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Abstract 

Background: ALS is an incurable late onset neurodegenerative disease that is 

characterised by progressive loss of motor neurons. A (G4C2)n repeat expansion in 

C9ORF72 is the most common genetic cause of ALS, but it is unknown how the repeat 

causes pathogenesis, although a gain of toxic function is likely. 

Aims and Objectives: 1) Generate stable, isogenic motor neuron-like NSC34 cellular 

models that have tetracycline-inducible (G4C2)n repeat expression. 2) Characterise the 

cell models for C9ORF72-ALS pathology and biochemical alterations. 3) Identify 

biological functions and pathways that may be transcriptionally dysregulated by (G4C2)n 

repeat expression early in C9ORF72-ALS pathogenesis. 4) Identify and interrogate 

potential therapeutic targets for C9ORF72-ALS. 

Results: Stable, isogenic NSC34 cell models with tetracycline-inducible (G4C2)n 

expression were successfully generated. Sense RNA foci and RAN translation products 

were detected in the cell models. No antisense derived RNA foci or RAN translation 

products were detected. Expression of the (G4C2)102 caused subtle toxicity and 

recapitulated some aspects of C9ORF72-ALS pathology in the NSC34 (G4C2)102. The 

(G4C2)102 expression caused transcriptomic dysregulation in RNA metabolism, protein 

transport, the PI3K/Akt signalling pathway, and also caused splicing alterations. 

Transcriptomic dysregulation in the PI3K/Akt signalling pathway was also detected in 

LCM motor neurons from C9ORF72-ALS patients. Pten knock-down provided a rescue 

effect against the (G4C2)102 induced toxicity in the NSC34 (G4C2)102. 

Conclusions: Stable, isogenic motor neuron-like cellular models that had tetracycline-

inducible (G4C2)n expression were successfully generated, and allowed interrogation of 

the early biochemical effects associated with sense only (G4C2)n expression in a 

reductionist manner. Transcriptomic analysis of the NSC34 (G4C2)102 identified 

dysregulation in RNA splicing and the PI3K/Akt signalling pathway, which was 

corroborated by transcriptomic data from C9ORF72-ALS patient CNS tissue. This 

suggests dysregulation in these biological functions and pathways is disease relevant 

and an early biochemical event in C9ORF72-ALS pathogenesis. Pten is a potential 

therapeutic target that deserves further study. 
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Chapter 1. Introduction 

1.1. Background 

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive, incurable and ultimately fatal 

late onset neurodegenerative disease. ALS is clinically heterogeneous, but is 

characterised by progressive loss of both upper and lower motor neurons. The 

progressive injury and death of motor neurons results in the failure of the 

neuromuscular system. This manifests as muscle weakness, muscle wasting, paralysis, 

and respiratory failure. Additionally, the pathogenesis of ALS is complex, with many 

genes and molecular mechanisms implicated in disease progression.  

1.2. Clinical Presentation 

ALS is the most common form of motor neuron disease (MND) accounting for 66% of 

cases, and is characterised by loss of both upper motor neurons (UMN) (including the 

Betz cells of the motor cortex) and lower motor neurons (LMN) (anterior horn cells of 

the spinal cord and brain stem nuclei) (Bäumer et al., 2014). Other less common sub-

types of MND are characterised by the motor neurons initially affected. Around 25% of 

MND cases are classified as progressive bulbar palsy (PBP), which is confined to the 

bulbar musculature at presentation and affects swallowing and speech. However, a 

recent study showed 87% of PBP cases eventually developed into ALS, suggesting these 

are bulbar onset ALS cases (Karam et al., 2010). Less than 5% of MND cases are classified 

as primary lateral sclerosis (PLS), which affects purely the UMN (Rowland and Shneider, 

2001). Finally, about 10% of MND cases are classified as progressive muscular atrophy 

(PMA), which affects purely the LMN at least at the time of presentation (Rowland and 

Shneider, 2001). 

ALS has a heterogeneous clinical presentation. Motor neuron degeneration and 

subsequent muscle weakness progress rapidly from the initial focus in an anatomically 

logical manner, culminating in paralysis and respiratory failure – which is the common 

cause of death (Ravits and La Spada, 2009). Disease onset most commonly occurs in the 
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limbs and represents approximately 66% of ALS cases (Gordon, 2013). Symptoms in the 

limbs can be bilateral or unilateral and include muscle wasting, distal weakness, 

proximal weakness, fasciculation, brisk reflexes, extensor plantar reflexes and an 

increased tendency to trip due to foot drop (Mitchell and Borasio, 2007). Bulbar onset 

presents in 30% of cases and can present with dysarthria, dysphagia, wasting and 

fasciculation of the tongue, and facial weakness (Mitchell and Borasio, 2007). Emotional 

lability, characterised by episodes of involuntary laughter and crying, is also 

symptomatic of bulbar involvement (Mitchell and Borasio, 2007). Around 5% of cases 

have respiratory onset, characterised by dyspnoea and orthopnoea (Gautier et al., 

2010).  

In addition to motor symptoms, up to 50% of ALS patients also show evidence of 

cognitive impairment during the disease course (Lomen-Hoerth et al., 2003; Wheaton 

et al., 2007).  Further, between 5 to 15% of ALS patients also have features of 

frontotemporal dementia (FTD) (Gordon, 2013; Lomen-Hoerth et al., 2003). Similarly, 

around 15% of behavioural variant FTD (bvFTD) patients also display signs of motor 

dysfunction, which can develop into ALS (Burrell et al., 2011; Lomen-Hoerth et al., 2002). 

BvFTD onset generally occurs between 50 and 60 years of age, (Achi and Rudnicki, 2012; 

McKhann et al., 2001; Ratnavalli et al., 2002), and is characterised by progressive 

degeneration of the frontal and temporal lobes of the cerebral cortex, which leads to 

impairment in behaviour and/or personality. These behavioural and personality changes 

include apathy and/or disinhibition, loss of empathy, emotional blunting, and ritualised 

behaviours (Lillo and Hodges, 2009). BvFTD and ALS are increasingly being considered 

as part of the same clinico-pathological spectrum in which different neurons are 

affected, due to clinical overlap, as well as similarities in neuropathology and genetic 

causes (Fiesel and Kahle, 2011). 

As with many other neurodegenerative diseases, age is a crucial risk factor for ALS. A 

meta-analysis calculated the median value of the reported mean age of ALS onset from 

several studies, and found the average age of onset was between 63 to 65 for Europe 

and New Zealand, and about 59 for North America and East Asia (Marin et al., 2015). 

Additionally, rare juvenile onset forms of ALS exist, in which symptom onset is under 18 

years of age (Shaw, 2005). Also based on a meta-analysis from studies on European and 
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North-American cases, the median survival time from ALS onset to death is between 25 

and 40 months (Marin et al., 2015). However, whilst the disease progresses more quickly 

in some patients, death occurring within a year of symptom onset, between 5 and 10% 

of ALS patients survive over a decade after disease onset (Chiò et al., 2009). 

1.3. Epidemiology 

Globally, ALS incidence increases with age, and will therefore be greater in ageing 

populations. The life time risk of developing ALS by the age of 70 is approximately 1 in 

400 (Chiò et al., 2013; Johnston et al., 2006), although this is estimated based on a study 

in London. ALS has a mean incidence of 2.8/100,000/year in Europe and 

1.8/100,000/year in North America, and a mean prevalence of 5.4/100,000 in Europe 

and 3.4/100,000 in North America (Chiò et al., 2013). In addition, there are geographical 

differences in ALS incidence and prevalence across Europe. Both ALS incidence and 

prevalence are considerably lower in other countries of non-European origin, although 

there are only a few epidemiological studies on populations outside Europe and North 

America and these may under estimate ALS incidence due to sub-optimal study design 

(Chiò et al., 2013). However, there is an increased incidence of ALS in a region of the 

Western Pacific, where the incidence is 7.0/100,000/year in the Chamorro people of 

Guam (Waring et al., 2004) and 9.5/100,000/year in the Kii peninsula of Japan (Yoshida 

et al., 1998), and the increased ALS incidence is thought to be caused by neurotoxins in 

the diets of these populations (Cheng and Banack, 2009; Kihira et al., 2012). Lastly, 

multiple studies suggest an increased ALS incidence in males compared to females (M:F 

1.2-1.5:1.0), although other later studies suggest the ratio may actually be more 

balanced (Abhinav et al., 2007; Logroscino et al., 2008; Worms, 2001).     

1.4. Neuropathology 

Insoluble protein aggregates found in neuronal and glial cells within the CNS are 

characteristic of neurodegenerative diseases. Ubiquitinated inclusions (UBIs) are the 

hallmark of ALS neuropathology; however other protein aggregates are often present. 

UBIs are observed as either filamentous skein aggregates or compact, round bodies in 

the degenerating motor neurons, but also in glial cells (Leigh et al., 1991). TDP-43 is the 
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major protein component within the UBIs in most ALS patients (excluding SOD1 and FUS 

related ALS cases) (Neumann et al., 2006). These UBIs stain positive for ubiquitin and 

phosphorylated-TDP-43 (p-TDP-43), but negative for tau and α-synuclein (Neumann et 

al., 2006). In ALS tissue, TDP-43 (predominantly a nuclear protein) becomes cytoplasmic. 

Hyperphosphorylated and C-terminal fragments of TDP-43 are also detected in the UBIs 

(Neumann et al., 2006). FUS-ALS pathology is characterised by FUS-positive cytoplasmic 

inclusions that are negative for TDP-43, tau and α-synuclein (Kwiatkowski et al., 2009; 

Vance et al., 2009). Mutant FUS mislocalises in the cytoplasm similarly to mutant TDP-

43. In addition, SOD1-related ALS patients contain UBIs positive for SOD1 (Bruijn et al., 

1998), and negative for TDP-43 (Mackenzie et al., 2007). 

Bunina bodies (BB) are another type of protein aggregate observed in the degenerating 

LMN of ALS patients. BB are small, round, eosinophilic cytoplasmic inclusions, present 

in approximately 85% of ALS patients (Piao et al., 2003). BB stain positive for cystatin C 

(Okamoto et al., 1993) and transferrin (Mizuno et al., 2006) but stain negative for TDP-

43 (Tan et al., 2007). However, the other protein components of BB remain unclear 

(Okamoto et al., 2008). The origin of BBs is also uncertain, but some studies suggest they 

could originate from the lysosomes, Golgi apparatus or endoplasmic reticulum (ER) 

(Okamoto et al., 2008). 

Hyaline conglomerate inclusions (HCIs) are another major aggregate type observed. 

Hyaline (meaning glassy) refers to HCIs appearance when stained with agents such as 

haematoxylin and eosin. HCIs are large multifocal inclusions that contain 

phosphorylated and non-phosphorylated neurofilament subunits, as well as entrapped 

organelles and proteins (Wood et al., 2003). HCIs are associated with the SOD1 I113T 

(p.I114T) mutation, and are not seen in sporadic ALS cases (Ince et al., 1998). HCIs and 

UBIs are rarely seen in the same ALS cases, which could suggest different pathological 

pathways that give rise to the disease (Ince et al., 1998). However, HCIs are also seen in 

other neurodegenerative diseases, making them a less specific marker of ALS compared 

with UBIs (Sobue et al., 1990). 

Recently, protein aggregates containing ubiquitin and the ubiquitin binding protein p62, 

but negative for TDP-43, FUS, tau, α-synuclein, α-internexin and neurofilament have 

been described in ALS patients (King et al., 2011). These inclusions can exist as 
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cytoplasmic globular or star-shaped inclusions, or smaller spherical intranuclear 

inclusions (Al-Sarraj et al., 2011). These inclusions can be found in both neuronal and 

glial cells in the granular layer, molecular layer and Purkinje cells of the cerebellum, and 

also in the pyramidal cells of the hippocampus. One study suggests these p62 positive, 

TDP-43 negative inclusions are specific to ALS and/or FTD cases that contain the (G4C2)n 

repeat expansion (C9ORF72-ALS/FTD) (Al-Sarraj et al., 2011). Another study confirms 

C9ORF72-ALS cases have much higher levels of these p62 positive, TDP-43 negative 

extra-motor neuronal inclusions in the hippocampus and frontal neocortex, compared 

to non-C9ORF72-ALS cases (Cooper-Knock et al., 2012). These inclusions could represent 

an alternative pathological mechanism to the TDP-43 aggregates occurring in many ALS 

cases. 

In addition, C9ORF72-ALS/FTD patients display other exclusive neuropathology. The 

(G4C2)n repeat expansion is transcribed in both sense and antisense directions, which 

forms sense (G4C2)n and antisense (C4G2)n RNA foci respectively in the CNS of 

C9ORF72-ALS/FTD patients (DeJesus-Hernandez et al., 2011; Gendron et al., 2013). 

Sense and antisense RNA foci have been detected in neuronal cells in the frontal cortex, 

the hippocampal dentate fascia, cerebellar granule cells and Purkinje cells, and LMN of 

the spinal cord (Cooper-Knock et al., 2015b; Cooper-Knock et al., 2014b; Mizielinska et 

al., 2013). Additionally, sense and antisense RNA foci are present in astrocytes, 

microglia, and oligodendrocytes (Mizielinska et al., 2013), as well as lymphoblasts, 

fibroblasts and iPSC-derived neurons from C9ORF72-ALS/FTD patients (Almeida et al., 

2013; Donnelly et al., 2013; Lagier-Tourenne et al., 2013). The majority of RNA foci are 

nuclear, but rare cytoplasmic RNA foci are also detected (Cooper-Knock et al., 2014b; 

Mizielinska et al., 2013). Numerous studies show the RNA foci also co-localise with 

various RNA binding proteins in patient CNS tissue (section 1.7.2) (Cooper-Knock et al., 

2014b; Haeusler et al., 2014; Lee et al., 2013; Mori et al., 2013b; Sareen et al., 2013). 

Lastly, the sense (G4C2)n and antisense (C4G2)n RNA undergoes unconventional repeat 

associated non-ATG (RAN) translation in all reading frames, forming aggregation-prone 

dipeptide repeat (DPR) proteins (section 1.5.4) (Ash et al., 2013; Mori et al., 2013c). The 

poly-GA, poly-GP, and poly-AP DPR protein species each form insoluble cytoplasmic 

aggregates, whilst the poly-GR and poly-PR DPR protein species both form insoluble 
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nuclear aggregates in C9ORF72-ALS/FTD patient CNS tissue (Ash et al., 2013; Mann et 

al., 2013; Mori et al., 2013a; Mori et al., 2013c; Zu et al., 2013). DPR pathology is highly 

consistent in C9ORF72-ALS/FTD patients regardless of disease phenotype, and DPR load 

is high in the cerebellum, all neocortical regions (frontal, motor cortex and occipital) and 

hippocampus, moderate in subcortical areas and minimal in LMN (Mackenzie et al., 

2013). Additionally, DPR proteins are present in the p62-positive, TDP-43 negative 

aggregates in C9ORF72-ALS/FTD patients, and could be the cause of these seemingly 

pathognomonic C9ORF72-ALS/FTD aggregates (Mann et al., 2013). 

1.5. Genetics 

ALS has two clinically defined subtypes: familial ALS (FALS) and sporadic ALS (SALS). The 

majority of ALS patients (around 95%) are defined as sporadic, with no family history of 

ALS (Renton et al., 2014). However, twin studies estimate SALS has a heritability of 38-

78% (Al-Chalabi et al., 2010). Patients with a first or second degree relative with ALS are 

clinically defined as familial cases, and represent an estimated 5% of total cases (Byrne 

et al., 2011). Incomplete evidence of inheritance can result in the incorrect assignment 

of familial cases as sporadic cases however, underestimating FALS as a proportion of the 

disease. As with other late-onset diseases, premature death from other causes in 

previous generations and incomplete penetrance can mask a history of family 

inheritance (Andersen, 2006). FALS is generally inherited in an autosomal dominant 

manner, but autosomal recessive and X-linked ALS causative mutations also exist 

(Renton et al., 2014). Currently, mutations in 24 known genes are thought to account 

for >68% of all FALS cases, and >11% of SALS cases (Table 1.1) (Renton et al., 2014). 
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Table 1.1 Genes associated with Familial ALS and Familial ALS/FTD. The genetic locus, gene name, implicated pathogenic mechanism, mode of 
inheritance, age of onset, disease phenotype, and reference to initial discovery are shown.  

Locus Chromosome Gene Implicated Pathogenic Mechanism Mode Onset Phenotype Reference 

ALS 1 21q22.11 SOD1 Oxidative stress; UPS; autophagy AD (AR) Adult ALS (Rosen, 1993) 

ALS 2 2q33.1 ALSIN Endosomal trafficking AR Juvenile ALS, HSP (Hadano et al., 2001; Yang et al., 2001) 

ALS 3 18q21 Unknown Unknown AD Adult ALS (Hand et al., 2002) 

ALS 4 9q34.13 SETX RNA metabolism AD Juvenile ALS, AOA2 (Chen et al., 2004) 

ALS 5 15q21.1 SPG11 DNA damage repair; axonal growth AR Juvenile ALS, HSP (Orlacchio et al., 2010) 

ALS 6 16p11.2 FUS RNA metabolism; stress granules AD (AR) Adult ALS, FTD (Kwiatkowski et al., 2009; Vance et al., 2009) 

ALS 7 20p13 Unknown Unknown AD Adult ALS (Sapp et al., 2003) 

ALS 8 20q13.32 VAPB Vesicle trafficking; UPR; ER stress AD Adult ALS, SMA (Nishimura et al., 2004) 

ALS 9 14q11.2 ANG RNA metabolism, Angiogenesis AD Adult ALS, FTD, PD (Greenway et al., 2006) 

ALS 10 1p36.22 TARDBP RNA metabolism AD Adult ALS, FTD, PD (Sreedharan et al., 2008) 

ALS 11 6q21 FIG4 Endosomal trafficking AD Adult ALS, CMT (Chow et al., 2009) 

ALS 12 10p13 OPTN Autophagy AD (AR) Adult ALS, POAG (Maruyama et al., 2010) 

ALS 13 12q24.12 ATXN2 Endocytosis, RNA translation AD Adult ALS, FTD, SCA2 (Elden et al., 2010) 

ALS 14 9p13.3 VCP Autophagy AD Adult 
IBMPFD/ALS, 
FTD, CMT, HSP 

(Johnson et al., 2010) 

ALS 15 Xp11.21 UBQLN2 UPS; autophagy XD Adult ALS/FTD (Deng et al., 2011) 

ALS 16 9p13.3 SIGMAR1 UPR; ER stress; proteasome AD Juvenile ALS/FTD (Al-Saif et al., 2011; Luty et al., 2010) 

ALS 17 3p11.2 CHMP2B Endosomal trafficking; autophagy AD Adult ALS, FTD (Parkinson et al., 2006) 

ALS 18 17p13.2 PFN1 Cytoskeleton; axonal growth AD Adult ALS, FTD (Wu et al., 2012) 

ALS 19 2q34 ERBB4 Neuronal development AD Adult ALS (Takahashi et al., 2013) 

ALS 20 12q13.13 HNRNPA1 RNA metabolism AD Adult IBMPFD/ALS (Kim et al., 2013) 

ALS 21 5q31.2 MATR3 RNA metabolism AD Adult ALS, VCPDM (Johnson et al., 2014) 

ALS 22 2q35 TUBA4A Cytoskeleton AD Adult ALS (Smith et al., 2014) 

ALS-FTD1 9p21.2 C9ORF72 
RNA metabolism; endosomal 
trafficking; autophagy 

AD Adult ALS/FTD 
(DeJesus-Hernandez et al., 2011; Renton et 
al., 2011) 

ALS-FTD2 22q11.23 CHCHD10 Mitochondrial maintenance AD Adult ALS/FTD (Bannwarth et al., 2014) 

ALS-FTD3 5q35.3 SQSTM1 Autophagy, protein degradation AD Adult ALS/FTD, PDB (Fecto et al., 2011) 

ALS-FTD4 12q14.2 TBK1 Autophagy, neuroinflammation AD Adult ALS/FTD (Cirulli et al., 2015; Freischmidt et al., 2015) 
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1.5.1. SOD1 

The first mutations associated with ALS were found in Cu/Zn superoxide dismutase 1 

(SOD1) (Rosen, 1993). There are over 170 known missense mutations that are found in 

each of the five exons of SOD1 (Andersen, 2006; Renton et al., 2014; Su et al., 2014). 

However, reliable genetic evidence linking the mutation to ALS pathogenicity still 

remains for a portion of these. SOD1 mutations account for 12-20% of FALS cases and 2-

7% of SALS cases (www.alsod.iop.kcl.ac.uk), however there is considerable phenotypic 

variability caused by different SOD1 mutations. For example, the A4V (p.A5V) mutation 

is autosomal dominant and causes a particularly aggressive form of ALS, typically leading 

to death within 1 year of disease onset (Cudkowicz et al., 1997). Whilst, the D90A 

(p.D91A) mutation is recessive and causes a slowly progressive form of ALS where 

patients survive over 10 years from disease onset on average (Andersen et al., 1996). 

SOD1 mutations were first proposed to cause ALS via a loss of function. SOD1 is 

ubiquitously expressed and converts superoxide radicals into molecular oxygen and 

hydrogen peroxide, and therefore, SOD1 loss of function was hypothesised as a cause 

of oxidative stress (Rosen, 1993). However, whilst most SOD1 mutations do reduce the 

SOD1 dismutase activity, there is no correlation between the disease severity and the 

SOD1 dismutase activity (Al-Chalabi et al., 2012). Further, the autosomal dominant 

inheritance of most SOD1 mutations indicates a toxic gain of function in mutant SOD1. 

WT SOD1 has a high propensity to misfold, which can be induced by oxidation and 

demetallation (Rakhit and Chakrabartty, 2006; Rakhit et al., 2004). In addition, ALS 

causative mutations in SOD1 also increase the protein’s propensity to misfold and 

aggregate (Stathopulos et al., 2006; Turner and Talbot, 2008; Vassall et al., 2006). 

Aggregated SOD1 is suggested to affect a range of cellular functions that could lead to 

neurotoxicity and ALS, and include oxidative stress, mitochondrial dysfunction, 

glutamate-mediated excitotoxicity, and axonal transport defects (Joyce et al., 2011). 

Further, misfolded and/or aggregated mutant SOD1 can be taken up by neuronal cells, 

and nucleate misfolding and aggregation of soluble endogenous mutant and wildtype 

SOD1 (Münch et al., 2011; Sundaramoorthy et al., 2013). This seeding of SOD1 

aggregation can then propagate from cell to cell in a prion-like manner, and could 

explain the anatomical progression of ALS.  

http://www.alsod.iop.kcl.ac.uk/
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1.5.2. TARDBP 

Mutations in the transactive response DNA binding protein 43kDa (TARDBP) gene, which 

encodes transactive response DNA binding protein 43kDa (TDP-43), also cause ALS 

and/or bvFTD (Gitcho et al., 2008; Kabashi et al., 2008; Sreedharan et al., 2008; Yokoseki 

et al., 2008). Mutations in TARDBP account for 4-5% of FALS and about 1% of SALS 

(Millecamps et al., 2010). There are currently 40 known mutations in the TARDBP gene 

that are associated with ALS, and these primarily occur in the C-terminus of TDP-43 

which is important for ribonucleoprotein binding and splicing (Millecamps et al., 2010; 

Renton et al., 2014). TARDBP mutations are also autosomal dominant and associated 

with a classical ALS phenotype. 

TDP-43 is a multifunctional heterogeneous nuclear ribonucleoprotein involved in a 

range of different RNA metabolism processes including transcription, mRNA splicing, 

RNA transport, mRNA stability and stress granule dynamics, and miRNA biogenesis 

(Buratti and Baralle, 2008, 2012). TDP-43 is expressed ubiquitously and is predominantly 

localised in the nucleus, where it performs the majority of its functions. However, TDP-

43 also shuttles between the nucleus and cytoplasm (Ayala et al., 2008; Winton et al., 

2008). In the majority of ALS patients, TDP-43 becomes mislocalised from the nucleus to 

the cytoplasm, where it then becomes ubiquitinated, phosphorylated, truncated and 

aggregated (section 1.4) (Neumann et al., 2006).  Taken together with the fact that 

TARDBP mutations cause ALS, TDP-43 is strongly implicated in the pathogenesis of most 

ALS cases.  

However, despite TDP-43 aggregates being the pathological hallmark of ALS, it is unclear 

whether TDP-43 aggregation causes toxicity through gain and/or loss of function in ALS 

pathogenesis. Several studies have shown that loss of nuclear TDP-43 causes splicing 

defects in cellular and animal models, as well as in motor neurons from TARDBP-ALS 

patients (De Conti et al., 2015; Highley et al., 2014; Ling et al., 2015). Importantly, TDP-

43 represses splicing of nonconserved cryptic exons and maintains intron integrity (Ling 

et al., 2015). A loss of this feature of TDP-43 could provide an important link to C9ORF72-

ALS, in which the intron containing a (G4C2)n repeat expansion is aberrantly licenced for 

export to the cytoplasm (section 1.7.3).  
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In addition to a loss of TDP-43 function, the cytoplasmic TDP-43 aggregates could also 

gain a toxic function. TDP-43 has a propensity to misfold and aggregate, and recent 

studies show misfolded TDP-43 can seed further TDP-43 misfolding and aggregation, 

which can also spread along axons and from cell to cell in a prion-like manner (Feiler et 

al., 2015; Zhu et al., 2014). Similarly to misfolded SOD1, this gain of prion-like function 

could explain the anatomically logical progression of motor neuron degeneration in the 

majority of ALS cases. However, a dominant negative mechanism proposes 

simultaneous gain and loss of TDP-43 function, in which the misfolded TDP-43 drives 

further TDP-43 aggregation and subsequently nuclear loss of TDP-43 and TDP-43 

function. 

1.5.3. FUS 

Fused in Sarcoma (FUS) shares functional homology with TDP-43. Mutations in FUS 

account for 4-5% FALS and slightly less than 1% SALS, and similarly to TARDBP, these 

mutations cluster in the RNA binding domain at the C terminus of the protein (Deng et 

al., 2014; Kwiatkowski et al., 2009; Renton et al., 2014; Vance et al., 2009). There are 

currently over 50 FUS mutations associated with ALS (Deng et al., 2014). Most of these 

mutations have an autosomal dominant mode of inheritance, although FUS mutations 

with a recessive pattern of inheritance were found in a family of Cape Verdean origin 

(Kwiatkowski et al., 2009). In addition, FUS mutations are associated with a classical ALS 

phenotype, with an earlier disease onset (Deng et al., 2014). 

FUS is involved in a range of RNA and DNA metabolic processes including transcription, 

mRNA splicing, mRNA transport, stress granule formation, miRNA biogenesis, and 

genome integrity (Deng et al., 2014). FUS is predominantly localised in the nucleus, but 

also shuttles between the nucleus and cytoplasm (Zinszner et al., 1997). FUS related ALS 

patients contain FUS aggregates (section 1.4), and similarly to TDP-43, it is unknown 

precisely how these aggregates confer neurotoxicity in the MN. However, a dominant 

negative mechanism of FUS mislocalisation, misfolding and aggregation, leading to 

depleted nuclear function is likely (Deng et al., 2014). Lastly, misfolded FUS is also 

hypothesised to spread in a prion-like manner similar to TDP-43 (King et al., 2012; 

Polymenidou and Cleveland, 2011), but there are currently no functional experiments 

to prove this hypothesis. 
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1.5.4. C9ORF72 

In 2011, two groups found a (G4C2)n hexanucleotide repeat expansion within a non-

coding region of Chromosome 9 open reading frame 72 (C9ORF72) that causes both ALS 

and FTD (Figure 1.1) (DeJesus-Hernandez et al., 2011; Renton et al., 2011). Expansions 

of >30 (G4C2)n repeats are considered pathogenic (Beer et al., 2015; Byrne et al., 2014), 

but expansions of 200-5000 repeats are commonly detected in ALS patients (Cooper-

Knock et al., 2014a). The (G4C2)n repeat expansion is the most common mutation 

associated with ALS, and accounts for about 8% of SALS and 39% of FALS cases (Majounie 

et al., 2012). In addition, the (G4C2)n repeat expansion accounts for about 7% of 

sporadic FTD and 25% of familial FTD cases (Majounie et al., 2012). Further, there is a 

greater incidence of dementia in C9ORF72-ALS patients compared to non-C9ORF72-ALS 

patients (Cooper-Knock et al., 2012; Cooper-Knock et al., 2014a; Gijselinck et al., 2012; 

Stewart et al., 2012). It is currently unclear how the (G4C2)n repeat expansion causes 

ALS and/or FTD pathogenesis, although three mutually inclusive hypotheses have been 

suggested; C9ORF72 haploinsufficiency, RNA toxicity, and dipeptide repeat (DPR) 

protein toxicity (section 1.7). 
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Figure 1.1 Genomic C9ORF72 and transcript variants. The line represents introns and 
boxes represent exons - blue are translated and white are untranslated. The (G4C2)n 
repeat expansion is shown in an orange box, and is located between exons 1A and 1B. 
Transcript variants 1 and 3 encode C9ORF72 long form, whilst variant 2 encodes 
C9ORF72 short form. The transcription start site (arrow) is upstream of exon 1A and the 
(G4C2)n repeat in variants 2 and 3. Whilst in variant 1, the (G4C2)n repeat is upstream 
of the transcription start site and is thought to inhibit transcription (flat head arrow). 

The C9ORF72-ALS and classic ALS phenotypes are indistinguisable (Cooper-Knock et al., 

2012; Cooper-Knock et al., 2014a; Gijselinck et al., 2012; Murray et al., 2011). It is not 

clear whether the age of C9ORF72-ALS disease onset differs from non-C9ORF72-ALS, 

however disease duration is shorter in C9ORF72-ALS (Cooper-Knock et al., 2014a; 

Millecamps et al., 2012). The (G4C2)n repeat expansion is thought to be non-penetrant 

in those under 35 years of age, 50% penetrant by 58 years of age, and approaching full 

penetrance at 80 years of age (Benussi et al., 2014; Galimberti et al., 2014; Majounie et 

al., 2012). Additionally, genetic analysis shows there is a greater than expected incidence 

of the ALS associated mutations (including the (G4C2)n repeat expansion) co-occurring 

with a second ALS-linked mutation (Bury et al., 2015; Chiò et al., 2012b; van Blitterswijk 



13 
 

et al., 2012a). This suggests that a second genetic ‘hit’ (oligogenic inheritance) may be 

necessary for ALS pathogenesis (and more explicity, for C9ORF72-ALS pathogenesis) and 

could also influence age of onset, symptom presentation and/or disease progression. 

Additionally, the (G4C2)n repeat expansion is unstable. Within individuals, the (G4C2)n 

repeat length varies between different cell types, and even between different regions 

of the brain, which suggests somatic instability (Beck et al., 2013; Nordin et al., 2015; 

van Blitterswijk et al., 2013b). Further, families which carry the (G4C2)n repeat 

expansion have shown evidence of genetic anticipation, with the average age of ALS 

and/or FTD onset lower in successive generations (Benussi et al., 2014; Chiò et al., 

2012a). In addition, the (G4C2)n the repeat DNA is liable to both expansions and 

contractions in a length-dependent manner in both E.coli and HEK293 cells (Thys and 

Wang, 2015). However, there is no direct evidence, from southern blotting for example, 

to confirm whether the potential genetic anticipation in C9ORF72-ALS/FTD patients is 

due to expansion of the (G4C2)n repeat between generations. 

The C9ORF72 gene expresses three transcript variants (V1, V2, and V3), which in turn 

code for two different C9ORF72 protein isoforms (long and short). V2 and V3 include 

exon 1a, and contain the (G4C2)n repeat within intron 1, whilst V1 includes exon 1b and 

is transcribed downstream of the (G4C2)n repeat, which is therefore excluded from the 

mRNA transcript (DeJesus-Hernandez et al., 2011) (Figure 1.1). V1 and V3 encode the 

481 amino acid C9ORF72 long form, whilst V2 encodes the 222 amino acid C9ORF72 

short form (DeJesus-Hernandez et al., 2011). The murine C9ORF72 homolog is highly 

expressed at transcript level in neuronal cells throughout the CNS, including the cortex 

and spinal motor neurons, however expression appears much lower in glial cells 

(Atkinson et al., 2015; Suzuki et al., 2013). C9ORF72 protein shares homology with 

differentially expressed in normal and neoplasia (DENN) domain, which function as Rab-

GTPase GDP/GTP exchange factors (GEF), and are involved in membrane trafficking 

(Levine et al., 2013; Zhang et al., 2012). In vitro studies further implicate C9ORF72 

protein in membrane trafficking, and suggest the protein regulates endocytosis and 

autophagy (Farg et al., 2014). Additionally, C9ORF72 is suggested to localise in the 

nucleus, cytoplasm and synapses in human CNS tissue, although the specificity of 

currently available C9ORF72-antibodies is questionable and casts doubt over the validity 
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of these findings (Atkinson et al., 2015; Cooper-Knock et al., 2012; Snowden et al., 2012; 

Stewart et al., 2012; Xiao et al., 2015). 

1.5.5. Genes Involved in RNA Metabolism 

In addition to TARDBP and FUS, there are rarer mutations in several other genes involved 

in RNA metabolism that are associated with ALS. These genes include senataxin (SETX), 

angiogenin (ANG), ataxin 2 (ATXN2), heterogeneous nuclear ribonucleoprotein A1 

(HNRNPA1), and matrin 3 (MATR3). This implicates dysregulated RNA metabolism as a 

key mechanism in ALS pathogenesis and corroborates the RNA toxicity hypothesis 

suggested for C9ORF72-ALS (section 1.7.2). 

Mutations in SETX are associated with a juvenile onset form of ALS that has a much 

longer and slower disease progression (Chen et al., 2004; Hirano et al., 2011). SETX is a 

DNA/RNA helicase that plays a role in transcription, R-loop resolution, and DNA damage 

repair (Skourti-Stathaki et al., 2011). Currently it is unclear how SETX mutations cause 

ALS however. 

There are at least 20 known mutations in ANG that are associated with ALS, and have 

been found in both FALS and SALS patients (Greenway et al., 2006; Kirby et al., 2013; 

Pan et al., 2015). ANG is a member of the pancreatic ribonuclease A superfamily, and is 

neuroprotective to motor neurons. However, disease associated mutant ANG loses this 

neuroprotective function (Subramanian et al., 2008). Importantly, ANG binds RNA 

species with G-quadruplex secondary structure and induces stress granule assembly, 

which is critical for the neuroprotective effect (Ivanov et al., 2014). Interestingly, the 

sense RNA expressed from the C9ORF72 (G4C2)n repeat expansion also forms a G-

quadruplex secondary structure (Fratta et al., 2012; Haeusler et al., 2014; Reddy et al., 

2013b), which may impair the neuroprotective function of ANG. 

ATXN2 contains a (CAG)n repeat that encodes a polyglutamine (polyQ) tract in the ATXN 

protein. An intermediate polyQ tract (31-33 repeats) is associated with ALS, whilst 

longer polyQ expansions (>36 repeats) cause spinocerebellar ataxia 2 (Elden et al., 2010; 

Neuenschwander et al., 2014). ATXN2 is an RNA binding protein implicated in RNA 

metabolism (Satterfield and Pallanck, 2006; Shibata et al., 2000), as well as membrane 

trafficking (Nonis et al., 2008; Ralser et al., 2005) and stress granule function (Anderson 
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and Kedersha, 2006). ATXN2 interacts with TDP-43 in an RNA-dependent manner, and 

ATXN2 actually exacerbates TDP-43 induced toxicity in both yeast and Drosophila 

models (Elden et al., 2010). In addition, ATXN2 interacts with FUS, and ATXN2 containing 

intermediate length polyQ tracts also exacerbate mutant FUS induced toxicity in cellular 

models (Farg et al., 2013).  

Mutations in HNRNPA1 are also associated with ALS (Kim et al., 2013). Similarly to the 

other ALS associated genes involved in RNA metabolism, HnRNPA1 binds TDP-43 (Buratti 

et al., 2005; Ling et al., 2010). Additionally, HnRNPA1 is involved in RNA processing, 

splicing, and transport. 

Lastly, there are seven known mutations in MATR3 that associate with ALS; two of those 

were found in FALS patients, and five were found in apparent SALS patients (Fifita et al., 

2015; Johnson et al., 2014; Leblond et al., 2016; Lin et al., 2015; Millecamps et al., 2014). 

MATR3 is a nuclear matrix protein that can bind both DNA and RNA, but also directly 

interacts with TDP-43 (Ling et al., 2010). MATR3 is also suggested to have a range of DNA 

and RNA metabolic processes including chromatin organisation, DNA replication and 

repair, as well as transcription, RNA stability, RNA processing and RNA transport (Salton 

et al., 2011). 

1.5.6. Genes Involved in Protein Transport and Degradation 

In addition to RNA metabolism, there are also rare mutations in several genes involved 

in protein transport and/or degradation that are associated with ALS. Taken together 

with the fact that protein aggregation is a hallmark of ALS (and many other 

neurodegenerative diseases), protein degradation is particularly likely to be critical in 

ALS pathogenesis. Genes that are associated with ALS and are involved in endosomal 

transport include alsin (ALS2), vesicle-associated membrane protein-associated protein 

B (VAPB), charged multivesicular body protein B (CHMP2B), and phosphoinositide 5-

phosphatase (FIG4), whilst those involved in the ubiquitin-proteasome system (UPS) 

include ubiquilin 2 (UBQLN2), sequestosome 1 (SQSTM1), and sigma non-opoid 

intracellular receptor 1 (SIGMAR1), and finally, those involved in autophagy include 

optineurin (OPTN), valosin containing protein (VCP), and TANK-binding kinase (TBK1). 
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Additionally, this supports the proposed hypotheses of C9ORF72 haploinsufficiency 

(section 1.7.1) and/or DPR aggregate toxicity in C9ORF72-ALS (section 1.7.3). 

Mutations in ALS2 are associated with an autosomal recessive, juvenile onset form of 

ALS (Hadano et al., 2001; Yang et al., 2001). The majority of these mutations are thought 

to cause a loss of function. ALS2 encodes alsin, which is a Rab5 guanine nucleotide 

exchange factor (GEF) involved in the regulation of endocytosis and thereby implicates 

dysregulation of endocytic trafficking in ALS pathogenesis (Lai et al., 2009).  

Several mutations in VAPB are also associated with a slowly progressive form of ALS, 

however the pathogenicity of some of these mutations requires validation (Chen et al., 

2010; Ingre et al., 2013b; Kabashi et al., 2013; Nishimura et al., 2004; van Blitterswijk et 

al., 2012b).  VAPB is an integral ER protein and is involved in intracellular trafficking, the 

unfolded protein response (UPR), and regulates ER-mitochondria interactions (Lev et al., 

2008; Stoica et al., 2014). Additionally, the P56S VAPB mutation protein associated with 

ALS disrupts the UPR, anterograde axonal transport of mitochondria and calcium 

homeostasis (De Vos et al., 2012; Kanekura et al., 2006; Mórotz et al., 2012).  

Mutations in CHMP2B are associated with ALS that has a predominantly lower motor 

neuron phenotype (Cox et al., 2010; Parkinson et al., 2006). CHMP2B is highly expressed 

throughout the CNS, and is part of the ESCRT-III complex (endosomal sorting complex 

required for transport III) that sorts endosomal cargo for recycling or degradation in the 

lysosome (Cox et al., 2010; Skibinski et al., 2005). Additionally, mutant CHMP2B disrupts 

autophagy in transiently transfected cellular models (Cox et al., 2010). 

FIG4 mutations have been found in both FALS and SALS cases, and are thought to cause 

a loss of function (Chow et al., 2009). FIG4 regulates PI(3,5)P2 levels, which mediates 

retrograde trafficking of endosomal vesicles to the trans-golgi network (Chow et al., 

2009). Interestingly, FIG4 knock-down causes neurodegeneration in mice and motor 

defects in Drosophila models (Chow et al., 2007; Kyotani et al., 2016). 

There are at least ten mutations in UBQLN2 that are associated with dominantly 

inherited, X-linked ALS that can have either juvenile or adult onset (Deng et al., 2011; 

Gellera et al., 2013; Williams et al., 2012). UBQLN2 is a ubiquitin-like protein that 

functions in ubiquitin proteasome system (UPS) that is important for degrading and 
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recycling misfolded or damaged proteins. Importantly, several studies show mutant 

UBQLN2 impairs this proteolytic pathway (Chang and Monteiro, 2015; Deng et al., 2011; 

Osaka et al., 2015), but may also impair RNA metabolism as well (Gilpin et al., 2015). 

SQSTM1/p62 plays an important role in protein degradation via the UPS and the 

autophagy pathway (Bjørkøy et al., 2006; Seibenhener et al., 2004), and is found in the 

characteristic ubiquitinated aggregates in ALS patients including the p62-positive, TDP-

43 negative aggregates specific to C9ORF72-ALS pathology (section 1.4). Multiple 

mutations in SQSTM1 were found in both FALS and SALS patients, further implicating 

SQSTM1/p62 and impaired protein degradation in ALS pathogenesis (Fecto et al., 2011; 

Kwok et al., 2014; Teyssou et al., 2013). SQSTM1/p62 knock-down in a zebrafish model 

impaired autophagy and caused motor defects, which could be rescued with the 

autophagy inducer rapamycin (Lattante et al., 2015). 

Missense mutations in SIGMAR1 cause an autosomal recessive, juvenile onset form of 

ALS (Al-Saif et al., 2011). Addition mutations in the 3’UTR of SIGMAR1 are suggested to 

affect mRNA stability and are also associated with ALS (Luty et al., 2010), but their role 

in ALS pathogenesis remains unclear. Sigma-1 receptor (Sig-1R) is an ER receptor 

chaperone that is involved in calcium transport between the ER and mitochondria via 

the IP3 receptor, counteracts ER stress, and is neuroprotective (Fukunaga et al., 2015; 

Hayashi and Su, 2007). In addition, the p.E102Q Sig-R1 mutant protein reduces 

mitochondrial ATP production, inhibits proteasome activity and causes mitochondrial 

injury, and also aggravates ER-stress induced death in neuronal cell lines (Al-Saif et al., 

2011; Fukunaga et al., 2015). 

Several different types of mutation in OPTN are associated with either autosomal 

dominant or recessive ALS (Beeldman et al., 2015; Goldstein et al., 2016; Maruyama et 

al., 2010; van Blitterswijk et al., 2012c). OPTN regulates a range of cellular functions 

including protein degradation via the UPS and the autophagy pathway, and interacts 

with several other proteins associated with ALS including UBQLN2 and TBK1 (Gilpin et 

al., 2015; Morton et al., 2008). 

VCP mutations are associated with both FALS and SALS (Abramzon et al., 2012; Johnson 

et al., 2010; Koppers et al., 2012). VCP is an AAA+-ATPase and facilitates both UPS and 
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autophagy (Meyer and Weihl, 2014). Additionally, mutant VCP is suggested to cause 

mitochondrial uncoupling and a reduction in ATP production (Bartolome et al., 2013). 

Loss of function mutations in TBK1 are thought to cause ALS via haploinsufficiency 

(Cirulli et al., 2015; Freischmidt et al., 2015). TBK1 regulates both immune signalling and 

autophagy (Weidberg and Elazar, 2011). TBK1 also binds and phosphorylates the ALS-

related proteins OPTN and SQSTM1 (Pilli et al., 2012; Wild et al., 2011), strongly 

implicating protein degradation and autophagy in ALS pathogenesis. 

1.5.7. Genes Involved in Axonal Transport and Cytoskeleton 

There also several rare mutations in genes that are involved in axonal transport and 

cytoskeleton that are associated with ALS associated: implicating these similar biological 

functions in ALS pathogenesis. Motor neurons have long axons, and efficient transport 

of protein, lipid, RNA and organelle cargo along the cytoskeleton is necessary for correct 

cellular function. ALS associated genes that are involved in axonal transport and/or the 

cytoskeleton include spatacsin (SPG11), profilin 1 (PFN1), tubulin alpha 4A (TUBA4A). 

Several loss of function mutations in SPG11 are associated with an autosomal recessive, 

juvenile onset form of ALS with slow disease progression (Daoud et al., 2012; Orlacchio 

et al., 2010). The exact function of SPG11 is unknown, but SPG11 colocalises with the 

cytoskeleton and synaptic vesicles in neuronal axons and dendrites. Additionally, iPSC-

derived neuronal cells from SPG11 patients displayed axonal instability by 

downregulation of acetylated tubulin and impaired cargo transport (Pérez-Brangulí et 

al., 2014). 

Mutations in PFN1 are a rare cause a FALS, and the p.E117G variant is now recognised 

only as a moderate ALS risk factor, rather than fully penetrant (Fratta et al., 2014; Ingre 

et al., 2013a; Smith et al., 2015; Tiloca et al., 2013; van Blitterswijk et al., 2013a; Wu et 

al., 2012). PFN1 regulates actin filament dynamics, but is also implicated in stress 

granule regulation (Figley et al., 2014). ALS-linked mutant PFN1 variants are less stable, 

have a propensity to aggregate, impair stress granule dynamics, and reduce axon 

outgrowth and growth cone size (Boopathy et al., 2015; Figley et al., 2014; Wu et al., 

2012). Interestingly, other ALS-linked mutations in TARDBP, FUS, HNRNPA1, and VCP 
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also display altered stress granule dynamics suggesting another important mechanism 

in ALS pathogenesis (Figley et al., 2014). 

Lastly, at least five loss of function mutations in TUBA4A are associated with a classical 

ALS phenotype (Smith et al., 2014). TUBA4A is an important component of cytoskeletal 

microtubules, and ALS-linked mutant TUBA4A has an increased propensity to aggregate 

and impairs microtubule dynamics and stability through a dominant-negative 

mechanism (Smith et al., 2014). 

1.6. General ALS Pathomechanisms  

Extensive evidence shows multiple pathogenic mechanisms exist in ALS. However, in the 

majority of ALS cases, separating the initial toxic insult and exacerbating secondary 

pathways that drive ALS progression is difficult. Pathomechanisms suggested include 

oxidative stress, excitotoxicity, mitochondrial dysfunction, impaired axonal transport, 

dysregulated RNA metabolism, impaired protein homeostasis, and glial involvement. 

1.6.1. Oxidative Stress 

Oxidative stress arises from an imbalance between reactive oxygen species (ROS) 

production and removal, and/or an impaired ability of the biological system to repair 

oxidative damage. ROS cause oxidative damage to DNA, RNA, proteins and lipids, and 

also disrupt redox sensitive cellular signalling. Cumulative oxidative damage in post-

mitotic motor neurons may eventually overwhelm the homeostatic cellular mechanisms 

that cope with other toxic insults such as ALS-linked mutations, resulting in neuronal 

death later in older age (Turner et al., 2013). ALS-causative SOD1 mutations are thought 

to cause aberrant free radical handling in a gain of function mechanism, implicating 

oxidative stress in ALS pathogenesis (Barber and Shaw, 2010; Rosen, 1993). In addition, 

CNS tissue and biosamples from ALS patients show increased levels of oxidative damage 

(Chang et al., 2008; Ferrante et al., 1997; Fitzmaurice et al., 1996; Shaw et al., 1995; 

Shibata et al., 2001). 

1.6.2. Glutamate Excitotoxicity 

Excitotoxicity is a process in which excessive stimulation of glutamate receptors causes 

a large influx of calcium ions into the post-synaptic neurons, and results in toxicity. 
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Glutamate levels are elevated in the CSF of ALS patients, and correlates with disease 

severity (Spreux-Varoquaux et al., 2002). Motor neurons are also inherently vulnerable 

to glutamate excitotoxicity due to low glutamate receptor 2 (GluR2) expression (which 

limits the calcium permeability of AMPA receptors) and limited calcium-buffering 

capacity (Van Damme et al., 2007; Vanselow and Keller, 2000). Additionally, astrocytes 

express excitatory amino acid transporter 2 (EAAT2), which removes glutamate from the 

synaptic cleft. EAAT2 levels are reduced in both ALS patients and animal models (Bruijn 

et al., 1997; Rothstein et al., 1992), which is suggested to cause prolonged glutamatergic 

stimulation of the motor neurons, implicating both excitotoxicity and glial cell 

involvement in ALS pathogenesis. Lastly, the antiglutamatergic drug riluzole is the only 

effective treatment available for ALS, and improves patient survival by three months 

(Andreadou et al., 2008; Bensimon et al., 1994).  

1.6.3. Mitochondrial Dysfunction 

Mitochondria are critical for cell survival and generate ATP, buffer intracellular calcium 

and act as gatekeepers of the intrinsic apoptotic pathway. Impaired mitochondrial 

morphology and function (including ATP production, calcium buffering, mitochondria-

dependent apoptosis, respiratory complexes and redox balance) are described in ALS 

spinal motor neurons, as well as various cellular and animal models of ALS (Bowling et 

al., 1993; Cozzolino and Carrì, 2012; Dal Canto and Gurney, 1994; Ferri et al., 2006; Fujita 

et al., 1996; Grosskreutz et al., 2010; Menzies et al., 2002a; Sasaki et al., 2007; Shi et al., 

2010). Impaired ATP production would damage motor neuron function due to their high 

metabolic demand (Menzies et al., 2002b), whilst impaired calcium buffering could lead 

to excitotoxicity (section 1.6.2). Additionally, inefficient mitochondrial function 

increases ROS production, which in turn causes oxidative damage to mitochondrial 

components and leads to greater mitochondrial dysfunction – a vicious cycle that could 

be central to motor neuron degeneration in ALS (Kaal et al., 2000; Robberecht, 2000). 

1.6.4. Impaired Axonal Transport 

Motor neurons have very long axons, and depend on efficient transport of protein, 

lipids, RNA and organelle cargoes along the axons via the cytoskeleton and associated 

motor proteins. Several ALS associated genes are involved in axonal transport and/or 
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the cytoskeleton (section 1.5.7), suggesting impaired axonal transport plays a role in ALS 

pathogenesis. Also, impaired axonal transport is measured in several different genetic 

models of ALS (Alami et al., 2014; De Vos et al., 2007; Mórotz et al., 2012), and is 

suggested to be an early pathogenic event (De Vos et al., 2008). Impaired mitochondrial 

transport also supports a ‘dying-back’ axonopathy model of ALS disease progression (Shi 

et al., 2010). 

1.6.5. Dysregulated RNA Metabolism 

Aberrant RNA metabolism is strongly implicated in ALS. Firstly, due to the number of ALS 

associated genes that are involved in RNA metabolism (section 1.5.5). Secondly, because 

the RNA processing protein TDP-43 forms the characteristic neuronal inclusions in most 

ALS cases (section 1.4), and a loss of TDP-43 function is strongly suggested to play a role 

in ALS pathogenesis (section 1.5.2). Additionally, the (G4C2)n repeat expansion in 

C9ORF72, which is the most common cause of ALS, is thought to exert direct RNA toxicity 

by disrupting RNA metabolism (section 1.7.2). 

1.6.6. Impaired Protein Homeostasis 

Insoluble protein aggregates are the pathological hallmark of ALS (section 1.4), 

suggesting impaired protein homeostasis. Cytoplasmic protein aggregates have recently 

been suggested to cause nucleocytoplasmic defects (Woerner et al., 2016), although the 

exact mechanism is still unknown. Other suggested toxic mechanisms associated with 

aggregated SOD1, TDP-43, FUS, and DPR proteins are described elsewhere (sections 

1.5.1, 1.5.2, 1.5.3, and 1.7.3). Compellingly, SOD1, TDP-43 and DPR inclusions are all 

ubiquitinated, which suggests that the UPS and autophagy protein degradation systems 

are impaired in motor neurons in the majority of ALS cases. However, FUS-positive 

inclusions are not ubiquitinated, and suggests impairment to protein homeostasis may 

have less relevance in FUS-ALS. In addition, there is extensive evidence of ER stress in 

ALS patient CNS tissue, as well as cellular and animal models of ALS, suggesting an 

increased burden and inability to cope with misfolded proteins (Matus et al., 2013). 

Further, multiple other ALS associated genes are involved in protein trafficking or 

protein degradation (via the UPS and/or the autophagy), strongly implicating impaired 

protein homeostasis in ALS pathogenesis (section 1.5.6). 
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1.6.7. Non-Cell Autonomous Toxicity and Neuroinflammation 

Although ALS is characterised by motor neuron cell degeneration, various studies 

implicate glial cell involvement in disease progression. Astrocytes derived from either 

SOD1-ALS, C9ORF72-ALS or SALS fibroblasts are toxic toward wildtype neurons in co-

culture (Meyer et al., 2014), and murine SOD1-ALS models further suggest astrocytes 

and microglia are involved in non-cell autonomous toxicity (Beers et al., 2006; Boillée et 

al., 2006a; Boillée et al., 2006b; Clement et al., 2003; Nagai et al., 2007; Yamanaka et al., 

2008b). Additionally, astrocytes and microglia are in an activated state, with an increase 

in pro-inflammatory cytokines, in both CNS tissue from ALS patients and SOD1 mouse 

models, suggesting neuroinflammation may contribute to ALS pathogenesis (Alexianu et 

al., 2001; Engelhardt and Appel, 1990; Engelhardt et al., 1993; Hall et al., 1998; Nagy et 

al., 1994; Philips and Robberecht, 2011).  

1.7. C9ORF72 (G4C2)n Repeat Expansion Specific Pathomechanisms  

It is currently unknown how the (G4C2)n repeat expansion within C9ORF72 initiates ALS, 

and/or interacts with other pathomechanisms (section 1.6), but there are three 

mutually inclusive hypotheses: C9ORF72 haploinsufficiency, RNA toxicity, and dipeptide 

repeat (DPR) protein toxicity (Figure 1.2). 

1.7.1. C9ORF72 Haploinsufficiency 

Various reports demonstrate C9ORF72 mRNA is reduced in CNS tissue, lymphoblast 

cells, and iPSC-derived neurons of patients containing the (G4C2)n repeat expansion, 

suggesting C9ORF72 haploinsufficiency as a pathogenic mechanism (Figure 1.2A) 

(Almeida et al., 2013; Belzil et al., 2013; Ciura et al., 2013; DeJesus-Hernandez et al., 

2011; Donnelly et al., 2013; Mori et al., 2013c; Waite et al., 2014). Disrupted C9ORF72 

transcription could be caused by hypermethylation of the C9ORF72 locus and/or 

disruption of the core promoter region (Gijselinck et al., 2012; Gijselinck et al., 2015; Xi 

et al., 2013). In addition, one study shows reduced C9ORF72 protein in the frontal cortex 

of patients with the repeat expansion (Waite et al., 2014).  
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Figure 1.2 Pathomechanisms associated with C9ORF72 (G4C2)n repeat expansion. A) 
Transcriptional silencing of C9ORF72 via hypermethylation or transcription abortion 
results in less C9ORF72 mRNA and protein, which could result in C9ORF72 
haploinsufficiency. B) (G4C2)n and/or (C4G2)n repeat RNA binds and sequesters RNA 
binding proteins, and could result in dysregulated RNA metabolism and gene expression. 
C) The (G4C2)n and (C4G2)n repeat RNA is exported from the nucleus, and undergoes 
repeat associated non-ATG (RAN) translation producing dipeptide repeat (DPR) 
proteins. The DPR proteins aggregate and could cause toxicity. 

The function of C9ORF72 protein is currently unknown, although it may play a role in 

endocytosis and autophagy (section 1.5.4) (Farg et al., 2014; Levine et al., 2013). Knock 

out of C9ORF72 homologues in zebrafish and C. elegans caused defects in motor 

function (Ciura et al., 2013; Therrien et al., 2013). However, when C9ORF72 knock-down 
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(either partial or complete) was confined to the CNS in adult mice, there were no 

behavioural or motor defects, nor any signs of neuropathology associated with ALS and 

FTD (Koppers et al., 2015; Lagier-Tourenne et al., 2013). Furthermore, in human 

patients, the phenotype is no more severe in individuals with (G4C2)n repeat expansions 

in both C9ORF72 alleles (Cooper-Knock et al., 2013; Fratta et al., 2013), and there are no 

known coding mutations in C9ORF72 that result in disease (Harms et al., 2013). Taken 

together, these findings argue against haploinsufficiency as the only disease mechanism 

in C9ORF72-ALS, however, a partial loss of C9ORF72 protein function may disrupt 

autophagy, which could then exacerbate RNA toxicity and/or DPR toxicity. 

1.7.2. RNA Toxicity 

The second hypothesis suggests the RNA transcribed from the repeat may confer trans-

dominant toxicity. The (G4C2)n repeat expansion is transcribed in both sense and 

antisense directions, and forms sense (G4C2)n and antisense (C4G2)n RNA foci 

respectively. These RNA foci are predominantly nuclear, but rare cytoplasmic RNA foci 

are also detected in post mitotic cells which suggests the intronic (G4C2)n and (C4G2)n 

containing transcripts are abberantly licensed for nuclear export (Cooper-Knock et al., 

2015b; DeJesus-Hernandez et al., 2011; Gendron et al., 2013; Mizielinska et al., 2013; Zu 

et al., 2013). The RNA foci are present in C9ORF72-ALS/FTD brain and spinal cord 

(DeJesus-Hernandez et al., 2011; Gendron et al., 2013; Mizielinska et al., 2013; Zu et al., 

2013), and also in neuronal cells differentiated from C9ORF72-ALS/FTD patient derived 

iPSC (Almeida et al., 2013; Donnelly et al., 2013; Sareen et al., 2013). Interestingly, the 

relative abundancy of sense and antisense RNA foci varies in different neuronal 

populations in the CNS (Cooper-Knock et al., 2015b). Further, antisense RNA foci, but 

not sense RNA foci, are associated with TDP-43 nuclear loss in the motor neurons 

suggesting the antisense RNA foci and/or derived DPR (section 1.7.3) are the pathogenic 

species in C9ORF72-ALS (Cooper-Knock et al., 2015b). 

RNA foci potentially bind and sequester essential RNA binding proteins (RBP) conferring 

a trans-dominant toxicity by disrupting RNA processing, as seen in other repeat 

expansion disorders (Figure 1.2B) (Renoux and Todd, 2012). Therefore, several groups 

have performed in vitro pull downs using (G4C2)n and/or (C4G2)n repeat RNA to identify 

candidate RBP (Cooper-Knock et al., 2014b; Donnelly et al., 2013; Haeusler et al., 2014; 
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Lee et al., 2013; Mori et al., 2013b; Rossi et al., 2015; Xu et al., 2013). Several RBP were 

found to bind the repeat RNA including ADARB2, ALYREF, HnRNP A3, HnRNP H, NCL, 

PURA, SRSF1, and SRSF2. Subsequently, many of these RBP were shown to co-localise 

with the (G4C2)n and/or (C4G2)n RNA foci in either cell models or C9ORF72-ALS post 

mortem tissue, suggesting in vivo sequestration (Cooper-Knock et al., 2014b; Donnelly 

et al., 2013; Haeusler et al., 2014; Lee et al., 2013; Mori et al., 2013b; Rossi et al., 2015; 

Xu et al., 2013). Further, transcriptomic analysis of C9ORF72-ALS/FTD patient CNS tissue 

showed dysregulation in RNA splicing and processing, which may be caused by 

sequestration of RBP (Cooper-Knock et al., 2015a; Prudencio et al., 2015). In addition, 

several cellular and animal models have shown a gain of function toxicity from the 

(G4C2)n repeat, but these will be reviewed in section 1.8. Lastly, dysregulated RNA 

metabolism is strongly implicated in ALS pathogenesis (section 1.6.5), indicating RNA 

toxicity is likely involved in C9ORF72-ALS/FTD pathogenesis. 

1.7.3. Dipeptide Repeat (DPR) Protein Toxicity 

The last hypothesis suggests translation products from the repeat expansion may confer 

direct toxicity. The (G4C2)n and (C4G2)n repeat RNA also undergoes unconventional 

repeat associated non-ATG (RAN) translation in both the sense and antisense directions, 

forming aggregation-prone DPR proteins (Figure 1.2C) (Ash et al., 2013; Mori et al., 

2013a; Mori et al., 2013c; Zu et al., 2013). Interestingly, the (G4C2)n repeat expansion 

causes intron 1 retention in C9ORF72 mRNA, and could explain how the intronic (G4C2)n 

repeat becomes aberrantly licensed for nuclear export to the cytoplasm, where it then 

undergoes RAN translation (Niblock et al., 2016). A similar mechanism could also exist 

in the antisense (C4G2)n repeat containing transcripts. RAN translation occurs in all 

reading frames yielding five species of DPR: (GA)n and (GR)n are translated from the 

sense transcript, (AP)n and (PR)n from the antisense transcript, and (GP)n is translated 

from both sense and antisense transcripts (Figure 1.3).  
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Figure 1.3 Schematic representation of DPR proteins generated by RAN translation 
from sense (G4C2)n and antisense (C4G2)n repeats in all reading frames. 

DPR form insoluble inclusions in C9ORF72-ALS/FTD patient CNS tissue (section 1.4) (Ash 

et al., 2013; Mori et al., 2013a; Mori et al., 2013c; Zu et al., 2013). DPR proteins are toxic 

in cultured cells, and cause neurodegeneration in Drosophila models (section 1.8) (Kwon 

et al., 2014; May et al., 2014; Mizielinska et al., 2014; Tao et al., 2015; Wen et al., 2014; 

Yang et al., 2015; Zhang et al., 2014; Zu et al., 2013). The arginine rich DPR proteins (poly-

GR and poly-PR) appear particularly toxic, localise to the nucleolus, disrupt ribosomal 

RNA biogenesis and cause cell death (Kwon et al., 2014; Mizielinska et al., 2014; Tao et 

al., 2015; Wen et al., 2014; Yang et al., 2015). Also, in two elegant studies using 

Drosophila models, the toxicity of (G4C2)n repeats was dependent on the production of 

DPR, and not (G4C2)n RNA foci (Mizielinska et al., 2014; Tran et al., 2015). However in 

C9ORF72-ALS patients, DPR load is much lower in spinal motor neurons compared to 

other unaffected regions of CNS, and TDP-43 inclusions rarely co-localise with DPR 

suggesting they may not be the primary toxic insult in motor neuron degeneration 

(Davidson et al., 2015; Gomez-Deza et al., 2015; Mackenzie et al., 2013; Mackenzie et 

al., 2015). In fact, the expression level of DPR is likely to be very low in C9ORF72-ALS/FTD 

patient CNS, and the toxicity observed in model systems may be artificial due to high 

expression levels (Davidson et al., 2015). 
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1.8. C9ORF72-ALS Cellular and Animal Models 

Over the last five years, many cellular and animal models of C9ORF72-ALS have been 

generated, and as a result, we have a much better understanding of how the (G4C2)n 

repeat expansion may cause C9ORF72-ALS pathogenesis. The models described are 

either loss or gain of function, and these are summarised with their major findings in 

Table 1.2. Loss of function models were used to investigate the function of C9ORF72 

protein, and the potential effect of C9ORF72 haploinsufficiency. Currently, far fewer 

studies have interrogated the C9ORF72 loss of function hypothesis, and the most 

sophisticated loss of function models suggest C9ORF72 haploinsufficiency is not the 

major toxic insult in C9ORF72-ALS. The gain of function models however, have been 

used to study the biology and toxicity of the (G4C2)n repeat by studying the RNA, DPR 

or both. Initial studies looking at the (G4C2)n repeat showed clear gain of function 

toxicity, whilst more recent studies have used more sophisticated models to try and 

separate out the relative contributions of each potentially toxic species. 
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Table 1.2 Cellular and animal models of C9ORF72-ALS. The models are divided into loss of C9ORF72 function, and gain of (G4C2)n function, 
which are then separated into models that interrogate the (G4C2)n repeat, the RNA only or the DPR only. A brief summary of the model is 
included, the main findings discovered using the model, and the reference. 

Model Main Findings Reference 

Loss of function models   

Cellular   

C9ORF72 siRNA transfected into Neuro2a and SHSY5Y cells Impaired endosomal trafficking and autophagy. (Farg et al., 2014) 

C9ORF72 shRNA lentiviral transduced into rat cortical and 
motor neurons 

No toxicity. (Wen et al., 2014) 

Animal   

C9ORF72 knock out C.elegans Age dependent motor defects and degeneration. (Therrien et al., 2013) 

C9ORF72 knock-down Zebrafish Motor neuron axononopathy and motor function defects. (Ciura et al., 2013) 

Mouse with C9ORF72 sense ASO delivered to CNS No C9ORF72-ALS/FTD associated pathology, no motor defects, and minimal 
transcriptomic changes. 

(Lagier-Tourenne et 
al., 2013) 

Mouse with glial and motor neuron C9ORF72 knock out No motor neuron degeneration or motor defects. (Koppers et al., 2015) 

C9ORF72 knock out mouse Robust immune phenotype. Mild motor impairment. (Atanasio et al., 
2016) 

C9ORF72 knock out mouse Impaired macrophage and microglial function. (O'Rourke et al., 
2016) 

(G4C2)n Gain of function models   

Cellular   

(G4C2)n repeats transfected into Neuro2a cells Toxicity, which was rescued by PURA overexpression. (Xu et al., 2013) 

(G4C2)n repeats transfected into HEK293, HeLa, SYSHY5Y 
and mouse cortical neurons 

Neurotoxicity. Sense RNA foci colocalised with HnRNP H, SRSF1, and SRSF2. (Lee et al., 2013) 

(G4C2)n constructs tranfected into HEK293 cells Length dependent expression of DPR via RAN translation. (Mori et al., 2013c) 

(C4G2)n repeats transfected into HEK293 cells Antisense RNA foci and DPR produced. (Gendron et al., 
2013) 

(C4G2)n repeats transfected into HEK293 cells Antisense repeats cause toxicity. (Zu et al., 2013) 
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(G4C2)n repeats transfected into HeLa and NSC34 cells RNA foci colocalised with eIF2a, FUS, HnRNP H, and ILF3. Altered PURA 
distribution, stress granule dynamics, translation inhibition and mRNA nuclear 
retention. 

(Rossi et al., 2015) 

(G4C2)n constructs transfected into HEK293 and HeLa cells Nuclear retention of mRNA. (Freibaum et al., 
2015) 

(G4C2)n constructs transfected into S2 cells Disrupted nucleocytoplasmic transport (Zhang et al., 2015) 

(G4C2)n constructs transfected into HEK293 cells Length dependent repeat instability. Whole (G4C2) units gained or lost during 
expansion or contractions. Repeat caused replication fork stalling. 

(Thys and Wang, 
2015) 

Methylated and unmethylated (G4C2)66 transfected into 
HEK293 cells 

Methylation of the repeat reduced RNA foci and DPR production. (Bauer, 2016) 

Animal   

Drosophila expressing (G4C2)30 in the nervous system Embryonic lethality (Xu et al., 2013) 

Drosophila expressing (G4C2)30 in the motor neurons Motor defects. (Xu et al., 2013) 

Drosophila expressing (G4C2)30 in the eyes Eye degeneration, which was rescued by PURA. Genetic manipulation of 
nucleocytoplasmic transport modifies toxicity. 

(Xu et al., 2013; 
Zhang et al., 2015) 

Drosophila expressing (G4C2)n in the eyes Neurodegeneration associated with DPR (RNA only models showed no 
neurodegeneration). 

(Mizielinska et al., 
2014) 

Drosophila expressing a C9ORF72 minigene with (G4C2)n in 
intronic context 

Sense RNA foci, but no DPR in glia and motor neurons. No neurodegeneration or 
splicing defects. 

(Tran et al., 2015) 

Drosophila expressing (G4C2)36  Developmental lethality. (Tran et al., 2015) 

Drosophila expressing (G4C2)36 in the eyes Cytoplasmic RNA foci and DPR in glia and neurons. Neurodegeneration - taken 
together with intronic model, toxicity is associated with DPR. 

(Tran et al., 2015) 

Drosophila expressing (G4C2)n in the eyes Length dependent neurodegeneration (Freibaum et al., 
2015) 

Drosophila expressing (G4C2)n in the motor neurons or 
nerves system 

Developmental lethality, locomotor defects, NMJ abnormalities. (Freibaum et al., 
2015) 

Drosophila expressing (G4C2)n in the salivary glands Nucleocytoplasmic defects and mRNA nuclear retention. (Freibaum et al., 
2015) 

Mouse with tetracycline inducible, HnRNP promoter driven 
(G4C2)80 

Ubiquitin positive inclusions, but no TDP-43 or DPR pathology. (Hukema et al., 2014) 

Mouse expressing C9ORF72 gene containing approx. 
(G4C2)500 

Sense and antisense RNA foci, and DPR throughout CNS. No alteration to 
survival, motor function or cognitive function. 

(Peters et al., 2015) 
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Mouse expressing C9ORF72 gene containing approx. 
(G4C2)800 

Sense and antisense RNA foci, and DPR throughout CNS. DPR inclusions 
accumulate with age. No neurodegeneration or motor defects. 

(O'Rourke et al., 
2015) 

Mouse expressing (G4C2)66 in CNS via AAV delivery Sense RNA foci, sense derived DPR inclusions, phosphorylated TDP-43 inclusions 
in cortex and hippocampus. Neuronal cell loss and astrogliosis. Behavioural 
phenotype similar to C9ORF72-ALS/FTD. 

(Chew et al., 2015) 

(G4C2)n RNA only models   

Cellular   

(G4C2)n intronic constructs transduced via LV into rat 
cortical, motor and hippocampal neurons 

(G4C2)42 repeats in intronic context caused toxicity to cortical and motor 
neurons independently of RAN translation. 

(Wen et al., 2014) 

Animal   

Drosophila expressing RNA only (G4C2)n constructs in the 
eyes 

No neurodegeneration. (Mizielinska et al., 
2014) 

DPR only models   

Cellular   

Synthetic (PR)20 and (GR)20 applied to U2OS cells and 
astrocytes 

(PR)20 and (GR)20 cause toxicity, localise to nucleolus and impair rRNA 
biogenesis 

(Kwon et al., 2014) 

DPR constructs tranfected into HEK293 cells, or transduced 
via LV into rat hippocampal and cortical neurons 

(GA)n formed p62 positive inclusions, and caused neurotoxicity. (May et al., 2014) 

DPR constructs transfected into NSC34 cells, rat cortical and 
motor neurons, and human iPSC derived neurons 

(GR)n and (PR)n caused neurotoxicity. (Wen et al., 2014) 

DPR constructs transfected into HEK293 cells and mouse 
cortical neurons  

(GA)n formed ubiquitinated p62 positive inclusions, caused toxicity, ER stress, 
and impaired the proteasome. 

(Zhang et al., 2014) 

DPR constructs transfected into HEK293 and NSC34 cells Only arginine rich DPR were toxic. (PR)n and (GR)n caused nucleolar stress, and 
inhibit stress granule formation. 

(Tao et al., 2015) 

DPR constructs transduced via LV into rat hippocampal and 
cortical neurons 

(PR)n and (GR)n form nucleolar inclusions, whilst GA forms p62 positive 
inclusions. 

(Schludi et al., 2015) 

(PR)n and (GR)n transformed into yeast Length dependent toxicity of (PR)n and (GR)n. Genetic screening suggested 
nucleocytoplasmic transport modifies (PR)n induced toxicity. 

(Jovičić et al., 2015) 

(PR)50 transduced via LV into mouse cortical neurons (PR)50 caused toxicity which could be partly rescued by KPNA3 cotransduction. (Jovičić et al., 2015) 

Synthetic (GA)15 applied to, and (GA)80 constructs 
transfected into BE2C and Neuro2a cells 

(GA)15 was neurotoxic, and could be transmitted between cells. (Chang et al., 2016) 
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Animal   

Drosophila expressing DPR in the eyes Only arginine rich DPR cause emrbyonic lethality and neurodegeneration. (Mizielinska et al., 
2014) 

Drosophila expressing (PR)50, (GA)50 or (PA)50 in the eyes (PR)50 caused neurodegeneration. (Wen et al., 2014) 

Drosophila expressing (PR)50, (GA)50 or (PA)50 in the 
motor neurons 

(PR)50 caused developmental lethality. (Wen et al., 2014) 

Drosophila expressing (PR)80, (GA)80 or (PA)80 in the eyes (PR)80 and (GR)80 cause lethality and neurodegeneration. (GR)80 suppresses 
Notch signalling. 

(Yang et al., 2015) 

Drosophila expressing DPR in the eyes (GR)n caused developmental lethality, and neurodegeneration. Genetic 
screening suggested nucleocytoplasmic transport modifies (GR)n induced 
toxicity. 

(Freibaum et al., 
2015) 

C9ORF72-ALS patient derived models   

Fibroblasts Transcriptomic changes. C9ORF72 sense ASO ablated sense RNA foci, but did not 
restore transcriptomic changes. 

(Lagier-Tourenne et 
al., 2013) 

iPSC derived motor neurons RNA foci colocalised with HnRNP A1 and PURA. Transcriptomic changes, which 
could be ameliorated with C9ORF72 sense ASO. Altered electrophysiology. 

(Sareen et al., 2013) 

iPSC derived neurons RNA foci colocalised with ADARB2. Transcriptomic changes and susceptibility to 
glutamte mediated toxicity, both of which were restored by C9ORF72 sense ASO. 

(Donnelly et al., 
2013) 

iPSC derived neurons Repeat instability. No TDP-43 mislocalisation. Cells were more susceptible to 
stress 

(Almeida et al., 2013) 

Fibroblasts, lymphoblasts, iPSC derived motor neurons Morphological and functional signs of nucleolar stress (Haeusler et al., 
2014) 

iPSC derived motor neurons Altered electrophysiology. (Devlin et al., 2015) 

iPSC derived neurons C9ORF72 mRNA variant 2 was reduced from repeat expansion allele. Repeat 
expansion did not affect C9ORF72 mRNA splicing. 

(Tran et al., 2015) 

iPSC derived neurons Disrupted nuclear import, which was rescued with C9ORF72 sense ASO (Zhang et al., 2015) 

Fibroblast derived iNeurons Disrupted nucleocytoplasmic transport. (Jovičić et al., 2015) 

iPSC derived cortical neurons Nuclear retention of mRNA. (Freibaum et al., 
2015) 

iPSC derived neurons Notch signalling was dysregulated. (Yang et al., 2015) 

iPSC derived neurons and motor neurons Repeat instability. Repeat was progressively methylated during differentiation. (Esanov et al., 2016) 
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1.8.1. Loss of Function Models 

Several studies show a reduction in C9ORF72 expression in C9ORF72-ALS patients 

(section 1.7.1), and therefore a loss of C9ORF72 function may cause or contribute to 

C9ORF72-ALS pathogenesis. Initial zebrafish and C. elegans loss of function models 

showed knock out of C9ORF72 homologues caused motor function defects (Ciura et al., 

2013; Therrien et al., 2013). Additionally, C9ORF72 knock-down via siRNA transfection 

in Neuro2a and SHSY5Y neuronal cell lines caused defects in endosomal trafficking and 

autophagy (Farg et al., 2014). However, in a more sophisticated loss of function model, 

in which C9ORF72 knock-down was confined to the glia and motor neurons of adult 

mice, neither motor neuron degeneration or motor defects were observed (Koppers et 

al., 2015). Also, in different C9ORF72 knock out mouse models, either no or mild motor 

defects were described (Atanasio et al., 2016; O'Rourke et al., 2016). Further, C9ORF72 

knock-down by antisense oligonucleotide (ASO) treatment does not cause toxicity in cell 

and animal models (Donnelly et al., 2013; Lagier-Tourenne et al., 2013; O'Rourke et al., 

2015; Sareen et al., 2013; Zhang et al., 2015) and taken together suggests C9ORF72 loss 

of function is not the primary toxic insult derived from the (G4C2)n repeat expansion in 

C9ORF72. However, we cannot rule out a contributory effect of C9ORF72 loss of function 

in ALS pathogenesis, since no studies have looked at a potential additive effect of 

C9ORF72 loss of function combined with a (G4C2)n gain of function toxicity. 

1.8.2. Gain of Function Models 

1.8.2.1. Toxicity associated with the (G4C2)n  

Multiple studies have used cellular and animal models to interrogate the gain of function 

toxicity associated with the (G4C2)n. The earliest and most basic models were cell lines 

transfected with (G4C2)n repeat constructs. Interrupted and pure (G4C2)n repeat 

constructs cause toxicity when transfected into neuronal cell lines, but not in HEK293 

cells (Lee et al., 2013; Xu et al., 2013). In (G4C2)n transfected neuronal cells, various RNA 

binding proteins were shown to colocalise with RNA foci, many of which have been 

validated in C9ORF72-ALS CNS tissue (Lee et al., 2013; Rossi et al., 2015; Xu et al., 2013). 

Additionally, a construct expressing 31 G4C2 repeats (abbreviated as (G4C2)31) was 

transfected in NSC34 and HeLa cells, and affected PURA and FMRP distribution, and 
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inhibited stress granule formation, translation and mRNA export (Rossi et al., 2015). 

Transfection of antisense (C4G2)66 constructs into HEK293 cells also caused toxicity (Zu 

et al., 2013). However, the (G4C2)n expression level is much higher in these models than 

in C9ORF72-ALS patients, and only short term effects can be studied, making 

transfection models fairly poor at replicating the actual physiological effects of the 

(G4C2)n repeat. 

Several groups have also generated Drosophila and mouse models that express the 

(G4C2)n. Drosophila models that expressed an interrupted (G4C2)30 repeat specifically 

in the eyes or motor neurons displayed neurodegeneration and motor defects 

respectively (Xu et al., 2013). Additionally, the eye neurodegeneration could be rescued 

by PURA overexpression in the Drosophila. In a separate study, Drosophila models with 

either eye or pan-neuronal expression of either (G4C2)8 or (G4C2)58 repeats displayed 

length dependent eye degeneration or motor defects with neuromuscular junction 

defects respectively (Freibaum et al., 2015). Additionally, in both the (G4C2)30 and 

(G4C2)58 Drosophila models with eye specific expression, genetic screening identified 

nucleocytoplasmic transport as a potent modifier of (G4C2)n induced toxicity (Freibaum 

et al., 2015; Zhang et al., 2015). However, the (G4C2)n repeat is overexpressed in these 

Drosophila models, and the physiological relevance of fly eye degeneration to human 

motor neuron degeneration is questionable. Although, the defects in nucleocytoplasmic 

transport identified in the Drosophila models have also been validated in patient derived 

neuronal cells (section 1.8.2.2). 

In addition to the Drosophila (G4C2)n gain of function models described above, four 

mouse models have also been generated to study (G4C2)n gain of function toxicity. One 

mouse model expressed a (G4C2)80 repeat from a tetracycline inducible HnRNP 

promoter, and displayed ubiquitin positive inclusions in the CNS, but no TDP-43 

inclusions, DPR pathology, neurodegeneration or behavioural defects (Hukema et al., 

2014). Additionally, two other mouse models were generated that carry a patient 

derived C9ORF72 gene containing either 500 or 800 (G4C2)n repeats (O'Rourke et al., 

2015; Peters et al., 2015). Sense and antisense RNA foci as well as DPR were detected 

throughout the CNS, but there was no neurodegeneration, or alteration in survival, 

motor function or cognitive function in either of these mouse models (O'Rourke et al., 
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2015; Peters et al., 2015). Although the aforementioned mouse models do not support 

a (G4C2)n gain of function toxicity, another mouse model replicates several aspects of 

C9ORF72-ALS/FTD pathology (Chew et al., 2015). A (G4C2)66 repeat expressed from a 

strong promoter was delivered to the mouse CNS via adeno-associated virus, and brains 

of 6-month old mice subsequently displayed sense RNA foci, and sense derived DPR 

inclusions throughout the CNS. Additionally, the brains contained TDP-43 inclusions, 

cortical and cerebellar degeneration, and astrogliosis. Further, these mice also 

developed behavioural abnormalities similar to the clinical symptoms of C9ORF72-

ALS/FTD patients, including hyperactivity, anxiety, antisocial behaviour, and motor 

defects (Chew et al., 2015). Therefore, the mouse models suggest high level expression 

of the (G4C2)n repeat expansion is capable of causing neurodegeneration and C9ORF72-

ALS/FTD pathology. Equally, since ALS develops in older age, the (G4C2)n repeat may 

only cause toxicity in the aged human CNS environment, which is not replicated in the 

aforementioned mouse models. 

1.8.2.2. Patient Derived Cellular Models 

More advanced cellular models of C9ORF72-ALS are derived from patient cells. Some of 

the more sophisticated models convert fibroblasts to iPSC, which can be subsequently 

differentiated to neuronal or motor neuronal cultures. Whilst the (G4C2)n expression is 

certainly much closer to physiologically relevant levels, these models are not 

reductionist and are affected by (potential) C9ORF72 haploinsufficiency, 

(G4C2)n/(C4G2)n RNA, and all DPR species simultaneously. Similarly to transfected cells, 

C9ORF72-ALS patient derived cell lines show colocalisation between (G4C2)n RNA foci 

and various RNA binding proteins, including ADAR2B, HnRNPA1, and PURA (Donnelly et 

al., 2013; Sareen et al., 2013). Additionally, many functional defects are described in 

C9ORF72-ALS patient derived cells including nucleolar stress, susceptibility to glutamate 

mediated excitotoxicity and other cellular stresses, transcriptomic alterations, altered 

electrophysiology, and impaired nucleocytoplasmic transport (Almeida et al., 2013; 

Devlin et al., 2015; Donnelly et al., 2013; Freibaum et al., 2015; Haeusler et al., 2014; 

Lagier-Tourenne et al., 2013; Sareen et al., 2013; Zhang et al., 2015). Further, in many of 

these studies, ASO targeted to the C9ORF72 sense strand were used, which ablated 

sense derived RNA foci and DPR, and also partly or completely ameliorated the 
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functional defects. This strongly argues for a gain of function toxicity, and against a loss 

of function toxicity. 

1.8.2.3. DPR Toxicity Models 

Upon discovery of the (G4C2)n RAN translation products in C9ORF72-ALS, several groups 

have examined the toxicity of the DPR proteins. DPR constructs that are independent of 

the (G4C2)n repeat sequence have been transfected into various cell lines including 

HEK293 and NSC34 cells, or transduced via lentiviral vectors into primary neuronal 

cultures from rodents. The findings suggest that all the DPR species possess 

neurotoxicity, although the arginine containing (GR)n and (PR)n species appear to be the 

most toxic (Jovičić et al., 2015; Kwon et al., 2014; May et al., 2014; Schludi et al., 2015; 

Tao et al., 2015; Wen et al., 2014; Zhang et al., 2014). Further, the arginine rich DPR 

proteins are thought to mimic the SR domain found in splicing factors, which localises 

proteins to the nucleolus (Kwon et al., 2014). However, the (GR)n and (PR)n lack serine 

residues, so cannot be phosphorylated, and are therefore retained in the nucleolus. As 

a result, the arginine rich DPR proteins are suggested to cause nucleolar stress and RNA 

splicing dysregulation (Kwon et al., 2014).  

Similarly in Drosophila models, expression of the arginine rich DPR proteins in the eye 

caused neurodegeneration, and is suggested to disrupt Notch signalling (Freibaum et al., 

2015; Yang et al., 2015). In addition, two elegant studies using Drosophila models 

showed that the toxicity of the (G4C2)n repeats was dependent on the production of 

DPR, and not (G4C2)n RNA foci (Mizielinska et al., 2014; Tran et al., 2015). In the first 

study, Drosophila expressing either pure (G4C2)36 or 103 repeats in the eye displayed 

neurodegeneration, whilst flies expressing ‘RNA only’ repeats (which contained stop 

codons interspersed throughout the construct) did not develop neurodegeneration 

(Mizielinska et al., 2014). Importantly, the pure repeats produced DPR proteins whilst 

the ‘RNA only’ repeats did not (Mizielinska et al., 2014). Additional DPR only Drosophila 

models showed the arginine rich DPR species caused the most severe eye 

neurodegeneration (Mizielinska et al., 2014). Drosophila expressing (G4C2)160 in an 

intronic context displayed nuclear sense RNA foci in the glutamatergic neurons and glia 

cells, but displayed no signs of neurodegeneration or toxicity (Tran et al., 2015). 

However, a polyadenylated (G4C2)36 repeat mRNA expressed in a different Drosophila 
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model displayed far greater toxicity, and this was associated with (G4C2)n RNA export 

and much greater DPR expression in the affected cells (Tran et al., 2015).  

1.8.3. Other Genetic Phenomena Associated with the (G4C2)n Repeat 

Lastly, other pure biological aspects of the (G4C2)n repeat have been studied in various 

cellular and animal models. Several C9ORF72-ALS patient derived models show somatic 

instability in the (G4C2)n, specifically during differentiation of fibroblasts to iPSC, and 

from iPSC to neuronal and motor neuronal cultures (Almeida et al., 2013; Esanov et al., 

2016; Sareen et al., 2013). Further, HEK293 cells transfected with (G4C2)n repeat 

constructs showed length dependent instability, that whole (G4C2) units were lost or 

gained via contraction and expansions respectively, and also replication efficiency of the 

(G4C2)n decreased in a length dependent manner (Thys and Wang, 2015). C9ORF72-ALS 

patient derived cell models also show reduced expression of C9ORF72 mRNA variant 2 

from the allele containing the repeat expansion (Almeida et al., 2013; Donnelly et al., 

2013; Tran et al., 2015). The reduced C9ORF72 transcription is suggested to be caused 

by (G4C2)n expansion methylation, and in HEK293 cells that were transfected with 

methylated or unmethylated (G4C2)66 constructs, methylation of the (G4C2)n repeat 

reduced both RNA foci and DPR proteins (Bauer, 2016). 

1.9. Overall Aims and Objectives 

ALS is currently incurable, and therefore therapeutic agents which may slow or even 

prevent disease progression are vital. A (G4C2)n repeat expansion in C9ORF72 is the 

most common genetic cause of ALS, but it is still not fully understood how the (G4C2)n 

repeat expansion leads to motor neuron injury and ALS pathogenesis. Therefore, by 

using cellular models of C9ORF72-ALS, we may discover important therapeutic targets 

that could be directly translated into therapies for C9ORF72-ALS patients, and even 

more broadly for ALS patients as a whole. 

The overall aims of this project were to: 

1) Generate motor neuron like cellular models with tetracycline inducible 

expression of (G4C2)n repeats. 
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2) Characterise the cellular models for features of ALS and C9ORF72-ALS pathology, 

and interrogate biochemical effects of (G4C2)n repeat expression. 

3) Perform transcriptomic analysis to identify biological pathways and functions 

that may be dysregulated by (G4C2)n expression. 

4) Interrogate any potential therapeutic targets in rescue assays. 
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Chapter 2. Materials and Methods 

2.1. Materials 

Unless stated otherwise, all general materials and reagents were purchased from 

Thermo Fisher Scientific® Inc. Solutions were autoclaved in an MP25 autoclave (Rodwell) 

at 121°C, 15psi for 15mins where stated. 

2.1.1. General Materials 

Diethylpyrocarbonate (DEPC) was purchased from Applichem. Dextran Sulphate, 

Sodium salt, molecular biology grade was purchased from Calbiochem. Bromophenol 

blue powder; Chloroform; Glycerol; Methanol; and Sodium Chloride (NaCl), analytical 

grade; as well as Sodium Dodecyl Sulphate (SDS), general purpose grade were purchased 

from Fisher Scientific. Amersham™ Protran™ supported 0.2µm nitrocellulose membrane 

was purchased from GE Healthcare Life Sciences. Glycine; HEPES free acid; Tris 

(molecular biology grade); and Tris-HCl (molecular biology grade) were purchased from 

Melford Laboratories Ltd. Immobilon®-P Transfer Membrane, PVDF, 0.45µm was 

purchased from Merk Millipore. Acetic acid; Ammonium Persulphate (APS); β-

Mercaptoethanol; Dimethylformamide (DMF); Dithiothreitol (DTT); Formamide; Sodium 

Citrate Dehydrate; Sodium Phosphate Monobasic (NaH2PO4); Sodium Phosphate Dibasic 

(Na2HPO4); TEMED; Triton™ X-100; Trizma® base; and Tween® 20 were purchased from 

Sigma-Aldrich. EDTA, Disodium salt, Dihydrate was purchased from Thermo Fisher 

Scientific® Inc. Oxoid™ Phosphate Buffered Saline Tablets (Dulbecco A) were purchased 

from Thermo Scientific. 

2.1.2. General Buffers and Solutions 

2.1.2.1. Phosphate Buffered Saline (PBS)  

The PBS consisted of 137mM NaCl, 3mM KCl, 8mM Na2HPO4, and 1.5mM KH2PO4, at pH 

7.3: 10 Oxoid™ PBS tablets were dissolved in 1L dH2O, and the solution was autoclaved.  

2.1.2.2. 1X Tris Acetate EDTA (TAE) Buffer 

The 1X TAE buffer consisted of 40mM Tris, 40mM Acetate, and 1mM EDTA, at pH 8.0. 
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2.1.2.3. 20X Saline Sodium Citrate (SSC) Buffer 

The 20X SSC buffer consisted of 3M NaCl, and 0.3M Sodium Citrate, at pH 7.0, and was 

DEPC treated. 

2.1.2.4. 1M Sodium Phosphate Buffer pH 7.0 

The 1M Sodium Phosphate buffer was comprised of 39% (v/v) 1M NaH2PO4, and 61% 

(v/v) 1M Na2HPO4, at pH 7.0, and was DEPC treated. 

2.1.2.5. Diethylpyrocarbonate (DEPC) Treatment of Solutions 

Buffers and solutions used for RNA work were pre-treated with DEPC to inhibit RNase 

activity. 0.001 volumes of DEPC was added to the solution and stirred for at least 1h. 

The solution was then autoclaved to degrade the DEPC. 

2.1.3. Molecular Biology Materials 

HyperLadder™ I, HyperLadder™ II, HyperLadder™ III, HyperLadder™ IV, and 

HyperLadder™ V molecular weight markers and agarose (molecular grade) were 

purchased from Bioline. T4 Polynucleotide Kinase (PNK); Kinase 10X Reaction Buffer; 

alkaline phosphatase, shrimp (SAP); and 10X SAP Buffer were purchased from 

Boehringer Ingelheim. LB Broth, Miller (molecular genetics granular); and LB Agar, Miller 

(molecular genetics powder) were purchased from Fisher Scientific® Inc. DNA 

Polymerase I, large fragment (Klenow), and 10X Klenow Buffer were purchased from 

Invitrogen™. NucleoSpin Plasmid Kit (No Lid) was purchased from Macherey-Nagel. 5-α 

Competent E.coli (High Efficiency); β-10 Competent E.coli (High Efficiency); and SOC 

Outgrowth Media were purchased from New England BioLabs®. T4 DNA Ligase and 10X 

Ligase Buffer were purchased from Promega. QIAquick Gel Extraction Kit was purchased 

from QIAGEN. dATP; ethidium bromide; carbenicillin; spectinomycin; and synthesised 

TCGAC(G4C2)10 sense and ACGT(G2C4)10 antisense ssDNA oligonucleotides were 

purchased from Sigma-Aldrich. BamHI, DraI, EcoRV, HindIII, NcoI, SalI, and XhoI 

FastDigest restriction enzymes; 10X FastDigest Green Buffer; 2X ReddyMix PCR Master 

Mix were purchased from Thermo Fisher Scientific® Inc. The Translate tool and Compute 

pI/Mw tool were freely available at http://web.expasy.org/translate/ and 

http://web.expasy.org/compute_pi/ respectively.  

http://web.expasy.org/translate/
http://web.expasy.org/compute_pi/
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Table 2.1 Primers used in generation of the cell models. All primers used for molecular 
biology methods were purchased from Sigma-Aldrich. 

Primer Sequence 

CMV-Forward 5’-CGCAAATGGGCGGTAGGCGTG 

BGH-Reverse 5’-TAGAAGGCACAGTCGAGG 

 

Table 2.2 Plasmid origins and manipulations. The individuals who provided the plasmid 
or performed the manipulation are referred to by their initials: Prof Stuart Wilson (SW); 
Dr Adrian Higginbottom (AH); Matthew Stopford (MS); Dr Padraig Mulchay (PM); Dr Kurt 
De Vos (KDV); and Dr Adrian Isaacs (AI). 

Plasmid Manipulations Company/ Origin 

(G4C2)n construction vectors 
pcDNA6.2-GW/EmGFP-miR 
 

N/A Gifted by 
SW 
 

pcDNA6.2-GW/EmGFP-miR-
(G4C2)10 
 

(G4C2)10 construct inserted into SalI and XhoI 
sites. 

Generated 
by AH 

pcDNA6.2-GW/EmGFP-miR-
(G4C2)51 
 

(G4C2)51 construct inserted into SalI and XhoI 
sites. 

Generated 
by AH 

pcDNA6.2-GW/EmGFP-miR-
(G4C2)102 
 

(G4C2)102 construct inserted into SalI and XhoI 
sites. 

Generated 
by AH 

pcDNA6.2-(G4C2)10 EmGFP removed from pcDNA6.2-GW/EmGFP-
miR-(G4C2)10 via DraI digest and relegation. 
 

Generated 
by MS 

pcDNA6.2-(G4C2)51 EmGFP removed from pcDNA6.2-GW/EmGFP-
miR-(G4C2)10 via DraI digest and relegation. 
 

Generated 
by MS 

pcDNA6.2-(G4C2)102 EmGFP removed from pcDNA6.2-GW/EmGFP-
miR-(G4C2)10 via DraI digest and relegation. 
 

Generated 
by MS 

pcDNA6.2-(C4G2)102 (G4C2)102 construct was inserted in the 
antisense orientation. 
  

Generated 
by PM 

FRT vectors 
pcDNA5/FRT/TO-GFP pcDNA5/FRT/TO-GFP was cut with BamHI and 

XhoI, end filled and ligated. 
Addgene 

pcDNA5/FRT/TO N/A 
 

Invitrogen™ 

pcDNA5/FRT/TO-HIS 6 x HIS Tag inserted into HindIII and BamHI 
restriction sites. 
 

Addgene 

pcDNA5/FRT/TO-HIS-
(G4C2)10 

(G4C2)10 cut from pcDNA6.2-(G4C2)10 using 
DraI and XhoI restriction sites, and inserted into 
EcoRV and XhoI sites in pcDNA5/FRT/TO-HIS. 
 

Generated 
by MS 
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pcDNA5/FRT/TO-HIS-
(G4C2)51 

(G4C2)51 cut from pcDNA6.2-(G4C2)51 using 
DraI and XhoI restriction sites, and inserted into 
EcoRV and XhoI sites in pcDNA5/FRT/TO-HIS. 
 

Generated 
by MS 

pcDNA5/FRT/TO-HIS-
(G4C2)102 

(G4C2)102 cut from pcDNA6.2-(G4C2)102 using 
DraI and XhoI restriction sites, and inserted into 
EcoRV and XhoI sites in pcDNA5/FRT/TO-HIS. 
 

Generated 
by MS 

pcDNA5/FRT/TO-(G4C2)10 HIS tag removed from pcDNA5/FRT/TO-HIS-
(G4C2)10 by HindIII and BamHI digest and 
relegation. 
 

Generated 
by MS 

pcDNA5/FRT/TO-(G4C2)51 HIS tag removed from pcDNA5/FRT/TO-HIS-
(G4C2)51 by HindIII and BamHI digest and 
relegation. 
 

Generated 
by MS 

pcDNA5/FRT/TO-(G4C2)102 HIS tag removed from pcDNA5/FRT/TO-HIS-
(G4C2)102 by HindIII and BamHI digest and 
relegation. 
 

Generated 
by MS 

Vectors for Flp-In™ T-REx™ cell line generation  
pPGKFLPobpA N/A 

 
Addgene 

pFRT/lacZeo N/A Invitrogen™ 
 

pcDNA6/TR N/A Invitrogen™ 
 

DPR expression vectors   
p(GA)68 
 

N/A Generated 
by KDV 
 

p(AP)100, p(GR)100, 
p(PR)100 

N/A Gifted by AI 

2.1.4. Cell Culture Materials  

Gelatin powder was purchased from BDH biochemical. Tetracycline-free foetal bovine 

serum (FBS), South American origin, sterile filtered was purchased from Biosera. 

Puromycin dihydrocholride; and BpV (Phen) were purchased from Calbiochem. NSC34 

cells were kindly gifted by Prof. Neil Cashman. Blasticidin S HCl powder; Flp-In™ T-REx™ 

Core Kit; Flp-In™ T-REx™ HEK293 cells; hygromycin B; Lipofectamine® 2000; Tetracycline 

hydrochloride powder; and Zeocin™ were purchased from Invitrogen™. Phenol red-free 

DMEM; Penicillin/Streptomycin; and 10X Trypsin, with versene were purchased from 

Lonza. 6-carboxy-2’,7’-dichlorodihydrofluorescein diacetate, di(acetoxymethyl ester) 

(DCFDA); and ethidium homodimer-1 (EthD1)  were purchased from Molecular Probes™, 

Life Technologies. Dulbecco’s modified eagle medium (DMEM); FBS; menadione sodium 
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bisuphate; Polyethylenimine (PEI); and 5, 10, 15, 20-tetrakis(1-methyl-4-

pyridino)porphyrin tetra(p-toluenesulfonate) (TMPyP) were purchased from Sigma-

Aldrich. Opti-MEM® Reduced Serum Medium, no phenol red was purchased from 

Thermo Fisher Scientific® Inc. 

2.1.5. Biochemical Assay Materials 

2X Brilliant III qPCR Master Mix; and 2X Brilliant III SYBR Green qPCR Master Mix were 

purchased from Agilent Technologies Ltd. Protein Assay Dye Reagent Concentrate was 

purchased from Bio-Rad®. BioScript™ Reverse Transcriptase kit (which contains 

BioScript™ Reverse Transcriptase; and 5X Reaction Buffer); and RiboSafe RNase Inhibitor 

were purchased from Bioline. EZ-RNA kit (which contains denaturing solution, and 

extraction and phase separation solution) was purchased from Biological Industries. 5’ 

TYE-563-labelled LNA sense (5’-CCCCGGCCCCGGCCCC) and (5’-GGGGCCGGGGCCGGGG) 

DNA probes (batch numbers 607323 and 515905 respectively) were purchased from 

Exiqon Inc. Bovine serum albumin (BSA) powder, Fraction V, microbiological grade were 

purchased from Fisher Scientific. Streptavidin Sepharose High Performance beads were 

purchased from GE Healthcare. Ultra-Pure ProtoGel® 30% (w/v) Acrylamide, 0.8% (w/v) 

Bis-Acrylamide Stock Solution (37.5:1), protein and sequencing electrophoresis grade; 

Prestained Blue Protein Ladder; and EZ-ECL Kit were purchased from Geneflow Ltd. 

Original dried skimmed milk powder was purchased from Marvel. DNase I recombinant, 

RNase-free; 10X DNase I Buffer; and Phosphatase inhibitor tablets (PhosSTOP™) (used 

at concentration stated by manufacturer) were purchased from Roche. Cyclohexamide, 

Paraformaldehyde (PFA), crystalline, reagent grade; SIGMAFAST™ Protease Inhibitor 

Cocktail (PIC) tablets, EDTA free (used at concentration stated by manufacturer); RNase 

A; Sodium Azide; and Thiozolyl Blue Tetrazolium Bromide (MTT) powder; were 

purchased from Sigma-Aldrich. TRIzol® LS Reagent was purchased from Thermo Fisher 

Scientific® Inc. Hard Set mounting medium with DAPI was purchased from Vector 

Laboratories Inc. 
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2.1.5.1. qRT-PCR Primers 

Table 2.3 qRT-PCR primer details. Target gene and primer sequences are shown. 
Primer Sequence 

Actb Forward 5’-CGGTTCCGATGCCCTGAGGCTCTT 
 

Actb Reverse 
 

5’-CGTCACACTTCATGATGGAATTGA 

Gapdh Forward 5’-ATGGTGAAGGTCGGTGTGAA 
 

Gapdh Reverse 
 

5’-TGGCAACAATCTCCACTTTGC 

Mouse 18S rRNA Forward 5’-GATGGTAGTCGCCGTGCC 
 

Mouse 18S rRNA Reverse 5’-GCCTGCTGCCTTCCTTGG 
 

Mouse 28S rRNA Forward 5’-AGAGGTAAACGGGTGGGGTC 
 

Mouse 28S rRNA Reverse 
 

5’-GGGGTCGGGAGGAACGG 
 

Mouse 45S rRNA Forward 5’-CGTAGGGAAGTCGGTCGTTC 
 

Mouse 45S rRNA Reverse 5’-GAGGGGGCTCCAGACATCC 
 

Mouse 5.8S rRNA Forward 5’-ACTCGGCTCGTGCGTC 
 

Mouse 5.8S rRNA Reverse 5’-CCGACGCTCAGACAGG 
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Table 2.4 PrimeTime® qPCR assay (Integrated DNA Technologies®) product details. Target gene, assay ID, RefSeq Accession number(s), gene 
region, primers sequences and probe sequences are shown. 

Gene PrimeTime® Assay ID Ref Seq Region Primer Sequence Probe Sequence 

Actb Mm.PT.58.33540333 

 

NM_007393 Exon 1-2 5’-ATGCCGGAGCCGTTGTC-3’ 

5’-GCGAGCACAGCTTCTTTG-3’ 

 

5’-/56-FAM/CCGCCACCA/ZEN/GTTCGCCATG/3IABkFQ/-3’ 

Akt1 Mm.PT.58.8333433 NM_009652 

NM_001165894 

 

Exon 2-3 5’-GCCGTTCCTTGTAGCCAAT-3’ 

5’-GACGTAGCCATTGTGAAGGAG-3’ 

5’-/56-FAM/TATTCCCCT/ZEN/CGTTTGTGCAGCCA/3IABkFQ/-3’ 

Mtor Mm.PT.58.28403918 NM_020009 

 

Exon 46-47 5’-TGCATCACTCGTTCATCCTG-3’ 

5’-AAGTCATCACATCCAAGCAGA-3’ 

 

5’-/56-FAM/CCCATTGCT/ZEN/GCCCATCAGAGTCA/3IABkFQ/-3’ 

Pten Mm.PT.56a.13345002 NM_008960 

 

Exon 8-9 5’-TCATTGTCACTAACATCTGGAGTC-3’ 

5’-GCCAACCGATACTTCTCTCC-3’ 

 

5’-/56-FAM/TTGAACTGC/ZEN/TAGCCTCTGGATTTGATGG/3IABkFQ/-3’ 

Srsf1 Mm.PT.58.32558636.g NM_173374 

NM_001078167 

 

Exon 2-3 5’-CATACATCACCTGCCTCACG-3’ 

5’-GGTCCGAGAACAGAGTGGT-3’ 

5’-/56-FAM/TGATCCTTT/ZEN/AAGTCCTGCCAGCTTCC/3IABkFQ/-3’ 

Srsf2 Mm.PT.58.7770373 

 

NM_011358 

 

 

Exon 2-3 5’-CCCAATGTCCTCTGTTAAGCC-3’ 

5’-CGAAGCGAGAGTCCAAGTCTA-3’ 

5’-/56-FAM/CAAGAGCCC/ZEN/ACCCAAGTCTCCAG/3IABkFQ/-3’ 

Trp53 Mm.PT.58.42581447 NM_011640 

NM_001127233 

Exon 8-10 5’-CTCCCGGAACATCTCGAAG-3’ 

5’-CAGGGAGCGCAAAGAGAG-3’ 

5’-/56-FAM/CGCCTCTCC/ZEN/CCCGCAAAAGAA/3IABkFQ/-3’ 
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Table 2.5 Primary antibodies used for Immunoblotting.Antibody specificity, species, 
type, dilution, blocking agent (5% (w/v) Milk/TBST (M) or 5% (w/v) BSA/TBST (B)) and 
source are shown. The individuals who provided the antibody are referred to by their 
initials: Prof Stuart Wilson (SW); Prof Stuart Pickering-Brown (SPB); and Prof Dieter 
Edbauer (DE). 

Antibody Specificity Species/type Dilution/blocking 
agent 

Source/product 
number/clone 
number 

Anti-β-actin Mouse monoclonal 1/10000 (M) Abcam, ab6276, clone AC-15 
 

Anti-Akt Rabbit polyclonal 1/1000 (M) Cell Signalling, #9272 
 

Anti-NCL Rabbit polyclonal 1/2000 (M) Proteintech, 10556-1-AP 
 

Anti-p53 Mouse monoclonal 
 

1/250 (M) BD Pharmingen™, 554147 
 

Anti-Phospho-Akt 
(Ser473) 

Rabbit monoclonal 1/1000 (B) Cell Signalling, #4060 
 
 

Anti-Phospho-PTEN 
(Ser380) 

Rabbit polyclonal 1/2000 (B) Cell Signalling, #9551 
 
 

Anti-poly(AP) Rabbit 1/5000 (M) SPB 
 

Anti-poly(GA) Mouse 1/500 (M) DE 
 

Anti-poly(GP) Rabbit 1/5000 (M) SPB 
 

Anti-poly(GR) Rabbit 1/5000 (M) SPB 
 

Anti-poly(PR) Rabbit 1/5000 (M) SPB  
 

Anti-PTEN Rabbit monoclonal 1/1000 (M) Cell Signalling, #9188 
 

Anti-RPL19 Rabbit polyclonal 
 

1/2000 (M) SW 

Anti-RPL29 Rabbit polyclonal 
 

1/500 (M) Sigma-Aldrich, R0655 
 

Anti-α-tubulin Mouse monoclonal 1/10000 (M) Sigma-Aldrich, ab7291, clone 
DM1A 

 

Table 2.6 Secondary antibodies used for Immunoblotting. Antibody specificity, species, 
type, dilution, blocking agent (5% (w/v) Milk/TBST (M) or 5% (w/v) BSA/TBST (B)) and 
source are shown. 

Antibody Dilution Source/product number/ 
clone number 

Polyclonal Goat Anti-Mouse-IgG HRP 1/10000 (M) Dako, P 0447 
 

Polyclonal Goat Anti-Rabbit-IgG HRP 1/10000 (M) Dako, P 0448 
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Table 2.7 Primary antibodies used for Immunocytochemistry. Antibody specificity, 
species, type, dilution (in 2% (w/v) BSA/PBS) and source are shown. 

Antibody Species/type Dilution Source/product 
number/clone number 

HnRNP A1 Mouse monoclonal 
 

1/500 Abcam, ab5832 

HnRNP F/H Mouse monoclonal 
 

1/1000 Abcam, ab10689 

SRSF1 Rabbit polyclonal 1/200 
 

Abcam, ab38017 

SRSF2 Mouse monoclonal 1/200 
 

Abcam, ab11826 

NCL Rabbit polyclonal 1/200 Protientech, 10556-1-AP 
 

Pur-α Rabbit polyclonal 
 

5µg/mL Abcam, ab79936 

ALYREF Mouse monoclonal 
 

1/500 Sigma-Aldrich, A9979 

TDP-43 Rabbit polyclonal 1/200 Proteintech, 10782-2-AP 

 

Table 2.8 Secondary antibodies used for Immunocytochemistry. Antibody specificity, 
species, type, dilution (in 2% (w/v) BSA/PBS) and source are shown. 

Antibody Dilution Source/product 
number/clone 
number 

Goat Anti-Rabbit IgG H&L (AlexaFluor® 488) preadsorbed 
 

1/1000 Abcam, ab150081 
 

Goat Anti-Rabbit IgG H&L (AlexaFluor® 594) preadsorbed 
 

1/1000 Abcam, ab150084 
 

Goat Anti-Mouse IgG H&L (AlexaFluor® 488) preadsorbed 
 

1/1000 Abcam, ab150117 
 

Goat Anti-Mouse IgG H&L (AlexaFluor® 594) preadsorbed 1/1000 Abcam, ab150120 
 

 

2.1.6. Gene Expression Profiling Materials 

The GeneChip® WT PLUS Reagent Kit (containing First-Strand Enzyme, First-Strand 

Buffer, Second-Strand Enzyme, Second-Strand Buffer, IVT Enzyme, IVT Buffer, 1mg/mL 

HeLa total RNA (Control RNA), 2nd-Cycle Primers, 2nd-Cycle ss-cDNA Enzyme, 2nd-Cycle 

ss-cDNA Buffer, RNase H, Nuclease-free water, magnetic Purification Beads, Poly-A 

Control Stock, Poly-A Control Dilution Buffer, 10X cDNA Fragmentation Buffer, 

10units/µL UDG, 1,000 units/µL apurinic/apyrimidinic endonuclease (APE) 1, 5X TdT 
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Buffer, 30units/µL TdT, 5mM DNA Labelling Reagent, RNase-free water, 20X Eukaryotic 

Hybridisation Controls (bioB, bioC, bioD, cre), 3nM Control Oligo B2); the GeneChip® 

Hybridisation, Wash and Stain Kit (containing DMSO, 2X Hybridisation Mix, Stain Cocktail 

1, Stain Cocktail 2, Array Holding Buffer, Wash Buffer A, and Wash Buffer B); GeneChip® 

Mouse Transcriptome Array 1.0 cartridges; GeneChip® Scanner 3000; GeneChip® 

Fluidics Station 450; GeneChip® Command Console Software; and Affymetrix® 

Expression Console; Affymetrix® Transcriptomics Analysis Console (TAC) Software, were 

all purchased from Affymetrix® Ltd. 5X Novex® Hi-Density TBE Sample Buffer; and 4-20% 

TBE Gel, 1.0mm were purchased from Life Technologies. 10mg/mL NeutrAvidin was 

purchased from Thermo Scientific. The Direct-zol™ RNA Kit (which contains TRI-

Reagent®, Zymo-Spin™ II Columns, collection tubes, Wash Buffer, 1units/µL DNAse I, 10X 

DNAse I Reaction Buffer, DNAse/RNAse-free water, RNA Wash Buffer, Direct-zol RNA 

PreWash) was purchased from Zymo Research. The Database for Annotation and 

Visualisation and Integrated Discovery (DAVID; bioinformatics resources 6.7) functional 

annotation clustering tool for gene ontology enrichment analysis was freely available at 

https://david.ncifcrf.gov/. The Integrated Molecular Pathway Level Analysis (IMPaLA; 

version 9; build January 2015) over-representation tool was freely available online at 

http://impala.molgen.mpg.de/. 

2.2. Methods  

2.2.1. Molecular Biology Methods 

2.2.1.1. Restriction Digests 

Restriction sites were utilised during plasmid manipulation, construction and screening. 

≤ 1 µg plasmid DNA was digested with FastDigest restriction enzyme according to 

manufacturer’s instructions. 

2.2.1.2. Blunt Ending DNA Fragments 

During plasmid cloning procedures that required blunt end ligation, Klenow was used to 

blunt 5’ and 3’ overhangs on DNA fragments and linearised plasmids. Klenow has 5’ to 

3’ polymerase activity and 3’ to 5’ exonuclease activity, and can therefore blunt both 5’ 

https://david.ncifcrf.gov/
http://impala.molgen.mpg.de/
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and 3’ overhangs. ≤ 1µg of restriction digested plasmid was incubated with 20μL Klenow 

reaction solution (0.25units/μL Klenow, 1X Klenow Buffer in dH2O) for 1h at 37°C. 

2.2.1.3. 5’ End Phosphorylation of DNA Fragments 

Blunt ended insert fragments were 5’ phosphorylated with T4 polynucleotide kinase 

(PNK) during ligation of blunt ended DNA fragments into linearised, blunt ended 

plasmids. 5’ phosphorylation increases the efficiency of blunt ended ligation. ≤ 1µg of 

DNA fragment was incubated with 20µL PNK reaction solution (0.35units/μL PNK, 

500µM ATP, 1X Kinase Reaction Buffer in dH2O) for 30mins at 37°C. The PNK was 

inactivated by incubating for 15mins at 65°C. 

2.2.1.4. 5’ End Dephosphorylation of DNA Fragments 

5’ phosphate groups are necessary for ligation. Therefore, to minimise re-ligation of the 

linearised plasmid during ligation procedures, shrimp alkaline phosphatase (SAP) was 

used to remove the 5’ phosphate groups from the linearised plasmid. ≤ 1µg of linearised 

plasmid was incubated with 20µL SAP reaction solution (0.05units/μL SAP, 1 X SAP Buffer 

in dH2O) for 30mins at 37°C. The SAP was inactivated by incubating for 15mins at 65°C. 

2.2.1.5. Ligation of DNA Fragments 

T4 DNA Ligase was used to ligate DNA fragments and linearised plasmids. DNA 

fragments containing (G4C2)n constructs were incubated for 10mins at 70°C then snap 

cooled on ice for 5mins prior to ligation. ≤ 1µg of the linearised plasmid and DNA 

fragment insert (if applicable) were incubated with T4 DNA Ligase reaction solution 

(0.15units/μL T4 DNA Ligase, 1X Ligase Buffer in dH2O) overnight at room temp. The 

linearised plasmid and the DNA fragment to be inserted were mixed in a 1:3 ratio of 

absolute number of DNA molecules. In addition, re-ligation controls were set up that 

contained the same reagents described above, excluding the DNA fragment insert, and 

were used to measure the background number of E.coli colonies produced after 

transformation. 
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2.2.1.6. Agarose Gel Electrophoresis 

Agarose gel electrophoresis was used to separate linear DNA fragments produced by 

restriction digest or PCR. 1.5% agarose gels were prepared by adding 1.5g agarose 

powder to 100mL 1X TAE buffer. The solution was then heated in a microwave until the 

agarose powder had dissolved. Ethidium bromide was added at a final concentration of 

100ng/mL to the agarose solution, and the solution was then poured into a cassette. A 

gel comb was also placed into the agarose solution, and the solution was left for least 

30mins to cool and set. Agarose gels were then placed into an electrophoresis tank 

containing 1X TAE buffer. 2µL of a HyperLadder™ molecular weight marker was loaded 

into the first well, and was used to size the DNA fragments on the gel. Restriction digest 

and PCR samples were loaded into consecutive wells. The gel was run at 100-120V for 

45-60mins. Agarose gels were imaged using the GENi UV light imaging system (Syngene). 

2.2.1.7. DNA Extraction from Agarose Gel 

After agarose gel electrophoresis, the DNA bands were visualised using a UV 

transilluminator, and the desired DNA bands were manually cut out using a scalpel. The 

DNA was then extracted and purified using the QIAquick Gel Extraction Kit according to 

manufacturer’s instructions. 

2.2.1.8. LB Agar Plates 

Sterile LB agar (10g/L Tryptone, 5g/L Yeast extract, 10g/L NaCl, 15g/L Agar) was prepared 

by resuspending 40g LB agar powder in 1L dH2O, and autoclaving. The LB agar was then 

heated in a microwave until the LB agar had completely melted. The LB agar was left to 

cool for 5 mins, and then in sterile conditions either 50µg/mL carbenicillin or 50µg/mL 

spectinomycin selection was added to the melted LB agar. Still in sterile conditions, the 

LB agar solution was mixed and poured onto 10cm petri dishes. 

2.2.1.9. Plasmid Transformation into Competent E.coli 

Plasmid DNA or ligation mixtures were transformed into competent E.coli to clone the 

plasmid. ≤ 50ng of circular plasmid or the ligation mixture (section 2.2.1.5) were pre-

chilled on ice. 20µL competent E.coli were added to the DNA using a large-bore pipette 
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tip, and incubated for 10mins on ice. E.coli were heat shocked for 30s at 42°C and then 

incubated for 5mins on ice. In sterile conditions, 100µL SOC outgrowth media was added 

to the E.coli and they were incubated for 30mins at 37°C on a shaker. Also in sterile 

conditions, the SOC outgrowth media containing the E.coli was then spread onto an LB 

agar plate containing 50µg/mL carbenicillin or 50µg/mL spectinomycin selection 

(dependent on the plasmid’s antibiotic resistance) and incubated over-night at 37°C. 

Plasmids that contained the (G4C2)n constructs were transformed into β-10 competent 

E.coli (K12 strain, DH10B™ derivative) because they have reduced recombinase activity, 

which minimised the rearrangement of the repetitive (G4C2)n DNA sequences. All other 

plasmids were transformed into 5-α competent E.coli (K12 strain, DH5α™ derivative). 

2.2.1.10. Miniprep of Plasmid DNA 

Sterile LB Broth (10g/L Tryptone, 5g/L Yeast extract, 10g/L NaCl) was made by 

resuspending 25g LB Broth powder in 1L dH2O, and autoclaving. E.coli colonies 

containing the plasmid of interest were picked and grown in LB Broth with either 

50µg/mL carbenicillin or 50µg/mL spectinomycin selection (dependent on the plasmid’s 

antibiotic resistance) overnight at 37°C on a shaker. The plasmids were then purified 

using a NucleoSpin Plasmid Kit (No Lid) according to manufacturer’s instructions. DNA 

concentration was determined with a NanoDrop™ 1000 Spectrophotometer (Thermo 

Fisher Scientific® Inc). 

2.2.1.11. Colony PCR Screen 

PCR was used to screen for successful pcDNA5/FRT/TO-HIS-(G4C2)n and 

pcDNA5/FRT/TO-(G4C2)n plasmid ligations in the transformed E.coli colonies. Each E.coli 

colony was picked and then incubated with 6μL PCR reaction solution (0.42µM CMV-

Forward primer, 0.42µM BGH-Reverse primer, 1X ReddyMix PCR Master Mix in dH2O). 

Samples were incubated for 3mins at 95°C, followed by 35 amplification cycles of 30s at 

92°C, 30s at 55°C, and 60s at 72°C, followed by a final extension step of 5mins at 72°C.  
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2.2.2. Cell Culture Methods 

2.2.2.1. HEK293 Cell Line Maintenance 

HEK293 cells were cultured in 10mL supplemented DMEM (10% (v/v) FBS, 50units/mL 

penicillin/streptomycin) in 10cm plates in a 37°C / 5% CO2 incubator. HEK293 cells were 

split every 3-4 days. To split the HEK293 cells, the media was removed, and cells were 

washed in PBS. 1mL 1X trypsin was added to the cells, and cells were returned to 

incubator for 4mins. The plate was tapped to dislodge trypsinised cells from the plate, 

and 9mL supplemented DMEM was added. Cells were resuspended, and 1mL cell 

suspension was added to a new 10cm plate. Supplemented DMEM was added to a final 

volume of 10mL. 

2.2.2.2. HEK293 Sham and HEK293 (G4C2)n Cell Line Generation 

pcDNA5/FRT/TO, pcDNA5/FRT/TO-(G4C2)10, pcDNA5/FRT/TO-(G4C2)51, and 

pcDNA5/FRT/TO-(G4C2)102 were each co-transfected with pPGKFLPobpA into Flp-In™ 

T-REx™ HEK293 cells. 24h post-transfection, the HEK293 cells were split onto 4 new 

plates. Supplemented tetracycline-free DMEM was added containing 15μg/mL 

blasticidin and 150μg/mL hygromycin to select for transformed cells. 5 days post-

transfection, media was replenished with 50% HEK293 conditioned / 50% fresh media 

with selection. 15 days post-transfection, visible colonies of HEK293 cells were picked 

and transferred to a 48 well plate. The HEK293 colonies were grown on the 48 well plate 

until 60% confluent. The clones were then screened for Zeocin™ sensitivity, and 

blasticidin/hygromycin resistance. Clones that were blasticidin/hygromycin-resistant 

but Zeocin™-sensitive were expanded and cryopreserved. 

2.2.2.3. HEK293 Sham and HEK293 (G4C2)n Cell Line Maintenance 

HEK293 sham and HEK293 (G4C2)n cells were cultured in 10mL supplemented DMEM 

(10% (v/v) tetracycline-free FBS, 50units/mL penicillin/streptomycin) with 15µg/mL 

blasticidin, and 150µg/mL hygromycin, in 10cm plates in a 37°C / 5% CO2 incubator. 

HEK293 cells were split every 3-4 days, as described in section 2.2.2.1. 
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2.2.2.4. NSC34 Cell Line Maintenance 

NSC34 cells were cultured in 10mL supplemented DMEM (10% (v/v) FBS, 50units/mL 

penicillin/streptomycin), in 10cm plates in a 37°C / 5% CO2 incubator Media was 

removed and replenished every 2-3 days. NSC34 cells were split every 3-4 days. To split 

the NSC34 cells, the media was removed and 10mL supplemented DMEM was added to 

the plate. The NSC34 cells were dislodged from the plate into suspension by pipetting 

the media up and down. 1mL of the cell suspension was added to a new 10cm plate. 

Supplemented DMEM with the relevant selection agents was added to a final volume of 

10mL. 

2.2.2.5. Flp-In™ T-REx™ NSC34 Cell Line Generation 

A Flp-In™ T-REx™ NSC34 host cell line was generated using the Flp-In™ T-REx™ core kit 

according to the manufacturer’s instructions. Briefly, pFRT/lacZeo was transfected into 

WT NSC34 cells, and Zeocin™ selection was added to the NSC34 media to select for 

stable transformants. Zeocin™-resistant clones were picked, expanded, and 

cryopreserved. Genomic DNA was then extracted from these Flp-In™ NSC34 clones, and 

screened using Southern Blotting. Flp-In™ NSC34 clones that contained only one 

genomic FRT site were further analysed for the transcriptional activity of that FRT site. 

Flp-In™ NSC34 clones were transfected with pcDNA5/FRT/GFP, and hygromycin 

selection was added to the Flp-In™ NSC34 media to select for stable transformants. Flp-

In™ NSC34 clones were also negatively screened with Zeocin™ to check the insertions 

were not random. These Flp-In™ NSC34 GFP cells were then screened using a fluorescent 

microscope for GFP expression levels. Clones that expressed the highest GFP levels were 

transfected with pcDNA6/TR, and blasticidin/hygromycin selection was added to Flp-In™ 

NSC34 GFP media to select for stable transformants. These mixed populations of Flp-

In™ T-REx™ NSC34 GFP cells were screened for GFP repression at basal levels, and 

increased GFP expression with tetracycline induction.  

Once a Flp-In™ clone with repressible GFP expression was identified, the non-GFP T4E2A 

Flp-In™ T-REx™ NSC34 clonal line was transfected with pcDNA6/TR, and 

blasticidin/Zeocin™ selection was added to the Flp-In™ T-REx™ NSC34 media to select 
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for stable transformants. Blasticidin/Zeocin™-resistant clones were picked, expanded, 

and cyropreserved. Flp-In™ T-REx™ NSC34 clones were transfected with 

pcDNA5/FRT/GFP, and blasticidin/hygromycin selection was added to the Flp-In™ T-

REx™ NSC34 GFP media to select for stable transformants. Blasticidin/hygromycin-

resistant Flp-In™ T-REx™ NSC34 GFP clones were also screened for Zeocin™ sensitivity. 

Blasticidin/hygromycin-resistant, Zeocin™-sensitive Flp-In™ T-REx™ NSC34 GFP clones 

were then screened for GFP expression ± tetracycline induction. Flp-In™ T-REx™ NSC34 

clonal line B10-2 had modest GFP expression at basal levels, and high GFP expression 

when induced with tetracycline. Therefore B10-2 was selected as the parental Flp-In™ 

T-REx™ NSC34 host cell line for generating the isogenic, tetracycline-inducible Flp-In™ T-

REx™ NSC34 sham and (G4C2)n cell lines. 

2.2.2.6. Flp-In™ T-REx™ NSC34 Cell Line Maintenance 

All NSC34 cells were grown in 10cm plates in a 37°C / 5% CO2 incubator. Flp-In™ T-REx™ 

NSC34 cells were cultured in 10mL supplemented tetracycline-free DMEM with 

20µg/mL Zeocin™, and 5µg/mL blasticidin, in 10cm plates in a 37°C / 5% CO2 incubator. 

Media was removed and replenished every 2-3 days. The media that was removed was 

centrifuged at 400 x g for 4mins, and the media was transferred to a new flask and stored 

as conditioned media. NSC34 cells were split every 3-4 days, as described in section 

2.2.2.4. 

2.2.2.7. NSC34 Sham and NSC34 (G4C2)n Cell Line Generation 

pcDNA5/FRT/TO, pcDNA5/FRT/TO-(G4C2)10, pcDNA5/FRT/TO-(G4C2)51, and 

pcDNA5/FRT/TO-(G4C2)102 were each co-transfected with pPGKFLPobpA into Flp-In™ 

T-REx™ NSC34 cells. 48h post-transfection, the media was replenished, and the NSC34 

cells were split onto 3 new 10cm plates. 5μg/mL blasticidin and 100μg/mL hygromycin 

were added to the media to select for transformed clones. The media containing 

selection was replenished every 3 days. 10 days post-transfection, media was 

replenished with 50% conditioned / 50% fresh media with selection. Visible colonies of 

NSC34 cells were picked and transferred to a 48 well plate. The NSC34 colonies were 

grown on the 48 well plate until 60% confluent. The clones were then screened for 

Zeocin™ sensitivity, and blasticidin/hygromycin resistance. Clones that were 
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blasticidin/hygromycin-resistant but Zeocin™-sensitive were expanded and 

cryopreserved. 

2.2.2.8. NSC34 Sham and NSC34 (G4C2)n Cell Line Maintenance 

NSC34 sham and NSC34 (G4C2)n cells were cultured in 10mL supplemented tetracycline-

free DMEM with 5µg/mL blasticidin, and 100µg/mL hygromycin B, in 10cm plates in a 

37°C / 5% CO2 incubator. Media was removed and replenished every 2-3 days. NSC34 

cells were split every 3-4 days, as described in section 2.2.2.4. NSC34 sham and NSC34 

(G4C2)n cells were seeded onto gelatin-coated coverslips for RNA FISH and ICC methods. 

2.2.2.9. Cryopreservation of Cell Lines 

Media was removed from cells, and cells were resuspended in fresh media (either via 

trypsinising for HEK293 cellls (section 2.2.2.1) or dislodging the cells by pipetting for 

NSC34 cells (section 2.2.2.4)). Cells were centrifuged at 400 x g for mins, and then 

supernatant was removed. Approximately 5-10 x 106 Cells were resuspended in 800 µL 

10% (v/v) DMSO/ 90% (v/v) FBS, and transferred to a cryogenic vials. Cryogenic vials 

were placed in a CoolCell® SV2 (Biocision), which was then incubated for 2h at -80°C. 

The cryogenic vials were then transferred to liquid nitrogen for long term storage. 

2.2.2.10. Tetracycline Induction of Cell Lines 

10µg/mL tetracycline was added to HEK293 sham and HEK293 (G4C2)n cell media to 

induce expression of the construct. Unless stated otherwise, 0.5µg/mL tetracycline was 

added to NSC34 sham and NSC34 (G4C2)n cell media to induce expression of the 

construct. Tetracycline was added every 3 days (if applicable) to maintain concentration 

in the media. 

2.2.2.11. Plasmid Transfection of Cell Lines 

pcDNA5/FRT/TO and pPGKFLPobpA transfections – For the Flp-In™ T-REx™ HEK293 cells, 

10μL Lipofectamine® 2000, 6μg pPGKFLPobpA, and 4 μg pcDNA5/FRT/TO vector were 

used per 10cm plate. For the Flp-In™ T-REx™ NSC34 cells, 15μL Lipofectamine® 2000, 

9μg pPGKFLPobpA, and 6μg pcDNA5/FRT/TO vector were used per 10cm plate. 

Lipofectamine® 2000 was mixed with 1.5mL Opti-MEM®, and separately, the 
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pPGKFLPobpA and pcDNA5/FRT/TO plasmids were mixed with 1.5mL Opti-MEM®. Both 

mixtures were incubated for 10mins at room temperature. The two mixtures were then 

mixed together, and incubated for 10mins at room temperature. Media was removed 

from cells, and 3mL DNA/Lipofectamine® mixture was added to the cells. The cells were 

incubated for 6h, and then 10mL supplemented tetracycline-free DMEM containing 

blasticidin was added to cells. The media was removed and replenished 24h post 

transfection for the Flp-In™ T-REx™ HEK293 cells, and 48h post transfection for the Flp-

In™ T-REx™ NSC34 cells. 

(C4G2)102, (GA)68, (GR)100, (AP)100, (PR)100 – 14μg plasmid DNA and 50μg PEI were 

used per 1mL Opti-MEM®. Firstly, the plasmid DNA and PEI were mixed with Opti-

MEM®, and then incubated for 15mins at room temperature. The DNA/PEI mix was then 

added dropwise to HEK293 cells. 100μL of DNA/PEI mix was added per 1mL media on 

cells.  

2.2.2.12. Stable Lentiviral Transduction of Cell Lines 

NSC34 sham and (G4C2)102 cells were transduced with an estimated 0.1-0.2 Multiplicity 

of Infection (MOI) PTEN shRNA, GFP, or control shRNA lentiviral particles. 24h post-

transduction, media was removed and supplemented tetracycline-free DMEM with 

5μg/mL blasticidin, 100μg/mL hygromycin, and 1μg/mL puromycin selection was added. 

Blasticidin/hygromycin/puromycin-resistant cells were expanded and cryopreserved. 

2.2.2.13. MTT Cell Viability Assay 

The number of viable cells was measured using MTT reagent, which is metabolised to 

an insoluble purple formazan salt. Cells were grown in triplicate wells on 96 well plates 

for up to 7 days. 0.5µg/mL MTT reagent was added to media. Plates were incubated for 

90mins in a 37 °C / 5% CO2 incubator. 1 volume SDS/DMF lysis buffer (20% (w/v) SDS, 

50% DMF (v/v), pH 4.7) was added to lyse cells. 595nm absorbance of wells was 

measured using a PHERAstar FS plate reader (BMG labtech Ltd.). 
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2.2.2.14. EthD1 Cell Death Assay 

Dead cells were measured using EthD1, which is a cell-impermeant, high affinity nucleic 

acid stain that emits red fluorescence when bound to DNA. Cells were grown in triplicate 

wells on 96 well plates for up to 5 days. 1µM EthD1 was then added, and cells were 

incubated for 30mins at 37°C. The fluorescence of DNA-bound EthD1 was measured at 

Ex570nm/Em610nm using a PHERAstar FS plate reader (BMG labtech Ltd.). Cells were 

then freeze-thawed, and cell number was measured by adding an extra 1µM fresh EthD1 

to the medium. Fluorescence was measured at Ex570nm/Em610nm. EthD1 

measurements of dead cells were then calculated as a percentage of the EthD1 

measurements of total cell number to give values for % cells dead in each condition. 

2.2.2.15. DCF Reactive Oxygen Species Assay 

Cytosolic Reactive Oxygen Species (ROS) levels were measured using DCF fluorescence. 

Cells were grown in triplicate wells on 96 well plates for up to 5 days. Media was then 

replaced with supplemented phenol-red free DMEM (10% (v/v) tetracycline-free FBS). 

10µM DCFDA was then added, and cells were incubated for 90mins at 37°C. The 

fluorescence of oxidised DCF was measured at Ex485nm/Em520nm using a PHERAstar 

FS plate reader (BMG labtech Ltd.). Cells were then freeze-thawed, and cell number was 

measured by adding 1.5µM EthD1 to the medium. Fluorescence was measured at 

Ex570nm/Em610nm. Raw DCF data were then normalised to EthD1 measurement of cell 

number. 

2.2.2.16. Growth Curve 

1.5 x 106 cells were seeded onto a 10cm plate, and incubated for 4 days. Media was then 

removed, and cells were washed off in PBS. Cells were centrifuged at 400 x g for 4mins. 

PBS was removed and cell pellet was vortexed briefly by flicking. The cells were 

resuspended in 10mL media, and then counted using a haemocytometer. 1.5 x 106 cells 

were then re-seeded onto a new 10cm plate. This counting procedure was repeated and 

recorded every 4 days up to 16 days cell growth. 
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2.2.3. Biochemical Methods 

2.2.3.1. SDS-Polyacrylamide Gel Preparation 

Resolving gels of the desired acrylamide % (w/v) were prepared by mixing reagents 

described in Table 2.9. Spacer plates with 1.0 mm integrated spacers (Bio-Rad) and short 

plates (Bio-Rad) were assembled on the Mini-PROTEAN® Tetra Cell Casting Stand and 

clamps (Bio-Rad) with gaskets (Bio-Rad). Gels were poured into glass plates, and a layer 

of isopropanol was layered on top of the gels. The gels were left for at least 15 mins to 

set, and then the isopropanol was removed. 5 % Stacking gels were prepared by mixing 

reagents described in Table 2.9, and then poured onto the set resolving gels in the glass 

plates. 1.0 mm 15-well Mini-PROTEAN® Combs (Bio-Rad) were then inserted into the 

stacking gels, and left for at least 15 mins to set. 

 

 Table 2.9 Composition of 5% Stacking gels, 12% Resolving gels and 15% Resolving gels.  
 5% Stacking gel 12% Resolving 

gel 

15% Resolving 

gel 

dH2O 

 

5.8 mL 3.5 mL 2.5 mL 

30 % (w/v) Acrylamide 

 

1.7 mL 4.0 mL 5.0 mL 

Resolving buffer (1.5 M Trizma®, 

13.9 mM SDS, pH 8.8, filtered) 

 

- 2.5 mL 2.5 mL 

Stacking buffer (0.5 M Trizma®, 

13.9 mM SDS, pH 6.8, filtered) 

 

2.5 mL - - 

10 % (w/v) APS 

 

50 μL 50 μL 50 μL 

TEMED 20 μL 20 μL 10 μL 
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2.2.3.2. Sucrose Gradient Preparation 

Sucrose was dissolved in Sucrose Gradient Buffer (SGB) (20mM Tris, 140mM KCl, 5mM 

MgCl, pH 8.0, DEPC treated) to produce 7%, 17%, 27%, 37%, and 47% (w/v) sucrose in 

SGB. The sucrose/SGB solutions were filtered using a Minisart filter with 0.2µm pores. 

2.1mL of each sucrose/SGB solution was layered carefully on top of one another in 

centrifuge tubes (lowest to highest sucrose % solutions from top to bottom respectively) 

to produce a 7-47% (w/v) sucrose gradient. Sucrose gradients were stored overnight at 

4°C. 

2.2.3.3. Cell Lysis for Immunoblotting 

Media was removed, and cells were then washed with ice cold PBS. 150µL ice cold IP 

lysis buffer (150mM NaCl, 50mM HEPES, 1mM EDTA, 1mM DTT, 0.5% (v/v) Triton™ X-

100, PIC, pH 8.0) was added per well of the 6-well plate. PhosSTOP™ was additionally 

added to the IP lysis buffer if specific phosphorylated protein isoforms were probed for 

in immunoblotting. Cells were scraped into IP lysis buffer using a cell scraper, and 

incubated for 15mins on ice. To clarify, the lysate was then centrifuged at 17,000 x g for 

5mins at 4°C. The lysate supernatant was reserved whilst the pellet of debris was 

discarded. 

2.2.3.4. Bradford Assay 

Bradford assays were used to quantify the protein concentration of cell lysates. Firstly, 

the protein assay dye reagent concentrate was diluted in dH2O in a 1:4 ratio to make a 

working concentration of Bradford reagent. 1µL cell lysate was then added to 1mL 

Bradford reagent, and mixed. The Bradford reagent and protein sample was then loaded 

into a polystyrene cuvette with 1cm path length, and the optical density shift at A595nm 

(OD595nm) of the sample relative to a blank control was measured using a WPA S1200 

Diode Array Spectrophotometer (Biochrom®). The concentration of the protein lysate 

was then calculated and converted to µg/mL using the Beer-Lambert law (OD595nm = εcl; 

where ε = 1/15, and l = 1cm). 
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2.2.3.5. Polysome Profiling and Ribosome Fractionation 

1 X 106 NSC34 cells were seeded onto 10cm plates, and were grown for 3 days. The 

media was then removed, and cells were split onto 2 new 10 cm plates in fresh media. 

The cells were incubated for a further 3 days. The media was then removed, and 

polysomes were stalled by washing cells with ice cold 0.1mg/mL cyclohexamide in PBS. 

Cells from the 2 X 10 cm plates were then lysed and scraped in 500µL Sucrose Gradient 

(SG) lysis buffer (0.5mM DTT, 1% (v/v) Triton X-100, PIC, 80units/µL RiboSafe RNase 

Inhibitor, 100µg/mL cyclohexamide, in SGB) for 10mins on ice. The lysate was 

centrifuged at 2,400 x g for 5mins at 4°C. The supernatant was transferred to a new 

Eppendorf tube, and centrifuged again at 9,600 x g for 5mins at 4°C. The supernatant 

was transferred to a fresh tube, and the protein concentration was assessed by Bradford 

assay. 3mg stalled polysome protein lysate was loaded onto the 7-47% (w/v) sucrose 

gradients and centrifuged at 35,000rpm for 3h at 4°C in an SW41 Beckman rotor. The 

sucrose gradients were separated from top to bottom into 500µL fractions using an in 

house collection system coupled with an ÄKTA pure FPLC machine (GE Healthcare Life 

Sciences). UV-absorbance of the sucrose gradient was also measured to profile the 

ribosomal subunits, ribosomes and polysomes. 

2.2.3.6. SDS-Polyacrylamide Gel Electrophoresis 

Cell lysates were mixed with 4X Laemmli buffer (228mM Tris-HCl, 38% (v/v) glycerol, 

277mM SDS, 0.038% (w/v) bromophenol blue, 5% (v/v) β-mercaptoethanol, pH 6.8) and 

boiled for 5mins at 95°C to denature the proteins. 12% or 15% SDS-Polyacrylamide gels 

were loaded into a Mini-PROTEAN® Tetra Vertical Electrophoresis Cell (Bio-Rad), and the 

apparatus was filled with running buffer (25mM Tris, 3.5mM SDS, 20mM glycine). For 

general immunoblotting methods, 25µg of denatured protein was loaded per well onto 

the SDS-polyacrylamide gels. For the polysome profiling method, 40μL of denatured 

sucrose fractions were loaded per well onto the SDS-polyacrylamide gels. 2μL prestained 

protein ladder was loaded as a molecular weight marker in one well per gel. Gel 

electrophoresis was performed at 50V for 30mins, then 150V for approximately 1.5h 

until the dye front had reached the bottom of the gel. Gels were then removed from the 

electrophoresis cell, and assembled with transfer buffer (47.9mM Tris, 38.6mM glycine, 
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1.38mM SDS, 20% (v/v) methanol)-saturated Whatman paper, and transfer buffer-

saturated membrane in a semi-dry transfer apparatus. Nitrocellulose membranes were 

used routinely for immunoblotting, however, methanol pre-soaked PVDF membranes 

were used specifically when membranes were going to be probed with anti-AP, anti-GA, 

anti-GR, anti-GP, and/or anti-PR antibodies. Electrophoretic transfer of the proteins 

from the gels to the membranes was performed at 0.15A / gel transferred for 1h. 

Membranes were then stained with Ponceau stain (0.1% (w/v) Ponceau S, 5% (v/v) 

acetic acid), and trimmed. 

2.2.3.7. Immunoblotting 

For general immunoblotting, membranes were blocked in 5% (w/v) milk/Tris Buffered 

Saline, with Tween® 20 (TBST) (20mM Tris, 137mM NaCl, 0.2% (v/v) Tween® 20, pH 7.6) 

for 1h at room temperature on a roller. However, membranes were blocked in 5% (w/v) 

BSA/TBST for 1h at room temperature on a roller, if specific phosphorylated protein 

isoforms were being probed for. The membranes were incubated with primary antibody 

(see Error! Reference source not found. for dilutions, blocking agent and source) in the d

esignated blocking agent for 1h at room temperature or over-night at 4°C on a roller. 

The membranes were then washed 3 times in TBST for 15mins at room temperature. 

The membranes were then incubated with secondary antibody conjugated to 

horseradish peroxidase (HRP) (see Table 2.6 for dilutions and source) in 5% milk/TBST 

for 1h at room temperature on a roller. The membranes were then washed 3 times in 

TBST for 15mins at room temperature. The membranes were then incubated with ECL 

for 1mins and imaged using a G:BOX (Syngene). 

2.2.3.8. RNA Fluorescence in situ Hybridisation (FISH) 

Coverslips with NSC34 and HEK293 cells were fixed and permeabilised in 4% (w/v) PFA / 

0.2% (v/v) Triton™ X-100 in PBS for 20mins at room temperature. For the RNAse treated 

control, slides were incubated with 10μg/mL RNAse A in PBS for 30mins at 37°C. 

Coverslips were blocked with hybridisation solution (50% (v/v) formamide, 2X saline 

sodium citrate (SSC), 100mg/ml dextran sulphate, 50mM sodium phosphate pH 7.0) for 

1h at 66°C. The LNA probes were incubated at 80°C for 75s, then snap cooled on ice for 

5mins to denature the DNA secondary structure. Coverslips were then incubated with 
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400ng/ml denatured probe in hybridisation solution overnight at 66°C. After 

hybridization, slides were washed once in 2X SSC / 0.1% Tween® 20 for 5mins at room 

temperature and three times in 0.1X SSC for 30mins at 65°C. NSC34 cells that were 

subsequently dual stained by immunocytochemistry (ICC), were first irradiated on ice 

with 0.3J/cm2 UV, washed 3 times with PBS, and then ICC staining was performed. 

Coverslips were mounted with mounting medium containing DAPI. All solutions were 

made with DEPC-treated water.  

2.2.3.9. Immunocytochemistry (ICC) 

Coverslips with NSC34 cells were fixed and permeabilised in 4% (w/v) PFA / 0.2% (v/v) 

Triton X-100 at room temperature for 20mins. Slides were incubated with primary 

antibody in 2% (w/v) BSA/PBS at room temperature for 1h (see Table 2.7 for antibody 

dilution and source). Coverslips were washed 3 times in PBS for 15mins at room 

temperature. Coverslips were then incubated with secondary antibody in 2% BSA/PBS 

at room temperature for 1h (see Table 2.8 for antibody dilution and source). Coverslips 

were mounted with mounting medium containing DAPI. 

2.2.3.10. Microscopy Imaging and Image Analysis 

RNA foci and RNA Binding Protein (RBP) co-stain – Both sense (G4C2)n and antisense 

(C4G2)n RNA foci were visualised using an SP5 confocal microscope system (Leica) with 

a X63/1.4 oil immersion objective lens. The presence of foci was assessed within a high 

resolution (1433mm2 per image, 511 X 511 pixels) z-stack made up of images at 0.13µm 

intervals through the entire nuclear volume of the cell under consideration. The same 

imaging was used for sense (G4C2)n RNA foci and ALYREF, NCL, PURA, SRSF1, and SRSF2 

co-staining. For sense (G4C2)n RNA foci counts, 20 cells were imaged per condition in 3 

independent experiments, and RNA foci were quantified manually. For the sense 

(G4C2)n RNA foci and RBP co-stain, 50 NSC34 (G4C2)102 cells were analysed for co-

localisation, and co-localisation was quantified manually. 

NCL – NCL staining in the NSC34 cells was visualised using an SP5 confocal microscope 

system (Leica) with a X63/1.4 oil immersion objective lens. The NCL staining was 

assessed within a high resolution (3775 mm2 per image, 511 X 511 pixels) z-stack made 
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up of images at 0.5µm intervals through the entire nuclear volume of the cell under 

consideration. To quantify the area of the nucleolus relative to the nuclear area, the 

analysis previously described by Haeusler et al. 2014 was employed. Briefly, a threshold 

of 50-100 was set in FIJI to measure the nucleolar NCL area, relative to the nuclear area 

(defined by DAPI staining). 25 cells were imaged per condition in 3 independent 

experiments. 

TDP-43 – TDP-43 staining in NSC34 cells were visualised using a LV100ND microscope 

(Nikon) fitted with a DS Ri1 Eclipse camera (Nikon). 

2.2.3.11. RNA Extraction for qRT-PCR 

Sucrose gradient fractions – 750μL TRIzol® LS Reagent was mixed with 250μL sucrose 

gradient fraction (section 2.2.3.5). 150μL chloroform was added, and samples were 

shaken vigorously for 15s. Samples were incubated for 5mins at room temperature. 

Samples were centrifuged at 12,000 x g for 10mins at room temperature. 500µL aqueous 

phase was transferred to a new Eppendorf, and 5μg glycogen, 50μL 3M sodium acetate 

pH 5.0, and 100µL isopropanol was added. The samples were incubated overnight at -

20°C. Samples were then centrifuged at 12,000 x g for 20mins at room temperature. The 

supernatant was removed and the RNA pellet was washed in 70% (v/v) ethanol. Samples 

were centrifuged at 12,000 x g for 5mins at room temperature, and the wash was 

removed. The RNA pellet was air dried for 5mins at 37°C. The RNA pellet was 

resuspended in 50μL DNase I solution (1X DNase I buffer, and 0.2units/µL DNase I 

recombinant, RNase-free in dH2O) and incubated for 30mins at 37°C, then for 5mins at 

70°C. RNA yield and quality were assessed using the NanoDrop™ 1000 (Thermo Fisher 

Scientific® Inc.).  

NSC34 cell pellets for qRT-PCR – NSC34 sham and (G4C2)102 cells were grown identically 

to those used for microarray transcriptomic analysis (section 2.2.4.1), but stored as cell 

pellets in RNA Later. RNA was extracted from these cell pellets, and used for the qRT-

PCR validation experiments. 100µL denaturing solution was added to the cell pellet, and 

the solution was pipetted up and down. Samples were incubated for 10mins at room 

temperature. 150µL extraction and phase separation solution was added, and samples 

were shaken vigorously for 15s. Samples were then incubated for 10mins at room 
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temperature and then centrifuged at 12,000 x g for 10mins at room temperature. 100µL 

aqueous phase was transferred to a new eppendorf, and 100µL isopropanol was added. 

The samples were incubated over-night at -20°C. Samples were then centrifuged at 

17,000 x g for 20mins at room temperature. The supernatant was removed and the RNA 

pellet was washed in 70% (v/v) ethanol. Samples were centrifuged at 17,000 x g for 

5mins at room temperature, and the wash was removed. The RNA pellet was air dried 

for 5mins at 37°C. The RNA pellet was resuspended in 25μL DNase I solution (1X DNase 

I buffer, and 0.2units/µL DNase I recombinant, RNase-free in dH2O) and incubated for 

30mins at 37°C, then for 5mins at 70°C. RNA yield and quality were assessed using the 

NanoDrop™ 1000 (Thermo Fisher Scientific® Inc.).  

2.2.3.12. cDNA Synthesis for qRT-PCR 

Total RNA isolated from NSC34 cells was reverse transcribed into single-stranded 

complementary DNA (ss-cDNA). cDNA synthesis was performed using the BioScript™ 

Reverse Transcriptase kit according to manufacturer’s instructions. 2µg total RNA was 

mixed with 1µL 40µM random hexamer primers, 1µL 10mM dNTP mix, and a total 

reaction volume (14µL) made up in DEPC-treated dH2O. The samples were incubated for 

5mins at 70°C for mins, then incubated for at least 1mins on ice. 1X RT buffer, 2units/µL 

RiboSafe RNase Inhibitor, 10units/µL BioScript Reverse Transcriptase, to a total volume 

reaction volume (20µL) made up in DEPC-treated dH2O. A no-RT control was also 

prepared as described, without the addition of BioScript Reverse Transcriptase to check 

for the presence of potentially contaminating genomic DNA. Samples were mixed by 

gentle pipetting, and then incubated for 10mins at 25°C, then 60mins at 42°C, then 

5mins at 85°C. In each reaction there is an approximate 1:1 conversion of RNA to cDNA. 

cDNA samples were diluted to approximately 25ng/µL cDNA in DEPC-treated dH2O. 

Samples were stored at -20°C prior to qRT-PCR. 

2.2.3.13. Quantitative Real Time PCR (qRT-PCR) 

qRT-PCR was performed in triplicate 10µL reaction volumes with a no-RT control and a 

no template control (NTC), on 96-well qRT-PCR plates. Each well contained 25ng of 

cDNA, forward and reverse primers (Table 2.3) at optimised concentrations, 2X Brilliant 

III SYBR Green qPCR Master Mix and dH2O. Plates were briefly centrifuged to collect 
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samples at the bottom of the wells. Samples were run on a 3 step profile on a Stratagene 

Mx3000P™ Real Time Thermal Cycler (Agilent Technologies Ltd.). Samples were 

incubated for 10mins at 95°C, then 40 cycles of 30s at 95°C, 60s at 60°C, and 60s at 72°C. 

A final cycle was used to determine the primer dissociation curve. 

2.2.3.14. PrimeTime® qPCR Assays 

PrimeTime® qPCT assays were performed in triplicate 10μL reaction volumes with a no-

RT control and a NTC, on 96-well qRT-PCR plates. Each well contained 25ng of cDNA, 

500nM forward and reverse primer, and 250nM probe (Table 2.4) resuspended in TE 

buffer (10mM Tris-HCl, 1mM EDTA, pH 7.5), 2X Brilliant III qPCR Master Mix and dH2O. 

Plates were briefly centrifuged to collect samples at the bottom of the wells. Samples 

were run on a 3 step profile on a Stratagene Mx3000P™ Real Time Thermal Cycler 

(Agilent Technologies Ltd.). Samples were incubated for 10mins at 95°C, then 40 cycles 

of 30s at 95°C, 60s at 60°C, and 60s at 72°C. A final cycle used to determine the primer 

dissociation curve was also run. 

2.2.4. Gene Expression Profiling Methods 

2.2.4.1. RNA Extraction for Gene Expression Profiling Analysis 

0.5 x 106 NSC34 cells were seeded per well on a 6 well plate and were grown for 5 days 

until 80% confluent. Tetracycline was added to cells for either the final 5 days, final 3 

days, final day or not at all. Media (and tetracycline if applicable) was replenished after 

3 days. After 5 days growth, RNA was extracted from the cells using the Direct-zol™ RNA 

Kit. Briefly, media was removed and 1mL TRI-Reagent® was added to the cells. The 

solution was pipetted up and down to mix well. The samples were incubated for 10mins 

at room temperature. The samples were then centrifuged at 16,000 x g for 1mins at 

room temperature. The supernatant was romoved and reserved in a new eppendorf, 

whilst the particulate matter was discarded. 1mL ethanol was added to each of the 

samples, and then they were briefly vortexed. 700µL of each of the samples were loaded 

into Zymo-Spin™ II Columns, in collection tubes, and samples were centrifuged at 16,000 

x g for 1mins at room temperature. The flow-throughs were discarded, and the 

remaining samples were loaded and centrifuged on the respective columns as previously 
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described until all of the sample solutions had been centrifuged through the columns. 1 

mL Wash Buffer was then loaded onto each of the columns, and they were centrifuged 

at 16,000 x g for 1mins at room temperature. 80µL DNAse I Reaction Mix (5µL of 

1units/µL DNAse I, 8µL of 10X DNAse I Reaction Buffer, 3µL DNAse/RNAse-free water, 

64µL RNA Wash Buffer with ethanol added) was added directly to each of the columns, 

and incubated for 15mins at room temperature. The columns were centrifuged at 

12,000 x g for 1mins at room temperature. 400µL Direct-zol RNA PreWash was added to 

each of the columns, and the columns were then centrifuged at 16,000 x g for 1mins at 

room temperature. The flow-throughs were discarded and then the Direct-zol RNA 

PreWash step was repeated. 700µL RNA Wash Buffer was added to each of the columns, 

and the columns were then centrifuged at 16,000 x g for 1mins at room temperature. 

The flow-throughs were discarded and then the columns were centrifuged again at 

16,000 x g for 2mins at room temperature to completely remove the Wash Buffer. 30µL 

DNase/RNase-free water was added to the matrix and incubated for 5mins at room 

temperature to elute the RNA. The columns were centrifuged at 16,000 x g for 1mins at 

room temperature to collect the eluted RNA samples. The RNA samples were snap 

frozen using liquid nitrogen, and stored at -80°C. 

2.2.4.2. RNA Yield and Quality Assessment 

RNA concentration and purity were assessed using the NanoDrop™ 1000 

Spectrophotometer (Thermo Fisher Scientific® Inc.). The ratios of absorbance at 260nm 

and 280nm, as well as 260nm and 230nm are used to assess RNA yield and purity. All 

RNA samples had A260 nm/280 nm values of 2.0 ± 0.2, and A260 nm/230 nm values of 2.2 ± 0.2, 

indicating high purity. In addition, the RNA integrity was measured using a Nanochip and 

an Agilent 2100 Bioanalyser (Agilent Technologies Ltd.). Briefly, an electropherogram 

was produced to assess the RNA for the 18S and 28S rRNA peaks, the amount of RNA 

degradation, and provide a RNA Integrity Number (RIN) based on these variables. 

2.2.4.3. WT PLUS Amplification and Labelling Process  

The GeneChip® WT PLUS Reagent Kit was used to generate amplified and biotinylated 

sense-strand DNA targets from total RNA. The RNA was amplified and labelled in 3 
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separate batches; A, B and C (which are used in the array names). All manipulations took 

place on ice, unless stated otherwise. 

2.2.4.3.1. Poly-A RNA Control Preparation 

Poly-A RNA controls were prepared to include with each RNA sample, and provided 

exogenous positive controls to monitor the entire target preparation. Poly-A Control 

Stock was diluted 1 in 20, then 1 in 50, then 1 in 50, then 1 in 2 in Poly-A Control Dil 

Buffer to a final dilution of 1 in 100,000. 2 µL of the final Poly-A Control mRNA dilution 

was then added to 500ng RNA sample in dH2O to a final volume of 5µL. 

2.2.4.3.2. First-Strand cDNA Synthesis 

Total RNA was reverse transcribed using primers that contained a T7 promoter 

sequence, producing single-stranded complementary DNA (ss-cDNA) with a T7 

promoter sequence at the 5’ end. Firstly, the First-Strand Master Mix was prepared by 

mixing 42µL First-Strand Buffer and 10.5µL First-Strand Enzyme. 5µL First-Strand Master 

Mix was mixed with each of the 5µL total RNA samples. The samples were incubated for 

1h at 25°C, then for 1h at 42°C, then for 5mins at 4°C. The samples were centrifuged 

briefly to collect first-strand cDNA/RNA at bottom of the tube. 

2.2.4.3.3. Second-Strand cDNA Synthesis 

The ss-cDNA was then converted to double-stranded cDNA (ds-cDNA), which acted as a 

template for in vitro transcription. RNase H and DNA polymerase simultaneously 

degraded the RNA and synthesised second-strand cDNA. The Second-Strand Master Mix 

was prepared by mixing 189µL Second-Strand Buffer and 21µL Second-Strand Enzyme. 

20µL Second-Strand Master Mix was mixed with each of the (10µL) First-Strand 

cDNA/RNA samples for a total volume of 30µL. The samples were incubated for 1h at 

16°C, then for 10mins at 65°C, then for 5mins at 4°C. The samples were centrifuged 

briefly to collect ds-cDNA at bottom of the tube. 

2.2.4.3.4. Complementary RNA Synthesis by in vitro Transcription 

Complementary RNA (cRNA) was synthesised and amplified by in vitro transcription (IVT) 

of the ds-cDNA template using the T7 RNA Polymerase. The IVT Master Mix was 
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prepared at room temperature by mixing 252µL IVT Buffer and 63µL IVT Enzyme. 30µL 

IVT Master Mix was mixed with each of the (30µL) ds-cDNA samples at room 

temperature for a total volume of 60µL. The samples were incubated for 16h at 40°C, 

then at 4°C. The samples were centrifuged briefly to collect the cRNA at bottom of the 

tube, and stored at -20°C. 

2.2.4.3.5. cRNA Purification 

The cRNA samples were purified to remove enzymes, salts, inorganic phosphates, and 

unincorporated nucleotides to prepare the cRNA for Second-cycle ss-cDNA synthesis. 

The magnetic purification beads were briefly vortexed to resuspend, and then 100µL 

beads were added to each (60µL) cRNA sample, mixed by pipetting, and placed on a U-

bottom plate at room temperature. The samples were incubated for 10mins at room 

temperature to allow the cRNA to bind to the purification beads. The plate with samples 

was then placed onto a magnetic stand to capture the beads for 5mins at room 

temperature. The supernatant was removed, and the beads were washed 3 times with 

80% (v/v) ethanol for 1.5mins at room temperature. The supernatant was removed and 

the beads were air dried for 5mins at room temperature. The plate was then removed 

from the magnetic stand. Nuclease-free water was heated to 65°C, and then 27µL was 

added to each well to elute the cRNA. The beads and water were mixed and then 

incubated for 1mins at room temperature. The plate with samples was placed onto the 

magnetic stand to capture the beads, and incubated for 5 min at room temperature. The 

eluted cRNA was transferred to new nuclease-free tubes, and placed on ice. The cRNA 

yield and size distribution were assessed and then cRNA was stored at -20°C. 

2.2.4.3.6. cRNA Yield and Size Distribution Assessment 

cRNA concentration was assessed using the NanoDrop™ 1000 Spectrophotometer 

(Thermo Fisher Scientific® Inc.). The cRNA size distribution was assessed using a 

Nanochip and an Agilent 2100 Bioanalyser (Agilent Technologies Ltd.). 

2.2.4.3.7. Second-Cycle Single-Stranded cDNA Synthesis 

cRNA was reverse transcribed using 2nd-Cycle Primers producing sense-strand cDNA, 

which contained dUTP at a fixed ratio relative to dTTP. 15µg cRNA was diluted in 
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nuclease-free water to a final volume of 24µL. 4µL of 2nd-Cycle Primers were added. 

The samples were incubated for 5mins at 70°C, then for 5mins at 25°C, then for 2mins 

at 4°C. The 2nd-Cycle ss-cDNA Master Mix was prepared by mixing 84µL 2nd-Cycle ss-

cDNA Buffer and 42µL 2nd-Cycle ss-cDNA Enzyme. 12µL 2nd-Cycle ss-cDNA Master Mix 

was mixed with each of the (28µL) cRNA/2nd-Cycle Primers samples for a total volume 

of 40µL. The samples were incubated for 10mins at 25°C to allow the primers to anneal, 

then for 90mins at 42°C for cDNA synthesis, then 10mins at 70°C to inactivate the 

enzyme, and then samples were stored at 4°C. 

2.2.4.3.8. RNA Hydrolysis Using RNase H 

The cRNA template was hydrolysed by RNAse H, leaving ss-cDNA. 4µL RNase H was 

added to each of the (40µL) 2nd-Cycle ss-cDNA samples for a total volume of 44µL. The 

samples were incubated for 45mins at 37°C, followed by 5mins at 95°C, and then 2mins 

at 4°C. 11µL nuclease-free water was added to each (44µL) hydrolysed 2nd-Cycle ss-cDNA 

samples for a total volume of 55µL. Samples were stored at -20°C. 

2.2.4.3.9. Second-Cycle ss-cDNA Purification 

The 2nd-cycle ss-cDNA was purified to remove enzymes, salts, and unincorporated dNTPs 

to prepare the ss-cDNA for fragmentation and labelling. The magnetic purification beads 

were briefly vortexed to resuspend, and then 100µL beads were added to each (55µL) 

ss-cDNA sample, mixed by pipetting, and placed on a U-bottom plate at room 

temperature. 150µL 100% ethanol was added to each (155µL) ss-cDNA/beads sample. 

Samples were mixed well by pipetting up and down. Samples were then incubated for 

20mins at room temperature, during this time the ss-cDNA bound to the magnetic 

purification beads. The plate with samples was then placed onto the magnetic stand to 

capture the beads and bound ss-cDNA, and incubated for 5mins at room temperature. 

The supernatant was removed, and the beads were washed 3 times with 80% (v/v) 

ethanol for 1.5mins at room temperature. The supernatant was removed and the beads 

were air dried for 5mins at room temperature. The plate was then removed from the 

magnetic stand. Nuclease-free water was heated to 65°C, and then 30µL was added to 

each well to elute the ss-cDNA. The beads and water were mixed and then incubated 

for 1mins at room temperature. The plate with samples was placed onto the magnetic 
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stand to capture the beads, and incubated for 5mins at room temperature. The purified 

ss-cDNA was transferred to new nuclease-free tube, and placed on ice. The ss-cDNA 

yield and size distribution was assessed and then the ss-cDNA was stored at -20°C. 

2.2.4.3.10. ss-cDNA Yield and Size Distribution Assessment 

ss-cDNA concentration was assessed using the NanoDrop™ 1000 Spectrophotometer 

(Thermo Fisher Scientific® Inc.). The ss-cDNA size distribution was assessed using a 

Nanochip and an Agilent 2100 Bioanalyser (Agilent Technologies Ltd.). 

2.2.4.3.11. ss-cDNA Framentation and Labelling 

The ss-cDNA was fragmented by uracil-DNA glycosylase (UDG) and apurinic/apyrimidinic 

endonuclease 1 (APE 1) at the unnatural dUTP residues, breaking the DNA strand. The 

fragmented cDNA was then labelled by terminal deoxynucleotidyl transferase (TdT) 

using the Affymetrix propriety DNA Labelling Reagent that is covalently linked to biotin. 

5.5µg ss-cDNA was prepared in 31.2µL nuclease-free water. The Fragmentation Master 

Mix was prepared by mixing 105µL nuclease-free water, 50.4µL 10X cDNA 

Fragmentation Buffer, 10.5µL 10units/µL UDG, and 10.5µL 1,000 units/µL APE 1. 16.8µL 

Fragmentation Master Mix was mixed with each of the (31.2µL) ss-cDNA samples for a 

total volume of 48µL. The samples were incubated for 1h at 37°C, then for 2mins at 93°C, 

and then at 4°C. The Labelling Master Mix was prepared by mixing 126µL 5X TdT Buffer, 

10.5µL 5mM DNA Labelling Reagent, and 21µL 30units/µL TdT. 15µL Labelling Master 

Mix was mixed with each of the (45µL) fragmented ss-cDNA samples for a total volume 

of 60µL. The samples were incubated for 1h at 37°C, then for 10mins at 70°C, and then 

for 5mins at 4°C. 2µL of each of the fragmented and labelled ss-cDNA samples were 

removed for Gel-shift analysis, and the remaining samples were stored at -20°C. 

2.2.4.3.12. Gel-Shift Assay 

The efficiency of the biotin-labelling procedure was assessed by adding NeutrAvidin (or 

PBS as a negative control) to the ss-cDNA, and then performing gel electrophoresis. 

NeutrAvidin binds to biotin and therefore retards the biotin-labelled ss-cDNA movement 

during gel electrophoresis, causing a shift in molecular weight between the NeutrAvidin 

+ve and –ve treated ss-cDNA. 10mg/mL NeutrAvidin was diluted to 2mg/mL in PBS. 1µL 
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of the fragmented and labelled ss-cDNA samples were aliquoted to nuclease-free tubes, 

and then incubated for 2mins at 70°C. For the +ve gel-shift samples, 5µL 2mg/mL 

NeutrAvidin was added to the fragmented and labelled ss-cDNA samples, whilst for the 

-ve gel-shift samples, 5µL PBS was added to the fragmented and labelled ss-cDNA 

samples. The samples were then mixed and incubated for 5mins at room temperature. 

2.5µL 5X Novex® Hi-Density TBE Sample Buffer was mixed with each sample. Samples 

were loaded onto a 4-20% TBE Gel, 1.0 mm. Gel electrophoresis was performed at 100 

V for 2h. The gel was stained in 0.001% (w/v) ethidium bromide in 1X TAE buffer for 30 

mins at room temperature on a shaker. The gels were imaged using the GENi UV light 

imaging system (Syngene). 

2.2.4.4. WT Array Hybridisation 

The fragmented and labelled ss-cDNA was hybridised onto GeneChip® Mouse 

Transcriptome Array 1.0 using the GeneChip® Hybridisation, Wash and Stain Kit. Three 

separate batches of arrays were hybridised, washed, and stained on separate days and 

the arrays contained in each batch are listed in Appendix 4. All manipulations took place 

at room temperature, unless stated otherwise. The 20X Eukaryotic Hybridisation 

Controls (bioB, bioC, bioD, cre) were incubated for 5mins at 65°C. The Hybridisation 

Master Mix was prepared by mixing 40.7µL 3nM Control Oligo B2, 121µL 20X Eukaryotic 

Hybridisation Controls (bioB, bioC, bioD, cre), 1210µL 2X Hybridisation Mix, 169.4µL 

DMSO, and 240.9µL Nuclease-free water. Hybridisation cocktails were prepared by 

mixing 162µL Hybridisation Master Mix with 58µL (5.2µg) of each of the fragmented and 

labelled ss-cDNA samples, for total volumes of 220µL. The hybridisation cocktail was 

then incubated for 5mins at 95°C, then for 5 min at 45°C. 200µL of the hybridisation 

cocktail was loaded onto GeneChip® Mouse Transcriptome Array 1.0 cartridges. The 

arrays were then incubated in a GeneChip® Hybridisation Oven 640 (Affymetrix® Ltd) 

with 60rpm rotation for 16h at 45°C. 

2.2.4.5. Array Washing, Staining and Scanning 

Array washing and staining was performed on the GeneChip® Fluidics Station 450 

(Affymetrix® Ltd) according using the Whole Transcript (WT) Sense Target Labelling 

Manual for fluidics protocol FS450_0001 (Affymetrix® Ltd). After washing and staining, 
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the arrays were scanned on the GeneChip® Scanner 3000 (Affymetrix® Ltd) according to 

the Affymetrix® GeneChip® Command Console® User Manual, to generate CEL files 

containing the image of raw probe signal intensities. 

2.2.4.6. Bioinformatics Analysis 

2.2.4.6.1. Affymetrix® Expression Console Software 

CEL files containing the raw probe signal intensities were exported from the GeneChip® 

Command Console. Gene-level RMA-sketch normalisation and signal summarisation 

were performed in the Affymetrix® Expression Console (EC) software, converting the CEL 

files to RMA-GENE-FULL CHP files. In addition, Exon-level Alt Splice analysis 

normalisation and signal summarisation were performed in EC, converting the CEL files 

to RMA-ALT-SPLICE CHP files. Quality Control was performed in EC. Hybridisation 

controls, poly-A labelling controls, AUC, and signal distribution assessed in EC and were 

used for Quality Control assessment of the arrays.  

2.2.4.6.2. Qlucore Omics Explorer 

Gene-level expression analysis was performed in Qlucore Omics Explorer (version 3.0). 

All Affymetrix® RMA-GENE-FULL CHP files were opened in Qlucore Omics explorer, and 

normalised using the RMA-sketch method. Differentially expressed (DE) transcripts 

were defined when P value < 0.01 (using Student’s T-test) and fold change (FC) ≥ 1.2. 

PCA plots and Heat Maps were generated in Qluocore Omics explorer. Lists of DE 

transcripts were exported to Microsoft Excel 2010.  

2.2.4.6.3. Gene Ontology Enrichment Analysis 

Gene Ontology enrichment analysis was performed using the Database for Annotation 

and Visualisation and Integrated Discovery (DAVID) (https://david.ncifcrf.gov/). The 

Entrez Gene IDs of the DE transcripts were imported to DAVID, and functional 

annotation clustering was subsequently performed using the GOTERM_BP_FAT gene 

ontology and KEGG_PATHWAY pathway terms, applying a Mus musculus background, 

and filtering using medium stringency.  Functional clusters with DAVID enrichment 

scores > 1.30 (equivalent to a P value < 0.05) were considered statistically significant. 

https://david.ncifcrf.gov/
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2.2.4.6.4. Pathway Enrichment Analysis 

Integrated pathway-level enrichment analysis was performed by importing the gene 

symbols of DE transcripts to the Integrated Molecular Pathway Level Analysis (IMPaLA) 

over-representation (enrichment) tool (http://impala.molgen.mpg.de/). 

2.2.4.6.5. Affymetrix® Transcriptomics Analysis Console Software 

Differential splicing analysis was performed in the Affymetrix® Transcriptomics Analysis 

Console (TAC) Software. All Affymetrix® RMA-ALT-SPLICE CHP files were opened in TAC. 

Genes were defined as differentially spliced when at least one differential splicing event 

had a False Discovery Rate (FDR) corrected P value < 0.05 (using One-Way ANOVA) and 

Splicing Index (SI) ≤ -2.0 or ≥ 2.0. 

  

http://impala.molgen.mpg.de/
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Chapter 3. Generation of a Motor Neuron-Like Cell 
Model of C9ORF72-Amyotrophic Lateral Sclerosis 
with Tetracycline-Inducible (G4C2)n Repeat 
Expression 

3.1. Introduction 

The initial aim of the project was to generate and characterise stable, isogenic cell 

models with tetracycline-inducible expression of the (G4C2)n repeat constructs. 

Plasmids containing different lengths of interrupted (G4C2)n repeat constructs and an 

FRT site were engineered. The commercially available Flp-In™ T-REx™ HEK293 cells, and 

Flp-In™ T-REx™ NSC34 cells that were generated in house by Dr. Adrian Higginbottom, 

were used. These cell lines utilise the Flp-In™ system (Figure 3.1) which allowed genomic 

site specific insertion of the (G4C2)n repeats into both HEK293 cells and motor neuron-

like NSC34 cells. These cell lines also utilise the T-REx™ system (Figure 3.1), which allow 

for tetracycline-inducible expression of the (G4C2)n repeats. RNA Fluorescence in situ 

Hybridisation (FISH) and immunoblotting were used to confirm tetracycline-inducible 

expression of the (G4C2)n repeats at RNA and protein levels respectively. Finally, MTT 

cell viability assays, EthD1 cell death assays, and growth curves were used to assess the 

(G4C2)n expression for toxicity in the NSC34 cells. 
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Figure 3.1 Flp-In™ and T-REx™ systems used to generate isogenic cell lines with 
tetracycline-inducible expression of the gene of interest. The pcDNA5/FRT/TO 
expression vector containing the gene of interest (GOI) is co-transfected with a FLP 
recombinase into the Flp-In™ T-REx™ mammalian cell line. FLP recombinase catalyses 
homologous recombination between the genomic FRT site and the FRT site within the 
pcDNA5/FRT/TO expression vector. Successful integration of the pcDN5/FRT/TO 
plasmid confers hygromycin resistance and Zeocin™ sensitivity to the cell line. The gene 
of interest is repressed by the Tet repressor element (TetR). Addition of tetracycline to 
the cells induces expression of the GOI by de-repressing the CMV/TetO2 promoter. 
Figure is adapted from Invitrogen™. 

Interrupted (G4C2)n repeat constructs were generated to model the pathogenic 

(G4C2)n repeat expansion, because the GC pure repeat is technically very challenging to 

manipulate. PCR can only process through a small number of repeats before failing. Also, 

the (G4C2)n repeats form secondary structure in the DNA, making it challenging to clone 

via restriction digestion and ligation. In addition, the minimum number of (G4C2)n 

repeats required to cause ALS and/or FTD is unknown, the longest number of (G4C2)n 

repeats were generated as possible. The only technically feasible method of generating 
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larger (G4C2)n repeat constructs, was via restriction digest and ligation of smaller 

(G4C2)n repeats. Synthesised TCGAC(G4C2)10 sense and ACGT(G2C4)10 antisense 

ssDNA oligonucleotides were designed such that the dsDNA produced by annealing the 

oligonucleotides was flanked 5’ by SalI and 3’ by XhoI cut restriction sites. It is important 

to note that the SalI and XhoI restriction enzymes produce compatible cohesive ends. 

These (G4C2)10 were ligated into XhoI cut plasmid. Subsequent ligations involved 

digesting these vectors with XhoI and inserting further (G4C2)10 repeats. The 5’ SalI site 

of the inserted (G4C2)10 was destroyed whilst the 3’ XhoI site was retained – if the 

insertion orientation was correct. Vectors containing (G4C2)10, interrupted (G4C2)51 

and interrupted (G4C2)102 constructs were generated via this method (Figure 3.2). 

 

Figure 3.2 Sequences of the (G4C2)10, (G4C2)51 and (G4C2)102 constructs. 

The Flp-In™ and T-REx™ systems were used in both HEK293 and NSC34 cells to generate 

stable and isogenic cell models with tetracycline-inducible expression of the interrupted 

(G4C2)n repeats (Figure 3.1). A Flp recombination target (FRT) site, and a Tn10-encoded 

tetracycline resistance repressor element (TetR) were inserted into the mammalian cell 

line’s genome at specific locations independently of one another. The FRT site is a target 

for Flp recombinase-targeted integration. The TetR expresses a tet repressor (TetR) 

protein that binds the Tet Operator (TO) and inhibits expression from the CMV/TO 

hybrid promoter. Tetracycline binds the TetR protein and derepresses gene expression 

from the CMV/TO promoter.  

Plasmids containing an FRT site, in addition to the (G4C2)n repeat constructs under 

control of the CMV/TO promoter were also generated. These (G4C2)n plasmids were 

then integrated via Flp recombinase-mediated recombination into the genomic FRT site 
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in the mammalian cell lines. In addition, sham control cell lines were generated by 

integrating empty plasmids. Each of the resultant HEK293 cell lines were isogenic with 

one another, and each of the resultant NSC34 cell lines were isogenic with one another, 

and all cell lines had tetracycline-inducible expression of the (G4C2)n repeats.  

3.2. Aims and Objectives for Cell Model Generation and Characterisation 

1) Clone the (G4C2)10, (G4C2)51, and (G4C2)102 constructs into the 

pcDNA5/FRT/TO vector. 

2) Integrate the pcDNA5/FRT/TO-(G4C2)n plasmids into commercially available Flp-

In™ T-REx™ HEK293 cell line to validate (G4C2)n expression. 

3) Integrate the pcDNA5/FRT/TO-(G4C2)n plasmids into Flp-In™ T-REx™ NSC34 cell 

line. 

4) Characterise the NSC34 (G4C2)n cells for tetracycline-inducible expression of 

(G4C2)n RNA. 

5) Characterise the NSC34 (G4C2)n cells for antisense (C4G2)n RNA expression. 

6) Characterise the NSC34 (G4C2)n cells for RAN translation products. 

7) Investigate whether (G4C2)n expression causes NSC34 cell death or affects 

NSC34 cell viability. 

3.3. Results  

3.3.1. pcDNA5/FRT/TO-(G4C2)n Construction 

To stably integrate the (G4C2)n constructs into the genome of the host Flp-In™ T-REx™ 

cell line, vectors containing the (G4C2)n constructs (under control of a CMV/TO hybrid 

promoter), an FRT site, and a gene for hygromycin resistance were first generated. The 

pcDNA6.2-(G4C2)n plasmids were cut using DraI and XhoI restriction enzymes, and then 

the (G4C2)n constructs were purified via agarose gel electrophoresis and subsequent gel 

extraction. pcDNA5/FRT/TO-HIS was cut using EcoRV and XhoI restriction enzymes, and 

the linearised vector backbone was purified via agarose gel electrophoresis and gel 
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extraction. The linearised pcDNA5/FRT/TO-HIS vector backbone was then treated with 

Shrimp Alkaline Phosphatase (SAP) to reduce the chance of the vector religating. The 

DNA fragments containing the (G4C2)n constructs were then ligated into the 

pcDNA5/FRT/TO-HIS vector backbone in a forced orientation, due to the XhoI-cut and 

blunt ends of the DNA fragments. During initial cloning attempts, the ligation reactions 

containing the (G4C2)n repeats actually produced fewer E.coli colonies after 

transformation than the re-ligation control reactions. It was proposed that one end of 

the (G4C2)n repeat fragment was binding the cut pcDNA5/FRT/TO-HIS vector, but the 

other end was buried or unavailable to bind due to secondary structure formed by the 

(G4C2)n repeat, thus  inhibiting the ligation reaction. Importantly, it was discovered that 

heating the fragments containing the (G4C2)n constructs to 70 °C for 10 mins, followed 

by snap cooling on ice, dramatically improved the ligation efficiency. This heating and 

snap cooling step is suggested to denature and thus remove secondary structure 

inherent in the (G4C2)n repeat, allowing efficient ligation. The ligation mixtures were 

then transformed into β-10 competent E.coli, and subsequent colonies were screened 

for successful (G4C2)n construct insertion using PCR (Figure 3.3). The re-ligation control 

produced a PCR product of approximately 300 bp (Figure 3.3). Unexpectedly however, 

successful insertion of the (G4C2)10, (G4C2)51, or (G4C2)102 repeats into 

pcDNA5/FRT/TO-HIS all produced PCR products of a similar size around 400 bp (Figure 

3.3). This increase in PCR product size is not as large as expected because the PCR fails 

to completely process the full (G4C2)n repeat, and demonstrates why the (G4C2)n 

repeat could not be cloned via PCR.  

Colonies that tested positive for the (G4C2)n construct insertion into the 

pcDNA5/FRT/TO-HIS backbone vector were cultured and miniprepped. To size the 

(G4C2)n constructs, the pcDNA5/FRT/TO-HIS-(G4C2)n plasmids were digested using 

BamHI and XhoI restriction enzymes and run on an agarose gel (Figure 3.4). The correct 

size fragments for successful insertion of the (G4C2)10, (G4C2)51, and (G4C2)102 

constructs were 110 bp, 400 bp, and 750 bp respectively. pcDNA5/FRT/TO-HIS-(G4C2)n 

plasmids containing the correct size (G4C2)n insert (Figure 3.4) were sequenced using 

the CMV-Forward primer. This confirmed the (G4C2)n repeat lengths were correct in the 
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pcDNA5/FRT/TO-HIS-(G4C2)10, pcDNA5/FRT/TO-HIS-(G4C2)51, and pcDNA5/FRT/TO-

HIS-(G4C2)102 plasmids. 

 

Figure 3.3 Colony PCR screen for (G4C2)n ligation into pcDNA5/FRT/TO-HIS backbone 
vector. DNA fragments containing the (G4C2)10, (G4C2)51, and (G4C2)102 constructs 
were each ligated into pcDNA5/FRT/TO-HIS, and subsequently transformed into β10 
E.coli. Colonies were then picked and screened using PCR and gel electrophoresis. 
Colonies that produced a band shift (boxed in yellow) contain the (G4C2)n construct. A 
religated pcDNA5/FRT/TO-HIS was used as a negative control. Molecular weight markers 
are indicated (bp). 

 

Figure 3.4 Restriction digest of pcDNA5/FRT/TO-HIS-(G4C2)n plasmids to size the 
(G4C2)n constructs. The (G4C2)n constructs were cut from the pcDNA5/FRT/TO-HIS-
(G4C2)n plasmids using BamHI and XhoI restriction enzymes. Agarose gel 
electrophoresis was performed to size the (G4C2)n constructs. The correct size for bands 
containing (G4C2)10, (G4C2)51, and (G4C2)102 are shown with *, **, and *** 
respectively. Molecular weight markers are indicated (bp). 

The pcDNA5/FRT/TO-HIS-(G4C2)n vectors contain a HIS tag 5’ of, and adjacent to, the 

(G4C2)n construct. The HIS tag contains an ATG start codon and could therefore lead to 
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conventional translation of the (G4C2)n repeat. To prevent conventional translation of 

the (G4C2)n constructs in the mammalian cell models, the HIS tag and the associated 

ATG start codon were removed. The pcDNA5/FRT/TO-HIS-(G4C2)n vectors were cut 

using HindIII and BamHI restriction enzymes, blunt ended using DNA polymerase I 

(Klenow), treated with PNK, religated and then transformed into β-10 competent E.coli. 

Colonies containing potential pcDNA5/FRT/TO-(G4C2)n plasmids were cultured and 

miniprepped, then the plasmids were screened using NcoI restriction digestion and 

agarose gel electrophoresis (Figure 3.5). An NcoI site resides in the HIS tag, therefore 

plasmids containing the HIS tag produced 3 bands from the NcoI digest, whilst plasmids 

with the HIS tag removed produced 2 bands. A pcDNA5/FRT/TO-HIS plasmid was 

digested using NcoI, and served as a negative control for HIS tag removal (Figure 3.5). 

pcDNA5/FRT/TO-(G4C2)n plasmids that had the HIS tag removed were sequenced using 

the CMV-Forward primer to confirm the removal of the HIS tag and ATG start codon, as 

well as to sequence and confirm the exact length of the (G4C2)n construct. 

pcDNA5/FRT/TO-(G4C2)10, pcDNA5/FRT/TO-(G4C2)51, and pcDNA5/FRT/TO-

(G4C2)102 were all successfully generated, and the sequencing chromatograms for the 

(G4C2)n constructs are included in Appendices 1-3. 

 

Figure 3.5 Restriction digest of pcDNA5/FRT/TO-(G4C2)n plasmids to screen for HIS tag 
removal. pcDNA5/FRT/TO-(G4C2)n plasmids were cut using NcoI, and agarose gel 
electrophoresis was performed to check for the removal of the HIS tag and the 
associated ATG start codon. Two bands indicate removal of HIS tag (boxed in yellow), 
whilst three bands indicate the HIS tag is still present. pcDNA5/FRT/TO-HIS was used as 
a negative control. Molecular weight markers are indicated (bp). 
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3.3.2. Flp-In™ T-REx™ HEK293 (G4C2)n Cell Generation and Characterisation 

The pcDNA5/FRT/TO-(G4C2)n plasmids were first stably transformed into the 

commercially available Flp-In™ T-REx™ HEK293 cells, to test these plasmids in the Flp-

In™ and T-REx™ systems. pPGKFLPobpA (which expresses a codon optimised FLP DNA-

recombinase) was co-transfected with each of the pcDNA5/FRT/TO, pcDNA5/FRT/TO-

(G4C2)10, pcDNA5/FRT/TO-(G4C2)51, and pcDNA5/FRT/TO-(G4C2)102 plasmids 

separately. The FLP DNA recombinase catalysed recombination between the FRT site on 

the pcDNA5/FRT/TO-(G4C2)n plasmids and the genomic FRT site in the Flp-In™ T-REx™ 

HEK293 cells, stably inserting the empty sham vector or tetracycline-inducible (G4C2)n 

repeat constructs. The media was removed and replenished 24 h post transfection. 

Blasticidin and hygromycin selection was added to the media to select for cells which 

had pcDNA5/FRT/TO-(G4C2)n stably integrated into the genomic FRT site. A lot of the 

transfected Flp-In™ T-REx™ HEK293 cells were dead after 5 days of 

blasticidin/hygromycin selection. Therefore, the media was removed and replaced with 

conditioned media (containing blasticidin/hygromycin selection) to help support the 

successfully transformed Flp-In™ T-REx™ HEK293 cells. Colonies of hygromycin-resistant 

Flp-In™ T-REx™ HEK293 (G4C2)n cells were visible after 15 days of selection. These 

transformed colonies were then picked and expanded in media containing 

blasticidin/hygromycin selection on 48 well plates. When cells were at a sufficient 

confluency, they were screened for Zeocin™-sensitivity and blasticidin/hygromycin 

resistance. Zeocin™-resistance would suggest the pcDNA5/FRT/TO-(G4C2)n plasmid had  

integrated randomly into the genome, and not at the genomic FRT site in that particular 

clonal line. Each clone of the Flp-In™ T-REx™ HEK293 (G4C2)n cells were split into two 

separate wells, and each population was grown in either blasticidin/Zeocin™ or 

blasticidin/hygromycin selection. Clones that were sensitive to Zeocin™, but grew well 

in the blasticidin and hygromycin were expanded and frozen down. 

3.3.2.1. Flp-In™ T-REx™ HEK293 (G4C2)n Cells Express (G4C2)n RNA Foci 

RNA FISH was used to detect (G4C2)n RNA expression in the HEK293 (G4C2)n cells. The 

(G4C2)n repeat is transcribed and forms characteristic RNA foci in the CNS of C9ORF72-

ALS/FTD patients (DeJesus-Hernandez et al., 2011; Renton et al., 2011). RNA FISH was 
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performed using a sense-specific fluorescently labelled (C4G2)3 Locked Nucleic Acid 

probe, to check whether the Flp-In™ T-REx™ HEK293 (G4C2)n cells expressed the 

(G4C2)n repeat RNA. A confocal microscope was use to image RNA foci (section 

2.2.3.10). 

(G4C2)n RNA foci were not detected in the HEK293 sham cells ± tetracycline induction 

(Figure 3.6). (G4C2)n RNA foci were detected in the HEK293 (G4C2)102 cells ± 

tetracycline induction, however, there were more (G4C2)n RNA foci in tetracycline 

induced HEK293 (G4C2)102 cells (Figure 3.6). In addition, the RNA foci were visibly larger 

(Figure 3.6). The (G4C2)n RNA foci were predominantly nuclear, although rare 

cytoplasmic (G4C2)n RNA foci were also detected (Figure 3.6). Additionally, when 

HEK293 (G4C2)102 cells were treated with RNAse A prior to the RNA FISH stain, the 

(G4C2)n RNA foci were ablated (Figure 3.6). These observations were consistent in three 

experimental repeats. 
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Figure 3.6 HEK293 (G4C2)n cells have tetracycline-inducible (G4C2)n RNA expression, 
which forms RNA foci. HEK293 sham and HEK293 (G4C2)102 cells were cultured for 3 
days ±10µg/mL tetracycline. RNAse treated control cells were additionally treated with 
RNAse A after PFA fixation and prior to RNA FISH staining. Cells were stained with a 
fluorescently labelled Locked Nucleic Acid (C4G2)3 sense probe (Red) and Dapi (Blue). 
RNA foci were imaged using a confocal microscope within a high resolution z-stack 
through the entire nuclear volume. The images shown are projections of the z-stack to 
show all RNA foci imaged in the cells. Foci magnified 5X inset. Scale bar = 10µm.  

3.3.3. Flp-In™ T-REx™ NSC34 (G4C2)n Cell Generation 

To generate isogenic motor neuron-like NSC34 cell lines with tetracycline-inducible 

(G4C2)n repeat expression, a Flp-In™ T-REx™ NSC34 host cell line first had to be 

generated using the Flp-In™ T-REx™ core kit. pFRT/lacZeo and pcDNA6/TR plasmids 

were independently and stably transfected into the WT NSC34 cell line. pFRT/lacZeo 
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introduced a single FRT site into the NSC34 genome, which acted as an isogenic target 

site for pcDNA5/FRT/TO-(G4C2)n vector integration. pcDNA6/TR introduced a TetR 

element into the NSC34 cell line, which constitutively and stably expresses the TetR 

protein. The TetR protein binds the CMV/TO hybrid promoter and represses 

transcription of the (G4C2)n constructs. 

3.3.3.1. Flp-In™ T-REx™ NSC34 Host Cell Generation 

The work in section 3.3.3.1 was exclusively carried out by Dr Adrian Higginbottom. First, 

it was determined that 2.5μg/mL of blasticidin, 75μg/mL of hygromycin and 20μg/mL of 

Zeocin™ were the minimum respective concentrations that wild type (WT) NSC34 cells 

were sensitive to. pFRT/lacZeo was transfected into WT NSC34 cells to introduce a target 

FRT site within the NSC34 genome. Zeocin™ selection was added to the NSC34 media to 

select for Zeocin™-resistant Flp-In™ NSC34 cells stably transfected with pFRT/lacZeo. 

Zeocin™-resistant clones were picked, expanded, and banked. Genomic DNA was then 

extracted from these Zeocin™-resistant Flp-In™ NSC34 clones, and screened using 

Southern Blotting to test for the number of integrated FRT sites (Figure 3.7). The 

fibroblast negative control did not contain a genomic FRT site, whilst the Flp-In™ T-REx™ 

HEK293 positive control did contain one genomic FRT site (Figure 3.7). Flp-In™ NSC34 

clones that contained only one genomic FRT site were further analysed for the 

transcriptional activity of that FRT site. 
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Figure 3.7 Zeocin™-resistant Flp-In™ NSC34 clones were screened for single FRT 
integrations using Southern Blot. DNA bands containing a positive FRT fragment from 
the genomic DNA are boxed. Fibroblast (FIBCON) was used as a negative control, and 
Flp-In™ T-REx™ HEK293 (HEK293) was used as a positive control. Image courtesy of Dr. 
Adrian Higginbottom. 

Flp-In™ NSC34 clones that contained only one genomic FRT site were transfected with 

pcDNA5/FRT/TO-GFP to test the transcriptional activity of the FRT site. The level of GFP 

expression was used to determine what effect the chromosomal position of the FRT site 

had on its transcriptional activity. Hygromycin selection was added to Flp-In™ NSC34 

media to select for hygromycin-resistant Flp-In™ NSC34 GFP cells stably transfected with 

pcDNA5/FRT/TO-GFP. These Flp-In™ NSC34 GFP cells were then screened using a 

fluorescent microscope for GFP expression levels. Clones TC3, T42, T23 and T4E2A 

expressed the highest GFP levels and were transfected again with pcDNA6/TR. This 
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would determine which Flp-In™ NSC34 clone had a transcriptionally active FRT site also 

capable of being repressed by the TetR element. Blasticidin and hygromycin selection 

were added to Flp-In™ NSC34 GFP media to select for blasticidin/hygromycin-resistant 

Flp-In™ T-REx™ NSC34 GFP cells stably transfected with pcDNA6/TR. These clonal 

mixtures of stable Flp-In™ T-REx™ NSC34 GFP cells were screened for GFP expression ± 

tetracycline induction. Flp-In™ T-REx™ NSC34 clonal line T4E2A had the greatest 

increase in GFP expression upon tetracycline induction (Figure 3.8), indicating the FRT 

site was in a transcriptionally active genomic location, which was also capable of 

repression by the TetR element.  

 

Figure 3.8 Screen for Flp-In™ NSC34 cells with transcriptionally active but repressible 
FRT sites. Flp-In™ NSC34 cells were transfected with and selected for stable integration 
of pcDNA5/FRT/TO-GFP and subsequently pcDNA6/TR. Cells were then cultured for 2 
days ±5µg/mL tetracycline, and then Ex485/Em520nm fluorescence was measured to 
assess GFP expression levels. Data shown are mean and SD of technical replicates; n=1. 

pcDNA6/TR was transfected into the T4E2A Flp-In™ NSC34 clonal line to stably introduce 

the TetR element. Blasticidin and Zeocin™ selection was added to the Flp-In™ T-REx™ 

NSC34 media to select for blasticidin/Zeocin™-resistant Flp-In™ T-REx™ NSC34 cells 

stably transfected with pcDNA6/TR. Blasticidin/Zeocin™-resistant clones were picked, 

expanded, and banked. Flp-In™ T-REx™ NSC34 clones were transfected with 

pcDNA5/FRT/TO-GFP to identify a clone which had low basal GFP expression and high 
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GFP expression upon tetracycline induction. Blasticidin/hygromycin selection was added 

to the Flp-In™ T-REx™ NSC34 GFP media to select for blasticidin/hygromycin-resistant 

Flp-In™ T-REx™ NSC34 GFP cells stably transfected with pcDNA5/FRT/TO-GFP. 

Blasticidin/hygromycin-resistant Flp-In™ T-REx™ NSC34 GFP clones were also screened 

for Zeocin™ sensitivity, which indicates the pcDNA5/FRT/TO-GFP inserted at the 

genomic FRT site. Blasticidin/hygromycin-resistant, Zeocin™-sensitive Flp-In™ T-REx™ 

NSC34 GFP clones were then screened for GFP expression ± tetracycline induction. Flp-

In™ T-REx™ NSC34 clonal line E3 expressed very little GFP at basal levels, but there was 

also very little increase in GFP expression upon tetracycline induction (Figure 3.9). Clonal 

line C2 had high GFP expression at basal levels, and very high GFP expression when 

induced with tetracycline (Figure 3.9). It was decided that the E3 clone was too weak an 

inducer, and the C2 clone expressed the GFP too strongly at basal levels. Therefore 

neither E3 nor C2 were used as the parental Flp-In™ T-REx™ NSC34 line. However, the 

B10-2 clone had modest GFP expression at basal levels because the fluorescence 

intensity was similar to the background fluorescence seen in WT NSC34 cells (Figure 3.9). 

In addition, the B10-2 clone had high GFP expression when induced with tetracycline 

(Figure 3.9). Therefore clonal line B10-2 was selected as the parental Flp-In™ T-REx™ 

NSC34 host cell line for generating the isogenic, tetracycline-inducible Flp-In™ T-REx™ 

NSC34 (G4C2)n cell lines, as well as other lines with different genes of interest. 

3.3.3.2. Stable Integration of pcDNA5/FRT/TO-(G4C2)n Plasmids into Flp-In™ T-REx™ 

NSC34 Cells 

The same method described for the Flp-In™ T-REx™ HEK293 cells (section 3.3.3) was 

used to integrate the (G4C2)n repeat expansion vectors into the motor neuron-like 

NSC34 cell lines. However, the sensitivity of the Flp-In™ T-REx™ NSC34 cells to the 

hygromycin selection agent had to be determined first, because they were built in 

house. The Flp-In™ T-REx™ NSC34 cells were seeded onto a 24 well plate and left for 24 

h. After 24 h, hygromycin was added to the cells at various concentrations. The cells 

were left for 7 days in the selection media, and then observed. The NSC34 cells were 

completely devastated in media containing ≥100μg/mL hygromycin, partially devastated 
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at 75μg/mL and relatively unaffected at ≤50μg/mL. Therefore, 100μg/mL hygromycin 

was sufficient to detect stably transfected cells with resistance to hygromycin. 

 

Figure 3.9 Screen for Flp-In™ T-REx™ NSC34 cells with low basal GFP expression and 
high tetracycline-inducible GFP expression. Flp-In™ T-REx™ NSC34 cells were 
transfected with and selected for stable integration of pcDNA5/FRT/TO-GFP. Cells were 
then cultured for 2 days ±10µg/mL tetracycline, and then Ex4850/Em520nm 
fluorescence was measured to assess GFP expression levels. Data shown are mean and 
SD of technical replicates; n=1. 

The pcDNA5/FRT/TO-(G4C2)n plasmids were stably transformed into the Flp-In™ T-REx™ 

NSC34 cells. pPGKFLPobpA was co-transfected with each of the pcDNA5/FRT/TO, 

pcDNA5/FRT/TO-(G4C2)10, pcDNA5/FRT/TO-(G4C2)51, and pcDNA5/FRT/TO-

(G4C2)102 plasmids separately. 48 h post-transfection, the media was replenished, the 

NSC34 cells were split onto 3 new plates and 5μg/mL blasticidin and 100μg/mL 

hygromycin were added to the media to select for transformed clones. The media and 

dead floating cells were removed and replaced with fresh selection media every 3 days. 

50% conditioned/50% fresh media with selection was added to the plates once massive 

cell death had occurred and only very few cells remained alive on the plates. This was to 

ensure survival of any transformed colonies remaining on the plates. Once distinct 

colonies were visible on the plate, they were picked and transferred to a 48 well plate 

containing blasticidin and hygromycin selection. The NSC34 colonies were grown in the 
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48 well (each colony in a separate well) until 60% confluent. They were then split 50/50 

into two 48 wells: one containing Zeocin™, the other containing blasticidin/hygromycin. 

Clones that were blasticidin/hygromycin-resistant but Zeocin™-sensitive were expanded 

and cryopreserved. 

3.3.4. Characterisation of Flp-In™ T-REx™ NSC34 (G4C2)n Cells 

The Flp-In™ T-REx™ NSC34 (G4C2)n cells were then characterised for expression of the 

(G4C2)n repeat constructs. The (G4C2)n repeat expansion is transcribed bidirectionally 

and forms both sense (G4C2)n and antisense (G4C2)n RNA foci in C9ORF72-ALS/FTD 

patient CNS (DeJesus-Hernandez et al., 2011; Gendron et al., 2013; Renton et al., 2011). 

In addition, the (G4C2)n and (C4G2)n repeat transcripts are translated via RAN 

translation to form DPR proteins (Ash et al., 2013; Gendron et al., 2013; Mori et al., 

2013a; Mori et al., 2013c). Therefore, RNA FISH was performed (using both sense and 

antisense probes), and immunoblotting (using anti-DPR antibodies), to detect 

expression of the (G4C2)n repeats in the NSC34 cells. In addition, the concentration of 

tetracycline was optimised to minimise toxicity, but retain maximal induction of (G4C2)n 

expression. From now on, the Flp-In™ T-REx™ NSC34 (G4C2)n cells will be referred to as 

NSC34 (G4C2)n.  

3.3.4.1. NSC34 (G4C2)n Cells Express (G4C2)n RNA Foci 

RNA FISH was performed using the sense-specific fluorescent probe to characterise the 

NSC34 (G4C2)n cells for tetracycline-inducible (G4C2)n RNA expression. The number of 

sense (G4C2)n RNA foci was dependent on the (G4C2)n repeat size (Figure 3.10). NSC34 

sham cells contained 0.10±0.10 and 0.10±0.10 (G4C2)n RNA foci per cell, without and 

with tetracycline respectively. NSC34 (G4C2)10 cells contained 0.04±0.04 and 0.89±1.13 

RNA foci per cell, without and with tetracycline respectively. NSC34 (G4C2)51 cells 

contained 0.63±0.24 (G4C2)n and 1.91±1.31 (G4C2)n RNA foci per cell, without and with 

tetracycline respectively. NSC34 (G4C2)102 cells contained 7.12±3.71 (G4C2)n and 

17.69±5.37 (G4C2)n RNA foci per cell, without and with tetracycline respectively. 

However, whilst the number of (G4C2)n RNA foci increased in the NSC34 (G4C2)10, 

NSC34 (G4C2)51 and NSC34 (G4C2)102 cells when induced with 10µg/mL tetracycline 

(Figure 3.10), this increase was only significant (using a Two-Way ANOVA with Tukey’s 
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multiple comparisons post-hoc test) in the NSC34 (G4C2)102 cells (P<0.01). Additionally, 

the size of the RNA foci visibly correlates with the size of the (G4C2)n repeat within the 

NSC34 cells (Figure 3.10). Also, whilst the vast majority of RNA foci were nuclear, very 

rare cytoplasmic RNA foci were also observed in NSC34 (G4C2)102 cells (Figure 3.11). 

Finally, RNAse A treatment ablated foci in the NSC34 (G4C2)102 cells (Figure 3.11). 
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Figure 3.10 NSC34 (G4C2)n cells have tetracycline-inducible (G4C2)n RNA expression, 
which forms RNA foci. A) NSC34 sham, NSC34 (G4C2)10, NSC34 (G4C2)51, and NSC34 
(G4C2)102 cells were cultured for 3 days ±10µg/mL tetracycline. Cells were stained with 
a fluorescently labelled Locked Nucleic Acid (C4G2)3 sense probe (Red) and Dapi (Blue). 
RNA foci were imaged using a confocal microscope within a high resolution z-stack 
through the entire nuclear volume. The images shown are projections of the z-stack to 
show all RNA foci imaged in the cells. Foci magnified 5 X inset. Scale bar = 10µm. B) 
Average number of RNA foci per cell (**P<0.01; ****P<0.0001; Two-way ANOVA with 
Tukey’s multiple comparisons post hoc test; data shown are mean and SD; n=3). 
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Figure 3.11 Foci are ablated by RNAse A treatment. NSC34 (G4C2)102 cells were 
cultured for 3 days with 10µg/mL tetracycline. Cells were additionally treated with 
RNAse A prior to RNA FISH staining. Cells were stained with a fluorescently labelled 
Locked Nucleic Acid (C4G2)3 sense probe (Red) and Dapi (Blue). RNA foci were imaged 
using a confocal microscope within a high resolution z-stack through the entire nuclear 
volume. The images shown are projections of the z-stack to show all RNA foci imaged in 
the cells. Foci magnified 5X inset. Scale bar = 10µm. 

3.3.4.2. NSC34 (G4C2)n Cells Do Not Express Antisense (C4G2)n RNA Foci 

The (G4C2)n repeat expansion is also transcribed from a cryptic promoter in the 

antisense direction in C9ORF72-ALS/FTD patients, and forms characteristic antisense 

(C4G2)n RNA foci in the CNS of C9ORF72-ALS/FTD patients (Gendron et al., 2013). The 

(G4C2)n repeat is under control of a sense orientated CMV/TO promoter in the NSC34 

(G4C2)n cells, and should not be transcribed in the antisense direction. However, the 

exact insertion site of the FRT during the cloning process is unknown, and a promoter 

running in the antisense orientation is possible. Therefore, RNA FISH was performed 

using an antisense-specific fluorescently labelled (G4C2)3 Locked Nucleic Acid probe, to 

confirm the absence of antisense (C4G2)n RNA foci in the NSC34 (G4C2)102 cells. No 

antisense (C4G2)n RNA foci were detected in either the NSC34 sham or the NSC34 

(G4C2)102 cells (Figure 3.12). As a positive control for the antisense-specific FISH probe, 

(C4G2)102 constructs were transiently transfected into HEK293 cells (Figure 3.12). 
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Figure 3.12 NSC34 (G4C2)n cells do not transcribe (G4C2)n in the antisense direction. 
NSC34 sham and NSC34 (G4C2)102 cells were cultured for 3 days with 10µg/mL 
tetracycline. HEK293 cells transfected with a (C4G2)102 plasmid contain (C4G2)102 foci, 
and serve as a positive control for the antisense Locked Nucleic Acid probe. Cells were 
stained with a fluorescently labelled Locked Nucleic Acid (G4C2)3 antisense probe (Red) 
and Dapi (Blue). RNA foci were imaged using a confocal microscope within a high 
resolution z-stack through the entire nuclear volume. The images shown are projections 
of the z-stack to show all RNA foci imaged in the cells. Scale bar = 10µm. 

3.3.4.3. The (G4C2)102 Repeat RNA Is Translated in Both the NSC34 and HEK293 cells 

The (G4C2)n repeat expansion undergoes Repeat Associated Non-ATG (RAN) translation 

in cells throughout the CNS of C9ORF72-ALS/FTD patients (Ash et al. 2013; Gendron et 

al. 2013; Mori et al. 2013a; Mori et al. 2013b). The sense (G4C2)n and antisense (C4G2)n 

RNA are both translated in all three reading frames, generating five DPR proteins. (GA)n 

and (GR)n are produced specifically from the sense (G4C2)n RNA, (PA)n and (PR)n are 

produced specifically from the antisense (C4G2)n RNA, and (GP)n is produced from both 

sense and antisense RNA (Ash et al., 2013; Gendron et al., 2013; Mori et al., 2013a; Mori 

et al., 2013c). Therefore, bioinformatics and immunoblotting were used to investigate 

whether the (G4C2)102 repeats also undergo RAN translation in the NSC34 and HEK293 

cells. 
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The pcDNA5/FRT/TO-(G4C2)102 plasmid was integrated into the Flp-In™ T-REx™ NSC34 

and Flp-In™ T-REx™ HEK293 genomes, and therefore, the plasmid sequence was used to 

predict (G4C2)102 translation products in both cell lines. The pcDNA5/FRT/TO-

(G4C2)102 plasmid sequence was imported to the Translate tool in ExPASy 

(http://web.expasy.org/translate/). There were no ATG start codons in any reading 

frame preceding the (G4C2)102 repeat (Figure 3.13). RAN translation does not require 

an ATG start codon to initiate translation however. Predicted (G4C2)102 RAN translation 

products would contain all three sense DPR motifs ((GA)n, (GR)n, and (GP)n), due to the 

5 bp TCGAC interruptions between the (G4C2)n repeats (Figure 3.13). Some of the 

sequence flanking the (G4C2)n repeats could also be translated and included in these 

predicted translation products as well (Figure 3.13). Therefore, the maximum molecular 

weight of the RAN translation proteins were calculated by exporting the full peptide 

sequences, from each frame (Figure 3.13), to the Compute pI/Mw tool in ExPASy 

(http://web.expasy.org/compute_pi/). The predicted maximum molecular weights for 

the three reading frames were 20.6, 20.3, and 20.4kDa respectively. 

Cells were immunoblotted using anti-DPR antibodies to check whether the (G4C2)n 

repeats do undergo RAN translation. NSC34 sham and (G4C2)102 were cultured for 7 

days ±0.5µg/mL tetracycline (section 3.3.4.4), and HEK293 sham and (G4C2)102 were 

cultured for 3 days ±10µg/mL tetracycline, prior to immunoblotting. WT HEK293 cells 

were also transiently transfected with (GA)68, (GR)100, (AP)100, and (PR)100 expression 

plasmids, to act as positive controls for the respective antibodies. Unfortunately, no (GP) 

positive control was available.  

http://web.expasy.org/translate/
http://web.expasy.org/compute_pi/
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Figure 3.13 Schematic of the predicted (G4C2)102 RAN translation products in NSC34 
(G4C2)102 and HEK293 (G4C2)102 cells. The translation products of the (G4C2)n in the 
NSC34 (G4C2)102 and HEK293 (G4C2)102 cells were predicted by importing the 
pcDNA5/FRT/TO-(G4C2)102 plasmid sequence into the Translate tool in ExPASy. 
Translation products (including Stop codons) from (G4C2)102 RNA construct in all three 
reading frames with GA, GP, and GR repeats highlighted in red, yellow, and green 
respectively. 

3.3.4.3.1. Anti-GA Detects Tetracycline-Inducible Protein(s) in NSC34 (G4C2)102 and 

HEK293 (G4C2)102 Cells 

The anti-GA antibody detected a protein band at approximately 40kDa in the NSC34 

sham and NSC34 (G4C2)102 cells ± tetracycline, and also in the WT HEK293 ± (GA)68 

transfection (Figure 3.14A). The anti-GA antibody detected a protein at approximately 

15kDa specifically in the positive control WT HEK293 transfected with (GA)68 (Figure 

3.14A). This band was not detected in NSC34 sham or NSC34 (G4C2)102 ± tetracycline, 

or the untransfected WT HEK293 cells (Figure 3.14A). However, the anti-GA antibody 

detected a 27kDa band in the NSC34 (G4C2)102 ± tetracycline, and a further 24kDa band 

in the NSC34 (G4C2)102 + tetracycline (Figure 3.14A). Neither of these bands at 24 or 

27kDa were detected in the NSC34 sham ± tetracycline (Figure 3.14A). Further, the 
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27kDa band was more abundant in the NSC34 (G4C2)102 induced with tetracycline 

compared to the NSC34 (G4C2)102 without tetracycline (Figure 3.14A).  

The anti-GA antibody detected a protein band at approximately 63kDa in the HEK293 

sham and HEK293 (G4C2)102 ± tetracycline (Figure 3.14B). However, the anti-GA 

antibody detected a 24 and 27kDa band in the HEK293 (G4C2)102 – tetracycline, with 

the 27kDa band being more abundant (Figure 3.14B). Further, the anti-GA antibody 

detected as many as 10 different bands ranging from 17 to 35kDa in the HEK293 

(G4C2)102 + tetracycline (Figure 3.14B). Also, the bands at 24 and 27kDa were much 

more abundant (Figure 3.14B). None of these bands were detected in the HEK293 sham 

± tetracycline (Figure 3.14B).  

3.3.4.3.2. Anti-GR Detects Tetracycline-Inducible Protein(s) in NSC34 (G4C2)102 and 

HEK293 (G4C2)102 Cells 

The anti-GR antibody detected protein bands at approximately 18.5 and 50kDa in the 

NSC34 sham and NSC34 (G4C2)102 cells ± tetracycline, and also in the WT HEK293 ± 

(GR)100 transfection (Figure 3.15A). Also, there was a band in the WT HEK293 ± (GR)100 

transfection at approximately 80kDa (Figure 3.15A). However, the anti-GR antibody 

detected protein bands at approximately 30, 35, and >100kDa specifically in the WT 

HEK293 transfected with (GR)68, which was not detected in NSC34 sham or NSC34 

(G4C2)102 ± tetracycline, or the untransfected WT HEK293 cells (Figure 3.15A). Also, the 

anti-GR antibody detected 24 and 27kDa bands in the NSC34 (G4C2)102 + tetracycline 

(Figure 3.15A). Neither of these bands at 24 or 27kDa was detected in the NSC34 sham 

± tetracycline, or NSC34 (G4C2)102 - tetracycline (Figure 3.15A). 

The anti-GR antibody detected protein bands at approximately 19, 30, 55, and 65kDa in 

the HEK293 sham and HEK293 (G4C2)102 ± tetracycline (Figure 3.15B). However, a 24 

and 27kDa band were detected only in the HEK293 (G4C2)102 + tetracycline (Figure 

3.15B).
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Figure 3.14 The anti-GA antibody detects RAN translation proteins from the (G4C2)102 RNA in the NSC34 (G4C2)102 and HEK293 (G4C2)102 
cells. A) NSC34 sham and NSC34 (G4C2)102 cells were cultured for 7 days ±0.5µg/mL tetracycline. HEK293 cells were transfected with (GA)68 
constructs to serve as a positive control for the anti-GA antibody. B) HEK293 sham and HEK293 (G4C2)102 cells were cultured for 3 days 
±10µg/mL tetracycline. Cells were lysed and immunoblotted with anti-GA and anti-tubulin. Molecular weight markers are indicated (kDa). 
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Figure 3.15 The anti-GR antibody detects RAN translation proteins from the (G4C2)102 RNA in the NSC34 (G4C2)102 and HEK293 (G4C2)102 
cells. A) NSC34 sham and NSC34 (G4C2)102 cells were cultured for 7 days ±0.5µg/mL tetracycline. HEK293 cells were transfected with (GR)100 
constructs to serve as a positive control for the anti-GR antibody. B) HEK293 sham and HEK293 (G4C2)102 cells were cultured for 3 days 
±10µg/mL tetracycline. Cells were lysed and immunoblotted with anti-GR and anti-tubulin. Molecular weight markers are indicated (kDa).
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3.3.4.3.3. Anti-GP Detects Tetracycline-Inducible Protein(s) in NSC34 (G4C2)102 and 

HEK293 (G4C2)102 Cells 

The anti-GP antibody detected a range of bands >65kDa in the NSC34 sham and NSC34 

(G4C2)102 cells ± tetracycline (Figure 3.16A). However, a 27kDa band was detected 

specifically in the NSC34 (G4C2)102 ± tetracycline, which was more abundant in the 

NSC34 (G4C2)102 with tetracycline (Figure 3.16A). In addition, a 24kDa band was 

specifically detected in the NSC34 (G4C2)102 + tetracycline (Figure 3.16A). Neither of 

these bands were detected in the NSC34 sham ± tetracycline (Figure 3.16A). 

The anti-GP antibody detected a range of protein bands >75kDa in the HEK293 sham 

and HEK293 (G4C2)102 ± tetracycline (Figure 3.16B). However, the anti-GP antibody 

detected a 27kDa band in the HEK293 (G4C2)102 ± tetracycline, with the 27kDa band 

being more abundant in the HEK293 induced with tetracycline compared to those 

without (Figure 3.16B). Further, the anti-GP antibody specifically detected a band at 

25kDa, and 4 different bands ranging from 15 to 19kDa in the HEK293 (G4C2)102 + 

tetracycline (Figure 3.16B). None of these bands were detected in the HEK293 sham ± 

tetracycline (Figure 3.16B).  

3.3.4.3.4. Anti-AP Does Not Detect Proteins Specifically in NSC34 (G4C2)102, but Does 

Detect a Large Protein in HEK293 (G4C2)102 Cells 

The anti-AP antibody detected an abundant protein band >100kDa, and 2 smaller 

protein bands at approximately 75 and 100kDa in the WT HEK293 transfected with 

(AP)100 (Figure 3.17A). The anti-AP antibody did not detect any other proteins in either 

the NSC34 sham or NSC34 (G4C2)102 ± tetracycline, or the untransfected WT HEK293 

cells (Figure 3.17A).  

The anti-AP antibody did detect a protein band >100kDa in the HEK293 (G4C2)102 ± 

tetracycline (Figure 3.17B). The abundance of the protein also seems increased by 

tetracycline induction (Figure 3.17B). 
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Figure 3.16 The anti-GP antibody detects RAN translation proteins from the (G4C2)102 RNA in the NSC34 (G4C2)102 and HEK293 (G4C2)102 
cells. A) NSC34 sham and NSC34 (G4C2)102 cells were cultured for 7 days ±0.5µg/mL tetracycline. B) HEK293 sham and HEK293 (G4C2)102 cells 
were cultured for 3 days ±10µg/mL tetracycline. Cells were lysed and immunoblotted with anti-GP and anti-tubulin. Molecular weight markers 
are indicated (kDa).
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Figure 3.17 The anti-AP antibody does not detects RAN translation proteins the NSC34 (G4C2)102but does detect protein in the HEK293 
(G4C2)102 cells. A) NSC34 sham and NSC34 (G4C2)102 cells were cultured for 7 days ±0.5µg/mL tetracycline. HEK293 cells were transfected with 
(AP)100 constructs to serve as a positive control for the anti-AP antibody. B) HEK293 sham and HEK293 (G4C2)102 cells were cultured for 3 days 
±10µg/mL tetracycline. Cells were lysed and immunoblotted with anti-AP and anti-tubulin. Molecular weight markers are indicated (kDa). 
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3.3.4.3.5. Anti-PR Does Not Detect Proteins Specifically in NSC34 (G4C2)102 or HEK293 

(G4C2)102 Cells 

The anti-PR antibody detected a range of different sized protein bands consistently and 

at low abundance in both the NSC34 sham and NSC34 (G4C2)102 ± tetracycline, and the 

untransfected WT HEK293 (Figure 3.18A). The anti-PR antibody also detected a range of 

protein bands, that were much more abundant and represented by a ‘smear’ on the 

membrane, in the WT HEK293 transfected with (PR)100 (Figure 3.18A). The anti-PR 

antibody did not detect any proteins specifically in the NSC34 (G4C2)102 cells. 

The anti-PR antibody detected a protein band >100kDa in the HEK293 sham and HEK293 

(G4C2)102 ± tetracycline (Figure 3.18B).  In addition, the abundance of the protein did 

not seem affected by tetracycline induction (Figure 3.18B) The anti-PR antibody did not 

detect any proteins specifically in the HEK293 (G4C2)102 cells. 

3.3.4.3.6. Summary of the Protein Species Detected Using Anti-DPR Antibodies in the 

NSC34 (G4C2)102 and HEK293 (G4C2)102 Cells 

Several protein bands were detected specifically in the NSC34 (G4C2)102 cells (with or 

without tetracycline induction) that were not detected in the NSC34 sham cells 

(regardless of tetracycline induction), suggesting that these proteins were derived from 

RAN translation of the (G4C2)102 repeat RNA. The same was found when comparing the 

HEK293 (G4C2)102 and HEK293 sham cells, although additional protein bands were 

detected in the HEK293 (G4C2)102 cells compared to the NSC34 (G4C2)102 cells. The 

RAN translation protein species, and their molecular weights, that were specifically 

detected in either the NSC34 (G4C2)102 and/or HEK293 (G4C2)102 cells are summarised 

in Table 3.1. 
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Figure 3.18 The anti-PR antibody does not detect RAN translation proteins in the NSC34 (G4C2)102 or HEK293 (G4C2)102 cells. A) NSC34 sham 
and NSC34 (G4C2)102 cells were cultured for 7 days ±0.5µg/mL tetracycline. HEK293 cells were transfected with (PR)100 constructs to serve as 
a positive control for the anti-PR antibody. B) HEK293 sham and HEK293 (G4C2)102 cells were cultured for 3 days ±10µg/mL tetracycline. Cells 
were lysed and immunoblotted with anti-PR and anti-tubulin. Molecular weight markers are indicated (kDa).
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Table 3.1 Summary of the protein species that are specifically detected in cells 
containing the (G4C2)102 repeat construct. The antibody used, the molecular weight 
(kDa), and the cell line that the protein bands were detected in are shown. * denotes 
protein bands that were only detected when the cell line was induced with tetracycline. 

Antibody (Sense (S) 
and/or Antisense 
(AS) derived) 

Molecular weight (kDa) of RAN translated protein species 
specifically detected in the following cells 

NSC34 (G4C2)102 HEK293 (G4C2)102 

Anti-GA (S) 24*, 27 Multiple bands ranging from 17-
35*, including 24, and 27 

Anti-GR (S) 24*, 27* 24*, 27* 

Anti-GP (S and AS) 24*, 27 15*, 16*, 17*, 19*, 25*, 27 

Anti-AP (AS) None >100 

Anti-PR (AS) None None 
 

3.3.4.4. 10 µg/mL Tetracycline Reduces NSC34 Cell Viability 

Initially, an MTT cell viability assay was performed on the NSC34 sham and NSC34 

(G4C2)102 cells to assess whether the (G4C2)102 expression reduces NSC34 cell 

viability. For the MTT assay, the NSC34 cells were grown for 7 days, and induced with 10 

µg/mL tetracycline for increasing lengths of time. The viability of the NSC34 sham cells 

was significantly reduced by 32.38±4.71% (P<0.0001), 43.61±7.79% (P<0.0001), and 

51.83±6.16% (P<0.0001) after 5, 6 and 7 days of 10µg/mL tetracycline induction 

respectively, compared to non-induced NSC34 sham cells (Figure 3.19A). Similarly the 

viability of the NSC34 (G4C2)102 cells was significantly reduced by 35.78±6.97% 

(P<0.0001), 52.56±3.14% (P<0.0001), and 60.31±8.07% (P<0.0001) after 5, 6 and 7 days 

of 10µg/mL tetracycline induction respectively, compared to non-induced NSC34 

(G4C2)102 cells (Figure 3.19A). Therefore, it appears 10µg/mL tetracycline is toxic to the 

NSC34 cells after prolonged exposure, although there is no detectable toxicity prior to 5 

days induction.  
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Figure 3.19 10 µg/mL tetracycline reduces NSC34 cell viability. A) NSC34 sham and 
NSC34 (G4C2)102 cells were cultured for 7 days, and were induced for various lengths 
of time with 10µg/mL tetracycline. Cell viability was measured using an MTT assay. 
(****P<0.0001; Two-way ANOVA with Tukey’s multiple comparisons post hoc test; data 
shown are mean and SD; n=3). B) NSC34 sham cells were cultured for 7 days with various 
concentrations of tetracycline. (****P<0.0001; One-way ANOVA with Dunnett’s 
multiple comparisons post hoc test; data shown are mean and SD; n=3). 

The toxicity of a range of lower concentrations of tetracycline was tested to find a non-

toxic concentration that would be taken forward for use in future experiments. NSC34 

sham cells were grown for 7 days, and incubated with a range of tetracycline 

concentrations. As before, 10µg/mL tetracycline reduced NSC34 sham cell viability by 
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57.37±1.67% (P<0.0001) compared to NSC34 sham cells treated with no tetracycline 

(Figure 3.19B). However, ≤1µg/mL tetracycline caused no significant reduction in NSC34 

sham cell viability compared to NSC34 sham cells treated with no tetracycline (Figure 

3.19B).  

To confirm that the (G4C2)n RNA expression can still be induced using lower tetracycline 

concentrations, NSC34 (G4C2)102 cells were induced with a range of tetracycline 

concentrations for 3 days, and then RNA FISH was performed. RNA foci were counted in 

25 cells for each condition (Figure 3.20). NSC34 (G4C2)102 cells without tetracycline 

treatment contained an average of 12.32 sense (G4C2)n RNA foci per cell, whilst NSC34 

(G4C2)102 cells treated with 0.1, 0.5, 1, and 10µg/mL tetracycline contained an average 

of 35.12, 26.96, 28.6, and 23.88 RNA foci per cell respectively. The average number of 

RNA foci was at least doubled for all tetracycline concentrations, and therefore, it was 

concluded that ≥0.1µg/mL tetracycline is sufficient to induce (G4C2)n RNA transcription 

in the NSC34 (G4C2)n cells. From here on, 0.5µg/mL tetracycline was used to induce 

(G4C2)n expression in the NSC34 cells, as this concentration of tetracycline does not 

affect NSC34 sham cell viability after 7 days in the MTT assay. 

3.3.4.5. (G4C2)102 Expression Reduces NSC34 Cell Viability  

Cell viability assays were repeated using a suitable concentration of tetracycline that did 

not affect NSC34 sham cell viability, but still achieved maximum induction of (G4C2)n 

RNA expression. For the MTT assay, the NSC34 cells were grown for 7 days, and induced 

with 0.5µg/mL tetracycline for increasing lengths of time. The viability of the NSC34 

(G4C2)102 cells was reduced by 29.9±8.6% (P<0.01) after 7 days tetracycline induction 

compared to NSC34 sham cells (Figure 3.21). However, there was no significant 

reduction in NSC34 (G4C2)10 or NSC34 (G4C2)51 cell viability after 7 days tetracycline 

induction. In addition, tetracycline did not reduce NSC34 sham cell viability (Figure 3.21). 
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Figure 3.20 ≥0.1µg/mL tetracycline induces increased (G4C2)102 transcription in 
NSC34 (G4C2)102 cells. NSC34 (G4C2)102 cells were cultured for 3 days with various 
concentrations of tetracycline. Cells were stained with a fluorescently labelled Locked 
Nucleic Acid (C4G2)3 sense probe (Red) and Dapi (Blue), and the number of RNA foci 
was counted in 25 cells per condition. (Data shown are mean; n=1). 

 

Figure 3.21 (G4C2)102 expression reduces NSC34 cell viability. NSC34 sham, NSC34 
(G4C2)10, NSC34 (G4C2)51, and NSC34 (G4C2)102 cells were cultured for 7 days, and 
were induced for various lengths of time with 0.5µg/mL tetracycline. Cell viability was 
measured using an MTT assay (**P<0.01; Two-way ANOVA with Tukey’s post hoc test; 
data shown are mean and SD; n=3). 
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3.3.4.6. (G4C2)102 Expression Does Not Cause NSC34 Cell Death 

A cell death assay was then used to confirm whether the reduced NSC34 cell viability 

was caused by increased cell death. Ethidium homodimer (EthD1) fluorescent dye is a 

cell-impermeant, high affinity nucleic acid stain that emits red fluorescence when bound 

to DNA. EthD1 fluorescence is therefore proportional to the number of dead cells. For 

the EthD1 assays, the NSC34 sham and NSC34 (G4C2)102 cells were grown for 7 days 

±0.5µg/mL tetracycline. The amount of dead cells was then assessed using the EthD1 

fluorescence. The cells were then freeze-thawed to lyse the cells, and a second EthD1 

fluorescence assay was performed. The amount of dead cells was normalised to the total 

number of cells. There was no significant difference in % dead cells in the NSC34 sham 

– tet and NSC34 sham + tet cells, with 7.01±6.42% and 10.11±6.27% dead cells 

respectively (Figure 3.22). Neither was there any significant difference in % dead cells in 

the NSC34 (G4C2)102 – tet and NSC34 (G4C2)102 + tet cells, with 27.43±11.73% and 

28.78±7.65% dead cells respectively (Figure 3.22). Finally, the % dead cells was not 

significantly increased in the NSC34 (G4C2)102 cells compared to the NSC34 sham cells 

± tet. 

3.3.4.7. (G4C2)102 Expression Reduces NSC34 Cell Growth Rate 

If induction of the (G4C2)102 expression did not increase NSC34 cell death, the other 

explanation for reduced cell viability is reduced growth rate. Therefore, a growth curve 

was also performed. The NSC34 sham and NSC34 (G4C2)102 cells were cultured for 16 

days in total, ±0.5µg/mL tetracycline. Viable cells were counted every 4 days, and 

1.5x106 cells were re-seeded and cultured. There was no significant difference in the 

number of viable cells between all conditions at days 4 or 8 (Figure 3.23). However, at 

days 12 and 16 there were significantly fewer viable NSC34 (G4C2)102 cells that were 

induced with tetracycline, compared to NSC34 sham ± tetracycline and NSC34 

(G4C2)102 cells without tetracycline induction. There were only 66.8±26.5% (P<0.001) 

and 52.4±11.6% (P<0.0001) NSC34 (G4C2)102 + tetracycline compared to NSC34 sham 

+ tetracycline at days 12 and 16 respectively (Figure 3.23). There were no significant 

differences in the number of NSC34 sham ± tetracycline and NSC34 (G4C2)102 without 

tetracycline induction.  



108 
 
 

 

 

Figure 3.22 (G4C2)102 expression does not increase NSC34 cell death. NSC34 sham and 
NSC34 (G4C2)102 cells were cultured for 7 days ±0.5µg/mL tetracycline. The number 
dead cells was measured using an EthD1 fluorescence assay, and the number of total 
cells was measured by lysing the cells and repeating the EthD1 fluorescence assay. The 
number of dead cells was normalised to the number of total cells to calculate % dead 
cells (Two-way ANOVA with Tukey’s post hoc test; data shown are mean and SD; n=3). 
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Figure 3.23 (G4C2)102 expression reduces NSC34 cell growth rate. NSC34 sham and 
NSC34 (G4C2)102 cells were cultured for 16 days ±0.5µg/mL tetracycline. The cells were 
counted every 4 days, and then 1.5x106 cells were reseeded. (***P<0.001; 
****P<0.0001; Two-way ANOVA with Tukey’s post hoc test; data shown are mean and 
SD; n=4). 

3.4. Discussion 

The first aim was to generate stable cell lines with tetracycline-inducible (G4C2)n repeat 

expression. To do this, the Flp-In™ and T-REx™ systems were used. Importantly, Flp-In™ 

T-REx™ HEK293 cells were used as a proof of principle, and showed the (G4C2)n 

constructs were compatible with the Flp-In™ T-REx™ systems. However, the NSC34 

(G4C2)n cells were the priority model of C9ORF72-ALS in this project, and were 

therefore characterised in greater detail.  A Flp-In™ T-REx™ NSC34 cell line was 

generated in house to use as a motor neuron-like cell model, as this was not 

commercially available. In addition, the (G4C2)n repeat expansion had to be cloned in 

vitro, and subsequently integrated into the Flp-In™ T-REx™ NSC34 cell host line. This 

required generating the (G4C2)n repeat constructs and then inserting them into a 

plasmid containing an FRT site. After stably transfecting the (G4C2)n plasmids into the 

Flp-In™ T-REx™ NSC34 cells, the cells were characterised for (G4C2)n expression, at RNA 

and protein levels. Finally, the tetracycline-inducible (G4C2)n repeat expression was 
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confirmed, and the tetracycline concentration had to be optimised to reduce toxicity, 

but maintain induction. 

3.4.1. Cloning the (G4C2)n Repeat 

The (G4C2)n hexanucleotide repeat DNA can form abnormal non B-form stable 

secondary structures. The sense (G4C2)n and antisense (C4G2)n DNA strands are both 

able to form G-quadruplex secondary structures (Haeusler et al., 2014; Zamiri et al., 

2015), whilst the (C4G2)n DNA strand can also form i-motifs and hairpin secondary 

structures (Kovanda et al., 2015). Additionally, RNA transcribed from the (G4C2)n repeat 

in either direction can form stable secondary structures with the template (G4C2)n DNA, 

forming RNA:DNA hybrid R-loops (Haeusler et al., 2014; Reddy et al., 2014). These non 

B-form secondary structures can interfere with normal cellular processes such as 

transcription and replication (Reddy et al., 2014; Thys and Wang, 2015). This makes the 

(G4C2)n repeat DNA unstable in both E.coli and mammalian cells, and the repeats are 

liable to both expansions and contractions in a length-dependent manner (Thys and 

Wang, 2015). Additionally, the G-quadruplexes cause polymerase slippage during DNA 

replication, and the (G4C2)n repeats  reduce replication efficiency in a length-dependent 

manner (Thys and Wang, 2015).  

The interference with biochemical processes makes the (G4C2)n repeat DNA technically 

challenging to clone and manipulate. Currently available PCR methods cannot amplify 

the (G4C2)n repeats when they are above a certain length. In our hands, PCR of the 

(G4C2)n repeat produced a mixture of different repeat lengths, even after extensive 

efforts to optimise the PCR using a range of DNA polymerases and the use of 7-

deazaguanasine. Further, commercial companies were not able to synthesise these 

repeats. However, other groups had previously cloned interrupted repeats to model 

repeat expansions, and this strategy was adopted for this project. 

Interrupted (CTG)n repeat expansion constructs had been cloned in Drosophila to model 

the (CTG)n repeat expansion that causes Myotonic Dystrophy 1 (de Haro et al., 2006). 

This methodological approach was used here to clone large interrupted (G4C2)n repeat 

constructs by ligating together smaller (G4C2)10 repeat fragments (see section 3.3.2), 

and (G4C2)10, (G4C2)51 and (G4C2)102 repeats were successfully generated in the 
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pcDNA6.2 vector. These (G4C2)n repeat constructs were also challenging to sub-clone 

via restriction digest and ligation, but after several rounds of optimisation, the repeats 

were sub-cloned into the pcDNA5/FRT/TO-HIS vectors. The size and sequence of the 

(G4C2)n repeats in the pcDNA5/FRT/TO-HIS vectors were confirmed by electrophoresis 

and sequencing respectively. Interestingly, the (G4C2)51 and (G4C2)102 repeat 

constructs do not contain (G4C2)10 repeat tracts followed by the TCGAG interruptions, 

as predicted. Instead, the larger (G4C2)n repeat constructs actually contain (G4C2)n 

repeat tracts of various lengths interspersed with the expected interruptions 

(Appendices 2 and 3). Further, the (G4C2)n repeats are always conserved as a full (G4C2) 

unit. This suggests that the (G4C2)n repeat constructs generated underwent expansion, 

contraction and/or recombination, even though recombination deficient β-10 E.coli 

were used to clone the (G4C2)n repeat constructs. 

3.4.2. Generating the Flp-In™ T-REx™ NSC34 Host Cell Line 

To model how (G4C2)n repeat expression may cause ALS in a reductionist manner, the 

initial aim was to generate isogenic NSC34 cells with tetracycline-inducible (G4C2)n 

expression. The NSC34 cell line was used because it displays many properties of motor 

neurons (Cashman et al., 1992), and the aim was to study how (G4C2)n expression may 

reveal disease mechanisms in ALS. Ideally, the NSC34 cells would have no or, more 

realistically, low (G4C2)n expression at basal levels because it was unknown how toxic 

the (G4C2)n repeat constructs would be in the NSC34 cell context. Equally, the NSC34 

cells would have high (G4C2)n expression upon tetracycline induction, such that the 

early biochemical effects of the (G4C2)n expression could be studied. In addition, the 

inducible nature of the (G4C2)n expression would potentially minimise the cell lines 

adapting to the (G4C2)n expression.  

Also, the isogenic nature of the NSC34 (G4C2)n cells was desirable as there would be 

minimal noise between cell lines in experiments. Flp-In™ T-REx™ NSC34 clonal line B10-

2 was generated and contained only one genomic FRT site, had low basal expression 

levels from the FRT site, and good tetracycline-inducible expression from the FRT site. 

After stable (G4C2)n construct insertion, the NSC34 (G4C2)n cells had the desirable 

characteristics described above. The ability to switch on (G4C2)n expression and the 
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isogenic nature of the cells were  two advantages that the NSC34 (G4C2)n cells had over 

other models such as transiently (G4C2)n transfected  cells or C9ORF72-ALS patient iPSC-

derived motor neurons.  

3.4.3. The HEK293 (G4C2)n and NSC34 (G4C2)n Cells Have Tetracycline-Inducible 

(G4C2)n RNA Expression 

The (G4C2)n repeat is transcribed in both sense and antisense directions, and forms 

characteristic sense (G4C2)n and antisense (C4G2)n RNA foci in the CNS of C9ORF72-

ALS/FTD patients (DeJesus-Hernandez et al., 2011; Gendron et al., 2013; Renton et al., 

2011). Similarly to the (G4C2)n DNA, the sense (G4C2)n RNA forms G-quadruplex 

secondary structures (Fratta et al., 2012; Haeusler et al., 2014; Reddy et al., 2013a). The 

antisense (C4G2)n RNA is suggested to form i-motif secondary structures however, 

although the actual secondary structure remains unresolved (Kovanda et al., 2015). The 

characteristic RNA foci are probably formed by the RNA secondary structure, and/or the 

binding with RNA binding proteins.  

RNA FISH was used to characterise the HEK293 (G4C2)n and NSC34 (G4C2)n cells for 

tetracycline-inducible (G4C2)n expression at the RNA level. As described previously, the 

(G4C2)n repeat cannot be amplified by PCR (section 3.4.1). Equally, there were no 

suitable regions flanking the (G4C2)n for qRT-PCR. RNA FISH, followed by confocal 

microscopy imaging and RNA foci counting was the only reliable method for (G4C2)n 

and (C4G2)n RNA detection in the NSC34 (G4C2)n and HEK293 (G4C2)n cells. Although 

this method is not strictly quantitative of total (G4C2)n or (C4G2)n levels, it did provide 

a relative measure of (G4C2)n and (C4G2)n expression in the cells. Also, the LNA probes 

bound specifically, but they did produce a diffuse background stain. Staining was 

classified as an RNA focus when the signal was strong, spherical in shape, and appeared 

in consecutive planes in the confocal z-stack images. RNase A treatment ablated these 

intense, spherical foci structures in both the NSC34 (G4C2)102 and HEK293 (G4C2)102 

cells, and confirmed that they were RNA foci. 

Using RNA FISH, the number of sense (G4C2)n RNA foci was dependent on the (G4C2)n 

repeat size. Intriguingly however, the number of RNA foci does not follow a linear trend 

with the (G4C2)n repeat size, as NSC34 (G4C2)51 cells induced with tetracycline contain 
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only 10.8±7.40% of the RNA foci number found in the NSC34 (G4C2)102 cells induced 

with tetracycline. Equally, the NSC34 (G4C2)10 cells induced with tetracycline contain 

46.6±59.2% of the RNA foci number found in the NSC34 (G4C2)51 cells induced with 

tetracycline. This is unexpected because the (G4C2)n repeats are all expressed from the 

same CMV/TO promoter from the same isogenic genomic location in the NSC34 (G4C2)n 

cells, suggesting there are the same amount of (G4C2)10, (G4C2)51, and (G4C2)102 RNA 

molecules transcribed. In absolute (G4C2)n repeat terms, the NSC34 (G4C2)102 should 

therefore express double the number of (G4C2)n RNA repeats as the NSC34 (G4C2)51, 

and was predicted to form double the number of RNA foci. 

Only two previous studies have looked at the correlation between RNA foci and (G4C2)n 

repeat length. SHSY5Y cells transfected with (G4C2)8 did not express any RNA foci, whilst 

cells transfected with (G4C2)38, and (G4C2)72 plasmids expressed 6 and 12 RNA foci per 

cell (Lee et al., 2013). This suggests a minimum number of repeats is necessary for RNA 

foci formation and/or detection using RNA FISH. In our hands, the cut off could be 

between 51 and 102 repeats, whilst it may be between 8 and 38 in this previous study. 

Above this number of (G4C2)n repeats there is a roughly linear correlation between RNA 

foci and (G4C2)n repeat length in cell lines however. Conversely, the number of RNA foci 

did not correlate with (G4C2)n repeat expansion length in C9ORF72-ALS iPSC-derived 

neurons (Almeida et al., 2013). Other genetic factors that arise from the great genetic 

diversity in these non-isogenic cells could affect the number of RNA foci however. 

Importantly, the size of the (G4C2)n RNA foci varies greatly even in the same cell line, 

and this is clearly demonstrated in the NSC34 (G4C2)102 (Figure 3.10 inset). Only RNA 

foci above a certain size must be detectable using RNA FISH and confocal microscopy, 

which means only the largest RNA foci formed in the NSC34 (G4C2)10 and NSC34 

(G4C2)51 cells are actually detectable, whilst the majority of RNA may exist as 

undetectable small RNA foci or soluble RNA molecules. Also, the (G4C2)102 RNA may 

aggregate more frequently, resulting in more detectable RNA foci. This could explain the 

lower RNA foci counts in the NSC34 (G4C2)10 and NSC34 (G4C2)51 cells. In addition, this 

suggests that soluble (G4C2)n RNA is not toxic, because (G4C2)10 and (G4C2)51 
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expression does not result in RNA foci and did not affect NSC34 cell viability (section 

3.3.4.5). In contrast, RNA foci and toxcitiy are observed in the the NSC34 (G4C2)102 cells. 

The NSC34 (G4C2)n cells do have tetracycline-inducible (G4C2)n RNA expression 

however. Staining was detected very rarely in the NSC34 sham, but the few foci that 

were detected are most likely non-specific staining. Also, the NSC34 sham cells have the 

same number of RNA foci with and without tetracycline, indicating that tetracycline 

treatment in itself is not sufficient to produce RNA foci. There are more RNA foci in the 

NSC34 (G4C2)10, NSC34 (G4C2)51, and NSC34 (G4C2)102 cells when treated with 

tetracycline compared to the respective non-induced controls, however the increases in 

RNA foci were only significant in the NSC34 (G4C2)102 cells. 

The HEK293 (G4C2)102 cells also have tetracycline inducible (G4C2)n RNA expression. 

RNA foci were detected at very low frequency in the HEK293 sham cells, and similarly to 

the NSC34 sham cells, this staining is most likely to be non-specific. RNA foci were 

abundant in the HEK293 (G4C2)102 cells, and more were detected in the tetracycline 

induced cells than the non-induced cells.  

3.4.4. The NSC34 (G4C2)n Cells Do Not Express Antisense (C4G2)n RNA Foci 

In C9ORF72-ALS/FTD patients, the (G4C2)n repeat is transcribed in the antisense 

direction from a cryptic promoter, and forms characteristic antisense (C4G2)n RNA foci 

(Gendron et al., 2013). There were no antisense (C4G2)n RNA foci detected in the NSC34 

(G4C2)102 cells. This is expected as the (G4C2)n repeats were only engineered under 

control of a sense CMV/TO promoter in the NSC34 (G4C2)n cells, and the antisense 

cryptic promoter found in the C9ORF72 gene context is absent. The antisense (C4G2)n 

RNA FISH probe did detect antisense (C4G2) RNA foci in HEK293 cells transiently 

transfected with (C4G2)102 constructs however, proving that the probe and assay do 

work. This means the NSC34 (G4C2)n cells specifically model sense (G4C2)n repeat 

expression independent of the C9ORF72 gene context. 
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3.4.5. The (G4C2)n Constructs Undergo RAN Translation in the HEK293 (G4C2)102 and 

NSC34 (G4C2)102 Cells 

The (G4C2)n undergoes non-canonical RAN translation in cells throughout the CNS of 

C9ORF72-ALS/FTD patients, producing DPRs (Ash et al. 2013; Gendron et al. 2013; Mori 

et al. 2013a; Mori et al. 2013b). There is also strong evidence that the (G4C2)n repeat is 

RAN translated in the NSC34 (G4C2)102 cells, and interestingly, this shows that the 

(G4C2)102 RNA can form the secondary structure necessary to drive RAN translation 

despite containing interruptions. Firstly, DPR expression plasmids were transfected into 

HEK293 cells and immunoblotted using DPR antibodies. This showed the antibodies 

recognise the relevant DPR proteins. The DPR antibodies that detect DPR translated 

from the sense (G4C2)n RNA (anti-GA, anti-GR, and anti-GP) detect proteins at 24 and 

27kDa specifically in the NSC34 (G4C2)102 cells treated with tetracycline, but not in the 

NSC34 sham cells. Secondly, tetracycline induction increases the amount of these 

proteins. Taken together with the RNA FISH result, which showed that NSC34 (G4C2)102 

cells have tetracycline-inducible (G4C2)n RNA expression (measured by number of RNA 

foci), it confirms that the expression of the (G4C2)102 translated proteins is dependent 

on the expression of the (G4C2)102 RNA. Thirdly, there are no detectable proteins 

containing the antisense-specific DPR (AP and PR) that are specifically expressed in the 

NSC34 (G4C2)102 cells, and not the NSC34 sham cells. This supports the lack of antisense 

(C4G2)n RNA foci, and by extension, the lack of (G4C2)n transcription in the antisense 

direction. Lastly, when the (G4C2)n repeats were cloned into the pcDNA5/FRT/TO-HIS 

plasmids, the HIS tag and associated ATG codon were removed. This was confirmed by 

restriction digest of the plasmid and sequencing. Therefore, translation of the 

(G4C2)102 repeats is via RAN translation in the absence of an ATG start codon. 

Several of the anti-DPR antibodies also detect non-DPR proteins, which is relatively 

unsurprising since the simple dipeptide motif that the antibodies recognise is likely to 

be contained in other proteins as well. Importantly, initial DPR immunoblot 

characterisation in the NSC34 (G4C2)n cells was performed solely using the anti-GA 

antibody, which failed to detect specific proteins in the NSC34 (G4C2)102 cells. This was 

because the anti-GA recognises a different protein at 40kDa that is much more abundant 
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than the (G4C2)102 translation products (Figure 3.14A). This made (G4C2)102 

translation product detection difficult. Only after interrogating the immunoblots using 

an increased exposure time were the (G4C2)102 translation products detected. 

The proteins translated from the interrupted (G4C2)102 repeats contain each of the 

three sense DPR motifs (Figure 3.13). This is because during translation of the 

interrupted (G4C2)n repeats, the 5 bp TCGAC interruptions cause a ‘frame shift’ to the 

next DPR motif. Therefore a different DPR motif is translated from each (G4C2)n repeat 

tract, but these different DPR motifs all exist in the same polypeptide. This means the 

protein bands at 24 and 27kDa detected by the anti-GA, anti-GR, and anti-GP are 

probably the same polypeptides, although this would require mass spectrometry to 

prove unequivocally. Unexpectedly however, the maximum predicted molecular weight 

for (G4C2)102 translation products is approximately 20.5kDa. The extra mass could be 

explained by post-translational modifications such as ubiquitination. 

The evidence for RAN translation in the NSC34 (G4C2)102 cells is also true in the HEK293 

(G4C2)102 cells. This shows the (G4C2)102 repeat construct is the necessary variable 

needed for RAN translation, in either the NSC34 or HEK293 cells. However, there are 

more detectable bands in the HEK293 (G4C2)102 cells treated with tetracycline using 

the anti-GA and anti-GP antibodies. This is possibly due to higher expression levels of 

the (G4C2)102 RAN proteins in the HEK293 (G4C2)102 cells compared to the NSC34 

(G4C2)102, because the RAN protein signal is greater relative to the non-specific bands 

on the blot. This is most apparent in the anti-GA immunoblot (Figure 3.14B). This also 

means that the (G4C2)102 may produce multiple different molecular weight RAN 

proteins in the NSC34 (G4C2)102 cells, but the signal is too weak to be detected by the 

imaging system. Also, unexpectedly, there are high molecular weight bands detected by 

the anti-AP antibody specifically in the HEK293 (G4C2)102 cells, but not the HEK293 

sham cells. This suggests that a promoter does control transcription of the (G4C2)102 

repeat in the antisense direction, producing a polypeptide with the poly(AP) motif. 

Similarly to the (AP)100 used as the positive control, this polypeptide appears to have 

been trapped in the loading well at the top of the gel. Due to the huge difference in 
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molecular weights however, the AP containing polypeptide is different to the sense RAN 

peptides containing GA, GR and GP motifs. 

3.4.6. (G4C2)102 Expression Reduces NSC34 Cell Growth Rate 

The (G4C2)102 reduces NSC34 cell growth rate, but does not cause cell death. During 

preliminary cell viability assays it was discovered that 10μg/mL tetracycline is actually 

toxic to NSC34 cells. Optimisation suggested 0.5μg/mL tetracycline was a better dosage, 

as it did not reduce NSC34 sham cell viability, but did still induce (G4C2)n RNA foci 

expression in NSC34 (G4C2)102 cells. The MTT cell viability assay showed that expression 

of the (G4C2)10 and (G4C2)51 do not affect NSC34 cell viability. However, expression of 

the (G4C2)102 significantly reduced NSC34 cell viability after 7 days tetracycline 

induction, and appears to be above a threshold repeat length necessary to cause toxicity 

in the NSC34 cells. The EthD1 cell death assays showed that the reduced NSC34 cell 

viability was not due to an increase in NSC34 cell death, because there was no significant 

difference in % dead cells between NSC34 (G4C2)102 induced with tetracycline for 7 

days, and non-induced NSC34 (G4C2)102. However, although not statistically significant, 

there was a greater % of dead cells in the NSC34 (G4C2)102 compared to the NSC34 

sham. This could suggest that long term basal (G4C2)102 expression does contribute to 

a greater rate of cell death. The best explanation for the reduced NSC34 cell viability 

measured in the MTT assay is a reduction in growth rate however. In the growth curve, 

NSC34 (G4C2)102 cells induced with tetracycline grew slower than NSC34 sham ± 

tetracycline, and NSC34 (G4C2)102 cells that were not induced with tetracycline. This 

suggests expression of the (G4C2)102 dysregulates the NSC34 cell metabolism at some 

level, and causes a reduction in growth rate. 

The toxic effects measured in the NSC34 (G4C2)102 cell model are similar to those 

described in previous (G4C2)n cell model studies (section 1.8.2.1), although the effects 

are more subtle in the NSC34 (G4C2)102 cells. Transient transfection of plasmids 

expressing (G4C2)30, but not (G4C2)3, reduce Neuro2a cell viability (Xu et al., 2013). 

Also, transient transfection of plasmids expressing (G4C2)38 and (G4C2)72, but not 

(G4C2)8, cause apoptosis in SHSY5Y neuronal cells (Lee et al., 2013). These plasmids do 

not induce apoptosis in HEK293 cells however (Lee et al., 2013). Further, several studies 
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using iPSC-derived neuronal cells and motor neuronal cells, derived from C9ORF72-ALS 

fibroblasts do not report reduced cell viability or increased cell death compared to 

control derived cells (Almeida et al., 2013; Devlin et al., 2015; Donnelly et al., 2013; 

Sareen et al., 2013). The expression level of C9ORF72 and the associated (G4C2)n 

repeats is likely to be much lower in iPSC derived neuronal cells than in the transient 

transfection models and the NSC34 (G4C2)n cells described here, which utilise strong 

promoters such as the CMV promoter. Therefore, the level of toxicity is probably a 

combination of the (G4C2)n repeat length, expression level, cell type, and ability of the 

(G4C2)n RNA to form secondary structure and/or DPR. 

Crucially, ALS disease onset is age related, and therefore C9ORF72-ALS pathogenesis 

requires a ‘second hit’ (such as reduced mitochondrial efficiency or neuroinflammation) 

in combination with the (G4C2)n repeat derived toxicity. Therefore, the (G4C2)n repeat 

expansion is likely to produce low, or at least well tolerated, toxicity in the motor 

neurons. With this hypothesis in mind, the subtler toxic phenotype described in the 

NSC34 (G4C2)102 cells likely represents a more relevant model of C9ORF72-ALS than 

those cellular models that display more severe toxicity. 

3.4.7. Summary 

In summary, stable, isogenic, motor neuron-like NSC34 cell lines with tetracycline-

inducible (G4C2)n expression have been successfully generated. The (G4C2)n is 

expressed in the NSC34 (G4C2)n cells in a tetracycline-inducible manner, and forms 

characteristic RNA foci. A unique advantage of the tetracycline-inducible (G4C2)n 

expression over other C9ORF72-ALS models, is that early biochemical effects can be 

studied. Additionally, the (G4C2)n RNA undergoes RAN translation to produce 

polypeptides containing all three sense DPR motifs (GA, GR, and GP). The NSC34 (G4C2)n 

cells express the (G4C2)n in the sense orientation only. Finally, tetracycline-induction of 

the (G4C2)102 RNA and/or RAN proteins reduces NSC34 cell growth rate. 
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Chapter 4 

 

Chapter 4. Biochemical Analysis of the NSC34 
(G4C2)n Cell Lines 

4.1. Introduction 

Initial characterisation of the NSC34 (G4C2)n cell lines showed that they have 

tetracycline-inducible expression of the (G4C2)n repeat, the (G4C2)n RNA forms RNA 

foci and is RAN translated, the (G4C2)n repeat is expressed in the (G4C2)n sense 

orientation only, and prolonged (G4C2)n expression reduced NSC34 (G4C2)102 growth 

rate. Next, biochemical analysis was performed to establish whether the NSC34 (G4C2)n 

cells recapitulate key pathological hallmarks of ALS in general, and specifically of 

C9ORF72-ALS. Importantly, NSC34 viability was only affected by (G4C2)102 expression, 

and not by (G4C2)51 or (G4C2)10 expression in the NSC34 (G4C2)n cell lines, and 

therefore, the early biochemical effects of (G4C2)n repeat expression would be most 

pronounced in the NSC34 (G4C2)102 cells. For that reason, and to conserve resources, 

only NSC34 sham and NSC34 (G4C2)102 cells were used in the biochemical 

characterisation experiments. 

4.2. Aims and Objectives for Biochemical Analysis of NSC34 (G4C2)n Cells 

1) Characterise NSC34 (G4C2)102 cells for TDP-43 aggregation and/or mis-

localisation, and oxidative stress. 

2) Characterise NSC34 (G4C2)102 cells for RNA foci and RNA binding protein co-

localisation. 

3) Interrogate potential biochemical effects of RNA binding protein sequestration 

using functional assays. 
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4.3. Results  

4.3.1. NSC34 (G4C2)102 Cells Do Not Display TDP-43 Mislocalisation or Aggregation 

TDP-43 is predominantly a nuclear protein that shuttles between the nucleus and 

cytoplasm of healthy cells. However, TDP-43 becomes mislocalised in the cytoplasm and 

forms aggregates in the neuronal and glial cells of most ALS patients (excluding SOD1 

and FUS related ALS cases, but including C9ORF72-ALS cases) (Neumann et al., 2006). 

These cytoplasmic TDP-43 aggregates are a pathological hallmark of ALS. ICC was 

performed on the NSC34 (G4C2)102 and NSC34 sham ± tetracycline to assess whether 

(G4C2)102 expression in this model system would cause TDP-43 aggregation or 

mislocalisation. In both the NSC34 sham and NSC34 (G4C2)102 cells ± tetracycline, TDP-

43 is predominantly nuclear with some cytoplasmic staining (Figure 4.1). There is no 

difference in nuclear and cytoplasmic TDP-43 distribution between the NSC34 sham and 

NSC34 (G4C2)102 cells (Figure 4.1). Also, TDP-43 is mainly diffuse in both the nucleus 

and cytoplasm, but there are also distinct small puncta structures in the nucleus and 

cytoplasm (Figure 4.1). There are no measurable changes in TDP-43 staining in the 

NSC34 (G4C2)102 compared to the NSC34 sham (Figure 4.1). In addition, tetracycline 

induction did not affect TDP-43 nuclear cytoplasmic distribution or staining in either the 

NSC34 sham or NSC34 (G4C2)102 cells (Figure 4.1). The TDP-43 ICC stained NSC34 sham 

and (G4C2)102 cells shown here were induced with tetracycline for 9 days, but showed 

the same results as NSC34 cells that were induced with tetracycline for shorter periods 

of time. The rationale was to induce (G4C2)102 for longer than 6 days (after which 

toxicity is observed in the NSC34 (G4C2)102 cells). If the (G4C2)102 expression did have 

an effect of TDP-43 localisation, it was predicted to have occurred by 9 days tetracycline 

induction. 
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Figure 4.1 (G4C2)102 expression does not cause TDP-43 mislocalisation or aggregation 
in NSC34 cells. NSC34 sham and (G4C2)102 cells were cultured for 9 days ±0.5µg/mL 
tetracycline. Cells were stained for TDP-43 (Green) and Dapi (Blue). Scale bar = 10µm. 

4.3.2. NSC34 (G4C2)102 Cells Do Not Have Increased Cellular Levels of Hydroxyl, 

Peroxyl, or Other Reactive Oxygen Species 

Oxidative stress occurs when the production of reactive oxygen species (ROS) and their 

removal becomes imbalanced, and/or the ability of the biological system to repair 

oxidative damage caused by ROS becomes impaired. ROS disrupt redox sensitive cellular 

signalling and also damage DNA, RNA, proteins and lipids. Post-mortem tissue from ALS 

patients is widely reported to show increased levels of oxidative damage (Chang et al., 

2008; Ferrante et al., 1997; Fitzmaurice et al., 1996; Shaw et al., 1995; Shibata et al., 

2001).  
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Hydroxyl, peroxyl and other ROS levels were assessed in the NSC34 sham and NSC34 

(G4C2)102 cells using the DCF assay. DCFDA is a cell permeant, fluorogenic dye. Once 

diffused through the plasma membrane, DCFDA is deacetylated by cellular esterases to 

produce a non-fluorescent, lipid membrane impermeant compound. Importantly, the 

removal of the acetyl group traps the compound inside the cell but also allows the DCF 

compound to be activated by hydroxyl, peroxyl and other cellular ROS, to produce 

fluorescent DCF. Therefore, DCF fluorescence directly measures the levels of these 

particular ROS within the cells. DCF data was normalised to total cell number, which was 

measured using EthD1 after freeze-thawing the cells. Firstly, as a positive control for the 

DCF assay, NSC34 cells were treated with menadione, which induces cellular ROS 

generation. The DCF fluorescence signal was significantly increased in the NSC34 sham 

and NSC34 (G4C2)102 cells treated with menadione, compared to the respective 

untreated control cells (Figure 4.2A). There was no significant difference in DCF signal 

between the untreated NSC34 sham and NSC34 (G4C2)102 cells either (Figure 4.2A). 

The significant increase in DCF signal caused by the menadione showed the assay could 

detect differences in cellular ROS levels. The NSC34 sham and NSC34 (G4C2)102 cells 

were then cultured for 5 days, and induced with tetracycline for various lengths of time. 

The hypothesis being, that ROS levels would increase with time if the (G4C2)102 

expression induced oxidative stress. There was no significant difference in DCF-

detectable ROS levels between NSC34 sham and NSC34 (G4C2)102 cells after any of the 

tetracycline inductions (Figure 4.2B). 
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Figure 4.2 (G4C2)102 expression does not cause oxidative stress in NSC34 cells. The 
level of Reactive Oxygen Species (ROS) in the NSC34 cells was measured using the DCF 
assay, and normalised to cell number (measured after cell lysis using EthD1 fluorescence 
assay). A) NSC34 sham and NSC34 (G4C2)102 cells were treated with 100mM 
menadione for 24 h as a positive control for the DCF assay. B) NSC34 sham and 
(G4C2)102 cells were cultured for 5 days, and were induced for various lengths of time 
with 0.5μg/mL tetracycline. (**P<0.01; ***P<0.001; Two-way ANOVA with Tukey’s post 
hoc test; Data are means ± SD; n=3). 
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4.3.3. RNA Foci Co-Localise with some RNA Binding Proteins in NSC34 (G4C2)102 Cells 

The RNA sequestration hypothesis was one of the first proposed to explain how the 

(G4C2)n repeat expansion causes C9ORF72-ALS. The (G4C2)n and/or (C4G2)n RNA is 

suggested to bind and sequester RNA binding proteins (RBP), resulting in disrupted RNA 

metabolism. Therefore, various groups (including our own) performed in vitro (G4C2)n 

RNA pull downs in conjunction with mass spectrometry and/or western blotting to 

identify candidate binding proteins (Cooper-Knock et al., 2014b; Donnelly et al., 2013; 

Haeusler et al., 2014; Lee et al., 2013; Mori et al., 2013b; Rossi et al., 2015; Xu et al., 

2013). Subsequently, many of these RBP were shown to co-localise with the (G4C2)n 

RNA foci in either cell models or C9ORF72-ALS post mortem tissue, suggesting in vivo 

sequestration (Cooper-Knock et al., 2014b; Donnelly et al., 2013; Haeusler et al., 2014; 

Lee et al., 2013; Mori et al., 2013b; Rossi et al., 2015; Xu et al., 2013).  

The NSC34 (G4C2)102 cells were co-stained for sense (G4C2)n RNA foci as well as a 

selection of these RBP that have previously been shown to bind and/or localise with the 

RNA foci. The aim was firstly to see whether the interrupted (G4C2)102 repeat RNA 

would model the (G4C2)n repeat expansion of C9ORF72-ALS, and secondly, to see 

whether the reduced growth rate caused by the (G4C2)102 expression in the NSC34 

(G4C2)102 could be caused by RBP sequestration. 50 cells were analysed for each RNA 

foci-RBP co-stain, and RNA foci-RBP co-localisation was performed manually. 

During the experimental work up it was discovered that following RNA FISH, the 

subsequent ICC procedure was washing away RNA FISH staining. This was possibly 

because the PBS used in antibody staining incubations and washes altered the salt 

concentration which caused the probe to wash off. Therefore, the protocol was 

optimised to include a crosslinking step (using UV or PFA) after the RNA FISH procedure, 

and before the ICC procedure. The crosslinking step using UV improved the RNA FISH 

stain, and was therefore incorporated into the co-stain method. UV crosslinking causes 

molecules to form new covalent bonds with other molecules in close proximity, and 

therefore, it was predicted to strengthen the binding between the RNA FISH probe and 

the (G4C2)n RNA. 
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4.3.3.1. (G4C2)n RNA Foci Co-Localise with SRSF1 in the NSC34 (G4C2)102 Cells 

Serine/Arginine-Rich Splicing Factor 1 (SRSF1/SF2/ASF) is an RBP that is involved in 

multiple gene expression processes including mRNA splicing (Ge and Manley, 1990; 

Krainer et al., 1990), nonsense-mediated mRNA decay (Sato et al., 2008; Zhang and 

Krainer, 2004), nuclear export of mRNA (Huang et al., 2003; Lai and Tarn, 2004; Tintaru 

et al., 2007), translation (Michlewski et al., 2008; Sanford et al., 2004), and miRNA 

processing (Wu et al., 2010). 19.5% of RNA foci in the 50 counted NSC34 (G4C2)102 cells 

co-localised with SRSF1 puncta (Figure 4.3). 

 

Figure 4.3 (G4C2)n RNA foci co-localise with SRSF1 in NSC34 (G4C2)102 cells. NSC34 
(G4C2)102 cells were induced with 0.5µg/mL tetracycline for 5 days. Cells were then 
stained with a Locked Nucleic Acid (C4G2)3 sense probe (Red), anti-SRSF1 (Green), and 
Dapi (Blue). 50 nuclei were imaged using a confocal microscope, and the RNA foci-SRSF1 
puncta colocalisation was quantified. The image shown is one z-plane imaged using the 
confocal microscope. Scale bar = 10μm, Inset = 5X magnification. 

4.3.3.2. (G4C2)n RNA Foci Co-Localise with SRSF2 in the NSC34 (G4C2)102 Cells 

Serine/Arginine-Rich Splicing Factor 2 (SRSF2/SC35) is another Serine/Arginine-Rich 

protein, and similarly to SRSF1, is involved in multiple gene expression processes 

including mRNA splicing (Fu and Maniatis, 1990; Fu et al., 1992), transcription elongation 

(Lin et al., 2008), nonsense-mediated mRNA decay (Zhang and Krainer, 2004). 11.9% of 

RNA foci in the 50 counted NSC34 (G4C2)102 cells co-localised with SRSF2 puncta (Figure 

4.4). 
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Figure 4.4 (G4C2)n RNA foci co-localise with SRSF2 in NSC34 (G4C2)102 cells. NSC34 
(G4C2)102 cells were induced with 0.5μg/mL tetracycline for 5 days. Cells were then 
stained with a Locked Nucleic Acid (C4G2)3 sense probe (Red), anti-SRSF2 (Green), and 
DAPI (Blue). 50 nuclei were imaged using a confocal microscope, and the RNA foci-SRSF2 
puncta colocalisation was quantified. The image shown is one z-plane imaged using the 
confocal microscope. Scale bar = 10μm, Inset = 5X magnification. 

4.3.3.3.  (G4C2)n RNA Foci Do Not Co-Localise with PURA in the NSC34 (G4C2)102 Cells 

 

Figure 4.5 (G4C2)n RNA foci do not co-localise with PURA in NSC34 (G4C2)102 cells. 
NSC34 (G4C2)102 cells were induced with 0.5μg/mL tetracycline for 5 days. Cells were 
then stained with a Locked Nucleic Acid (C4G2)3 sense probe (Red), anti-PURA (Green), 
and DAPI (Blue). 50 nuclei were imaged using a confocal microscope, and the RNA foci-
PURA puncta co-localisation was quantified. The image shown is one z-plane imaged 
using the confocal microscope. Scale bar = 10μm, Inset = 5X magnification. 

Purine-Rich Element Binding Protein A (PURA) is a multifunctional protein that binds 

single-stranded DNA and RNA, and is involved in transcription (Haas et al., 1993; Haas 
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et al., 1995; White et al., 2009), mRNA transport and translation (Ohashi et al., 2000; 

Ohashi et al., 2002), DNA replication (Chang et al., 1996; Jurk et al., 1996), and DNA 

repair (Wang et al., 2007). The PURA staining was fairly diffuse throughout the 

cytoplasm and nuclei, but occasional large PURA aggregates were also detected (Figure 

4.5). There was no evidence of RNA foci and PURA co-localisation in the NSC34 

(G4C2)102 cells (Figure 4.5). 

4.3.3.4. (G4C2)n RNA Foci Do Not Co-Localise with ALYREF in the NSC34 (G4C2)102 Cells 

ALY/REF Export Factor (ALYREF) is involved in mRNA nuclear export (Rodrigues et al., 

2001; Zhou et al., 2000). ALYREF staining was diffuse throughout the nuclei in the NSC34 

(G4C2)102 cells (Figure 4.6). There was no evidence of RNA foci and ALYREF co-

localisation in the NSC34 (G4C2)102 cells (Figure 4.6). 

 

Figure 4.6 (G4C2)n RNA foci do not co-localise with ALYREF in NSC34 (G4C2)102 cells. 
NSC34 (G4C2)102 cells were induced with 0.5μg/mL tetracycline for 5 days. Cells were 
then stained with a Locked Nucleic Acid (C4G2)3 sense probe (Red), anti-ALYREF (Green), 
and DAPI (Blue). 50 nuclei were imaged using a confocal microscope. The image shown 
is one z-plane imaged using the confocal microscope. Scale bar = 10μm, Inset = 5X 
magnification. 

4.3.3.5. (G4C2)n RNA Foci Co-Localise with Nucleolar NCL in the NSC34 (G4C2)102 Cells 

Nucleolin (NCL) is another multifunctional RNA binding protein that is most abundant in 

the nucleolus. NCL is involved in multiple RNA and DNA processing events including 

ribosomal RNA (rRNA) transcription, rRNA maturation, and ribosome biogenesis (Ginisty 
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et al., 1998; Ginisty et al., 2000; Roger et al., 2003), mRNA transcription (Uribe et al., 

2011), chromatin remodelling (Angelov et al., 2006; Yang et al., 1994), DNA replication 

(Seinsoth et al., 2003), telomere maintenance (Khurts et al., 2004), and DNA repair (Yang 

et al., 2009). 22.6% of RNA foci co-localised with the nucleolar NCL in the 50 counted 

NSC34 (G4C2)102 cells (Figure 4.7A). The RNA FISH-NCL co-stain was also performed on 

C9ORF72-ALS CNS tissue, and NCL co-localised with RNA foci in both cerebellar granule 

and Purkinje neurons (Figure 4.7B). 

 

Figure 4.7 (G4C2)n RNA foci co-localise with NCL in NSC34 (G4C2)102 cells and 
C9ORF72-ALS CNS tissue. A) NSC34 (G4C2)102 cells were induced with 0.5µg/mL 
tetracycline for 5 days. Cells were then stained with a Locked Nucleic Acid (C4G2)3 sense 
probe (Red), anti-NCL (green), and Dapi (Blue). 50 nuclei were imaged using a confocal 
microscope, and the RNA foci-nucleolar NCL co-localisation was quantified. The image 
shown is one z-plane imaged using the confocal microscope. Scale bar = 10μm, Inset = 
5X magnification. B) Cerebellar slices from C9ORF72-ALS cases were stained with a 
Locked Nucleic Acid (C4G2)3 sense probe (Red), anti-NCL (Green) and Dapi (Blue). The 
image shown is one z-plane imaged using the confocal microscope. Scale bar = 3µm. 
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4.3.4. (G4C2)102 Expression Does Not Cause Functional Nucleolar Stress in NSC34 

(G4C2)102 Cells 

4.3.4.1.  (G4C2)102 Expression Disrupts Nucleolar Morphology in NSC34 (G4C2)102 Cells 

NCL is a major functional protein of the nucleolus and sequestration by (G4C2)n RNA 

was hypothesised to cause nucleolar stress. Fragmented and/or enlarged nucleoli would 

indicate nucleolar stress in the NSC34 (G4C2)102 cells. NSC34 sham and NSC34 

(G4C2)102 cells were cultured ± tetracycline for 5 days, and then fixed and stained for 

NCL. NCL staining in the NSC34 cells was visualised using a confocal microscope. A z-

stack made up of images at 0.5µm intervals through the entire nuclear volume of the 

cells under consideration was imaged. The images shown in Figure 4.8A are a maximum 

projection of the z-stack, such that the total nucleolar area in each cell can be seen and 

quantified. NCL was localised abundantly in multiple compact globular nucleoli, but was 

also less abundantly localised diffusely throughout the nucleus in both the NSC34 sham 

and NSC34 (G4C2)102 ± tetracycline (Figure 4.8A). Extra-nuclear NCL puncta were also 

common in the NSC34 cells sham and (G4C2)102 ± tetracycline (Figure 4.8A). 

A previously published method was used to quantify the nucleolar area in the NSC34 

cells (Haeusler et al., 2014). A threshold of 50-100 was set in FIJI to measure the 

nucleolar NCL area, and exclude the diffuse nuclear NCL staining. The nucleolar NCL area 

was then normalised to the nuclear area, which was quantified by measuring the DAPI 

stained area. There was no significant difference in the nucleolar area (as a percentage 

of the nucleus) between NSC34 sham cells treated and untreated with tetracycline, 

where the nucleolar area was 23.7±1.8% and 22.1±3.3% respectively (Figure 4.8B). The 

nucleolar area was increased in the NSC34 (G4C2)102 cells, where the nucleolar area 

was 24.8 ± 1.3% and 30.6±2.2% in NSC34 (G4C2)102 cells untreated and treated with 

tetracycline respectively (Figure 4.8B). The nucleolar area was significantly increased in 

the NSC34 (G4C2)102 induced with tetracycline compared to NSC34 sham cells treated 

with tetracycline (P<0.01) (Figure 4.8B). 
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Figure 4.8 (G4C2)102 expression causes nucleolar fragmentation and dispersion in 
NSC34 (G4C2)102 cells. A) NSC34 (G4C2)102 cells were cultured with 0.5µg/mL 
tetracycline for 5 days. Cells were then stained with anti-NCL (Green), and Dapi (Blue) 
and imaged using a confocal microscope within a z-stack through the entire nuclear 
volume. The images shown are projections of the z-stack to show the maximum 
nucleolar area in the cells. The area of the nucleoli was measured as a percentage of 
total nuclear area. Scale bar = 10µm. B) Quantification of the nucleolar area as a 
percentage of nuclear area (**P<0.01; Two-way ANOVA with Tukey’s multiple 
comparisons post hoc test; Data are means ± SD; n=3). 
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4.3.4.2.  (G4C2)102 Expression Does Not Affect rRNA Levels 

To assess nucleolar function, the processing and maturation of 45S pre-rRNA, and the 

levels of mature rRNA species were measured. In the nucleolus, the precursor 45S pre-

rRNA is transcribed from rDNA genes, and is then processed to form the mature 18S, 

5.8S, and 28S rRNA species. The 45S pre-rRNA molecule is very short lived, and is 

considered a sign of new rRNA transcription (Uemura et al., 2012). In addition, the levels 

of mature rRNA species present would indicate the amount of rRNA available for 

ribosome biogenesis, and also the maturation from pre-rRNA to mature rRNA (when 

rRNA is normalised to pre-rRNA). Therefore, reduction in 45S pre-RNA and/or mature 

rRNA levels would indicate impaired nucleolar function.  

Total RNA was isolated from the NSC34 sham and NSC34 (G4C2)102 cells (both treated 

with tetracycline for 5 days), and qRT-PCR was performed to quantify the precursor 45S 

pre-rRNA, and the mature 18S, 5.8S and 28S rRNA species. There was no significant 

difference in 45s pre-rRNA, or any of the mature rRNA species in the NSC34 (G4C2)102 

compared to NSC34 sham cells (Figure 4.9A), indicating pre-rRNA transcription is 

unaffected. In addition, there was no significant difference in any of the mature rRNA 

species when normalised to the 45S pre-rRNA in the NSC34 (G4C2)102 compared to the 

NSC34 sham cells (Figure 4.9B), indicating pre-rRNA maturation is unaffected.  
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Figure 4.9 Ribosomal RNA maturation is not affected by (G4C2)102 expression in 
NSC34 cells. NSC34 sham and NSC34 (G4C2)102 cells were grown for 5 days with 
0.5μg/mL tetracycline. qRT-PCR was performed on 45S pre-rRNA, and mature 18S rRNA, 
5.8S rRNA, and 28S rRNA species, and normalised to β-actin (A) or 45S pre-rRNA (B) 
(Multiple t-tests; Data are means ± SD; n=3). 
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4.3.4.3. NSC34 (G4C2)102 Show Mild Translation Defects 

Mature rRNA is assembled into the 60S and 40S ribosomal subunits in the nucleolus 

(Kressler et al., 1999; Venema and Tollervey, 1999). The 60S and 40S ribosomal subunits 

are then exported to the cytoplasm, where they can assemble onto mRNA forming the 

80S translation initiation complex (Jackson et al., 2010). Once the 80S ribosome starts 

translating the mRNA, subsequent ribosomes can bind and translate the same mRNA 

molecule forming a polyribosome (polysome) complex (Jackson et al., 2010). Polysome 

profiling was performed to assess the translation efficiency in the NSC34 (G4C2)102 

cells. It was predicted that nucleolar stress would lead to reduced ribosomal biogenesis, 

and translation defects.  

NSC34 (G4C2)102 and NSC34 sham cells were cultured for 6 days with tetracycline, and 

then translation was stalled, cells were lysed, and ribosome fractionation was 

performed using sucrose density centrifugation. Ribosomes were separated into the 

soluble proteins, 40S and 60S ribosomal subunits, 80S initiation complex, and 

polysomes. Once the lysate was separated, the sucrose gradient protein content was 

measured by UV absorbance. NSC34 sham and NSC34 (G4C2)102 cells produced similar 

profiles in each of three experiments, and a representative profile is shown in Figure 

4.10A. There were slight differences between the polysome profiles from the NSC34 

(G4C2)102 and sham, but these differences were inconsistent across the three 

experimental repeats. The 40S peak was undetectable, but is likely in fraction 11 and 12 

and hidden in the large soluble shoulder peak (Figure 4.10A). The 60S ribosomal subunit 

is in fractions 11-13 (Figure 4.10A), and corresponds with the increased 60S Ribosomal 

Protein L26 (RPL26) detected by immunoblot of the sucrose fractions (Figure 4.10B). The 

80S initiation complex is in fractions 13-15 (Figure 4.10A), and corresponds with the 

abundant RPL26 bands detected by immunoblot (Figure 4.10B). The multiple peaks in 

fractions 16-21 (Figure 4.10A) also contain RPL26 (Figure 4.10B), confirming that they 

are the polysomes. The NSC34 (G4C2)102 cells appear to have slightly less RPL26 in 

fractions 11-21 compared to the NSC34 sham cells (Figure 4.10B), but this finding was 

weak and inconsistent across the three experimental repeats. There was consistently 

more RPL26 in fractions 2-7, which correspond to the soluble protein fractions (Figure 
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4.10B). The amount of soluble RPL26 was normalised to α-tubulin in those fractions, and 

there was 100±111% more soluble RPL26 in the NSC34 (G4C2)102 compared to NSC34 

sham cells (Figure 4.10C). 

4.3.4.4. (G4C2)102 Expression Increases p53 Protein Levels in NSC34 (G4C2)102 Cells 

Ribosome biogenesis consumes a huge amount of cellular energy, and therefore many 

metabolic and signalling pathways regulate or are affected by the nucleolus (James et 

al., 2014). The nucleolus acts as a principle stress sensor, and initiates p53-dependent 

cell cycle arrest, which can lead to senescence or apoptosis, under cellular stress (Rubbi 

and Milner, 2003). NCL itself is involved in p53 regulation, and binds the 5’UTR of p53 

mRNA inhibiting p53 translation (Takagi et al., 2005). NCL sequestration by the (G4C2)n 

RNA could therefore lead to increased p53 translation and cell cycle arrest or apoptosis. 

In addition, RPL26 also binds the 5’UTR of p53 mRNA, but unlike NCL binding, RPL26 

activates p53 translation (Takagi et al., 2005). 

p53 protein levels were increased by 191±95.8% (P<0.01) in NSC34 (G4C2)102 cells 

induced with tetracycline compared to NSC34 sham induced with tetracycline (Figure 

4.11A-B). p53 protein levels were not affected by tetracycline in the NSC34 sham cells 

(Figure 4.11A-B). To identify whether the increased p53 protein levels could be caused 

by an increase in p53 translation, RNA was extracted from sucrose fractions containing 

translating ribosomes in the polysome profiling experiment (Figure 4.10A-B), and qRT-

PCR was performed for p53 and actin. There was a 61±147% increase in p53 mRNA in 

the translating ribosomes in the NSC34 (G4C2)102 + tet compared to NSC34 sham + tet, 

although this difference was not statistically significant (Figure 4.11C). 
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Figure 4.10 (G4C2)102 expression increases soluble RPL26 in NSC34 cells. NSC34 sham 
and NSC34 (G4C2)102 cell were cultured for 6 days with 0.5μg/mL tetracycline. The 
translating ribosomes (polysomes) were stalled, cells were lysed, and the ribosomal 
subunits and complexes were separated using sucrose density gradient centrifugation. 
The polysome profiles were measured using a FPLC machine, and sucrose fractions were 
collected. A) A representative polysome profile from the NSC34 cells, showing ribosomal 
subunits, 80S initiation complex, and polysomes. B) Fractions were immunoblotted for 
RPL26 and α-tubulin. C) Quantification of soluble RPL26 (fractions 2-7) normalized to α-
tubulin. (Data are means ± SD; n=3). 
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Figure 4.11 (G4C2)102 expression increases p53 protein levels. NSC34 sham and NSC34 
(G4C2)102 cells were cultured for 6 days with or without 0.5μg/mL tetracycline. A) Cells 
were lysed and immunoblotted with anti-p53 and anti-α-tubulin. Molecular weight 
markers are indicated (kDa). B) Quantification of p53 protein normalised to α-tubulin 
(**P<0.01; Two-way ANOVA with Tukey’s multiple comparisons post hoc test; Data are 
means ± SD; n = 3). C) After polysome profiling, RNA was extracted from fractions 20 
and 21 (containing the translating polysomes) and qRT-PCR was performed on p53 and 
normalised to β-actin (t-test; Data are means ± SD; n=3).   
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4.4. Discussion 

4.4.1. There Is No TDP-43 Mislocalisation or Aggregation 

TDP-43 aggregates and mislocalisation are the pathological hallmarks of most genetic 

subtypes of ALS, including C9ORF72-ALS. However, it is unknown whether (G4C2)n 

expression, and/or C9ORF72 haploinsufficiency causes TDP-43 pathology in C9ORF72-

ALS. The NSC34 (G4C2)102 cells are an inducible model of C9ORF72-ALS, and any effects 

in this model are early biochemical effects. There was no evidence of TDP-43 

mislocalisation or aggregation in the NSC34 (G4C2)102 cells, and this is in agreement 

with the majority of other C9ORF72-ALS models (section 1.8.2). This is unsurprising 

however because TDP-43 mislocalisation and aggregation is not an early event in ALS 

pathogenesis.  

Important comparisons about whether (G4C2)n expression causes TDP-43 pathology 

can be drawn from several recently published C9ORF72-ALS mouse models. One of the 

models expresses high levels of (G4C2)66 throughout the CNS, and is the only model of 

C9ORF72-ALS that does show TDP-43 pathology (Chew et al., 2015). The (G4C2)66 

repeat is highly expressed from a chicken beta actin (CBA) promoter in the sense 

orientation only, and independently of the C9ORF72 gene context, throughout the CNS 

(Chew et al., 2015). Nuclear (G4C2)n RNA foci, sense DPR aggregates, and TDP-43 

aggregates were detected in the CNS of the mice at 6 months (Chew et al., 2015). 

However, two different C9ORF72 BAC transgenic mice express a much larger (G4C2)n 

repeat (approximately 500 or 800 repeats in size) from the C9ORF72 gene context, and 

do not show any signs of TDP-43 pathology even by 20 months (O'Rourke et al., 2015; 

Peters et al., 2015). Sense and antisense RNA foci, as well as DPR aggregates were 

detected in the C9ORF72 BAC transgenic mice, but the promoters associated with the 

C9ORF72 gene are much weaker than the CBA promoter used in the first mouse model 

(O'Rourke et al., 2015; Peters et al., 2015). Therefore, the (G4C2)n expression is much 

lower in the C9ORF72 BAC transgenic mouse compared to the (G4C2)66 mouse. 

Importantly, the models show that the sense (G4C2)n RNA and/or sense DPR proteins 

are sufficient to cause TDP-43 pathology, but only when over expressed, and over a 

significant length of time. 
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There are several reasons that potentially explain why the NSC34 (G4C2)102 cells, and 

other cellular models of C9ORF72-ALS, do not show TDP-43 aggregation and/or 

mislocalisation. Firstly, (G4C2)n expression may only cause TDP-43 aggregation in post-

mitotic CNS cells. Secondly, the (G4C2)n expression is not high enough, or expressed for 

long enough in the NSC34 cells. Thirdly, one of the pure DPR species may be responsible 

for the TDP-43 pathology, which the NSC34 (G4C2)102 cells do not express. Lastly, a 

second hit, either genetic or age-related, may be required in addition to the (G4C2)n 

expression to cause TDP-43 pathology, and could be particularly relevant for C9ORF72-

ALS pathogenesis. However, any effects that are detected in the NSC34 (G4C2)102 cells 

are early biochemical effects that could occur prior to TDP-43 pathology in C9ORF72-

ALS. 

4.4.2. There Is No Increase in Hydroxyl, Peroxyl, or other Cellular ROS Levels in the 

NSC34 (G4C2)102 Cells 

Oxidative stress is thought to be key mechanism in ALS pathogenesis, and many studies 

report increased levels of oxidative damage in post-mortem tissue and biosamples from 

SALS patients. There were increased 8-oxo-7,8-dihydroguanosine (8-OHG) levels in the 

motor cortex and cerebellum of sporadic ALS patients, which indicates increased 

oxidative damage to mRNA species (Chang et al., 2008). Also, there was increased 

protein carbonylation, a marker of oxidised protein, in both the motor cortex and spinal 

cord from SALS patients (Ferrante et al., 1997; Shaw et al., 1995), and elevated levels of 

8-hydroxy-2'-deoxyguanosine (OH8dG), a marker of oxidized DNA, in both the motor 

cortex and cervical spinal cord from SALS patients (Ferrante et al., 1997; Fitzmaurice et 

al., 1996). Additionally, increased levels of 4-hydroxy-2-nonenal (HNE) and 

crotonaldehyde (CRA) in the motor neurons and glial cells of spinal cord from SALS 

patients, indicate increased lipid peroxidation (Shibata et al., 2001). Finally, OH8dG 

levels were elevated in urine samples from SALS patients (Mitsumoto et al., 2008), HNE 

levels were elevated in serum, spinal fluid, and CSF samples from SALS patients (Simpson 

et al., 2004; Smith et al., 1998). 

However, the DCF assay did not detect increased levels of hydroxyl, peroxyl or other 

cellular ROS in the NSC34 (G4C2)102 cells. As described above in section 4.4.1, any 
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effects detected in the NSC34 (G4C2)102 cells are likely to be early biochemical effects, 

and suggests (G4C2)102 expression does not induce oxidative stress as an early 

biochemical effect. In addition, the vast majority of other C9ORF72-ALS models either 

make no comment on, or show no oxidative stress, which could suggest oxidative stress 

is not the primary toxic effect of (G4C2)n expression and/or C9ORF72 haploinsufficiency. 

In one study however, catalase transcript levels were significantly higher in C9ORF72-

ALS iPSC-derived motor neurons, which indicates oxidative stress (Kiskinis et al., 2014). 

There is stronger evidence for oxidative stress in other genetic models of ALS. Increased 

protein carbonylation, hydroxyl radicals, hydrogen peroxide, lipid peroxidation, and 

oxidative damage to DNA are described in SOD1(G93A) mouse models (Andrus et al., 

1998; Liu et al., 1999; Liu et al., 1998; Poon et al., 2005). Increased lipid peroxidation 

and oxidative stress were also measured in NSC34 cells stably transfected with 

SOD1(G93A) (Wang et al., 2014). In addition to the SOD1(G93A) models, NSC34 cells 

expressing mutant TDP-43 have increased nuclear NRF2, which indicates increased 

oxidative stress (Duan et al., 2010). Glutathione S transferase D1 (GstD1) expression and 

protein carbonylation were elevated (both markers of oxidative stress) in a Drosophila 

model that expresses TDP-43 in the motor neurons (Zhan et al., 2015). In addition to 

biochemical studies, transcriptome analysis of NSC34 cells expressing SOD1(G93A) 

showed dysregulation in antioxidant response genes, suggesting oxidative stress (Kirby 

et al., 2005). Therefore, transcriptomic analysis of the NSC34 (G4C2)102 cells may detect 

whether the (G4C2)102 expression does cause oxidative stress or the NSC34 cells’ ability 

to cope with oxidative stress.  

4.4.3. (G4C2)n RNA Foci Co-Localise with Splicing Factors SRSF1 and SRSF2 in the NSC34 

(G4C2)102 Cells 

The hypothesis was that the (G4C2)n RNA foci would bind and co-localise with RBP in 

the NSC34 (G4C2)102 cells, which would lead to dysregulated RNA metabolism. SRSF1 

and SRSF2 are both multifunctional RBP that co-localised with 19.5% and 11.9% of RNA 

foci counted in the NSC34 (G4C2)102 cells respectively, consistent with several in vitro 

studies. SRSF1 and SRSF2 were both pulled down from SHSY5Y whole-cell extract, 

SHSY5Y nuclear extract and dissected human cerebellum whole extract in vitro by 
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biotinylated-(G4C2)5 RNA (Cooper-Knock et al., 2014b). These interactions were 

confirmed to be direct, using UV crosslinking RNA pull down assays (Cooper-Knock et al., 

2014b). SRSF1 was also pulled down from NSC34 whole cell extract in vitro by 

biotinylated-(G4C2)31 RNA in a different study (Rossi et al., 2015). In addition, SH-SY5Y 

cells transfected with (G4C2)72 constructs displayed colocalisation between RNA foci 

and both SRSF1 and SRSF2 (Lee et al., 2013). There was evidence of (G4C2)n RNA foci 

and SRSF2 colocalisation, in both cerebellar granule cells and ventral horn motor 

neurons from C9ORF72-ALS patients (Cooper-Knock et al., 2014b). However, there was 

no evidence of (G4C2)n RNA foci and SRSF1 colocalisation in the C9ORF72-ALS CNS tissue 

in the same study.  In a different study, (G4C2)n RNA foci and both SRSF1 and SRSF2 co-

localisation was much rarer in the cerebellum of C9ORF72-ALS patients (Lee et al., 2013). 

In summary, it is far from clear whether these protein-RNA interactions are 

physiologically relevant, but also possibly highlights the dynamic nature of these 

interactions. 

SRSF1 and SRSF2 are both involved in mRNA splicing and several previous transcriptomic 

studies have shown splicing defects in C9ORF72-ALS cases. Splicing consistency is lower 

in C9ORF72-ALS lymphoblastoid cells compared to controls and non-C9ORF72-ALS cases 

(Cooper-Knock et al., 2015a). Extensive splicing and polyadenylation defects were found 

in C9ORF72-ALS patient cerebellum and frontal cortex (Prudencio et al., 2015). Further, 

amongst the spliced exons and introns with the splicing defects, binding motifs 

recognised by HnRNP H and/or SRSF1 were enriched (Prudencio et al., 2015). This 

certainly suggests that SRSF1 sequestration by (G4C2)n RNA could play a role in splicing 

dysregulation and neurodegeneration in C9ORF72-ALS. Differential splicing analysis of 

the NSC34 (G4C2)102 transcriptome also shows increased splicing defects caused by 

(G4C2)102 expression in the cellular model as well (section 5.3.4), suggesting splicing 

dysregulation is an early biochemical effect of (G4C2)n expression. Taken together, 

SRSF1 sequestration by the (G4C2)n RNA (either in RNA foci or soluble RNA molecules) 

could be a critical early pathological function of the (G4C2)n repeat expansion that 

contributes to C9ORF72-ALS. 



141 
 
 

4.4.4. (G4C2)n RNA Foci Do Not Co-Localise with either PURA or ALYREF in the NSC34 

(G4C2)102 Cells 

Unlike SRSF1 and SRSF2, there was no co-localisation between the (G4C2)n RNA foci and 

either PURA or ALYREF. This is inconsistent with several in vitro studies that show PURA 

and ALYREF both bound (G4C2)n RNA. PURA was pulled down from mouse spinal cord 

whole-cell lysate, dissected human cerebellum whole extract, and NSC34 whole-cell 

lysate in vitro by biotinylated-(G4C2)n RNA (Cooper-Knock et al., 2014b; Rossi et al., 

2015; Xu et al., 2013). PURA also co-localises with (G4C2)n RNA foci in C9ORF72-ALS 

patient iPSC-derived motor neurons (Sareen et al., 2013). ALYREF was also pulled down 

from SHSY5Y whole cell extract in vitro by biotinylated-(G4C2)5 RNA, and the interaction 

was confirmed to be direct (Cooper-Knock et al., 2014b). ALYREF also co-localised with 

RNA foci in both cerebellar granule cells and ventral horn motor neurons from C9ORF72-

ALS patients (Cooper-Knock et al., 2014b). 

There are several different studies that have used in vitro RNA pull down techniques to 

identify RBP that bind the (G4C2)n RNA. However, there are inconsistencies across these 

studies, as certain RBP are shown to bind the (G4C2)n RNA in one (or more) studies, but 

not in others. This is probably caused by several different variables: the cellular origin of 

the cellular lysates used for the RNA pull downs (and the differential enrichment of 

certain RBP in the respective lysate), the stringency of the pull down, and the secondary 

structure of the (G4C2)n RNA used in the pull down. For example, NCL and HnRNP U 

preferentially bound (G4C2)n RNA with a G-quadruplex structure compared to (G4C2)n 

RNA with a hairpin structure (Haeusler et al., 2014). Whilst the RNA pull downs and co-

localisation experiments are useful for identifying candidate RBP that may be 

sequestered by the (G4C2)n RNA, functional studies must be used to validate the 

importance of the RBP. For example, rescue assays, and detailed splicing analysis have 

been used to strengthen the case for PURA, and HnRNP F/H and SRSF1 sequestration by 

the (G4C2)n RNA respectively in C9ORF72-ALS pathogenesis (Prudencio et al., 2015; Xu 

et al., 2013). 

In addition, (G4C2)n expression may also affect PURA localisation, in a mechanism 

separate to sequestration in RNA foci. PURA was diffusely distributed in the cytoplasm 
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and nucleus of iPSC-derived motor neurons (Sareen et al., 2013), and untransfected 

NSC34 and HeLa cells (Rossi et al., 2015). Although PURA was much more abundant in 

the cytoplasm in the NSC34 and HeLa cells (Rossi et al., 2015). However, PURA formed 

cytoplasmic and nuclear granules in the NSC34 and HeLa cells that were transfected with 

(G4C2)31 repeat constructs (Rossi et al., 2015). Large, intensely stained PURA 

aggregates were also detected in the NSC34 (G4C2)102 cells. Interestingly, a recent 

study also suggests PURA is essential for stress granule formation (Daigle et al., 2016). 

Taken together, it suggests the (G4C2)n expression could drive stress granule formation, 

and is important because altered stress granule dynamics are hypothesised to play an 

important role in ALS pathogenesis (Li et al., 2013; Ramaswami et al., 2013).  

4.4.5. (G4C2)n RNA Foci Co-Localise with NCL, but There Is No Evidence for Functional 

Nucleolar Stress 

RNA foci co-localised with the nucleolar NCL in the NSC34 (G4C2)102 cells and also in 

cerebellar granule and Purkinje neurons from C9ORF72-ALS patients, consistent with 

several other studies. NCL was pulled down from HEK293T whole-cell extract in vitro by 

biotinylated-(G4C2)4 RNA with both a hairpin and G-quadruplex secondary structure, 

although NCL preferentially bound the G-quadruplex motif (Haeusler et al., 2014). NCL 

was also the most significantly pulled down protein from SHSY5Y whole cell extract, 

SHSY5Y nuclear extract and dissected human cerebellum whole extract in vitro by 

biotinylated-(G4C2)5 RNA (Cooper-Knock et al., 2014b). In addition, (G4C2)n RNA foci 

co-localised with the nucleolar NCL in the motor cortex of C9ORF72-ALS patient post-

mortem tissue (Haeusler et al., 2014). Taken together, the interaction between NCL and 

(G4C2)n RNA could be important in pathophysiology of C9ORF72-ALS. 

NCL is a major functional protein of the nucleolus, and therefore, NCL sequestration by 

(G4C2)n RNA could cause nucleolar stress. The (G4C2)102 expression in the NSC34 

(G4C2)102 cells increased nucleolar area compared to the NSC34 sham cells, indicating 

nucleolar stress. This finding is consistent with a previous study that showed nucleoli 

were more fragmented, dispersed and were larger in C9ORF72-ALS B lymphocytes, 

fibroblasts and iPSC-derived motor neurons compared to controls (Haeusler et al., 

2014). Additionally, the increased nucleolar size in the NSC34 (G4C2)102 cells induced 
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with tetracycline is comparable to the nucleolar size increase in the C9ORF72-ALS 

fibroblasts (Haeusler et al., 2014). However, (G4C2)102 expression does not affect rRNA 

levels or maturation in the NSC34 (G4C2)102 cells. Interestingly, rRNA maturation is 

significantly reduced in C9ORF72-ALS motor cortex tissue, but not in C9ORF72-ALS B 

lymphocytes (Haeusler et al., 2014). Nucleolar stress was also hypothesised to affect 

translation efficiency in the NSC34 (G4C2)102 cells. However, there were no consistent 

differences between polysome profiles from the NSC34 (G4C2)102 and sham cells, 

suggesting no gross translation defect. The amount of RPL26 in the soluble fraction was 

increased in the NSC34 (G4C2)102 cells however, which indicates a defect in ribosome 

subunit biogenesis, and nucleolar dysfunction.  

The (G4C2)n repeat expansion could also affect nucleolar function via the DPR proteins, 

in addition to potential NCL sequestration by the (G4C2)n RNA. Synthetic (GR)20 and 

(PR)20 peptides localise to the nucleolus in U2OS and cultured human astrocytes (Kwon 

et al., 2014). (GR)n and (PR)n DPR proteins also localised to the nucleolus in HEK293 cells 

transfected with DPR expression vectors (Tao et al., 2015). Further, the (GR)n and (PR)n 

induced signs of nucleolar stress in both these studies. The cultured human astrocytes 

treated with either (PR)20 or (GR)20 showed dysregulated rRNA metabolism, although 

it was unclear whether the defect was in the rRNA transcription and/or maturation 

process (Kwon et al., 2014). Also, the (GR)n and (PR)n caused an increase in nucleolar 

size in the transfected HEK293 cells (Tao et al., 2015). These nucleolar stress results are 

both consistent with the findings of Haeusler et al., in the C9ORF72-ALS tissue and 

actually suggests the DPRs could be contributing to some (if not all) of the nucleolar 

stress. This may also explain why the nucleolar defects are weak and inconsistent in the 

NSC34 (G4C2)102 cells, because no pure (GR)n or (PR)n DPRs are translated from the 

interrupted (G4C2)102 repeat (section 3.3.4.3). Although, this does not exclude the 

(G4C2)102 RAN proteins - which do contain stretches of the (GR)n motif - from causing 

subtle nucleolar stress. 

4.4.6. Increased p53 Protein in the NSC34 (G4C2)102 Cells Indicates Cellular Stress 

(G4C2)102 expression caused an increase in p53 protein levels in the NSC34 (G4C2)102 

cells, and this was hypothesised to be caused by nucleolar stress. The nucleolus acts as 
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a principal stress sensor, and initiates p53-dependent cell cycle arrest, which can lead to 

senescence or apoptosis, under cellular stress (Rubbi and Milner, 2003). The increased 

p53 levels in the induced NSC34 (G4C2)102 cells suggests that (G4C2)102 expression 

causes cellular stress and leads to cell cycle arrest, and is consistent with earlier results 

that showed (G4C2)102 expression reduced NSC34 (G4C2)102 growth rate (section 

3.3.4.7).  

NCL binds the 5’UTR of p53 mRNA inhibiting p53 translation (Takagi et al., 2005), and 

therefore, it was reasoned that NCL sequestration by the (G4C2)n RNA could lead to 

increased p53 translation. Likewise, free RPL26 (not in the ribosomal subunits) also binds 

the 5’UTR of p53 mRNA, but activates p53 translation (Takagi et al., 2005), and therefore 

the increased soluble RPL26 in the NSC34 (G4C2)102 cells was also predicted to increase 

p53 translation. However, qRT-PCR of the translating polysomes did not show any 

significant increase in p53 mRNA, and does not support either the NCL sequestration 

hypothesis or increased soluble RPL26 result. There are many other molecular pathways 

that lead to increased p53 protein levels, and the (G4C2)102 expression could lead to 

increased p53 protein via one of these rather than via NCL sequestration. 

4.4.7. Summary 

The NSC34 (G4C2)102 cells did not recapitulate TDP-43 mislocalisation or aggregation, 

or an increase in oxidative stress. However, the NSC34 (G4C2)102 cells did recapitulate 

some phenotypes specific to C9ORF72-ALS. Firstly, the (G4C2)n RNA foci colocalised with 

the splicing factors SRSF1 and SRSF2, and also with nucleolar NCL. Secondly, the 

nucleolar area is enlarged. However, there was no functional evidence of nucleolar 

stress. Reassuringly, the (G4C2)102 expression causes subtle biochemical effects in the 

NSC34 (G4C2)102 cell model, which is arguably more relevant to an age of onset disease. 

The model therefore warrants further study using transcriptomic analysis, which may 

provide more clues as to the early biochemical effects caused by the (G4C2)n expression 

in the NSC34 (G4C2)102 cells.   
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Chapter 5. Gene Expression Profiling of NSC34 
(G4C2)n Cell Lines 

5.1. Introduction 

Gene expression profiling (GEP) allows genome wide gene expression to be compared 

between disease and control patient tissue samples, animal models, or cellular models. 

GEP has been used to identify dysregulated biological pathways in various diseases, 

which could yield potential therapeutic targets. Microarray is a widely used and robust 

technique for GEP. Briefly, RNA is extracted from the cells or tissues of interest, 

amplified, and used to produce single-stranded complementary DNA (ss-cDNA), which 

is then fluorescently labelled. The labelled ss-cDNA is then hybridised to the microarray 

chip, which consists of an array of multiple ss-DNA probes fixed to a glass slide. These 

ss-DNA probes have a known target identity, and therefore the relative amount of 

labelled RNA in the starting material is proportional to the fluorescent signal intensity 

on the microarray chip. Thousands of copies of each probe allows for the quantification 

of many specific RNA transcripts simultaneously.  

GeneChip® Mouse Transcriptome Arrays (MTA) 1.0 were used to perform GEP on the 

NSC34 (G4C2)n cells. MTA 1.0 have probe sets that recognise >23,000 protein coding 

genes and additionally >55,000 non-coding genes, and there are approximately 10 probe 

sets that recognise each exon, and 4 that recognise each exon-exon splice junction. This 

allows robust analysis of differential gene expression at both the whole transcript level 

and the exon level. 

NSC34 sham, NSC34 (G4C2)10, NSC34 (G4C2)51, and NSC34 (G4C2)102 cells were 

induced with 0.5μg/mL tetracycline for 0, 1 or 5 days. However, as described previously, 

NSC34 viability was only affected by (G4C2)102 expression, and therefore the early 

transcriptomic effects of (G4C2)n repeat expression would be most pronounced in the 

NSC34 (G4C2)102 cells. Therefore, the main array comparisons were made between 

NSC34 (G4C2)102 and NSC34 sham cells. For brevity, the array names contain two 

numbers that correspond to the (G4C2)n repeat size (where 0 is sham), and the number 
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of days that the cells were induced with tetracycline for (0, 1, or 5) respectively, and a 

letter that denotes the biological repeat (A, B, or C). For example, the array for the first 

biological replicate of NSC34 (G4C2)102 cells that were induced with tetracycline for 5 

days is named 102_5_A.  

5.2. Aims and Objectives for Gene Expression Profiling of NSC34 (G4C2)n Cells 

1) Identify changes in gene expression at the gene level in the NSC34 (G4C2)102 

cells compared to NSC34 sham cells. 

2) Perform enrichment analysis to identify which biological pathways are most 

dysregulated in the NSC34 (G4C2)102 cells compared to NSC34 sham cells. 

3) Validate gene expression changes of key genes using qRT-PCR. 

4) Identify changes in differential splicing in the NSC34 (G4C2)102 cells compared 

to NSC34 sham cells. 

5.3. Results 

5.3.1. RNA Extraction Quality Control 

The RNA quality and yield were assessed using the NanoDrop™ 1000 

spectrophotometer, following RNA extraction from the NSC34 cell lines. An average 

yield of 21.71±8.78μg total RNA was obtained, and all RNA samples had A280/260 ratios 

close to 2.00 (1.99±0.033) (Table 5.1) indicating high quality RNA. An Agilent 2100 

Bioanalyzer was used to assess the RNA integrity, which is critical for successful 

microarray experiments. The RNA Integrity Number (RIN) describes the RNA integrity, 

where 0 is completely degraded and 10 is completely intact. However, the Bioanalyzer 

could not compute RIN values for most of the samples, and was displayed as N/A (Table 

5.1). This was likely due to the extraction of small RNA species using the RNA extraction 

columns, which produced an additional peak between 50 and 150 nt (Figure 5.1). This 

peak is unexpected by the Bioanalyzer RIN computation software. The 

electropherograms from samples with RIN values of N/A and ≥8.0 were very similar, and 

all samples produced distinct 18S and 28S rRNA peaks on the electropherograms (Figure 
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5.1). Also, all RNA samples had 28S/18S rRNA ratios close to 1.50 (1.50±0.12) (Table 5.1), 

indicating the RNA has high integrity. Additionally, very little degradation products were 

present between the small RNA, 18 S rRNA and 28 S rRNA peaks (Figure 5.1). 

 

Figure 5.1 Agilent 2100 Bioanalyzer assessment of extracted RNA integrity from NSC34 
cells. Example electropherograms and corresponding electrophoresis gels produced by 
the Agilent 2100 Bioanalyzer used to assess the RNA integrity of extracted RNA samples 
from NSC34 cells. Peaks corresponding to the 18S and 28S rRNA are labelled. The 
electropherogram from sample 0_0_B (top) is used here as a representative example to 
illustrate the integrity of extracted RNA samples with RIN values of N/A, whilst the 
electropherogram from sample 10_0_B (bottom) is used as a representative example to 
illustrate the integrity of the extracted RNA samples with RIN values ≥8.00. 
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Table 5.1 Quality and yield of RNA extracted from NSC34 cells. A NanoDrop™ 1000 
spectrophotometer and Agilent 2100 Bioanalyzer were used to measure the 
concentration and quality of RNA extracted from NSC34 cells. The RNA yield was 
calculated using the total volume collected multiplied by the RNA concentration. The 
RNA quality was defined using the ratio of A280/260. The RNA integrity was measured 
using an Agilent 2100 Bioanalyzer, and described using RNA Integrity Number (RIN) on 
a scale of 0-10 (0 being completely degraded, and 10 being completely intact). The 
sample name corresponds to the (G4C2)n repeat size (where 0 is sham), the number of 
days that the cells were induced with tetracycline for (0, 1, or 5) respectively, and a letter 
that denotes the biological repeat (A, B, or C). For example, sample 102_5_A 
corresponds to the first biological replicate of NSC34 (G4C2)102 cells that were induced 
with tetracycline for 5 days. 

Sample RNA yield (μg) A260/280 RIN 28S/18S rRNA ratio 

0_0_ A 14.40 1.95 N/A 1.3 

0_0_B 18.91 2.03 N/A 1.3 

0_0_C 13.89 1.97 N/A 1.4 

0_1_A 24.87 2.01 N/A 1.4 

0_1_B 23.94 2.01 N/A 1.4 

0_1_C 19.00 2.00 N/A 1.5 

0_5_ A 15.91 2.00 N/A 1.6 

0_5_B 24.47 2.02 8.7 1.7 

0_5_C 25.14 2.01 8.5 1.7 

10_0_A 18.91 1.99 N/A 1.6 

10_0_B 30.84 2.02 9.2 1.5 

10_0_C 26.24 2.02 8.7 1.3 

10_5_A 22.96 2.07 8.7 1.6 

10_5_B 15.52 2.02 N/A 1.5 

10_5_C 16.79 2.02 N/A 1.4 

51_0_A 46.16 2.00 8.7 1.5 

51_0_B 47.25 2.02 9.1 1.6 

51_0_C 38.38 1.99 8.4 1.7 

51_5_A 19.49 1.98 N/A 1.6 

51_5_B 22.91 1.98 N/A 1.6 

51_5_C 15.89 2.01 N/A 1.7 

102_0_A 19.69 1.99 N/A 1.4 

102_0_B 20.80 1.99 N/A 1.4 

102_0_C 15.66 1.97 N/A 1.4 

102_1_A 16.09 1.95 N/A 1.4 

102_1_B 17.51 1.97 N/A 1.5 

102_1_C 13.66 1.92 N/A 1.4 

102_5_A 18.15 1.99 N/A 1.5 

102_5_B 14.03 1.96 N/A 1.5 

102_5_C 13.70 1.91 N/A 1.5 

Mean ± SD 21.71 ± 8.78 1.99 ± 0.033 N/A 1.50 ± 0.12 
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5.3.1.1. RNA Amplification and Labelling 

500ng total RNA was reverse transcribed using a reverse transcriptase and primers 

containing the T7 promoter sequence at the 5’ end. This was followed by simultaneous 

RNAse H and DNA polymerase treatment to degrade the starting RNA template, and 

synthesise the second-strand of the cDNA, to produce double-stranded cDNA (ds-cDNA). 

Complimentary RNA (cRNA) was then synthesised and amplified from the ds-cDNA by in 

vitro transcription (IVT) using T7 RNA polymerase. cRNA was then purified and the yield 

and size distribution of the cRNA were assessed using the NanoDrop™ 1000 

Spectrophotometer and Agilent 2100 Bioanalyzer respectively. The mean cRNA yield 

was 62.18±21.66µg (Table 5.2). The cRNA was generated in batches A, B, and C 

(containing samples named respectively), to make sample handling more manageable. 

The cRNA yield was much higher in batch A compared to batches B and C, which 

accounts for the variability in cRNA yield between samples (Table 5.3). The cRNA profiles 

assessed by the Agilent 2100 Bioanalyzer showed the expected size distribution, with 

cRNAs ranging from 50 to 4500 nt in size, and most cRNAs ranging from 50 to 2000 nt in 

size (Figure 5.2). The distribution was also jagged as expected (Figure 5.2). 

5.3.2. GeneChip® Mouse Transcriptome Arrays 1.0 

Sense-strand cDNA was then synthesised from 15µg of cRNA in an in vitro reverse 

transcription reaction. dUTP was also incorporated into the ss-cDNA. RNAse H treatment 

then removed cRNA template leaving ss-cDNA only. After purification, the ss-cDNA yield 

and size distribution were assessed using the NanoDrop™ 1000 Spectrophotometer and 

the Agilent 2100 Bioanalyzer. The mean ss-cDNA yield was 24.28±2.61µg (Table 5.3). The 

ss-cDNA profiles assessed by the Agilent 2100 Bioanalyzer showed the expected sloped 

profile for the ss-cDNA size distribution, with most ss-cDNAs approximately 100 nt in 

size, and the median ss-cDNA size approximately 400 nt (Figure 5.3). 

5.5μg of ss-cDNA was then fragmented by uracil-DNA glycosylase (UDG) and 

apurinic/apyrimidinic endonuclease 1 (APE 1) at the unnatural dUDP residues. The 

fragmented cDNA was then labelled by terminal deoxynucleotidyl transferase (TdT) 

using the Affymetrix® proprietary DNA Labelling Reagent that is covalently liked to 
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biotin. A gel-shift assay was used to assess the biotin labelling of the cDNA, and showed 

all samples had been labelled. 

Table 5.2 Yield of cRNA post-amplification. 

Sample cRNA yield (μg) A260/280 

0_0_A 97.27 1.85 

0_0_B 30.87 2.2 

0_0_C 29.64 2.02 

0_1_A 91.17 1.96 

0_1_B 33.21 2.18 

0_1_C 38.47 2.16 

0_5_A 89.91 1.96 

0_5_B 67.93 2.13 

0_5_C 45.09 2.17 

10_0_A 70.14 2.1 

10_0_B 60.26 2.15 

10_0_C 65.15 2.14 

10_5_A 90.39 1.95 

10_5_B 58.43 2.14 

10_5_C 51.87 2.17 

51_0_A 93.88 1.88 

51_0_B 47.48 2.16 

51_0_C 35.1 2.16 

51_5_A 80.38 2.07 

51_5_B 48.62 2.16 

51_5_C 51.37 2.14 

102_0_A 82.49 2.07 

102_0_B 56.46 2.17 

102_0_C 53.16 2.15 

102_1_A 96.2 1.87 

102_1_B 50.71 2.17 

102_1_C 46.36 2.16 

102_5_A 82.15 2.06 

102_5_B 82.56 2.06 

102_5_C 38.79 2.15 

Mean ± SD 62.18 ± 21.67 2.09 ± 0.10 
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Table 5.3 Yield of ss-cDNA.  

Sample 
cDNA yield 

(μg) 
A260/280 

0_0_A 28.53 2 

0_0_B 22.69 2.06 

0_0_C 31.72 2.1 

0_1_A 24.53 2.08 

0_1_B 22.2 1.79 

0_1_C 22.9 2.08 

0_5_A 30.3 2.08 

0_5_B 25.86 2.1 

0_5_C 24.67 2.11 

10_0_A 25.43 2.08 

10_0_B 23.31 2.1 

10_0_C 26.71 2.09 

10_5_A 26.35 2.1 

10_5_B 23.04 2.11 

10_5_C 21.98 2.09 

51_0_A 26.55 2.08 

51_0_B 24.95 2.09 

51_0_C 23.27 2.09 

51_5_A 23.11 2.11 

51_5_B 21.29 1.74 

51_5_C 22.79 2.08 

102_0_A 23.65 2.11 

102_0_B 21.19 2.13 

102_0_C 22.65 2.11 

102_1_A 25.59 2.09 

102_1_B 22.13 2.12 

102_1_C 21.11 2.1 

102_5_A 24.43 2.1 

102_5_B 24.18 2.12 

102_5_C 21.21 2.09 

Mean 24.28 ± 2.61 2.07 ± 0.087 
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Figure 5.2 Agilent 2100 Bioanalyzer assessment of cRNA post-amplification. An 
example electropherogram and corresponding electrophoresis gel produced by the 
Agilent 2100 Bioanalyzer used to assess the cRNA amplification. The electropherogram 
from sample 0_0_A is used here as a representative example to illustrate the RNA 
amplification to cRNA. 

 

Figure 5.3 Agilent 2100 Bioanalyzer assessment of second-cycle ss-cDNA post-
amplification. An example electropherogram and corresponding electrophoresis gel 
produced by the Agilent 2100 Bioanalyzer used to assess the ss-cDNA amplification. The 
0_0_A sample is used here as a representative example to illustrate the amplification of 
the cRNA to ss-cDNA samples. 



153 
 
 

5.3.2.1. Affymetrix® Expression Console™ Quality Control Metrics 

To ensure the arrays in the experiment are reliable, there are several quality control 

metrics that each array must pass. For gene and exon expression arrays, Affymetrix® 

recommends monitoring of hybridisation, as well as interrogating the positive vs 

negative area under the curve (pos vs neg AUC), all probe set mean, all probe set Relative 

Log Expression (RLE) mean, RLE plot, and Percentage Presence Call (%P) metrics, to 

determine any outlier arrays. Outlier arrays may be excluded from further downstream 

statistical analysis. As a general rule, arrays that have metric values of more than 2 

standard deviations away from the mean of all array values are flagged as potential 

outliers. Arrays that are consistently flagged as outliers in two or more quality control 

parameters must be excluded from the study. 

5.3.2.1.1. Hybridisation Controls 

The Affymetrix arrays include four spike-in controls BioB, BioC, BioD (genes from the 

biotin synthesis pathway of E.coli,) and CreX (the recombinase gene from P1 

bacteriophage). The spike in controls were added with the fragmented and labelled ss-

cDNA in the hybridisation master mix at increasing concentrations (1.5, 5, 25, and 

100pM respectively) prior to the hybridisation step. The spike in controls are not 

predicted to cross-react with eukaryotic ss-cDNA, and therefore the signal intensities for 

the spike-in controls should follow the trend BioB<BioC<BioD<CreX. Any other pattern 

would indicate poor hybridisation. All of the arrays in this experiment show the correct 

trend (Figure 5.4). In addition, BioB (at 1.5pM) is at the probe detection limit on the 

GeneChip® MTA 1.0, and the detection of BioB on all of the arrays indicates good overall 

sensitivity. 

5.3.2.1.2. Positive vs Negative Area Under the Curve (AUC) 

Positive vs negative area under the curve (AUC) is a robust metric for assessing overall 

array data quality. The AUC value is a measure of the detection of positive controls 

against the false detection of negative controls, which effectively means the ability to 

distinguish the true signal from noise in the array data. Values of 1 indicate perfect 

distinction between true signal and noise, whilst values of 0.5 indicate no distinction 
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between positive and negative controls. Arrays with AUC values <0.8 should be flagged 

as potential outliers. All the arrays in this experiment have an AUC value of ≥0.88 (Table 

5.4), indicating that there are no significant differences in array data quality. 

 

Figure 5.4 Eukaryotic Hybridisation controls for NSC34 arrays. Signal intensities of the 
eukaryotic hybridisation controls BioB, BioC, BioD, and CreX (at 1.5, 5, 25, 100pM 
respectively) on NSC34 GeneChip® Mouse Transcriptome Arrays 1.0 using Affymetrix 
Expression Console. 

5.3.2.1.3. All Probe Set Mean 

The all probe set mean is the mean of the signal of all the probe sets in the analysis, and 

allows detection of bright or dim arrays. The average of the all probe set means is 5.82 

± 0.042 for the gene level analysis, and 6.29 ± 0.0089 for the exon level analysis (Table 

5.4). For the gene level analysis, the 102_5_A and 102_5_B arrays both have all probe 

set mean values slightly outside 2 standard deviations of the mean (both at 5.91) 

indicating potential outliers (Table 5.4). However, for the exon level analysis, all arrays 

have all probe set mean values within 2 standard deviations of the mean value (Table 

5.4).  
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Table 5.4 Summarised Quality control metrics for NSC34 gene and exon level arrays. 
The positive vs negative AUC, all probe set mean and all probe set RLE (for both gene 
level and exon level arrays), and percentage exon level probe present (%P) quality 
control metrics are displayed for all arrays, with the mean and SD for each metric 
included. Outlier values are highlighted in yellow. 

Sample  

 

Both Gene level analysis Exon level analysis 

Pos vs 
Neg AUC 

All probe 
set mean 

All probe 
set RLE 
mean 

All probe 
set mean 

All probe 
set RLE 
mean 

%P 

0_0_A 0.92 5.75 0.21 6.30 0.28 64.11 

0_0_B 0.89 5.83 0.15 6.29 0.25 77.50 

0_0_C 0.91 5.75 0.17 6.31 0.26 69.52 

0_1_A 0.90 5.82 0.13 6.29 0.22 73.72 

0_1_B 0.90 5.80 0.13 6.30 0.21 74.03 

0_1_C 0.90 5.79 0.14 6.29 0.22 70.79 

0_5_A 0.90 5.82 0.12 6.28 0.21 74.20 

0_5_B 0.90 5.81 0.16 6.28 0.26 78.83 

0_5_C 0.89 5.83 0.13 6.29 0.22 75.36 

10_0_A 0.92 5.77 0.23 6.29 0.31 61.32 

10_0_B 0.89 5.83 0.15 6.29 0.25 74.38 

10_0_C 0.89 5.82 0.18 6.28 0.29 76.33 

10_5_A 0.90 5.82 0.15 6.28 0.25 73.05 

10_5_B 0.91 5.81 0.17 6.29 0.26 70.69 

10_5_C 0.90 5.84 0.18 6.29 0.27 70.56 

51_0_A 0.90 5.80 0.12 6.29 0.21 71.28 

51_0_B 0.90 5.75 0.21 6.30 0.30 74.15 

51_0_C 0.88 5.85 0.18 6.29 0.27 75.82 

51_5_A 0.91 5.78 0.16 6.29 0.24 67.85 

51_5_B 0.91 5.79 0.19 6.30 0.29 64.78 

51_5_C 0.92 5.79 0.17 6.29 0.25 67.24 

102_0_A 0.89 5.85 0.15 6.29 0.25 76.25 

102_0_B 0.89 5.85 0.15 6.29 0.26 72.94 

102_0_C 0.89 5.87 0.19 6.29 0.31 73.91 

102_1_A 0.90 5.85 0.15 6.28 0.24 71.42 

102_1_B 0.89 5.83 0.14 6.28 0.24 77.72 

102_1_C 0.89 5.88 0.23 6.31 0.37 66.71 

102_5_A 0.88 5.91 0.23 6.27 0.33 75.52 

102_5_B 0.88 5.91 0.24 6.29 0.34 72.65 

102_5_C 0.89 5.87 0.24 6.30 0.38 66.97 

Mean ± 
SD 

0.90 ± 
0.011 

5.82 ± 
0.041 

0.17 ± 
0.037 

6.29 ± 
0.0089 

0.27 ± 
0.045 

71.99 ± 
4.34 
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5.3.2.1.4. Relative Log Expression (RLE) Signal 

The Relative Log Expression (RLE) signal is derived by comparing the signal of each probe 

set to the median signal value for that probe set across all arrays in the experiment. The 

deviation of the RLE for all probe sets on the array can be plotted, and provides a robust 

method for assessing data quality. Arrays of poorer quality will have a larger spread and 

should be flagged as potential outliers. For the gene level RLE plot, all arrays have a 

similar spread (Figure 5.5). Equally, in the exon level RLE plot, all arrays have a similar 

spread (Figure 5.6). Therefore, the RLE plots do not indicate any obvious outlier arrays. 

 

Figure 5.5 Relative log expression (RLE) box plots for GENE level arrays. The distribution 
of RLE values for the GENE level arrays are displayed as box plots. Potential outliers are 
highlighted in red boxes. 

 

Figure 5.6 Relative log expression (RLE) box plots for EXON level. The distribution of 
RLE values for the EXON level arrays are displayed as box plots. Potential outliers are 
highlighted in red boxes. 

In addition to the RLE plot, the all probe set RLE mean is the mean average of this 

deviation. Unusually high values may indicate the signals on the array are very different 

from the others in the experiment. The average of the all probe set RLE means is 0.17 ± 

0.037 for the gene level analysis, and 0.27 ± 0.045 for the exon level analysis (Table 5.4). 
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For the gene level analysis, all arrays have all probe set RLE mean values within 2 

standard deviations of the mean value (Table 5.4). For the exon level analysis, the 

102_1_C and 102_5_C arrays both have all probe set RLE mean values slightly outside 2 

standard deviations of the mean (0.37 and 0.38 respectively) indicating potential 

outliers (Table 5.4). 

5.3.2.1.5. Percentage of Exon Level Probe Sets Present (%P) 

Another metric specifically used to assess the quality of the exon level probe sets is the 

%P value, which measures the percentage of exon level probe sets detected based on 

the detection above background (DABG) algorithm. The average %P value for all arrays 

is 71.99±4.34, and only the 10_0_A array falls outside 2 standard deviations from the 

mean value at 61.32%P (Table 5.4). 

5.3.2.1.6. Quality Control Summary 

There are a few arrays with outlier metric values. However, there are no arrays which 

are consistently flagged up with outlier values in more than one quality control metric. 

Equally, all outlier values are only very slightly outside the two SD threshold. Therefore, 

all arrays passed the quality control assessment and were taken forward for statistical 

analysis. 

5.3.3. Gene Level Data Analysis 

5.3.3.1. Qlucore Omics Explorer to Define Transcriptomic Changes in NSC34 (G4C2)102 Cells 

5.3.3.1.1. Selecting Filtering Stringency to Define Differentially Expressed Transcripts in 

NSC34 Arrays 

The filtering stringency used to define differentially expressed (DE) transcripts between 

arrays first had to be selected before gene level analysis. When describing which 

transcripts are significantly DE, it is customary to filter using fold change (FC) and P value 

(using Student’t T-test). FC describes the magnitude of the difference in expression 

levels, and a higher FC is important for future validation in further experiments. P value 

describes the statistical significance of the differential expression being real, and is used 

to determine the number of false positives in the list of DE transcripts. The a priori 
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criteria for the filtering stringency were to define around 3,000 DE transcripts between 

the NSC34 102 + 5 d tet and NSC34 0 + 5 d tet arrays, with the lowest possible P value. 

This is because the DAVID functional enrichment analysis was going to be used 

downstream to identify enriched biological functions and pathways in the DE transcripts, 

and DAVID can analyse up to 3,000 transcripts. Also, since the NSC34 (G4C2)n cells were 

isogenic, there should be very little genetic background noise between the arrays, and 

a lower P value was desired to minimise the number of false positives. 

All Affymetrix® CHP files were opened in Qlucore Omics explorer (version 3.0), and 

normalised using the RMA-sketch method. Differentially expressed (DE) transcripts 

were defined for the NSC34 102 + 5 d tet vs NSC34 sham + 5 d tet array comparison 

using various combinations of filtering stringencies. P values of <0.05, <0.01, and <0.001, 

and FCs of ≥1.2, ≥ 1.5, and ≥2.0 were used, and the number of DE transcripts defined for 

the different filtering stringencies are displayed in Table 5.5. For the NSC34 102 + 5 d tet 

vs NSC34 sham + 5 d tet analysis, a ≥1.2 FC was selected, because ≥1.5 FC did not classify 

enough transcripts as DE for robust downstream enrichment analysis, even when 

P<0.05. At FC ≥1.2, 5572, 3069 and 788 transcripts were defined as DE using P values 

<0.05, 0.01, and 0.001 respectively (Table 5.5). Therefore, filtering criteria FC≥1.2 and 

P<0.01 were selected, as around 3000 transcripts were classified as DE in the NSC34 102 

+ 5 d tet vs NSC34 sham + 5 d tet analysis. 

Table 5.5 Number of transcripts classified as differentially expressed between NSC34 
(G4C2)102 + 5 tet vs NSC34 sham + 5 d tet using various P value and fold change 
filtering stringencies.  

   Fold change 

   1.2 1.5 2 

  0.05 5572 1028 135 

P value 0.01 3069 835 129 

 0.001 788 349 94 

 

5.3.3.1.2. Clustering Analysis of All NSC34 Arrays 

Clustering analysis was performed on all NSC34 arrays using multi-group analysis (two-

way ANOVA at P<0.01), and displayed as a PCA plot (Figure 5.7A). There are three 

distinct clusters: one cluster contains all NSC34 sham and NSC34 (G4C2)51 arrays, the 
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second cluster contains all NSC34 (G4C2)10 arrays, and the last cluster contains all the 

NSC34 (G4C2)102 arrays. Reassuringly, the NSC34 (G4C2)102 + 5 day tet arrays are the 

most different of all NSC34 (G4C2)102 arrays along axis 3 of the PCA plot compared to 

the other arrays, indicating that increasing (G4C2)102 expression further alters gene 

expression. In addition, the NSC34 (G4C2)102 + 5 day tet arrays were compared to all 

other NSC34 sham and NSC34 (G4C2)102 arrays using Hierarchical Clustering analysis 

(Student’s T-test at P<0.01, FC≥1.2) and displayed as a heat map (Figure 5.7B). The 

Hierarchical Clustering analysis showed there is a strong transcriptomic signal that 

distinguishes the NSC34 (G4C2)102 + 5 d tet arrays from the NSC34 (G4C2)102 at shorter 

tet induction timepoints and the NSC34 sham arrays (Figure 5.7B). 

5.3.3.2. NSC34 Sham + 5 d Tet vs NSC34 Sham + 0 d Tet Direct Array Analysis 

Firstly, the effect of tetracycline on the NSC34 cell transcriptome was assessed, because 

tetracycline had previously shown toxicity to the NSC34 cells, although at a higher 

concentration (section 3.3.4.4). Even at lower doses the tetracycline may affect gene 

expression. Therefore, NSC34 sham + 5 d tet arrays were compared to NSC34 sham 0 d 

tet arrays. There were only 28 DE transcripts (FC≥1.2 and P<0.01), where 10 (35.7%) 

were down-regulated and 18 (64.3%) were up-regulated. These 28 DE transcripts were 

compared to the 3089 DE transcripts in the NSC34 (G4C2)102 + 5 d tet vs NSC34 sham + 

5 d tet comparison in section 5.3.3.3, and there were only 3 transcripts in common. 

5.3.3.2.1. DAVID Functional Enrichment Analysis of NSC34 Sham + 5 d Tet vs NSC34 Sham 

+ 0 d Tet 

The Entrez Gene IDs of the DE transcripts from the NSC34 sham + 5 d tet vs NSC34 sham 

+ 0 d tet comparison were analysed using the functional annotation tool in DAVID 

bioinformatics resources 6.7. Total DE transcripts, as well as the down-regulated and up-

regulated transcripts from the gene lists were analysed separately. Functional 

annotation clustering was subsequently performed using the GOTERM_BP_FAT gene 

ontology and KEGG_PATHWAY terms, applying a Mus musculus background, and 

filtering using medium stringency.  Functional clusters with DAVID enrichment scores 

>1.30 (equivalent to a P value <0.05) were considered statistically significant. 
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Figure 5.7 Clustering analysis of NSC34 arrays. A) Multiple group analysis PCA plot using 
two-way ANOVA at P<0.01. B) Hierarchical clustering heat map of NSC34 (G4C2)102 + 5 
d tet compared to other NSC34 sham and NSC34 (G4C2)102 arrays using Student’s T-
test at FC≥1.2 and P<0.01.  
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Olfactory transduction was the only enriched functional annotation cluster, with a 

DAVID enrichment score of 2.37 in the total DE transcripts and 2.53 in the up-regulated 

transcripts. There were 8 (28.57%) transcripts in the largest cluster term for total DE 

transcripts and 7 (38.89%) transcripts in the largest cluster term for up-regulated 

transcripts. The most significant cluster term was GOTERM ‘G-protein coupled receptor 

protein signalling pathway’ for both total DE and up-regulated transcripts (P value = 

0.00076; Benjamini value = 0.026; and P value = 0.00015; Benjamini value = 0.0023 

respectively). Therefore, any transcriptional changes in genes from the ‘olfactory 

transduction’ biological process are likely to be caused by tetracycline, and would be 

excluded from further NSC34 (G4C2)102 +5 d tet vs NSC34 sham + 5 d tet analysis. 

5.3.3.3. NSC34 (G4C2)102 vs NSC34 Sham Direct Array Analysis 

The aim of the GEP was to determine which biological pathways are affected by the 

(G4C2)n expression, and to find any potential therapeutic targets for C9ORF72-ALS. The 

(G4C2)10 and (G4C2)51 expression caused no observable toxicity in the NSC34 cells, 

whereas expression of the (G4C2)102 did cause toxicity (section 3.3.4.5). Therefore, the 

strongest and most relevant transcriptomic changes related to (G4C2)n induced toxicity 

are most likely to be detected in the tetracycline induced NSC34 (G4C2)102 cells. 

Therefore the key array comparisons carried out were between the NSC34 (G4C2)102 

and NSC34 sham cells, particularly at the 5 day tetracycline induction time point.  

NSC34 (G4C2)102 arrays were compared to NSC34 sham arrays at each tetracycline 

induction time point to generate lists of DE transcripts (FC≥1.2 and P<0.01). In the NSC34 

(G4C2)102 + 0 d tet vs NSC34 sham + 0 d tet comparison, there were 1576 DE transcripts, 

where 1128 (71.6%) were down-regulated, and 448 (28.4%) were up-regulated (Figure 

5.8). In the NSC34 (G4C2)102 + 1 d tet vs NSC34 sham + 1 d tet comparison, there were 

1725 DE transcripts, where 1146 (66.4%) were down-regulated, and 579 (33.6%) were 

up-regulated (Figure 5.8). In the NSC34 (G4C2)102 + 5 d tet vs NSC34 sham + 5 d tet 

comparison, there were 3069 DE transcripts, where 1991 (64.9%) were down-regulated, 

and 1078 (35.1%) were up-regulated (Figure 5.8). Any potential overlap in the DE 

transcripts at the 0 and 5 day tet timepoints from the NSC34 (G4C2)102 vs NSC34 arrays 

was compared using a Venn diagram (Figure 5.9). 976 (61.9%) of 1576 DE transcripts in 
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the NSC34 (G4C2)102 0 d tet vs NSC34 sham 0 d tet comparison were also DE in the 

NSC34 (G4C2)102 + 5 d tet vs NSC34 sham + 5 d tet comparison.  

 

Figure 5.8 The numbers of differentially expressed transcripts with FC≥1.2 at a 
significance P<0.01 between NSC34 (G4C2)102 and NSC34 sham at 0, 1 and 5 days of 
tetracycline induction. Up regulated (red) and down regulated (blue) transcripts are 
displayed as a fraction of the total number of differentially expressed transcripts. 

 

Figure 5.9 Venn diagram comparing the number of differentially expressed transcripts 
between the NSC34 (G4C2)102 vs NSC34 sham array comparisons at + 0 d and + 5 d tet 
induction timepoints. Differentially expressed transcripts with FC≥1.2 at a significance 
P<0.01 from the NSC34 (G4C2)102 + 0 d tet and NSC34 sham + 0 d tet analysis were 
compared to differentially expressed transcripts from the NSC34 (G4C2)102 + 5 d tet 
and NSC34 sham + 5 d tet analysis on GeneVenn. 
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The 28 DE transcripts from the NSC34 sham + 5 d tet vs NSC34 sham + 0 d tet comparsion 

in section 5.3.3.2 were compared to the 3069 DE transcripts from the NSC34 (G4C2)102 

+ 5 d tet vs NSC34 sham + 5 d tet comparison. Only 3 transcripts (Olfr303, Olfr1396, and 

Atp5c1-ps) were found in both lists (Figure 5.10), and were removed from further 

analysis in the NSC34 (G4C2)102 + 5 d tet vs NSC34 sham + 5 d tet comparison. 

 

Figure 5.10 Venn diagram comparing the number of shared differentially expressed 
transcripts in the NSC34 (G4C2)102 + 5 d tet vs NSC34 sham + 5 d tet comparison and 
the NSC34 sham + 5 d tet vs NSC34 sham + 0 d tet comparison. Differentially expressed 
transcripts with FC≥1.2 at a significance P<0.01 from the NSC34 (G4C2)102 + 5 d tet and 
NSC34 sham + 5 d tet analysis were compared to differentially expressed transcripts 
from the NSC34 sham + 5 d tet and NSC34 sham + 0 d tet analysis on GeneVenn. 

5.3.3.3.1. DAVID Functional Enrichment Analysis of NSC34 (G4C2)102 + 5 d Tet vs NSC34 

Sham + 5 d Tet 

The Entrez Gene IDs of the DE transcripts from the NSC34 (G4C2)102 + 5 d tet vs NSC34 

sham + 5 d tet comparison were imported to the functional annotation tool in DAVID 

bioinformatics resources 6.7 (as described in section 5.3.3.2.1). The functional 

enrichment analysis of all 3069 DE transcripts is displayed in Table 5.6, the 1991 down-

regulated transcripts only in Table 5.7, and the 1078 up-regulated transcripts only in 

Table 5.8. Functional clusters that are enriched include protein transport, 

phosphorylation, cytoskeletal organisation, vesicle-mediated transport, RNA 

processing, mRNA transport, and GTPase signalling. 63.4% of genes were annotated to 
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a biological function using the GOTERM_BP_FAT Gene Ontology term, and 26.2% of 

genes were annotated to a biological pathway using the KEGG_PATHWAY Pathway term. 

5.3.3.3.2. IMPaLA Pathway Enrichment Analysis of NSC34 (G4C2)102 + 5 d Tet vs NSC34 

Sham + 5 d Tet 

The gene symbols of the DE transcripts from the NSC34 (G4C2)102 + 5 d tet vs NSC34 

sham + 5 d tet comparison were imported to the Integrated Pathway-level Analysis 

(IMPaLA; http://impala.molgen.mpg.de) and analysed using the pathway over-

representation (enrichment) analysis tool (Kamburov et al., 2011). Where there were 

pathways with high similarity in the IMPaLA output table (for example ‘EGF-EGFR 

signalling pathway’ and ‘signalling by EGFR’), only the most significantly enriched 

pathway was retained whilst others were excluded from the list. The pathway 

enrichment analysis of all 3069 DE transcripts is displayed in Table 5.9, and the 1991 

down-regulated transcripts only in Table 5.10. There were no significantly enriched 

pathways (FDR<0.25) in the 1078 up-regulated transcripts however, and therefore no 

table is displayed. The most enriched pathways in both the total DE and down-regulated 

transcripts included EGFR signalling, TOR signalling, insulin signalling, and FOXO 

signalling. Strikingly, the aforementioned pathways consistently mapped to a subset of 

pathways in the PI3K/Akt signalling super-pathway (Figure 5.11). In addition, pathways 

including axon guidance, membrane trafficking, lysosome, developmental biology, 

protein processing in the endoplasmic reticulum, and regulation of the microtubule 

cytoskeleton were highly enriched in both total DE and down-regulated transcripts. 

Processing of capped intron-containing pre-mRNA was also enriched in the down-

regulated transcripts. 47.4% of genes were annotated to a biological pathway using the 

pathway over-representation analysis tool. 
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Table 5.6 DAVID Functional Annotation Clustering Analysis for 3069 differentially expressed transcripts in NSC34 (G4C2)102 + 5 d tet vs NSC34 
sham + 5 d tet comparison with FC≥1.2 and P<0.01.   

 Cluster Term DAVID 
Enrichment 

score 

Number 
of genes 

% of 
gene list 

Most significant cluster term P value (most 
significant term) 

Benjamini (most 
significant) 

1 Protein transport 5.31 178 5.99 Protein localisation 7.00E-08 1.30E-04 
2 Phosphorylation 4.78 170 5.72 Phosphate metabolic process 1.20E-06 8.80E-04 
3 Cytoskeletal organisation 4.34 75 2.52 Cytoskeletal organisation 8.50E-06 5.20E-03 
4 Vesicle-mediated 

transport 
3.58 120 4.04 Vesicle-mediated transport 2.40E-08 8.80E-05 

5 RNA metabolism 3.51 85 2.86 mRNA metabolic process 8.70E-05 3.20E-02 
6 GTPase mediated 

signalling 
2.92 52 1.75 Regulation of small GTPase mediated 

signal transduction 
3.00E-04 6.60E-02 

7 Apoptosis 2.71 96 3.23 Cell death 1.60E-03 1.70E-01 
8 mRNA transport 2.16 19 0.64 RNA localisation 3.60E-03 2.50E-01 
9 Organelle organisation 2.1 34 1.14 regulation of protein complex 

disassembly 
4.20E-04 7.80E-02 

10 Glucose metabolism 1.99 40 1.35 Hexose metabolic process 5.10E-03 3.00E-01 
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Table 5.7 DAVID Functional Annotation Clustering Analysis for 1991 down-regulated transcripts in NSC34 (G4C2)102 + 5 d tet vs NSC34 sham 
+ 5 d tet comparison with FC≥1.2 and P<0.01.  

 Cluster Term DAVID 
Enrichment 

score 

Number 
of genes 

% of 
gene list 

Most significant cluster term P value (most 
significant term) 

Benjamini (most 
significant) 

1 Protein transport 8.71 155 7.79 Protein localisation 4.60E-12 1.50E-08 
2 RNA metabolism 6.29 80 4.02 mRNA metabolic process 8.30E-08 3.70E-05 
3 Phosphorylation 5.25 133 6.69 Phosphate metabolic process 5.60E-07 1.50E-04 
4 Vesicle-mediated 

transport 
4.72 104 5.22 Vesicle-mediated transport 2.60E-11 2.10E-08 

5 Cytoskeletal organisation 4.71 62 3.12 Cytoskeletal organisation 1.30E-06 3.00E-04 
6 Proteolysis 4.47 122 6.13 Ubiquitin-dependent protein catabolic 

process 
1.00E-06 2.50E-04 

7 mRNA transport 3.7 19 0.96 RNA localisation 7.90E-05 8.90E-03 
8 GTPase mediated 

signalling 
3.23 41 2.06 Regulation of Ras GTPase activity 9.70E-05 9.90E-03 

9 Chromosome organisation 2.48 62 3.12 Chromatin modification 8.80E-05 9.60E-03 
10 Response to abiotic 

stimulus 
2.38 40 2.01 Response to radiation 9.80E-04 6.30E-02 
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Table 5.8 DAVID Functional Annotation Clustering Analysis for 1078 up-regulated transcripts in NSC34 (G4C2)102 + 5 d tet vs NSC34 sham + 5 
d tet comparison with FC≥1.2 and P<0.01.  

 Cluster Term DAVID 
Enrichment 

score 

Number 
of genes 

% of 
gene list 

Most significant cluster term P value (most 
significant term) 

Benjamini (most 
significant) 

1 Immune response 2.79 36 3.65 Immune effector process 5.30E-06 1.10E-02 
2 Development 1.71 25 2.54 skeletal system development 5.40E-04 1.70E-01 
3 Cell proliferation 1.42 18 1.83 B cell proliferation 9.20E-03 4.60E-01 

 

Table 5.9 IMPaLA Pathway Enrichment Analysis for 3069 differentially expressed transcripts in NSC34 (G4C2)102 + 5 d tet vs NSC34 sham + 5 
d tet comparison with FC≥1.2 and P<0.01. Pathways highlighted in grey are part of the PI3K/Akt super-pathway. 
 Pathway Name Pathway 

Source 
Number of DE 
genes in pathway 

Total number of 
genes in pathway 

% 
overlap 

P Value (most 
significant term) 

FDR (most 
significant term) 

1 EGFR1 NetPath 106 447 23.7 1.06E-09 4.12E-06 

2 Axon guidance Reactome 77 310 24.8 2.72E-08 3.54E-05 

3 Membrane Trafficking Reactome 45 153 29.4 1.40E-07 1.20E-04 

4 Lysosome - Homo sapiens (human) KEGG 38 120 31.7 1.61E-07 1.20E-04 

5 TOR Signaling Wikipathways 17 33 51.5 1.81E-07 1.20E-04 

6 Developmental Biology Reactome 93 426 21.8 7.06E-07 3.50E-04 

7 Insulin signaling pathway - Homo sapiens 
(human) 

KEGG 39 136 28.7 1.90E-06 8.30E-04 

8 Protein processing in endoplasmic reticulum - 
Homo sapiens (human) 

KEGG 44 167 26.3 5.17E-06 1.35E-03 

9 Regulation of Microtubule Cytoskeleton Wikipathways 17 43 39.5 1.74E-05 2.71E-03 

10 FoxO signaling pathway - Homo sapiens 
(human) 

KEGG 34 127 26.8 4.16E-05 5.08E-03 
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Table 5.10 IMPaLA Pathway Enrichment Analysis for 1991 down-regulated transcripts in NSC34 (G4C2)102 + 5 d tet vs NSC34 sham + 5 d tet 
comparison with FC≥1.2 and P<0.01. Pathways highlighted in grey are part of the PI3K/Akt super-pathway. 
 Pathway Name Pathway 

Source 
Number of DE 
genes in pathway 

Total number of 
genes in pathway 

% 
overlap 

P Value (most 
significant term) 

FDR (most 
significant term) 

1 EGFR1 NetPath 91 447 20.4 3.20E-10 1.23E-06 

2 Membrane Trafficking Reactome 42 153 27.5 3.46E-09 4.51E-06 

3 TOR Signalling Wikipathways 17 33 51.5 5.09E-09 4.97E-06 

4 Lysosome - Homo sapiens (human) KEGG 35 120 29.2 1.28E-08 1.00E-05 

5 Protein processing in endoplasmic reticulum - 
Homo sapiens (human) 

KEGG 40 167 24.0 4.65E-07 1.70E-04 

6 Processing of capped intron-containing pre-
mRNA 

Reactome 38 155 24.5 4.80E-07 1.70E-04 

7 Axon guidance Reactome 61 310 19.7 9.88E-07 3.20E-04 

8 Regulation of Microtubule Cytoskeleton Wikipathways 16 43 37.2 3.61E-06 7.80E-04 

9 Developmental Biology Reactome 75 426 17.6 5.00E-06 9.80E-04 

10 Insulin signaling pathway - Homo sapiens 
(human) 

KEGG 34 135 21.9 2.51E-05 2.59E-03 
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5.3.3.4. Biological Pathways of Interest 

The IMPaLA enrichment analysis showed various pathways within the PI3K/Akt 

signalling super-pathway were highly enriched in both the total DE and down-regulated 

transcripts (Table 5.9). In addition, previous work showed PTEN and the PI3K/Akt 

signalling pathway are potential therapeutic targets for ALS (Kirby et al., 2011). 

Therefore, the PI3K/Akt signalling super-pathway was investigated further, with 

particular interest directed towards genes from the mTOR signalling, MAPK signalling, 

and insulin signalling pathways. 

 

Figure 5.11 PI3K/Akt signalling pathway (KEGG). Square boxes indicate gene products 
such as proteins; rounded boxes indicate additional pathways. Arrows indicate 
molecular interactions. The PI3K/Akt signalling pathway regulates many fundamental 
cellular functions such as proliferation, growth and survival.  PI3K phosphorylates 
PI[4,5]P2 to produce PI[3,4,5]P3, which then activates Akt. Active Akt promotes cell 
survival. Pten removes a phosphate group from PI[3,4,5]P3 to produce PI[4,5]P2, and 
therefore inhibits the PI3K/Akt signalling pathway. Transcripts that are DE in NSC34 
(G4C2)102 + 5 d tet vs NSC34 sham + 5 d tet are marked with stars (red for up regulation 
and blue for down regulation in a transcript that encodes the marked protein). 
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RNA metabolism and mRNA transport functional categories were highly enriched in the 

DAVID analysis, whilst the processing of capped intron-containing pre-mRNA pathway 

was also enriched in the down-regulated transcripts. RNA metabolism, and specifically 

mRNA splicing and mRNA export are hypothesised to be affected in C9ORF72-ALS 

(section 1.7.2). Therefore, the RNA metabolism and mRNA transport categories were 

also taken forward for further investigation. 

Finally, protein localisation and vesicle-mediated transport were the first and fourth 

most highly enriched functional categories respectively in the DAVID analysis, and have 

significant overlap. Equally, membrane trafficking, lysosome, and protein processing in 

the ER pathways were highly enriched in the IMPaLA pathway enrichment analysis. As 

mentioned above the DE transcripts in the mTOR signalling pathway are enriched, and 

the mTOR signalling critically regulates autophagy. Taken together the transcriptomic 

data suggests there could be a fault in protein homeostasis at the processing and/or 

degradation stages.  

5.3.3.4.1. PI3K/Akt Signalling Pathway 

The genes in the ‘PI3K/Akt signalling pathway’ provided on gene cards 

(http://pathcards.genecards.org/pathway/29) were used to define the genes in the 

PI3K/Akt signalling super-pathway, and Table 5.11 lists the 75 of these 345 transcripts 

in the PI3K/Akt signalling pathway that are DE (FC≥1.2; P<0.01). Where possible, the DE 

transcripts were mapped onto a diagram of the PI3K/Akt signalling pathway, provided 

by KEGG (Figure 5.11). The insulin signalling, mTOR signalling, MAPK signalling, and 

FOXO signalling pathways, as well as the direct regulation of PI3K/Akt contain many DE 

transcripts (Figure 5.11). 

The serine-threonine kinase Akt regulates a diverse set of cellular processes including 

cell survival, growth, proliferation, metabolism, transcription and protein synthesis 

(Figure 5.11). There are three highly related isoforms of Akt, of which Akt1 (FC=-1.22; 

P=0.0024) and Akt2 (FC=-1.21; P=0.00163) are DE in NSC34 (G4C2)102 + 5 d tet. The 

PI3K/Akt signalling pathway is activated by cell surface receptors. Signalling from the 

receptors activates phosphatidylinositol 3-kinases (PI3Ks), which phosphorylate 

phosphatidylinositol-4,5-P2 (PI[4,5]P2) to produce phosphatidylinositol-3,4,5-P3 

http://pathcards.genecards.org/pathway/29
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(PI[3,4,5]P3). Akt is then recruited to the lipid membrane by PI[3,4,5]P3, where Akt is 

phosphorylated at Thr308 by phosphatidyl-dependent kinase (PDK), and Ser473 by 

various kinases including mTOR complex 2 (mTORC2) (Sarbassov et al., 2005). The 

phosphorylation of these two residues is critical for full activation of Akt (Bhaskar and 

Hay, 2007). Phosphatase and tensin homolog and deleted on chromosome 10 (Pten) 

however, inhibits the PI3K/Akt signalling pathway by dephosphorylating PI[3,4,5]P3 to 

produce PI[4,5]P2 (Stambolic et al., 2001) (Figure 5.11). Class I PI3K catalytic subunits 

PIK3CA (FC=-1.42; P=0.00977) and PIK3CB (FC=-1.32; P=0.00266) are downregulated, 

whilst Pten (FC=+1.67; P=0.00248) is upregulated in NSC34 (G4C2)102 + 5 d tet. 

The mTOR Complexes 1 and 2 are structurally related serine/threonine kinases that are 

both involved in the PI3K/Akt signalling pathway (Bhaskar and Hay, 2007). Whilst Akt is 

activated by mTORC2, Akt indirectly activates mTORC1 via TSC1/2 complex inhibition. 

Active mTORC1 inhibits autophagy and activates protein synthesis. mTORC1 and 2 both 

contain the catalytic subunit mammalian target of Rapamycin (mTOR) (FC=-1.51; 

P=0.000155), and mTOR associated protein, LST8 homolog (Mlst8) (FC=-1.47; 

P=0.000496) subunit. mTORC1 additionally contains regulatory associated protein of 

mTOR, complex 1 (Rptor) (FC=-1.27; P=0.00396), whilst mTORC2 contains Rptor 

independent companion of mTOR, complex 2 (Rictor) and Mitogen-Activated protein 

kinase associated protein 1 (Mapkap1) (FC=-1.35; P=0.00257).  

Akt1, mTOR, and Pten were taken forward for qRT-PCR validation. There was less Akt1 

in the NSC34 (G4C2)102 cells compared to the NSC34 sham cells at 0 (FC=-1.41; 

P=0.180), 1 (FC=-1.11; P=0.928) and 5 (FC=-1.79; P=0.117) days + tet, although none of 

these changes were significant (Figure 5.12). There was significantly less mTOR in the 

NSC34 (G4C2)102 cells compared to the NSC34 sham cells at either 0 (FC=-3.29; 

P=0.0139), 1 (FC=-3.56; P=0.00382), or 5 (FC=-4.09; P = 0.0309) days + tet (Figure 5.13). 

Finally, there was more Pten in the NSC34 (G4C2)102 cells compared to the NSC34 sham 

cells at 0 (FC=+1.20; P=0.267), 1 (FC=+1.42; P=0.264), and 5 (FC=+1.29; P=0.529) days + 

tet, although none of these changes were significant (Figure 5.14). 
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Table 5.11 Transcripts from the PI3K/Akt signalling pathway dysregulated in NSC34 
(G4C2)102 + 5 d tet cells. Genes involved in PI3K/Akt signalling pathway which are 
differentially expressed in NSC34 (G4C2)102 + 5 d tet cells compared to NSC34 sham + 
5 d tet cells. Transcripts highlighted in grey were taken forward for qRT-PCR validation. 

Gene Symbol Gene Name Fold Change P-value 

PI3K/Akt signalling pathway   
Ago1 argonaute RISC catalytic subunit 1 -1.33 3.42E-03 

Akt1 thymoma viral proto-oncogene 1 -1.22 2.40E-03 

Akt2 thymoma viral proto-oncogene 2 -1.21 1.63E-03 

Calm1 calmodulin 1 -1.92 1.00E-03 

Ccnd1 cyclin D1 -1.48 5.36E-05 

Ccne2 cyclin E2 -1.66 7.50E-03 

Cdkn1a/P21 cyclin-dependent kinase inhibitor 1A -1.65 7.07E-03 

Col4a1 collagen, type IV, alpha 1 +1.24 8.99E-03 

Col6a3 collagen, type VI, alpha 3 -1.38 3.64E-04 

Cxcl12 chemokine (C-X-C motif) ligand 12 +1.26 5.37E-04 

Egfr epidermal growth factor receptor +1.20 2.46E-04 

Fgf6 fibroblast growth factor 6 +1.25 6.81E-03 

Fyn Fyn proto-oncogene -1.62 4.11E-04 

G6pc glucose-6-phosphatase, catalytic +1.22 9.81E-03 

G6pc3 glucose 6 phosphatase, catalytic, 3 -1.55 3.65E-04 

Ghr growth hormone receptor +1.28 9.71E-03 

Gnb1 guanine nucleotide binding protein (G protein), beta 
1 

-1.64 4.04E-03 

Gnb4 guanine nucleotide binding protein (G protein), beta 
4 

-1.35 3.21E-03 

Gng5 guanine nucleotide binding protein (G protein), 
gamma 5 

-1.38 1.34E-03 

Gsk3a glycogen synthase kinase 3 alpha -1.54 6.44E-03 

Gys2 glycogen synthase 2 +1.23 2.52E-03 

Igf1r insulin-like growth factor I receptor -1.45 8.04E-04 

Il2ra interleukin 2 receptor, alpha chain +1.23 3.83E-03 

Il6 interleukin 6 -2.23 4.70E-03 

Il7r interleukin 7 receptor +1.26 7.45E-03 

Irs2 insulin receptor substrate 2 +1.98 4.36E-03 

Itch itchy, E3 ubiquitin protein ligase -1.57 7.04E-03 

Itga1 integrin alpha 1 +1.34 1.09E-03 

Itga3 integrin alpha 3 -1.29 2.42E-04 

Itga5 integrin alpha 5 -1.48 1.42E-05 

Itga8 integrin alpha 8 -1.96 7.99E-04 

Itgb5 integrin beta 5 -1.30 2.79E-03 

Jak1 Janus kinase 1 -1.71 1.55E-03 

Lama4 laminin, alpha 4 +1.25 5.13E-04 

Lamc1 laminin, gamma 1 -1.32 5.79E-03 

Lcp2 lymphocyte cytosolic protein 2 +1.26 1.60E-03 

Lpar3 lysophosphatidic acid receptor 3 +1.22 3.07E-03 

Lpar5 lysophosphatidic acid receptor 5 +1.28 7.72E-04 

Mapk8 mitogen-activated protein kinase 8 -1.54 1.66E-03 

Map2k1 mitogen-activated protein kinase kinase 1 -1.34 3.22E-03 
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Map3k7 mitogen-activated protein kinase kinase kinase 7  -1.53 2.86E-03 

Mapkap1 mitogen-activated protein kinase associated protein 
1 

-1.35 2.57E-03 

Mcl1 myeloid cell leukemia sequence 1 -1.61 7.59E-05 

Mlst8 MTOR associated protein, LST8 homolog (S. 
cerevisiae) 

-1.47 4.96E-04 

Mtor mechanistic target of rapamycin -1.51 1.55E-04 

Myb myeloblastosis oncogene -1.65 2.82E-03 

Ncstn Nicastrin -1.55 4.00E-03 

Nedd4 neural precursor cell expressed, developmentally 
down-regulated 4 

-1.78 5.36E-03 

Nras neuroblastoma ras oncogene -1.68 1.68E-03 

Pck2 phosphoenolpyruvate carboxykinase 2 -1.77 9.51E-04 

Pdgfra platelet derived growth factor receptor, alpha 
polypeptide 

+1.31 3.36E-03 

Pik3ca phosphatidylinositol 3-kinase, catalytic, alpha 
polypeptide 

-1.42 9.77E-03 

Pik3cb phosphatidylinositol 3-kinase, catalytic, beta 
polypeptide 

-1.32 2.66E-03 

Plcg1 phospholipase C, gamma 1 -1.52 1.63E-05 

Ppp2r2d protein phosphatase 2, regulatory subunit B, delta 
isoform 

-1.35 1.57E-03 

Ppp2r3c protein phosphatase 2, regulatory subunit B'', 
gamma 

-1.47 1.41E-03 

Ppp3ca protein phosphatase 3, catalytic subunit, alpha 
isoform 

-1.40 7.03E-03 

Prkca protein kinase C, alpha -1.24 4.26E-03 

Psenen presenilin enhancer 2 homolog -1.49 5.23E-03 

Pten phosphatase and tensin homolog +1.67 2.48E-03 

Ptk2 protein tyrosine kinase 2 -1.45 9.11E-03 

Rac1 RAS-related C3 botulinum substrate 1 -1.40 3.54E-03 

Rbl2 retinoblastoma-like 2 -1.37 5.40E-03 

Rheb Ras homolog enriched in brain -1.82 7.24E-04 

Rhoa ras homolog gene family, member A -1.74 4.92E-03 

Rptor regulatory associated protein of MTOR, complex 1 -1.27 3.96E-03 

Sos1 son of sevenless homolog 1 (Drosophila) -1.54 4.12E-03 

Stat3 signal transducer and activator of transcription 3 -1.22 1.06E-03 

Tmem189 transmembrane protein 189 -1.24 6.41E-03 

Tnrc6a trinucleotide repeat containing 6a -1.28 7.44E-03 

Trp53 transformation related protein 53 -1.66 5.73E-03 

Tsc2 tuberous sclerosis 2 -1.44 2.07E-04 

Yes1 Yamaguchi sarcoma viral (v-yes) oncogene homolog 
1 

-1.45 9.89E-03 

Ywhab tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein, beta polypeptide 

-1.51 3.67E-03 

Ywhah tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein, eta polypeptide 

-1.38 1.03E-03 
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Figure 5.12 qRT-PCR Validation of Akt1 levels. NSC34 sham and NSC34 (G4C2)102 cells 
were grown for 0, 1, or 5 days with 0.5μg/mL tetracycline. qRT-PCR was performed on 
Akt1, and normalised to GAPDH. (Multiple t-tests; Data are means ± SD; n=3). 

 

Figure 5.13 qRT-PCR Validation of mTOR levels. NSC34 sham and NSC34 (G4C2)102 cells 
were grown for 0, 1, or 5 days with 0.5μg/mL tetracycline. qRT-PCR was performed on 
mTOR, and normalised to GAPDH. (*P<0.05; Multiple t-tests; Data are means ± SD; n=3). 
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Figure 5.14 qRT-PCR Validation of Pten levels. NSC34 sham and NSC34 (G4C2)102 cells 
were grown for 0, 1, or 5 days with 0.5μg/mL tetracycline. qRT-PCR was performed on 
Pten, and normalised to GAPDH. (Multiple t-tests; Data are means ± SD; n=3). 

Finally, our group had previously performed GEP on laser captured microdissected 

(LCM) motor neurons from the spinal cord of C9ORF72-ALS patients (Cooper-Knock et 

al., 2015a). Dr Johnathan Cooper-Knock investigated the PI3K/Akt signalling pathway 

(KEGG) in this dataset, and careful statistical analysis revealed that this pathway was 

significantly dysregulated in LCM motor neurons from C9ORF72-ALS patients compared 

to controls (rank-product, P=0.01). Further, PTEN had the highest fold change of all DE 

transcripts (FC=+11.3, P=0.00001) within this dataset. Transcripts in the PI3K/Akt 

signalling pathway (KEGG) are listed with transcript ID, gene ID, fold change and P value 

for the C9ORF72-ALS LCM motor neurons in Appendix 5. 

5.3.3.4.2. RNA Metabolism and mRNA Transport 

Aberrant RNA metabolism is described in a wide range of neurodegenerative diseases 

including ALS (sections 1.5.5 and 1.6.5). However, RNA metabolism includes a diverse 

set of biological processes. There were 111 DE transcripts (FC≥1.2; P<0.01) related to 

RNA metabolism and/or mRNA transport in the NSC34 (G4C2)102 cells. Transcripts 

annotated for RNA metabolism only (Table 5.12), mRNA transport only (Table 5.13), and 

both RNA metabolism and mRNA transport (Table 5.14) were listed separately. The 111 
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DE transcripts were functionally annotated again using the DAVID functional annotation 

tool (section 5.3.3.2.1) and IMPaLA pathway enrichment analysis (section 5.3.3.3.2) to 

identify which RNA metabolic processes and/or pathways are mainly affected by the 

(G4C2)102 expression. The top three annotated sub-categories were RNA splicing 

and/or spliceosome (52), ncRNA processing (23), and mRNA transport (18) using the 

DAVID annotation tool. These 111 DE transcripts were also enriched for the Spliceosome 

(30), Processing of Capped Intron-containing Pre-mRNA (26), mRNA Splicing (19), and 

RNA Transport (15) using the IMPaLA pathway enrichment analysis. 

There are several splicing factors that bind (G4C2)n RNA (Cooper-Knock et al., 2014b) 

that are downregulated in the NSC34 (G4C2)102 + 5 d tet cells, including serine/arginine-

rich splicing factor 1 (SRSF1) (FC=-1.54; P=0.00299), SRSF2 (FC=-1.68; P=0.00488), 

heterogeneous nuclear ribonucleoprotein H1 (HnRNPH1) (FC=-1.29; P=0.00758), nudix 

(nucleoside diphosphate linked moiety X)-type motif 21 (Nudt21) (FC=-1.27; P=0.00467), 

SRSF3 (FC=-1.42; P=0.00483) and SRSF6 (FC=-1.79; P=0.000240). Other factors involved 

in splicing regulation that bind (G4C2)n RNA (Cooper-Knock et al., 2014b) that are also 

downregulated in the NSC34 (G4C2)102 + 5 d tet cells include RNA binding motif protein 

3 (RBM3) (FC=-1.74; P=0.00127), and serine/arginine-rich protein specific kinase 2 

(SRPK2) (FC=-1.31; P=0.00603). SRSF1 and SRSF2 were taken forward for qRT-PCR 

validation. There was significantly less SRSF1 in the NSC34 (G4C2)102 cells compared to 

the NSC34 sham cells at 0 (FC=-1.99; P=0.00363), 1 (FC=-1.78; P=0.0390) and 5 (FC=-

2.28; P=0.00442) days + tet (Figure 5.15). There was significantly less SRSF2 in the NSC34 

(G4C2)102 cells compared to the NSC34 sham cells at 0 (FC=-2.63; P=0.0175), 1 (FC=-

1.95; P=0.0344) and 5 (FC=-3.60; P=0.000395) days + tet (Figure 5.16).  
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Table 5.12 RNA Metabolism transcripts dysregulated in NSC34 (G4C2)102 + 5 d tet 
cells. Genes involved in RNA Metabolism which are differentially expressed in NSC34 
(G4C2)102 + 5 d tet cells compared to NSC34 sham + 5 d tet cells. Genes that are also 
functionally annotated as mRNA Transport in addition to RNA Metabolism are listed in 
Table 5.14. Transcripts highlighted in grey were taken forward for qRT-PCR validation. 

Gene Symbol Gene Title Fold change p-value 

RNA Metabolism     
9530036M11Rik RIKEN cDNA 9530036M11 gene +1.30 6.17E-03 

Adar adenosine deaminase, RNA-specific -1.28 1.62E-03 

Adat1 adenosine deaminase, tRNA-specific 1 -1.22 6.79E-03 

Ago1 argonaute RISC catalytic subunit 1 -1.33 3.42E-03 

Aplp1 amyloid beta (A4) precursor-like protein 1 -1.53 6.54E-03 

App amyloid beta (A4) precursor protein -1.31 3.77E-04 

Aqr Aquarius -1.60 2.26E-03 

Auh AU RNA binding protein/enoyl-coenzyme A 
hydratase 

-1.37 5.61E-05 

Celf1 CUGBP, Elav-like family member 1 -1.24 1.74E-03 

Celf3 CUGBP, Elav-like family member 3 -1.45 8.16E-03 

Cherp calcium homeostasis endoplasmic reticulum protein -1.39 4.86E-03 

Cpsf3l cleavage and polyadenylation specific factor 3-like -1.45 9.55E-04 

Crnkl1 Crn, crooked neck-like 1 (Drosophila) -1.43 7.02E-03 

Cstf1 cleavage stimulation factor, 3' pre-RNA, subunit 1 -1.31 5.44E-04 

Ctnnbl1 catenin, beta like 1 -1.33 3.79E-03 

Ddx20 DEAD (Asp-Glu-Ala-Asp) box polypeptide 20 -1.37 7.27E-03 

Ddx46 DEAD (Asp-Glu-Ala-Asp) box polypeptide 46 -1.66 2.58E-03 

Ddx5 DEAD (Asp-Glu-Ala-Asp) box polypeptide 5 -1.24 9.92E-03 

Ddx51 DEAD (Asp-Glu-Ala-Asp) box polypeptide 51 -1.25 8.60E-03 

Dgcr8 DiGeorge syndrome critical region gene 8 -1.35 3.89E-03 

Dhx15 DEAH (Asp-Glu-Ala-His) box polypeptide 15 -1.35 5.94E-03 

Eftud2 elongation factor Tu GTP binding domain containing 
2 

+1.23 6.30E-03 

Exosc10 exosome component 10 -1.67 6.31E-04 

Hnrnph1 heterogeneous nuclear ribonucleoprotein H1 -1.29 7.58E-03 

Hnrnpk heterogeneous nuclear ribonucleoprotein K -1.33 4.75E-03 

Hnrnpll heterogeneous nuclear ribonucleoprotein L-like -1.34 4.89E-03 

Ints3 integrator complex subunit 3 -1.57 1.89E-04 

Ints6 integrator complex subunit 6 -1.60 3.74E-03 

Ints7 integrator complex subunit 7 -1.35 5.68E-03 

Ints8 integrator complex subunit 8 -1.65 2.68E-03 

Mapkapk2 MAP kinase-activated protein kinase 2 -1.30 5.22E-03 

Nol3 nucleolar protein 3 (apoptosis repressor with CARD 
domain) 

-1.32 7.97E-04 

Nono non-POU-domain-containing, octamer binding 
protein 

-1.51 6.77E-03 

Nop14 NOP14 nucleolar protein homolog (yeast) -1.73 2.29E-03 

Nudt21 nudix (nucleoside diphosphate linked moiety X)-type 
motif 21 

-1.27 4.67E-03 

Plrg1 pleiotropic regulator 1, PRL1 homolog (Arabidopsis) -1.37 9.40E-04 

Pnrc2 proline-rich nuclear receptor coactivator 2 -2.43 3.28E-04 
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Pop4 processing of precursor 4, ribonuclease P/MRP 
family, (S. cerevisiae) 

-2.64 6.98E-03 

Ppp1r8 protein phosphatase 1, regulatory (inhibitor) subunit 
8 

-1.65 4.47E-03 

Ppp4r2 protein phosphatase 4, regulatory subunit 2 -1.27 9.43E-03 

Pqbp1 polyglutamine binding protein 1 -1.62 4.91E-03 

Prkra protein kinase, interferon inducible double stranded 
RNA dependent activator 

-1.36 4.08E-03 

Prmt5 protein arginine N-methyltransferase 5 -2.13 1.65E-03 

Prpf18 PRP18 pre-mRNA processing factor 18 homolog 
(yeast) 

-1.31 9.07E-03 

Prpf31 PRP31 pre-mRNA processing factor 31 homolog 
(yeast) 

-1.37 1.80E-03 

Prpf40b PRP40 pre-mRNA processing factor 40 homolog B 
(yeast) 

+1.23 1.94E-03 

Prpf8 pre-mRNA processing factor 8 -1.41 5.92E-03 

Ptbp1 polypyrimidine tract binding protein 1 -1.35 5.54E-03 

Ptbp2 polypyrimidine tract binding protein 2 -1.50 7.93E-03 

Pus10 pseudouridylate synthase 10 -1.32 7.36E-03 

Qtrtd1 queuine tRNA-ribosyltransferase domain containing 
1 

-1.33 2.32E-03 

Rbm22 RNA binding motif protein 22 -1.38 6.71E-03 

Rbm25 RNA binding motif protein 25 -1.34 6.14E-03 

Rbm3 RNA binding motif protein 3 -1.74 1.27E-03 

Rbm5 RNA binding motif protein 5 -1.27 2.80E-03 

Rbmx RNA binding motif protein, X chromosome -1.42 1.85E-03 

Rnasel ribonuclease L (2', 5'-oligoisoadenylate synthetase-
dependent) 

+1.31 7.61E-04 

Rnps1 ribonucleic acid binding protein S1 -1.44 9.39E-03 

Rpf1 ribosome production factor 1 homolog (S. cerevisiae) -1.45 8.11E-03 

Rrp1b ribosomal RNA processing 1 homolog B (S. 
cerevisiae) 

-1.21 2.48E-03 

Scgb1a1 secretoglobin, family 1A, member 1 +1.34 5.94E-03 

Sf3a3 splicing factor 3a, subunit 3 -1.36 5.85E-03 

Sf3b3 splicing factor 3b, subunit 3 -1.86 6.92E-05 

Sfswap splicing factor, suppressor of white-apricot homolog 
(Drosophila) 

-1.28 1.22E-03 

Slbp stem-loop binding protein -1.23 7.18E-03 

Snrnp200 small nuclear ribonucleoprotein 200 (U5) -1.73 5.32E-04 

Snrnp25 small nuclear ribonucleoprotein 25 (U11/U12) +1.21 1.01E-03 

Snrpb small nuclear ribonucleoprotein B -1.29 2.42E-03 

Srpk1 serine/arginine-rich protein specific kinase 1 -1.39 3.98E-04 

Srpk2 serine/arginine-rich protein specific kinase 2 -1.31 6.03E-03 

Srrm1 serine/arginine repetitive matrix 1 -1.54 3.08E-03 

Srsf1/SF2 serine/arginine-rich splicing factor 1 (SF2) -1.54 2.99E-03 

Srsf2/SC35 serine/arginine-rich splicing factor 2 (SC35) -1.68 4.88E-03 

Srsf3 serine/arginine-rich splicing factor 3 -1.42 4.83E-03 

Srsf6 serine/arginine-rich splicing factor 6 -1.79 2.40E-04 

Ssu72 Ssu72 RNA polymerase II CTD phosphatase homolog 
(yeast) 

-1.59 1.59E-03 

Syf2 SYF2 homolog, RNA splicing factor (S. cerevisiae) -1.42 7.23E-03 
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Syncrip synaptotagmin binding, cytoplasmic RNA interacting 
protein 

-1.34 6.48E-03 

Tcp11 t-complex protein 11 +1.29 6.00E-03 

Tfb2m transcription factor B2, mitochondrial -1.95 3.72E-03 

Trmt44 tRNA methyltransferase 44 -1.26 5.11E-03 

Tyw1 tRNA-yW synthesizing protein 1 homolog (S. 
cerevisiae) 

-1.33 2.40E-03 

U2af2 U2 small nuclear ribonucleoprotein auxiliary factor 
(U2AF) 2 

-1.37 8.54E-05 

U2surp U2 snRNP-associated SURP domain containing -1.61 7.29E-03 

Upf1 UPF1 regulator of nonsense transcripts homolog 
(yeast) 

-1.45 9.83E-04 

Wdr3 WD repeat domain 3 -1.32 2.96E-04 

Wdr55 WD repeat domain 55 -1.71 4.36E-03 

Zcchc11 zinc finger, CCHC domain containing 11 -1.68 5.15E-03 

Zcchc6 zinc finger, CCHC domain containing 6 -1.32 8.14E-03 

Zcrb1 zinc finger CCHC-type and RNA binding motif 1 -1.37 5.17E-03 

Zfc3h1 zinc finger, C3H1-type containing +1.28 6.57E-03 

Zfp36l2 zinc finger protein 36, C3H type-like 2 -1.86 2.19E-03 

 

Table 5.13 mRNA Transport transcripts dysregulated in NSC34 (G4C2)102 + 5 d tet cells. 
Genes involved in mRNA Transport which are differentially expressed in NSC34 
(G4C2)102 + 5 d tet cells compared to NSC34 sham + 5 d tet cells. Genes that are also 
functionally annotated as RNA Metabolism in addition to mRNA Export are listed in 
Table 5.14. 

Gene Symbol Gene Title Fold change p-value 

mRNA Transport  

Eif5a eukaryotic translation initiation factor 5A -1.26 5.90E-03 

Eny2 enhancer of yellow 2 homolog (Drosophila) -1.46 8.00E-03 

G3bp2 GTPase activating protein (SH3 domain) binding 
protein 2 

-1.58 1.71E-03 

Gle1 GLE1 RNA export mediator (yeast) -1.20 7.78E-03 

Nup133 nucleoporin 133 -1.50 3.38E-03 

Nup160 nucleoporin 160 -1.54 7.85E-03 

Nup214 nucleoporin 214 -1.53 9.19E-04 

Nup35 nucleoporin 35 -1.43 8.62E-03 

Nup93 nucleoporin 93 -1.54 4.35E-04 

Nupl1 nucleoporin like 1 -1.31 7.31E-03 

Nupl2 nucleoporin like 2 -1.43 1.93E-03 

Stau1 staufen (RNA binding protein) homolog 1 
(Drosophila) 

-1.38 1.14E-03 

Xpo7 exportin 7 -1.44 3.79E-04 
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Table 5.14 RNA Metabolism and mRNA Transport transcripts dysregulated in NSC34 
(G4C2)102 + 5 d tet cells. Genes involved in both RNA Metabolism and mRNA Transport 
which are differentially expressed in NSC34 (G4C2)102 + 5 d tet cells compared to NSC34 
sham + 5 d tet cells. 

Gene Symbol Gene Title Fold change p-value 

RNA Metabolism and mRNA Transport 

Ddx39b DEAD (Asp-Glu-Ala-Asp) box polypeptide 39B -1.52 4.75E-05 

Eif4a3 eukaryotic translation initiation factor 4A3 -1.35 4.79E-03 

Khsrp KH-type splicing regulatory protein -1.30 1.10E-03 

Qk Quaking -1.34 8.58E-03 

Srsf10 serine/arginine-rich splicing factor 10 -1.54 3.33E-03 

Thoc1 THO complex 1 -1.80 3.31E-03 

 

 

Figure 5.15 qRT-PCR Validation of SRSF1 levels. NSC34 sham and NSC34 (G4C2)102 cells 
were grown for 0, 1, or 5 days with 0.5μg/mL tetracycline. qRT-PCR was performed on 
SRSF1, and normalised to GAPDH. (*P<0.05, **P<0.01; Multiple t-tests; Data are means 
± SD; n=3). 

In addition, other factors involved in RNA and mRNA transport that are mutated in ALS 

and other motor neuron diseases are also DE in the NSC34 (G4C2)102 + 5 d tet. GLE1 

RNA export mediator (Gle1) (FC=-1.20; P=0.00778) is an essential multifunctional 

protein involved in both mRNA export and translation (Bolger et al., 2008; Murphy and 

Wente, 1996). Mutations in GLE1 cause the autosomal recessive foetal motor neuron 

diseases lethal congenital contracture syndrome (LCCS1) and lethal arthrogryposis with 

anterior horn cell disease (LAAHD) (Nousiainen et al., 2008). In addition, three rare GLE1 



181 
 
 

mutations are found only in SALS patients, and are absent in controls (Kaneb et al., 

2015). All three mutations cause loss of GLE1 function, indicating the importance of 

GLE1 in motor neuron survival and function. 

 

Figure 5.16 qRT-PCR Validation of SRSF2 levels. NSC34 sham and NSC34 (G4C2)102 cells 
were grown for 0, 1, or 5 days with 0.5μg/mL tetracycline. qRT-PCR was performed on 
SRSF2, and normalised to GAPDH. (**P<0.01; Multiple t-tests; Data are means ± SD; 
n=3). 

Adenosine deaminase, RNA-specific (Adar) (FC=-1.28; P=0.00162) is an important 

paralog of Adar2, which is downregulated in LCM motor neurons from sporadic ALS 

patients (Hideyama et al., 2012). The Adar2 downregulation disrupts A-to-I RNA editing 

of GluA2 (a subunit of the AMPA receptor) producing Ca2+ permeable AMPA receptors, 

and excitotoxicity as a result (Hideyama et al., 2012). Aquarius (Aqr) (FC=-1.60; 

P=0.00226) is an important paralog of Senataxin (SETX), and links pre-mRNA splicing and 

snoRNA biogenesis (Hirose et al., 2006). Missense mutations in SETX cause juvenile 

onset ALS (Chen et al., 2004). SETX was also found to be down regulated (FC=-1.38; 

P=0.00721), although it was not annotated in the RNA metabolism biological function 

category, and was identified through manual interrogation of the DE transcripts list. 
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5.3.3.4.3. Protein Transport and Vesicle-Mediated Transport 

Similarly to RNA metabolism, aberrant protein homeostasis is also described in a wide 

range of neurodegenerative diseases including ALS (section 1.6.6). There were 225 (178 

and 120) DE trancripts (FC≥1.2; P<0.01) related to protein transport and/or vesicle-

mediated transport in the NSC34 (G4C2)102 cells. Transcripts annotated for protein 

transport only (Table 5.15), vesicle-mediated transport only (Table 5.16), and both 

protein transport and vesicle-mediated transport (Table 5.17) were listed separately. 

The 225 DE transcripts were functionally annotated again using the DAVID functional 

annotation tool (section 5.3.3.3.1) and IMPaLA pathway enrichment analysis (section 

5.3.3.3.2) to identify which protein and vesicle-mediated transport processes and/or 

pathways are mainly affected by (G4C2)102 expression. The top three annotated sub-

categories were intracellular transport (91), membrane organisation (54), and secretion 

by cell (29) using the DAVID annotation tool. These 225 DE transcripts were also 

enriched for membrane trafficking (30), endocytosis (20), and trans-golgi network 

vesicle budding (10) using the IMPaLA pathway enrichment analysis. 

There are several genes involved in protein transport and/or vesicle mediated transport 

that are mutated in ALS or other neurodegenerative diseases that are downregulated in 

the NSC34 (G4C2)102 + 5 d tet cells. Mutations in valosin containing protein (Vcp) (FC=-

1.54; P=0.00148) cause ALS (Johnson et al., 2010; Koppers et al., 2012) and inclusion 

body myopathy with early-onset Paget disease and frontotemporal dementia (IBMPFD) 

(Watts et al., 2004). Vcp regulates a variety of cellular processes including ubiquitin-

dependent protein degradation, nuclear envelope construction, Golgi and ER assembly, 

and autophagosome maturation (Ju et al., 2009; Tresse et al., 2010). Mutations in 

charged multivesicular body protein 2B (Chmp2b) cause both ALS and FTD (Parkinson et 

al., 2006; Skibinski et al., 2005). Chmp2a (FC=-1.32; P=0.00398) is an important paralog 

of Chmp2b, and both proteins are components of the Endosomal Sorting Complex 

Required for Transport III (ESCRT-III) which is involved in protein cargo trafficking in the 

endolysosomal pathway and autophagy (Henne et al., 2011). A (CAG)n repeat expansion 

in Huntingtin (Htt) (FC=-1.63; P=0.000522) causes Huntington’s disease (HD). Htt 

interacts with hundreds of different proteins and is involved in many different cellular 
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functions (Marques Sousa and Humbert, 2013). Mutations in mitofusin-2 (Mfn2) (FC=-

1.43; P=0.000971) cause Charchot-Marie-Tooth disease (CMT), and have also been 

linked to ALS (Marchesi et al., 2011). Mfn2 is a transmembrabe GTPase involved in 

mitochondrial fusion and mitochondria-ER membrane interactions (Züchner et al., 

2004).  

Table 5.15 Protein Transport transcripts dysregulated in NSC34 (G4C2)102 cells. Genes 
involved in Protein Transport which are differentially expressed in NSC34 (G4C2)102 + 5 
d tet cells compared to NSC34 sham + 5 d tet cells. Genes that are also functionally 
annotated as Vesicle-mediated transport in addition to Protein Transport are listed in 
Table 5.17. 

Gene Symbol Gene Title Fold Change p-value 

Protein Localisation  

Actn4 actinin alpha 4 - 1.52 2.63E-03 

Adam10 a disintegrin and metallopeptidase domain 10 -1.36 6.89E-03 

Ank2 ankyrin 2, brain -1.22 1.58E-03 

Arfip1 ADP-ribosylation factor interacting protein 1 +1.21 8.94E-03 

Arntl aryl hydrocarbon receptor nuclear translocator-like -1.47 9.63E-03 

Atp7b ATPase, Cu++ transporting, beta polypeptide +1.30 1.87E-03 

Bbs4 Bardet-Biedl syndrome 4 (human) -1.78 9.29E-03 

Bet1l blocked early in transport 1 homolog (S. cerevisiae)-
like 

-1.25 3.02E-03 

Bin3 bridging integrator 3 -1.25 2.69E-03 

Cacnb1 calcium channel, voltage-dependent, beta 1 subunit +1.23 1.06E-03 

Cd27 CD27 antigen +1.21 4.45E-03 

Cdk5 cyclin-dependent kinase 5 -1.62 3.22E-05 

Cep290 centrosomal protein 290 +1.44 7.01E-03 

Chmp2a charged multivesicular body protein 2A -1.32 3.98E-03 

Cog1 component of oligomeric golgi complex 1 -1.30 6.15E-03 

Cog4 component of oligomeric golgi complex 4 -1.46 7.79E-03 

Dnajc14 DnaJ (Hsp40) homolog, subfamily C, member 14 +1.20 3.87E-03 

Dopey1 dopey family member 1 -1.38 5.13E-03 

Eif5a eukaryotic translation initiation factor 5A -1.26 5.90E-03 

Eps15 epidermal growth factor receptor pathway substrate 
15 

-1.21 1.52E-04 

Faf1 Fas-associated factor 1 -1.46 5.70E-03 

Fam125a family with sequence similarity 125, member A +1.36 2.78E-03 

Folr1 folate receptor 1 (adult) -1.27 5.13E-03 

Gabarap gamma-aminobutyric acid receptor associated 
protein 

-1.29 1.77E-03 

Gle1 GLE1 RNA export mediator (yeast) -1.20 7.78E-03 

Hgs HGF-regulated tyrosine kinase substrate -1.20 1.83E-03 

Hspg2 perlecan (heparan sulfate proteoglycan 2) -1.27 1.19E-03 

Ift46 intraflagellar transport 46 -1.53 1.33E-03 

Ipo4 importin 4 -1.40 1.65E-05 

Kif1b kinesin family member 1B -1.83 1.57E-03 
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Lax1 lymphocyte transmembrane adaptor 1 +1.26 2.93E-03 

Lcp2 lymphocyte cytosolic protein 2 +1.26 1.60E-03 

Lman2 lectin, mannose-binding 2 -1.37 1.72E-03 

Mecp2 methyl CpG binding protein 2 -1.29 7.89E-03 

Mlh3 mutL homolog 3 (E coli) +1.33 2.36E-03 

Mlph Melanophilin +1.21 4.39E-03 

Mtx2 metaxin 2 -1.80 5.76E-03 

Nckap1 NCK-associated protein 1 -1.63 2.32E-03 

Nefm neurofilament, medium polypeptide -1.53 3.69E-04 

Nup133 nucleoporin 133 -1.50 3.38E-03 

Nup160 nucleoporin 160 -1.54 7.85E-03 

Nup214 nucleoporin 214 -1.53 9.19E-04 

Nup35 nucleoporin 35 -1.43 8.62E-03 

Nup93 nucleoporin 93 -1.54 4.35E-04 

Nupl1 nucleoporin like 1 -1.31 7.31E-03 

Nupl2 nucleoporin like 2 -1.43 1.93E-03 

Nutf2 predicted gene 10349;  predicted pseudogene 9386; 
nuclear transport factor 2; nuclear transport factor 
2, pseudogene 1 

-1.26 4.05E-03 

Pcna proliferating cell nuclear antigen -1.49 9.91E-03 

Pdcd6ip programmed cell death 6 interacting protein -1.76 5.24E-03 

Pex1 peroxisomal biogenesis factor 1 -1.47 6.96E-04 

Pex14 peroxisomal biogenesis factor 14 -1.23 6.44E-03 

Ppp3ca protein phosphatase 3, catalytic subunit, alpha 
isoform 

-1.40 7.03E-03 

Rab11b RAB11B, member RAS oncogene family -2.11 3.15E-04 

Rab14 RAB14, member RAS oncogene family -1.31 3.21E-03 

Rab22a RAB22A, member RAS oncogene family -1.60 4.05E-04 

Rab31 RAB31, member RAS oncogene family -1.58 2.74E-03 

Rab35 RAB35, member RAS oncogene family -1.27 5.47E-04 

Rab39b RAB39B, member RAS oncogene family -1.54 4.15E-03 

Rab3c RAB3C, member RAS oncogene family -1.32 1.57E-03 

Rab4a RAB4A, member RAS oncogene family -1.37 1.21E-03 

Rab8a RAB8A, member RAS oncogene family -1.36 3.04E-03 

Ranbp3l RAN binding protein 3-like +1.27 4.13E-03 

Rrbp1 ribosome binding protein 1 -1.59 4.26E-04 

Scamp2 secretory carrier membrane protein 2 -1.51 6.37E-05 

Scamp3 secretory carrier membrane protein 3 -1.30 5.56E-03 

Sec61a1 Sec61 alpha 1 subunit (S. cerevisiae) -1.35 1.98E-03 

Sec61a2 Sec61, alpha subunit 2 (S. cerevisiae) -1.44 9.17E-03 

Selenbp2 selenium binding protein 2 +1.30 9.95E-03 

Sft2d2 SFT2 domain containing 2 -2.32 2.62E-03 

Shroom3 shroom family member 3 +1.27 7.77E-03 

Slc15a3 solute carrier family 15, member 3 +1.23 9.89E-03 

Slc15a5 solute carrier family 15, member 5 +1.25 4.86E-03 

Slc37a2 solute carrier family 37 (glycerol-3-phosphate 
transporter), member 2 

+1.22 2.73E-03 

Snx1 sorting nexin 1 -1.25 5.23E-04 

Snx12 sorting nexin 12 -2.01 3.34E-04 
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Snx14 sorting nexin 14 -1.75 2.77E-03 

Snx18 sorting nexin 18 -1.25 2.82E-03 

Snx25 sorting nexin 25 -1.36 3.12E-03 

Snx3 sorting nexin 3 -1.26 1.09E-03 

Snx9 sorting nexin 9 -1.69 1.04E-03 

Srpr signal recognition particle receptor (docking protein) -1.76 2.82E-03 

Srsf10 serine/arginine-rich splicing factor 10 -1.54 3.33E-03 

Stam2 signal transducing adaptor molecule (SH3 domain 
and ITAM motif) 2 

-1.62 6.55E-03 

Stau1 staufen (RNA binding protein) homolog 1 
(Drosophila) 

-1.38 1.14E-03 

Syngr2 synaptogyrin 2 -1.30 7.86E-04 

Timm17b translocase of inner mitochondrial membrane 17b -1.22 1.56E-04 

Timm23 translocase of inner mitochondrial membrane 23 -1.41 4.66E-03 

Tln1 talin 1 -1.27 3.25E-04 

Tmed3 transmembrane emp24 domain containing 3 -1.20 2.64E-03 

Tnfsf13b tumor necrosis factor (ligand) superfamily, member 
13b 

+1.35 1.22E-04 

Tnrc6a trinucleotide repeat containing 6a -1.28 7.44E-03 

Trpc4ap transient receptor potential cation channel, 
subfamily C, member 4 associated protein 

-1.52 1.22E-03 

Tsc2 tuberous sclerosis 2 -1.44 2.07E-04 

Uchl1 ubiquitin carboxy-terminal hydrolase L1 -1.86 2.61E-04 

Vcp valosin containing protein -1.54 1.48E-03 

Vps11 vacuolar protein sorting 11 (yeast) -1.61 1.18E-04 

Vps13b vacuolar protein sorting 13B (yeast) -1.41 4.90E-03 

Vps13d vacuolar protein sorting 13D (yeast) -1.35 1.56E-03 

Vps16 vacuolar protein sorting 16 (yeast) -1.31 3.49E-03 

Vps25 vacuolar protein sorting 25 (yeast) -1.53 6.33E-03 

Vti1a vesicle transport through interaction with t-SNAREs 
1A (yeast) 

-1.39 1.26E-03 

Xpo6 exportin 6 -1.24 3.85E-03 

Xpo7 exportin 7 -1.44 3.79E-04 

Ywhab tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein, beta polypeptide 

-1.51 3.67E-03 

Ywhah tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein, eta polypeptide 

-1.38 1.03E-03 

 

Table 5.16 Vesicle-mediated Transport transcripts dysregulated in NSC34 (G4C2)102 
cells. Genes involved in Vesicle-mediated Transport which are differentially expressed 
in NSC34 (G4C2)102 + 5 d tet cells compared to NSC34 sham + 5 d tet cells. Genes that 
are also functionally annotated as Protein Transport in addition to Vesicle-mediated 
Transport are listed in Table 5.17. 

Gene Symbol Gene Title Fold change p-value 

Vesicle-mediated Transport   

Abca1 ATP-binding cassette, sub-family A (ABC1), member 
1 

-2.18 1.31E-04 

Agrn Agrin -1.44 2.53E-04 

Aplp1 amyloid beta (A4) precursor-like protein 1 -1.53 6.54E-03 
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Arhgap17 Rho GTPase activating protein 17 -1.31 2.19E-03 

Cap1 CAP, adenylate cyclase-associated protein 1 (yeast) -1.65 8.84E-03 

Chrna7 cholinergic receptor, nicotinic, alpha polypeptide 7 -1.48 3.91E-04 

Cnih cornichon homolog (Drosophila) -1.38 3.98E-03 

Coro1c coronin, actin binding protein 1C -1.55 1.27E-03 

Cplx1 complexin 1 -1.42 5.45E-04 

Cstad CSA-conditional, T cell activation-dependent protein +1.25 3.91E-03 

Cttn Cortactin -1.30 7.99E-04 

Dennd1a DENN/MADD domain containing 1A -1.38 1.09E-03 

Dnm1 dynamin 1 -1.28 1.15E-03 

Dnm2 dynamin 2 -1.24 4.39E-03 

Dock1 dedicator of cytokinesis 1 -1.59 9.69E-05 

Ehd2 EH-domain containing 2 -1.55 5.24E-04 

Elmo2 engulfment and cell motility 2 -1.39 1.07E-03 

Eps15l1 epidermal growth factor receptor pathway substrate 
15-like 1 

-1.53 4.71E-03 

Fcgr3 Fc receptor, IgG, low affinity III +1.27 4.82E-03 

Fnbp1l formin binding protein 1-like -1.61 1.63E-03 

Gapvd1 GTPase activating protein and VPS9 domains 1 -1.59 3.43E-03 

Ghr growth hormone receptor +1.28 9.71E-03 

Glra1 glycine receptor, alpha 1 subunit +1.20 5.68E-03 

Gria1 glutamate receptor, ionotropic, AMPA1 (alpha 1) +1.26 6.17E-03 

Gsn Gelsolin -1.21 5.95E-03 

Gulp1 GULP, engulfment adaptor PTB domain containing 1 +1.21 6.32E-03 

Itga3 integrin alpha 3 -1.29 2.42E-04 

Mfge8 milk fat globule-EGF factor 8 protein -1.36 3.11E-04 

Nploc4 nuclear protein localization 4 homolog (S. cerevisiae) -1.50 2.11E-03 

Nras neuroblastoma ras oncogene -1.68 1.68E-03 

Pacsin2 protein kinase C and casein kinase substrate in 
neurons 2 

-1.28 1.23E-03 

Plcd4 phospholipase C, delta 4 +1.29 9.06E-05 

Rac1 RAS-related C3 botulinum substrate 1 -1.40 3.54E-03 

Rims3 regulating synaptic membrane exocytosis 3 -1.40 7.99E-06 

Rims4 regulating synaptic membrane exocytosis 4 -1.31 2.79E-03 

Rin2 Ras and Rab interactor 2 +1.22 3.40E-04 

Sgca sarcoglycan, alpha (dystrophin-associated 
glycoprotein) 

+1.25 2.61E-03 

Sgcb sarcoglycan, beta (dystrophin-associated 
glycoprotein) 

-1.72 4.15E-03 

Sirpa signal-regulatory protein alpha +1.24 8.33E-03 

Sort1 sortilin 1 -1.45 1.58E-03 

Syp Synaptophysin -1.20 8.45E-04 

Tac4 tachykinin 4 +1.32 6.65E-03 

Tfrc transferrin receptor -1.59 5.95E-04 

Trappc10 trafficking protein particle complex 10 -1.49 2.78E-04 

Trappc6b trafficking protein particle complex 6B -1.34 5.69E-03 

Vamp3 vesicle-associated membrane protein 3 -1.82 3.19E-03 

Zmpste24 zinc metallopeptidase, STE24 -1.70 2.59E-03 
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Table 5.17 Protein Transport and Vesicle-mediated Transport transcripts dysregulated 
in NSC34 (G4C2)102 cells. Genes involved in both Protein Transport and Vesicle-
mediated Transport which are differentially expressed in NSC34 (G4C2)102 + 5 d tet cells 
compared to NSC34 sham + 5 d tet cells. 

Gene Symbol Gene Title Fold change p-value 

Protein Localisation and Vesicle-mediated Transport 

Ap1g2 adaptor protein complex AP-1, gamma 2 subunit -1.37 4.14E-04 

Ap1m1 adaptor-related protein complex AP-1, mu subunit 1 -1.67 1.41E-03 

Ap1s2 adaptor-related protein complex 1, sigma 2 subunit -1.50 1.91E-03 

Ap2a2 adaptor protein complex AP-2, alpha 2 subunit -1.94 2.84E-04 

Ap3s2 adaptor-related protein complex 3, sigma 2 subunit -1.70 3.07E-03 

Ap4b1 adaptor-related protein complex AP-4, beta 1 -1.33 5.90E-03 

Ap4e1 adaptor-related protein complex AP-4, epsilon 1 -1.39 6.86E-03 

App amyloid beta (A4) precursor protein -1.31 3.77E-04 

Arcn1 archain 1 -1.65 9.16E-03 

Arfgap2 ADP-ribosylation factor GTPase activating protein 2 -1.33 1.18E-03 

Cadps Ca2+-dependent secretion activator -1.32 4.54E-03 

Cdc42 cell division cycle 42 -1.85 2.49E-03 

Chic2 cysteine-rich hydrophobic domain 2 -1.46 1.95E-03 

Chmp7 charged multivesicular body protein 7 -1.30 1.52E-03 

Cltb clathrin, light polypeptide -1.39 2.72E-03 

Cog3 component of oligomeric golgi complex 3 -1.29 8.10E-03 

Copb2 coatomer protein complex, subunit beta 2 (beta 
prime) 

-1.72 6.06E-03 

Copg1 coatomer protein complex, subunit gamma 1 -1.46 6.82E-03 

Cox16 COX16 cytochrome c oxidase assembly homolog (S. 
cerevisiae) 

-1.24 8.48E-03 

D230025D16Rik RIKEN cDNA D230025D16 gene -1.27 9.37E-03 

Dhcr24 24-dehydrocholesterol reductase -1.46 3.96E-03 

Ergic3 ERGIC and golgi 3 -1.65 4.70E-04 

Exoc1 exocyst complex component 1 -1.53 3.03E-03 

Exoc2 exocyst complex component 2 -1.53 6.12E-03 

Flna filamin, alpha -2.57 1.01E-05 

Golga5 golgi autoantigen, golgin subfamily a, 5 -1.33 3.38E-03 

Gria2 glutamate receptor, ionotropic, AMPA2 (alpha 2) +1.42 3.42E-03 

Htt Huntingtin -1.63 5.22E-04 

Kdelr1 KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum 
protein retention receptor 1 

-1.21 9.00E-03 

Kdelr2 KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum 
protein retention receptor 2 

-1.33 8.67E-04 

Kdelr3 KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum 
protein retention receptor 3 

-1.54 3.31E-03 

Lin7a lin-7 homolog A (C. elegans) +1.22 1.63E-03 

Mapk8ip3 mitogen-activated protein kinase 8 interacting 
protein 3 

-1.20 5.06E-04 

Mfn2 mitofusin 2 -1.43 9.71E-04 

Napa N-ethylmaleimide sensitive fusion protein 
attachment protein alpha 

-1.35 2.73E-03 

Necap2 NECAP endocytosis associated 2 -1.65 6.17E-04 

Npc1 Niemann Pick type C1 -1.50 9.08E-03 
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Nrbp1 nuclear receptor binding protein 1 -1.74 3.47E-04 

Oxa1l oxidase assembly 1-like -1.64 4.64E-03 

Pldn Pallidin -1.46 6.57E-05 

Preb prolactin regulatory element binding -1.26 2.58E-03 

Rab27a RAB27A, member RAS oncogene family +1.25 3.12E-03 

Rab2a RAB2A, member RAS oncogene family -1.60 4.04E-03 

Rab6a RAB6A, member RAS oncogene family -1.63 8.00E-03 

Rhob ras homolog gene family, member B -1.87 1.02E-04 

Rims1 regulating synaptic membrane exocytosis 1 +1.22 8.36E-03 

Rint1 RAD50 interactor 1 -1.30 6.46E-03 

Scfd2 Sec1 family domain containing 2 -1.37 1.62E-03 

Sec13 SEC13 homolog (S. cerevisiae) -1.24 7.44E-03 

Sec23b SEC23B (S. cerevisiae) -1.45 7.08E-03 

Sec24c Sec24 related gene family, member C (S. cerevisiae) -1.24 1.72E-03 

Sec24d Sec24 related gene family, member D (S. cerevisiae) -1.31 2.49E-03 

Sec31a Sec31 homolog A (S. cerevisiae) -1.68 2.86E-03 

Slc30a6 solute carrier family 30 (zinc transporter), member 6 -2.08 2.06E-03 

Snap23 synaptosomal-associated protein 23 -1.52 5.48E-03 

Snx17 sorting nexin 17 -1.36 2.88E-03 

Spast Spastin -1.76 8.24E-04 

Steap2 six transmembrane epithelial antigen of prostate 2 -1.26 1.75E-03 

Stx12 syntaxin 12 -2.07 1.25E-04 

Stx16 syntaxin 16 -1.31 2.08E-03 

Stx18 syntaxin 18 -1.40 2.67E-04 

Stxbp1 syntaxin binding protein 1 -1.44 5.05E-04 

Stxbp2 syntaxin binding protein 2 +1.22 3.12E-03 

Stxbp3a syntaxin binding protein 3A -1.66 7.13E-04 

Trappc1 trafficking protein particle complex 1 -1.28 2.29E-03 

Trappc4 trafficking protein particle complex 4 -1.43 6.50E-03 

Trp53 transformation related protein 53 -1.66 5.73E-03 

Ulk1 Unc-51 like kinase 1 (C. elegans) -1.32 1.31E-04 

Uso1 USO1 homolog, vesicle docking protein (yeast) -1.78 3.24E-03 

Vps29 vacuolar protein sorting 29 (S. pombe) -1.36 9.28E-03 

Vps33b vacuolar protein sorting 33B (yeast) -1.36 7.45E-04 

Wasf2 WAS protein family, member 2 -1.48 9.50E-04 

Zw10 ZW10 homolog (Drosophila), 
centromere/kinetochore protein 

-1.24 4.23E-04 

 

5.3.4. Differential Splicing Analysis 

CEL files were normalised using RMA alt splice analysis in Expression Console, and saved 

as CHP files using Expression Console. The CHP files were then opened in TAC for 

alternative (differential) splicing analysis. To identify true differential splicing events 

between array conditions, the Splicing Index (SI) was used. The SI is the relative 

difference between a splicing event (such as exon level or an exon skipping event) 
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between two array conditions and is summarised in Figure 5.17. The SI can be likened 

to Fold Change, whereas it is the relative level of a splicing event being compared instead 

of the level of a particular transcript. Several criteria must be met for an exon to be 

considered for SI analysis however. The gene must be expressed in both conditions and 

the exon or junction must be expressed in at least one condition. Once these criteria are 

met, the signal intensity for each gene, and subsequently each exon and junction, is 

normalised. The normalised intensities are then compared between the two conditions 

using One Way Between-Subject ANOVA (unpaired), giving an SI value and FDR 

corrected P value. Differential spicing events were filtered to include only events with 

SI≥2.0 or ≤-2.0, and ANOVA FDR<0.05. 

 

Figure 5.17 Algorithm describing Splicing Index used to assess differential splicing 
events between two biological conditions.   

Differential splicing analysis was performed on the NSC34 sham and NSC34 (G4C2)102 

cells. There were 3029 differentially spliced transcripts in the NSC34 (G4C2)102 + 0 d tet 

compared to NSC34 sham + 0 d tet, 2455 differentially spliced transcripts in the NSC34 

(G4C2)102 + 1 d tet compared to NSC34 sham + 1 d tet, and 5834 differentially spliced 

transcripts in the NSC34 (G4C2)102 + 5 d tet compared to NSC34 sham + 5 d tet (Figure 

5.18). Thus the low level (G4C2)102 expression at basal conditions modestly disrupts 

splicing, but the increased (G4C2)102 expression at 5 days tetracycline induction causes 

more extensive splicing disruption. 
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Figure 5.18 Summary of the differentially spliced genes between NSC34 (G4C2)102 and 
NSC34 sham cells. The numbers of genes with at least one differential splice event with 
a splicing index >2 and with One-Way ANOVA (unpaired) P<0.05 between NSC34 
(G4C2)102 and NSC34 sham at 0, 1 and 5 days of tetracycline induction. 

5.4. Discussion 

5.4.1. Tetracycline Does Not Affect the NSC34 Transcriptome 

Previous experiments had shown 10μg/mL tetracycline was toxic to NSC34 sham cells 

(section 3.3.4.4). Therefore the NSC34 sham arrays with and without 5 days tetracycline 

induction were compared. There were only a few DE transcripts between the arrays 

which shows that 0.5μg/mL tetracycline has only a very small effect on the NSC34 

transcriptome. Functional enrichment analysis showed olfactory transduction was the 

only enriched functional annotation cluster. The 3 DE transcripts from this tetracycline 

analysis that overlapped with the DE transcripts in the NSC34 (G4C2)102 + 5 d tet vs 

NSC34 sham + 5 d tet analysis were removed from further analysis. Therefore, the DE 

transcripts, and functionally enriched biological processes and pathways identified in 

the NSC34 (G4C2)102 + 5 d tet vs NSC34 sham + 5 d tet analysis are not caused by 

tetracycline, but are caused by the (G4C2)102. 
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5.4.2. (G4C2)n Expression Alters the NSC34 Transcriptome 

GEP of the NSC34 cells shows that the (G4C2)102 expression alters the NSC34 

transcriptome. Firstly, the NSC34 (G4C2)102 arrays are clustered together, separate 

from the NSC34 sham, (G4C2)10 and (G4C2)51 arrays on the PCA plot. Secondly, the 

NSC34 (G4C2)102 + 5 day tet arrays are the most different of the NSC34 (G4C2)102 

arrays on the PCA plot. Thirdly, when compared to NSC34 sham cells, the number of DE 

transcripts increases from 1576 to 3069 in the NSC34 (G4C2)102 cells when induced with 

tetracycline for 0 and 5 days respectively. Importantly, The NSC34 (G4C2)102 still 

express the (G4C2)102 repeat at lower levels when not induced with tetracycline 

because RNA foci and RAN translation products are still detected under basal conditions 

(sections 3.4.3 and 3.4.5 respectively). The low basal expression of (G4C2)102 probably 

accounts for the transcriptomic differences, and could explain why the NSC34 

(G4C2)102 + 0 d tet arrays cluster with the NSC34 (G4C2)102 + 1 d and + 5 d arrays. 

Additionally, the (G4C2)102 DNA repeat in the genome could contribute to the DE 

transcripts and altered gene expression. However, the greater (G4C2)102 expression 

further alters the NSC34 cell gene expression and there is a high degree of overlap in the 

DE transcripts in the 0 and 5 day tet comparisons, which shows the (G4C2)102 

expression does alter gene expression.   

5.4.3. Enrichment Analysis  

Enrichment analysis identifies which biological functions and pathways are most altered 

at the transcript level in disease. Enrichment analysis was first performed here using 

DAVID to assess how (G4C2)102 expression affected the NSC34 cell transcriptome. Using 

DAVID, 63.4% of the DE transcripts were annotated to a biological function, whilst only 

26.2% of the DE genes were annotated to a KEGG pathway. The percentage of genes 

annotated to a biological pathway using DAVID seemed very low, and the actual 

biological pathway annotations are more informative and specific than the vaguer 

biological function annotations. Therefore, an alternative pathway enrichment analysis 

tool with greater annotation was used. IMPaLA annotates genes from 11 different public 

databases (including KEGG), and was used to repeat the pathway enrichment analysis. 

Using IMPaLA, 47.4% of genes were annotated to a biological pathway, which was nearly 
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double the coverage that DAVID provided, and was much more acceptable for pathway 

analysis. The DAVID and IMPaLA enrichment analyses identified several interesting 

biological functions and pathways including braches of the PI3K/Akt signalling super-

pathway, RNA metabolism, and protein transport which are discussed in greater detail 

below. 

5.4.4. Pathways of interest 

5.4.4.1. PI3K/Akt signalling 

The PI3K/Akt signalling pathway regulates a range of cellular functions including 

metabolism, cell growth, proliferation, survival, and protein translation. GEP of the 

NSC34 (G4C2)102 cells identified transcriptomic dysregulation in this pathway. More 

specifically, Akt1 and Akt2 are both downregulated at transcript level, suggesting the 

Akt levels and signalling may be reduced. Also, PI3K activates Akt, whilst Pten 

antagonises this activation, and the class I PI3K catalytic subunits PIK3CA and PIK3CB are 

downregulated at transcript level, whilst Pten is upregulated at transcript level in NSC34 

(G4C2)102, further suggesting reduced Akt activation and signalling. Finally, mTOR, 

which is a member of the Akt activating complex MTORC2, is also downregulated at 

transcript level again suggesting reduced Akt activation. Reduced Akt levels and activity 

would potentially cause a reduced growth rate, since Akt promotes cell growth and 

proliferation. The (G4C2)102 expression reduced NSC34 cell growth rate (section 3.4.6), 

and supports the reduced Akt signalling hypothesis. Further, the PI3K/Akt signalling 

pathway is also dysregulated at transcriptomic level in C9ORF72-ALS LCM motor 

neurons, and corroborates the GEP in the NSC34 (G4C2)102 cells. However, qRT-PCR 

analysis only validated the DE of mTOR, but not Akt1 or Pten in the NSC34 (G4C2)102 

cells. Further investigation of the PI3K/Akt signalling pathway at protein level is required 

to strengthen the hypothesis that (G4C2)102 expression in a motor neuronal context 

affects PI3K/Akt signalling. 

Previously, GEP on LCM motor neurons from spinal cord of SOD1-ALS patients identified 

transcriptomic changes in the PI3K/Akt signalling pathway (Kirby et al., 2011). 

Specifically, the transcriptomic data suggested the PI3K/Akt signalling pathway is more 

active in the surviving motor neurons, and actually contributes to their survival (Kirby et 
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al., 2011). This supports the finding that the PI3K/Akt signalling pathway is dysregulated 

at transcript level in both the NSC34 (G4C2)102 cells and the C9ORF72-ALS LCM motor 

neurons. However, the transcriptomic data and cellular assay data in the NSC34 

(G4C2)102 cells suggests (G4C2)102 expression results in reduced Akt signalling, rather 

than in a prosurvival manner. To understand how (G4C2)102 expression affects The 

PI3K/Akt signalling pathway, further biochemical investigation in the NSC34 (G4C2)102 

cells was required. 

Interestingly, Pten, which is a key negative regulator of the PI3K/Akt signalling pathway, 

has been identified as a potential therapeutic target in ALS and other motor neuron 

diseases (Kirby et al., 2011; Little et al., 2015; Ning et al., 2010). PTEN knock-down via 

siRNA promoted survival in SOD1-G93A NSC34 cells and motor neuron survival (Kirby et 

al., 2011) and axon growth in an SMA mouse model (Ning et al., 2010). Further, Pten 

knock-down by siRNA in an SMA mouse model tripled survival time, improved motor 

function, and motor neuron survival (Little et al., 2015). Interestingly, in the C9ORF72-

ALS LCM motor neuron transcriptomic dataset, PTEN had the highest fold change of all 

DE genes. As described above, Pten is upregulated at transcript level in the NSC34 

(G4C2)102 cells as well. This suggests that PTEN upregulation in C9ORF72-ALS may 

contribute to motor neuronal cell death. More specifically, the NSC34 (G4C2)102 data 

suggests the (G4C2)n expression may cause this PTEN upregulation. Therefore, Pten was 

taken forward as a potential therapeutic target in chapter 6. 

5.4.4.2. RNA Metabolism and mRNA Transport 

RNA metabolism is an important biological process involved in many levels of gene 

expression (Walsh et al., 2015). Dysregulated RNA metabolism is implicated in a wide 

range of neurodegenerative diseases including ALS (sections 1.5.5 and 1.6.5). GEP of the 

NSC34 (G4C2)102 cells identified transcriptomic dysregulation in RNA metabolism, but 

more specifically in RNA splicing, ncRNA processing and mRNA transport. This is in 

agreement with a previous transcriptomic study that showed RNA splicing is 

dysregulated in C9ORF72-ALS lymphoblastoid cells and LCM motor neurons (Cooper-

Knock et al., 2015a).  
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The (G4C2)n repeat expansion is hypothesised to cause neurotoxicity and 

neurodegeneration in C9ORF72-ALS via an RNA toxicity mechanism (section 1.7.2). 

Briefly, the (G4C2)n RNA transcribed from the repeat expansion is thought to bind and 

sequester RNA binding proteins. Therefore, several studies used in vitro (G4C2)n RNA 

pull downs to identify candidate binding proteins (Cooper-Knock et al., 2014b; Donnelly 

et al., 2013; Haeusler et al., 2014; Lee et al., 2013; Mori et al., 2013b; Rossi et al., 2015; 

Xu et al., 2013). Interestingly, several of the (G4C2)n RNA binding candidates identified 

by our group, including many splicing factors, were downregulated in the NSC34 

(G4C2)102 cells. These transcripts included SRSF1 and SRSF2, and the downregulation 

was validated by qRT-PCR. SRSF1 and SRSF2 had previously been shown to co-localise 

with the (G4C2)n RNA foci in the NSC34 (G4C2)102 cells (section 4.3.3) as well as in 

C9ORF72-ALS pathological tissue (Cooper-Knock et al., 2014b; Lee et al., 2013).  

The downregulation of (G4C2)n RNA binding candidates is contrary to a seemingly more 

obvious hypothesis: sequestration of RNA binding proteins by the (G4C2)n RNA would 

result in loss of activity of those specific RNA binding proteins, and the cell would 

therefore compensate by increasing expression of those RNA binding proteins. This is in 

fact what our group found in C9ORF72-ALS patient tissue. However, 20% and 10% of the 

identified binding candidates from the aforementioned study (Cooper-Knock et al., 

2014b) were DE in C9ORF72-ALS lymphoblastoid cells and LCM motor neurons 

respectively, where 89% and 77% of those DE transcripts were upregulated respectively 

(Cooper-Knock et al., 2015a). This casts some doubt over the physiological relevance of 

the transcriptomic changes identified in the NSC34 (G4C2)102 cells. 

The differential splicing analysis provides a functional readout of RNA splicing 

dysregulation in the NSC34 (G4C2)102 cells. The number of differentially spliced 

transcripts between the NSC34 (G4C2)102 and NSC34 sham increased from 3029 in basal 

conditions (no tetracycline) to 5834 when the cells were induced with tetracycline for 5 

days, and suggests that the (G4C2)102 expression alters splicing. The (G4C2)102 is 

expressed at low levels at basal conditions (section 3.4.3), which could cause some 

differential splicing events. However, the greater (G4C2)102 expression after 5 days 

tetracycline induction further disrupts splicing in the NSC34 cells. This importantly 
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suggests that RNA splicing defects are an early biochemical effect of (G4C2)n expression. 

This corroborates previous transcriptomic analysis that showed there are extensive 

splicing defects in C9ORF72-ALS frontal cortex and cerebellum (Prudencio et al., 2015). 

In addition, splicing is less consistent in C9ORF72-ALS lymphoblastoid cells compared to 

non-C9ORF72-ALS and control cells, although the actual number of differential splicing 

events was not altered (Cooper-Knock et al., 2015a). It is not clear whether the (G4C2)n 

RNA and/or the RAN translation products cause the RNA splicing defects, although the 

RNA sequestration hypothesis makes it more logical to attribute these effects to the 

(G4C2)n RNA. 

In addition to RNA splicing defects, dysregulated mRNA export is also thought to play an 

important role in C9ORF72-ALS pathogenesis. The (G4C2)n RNA binds RanGAP1 in 

transgenic fly models, C9ORF72-ALS iPSC-derived neurons and C9ORF72-ALS patient 

brain tissue (Zhang et al., 2015). The (G4C2)n RNA also disrupts nuclear import in 

transgenic fly models and C9ORF72-ALS iPSC-derived neurons (Zhang et al., 2015), and 

nuclear export of RNA in transfected NSC34 and HeLa cells, transgenic fly models, and 

C9ORF72-ALS iPSC-derived neurons (Freibaum et al., 2015; Rossi et al., 2015). In 

addition, genetic screening in transgenic fly models show proteins involved in 

nucleocytoplasmic transport modify toxicity caused by the (G4C2)n RNA (Freibaum et 

al., 2015), whilst a screen performed in S. cerevisiae identified components of 

nucleocytoplasmic transport as modifiers of DPR-induced toxicity (Jovičić et al., 2015). 

5.4.4.3. Protein Transport and Vesicle-Mediated Transport 

Protein transport and vesicle-mediated transport, in addition to protein degradation, 

are thought to be important biological processes in ALS pathogenesis (sections 1.5.6 and 

1.6.6). This is due to the number of ALS associated genes that are involved in protein 

homeostasis, and also because protein aggregates are pathological hallmarks of ALS, 

suggesting cellular protein homeostasis is inefficient or overwhelmed. GEP of the NSC34 

(G4C2)102 cells identified transcriptomic dysregulation in protein transport and vesicle-

mediated transport. Also, previous studies have suggested the (G4C2)n repeat and/or 

the DPR cause nucleocytoplasmic transport dysregulation (Freibaum et al., 2015; Jovičić 

et al., 2015; Zhang et al., 2015). 



196 
 
 

The (G4C2)102 repeat is transcribed to form RNA foci (section 3.3.4.1), but also 

undergoes RAN translation producing proteins that contain the (GA)n, (GR)n and (GP)n 

sense DPR motifs (section 3.3.4.3). The DPR proteins aggregate to form insoluble 

inclusions in vitro and also in C9ORF72-ALS CNS tissue (sections 1.4, 1.7.3, and 1.8.2.3). 

Whilst there is no direct evidence to show the RAN proteins in the NSC34 (G4C2)102 

cells aggregate, it is certainly possible. Therefore, the transcriptomic alterations in 

protein transport and vesicle-mediated transport may suggest a cellular response to 

potentially misfolded and aggregated RAN proteins within the NSC34 (G4C2)102 cells. 

Additionally, in times of stress, protein synthesis and cellular growth are inhibited, whilst 

autophagy is upregulated (Sarbassov et al., 2005). Critically, mTOR signalling favours 

growth and inhibits autophagy, and therefore the downregulation of mTOR in the NSC34 

(G4C2)102 cells fits with the reduced growth rate previously described in the NSC34 

(G4C2)102 cells (sections 3.3.4.7 and 3.4.6), but also suggests increased autophagy. 

5.4.5. Summary 

Early transcriptomic changes caused by the (G4C2)102 expression were identified in the 

NSC34 cells using microarray analysis. Importantly, the transcriptomic changes 

corroborate with previous transcriptomic studies in C9ORF72-ALS patient derived cells 

and post-mortem tissue. Specifically, RNA metabolism, and RNA splicing and mRNA 

transport in particular, were dysregulated at transcript level. Further, (G4C2)102 

expression increased the number of differentially spliced transcripts, suggesting 

functional splicing dysregulation. In addition, significant transcriptomic dysregulation 

was identified in the PI3K/Akt signalling pathway in the NSC34 (G4C2)102 cells. This was 

validated in LCM motor neurons from C9ORF72-ALS patients, and suggests this is an 

early transcriptomic change in C9ORF72-ALS pathogenesis. Lastly, since the PI3K/Akt 

signalling pathway regulates cellular survival it may represent a potent therapeutic 

target, and was taken forward for in vitro manipulation and rescue assays.  
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Chapter 6. Modulation of Pten and PI3K/Akt 
Signalling Pathway in NSC34 (G4C2)102 Cells 

6.1. Introduction 

PTEN and the PI3K/AKT signalling pathway have previously been described as potential 

therapeutic targets in ALS and other motor neuron diseases (see section 5.4.4.1). Pten 

was elevated at the transcript level in the NSC34 (G4C2)102 cells, as well as C9ORF72-

ALS LCM motor neurons. Further, the PI3K/AKT signalling pathway (or branches of the 

super-pathway) were also dysregulated at transcript level in the NSC34 (G4C2)102 and 

C9ORF72-ALS LCM motor neurons. Therefore, it was hypothesised that PTEN inhibition 

would activate the PI3K/Akt signalling pathway rescuing the NSC34 cells from (G4C2)102 

induced toxicity. Two different approaches were taken to inhibit PTEN activity: PTEN 

knock-down using commercial lentiviral Pten shRNA vectors, and pharmacological 

inhibition using the specific PTEN inhibitor bisperoxo(1,10-phenanthroline)oxovanadate 

(BpV(phen)). 

The PI3K/AKT signalling pathway is highly conserved, and regulates various cellular 

functions including cellular survival, cell proliferation, cell growth, metabolism, 

transcription and protein synthesis (Figure 5.11) (Hers et al., 2011). Phosphoinositide 3-

kinases (PI3K) are central to the PI3K/AKT signalling cascade, and are activated by a wide 

range of receptors such as receptor tyrosine kinases and G protein coupled receptors 

(Figure 5.11). Active PI3Ks phosphorylate phosphatidylinositol-4,5-P2 (PI[4,5]P2) to 

produce phosphatidylinositol-3,4,5-P3 (PI[3,4,5]P3) (Figure 6.1), which acts as a 

secondary messenger. Importantly, PTEN negatively regulates this signalling cascade via 

it’s intrinsic phosphatase activity, which converts PI[3,4,5]P3 back to PI[4,5]P2 thereby 

antagonising the PI3K signalling (Figure 6.1). PTEN activity can also be reduced by 

phosphorylation at Ser380 (Vazquez et al., 2000). 

AKT is activated downstream in the PI3K/AKT signalling cascade by the PI[3,4,5]P3. The 

three genes AKT1, AKT2, and AKT3 encode highly similar isoforms of AKT. The PH domain 

of AKT allows docking to PI[3,4,5]P3, and recruitment to the plasma membrane. Once 
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docked to PI[3,4,5]P3, AKT changes conformation allowing Thr308 and Ser473 residues 

to be phosphorylated by various phosphatidyl-dependent kinases (PDK). The 

phosphorylation of these two residues is critical for full activation of AKT (Bhaskar and 

Hay, 2007). Therefore, quantification of p-Akt(Ser473) levels is widely used to measure 

AKT signalling activity. 

 

Figure 6.1 PTEN antagonises PI3K/AKT signalling. PI3K phosphorylates 
phosphatidylinositol-4,5-P2 (PI[4,5]P2) to produce phosphatidylinositol-3,4,5-P3 
(PI[3,4,5]P3). PI[3,4,5]P3 recruits AKT at the plasma membrane, leading to AKT 
activation. PTEN antagonises this cascade by phosphatase activity, which converts 
PI[3,4,5]P3 to PI[4,5]P2. 

BpV(phen) is a competitive and reversible inhibitor of PTEN (Schmid et al., 2004), and is 

thought to reversibly oxidise the catalytic cysteine residue in the phosphatase active site 

of PTEN (Lee et al., 2015). BpV(phen), and other structurally related BpV compounds, 

increase pAKT(Ser473) levels in vitro in various cell lines, (Dimchev et al., 2013; Schmid 

et al., 2004; Zhao et al., 2013) and in in vivo models (Ding et al., 2013; Guo et al., 2013; 

Mao et al., 2013) indicating increased AKT signalling. However, although the BpV 

compounds inhibit PTEN, they do not increase p-PTEN(Ser380) levels (relative to total 

PTEN) in any models tested.  Additionally, the BpV compounds have also been shown to 

provide neuroprotective effects in a range of in vivo stroke models (Chen et al., 2015; 

Ding et al., 2013; Guo et al., 2013; Mao et al., 2015). 

Vanadium compounds, such as sodium orthovanadate have been recognized as 

inhibitors of several classes of phosphatase enzymes since the 1970s, in some cases with 

reasonable potency (eg. human liver alkaline phosphatase Ki <1μM) (Seargeant and 

Stinson, 1979; VanEtten et al., 1974). Although this broad spectrum phosphatase 
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inhibition by vanadate appears to be mediated by simple reversible competitive 

inhibition, a more selective irreversible inhibition of several members of the protein 

tyrosine phosphatase family appears to be achieved by aqueous peroxovanadium 

compounds due to oxidation of the active site cysteine thiol (Bevan et al., 1995; Huyer 

et al., 1997). Subsequently, peroxovanadium compounds such as bisperoxovanadium 

1,10 phenanthroline (bpV(phen)) and bisperoxovanadium 5-hydroxypiridine-2-carboxyl 

(bpV(HOpic)) were studied due to their increased biological potency and evidence that 

these vanadium complexes have greater target selectivity than the simple vanadate 

compounds. For example, bpV(phen) and bisperoxovanadium 2-carboxypyridine 

(bpV(pic)) were shown to inhibit Cdc25A with some selectivity, displaying IC50 

determined in vitro in the presence of 1mM DTT in the 10–50nM range (Scrivens et al., 

2003). 

6.2. Aims and Objectives for PI3K/Akt Signalling Pathway in NSC34 (G4C2)102 

Cells 

1) Validate changes in total Pten and total Akt protein levels in NSC34 (G4C2)102 

cells. 

2) Validate changes in PI3K/Akt signalling in NSC34 (G4C2)102 cells. 

3) Use lentiviral Pten shRNA vectors to knock-down Pten and rescue (G4C2)102 

induced toxicity. 

4) Use Pten inhibitor BpV(phen) to activate PI3K/Akt signalling pathway and rescue 

(G4C2)102 induced toxicity. 

6.3. Results 

6.3.1. Akt, p-Akt(Ser473), Pten and p-Pten(Ser380) Levels are Unaffected by (G4C2)102 

Expression in NSC34 Cells 

Immunoblotting was used to validate the DE of Akt and Pten transcripts after 5 days 

tetracycline induction (section 5.3.3.4.1), and also to investigate whether the PI3K/Akt 

signalling pathway was dysregulated at a biochemical level in the NSC34 (G4C2)102 cells. 
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NSC34 sham and NSC34 (G4C2)102 cells were grown for 5 days with or without 

tetracycline and then immunoblotted for total Akt, and Pten, as well as p-Akt(Ser473) 

and p-Pten(Ser380) phosphor-isomers. The anti-Akt and anti-p-Akt(Ser473) antibodies 

detected a protein band at 60kDa (Figure 6.2A), which is the expected molecular weight. 

There was no significant difference in total Akt levels between tetracycline treated and 

untreated NSC34 sham cells (Figure 6.2). Neither was there any significant difference in 

total Akt levels between tetracycline treated NSC34 (G4C2)102 cells and either 

untreated NSC34 (G4C2)102 or treated NSC34 sham cells (Figure 6.2). Also, there was 

no significant difference in p-Akt(Ser473) levels between tetracycline treated and 

untreated NSC34 sham cells, when normalised to either β-actin or total Akt levels (Figure 

6.2). Finally, there were slight increases in p-Akt(Ser473) levels in NSC34 (G4C2)102 cells 

compared to NSC34 sham cells, although these comparisons were not statistically 

significant. p-Akt(Ser473) levels were increased by 15.4 ± 9.5% (ns) and 29.3 ± 21.1% (ns) 

in untreated NSC34 (G4C2)102 cells compared to untreated NSC34 sham cells, when 

normalised to β-actin or total Akt levels respectively (Figure 6.2). p-Akt(Ser473) levels 

were also increased by 35.1 ± 41.0% (ns) and 30.0 ± 41.4% (ns) in tetracycline treated 

NSC34 (G4C2)102 cells compared to tetracycline treated NSC34 sham cells, when 

normalised to β-actin or total Akt levels respectively (Figure 6.2). 
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Figure 6.2 (G4C2)102 expression does not affect total Akt or phospho-Akt(Ser473) 
levels in NSC34 cells. A) NSC34 sham and NSC34 (G4C2)102 cells were cultured for 5 
days with or without 0.5μg/mL tetracycline. Cells were lysed and immunoblotted with 
anti-Akt, anti-p-Akt(Ser473) and anti-β-actin. A representative immunoblot is shown. 
Molecular weight markers are indicated (kDa). B) Quantification of Akt normalised to β-
actin, and p-Akt(Ser473) normalised to β-actin or Akt (Two-way ANOVA with Tukey’s 
multiple comparisons post hoc test; Data are means ± SD; n = 3).  
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The anti-Pten and anti-p-Pten(Ser380) antibodies detected a protein band at 54 kDa 

(Figure 6.3A), which is the expected molecular weight. There was no significant 

difference in total Pten levels between tetracycline treated and untreated NSC34 sham 

cells (Figure 6.3). However, total Pten levels were increased by 23.1 ± 40.8% (ns) in the 

untreated NSC34 (G4C2)102 cells and 24.1 ± 33.6% (ns) in the tetracycline induced 

NSC34 (G4C2)102 cells when compared to untreated and tetracycline treated NSC34 

sham cells respectively, although these increases were not statistically significant (Figure 

6.3). Similarly, there was no significant difference in p-Pten(Ser380)  levels between 

tetracycline treated and untreated NSC34 sham cells, when normalised to either β-actin 

or total Pten levels (Figure 6.3). However, p-Pten(Ser380) levels (normalised to β-actin) 

were increased by 15.1 ± 32.6% (ns) in the untreated NSC34 (G4C2)102 cells and 31.9 ± 

26.0% (ns) in the tetracycline induced NSC34 (G4C2)102 cells when compared to 

untreated and tetracycline treated NSC34 sham cells respectively, although these 

increases were not statistically significant (Figure 6.3). Finally, the ratio of p-

Pten(Ser380) to total Pten was not significantly different in either the untreated NSC34 

(G4C2)102 cells or tetracycline treated NSC34 (G4C2)102 cells compared to the 

untreated and tetracycline treated NSC34 sham cells respectively (Figure 6.3). 
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Figure 6.3 (G4C2)102 expression does not affect total Pten or phospho-Pten(Ser380) 
levels in NSC34 cells. A) NSC34 sham and NSC34 (G4C2)102 cells were cultured for 5 
days with or without 0.5μg/mL tetracycline. Cells were lysed and immunoblotted with 
anti-Pten, anti-p-Pten(Ser380) and anti-β-actin. A representative immunoblot is shown. 
Molecular weight markers are indicated (kDa). B) Quantification of Pten normalised to 
β-actin, and p-Pten(Ser380) normalised to β-actin or Pten (Two-way ANOVA with 
Tukey’s multiple comparisons post hoc test; Data are means ± SD; n = 3). 
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6.3.2. Pten Inhibition Using a Lentiviral Vector Encoding Pten shRNA 

6.3.2.1. Puromycin Dose-Response in NSC34 Sham and (G4C2)102 Cells 

Pten was knocked down by stably integrating shRNA into the NSC34 sham and 

(G4C2)102 cell genome by lentiviral delivery. The lentiviral vectors used all confer 

puromycin resistance, and therefore cells containing stably integrated lentivirus can be 

selected using puromycin selection. Therefore, the minimum concentration of 

puromycin that would kill NSC34 sham and NSC34 (G4C2)102 had to be identified. 

NSC34 sham cells were cultured for 7 days with various concentrations of puromycin, 

and then an MTT assay was performed to assess cell viability. ≤0.01μg/mL puromycin 

did not affect NSC34 sham or NSC34 (G4C2)102 cell viability (Figure 6.4). 0.05 and 

0.1μg/mL puromycin partially reduced NSC34 sham and NSC34 (G4C2)102 cell viability, 

whilst ≥0.5μg/mL puromycin completely devastated NSC34 sham and NSC34 (G4C2)102 

cells (Figure 6.4). Therefore, puromycin was used at 1μg/mL to select for stable lentiviral 

transduced NSC34 cells. 

 

Figure 6.4 Dose-response of NSC34 sham and NSC34 (G4C2)102 cell viability against 
puromycin. NSC34 sham cells were cultured for 7 days with various concentrations of 
puromycin. Cell viability was measured using an MTT assay (Data shown are means and 
SD; n = 1). 
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6.3.2.2. Lentiviral ShRNA Vectors Reduced Total Pten Levels in Stably Transduced NSC34 

Sham and (G4C2)102 Cells 

NSC34 sham and NSC34 (G4C2)102 cells were transduced with either GFP control 

lentiviral particles or Pten shRNA (mouse) lentiviral particles. The media was removed 

and replenished 24 hours after transduction. Puromycin selection was added to the 

media to select for cells which had the lentivirus stably integrated into the genome. Over 

the next week there was a lot of cell death, but visible puromycin-resistant colonies 

could be seen growing. The stable transformants were expanded as mixed populations, 

and frozen down. Later, in a separate procedure, control shRNA lentiviral particles were 

also stably transduced into NSC34 sham and NSC34 (G4C2)102 cells, as described above. 

The second transduction using the control shRNA was performed because initial 

experiments using the GFP control produced encouraging results, and a better control 

was desired for the Pten shRNA. The GFP transduced cells only controlled for viral 

transduction, whilst the control shRNA transduced cells additionally controlled for 

shRNA expression, and therefore represent a more robust control for the Pten shRNA 

transduced cells. 

The effect of the stably transduced Pten shRNA was assessed by immunoblot. Pten was 

knocked down by 63.0 ± 14.4% (P<0.05) in the NSC34 sham Pten shRNA compared to 

NSC34 sham GFP control cells (Figure 6.5). Whilst Pten was knocked down by 62.5 ± 22.2 

(P<0.01) in the NSC34 (G4C2)102 Pten shRNA compared to NSC34 (G4C2)102 GFP 

control cells (Figure 6.5), there was no significant difference in the Pten levels between 

NSC34 sham GFP and NSC34 (G4C2)102 GFP control cells, or NSC34 sham Pten shRNA 

compared to NSC34 (G4C2)102 Pten shRNA cells (Figure 6.5). 

In a separate set of experiments, the effect of Pten shRNA was also assessed compared 

to the control shRNA cell lines. Unexpectedly however, the NSC34 sham Pten shRNA 

cells no longer showed a significant Pten knock-down, and were removed from later 

experiments where the control shRNA cell lines were used as the control rather than the 

GFP lines. Pten was knocked down by 70.0 ± 4.5% (P<0.01) in the NSC34 (G4C2)102 Pten 

shRNA compared to NSC34 (G4C2)102 control shRNA cells (Figure 6.6). 
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Figure 6.5 Pten shRNA reduces Pten levels in stably transduced NSC34 sham and 
(G4C2)102 cells. A) NSC34 sham and (G4C2)102 cells were stably transduced with either 
LV GFP or Pten shRNA LV.  Cells were lysed and immunoblotted with anti-Pten and anti-
β-actin. A representative immunoblot is shown. Molecular weight markers are indicated 
(kDa). B) Quantification of Pten normalised to β-actin (*P<0.05, **P<0.01; One-way 
ANOVA with Tukey’s multiple comparisons post hoc test; Data are means ± SD; n=3). 
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Figure 6.6 Pten shRNA reduces Pten levels in stably transduced NSC34 (G4C2)102 cells. 
A) NSC34 sham and (G4C2)102 cells were stably transduced with either LV control 
shRNA or Pten shRNA LV.  Cells were lysed and immunoblotted with anti-Pten and anti-
β-actin. A representative immunoblot is shown. Molecular weight markers are indicated 
(kDa). B) Quantification of Pten normalised to β-actin (*P<0.05, **P<0.01; One-way 
ANOVA with Tukey’s multiple comparisons post hoc test; Data are means ± SD; n=3). 

6.3.2.3. Pten Knock-Down Rescues NSC34 Cells from (G4C2)102 Induced Toxicity 

The hypothesis was that Pten knock-down would rescue the NSC34 (G4C2)102 cells from 

the (G4C2)102 induced toxicity (which had previously been described in section 3.3.4.5). 
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A rescue assay was performed that was modelled on the MTT cell viability assay 

performed in section 3.3.4.5, which showed (G4C2)102 expression reduced NSC34 cell 

viability after 7 days of tetracycline induction. NSC34 sham GFP, NSC34 sham Pten 

shRNA, NSC34 (G4C2)102 GFP and NSC34 (G4C2)102 Pten shRNA cells were cultured for 

7 days with or without tetracycline, and then cell viability was assessed using an MTT 

assay. Neither NSC34 sham GFP control cell nor NSC34 sham Pten shRNA cell viability 

was affected by tetracycline induction (Figure 6.7). As expected, NSC34 (G4C2)102 GFP 

cell viability was reduced by 16.9 ± 11.3% (P<0.01) when cells were induced with 

tetracycline compared to NSC34 (G4C2)102 GFP cell untreated with tetracycline (Figure 

6.7). However, there was no significant reduction in NSC34 (G4C2)102 Pten shRNA cell 

viability when cells were induced with tetracycline compared to NSC34 (G4C2)102 Pten 

shRNA cells untreated with tetracycline (Figure 6.7), indicating Pten knock-down 

provides a rescue effect against the (G4C2)102 induced toxicity. 

 

Figure 6.7 Pten knock-down rescues (G4C2)102 induced toxicity in NSC34 cells. NSC34 
sham GFP, sham Pten shRNA, (G4C2)102 GFP and (G4C2)102 cells Pten shRNA cells were 
cultured for 7 days with or without 0.5μg/mL tetracycline. Cell viability was measured 
using an MTT assay (**P<0.01; Two-way ANOVA with Sidak’s multiple comparisons post 
hoc test; Data are means ± SD; n=4). 
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In a similar set of experiments, NSC34 sham control shRNA, NSC34 (G4C2)102 control 

shRNA and NSC34 (G4C2)102 Pten shRNA cells were cultured for 7 days with or without 

tetracycline, and then cell viability was assessed using an MTT assay. NSC34 sham GFP 

control cell viability was not affected by tetracycline induction (Figure 6.8). NSC34 

(G4C2)102 control shRNA cell viability was reduced by 15.0 ± 5.0% (P<0.01) when cells 

were induced with tetracycline compared to NSC34 (G4C2)102 control shRNA cells 

untreated with tetracycline (Figure 6.8). In a repeat of the above experiments, there was 

no significant reduction in NSC34 (G4C2)102 Pten shRNA cell viability when cells were 

induced with tetracycline compared to NSC34 (G4C2)102 Pten shRNA cells untreated 

with tetracycline (Figure 6.8), further demonstrating Pten knock-down provides a rescue 

effect against the (G4C2)102 induced toxicity. 

 

Figure 6.8 Pten knock-down stops (G4C2)102 induced toxicity in NSC34 cells. NSC34 
sham GFP, sham Pten shRNA, (G4C2)102 GFP and (G4C2)102 cells Pten shRNA cells were 
cultured for 7 days with or without 0.5μg/mL tetracycline. Cell viability was measured 
using an MTT assay (**P<0.01; Two-way ANOVA with Sidak’s multiple comparisons post 
hoc test; Data are means ± SD; n=4). 
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6.3.2.4. Akt Signalling Analysis in NSC34 Pten ShRNA Cells 

Pten knock-down was hypothesised to increase Akt signalling in the NSC34 cells. NSC34 

sham control shRNA, NSC34 (G4C2)102 control shRNA, and NSC34 (G4C2)102 Pten 

shRNA cells were cultured for 5 days with or without tetracycline, and then 

immunoblotted for total Akt and p-Akt(Ser473). There was no significant difference in 

total Akt levels between tetracycline induced NSC34 sham control shRNA, NSC34 

(G4C2)102 control shRNA or NSC34 (G4C2)102 Pten shRNA compared to their respective 

control cells untreated with tetracycline (Figure 6.9). In addition, there was no significant 

difference in total Akt levels between either the NSC34 (G4C2)102 control shRNA cells 

or the NSC34(G4C2)102 Pten shRNA cells compared to the NSC34 sham control shRNA 

cells (Figure 6.9). Lastly, there was no significant difference in total Akt levels between 

the NSC34 (G4C2)102 control shRNA cells and the NSC34(G4C2)102 Pten shRNA cells 

(Figure 6.9).  

There was no significant difference in p-Akt(Ser473) levels (normalised to both β-actin 

and total Akt) between tetracycline induced NSC34 sham control shRNA, NSC34 

(G4C2)102 control shRNA or NSC34 (G4C2)102 Pten shRNA compared to their respective 

control cells untreated with tetracycline (Figure 6.9). However, there was significantly 

more p-Akt(Ser473) (normalised to both β-actin and total Akt) in NSC34 (G4C2)102 

control shRNA cells compared to NSC34 sham control shRNA cells (P<0.001) (Figure 6.9). 

Also, there was significantly more p-Akt(Ser473) (normalised to both β-actin and total 

Akt) in NSC34 (G4C2)102 Pten shRNA cells compared to NSC34 sham control shRNA cells 

(P<0.001) (Figure 6.9). There was no significant difference in p-Akt(Ser473) (normalised 

to both β-actin and total Akt) in NSC34 (G4C2)102 Pten shRNA cells compared to NSC34 

(G4C2)102 control shRNA cells however (Figure 6.9). 
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Figure 6.9 p-Akt levels are increased in NSC34 (G4C2)102 cells stably transduced with 
Lentivirus compared to NSC34 sham cells stably transduced with Lentivirus. A) NSC34 
sham control shRNA, (G4C2)102 control shRNA and (G4C2)102 Pten shRNA cells were 
cultured for 5 days with or without 0.5μg/mL tetracycline. Cells were lysed and 
immunoblotted with anti-Akt, anti-p-Akt(Ser473) and anti-β-actin. A representative 
immunoblot is shown. Molecular weight markers are indicated (kDa). B) Quantification 
of Akt normalised to β-actin, and p-Akt(Ser473) normalised to β-actin or Akt 
(***P<0.001; Two-way ANOVA with Tukey’s multiple comparisons post hoc test; Data 
are means ± SD; n=3). 
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From these results, the following can be concluded: 1) total Akt levels are unaffected by 

Pten knock-down; 2) total Akt levels are unaffected by tetracycline induction and/or 

increased (G4C2)102 expression; 3) p-Akt(Ser473) levels are increased in NSC34 cells 

that contain both the genomic (G4C2)102 repeat and a stably integrated lentiviral 

vector; 4) (G4C2)102 expression does not affect p-Akt(Ser473) levels in the lentiviral 

transduced NSC34 cells; 5) Pten knock-down does not measurably alter p-Akt(Ser473) 

levels at the 5 day timepoint. 

6.3.3. Pten Inhibition Using BpV(phen) 

6.3.3.1. BpV(phen) Viability Dose-Response in NSC34 Sham Cells 

To validate the Pten knock-down rescue effect in the shRNA lentiviral transduced NSC34 

(G4C2)102 cells, Pten inhibitors were used to pharmacologically inhibit Pten activity. The 

hypothesis was to treat NSC34 (G4C2)102 cells with the potent Pten inhibitor BpV(phen) 

(Schmid et al., 2004), to see whether Pten inhibition, and Akt signalling activation, would 

rescue the (G4C2)102 induced toxicity. Firstly however, a dose-response of BpV(phen) 

concentration and NSC34 sham cell viability was performed to identify a sub-lethal dose 

of BpV(phen) to use in these rescue assays. NSC34 sham cells were cultured for 6 days 

with various concentrations of BpV(phen), and then an MTT assay was performed to 

assess cell viability. ≤1μM BpV(phen) did not affect NSC34 sham cell viability, whilst 

≥3μM BpV(phen) completely devastated NSC34 sham cells (Figure 6.10). This was 

unsurprising since the cells appeared dead upon visual observation. 1μM BpV(phen) was 

taken forward as the highest sub-lethal dose. 
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Figure 6.10 Dose-response of NSC34 sham cell viability against BpV(phen). NSC34 sham 
cells were cultured for 6 days with various concentrations of BpV(phen). Cell viability 
was measured using an MTT assay (data shown are mean and SD; n=1). 

6.3.3.2. 1 μM BpV(phen) Effect on Pten and Akt Activity in NSC34 Sham Cells 

1µM was the highest sublethal dose of BpV(phen) tested in the NSC34 sham cells, and 

this concentration was taken forward to establish whether BpV(phen) could inhibit Pten 

and activate Akt in the NSC34 sham cells. To do this, NSC34 sham cells were treated with 

1μM BpV(phen) for various lengths of time, and then immunoblotted for total Akt, p-

Akt(Ser473), total Pten and p-Pten(Ser380). There was no significant difference in p-

Pten(Ser380) levels (normalised to either β-actin or total Pten) between the untreated 

NSC34 sham cells and the NSC34 sham cells treated with BpV(phen) for 12, 24 or 48 

hours (Figure 6.11). There was no significant difference in p-Akt(Ser473) levels 

(normalised to either β-actin or total Akt) between the untreated NSC34 sham cells and 

the NSC34 sham cells treated with BpV(phen) for 12, 24 or 48 hours (Figure 6.12). 
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Figure 6.11 Time-response of Pten inhibition by 1μM BpV(phen) in NSC34 sham cells. 
A) NSC34 sham cells were cultured for various lengths of time with 1μM BpV(phen). Cells 
were lysed and immunoblotted with anti-Akt, anti-p-Akt(Ser473) and anti-β-actin. A 
representative immunoblot is shown. Molecular weight markers are indicated (kDa). B) 
Quantification of Pten normalised to β-actin, and p-Pten(Ser380) normalised to β-actin 
or Pten (One-way ANOVA with Sidak’s multiple comparisons post hoc test; Data shown 
are mean and SD; n=3).   
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Figure 6.12 Time-response of Akt activation by 1μM BpV(phen) in NSC34 sham 
cells.NSC34 sham cells were cultured for various lengths of time with 1μM BpV(phen). 
Cells were lysed and immunoblotted with anti-Akt, anti-p-Akt(Ser473) and anti-β-actin. 
A representative immunoblot is shown. Molecular weight markers are indicated (kDa). 
B) Quantification of Akt normalised to β-actin, and p-Akt(Ser473) normalised to β-actin 
or Akt (One-way ANOVA with Sidak’s multiple comparisons post hoc test; Data shown 
are means and SD; n=3). 
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6.3.3.3. Higher Dose (Short Time) Effect on Pten and Akt Activities in NSC34 Sham Cells 

≥1μM doses of BpV(phen) were tested for Akt activation and Pten inhibition in the 

NSC34 sham cells, because 1μM BpV(phen) did not elicit an increase in p-Akt(Ser473) 

levels or p-Pten(Ser380) levels. NSC34 cells were cultured with various concentrations 

of BpV(phen) for 2 days, and then immunoblotted for total Akt, p-Akt(Ser473), total Pten 

and p-Pten(Ser380). The higher the BpV(phen) dose, the lower the p-Pten(Ser380) levels 

(normalised to either β-actin or total Pten) were in the NSC34 sham cells (Figure 6.13). 

However, p-Akt(Ser473) levels (normalised to either β-actin or total Akt) were far 

greater in the NSC34 sham cells treated with 3μM BpV(phen) compared to cells treated 

with ≤1µM BpV(phen) (Figure 6.14). This suggested that 3µM BpV(phen) did activate the 

Akt signalling pathway, and was therefore re-tested for toxicity in the NSC34 sham cells 

at shorter dose lengths. To note however, this experiment was only performed once. 
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Figure 6.13 3μM BpV(phen) decreases p-Pten levels in NSC34 sham cells. A) NSC34 
sham cells were cultured with various concentrations of BpV(phen).  Cells were lysed 
and immunoblotted with anti-Pten, anti-p-Pten(Ser380) and anti-β-actin. Molecular 
weight markers are indicated (kDa). B) Quantification of Pten normalised to β-actin, and 
p-Pten(Ser380) normalised to β-actin or Pten (Data are means; n=1). 
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Figure 6.14 3μM BpV(phen) increases p-Akt levels in NSC34 sham cells. A) NSC34 sham 
cells were cultured with various concentrations of BpV(phen).  Cells were lysed and 
immunoblotted with anti-Akt, anti-p-Akt(Ser473) and anti-β-actin. Molecular weight 
markers are indicated (kDa). B) Quantification of Akt normalised to β-actin, and p-
Akt(Ser473) normalised to β-actin or Akt. n=1.  

6.3.3.4. Time-Response of NSC34 Sham Cell Viability Against 3µM BpV(phen) 

NSC34 sham cells were cultured for one week, and 3µM BpV(phen) was added to the 

media for various lengths of time. An MTT assay was then performed to assess the 

NSC34 sham cell viability. The NSC34 sham cell viability was not affected after 6 hours 
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of 3 µM BpV(Phen) treatment (Figure 6.15). However, NSC34 sham cell viability was 

reduced by 18, 73 and 87% after 24, 48 and 144 hours of 3µM BpV(Phen) treatment 

respectively (Figure 6.15). Therefore, NSC34 (G4C2)102 cells would be dosed with 3µM 

BpV(phen) for 6 hours on day 2 and 5 of a 7 day cell viability rescue assay. 

 

Figure 6.15 Time-response of NSC34 sham cell viability against 3µM BpV(phen). NSC34 
sham cells were cultured for various lengths of time with 3 μM BpV(phen). Cell viability 
was measured using an MTT assay. n=1. 

6.3.3.5. BpV(phen) Rescue Assay in NSC34 Sham and NSC34 (G4C2)102 cells 

The hypothesis was that Pten inhibition, and Akt signalling activation, would rescue the 

NSC34 (G4C2)102 cells from the (G4C2)102 induced toxicity (which had previously been 

described in section 3.3.4.5). A rescue assay was performed that was modelled on the 

MTT cell viability assay performed in section 3.3.4.5, which showed (G4C2)102 

expression reduced NSC34 cell viability after 7 days of tetracycline induction. NSC34 

sham and NSC34 (G4C2)102 cells were cultured for 7 days with or without tetracycline, 

and cells were additionally dosed with either 3µM BpV(phen) or a vehicle control for 6 

hours on days 2 and 5. NSC34 cells were given 24 hours to adhere to the plates prior to 

BpV(phen) treatment for two reasons. Firstly, because the cells could be more 

susceptible to any BpV(phen) induced toxicity when not adhered to the plate. Secondly, 

because the media was removed and replaced after 6 hours of BpV(phen) (or vehicle 
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control) dosing, an initial 24 hours was necessary to ensure all NSC34 had a chance to 

adhere before any media was removed. 

NSC34 sham cell viability was not affected by tetracycline induction in cells that were 

dosed with the vehicle control (Figure 6.16). Neither was NSC34 sham cell viability 

affected by tetracycline induction in cells that were dosed with BpV(phen) (Figure 6.16). 

However, NSC34 sham cell viability was reduced by 20.7 ± 4.9% (P<0.0001) in cells 

treated with BpV(phen) but not tetracycline, compared to the vehicle control cells also 

untreated with tetracycline (Figure 6.16). In addition, NSC34 sham cell viability was 

reduced by 28.3 ± 2.8% (P<0.0001) in cells treated with BpV(phen) and tetracycline, 

compared to the vehicle control cells also treated with tetracycline (Figure 6.16).  

 

Figure 6.16 BpV(phen) rescue assay of (G4C2)102 toxicity in NSC34 cells. NSC34 sham 
and (G4C2)102 cells were cultured for 7 days with or without 0.5μg/mL tetracycline. 
NSC34 cells were dosed with 3μM BpV(phen), or a vehicle control, for 6 h twice (on day 
2 and day 5). Cell viability was measured using an MTT assay (****P<0.0001; Two-way 
ANOVA with Sidak’s multiple comparisons post hoc test; Data are means ± SD; n=3). 

NSC34 (G4C2)102 cell viability was reduced by 25.3 ± 4.1% (P<0.0001) in tetracycline 

induced cells compared to NSC34 (G4C2)102 cells untreated with tetracycline, where 
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both cells were additionally dosed with the vehicle control (Figure 6.16). NSC34 

(G4C2)102 cell viability was also reduced by 25.4 ± 1.4% (P<0.0001) in tetracycline 

induced cells compared to NSC34 (G4C2)102 cells untreated with tetracycline, where 

both cells were additionally dosed with BpV(phen) (Figure 6.16). Similarly to the NSC34 

sham cells, NSC34 (G4C2)102 cell viability was reduced by 29.0 ± 2.0% (P<0.0001) in cells 

treated with BpV(phen) but not tetracycline, compared to the vehicle control cells also 

untreated with tetracycline (Figure 6.16). Finally, NSC34 (G4C2)102 cell viability was 

reduced by 29.1 ± 1.3% (P<0.0001) in cells treated with BpV(phen) and tetracycline, 

compared to the vehicle control cells also treated with tetracycline (Figure 6.16). 

6.4. Discussion 

6.4.1. There are no Significant Differences in Pten or Akt Protein levels in NSC34 

(G4C2)102 Cells 

There was no significant difference in total Akt protein levels in the NSC34 (G4C2)102 

cells, suggesting that the (G4C2)102 expression does not affect total Akt expression. This 

protein result supports the Akt1 qRT-PCR result in section 5.3.3.4.1, which showed that 

there was no significant difference in Akt1 mRNA levels in the NSC34 (G4C2)102 cells. 

Neither of these results validate the GEP, which showed Akt1 and Akt2 mRNA levels 

were decreased by 22 and 21% respectively. Importantly however, there are three 

different Akt genes (Akt1, Akt2, and Akt3) that each express highly similar isoforms of 

Akt protein. AKT1 is ubiquitously expressed (Hers et al., 2011), AKT2 is highly expressed 

in muscles and adipose tissue (Cho et al., 2001), whilst AKT3 expression is restricted to 

the testes and brain (Yang et al., 2003). The polyclonal anti-AKT antibody used in this 

study recognises Akt protein expressed from all three Akt genes, due to the high 

similarity in the three Akt isoforms. Also, given that NSC34 cells are derived from 

embryonic spinal cord cells and neuroblastoma cells, Akt3 expression is likely to 

contribute substantially to total Akt protein levels in the NSC34 cell line. Slight 

reductions in Akt1 and Akt2 expression may be masked by the potentially unaffected 

Akt3 expression levels, and therefore have an insignificant effect on overall Akt protein 

levels, explaining why total Akt protein is the same in the NSC34 (G4C2)102 cells 
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compared to NSC34 sham cells. Akt1, Akt2, and Akt3 specific monoclonal antibodies 

could be used to determine the actual levels of each of the Akt isoforms in the NSC34 

(G4C2)102 cells. 

In addition, there was no significant difference in total Pten protein levels in NSC34 

(G4C2)102 cells within the timeframe studied. This again supports the qRT-PCR result in 

section 5.3.3.4.1, which showed that there was no significant difference in Pten mRNA 

levels in the NSC34 (G4C2)102 cells. As with total Akt, the Pten immunoblotting and qRT-

PCR results do not validate the GEP. However, whilst neither the qRT-PCR nor the 

immunoblots showed statistically significant alterations, the Pten protein and mRNA 

levels were both slightly elevated in the NSC34 (G4C2)102 cells compared to NSC34 

sham cells, regardless of tetracycline induction time. This does suggest that Pten 

expression may be slightly elevated in the NSC34 (G4C2)102 cell line, but the increase in 

Pten is so small the qRT-PCR and immunoblot quantification failed to detect any 

significance. 

The differences in sensitivity between the microarray technology and the qRT-PCR and 

immunoblot methods used to validate the results may account for the apparent lack of 

validation. The GeneChip® MTA 1.0 arrays use a median of 30 probes per gene which 

target regions throughout the mRNA, whilst the qRT-PCR uses only one probe (primer 

pair). Therefore, mRNA levels are quantified by measuring several or only one small 

defined region of the mRNA using the microarray and qRT-PCR respectively. This means 

differences in mRNA splice isoforms could cause differences in the measured mRNA 

levels using the different techniques. To minimise any differences, primers were 

selected for qRT-PCR that recognised all splice variants, however, differences in splice 

variant levels may still affect the microarray measurements. Also, the microarray and 

qRT-PCR experiments were performed using different experimental samples, which may 

have contributed to the differences between the microarray and qRT-PCR results. Lastly, 

for the protein levels, DE at mRNA level does not always result in DE at protein level due 

to post-transcriptional regulation of gene expression. However, despite the lack of 

validation using qRT-PCR and immunoblotting, the main strength of the GEP results 
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come from the fact that the PI3K/Akt pathway shows dysregulation not only in the 

NSC34 (G4C2)102 but also in the C9ORF72-ALS LCM motor neurons. 

6.4.2. PI3K/Akt Signalling is not Altered at the Biochemical Level in NSC34 (G4C2)102 

cells 

Whilst the total Akt protein levels were unaffected by (G4C2)102 expression, they do 

not provide a good read out for PI3K/Akt signalling in the cells. Phosphorylation of AKT 

at Serine 473 is required for AKT activation, and therefore, the p-AKT(Ser473) to total 

AKT ratio is a better, and widely used, measure of AKT signalling. The p-Akt(Ser473)/total 

Akt levels were slightly elevated in the NSC34 (G4C2)102 cells compared to the NSC34 

sham cells (with or without tetracycline treatment), although the increases were not 

significant. Therefore, in the experimental conditions used, our data provided no 

evidence to suggest the PI3K/Akt signalling pathway was affected by (G4C2)102 

expression. The GEP analysis did detect alterations in the PI3K/Akt signalling pathway 

however, and the biochemical data does not disprove that the PI3K/Akt signalling 

pathway is altered, because the pathway is hugely complex and integrates many stimuli. 

Under different experimental conditions, for example in serum starvation or stimulation 

with specific growth factors or cytokines, the (G4C2)102 expression may result in altered 

Akt activation. 

Previous studies looking at p-AKT(Ser473) levels in ALS models have mainly been 

performed in SOD1(G93A) models, and have produced conflicting results. There were 

no changes in p-Akt(Ser473) levels in the spinal cord motor neurons of SOD1(G93A) mice 

compared to controls, p-Akt(Ser473) levels did not change with disease progression and 

they were also consistent in healthy and degenerating motor neurons in the 

SOD1(G93A) mice (Peviani et al., 2007). However, p-Akt(Ser473) levels were elevated in 

astrocytes and microglia in these SOD1(G93A) mice (Peviani et al., 2007). In a different 

study, p-Akt(Ser473) staining was much stronger in the spinal cord motor neurons of 

SOD1(G93A) mice compared to controls, and p-Akt(Ser473) levels were increased in the 

spinal cord of a SOD1(G93A) mice (Ilieva et al., 2003). However, in a motor neuron-like 

in vitro model of SOD1(G93A)-ALS, p-Akt(Ser473) levels were decreased when compared 

to control cells (Koh et al., 2004). Therefore, because of the conflicting results, and the 
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use of models with a different genetic variant of ALS, it is difficult to say how the results 

in the NSC34 (G4C2)102 cells fit with previous studies. In addition, no studies have 

looked at pAKT(Ser473) levels in other C9ORF72-ALS models, such as C9ORF72-ALS iPSC 

derived motor neurons. 

6.4.3. Pten Knock-Down Provides Rescue from (G4C2)102 Induced Toxicity in the NSC34 

(G4C2)102 Cells Independently of Increased Akt Signalling 

The NSC34 sham and NSC34 (G4C2)102 were successfully transduced with Pten shRNA 

and control lentiviral vectors. Importantly, NSC34 cells were first transduced with GFP 

control lentivirus to visually confirm using a fluorescence microscope that the cells had 

been stably transduced, and also used as a control for lentiviral transduction. Later, 

when rescue was observed, NSC34 cells were then transduced with a control shRNA 

lentivirus that served as a control for the Pten shRNA expression off target effects. 

NSC34 (G4C2)102 cells that were transduced with the Pten shRNA had significant Pten 

knock-down over several passages, indicating stable transduction. Unexpectedly 

however, the NSC34 sham cells that were transduced with Pten shRNA only had 

significant Pten knock-down for a few passages, after which the Pten levels returned to 

the same as control cells. This suggests there was potentially an outgrowth of clones 

that contained the lentivirus intergrated at a silent genomic locus (ie weak expression 

of the Pten shRNA, and poor knock-down). Additionally, a transient burst of lentiviral 

expression may have accounted for the Pten knock-down in the early passages. For that 

reason, the initial immunoblot and rescue experiments (that used the GFP control lines) 

include the NSC34 sham Pten shRNA line, whilst the later experiments that used the 

control shRNA lines, do not include the NSC34 sham Pten shRNA line. Ideally, clonal 

transformants would have been selected and characterised for Pten knock-down, but 

there was insufficient time for clonal selection and therefore the mixed population of 

transduced cells was taken forward. 

Another unexpected result was that p-Akt(Ser473) levels were elevated in both the 

NSC34 (G4C2)102 Pten and control shRNA cells compared to the NSC34 sham control 

shRNA cells. Firstly, this suggests that Pten knock-down had no effect on Akt signalling. 

Secondly, the lack of elevated Akt signalling in the NSC34 sham control shRNA cells 
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suggests that a double hit from the genomic (G4C2)102 repeat and lentivirus caused the 

increase in Akt signalling. Increased (G4C2)102 expression has no effect on the Akt 

signalling in the NSC34 (G4C2)102 lentiviral transduced cells. Also, the presence of the 

(G4C2)102 repeat alone had no effect on Akt signalling in the NSC34 cells (as described 

in section 6.4.1). However, viral vectors alone can activate the PI3K/AKT signalling 

pathway (Philpott et al., 2004; Tan et al., 2005; Tan et al., 2006), and stable transduction 

of the lentivirus into the NSC34 cells may be the cause of the increased Akt signalling. 

Alternatively to the double hit hypothesis, the NSC34 sham cells may have only been 

transiently transduced, or kicked out the control shRNA lentiviral vector (as was 

suspected with the Pten shRNA in the NSC34 sham cells described above), explaining 

the lack of elevated p-Akt(Ser473) levels. 

The hypothesis was that Pten knock-down in the NSC34 cells would increase Akt 

signalling, providing a protective effect to the NSC34 (G4C2)102 cells. However, the Pten 

knock-down did not elevate p-Akt(Ser473) levels. This is contrary to previous work using 

Pten siRNA in both cultured motor neurons and mice. Pten siRNA delivered by lentivirus 

into cultured murine motor neurons caused Pten knock-down and increased p-

Akt(Ser473) levels compared to cells transduced with control siRNA lentivirus (Kirby et 

al., 2011; Ning et al., 2010). In addition, Pten siRNA delivered by adeno associated virus 

9 (AAV9) into mice also knocked down Pten and increased p-Akt(Ser473) levels in the 

skeletal muscle compared to mice transduced with control siRNA lentivirus (Little et al., 

2015). In all three studies, the level of Pten knock-down was similar to that in the NSC34 

(G4C2)102 Pten shRNA cells.  

Whilst the Pten knock-down did not activate Akt signalling to a measurable level, it did 

provide a protective effect against the (G4C2)102 induced toxicity in the NSC34 

(G4C2)102 cells. This rescue effect was detected in two separate sets of experiments, 

whilst both the NSC34 (G4C2)102 GFP and NSC34 (G4C2)102 control shRNA cell lines 

both displayed reduced viability after 7 days of increased (G4C2)102 expression. This 

suggests that the rescue effect derived from Pten knock-down in the NSC34 (G4C2)102 

cells was independent of PI[3,4,5]P3 metabolism and PI3K/Akt signalling modulation. 

Pten is suggested to have functions independent of PI[3,4,5]P3 metabolism, including 
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DNA repair and sensitivity to genotoxic stress, cell migration, and protein phosphatase 

activity (Bassi et al., 2013; Leslie et al., 2007; Shi et al., 2014; Song et al., 2011). Pten 

knock-down has previously been shown to provide neuroprotective effects in both ALS 

and SMA models, although these effects were attributed to increased PI3K/AKT 

signalling (Kirby et al., 2011; Little et al., 2015; Ning et al., 2010). However, loss of 

PI3K/AKT independent Pten functions cannot be ruled out as providing some 

neuroprotective effects in these studies. 

6.4.4. BpV(phen) was not Suitable as a Pten Inhibitor in the NSC34 Cells 

BpV(phen) was tested for toxicity and Pten inhibition in the NSC34 sham cells to 

establish whether it could be used as a Pten inhibitor in rescue assays. The aim was to 

perform a rescue assay using BpV(phen) on NSC34 (G4C2)102 cells that were induced 

with tetracycline for 7 days. This is because previous experiments had shown (G4C2)102 

induced toxicity was detectable after 7 days tetracycline induction (section 3.3.4.5). 

Therefore, the toxicity of various BpV(phen) concentrations at 6 days treatment was 

tested in NSC34 sham cells. 1µM was the highest sub-lethal dose of BpV(phen) in the 

NSC34 sham cells tested in the initial 6 day BpV(phen) dose-response experiment. This 

sub-lethal BpV(phen) concentration is fairly consistent with other in vitro studies. For 

example BpV(phen) caused mild cytotoxicity after 48 hours treatment at ≥2µM in 

BEAS2B cells (Lai et al., 2007), 24 hours treatment at ≥20µM in H9c2 cardiomyoblasts 

(Tian et al., 2012), and 2 hours treatment at ≥100µM in NIH3T cells (Schmid et al., 2004). 

However, Akt signalling was not increased in NSC34 sham cells treated with 1µM 

BpV(phen), suggesting Pten was not inhibited. This is inconsistent with other previous 

in vitro studies that have used ≤1µM BpV(phen) to inhibit Pten and activate AKT 

signalling. In one study, Pten was activated and p-AKT(ser473) levels were elevated in 

BEAS2B cells treated for 30 minutes with as little as 0.1µM BpV(phen) (Lai et al., 2007). 

BpV(phen) is also known to be relatively stable in cell culture conditions, and can be 

incubated in media over night without any reduction in its ability to inhibit Pten (Schmid 

et al., 2004). In addition, increased AKT signalling was maintained over several days in 

BEAS2B cells by BpV(phen) treatment (Lai et al., 2007). Therefore, alterations in Akt 

signalling should have been detectable between 12 and 48 hours BpV(phen) treatment. 
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1µM BpV(phen) was too low a concentration to use as a Pten inhibitor in the NSC34 

cells.  

When the NSC34 sham cells were treated with a higher dose of 3µM BpV(phen) for 48 

hours, there was an increase in p-Akt(Ser473) levels, indicating Pten inhibition. This was 

important because no previous studies had shown that BpV(phen) could inhibit Pten in 

the NSC34 cell line. Rather contradictorily however, 3µM BpV(phen) caused cytotoxicity 

in the NSC34 sham cells after only 24 hours. This actually suggests the elevated p-

Akt(Ser473) levels were in fact due to the NSC34 activating the prosurvival pathway in a 

last ditch attempt to avoid BpV(Phen) induced toxicity. A shorter 6 hour dose of 3µM 

BpV(phen) (which did not cause detectable cytotoxicity) was taken forward for the 

rescue assay, but did not rescue the NSC34 (G4C2)102 cells from (G4C2)102 induced 

toxicity, and actually caused slight cytotoxicity to the NSC34 cells. In conclusion, there 

was no suitable concentration of BpV(phen) that would inhibit Pten, activate Akt 

signalling and was not cytotoxic. 

6.4.5. Summary 

GEP identified transcriptomic dysregulation in the PI3K/AKT signalling pathway in NSC34 

(G4C2)102 cells, and also in C9ORF72-ALS LCM motor neurons. This suggests that 

transcriptomic dysregulation in this pro-survival pathway is an early biochemical event 

in C9ORF72-ALS, and could therefore serve as a potent therapeutic target for protecting 

motor neurons in ALS pathogenesis. However, there was no measurable effect on Akt 

or Pten protein levels in the NSC34 (G4C2)102 cells, nor was the PI3K/Akt signalling 

pathway altered under basal conditions. Although, the reduced sensitivity of 

immunoblotting as a technique compared to the microarray technology used is the likely 

cause for the apparent lack of validation. Importantly, Pten knock-down did provide a 

rescue effect against the (G4C2)102 induced toxicity, independently of the Akt signalling 

pathway, and suggests Pten deserves further study in different models of C9ORF72-ALS 

as a potential therapeutic target. Lastly however, BpV(phen) was not a useful Pten 

inhibitor in the NSC34 cells, because there was no sub-lethal dose that activated the Akt 

signalling pathway.  
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Chapter 7. Conclusions and Future Work 

ALS is an incurable neurodegenerative disease characterised by progressive loss of both 

upper and lower motor neurons. The most common genetic cause of ALS is a (G4C2)n 

repeat expansion in intron 1 of C9ORF72. This project aimed to understand how the 

(G4C2)n repeat expansion could cause motor neuron cell death, and to identify potential 

therapeutic targets for neuroprotection. To do this, motor neuron like cellular models 

were generated using NSC34 cells that expressed different lengths of the (G4C2)n in a 

tetracycline inducible manner. Initially, these NSC34 (G4C2)n cells were characterised 

for C9ORF72-ALS pathology using a range of biochemical techniques. Analysis of gene 

expression was then employed to assess how expression of the (G4C2)n affects the 

transcriptome in a motor neuron like context. Additionally, the transcriptomic analysis 

identified biological pathways that may hold therapeutic potential for C9ORF72-ALS 

patients. In the last part of the project, one of the potential therapeutic targets was 

assessed in the NSC34 (G4C2)n cells to see whether modulation would provide rescue 

effects and could therefore serve as a potential therapeutic target. 

When the project was started, I attempted to use RNA tagging systems with the (G4C2)n 

constructs that would allow detection of (G4C2)n expression, but which would also allow 

the (G4C2)n RNA to be studied in live cells. The MS2 system and tRSA systems were 

employed (Bertrand et al., 1998; Iioka et al., 2011), to facilitate visualisation of the 

(G4C2)n RNA in live cells and direct (G4C2)n RNA pull down from live cells respectively. 

Whilst the MS2 and tRSA tags were each cloned upstream of the (G4C2)n repeat 

constructs, I was unable to optimise either system to detect (G4C2)n RNA expression in 

the live cells. Also, at the time, the locked nucleic acid (LNA) probe and FISH 

methodologies were developed, which allowed detection of the (G4C2)n RNA expressed 

from the repeat, and could be employed to measure (G4C2)n expression in the cellular 

model system. Given that the main aim of the project was to develop a cellular model 

that expressed the (G4C2)n repeat expansion, and to use the model to identify potential 

therapeutic targets, I decided to discontinue the RNA tag work. However, with 

improvements in future technology, these sorts of live cell RNA tagging tools would be 
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incredibly useful for further understanding the molecular biology of the (G4C2)n repeat. 

Particularly, visualisation of the (G4C2)n RNA in live cells could help elucidate how the 

(G4C2)n RNA is exported from the nucleus, how dynamic the (G4C2)n RNA foci and 

(G4C2)n RNA-protein interactions are, and also how and where the (G4C2)n RNA is RAN 

translated to produce DPR proteins. 

At present, it is still not fully understood how the (G4C2)n repeat expansion in C9ORF72 

causes motor neuron cell death in ALS pathogenesis. Therefore, generating stable 

cellular models that expressed the (G4C2)n repeat in a motor neuron cell context was 

designed to better understand this problem. Many early studies that also aimed to 

elucidate the potentially toxic mechanisms associated with the (G4C2)n repeats either 

used transiently transfected cell lines, C9ORF72-ALS patient derived cells or post-

mortem tissue (sections 1.7 and 1.8). However, I wanted to generate a reductionist 

model that would interrogate only the effect of the (G4C2)n expression independent of 

the C9ORF72 gene context. Also, I specifically used the FRT system to generate isogenic 

control and disease model cell lines, because random insertion of the (G4C2)n repeats 

could have had off target effects unrelated to the (G4C2)n expression itself. Additionally, 

overexpression of a gene of interest can provide misleading results, and tetracycline-

inducible expression had the advantage of allowing control of the (G4C2)n expression 

level. Another unique advantage of the tetracycline inducible expression is that the early 

biochemical effects of the (G4C2)n expression could be studied. Stable and isogenic 

NSC34 (G4C2)n cell lines were successfully generated that had tetracycline inducible 

(G4C2)n expression. The (G4C2)n repeat forms characteristic sense RNA foci, but not 

antisense RNA foci, in the NSC34 (G4C2)n cells. In addition, the interrupted (G4C2)102 

repeat underwent RAN translation to produce proteins containing all sense DPR motifs 

((GA)n, (GR)n and (GP)n). Therefore, the NSC34 (G4C2)n cells are sense only (G4C2)n 

gain of function models of C9ORF72-ALS, with tetracycline inducible expression allowing 

identification of early biochemical effects. 

Expression of the (G4C2)102 reduced NSC34 cell growth rate, indicating that the RNA 

and/or RAN proteins were causing mild toxicity or posed a metabolic burden in the cells. 

This is in agreement with other (G4C2)n gain of function models of C9ORF72-ALS that 
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also describe (G4C2)n induced toxicity (section 1.8.2). However, the more subtle toxic 

effects described in the NSC34 (G4C2)102 cells may actually represent a more 

physiologically relevant model compared to the more severe phenotypes described in 

other cellular models. ALS onset generally occurs later in life, and therefore any toxicity 

associated with the (G4C2)n repeat expansion is likely to be well tolerated and fairly low. 

However, the (G4C2)n must provide some toxic burden that aged motor neurons and/or 

other cells in the CNS fail to handle. Although many cellular and animal models suggest 

that the arginine rich DPR species are the main toxic entity associated with the (G4C2)n 

repeat expansion, the NSC34 (G4C2)102 cells do not produce these pure DPR, which may 

also explain the mild toxic phenotype. Further, in house work with Guillaume 

Hautbergue suggests that pure (G4C2)n repeats produce far more RAN translation 

products compared to the interrupted (G4C2)102 repeats used in this project 

(unpublished data). 

In addition, the NSC34 (G4C2)102 cells recapitulated some other aspects of C9ORF72-

ALS pathology. Firstly, the sense RNA foci colocalised with SRSF1, SRSF2, and nucleolar 

NCL, but not with PURA or ALYREF. Secondly, the (G4C2)102 expression caused mild 

disruption to the nucleolar morphology in the NSC34 cells comparable to previously 

published data, although there was no clear evidence of functional nucleolar stress. 

However, (G4C2)102 expression did not cause TDP-43 aggregation or mislocalisation. 

This is in agreement with the majority of other (G4C2)n gain of function cellular and 

animal models of C9ORF72-ALS (section 1.8.2). In fact, TDP-43 pathology has only been 

described in one model – 6 month old mice that over express a (G4C2)66 repeat 

construct in the CNS (O'Rourke et al., 2015). Several other (G4C2)n gain of function 

animal models do not recapitulate TDP-43 pathology (section 1.8.2). In conclusion 

though, the subtle biochemical effects described in the NSC34 (G4C2)102 cells model 

early events that occur before TDP-43 aggregation and mislocalisation, and any 

therapeutic targets identified may prevent downstream events that culminate in TDP-

43 pathology and/or ALS pathogenesis. Additionally, the subtle phenotype described in 

the NSC34 (G4C2)102 cells is arguably more relevant for disease with age-related onset.  
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A pipeline of work was previously used to identify potential therapeutic targets in SOD1-

ALS. Firstly, transcriptomic analysis was performed on NSC34 cell models expressing 

G93A SOD1, and identified transcriptomic dysregulation in genes encoding antioxidant 

response proteins (Kirby et al., 2005). In particular, nuclear erythroid 2-related-factor 2 

(NRF2) was identified as a potential therapeutic target because it promotes expression 

of the cytoprotective Phase II detoxification and antioxidant enzymes (McMahon et al., 

2001; Nguyen et al., 2003). NRF2 was down regulated in the G93A SOD1 NSC34 cell 

models, and also in spinal motor neurons and motor cortex of SALS cases (Kirby et al., 

2005; Sarlette et al., 2008). Secondly, small molecules were screened and S[+] 

Apomorphine was identified as a CNS penetrant NRF2 activator, which is a promising 

therapeutic candidate for ALS patients (Mead et al., 2013). 

Here, we aimed to repeat the pipeline of work described above to identify therapeutic 

targets, and eventually drug candidates, for C9ORF72-ALS. Previous transcriptomic 

studies on C9ORF72-ALS have used either patient derived cell lines or post-mortem CNS 

tissue. These transcriptomic changes may therefore reflect the end stage of the disease, 

and the crucial early transcriptomic changes associated with (G4C2)n repeat toxicity may 

be lost or more difficult to identify. Also, these studies did not interrogate the (G4C2)n 

expression in a reductionist manner. However, transcriptomic analysis of the NSC34 

(G4C2)102 cells identified dysregulated pathways that may be crucial in the early 

pathogenesis of C9ORF72-ALS. Specifically, transcriptomic dysregulation was identified 

in RNA metabolism, and particularly in RNA splicing. Further, differential splicing analysis 

of the NSC34 (G4C2)102 cells showed that (G4C2)102 expression functionally affected 

the splicing. This corroborates several other transcriptomic studies performed on 

C9ORF72-ALS patient derived cells and post-mortem tissue (Cooper-Knock et al., 2015a; 

Prudencio et al., 2015), and critically suggests that RNA metabolism and splicing 

dysregulation is an early event in C9ORF72-ALS pathogenesis caused by the sense 

(G4C2)n repeat.  

Also using the GEP analysis, significant dysregulation in the PI3K/Akt signalling pathway 

was identified in the NSC34 (G4C2)102 cells. Again, this was validated in LCM motor 

neurons from C9ORF72-ALS patients, suggesting this is an early transcriptomic change 
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in C9ORF72-ALS. Given that the PI3K/AKT signalling pathway regulates cellular survivial 

(amongst other functions) it could represent a particularly potent therapeutic target in 

prolonguing motor neuron survival in C9ORF72-ALS. This also demonstrates that the 

NSC34 (G4C2)102 cells can successfully be used to identify disease relevant early 

transcriptomic changes in C9ORF72-ALS. Additionally, previous work had also identified 

the PI3K/Akt signalling pathway, and Pten in particular, as potential therapeutic targets 

in ALS, which therefore encouraged further interrogation. 

Although the microarray analysis identified transcriptomic dysregulation in the NSC34 

(G4C2)102 cells, and this was also found in C9ORFF72-ALS LCM motor neurons, qRT-PCR 

and immunoblot validation did not find any significant differences in Pten or Akt levels 

in the NSC34 (G4C2)102 cells. This is likely due to reduced sensitivity in validation 

methods compared to the microarray technology. Additionally, there was no 

measurable change in Akt signalling at basal levels in the NSC34 (G4C2)102 cells. 

However, Pten knock-down did provide a rescue effect against the (G4C2)102 induced 

toxicity described in the NSC34 (G4C2)102 cells. Further, the Pten knock-down did not 

affect Akt signalling, and suggests that the rescue effect associated with the Pten knock-

down could be independent of the PI3K/Akt signalling pathway. In conclusion though, 

the transcriptomic validation in C9ORF72-ALS patient motor neurons, and the Pten 

knock-down rescue effect suggest Pten deserves further study in different models of 

C9ORF72-ALS. 

7.1. Future Work 

The relative contributions of C9ORF72 haploinsufficiency, RNA toxicity and DPR toxicity 

in ALS pathogenesis still remain far from clear, and therefore future work should be 

invested in this direction. In terms of C9ORF72 haploinsufficiency, there are two key 

problems: there are no reliable antibodies available for C9ORF72 detection, and also the 

function of C9ORF72 is still unknown. Therefore investment in developing reliable 

C9ORF72 antibodies will allow research into the function of C9ORF72, and also identify 

whether C9ORF72 protein levels are affected by the presence of the (G4C2)n repeat 

expansion. 
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Additionally, it is also unclear which cell types are affected directly and indirectly by the 

(G4C2)n repeat expansion. Elegant studies using the Cre-LoxP system in SOD1 mouse 

models of ALS, show that deleting the mutant SOD1 in astrocytes and microglia slows 

disease progression, whilst deleting mutant SOD1 in the motor neurons delays disease 

onset (Boillée et al., 2006b; Wang et al., 2011; Yamanaka et al., 2008a; Yamanaka et al., 

2008b). Additionally, co-culture models show that FALS and SALS patient derived 

astrocytes (including C9ORF72-ALS patient derived astrocytes) and microglial cells 

confer in vitro toxicity when cultured with Hb9-GFP murine motor neurons (Di Giorgio 

et al., 2008; Haidet-Phillips et al., 2011; Meyer et al., 2014; Nagai et al., 2007). Therefore, 

further investigation into which cell types contribute to motor neuron death in vivo in 

C9ORF72-ALS is crucial for identifying effective therapeutics. 

The first line of future work I would consider is to interrogate PTEN as a therapeutic 

target in different models of both C9ORF72-ALS, but also other genetic forms of FALS 

and SALS. Firstly, in vitro co-culture models (described above) would be used, and if 

PTEN modulation provided rescue effects, secondary in vivo mouse models would be 

used. The Hb9-GFP murine motor neurons would be treated with Pten shRNA, and then 

co-cultured with C9ORF72-ALS derived astrocytes or microglial cells to see whether Pten 

knock-down rescues the motor neurons from glial toxicity. Additionally, other 

pharmacological PTEN inhibitors such as BpV(Phen) would be trialled for efficacy in 

these motor neuron cells as well. Further, astrocytes and microglial cells would also be 

treated with PTEN shRNA, and co-cultured with PTEN shRNA treated and untreated Hb9-

GFP murine motor neurons. This would identify whether PTEN knock-down in ALS 

patient derived glial cells would exacerbate their toxicity toward motor neurons, in 

which case, a motor neuron specific PTEN knock-down would be required for in vivo 

models as opposed to a pan-CNS PTEN shRNA delivery. Experiments using other genetic 

forms of FALS, and also SALS derived glial cells would also be performed alongside the 

C9ORF72-ALS work. 

Dependent on the efficacy of the PTEN shRNA and/or PTEN inhibition in the co-culture 

system, this strategy would then be taken forward for in vivo work. Mice provide a 

robust and widely used model organism for studying human disease, and would 
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therefore be used as the in vivo model. Since the aim of the in vivo work would be to 

identify whether PTEN knock-down and/or inhibition can prevent motor neuron 

degeneration, a mouse model with a clear phenotype would be required. At present, 

only one C9ORF72-ALS mouse model exists that recapitulates TDP-43 pathology, and 

behavioural and motor defects similar to the clinical symptoms of C9ORF72-ALS/FTD 

patients (Chew et al., 2015). Therefore, this model would be selected, unless a more 

convincing mouse model was generated. In this model, a (G4C2)66 construct would be 

delivered to the CNS via adeno-associated virus, with the addition of either Pten shRNA 

or scrambled shRNA. The mice would then be assessed for TDP-43 inclusions in the CNS, 

astrogliosis, cortical and cerebellar degeneration, as well as cognitive and motor 

performance (all of which have been described in this mouse model previously (Chew 

et al., 2015)). 

Finally, ALS is a complex multifactorial disease, and there are several known 

dysregulated biological pathways but also many different cell types involved in disease 

onset and progression. Therefore, effective treatment of the disease will likely require 

modulation of more than one target, and also multiple cell types. Also, successful early 

diagnosis of ALS is likely to critical in treating the disease effectively, and therefore the 

development of better biomarkers will be necessary.  
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Appendices 

Appendix 1 Sequence chromatogram of pcDNA5/FRT/TO-(G4C2)10 sequenced using 
CMV-Forward primer. 
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Appendix 2 Sequence chromatogram of pcDNA5/FRT/TO-(G4C2)51 sequenced using 
CMV-Forward primer. 
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Appendix 3 Sequence chromatogram of pcDNA5/FRT/TO-(G4C2)51 sequenced using 
CMV-Forward primer.  
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Appendix 4 Arrays were hybridised, washed and stained in three separate batches on 
different days.  

Batch 1 Batch 2 Batch 3 

0_0_A 0_0_C 0_0_B 
0_5_A 0_1_A 0_1_C 
0_5_B 0_1_B 0_5_C 

10_0_A 10_0_C 10_5_A 
10_0_B 51_0_A 51_0_B 
10_5_B 51_5_B 51_0_C 
10_5_C 51_5_C 102_0_B 
51_5_A 102_0_C 102_1_A 

102_0_A 102_5_B 102_1_C 
102_1_B 102_5_C 102_5_A 
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Appendix 5 Differentially expressed transcripts within the human PI3K/Akt signalling 
pathway (KEGG) measured on the Human Genome microarray platform in the Laser 
Captured Microdissected motor neurons. Transcript ID, Gene symbol, Fold change, and 
P-value are included for a comparison between C9ORF72-ALS patients and control LCM 
MNs. 

Transcript ID Gene Symbol Fold Change P-value 

228006_at PTEN 11.2546 1.35E-05 

201125_s_at ITGB5 5.5843 0.00119 

212777_at SOS1 3.35696 0.01979 

209341_s_at IKBKB 3.16884 0.11631 

202686_s_at AXL 3.10927 0.01269 

201124_at ITGB5 2.86889 0.02358 

213093_at PRKCA 2.80256 0.00332 

226731_at ITGA1 2.73413 0.0494 

203685_at BCL2 2.70459 0.06485 

202723_s_at FOXO1 2.60666 0.0276 

203809_s_at AKT2 2.55388 0.07866 

210482_x_at MAP2K5 2.43459 0.14357 

1555612_s_at G6PC 2.42838 0.06008 

1552610_a_at JAK1 2.33472 0.18949 

217399_s_at FOXO3 2.2105 0.16448 

202887_s_at DDIT4 2.16861 0.00045 

223196_s_at SESN2 2.10237 0.0907 

208536_s_at BCL2L11 2.0825 0.3364 

203379_at RPS6KA1 2.08204 0.14381 

226068_at SYK 2.03705 0.07781 

202284_s_at CDKN1A 2.01865 0.16422 

225691_at CDK12 2.01056 0.079 

236664_at AKT2 2.00531 0.278 

201834_at PRKAB1 2.00507 0.32642 

202830_s_at SLC37A4 2.00107 0.14823 

212590_at RRAS2 1.87414 0.15224 

232068_s_at TLR4 1.86715 0.20452 

222999_s_at CCNL2 1.82949 0.04503 

201739_at SGK1 1.82899 0.01689 

202340_x_at NR4A1 1.82347 0.34816 

202530_at MAPK14 1.76965 0.42941 

209666_s_at CHUK 1.73936 0.28304 

226441_at MAP3K2 1.71589 0.09514 

204054_at PTEN 1.69351 0.3928 

202431_s_at MYC 1.67664 0.40172 

202847_at PCK2 1.6713 0.37293 

221060_s_at TLR4 1.6664 0.50849 
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236459_at PRKCE 1.62936 0.24505 

224889_at FOXO3 1.62723 0.51267 

209342_s_at IKBKB 1.61255 0.38191 

239201_at CDK15 1.5972 0.22748 

1558143_a_at BCL2L11 1.57667 0.05218 

204297_at PIK3C3 1.57353 0.24559 

202853_s_at RYK 1.55959 0.0062 

210449_x_at MAPK14 1.55875 0.50136 

212589_at RRAS2 1.5542 0.33377 

212628_at PKN2 1.53559 0.24039 

208712_at CCND1 1.51291 0.32986 

209364_at BAD 1.49379 0.43723 

206398_s_at CD19 1.48899 0.4906 

202449_s_at RXRA 1.44284 0.36684 

202426_s_at RXRA 1.44084 0.55632 

241453_at PTK2 1.43103 0.41771 

207540_s_at SYK 1.42509 0.46612 

201234_at ILK 1.42441 0.50657 

241387_at PTK2 1.41725 0.44044 

225066_at PPP2R2D 1.4018 0.26905 

241722_x_at MCL1 1.38925 0.55755 

212332_at RBL2 1.35227 0.25134 

208824_x_at CDK16 1.346 0.05766 

208823_s_at CDK16 1.33674 0.33747 

200797_s_at MCL1 1.33354 0.16695 

227073_at MAP3K2 1.31735 0.50772 

225690_at CDK12 1.30615 0.51302 

206854_s_at MAP3K7 1.28559 0.56793 

226310_at RICTOR 1.28358 0.42508 

211333_s_at FASLG 1.28012 0.61041 

206952_at G6PC 1.27975 0.52706 

206853_s_at MAP3K7 1.26817 0.33893 

208820_at PTK2 1.25554 0.33508 

202161_at PKN1 1.23813 0.67904 

209184_s_at IRS2 1.23611 0.24619 

202210_x_at GSK3A 1.23529 0.59625 

219226_at CDK12 1.2304 0.71416 

211087_x_at MAPK14 1.2267 0.61045 

211561_x_at MAPK14 1.21891 0.60994 

202724_s_at FOXO1 1.21878 0.7646 

212312_at BCL2L1 1.20808 0.70595 

215195_at PRKCA 1.20301 0.71054 

201984_s_at EGFR 1.20112 0.42889 
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225606_at BCL2L11 1.19905 0.70546 

204906_at RPS6KA2 1.19762 0.33186 

229705_at PIK3C3 1.18909 0.0324 

205271_s_at CDK20 1.187 0.8061 

207163_s_at AKT1 1.18606 0.42615 

1569272_at PIK3C3 1.17994 0.67476 

235254_at MAP3K2 1.16993 0.75392 

223195_s_at SESN2 1.15593 0.71007 

214265_at ITGA8 1.13662 0.55785 

204924_at TLR2 1.1327 0.77274 

228177_at CREBBP 1.12985 0.82862 

204131_s_at FOXO3 1.12735 0.51347 

1556655_s_at CDK12 1.12495 0.86831 

231017_at STK11 1.12286 0.60075 

228248_at RICTOR 1.11708 0.75622 

202160_at CREBBP 1.11546 0.39302 

238733_at MDM2 1.10799 0.78926 

226979_at MAP3K2 1.10251 0.57574 

203984_s_at CASP9 1.09459 0.78315 

205386_s_at MDM2 1.09264 0.87372 

208641_s_at RAC1 1.08706 0.75898 

240964_at PTEN 1.08698 0.87875 

226156_at AKT2 1.08531 0.86743 

225471_s_at AKT2 1.08322 0.86043 

203836_s_at MAP3K5 1.07841 0.84902 

237451_x_at CASP9 1.07679 0.71896 

220587_s_at MLST8 1.07642 0.82245 

202685_s_at AXL 1.0668 0.90898 

211372_s_at IL1R2 1.06204 0.88368 

227627_at SGK3 1.04972 0.87686 

225160_x_at MDM2 1.04866 0.80214 

244616_x_at MDM2 1.04365 0.90974 

227426_at SOS1 1.04007 0.87069 

211832_s_at MDM2 1.03989 0.91227 

203837_at MAP3K5 1.03634 0.79284 

217492_s_at PTEN 1.03561 0.9246 

1557970_s_at RPS6KA2 1.03377 0.9432 

212629_s_at PKN2 1.03248 0.93566 

212719_at PHLPP1 1.02015 0.88671 

209185_s_at IRS2 1.00973 0.97333 

226299_at PKN3 1.00887 0.98546 

202670_at MAP2K1 1.00733 0.98816 

229711_s_at MDM2 1.00646 0.96837 
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225694_at CDK12 1.00449 0.99428 

632_at GSK3A 1.004 0.9922 

224891_at FOXO3 1.00182 0.99447 

208640_at RAC1 1.00142 0.996 

207239_s_at CDK16 1.00006 0.99989 

213012_at NEDD4 -1.0189 0.95973 

223049_at GRB2 -1.0198 0.90722 

204756_at MAP2K5 -1.0261 0.93618 

215394_at PIK3C3 -1.0303 0.95529 

224999_at EGFR -1.0322 0.93724 

205798_at IL7R -1.0369 0.93805 

212331_at RBL2 -1.0382 0.89007 

232876_at MAPK14 -1.0426 0.93159 

201983_s_at EGFR -1.043 0.9245 

1555804_a_at MAP3K19 -1.052 0.89459 

205498_at GHR -1.053 0.89839 

200980_s_at PDHA1 -1.0565 0.80341 

226218_at IL7R -1.0576 0.90887 

211808_s_at CREBBP -1.0638 0.89116 

202288_at MTOR -1.0738 0.89435 

200798_x_at MCL1 -1.0766 0.77284 

209112_at CDKN1B -1.0849 0.59406 

214328_s_at HSP90AA1 -1.0922 0.75804 

208743_s_at YWHAB -1.0965 0.85556 

201389_at ITGA5 -1.098 0.85649 

208456_s_at RRAS2 -1.1005 0.91845 

212912_at RPS6KA2 -1.1034 0.70576 

204247_s_at CDK5 -1.1084 0.78323 

217718_s_at YWHAB -1.1126 0.69372 

210655_s_at FOXO3 -1.1146 0.78924 

204369_at PIK3CA -1.117 0.84573 

201452_at RHEB -1.1221 0.7603 

226046_at MAPK8 -1.1322 0.83582 

239300_at PIK3C3 -1.1323 0.36348 

210775_x_at CASP9 -1.134 0.84706 

225363_at PTEN -1.1397 0.55908 

218852_at PPP2R3C -1.1406 0.81561 

44654_at G6PC3 -1.1408 0.50127 

210969_at PKN2 -1.1422 0.69294 

209390_at TSC1 -1.145 0.55561 

210211_s_at HSP90AA1 -1.1507 0.74048 

1567458_s_at RAC1 -1.1544 0.43336 

202647_s_at NRAS -1.1576 0.6594 
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1560074_at PRKCA -1.1632 0.59213 

243492_at THEM4 -1.1728 0.76346 

214172_x_at RYK -1.1758 0.31314 

201437_s_at EIF4E -1.1808 0.43703 

1552611_a_at JAK1 -1.1818 0.4436 

224985_at NRAS -1.182 0.50934 

229664_at MAPK8 -1.1907 0.38632 

215037_s_at BCL2L1 -1.1949 0.60974 

217542_at MDM2 -1.2027 0.61732 

204798_at MYB -1.2095 0.72784 

211814_s_at CCNE2 -1.2099 0.77485 

211550_at EGFR -1.2172 0.62589 

1555864_s_at PDHA1 -1.2181 0.59782 

1552559_a_at CDK15 -1.2221 0.64683 

1553118_at THEM4 -1.2253 0.41306 

226312_at RICTOR -1.2291 0.45219 

211938_at EIF4B -1.2444 0.29075 

211937_at EIF4B -1.2454 0.35644 

204053_x_at PTEN -1.2478 0.56041 

201835_s_at PRKAB1 -1.2561 0.35571 

217557_s_at MDM2 -1.2589 0.63174 

200979_at PDHA1 -1.2615 0.28516 

235980_at PIK3CA -1.2619 0.26671 

221759_at G6PC3 -1.2629 0.51812 

214660_at ITGA1 -1.2897 0.67717 

211536_x_at MAP3K7 -1.3006 0.63566 

212688_at PIK3CB -1.3077 0.21645 

209269_s_at SYK -1.3122 0.67354 

215152_at MYB -1.3244 0.58063 

217717_s_at YWHAB -1.3264 0.37399 

217373_x_at MDM2 -1.3282 0.4774 

210865_at FASLG -1.3454 0.37793 

1861_at BAD -1.3604 0.55135 

201453_x_at RHEB -1.3606 0.33799 

232274_at CCNL2 -1.3634 0.32902 

201648_at JAK1 -1.3726 0.24825 

211027_s_at IKBKB -1.3764 0.51877 

217289_s_at SLC37A4 -1.3774 0.48497 

200796_s_at MCL1 -1.3778 0.59702 

211711_s_at PTEN -1.3861 0.07704 

207005_s_at BCL2 -1.3874 0.48661 

221772_s_at PPP2R2D -1.3948 0.37502 

205403_at IL1R2 -1.3959 0.49143 
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220357_s_at SGK2 -1.4124 0.60431 

204531_s_at BRCA1 -1.424 0.43404 

1552734_at RICTOR -1.4243 0.42119 

216976_s_at RYK -1.426 0.53413 

230573_at SGK2 -1.4367 0.34697 

209953_s_at CDC37 -1.4471 0.28938 

206248_at PRKCE -1.4513 0.26208 

237891_at MDM2 -1.477 0.46615 

221695_s_at MAP3K2 -1.4853 0.60004 

212780_at SOS1 -1.4936 0.02532 

1565483_at EGFR -1.5092 0.42247 

227633_at RHEB -1.5105 0.40547 

242674_at EIF4E -1.5226 0.17335 

231228_at BCL2L1 -1.5388 0.33907 

206665_s_at BCL2L1 -1.5422 0.43553 

213404_s_at RHEB -1.5462 0.14498 

217620_s_at PIK3CB -1.5471 0.33664 

231854_at PIK3CA -1.5474 0.46198 

226101_at PRKCE -1.5479 0.16316 

214621_at GYS2 -1.5577 0.37259 

215075_s_at GRB2 -1.5756 0.1419 

201436_at EIF4E -1.5766 0.13533 

208711_s_at CCND1 -1.5776 0.45561 

211370_s_at MAP2K5 -1.5799 0.48471 

41657_at STK11 -1.5864 0.34306 

225715_at RPTOR -1.5905 0.2525 

222343_at BCL2L11 -1.5914 0.36242 

232086_at PIK3C3 -1.5963 0.38617 

221427_s_at CCNL2 -1.6199 0.04162 

224341_x_at TLR4 -1.6213 0.36125 

220038_at SGK3 -1.6288 0.39196 

211851_x_at BRCA1 -1.6346 0.4612 

1560359_at ITGA1 -1.6459 0.49152 

1553096_s_at BCL2L11 -1.6518 0.05439 

221180_at MAP3K19 -1.689 0.28863 

1553088_a_at BCL2L11 -1.6899 0.10844 

211968_s_at HSP90AA1 -1.6902 0.25214 

239188_at PPP2R3C -1.6926 0.34661 

229253_at THEM4 -1.702 0.07348 

203684_s_at BCL2 -1.7119 0.40501 

242071_x_at ITGA8 -1.7283 0.2544 

206341_at IL2RA -1.7288 0.33477 

211537_x_at MAP3K7 -1.7619 0.39267 
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215735_s_at TSC2 -1.7706 0.11829 

211969_at HSP90AA1 -1.7979 0.28924 

226048_at MAPK8 -1.8355 0.09455 

225697_at CDK12 -1.8525 0.06182 

1565484_x_at EGFR -1.8622 0.36031 

1556654_at CDK12 -1.8706 0.16327 

207821_s_at PTK2 -1.8783 0.33951 

210226_at NR4A1 -1.8816 0.25831 

201020_at YWHAH -1.9019 0.08157 

209239_at NFKB1 -1.996 0.11918 

235011_at MAP3K2 -2.0338 0.26344 

211607_x_at EGFR -2.0762 0.11823 

237718_at EIF4E -2.0795 0.16652 

206923_at PRKCA -2.0808 0.0805 

1552798_a_at TLR4 -2.1097 0.17767 

239092_at ITGA8 -2.1243 0.1596 

240437_at CASP9 -2.1861 0.10184 

1560689_s_at AKT2 -2.2126 0.16275 

210984_x_at EGFR -2.2755 0.19676 

205034_at CCNE2 -2.367 0.0156 

1554826_at CDK15 -2.3986 0.23223 

211453_s_at AKT2 -2.411 0.03222 

201435_s_at EIF4E -2.4361 0.08987 

211269_s_at IL2RA -2.4806 0.17388 

1555780_a_at RHEB -2.5578 0.23684 

211297_s_at CDK7 -2.6093 0.03151 

204132_s_at FOXO3 -2.7727 0.02473 

210671_x_at MAPK8 -2.7942 0.043 

235666_at ITGA8 -3.2363 0.0632 

210477_x_at MAPK8 -3.4604 0.02917 

204292_x_at STK11 -4.5009 0.00704 

 

 

 

 


