suspension was then counted using a 

haemocytometer, appropriately diluted using normal media, and re-counted in order to 

achieve the preoptimised seeding concentration of 1.6 X 106 cells mL-1 for UPCI SCC072, 

and 8.8 X 105 cells mL-1 for UPCI SCC089, allowing confluent ORISTM assay well loading as 

described in Chapter 1. ORISTM assay plates were prepared under sterile conditions, 

mounting silicone stoppers into each well using the manufacturer-supplied location device. 

100 L of each cell suspension was then pipetted into respective ORISTM assay wells and 

left overnight to adhere. 

Following cell adherence and confirmation of well confluency using an inverted lens 

microscope, a pre-optimised (please refer to Chapter 1, Figure 1.5) 2 g mL-1 mitomycin C 

suspension in normal media was prepared from snap-frozen 0.5 mg mL-1 aliquots of 

mitomycin C stored at -80 oC. All handling of mitomycin C was undertaken in a darkened 

tissue culture hood in order to avoid excessive light exposure. The mitomycin C suspension 

was then divided into multiple universal containers, and either ruxolitinib or equivalent DMSO 

control added from stock solutions in order to achieve the desired concentrations of 

ruxolitinib 1 M, or DMSO control.  

Silicone stoppers were then removed from assay wells using the manufacturer supplied 

retrieval tool, exposing the respective cell exclusion zone, and normal media carefully 

aspirated off each well ensuring contact was avoided with the well base. 2 X 100 L PBS 

washes were then undertaken, and then 100 L mitomycin C with ruxolitinib/DMSO control 

was then carefully pipetted into respective wells and incubated for 3.5 h at 37 oC in the dark. 

Following 3.5 h incubation in mitomycin C, baseline void photomicrographs were taken using 

a X4 objective lens. 
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Preparation of Stimulated Fibroblast Media Plus Ruxolitinib/ DMSO Control Solution, 

Completion of ORISTM Assay 

The most experimentally-inductive stimulated fibroblast media for cell lines UPCI SCC072 

(DENOF08 stimulated fibroblast Medium 1) and UPCI SCC089 (DENOF08 stimulated 

fibroblast Medium 2) were collected and immediately stored at -21 oC ahead of experiments, 

as outlined in Chapter 2. Stimulated fibroblast media were then thawed, aliquoted and either 

ruxolitinib or DMSO control added from stock solutions in order to achieve the desired 

concentration of 1 M ruxolitinib or equivalent DMSO control. 

Following mitomycin C incubation, assay wells were washed X2 in PBS and then 100 L 

Stimulated fibroblast media with ruxolitinib/DMSO control carefully pipetted into respective 

wells. ORISTM assay plates were then incubated for either 20 h (UPCI SCC089) or 48 h 

(UPCI SCC072) in order for migration to occur, and then endpoint photomicrographs taken 

using a X4 objective lens. 

 

Analysis of Cell Migration 

Analysis of cell migration was undertaken by comparison of baseline versus endpoint 

micrograph images taken using a X4 objective lens. The area of each stopper-induced cell 

exclusion zone at baseline and endpoint was measured with ImageJ software (freeware, 

NIH, USA), using the polygon selection tool. Percentage void closure was then calculated by 

dividing area of closure at experimental endpoint by total baseline area of cell exclusion 

zone. 

 

 

 

 

MTS & LDH Cytotoxicity Assays 

MTS and LDH assays of cell lines UPCI SCC072 and UPCI SCC089 in the presence of 1 

M ruxolitinib were undertaken using identical methods as described for 

foretinib/INCB28060 in Chapter 6, Methods section M6.3-6.4. 
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Results 

Figure 9.4: Effects of Ruxolitinib 1 M on ORISTM Assay Migration of Cell Line UPCI SCC089 in the 

Presence of Stimulated Fibroblast Conditioned Media Versus Unstimulated Fibroblast Media 

Control 

 

Figure 9.4: Effects of ruxolitinib on ORISTM Assay migration of cell line UPCI SCC089 in the presence 

of stimulated fibroblast Medium 2 versus normal media control. Y-axis represents additional 

percentage closure, compared to migration in the presence of unstimulated fibroblast conditioned 

medium control. (n=9, Error Bars = SEM) 

*- Mann Whitney U-test, P<0.05 

** - Mann Whitney U-test, P<0.01 

*** - Mann Whitney U-test P<0.001 

 

CM – UPCI SCC089 stimulated fibroblast Medium 2 

Ctrl – Unstimulated fibroblast 24 h conditioned medium control 

Rux – Incubation with ruxolitinib inhibitor for the duration of the experiment 

DMSO – DMSO control (control for ruxolitinib) 
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Note that, as for previous experiments presented in Chapters 2 & 6, UPCI SCC089 stimulated 

fibroblast Medium 2 induced marked migration compared to unstimulated fibroblast conditioned 

medium control. Addition of ruxolitinib led to inhibition of basal migration in control media (Ctrl Rux; 

Mann Whitney U-test, P<0.01). This inhibition suggests that JAK1/2 signalling is important for the 

constitutional migratory activity in cell line UPCI SCC089, although may also be due to basal 

fibroblast secretion of JAK-activating factors (however, basal fibroblast secretion of IL-6 is minimal – 

please refer to Chapter 4, Figure 4.1). Constitutional activation of JAK leading to basal activation of 

STAT3 is consistent with western blot data presented in Figure 5.6. UPCI SCC089 may therefore 

contain an activating mutation of IL-6R, gp130 or an alternative JAK-activating receptor. 

Addition of ruxolitinib to stimulated fibroblast Medium 2 led to significant reduction of cell migration 

(Mann Whitney U-test, P<0.001), although migration outcompeted that of ruxolitinib in combination 

with unstimulated fibroblast medium control (Mann Whitney U-test, P=0.019). These features are 

consistent with HGF underlying a significant proportion of cell migration induce d by stimulated 

fibroblast Medium 2; STAT3 signalling via the HGF route is not reliant on JAK.  

Reduction of cell migration in stimulated Medium 2 with ruxolitinib was initially regarded as a 

surprising result, due to the apparent lack of effect of IL-6 in recombinant protein experiments 

presented in Figure 6.13. Constitutional JAK/STAT3 activation does however explain this 

phenomenon; recombinant IL-6 may not have effect on this cell line due to already constitutionally 

active IL-6R or alternatively gp130, which leads to saturation of the IL-6 signalling pathway, whereas 

JAK blockade will lead to a reduction of the synergistic effect on HGF-induced migration due to 

inhibition of constitutionally active IL-6 signalling, leading to an overall reduction in STAT3. 

 

 

 

 

 

 

 

 

 

 

 

 



 

301 
 
 

 

Figure 9.5: Effects of Ruxolitinib 1 M on ORISTM Assay Migration of Cell Line UPCI SCC072 in the 

Presence of Stimulated Fibroblast Conditioned Media Versus Unstimulated Fibroblast Media 

Control 

 

 

Figure 9.5: Effects of ruxolitinib on ORISTM Assay migration of cell line UPCI SCC072 in the presence 

of stimulated fibroblast Medium 1 versus normal media control. Y-axis represents additional 

percentage closure, compared to migration in the presence of unstimulated fibroblast conditioned 

medium control. (n=9, Error Bars = SEM) **Mann Whitney U-test, P<0.01 

CM – UPCI SCC072 stimulated fibroblast Medium 1 

Ctrl – Unstimulated fibroblast 24 h conditioned medium control 

Rux – Incubation with ruxolitinib inhibitor for the duration of the experiment 

DMSO – DMSO control (control for ruxolitinib) 

No significant difference in basal migration (unstimulated fibroblast medium) was noted with the 

addition of ruxolitinib (Ctrl DMSO Vs Ctrl Rux; Mann Whitney U-test P>0.05). Incubation with 

stimulated fibroblast media (CM DMSO) led to marked additional migration, as described in Chapter 

2. Addition of ruxolitinib to stimulated fibroblast media led to subtotal inhibition of migration ( CM 

DMSO Vs CM Rux; Mann Whitney U-test, P<0.01). These findings are consistent with inhibition of IL-

6/JAK mediated STAT3 supplementation of the HGF signal. 
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Figure 9.6: Ruxolitinib 1 M LDH Assay, UPCI SCC072 & UPCI SCC089

 

 

Figure 9.6: Bar graph summarising LDH assay of cell lines UPCI SCC072 (Figure a) & UPCI SCC089 

(Figure b) exposed to ruxolitinib 1 M (“Ruxolitinib”), expressed as percentage cytotoxicity; 

calculated in the same manner as reported in Chapter 6, methods section 6.3-6.4. n=9, Error Bars = 

SEM. No evidence of increased LDH release was noted in either cell line  (Mann Whitney U-test, 

P>0.05), suggesting that the effects of ruxolitinib on migrations reported in Figure 9.5 are due to 

receptor-specific effects rather than toxicity. 
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Figure 9.7: Ruxolitinib 1 M MTS Assay, UPCI SCC072 & UPCI SCC089 

 

Figure 9.7: MTS assay of cell lines UPCI SCC072 (Figure a) and UPCI SCC089 (Figure b) in response to 

ruxolitinib 1 M. Y-axis represents absorbance at 570 nm, error bars denote SEM. An approximate 

25 % average reduction in absorbance is observed following incubation of each cell line with 

ruxolitinib for 24 h, although statistical significance was not reached (Mann Whitney U-test, P=0.508 

UPCI SCC072, P=0.058 UPCI SCC089). Note that contrary to LDH assay data presented in Figure 9.6, 

MTS assay as a measure of cytotoxicity suggests that ruxolitinib 1 M may have had borderline 

cytotoxic effect. Further experimental repeats may allow the effect of ruxlitinib 1 M on MTS assay 

to be more accurately quantified, as assay variance – particularly in the case of cell line UPCI SCC072, 

has led to statistical significance not being reached. Direct STAT3 inhibition has however been 

reported to reduce IL-6 mediated cellular proliferation, as measured by MTS assay571, and reduced 

cellular proliferation rather than direct cytotoxicity may therefore account for the disparity between 

MTS and LDH assay data. 

It should be noted, however, that despite the potential for STAT3 blockade to reduce cellular 

proliferation and therefore alter MTS absorbance, it can be observed that cell lines UPCI SCC072 and 

UPCI SCC089 both demonstrate a similar reduction in cell proliferation (approximately 28%). 

Although UPCI SCC089 demonstrates basal STAT3 activation, there is no greater reduction in assay 

absorbance for this cell line. Similarly, the basal inactivity of STAT3 in cell line UPCI SCC072 would 

suggest that STAT3 inhibition would not be a major determinant on proliferation.  It is therefore 

feasible that ruxolitinib has influenced cellular proliferation through either alternative secondary 

messengers, or alternatively through cytotoxic effects. Dose-response analysis of ruxolitinib in a 

similar fashion to that undertaken for foretinib and INCB28060 would allow a more comprehensive 

analysis of cytotoxicity and could be correlated to dose-response analysis of ruxolitinib’s capacity to 

inhibit cell migration in the presence of stimulated fibroblast media.  
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Discussion 

Provisional data assessing JAK inhibition through the use of ruxolitinib support a role of for 

JAK-signalling in the supplementation of HGF-induced cellular migration. Although this 

finding provides further evidence to support the role of IL-6-induced STAT3 supplementation, 

direct IL-6 inhibition remains key to demonstrating this role. Similarly, JAK-reliant intracellular 

messenger systems other than STAT3 may be responsible for the supplemental effect 

observed, and a role of STAT3 appears likely, but cannot be assumed. Although elevation of 

phospho-STAT3 in response to cell line conditioned media, basal STAT3 activity in cell line 

UPCI SCC089, and preliminary JAK inhibitor data all correlate will with the biological 

phenomenon of cell migration, the correlation may be due to a confounder. An immediately 

tangible example would include the scenario in which our hypothesis regarding IL-6 is 

indeed correct, yet an alternative intracellular messenger system remains responsible for 

HGF synergism. In such a scenario, STAT3 would still become elevated in response to 

conditioned media, yet would be redundant in terms of migrational effect. Similarly, 

constitutional activation of either IL-6R, gp130 or JAK-1 in cell line UPCI SCC089 would lead 

to a similar constitutional activation of STAT3, along with constitutional activation of an 

alternative messenger that drives UPCI SCC089’s basal migratory activity. Direct analysis of 

STAT3 activity therefore remains central to confirmation of our hypothesis. 

Stattic is a first in-class STAT3 inhibitor, demonstrating high specificity for STAT3 over 

closely related messengers such as STAT1 and STAT5. Migration analysis of cell line UPCI 

SCC089 using stattic would allow much insight into the role of STAT3 in driving migration. 

There is no structural or bioactive difference between HGF-induced versus IL-6-induced 

STAT3, making the proportionate response to stattic indecipherable between HGF and IL-6. 

However, data may be correlated to ruxolitinib data; if IL-6 derived STAT3 supplementation 

underlies IL-6’s effects, one would anticipate an effect on migration that reflects that 

illustrated in Figure 9.4, albeit with greater inhibition of stimulated fibroblast media-induced 

migration due to stattic’s additional effects on HGF-induced phospho-STAT3. In particular, 

one would expect basal migration in cell line UPCI SCC089 to become reduced in the 

presence of stattic, inferring the constitutional activation of STAT3. 

Further investigation of activating mutations in cell line UPCI SCC089, for example by gene 

sequencing, may give further insight into the principal source of STAT3 activation. This may 

also contextualise the effects of tocilizumab on cell line UPCI SCC089; constitutive activation 
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of the IL-6 receptor through tyrosine kinase domain mutation may lead to tocillizumab 

resistance, due to the drug’s activity against the extracellular receptor domain. 

Madindoline A (Santa Cruz Biotechnology, USA, Cat sc-202702) may act as a suitable 

alternative to tocilizumab in confirming the role of IL-6 in supplementing HGF-mediated 

migration, should difficulty securing access to tocilizumab persist. Madindoline A is an indole 

alkaloid originally isolated from Streptomyces nitrosporeus, and competitively binds to the 

extracellular domain of gp130, leading to the inhibition of IL-6 and IL-11 signalling. Cytokine 

array data suggest that IL-11 secretion is not a significant feature of the fibroblast response 

to either HPV-positive or -negative cell line conditioned media, although absolute validation 

could be undertaken by means of IL-11 ELISA analysis. 
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III. Myofibroblast Formation in Response to Tumour Conditioned 

Media 

 

Data presented in Chapter 7 have demonstrated that HPV-negative cell line conditioned 

media induced a greater degree of fibroblast senescence following protracted incubations, 

than did HPV-positive cell line conditioned media. Although data presented in Chapters 2-6 

offer comprehensive insight into how this process may link in to earlier secretory 

phenomena, an intriguing comparator to senescence is myofibroblast formation. TGF is as 

key inducer of myofibroblast formation, and therefore determining the capacity of HPV-

positive versus -negative cell line conditioned media to induce myofibroblast formation would 

both provide a more detailed picture of the fibroblast phenotypes occurring in response to 

cell line conditioned media, in addition to potentially offering further evidence to confirm or 

refute a role of TGF in the fibroblast response we have investigated.  For a more direct 

analysis, TGF ELISA could also be undertaken on cell line and stimulated fibroblast media. 

Experimental analysis of myofibroblast formation has been optimised by co-workers. In brief, 

experimental conditions would involve 4-day serum free cell line conditioned media 

incubations, using a serum-free normal media negative control and serum-free recombinant 

TGF containing normal media with positive control. Alpha Smooth Muscle Actin (-SMA) 

ICC/IF could then be applied to determine staining intensity and cellular distribution of -

SMA, with comparison of the effects of HPV-negative cell line conditioned media against 

HPV-positive cell line conditioned media and positive/negative controls. 
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IV. ADAM 10 & 17 Analysis 

Membrane snippase activity may underlie a number of observations made throughout this 

thesis. The introduction of this chapter has revisited the prospect of membrane-bound 

cytokines being released as a consequence of snippase activity, which may in turn lead to 

discrepancies between the transcriptome and secretome. Whilst PCR analysis of the 

transcriptome of each cell line investigated throughout the thesis may offer an immediate 

measure of a number of potential fibroblast activating factors, it is also possible that such 

investigation yields limited data. Investigation of ADAM activation may therefore offer an 

alternative route of investigation, which helps correlate the tumour secretome to the 

observed fibroblast response. 

ADAM activity is not fully understood, although it has been identified that ras, src and v-src 

control ADAM activation post-translationally414. A number of cytokines are released as a 

consequence of ADAM cleavage, including a pro-inflammatory form of TNF-, TGF-, 

AREG, EPGN, NRG1, HB-EGF, Pref1, Fractalkine, RANKL, CSF-1, SEMA4D, LAG-3, DLL1, 

KL-1, KL-2, MICA, MICB, Jagged, TMEFF2 and FLT-3L 414. Although these cytokines are not 

classically linked to induction of senescence, there is clearly a broad range of cytokine 

activity that may be induced as a consequence of ADAM activity. 

An inherent starting point for analysing ADAM 10/17 activity in HPV-positive versus -

negative cell lines is quantitative PCR analysis. Our preliminary work has included PCR 

analysis of both ADAMs 10 & 17, although demonstrated no frank relationship between viral 

status and mRNA expression. Due to post-translational activation, in addition to the 

enzymatic nature of ADAMs, it is difficult to conclude that PCR data have any direct 

relevance to functional activity. It may therefore be more appropriate to assess the effects of 

ADAM activation and inhibition on cell line conditioned media; inhibition of ADAM activity, for 

example with TAPI-2 (Santa Cruz, USA, Cat sc-205851)572, in HPV-negative cell lines may 

lead to a conditioned medium that is less instructive to fibroblasts, thereby leading to a 

reduction in the HGF/IL-6/IL-8 response, as can be quantified by ELISA. Similarly, ADAM 

activation through use of PMA or anisomycin414 may lead to a more florid fibroblast response 

on exposure to ADAM-activated cell line conditioned media. PCR analysis of known ADAM 

regulators, such as RNF41 337 may also prove a valuable method of ascertaining the likely 

role of ADAMs in HPV-negative versus -positive disease. 



 

308 
 
 

 

Inhibitor experiments would also allow clarification of the role of ADAMs in HPV-negative cell 

line release of soluble receptors, such as sIL-6R and sEGFR. This may therefore link in to 

further work regarding sEGFR release and cetuximab resistance, as discussed in Section 5. 
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V. Cetuximab Resistance in sEGFR-releasing Oral & Oropharyngeal 

Carcinomas 

Cytokine array data presented in Chapter 3 suggest that HPV-negative cell lines secreted 

soluble EGFR, whereas HPV-positive cell lines did not. As outlined, this feature may be 

related to a result of generic ADAM activity, rather than targeted membrane cleavage of 

EGFR. Alternatively, EGFR shedding could be linked to a higher membrane density of 

EGFR in HPV-negative cell lines; Perez-Torrez et al found a membrane density of 7 X 105 

receptors per cell or greater led to ectodomain shedding of sEGFR573. Irrespective of the 

mechanism leading to EGFR release, the presence of soluble EGFR may have significant 

implications on the efficacy of cetuximab in the management of recurrent/late stage disease 

due to the release of receptor decoy. 

ELISA analysis of sEGFR content in HPV-positive, versus -negative cell line conditioned 

media would allow quantitative analysis to confirm cytokine array findings. Cetuximab 

resistance could then be correlated to sEGFR release by calculating cetuximab’s LD50 for 

each cell line. One would anticipate an increased LD50 for cell lines secreting sEGFR, 

particularly if cetuximab was added to established (i.e. 24 h+) cell line conditioned media. 

Further analysis could be undertaken by comparing results to erlotinib, an EGFR tyrosine 

kinase inhibitor that should theoretically not become inhibited by the solubilised EGFR 

ectodomain. 

Finally, cetuximab efficacy versus tumour membranous: soluble EGFR ratio could be 

analysed in a clinical cohort of oropharyngeal carcinomas, although outcome data are likely 

to be difficult to interpret due to cetuximab being reserved in the UK for late stage/resistant 

disease. Current evidence supports this practice574. Studies such as DeESCALaTE, which 

have assessed the merits of cetuximab plus radiotherapy versus standard chemotherapy 

plus radiotherapy, may be used to undertake secondary data analysis of 

membranous/soluble EGFR status in the cetuximab cohort. Achieving of a valid method of 

sEGFR quantification may act as a barrier to any meaningful data, as tissue sEGFR may 

become either diffuse, diluted or may not be amenable to standard methods of assessment 

such as immunohistochemistry. Due to post-translational cleavage by ADAMs, techniques 

such as PCR or in-situ hybridization of RNA/DNA would not be valid; more expensive 

methods such as mass spectrometry may be necessary. A prospective cohort study may 
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therefore be necessary, whereby serum sEGFR may be used along with tumour 

membranous EGFR IHC status, and correlated to response to cetuximab.  
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VI. Retrospective Cohort Analysis and Translation to the Clinic 

Approximately 150 cases of oropharyngeal carcinoma treated at Sheffield Teaching 

Hospitals NHS Trust from 2001-2011 have been identified through the Sheffield Teaching 

Hospitals pathology reporting database, and have been correlated to information stored on 

the Chemocare chemotherapy prescribing system. Clinical notes have been retrieved, and 

data collected with respect to variables listed in Table 9.1. Pathological blocks have been 

requested and STH are in the process of retrieving all original diagnostic biopsy blocks and 

respective slides. Diagnostic slides shall be used to identify target regions of FFPE 

specimen blocks for inclusion in tissue microarray, with 3 array samples being taken from all 

cases, except where exhaustion of the tissue specimen will occur. 

 

Table 9.1: Summary of Data Collected for Retrospective Cohort Analysis 

 

 

Sociodemographic 
 

Timing 
 

Tumour status 
 

Therapy 
 

Outcome 
 

Other 

sex date of biopsy anatomical 
location 

radiotherapy 
regimen 

response at 4 
months 

free text 
entry 

date of birth date of radiotherapy 
commencement 

histological 
diagnosis 

radiotherapy 
dose 

local 
recurrence 

 

smoking status date of radiotherapy 
completion 

Grade radiotherapy 
fractions 

regional 
(nodal) 
recurrence 

 

pack years date of surgery T stage chemotherapy 
regimen 

metastasis 
during follow-
up 

 

alcohol intake date of recurrence N stage induction 
chemotherapy 

method of 4 
month 
assessment 

 

units/ wk date of last follow-up M stage date of 
chemotherapy 
commencement 

cause of death  

performance status date of death stage grouping number of 
chemotherapy 
cycles 

last status of 
patient 

 

   surgical therapy   

   surgery type   

   treatment of 
recurrence 
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Initial analyses shall include establishment of HPV status by p16 immunohistochemistry plus 

RNAScope HPV16/18 in-situ hybridization. Further investigation prompted by the findings of 

this thesis include IL-6 and HGF RNA in-situ hybridization plus IHC, along with IHC analysis 

of phospho-STAT3 and markers of fibroblast senescence such as SA-b Gal, yH2AX foci and 

Ki67 575. Survival data and tumour HPV status can be correlated to IL-6 and HGF status, 

pSTAT3 intensity and fibroblast senescence to fully validate our in-vitro findings. 

Tissue microarray construction will also allow high-throughput analysis of further biomarkers 

reflecting the characteristic HPV-negative cell line-induced fibroblast profile discussed in 

Chapter 4, along with yet to be confirmed biomarkers, such as the fibroblast-inducing 

factor(s) secreted by HPV-negative cell lines. 

Our in-vitro data suggest much benefit may be gained from the use of HGF inhibitors in the 

management of early HPV-negative disease. As previously discussed, Phase II trial of 

foretinib in late stage solid tumours, including a small proportion of head and neck cancers, 

demonstrated limited benefit 433. In order to translate our work to a trial of foretinib in HPV-

negative oropharyngeal-specific disease, both clinical cohort analysis and xenograft in-vivo 

modelling are important. Kwon et al276 have demonstrated the role of HGF IHC in 

prognosticating HPV-negative disease, and to some extent HGF-related findings of the 

cohort study outlined above are confirmatory, albeit with offering greater insight into the 

biological process through which HGF expression is brought about, along with 

tumour/stromal specific data achieved through RNA-ISH analysis. 

Xenograft modelling of tumour invasion in the presence/absence of clinically relevant 

foretinib dosing regimens may offer final justification of a Phase II trial applied to early, rather 

than late disease. Indeed, ovarian carcinoma xenograft modelling has demonstrated utility of 

foretinib in the prevention of metastasis in the same manner as we predict for oropharyngeal 

carcinoma576. 
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