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Abstract

Gene expression constitutes a vital life process througlehwmpieces of genetic in-
formation stored in the nucleotide sequence of DNA are foanmsed into functional
molecules, namely proteins and RNA chains. These moleaméshe intricate network
of interactions among them are the driving force behind roelstilar processes, including
gene expression itself. Also, of particular importancéesregulation of gene expression.
By modulating the levels of proteins they produce, cells aggnto synchronise their in-
ternal workings and adapt to various environmental cooilsti Moreover, in this manner
cells manage to coordinate their genetically prescribé@weur when present in popula-
tions, such as a developing embryo or a bacterial colonys thiasis presents a theoretical
study of gene expression within the context of differentamigational levels from the
molecular to the cell population level.

On the single molecule level special emphasis is given omyin@amics of the RNA
polymerase, the enzyme that carries out the transcripfibiNé into RNA. Recent single
molecule experiments have shed light on the dynamical betawf this molecule as it
transcribes DNA. Of particular importance is the directeslvation of transient pauses
in the process of transcription, induced by the he backwarmtocation of the enzyme
along the DNA template, a phenomenon dubbadktracking Motivated by this finding
and the implications transcriptional pausing has for tlgeileion of DNA transcription,
our work aims at providing a quantitative characterisabbbacktracking and the effect
of such pauses on the temporal dynamics of the process. Guitsendicate that the
lifetime of such pauses should obey a wide distribution aarditave dramatic effects on
the temporal statistics of the transcription process.

A particularly interesting function of backtracking isiscriptional error correction.
Indeed, RNAP does not copy the genetic information acclyrateermal fluctuations
introduce errors to the process that must be corrected dityth® proposed mechanism
of transcriptional error correction involves backtragkiof the RNA polymerase and the
subsequent cleavage of the the erroneous RNA segment. Bagbeé picture of DNA
transcription provided by single molecule experiments veppse a putative model of this
editing process. Our work offers a quantitative picturerahscriptional error correction,
predicting the error rate in terms of microscopic rates patars and allowing one to
assess the role of backtracking in transcriptional fidekiyrthermore, our model puts the
specific mechanism of error correction into context by Iingkit to kinetic proofreading
a general principle of biological accuracy.

On a different level, the microscopic dynamics of the DNAwseription ought to have
direct implications regarding fluctuations in the numbdmiRNA species observed within



the cell. These fluctuations have on their turn far-reachimgications regarding cell fate,
behaviour and function. To study the effect transcriptigaaises have on the statistics of
RNA production we propose an integrated model of DNA traipsion. A key element of
our model is that several RNAP molecules can transcribe DiNAeasame time, moving
in tandem on the template. Our results indicate that trgrtsmnal pauses and exclusive
interactions between the RNAP molecules, lead to burst®é Rroduction and therefore
make the process appear more random. Interestingly sutdrpaf mRNA production
has been observed experimentally and hence our model paigossible explanations
of the phenomenon. It also demonstrates how interactiotvgele® molecules can affect
behaviour at cellular level by introducing fluctuationshie forocess of gene expression.

At an even higher level, one should appreciate the fact thiég carely exist in iso-
lation. At this level of description we are interested in hiotva-cellular fluctuations of
molecular species affect the behaviour of populations #$.cén particular, motivated
by the complex social behaviour observed in certain badtepecies, we propose an
silico paradigm of bacterial communication. In a nutshell, thewtrenables cells to
communicate and choose between two antagonistic sociavtmhs. We find that ow-
ing to intra-cellular fluctuations the population can exrmstwo states: for low values
of intra-cellular coupling the population appears mixedd¢ddered), with approximately
one half of the cells adopting each behaviour. As the cogpéinncreased the population
a consensus state starts to appear. We study the transtioedn the two regimes of be-
haviour and find that intra-cellular fluctuations as welllzes $ize of the population affect
the steepness of this transition.
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Chapter 1

Introduction

This thesis presents a theoretical studygehe expressignthe vital cellular process
through which genetic information is transformed into dehiction and structure. The
stochastic nature of the process poses as a unifying themer iwork. Indeed, it has
long been appreciated that within the cellular environnsot¢hasticity and noise ought
to play an important role [122]. In particular, thermal reionstitutes a major player
at the molecular level; driving the motion of bio-molecuses the interactions between
them. At a higher organisational level, these interactgiue rise to cellular processes,
such as the one of gene expression. However, due to the stmcéiad discrete nature of
molecular interactions, cellular processes are endowgtdandertain degree of variability.
For example, genetically identical cells, under the same@@mmental conditions can dis-
play wide variations in growth rates and physiology [86,]1@2d in general all cellular
function and behaviour is subject to probability laws ratihan being deterministic. The
scope of our work is two-fold: (i) to quantitatively undeastl certain microscopic aspects
of gene expression and characterise phenomena obserhedsatgle-molecule level and
(ii) to understand from a bottom-up perspective how dynanaicsingle molecule level
give rise to fluctuations at the cellular level and in turn hbese fluctuations affect cel-
lular behaviour.

Cells constitute the building blocks of life [3]. Their esse lies in DNA, the molecule
that stores thgenetic informationDuring the life-time of a cell, pieces of DNA are con-
stantly transformed into functional molecules, namelyt@res and RNA chains, through
a process known agene expressionThese molecular species participate in the various
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Chapter 1 Introduction

structural entities of the cell, drive the various catalygactions — including those that
are necessary for gene expression — and in general thaiactitens allow for structure
and function to emerge at higher organisational levels.sNgtrisingly, in the last century
most scientific efforts of understanding life had been imteof cataloging and charac-
terising (functionally and structurally) these molecwean approach termeaeduction-
ism More recently, advancements in experimental technigags hllowed for a more
comprehensive molecular picture to emerge. In partictharadvent of single molecule
manipulation techniques [70] has enabled the study of biteoules with unprecedented
spatial and temporal resolution and has provided a dyndichemacterisation of the pro-
cesses underpinning life at the molecular level.

Part of our work considers the single molecule dynamics ef RINA polymerase
(RNAP) — a key player in the process of gene expression. RISAlRei molecule that car-
ries out DNA transcription, copying genetic informatioorint DNA into RNA molecules.
RNA transcripts are subsequently used as templates foeipreynthesis and in many
cases participate actively in other cellular processesin@io its essential role, RNAP
has been the subject of extensive study and scientific endesleading to the discovery
and characterisation of RNAP have rewarded researchenspnastigious Nobel prises.
More recently, RNAP has also been put under the the scrufisyngle-molecule ma-
nipulation techniques [63]. These studies revealed, farmgte, how RNAP molecules
harness thermal fluctuations to drive their motion alongQNA [1]. They also reported
frequent pauses during the process of transcription [47124]. Such transcriptional
pauses had been a well known phenomenon for quite some tisrt@@in implications re-
garding the regulation of the process well appreciatedl[68], However, single molecule
studies provided for the first time a close look at how somée$é pauses are induced. In
particular, they reported that during some pauses the RK&RIbcates backward along
the DNA template, a phenomenon dubliedktracking Motivated by these findings and
the biological implications transcriptional pausing abbhve for DNA transcription, our
work aims at providing a quantitative characterisation atkiracking. Our results indi-
cate that the lifetime of backtracking pauses should obeila distribution and can have
dramatic effects on the temporal statistics of the trapsom process.

Backtracking has also been implicated with transcripti@meor correction [3]. In-
deed, RNAP does not copy the genetic information accuratélgrmal fluctuations driv-
ing the motion of the RNAP along the DNA also introduce eritorghe process. These
errors must be corrected on the fly to allow for functional RiNsd proteins to be pro-
duced [3]. One proposed mechanisms of transcriptionat eowection involves a tran-
sient pause during which the RNAP steps back along the DNAldw &leavage of the
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Chapter 1 Introduction

erroneous RNA segment [3,58]. However key questions stiflain open [30]. How does
the RNAP know where to cleave? What fidelity levels are acdmingd through such a
mechanism? Based on the picture of DNA transcription pedity single-molecule
experiments we propose a putative model of this editinggsec Our model offers a
quantitative picture of transcriptional error correcttbat allows one to assess the role of
backtracking in providing the necessary levels of trapgianal fidelity. Furthermore, our
model puts the specific mechanism of error correction intdexd by linking it tokinetic
proofreading[68, 101], a general principle regarding accuracy in bialabprocesses.

Transcriptional pauses, however, can also have implicgtibat are perhaps better
appreciated at a higher level of organisation. Inside cbits-molecules are constantly
interacting with each other. Itis this inherently completwork of interactions that gives
rise to interesting behaviour not seen in inanimate physigstems. Here, one custom-
arily thinks in terms of modules instead of individual malégs [62]. These modules,
similar to engineering disciplines, correspond to smadugs of interacting components
that give rise to quasi-independent functions such as ggmression, signal transduction
and cell division, to name a few. The study of life this levéboganisation provides a
complementary picture to that of reductionism and hasydtas lately come to be known
asmolecular systems biology5]. At this level, one is particularly interested in théeo
of gene expression noise and how fluctuations in the levetsobécular species affect the
functions and behaviour of the cell [83].

Transcriptional pauses affect the temporal dynamics oktaption and hence ought
to have a direct effect on the fluctuations in the levels of RNAd proteins within cells.
These fluctuations have on their turn far-reaching implbcest regarding cell fate, be-
haviour and functioning [25]. To study the effect transtapal pauses have on the statis-
tics of RNA populations we propose and study an integratedainaf DNA transcription.
A key element of our model is that several RNAP molecules camstribe DNA at the
same time, moving in tandem on the template. Our resultsatelithat due to transcrip-
tional pauses and exclusive interactions between the RNélBaules, RNA production
appears more random, occurring in bursts. Interestingiy,dattern of RNA production
has been experimentally observed [27, 55, 114]. Our modetefore, provides a pos-
sible explanations of the phenomenon. It also demonstradesinteractions between
molecules can affect behaviour at cellular level by intrm@dg fluctuations in the process
of gene expression.

At an even higher level, one should appreciate the fact thiéd carely exist in iso-
lation. Higher organismse(ikaryotesusually consist of a number of cells. These cells
constantly communicate and interact to achieve commorsgdalring development, for
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Chapter 1 Introduction

example, cells are constantly coordinated through chdmigaals and differentiate to
achieve the genetically prescribed anatomy of the orgamidsmicellular organisms are
also capable of communication when present in populationslonies. Communication
enables bacterial cells to coordinate their behaviour vafpect to environmental stim-
uli and renders them with astonishingly complex social b&has [150]. Moreover, it
enables certain species to break the barriers of unicetipnd behave remarkably simi-
larly to multi-cellular organisms, cooperating for the\gual of the whole rather than the
individual [131].

At this level of description we are interested in how sulutat fluctuations in the
levels of molecular species affect the behaviour of popariatof cells. In particular, mo-
tivated by the complex social behaviour observed in cetiasterial species, we propose
anin-silico paradigm of bacterial communication. In a nutshell, thewtrenables cells
to communicate and choose between two antagonistic soeaviours. We find that
owing to sub-cellular fluctuations the population can ekisivo states: for low values
of intra-cellular coupling the population appears mixedd¢ddered), with approximately
one half of the cells adopting each behaviour. As the cogpéinncreased the population
a consensus state starts to appear. We study the transitiwedn the two regimes and
find that sub-cellular fluctuations hinder the ability ofl¢elsynchronise their behaviour.

The thesis is organised as follows. Chapters 2 and 3 preaekgtound material that
is regarded essential for the reading of the thesis. Inqudati, Chapter 2 introduces the
reader to some key concepts of molecular biology, focusmthe processes of gene ex-
pression and DNA transcription. Chapter 3 provides a bnigbduction to the mathemat-
ical and computational tools used throughout the thesisceMpecifically, the theory of
stochastic processes is reviewed, and the reader is imteddo the Master equation and
existing analytical and computational methods used fanisglit. Chapter 4-7 present the
main results of the thesis. In Chapter 4 a stochastic modékafranscription elongation
dynamics is presented and used to study transcriptionaimpguln Chapter 5 we build
upon the model of the elongation dynamics focusing on a dfaséime characterisation of
transcriptional error correction. Next (Chapter 6), argnated model of DNA transcrip-
tion is presented and used to study the effect of transonptipauses on the statistics of
RNA production. Finally, Chapter 7 focuses on the cell papiah level: thein-silico
model of bacterial communication is presented and thetsfffsub-cellular fluctuations
on the population wide dynamics are considered. The finghtelnaf the thesis (Chap-

ter 8) includes a summary of the different results presealeag with some concluding
remarks.
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Chapter 2

Molecular Biology of Gene Expression

Gene expression is a vital life process through which gemefiormation is transformed

into functional and structural molecules. The aim of thisa@ter is to give a brief

overview of the process: introducing the reader to the kepssand the major players
involved, and highlighting its vital role for cell behavioand fate. Special attention is
given to DNA transcription — the first step of gene expressi@nd in particular to new

knowledge regarding this process gained from single mé&eexperiments. The new,
dynamical picture of DNA transcription revealed by suchexkpents facilitates, for the

first time, the development of quantitative and predictivedels of the process. Such
models will be the subject of the following chapters.

2.1 Gene Expression

DNA (deoxyribonucleic acid) is the molecule of life; it cams thegenetic information
that defines every living organism. From the rod-like shap&scherichia colicells

to complex human bodies and from bacterial chemotaxis tcséxeial preferences of
peahens, characteristics or even behaviours have a bapiee®s of information stored
in the DNA, calledgenes Species perpetuate and evolve as this genetic informagtion
replicated and passed down to next generations. Moreouvenglthe lifetime of an
individual this information is constantly accessed antlamistituents are produced from
it, namely RNA (ribonucleic acid) and proteins. Complexenaictions between these
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Figure 2.1: Simplified illustration of the nucleotide and RNtructure.

molecules and DNA give rise to the complex cellular behavioe perceive.

In the remainder of this section we review some well esthbtlisbiological facts re-
garding how genetic information is stored, transformed arahaged. This review is
meant to provide the biological context for the work presdnh the following chapters.

2.1.1 DNA Structure

DNA is a polymer made up of simple units calledicleotides Each of these small
monomers{ 3.4A), consists of three parts (see Fig. 2.1):

1. acore sugar made up of five carbons (pentose)
2. abaseattached to the-carbon of the sugar

3. a phosphate group attached to Shearbon of the sugar

As the term deoxyribonucleic acid suggests, nucleotidas rtieke up DNA carry the
sugar deoxyribose. Additionally, they can be loaded witlr fdifferent basesadenine
(A), cytocine(C) guanine(G) andthymine(T). Physically, genetic information is stored
in the sequence of these four types of nucleotides along t&. Dwo nucleotides are
linked together via bonds that are created between the phtsgroup of the first one
and the3-carbon site of the second. Successive sugars on the DNAharefore, linked
via phosphodiester bonds between tlesind3-carbon sites. Owning to the asymmetric
structure of the nucleotides and the resulting asymmetteir bonding, DNA is en-
dowed with directionality. Customarily, the notatidhand5’ is used to denote the ends
of a DNA chain with regard to which carbon site is free at threnieal nucleotide.

Within cells, DNA usually occurs in a stable, double-strathidorm (dsDNA), which
when relaxed attains the familiar double helical strucfafel]. The two strands run on
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Chapter 2 Molecular Biology of Gene Expression

different directions and are linked to each other throughtigiknown agomplementary

or Watson-Crick base-pairingBases come in two types (i) purines, consisting of A and
G and (ii) pyrimidines, consisting of C and T. Hydrogen bords be formed between
purines and pyrimidines: A binds to T via 2 hydrogen bonds @nldinds to C via 3
hydrogen bonds (see Fig. 2.1). In other words, A is compléamgrio T as G is to C,
and DNA strands with complementary sequences can basesdtamne another forming
dsDNA.

2.1.2 From DNA to RNA

The stability of DNA makes it ideal as a long-term storageick®vor genetic informa-
tion. However, for cells to function, pieces of the genatiormation, customarily called
genes! must beexpressed transformed into protein molecules that carry out spiseidl
functions. DNA transcription refers to the initial step @rge expression, where genetic
information is read from DNA and copied onto RNA.

RNA molecules, similar to DNA, are a polymeric chains madetfour nucleotides.
Nucleotides that comprise RNA are, however, slightly défa form those used in DNA.
The first difference lies in the sugar component, where gli®g used instead of deoxyri-
bose (hence the name ribonucleic acid). Furthermore, RNAentides use a slightly
different set of bases, namely A, C, G, U. Here U stands fob#sezuracil which is the
RNA analog of T (thymine).

An RNA chain that has been transcribed from a gene on the DIXasred to as mes-
senger RNA (mRNA). Messenger RNAs are subsequently usezhgsdtes for proteins
synthesis. At this step, dubb&cnslation the genetic code conveyed by the mRNA is
finally decoded a protein — a sequence of amino aci@teins constitute the functional
and structural elements of cells, participating for examplvarious reactions as catalysts
(including DNA and RNA synthesis) or as building blocks irrigas cellular structures
(e.g, cytoskeleton).

Unlike mRNAs, certain classes of RNA molecules transcritoech the DNA are not
used as templates for protein synthesis (non-coding RNRaijig single stranded, RNA
is a rather flexible molecule, which can fold in a sequence=ddent manner forming
various distinctive structureg g, RNA hairpins) [3]. These structures can in some cases
recognise other molecules and participate in various ytatakactions, hence enabling
RNA molecules to play various functional roles within thdl {E52]. For example, tRNAs
and rRNA are two classes of functional RNA molecules thatigipate in translation

!see Ref. [110] for a detailed discussion on the definitiomefgene.
2Every three nucleotides in the sequence of the mRNA map toramoeacid in the protein sequence.
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and are constantly expressed from the DNA. Finally, it hankagppreciated that various
small RNA molecules can have regulatory functions, diotatvhich of the genes get to
be expressed [78-81].

The crucial role RNA molecules play in cell function placdsMtranscription among
the most vital life processes. The microscopic dynamichefgrocess will be the sub-
ject of Chapter 4 and in Chapter 6 will shall focus on how théyggamics affect RNA
production.

2.1.3 RNA Polymerase

Across all domains of life, transcription is carried out Ipesialised enzymes known as
RNA polymerasedRNAPS). These remarkable enzymes slide along the DNA miadu
RNA. To do so, they possess an impressive repertoire ofifumgt Initially RNAP binds
to DNA and unwinds (melts) the double helix. Subsequerttly,RNAP moves along the
DNA in a stepwise fashion, using the one strand of the DNA asrgptate for the produc-
tion of the RNA chain. At each step the RNAP selects the RNAeguiale that base-pairs
with the corresponding DNA nucleotide, and catalyses tkatan of the phosphodiester
bond linking the nucleotide to the rest of the RNA chain. Adiidnal important feature
of the RNAP is its ability to catalyse the cleavage of the RM&ia (hucleolyticactivity).
As we will see in more detail in Chapter 5 such a function is@ufor the correction of
errors (misincorporated nucleotides) that occur due tontaéfluctuations.

2.1.4 Orchestrating the Code

To keep pace with environmental changes and synchronigaéisial workings the cell
must be able to control the timing and levels of gene expoasdihis vital ability, referred
to asgene regulationconstitutes the very essence of cellular behaviour amd fat

In the 1960s seminal work by Jacob and Monod [93] showed figgptocess of DNA
transcription of specific genes can be turned on and off jpaese to environmental stim-
uli. More recently it has been appreciated that this medmanknown agranscriptional
regulation is just one of the many that cells use to the modulate theesspn of their
genes. In fact within cells, proteins, RNA molecules andegdorm complex networks of
interactions. As we will see in more detail in Chapter 7, suetworks produce non-trivial
genetic behaviour at the cellular level. In this manner,eieample, different cell types
of multicellular organisms can demonstrate different pblpgy and functionality despite
the fact that they all share the same genetic informatiomil&ily, bacteria can switch
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Figure 2.2: Simplified illustration of the transcriptionaty.

between alternate genetic programs enabling them to suarnder a wide spectrum of
environmental conditions.

2.2 Dissecting DNA Transcription

DNA transcription is a rather intricate process. Severgl é&eents are involved some
of which we are only beginning to understand in fine detail9]11To this end single
molecule techniques as well as crystallography proved fmolesrfull tools, enabling the
study of transcription at an unprecedented scale [31, 33,IB3this section we briefly
review knowledge of the process that we have gained from sMpkrimental studies.
Such knowledge facilitates and motivates the developmieptealictive models of tran-
scription, which will be the subject of subsequent chapters

Like every life process, DNA transcription is subject to taes of evolution. With
this in mind, it should be noted that differences exist in délceual process between the
different domains of life [3]. However, the vital role of DN#&anscription for life is
exemplified by the conservation of the core process acréssgdnisms. In this re-
spect, the overview presented below is meant to be as geaemissible, focusing on
our knowledge from bacterial transcription and pointing similarities and differences
with eukaryotic transcription.

On a crude level, the process of DNA transcription can bedmalp into three main
phases: (see Fig. 2.2)

1. initiation,
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2. elongation,
3. termination.

In the initiation phase the RNAP recognises and binds toisp&NA sequences, which
mark the beginning of genes. During the subsequent phasansicription elongation the
enzyme translocates along DNA using #ie— 5’ strand as a template for the polymeri-
sation of the RNA chain. Finally, sites of transcriptior&inination cause disassociation
of the RNAP from the DNA and the release of the transcript. hie temainder of this
section for the sake of completeness we consider all themgest Special emphasis is
given, however, to the elongation phase that is the majgestbf study in our work.

2.2.1 Initiation

The initiation phase involves loading of the RNAP onto theAtgmplate and the sub-
sequent transcription of the first few nucleotides [58]. Toanplish the former, the
RNAP is capable of binding to specific DNA sites, dublpeoimoters® Physically, within
cells, DNA occupies somgD volume most often in a highly condensed form. Hence,
finding the right place to bind is a non-trivial problem. Itshaeen proposed, that the di-
mensionality of the promoter search problem is reduced lyngbanation ofiD and3D
diffusion [145]; the RNAP scans for promoters by binding Wgand sliding along non-
specific DNA and occasionally jumps between distant DNA sagisn Such a mechanism
explains the rapid promoter binding, which can be as fastfes @econds [15].

The initial loading of the RNAP on the DNA is a major step ofrisariptional regu-
lation across all domains of life. Specific proteins, knownranscription factorq TFs),
can assist or hinder the binding of RNAP on the DNA, eitheotigh direct interactions
with the enzyme or indirectly by exposing or hiding DNA promosequences [112]. In
this manner the expression of genes is tuned in responsedoasaues through the action
of one or more TFs. In addition “master” TFs, having undeirtbentrol a large number
of genes, add higher layers of genetic regulation.

Once bound and properly positioned on the DNA, the RNAP udwitne double
helix, uncovering the template strand to be transcribedenThhe RNAP attempts to
initiate the processive elongation of the transcript tigloa process known abortive
initiation [58]. During this stage the initial fragment of the DNA teraf# is repeatedly
transcribed and cleaved, owing to the inability of the RNARefficiently disassociate
from the promoter and proceed further downstream [73]. Mamteial clearance of the

3In eukaryotes promoter binding is mediated by accessongm®|[3]
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RNA polymerase

| ‘ Active site
RNA transcript RNA-DNA hybrid

Figure 2.3: Schematic illustration of transcription elatign complex (TEC), consisting
of the RNA polymerase, a region of melted DNA (transcriptiarbble) and the RNA-
DNA hybrid. Polymerisation of the nascent RNA is catalysgdte active site of the
polymerase.

promoter results in the formation of a stable complex, kneviranscription elongation
complex, and which signals the entrance into the elongatiase [58].

2.2.2 Elongation

During the elongation phase the RNAP slides along the DNAptata polymerising the
transcript at a rate 030 — 100 nucleotides/sec. However, processive RNA synthesis is
often disrupted by specific DNA sequences; lesions or rasuisl present in the DNA,
nucleotide misincorporation events; and proteins thatledg RNAP function. Recently
in-vivoandin-vitro experimental studies have demonstrated the prevalenkesd pauses
during DNA transcription and highlighted their possiblelbgical significance [32, 47,
53,65,95,99,124,136, 149].

Of particular relevance to our work is the dynamical pictaf¢he elongation phase
uncovered by single molecule manipulation experimentgsélstudies provided a more
thorough understanding of how the RNAP motors along the Di#dpcing the RNA
transcript [1, 65]. They also observed frequent pausingleyRNAP and shed light on
some of the mechanisms inducing these pauses [47, 99, 124pwBve briefly review
some key experimental findings.

Transcription Elongation Complex

As the elongation phase is entered the RNAP forms a stablplegralong with the DNA
and the RNA transcript. This complex is known as ttascription elongation complex
(TEC). The TEC covers a region of approximately 25 DNA basesp@p), the central
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Figure 2.4: Schematic illustration of the pre- and postdlacation state of the tran-
scription elongation complex (TEC). The pre-translogastate corresponds to the state
immediately after the polymerisation of a nucleotide. Thetgranslocation state corre-
sponds to the state after the forward translocation of thé @Ed before polymerisation
of the next nucleotide takes place.

part (12 bp) of which is “melted”,* forming thetranscription bubblg76]. Within the
bubble a double stranded helix (approximately- 9 bp long) is formed between the
nascent RNA and the DNA template. This structure is know aRiINA-DNA hybrid
The RNA-DNA hybrid as well as nonspecific interactions beswéhe RNAP, the DNA
and the RNA are the major contributors to the stability ofcbeplex [104]. Upstream of
the RNA-DNA hybrid, the RNA chain exits the complex throuple RNA exit channebf
the polymerase. Free nucleotides (NTP) enter the compteudih thesecondary channel
of the RNAP and are polymerised at tBleend of the transcript by thactive siteof the
RNAP. A schematic illustration of the TEC is given in Fig. 2.3

Single Nucleotide Addition Cycle

The elongation of the RNA transcript is accomplished thiotlge polymeraseand he-
licase capabilities of the RNAP. The former corresponds to theitgtbf the RNAP to
catalyse the addition of nucleotides at #@nd of the RNA chain, while the latter to the
ability of translocating along the DNA template while unding the double helix.

The two activities operate in tandem, so that each polyrakois event is closely fol-
lowed by the forwardranslocationof the TEC by one nucleotide. Experimental evidence
suggests that the two steps are not energetically coupéedno energy exerted during
the polymerisation step is utilised for translocation Rather, the TEC is behaving like a
thermal ratchet with forward translocation driven solejydiffusion. Schematically, the

4The two DNA stands are separated.
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(@) RNAP Tra‘scrlpnonal bubble (b) RNAP Tra‘scrlpnonal bubble
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Figure 2.5: Schematic illustration of class | and classdhsgcriptional pauses. Class |
pauses are induced by RNA hairpins that interact with the RN#hile class Il pauses
involve the backward translocation of TEC along the DNA, &mpdmenon dubbed as
backtracking.

single nucleotide addition cycle is captured by
— +NTP
TEC,pre = TEC,post —— TEGC,;1pre+ PR. (2.1)

where TEG, pre and TEQypostcorrespond to thpre- andpost-translocatedtate of the
complex; before and after the translocation step has bdeawed and prior to the poly-
merisation of the next nucleotide (~ n + 1) (see Fig. 2.4).

Transcriptional Pausing

Often, the processive polymerisation of the RNA transasgtisrupted by pauses of the
RNAP, a phenomenon dubbé&@nscriptional pausing Still a hot subject of biological
research, transcriptional pausing has been endowed witdevariety of roles. For ex-
ample, it has has been proposed that transcriptional pguaaimassist the recruitment of
regulatory proteins to the TEC [100]; function as a precutsdranscriptional termina-
tion [94]; and play a role in transcriptional error correcti124, 147].

Early biochemical assays with bacterial RNAP focused ondéstification of pauses
induced by specific DNA sequences. In particular, theseietuetvealed two distinct
classes of DNA signals that give rise to transcriptionalsag [7] (see Fig. 2.5). The
major difference between the two classes of signals ligsamtechanistic details through
which pausing is induced: Class | signals encode for RNApmagrthat interact with the
RNAP, blocking its movement, whereas class Il signals t@suépositioning of the active
site and the backward translocation of the RNAP on the DNAplate packtracking.
Additionally, it was shown that specific proteins.@, NusA, NusG and GreA) help the
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RNAP recover such pauses, pointing to a novel mode of trgatgunral regulation [7].

A more thorough investigation of transcriptional pausiagie with advancements in
single molecule manipulation techniques. Such studiels aicterial RNAP reported a
wide distribution of pauses, ranging from a few seconds @eteral minutes [46,99,124].
In particular, Shaevitet al. [124] directly observed that particularly long pauses25
s) were induced by backtracking of the RNAP with a frequenicy pause/kbp. More
recently, backtracking and the wide temporal distributddpauses were also observed
for the case of eukaryotic transcription [47].

Shorter paused (— 6 s) were found to be insensitive to hindering or assisting$oa
acting on the RNAP [99]. This observation suggested thatptueses did not involve
any translocation of TEC whatsoever. Rather, it was proghtisat they form a separate
class of elemental pauses, termduaquitous pausef99]. Such pauses seem to occur
due to small conformational changes of the RNAP moleculéghvare induced by DNA
sequences with specific characteristics [64].

RNA Polymerase Backtracking

Backtracking is a major player in transcriptional pausidg,[124]. At each template
position, backtracking constitutes an alternative reacpiathway that is in kinetic com-
petition with polymerisation [58]. Entrance into this pathy is particularly favoured in
the presence of a weak RNA-DNA hybrid, such as in the case akmoorporated nu-
cleotide [124] or when strong forces are exerted on the peilgse while it transcribes
the DNA [47,124].

During backtracking the RNAP freely diffuses back and fatbng the DNA tem-
plate [58]. In particular, the backward translocation & RNAP causes th& end of
the transcript to break loose from the RNA-DNA hybrid and m@ut of the complex
(through the secondary channel) while the two DNA stranésrejoined. Similarly, at
the 5" end of the transcription bubble dsDNA is re-opened and path® RNA tran-
script is moved inside the complex (through the RNA-exitrelel) where it becomes re-
hybridised with DNA. Once backtracked, the TEC can presuynslile back and forth
until it retains its polymerisation-competent state, wtike 3’ end of the transcript posi-
tioned in the active site.

In general, during backtracking the TEC can move as f&r-a8 nucleotides from the
transcriptional starting point. Moving past this pointhetmodynamically unfavourable
since it would result in shortening of the RNA-DNA hybrid addstabilisation of the
complex. Such extensive backtracks, however, are thoodig precluded mainly due to
structural elements(g, hairpins) of the transcript that interact with the TEC [58]
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2.2.3 Termination

Termination corresponds to the disassociation of the RNAR the DNA and the release
of the RNA transcript. In bacterial transcription, terntioa is usually marked by specific
sequences, termeakrinsic terminatorsthey code for an RNA hairpin structure followed
a U-rich sequence. Such sequences destabilise the TEC asescthe transcript to be
released [146]. Regulated termination, mediated by spemifiteins, is also widespread.
For example, th&hofactor binds to specific sites on the nascent RNA and slidagal
it towards the TEC causing it to terminate transcription. t&a contrary, theMifd fac-
tor does not recognise any particular sequence but direttyacts with paused TECs
causing them to collapse. This last case of regulated tatioims exemplifies the role of
transcriptional pausing in regulating the process of tapson.

2.3 Summary

In this Chapter we presented a brief review of the biology llas motivated the work pre-
sented in the subsequent chapters. Some elements of naslémibgy regarding how
genetic information is stored and expressed were presalirgd with a more detailed de-
scription of DNA transcription, the process through whilsk genetic information stored
in the DNA is copied in RNA.

Recent advancements in experimental techniques haveseitiel study of transcrip-
tion at the single molecule level [47,124,147]. This unpoEnted level of detail has
highlighted interesting phenomena, such as transcrigltipausing, with important bio-
logical implications for the regulation of the process ameréfore the functionality of the
cell. Moreover, it facilitates the development quantit@tmodels that can explain exist-
ing data and make quantitative predictions regarding tbegss. Such models will be the
main subject of the chapters to follow.
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Chapter 3

Theoretical Background

In this Chapter we give an overview of the mathematical amdmgdational tools that will
be used throughout this thesis. In particular, it includbsef introduction to probability
theory and stochastic processes. Our main aim is to enablecth-expert reader to un-
derstand key concepts that will be used in subsequent Gisapithout being referred to
the vast literature. For the sake of brevity, rigorous dgrons and technical details are
skipped and in this respect the material presented shoutdmsdered as a catalogue of
key concepts, facts and notations that will be used later on.

3.1 Elements of Probability Theory

In everyday life, we all have a rather intuitive understaigdof what probability is: it
merely quantifies our expectations of how likely it is for ataen event to occur. Imagine,
for example, a not so serious gambler stepping into a casiiMonte Carlo and placing
all his money at a roulette table di red. Before the croupier spins the wheel, we
would expect that the odds of our friend winning dr&7. Our intuition is based on
the assumption (and trust in the casino owners) tha3@alossible events are equally
likely. This simple example allows us to sketch how proligbis formulated on solid
mathematical grounds. For more rigorous definition howdwereader is referred to any
advanced textbook on probability theows;d, see Refs. [44,106]).
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3.1.1 Basic Concepts and Notation

A central concept in probability theory is that ofséochasticor random variableX.
Stochastic variables are used to describe real-world vasens or the outcome of cer-
tain actions such as spinning the roulette wheel or throveirdie. They can also be
multidimensional objects, in which case they are convelyi¢nought of vectorX, such
as the position vector of a small particle suspended in w@&w®wnian particlg. De-
pending on the system at hand,can attain certain values (or statesthat constitute a
set, customarily denoted §yand calledsample spacer set of statesFor example in the
case of a roulette consists of all possible outcomes,0i.@R, 2B, ...36R. A function,
called thedistribution function is then defined ove®2 mapping to every subset of (2

a real-valued number, representing the probability fKiadttains a value withimd. To
satisfy our intuition that probability is non-negative andst always sum td one would
have to impose certain restrictions on the choice of theibigton function.

When(2 consists of discrete values (states) the distributiontfanas

Px(x) = ProfX = z), (3.1)

subject to the conditions
i) Px(x) =0,

(i) Y Px(x)

Establishing2 and Py is the key step for any practical application of probabittigory.
In every case, these are constructed based on prior knogvlayintuition as well as on
physical consideration of the specific problem at hand. is $kense, the terra priori
probabilitiesis often used forPx to stress the fact that in most caBg is just assumed
and therefore subject to experimental validation [141].

When the values form a continuous range?x (x) is used to denote tharobability
density functiorfPDF). Then the probabilitX” attains a value betweenandx + dt is

Probhz < X < +4dt) = Px(x)dx. (3.2)

One immediately sees that this probability goes to zerdtas 0. Therefore, the prob-
ability that X has exactly the value is zero. A way around this is to make usel@ifac
delta functiondefined as

5(z) = {;O i;g (3.3)
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subject to the additional constrain

+oo
/ d(z)dr = 1. (3.4)

oo

For example Px(z) = 6(z — z,) defined ovel—oo, +00) states that the probability of
observing any value other thaf is zero. In fact, one can use delta functions to rewrite any
discrete probability distributiofl v (n) in terms of a probability density functioRy ().

In particular, one has

Px(z) = Y Tn(n)d(x — ), (3.5)

where the discrete stochastic variables mapped into a a continuous ooé and the dis-
crete values. are mapped to set of pointg embedded in a continuous interval. Having
said that, in what follows we focus on continuous stochastr@ables.

3.1.2 Moments

Themean valuef a stochastic variabl& is given by
(X) = /xPX(x)da:. (3.6)
More generally, one can define the average of any fungtion as
) = [ f@Pws 3.7)
One is particularly interested in the quantities

o = (XT), (3.82)
o = (X = p2)™) (3.8b)

which are called theaw andcentral momentsf the distribution respectively.

3.1.3 Other Important Functions

In addition to the PDRPx (x), a few other functions are also of key importance in prob-
ability theory. In particular, theumulative distribution functioqCDF), gives the total
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probability of X attaining a value less than or equakid.e.,

Pron X <z) = Fx(z) = / Px(z")dx' (3.9)
In fact, for real-valued stochastic variables, first the dBBefined over the state space
and subsequently the PDF is obtained as the derivative ciie

Px(z) = F(x). (3.10)

That is why the name probability function is often used (esdly in the mathematical
literature) instead of CDF. However, since “probabilityétion” has also been used for
the discrete version aPy (x), we shall stick to the term CDF term to avoid confusion.

A closely related function is thsurvival function Sx (z), describing the probability
of the stochastic variabl& to attain a value greater than One readily obtains

Sx(l’)—l-Fx(l’) = 1=
Fi() = (@)=
Pu(r) = —Si(x). (3.12)

which relates the PDF of a stochastic variable to its suh¥uwzction.

Thecharacteristic functiofCF) is yet another alternative description to the PDF (see
[106]). The CF,Gx(k), of real-valued stochastic variable is defined as the Fourier
transform of the PDF:

Gx(k) = / +OOe““ﬂpx(gc)ozgc = (e, (3.12)

o0

Gx (k) also allows us to illustrate the notion ohaoment generating functidiMGF). In
particular,G x (k) encodes all raw moments in the coefficients of its Taylor asjn in
k:
+oo
Gx(k) = / e** Py (x)dx

J?Ooo k 2
= / {1+ikx—(%)+... Px(x)dx

o 2 (3.13)
= 1+ik:,u/1—§,u/2+...
= (k)™
m!
m=0

Finally, alternative MGFs can be constructed, using fonge (¢>*),(e=*X) and (2X).
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These different formulations of the MGF offer certain adeges depending on the range
over whichX is defined [141].

3.1.4 Multivariate Distributions

As noted above, the notion of a random variable can also bergksed to:-dimensions
by regarding a vectaX consisting ofn componentsX, X5 ..., X,,. Here, we catalogue
some special density functions that are relevant to this.dasr the sake of brevity we re-
strict ourselves to the two-dimensional case, noting tstlts can readily be generalised
to more dimensions.

Let X = (X;, X3) be a two component stochastic variable. The probability #a
has a value between andx; + dz; and thatX, a value between, andx, + dx, is given
by:

Px (1, x9)dx1dxs. (3.14)

Px(z1,z) denotes the PDF of the composite variaKler thejoint probability density
functionof the two variablesY; and X, and is subject to the normalisation condition:

/Px(xl,yg)dl'ldl'g = 1. (315)

The marginal probability density functiongre concerned with each stochastic variable
regardless the value of the other one. For example, the n&r§DF of X; can be
obtained from the joint PDF as

Px,(z1) = /PX($1,$2)CZ$2 (3.16)

One can now consider the distribution of one variable givext the other variable has
some fixed value . For example, tbenditional probability density functioof X; condi-
tional on X, having the value:, is denoted by

P, x, (21 |72). (3.17)

According toBayes’ rulethe conditional PDF can be written as

PX1,X2 (1’1, 'TQ)

RN (3.18)

Py, x,(21]72) =

A final point is that of statistical independence. Two st@titavariables are said to
be statistically independent if their joint PDF can be faisied into the product of the
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marginal ones, viz.
Px, x,(x1,22) = Px,(21)Px,(22). (3.19)

Consequently, the conditional PDF becomes

Py, x,(71|z2) = Px,(71). (3.20)

3.2 Stochastic Processes

Our lucky friend steps out of the casino with his winningg] &xchallenged by a stranger
into a game involving tossing a coin. He is promised that é¢swch he tosses a head he
will win an amount of money which he will lose in case of a t&ikéeling lucky he accepts.
The capital of our friend constitutesstochastic procesghat is, at any time his capital
will depend on the number of tosses he has made so far. Ircplarti his capital after
each toss depends on his capital prior to the toss and themaadtcome of the toss. The
process is a trulvlarkovianone.

3.2.1 Basic Concepts and Definitions

Following Ref. [141], in mathematical terms a stochastiocpisses” can be described
by as time-dependent stochastic variable. Therefore, an@assume a hierarchy of joint
PDFs,

thatY” attains the valueg,, s . . . y, attimesty, to, ..., t,, respectively. The definition of
P, should be independent of the ordering of times and moreowenwust require that

/P1(?/1,t1)d?/1 = 1, (322a)

/Pn(yl, L Yns t)dyn = Py, te; o5 Yno1,tno1)- (3.22h)

Under these conditions the infinite hierarchy@f (n = 1,2,...) completely specifies
the stochastic process [141]. In particular it enables orm®mpute averages as

(Y(t1)---Y(t,) = /yl---ynPn(yl,tl;---;ymtn)dyl---dyn- (3.23)
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Moreover, one can define the conditional PDFs in termB,of

Poi(yi, b1 Yms YL, 815 u)5 )

Pyt sy t) ’
(3.24)

that is the PDF ofY” at timest;, (¢ = 1...m) having fixed the values of at time
t(i=1...1).

A key concept in that of atationary stochastic proces3hese are processes whose
statistical properties do not depend on time. One can exghes mathematically, by
allowing the hierarchy of’, to be unaffected by an arbitrary shift in time

Pyt Ymi tmly, B - sy t) =

Po(yi,t1; . 5 ynytn) = Po(yi,t1+75. 05 Yn, by + 7). (3.25)

One can see that such a condition is mePijfis independent of time and all othé,
depend solely on time differences— ¢4, t3 — 5, etc.

The simplest case of a stochastic process, occurs when line oY at different
times are statistically independent to each other. TakegxXample, the process defined
by successively tossing of a die. The result of each tosdisp@ndent of any previous
one. In the case of independenég,suffice to describe the stochastic process since the
hierarchyP,, can be expressed as the product

Py, tis -5 Yn, tn) :le(ylatl)- (3.26)
i=1

Moreover, if P; is also independent of time (as in the case of tossing a déegiibicess is
stationary. The next simplest case is known &daakov processin which the future is
determined solely by the present.

3.2.2 Markov Processes

A Markov process, named after the Russian mathematiciamehAadreyevich Markov,

is a stochastic process in which the state at any time demaiely on the state in the
immediate past and not on previous history. MathematidayMarkov property of a
stochastic process is formulated in terms of conditional PDFs, stating thatday set

of successive time point$; < t, < --- < t,) one has

P(yna tn‘ylu tta <y Yn—1, tn—l) - P(yn7 tn|yn—17 tn—l)‘ (327)
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This property enables one to fully describe the evolutiothefMarkov process using the
one-step conditional PDF and the PDF for the initial obsgoweat,. In particular, the
hierarchyP,, can be expressed as:

Po(yi,t1;99,to; o o3 Yn—1, tne1; Uns tn) =
= Py tive,tos 5 Yn1, b)) P(Wns talyn, ts v, tos -3 Yn—1, to1)
= Py, ti; 2.t Yna1s tn1) P(Uns to|Yn—1, tn—1)

= Pi(y1,t1) Py, talyr, t1) P(ys, tsly2, t2) - - P(Yns tn|Yn—1, tn1).
(3.28)

provided the time ordering < t, <t3 <--- <t, 1 <tp.

3.2.3 Brownian Motion

The capital of our friend after successive tosses of the comstitutes aruly Marko-
vian process. For many physical systems, however, the Meakgroperty is merely
an assumption made possible by the coarseness of our otisesvar description of the
system [141]. To illustrate this point one usually appealshe seminal paradigm of
Brownian motion [50, 141]. This is the first application of eaMovian stochastic pro-
cess for describing a physical phenomenon, in particuamtlotion of a light particle
immersed in water. The motion of a Brownian patrticle is maiditiven by collisions
with surrounding water molecules. The large number of watelecules and collisions
occurring is prohibitive for a complete description of tlystem, however it allow for a
statistical treatment. In particular, Einstein showed tha position of a Brownian par-
ticle at successive time pointg, t, + 7, %, + 27,... could accurately be captured by a
Markovian process. However, this is merely allowed by tharseness of our observa-
tions Choosing a sufficiently large time intervaénsures a large number of collisions so
that the net displacement of the particle will appear uretated at different times. On
this coarse-grained time-scale the process can be regasdeidrkovian. Similarly, for
most practical applications one seeks an appropriate $tager, such that changes of
the system duringt, ¢t + 7| depend on the state of the systent &t not on any prior
times.

3.2.4 The Master Equation

The Markovian property (or assumption) enables the charigetion of a stochastic pro-
cess by means of a differential equation, most commonly knasvtheMaster equation

32



Chapter 3 Theoretical Background

Below we present a sketch for deriving the Master equati@ssing some crucial points
and the implicit assumptions made when one directly writegrdthe Master equation for
a system. For a more detailed treatment, however, the readeflerred to the literature
(e.g, see Refs. [50,141]).

From the Markovian property follows that

Psy(y1,t1;ya, tosys. ts) = Pi(yr, t1) P(ya, talyr, t1) P(ys, ts|ya, ta). (3.29)

Integrating over, and dividing withP(y;, ¢;) one obtains

P(ys, ts|lyi, t1) = /P(y2,t2|?/1>t1)P(?/3>t3|?/2,tz)dyz- (3.30)

Equation 3.30 is called thehapman-Kolmogorov equati@nd imposes a functional re-
lationship between the conditional probabilitisy;, ¢;|y;, t;). The Master equation is a
reformulation of the Chapman-Kolmogorov equation obtdimethe limit of vanishingly
small time differenceg; — to = 7 — 0.

To proceed any further, one has to write

Pzt + Atly. t
i (z,t+ Atly, 1)

- 3.31
dim A7 W(aly), (3.31)

W (z|y) assumes that the probability per unit time for a transitmodcur between from
stater to statey depends solely on theses states and is independent of thireeffables
one to writeP(ys, to + T|ya, t2) @S

Pys, ta + Tly2, t2) = {1 - T/W(y\yz)dy} 6(ys — y2) + TW (ysly2) + O(7%). (3.32)

Here, the first term in the above is the probability that nmgrgon occurs during-.
Substituting this in Eq. (3.30) yields:

P(ys,ta + 7|y, t1) = Plys, t2|y1,t1) —7'/W(y‘y?))dfp(y&tﬂyl,tl)

(3.33)
+T/W(yi%‘yQ)P(y%t2‘y17tl)d$2 + O(7%)

Finally, dividing by and lettingr — 0 one obtains the Master equation describing the
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stochastic process

dP(ys, ta|yr, th
dty

b W sl P ol 1) = Wl Pl ko, ) s
(3.34)
The Master equation is usually written in the simpler andemmeadable form,

dP(y,t)
dt

- / (Wyly)PW. 1) — W) Py )} dy (3.35)

In this form, however, it should be stressed tidy, ) does not stand for the marginal
PDF P (y,t) but for the one-step conditional PDike., P(y,t) = P(y,t|y’,t') for any
choice ofy’ andt’. To obtainP; (y, t) one uses the initial conditioR, (', 0) = 6(y" — yo)
to obtain

Pi(y,t) = /P(y, tly',0)Pi(y', 0)dy’

~ [ Pty 05/ - w) (3.36)
- P(yat|y0a O)
The Master equation can also be formulated for discretegss®s, provided that one

replaces the integral with a sum and interpte{s) as probability rather than probability
density,i.e.,

dP

C(;a t) _ Z {W (z|z")P(2',t) — W (' |x)P(z,t)}. (3.37)

The Master equation has a rather simple intuitive meanihgescribes the change
in probability (or probability density) for observing anyvgn state as the net outcome
of gain and loss terms. In particular, the first term in Eq3%3.describes gain in the
probability of observing, due to transitiong’ — y, while the second term captures the
loss due to transitions — /.

One further remark is perhaps important at this point. Iipldg the Master equation
we required the condition given by Eq. (3.31) to hdld(z|y) has units reciprocal to time
and can intuitively be thought as the rate at which trans#tio— = occur. As the notation
implies, W (z|y) does not depend on time and therefore implies that the psamesurs
homogeneously in time. This has important implicationstfer temporal dynamics of
the stochastic process which remain implicit when one widl@vn the Master equation.
To illustrate this point we consider a transition to statéhat occurs at timeé,. The
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probability per unit time for any transition to occur fromattpoint onwards is given by

aly) = /W(x\y)dx (3.38)
Thereforeuw(t), the PDF for no transition to have occurred up to time- ¢ obeys

w(t+At) = (1—-aAt)w(t) =
o —aw(t) - (3.39)

w(t) = e

where at the last state we made use of the initial condiii@ = 1. One readily sees
thatw(t) is just the survival function of the probability densitt), for the time to the
next transition event, hence

ft) = —w'(t) = ae ™. (3.40)

Itis clear the time needed for a transition to occur is exptialy distributed with mean
1/«. Transitions, therefore, proceed without memory and tloegss appear homoge-
neous in time. We shall return to this point when discussirgghmds for simulating
continuous-time Markov processes.

3.3 One Step Processes

A special case of stochastic processes obeying the Markpeply are the so callezhe-
stepor birth-and-deathprocesses. Let us denote such a stochastic procedg#)y At
any timeN () attains values in the range of integerand the only permissible transitions

are
n — n+1 (birth),

n — n—1 (death)

These transitions occur with probabilities given by

P(n+1,t+dtin,t) = gudt, (3.41a)
P(n—1,t+dtin,t) = mr,dt. (3.41b)

Therefore, the total transition probability per unit timendoe expressed concisely as
W(n'|ln) = Tnown-1 4 Gndn ni (3.42)
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where we have introduced th&onecker’s deltgthe discrete analog of the Dirac delta
function) defined as

0 i
5, = { et (3.43)

1 Ji=y
SubstitutinglW (n’|n) in Eq. (3.37) one obtains the Master equation describingttee

step process:
dP(n,t)

dt

= 1o P(n+1,t)+ g1 P(n—1,%)
—[gn + 0] P(n,1),

(3.44)

subject to the initial conditio®(n, 0) = 4, ,,. The first two terms on the right-hand side
capture the gain in probability(n, t) due to transitionss + 1 — n andn — 1 — n,
respectively. Similarly the last term describes lossestdueansitions: — n + 1 and
n—n-—1.

At this point a few remarks concerning the application of etepp processes to prac-
tical problems are perhaps essential. The Master equatien gy Eq. 3.44 was defined
over the range of all integers. However, in most cases, ®Ee{socesses with half-
infinite (n = 0,1,...) or finite (» = 0,1, ..., N) range suffice to capture the stochastic
dynamics of real-world systems. Moreover, no specific foom¢f, andr, has been as-
sumed; these rates can indeed be described by any collec¢tmm-negative numbers. It
is usually the case, however, that for most real-world &ppilbnsg,, arer,, are given as
some analytic function of variable i.e.,

o= r(n), (3.45a)
g = g(n). (3.45b)

In the simplest case(n) andr(n) attain constant values for all This gives rise to,
perhaps, the most well known examples of an one-step presebenearest-neighbour
random walks It turn out that in this case the Master equation can be dateenpletely,
and an analytic form of°(n,t) can be obtained [116]. If(n) and g(n) are at most
linear inn one has dinear one-step proces$or which the Master equation can also be
solved [141]. Finally, the termonlinear one-step processreserved for processes with
non-linearg(n) and/orr(n). Not surprisingly, time dependent solutions of the Master
equation for nonlinear processes are in most cases noablail

Most often, one-step processes are used to describe theastimcdynamics of sys-
tems consisting of a number of entities. Specific examplesgdcbe the growth of a
bacterial colony, where individual bacteria duplicate ale with certain probabilities
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per unit time, or the fluctuating levels of a specific proteithvm a cell, due to the ran-
dom production and degradation of individual moleculessuigh cases, a linear form
of g(n) and/orr(n) merely states that individuals are independent of eachr.offlais
allows one to treat the random behaviour of each individoatolation, as a separate
stochastic process, and superimpose them to obtain themdgmat the population level.
Hence, the superposition principle (true for any lineattesyg provides the intuition for
why one should expect linear one-step processes to be salvablso makes clear how
nonlinearities introduce difficulties. In particular, rbnear terms ing(n), r(n) capture
interactions between individuals that destroy indepeod@md make the random history
of each individual dependent on those of others. Intuivitle system can no longer be
broken up into independent components.

For most nonlinear one-step processes, therefore, oneithay esort to approxima-
tion schemes and numerical methods for obtaining time ddgr@mesults or alternatively
focus on the stationary distributid? (n) = P(n,t — oo0). These topics will be subject
of the following sections.

3.3.1 Boundary Conditions

When modelling the stochastic behaviour of a system, orndfas to take into account
certain physical restrictions concerning the range of eslthe systems’ variables are
allowed to take on and the behaviour of the system at the l@viesdof these ranges. Take
for example a population of bacteria dividing and dying @ #nrivals and departures in
a bank queue. Obviously, both the size of the population bedize of the queue ought
to be positive at all times. However, a key difference eximtveen the two systems.
When all bacteria have died the population becomes extMaotindividual can be born
out of thin air and therefore the process is trapped in tlitead infinitum On the other
hand, an empty queue does in no way preclude the possilisiyroeone walking in and
requesting to be served.

The above examples illustrate the two typedofindary condition§BCs) one comes
across when dealing with one step processes. The first typewfdary, referred to as
absorbing traps the process, whereas the second, referredraglasting precludes the
process from exiting a certain range of values. In most ¢ds®sdaries are introduced
naturally by the formulation of(n) andr(n). For example, assuming that Eq. (3.44) is
defined in the range = 0,1..., one can see that a reflecting boundary is introduced at
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n = 0if (0) = 0. Thus, the Master equation takes the form:

P(n,t) = r(n+1)Pn+1,t)+g(n—1)P(n—1,t) — [g(n) +r(n)|P(n,t),
(3.46)
forn=1,2,...,and

P(0,t) = r(1)P(L,t) — g(0)P(0,1). (3.47)

Clearly, even if the processes was defined/for= —oo - -- + oo, it would have been
trapped in the region of positive integers (provided of seuhat it starts at this region)
since the transition down t@ = —1 is not allowed.

Similarly, ¢(0) = 0 imposes an absorbing boundary. Conventionally, the absprb
boundary is defined at = 1 although state: = 0 is actually the absorbing state [116].
In this case the Master equation takes the form:

P(n,t) = r(n+1)P(n+1,t)+g(n—1)P(n—1,t) — [g(n) +r(n)|P(n,t),

(3.48)

forn=2,3,... and
P(1,t) = r(2)P(2,t) — [r(1) + g(1)]P(0, 1) (3.49a)
P(0,t) = r(1)P(1,t). (3.49b)

The absence of negative terms on the right-hand side of gteetpation implies that
staten = 0 acts as a probability sink. Once the process reaches thaitstamains there.

In general, natural boundaries are introduced at all paintsn;, where the form of
the analytic functiong, r dictateg(n,) = 0 or r(n,) = 0. However, in certain cases
(as we shall see when discussing the first passage propefriiee step processes) one
IS interested in erecting artificial boundaries so that thleaviour of the process can be
studied within a given interval. Of course this can be acd@hed by arbitrarily requiring
certain transition probabilities to be zero. However, tegarve the the analytic form
of g(n) andr(n) one usually resorts to a mathematically more convenienhoaeodf
formulating boundary conditions. Consider the one stepgss described by Eq. (3.47):
r(0) = 0 does not hold, nevertheless, one is interested in confitiegtocess in the
semi-infinite ranger{ = 0, 1, .. .). By imposing the condition

r(0)P(0,t) = g(—=1)P(—1,1), (3.50)
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one readily sees that for = 0 Eq. (3.46) is retrieved. Therefore a reflecting boundary
has been implemented by introducing fleditiousstaten = —1 and requiring the above
condition.

Similarly one can impose an absorbing boundary at 0, not by settingy(0) = 0
but by treating: = 0 as dfictitiousstate with the property

P(0,t) = 0 (3.51)

The Master equation now defined for= 1,2, ... reads

P(n,t) = r(n+1)Pn+1,t)+g(n—1)P(n—1,t) — [g(n) + r(n)|P(n,t).
(3.52)

In this case it should be stressed that the total probalislityt conserved "~ | P(n,t).
Actually, probability is accumulated at= 0, although for our convenience this is ignored
by settingP(0,¢) = 0.

The two equivalent formulations of reflecting and absorlB&s, presented above for
a boundary at. = 0, can be used for setting a boundary at any point. In partictda
a Master equation defined on the interjralb] the BCs are summarised in the following
table

Boundary Reflecting Absorbing
a r(a)P(a,t) = gla—1)P(a—1,t) | Pla—1,t) =0
r(a) =0 gla—1)=0
b g(b)P(b,t) =r(b+1)P(b+1,t) | P(b+1,t)=0
g(b) =0 rla+1)=0

3.3.2 Stationary Solutions

In the long time limit all solutions of the Master equatiore¢sEq 3.44],P(n,t) will
tend to thestationary solution P;(n). In other words ag — oo the process becomes a
stationary one and its statistical properties become tnmdependent. This is always the
case for one-step processes with a finite state space, batls@te true for processes
defined on an infinite range under certain conditions [141]

To obtain the stationary solution of a one-step process as¢diset the derivative on
the left hand-side of Eq. (3.44) equal to zero. After somerag@ement one obtains

0 = {gn+1)Pn+1)=r(n)Pn)}+{r(n—1)P(n—1) - g(n)P(n)}.
(3.53)
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The above is usually written in the form
0 = Jn+1)—J(n), (3.54)
where we have defined
J(n) = r(n)Pyn) —g(n—1)Py(n—1). (3.55)

The quantity./(n) describes the net probability flux between any two adjaceesn
andn — 1.

To proceed any further one should also take under considertite range of. for
which the process is defined. Let us first consider the casegodcess bounded within
some interval which, without loss of generality, we takeéab=0... N. The reflecting
boundary at the origin allows us to writd0) = 0 and subsequently this gives rise to

J(n) =0 =

(3.56)
r(n)Ps(n) = g(n—1)Py(n—1),

for all n. To the physicist the above condition is reminiscent of de¢ailed balance
condition met in equilibrium statistical mechanics [50114However, here, it merely
states that for one step processes at the stationary séatetlprobability flow between
any two states is zero. By repeatedly applying the abovéaakhip, one ends up with

g(k—1)

1 n
Py(n) = NHMW. (3.57)

where1/N = P,(0). This prefactor can be obtained from the normalisation itimd
SN, Pi(n) = 1 as follows

Y P(n) = 1=
P0)+> Pn) = 1=

X N on T(lkl_ ) (3.58)
N(1+;gigr(k) ) = 1=

gk — 1)
% ( I )
n=1 k=1
Equation (3.57) enables us to calculate the stationaryisalaf the Master equation even
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in the case of nonlineaf(n) andr(n). However, special care is needed if the form ©f)
allows for zeros within the range = 0,1,..., N (see unsolved exercise in Ref. [141],
p.141). The existence of points;, i = 1,2, ..., k with the propertyy(n}) = 0 imposes a
sequence of reflecting boundaries and in the long time lineitdrocess will be confined
within the regiom, ..., N. The stationary distribution in this case will be given by

0, n < ny

1
Py(n) = y n=n . (3.59)

, np<n<N

subject to normalisation.

The above results also apply for the case of a half-infinibgeag. = 0,1,2...), if
one replacesV with co. However, attention must be paid as one must make sure that
the normalisation factal” in Eq. (3.57) does indeed converge (see unsolved exercise in
Ref. [141] p.142). A sufficient though not necessary condition of convergaaobtained

by applying the ratio test on the infinite sum,~, [,_; M appearing inV. One

r(k)

1. (3.60)

obtains
g(n—1)

r(n)

The above condition makes intuitive sense as it does navgiobability escape too.

lim,,

3.3.3 System Size Expansion

As stated above, time dependent solutions of the Mastertiequi&Eq. (3.44)] are not
generally possible in the case of nonling&t) andr(n). One can, however, make use of
approximation techniques provided that the system obayaiceonditions.

One-step processes capture the the stochastic dynamigstefrs where only tran-
sitions of sizet+1 are possible. In many cases such transitions are small cenhpa a
characteristic quantity? describing the size of the system. The precise prescrigtion
2 will depend on the nature of the system considered and caexiimple be the total
size of a bacterial population (assumed constant) or thenwelof a reaction cube which
is proportional to the total number of molecules presente f@guiremenf) > 1 sets a
clear distinction between two scales: a microscopic onerdexi byn (extensive vari-
able) and a macroscopic one describediby n /< (intensive variablg This separation
of scales allows one to perform a systematic expansion oMidwgter equation in terms
of the small paramete2—'/2. Below we sketch the key steps involved in performing the
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expansion [141].
One starts by noting that the transition probabiliti¢s) andr(n) can be written in
the form:

gn) = 1) {90 (2)+ 5 (2) + 5o (%)+...], (3.612)

r(n) = f(Q) {7"0 <%)+ér1 (%)+ér2 (%)+] (3.61b)

known as theircanonicalform [141]. In this form the transition probabilities becem
functions of the intensive variable = n /2 and depend of2 only through the positive
prefactorf(€2). Of course, the existence of the canonical form is not gueeghfor any
arbitrary function. Nonetheless it turns out that such enfoan be written down for most
of the cases one meets in practice [141]. Next one has tolptesthat
= o)+ i (3.62)
VQ

This is a key step, since the abamestantamposes certain conditions on the time evolu-
tion of the stochastic process. In particular, Eq. (3.62estthat at all times our stochastic
observable can be decomposed into two parts: a deterrinisi2¢(t), and a fluctuat-
ing one,N/2¢. One can visualise?(n, t) therefore as a peak centered aro@ngt) and
of width proportional ta2'/2. As we shall see, th@ '/ scaling of the fluctuating term
allows a purely deterministic description of the systerlas oo; for finite system sizes
it give rise to Gaussian noise around the deterministicevalia first approximation.

The transformation given by Eq. (3.62) yields

n
Q

P(n,t) = TI(,,1), (3.63a)

ot ot dt 9¢
Using Eq. 3.63 the above as well as the canonical formgf andr(n) one can trans-

o _ 0P ppdodll (3.63b)
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form Eq. (3.44) into

ON(EY)  ypdd O

ot dt 0¢
—1/2 ~1/2
f(€2) {7‘0 (925(15) + %) + érl (¢(t) + %) L } TI(e + Q12 p)
[ — Q12 _O-1/2
+/(€) |90 (¢(t) + %) - %gl (d)(t) - %) ¥ } TI(E — Q12 ¢)

—F©) :7‘0 (¢(t> " %) + g (¢(t> " %) ;.. } (e, 1)

1) i (00 + gz ) + o (90 + iz )+ e

(3.64)
Finally, by Taylor expanding one has (writing up to first arterms)

OTI(&,t) 1/ O11 /2 ol
5, & / dr ¢ Q2 [ro(¢(1)) — go(B(1))] G
o(&nn

=000 - b (0(0)] o (3.65)
0?11

+3 (010 + 6h(0(0)] gz + OO,

wherer = f(Q)t.
So far ¢ has been an arbitrary function of time. At this point howewre has to
choosep so as to make th@'/? terms vanish. In particular, one has

d¢

7 = () —10(9), (3.66)

which gives themacroscopidehaviour of the system. Along with the initial condition
»(0) = o = no /) it completely describes the system in the liflit— oo and provides
the macroscopic part of the solutions in the case of finitdayge(). It should be noted
that for nonlineay(n) andr(n) Eq. (3.66) is an nonlinear ordinary differential equation.
There is no guarantee that it can be solved explicitly nohdgeits stationary solutions
¢s, I.€., roots of the equation

9o(¢s) —ro(¢s) = 0. (3.67)
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Nevertheless, in the case the Master equation describesgoysical system, one expects
that Eq. 3.66 possesses at least one stable stationaripapluhich the time-dependent
solutionse(t) will approach ag — oo. For the sake of brevity, in the rest we just assume
that such a stable stationary solutionexist and is unique. In particular, we require the
following stability conditions to hold

90(¢8) - TO(¢S) =0 fOf a uniqu%s; (3688-)

go(@) —ri(@) < 0 forall ¢(t). (3.68b)

Terms of ordef)’ give rise to

M, t)
ot

(&I oI

= O o) o S ) ) G (369

describing the time evolution of the fluctuating pért This is a linear Fokker-Planck
equation describing @rnstein-Uhlenbeckrocess [118], that is a process involving dif-
fusion (second term) and linear drift (first term). The swinto any linear Fokker-Planck
equation is be found to be Gaussian, so the first momghtand (¢’ suffice to describe
the process. By multiplying Eq. (3.69) lgyand¢? and integrating one obtains

W~ (o) - rhlonte (3.702)
U a(gh6) — r@)(E) + Irle) + su(o)) (3.700)

subject to the initial condition& (0)) = (£2(0)) = 0 From the equations above one can

directly see why the stability conditiogf,(¢) — r((¢) < 0 is required. It prevents the

moments from growing without bounds and therefore allowsfstationary distribution.
From the above one readily finds that in the stationary state

&)s = 0, (3.71a)

)+ ()
S IOk (3.710)

where ¢, is the stable steady state of Eq. (3.66). Finally, the gtatiyp autocorrelation
function is given by [141]

(€0)5(1))s = (€%)sexp[—(g0(8) — 75(6s))7] (3.72)
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The results of the system size expansion presented abavelyn&quations (3.66),
(3.70a) and (3.70b) give to a first approximation the pictfréghe time dependent and
stationary properties of the process for fiffiteAt this point the reader should be referred
to reference [141] for a more detailed discussion of theesystize expansion as well
as appropriate discussion of specific situations where tiifglisy conditions given by
Eq. 3.68 are violated. The reader should also be referretiapi€r 7 of this thesis where
such a case is treated.

3.3.4 Numerical Methods

Numerical methods constitute an alternative approachdatinlg with Master equations
where time-dependent solutions are not available. Perha@smplest and most widely
method used is th&illespie algorithm(or kinetic Monte Carlo methgdoriginally pro-
posed by Dan Gillespie for simulating systems of chemicattiens [52]. It generates
stochastic trajectories of the system that are in exackeaggat with the formulation of
the Master equation. In this respect, it should be constblaneexact method, that is one
that does not introduce any errors as for example Eulersogsior numerically solving
differential equations.

The algorithm is summarised as follows [52]

1. Initialisation step:

(a) Initialise system variables — ny.

(b) Initialise timet — t,.
2. MonteCarlo step:

(a) For each possible transitioifl, . . ., k) calculate the quantity
=i
T
r, = == (3.73)
Zj:l a;

whereq; is the probability per unit time transitiarhas to occur.

(b) Generate a uniformly random numbein the intervall0, 1]

(c) Choose the first transitiarfor which the following condition holds
p < 7 (3.74)

(d) Save the change this transition yields to the systenabbasn,.
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(e) Generate a random numbgrobeying an exponential distribution with rate
parameter

A= 3N a (3.75)
3. Update step:

(a) Update system variables— n + n.

(b) Update timg — t + ¢,.

4. Iteration step: If the time limit has been exceed or an absorbing boundary has
been reached terminate otherwise go to &tep

The Monte Carlo step is the key step of the algorithm. The dand it is a simple
one, complying with our formulation of the Master equatidn.particular, at each step
one chooses aingletransition to occur with probability that is proportional the its
propensity functioru;. Furthermore, the time need for a transition to occusxponen-
tially distributedwith meanl/ > . a,. These two considerations are identical to the ones
we made when deriving the Master equation. Therefore oneatxhat the Gillespie
algorithm yields trajectories that are statistically estras far as the formulation of the
Master equation is concerned.

Each run of the Gillespie algorithm provides one samplettayry from the infinitely
many implied by the Master equation. The method, howevess ot assume a constant
time-step and therefore to obtain time dependent propgenfi€ (n, t) one must proceed
with caution. In particular, one has to run the algorithm asiderable number of times
so that adequate statistics are gathered for any time aitgrv + 6t] asét — 0. For
stationary solutions, one usually runs the algorithm alhguthe system to reach its steady
state. This can be ensured, by using results obtained foensythtem size expansion
presented above. For example, initialising the systemeatdst state and allowing the
algorithm to run for times much longer than the autocoriefatime will suffice. One can
therefore run the algorithm repeatedly and calculate tbhpeaties ofP; (n) with arbitrary
precision. Alternatively, one long run of the algorithm das performed. By sampling
this single trajectory at times much longer that the aut@tation time one can obtain
the stationary properties of the process. This is ensuretthdoergodicity of stationary
processes, that is, time averaging is equivalent to engeavdraging. Summarising,
when using the Gillespie algorithm one must pay speciahte to errors introduced
during sampling. Such errors are unavoidable since oneotaample the whole space
of possible trajectories. One is pacified, however, by teetfzat the Gillespie algorithm
IS an otherwise exact method.
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Several other numerical methods for solving the Master gguaxist in the litera-
ture. Some of these methods can be considered as extersithesGillespie algorithm:
they allow for more efficient simulations when the systene gs4arge or consists of many
variables, whilst remaining exact. Others, compromiseass by making certain as-
sumptions which allow for faster computation times.

3.4 First Passage Processes

Our friend is engaged in his game with the stranger. He haadyrlost half of his initial
capital and he starts thinking whether he should withdrafterAsome more thought he
decides to continue playing until he regains the amount lsdd®t or loose everything.
Will he break even? For how many more tosses will he have touvail he breaks even
or looses everything? Such questions illustrate the cdaadp first-passage probability
andfirst-passage timeshat is, the probability and time for a stochastic processeeach
some state.

Consider the Master equation for a general one-step prapess in Eq. (3.44) de-
fined for in some intervah = L,..., R. One wants to know the tim&g,, it takes
for the system to reach site = R for the first time having started from some arbitrary
point within the intervaln (R < m < L). Of course 7y, is not a fixed quantity but a
stochastic variable obeying the PDF,, (1), i.e,

Prot < Tpm <t +dt) = fr,,. (t)dL. (3.76)

Writing down the Master Equation with a reflecting boundary.and an absorbing
one atR one has

P(L,t) = r(L+1)P(L+1,t)—g(L)P(n,t), (3.77a)
P(n,t) = r(n+1)P(n+1,t)+g(n—1)P(n—1,t)
—lg(n) +r(n)|P(n,t), (3.77b)
P(R—1,t) = g(R—2)P(R—2,1)
—[lg(R—=1)+r(R—1)]P(R—1,t), (3.77c)

subject to the initial conditio”(n,0) = 4, ,,. BoundaryR acts as a probability sink,
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therefore, the probability(¢) that the system at timehas not yet reachefl is given by

S(t) = > P(nt). (3.78)

S(t) is merely the survival PDF df ., linked to fr,, . (¢) via the relationship

R-1

Fram(t) = —%S(t) - —Z%P(n,t) — g(R-1)P(R—1,t) (3.79)

n=L

where the last step was performed by summing the Masteriequater all permissible
n.

Similar considerations allow us to calculate the PDF</pf, and 7. ,,, the time
needed for the process to reach either staté .. One has to write the Master equation
with two absorbing boundaries presentaéand R and obtains

fran(t) = g(R—1)P(R—1,t) (3.80a)
fr...(t) = g(R—1)P(L—1,t) (3.80b)

The probabilities of arriving first to either absorbing bdary are given by

TRm = / J 1w, (t)dt, (3.81a)
0

TLm = /OO fTL,m (t)dt. (381b)
0

These are referred to in the literature of first passage pseseasplitting probabili-
ties[116] and must of course obey

7TR,m+7TL,m = 1 (382)

Finally using the above one also can obtain doaditional mean first passage times
(Tr.m) and(7y, ,,) as well as theinconditional mean first passage tirfie either bound-
ary) (Zn):

1 (oo}

(Tpm) = — | tfm,()dt, (3.83a)
TRm Jo

(Tom) = - tfr, ., (t)dt. (3.83b)
TLm Jo :

(Tn) = TRm+ TLm (3.83c)
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3.4.1 Solving the Master Equation in a Bounded Interval

Therefore, for both cases presented above (reflectingfaibgoand absorbing/absorbing
boundaries) the problem of obtaining the PDFs of the firstags times boils down to
solving the Master equation in the intervdl, R]. In particular, in the case of reflect-
ing/absorbing boundaries on seeks an expressio®{ét — 1,¢) while in the absorb-
ing/absorbing case one seeks expressions for Both— 1,¢) andP(L — 1,1).

A straightforward yet laborious technique for solving thaster equation in a bounded
interval involves using some integral transform/e(fn, t). Most often the_aplace trans-
formis chosen:

P(n,s) = L{P(n,t)} = /Oooe_StP(n,s)dt. (3.84)

Under this transformation, timds mapped into a new variabdehaving units ofl /[time].
Therefore, thes-domain is customarily interpreted as the frequency domidwthing is
lost under such a transformation and convert back to the diomeain using thenverse
Laplace transform
. 1 y+iT _
P(n,t) = L YP(n,s)} = — lim e’ P(n, s)ds. (3.85)
271 T—o0 N —iT

wherei? = —1 and~ some real number appropriately chosen (greater than the#he
part of all singularities ofP(n, s)). P(n,s) is particularly useful due to the following

property

L {dPSZ’ ) } = sP(n,s) — P(n,0). (3.86)

Using this property one can transform the Master equatitman algebraic set of differ-
ence equations. For example in the case of a reflecting bopata and an absorbing at
R applying and the Laplace transform on the Master equatiela i

sP(L,s) = r(L+1)P(L+1,s)— PP(n,s), (3.87a)
sP(n,s) —0pm = r(n+1)Pn+1,8)+gn—1)Pn—1,s)

—[g(n) +r(n )]N( s); (3.87h)

sP(R—1,5) = g(R—2)P(R—2,s)~[g9(R) +r(R)]P(R,s), (3.87c)

where he have also made use of the initial condititm, 0) = 6, ,, The above system
consists of. — R equations with, — R unknowns (vizP(n, t)yn=1L,...,R—1)and
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can therefore be solved. Subsequenfly, . (t) can be obtained as

fram®) = 9(R=1P(R-1t) = g(R—1)L{P(R~ 1)} (3.88)

Moreover, all integer moments g¢f,, = can be obtained without performing the inverse
Laplace transform. This is accomplished by noticing tﬁ@tm(s) = g(R—-1)P(R —

1, s) is the moment generating function ¢f,,  (¢) containing all integer moments as
coefficients of it power expansion i

(R—1)P(R—1,5)
g(R—1)e*"P(R—1,t)dt

Q

frm(s) =

8

[ee]

I
S——

- 1) |:1 — st + (8;)2 .| P(R—1,t)dt (3.89)

g

g
= {me —SthRm()+

0
= 5(Trm) + <Tﬁm> -

I
—_

The above described method can be easily be extended faagkdwo absorbing bound-
aries are present atand R [116].

3.4.2 The Backward Master Equation

A particularly useful tool for solving first passage probkem thebackwardor adjoint
Master equation that describes the time evolution of a g®backward in time. The mas-
ter equation defined by Eq. (3.44) describes the time ewnlwti P(n,t) = P(n, t|ng, to)
the probability density of finding the system at statat timet given that it was initially
prepared at state. In this respectP(n, t|m, t,) is to be considered as a function(af ¢)
while holding(m, t,) fixed. One can, alternatively also regdrth, t|m, ty), as a function
of (m, ty) holding(n, t) fixed, in this case it describes the probability of the ihti@ue
m given the system is observed at statat timet¢. It turns out that the time evolution
of P(n,t|m,t,) obeys an equation similar to the Master equation, dubbecelsnard
Master equation

dP(n,tlm,ty)

o = gnP(n,tim+1,t0) + rnP(n, tim — 1,10)
0

(3.90)
~[gm + Tm] P(n, t|m, to).
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Also by noting that for homogeneous processes
P(n,tlm,ty) = P(n,t—ty/m,0) = P(n,t'|m,0) (3.91)

one can rewrite the backward Master equation as

_dP(n,t'[m,0)

a = gnPn,t'm+1,0)+r,P(n,t'|m—1,0)

(3.92)
—[gm + rm] P(n,t'|m,0).

Let us assume in the rest that the process is confined in #eaht = L, . . ., R. with
an reflecting boundary dt (implemented in the backward equation by settit(g, t'| L —
1,0) = P(n,t|L,0) ) and an absorbing boundary &t(P(n,t|R + 1,0)) . We once
again focus on the stochastic quantily,,,, the first passage time i given the process
started at state:, which obeys the PDF7,,  (¢). The survival probabilityS(z, m) that
the process has not yet reached the absorbing boundary is

R-1
S(t,m) = > P(n,t'|m,0). (3.93)

n="L

where we explicitly stated that the survival probabilitgliso a function of the initial state
m. The mean first passage timeRas given by

7(m)

<TR,m>

fooo thR,m (t)

= — [ t0S(t,m)dt (3.94)
= — [77t0,S(t,m)dt

= — [7°S(t,m)dt.

where in the last term we have used integration by parts amfat thatG(co,0) = 0
andG(0,m) = 1. Summing Eq. (3.92) ovet = L,..., R — 1 yields an equation for
S(t,m). In particular, one has

—dS(t',m)

o = guS({t,m+ 1)+ 71,50, m—1) — [gn + rm]S(t,m). (3.95)

Now, by integrating over time and making use of the relatiom§ () = [~ S(t, m)dt

INote the introduction of the fictitious stafe— 1 andR + 1
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obtained above yields an equation for the mean first passage t

—w = gnT(m+1)+r,T(m—1)—[gmn +7rm]T(m) =
—[G(oo,m) — G(0,m)] = g ,T(m+1)+r,T(m—1)—[gn+rn]T(m) =
1 = g ZT(m+1)+r,T(m—1)=[gn +7rm|7(m).
(3.96)

subject to the boundary conditio@S R — 1) = 7 (R) and7 (L + 1) = 0 The above set
of difference equations can easily be solvedZdm) yielding [116]

- SA0Y

where

An) = s (3.98)
i—r41 Ji
The above result can be used to obtain the mean first passaggetd any poinf for
an one-step process defined on the range of positive intggdrs . . ). The result can be
written in terms of the stationary solutidi(n) (see unsolved exercise in [141],3201)

as

, 1
T(m) = Z A1) Z: g@A(k)
_ Z gOPs(Q) i Py (k) (3.99)

Finally, multiplying Eq. 3.95 by’ and integrating ovet' one obtains

=27 (m) = gnTa(m+1)+r,Ta(m—1) = (gn +7m) 7_'2(77”) (3.100)

= gm (T2 (m+1) =T (m)) + rm (T2 (m = 1) = T (m))

This equation relates the mean first passage firpe) to the second momenft(m) =

(T3 ,,)- Having already obtained an expression fm) the above equation can be
solved recursively yielding a result f@g (m). Similarly, successive moments of the first
passage probability can be obtained from equation Eq. 3y98ditiplying with higher
powers oft’.
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3.5 Summary

In this Chapter, we presented a brief introduction to themhef stochastic processes.
The aim was to provide the general reader with sufficient amknd knowledge to un-

derstand and appreciate the work presented in subsequapiech As the acquainted
reader might have noticed, in certain occasions the mépeaaented lacks mathematical
rigour and generality and should therefore not be consitlasesufficient or complete.

The literature, however, on stochastic processes is vaktdimg many comprehensive
and coherent introductory books and manuscripts. Refs1[E) 141] are just a few, par-
ticularly tailored for interdisciplinary audiences, anglom which the presentation of this
Chapter was based.
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Chapter 4

Single Molecule Level: The Dynamics of
a Transcribing RNA Polymerase

As described in Chapter 2, transcriptional pauses dishggptocessive synthesis of RNA
and can play a profound role in regulating gene expressioparficular class of pauses
is induced by backtracking, a phenomenon that involves #wkward translocation of

the TEC along the DNA template. In this Chapter, motivateddnent single molecule

studies, we present a stochastic model of the transcriptamgation phase incorporating
backtracking dynamics. Using the model we study the siedistf elongation pauses
induced by RNAP backtracking, as well as the effect of thesesps on the statistics of
the elongation phase. Our results indicate that pausesodB&IAP backtracking obey

a heavy tailed distribution and can significantly alter ttegistics of the total elongation

times.

4.1 Introduction

DNA Transcription constitutes a vital life process throughich genetic information
stored in DNA is expressed into RNA. The ability of cells torgaout their genetically
prescribed function and behaviour crucially relies on #guiation of this process. For
example, it has long been know that transcription initiaposes a key step of regulation;
enabling cells to modulate the levels of gene expressiomande synchronise their inter-
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nal workings or adapt to environmental changes [93, 112]evlecently, the regulation of
the transcription elongation phase has also become wiggeheaiated. Regulation at this
level is often mediated by transcriptional pauses, whitdwaspecific proteins to interact
with poised RNAP molecules and exert their regulatory fiomc{119]. The implication
of transcriptional pausing with regard to gene regulatias &ttracted lately much interest
in the dynamics of the elongation phase [32,53, 63].

A more thorough understanding of DNA transcription has bee@ossible with the
in-vitro study of the process using single molecule manipulationriewes [63]. In par-
ticular, the usage of optical traps has enabled one to treeknbtion of the transcribing
RNAP molecule along the DNA template with near base-paolt®n. (see Fig. 4.1(A)),
shedding light on the dynamics of transcription. Such singblecule studies have, for
example, showed how RNAP molecules harness thermal noigartslocate along the
DNA template, achieving polymerisation rates up2font/sec [1]. More importantly,
they have revealed that RNAP does not transcribe the teenala constant rate. Rather
transcription is frequently interrupted by pauses obegimgde temporal distribution and
lasting up to several minutes (see Fig. 4.1(B-C)). In masgsapausing is induced by the
backward motion of the RNAP on the DNA template, a phenomehidbedbacktrack-
ing [58]. During backtracking the RNAP looses grip of thleend of the RNA, and the
transcription elongation complex (TEC) slides backwardsigthe DNA. The process
from there on is diffusional; that is the RNAP is kicked baciddorth along the DNA
template by thermal noise until the active site reattamsitial position and polymerisa-
tion is resumed (see Fig. 4.1(D)). Although backtracking ¢tvaly been observead-vitro,
there is ample evidence concerning its biological signifoea In particular, the existence
of DNA sequences that promote backtracking indicate thapthenomenon can also play
a significant role in the regulation of the elongation ph&3efurthermore, backtracking
has been directly implicated in transcriptional error eotion [124,136], suggesting that
backtracking is also relevant far-vivo transcription.

In this Chapter we aim to quantitatively understand backiray and its effect on the
temporal dynamics of the elongation phase. The remaind#rni®fChapter is organised
as follows. We first present a stochastic model of the tr@pisen elongation phase. The
model incorporates polymerisation and depolymerisaticth® nascent RNA as well as
backtracking. Unlike previous modelling attempts [10,80,137], we use the model to
provide a quantitative characterisation of transcripiqrausing based on the underlying
mechanistic details of backtracking. Our results show platse lifetimes should obey a
wide distribution, and are consistent with experimentalifigs [47,65,92,99,124]. Next,
we study how pauses affect the statistic of the total eloagdtme. Our results indicate
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Figure 4.1: Experimental findings from single molecule sgadbf DNA transcription
demonstrating the prevalence of pauses. (A) Schematstrdition of an optical method
used for in single molecule studies of DNA transcription.olbeads are held in separate
optical traps. A single RNAP molecule is bound to one of thadsewhile the other one
is bound to the downstream end of the DNA. As the RNAP trahsdrithe DNA, the
beads are pulled together. The motion of the RNAP along thA EBhplate is registered
as a displacement of the right bead, which is held by a weghicad trap. Reprinted
by permission from Macmillan Publishers Ltd: E. A. Abbondemi et al, Nature,438
(2005), copyright (2005). (B) Representative trace of tlhNAR position along the DNA
template. Transcription is interrupted by frequent padassng from~ 1 (right inset,
arrows) to several seconds. Reprinted by permission fraavigr: K. C. Neumaet al,,
Cell, 115 (2003) Copyright(2003). (C) Distribution of pause life#s Transcriptional
pausing occurs on multiple timescales. Here, the disiohus fitted by a sum of two
exponentials (solid line) with lifetimes df.20.1 s and6.00.4. Reprinted by permission
from Elsevier: K. C. Neumaat al,, Cell,115(2003) Copyright(2003). (D) Backtracking
motion of the RNAP molecule along the DNA template. Horiabtines denot®.34 nm
spacing (nucleotide length-scale).
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(©)

D RNA polymerase

A last transcribed nucleotid@)

O active site(n—m)

Figure 4.2: Schematic illustration of the transcriptioarglation complex (TEC) in dif-
ferent translocation states: (a) Post-translocated atqte m = 1), (b) pre-translocated
state(n, m = 0) and (c) backtracked state,m = —3). The position of the last tran-
scribed nucleotide is denoted lay The physical position of the TEC along the DNA
template is marked by, the position of the active site relative to

that backtracking pauses can dramatically affect the teahmpatistics of the process,
giving rise to a heavy-tailed distribution of elongatiomés.

4.2 A Stochastic Model of the Elongation Phase

In this section we present a stochastic model of the elooigatynamics. The model,
motivated by recent experimental findings, incorporatdgmperisation and depolymeri-
sation of the nascent RNA as well as backtracking of the RNIAR basic notation is
first introduced and polymerisation/depolymerisation badktracking dynamics are ex-
plained in detail. Finally, key assumptions underlying madelling attempt are discussed
and justified.

4.2.1 Basic Notation

A simple model that captures the essence of the elongatiasepban be described in
terms of two discrete variablesandm. Variablen denotes the size of the nascent RNA
or equivalently the position of the last transcribed DNA leotide. We should note that
these two definitions will be used interchangeably throughioe Chapter depending on
whether emphasis is wished to be given to the position of t6€ &long the DNA or
to the length of the RNA. Since our model does not capturesti@otion initiation,n
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Diffusional Translocation Polymerisation/Depolymerisation
Energy
(n,m=0) (n,m—l) (n+1,m—0)

Figure 4.3: Schematic illustration of the state transgiteading to polymerisation and
depolymerisation.

is not defined relative to the actual transcriptional stargpoint (TSP). Rather, = 0
corresponds to the position at which the elongation phasetered by the formation of
the stable TEC usually a few  10) nucleotides downstream of the TSP [see Chapter 2
(2.2)]. Finally,n = N denotes the end of the transcriptional unit, where the g®ce
terminates. The second variabledenotes the position of the polymerase’s active site
relative ton and ranges from-n to 1. In particular, states: = 0 andm = 1 correspond

to the pre-translocated and post-translocated states GlER, respectively, while: < 0
denotes backtracked states (see Fig. 4.2).

In summaryy marks the overall progress of the process and is henceedfealy by
polymerisation and depolymerisation events. On the otaedhn indicates the physical
position of the TEC along the DNA template relativerto Alternatively, one could use
the absolute position the RNAP active site on the DNA tenepla., z = m + n.

4.2.2 Polymerisation/Depolymerisation Dynamics

Our model of the elongation phase starts with the TEC ocagpgtate(n = 0,m =
0). The only transition possible from this state is to the gomtslocated statén =
0,m = 1), from which the TEC can translocate back(to= 0,m = 0) or proceed with
polymerisationn = 1, m = 0). In general, nucleotide polymerisation can only proceed
from the post-translocated state. Thus, with the TEC odagpiye pre-translocated state
(n,m = 0), polymerisation of a single nucleotide to the nascent RMAim requires
two steps: (1) the TEC sliding forward to the post-transledsstate ¢, m = 1) and
(2) the extension of mMRNA by one nucleotide, which leavesTERE in the next pre-
translocated statev(+ 1, m = 0). Conversely, the reverse process of depolymerisation
can only proceed from the pre-translocated state and I¢hgddEC in the previous post-
translocated staten(— 1,m = 1). A schematic diagram of state transitions leading to
polymerisation/depolymerisation of the nascent RNA iggiin Fig. 4.3.

The above described state transitions capture the dynarhibe RNAP as it moves
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Figure 4.4: Schematic illustration of the state transgioapturing backtracking dynam-
ics. The process involves the diffusional translocatiothef TEC along the DNA tem-
plate, while the length of the RNA transcript remains conista

along the DNA polymerising the RNA chain, and which are rasuent of aBrownian
ratchet[1]. For any given template positiom, therefore, the TEC owning to thermal
noise freely moves back and forth between the pre-tran@d¢a, m = 0) and the post-
translocatedn, m = 1) states. From the post-translocation statem = 1) polymeri-
sation of the next nucleotide is possible. Polymerisatigsidates energy and marks the
transition to(n + 1, m = 0). Once polymerisation has occurred going baclkiton = 1)
requires further energy dissipation (to break the phosgstel bond). Such a depoly-
merisation event is of course always possible, but on a muahelr time-scale than that
needed for thermal noise to push the TEC into the post-aatdd statén + 1, m = 1)
and enable it to carry on with polymerisation.

4.2.3 Backtracking Dynamics

Inclusion of backtracking in the model provides an addaigmathway, as the TEC can
now hop from the pre-translocated staie m = 0) into the first back-tracked state
(n,m = —1). Subsequent translocation events, driven by thermal nsisg the TEC'’s
active site back and forth along the DNA template (see F&). 40 some cases, backtrack-
ing will end as the TEC reattains the pre-translocated state» = 0) (allowing poly-
merisation/depolymerisation to resume). In other insgtanbacktracking is interrupted
(so calledtranscriptional arrest and the TEC stalls at some stdte m = m*) [58].

In such a scenario accessory protéioan induce cleavage of the exposidRNA end,
bringing the TEC once again in the pre-translocated gtate m*, m = 0).

In theory, backtracking can move the TEC as far backras: = —n) [58]. How-
ever, backtracking is often restricted up to a few nuclestitom the last transcribed
nucleotide. This restriction stems mainly from interacfidoetween the TEC and the
nascent RNA [58]. As thé’ end of the RNA exits the TEC, it is free to fold upon itself

Isuch as the Gre/TFIIS cleavage factors [20, 45]
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and form stable structures such as RNA hairpins. Subsdguehen the TEC backtracks

and slides backwards it interacts with these RNA structurdsch preclude extensive

backtracking and can even lead to transcriptional arrestactommodate the above, in
our model we impose a backtracking boundafyso that backtracking is restricted up to
m=—M < —n andm = —n whenn < M.

4.2.4 Some Key Notes on the Model

The model, presented above, provides a simplified physicalne of the transcription
elongation dynamics, particularly relevant to the questieegarding the temporal dynam-
ics of the process that we seek to answer. Here, we discugasiigd key simplifications
and assumptions that underlie our modelling attempt.

In our model the TEC is pictured as a rigid body moving along BNA. Such a
simplification allows us to follow the motion of TEC by justing the position of the
RNAP’s active site as a marker. As far as our model is concerak other structural
characteristics of the TEC such as the length of RNA-DNA id/br the size of the melted
DNA region, remain unchanged during its motion. This is agpnately valid since large
scale conformational changes of TEC have not been obsewrgydts motion and the
picture of inchworm-like motion has been abandoned [1, 63].

Furthermore, we picture DNA as a linear chain of sites, whiehote the position
of nucleotides. Translocation events are assumed to teposhe RNAP’s active site
by one nucleotide along the DNA chain, either forwards orklards. In this manner,
our model only allows for a finite number of translocatiortasa These states effectively
corresponds to minima in the energy landscape that trathsigap the motion of the
TEC.

For the backtracking dynamics, we have assumed that a bouexiats atn = M.
As discussed above, this boundary captures interactianeba the TEC and the nascent
RNA that restrict extensive backtracking. However, it dddee noted that the distance
the TEC is allowed to backtrack is not in general constantlepends on the specific se-
guence of the RNA and fluctuates owning to the stochastiaity which RNA structures
appear and disappear. The fast RNA dynamics however remd@tions in) rather
small of the order of a few nucleotides. Therefore treafih@s constant, is not expected
to significantly alter the dynamics and constitutes a vghgraximation.

So far the model has been presented in its most general fdate tsansitions cap-
turing the polymerisation/depolymerisation of the RNA dhe translocation of the TEC
have been defined, however, no rates have been associateanyibf these transitions.

60



Chapter 4  Single Molecule Level: The Dynamics of a TransegliRNA Polymerase

Backtracked states (c)
M M-1 41 I -1 1 0 -
<
a c %
( ) C/\ Cc o Cc o f
> A =
c c c
(b)
c
C/\ C/“\
> w_ \ = —
! c c c S
Arrested state ?
! 2
| + Factors L 5
******** > Polymerisation
1 1 1

Figure 4.5: (a-b) Schematic illustration of the two casebaxtktracking: (a) restricted
backtracking and (b) backtracking leading to transcripiarrest. Variablé denotes the
number of nucleotides that the TEC has translocated badswv@ranslocation is possible
uptol = M. A backtracking pause commences with the TEC at dtate1 (dotted
arrow) and terminates when stdte- 0 has been reached. In the second case, the TEC is
arrested at state= M, and of elongation factors are necessary to regain a poigatiem
competent state (dotted arrow). (c) Schematic illustratibthe free-energy landscape
during backtracking. According to Kramer’s rate theory thée of hopping depends
on the difference between the height of the activation baand the free-energy of the
current state. Assuming that energetic variations due qoesgece inhomogeneities are
negligible, an isoenergetic landscape (bottom) is obthgjieing rise to equal rates of

hopping.

This is left for the subsequent sections where rates amdated and further assumptions
regarding their dependence on the underlying sequenceate.m

4.3 Backtracking and Elongation Pauses

We first treat the dynamics of RNAP backtracking in isolafimm the rest of the process.
This enables us to ask the question: what is the lifetime ahgles pause induced by
backtracking? By formulating the question as a simple fiesisage problem we are able
to obtain analytic results for the distribution of the padseations. Our results indicate
that pauses induced by RNAP backtracking obey a heavydtditribution, which is in
agreement with experimental observations [47,124].
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4.3.1 Mathematical Formulation

As described in section 4.2.3 during backtracking the TE@shimetween consecutive
translocation states denoted/y< 0. Here, however, to avoid negative integers we shall
use the notation = —m. Backtracked states correspond to minima in the free energy
landscape that transiently trap the diffusional motionted TEC. The rated_.;+) at
which transition between consecutive staties+{ [ + 1) occur will depend on the free
energy landscape and according to Kramer’s rate theoryi$gfiyen by

Cl—i+1 = Co€exp [_(AGh—»lil - AGl)/k’BT], (4-1)

wherec, is a prefactorkp is the Boltzmann constant; is the absolute temperature,
and AG; andAG,..;,, denote the free energy of the current state and the heighieof t
activation barrier, respectively [see Fig. 4.5(c)].

Initially, the TEC is considered to attain stdte= 1. From there, the dynamics of
P(l,t), the PDF of finding the TEC in stateat timet given it was in staté = 1 att = 0,
are described by the Master equation:

aP (1,1)
ot

i1 P (l —1, t) + Cl+1_>lP (l +1, t) — (Cl—>l+1 + Cl_,l_l)P (l, t)(42)

Backtracking terminates when the TEC slides back to gtate0, therefore we impose
on Eq. (4.2) the boundary conditidn(0,¢) = 0. Furthermore we consider two biologi-
cally relevant scenarios (discussed in section 4.2.3ksponding to different boundary
conditions imposed on state= M:

1. Restricted backtracking no translocation is possible beyond state M (reflect-
ing boundary)

2. Backtracking leading to transcriptional arrestthe TEC gets trapped at stdte-
M (absorbing boundary)

The free-energy landscape that dictates the rates of hgppimveen contiguous states
is shaped mainly by the length of the RNA-DNA hybrid, whiclthe major contributor
to the stability of the TEC [58]. Additional contributionsmme from the actual sequence
of hybrid as well as from nonspecific interactions betweenRINAP, the DNA and the
transcript [58]. Since we have assumed that the length dfythad and all other structural
properties of the TEC remain relatively unchanged, we caese energetic variations
due to changes in the sequer@md regard the TEC as moving in a periodic free-energy

2We assume that energetic variations due to sequence intesraitgare averaged out over the length
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landscape [see Fig. 4.5(c)]. This enables us to treat ddirg as purely diffusional
process (unbiased random walk) with a constantaakguation (4.2) then becomes:

aP (1.1)
ot

= cP(l—=1,t)+cP(l+1,t)—2cP(l,t), (4.3)

subject to the same boundary conditions as above.

4.3.2 Case | Restricted Backtracking

In this case backward translocation beyond state) is blocked, owing to interactions
between structural elements of the transcript and the TEB€&.cbrresponding boundary
conditions for Eq. (4.3) areP(0,¢) = 0 (absorbing) and:P(M,t) = cP(M + 1,t)
(reflecting).

We are interested in the statistics of the pause lifetifjieor alternatively the first
passage time to state= 0. As we have seen in Chapter 3 (3.4) the PDHpfs given
by the probability flux to staté = 0, i.e,, Pz (t) = cP(1,t), which can be obtained
using the Laplace transform method [116]. In particulamgghe Laplace transform
p(l,s) = [, P(l,t)e *'dt, we can eliminate the time derivative in Eq. (4.3) and obéain
set of algebraic difference equations:

sp(lys)—61 = ep(l—1,8)+cp(l+1,5) —2ep(l,s), (4.4)

whereg, ; is the Kronecker delta. The corresponding boundary canttin the Laplace
domain arep(0, s) = 0 andcp(M, s) = ep(M + 1, s). We solve Eqg. (4.4) recursively to
obtain a closed formula foP (s) = ¢p(1, s), the Laplace transform of the probability
flux to statel = 0:

sinh [M¢(s)] — sinh [(M — 1)¢(s)]
sinh [(M + 1)¢(s)] — sinh [M¢(s)]’

wheretanh [¢(s)] = | /1 — -

Moments of P, (t)

Pr(s) = (4.5)

Equation 4.5 is an exact result as far as our model of badiitrgés concerned &b (s)
is the moment generating function of the PDF we sé&k(t). In particular,Pz, (s = 0)
yields the probability of eventually hitting state= 0. This quantity can be trivially

of the RNA-DNA hybrid.
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calculated to bé, that is, the TEC will eventually exit the pause and resuroagdtion.
Furthermore, the coefficients of the Taylor expansiofPgf(s) arounds = 0 yield the
raw moments of the distribution [116]:

s dPr(s) N 3_2(127570(5)

Pr(s) = Pls=0)+ = —| +5—=5|

%?SQ +O(s). (4.6)

= 1+ (Ty)s +

Some straightforward calculations lead to expressionsh®mean pause duratidf)

and variance 7,
M

) = = (4.7a)
M +2M3
32

0% = (T~ (%) = (4.70)

Approximate Result for P, (t)

From Eq. (4.5), using the addition theorem for the hypebsilie® and taking the limit
s/c < 1 (corresponding to > 1/c), one obtains an approximate result oy, (s):

75 (S) _ sinh [M ¢(s)]—sinh [M¢(s)] cosh [—¢(s)]—cosh [M¢(s)] sinh [—¢p(s)]
To sinh [(M+1)¢(s)]—sinh [(M+1)¢p(s)] cosh [—¢(s)]—cosh [(M+1)¢p(s)] sinh [—¢(s)]

sinh [M s/c] —sinh [M s/c] cosh [—\/%] —cosh [M s/c] sinh [—\/%]
sinh [(M+1)\/57/c] —sinh [(M—l—l)\/%] cosh [—\/%] —cosh [(M—l—l)\/%] sinh [—\/%]

sinh []W s/c] —sinh [M s/c] (1+4...)—cosh []W s/c] (7\/57/c+>
sinh | (M+1)y/s/c|—sinh [(M-+1)y/s/c|(1+...)—cosh [(M+1)y/s/c| (=/s/c+...)

cosh []W s/ c]

cosh [(M+1)\/57/c] '

The above result can be readily transformed back to the ton®aih, yielding an approx-
imation for Pz, (¢) valid for times much longer than the average stepping time, 1/c.
In terms of the Jacol#i, the inversion yields [105]

Q

Q

9] 1
Pr(t) = a’lgﬁl (§Va1

ta2) , (4.8)

3sinh(z + y) = cosh(x) sinh(y) + sinh(x) cosh(y)
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wherev = M/\/c,a = (M + 1)//c andf,(z|q) can be expressed in series as [105]

Biel) = <= 3 (1) exp [~(z+n = 1/2%d). (4.9)

n=—oo

Simpler expressions foPz (t), exemplifying the behaviour of the process, can be
obtained in the limits < M?/c andt > M?/c

t—3/2

2/mc’

"™ _gin(—1T e ] s M
A+ \ e+ 1)) P T 2] ¢
(4.10)

The picture obtained from the above formf (¢) is a rather simple one. For times short
compared to the time scale of diffusion to the reflectingestat M (i.e.,t < M?/c),
P, (t) scales ag~>/2, as expected for the first passage probability of a randorkewah

a semi-infinite, one-dimensional domain [116]. Conversfytimes much longer than
M? /¢, the effect of the reflecting boundary becomes apparestijratthe asymptotics of
Pz, (t) and imposing a rapid exponential decay. The two differeptrgotic behaviours
are illustrated in Fig. 4.6, where the analytic result [E8f] have been plotted together
with the data obtained from stochastic simulations of theleho

1
St M
C

4.3.3 Case Il -Backtracking Leading to Transcriptional Arrest

In this case the TEC initially occupies stdte- 1 and can resume polymerisation when
statel = 0 has been reached. However, here, state M signals the entrance into an
arrested state, form which the TEC can only escape with thefeaccessory elongation
factors [20, 45]. Hence, the boundary conditions impose&gn(4.3) are absorbing at
both ends:P(0,t) = P(M,t) = 0.

The existence of two absorbing boundaries introduces omtpmndifferences from
Case |. Here, we are interested in both the PDF of the recoveeyZ,, P, (t) = cP(1,1),
and the PDF of time to arregi,, Pr,, (t) = cP(M — 1,t). Following a similar treatment
as in Case | we obtain an exact analytic result for the momamégting functions of the
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Figure 4.6: The probability density function of pause life¢s (P (¢)) in the case of
restricted backtrackingl{ = 10). Plotted are the analytic result [Eq. (4.8)] (solid line)
and the results of stochastic simulations of the modellésic The PDFP£ (¢) exhibits
a power law decayl(/c < t < M?/c), followed by an exponential cutoff in long time

limit (¢ > M?/c).

two probability distributions

- ~ sinh (M —1)¢(s)]
Pr(s) = S [Mo(s)] (4.113)
Pr.(s) = % (4.11b)

wheretanh [¢(s)] = | /1 — -

Moments of Py, (t) and Pr,, (t)

As before by evaluating the above equations at 0 yields the probability of eventual
recovery,r, and eventual arrest,,;, which should sum ta:

! _ (4.12)

W = 1l——; 7y = 1—mp
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Furthermore one can obtain the conditional mean times fon esent by evaluating the
s derivative of Pz, (s) andPy,, (s) ats = 0

(To) = 2M60_1, (4.13a)
(Tar) = Mzc_l. (4.13b)

Higher moments/7*) and (7}%) can be obtained by evaluating thd derivative of
Pr,(s) andPy,, (s) ats = 0, respectively.

In the presence of accessory factors, such as the bactedaghrGteins, the arrested
transcript is cleaved and the TEC returns to a polymerisatmmpetent state. If we
assume that the accessory factors act on a relatively fastscale (as compared with
(7y) and(7y)), then the overall mean pause duration is just the weightedaf (7;) and

) M—-1
(T) = mo(To) +mu(Tu) = — (4.14)

Approximate Result for P (¢) and Pz, (¢)

Moreover, in the limitt > 1/¢, approximate analytic expression can be obtained for
P, (t) andPr, (t) by inverting the Laplace transforms given in Eq. (4.11) Tiersion,
in terms of the Jacoldl, function, yields [105]

9, 1
Pr(t) =~ aal—(?yo 04 (iVOGSI ta(;?) : (4.15a)
-1 0 Lo 1], o
PTJWO(t) ~ o ay 61/M€4 5 MCLM’tCLM ) (4.15Db)

wherevy = (M — 1)/+/c, vy = 1/+/¢, a9 = ayy = M /+/c, andfy(z|q) can be expressed
in series as [105]

oo

0u(xlg) = % S (—1)exp [~(z + 1+ 1/2)2/q] (4.16)

n=—oo

Compact expressions f@, (¢) are obtained in the limits < 1/c andt > M?/c:

t=3/2 1 M?
- Z t -
2/mc’ c ST ¢’
P, (t) o~ (4.17)

2mc . /7w w2c M?
W S11 <M) exXp _Wt 5 t > 7
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Figure 4.7: Results obtained for backtracking leading aogcriptional arrest (Case 1)
with A = 10: (left) distribution of self-recovered pausé®;, (¢), and (right) distribution
of time to arrestPr,, (t). Plotted are the analytic results [Eq. (4.15a) and (4.1&&pec-
tively] as solid lines and the results of stochastic simatat as circlesPr, (t) exhibit a
power law decay foit /c < t < M?/c, followed by an exponential cutoff in long time
limit (¢ > M?/c).

Once again, the PDF demonstrates a power law decaly/fox t < M?/c, followed by
an exponential cutoff. For sufficiently long times;> M?/c, that allow diffusion to the
boundaryl = M, the PDF of the time to arrest decays exponentially and gy

2 2 M2
Pr,(t) = 27 sin <£> exp <—%t> > - (4.18)

The different asymptotic behaviours are illustrated in. Big, where the analytic re-
sults have been plotted together with the data obtained $tochastic simulations of the
model.

4.3.4 The Effect of Applied Force

A key characteristic of the single molecule techniques usefudy the dynamics of the
elongation phase is that they allow the application of laatthe RNAP as it transcribes
the DNA. Studying the effect that external forces have oneflbagation dynamics is of
key importance, since RNAP molecules continuously haveveyamme transcriptional
roadblocks or forces due to the coiling of the DNA molecul&][4In this section we
briefly discuss the effect of forcing on backtracking dynesni

So far the TEC has been assumed to diffuse on periodic freegpgitandscape where
minima correspond to distinct backtracked states that gparated by the length-scale
of a nucleotidejz = 3.4A. External forcing tilts this energy landscape resultingai
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(b)

Figure 4.8: Schematic illustration of the free-energy Boape during backtracking with
and without external forcing. As a result of an external éongth magnitudet- F' (assist-
ing) the free-energy landscape is tilted by a factoF'of per backtracked state.

translocation bias. In particular, the application of ateexal force on the RNAP tilts the
free-energy landscape by a factorfafz per translocation state, whefés the magnitude
of the force in the direction of movement (see Fig. 4.8). Tisathe energy of successive
backtracked states differs kiyox [69]. According to Kramer’s rate theory, the forward
and backward translocation rates become

Fé
cf = cexp [2 kaT], (4.19a)
Féx
Cp, = cexp {—m}, (419b)

wherec is the translocation rate in the absence of any forcing.
The Master master equation describing the backtrackingmyes in the presence of
force is given by

aP (1.1)
ot

= Pl —1,t)+csP(I+1,t)— (¢ + )P (I,1). (4.20)

subject to the same boundary conditions discussed in pregedctions:P(0,t) = 0,
aP(M,t) = csP(M+1,1t) for Case | (restricted backtracking) afd0, ¢) = 0,P (M, t) =
0 for Case Il (backtracking leading to transcriptional atyei® what follows we focus on
the case of restricted backtracking. However, similarltesztan be be obtained for the
second scenario as well.

As before an exact result can be obtained for the Laplacsftyem of Pz, (¢), the PDF
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of the pause lifetimeg:

V7 sinh [M(s)] — sinh [(M — 1)6(s)]

> = 421
P (s) " /rsinh (M + 1)o(s)] — sinh [M(s)]’ (4.21)
iR ¢ Fox -
wheretanh ¢(s) = /1 — et andr = P exp T Parameter quantifies

the effect of the force, witlr > 1 indicating an assisting force and< 1 an opposing
one. In the absence of external forcing € 1) one can easily verify that the above
equation reduces to Eq. (4.5). The expression found5fjg(s) can be used to obtain
analytic results for the moments of the probability disitibn Pz, (¢). In particular, the
mean pause duratiaff,) and variance take the form
1—1/rM
Ty — 4.22a
< 0> ¢y (1 _ 1/T) ( )
1 1—1//™ 4 M

2 e p—
n T 21/ Wtr) S —

(4.22b)

Note that once again taking the linfit — 1 yields the results obtained for the symmetric
case [EqQ. (4.7)].

As it stands Eq. (4.21) cannot be easily inverted back intatithe domain. Instead,
numerical methods are used to obtain an estimafe;oft) (see section 4.5). Figure 4.9
illustrates distribution of the pause lifetimes for diff@t magnitudes of external forces
(assisting or opposing the forward motion of the RNAP). Intipalar, the heavy-tailed
characteristics of the pause distribution, seen in the sstmoncase, are still evident for
assisting forces up t6' ~ kgT'/dx ~ 10pN (at room temperaturé = 300K).

4.4 The Statistics of the Elongation Phase

Having studied the statistics of backtracking pausing itaitlen this section we use the
model of the elongation phase to assess the effect of thecnigtional pauses on the
overall dynamics of the process. We particularly focus @endfatistics of the elongation
times,i.e, the time needed for the TEC to reach position= N, m = 0) having started
from state(n = 0,m = 0). Two variants of model are considered. First in a model
without backtracking (Model A), we show that elongationésrscales linearly with the
DNA template size. Second in a model that incorporates backing (Model B) we find
that elongation pauses can dominate the process and gite adeavy-tailed distribution
of the elongation times.
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Figure 4.9: Results obtained for restricted backtrackibgsg 1) in the presence of ex-
ternal forcing and\/ = 10. Solid lines were obtained by numerically inverti®g, (s)
[Eqg. (4.21)], while markers correspond to results obtaifrech stochastic simulations
of the model [Eqg. (4.20) with boundary conditiod¥0,¢) = 0 and ¢,P(M,t) =
CfP(M + 1, t)]

4.4.1 Model A — Translocation Limited Polymerisation

In this variant of the model backtracked states are ignaed,at each template position
n only two translocation states are possibte:= 1 andm = 0, which allow transcript
polymerisation and depolymerisation, respectively. Tdtes of polymerisation and de-
polymerisation are given by, andk_, while a andb is the translocation rate from = 0
tom = 1 andb the reverse rate from = 1 tom = 0. (See typical values in Table 4.1).

The dynamics of, ,,,(t), the probability of finding the TEC in state, m) at timet,
are described by the Master equation [50, 141]:

0P, o(t)

SO = kyPaoig £ bP — (ko + )P, (4.23a)
0P, (¢
) Pyt (ks )Py, (4.23b)

wheren varies from0 to N — 1. We assume that depolymerisation is impossible from
(n = 0,m = 0) and that the process is terminated when state- N, m = 0) has been
reached. Consequently, the boundary conditions imposdttjo4.23) are reflecting at
(n = 0,m = 0) and absorbing at» = N, m = 0). As discussed in Chapter 3 (3.3.1),
reflecting boundaries can be implemented by defining a Gaststate: = —1 and setting
k_Pyp = k+P_11. On the other hand, to obtain the absorbing boundary, itcafio set
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(a) n-1 n n+1

Figure 4.10: (a) Schematic illustration of Model A, incladipolymerisation depoly-
merisation, and transitions between the pre- and possitveated states. (b) A mean field
approximation of Model A, yielding a biased random walk, lidaned in the limit of fast
translocation dynamics

Py = 0[50], which is equivalent to setting the transition ratenfr@V, 0) to (N — 1,1)
equal to zero.

If we assume that translocation occurs at a much faster scake that polymerisa-
tion/depolymerisationi.e., k., k- < a,b [10, 60], amean-field(or quasi-steady staje
approximation is obtained, equivalent to a biased randolk.vi@this limit, at each posi-
tion n equilibrium between the two translocation states=€ 0, 1) is established rapidly;
hence we can write

CP(t), Puo(t) = Pu(t)— Pui(t). (4.24)

Palt) =~

Summing Eq. (4.23) over. and using the above relationship one obtains the Master
equation describing the the dynamics®f(t) = P,(t) + P,1(t), the probability of
finding the TEC at position:

oF,
ot

= piPoa+p_Poyi — (p- +py) P, (4.25)

where theeffectivepolymerisation and depolymerisation rates are given by:

ky a k_b
~ -~ . 4.26
P+ arb 7 a+b (4.26)

We focus on the total elongation tim&y, i.e., the time it takes the TEC to arrive
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Parameter Value References
b/a 0.8 [74,156]
ky/ k¢ 0.01 [60]
k¢ 3651 [121]

Table 4.1: Typical values for the rates of polymerisati@paymerisation and transloca-
tion between the post- and pre-translocated states.

at(n = N,m = 0) starting position fromn = 0,m = 0). Using the method of the
backward Master equation [see Chapter 3 ( 3.4.2)] we cdkthe meariy = (7y)) and
variance(c? = (72) — (Ty)?) of Ty:

- : v KUK 4.27
S G Ry 7o N S R O (4.27a)
s (L+ K+ K K(1—KY) (44 K + K'Y
T Pi (1 - K)* N (1-K)(1+ K +4K"“N) |’ (4.27b)

whereK =p_/p,.

Figure 4.11 shows results obtained from stochastic sinongbf model A [Eq. (4.23)],
along with the analytic results obtained in the mean field@gamation, for different val-
ues of NV and K. In the smallK regime and for small values @¥, the elongation times
are approximately Gamma distributed:

—t, o
Pr,(t) = t“‘l%, (4.28)

wherel" denotes the Gamma function and= ;.2/0?, 3 = 02 /u are the shape and scale
parameters of the distribution, respectively. Xss increased the distribution approaches
a Gaussian, in agreement with the Central Limit Theorent) miéan and variance given
by Eq. (4.27).

Under normal conditions, one expects polymerisation tovaewhelmingly favoured
over depolymerisation [58],e., K = p_/p, < 1. Taylor expanding: ands* around
K = 0yields

(N-1)

w= Yok L0 (K?), (4.29a)
P+ P+
N AN —4

ot = = % + 0 (K?). (4.29b)
y2us y2us

Hence, in the limitX — 0 both i ando? scale linearly with the template lengfh,
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Figure 4.11: The probability density function of the elotiga times in the absence of
backtracking. Marker denote results obtained from stdahasnulations of the model
[see Eq. (4.23)] and are fitted with either a Gammva= 10) or a Gaussian distribution
(N = 10%,10%) with mean and variance given by Eq. (4.27). (a) Resultgsfor 0.01,
p4+ = 20 s~ ! and different template lengthié = 10, 102, 10° bp. (b) Results forV = 103
bp,p. = 20 s~* and different polymerisation biasés = 0.01, 0.5, 0.99.

and consequently fluctuations around the mean are of the bfgdé&V. In other words,
the distribution of the elongation times becomes narrovdgked around the mean as
N is increased, and in the limiV — oo, where fluctuations tend to zero, the process
becomes essentially deterministic. Conversely, inkhe- 1 limit, polymerisation and
depolymerisation tend to play equal roles, leading to flattuns in the transcription time
that do not vanish a4 is increased (see Fig. 4.12).

4.4.2 Model B — Elongation with Backtracking

In this case, in addition to polymerisation/depolymer@atnd transitions between the
the pre-translocatedi{ = 0) and post-translocated( = 1) states, the TEC is allowed
to backtrack. In particular the TEC hops from the pre-tracated stater(, m = 0) into
the first back-tracked state,,(m = 1) with rate k,. Subsequent translocation events
can randomly shift the TECs active site back and forth, wéte r up to some limit
(n,m = M). Furthermore, we focus on the case of restricted backtrgcke active
polymerisation/depolymerisation resumes when the TEGaiea the active statesi(=
0, 1) and no transcriptional arrest is possible.

The dynamics of’, ,,,(¢), the probability of finding the TEC in state, m) at timet,
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Figure 4.12: Coefficient of variatiorv( ) for the elongation times in the absence of
backtracking as a function of the template lengthand for different values ofk’. As
expected the width of the distribution scalesl gs/N.

are described by:

0P,
8t’1 — k_Poi1g+aPuo— (ky +b)P,y, (4.30a)
aPn 0
8t7 = k—i-Pn—l,l -+ an,l -+ CPn7_1 — (k?_ +a -+ k?b>Pn70, (430b)
P, _
0 a]; LR kbpn70 + CPm_Q — QCPm_l (430C)
(4.30d)
P,
0 8;5 M- Py — Py —u (4.30e)

with boundary conditions_F, o = k4 P_; 1 (reflecting) andPy , = 0 (absorbing).
Once again, assuming that the pre-translocated and postdcated states are in
equilibrium one obtains

OP, .
5% cPn,—1+pyPy 1 +p-Popry — (p- +p- +pp)Prp, (4.31a)
0P, _
g7 L = pyPu 4Py —2¢P, (4.31b)
(4.31c)
oP, _
a’t M- Py _n1 — Py (4.31d)

75



Chapter 4  Single Molecule Level: The Dynamics of a TransegliRNA Polymerase

—— Polymerisation (n}——+

@ n1 o 1 (b))  n-1 oo >
E|l 1 [0 i0icio; R R
o lbual\l%lbual\llg b a * ® — 0 — ©
= | N N | ] R
3 0 O ke O ke O Rilrc Ritc Ritc
g bl kic klic| 1 o 0O 0
S|t © © © ciic  chc  clc
o clic clic clic
clic clic clic clic cjic cjpc

-M O O O -M O O O

Figure 4.13: Schematic illustration of Model B, involving olpmerisa-

tion/depolymerisation dynamics and backtracking depelfysation and backtracking.
Model B allows backtracking as far as = — M, with M < N. If n < M, backward
translocation is permitted up to state= —n (not shown).

whereP, . = P, o + P, and the effective rates are given by

k_b
a+b’

kyb
a+b

~ ~
~ ~

(4.32)

and p,

P+

Having characterised backtracking statistics, we usehagic simulations of the
model given by Eq. (4.31) to examine the effects of backirarkn the total elongation
time. In particular, the macroscopic (observable) propethat we consider are:

1. the number of pausésover a DNA template of lengthv

2. the aggregate lifetime of all the pausegstelative to the time spent on active poly-
merisationr,.

As we shall see these properties are linked to the micros@awameters,, p. andc and
will be varied in our stochastic simulations to assess tmgrmution of pauses to the total
elongation time.

Since at every site backtracking is kinetic competitionhwablymerisation and de-
polymerisation, one expects that for large templates thabau of pauses observed
should obey:

9
N

2

Py + Py + -
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where in taking the last step we have assumed that the ratdyohprisation is the fastest
one,i.e, py > pp, p_.

Moreover, as seen in section 4.3.2 the mean pause durafiéfrisHence, an estimate
of the aggregate pause duration is given by
M

M
7, = 0— ~ NZ.Z (4.34)
c P+ cC
On the other hand, the time spent on active polymerisatidhasone obtained in our

treatment of Model Aj.e.,

N
T, ~ —. (4.35)
b+
The ratio of these two time-scales is therefore,
M
R =2~ p=, (4.36)
Ta c

which is a dimensionless measure of pausing, quantifysgeiiative contribution to the
elongation time.

Figures 4.14 and 4.15 illustrate the results of the stoaghashulations of Model B
[Eq. (4.31)] for different values ok and keeping the frequency of paus¢d/ constant.
As expected, folR — 0 the polymerisation-only model (Model A) is recovered. In-pa
ticular, the width of the distribution scales likg+/N (see Fig. 4.15) and the distribution
of elongation times demonstrates a high peak around the gleagation time predicted
by Model A (see Fig. 4.14 left panel), indicating that eitherpauses or only brief ones
occur. AsR is increased, rare pauses with prolonged duratioasi(?/c) start to have a
significant contribution to the overall elongation time.ig bffect is clearly illustrated by
the heavy-tailed distribution of elongation times seenig &.14 (left panel) folR = 0.1.

In particular, the exponential tail resembles the one foiandndividual pause lifetimes
(see Fig. 4.6) indicating that the total elongation timeftemdominated by single rather
long-lived pauses. For even higher valuedithe elongation phase is dictated by back-
tracking dynamics and the distribution of elongation tinikstrates quasi-exponential
characteristics (see Fig. 4.15). For increasing pausedmzy (highep/N) the effect on
the total elongation time is clearly more profound; thertisition becomes broader and
exhibits a general shift towards longer elongation timee [Big. 4.14(b)].
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Figure 4.14: Distributions of dimensionless elongationds (scaled byV/p,) in the
presence of backtracking (Model B) for different valueshd tontrol parametek. The
distributions were obtained using stochastic simulatiointhe model [Eq. (4.31)]. Pa-
rameters used: (@ = 4 kb, M = 10 bp,p, = 10s™!, K = 0.01 andp, chosen to yield
§/N =~ py/py = 1 pauses/kb (Refs. [46,124]). (B) = 1 kb, M = 10 bp,p, = 10s71,
K = 0.01 andp, chosen to yield /N ~ p,/p, = 10 pauses/kb.

4.5 Numerical Methods

In this section we give an overview of the computational $cahd numerical methods
used to obtain the various results presented.

4.5.1 Models of Backtracking

To verify the validity of the analytic results obtained fbetstatistics of the backtracking
pauses (see section 4.3) stochastic simulations of thelrftbgle(4.3)] were performed
using the Gillespie algorithm [52]. In particular, the staff the system was monitored
using

e avariablem denoting the translocation state of the TEC,
e atimert.

The system was initialised with = 0 andt = 0. At each step of the algorithm, all
permissible state transitions were calculated based aerdutranslocation state. Then
one transition was chosen with probability proportionathie corresponding transition
probability and the state of the system was updated [seet@Ha(B.3.4)]. The simulation
was terminated when an absorbing boundary had been reacti¢ioeavalue of the timer
was saved for analysis. The code was implemented in ANSIaCh 6f the data sets used
in Figures 4.6, 4.7, and 4.9 was generated®independent simulation runs. Finally, for
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Figure 4.15: Coefficient of variatiom ( 1) of the elongation times for Model B as a func-
tion of the control parametelr/ R and for different values of the of pause frequencies
(p/p+). As1/R — 0, pauses become more significant and the distribution ofyelbon
times becomes broader. In the case of frequent paugirg,( = 2 - 10~?) the distribu-
tion exhibits exponential characteristies/{: = 1). As1/R — oo the effect of pauses
vanishes and Model B approaches Model A, whefe ~ 1/v/N. Results were obtained
using stochastic simulations of the model [Eq. (4.31)]. aReeters usedN = 4 kb,

M =10bp,p, = 0.01 s}, K = 0.01 andp, = 2, 10 and20 s!.

the numerical inversion of the Laplace transform in Eq. @} @ee Fig 4.9) a MATLAB
implementation of the Gaver-Stehfest algorithwas used.

4.5.2 Models of Elongation Phase

All data presented in section 4.4 were generated using astichsimulations of the mod-
els given by Equations 4.25 and 4.31. For the simulationgGitiespie algorithm [52]
was used. In particular the state of the system was moniteieg)

e atwo variablegn, m) denoting the translocation state of the TEC,
e atimert.

The system was initialised witth. = 0, m = 0) andt = 0. At each step of the algorithm,
all permissible state transitions were calculated basexioent translocation state. Then
one transition was chosen with probability proportionathe corresponding transition
probability and the state of the system was updated [seet@&(8.3.4)]. The simulation

“freely available from http://www.mathworks.com/matlabtral/fileexchange/9987
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was terminated when the absorbing boundary=- N, m = 0) had been reached and the
value of the timer was saved for analysis. The code was implemented in ANSI€C an
10° independent simulation runs were performed generatinddteeused in Figures 4.11,
4.12,4.14, and 4.15 (see captions for the numerical valug®@arameters).

4.6 Summary and Discussion

In this Chapter, motivated by recent experimental studle99, 124], we presented a
stochastic model of the single molecule dynamics duringtthescription elongation
phase. The model incorporates polymerisation and depoigai®n of the nascent RNA
as well as the backward translocation of the TEC along the Déplate, a phenomenon
dubbed backtracking [58]. Unlike previous modelling ages(10,60,71,137], our main
focus was to to provide a quantitative picture of the temjadlyaamics of the process.

Special emphasis was given on the quantitative charaatemsof the transcriptional
pauses induced via backtracking. Two biologically relé\snenarios were considered;
backtracking pauses that end with the TEC sliding back imtelangation competent
state and pauses that can potentially lead to transcrgdt@mest. For both scenarios
we obtained analytic results for the distribution of the g&duration, which we verified
with computer simulations. Our results show that transiomal pausing induced via
backtracking obeys a broad distribution, with a power lawayef —3/?) followed by an
exponential cutoff. Furthermore, the wide temporal dittion is maintained even in the
presence of moderate external loads acting on the RNAP mielec

Interestingly, our findings are consistent with the nonemential, heavy-tailed dis-
tribution of pause lifetimes observed in single moleculedsts of bacterial transcrip-
tion [99, 124]. Indeed, re-analysis of the data indicates tire pauses are well-fitted by a
model similar to the one presented here [35]. More receagwer law {~*/2) in the dis-
tribution of pauses has been also observed for eukaryatis¢ription (see Fig. 4.16) [47]
. This result was independently explained by the authorsggusicontinuous analog of the
model of backtracking present here. In this model duringktvacking the TEC is al-
lowed to diffuse continuously on the DNA template, ratheartlby taking discrete steps
(as allowed in our model). The two models become equivalewever, as long as the
length-scale of the stepping in our model is much smallan tha length-scale by which
the TEC is allowed to backtrack€., M/ > 1). It should also be stressed that the spatial
resolution of the experiment did not allow the direct obaéion of backtracking for all
pauses. This leaves open the possibility that shorter padidenot involve backtracking
but were induced through a different mechanism — perhapsasito the one suggested
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for ubiquitous pausing [see Chapter 2 (2.2)] observed inebat transcription [63, 99].
In summary, further experiments and more thorough anadfdise data seem to be nec-
essary before a final conclusion could be drawn regardingyhamics of backtracking
and transcriptional pausing.

We also used the model to study how backtracking pauses #fteoverall elongation
dynamics. In particular, by means of mean field theory andhststic simulations we
obtained results regarding the mean elongation time andairiance. Our key results
are particularly instructive in two limits: (i) when pausesuse a weak perturbation to
elongation dynamics and (ii) when they significantly affiécin the first case, elongation
times follow a narrow Gaussian distribution with fluctuasoaround the mean scaling
like 1/v/N, whereN is the length of the DNA template. In the second regime, when
there is a significant number of backtracking pauses whossido is comparable to the
active polymerisation time, there is a dramatic changeerdiktribution of transcriptional
times. In particular, the distribution becomes broaderdgmdonstrates quasi-exponential
characteristics

The existence of specific DNA sequences inducing backinggkauses as well as the
presence of accessory proteins assisting their recovdrgate that backtracking plays
an important role in the regulation of the elongation ph&ge To this end, our results
have direct implications regarding the simple birth andtldenodels used to interpret
the stochastic nature of RNA production and its implicatiegarding cell behaviour and
fate [27,55,114]. In these models, DNA transcription isiassd to obey Poisson statistics
under the assumption that the initiation phase constitiitesate limiting step of the
process — an assumption that allows one to disregard elong&#tnamics. In general,
however, the frequency of transcription initiation has dewvilynamical rang vivo[85],
andin vitro studies have shown that initiation times can be as fast as adeonds [15,
89, 127, 160]. Hence, rapid initiation times can be signrigashorter than the time
needed for elongation, which as we have seen demonstraeseds {.e., pauses) that
could dominate the overall rate of transcription [119]. LUcls cases, simple Poisson
models of transcription might need to be revised to incafthe intrinsic fluctuations
of the elongation phase (see Chapter 6).
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Figure 4.16: Distribution of measured pause durationsngleimolecule experiments.
Data are fitted with &=3/> power law [47]. Reprinted by permission from Macmillan
Publishers Ltd: E. A. Galbust al,, Nature (London}46, 820 (2007), copyright (2007)
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Chapter 5

Transcriptional Error Correction

Life crucially relies on the accuracy with which RNA seques@re transcribed from
DNA. To ensure the required levels of fidelity in the face @thspontaneous error rates,
DNA transcription relies on error correction mechanisms.pr@posed mechanism of
transcriptional error correction involves backtrackidghe RNA polymerase and mRNA
cleavage. In this Chapter we present and study a microsoopdel of this editing pro-
cess. The model offers a quantitative understanding ostrgstional error correction
by linking the observed error rate directly to the microscopte parameters of the pro-
cess. Our results indicate that transcriptional erroremtion via backtracking and RNA
cleavage is consistent with a multistep kinetic proofragdscheme. Furthermore, we
show that such a mechanism can significantly enhance thayideDNA transcription,
yielding error frequencies that are in agreement witkivo observations.

5.1 Introduction

DNA transcription constitutes a vital life process. As dissed in Chapter 2, RNA
molecules that are transcribed from the DNA are subsequeséd as templates for pro-
tein synthesis or can have key roles in various other celiptacesses, such as gene
regulation and DNA replication. For all these functions ®darried out properly the
accuracy of RNA sequences is a crucial requirement. Indexedrs introduced as the
genetic information is transferred into RNA can have fareteng implications, leading
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to the production or non-functional or even malfunctionprgteins and compromising
the robust function of the cell [30].

The importance of accuracy during DNA transcription becemeen more profound if
one takes into consideration the scale at which the proa&ss place and the underlying
physics. During transcription the RNA polymerase (RNAP)e®along the DNA adding
nucleotides to the RNA chain. Let us for the sake of the arquragssume that the RNA
nucleotides are picked solely on the basis of how well thesgpair with the correspond-
ing DNA nucleotide. As we have seen in Chapter 2, basepdi@tgyeen complementary
nucleotides is enabled by hydrogen bonds, which keep thentwteotides together. In
particular, two hydrogen bonds are involved in the formatd a adenine-uracil (A-U)
base-pair while three in the case of a guanine-cytosine \GaSe-pair. This difference
of one hydrogen bond is the basis of nucleotide complemigntard is indeed a a very
subtle one. Since the energetic contribution of one hydrdamnd is relatively small, in
the order of a few:z 7" [18], thermal fluctuations dominating the cellular envineent are
expected to frequently force basepairing between non-tamgntary nucleotides. More
specifically, simple thermodynamics arguments predidt div@ng transcription passive
errors should occur at a rate tf~2 — 102 errors/nucleotide [18].

Such high error rates are prohibiting for the survival anthbptiation of life. This
is exemplified by the fact that transcriptional error ratéseyvedin-vivo are order of
magnitudes lowerl()—° errors/nt) [18]. Therefore, error correction mechanisnuistex-
ist that enhance the discriminatory power of the RNAP andbkeniato transcribe RNA
chains more accurately than expected from the simple basepaule. In particular,
experimental evidence is in support of two proofreading lmecsms: one acting at the
level of nucleotide addition [143] and the other one medidkeough RNAP backtrack-
ing and subsequent cleavage of the RNA [124,147,159]. Tistemce of these different
proofreading mechanisms raises interesting questiorsdim their relative roles in en-
hancing transcriptional fidelity. These can be answeredéybnstruction of predictive
models able to discriminate between the different processe

In this Chapter we present a theoretical study of the errmecting mechanism me-
diated by RNAP backtracking and RNA cleavage, hereafterired to asucleolytic
proofreading Our effort is particularly motivated by recent single nmlke studies of
DNA transcription that shed light on the microscopic detaif backtracking [47, 124]
[see also Chapter 4 (4.2.3)] The remainder of this Chapterganised as follows. We
embark by discussing the general problem of biological emxyuand how cellular pro-
cesses accomplish reduced error rates and increased @pecMi/e then turn to DNA
transcription and present the model of the elongation dycmimvolving polymeriza-
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tion of correct/incorrect nucleotides, backtracking andARcleavage. Using this model
we study the role on nucleolytic proofreading in enhanchaggcriptional fidelity. Our
key results link the observed error rate directly to the nscopic rate parameters of the
process and make specific predictions which can be expetathetested.

5.2 Kinetic Proofreading

The question of how cellular processes achieve astonighliogg error rates despite the
inherently stochastic environment in which they occur haerbpuzzling the physics and
biology community for quite some time. The motivation hadimhabeen from DNA
replication, where error rates as low #5 ¥ errors/nt had been observed. Although the
ability of the DNA polymerase (the enzyme that carries out”ADidplication) to cleave
nucleotides was a well established fact, the question ofthevenzyme was distinguish-
ing between correct and incorrect nucleotides still remadiopen [96].

Breakthrough finally came around the niid's through the seminal work of J. J. Hop-
field and J. Ninio [68,101]. Their work proposed an elegamsif@menological framework
for explaining how the discriminatory power of enzymes cobié enhanced due to dif-
ferences between the kinetic rates for incorporation atedysas of correct and incorrect
substrates. This now well established framework, knowkiastic proofreadingKP)
or kinetic amplification(KA), provides the fundamental mechanism of accuracy inyman
diverse biological processes. Examples found in the tieeanclude the antigen recog-
nition by T-cell receptors [90], the disentanglement of DM topoisomerases [155],
signal transduction [134] and gene expression [19].

The conventional description of KP involves the enzymadialysis of two substrates,
S. andS,,, obeying Michaelis-Menten kinetics [68]:

FE+S. = ES. % E-+ P, Correctproduct

E+S, = ES, ¥ E+ P, Wrong product

where E' is the enzyme carrying out the catalysiss., £S, denote the intermediate
species an®,, P,, the end products. To quantify the discriminatory power eféhzyme,
we define the error fractiofi as

__rate of P, formation

rate of P. formation (5.1)

Assuming that botlb. and S, are present in equal concentrations and that their discrim-
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ination is based on the “off” reaction rates., k. = k., a. = o, = «a, andk. < k,,
it can be shown [68] that the limiting error fractidp is attained in the limitv < k., k,,
and is given by

where AG is the free energy difference between the intermediat&s, (and £S,), T
the absolute temperature, ahds the Boltzmann constant. Therefore, the fidelity of the
process is limited by the energy difference between the tierimediate species.

Kinetic proofreading captures the essence of error cooredty stipulating the ex-
istence of one or more non-equilibrium (irreversible) intediate steps in the catalytic
process. These steps dissipate energy and act as fideldkgpshiets, enhancing the dis-
criminatory power of the catalytic enzyme and resultingeiduced error rates. The simple
reaction scheme, treated above, with the inclusion of aitiaddl irreversible step takes
the form: .

E+S. = ES, % BS; % B4 P,

Le
E+ 8.
k;u (0% w
E+S, = ES, * ES, ™ E+p,
Ll
E+ S,

Once again, all corresponding rates being equal except %k, andl. < [,, it can be
shown that in the limitv, § < k., k., [., [, the error fraction is given by
E = :—;;—; = &, (5.3)

where for the sake of simplicity we have assumed that thedineegy difference between
the two intermediate&'S; and ££S}; is alsoAG. Therefore, as far as the fidelity of the
process is concerned the incorporation of a single irré@erstep in the catalytic pathway
is equivalent to doubling the energy differenté; in the original catalytic scheme. More
generally, the inclusion af: irreversible steps can reduce the error fraction ugto'.
However, it should be noted that the enhancement in thetijdalithe process does not
come without a cost. In particular, the time-scale sepamati § < k., k., l., [, means
that substrate catalysis (even in the case of the correstrsid) undergoes several cycles
before the end product is achieved. The energy dissipatedadh of these cycles is the
price paid for the enhanced accuracy of the process.

Because of its remarkable generality, KP is regarded asdaguprinciple for under-
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standing how biological processes accomplish the negetesaals of accuracy. However,
to complement this general level of description, quantigadnd predictive models that
incorporate detailed information about specific biolobpracesses are needed. With this
in mind, in the remainder of this Chapter we focus on DNA tcaipgion and on nucle-
olytic proofreading Recent experimental studies on DNAgiption have shed light on
the microscopic dynamics of backtracking [47,124,147] £8@bling the construction of
predictive models of transcriptional error correction hmaasm.

5.3 Mechanism of Transcriptional Error Correction

The low error rates1()—° errors/nt) accomplished by the RNAP can be attributed to at
least two distinct proofreading mechanisms. The first meishas acts at the level of
nucleotide addition and is similar to the mechanism of kinptoofreading discussed in
the preceding section. In particular, the mechanism reldble existence of a high energy
intermediate along the polymerization pathway, which asts fidelity checkpoint and
enhances the discriminatory power of the RNAP [143]. Welgk#r to this mechanism
asclassical proofreadingCP).

Nucleolytic proofreadindNP) on the other hand is mediated through RNAP back-
tracking and the nuclease character of the RNAP [4, b8], the ability of the active
site of the polymerase to induce cleavage of the nascent FI§A As we have seen in
Chapter 4 (4.2.3), during backtracking the transcriptimmgation complex slides back-
wards along the DNA template [58]. Being relocated away fthaB’ end of the nascent
RNA, the active site can now exert its nucleolytic functiomacleave the RNA chain.
In general, different RNA pols demonstrate different endbease activities [138] and
in certain cases accessory proteins (such as Gre, TFlIS)eaessary to stimulate RNA
cleavage [45]. However, how does the RNAP manage to cleahe aight place, achiev-
ing discrimination between correct and incorrect nuctisi? We propose that the answer
lies in the different translocation rates that are imposethb presence or absence of an
erroneous nucleotide. In particular, the presence of anr @itl cause the the RNAP to
stagger making the catalysis of RNA cleavage and therefxeisien of the erroneous
nucleotide more probable.

5.4 Model of Nucleolytic Proofreading

In this section we present and study a stochastic model ofrémscription elongation
phase involving polymerization of correct and incorrectleotides, backtracking, and
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RNA cleavage. The model is an extension of the one presentEthapter 4 (4.2), and
aims at capturing the essence of NP.

5.4.1 Basic Notation

Transcription elongation can be described in terms of twaatsées,n andm. Variable

n = 0,..., N denotes the template position of the last transcribed otidke or equiv-

alently the length of the mRNA transcript up to a small offskt particular, we define
n = 0 to be the position at which the elongation phase is entengdhéd formation of
the TEC a few (8-10) nucleotides downstream of the actuaktmaptional starting point.
Positionn = N corresponds to the terminal position up to this offset.

On the other hand, variable = 0,..., M marks the physical position of the TEC
along the DNA template, and in particular the position of poé/merase active site rela-
tive ton. Here,m = 0 indicates that the TEC is in the active stateyhere polymerization
of the next nucleotide can occur, white > 0 indicates that the TEC is in a backtracked
state [see Fig. 5.1(a)]. Since extensive backtrackingtendflocked by hairpins or other
secondary RNA structures that are formed as the RNA exitSH&[58], we assume that
backtracking is restricted to a fixed distanee= M, which we take to be independent
of n.2 The process starts with the TEC(at= 0, m = 0) and terminates upon reaching
state(n = N, m = 0).

Given a TEC in an active stater, m = 0), the TEC can either backtrack to state
(n,m = 1) with ratek, or polymerize the next nucleotide + 1, m = 0). Polymeriza-
tion of correct nucleotides occurs with ratg while incorrect nucleotides are polymer-
ized with ratek,. We user to denote thespontaneousrror fraction,i.e., the fraction of
thermally induced errors

= &k, = ek, (5.4)

“Gw|*d |

Once backtracked the TEC hops between contiguous tramisiocstates,(n,0 <
m < M) with ratec, except when the TEC hops into an error site= [ from a deeper
backtracked state+ 1 which occurs with a reduced ratgsee Fig. 5.1). Finally, from
each backtracked statey, m = m* > 0), cleavage occurs at rate, removing the last
m* — 1 nucleotides from the RNA chain and leaving the TEC in state- m*, m = 0).

tUnlike the model presented in Chapter 4, the model here datesonsider pre- and post-translocated
states. Rather, for the sake of simplicity, these two sthte® been lumped together into a single state
under the assumption that equilibrium is readily achievetsveen them.

2For positions: < M we assume that backtracking is restrictedite= n.
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Therefore, given an erroneous nucleotide at some positidr(l > 0), cleavage from any
state(n, m > 1) ensures its removal. Note that the difference in the hoptes ¢ < )

at an error site is the key ingredient of error correctiorsiihincreases the likelihood of
cleavage at statgs, m > [). A schematic diagram of state transitions for the model is
given in Fig. 5.1(b).

5.4.2 Physical Picture

As discussed in Chapter 4 (4.2.4) backtracked states pomdgo wells in the free-energy
landscape that transiently trap the diffusional motiorhefTEC along the DNA template.
The depth of these wells is dictated by the interactions eetwthe RNAP, the DNA and
the RNA transcript that contribute to the structural siapf the TEC, with the RNA-
DNA hybrid being a major contributor. In the absence of amgmsralong the RNA-DNA
hybrid, our model assumes a periodic free-energy landstegpgives rise to a constant
hopping ratec [see Fig. 5.1(c), right panel]. On the other hand, the preser an er-
roneous nucleotide along the RNA-DNA hybrid partially @dslises the TECi.e., in-
creases the free-energy. This increase in the free-en&rgyis due to the mispairing be-
tween the erroneous RNA nucleotide and its corresponding Bixleotide and should,
therefore, also be approximately equal to the free-eneifgreince dictating the sponta-
neous error fraction. As the TEC backtracks past the error site the erroneougotidé
diassociates from the RNA-DNA hybrid and therefore the id/becomes error-free once
again. This leads to a drop in the free-energyMgy. Now, to reincorporate the erroneous
nucleotide into the RNA-DNA hybrid the TEC needs to overcanesnhanced energetic
barrier, which gives rise to a slower hopping rateOther than this decrease (increase)
in the free-energy as the erroneous nucleotide exits (er®rthe RNA-DNA hybrid we
assume that free-energy landscape remains qualitatinelyanged, that is remains peri-
odic [see Fig. 5.1(c), left panel]. According to Kramer'seréheory [141] the ratio of the
two hopping rates is given by

ol

~ exp|-AG/kpT] = . (5.5)

As we have seen in Section 5.2 kinetic proofreading captheeessence of error cor-
rection by stipulating the existence of one or more nonéxjiim (irreversible) interme-
diate steps in the catalytic process. In our model thesem&@iate steps that dissipate
energy are the successive polymerisation events that addatides on the RNA chain
and push already incorporated ones pass the backtrackirtigi (where cleavage is no
longer possible).
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Figure 5.1: Schematic illustration of the model of transtonal error correction. (a)
Schematic illustration of the model. Variablelenotes the position of the last transcribed
nucleotide, whereas variabledenotes the position of the polymerase’s active site xeati
ton. The RNA is marked by’ and5’. The transcription elongation complex (TEC) is
depicted in the activén, m = 0) (top) and in a backtrackeh, m = 3) (bottom) state.
(b) Schematic illustration of the TEC dynamics at a givenitpms n. The TEC will
eventually polymerize forward or cleave from one of the hestked states. The slow
rate of hopping: into the error statén.m = [) increases the likelihood of cleavage from
states(n, m > [) and therefore the removal of the error. (c) Schematic iliiin of
the energy landscape driving backtracking dynamics in tiesgnce or absence of an
erroneous nucleotide. The presence of an error results incagase of the free-energy
by AG.
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5.4.3 Dynamics at the Single Nucleotide Level

For the analytic treatment of the model we first consider theadics of the process at a
fixed template position. Results obtained in this section we later on be used to rarist
an effective model of the full elongation process.

The stochastic dynamics of the TEC at a fixed positicare described by the Master
equation

P(t) = WO .P(t). (5.6)
Here,P is a column vector of sizeM + 1):
P(t) = (P(m=0,t),P(m=1,t),...,P(m= M,t))’, (5.7)

where prime () denotes transposition. Each elemédntin, t), of the vector corresponds
to the PDF of finding the TEC at translocation statat timet having started fromn = 0
att = 0. W@ isthe(M + 1) x (M + 1) transition matrix. Superscriptdenotes the
dependence of the matrix on the sequence of the correct aodeat nucleotides along
the transcript. In particulag € S™ with S = {0, 1}, is a binary list ofds andls, which
represent correct and erroneous nucleotides respectively

s = {0, 1, ..., 0}

N

-~

n elements

The general tridiagonal structure W ), is given by

—[(A+e)kp+ks]

kp

0

c+sn(c—c)
—[2¢c+sn(c—c)+k.]

C

ctsn—jr2(c—c)
—[2c+sn—jy2(c—c)tke]

[

c+sp—p41(6—c)

—[ctsn—nry1(c—c)+ke]

Specifically, off-diagonal elements of the matrix corrasgpdo transition probabilities
between the different translocation states. In partictler element of the matrix at the
k™ row and;™ cqumn,W,ﬁj) (k # j), yields the transition rate from translocation state
m = j tom = k. On the other hand, elements in the diagonal of the matrisespond

to the total transition probabilities out of a state. Notati () depends only on the last
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M elements ok, i.e., S,,, Sp_1, -+, Sn_pr41-

The model allows only transitions between contiguous tomadion states, hence the
matrix has non-zero elements only along the main diagordtlanfirst diagonals above
and below the main one. However, the column®W#’ do not sum up td. This indicates
that probability is lost to some absorbing boundaries. b, fthe above formulation of
W) implies M + 1 absorbing boundaries, through which the TEC can leave tmpl
positionn:

e Boundary: = 0: polymerization of the next nucleotide (— n + 1) occurring from
the active stater = 0.

e Boundaries = 1,..., M + 1: cleavage of the transcripk(— n — ¢) occurring
from each backtrack state = i.

As described in Chapter 3 (3.4) , by applying the LapIacesfmmP fo e Pt
to Eg. (5.6), we obtain a system of algebraic equations, hwhan be solved for aII
P(m, z) (m = 0,...,M). Subsequently, the splitting probabilities for eventually
hitting boundary: as well as the corresponding conditional mean exit timgsan be
obtained using the Laplace transform of the probabilitydkito each boundary [116]:

o = (1+)k,P0,2=0); 7 = (1+ e)kpM, (5.8a)
P(0,z=0)
g Pl(i 2 =
pi = kP(i,z=0); 7 CM, =1,....M (5.8b)
P(i,z=0)

Note thatp, andt; will depend on the sequence of correct and incorrect nudesfs. In
the following the notatiom;(s) andr;(s) will be used to make this dependence explicit.

5.4.4 Effective Model of the Elongation Dynamics

So far we have formulated the stochastic dynamics of the TiEed nucleotide po-
sition n. Here, we present how agffectivemodel of overall elongation dynamics can
be constructed for times much longer than the typical dwell time at each positiaa,
> 7n0<i< M).3

At the coarse-grained time-scateone observes the TEC polymerising and cleaving
the RNA transcript at rates which are proportional to thétapd probabilitiesp; obtained
above. Lefll(n, s, 7) be the probability of finding the TEC at positianat timet¢ having

3We note that all results obtained below do not depend on thet@efinition ofr.
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produced a transcript € S™. From each position, the TEC can either polymerize or
cleave the RNA transcript with rates(i = 0, ..., M) given by

ro(s) = po(s)/T: n—n+1 (polymerisation) (5.9a)

ri(s) = pi(s)/T: n—n—i (cleavage) (5.9b)

Summingll(n, s,t) over all possible configurations ef one obtains the probability
of finding the TEC at position at timet, irrespective of the transcript sequence:

O(n,t) = Y M(n,s,t). (5.10)

sesSn
The stochastic dynamics oif(n, t) can therefore be expressed as
M

= Jn—1n)—Jnn+1)+ Z [J(n+iln) — J(n|n —1)], (5.11)

i=1

dIl(n,t)
dt

where.J(n,|ny) denotes the probability flux from to n,. In particular one has

UL (nlny +1) = > ro(s)I(ny, s, 1), (5.12a)
sesS™1

Ty +ilng) = > ri(s)(ng — i, s,t). (5.12b)
sesniti

The process starts at= 0 and is terminated when positian= N has been reached. We
therefore impose the boundary conditiol{§| — 1) = J(—1|0) (reflecting) and/(N|N —
1) = 0 (absorbing).

In the following, Eq. (5.11) will be used to obtain an expiesasfor P,, P,, the
probability of reaching the terminal position < N), having incorporated a correct or
an incorrect nucleotide at positier) and irrespective of the rest of the sequence. We use
P, andP, to quantify the transcriptional fidelity in terms of the arfaaction, defined at
each positiom as [68, 101]:

(5.13)

N
Il
3|3

5.4.5 Analytic Results

Here, for the sake of simplicity, we present a detailed tnegit of A/ = 1 case. The
generalised results fa¥/ > 1 are then presented and discussed (for a detailed derivation
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see Appendix A).
Most of the results presented below are given in terms obWlg dimensionless
guantities, which characterise the competing processeimodel:

e oy = k./c captures the efficiency of cleavage for correct nucleotides
e ay = k./¢ = ay /e captures the efficiency of cleavage for incorrect nuclesstid

e K = k,/k, captures the tendency of the TEC to backtrack

M =1 case

In this case the TEC can backtrack by only one nucleotide.réfbee, the transition
matrix, W) in Eq. (5.6) will depend solely on whether the last nuclestiths been
correctly or incorrectly transcribed. In particular onesha

. ~a
W) (A+eky+h] e , (5.14a)
i k)b —(C + ]{ZC) |
w [ - 1 C ]
W) (A+eky+h]  c (5.14b)
_ k, —(e+ke)

where we have used the notatigh= (...,0) ands” = (..., 1) to denote transcripts
whose last nucleotide has been correctly and incorreethstribed, respectively. Apply-
ing the Laplace transfornf?(z) = f0°° e *'P(t)dt, on Eq. (5.6) and evaluating at= 0
one can obtain the splitting probabilitigs= p;(s¢) andp; = p;(s*):

K(l1+ée)(1+a)

_ : — 1—p, 5.15a
Po Kl+e(l+m)+m P Po ( )

_ K(1+4+e)(l+a _ _
bo = K(1(+e)(1)(+ o) i)a; o= 1-po (5.15D)
wherep,, po correspond to the polymerisation and p; to cleavage.

The splitting probabilities divided by yield the effective rates; andr; (i = 0, 1), in
Eq. (5.11) (forM = 1). The process starts at positiar= 0 and is terminated when state
n = N has been reached. To calculate the probability that theinetrpositionn = N
is reached with a correct or incorrect nucleotide incorfemtat positiom = n’ we break

the domain of the process into 3 regions, namely

e RegionR_:n=20,...,n —1,
e RegionRy: n =n/,
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e RegionR,:n=n"+1,...,N —1.

The process enters regidty when a nucleotide is polymerised at positioa- n’. In
particular, the probability flux fronk_ to R, is given by

J(R_|Ry) = > ro(s)TI(n—1,s,1). (5.16)
sesn—1
This polymerisation event will result in either a correctaor incorrect nucleotide at po-
sition n’, This gives rise to two independent branches in the prod¢kssicorrect” and
the “erroneous” one. Hence, the reverse probability fllogfi?, to £, will be through
both of these brancheise.

J(Ro|R-) = rIl(n,st)+mIl(n,s", 1),

(5.17)
= J(Ro|R_) + J"(Ro|R_).

The two branches evolve independently of one another ahtbad to probability flowing
into regionk, :
J(R0|R+) = TOH(na SC> t) + fOH(na 8w7 t)a

(5.18)
= JY(Ro|Ry) + J"(Ro|Ry).

Of course when the process enters reditnit branches once again. However, the total
probability entering?, should be conserved, either flowing back#por to the absorbing
boundaryn = N. This allows us to write

J(Ry|Ro) = J(Ry|Ro) + JY(Ry|Ro), (5.19a)
J(RUN) = J(R.|IN) + J*(R,|N). (5.19b)

In the long time limitt — oo the fluxes in and out of the different regions will balance
and a steady probability flow towards the terminal positioa= N will be achieved.
Applying the Laplace transfonﬁ (n,s,2) fo e *'TI(n, s, t)dt on Eq. (5.11), summing
over the three regions of interest (, Ry, R, ) and evaluating at = 0 one can obtains a
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system of equations relating the Laplace transform of tbeeafientioned fluxes:

J(Ro|R_) + J*(Ro|R_) — J(R_|Ry) +1 = 0, (5.20a)
J(R_|Ry) — J"(Ro|R_) + J“(R{|Ry) — J“(Ro|Ry) = 0, (5.20b)

e+1

— (B |Ro) = J*(Ro|R-) + J*(Ry | Ro) = J*(Ro| Ry) = 0, (5.200)

JU(RolRy) — JU(R4|Ro) — J*(R4IN) = 0, (5.20d)
J(Ro|Ry) = J(Ri|Ro) — JY(RyIN) = 0, (5.20e)

where the notation is used to denote the Laplace transform of the correspomatistay
ability flux evaluated at = 0. All of these quantities have probability status [116].
Note, for example that in the last line termi&(R., |Ry) and.J°(R.|R,) up to division

by .J¢(Ro|R.) can be interpreted as splitting probabilities; some praiab/(R,| R, )

is injected intoR, (through the “correct” branch) and subsequently dividedagnthe2
boundariesp = N andn = n’. More importantly, the division does not depend through
which of the two branches the probability ends up in redgion This consideration allows
us to write

J(RLN) = ApJS(Ro|Ry) = Agproll(n, s t),
Jo(Ri|Ro) = AwJ(Ro|lRy) = Aymill(n, s, 1), (5.21)
JY(RyIN) = ApJY(Ro|lRy) = Arroll(n,s”,t),
JU(Ry|Ry) = AwJ“(Ro|Ry) = Apml(n,s® t),
subject to the condition
Ap+ A, = 1. (5.22)

Substituting the relationships given by Eq. 5.17, 5.18, &l into the system of
equations one can obtain an expression for the probabitfieterest:?,, andP,:

= 1
P = JYR,N) = Nl—pif(l)/po’ (5.23a)
Pw = JUR.IN) = /%1_7972%. (5.23b)

Here, N can be obtained from the normalisation conditigpn+ P,, = 1 and A4, corre-
sponds to the probability that starting fram= n’ + 1 cleavage to position = n’ will
occur prior to termination. An expression fdr, can be obtained by initialising the pro-
cess atv = n’ + 1, and regarding the process boundedin, with R, andn = N being
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absorbing boundaries [see Chapter 3 (3.3.1]. This yieldyéimeral recursion formula

€ D1 1 D1
A, = = + , 5.24
D0 o) €t 1) (1= podnm) (5.24)

with boundary conditio 5 = 0. In the limite — 0, the above reduces to

BBV — 1
A, ~ W (5.25)

wheres = p; /po.
Finally, the error fraction at any positionfor M = 1 is given by
E €po 1 — Anpo

_ 0 (5.26)

E, = — — .
P, po 1 — AnDo

Fig. 5.2 (top panel) shows, as a function of<, for different positions along the template.

Let us now consider two limits whe@ attains a constant value independent of po-
sition n. First we examine the limif{ > 1, where polymerization is overwhelmingly
favored over cleavage{ — 1 andp, — 1). As expected, in this limit Eq. (5.26) reduces
to £ ~ e. On the other hand, in the Imk’ < a; < ¢, cleavage events dominate the
process. In this regime Eq. (5.26) reduceg te epy/po, Or, in terms of the microscopic
rate parameters

(5.27)

E ~ €-

1ol

Hence, in this limit the error fraction depends only ©and the ratio of hopping rates.
Since we take these two quantities to be approximately eqgshavet ~ €.

M > 1 case

For the more general cagé > 1 similar results can be obtained in the limit< 1/M,
l.e., at most one error can occur in a region/df nucleotides. In particular, it can be
shown that in the same limif{ < a; < €) the error fraction is given by
M]W
E ~ Mt ———— 5.28
© DMy (5.28)

wherel" denotes the Gamma function. Thus, the combined action dttze&ing and
cleavage can result in error rates that scale exponentigdhy M/, the maximum back-
tracking distance. We note that the error fraction attaimgdKP with M intermediate
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Figure 5.2: Error fractiond,,) as a function of< for M = 1. Analytic results [EqQ. (5.26)]
are plotted as solid lines and markers show results obtdinedstochastic simulations:
(top) &, at different positions for;, = 1074, ap, = 1072, ¢ = 102 and N = 9. (bottom)
&, for different cleavage efficiencies, anda, at positionn = N — 2, with e = 102
and N = 4. Dashed lines show limits discussed in text.

steps has a simila¥/ dependence [68]. The two limits discussed above are ifitedrin
Fig. 5.2 (bottom panel). Numerical data were generatedyugimchastic simulations [52]
of the full transcription elongation model.

5.4.6 An Estimating the Error Fraction

Estimates of the error fractions predicted by our model aaliiained by taking into ac-
count information from experimental studies. First of #ie spontaneous error fraction
e can be calculated from the free energy difference due to amauigporated nucleotide
(AG ~ 4 — TkgT), i.e, e =~ e 2G/ksT ~ 102 — 1073 [18]. The cleavage raté,, for
bacterial RNAP was measurégd ~ 0.1 — 1s! in the presence of saturating concentra-
tions of accessory cleavage factors [128]. Moreover, singblecule experiments have
suggested that the TEC hops between backtrack states wéthxal — 10 s™! [47,124].
Using estimates of the maximum spontaneous error fraetien0.01, slowest cleavage
ratek. = 0.1s™! and fastest hopping rate= 1s~! we can obtain estimates of the lower
bounds on cleavage efficiencias ~ 1072 anda, ~ 1. These estimates yield error
fractions comparable to the ones obseriredivo (10-% — 10~°), even forA/ = 1 but
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Error fraction

Figure 5.3: Error fraction as a function &f for M = 2. Results were obtained using
stochastic simulations of the model fdr = 4, e = 1072, ando; = 1072, 1072,

sufficiently low values ofK” (see Fig. 5.2 bottom panel). Most importantly, however, low
error fractions can be obtained in our model even well awayfthe limiting regime with
small M (see Fig. 5.3 folM = 2 case).

5.4.7 Some Key Notes on the Model

We should note that certain simplifications were made in tbeehthat do not however
alter the essence of the results. In particular, depolysagan as well as the dependence
of the microscopic rates on the sequence composition welected. Interestingly, se-
guence heterogeneity can affect transcriptional fidekgr example, GC rich domains
can lead to slower backtracking rates (due to the increasdility of the RNA-DNA
hybrid) [5]. Our model then predicts that the slower baattnag dynamics imposed by
the sequence will slightly reduce the efficiency of the ecamrection.

Also, alternative formulations of the model are possiblpat&ling on which step is
assumed to provide the discriminatory power to the prockessur current formulation,
discrimination between correct and incorrect nucleotidesolely provided during back-
tracking, where hopping back into an error site occurs at alnslower rateg < c.
A more general formulation (see Fig. 5.4), which yields hesvequantitatively similar
results, involves:

1. a fast rate of backtracking, in the presence of an misincorporated nucleotide at
positionn as compared té, in the presence of a correct one.

2. afast hopping rate; (c < c¢s) from state(n, m = [) (error site) into statén, m =
[+1)
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Figure 5.4: Schematic illustration of an alternative fotation of the error correction

model. In the alternative formulation of the model discniation between correct and
incorrect nucleotides is achieved not only during backirag, owing to the differential

hopping rates, but also at the active state, where TECs withisincorporated nucleotide
at register would tend to backtrack more often.

3. a slow hopping rate; (¢ > ¢,) from state(n,m = [ + 1) into state(n,m = [)
(error site)

As before, one expects that the ratio of the above rates wmilpproximately equal to
the spontaneous error fractiesince all processes are driven by approximately the same
free energy differencAG
Cs ky, ¢
- R == e ~ exp|-AG/(kgT)]. (5.29)
Cr kb C
In this scenario discrimination would not only occur durimgcktracking, owing to the
differential hopping rates, but also at the active statesr@f ECs with an misincorporated
nucleotide at register would tend to backtrack more often.

5.4.8 Numerical Methods

To validate the analytic results obtained, we performedrststic simulations of the full
transcription elongation model using the Gillespie altjon [17,52]. Each simulation run
started with the TEC in state: = 0, m = 0) and terminated when state = N, m = 0)
had been reached. From each state, the next state was rgrsedted among all acces-
sible states with a probability proportional to the cor@sing transition rate. The se-
guences was implemented as a binary list and used at each step ofgbethn to assign
the correct transition rate to each accessible state. \@hgrelymerization corresponds
to the addition of an element (0 or 1) to the list, cleavdgem = 1) — (n — I,m = 0),
corresponds to the removal of the lagiements of the list. The sequencwas saved at

100



Chapter 5 Transcriptional Error Correction

the end of each simulation run.
For each set of parameters, simulations of the model weesateg until at least00
errors had been observed for each position. The error draeti each position was then

calculated as _ _
# incorrect nucleotidegl s)

Error fraction = - :
# correct nucleotidef)s)

(5.30)

5.5 Summary and Discussion

In this Chapter we presented and studied a microscopic nudagetranscriptional error
correction mechanism involving RNAP backtracking and RN#agage. Our model in-
corporates polymerisation of correct and incorrect nuades, RNAP backtracking and
RNA cleavage. In analogy with kinetic proofreading, in ouvael backtracking provides
a multiple-checking reaction, which probes the fidelitylo# tast few nucleotides several
times before the next polymerization occurs. In fact, theatgr the delay introduced by
this mechanism, the greater the accuracy of the procesd(Qag, Consistent with this
picture we find a minimum error fraction, which scales expuiadly with the maximum
backtracking distanc#/, in the limit where backtracking and cleavage dominate toe p
cess.

Recent experiments have provided support for at least twaharesms of transcrip-
tional error correction. The first one involves a fidelity ckgoint during the nucleotide
addition cycle [143], whereas the second involves backingcof the RNAP and RNA
cleavage [4,124,143,147,159]. Our model suggests expatgithat would provide the
guantitative details required to discriminate betwees¢hwechanisms and elucidate their
relative roles in transcriptional proofreading.

A particular prediction of our model is the strong depen@eattranscriptional fi-
delity on the translocation rates. For example, GC rich dom#at lead to lower back-
tracking rates (due to the increased stability of the RNAADYbrid) [5] should reduce
the efficiency of error correction. More importantly, siagholecule manipulation tech-
niques can be used to vary backtracking rates in a contrafi@dner and validate our
model. In particular, applying a load is expected to strgmdflect nucleolytic proofread-
ing since the TEC moves at least a distancér (wherejr = 3.4,&) during the backtrack-
ing phase. In contrast, minor effects are expected for peading mechanisms along the
polymerization pathway, since they should only involve Bmavements « dx) of the
enzyme.

Our model also predicts that RNAP species with a greatereterydto backtrack
should accomplish lower error rates. Experimental stutlege already revealed that
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specific mutations in the sequence of RNAP can have profofiect& on transcriptional
fidelity [66]. It is therefore particularly interesting teusly exactly how these mutations
affect transcriptional accuracy and whether these effaetsnediated through changes in
the rates of backtracking or translocation rates.
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Chapter 6

Cell Level: The Stochastic Nature of
RNA Production

In the preceding two chapters we have focused on the singlecoie dynamics of the
transcription elongation phase. Ultimately, however, animterested in the process of
DNA transcription as a whole and the dynamics of RNA producti The aim of this
Chapter is to bridge these two levels of description by mhoyg an integrated picture
of DNA transcription and characterising how the underlymgroscopic dynamics of
the process affect the cellular levels of RNA. To do so we fdate a multistep, coarse
grained model of DNA transcription and using stochasticutations, we examine the
statistics of RNA production in relation to transcriptibpausing. In particular, we find
that long-lived elongation pauses can lead to bursts of RMAyction and non-Poisson
RNA statistics. Our results have direct implications iimvivo transcription since they
provide a microscopic mechanism for transcriptional lsutisat have been observed ex-
perimentally.

6.1 Introduction

It has long been appreciated that life at the cellular levelisy [122]. Indeed, all cellu-
lar processes rely on random encounters between bio-metezad are therefore discrete
and inherently stochastic in nature. This consideration@bwith the fact that that most
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molecular species are only present in small numbers witlis constitutes stochasticity
a major player at the cellular level. However, it has onlyrbegth recent advancements
in experimental techniques that a more quantitative detsen of cellular processes has
become possible [70,115,154]. In particular, the advefiiofescence techniques, allow-
ing to track levels of chemical species within cells, reng\ee interest in the stochastic
nature of cellular processes and its consequences [83].

This experimental endeavour has largely been complemdiytedathematical and
computational models that take the apparent stochasiitiyaccount [107, 133]. Such
models are essential not only for interpreting experimetdsa but also for providing
fresh insight into the processes that underpin life. Howea@y attempt of mathematical
or computational modelling is severely hindered by the iehecomplexity of life pro-
cesses and our limited knowledge. To be useful and insteidtnerefore, models have
to rely on certain assumptions regarding which are thecatiispects of the process con-
sidered and which can safely be neglected. The validity @¢hassumptions is ensured
through experimental studies that ultimately verify orpils/e the predictions made by
different models.

Of particular importance is understanding the stochasdtane of gene expression
and gene regulation. These processes underlie every adybetcell and therefore their
stochastic dynamics ought to have the most direct impboatregarding cell behaviour
and fate [25, 72, 83]. One of the major assumptions behintatal models of gene ex-
pression and gene regulation is the Poisson character sfeépe involved [107,133]. For
example, transcription is usually described as a singp+&action occurring at a constant
rate. However, as we have seen in the previous chapterss tbisghly the case. In partic-
ular, transcription as well as translation are in themsehaealti-step processes involving
initiation, elongation and termination. Most importantlyese processes can exhibit bio-
chemical fluctuations at each of these stages due to thepleammicroscopic dynamics
and cannot in general be described as simple Poisson pesceSsveral question there-
fore arise concerning such simplifications. Under what dents are they valid? Are
we missing key aspects of gene expression by ignoring theosgopic dynamics of the
processes involved?

Such questions become even more relevant in the light ohtexgerimental obser-
vations that highlight the non-Poisson character of DNAgaiption. Utilising artificial
reporter genes, which give rise to mRNA chains carrying isd\ending sites for fluores-
cently labeled probes (see Fig. 6.1), experimental st@#&55,114] suceeded in tracking
MRNA levels within living cells with single molecule resailen. The key finding of these
studies was that mRNA production both in bacterial and exdtar cells occurs in bursts.
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In particular, Goldinget al. [55] obsereved intense periods of rapid mMRNA production
followed by periods of transcriptional inactivity (see F&1). This mode of mRNA pro-
duction gives rise to enhanced variability in the mRNA |levahd cannot be captured by
simple Poisson models of transcription.

The aim of this Chapter is to provide a quantitative picturé@v the microscopic
dynamics of DNA transcription affect gene expression anghirticular RNA production.
The remainder of the Chapter is organised as follows. Wedivsta brief overview of a
simple model that has found wide appreciation in descrisioghastic gene expression.
We mainly focus on assumptions underlying the model as vgelha predictions the
model makes. We then motivate the need for more detailedrgicf DNA transcription
by considering a model that incorporates the microscopiegation dynamics discussed
in Chapter 4. Finally, we present a coarse grained model ok Bahscription involving
elongation pauses. Using stochastic simulations of theeined examine the effect that
the microscopic dynamics of the procegs.( pausing) have on the statistics of mMRNA
production. Our results indicate that long-lived elongatpauses can play a significant
role in the fluctuations of RNA species leading to bursts ofARNModuction and non-
Poisson RNA statistics.

6.2 Standard Models of Stochastic Gene Expression

In this section we present a simple model of stochastic g&peession. The model,
hereafter referred as tistandard mode|SM), captures the apparent stochasticity of gene
expression by considering the random birth and death of RiPpaotein molecules [107,
133]. Effectively, SM coarse grains all processes invoima elementary reactions obey-
ing Poisson statistics. Despite its simplicity, SM (andliféerent variants) have been suc-
cessfully used to interpret experimental data and to peoaifirst handle of the stochastic
nature of gene expression [42,109, 158]. However, SM relesertain assumptions that
limit its validity. We discuss some of these assumptionsrmaotivate the need for more
detailed, microscopically grounded, models, especialiytie case of DNA transcription.

6.2.1 Mathematical Formulation

As described in chapter 2, at a coarse grained level, theesgjon of a protein-coding
gene can be considered as two-step process involvingiigdrgtion and (ii) translation.
During transcription mRNA molecules are produced from ti¢ADAt the subsequent
step of translation each mRNA molecule is used as a tempatéé production of pro-
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Figure 6.1: Experimental results demonstrating bursts BN transcription. (A)
Schematic illustration of the mRNA detection method. Ml#i fluorescent labeled
probes bind to each mRNA molecule, yielding a bright sighat tenables detection
of the mRNA. Reprinted from A. Ragt al, PLOS Biol., 4 (2006). (B) Number of
MRNA molecules: per cell, as a function of time. Intense periods of mMRNA pmdu
tion are followed by periods og transcriptional inactivitgeprinted from |. Goldinggt
al., Cell, 123(2005). (C) Varianced?) versus averagei()) of mRNA numbers. The ra-
tio 02 /(n) = 4.1 is significantly higher than that predicted from a simplesBoh model
of transcription ¢*/(n) = 1). Reprinted by permission from Elsevier: 1. Goldiagal,
Cell, 123(2005) Copyright(2005).

106



Chapter 6 Cell Level: The Stochastic Nature of RNA Produrtio

DNA MRNA Protein

Transcription .———_  Translation Q

|

N2 N2
71N 71N
mMRNA degradation protein degradation

Figure 6.2: Schematic illustration of a simple model of gerpression. Transcription,
translation as well as RNA and proteins degradation araiocagas single-step reactions.

Processes Reaction representation | Probabilities
Transcription fn — m + 1) & — MRNA kpn At
Translation f — n + 1) MRNA — mRNA + protein| m k, At
MRNA degradationip — m — 1) MRNA — & m d,, At
Protein degradatiom(— n — 1) protein— & pd, At

Table 6.1: Reactions involved in the standard model of stsith gene expression.

teins. Of course, due to active cell processes or cell ditutiRNA and protein molecules
are constantly lost. This simple picture, schematicallystrated in Fig. 6.2, sets the start-
ing point for the formulation of SM.

Let us focus on gene expression dynamics for a single gesemren the DNA. The
system consists of the mRNA and protein molecules produced this gene, which we
denote bym andp, respectively. SM assumes that all processes have a copstdra-
bility of occurring over some time intervalt [108]. For example, transcription events,
resulting in the production of MRNA«{ — m + 1), occur with probabilityk,,, At. Trans-
lation on the other hand, resulting in the production of @it ( — p + 1), occurs with
probability proportional to the number of MRNA moleculessentj.e., mk,At. Finally,
degradation of mMRNA/¢ — m — 1) and proteinsg{ — p — 1) occur with probabilities
md,, At andpd,At, respectively. The reactions involved in the SM are sumsealrin
Table 6.1.

Implicit in the above picture is the Markovian assumptianparticular, SM describes
the evolution of the system at a coarse-grained time-stakuring which transcription,
translation, and degradation events have a constant phtyp&t occur. Hence, at this
level of description, the change observed in the mRNA antepranolecules between
andt + At has a certain probability distribution, which depends @ndtate of the system
at timet but not on previous times.
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As we have seen in Chapter 3 (3.2.4) the above considerdtom as to formulate
the Master equation describing the dynamicsdfn, p,t) = P(m, p, t|mo, po, to), the
PDF of observingn mRNA molecules ang proteins at time given that at = ¢, one
hasm, andp, molecules, respectively. The Master equation given by

d P(m,p,t)

o = kn P(m—1,p,t) — ky, P(m,p,t) (transcription)
(m+1)d, P(m+1,p,t) —md,, P(m,p,t) (MRNA degradation)
m k, P(m,p—1,t) —m k, P(m,p,t) (translation)
(p+1)d, P(m,p+1,t) —pd, P(m,p,t) (protein degradation)
(6.1)

The picture conveyed by the above equation is the followAlgprocesses that alter
the state of the system obey exponential temporal statiatcl, therefore, appear un-
correlated in time. For example, the timebetween successive transcription events is
distributed according to

P(r) = kpe 7. (6.2)

Similar, exponential distributions describe the suceessanslation events of individual
MRNA molecules as well as the lifetime of any mRNA or protelite dynamics of the
system is simply a combination of all these mutually indejse processes.

6.2.2 Remarks on the Standard Model

As formulated above, SM attributes fluctuations in gene @sson to the apparent ran-
domness with which the processes considered {ranscription, translation, and degra-
dation) occur over time. In this respect, SM only capturesinlkrinsic fluctuations of
the system, and disregards external sources that effestyitem in an apparently ran-
dom fashion. Particular exampleseftrinsicsources are bio-molecules that are actively
involved in the processes of transcriptiand, RNAP), translation€.g.,ribosomes), or
degradation€.g.,proteases). Such bio-molecules demonstrate fluctuatiotin®ir num-
bers that affect the expression of genes. Such effects camroeuced in the SM by
allowing the rates of transcription, translation, and de@gtion to vary in some stochastic
manner.

Here, we should also stress the fact that SM captures thesittfluctuations of gene
expression in a phenomenological manner, since it distsgal the microscopic dynam-
ics of the processes involved. Processes are effectivedyed as elementary chemical
reactions obeying either zero or first order kinetics. As itesge in greater detail below,
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the phenomenology invoked by SM relies on the assumptidrethprocesses involve a
rate limiting step that dominates their microscopic dyrzsnin this respect they can be
approximated by single-step processes.

For example, in the case of transcription this rate limitbep is assumed to be due
to the slow time-scale at which the RNAP recognises the ptensequences and ini-
tiates transcription. In general, however, the frequerfciyamscription initiation has a
wide dynamical range-vivo [85], andin-vitro studies have shown that initiation times
can be as fast as a few seconds [89, 127, 160]. Clearly theid, iratiation times can be
significantly shorter than the time needed for elongatiepgeeially for long DNA tem-
plates or bacterial genes transcribed in operons. In theesesca Poisson representation
of the process might be an inadequate approximation. Indeeent experimental studies
focusing on then-vivo transcription have demonstrated the non-Poisson chareictiee
process [27,55, 114], highlighting the need for more detarthicroscopic models able to
capture the intrinsic fluctuations of the process.

With the above in mind, in the following, we aim to qualitaly and quantitatively
characterise the effect that the microscopic dynamics oA@D&nscription have on the
statistics of mMRNA production. In particular, we use the eloaf elongation dynamics
presented in Chapter 4 (4.4) as a starting point to demdegtra effect of pauses due to
backtracking on the statistics of the mRNA population. Wentformulate a more general
model of transcription incorporating elongation pauseas stndy the problem in greater
detail.

6.3 Incorporating Elongation Dynamics

The elongation phase of transcription demonstrates naattdynamics [82], such as
RNAP pausing, that can significantly alter the statisticthefprocess. Here, we present
an integrated model of DNA transcription and demonstrate transcriptional pausing
can qualitatively alter the statistic of MRNA productiorhelmodel is based on the model
of elongation dynamics presented in Chapter 4 [see Eq.)}4.31

As described in Chapter 4 elongation dynamics can be captarerms of two dis-
crete variablegn, m). Variablen denotes the position of the last transcribed nucleotide
(or length of the RNA), whereas: the position of the active site relative to From
the active statén, m = 0) the TEC can proceed with polymerisatiom + 1,m = 0)
or depolymerisatiorin — 1, m = 0) of the nascent RNA at ratgs, andp_, respec-
tively. Moreover, it backtrackén, m = —1) at a ratep,. During backtracking the TEC
hops between contiguous translocation staten = ) — (n,m = [ + +1) at ratec.
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Figure 6.3: Schematic illustration of an integrated modebliving initiation, elongation
and mRNA degradation. Initiation occurs at a constant katend multiple TECs are
allowed to transcribe the same DNA template. During elaongathe state of individual
TECs is characterised by two variabteandm. Variablen denotes the position of the last
transcribed nucleotide, whereasthe position of the active site relative to The actual
position of the TEC along the DNA template is given:by= n + m. Initiation involves

the the formation of a TEC in states = 0,m = 0) and termination of transcription
occurs when state: = N, m = 0) has been reached. For RNA degradation a constant
ratek, has been assumed.

Backtracking is restricted up to some boundary m = M) and polymerisation can pro-
ceed when the active state, m = 0) is reattained. The elongation phase starts at state
(n = 0,m = 0) and terminates at state = N, m = 0).

To provide a more complete model of transcription, we redlaad that the initiation
step, involving the loading of the RNAP on the DNA templatd #éme formation of a TEC
occupying statén = 0, m = 0) occurs at a constant rate Furthermore, we assume that
termination takes place instantaneously when the trgstsaraches its designated size
N. To assess the dynamics of the RNA population we also inaedeadation which we
model as a first order process with rate constanThe combination of mMRNA production
and degradation gives a first handle on RNA levels and fluctogin the cell.

In fact, RNA production is complicated by the fact that nplkiinitiation events can
occur within the time it takes to produce a single RNA. Thianddead to several TECs
moving in tandem on the same DNA template [57], each syrghesia different RNA.
To capture the physical restriction that two TECs cannoteamtlose proximity due to
non-specific interactions between them or to the additiemak required to deform the
DNA helix [28, 88], we set a minimum (exclusion) distancelofiucleotides [, < N)
between the active sites of any two contiguous TECs. In tesimaariablesn andm
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Figure 6.4: Results obtained from stochastic simulatidriseintegrated model of DNA
transcription, illustrating the burst-like RNA produationduced by backtracking pauses.
The bottom panel shows the mRNA production events in timethaedrace above illus-
trates the resulting mMRNA count fluctuations. In the thirchgda/mRNA/d¢ is plotted
(dt = 6min), along with an arbitrary threshold (dotted line, setl@it mMRNA/sec).
The threshold enables us to visualise the transcriptioradgss as a telegraph process
with ‘off’ and ‘on’ states corresponding to low and high i@ mRNA production (top
panel). The parameters used in the simulation are sumrdansection 6.5

the active site of a TEC is located at position= n + m along the DNA template.
Therefore, a TEC, positioned at, can translocate forward (backward) if the leading
(trailing) TEC, positioned at,, is at distance of more thannucleotidesi.e., |21 — z5| >

L. A similar argument also applies for transcription initat, that is, no RNAP can
initiate transcription if a TEC is present at positior< L. A schematic illustration of the
model is given in Fig. 6.3.

Stochastic simulations (see section 6.5) of the model thestiabove indicate that
transcriptional pausing due to backtracking can give odaurst-like production of RNA
transcripts (see Fig. 6.4). Intuitively, sufficiently lopguses induced via backtracking
can shut down mRNA production by blocking trailing TECs. hetintervals between
pauses, multiple blocked TECs that have accumulated abthgestion site are likely to
be transcribed in a burst of rapid mRNA production. In thédiwing Section we study
this phenomenon in greater detail using a coarse graine@lb®NA transcription.
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6.4 Coarse-Grained Model of DNA Transcription

In the previous Section we devised an integrated model ofré#mscription process and
demonstrated that backtracking can result (under certaiditions) into bursts of MRNA
production. However, long lived transcriptional pauses ba induced, besides back-
tracking, through a wide variety of mechanism such as sempiencoded signals [7],
nucleosome packaging [24,82] and DNA lesions [95].

Here we formulate a more general model of DNA transcriptidth ¥he aim of quanti-
tatively studying the effect of transcriptional pausingtba statistics of RNA production.
The model is inspired by asymmetric exclusion processe&f$hat have been widely
used in non-equilibrium statistical mechanics to modeigport and traffic [36, 43].

6.4.1 Model Formulation

At acoarse grained level, DNA transcription can be desdriyea one dimensional totally
asymmetric exclusion process [36, 43]. Within this pictUrieCs are thought as particles
moving on a chain, which represents the DNA template. Eaeho$ithe chain maps to
a DNA region rather than a single nucleotide. As describetthénprevious section the
length of this region is set by the minimum distance that t@mplexes can approach
each other due to steric interactions between them or thiéi@ua work required to
deform the DNA helix. Since at any point during transcripttbe footprint of a TEC is
approximately30 nucleotides long [58], a reasonable estimate of the exaudistance
would of the order 060 — 100 nucleotides.

Transcription initiation occurs with rate and involves loading of a particle at position
n = 1. While moving on the chain, particles can exist in two staggsesenting active
and paused TECs. Active particles hop forward with kgterovided that the next site is
not occupied. Forward movement is in kinetic competitiothvpausing which occurs at
ratek,. Once paused a particle can hop forward with a reduced:ale; < k) and its
state is reset to active. Finally, a particle terminatesdcaption from siten = N with
ratek;. The above transitions are schematically illustrated gG=b.

The four relevant time-scales associated with the model are

e 7, = 1/k;: time-scale of initiation
o 7; = 1/k;: time-scale of active elongation

e T

, = 1/k;: time-scale of a single pause

e 7, = 1/k,: time-scale of termination
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Figure 6.5: Schematic illustration of the state transgigmvolved in the coarse-grained
ASEP type model of DNA transcription. Initiationge., loading of a particle at position
n = 0, occurs at raté;. During elongation particles move forward on the chain-{
n+1) at ratek;. Atany position particles can enter a paused state (redjeit,. Forward
movement of a paused particle occurs at kateTermination occurs from position= N

at rateky.

The overall dynamics of the process depend on the relatipbsiween these time-scales.
In particular, we define two dimensionless quantifitand.S as:

ky

s = 4 (6.3)
ky
k

£ = 2 (6.4)
ky

S (S > 1) quantifies the time overhead introduced by transcriptipaasing, that is
S = 1 indicates short pauses, white>> 1 long lived ones. On the other hartlrelates
to the probability of entering the paused state at a spediévigm

&
Probability t = —. 6.5
robability to pause 5 (6.5)

As & — 0, pauses become more and more infrequent white oo essentially guarantees
pausing at each site.
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6.4.2 Inter-arrival Statistics

Using stochastic simulations (see section 6.5) of the mpsented above we examine
the steady state statistics of timéer-arrival times(7"), defined as the intervals between
successive termination (RNA production) events. Our ahoicstudying the inter-arrival
times instead of RNA populations levels enables us to descethe process of mMRNA
degradation and focus solely on the microscopic dynamitsagcription. Furthermore,
advancements in fluorescent techniques, allowing for singblecule resolution, make
the direct measurement of inter-arrival times possible116, 154].
In particular we focus on the squared coefficient of variatit’? defined as
o7

ovE = T (6.6)

CV?# is a normalised measure for the dispersion of a probabilgyridution and pro-
vides a first handle on the temporal fluctuations of the piscEarthermore, it provides
a useful measure for qualitative comparison with the Poiggocess, which has been
used in standard models of gene expression to model thetiaien step. Events occur-
ring according to a Poisson process are randomly and indepdy distributed in time.
Therefore, the inter-arrival times follow an exponentiatdbution that yieldsC'V2 = 1.
Consequently, super-Poisson (high variance) processésdicated byC'V? > 1, while
sub-Poisson (low variance) processehy? < 1.

6.4.3 Statistics of RNA Production in the Absence of Pauses

We start our analysis by considering the simplest scenanehich TECs are not allowed
to enter the paused states,, £ = 0. As illustrated in Fig. 6.6, the relation between the
three relevant time-scaleg 7;, and7; alter the statistics of the inter-arrival times from
Poisson to sub-Poisson.

In particular, forr; > 74, 7, [regime (l) in Fig. 6.6], initiation becomes the rate limit-
ing step and fully determines the dynamics of the procesthisiregime the mean inter-
arrival time scales likeé /k; and the squared coefficient of variation approaches urety (s
Fig. 6.7). Effectively, the model becomes equivalent to s$m process with rate pa-
rameterk; and hence the inter-arrival times obey an exponentialidigton (see Fig. 6.8).
Similar results are also obtained for > 7;, 7, [regime (ll1) in Fig. 6.7].

As 7; is increased relative to the two other time-scales, thegalbon phase starts
adding more and more to the total transcription time. This && a consequence the
decrease of the temporal fluctuations (see Fig. 6.7), sime@ynamics of the process
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Figure 6.6: Heat maps of the squared coefficient of variatibthe inter-arrival times
(CV}3) in the absence of transcriptional pausés= 0). Depending on the relation be-
tween the three relevant time-scatgsr;, 7, the behaviour of the model can be classified
into three regimes. Regime (1) and (Ill) correspond to Rmisstatistics (V7 = 1),
whereas, regime (Il) corresponds to sub-Poisson statigtit’? < 1). Results were ob-
tained using stochastic simulation of the model#6r 20.

cease to be governed by a single rate limiting step. Whepg 7,, 7, the dynamics of
transcription are dominated by the elongation phase, wihiekes the process appear
sub-Poisson [regime (Il) in Fig. 6.6]. In this regime the Diinplate is fully occupied
by TECs moving in tandem. A TEC will occasionally be blockedhind another one, but
on average their motion will be regular and mRNA productiath e occurring at rather
fixed intervals. This is demonstrated in the distributiortrd inter-arrival times, which
becomes narrowly peaked around the mean and can be wellbfjt@damma distribution
(see Fig.6.8).

In summary, when transcriptional pauses are negligiblefimamics of the process
depend on whether a single rate limiting step is present tr @oven sufficiently low
rates of initiation or termination the process demonssr&eisson characteristics, while
when the elongation phase becomes significant temporalfitiohs tend to get averaged
out.

6.4.4 The Effect of Pause Lifetimes

We now turn to the question of how transcriptional pausescathe statistics of the inter-
arrival times. Inclusion of transcriptional pauses addsadditional time-scale;,, and
the relation between this time-scale and those of initre¢ig) and active elongationrf)
dictates the behaviour of the process. As illustrated in &g, we can distinguish three
main regimes in the parameter space giving rise to quaiggtdifferent behaviour.
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Figure 6.7: The mean inter-arrival tim¢I{()) and the squared coefficient of variation
(CV2) as a function of the initiation raté:(/k;) for £ = 0. When initiation is the rate
limiting step (T') demonstrates a linear variation a6d’? = 1, indicating the Poisson
character of the process. For higher values:othe time spent on active elongation
becomes significant and wipes out temporal fluctuation. Resiere obtained using
stochastic simulation of the model fof = 20.

In the limit of , > 74,7, [regime (I) in Fig. 6.6] initiation dynamics dominate the
process. In this regime the density of TECs on the DNA terepktow and therefore
transcriptional pauses and interactions between TECs<perted to have only marginal
effects. Therefore, as discussed above, the model becauirakent to a Poisson process
and inter-arrival times obey an exponential distributi&or 7, > 7;, 7, [regime (lll) in
Fig. 6.9] fast transcription initiation is blocked by thew movement of the TECs on
the DNA template, while the relatively short-lived tranptional pauses, as in the case
above, play no significant role. In particular, in this regitie density of the TECs
along the DNA is maximal and their regular motion gives ris@tsub-Poisson statistics
(CVE < 1).

However, the behaviour of the model changes significantlgrwpauses dominate
transcription. In particular, for, > 7, 7, [regime (ll) in Fig. 6.6] we observe'V}? > 1
indicating the super-Poisson behaviour of the process.attiqolar, the distribution of
inter-arrival times becomes heavy-tailed and two bumpsgapin its shape, indicative of a
burst-like production of RNA transcripts (see Fig. 6.10hephysical picture behind such
behaviour is a simple one. Long lived transcriptional pawsa create congestion points
by blocking the movement of trailing TECs, while the leadirgCs continue to transcribe
normally. In this way the uniform [regime (I)] or Poissondmne (lIl)] distribution of
TECs on the DNA template is disrupted, resulting in a buks-production of mRNA
transcripts.
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Figure 6.8: The distribution of the inter-arrival timesdtd by the mean) in the absence
of pauses{ = 0) at the two limiting regimesr; > 7,, 7, (left panel) andr; > 7,,
(right panel). For low rates of initiation the inter-arrivanes are in agreement with an
exponential distribution with rate parameter(red line). For higher values the distribu-
tion become narrowly peaked around the mean value. Herethiee denotes a Gamma
distribution with the same mean and variance. Results waarodd using stochastic simu-
lation of the model forV = 20, k;/k; = 1 k;/k; = 102 (left panel) andk; /k; = 1 (right
panel).

6.5 Numerical Methods

For the model presented in Section 6.3 results were obtaisied stochastic simulations
(Gillespie algorithm) [52] with the following set of paratees: N = 4 kbp, L = 100 bp,

M =10bp,p. =50s !, p_. =05stc=01stk =0.02s!andk; = 31074

s ! andp, = 0.05 s™! (yielding approximatelyl pause/kb). The code was implemented
in JAVA and a single run was performed, shown in Fig. 6.4. Tystesn was monitored

using
e a list of state variable&n;, m;), denoting the state of theh TEC along the DNA

template,

e acountei’,, gy 4 keeping track of RNA molecules,

e atimert.

The system was initialised with an empty list of state vdaal{ino TECs on the DNA
template),C,,rva = 0, andt = 0. Each time an initiation event occurred a new set
of variables(n = 0,m = 0) was added at the beginning of the list. In the case of a
termination or degradation evef,zy4 Was updated accordingly. At each step of the
algorithm, all permissible transitions for each TEC présanthe DNA template were
calculated based on the list of state variable and were atddad “event” list. This list

117



Chapter 6 Cell Level: The Stochastic Nature of RNA Produrtio

. . 15
T <
10°
s T S 1
e SIE
< 10"
E L
v - W05
102 o= -
1 i . D
107 10" 10°
7 /Ty

Figure 6.9: Heat maps of the squared coefficient of variatibthe inter-arrival times
(CV3) in the presence of transcriptional paus€s* 0). Depending on the relation
between the three relevant time-scatgs, 7,, the behaviour of the model can be clas-
sified into three regimes. Regime (b; (> 74, 7,) corresponds to sub-Poisson statistics
(CVE < 1), regime (Il) @, > 7, 7,) to super-Poisson statistic§ (7 < 1), and regime
(I (7 > 74, 7,) to Poisson statisticg(V;? = 1). Results were obtained using stochastic
simulation of the model foiV = 20, £ = 0.05.

was also appended with the events of initiation (whenm, < L), and RNA degradation
(whenC,,,gnva > 0). From the list of events, one was chosen with probabiligpprtional
to the corresponding rate [see Chapter 3 (3.3.4)] and thersystate was updated.

All results presented in Section 6.4 were obtained usinghststic simulation of the
coarse grained model of DNA transcription. As above theesththe model was moni-
tored using

e a list of state variableé;, [;), denoting the position() of the ith particle along
the chain and its current state € 0, 1, either paused or active)

e alist of termination time§;

e atimert.
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Figure 6.10: The distribution of the inter-arrival timesdted by the mean) in the presence
of pauses{ > 0) at two limiting regimes:r; > 7,, 7, (left panel) andr; > 7;, 7, (right
panel). For low rates of initiation the inter-arrival timaee in good agreement with an
exponential distribution with rate parameter For higher values the distribution becomes
fat-tailed and RNA production appears to occur in burstssuRe were obtained using
stochastic simulation of the model for = 20, £ = 0.05

The system was initialised with an empty list of state vddaland termination times and
t = 0. Each time an initiation event occurred a new set of vargple= 0,/ = 1) was
added at the beginning of the list. In the case of a terminai@nt the current time was
appended in the list of termination times., 7;,.; = t. At each step of the algorithm, all
permissible transitions for each particle on the DNA chaerevcalculated based on the
list of state variable and were added to an “event” list. Ftomlist of events, one was
chosen with probability proportional to the correspondiaitg [see Chapter 3 (3.3.4)] and
the system was updated accordingly. The code was implech@nt#&VA and a single
simulation run was performed for each for each set of pammetllowing the list of
times to reach a size df)° elements. For the analysis, however, the fifst elements
were neglected to ensure that the density of the particlak@®NA chain had reached
a steady state. Inter-arrival times were calculated byraatihg consecutive elements of
the list, i.e..T; = 7,1 — 7,.

For the distribution presented in Fig. 6.8 and 6.10 the diatained {;) were rescaled
by their mean value,

e (6.7)
2T

and binned. Bin frequencies were subsequently transformegrobabilities by division
with the size of the sample and finally into probability déesi by division with the bin
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Regime Behaviour
4 Tp > Tf Poisson
T T s | Poisson

7, > 7, | Sub-Poisson
73> 711 | Sub-Poisson
7, > 7 | super-Poisson

T Tp, Ti

Tp > T, Tf T > 7; | super-Poisson
T~ TE ST, sub-Poisson
T~ T, > Ty super-Poisson
T~ T, > T super-Poisson

Table 6.2: Table summarising the behaviour of RNA produrciiothe different limiting
regimes.

size.

6.6 Summary and Discussion

In this Chapter we have presented a integrated model of DBdstription linking the
microscopic dynamics of the process to fluctuations in mRK#dpction and gene ex-
pression. The model incorporated the initiation, eloraggtand termination phases of
DNA transcription and was formulated in terms of a totallyrasetric exclusion process
to take into account that multiple RNAPs with repulsive ratgions can simultaneously
transcribe the DNA template. Our results indicate that tiberplay between the different
time-scales of the model in combination with the exclusnteriactions between transcrib-
ing TECs can significantly alter the temporal statistics 8MA production. A qualitative
description of the different classes of behaviour obtaisgaesented in Table 6.2.

Following the work presented in previous chapters we paldity focused on char-
acterising the effect of transcriptional pauses on thessieg of mMRNA production. Our
results suggest rare and long pauses can result in a keegtribduction of mMRNA tran-
scripts and super-Poisson mRNA statistics. The effect abga can be linked heuris-
tically to a switching mechanism between high and low rafesRNA production. In
particular, sufficiently long pauses shut down mRNA producby jamming TEC traf-
ficking on the DNA template. Once the leading TEC resumesgation multiple blocked
TECs that have accumulated at the congestion site are liégrminate transcription re-
sulting in burst of rapid mRNA production. Similar findingtustrating the effect of
transcriptional pauses on the statistics of RNA produatiere independently reported in
Ref. [37].
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Interestingly, recent experiments have provided evideftiee existence of bursts of
transcription both in bacterial [55] and eykaryotic ceR§[114]. Our model attributes
this phenomenon to particularly long pauses that occumdurianscription elongation.
Such pauses can be attributed to a wide range of factors SUBINAP backtracking,
sequence encoded signals [7], molecules that interacttimtiranscribing RNAP, DNA
lesions ,or nucleosome packaging [24, 82]. We note, howdvat burst of mMRNA pro-
duction can also be attributed to other phenomena. For deamipanges in the state of
the promoter due to chromatin remodelling [27, 114] or theedfifusive motion of regu-
latory molecules [142] can also provide a switching mectrarbetween rapid and slow
MRNA production

Advancements in experimental techniques, which allow orteack levels of chemi-
cal species within cells, have renewed the interest in thehsistic nature of gene expres-
sion and its implications regarding cell behaviour and.fé&de far, however, modelling
attempts have focused on a coarse grained level of destrifggoring the microscopic
details of the processes involved in gene expression. Budtsgpresented in this Chapter
can also be relevant for translation and highlight the need finer level of description
to understand gene expression and regulation and fluchsatierein.
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Chapter 7

Population Level: The Social Behaviour
of Bacteria

The stochastic nature of subcellular processes plays &ctrote in determining cellular
behaviour and cell fate. However, cells rarely exist inasioin, and their behaviour is also
shaped to a large extent by inter-cellular communicatiorthils Chapter, we aim to study
in a simplified context how the dynamics and behaviour of &pmgbulation, shaped by
interactions between individual cells, is affected byantellular fluctuations. Inspired by
real life bacterial communication, we propose and studyraficzal gene regulation net-
work. The network couples bacterial cells via two distinatnenunication channels and
gives rise to two mutually exclusive bacterial behaviougyond some critical thresh-
old of coupling, coordination at the population level is i@sled, with the majority of the
cells adopting one of the two behaviours. Our results irtdit@at subcellular fluctuations
raise the critical coupling strength at which transitiomrtajority consensus is observed.
We provide a physical explanation of the phenomenon usirgaese-grained, Ising-type
model of the bacterial population. The-silico paradigm of bacterial social behaviour
presented in this Chapter illustrates the bidirectionkdtienship between cellular and
population-level dynamics exemplifying possible effetttat intra-cellular fluctuations
can have at the population level.
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7.1 Introduction

Cells are constantly presented with “choices” regardirgrtfate and behaviour. The

mechanisms underlying their apparent decision makingrdarigate networks of regula-

tory interactions between genes and proteins. These netvionction as genetic pro-

grams giving rise to distinct cellular behaviours in resgmto changes in environmental
conditions or changes of the cell’s internal state. Howetlese modules of cellular

functionality are far from reliable. Instead it has long begpreciated that the inherent
stochasticity of subcellular processes renders randasreésgy player in dictating cel-

lular phenotype, behaviour and fate [86, 102], one thasaallist adapt to cope with or
occasionally exploit to their advantage.

A simple, yet illustrative example comes from the lifestgfe\ phage, a virus infect-
ing bacterial Escherichia Coli cells. Upon infection, the genome of the phage %0
genes) is integrated into the bacterial DNA, and subsetukast machinery facilitates
the expression (transcription and translation) of its gefidne\ phage genome contains
a rather simple genetic programme enabling the phage tosehoetween two distinct
lifestyles, thdysogenicand thdytic one [112]. Under conditions that allow bacterial pro-
liferation, the phage adopts the lysogenic lifestyle, wettbe protein product of a master
regulator gene is responsible for repressing the the retsteophage genes. Hence, the
phage remains dormant and its genetic material is pass®pglicated along with the rest
of the bacterial DNA. When, however, the bacterial populats stressed through expo-
sure to UV light, the phage switches to its lytic lifestylexdgession of phage genes is
rapidly turned on and as many &30 phage particles are assembled causing the bacterial
cell to lyse (burst) [112]. Importantly, switching from thesogenic to the lytic lifestyle
can also be triggered in the absence of environmental stisalély due the stochastic na-
ture of the processes involved in gene expression. Notisurgly A phage has evolved
elegant mechanisms for minimising these randomly indugéd évents [142], The\
phage paradigm illustrates the crucial role of fluctuationdictating the behaviour and
fate of individual cells.

Of course, one should also appreciate the fact that cekdyraxist in isolation. In
multicellurar organisms, for example, cells are consyasijnalling to each other, syn-
chronising their activities in this manner and coordingttheir fates during develop-
ment [21]. Similar cell-to-cell communication is observadhe bacterial kingdom. Bac-
terial communication, termed agiorum sensings mediated by small molecules called
autoinducerdhat bacterial cells produce, release to their environyreerd detect [150].
When the autoinducer molecules reach some critical coratét within a bacterium
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they trigger a quorum response by activating certain trgoisen factor proteins that reg-
ulate the expression of quorum-specific genes [150]. Inrttasner, bacterial cells are
constantly communicating with one another orchestratieg toehaviour in response to
environmental stimuli and changes in their density.

The dependence of population-wide dynamics on the intéutae communication
raises the question of how noise present at the intra-eellevel affects the behaviour at
the cell population level. Such a question is particulartgresting to the physics commu-
nity that has extensively studied the collective behavafuroise-driven, non-linear sys-
tems in many different contexts [48]. Specific examples ofipalar interest are ensem-
bles of noise-driven bistable switches [111]. Effectivedgich switch can be considered
as a system possessing a double-well energy landscapeheitivd wells corresponding
to the two discrete states that the switch can attain. Inlisersce of any coupling, due to
intrinsic fluctuations individual switches undergo randmamsitions from one state to the
other. The presence of a uniform all-to-all coupling, hoaregives rise to a critical cou-
pling strength at which the population undergoes a phassitian from a “disordered”
state — where noise dominates and the switches are paetitloetween the two states —to
an “ordered” one — where the majority of the switches occupy the two states. In this
Chapter, we study how intra-cellular fluctuations affe@ Hehaviour at the population
level using a gene-regulatory network that demonstratasitgtively similar behaviour
to the toy model described above.

The remainder of this Chapter is organised as follows. Wi &ith a brief review of
bacterial communication and its importance for bacteifal INext, inspired by real-life
bacterial behaviour, we propose and analyséasilico gene regulatory network. This
network enables us to dissect bacterial communicationtaily & in a simplified context.
More importantly, it serves as a fine system to study howrnisicifluctuations at the cel-
lular level affect the behaviour of bacterial populatiolrsa nutshell, the circuit enables
cells to choose between two antagonistic social behavi@agond some critical thresh-
old of cell coupling, coordination at the population levebichieved, with the majority of
the cells adopting one of the two behaviours. Our resultstitate that subcellular fluc-
tuations hinder the ability of cells to achieve majority sensus, making the population
appear more disordered. Finally, to gain a deeper insigbitire transition between the
two regimes of behaviour we present and analyse a coarseedrdsing-type model of
the dynamics at the population level.
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Figure 7.1. The Quorum sensing systenMrfisheri(adapted from Ref. [150]). Com-
munication inV. fisheriis mediated by small molecules called autoinducers (AleSEh
molecules are produced by specific enzymes (Luxl synthesaskin turn diffuse in and
out of bacterial cells. When present in sufficiently high eamrations within cells, in-
dicative of high cell density, autoinducers trigger a quornesponse by activating specific
proteins (LUxR receptor) that control the expression ofegen

7.2 Bacterial Communication

The gene regulatory network we propose and study here enadlgpling between cells
via two mutually inhibiting quorum sensing modules. Befpresenting the actual net-
work it is therefore essential to give a brief overview of gua sensing and its importance
for bacterial life as well as to present specific real-lifamples of bacterial communica-
tion that have motivated the design of the network.

7.2.1 TheVibrio fischeriParadigm

Quorum sensing was first discovered and described in thenebacteriunVibrio fis-
cheri[98]. This bacterium colonises the light organ of the Haaisquid,Eupryman
scoloped144], where necessary nutrients are provided for its fadtion. In exchange,
V. fischeriuses quorum sensing to induce expression of biolumineggs once it has
grown to sufficiently high cell densities. The light emitteglthe bacterial colony is used
by the squid to mask its shadow and avoid predation [98].

As illustrated in Fig. 7.1, the quorum sensing syste.ifischericonsists of two pro-
teins, Luxl and LuxR. The former (I protein) is involved inetBynthesis of autoinducer
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molecules (Al molecules), the chemical signal used for dr@adtcommunication. In the
case ofV. fischerithis signal is an Acyl-homoserine lactone (AHL). Followipgpduc-
tion, autoinducer molecules freely diffuse in and out of ted and their concentration
increases with increasing cell density. The second pr@Riprotein) is the autoinducer
receptor. When present at sufficiently high concentratian®inducer molecules readily
bind to LuxR and promote its dimerisation [26,61]. In thisfp LUxR can recognise and
bind specific promoter sequences upregulating the expresscertain genes [126,129].
Among these genes are ones responsible for biolumineseneelleas the gene encoding
for the LuxI protein [126]. This gives rise to a positive féagdk loop that locks cells into
a quorum sensing mode [150].

7.2.2 An Overview of the Complexity in Bacterial Communicaton

Following the seminal discovery of quorum sensingMnfischeriit was appreciated
that a large number of bacteria possess communicationnsgsbeeying similar prin-
ciples [87,150]. In particular, different autoinducer malles are produced by many
bacterial species. These molecules either diffuse or dieectransported to the extra-
cellular environment and their concentration is consyagdluged. Beyond some critical
concentration (corresponding the high cell density) auttocers trigger a quorum re-
sponse by regulating the expression of specific genes. Thikasties of quorum systems
across different bacterial species, points to a commonsarat®rigin and is perhaps the
strongest evidence for the importance of quorum sensingdoteria and their survival.
Nonetheless, closely relatedomologousquorum sensing systems of different bacteria
demonstrate extreme specificity: differences in the stinecof the autoinducers as well
as in the structure of the receptor proteins play an importda in conveying signalling
specificity [150]. That is, autoinducers can only activdieirt cognate receptor proteins
and therefore allow only for intraspecies communication.

The social life of bacteria becomes even more intriguing wbee recognises that
many bacterial species possess multiple quorum sensitgnsysSuch systems are most
often interweaved with one another, arranged in parall@), [& series [123] and in some
cases in direct competition with one another [59] resultmgather complex behaviour.
One patrticular example comes from the well studied baateBacillus subtilis When
presented with stress conditior®, subtiliscommits to one of two mutually exclusive
lifestyles: sporulation or competence. In the first stagelthcterium undergoes a physio-
logical change that enables it to survive for extended pleraf time under unfavourable
environmental conditions. The second state enables theri@aells to uptake exoge-
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nous DNA to be utilised as energy source or incorporatedth@enome. Interestingly
B. subtilisrelies on inter-cellular communication through two conipeg (inhibiting)
guorum sensing systems to decide which of the two fates tossh[29, 59, 97].

Unlike the classicV. fischeriexample, bacterial communication is blocked in many
cases by signals coming from the host or even other bacteveirgg in the same niche.
Such inhibition, termed aguorum quenchingnables hosts to prevent colonisation by
pathogenic bacteria or allows certain bacterial specipsdiiferate faster than others [38,
150]. A particularly interesting example of the second sciencomes from the social
life of Staphylococcus aureu3his pathogenic bacterium comes in different strains that
are classified according to the autoinducer molecules theguce [39, 103]. Surpris-
ingly, autoinducers of one strain directly inhibit the quar sensing machinery of other
strains [84]. For example such behaviour imposes direcpatition between populations
of different strains of5. aureusvhen they co-infect a host.

7.3 Anin-silico Paradigm for Bacterial Communication

In this section we present an artificial gene regulatory ngtwonsisting of two mutually
inhibiting quorum sensing modules similar to the one foumthie bacteriunV. fischeri
Our primary goal is to study the dynamics that the regulat@tyvork conveys at the pop-
ulation level, and in particular the effect of subsecullactliations. The construction of
the network was inspired by the complex social liveBo$ubtilisandS. aureupresented
in the preceding section. In this respect, the proposedatgy network can also serve
as an paradigm for bacterial communication, enabling ordiseect complex bacterial
social behaviour and study it in a simplified context, in theisof synthetic biology

Synthetic biology is a young discipline that is already afiag the life sciences as
we know them. The main aim of synthetic biology is the bottgntanstruction of novel
biological systems, ranging from small genetic circuit$uiy functional cells and even
ecosystems [113]. From an engineering perspective, sigtbrag have potential appli-
cations in a wide range of areas, with medicine [6], drug Isgsits [2] and sustainable
energy production [120] being a few indicative examples. t other hand the con-
struction of simple synthetic systems with predefined fiamstenables one to dissect life
processes and study them within a simplified context andnouterolled conditions. In
this manner, synthetic biology has a crucial role to playnderstanding natural biologi-
cal processes and the first principles underpinning life.

Early efforts in synthetic biology have been particularlycsessful in assembling
small regulatory networks from basic elements, such as pters and genes encoding
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Figure 7.2: Schematic illustration of the proposed geneletgry network. It consists

of two mutually inhibiting quorum sensing modules givingaito two mutually exclu-
sive behaviours. Two species of autoinducers fAll;) are produced intra-cellularly by
synthetase enzymeslk). In turn, autoinducer molecules diffuse in and out of thiésce
When an autoinducer species is present in high concentgatidriggers a quorum re-
sponse by binding to its cognate receptor proteif/RY) and activating it. Activated
receptor proteins (THFTF,) upregulate the expression of the cognate synthetase and re
press the expression of non-cognate one.

transcriptional factors [113]. Such circuits were usedéaegate different kinds of be-
haviour, including oscillations [8, 41, 54, 130, 135, 13%istability [8, 51, 77], pulse
generation [13], spatial patterning [12] and logic funogd117, 153]. Also, synthetic
paradigms have been extensively used to study the desigrigdes and dynamical prop-
erties of small, naturally occurring, regulatory motifatimclude linear and feed-forward
regulatory cascades and autoregulation [9, 14, 40, 67].eMecently, attention has also
been given to synthetic ecosystems and the design of simtiete networks that are
capable of conveying nontrivial population wide behaviodkamples include usage of
synthetic quorum sensing modules to achieve regulatiorlbensity [157], predator-
prey dynamics [11] and coordinated behaviour between ENS]. The artificial gene
regulatory network we propose here can, therefore, becpéatly motivating with regard
to these recent bio-engineering efforts.
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7.3.1 The Synthetic Circuit

Figure 7.2 gives a schematic illustration of the proposetwgegulatory network. It con-
sists of two mutually repressing quorum sensing modulesil&i to V. fischerj each
module consists of two genes encoding for the autoinduagghsyase enzyme (denoted
by I,/15) and the autoinducer receptor (denoted QyRR). Initially, both of the genes
are expressed at a basal rate. Protejrent |, produce distinct autoinducer signalling
molecules (denoted by MAI ) that are free to diffuse in and out of the cell. This enables
cells to communicate via two distinct channels. When aulioter molecules are present
at high concentrations (corresponding to a high cell dgnhsiiey convey a quorum re-
sponse by readily binding to their cognate receptor pretaid enabling dimerisation. In
the dimeric form (denoted by TF), R proteins bind to promsttss on the DNA (denoted
by P,/P,;) and regulate the expression of the synthetases. In plartic@ach promoter
contains two binding sequences, one for each TF. These seggienable each TF to
upregulate the expression of its cognate | protein whilerdegulating the expression of
the non-cognate one.

The positive feedback established for each quorum sensodyi®m along with the
mutual inhibition established between them allow cells do one of two mutually
exclusive behaviours (states): expressing one of the twamraducer synthetase proteins
and therefore communicating via one of the two channels.h S@haviour where the
bacterium chooses between two distinct physiologicagéstasing two mutually inhibiting
guorum sensing modules is reminiscenBofsubtilis The picture is also similar to the
competition observed between differétaureusstrains. This is readily seen if the gene
regulatory network is broken into two parts and placed ininli$ cell types, as Fig. 7.3
illustrates. In this case, each cell type is capable of prodponly one autoinducer signal
but responds to both. In particular, each cell type respdadognate (non-cognate)
autoinducer molecules by up(down)-regulating the pradacof the | protein. In this
manner, when present in the same environment the two celstgye in direct competition
with each other.

7.3.2 Modelling the Dynamics

At a coarse grained level the dynamics of gene regulatornyor&s can be described in
terms of chemical reactions occurring at constant ratege e summarise the reactions
that capture the key behaviour of the gene regulatory nétand their corresponding
rates. The dynamics of the network can be broken up into tfenfimg three components.
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Figure 7.3: Schematic illustration of the proposed genaletgry network giving rise
inter-species competition. The two bacterial cell typesa(dl B) produces different au-
toinducer molecules (AIAl,). However, they are capable of detecting and responding to
both signals. Cognate autoinducer molecules upregulatprtiduction of the synthetase
proteins (1/1,) whereas non-cognate ones downregulate it. Regulatioohie\aed via
receptor proteins (RR,), which — upon binding to their cognate autoinducers — ale ab
to dimerise and form active transcription factors {lH,). In turn, transcription factors
molecules bind to the promoters,(P,) driving the expression of the synthetase proteins.

Autoinducer Dynamics

Autoinducer molecules, Al are produced by their cognate synthetasgsatlratec 4.
Following their production, Aldiffuse in and out of the cell with ratesandrney, respec-
tively. Following [49] we define the diffusion rates as= 0. A/V, andney = 0 A/V,,
whereo represents the membrane permeabilitythe surface area, and, V. denote the
intra-cellular and extra-cellular volumes, respectivé&iyally, due to different conditions,
autoinducer molecules degrade with ratgsandd 4 x depending on whether they reside
inside or outside the cell.

L, — 1+ A; oy (7.1a)
Al = Aiiext = (=), Nexe(<) (7.1b)
Al — 0 dA (7.1c)
Al exi — 0 0A ext (7.1d)

Transcription Factor Formation

Autoinducer receptor proteins Bre constitutively expressed at all times and we therefore
assume their numbers constant. As the autoinducer mosestdd growing in numbers
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Species Description

Al,; autoinducer

l; autoinducer synthetase

R, autoinducer receptor

R;-Al; receptor-autoinducer complex

TF; transcription factor

P; promoter driving the expression of the synthetase

Table 7.1: Summary of species involved in the gene reguylatetwork.

they bind to R forming R-Al, complexes. These complexes then dimerise to form the
active transcription factors, TF

Autoinducer Synthetase Dynamics

In the absence of any signalj$ expressed at some basal rate As transcription factors,
TF;, start to form they bind to promoters &ther activating or repressing the expression
of I;. In particular, binding of the cognate Tk the promoter Pincreases the rate of
expression tay;, while binding of the antagonist Tllocks any transcription reducing
the rate of expression to zero. Finally the rate;afdgradation ig;.

Pp—P+1;, : «af (7.3a)

protive _, pactive | | . 1 (7.3b)
plepressed_ pyepressed, | . ) (7.3c)
P+ TF = P : kon(—), kore(<) (7.3d)

P TF — P;epressed . kon(—), kore(—) (7.3e)
L0 s (7.3

7.3.3 Formulating a Rate Equation Model

We can use the above chemical reaction picture to formuletteaequation model.e., a

system of ordinary differential equations describing iheetevolution of the concentra-
tion of the different species (denoted by square brack&s¢h a model will be valid as
long as all participating species are: (i) present in largmipers (so that their concen-
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trations can be represented as continuous variables) arwhogeneously distributed
within and outside the cell (so that reactions occur homegasly in time and space).
The rate-equation model therefore captures the deterisibishaviour of the gene regu-
latory network embedded within a homogeneous populatibe.stochastic nature of the
system will be phenomenologically captured by subsequeulting white noise terms
to our ordinary differential equations.

Autoinducer Synthetase Dynamics

Reactions (7.3) give rise to the following set of rate equradi

Pactive _
% = kON[TFZ] [Pz] - kOFF [P?Ctlve} s (74)

d P;epresse
% = kon[TF] [Pi] — korr [P;epresseji ) (7.5)
dg]: %Wa@mﬂ+Fﬁmﬂ)_%wﬁﬂﬁﬂ+ﬁﬂwm41®
@ﬂ::aﬂm+a”@mﬂ—&M. (7.7)

Of course the total number of promoters is conserved so wii@aklly have
potal _ [p] 4 [preive] 4 [Prlepresseji' (7.8)

In what follows we will assume that binding and unbinding @niscription factors
occurs on a short time-scale. This will enable us to elinanhe fast varying variables
[pactve], [P;epressej’ and[P;] and end up with a single equation describing the slow dynam-
ics of [1,].

By settingd [P2*™¢] /dt = 0 andd [F{epressej’ /dt = 0 we obtain:

[Pl = %&RWEL (7.9)
[premessed — N ) (7 (7.10
korr

Substituting the above relations into Eq. (7.8) yields:

KI Fgotal

m]:A&+HH+HH’

(7.11)
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whereK; = :ﬂ. Finally, upon substitution, Eq. (7.7) becomes
OFF

dfl,]
dt

Oé[K[ + O/I[TFZ]
K;+[TR] + [TH]

— [ iotal]

— ;1]

(7.12)

_ alK + TR 5,1
K+ [TR]+[TR] v

where we have absorbed the quanlﬁ&"ta'} into the rates of production,e., a; =
ar [Pgotal] and@} — O/I [F’;Otal].

Transcription Factor Formation

Turning on the dynamics of the transcription factor forroafireactions (7.2) give rise to

% = k[R][Al] — ko [Ri-AL]% (7.13)
% = ks [R-Al]* — ky[TF,]. (7.14)

We will also assume that the characteristic time-scale®bihding events leading to the
formation of the transcription factor are fast. Therefassuaning that variablefi;-Al ;]
and[TF;] are at quasi-steady state and setting the above equatieastae obtain

(Ro[AlL])?

TF’L - )
(TR KpK}%

(7.15)

k k . ,
whereK = k;_4 andKq = k—Q Furthermore, since the concentrationfbfloes not change
3 1 :
due to the internal dynamics of the system we have regardegatconstant parameter,
viz. [R;] = Ry.

Autoinducer Dynamics

The intra-cellular and extracellular concentrations of @énoted byAl;| and[Al; exi,
respectively are described by the following rate equations

d['zltz]n = aalliln — da[AlL], + %([All]n — [Al; ext]) (7.16)
N
d[A!l;,ext] = —OaexlAlrexd + % ;([Al,,ext] —[AL]L) (7.17)
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where the subscript was used to denote individual cells in the population anctime in
the second equation is taken over a populatioN afells. Note that the above set of equa-
tions states that cells are coupled via the extracellulaceotrations of the autoinducer
molecules. Our assumption of spatial homogeneity theeefores rise to an all-to-all
coupling; that is autoinducer molecules, irrespective béwe they are produced, rapidly
diffuse throughout the whole extra-cellular volume andtaerefore detected equally by
all cells.

Once again invoking the quasi steady-state approximationdriablesAl; ¢ and
[Al 5 ex] We can write

nN/V,

Al; _—
[ ,ext] 5A,ext + 77N/Ve

([AL;]) = Q([Al4]) (7.18)

where .
([AL]) = NZiV:ﬂA'i]n-

The equation describing the dynamics of the intra-cellatarcentration of the autoin-
ducer molecules then takes the form

d[AL],
dt

= aalliln — 0a[Ali], + %([Ah]n — ([AL]])). (7.19)

Note that the above equation was obtained assuming thatsdiff of autoinducer
molecules in and out of the cells is a rather fast processaajtisi-steady state is es-
tablished for the extracellular concentrations of.Alhis assumption allows us to regard
mean-field couplingpetween cells, i.e, cells are coupled to each other via trenrfield
quantities([Al;]). Furthermore, parameté} quantifies the strength of this coupling. In
what follows we use&) as a control parameter to study the effect that the popul&ias
on internal dynamics of each cell; how this effect feeds dadke population, causing
consensus behaviour, and how intrinsic fluctuation affeefopulation dynamics.

7.3.4 Reduced Mean-Field Model

Equations (7.12) and (7.19) along with the relation giverBoy (7.15) constitute a re-
duced model describing the deterministic dynamics of tistesy under the assumptions
of mean-field coupling and spatial homogeneity. To take atoount the intrinsically
stochastic nature of the processes involved in our systemdddo this set of equations
Gaussian white noise terms, effectively turning them imnbelsastic differential equations
(or Langevinequations). This is, indeed, a phenomenological way togaoasince the
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intrinsic fluctuations of the system are capturedaoyhocterms and are not derived by
considering the randomness of the processes involved.[Hjever, this phenomeno-
logical approach is justified by the scope of our model, whecto study the effect of
fluctuations on the population level dynamics and not to etely capture the stochastic
dynamics of the system from first principles.

The final rate-equation model with the addition of Gaussidmtevnoise takes the
form:

dihl, @K+ AL,

At K2+ [AIL2 +[AlL]2 7 ~ ol +\/7€” (7.20)
d[(';]” - O”K[LT‘I[A'[ 51[L] +\/7 DIC,(t) (7.21)
d[Al],, n A

o = aalliln = 0alAl], + VC([All]n_Q<[AII]>)+ DitAn(t) (7.22)
dAly], n n

o = allaln = 0alAl2]n + V([A'] — Q([Al2])) + 1/ D3'ra(t) (7.23)

(K;Kp)'*Ke

whereK = = , and indexn = 1... N denotes the cell. Terng,(t), ¢, (t),
0
An(t), kn(t) are Gaussian white noise with zero mean and delta-peakeetautelation

functions,i.e.,

G(0) = 0. (GO&E) = 58—
GE) = 0, (GG = J<t—t'> 7,20
NB) = 0. X)) = dydle— 1)
(i) = 0. (ki) = ddle— 1)

Finally, DI, D, D{!, D3 quantify the magnitude of the fluctuations for each chemical
species.

7.3.5 Numerical Results

To study the effect of coupling on the population dynamicdeegeis our attention on the
mean-field quantity

1 N
_ N; (7.25)

We first set to study the deterministic behaviour of the sydtg setting

D = D& = DI = DI = 0. (7.26)
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Figure 7.4 (solid and dotted lines) illustrates the longeisteady state behaviour of the
population dynamics as a function of the coupling strergttin the absence of intrinsic
noise a transition is observed at some critical value of togg) = Q. ~ 0.13). Below
Q., cells are effectively behaving independently. In patacu/; and/, are expressed at
basal rates and autoinducers are not present in high eneuels to trigger the quorum
response. Ag) is increased above the critical value, two stable steaalgstappear at
the population level. Each branch corresponds to a statéichvone of the two quorum
sensing modules is activated in bacterial cells and ther aihe is repressed. Of course,
in the absence of noise, the choice between the two stabiéspdepends solely on the
initial conditions. As() reaches unity all cells become synchronised communicatang
the same channel.

Intrinsic fluctuations qualitatively change the above ymietby shifting transition to
consensus behaviour to high@rvalues. The above is illustrated in Fig. 7.4 (circles).
As before forQ)Q > @., each individual triggers a quorum response, activating @i
the quorum sensing systems. However, in this case the cleoiuet fixed. Rather, due
to intrinsic fluctuation each cell randomly switches betwélee two states. Hence at
the population level, this is perceived as disorder, withrapimately half of the cells
occupying each of the two states (see left and centre pamélgi 7.5). The behaviour
changes once again when the coupling strength exceeds sberecatical value) >
Q.. Above Q. coupling is strong enough to make random transitions betviee two
states less frequent. The population, therefore, relaxese of the two consensus states
with the majority of the cells communicating through the sagorum sensing system.
Random fluctuations can still induce random transitionsvben the two states, though
on a much slower time-scale (see right panel in Fig. 7.5).

7.3.6 Numerical Methods

The results presented in Fig. 7.4 and 7.5 were obtained byenoah integration of the
reduced mean-field model given by Egs. (7.20)-(7.23). Tharpater values that were
used are summarised in Table 7.2.

In the absence of noise, the system was integrated using METhuilt-in ODE
solver (functiorode45with default settings). The function implements an expRunge-
Kutta variant with adaptive timestep. For every value of ¢bepling strength®) (0 to
1 with step size).01), 10 random sets of initial conditions were prepared in the range
1], = [0,10], [lIs], = [0,10], [Al4], = [0,10], [Als), = [0,10] along with the set
], = 0, [la], = 0, [Al1], = 0, [Aly], = 0. The system was then integrated with
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0 0.2 0.4 0.6 0.8 1
Q

Figure 7.4: Bifurcation diagram for the long time (steadits} levels of [I,]). Solid lines
indicate the behaviour in the absence of intrinsic flucturegi At some critical coupling
strength@.. the population undergoes a supercritical pitchfork biftien. Above(). a
guorum response is triggered leading to two steady stateb,ane corresponding to cells
sharing the same communication channel. In the presenceisé (circles) the critical
coupling strength for a majority consensus to be reachetiited. A higher coupling
strength is necessary for the population to reach the csaosergime.

these initial condition and in each case the steady-staanrfield quantity[/;])., (see

Eq. 7.25) was recorded. We ensure steady state has beeaddncthecking that all sys-
tem variables do not change more th&n? between successive time-steps. In all cases
integration up ta- = 500 fulfilled this criterion.

For numerical integration in the presence of noise, the rEmlethod was used as
implemented in the XPPAUT software (versioms) with time stepit = 1073, For every
value of( (0.1 to 0.4 with step sizé).025), 10® independent runs were performed using as
initial conditions|l,],, = 0, [l2], = 0, [Al4],, = 0, [Al;],, = 0. In each run integration was
performed as before up = 500, allowing the system to reach steady state giid)>
was calculated. The data obtained for each valug wfere non-parametrically fitted to a
probability distribution using MATLAB built-in functioksdensitydefault settings). The
function essentially computes a smooth estimate of theghitity density function from
the histogram using a Gaussian kernel. The circles showigir/F denote the position
and number of peaks in the estimated probability distrdyutor each value of).
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Figure 7.5: Time traces and the stationary distributiomefrhean-field quantity/l,]) for
different values of). For coupling strengths high enough to trigger a quorumaese,
the dynamics at the population level initially appear dived due to random transitions
of individual cells between the two states (left panel).\Wita critical regime of coupling
the distribution flattens (centre panel) and above thismeghe two meta-stable states of
the population are clearly discerned (right panel). Theatary distributions presented
in the second row are non-parametric fits to simulation dsg¢a §ection 7.3.6).
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Parameter Value Dimensionless value Reference
time (t) sec T=1-0;=t/t*
Qg 0.02 nM/sec 60 nM [56]
o 0.002 nM/sec 30 nM | Tunable parameter
Qg 0.01 sec! 33 [56]
o1 0.0003 sec'! 1 [56,91]
04 0.0003 sec'! 1 [56,91]
0 4e 0.0003 sec! 1 [56,91]
K; 102 nM [56,91]
Ko 10?2 nM [56, 91]
Kp 10?2 nM [56,91]
Ry 10?2 nM Tunable parameter
K 100 nM Tunable parameter
V. 1075 L [3]
N 40
n 6 - 1072 m*/sec 15V, [91]
VD - /D3 10

Df-./D} 5

Table 7.2: Parameters used in the reduced rate-equatioelmod

7.4 An Ising Model of the Population Dynamics

The results presented in the preceding section illusthatiestub-cellular fluctuations hin-
der the ability of cells to coordinate their behaviour andiage consensus. Under weak
coupling (yet strong enough to trigger the quorum respange)sic fluctuations induced
random switching between the two lifestyles in individualls. In this regime, the be-
haviour at the population level appears disordered witlginpuone half of the population
occupying each state. As the coupling strength is incretdsegopulation undergoes a
transition into a ordered state where the majority of cetisupy one of the two states. In
the presence of noise, therefore, higher values of couglirgngth are necessary for the
population to reach the consensus regime.

In this section, we present and study a coarse grained miatedl€monstrates quan-
titatively similar behaviour to the bacterial quorum. In atshell, the model considers
cells in the quorum as a population of interacting bistabligches. To the physicist this
coarse grained picture will bear close resemblance to ag-tyipe model capturing the
collective behaviour of mean-field coupled spins. We use I8ing-type model to study
the transition between the two regimes of behaviour in gredgtail. For a finite systems
this transition is blurred in the region around the criticalipling strength. We find a
condition that marks the clear transition to the orderetéstmking the coupling strength

139



Chapter 7 Population Level: The Social Behaviour of Baateri

to the magnitude of fluctuations and size of the population.

7.4.1 Master Equation Formulation

Consider a population aV cells capable of occupying two distinct statdsand B. The
number of cells occupying each state is denoted byndng = N — ny, respectively.
Furthermore, we allow cells to interact with each other. $iarplicity, we restrict our-
selves to a mean-field coupling and ignore any spatial efféctparticular, we regard that
cells occupying statel(B) exert a forcet+ F'(— F') on every other cell. Furthermore, we
limit the forcing capability of each cell by imposing a fuistal relationship of the force
magnitude on the size of the population:

N+ K

|F| (7.27)
whereK is some arbitrary, non-negative constant. ko> NN interactions between cells
are negligible, while fork’ << N each cell exerts a maximum forég/N on every other.
The total force Fr, exerted on each cell is therefore given by

NF() 2’/LA—N 2’/LA—N

Fr =[F|(na—ng) = =Q0—

= 7.2
N+K N (7.28)

Here, parametea) quantifies the coupling strength between the cells and willied to
study the effect of the interactions on the dynamics of theupation.

Since we consider the size of the population fixed we can staalynamics by con-
sidering the time evolution of a single variable, for exaenpl, ng orm = ny — ng. In
terms ofn 4, the Master equation describing the stochastic dynamitiseafystem is

dP(n)
dt

= (N—n+1)Wi(n—1)P(n—1)
+n+1)W_(n+1)P(n+1) (7.29)
—[(N = n)Wi(n) +nW_(n)] P(n)

whereP(n) = P(na = n,tlna = n,, to) is the probability of observing cells occupying
stateA at timet given that at time, there weren, such cells. Moreover, the transition
rateslV.. are given by

(7.30)

N

Wi(n) = wiexp {iﬁan _ N] :

Prefactorsv, andw_ represent the basal switching rates from state stateA and vice
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versa when the net force acting on each celiis= 0. One can regard them as being
~ exp[—[E], whereE, is the energy barrier the cell must overcome to get from one
state to the other ang@la temperature parameter quantifying the magnitude of tiiesnc
fluctuations driving the transitions. The symmetric comstion of the synthetic circuit
(see Fig. 7.2) enables us to consider a symmetric energpfmdtso thatw, = w_ = w.
WhenF # 0 the exponential factor in Eq. (7.30) tilts the energy lamgs; hence biasing
the transitions to one of the two states.

7.4.2 The Macroscopic Behaviour

As described in Chapter 3 (3.3.3), a rate equation desgrithi@ macroscopic dynamics
(N — o0) of the systemg(t), can be obtained as the lowest order terms in the system-size
expansion of the Master equation. In our case, Eq. (7.29)] \lilds

do(t)

— = —V(s), (7.31)

where

Vi(e(t)) = ¢exp[-fQ2¢ —1)] = (1 -¢)exp[Q2¢ —1)].  (7.32)

The functionV(¢) can be considered as a potential landscape driving the trolaten
of variableg, i.e., ¢ will move towards values minimising (¢).

One can study the long time (steady state) behaviour of ttesyby settingo /dt =
0, and looking for the steady state poinisas solutions of the equatioi’(¢,) = 0.
Inspection yields the trivial roat, = 1/2, however, a closed formula for any other root
is not possible. Alternatively, one can Taylor exparid¢) around¢, = 1/2 and look
for roots in this neighbourhood. For clarity we use the tfamsation®, = 2¢, — 1 and
obtain

6016 - T2 (1-F) v 0@ = o (733)

The first two terms of the Taylor expansion suffice to descttitgebehaviour of system.
We note that fors () close to unity the coefficient of the cubic term is strictlygagve and
therefore the number of roots depends solely on the signeoliiear term. 1f5Q < 1

a single root exists corresponding to a stable fixed paintf 1/2) (see left and centre
panel in Fig. 7.7). In the cas&) > 1 the picture is altered: two stable steady states exist
separated by an unstable onepat= 1/2 (see right panel in Fig. 7.7). This describes a
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Figure 7.6: Bifurcation diagram for the deterministic b@bar (N — oo) of the Ising-
type model. The system undergoes a supercritical pitchfdccation atQ) = 1/3. For

() < 1/p the population exists in a disordered state where half ot#lls occupy each
state ¢, = 1/2). For@ > 1/ the majority of the population occupies one of the two
states. The stationary points were obtained by numerically solving'(¢s) = 0 [see
Eq. (7.32)], using Gauss-Newton algorithm (MATLAB buiftdunctionfsolve.

supercritical pitchfork bifurcation atQ = 1 [132], with the population crossing from
the disordered (low coupling) state to the ordered (higiptiag) one. The bifurcation
diagram obtained by numerically solving(¢,) = 0 is illustrated in Fig. 7.6.

7.4.3 Stationary Distribution

So far we have presented the deterministic behaviour of thdehin the limitN — oo.
Now we turn and study the behaviour of the model for finite Once again we focus
on the long time limit { — oo) and present analytic results for the stationary distidout
P,(n) = P(na = n,t = colna = ng,t = ty). These results will used in subsequent
sections to obtain the transition times between the twdestthtes.

As seen in Chapter 3 (3.3.2) for finite systems the statiodatyibution, P, obeys the
recursion relation [50, 141]

(N—n+1)Wy(n—-1)
nW_(n)

Pn) = Pn—1), (7.34)

from which one obtains

(N=n+1)(N=-n+2)--N Win—1)- W0

Bn) = nl W_(n)---W,

.P,(0) (7.35)

Finally, using the definition of the transition probabési[Eq (7.30)] the stationary dis-
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tribution can be written as

P, = /%/ <]Z) exp [—%n(]\f — n)], (7.36)
where) is the normalisation constant such that
N
Y Pn)=1. (7.37)
n=0

In general NV depends on parameters of the model, narpely andN. For example,
in the trivial case of) = 0, one readily obtaind/ = 1/2". As expected, in this scenario
the stationary distribution is just the binomial distrilautfor equally likely events. Below,
we provide approximations fok in the three regimes of behavioutQ) < 1, 5Q = 1
and 5@ > 1, using standard perturbation techniques. Our approxanadre valid for
sufficiently large populations for which the discrete quignt = n/N can be treated as a
continuous variable.

We first expres$;(n) as

exp [~E(n)]

2, (7.38)

Pi(n)

whereE(n) can be though as the energy landscape. From Eq. (7.36) affiy/reees that

(n—N). (7.39)

E(n) = _m{ i ]+%Qn

nl(N —n)! N

Writing the above expression in terms of the intensive \deia = n/N and Taylor
expanding yields

E(n) =~ %m(lfgjv) +log (1-%) —2Qx (%—1)} N

zln — x) +log (1 — ) — 2Qx (z — 1)] N (7.40)
= U(x)N
Hence, in the continuum limit the stationary distributicgtbmes
P(x) = w7 7.42)
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8Q <1 BQ =1 5Q > 1
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Figure 7.7: The shape of andU for 5Q < 1, 5Q = 1 andfQ > 1. V corresponds to
the potential landscape driving the macroscopic oo) behaviour of the population.
Minima of V' correspond to stable steady state solutions of Eq. (7.3#)ewnaxima to
unstable ones. The energy landscépdictates the stationary distribution for finite yet
large population sizesy > 1 [see Eq. (7.41)]. Fo€ < 1, bothV andU have a single
minimum at (or around) = 1/2 (left and centre column). Fa@ > 1 two minima exist
atr = x, > 1/2andx = x, < 1/2 separated by a maximumat= 1/2 (right panels).

whereC and can be evaluated from the normalisation constrain
1 1
/ P(x)dz = 1 = C = / exp [-U(z)N]. (7.42)
0 0

Figure 7.7 illustrates the general shapd/df:). U(x) is closely related to the poten-
tial V' [Eq. (7.32)] driving the macroscopic\[ — oo) behaviour of the population. In
particular, they both undergo the same change of shapé)as 1 is crossed and both
possess the same minima and maxima. Therefore, one shqeédteakat for finite sys-
tem sizes the stationary distribution of the system is pgakeund the stable points of
the macroscopic behaviour.

Casel BQ < 1)

For@ < 1the integral in Eq. (7.42) can be evaluated using the Lapiasthod [34]. The
method relies on approximating the integral of a functicet fossesses a sharp peak at
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some point with the integral of its parabolic approximatwaund that point. In our case,
for large N the mass of the probability density function is located acbihe deterministic
stable pointc = 1/2. This allows us to writeP,(z) as

1
— —[U(1/2) = (x — 1/2)2U"(1/2)|N —1/2 1
) ~ ) g OO =@ = 12T AN =12 <1 g
0 elsewhere
Using the above equation we can evaluate the integral in/=4R) as

C =~ /0exp{—[U(1/2)—(x—1/2)2U”(1/2)]N}da:

o0

exp {—[U(1/2) — (z — 1/2)2U"(1/2)]N }dx (7.44)

/w

We note that in the second step of the above calculation,jritslof the integral were

Q

replaced bytoo; errors introduced at this point are negligible since thetigbution from
any region outside the neighbourhoodwof 1/2 are expected to be exponentially small.
Substituting back to Eq. (7.41) one obtains a Gaussiarostaty distribution

1 (v — M)Q]
P, ~ , 7.45
W = e[S (749
1
with © = 1/2 ande? = ———— . Alternatively, the same result can be obtained b

performing the system size expansion [141] on Eq. (7.29).

Casell (BQ =1)

Using similar arguments one can obtain an approximatiothferstationary distribution
in the case) = Q. = 1/3. SinceQ. is the critical point where the bifurcation oc-
curs the second and third derivativesiofz) vanish atr = 1/2. Hence the following
approximation forP;(x) should be used

Pi(n) ~ é exp {~[U(1/2) — (z — 1/2)'U"D(1/2)/24]N} |z —1/2| < 1
’ 0 elsewhere
(7.46)
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The integration yields

R~ /00 P,(x)dx (7.47)
= 2V exp {_QN} F<%])\]1/42\/§.

From the above one can easily calculate the variance to be

~ /:O <x—%)2Ps(a:) (7.48)
_r ()
~ VBNT (1)

wherel'(x) is the Gamma function. Therefore at the critical pant stationary fluctua-
tions around the mean are amplifiee,, o ~ N~1/4 rather thanV~—'/2 [as in Eq. (7.45)].

Case lll (BQ > 1)

For 5Q > 1, minor complications are introduced due to the existendgvofminima in
the shape ot(x) atz, < 1/2 andz, > 1/2. From Eq. (7.41) it is readily seen that
the two minima inU(z) correspond to maxima of the stationary distributién That is
the probability mass is concentrated around the paip@sndz,. Hence, to evaluate the
integral in Eq. (7.42) one must make use of the following palia approximation

( % oxp {—[U(22) — (7 — 2)20"(22) 2N} |2 — 24| < 1
P = ) L e (-0 — (0 =m0 @) ANY r—mf <1 (749
0 elsewhere

\
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and the normalisation constant is given by

1/2 1
C ~ / U @)~ (@—e)2U" @) /2N g 4 / U @a)~(e—2a)2U" @a) 2N g,
0 1/2 (7.50)

1/2 00
~ / U@~z @) /2N g / U @a)—(2-20)2U" () /2N g,

() 1/2

Pointsz, andx; coincide with the stable stationary points correspondanthe macro-
scopic behaviour of the model. Although there is no closenfda giving them as a
function of ), they can approximated numerically,g, using Newton’s method [34].
The above formulae can consequently be used to oBtaBimilar to@ < 1/4, the ap-
proximation yields a stationary distribution that will eetmixture of two Gaussian peaks
centred around, andx, and with widths that scales liki¥—1/2.

Some Final Remarks

At this point we should note that a more careful examinatibthe validity of our ap-
proximations forQ) < 1/ is needed. To illustrate our point we note that near 1/2,
P,(x) can be approximated (keeping up41tB‘ order terms) by

_BQN
%T? exp | —2N(1 — Q) (x — 1/2)* - %(z —1/2)*|. (7.51)

P,(x)
In our treatment so far, the use of the parabolic approxmnatmplicitly assumed that for
all @ < 1/ the quadratic term in the exponent is the dominant one. Labusbe a bit
more precise. A§) — 1/ from below, the peak of; aroundz = 1/2 becomes wider
and wider, and as we have seen the width of the distributigheatritical point scales
like N—1/%. Therefore, to accurately capture the shape of the disinibat all times the
approximation should be valid fox — 1/2| ~ N~'/4. Now, by comparing the two terms
in the exponent of Eq. (7.51) it is evident that if

1
1— > —, 7.52
pQ i (7.52)
the quadratic term is the leading term whereas for
1-80Q K L (7.53)
VN’ '
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the fourth order term dominates. Therefore, whea 5Q < N~/? more accurate ap-
proximations can be obtained by Taylor expanding the expiteddactor in Eq. (7.51)

N1 -Q)
2

2N BQN AN (;1/2)4

Pi(z) =~ Fe e 1+ (1+4(x—1/22%+---)
(7.54)
It should be noted that the above approximation scheme iallgqualid as@ ap-
proaches unity from above. To illustrate this point furitieem Eq. (7.33) we find that as

6@ approaches unity, andz, are given by

1= V360 - 1) (7.55a)

Q

La

2 )
o A~ TV 3(;@ i} (7.55b)

Hence, the distance separating the two points scales like
§ = xo—m ~ (BQ—1)2 (7.56)

Now, the conditionl — 3Q < N~'/2 can be translated intd < N~/4, i.e, the two
maxima being sufficiently close together can be approxithasea single peak.
Summarising, the validity of approximations presentedvaldor the3() < 1 cases,
does not depend solely on thé>> 1 condition but also on how) approaches the critical
point. In particular, they accurately capture the statigristribution provided that

1 —06Q > VLN (7.57)

Otherwise alternative approximation schemes [see Eg4)[7abe more suitable.

7.4.4 Transition Times in theGQ > 1 Regime

As we have seen fof@ > 1, the energy landscapé(x) possesses two wells which
correspond to the twmeta-stable statesf the system. Therefore, starting from some
initial configuration the system will end up jittering in onéthe two wells ofU(z). Of
course giant fluctuations can still induce random trans#tioetween the two stable states
(hence the term meta-stable). In this section we examinsttiestics of the transition
times between the two wells, a well studied problem tackteldramer’s rate theory [50,
141]. We use this result to provide the physical picture beltie transition to the ordered
(or majority consensus) regime observed in our resultsergene regulatory network

148



Chapter 7 Population Level: The Social Behaviour of Baateri
BQ = 0.95 Q=1 BQ =1.05
12 5 0° 00
) = ° > 8
g Z4 3
Z 8 £ £6
5] o 3 5]
T o6 N N
£ Z2 £
= 4 = =
= 21 Z2
<o 2 <2 <
2 2 =
& o ARy /o
04 045 05 055 06 03 04 05 06 07 0.2 04 06 08
1 1 1
08 08 08
148 EO'GW\&WM 1400
Noa Noa N 0.4W
0.2 0.2 0.2
% 50 100 % 50 100 % 50 100
time [1/w] time [1/w] time [1/w]

Figure 7.8: The stationary distributid® (x) and time traces of the system for different
values of 5@ and N > 1. Solid lines corresponds to analytic approximations while
markers denote results obtained from stochastic simulsid the model {0* indepen-
dent runs). For the simulatiod$ = 4000 was used.
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(see section 7.3.5).

The First Passage Problem

As we have discussed in Chapter 3 ( 3.4), first passage th&b8y ftates that the mean
time needed for the system originally occupying state- n; to reach state. = n, is
given by

n2

Tng—m) = Y —F—o— i ZP (7.58)

n=ni
This result allows us to calculate the mean transition tigigvieen the two stable points
as
T="T(np — Ng). (7.59)

wheren, andn, correspond to the two minima of the energetic landsc¢ape.

The above yield an exact result of the problem as defined byatmsulation the
Eq. (7.29). However, to evaluate the sums and obtain anealfmsmula forr we once
again make use of the largé approximation to enable us to treat our model as a contin-
uous one. Hence. in terms of the intensive variabte n/N, the transition time is given

by
/ W+ / NP,(z (7.60)

where we have replaced sums by mtegrals apdndz, are the minima ot/(x). Once
again the integrals that appear in Eq. (7.60) can be evalwgmptotically using the
parabolic approximation [34, 141]. In particular, the maontribution for the outer in-
tegral comes from the neighbourhood around- 1/2 where1/P,(x) demonstrates a
maximum. The contributions froM’,(x) are negligible since it varies slowly compared
to Ps(x),; hence, it can safely be replaced ¥y, (1/2) = N/2 (higher order approxima-
tions can however be used). Subsequently, the inner intisgeage aroundr = z;, and
otherwise exponentially smaller. Thereforezan be written as

oo _wrami g, 0 N U ()~ D) (g2
/ 2N6N[U(1/2) (/)] I/Q)Q]dx/ . [ () — 522 ( b)}dx

TNk N {U(1/2)— )
STz N

This is a well celebrated result of Kramer's rate theory.iveg the rate of transition =
1/7 in terms of some general characteristics of the energy tapdd/(x). In particular,
the rate includes a prefactor that depends on the curvaaaethe maximum and at the

\1
Q

U(m] . (7.61)
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bottom of the well. The flatter these areas are the harderdimsitions become. The
exponential term is the Arrhenius factor and depends solethe height of the transition
barrier.

In the above treatment we have tacitly assumed that pojnts andz = 1/2 are well
separated. This assumption allowed us to evaluate theratéag Eq. (7.61) by using the
parabolic approximation. This assumption, however, irepa®me additional conditions
on the validity of our result. In particular, the width of égoeak ofP;(x) obtained by the
parabolic approximation i& ~ 1/4/N. One would therefore additionally require

0 = xa—op > O (7.62)

so that the two points, andz;, are sufficiently far to allow a clear distinction of the two
peaks. As we have seen whé® — 1" one obtains

L= v3(5Q —1) (7.63a)

Q

Tp

2 )
v, ~ LTV 3(;}@ i} (7.63b)

Therefore, the distance between the two points is given by

5§ ~ 3(BQ-1), (7.64)

and the condition for two peaks to be well separates takef®the

BQ > 1+1/VN. (7.65)

When the condition given in Eq. (7.65) breaks down a more@ppate scheme for the
calculation ofr is needed. It involves inclusion of up to fourth order terms¢he evalua-
tion of the integral in Eq. (7.60) [118].

The Physical Picture Behind the Transition to the ConsensuRegime

The physical picture behind the transition to the orderggime is indeed a simple one,
involving the separation between two time-scales [141g fiitst time-scale is the one set
by 7 at which transitions between the two meta-stable stateslzserved. We calculate
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forQ — 1t
U”(xa) ~ 8(662_1)7 (7668.)
U"(1/2) = —4(8Q —1), (7.66b)
U0/2) - Ulr) = S(5Q 17 (7.660)

and hence from Eq. (7.60) one obtains

T 3
~ ——exp |-(Q — 1)2N]. 7.67
T~ T e (r:en
The second time-scale,,, is determined by the rate at which equilibrium is estab-
lished around each stable point. This is essentially thecautelation time of the process
and depends on the curvature atgfr) atx = z, andz = x;, respectively [141], that is
1 1

T Nz T NBQ 1) (7.68)

It is easily verified that the condition given by Eq. (7.65keres a clear separation be-
tween these two time-scales,
T >> Teq- (7.69)

In other words the system rapidly equilibrates around orte@two stable points before
giant fluctuations induce a transition to the other one. Eqng7.65), therefore, gives
a relation between the coupling stren@hthe noise intensity and the population size
N ensuring a clear transition into the ordered regime. Whendbndition breaks the
distinction between the two meta-stable states of the @ojpul is not clear.

7.4.5 A Two Population Model

So far we have considered an Ising-type model demonstrgtiagjtatively similar be-
haviour to a population of cells bearing the gene regulatetyork presented in Fig. 7.2.
We now turn briefly to the alternative design presented in Fig. As discussed this de-
sign gives rise to two competing bacterial populationsibgaresemblance to the case of
competingS. auruestrains. Using a similar coarse-grained, Ising-type madedlemon-
strate the relationship between the two designs.

At a coarse grained level, we can characterise the behawiotne two-population
model by considering a mixed population of two distinct ¢gllesA and B. The number
of type-A and type-B cells is denoted By, and N, respectively. For reasons that will
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become apparent below we set the total size of the populati®iN, that isSN4 + N =
2N.

Both cell types are capable of switching between two stasscial (Qquorum-aware)
one and a solitary (quorum-unaware) one. We mgendng to denote the number of
social cells of type A and B respectively, whereas the nurabsolitary one is denoted by
na, ng. As in the model presented above, we allow all-to-all int&oans but in this case,
we allow only social cells to exert forces. In particularcisd cells of each type exert
forces on their own kind pulling solitary ones into sociahbeiour and keeping social
ones in their current state. Furthermore, they interadt wiatcial cell on the other kind
pushing them towards isolation. The total force exertedamheell is therefore

na—ng

7.70
— (7.70)

Fr = @

where once again Q quantifies the strength of coupling betwekvidual cells.

The dynamics of°(ny,ny) = P(na = ny,ng = na,tna = n%,npg = n%,t), the
probability of observing:; type-A andn, type-B social cell at time¢ having initially
(t = to) n% andn%, respectively are described by the Master equation

dP(nl, TLQ)

7 = (E}' — 1)(Na — n))Wi(n1,n2) P(ny, ny)

+(E+1 — 1)n1WA(n1,n2)P(n1, TLQ) (771)
+(E - ].)( B — ng)WB(nl,ng)P(nl,ng)
—|—(E+1 — 1)7L2W (77,1, ng)P(nl, ng)

where for compactness we introduced the step operator$ [141

E%f(ni,ne) = f(m+a,ne), (7.72a)
E3f(ni,n2) = f(ni,ne +a). (7.72b)

Furthermore the transition rates are given by

ny—n
Wf(nl,ng) = wiexp [iﬁAQ 1]\7 2}, (7.73a)

WE(,m) = wlexp {%in ]‘V”ﬂ | (7.73b)

As beforew? andw? represent the basal switching rates between two statelseidwb
cell types, when the net force acting on each individu@lis= 0. The exponential factor,
captures the change of the basal rates due to interactioasfor
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Once again one can readily obtain the deterministic lawrd®ag the dynamics of
the system a&V, — oo and Np — oo. In terms of the extensive variable = n, /2N
andy, = ny /2N, one has

d N
= (ﬁ = yl) WAy, y2) — WA (ny, ma) (7.74a)
d N
% = (ﬁ — y2> Wf(yl, yg) — yQWiB(nl, TLQ) (774b)

whereW 4 (yy, y2) andW(y;, y2) are the rates given by Eq. (7.73) rewritten in terms of
y1 andys.
One readily sees by imposing the symmetry conditions

wid = wl = w, (7.75a)
Ba = Bp = B, (7.75b)
the above system of equations reduces to
T . NA NB
where
T = Y1 — Y2,

We(r) = wexp[+6Qal.

In fact, by applying the transformatian= 22’ — 1 one retrieves the deterministic law ob-
tained for the preceding model [see Eq. (7.32)], providadl Ay = Nz. The symmetries
render the two models equivalent, hence the stochastiawigsaf the current model can
be captured by a single variable= n, — ng. In particular, Eq. (7.71) reduces to

dP(m)

2 = (B = (N — m)W. (m)P(m) + (E = 1)(Ng + m)W-(m) P(m)

(7.77)
which is equivalent to Eq. (7.29) wheN, = Np. Therefore results presented in the
preceding sections also apply for this model provided that= Np.

7.5 Summary and Future directions

In this Chapter, motivated by the complex social behavidurazteria we proposed and
analysed an artificial gene regulatory network. The main@imur work was to study,
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in a simplified context, how population dynamics — shapeditgractions between indi-

vidual cells — is affected by fluctuations dominating at thiea-cellular level. The gene

network, which we proposed, consists of two mutually represquorum sensing mod-
ules similar to the one found in the bacteriMxfischeri The reciprocal repression gives
rise to two distinct states that a cell can occupy when ptesenquorum.

We studied the dynamics that the gene network conveys atojxgtion level using
a stochastic differential equation model of the geneticuwir Our results indicate that
the bacterial population can exhibit two different behavsodepending on the strength
of the coupling between cells. In the low coupling regimepbeulation appears mixed
(disordered) with approximately one half of the populatimcupying each state. In the
high coupling regime cells coordinate their behaviourhwite majority occupying one
of the two states; hence the population appears orderedcrossover between the two
regimes depends on the intra-cellular fluctuations. We @a¢sal a coarse grained, Ising-
type model to study in greater detail the transition betwtberiwo regimes of behaviour.
In particular, we find a condition that marks the clear traosito the ordered state, linking
the coupling strength to the magnitude of fluctuations are sf the population.

The work presented here sets the starting point for a moreuigh analysis of our
in-silico paradigm of bacterial communication that is left for theufet In particular,
in our analysis so far we have assumed a mean field, all-toealbling between cells.
In practise, spatial aspects ought to play an important réler example, diffusion of
signalling molecules, spatial inhomogeneities of the paian, and cellular motility, can
give rise to pattern and clique formation, phenomena paddity interesting to the physics
community [16].

Furthermore, our current design of the gene regulatoryitirs perfectly symmetric
with regard to the two quorum sensing modules. Investigagdichow different asymme-
tries introduced in the system affect the population dyramare also left for the future.
This will be particularly relevant since it can shed lightdifferent adaptations bacterial
species can exploit to outperform competing species.

Similar artificial gene regulatory networks, enabling matgion between cells and,
hence, conveying population wide behavioarg(, oscillations, bistability), have been
proposed in the literature [49, 91, 140, 148]. The noveladgnt of our gene network
is the mutual inhibition between the two distinct quorumsseg channels, giving rise to
competitive behaviour, similar to the one observedSoaureusandB. subtilis In this
respect oum-silico paradigm of bacterial communication can be particularlyivating
for synthetic biology efforts on understanding complextbaal behaviour. Recently,
several gene regulatory systems, giving rise to non-tripo@ulation dynamics have been
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engineered in living cells [11,22,125,157]. By construgtand analysing such synthetic
ecosystems we ought to improve our understanding of nataedurring systems as well
as uncover design principles underpinning how cells itteaad coordinate their fate and

behaviour.
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Chapter 8
Discussion

In this Thesis we presented a theoretical study of gene sgjoe at different organisa-
tional levels of life. At the microscopic (single-molecllevel the stochastic dynamics
of RNA polymerase were considered. In particular, a staahasodel of the transcrip-
tion elongation phase was proposed and used to study themleson of transcriptional
pausing induced via backtracking. Following that, the niedes extended with the aim
to study transcriptional error correction and the role afdtieacking in achieving reduced
error rates. Then we aimed to understand how the microsciypiamics of the process
affect RNA levels observed at the cellular level. By conding an integrated stochastic
model model of DNA transcription we studied the effect ohseriptional pausing on the
fluctuations of RNA production. Finally, we aimed in undarsiling how cellular fluctu-
ations of molecular species could affect the dynamics ahdweur of cell populations.
To this end, we proposed a simplified system for bacterialmanication and studied the
effect of intrinsic fluctuations on the ability of cells toaalinate their behaviour.
Special emphasis was placed on the quantitative charsatien of transcriptional
pauses caused by backtracking of the RNAP. These pausesatemtvitro transcrip-
tion [63] and the existence of specific DNA signals inducingr as well as the presence
of accessory proteins assisting their recovery indicagg tmportant role in the regu-
lation of the elongation phase [7]. To understand the phemam and its implication in
greater detail we presented a stochastic model of the tigtisa elongation phase, which
incorporates polymerisation and backtracking dynamicsliké previous modelling at-
tempts [10, 60, 137], our main goal was to to provide a quatintg picture of temporal
dynamics of the process. Our results show that owning to iffiestbnal character of
backtracking this class of pauses should obeys a broad tahtpsiribution, with a power
law decay {~3/?). Such finding is consistent with the non-exponential, yeailed distri-
bution of pause lifetimes observed in bacterial and eukary@anscription [47,99, 124].
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The phenomenon of RNAP backtracking is also thought to opmranscriptional
proofreading [58], however the microscopic details of hawoecorrection is accom-
plished remain elusive. Motivated by recent experiment[159], we extended our
stochastic model of the elongation dynamics to incorpguatgmerisation of correct and
incorrect nucleotides, and RNA cleavage. Our aim here wawduide a quantitative
picture of transcriptional proofreading based on the uyder microscopic dynamics of
backtracking. In analogy with kinetic proofreading, in anodel backtracking provides
a multiple-checking reaction, which probes the fidelity lo¢ iast few nucleotides sev-
eral times before the next polymerization occurs. In faet,dreater the delay introduced
by this mechanism, the greater the accuracy of the proc8s4(a]. Our model makes
specific prediction regarding the observed error rate imseof the microscopic rates
involved in the process. and can be used to assess the oneatlf backtracking in
enhancing transcriptional fidelity.

At a higher organisation level, one is particularly intéeelsin the role of fluctuations
in gene expression and its implications regarding cell iela and fate [72, 83]. To this
end we aimed to bridge the gap between the microscopic dyisaofiiDNA transcrip-
tion and apparent randomness in the production of RNA spéxsiestudying a integrated
model of DNA transcription. The model involved the initi@i, elongation, and termina-
tion phases of the DNA transcription and was formulated imseof totally asymmetric
exclusion process to take into account that multiple RNARk vepulsive interactions
can simultaneously transcribe the DNA template. Our resotlicate that the interplay
between the different time-scales of the model in combamatvith the exclusive inter-
actions between transcribing TECs can significantly altertemporal statistics of RNA
production. In particular, we found is that rare and longg@sucan result in a burst-
like production of RNA transcripts and hence super-PoiRbIA statistics. The effect
of pauses can be linked heuristically to a switching medrmarbetween high and low
rates of mMRNA production. More specifically, sufficienthyntppauses shut down RNA
production by jamming TEC trafficking on the DNA template. d@rthe leading TEC
resumes elongation multiple blocked TECs that have accatedilat the congestion site
are likely terminate transcription resulting in burst opichRNA production. Our find-
ings are particularly relevant fon-vivo systems demonstrating burst-like RNA produc-
tion [27,55, 114].

At an even higher level, that of cell populations, we aimedriderstand how cellular
fluctuations of gene expression affect population dynamiMstivated by the complex
social behaviour of bacteria we proposed and analysed dicialtgene regulatory net-
work. The gene network consisted of two mutually represgugrum sensing modules
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similar to the one found in the bacteriwnfischeri The reciprocal repression gives rise to
two distinct states that a cell can occupy when present iroaugu. Our results indicated
that owning to intra-cellular fluctuations the bacterigpptation can exist in two different
states depending on the strength of the coupling betwetm trethe low coupling regime
the population appears mixed (disordered) with approxehgaine half of the population
occupying each state. In the high coupling regime cellsdioate their behaviour, with
the majority occupying one of the two states, hence the @ojon appears ordered. The
crossover between the two regimes depends on the intrdarelluctuations. We also
used a coarse grained, Ising-type model to study in greatarl dhe transition between
the two regimes of behaviour. In particular, we found a ctadithat marks the clear
transition to the ordered state, linking the coupling ggtarto the magnitude of fluctu-
ations and size of the population. The work presented hesetlse starting point for a
more thorough analysis of oun-silico paradigm of bacterial communication that is left
for the future.

Similar artificial gene regulatory networks, enabling matgion between cells and,
hence, conveying population wide behavioarg| oscillations, bistability), have been
proposed and studied boi-silico [49, 91, 140, 148] anth-vivo [11,22,125,157]. The
novel ingredient of our gene network is the mutual inhimtizetween the two distinct
guorum sensing channels, giving rise to competitive behayisimilar to the one ob-
served forS. aureusand B. subtilis In this respect oum-silico paradigm of bacterial
communication can be particularly motivating for syntbetiology efforts seeking to
understand complex bacterial behaviour. By constructimg) @analysing such synthetic
ecosystems we ought to improve our understanding of natusaturring systems as
well as uncover design principles behind how cells inteasct coordinate their fate and
behaviour.
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Appendix A

Transcriptional error correction:
M > 1 case

Here, we present a detailed treatment of the transcrigternar correction model for the
case of\ > 1. We will restrict our analysis in the limit < 1/M/, which allows to safely
assume that at most one error can occur ewémucleotides.

Dynamics at the single nucleotide level

In the general case dff > 1, the transition matridWV ) will depends on the last/ en-
tries of the index. We use the notatiosi* to denote all transcripts that have no erroneous
nucleotides at thé/ last places of their sequencs,,

M elements

Similarly, we uses' (0 < I < M — 1) to denote all transcripts that have one error in
positionn — [. For example

M elements

Using the transition matri¥¥ corresponding to each of the sequences (0 < [ <
M — 1) one can obtain from Eq. (5.6) all the splitting probateliti p;(s') = p;(I) =
(the probabilities of hitting boundarygiven an error in position — [ of the transcript)
andp;(s*) = p; (the probabilities of hitting boundarygiven no errors in the last/
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nucleotides) . In particular, the splitting probabilitiesrresponding to boundaiy= 0
(polymerisation) in the limitX’ < alpha; < ¢ become

1 K
—_— A.la
Po 2A4f117 ( )
1 K
o(l) ~ ——, 0<I<M-1 .

Effective model

As in the case forM = 1 to calculate the probabilities?,, P,, of reaching the the
terminal positionn = N having transcribed a correct or wrong nucleotide at pasitio
n = n’ we make use of the effective model of an elongation dynamiicgarticular,

the splitting probabilities divided by some coarse-grditime-scaler yield the effective
rates,r; andr; (z = 0,1), and Eq. (5.11) can be used to describe the dynamics of the
system. Similar to the case 8f = 1 presented in the main text we proceed our analysis
by breaking the domain of the process into 3 regions:

e RegionR_:n=0,...,n —1,
e RegionRy:n=n',...,n" + M —1,
e RegionR,:n=n"+M,...,N — 1.

Let us consider the probability fluxes between these regibims probability flux from
R_to Ry is due to polymerisation occurring from the boundary positi = n’ — 1:

J(R-|Ro) = > ro(s)Il(n—1,s,1). (A.2)

sesn—1

Polymerisation will result in either a correct or an incatreucleotide at position’, This
gives rise to two independent branches in the process. Tability flux form R to R
will be through both of this branches

J(Ro|R-) = J(Ro|R-)+ J"(Ro|R-) (A3)
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In particular each term can be decomposed into iMtterms, each one corresponding to
cleavage from a different position iRy:

J(Ro|R-) = Ji (Ro|R-)

2
NE

rIl(n' +1, s, 1), (A.4a)
J(Ro|R-) = Jo(Ro|R-)

M
Dm0+, 5 t). (A.4b)

Q

In the second line of the above equations the fluxes whereogppated using the as-
sumptione > 1/M. This effectively allows us to neglect misincorporatiomsl Zonse-
quently any further branching of the process within theaadt,. Therefore probability
flows between states belonging/ily as

J' +1n"+m) =~ rp (0 +1,st) for 0<I<m<M-1, (A5a)

)
J' +1ln' +1+1) ~ rll(n/ +1,s%t)for0 <1< M —1, (A.5b)
JU(n' + 1" +m) =~ T (DI + 1,8, t)for0 <1 <m < M — 1, (A.5¢)
JUn 0 +14+1) = m(DII(n' 41,5, t)for0 <1< M — 1. (A.5d)

The two branches will evolve independently of one anothdvaiii lead to probability
flowing into regionR. . In particular, probability will flow through polymerisain event
occurring at the boundary of the two regions:

JY(Ro|Ry) = roll(n’ + M —1,5%1), (A.6a)
JY(Ro|Ry) =~ ro(M — DI(n' + M — 1,871 1). (A.6Db)

Once in regionk, we allow the process to branch once again. However, the total
probability entering?, should be conserved, either flowing back#por to the absorbing
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boundaryn = N. This allows us to write

M-1

J(RolRy) = JE(R(IN) + 3 Ji(Ry|Ro), (A7a)
v
JU(RolRy) = JU(RoN) + 3 J(Re[Ro), (A.7b)

where once again we have decomposed the probability fluxitptoto M independent
terms,J¢(R, | Ry), corresponding to the probability fluxes into each positibn = n’ 4
of R, respectively.

In the long time limitt — oo the fluxes in and out of the different regions will balance
and a steady probability flow towards the terminal positioa /N will be achieved. In
this limit one obtains a set of equations relating the Laplmansform of the aforemen-

163



Appendix A Transcriptional error correction > 1 case

tioned probability fluxes

S

—1

[jC(R0|R,)+jW(RO\R,) + J(R_|Ry) +1 ~ 0

ﬁx
Mo

(R Ro) = J(Ro|R-) + J5 (R | Ro)+

Je(n' +iln') — Jé(n'|n’ + 1) =0

1M=L

J(R-|Ro) — J§'(Ro|R-) + J§'(Ry | Ro)+

1

+

€

JU(n' +iln’) — JU(n/|n +1) =0

M-

=1

M
—JP(RolR-) + JE(Re|Ro) + 3 Jo(n! + il + 1)~
i=l+1

l
ST R =i+ T A D=1 ) = T+ 1+ 1) = 0

i=1

M
—JP(RolR_) + JP(Re|Ro) + 3 ¥ (o + il + 1)~
i=l+1

l
ST U L= i)+ T L=+ 1) = T+ 1+ 1) = 0
=1

—J& 1(Ro|R-) + Ji;_1 (R4 | Ro)
—ZJCn M =1 +M—-1—i)+JMN+M=2n"+M—-1) = 0

—JM 1(RolR-) + J3_1(R+| Ro)

—ij(n’JrM—l\n’JrM—1—z’)+]w(n’+M—2|n’+M—1) =0
=1
J°(Ro|Ry) — JE(R4|N) — Z (R |Ro) = 0
) 1
JY(Ro|Ry) = J(Ry|N) = > Ji*(Ry|Ro) = 0
=0
(A.8)

All terms in the above set of equation have the status of gmtitya Note, for example
that in the last line termg® (R, |N) and.J* (R.|R,) up to division by.J*(Ry| R, ) can be
interpreted as splitting probabilities, that is, some piaility .J*(Ry| R, ) is injected into
R, and subsequently divided amongj+ 1 absorbing boundaries. More importantly, the
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division does not depend through which of the two branchegptbbability ends up in
region R, . This consideration allows us to make the following Anstant

J(RyIN) = A§J°(Ro|Rs)

~ Arroll(n’ + M — 1, s*,t), (A.9a)
J{(Ry|Ro) = Ap,J(Ro|Ry)
~ Aproll(n’ + M — 1, 5%, 1), (A.9b)
jw(R+|N) = ijw(Ro\R+)
~ Arfo(M — DI(n' + M — 1,871 1), (A.9c)
JP(Ry|Ro) = Ap i J"(RolRy)
~ Ayyro(M — DI + M —1,sM71 1), (A.9d)
subject to the condition
M
Ar+) Awyi = 1, (A.10)
=0

Substituting in the system of Equations (A.8) the approxioms given by Egs. (A.4)-
(A.6) and (A.9) one can solve for dll(n’ +1, s°, t) andIl(n'+1, s'*1, t) and subsequently
obtain an approximate expression for the probabilitiestdrest:

Pow = JYRLN) ~ ASroll(n' + M —1,5% 1), (A.11a)
Py = JURLN) =~ A%Fo(M — DII(n' + M —1,sM-1 ¢). (A.11b)

Error fraction

In particular, one finds that the the error fraction at positi’ is given by

P Mt w
&y = Ln ¢ (po M-1- ) (A.12)
0

i— le'L

165



Appendix A Transcriptional error correction > 1 case

wherew” andw’ are defined as follows

kE—1 _ N 1—1
(M =) (M =)
wy = 1—po(M —k) o H o
=1 7j=1
T Po(M — i)
—po(M — K)A, s PAVE Y A.13a
Pol( )Aw kg ) ( )
k—1 i 1—1 p k—1 D
- 1- ZTIT2 — poAy s 70 A.13b
Wy poz L1, DPoAn/+M kH w0, ( )

with wy = wy = 0. Of courseA,, ., terms are still unknown, however, they can be
calculated by treating the process in the Regian with Ry andn = N being absorbing
boundaries. One can readily see that¥ér= 1, Eq. (A.12) reduces to the result obtained
in Chapter 5 [see Eq. (5.26)] In particular, one has= 1 — A,.p, andw! = 1 —
Anpo(0), whereA,,, corresponds to the spitting probability of exiting regiBn through
the boundary at = n'.

Using induction once can show that in the linhit< oy < € < 1/M bothw,; andw;
approach unity. Therefore, in this limit the error fractioecomes [using Eq. (A.1)]
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Fluctuations, Pauses, and Backtracking in DNA Transcription
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ABSTRACT Transcription is a vital stage in the process of gene expression and a major contributor to fluctuations in gene
expression levels for which it is typically modeled as a single-step process with Poisson statistics. However, recent single
molecule experiments raise questions about the validity of such a simple single-step picture. We present a molecular multistep
model of transcription elongation that demonstrates that transcription times are in general non-Poisson-distributed. In particular,
we model transcriptional pauses due to backtracking of the RNA polymerase as a first passage process. By including such
pauses, we obtain a broad, heavy-tailed distribution of transcription elongation times, which can be significantly longer than
would be otherwise. When transcriptional pauses result in long transcription times, we demonstrate that this naturally leads to
bursts of MRNA production and non-Poisson statistics of mMRNA levels. These results suggest that transcriptional pauses may
be a significant contributor to the variability in transcription rates with direct implications for noise in cellular processes as well as

variability between cells.

INTRODUCTION

It has long been appreciated that noise and fluctuations play
an important role in the cellular environment (1). Small
numbers of molecules as well as the intrinsically stochastic
nature of biochemical reactions mean that fluctuations must
be taken into account to understand cellular function. More
recently there has been renewed interest in genetic noise (see,
e.g., (2-4)) and fluctuations at the molecular level, driven by
new observational techniques which allow one to track levels
of chemical species in bacterial and yeast cells (5-7). These
experiments have allowed the identification of a number of
different sources of fluctuations in the expression levels of a
particular gene. Low numbers of macromolecules that par-
ticipate in gene regulation and expression, as well as mac-
roscopic fluctuations in the environment, are likely to affect
the statistics of gene expression. In addition, the stochastic
nature of the production and degradation of RNA transcrip-
tion products introduces an important source of intrinsic
genetic noise.

Within the central dogma of molecular biology, gene ex-
pression can be split into two distinct phases, transcription of
DNA to mRNA and translation of mRNA into protein. How-
ever, the production (and degradation) of proteins and mRNA
transcripts are themselves multistage processes. Transcription,
in particular, can be crudely broken up into three main stages:
initiation, elongation, and termination. During initiation, RNA
polymerase (RNAP) binds to a promoter sequence on the
DNA and opens the double helix, uncovering the template
strand to be transcribed. The subsequent transcription of
the first few (8—12) nucleotides leads to the formation of the
transcription elongation complex (TEC) which consists of the
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RNAP, the DNA, and the nascent mRNA (8). The formation
of the TEC signals the entrance into the elongation phase
where, under normal conditions, the TEC slides along the
DNA, extending the transcript one nucleotide at a time.
Destabilization of the TEC (at specific sites or by certain
factors) leads to the termination of the process and the release
of the nascent mRNA (9).

In fact, the transcription process can exhibit biochemical
fluctuations at each stage and cannot, in general, be de-
scribed by the simple exponential (Poisson) birth and death
Markov processes that are currently used to analyze experi-
ments ((4,10) and references therein). This naturally leads
one to ask under what conditions is the Poisson approxima-
tion valid (11). To answer this question, a more detailed
analysis of the dynamics of transcription is required. Recent
single molecule experiments (12,13) also provide a new
window into the dynamics of transcription, offering a moti-
vation as well as a solid basis for constructing more detailed
mathematical models.

As demonstrated below, implicit in the Poisson approx-
imation for the stochastic description of transcription is the
assumption that the rate-limiting step is initiation, i.e., that
the time taken for the polymerase to find the promoter
sequence by random diffusion is longer than the total time
for elongation. If so, fluctuations in the initiation step would
be the major contributor to genetic noise due to transcription.

In general, the frequency of transcription initiation has a
wide dynamical range in vivo (14), and in vitro studies have
shown that initiation times can be as fast as a few seconds
(15-17). Clearly then, rapid initiation times can be signif-
icantly shorter than the time needed for elongation, espe-
cially for long DNA templates or bacterial genes transcribed
in operons. In such cases, modeling transcription as a
Markovian process, obeying Poisson statistics, may be an
inadequate approximation. In fact, transcription elongation

doi: 10.1529/biophys;j.107.105767

168



Appendix B

Published Work

Fluctuations and Pauses in Transcription

demonstrates features that suggest that it could play as sig-
nificant a role in the overall rate of transcription and hence
the regulation of gene expression (18).

Of particular interest are transcriptional pauses that disrupt
the processive mRNA synthesis. Single-molecule techniques
have made a more quantitative characterization of elongation
pauses possible. Recent in vitro experimental studies with
Escherichia coli RNAP have classified elongation pauses
into long (>20 s) and short (1-6 s) pauses (19,20). It has also
been suggested that elongation pauses can occur either in a
sequence-dependent manner (21) or irrespective of the
underlying sequence (19) and some pauses were linked
with the reverse translocation of the RNAP (backtracking)
(19,22). Backtracking may be caused by nucleotide
misincorporation or a weak RNA-DNA hybrid (8,23) and
can also be regulated by specific proteins (24). In general,
backtracking can significantly increase the total elongation
time, and in many cases is the precursor to transcriptional
arrest (25).

In this article we point out that a single step Poissonian
picture of transcription implies that the rate-limiting step (in
transcription) is transcription initiation, i.e., the elongation
process that follows is fast and straightforward. We present a
molecular model of transcription elongation (26-29) with
very different, heavy-tailed distributions of transcription
times. Furthermore, we show that elongation can be
sufficiently slow to be rate-limiting, providing the cell with
ample targets for regulation. In particular, we highlight the
very important role transcriptional pauses play in determin-
ing the distribution of total transcription times and therefore
the statistics of the mRNA levels. Our results should have
direct implications for the fluctuations observed in the levels
of gene expression, which lead to noise in cellular processes
and may play a role in generating variability between cells.

We study two classes of models both analytically, within a
mean field approximation, and numerically, using stochastic
simulations. First in a model of transcription without tran-
scriptional pauses (Model A), we find that the transcription-
elongation adds a typical delay that scales linearly with the
transcript size. In this model, the contribution from fluctu-
ations is small (especially for large transcript lengths) and
leads to elongation times that are described by a Gaussian
distribution. Second, we construct a model that incorporates
backtracking pauses during the elongation phase (Model B).
We develop a detailed model of backtracking pauses as a
first-passage process and study the distribution of their
duration considering two different scenarios: 1), pauses that
end with the TEC sliding back into position (case 1); and 2),
backtracking pauses that can also lead to transcriptional
arrest (case 2). In addition, using stochastic simulations, we
investigate the effect of backtracking pauses on the distri-
bution of elongation times, as well as on the statistics of the
mRNA production. We show that pauses can dominate the
elongation process and lead to a heavy-tailed distribution
of elongation, and hence transcription completion times.

335

Finally, we use Model B to perform simulations of mRNA
production, allowing multiple RNAP molecules to transcribe
the same gene. We demonstrate that rare and long-lived pauses
result in bursts of mRNA production, in agreement with
experimentally observed transcriptional bursting (11,30,31).

TRANSCRIPTION ELONGATION COMPLEX

At a typical template position the RNAP covers a region of
~25 DNA basepairs (bp), of which the central part (12 bp) is
melted, forming the transcription bubble (32). Within the
bubble, a hybrid (8-9 bp) is formed between the nascent
mRNA and the complementary DNA strand that contributes
to the stability of the TEC (33). Elongation (polymerization)
describes the addition of a nucleotide to the 3’ end of the
transcript, which is catalyzed by the active site of the RNAP
and hence conditional on the active site being locked in the
appropriate position. In the simplest scenarios, polymeriza-
tion of the nascent mRNA can be interrupted by the reverse
process of pyrophosphorolysis (depolymerization), which
leads to shortening of the mRNA transcript (8), or by pauses,
due to translocation of the TEC (see below).

After a polymerization step has taken place the TEC is
thought to occupy the pretranslocated state. From this
position the TEC must translocate forward on the DNA
template, to the posttranslocated state, so that the active site
is in position to catalyze the next nucleotide addition. In
general, the TEC is also capable of translocating backward
on the template (backtracking) or even ahead of the target
DNA nucleotide (hypertranslocation). During backtracking
the TEC is moved upstream along the DNA template. This
translocation causes the 3’ end of the nascent mRNA to
dissociate from the DNA and exit the TEC through the
secondary channel of the polymerase (34). Effectively, this
rearward motion dissociates the active site from the 3 end of
the transcript, temporarily halting the elongation, until the
TEC is in position once again. The posttranslocated, pre-
translocated, and backtracked states are illustrated schemat-
ically in Fig. 1, a—c.

A simple mathematical model that captures the essence
of polymerization, depolymerization, and backtracking can
be described in terms of two discrete variables n and m.
Variable n denotes the position of the last transcribed
nucleotide, or equivalently, the size of the nascent mRNA,
and ranges from 0 to N. In our model, n counts nucleotides
relative to the position at which the elongation phase is
entered by the formation of the stable TEC. Thus, position
n = 0 does not correspond to the actual transcriptional start-
ing point, but usually a few (8—10) nucleotides downstream.
Finally, transcription will terminate at position n = N. Note
that n is only affected by polymerization (lengthening) and
depolymerization (shortening) of the nascent mRNA. The
second variable m denotes the position of the polymerase’s
active site relative to n and ranges from —n to 1. States m =0
and m = 1 are defined as the pre- and posttranslocated states
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tion (which would lead to m > 1) is ignored.

The elongation phase starts with the TEC in state (n = 0,
m = 0). The only transition possible from this state is to the
posttranslocated state (n = 0, m = 1), from which the TEC
can revert to (n = 0, m = 0) or proceed with polymerization.
Polymerization, or the addition of a single nucleotide to the
nascent mRNA strand, can only proceed from the post-
translocated state. Thus, with the TEC occupying the
pretranslocated state (n, m = 0), polymerization by a single
nucleotide requires two steps: 1), the TEC sliding forward to
the posttranslocated state (n, m = 1); and 2), the extension of
mRNA by one nucleotide (n + 1, m = 0), which leaves the
TEC in the next pretranslocated state. Conversely, the
reverse process of depolymerization can only proceed from
the pretranslocated state and leaves the TEC in the previous
posttranslocated state (n — 1, m = 1). Thus, at any given
template position n, the TEC can freely move back and forth
between the pretranslocated (n, m = 0) and the posttrans-
located (n, m = 1) states, allowing depolymerization and
polymerization, respectively, (except from the two boundary
points n = 0 and n = N). A schematic diagram of state
transitions for a simplified model excluding backtracking
(Model A) is given in Fig. 2 a.

Inclusion of backtracking in the model provides an
additional pathway, as the TEC can now hop from the
pretranslocated state (7, m = 0) into the first backtracked
state (n, m = —1). Subsequent backward translocation events
can randomly shift the TEC’s active site back and forth,
possibly backtracking as far back as (n, m = -n) (8). In
practice, backtracking is often restricted to m = —M > —n.
In some cases, backtracking will consist of random reverse
and forward translocations that eventually end as the TEC
returns to the nucleotide target position (allowing polymer-
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FIGURE 2 Schematic illustration of discrete models of transcription elon-
gation. (a) Model A (dotted rectangular) includes polymerization, depoly-
merization, and transitions between the post- and pretranslocated states.
Model B also allows for backward translocation of the TEC as far as m =
—M, with M < N . If n < M, backward translocation is permitted up to state
m = —n (not shown). In the case of uninterrupted backtracking (case 1), the
TEC can return from state m = —M (white arrow), whereas in the case of
transcript arrest (case 2), the TEC is halted at m = —M until it is rescued by
accessory factors, which move it to state (2 — M, 0). The table includes
typical values for parameters of Model A. (b) Schematic illustration of a
simplified version of Models A and B when transition between pre- and
posttranslocated states is the fastest process. The active states (m = 0, 1) have
been collapsed into one state, denoted by the asterisk (*). At each template
position the TEC can either proceed with polymerization, depolymerization, or
enter a backtracked state, with effective rates p.., p_, or d’, respectively.

ization to resume). In other instances, backtracking is interrupted
(in a so-called transcript arrest (8)) and the pause eventually
ends when the TEC is rescued by accessory factors, such as
the Gre/TFIIS cleavage proteins (35,36). Note that back-
tracking affects only variable m, since it disrupts the
positioning of the active site, leaving the length of the
nascent mRNA (variable n) unaffected. In other words, both
polymerization and depolymerization are blocked during
backtracking until the corresponding target positions are
recovered, i.e., (n, 1) and (n, 0), respectively. A schematic
diagram of state transitions for a model of elongation with
restricted backtracking (Model B) is given in Fig. 2 a.

For both Models A and B, we seek the statistics of the
elongation time, i.e., the time needed for the TEC to reach
position (n = N, m = 0) with the elongation phase starting
with the TEC in state (n = 0, m = 0).
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Model A: translocation-limited polymerization

In this model, backtracked states are ignored, and at each
template position n only two translocation states are pos-
sible: m = 1 and m = 0, which allow transcript polymer-
ization and depolymerization, respectively. The rates of
polymerization and depolymerization are given by k¢ and £,
while a is the translocation rate from m = 0 to m = 1 and b
the reverse rate from m = 1 to m = 0. (See typical values in
the table of Fig. 2.)

The dynamics of P, ,(¢), the probability of finding the
polymerase in state (n, m) at time ¢, are described by the
Master equation (37,38),

0Py

ot = kiPy_y1y +bP,y — (kh + a)P,y, (la)
P,
81‘1 = kanH,o +aP,y — (kf + b)Pn.h (1b)

where n varies from 0 to N — 1. We assume that depo-
lymerization is impossible at position n = 0 and that the
process is terminated when position n = N is reached.
Consequently, the boundary conditions (BC) imposed on
Eq. 1 should be reflecting at n = 0 and absorbing at n = N.
The reflecting BC is obtained by defining a fictitious state
n = —1 and setting k,Po o = k¢ P_; 1. To obtain the absorbing
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BC, it is convenient to introduce a fictitious position at N and
set Pno = 0 (38), which is equivalent to setting the transition
rate from (N — 1, 1) to (N, 0) equal to zero.

A mean-field (quasi-steady-state) approximation yielding
a biased random walk is obtained in the limit that the rates of
polymerization are much slower than the rates of transloca-
tion (i.e., kg, ky < a,b) (26,28). The effective polymerization
and depolymerization rates are p+ = kea/(a+b) and
p- ~ kyb/(a+b). We calculate u, the mean elongation
time (i.e., the time it takes for the TEC to arrive atn =N, m =
0 from a starting position at n = 0, m = 0) and the variance
o as a function of the template length N (see Appendix A for
a complete derivation). Under normal conditions, elongation
is overwhelmingly favored over chain shortening (8)

K = p_/p+ < 1. Therefore, we have

N (N-1) )
=+ K+ 0K, 2
H P+ D+ ( ) @2
A=y i) — ) O(K). (2b)
P P

Fig. 3 shows results obtained from stochastic simulations
of Model A (Eq. 1), along with the analytic results obtained
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FIGURE 3 (a, b) Distribution of dimensionless elonga-
tion times (scaled by the mean elongation time) for Model
A (Eq. 1). Mean-field analytic results are plotted in solid
curves, and superimposed with stochastic simulations

results. (a) Results for N = 1000 bp, p; = 20 s~' and
different polymerization biases K = 0.01, 0.5, 0.99. (b)
Results for K = 0.01, p. =20 s~! and different template
lengths N = 10, 100, 1000 bp. (c) Standard deviation over
mean (o/u) plotted against the template length N for
different values of K. As expected, the width of the dis-
tribution scales as 1/ V.
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in the mean-field approximation, for different values of N
and K. In the small K regime and for small values of N, the
elongation times are approximately y-distributed, with shape
parameter e = p*/o” and scale parameter 8 = o>/u’. As N is
increased, the distribution approaches a Gaussian, in agree-
ment with the Central Limit Theorem, with mean and
variance given by Eqs. 2a and 2b, respectively. Since both
and o scale linearly with the template length N, fluctuations
around the mean are of the order 1/v/N. As a result, the
distribution becomes narrowly peaked around the mean as N
is increased, and in the limit N — oo, where fluctuations
tend to zero, the process becomes essentially deterministic.
Conversely, in the K — 1 limit, polymerization and depo-
lymerization tend to play equal roles, leading to fluctuations
in the transcription time that do not vanish as N is increased.

Model B: transcription with backtracking pauses

We now extend Model A to include elongation pauses that
arise when the TEC occupies backtracked states (m < 0). In
particular, a pause is signaled when the TEC enters the
backtracked state m = —1 from state m = 0. We denote the
corresponding transition rate by d and assume a slow rate
relative to polymerization d < p. From m = —1 the TEC
hops across contiguous backtracked states with rate ¢. In
principle, at each template position n, backtracking can
proceed up to m = —n (8). However, in practice, different
mechanisms, such as RNA hairpins, RNA-DNA interac-
tions, and cleavage enzymes preclude extensive backtrack-
ing (33). A more reasonable assumption is that backtracking
is restricted in length; we assume backtracking to be
restricted to a fixed number of steps m = —M > —n, which
we take to be independent of position n. Also, for values of
template position » that are smaller than M, backtracking is
permitted to extend as far as m = — n. In fact, hairpins are
dynamic (breaking and reforming), implying that the choice
of fixed M is only a first approximation. If the hairpin
relaxation time is sufficiently fast (as compared with the
backtracking rate), such dynamics could lead to fluctuations
in the value of M.

Dynamics of backtracking pauses

To gain insight into the statistics of transcriptional pauses,
we describe and examine the dynamics of backtracking as a
separate process. Without loss of generality, we describe
backtracking by a symmetric hopping process, or unbiased
random walk with rate ¢. The asymmetric case, equivalent to
a biased random walk, is quite a straightforward generali-
zation (39). For simplicity, we characterize backtracked
states by a new variable / = — m, where 1 = [ = M. The
probability P(/, t), of finding the polymerase in state / at time
t given that it was in state / = 1 at r = 0, follows the Master
equation:
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OP(1,1)
ot
We use the Laplace transform, p(l,s) = [,° P(I,)e*dt,
to obtain exact expressions for the probability distribution of
the duration of backtracking pauses for two different
scenarios:

=cP(I—1,0) +cP(I+ 1,0) = 2¢P(L,1).  (3)

1. Uninterrupted backtracking: / = M is a reflecting bound-
ary, and termination of the pause occurs when the TEC
eventually slides back to state / = 0 and

2. Transcript arrest: The TEC is irreversibly halted at / = M.
Elongation can be resumed either from state / = 0 or
from position / = M with the aid of accessory factors.
Detailed derivations are given in Appendix B.

Case 1: uninterrupted backtracking

In this case no backward translocation is possible beyond
state / = M, and the pause is ended when state / = 0 is
reached. The corresponding boundary conditions for Eq. 3
are: P(0, t) = 0 (absorbing) and cP(M, t) = cP(M + 1, 1)
(reflecting). The mean pause duration is (tf) = M/c and an
analytic expression for the probability distribution 7(f) of
pause duration is given in Appendix B. Simple expressions
for P(t) are obtained in the following limits:

1 1<<t<<M2
2/m/er? c ¢’
2
P(t) =1 mcsin (L) L )
R (e /AP FiC IS VT IS
(I1+M) ¢
“4)

For times short compared to the timescale of diffusion to the
reflecting state / = M (r < M?/c), but still longer than the time
for the TEC to diffuse by one nucleotide (1 > 1/c), P(¢) scales
as 2, Interestingly, the power law behavior characteristic of
this regime is consistent with the heavily skewed and heavy-
tailed distribution observed by Shaevitz et al. (19). Conversely,
for times much longer than Mz/c, which ensure reflection, the
asymptotics are altered and 7(f) exhibits a rapid exponential
decay. The two different asymptotic behaviors are illustrated in
Fig. 4 a, where the analytic results have been plotted together
with the data obtained from stochastic simulations of the model.

Case 2: backtracking with transcript arrest

As before, pauses begin with a transition into state / = 1 and
terminate when state / = 0 is reached. However, in this
scenario, backtracking will also be terminated by the arrest of
transcription if the TEC arrives at / = M. Transcription can
only resume from the arrested state with the aid of a rescue
mechanism (35,36). The boundary conditions imposed to Eq. 3
are therefore absorbing at both ends: P(0, t) = P(M, 1) = 0.
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FIGURE 4 Results for case 1 (uninterrupted backtracking) and case 2
(transcript arrest) pauses with M = 10. Distributions of (@) pause duration
P(t) for case-1; (b) self-recovered pause duration Po(7) for case-2; and (c) time
to arrest Py(f) for case-2. Plotted are the analytic results (Eq. 39, and Egs.
45a and 45b, respectively) as solid lines and the results of stochastic simula-
tions as circles. P(f) and Py(t) exhibit a power law decay for 1/c < t < Me,
followed by an exponential cutoff in long time limit ( > M?/c).

It can be shown (see Appendix B) that the probability of
eventual arrest of the TEC is py = 1/M; the probability of
TEC recovery from the pause is po = 1—py; and the
corresponding mean time for each case is (v = (M? - Df6c
and ()o = (2M — 1)/6¢. Compact expressions for Py(7), the
probability distribution of recovering from the pause at time
t, are obtained in the two limits discussed above:

o L, .M
2/ /et” ¢ ¢’
2
Po(t) =~ 27rcsin (z) T 2 ®)
3t M
— M exple M || > —.
M- c

Once again, the distribution demonstrates a power law decay
for 1/c < t < M?/c, followed by an exponential cutoff. For
sufficiently long times 7 > M?/c that allow diffusion to the
boundary / = M, the probability distribution of the TEC
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arrest decays exponentially with Py(f) =~ Py(r). The above
analytic results, along with stochastic simulations, are sum-
marized in Fig. 4.

Stochastic simulations of Model B

Having characterized backtracking statistics, we are now in a
position to examine the effects of backtracking on the total
elongation time. The macroscopic (observable) properties
that we must consider are: 1), the number of pauses 8 over a
DNA template of length N, and 2), the aggregate lifetime of
all the pauses relative to the time spent on active polymeri-
zation. These properties are linked to the microscopic param-
eters d and c, respectively. In particular, when translocation
between pre- and posttranslocated states is the fastest process,
the number of pauses d is given by:

a
RS T S ©)
N fp.+ d'+p++p’
da+b P+ ¥P- "

where d' = d(a/(a+b)) is the effective rate of entering into
a backtracked state (see Fig. 2 b). Moreover, the distribution
of pause durations (for the case of uninterrupted backtrack-
ing) is determined by the symmetric diffusion rate ¢, with
M/c being the mean pause duration.

As expected, in the limit of short-lived pauses, even the
aggregate pause duration will be negligible relative to the
time spent on processive polymerization, N/p+ > 8(M/c),
and so the distribution of elongation times will approach that
of Model A. Conversely, when N/p. > 8(M/c), pauses
dominate the total elongation time and the distribution of
elongation times is significantly affected by the large fluc-
tuations in the duration of the pauses. In the limit p, > d’
and p; > p_, Eq. 6 becomes 6/N ~ d'/p+ and the above
limits can be written as d'(M/c) < 1andd'(M/c) > 1. We
therefore introduce R = d' (M /c) as a dimensionless measure
of pauses which quantifies their relative contribution to the
elongation time. This measure of pause durations is partic-
ularly useful as it is directly linked to the macroscopic
parameters of the system (i.e., mRNA production rate) but is
derived from the microscopic rate parameters.

Figs. 5 and 6 illustrate the results of the stochastic simu-
lations of Model B, i.e., transcription with restricted, uninter-
rupted backtracking, for different values of R (keeping the
frequency of pauses 8/N constant). As expected, for R — 0
the polymerization-only model (Model A) is recovered and
o/w=1/v/N (Fig. 6). This is also evident from the dis-
tribution of elongation times, where for small R the high peak
close to the mean elongation time predicted by Model A indi-
cates that either no pauses or only brief ones occur. The effect
of backtracking events is most evident in the heavier tail of
the distribution since rare prolonged pauses can give rise to
significantly longer elongation times. This effect is magnified
as the fraction of time spent in pauses is increased (i.e., for
higher values of R) (Fig. 5 a). For increasing pause frequency
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(a) (b)6 ‘
= 201 R =01 = ! s FIGURE 5 Distributions of dimensionless elongation
@ —.—R=0.02 @ L — — —R=01 5
- 15 ﬂ = el : 0'01 S 4 f | - times (scaled by N/p ) for Model B for different values of
g ] e ': I 1 1 R = d'M/c. The distributions were obtained from stochas-
£ 10 | = I;‘ \1 tic simulations. (@) N = 4 kb, M = 10 bp, p+ = 10 57!,
9 | 2t b "t 0.5 K =0.01andd’ chosento yield §/N ~ d'/p+ = 1 pauses/kb
8 5 g E :\\ (19,22). (h) N = 1 kb, M =10 bp, p4 = 105", K = 0.01,
a o i \' ~ 00 5 and d' chosen to yield 8/N ~ d'/p+ = 10 pauses/kb. (Inset)
0 0 " . R = 1. The effect of the pauses is evident in the heavy tails
15 2 1 L5 2 2.5 that broaden with decreasing R or increasing 8/N.
t[V/p4] tV/p+]

(higher 8/N) the effect on the total elongation time is clearly
more profound; the distribution becomes broader and exhibits
a general shift toward longer elongation times (Fig. 5 b).

mRNA transcript levels: production
and degradation

Models A and B capture the statistics of the elongation
phase. Ultimately, however, one is interested in the mRNA
levels, which are the combined action of mRNA production
(transcription) and degradation. In general, the transcription
process involves an initiation phase (which includes pro-
moter binding, open complex formation, and promoter clear-
ance), an elongation phase, and termination. As a more
complete model of transcription, we assume fast termination
and combine the model of elongation presented above (Model
B) with a simplified, first-order initiation step. Degradation is
also represented as a Poisson, single-step process. Using

o dfpy=5-10"*
> dfpr=10"3
O dJ&fpr=210"3

1/R

FIGURE 6 Standard deviation over mean (o/u) of elongation times
(Model B) plotted against 1/R for different values of the ratio d'/p, (pause
frequency). As 1/R — 0, pauses become more significant and the distribution
of elongation times becomes broader. In the case of frequent pausing (d'/p+
=2 X 10’3), the distribution exhibits characteristics of an exponential
distribution, i.e., o/u = 1 (indicated by the upper dashed line). As 1/R — oo,
the effect of pauses vanishes and Model B approaches Model A, where
a/p = 1/+/N (indicated by the lower dashed line). Parameters used: N = 4
kb, M = 10 bp, d’ = 0.01 s~', K = 0.01, and p, = 2, 10, and 20 s ".
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stochastic simulations of this combined transcription-degra-
dation model, we examine how the elongation and possible
pauses therein affect steady-state mRNA levels.

We denote the initiation rate as k;. The elongation phase
proceeds as described by Model B and instantaneous ter-
mination takes place when the transcript reaches its desig-
nated size, leading to mRNA production. Finally, mRNA
degradation is modeled as a first-order process with rate
constant k4. The combination of mRNA production and
degradation gives a first handle on mRNA levels and
fluctuations in the cell.

In fact, mRNA production is complicated by the fact that
multiple initiation events can occur within the time it takes to
produce a single mRNA. This would lead to several TECs
moving in tandem on the same DNA template (40), each
synthesizing a nascent mRNA. To capture the fact that two
TECs cannot come in close proximity due to nonspecific
interactions between them or to the additional work required
to deform the DNA helix (41,42), we set a minimum
(exclusion) distance of L nucleotides (L. < N) between the
active sites of any two contiguous TECs. In terms of variables
n and m of Model B, the active site of a TEC is located at
position x = n + m along the DNA template. Therefore, a
TEC, positioned at x, can translocate forward (backward) if
the leading (trailing) TEC, positioned at x,, is at distance of at
least L nucleotides, i.e., |x; — x| < L. A similar argument
applies for transcription initiation, that is, no RNA polymerase
can initiate transcription if a TEC is at position x = L. A
schematic illustration of the model is given in Fig. 7.

The relevant timescales associated with the above model
are: 1), the time needed for transcription initiation 7 = 1/k;;
2), the time needed by the TEC to transcribe L nucleotides
7, =~ L/py; and 3), the mean time of a pause due to
backtracking 73 = M/c. When initiation is the rate-limiting
step (71 > 7,,73), the density of TECs on the DNA template
is low and therefore transcriptional pauses and interactions
between TECs are expected to have marginal effects.
Consequently, the rate of mRNA production is set mainly
by the rate of initiation &; and the statistics of the mRNA
levels are expected to be approximately Poisson with the
mean equal to the variance (Uygna = Tagrna; See Fig. 8
1II). If the rate of polymerization is the rate-limiting step
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BLOCKED

—® ®

O x=n+m en —n=0

FIGURE 7 Schematic illustration of multiple RNAP molecules simulta-
neously transcribing a DNA template. Transcription initiation proceeds with
an effective rate of k;. The position of each TEC on the DNA is characterized
by the position of its active site, which is given by x = n + m. We also set a
minimum (exclusion) distance of L nucleotides between any two TECs. If
transcriptional pauses are sufficiently long they can block the progress of
trailing RNAP molecules and subsequently lead to a burst in mRNA pro-
duction. Such a scenario suggests a significant link between transcriptional
pauses and mRNA production statistics.

(15 > 71,73), fast transcription initiation is blocked by the
slow movement of the TECs on the DNA template, while
the relatively short-lived backtracking events, as in the case
above, play no significant role. In particular, the density
of TECs along the DNA is expected to be maximal (N/L),
with the TECs kept evenly spaced (L nucleotides apart) by
exclusive interactions. In this regime the statistics of the
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mRNA levels are sub-Poisson with more evenly distributed
TECs along the DNA template (t,,rna>>02rNas Se€ Fig. 8
II). Finally, 73 > 7,7, corresponds to a regime where long
pauses dominate transcription. Such pauses can create
congestion points by blocking the movement of trailing
TECs, while the leading TECs continue to transcribe
normally. In this way the uniform (7, > 7;) or Poisson
(71 > 1) distribution of TECs on the DNA template is
disrupted, resulting in a burstlike production of mRNA
transcripts (Fig. 9) and super-Poisson mRNA statistics (i.e.,
Mamrna <Oryas see Fig. 8 7).

In the bursting regime, the effect of elongation pauses can
be linked heuristically to a switching mechanism between
high and low rates of mRNA production. In particular,
sufficiently long pauses shut down mRNA production by
blocking trailing TECs. In the intervals between pauses,
multiple blocked TECs that have accumulated at a conges-
tion site are likely to be transcribed in a burst of rapid mRNA
production. A qualitative description of the different classes
of behavior obtained for the integrated initiation, elongation,
degradation model is presented in Table 1. Stochastic simu-
lations of the model confirm that rare and long-lived pauses
give rise to jamming of TEC trafficking during transcription
and therefore bursts of mRNA production. We note that such
abrupt switching between two states is reminiscent of dy-
namic phenomena observed in studies of the asymmetric ex-
clusion process (43,44).

=
i

Probability density
g
w

FIGURE 8 Distribution of steady-state number of
mRNA molecules (solid line). Simulations included tran-
scription initiation, elongation, and mRNA degradation
and allowed multiple RNAP molecules to transcribe the
DNA template at the same time. A Poisson distribution
with the same mean value is given for reference (dash-
dotted line). (I) When elongation pauses are longer than the
time needed for transcription initiation and the time needed
by the TEC to transcribe L nucleotides (73 > 71,72), the
mRNA distribution is expected to be broader than Poisson.
(II) When the movement of RNAP molecules on the DNA
template is the rate-limiting step (7, > 71,7,), the mRNA
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distribution predicted by the model is sub-Poisson. (/I])
When transcription initiation is the rate-limiting step (7, >>
75,73), the mRNA distribution predicted by the model is
Poisson.
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dmRNA/dt

FIGURE 9 Simulation of mRNA population levels in
an integrated model of transcription initiation, elongation,
and mRNA degradation (parameters given in Appendix C;
10° runs). The inclusion of transcriptional pausing (when
multiple initiations are permitted) results in bursts of
mRNA production and super-Poisson mRNA statistics

mRNA count
)

o
T

(02 gna/Bmrna = 4.25). The bottom panel shows the
mRNA production events in time and the trace above
illustrates the resulting mRNA count fluctuations. In the
third panel, dmnRNA/dt is plotted (df = 6 min), along with
an arbitrary threshold (dotted line, set to 1/dt mRNA/s).
The threshold enables us to visualize the transcriptional
process as a telegraph process with off- and on-states
corresponding to low and high rates of mRNA production

N [ MITIOITT 1

(top panel).
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DISCUSSION

We have presented a stochastic model of transcription,
including initiation, elongation, and mRNA degradation.
Our main focus has been on the elongation phase for which
we obtained analytic results both for the polymerization
dynamics (ignoring backtracking) and for the dynamics of
backtracking pauses. Our model of backtracking pauses as a
first passage process is consistent with recent single molecule
experiments (19). By means of stochastic simulations we
have also examined how pauses affect the total elongation
times. Finally, we have developed a model of mRNA pro-
duction and degradation that combines transcription initia-
tion, transcription elongation, and mRNA degradation. In
this model, multiple RNAPs with repulsive interactions can
move in tandem on the same DNA template. We used
stochastic simulations of this model to examine how the
dynamics of the elongation phase and backtracking pauses
therein affect the statistics of the mRNA population levels.
Our key results are particularly instructive in two limits:
first, when pauses cause a weak perturbation to elongation
dynamics and secondly, when they significantly affect it. The

TABLE 1 Table summarizing the behavior of mRNA production
in the different limiting regimes (with time-limiting initiation,
polymerization, or pausing kinetics)

Regime Behavior
T > T2,T3 T > T,T3 Poisson
TI > T2,T3 Poisson
T2 > T1,T3 TI> T3 sub-Poisson
T3> T sub-Poisson
T3 > T1,T2 TI> T super-Poisson
T > T) super-Poisson

sub-Poisson
super-Poisson
super-Poisson

T — T2 > T3
T — T3> T
Ty — T3> T

Biophysical Journal 94(2) 334-348

third regime, in which initiation is the rate-limiting step (with
relatively rapid elongation), recovers previously predicted
Poisson statistics. As expected, if the elongation phase
dominates transcription, but the time spent in backtracking
pauses is brief relative to that spent on active polymerization,
similar results to the polymerization-only model are recov-
ered. That is, for sufficiently long sequences (N > 1) the
elongation times follow a narrow Gaussian distribution with
fluctuations around the mean scaling like 1/v/N, where N is
the length of the gene. This leads to a characteristic delay in
the total time of transcription. Coupling fast transcriptional
initiation with such a model of transcription elongation pre-
dicts a more homogeneous transcription process and hence
steadier mRNA population levels than would be produced by
a model of initiation alone.

In the opposite regime, when there is a significant number
of backtracking pauses whose duration is comparable to the
active polymerization time, there is a dramatic change in the
distribution of transcriptional times. We considered two types
of backtracking pauses; pauses that end with the TEC sliding
back into position and backtracking pauses that can lead to
transcriptional arrest. For both classes of pauses we found a
broad distribution of pause durations with a power law decay
cutoff by an exponential one. Consequently, the statistics of
the elongation phase can be dramatically altered, with in-
creased mean and a significantly broader distribution of elonga-
tion times, which mirrors the distribution of pause durations.

Recent experiments have provided evidence for the ex-
istence of bursts of transcription both in bacterial (11) and
eukaryotic cells (30,31). We have found that our model of
the dynamics of elongation with pauses leads naturally to
switching between high and low mRNA production rates,
resulting in transcriptional bursts. Our findings suggest that
rare and long elongation pauses (from the tails of the
distribution) act as congestion points turning off mRNA
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production for long periods, while allowing rapid mRNA
production for short intervals. Such long pauses, therefore,
give rise to more strongly fluctuating mRNA levels. Thus, in
this regime, elongation pauses act as a rate-limiting step.

In fact, experimental reports of transcriptional bursting
measure mRNA population levels (rather than production
rates). We obtain consistent fluctuations in mRNA popula-
tion levels, in a model that combines transcription with
mRNA degradation kinetics. Other possible elongation
pauses (which are not linked to backtracking) could result
in similar bursting effects (45). Indeed, pauses can, in
general, result from sequence-encoded signals (46), elonga-
tion factors, or nucleosome packaging (47,48). We note,
however, that the rate-limiting step can also be provided by a
number of different mechanisms associated with the tran-
scription process, such as changes in the state of the promoter
(30,31) (e.g., by chromatin remodeling) or the diffusive motion
of regulatory molecules (49).

While single molecule studies have provided evidence that
RNAP backtracking dominates in vitro transcription and
results in pauses of significant (>20 s) duration (19), it is
interesting to consider how frequent they are and what role
they may play in vivo. For example, backtracking pauses
have been previously implicated in mRNA editing and error
correction (8,23) and could therefore partially account for
discrepancies between theoretically expected and observed
error rates in mRNA transcripts. Differences in free energies
between correct and incorrect nucleotides yield an expected
error rate of 10~ errors/bp. This high rate contrasts with
experimentally measured values of 10~ errors/bp (50). This
discrepancy in error rates could presumably be accounted for
by error correction mechanisms, which may include back-
tracking pauses (M. Voliotis, N. Cohen, C. Molina-Paris,
and T. B. Liverpool, unpublished). Of course, the situation in
vivo is further complicated by the effects of transcription
factors and other regulatory proteins. Nevertheless, if back-
tracking pauses are significant in the elongation process they
could provide the cell with ample opportunity for a range of
regulation mechanisms.

The models presented here relied on a number of sim-
plifying assumptions. In particular, both polymerization and
elongation pauses were taken to be sequence-independent.
The assumption that polymerization takes place on a ho-
mogeneous DNA template is likely to be a simplification,
since the local rates of translocation have been suggested to
depend on the underlying local DNA sequence. Moreover,
our models have neglected any sequence dependence that
has been attributed to short-lived pauses (20,21). We leave
the development of more detailed sequence-dependent
kinetic models of elongation dynamics for future research.

While in this article we restrict our calculations to models
of transcription, similar arguments regarding pauses and
bursting should also be relevant for translation. Applications
of these results will ultimately contribute to a more complete
understanding of gene expression and regulation, and
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fluctuations therein. A better understanding of these pro-
cesses will also shed light on the differences between the
effects of gene regulatory mechanisms, which act during
transcription and translation (18,52-56) as compared to
those which act by controlling the initiation of these
processes. Ultimately, models of noise generation in the
cellular environment may lead to new insights on the ways in
which cells survive and adapt, with consequences for cell
development, function, and fate.

APPENDIX A: TRANSLOCATION-LIMITED
POLYMERIZATION

For Model A, the Master equation describing the dynamics of P, ;,(¢), the
probability of finding the TEC in state (n, m) at time ¢, starting from an initial
state (0, 0) at ¢ = 0, is given by Eq. 1. Since we take N to be the termina-
tion site, we implement an absorbing boundary at position (n = N, m = 0).
Such a boundary can in general be obtained by setting the depolymerization
rate at n = N equal to 0. By doing so, Eq. 1b is affected only for (n =N -1,
m=1)

OPx_1,
= aPN—l,() - (kf + b)PN—l.l- (@)
ot
The same result can be obtained by setting Py = 0 and regarding Eq. 1b
valid forevery nin {0,1,...,N — 1}. Also, since we assume (n = 0, m = 0)
to be a reflecting boundary, we set the depolymerization rate at n = 0 to
0and P_;; = 0, i.e., there is no probability flow from or to state (n = —1,
m = 1). In this way, Eq. 1a is affected only for (n = 0, m = 0):
0Py
B = bPy; — aPyy. )

The same result can be obtained by setting kP o = k¢P_; ; such that Eq. la
is valid for every n in {0, 1,...,N — 1}.

We can define a mean occupancy for each translocation state (m = 0, 1)
by summing over all possible template positions, I, (1) = Zn;(: Pom(1).
From Eq. 1a, we obtain

Mo _ 4 B)IL, — (ky + )T,

ot

The solution to Eq. 9 that satisfies initial conditions II;(0) = 1 relaxes on a
timescale 7 = (a+b+k+ky,) '« kf’l. On timescales longer than 7,
this solution attains steady-state values such that Il = (k; + b)r and
IT} = (ky + a)7. For such long times the fluctuations in n and m become
independent and we can write Py, , = II; P,. Substituting back into Eq. 1
and summing over m, we obtain

IP,
ot

which is equivalent to a biased random walk with effective polymerization
and depolymerization rates

and II, =1 —1I,. 9)

:]Lrpnﬂ +[7+7)n71 - (]77 +[J+)Pm (10)

ka
I :kf(kara)Tzajrb, (11a)
kb
_ = ky(ke + b)T , 11b
P b(f )T at b ( )

where we have used &, ki, < a,b. Note that the boundary conditions for
Eq. 10 are Py = 0 (absorbing) and p_P, = p+P_; (reflecting).

The elongation time is defined as the time needed for the TEC to reach
position (n = N, m = 0) starting from (n = 0, m = 0). In the mean-field
model the mean and variance of the elongation time can be calculated using
the backward Master equation (38). We denote the initial template position
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of the TEC at time f, = 0 by n, and rewrite Eq. 10 in terms of conditional
probabilities:

W =p+P(n—1,tng, 1) + p_P(n+ 1,tne, to)
— (p+ +p_)P(n,t|ng, to).
(12)

The backward Master equation is (38)

OP(n, t|ny, 1
M =p+[P(n,tlng, 1) — P(n,tlny + 1,1,)]

Oty
+p_[P(n,tng, to) — P(n, tlng — 1,1)].
13)
Since the system is homogeneous, we can write
P(n, tlng, t, = 0) = P(n,0ln, 1), (14)

so that the backward Master equation takes the form

P00 _ (o, +1,0) P, O)]

+p-[P(n;tlng = 1,0) = P(n, tny, 0)].
)

The boundary conditions for the backward Master equation are P(n,t|ng =
0,0) = P(n,t|lng = —1,0) (reflecting) and P(n,t|ng = N,0) = 0 (absorbing).

The probability that at time ¢ the TEC has not yet reached the absorbing
boundary is given by

S P}, 0) = G, 1. (16)

n=0

If T is the elongation time (time needed to complete elongation by reaching
the absorbing boundary at position n = N), G(ny, t) is the probability that
T = t. In other words, the cumulative distribution function of the elongation
times is 1 — G(no, t). We sum Eq. 15 over n from n = 0ton =N -1 to obtain

% =p+[G(ng + 1,1) — G(ny, t)]

+p,[G(n07 17’)+G(n07[)]) (17)
subject to the initial condition G(n5,0) = 1 and boundary conditions
G(N,r) = 0 and G(0,t) = G(—1,1).

Equation 17 can be expressed and solved in terms of the first and second
moments of the elongation time T, which can be written as

n t o "t o
T(ny) = (T = — / 10G (o, )t = / Gl 1),
0 0
(18)
ot t e
T (ny) = (T%) = — / POG (g, t)dt =2 / G (o, )dr.
0 0
(19)

We integrate Eq. 17 with respect to ¢ to obtain

—1=p.T(ng+1)+p.T(ng—1)— (p+ +p_)T(no)
= p [T+ 1) = T(w)] + p_ [T — 1) — T
(20
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The boundary conditions imply T(N) = 0, T(0) = T (—1). To solve this
difference equation we introduce

U(no) = T(no) — T(no — 1), 21
and substituting into Eq. 20 yields

P+ U(no +1)—p_U(ng) = —1. (22)

Solving the above two difference equations recursively, we obtain (38)

N 1 2l /p \"™
y —Y (P’L> . 23)
n=ng + 1P+ n=0 \P +

By setting K = p_/p, and observing that 0 = K < 1, we can write

T(ny) =

T(n) 1 X 1-K"
ny) = — —_—
! P+ 1 =K
ng+1 _ pN+1
:;ano—u. (24)
p+(1—K) 1-K

Finally by letting ny = 0, we obtain the mean elongation time

(25)

=2

“:mllfm[

For the variance of the elongation time we carry out a similar derivational.
Multiplying by ¢ and integrating Eq. 17 over ¢, we obtain

—2T(ny) =p+Ta(ng+ 1) +p_To(ng—1) — (p+ +p_)Ta(no)
=p+[Ta(no + 1) = Ta(ng)] + p-[To(no — 1) = Ta(no)].

(26)
Once again solving the above equation recursively leads to
N
Ty(no)=— 3 U(n), @7n
n=ng +1
where U(n) is given by
20 i
Un)=——"Y K""'T(n). (28)
P+izo
For ny = 0, the second moment becomes
<T2>_(1—K+6KN”) (1+K) \?
T P (—-k) (1-K+6K""Ty
2K(1-K)2+K"!
( X N+l) } : 29
(1-K)(1-K+6K"")

Finally, the variance of the elongation time is given by
2 2 2
o =(T")—(T)
C(L+K+KTT) {
= 2 3
P+ (1 -K )

K1-KM(4+K+K'™™)
T (1-K)(1+K+4KY)

(30

In the limit K < 1 (polymerization is overwhelmingly favored over
depolymerization) we can express the mean elongation time and variance
up to first-order in K (see Eq. 2). In this regime, both the mean and the
variance of the elongation time depend linearly on the template length N.
Also the mean elongation time and variance approach the mean and variance
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of the sum of N independent and identically distributed (i.i.d.) exponential
steps. Since the sum of i.i.d. exponential random variables is y-distributed
we can assume that in the small K limit the elongation time, 7, follows a
y-distribution

T e ®
T(a)B”

The parameters « and 3 can be calculated from the mean and variance using
the relationships u = a8 and o’ = aBZ:

G(T|er,B) = GDh

(N+KN —K)’
AR 2
N +4KN — 4K’ (322)
1 N+4NK — 4K
g—_ BT (32b)

pe NTNK—K

In the limit of large N the distribution of elongation times approaches
a Gaussian with mean and variance given by Eqgs. 2a and 2b, respectively,
in agreement with the Central Limit Theorem.

APPENDIX B: ELONGATION PAUSES
AND BACKTRACKING

We model the dynamics of backtracking in terms of an unbiased random
walk with rate c¢. For simplicity, we characterize backtracked states by
| =—m where 1 = [ = M. The probability, P(/, t), of finding the TEC in state
[ at time ¢ given it was in state / = 1 at ¢ = 0, follows the Master equation
given in Eq. 3. By using the Laplace transform j(l,s) = [~ P(I, t)e™"'dt, we
can eliminate the time derivative in Eq. 3 and obtain an algebraic difference
equation,

sp(l,s)

where ), is the Kronecker delta.

=8 =cp(l—1,8)+cp(l+1,s)—2cp(l,s), (33)

Case 1: uninterrupted backtracking

In this case (see schematic diagram in Fig. 10 a), the boundary conditions
for Eq. 3 are: P(0, t) = O (absorbing) and cP(M, t) = cPM + 1, 1)
(reflecting).

“’—C» (B=@=(=)
T T

“®  Polymerisation

FIGURE 10 Schematic illustration of the two cases of restricted back-
tracking: (@) uninterrupted backtracking and (b) backtracking with transcript
arrest. In both cases, variable / denotes the number of nucleotides that the
TEC has translocated backward. Translocation is possible up to / = M. A
backtracking pause commences with the TEC at state [ = 1 (dashed arrow)
and terminates when state / = 0 is reached. For the case of backtracking
with transcript arrest, the TEC is halted at state / = M and can resume
polymerization only with the aid of accessory factors (left dashed arrow).

p(0,5) =0 cp(M. s)
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We solve Eq. 33 (as described in (39)), with boundary conditions
=c¢p(M+1,s), and obtain a closed formula for the

Laplace transform of the probability flux to state / = 0, F(0,s) = cj(1, ),

F(0.5) _ STOMO)] sinh(( ~ ()]
sinh[(M + 1)¢(s)] — sinh[M ¢ (s)]

where tanh ¢p(s) = /1 — 1/(s/2c+1)* The probability flux F(0, 1) is equi-

valent to the probability of exiting the pause at time 7, and its Laplace transform,
F(0,s), evaluated at s = 0, gives the probability of eventually exiting the pause
(39). From Eq. 34, one obtains F(0,s = 0) = 1, i.e., the TEC will eventually
exit the pause and resume elongation. £(0,s) is also the moment-generating
function containing all the positive integer moments of the exit time, as the
coefficients of its power expansion in s (39). We expand Eq. 34 to get

- M
F(0,5)=1——s5+0(s"), (35)
Cc
from which we obtain the mean pause duration {f) = M/c.

We can also use £(0, 5) to calculate the distribution of pauses. In the limit
t > 1/c, ie., for times much longer than the time for a single step, Eq. 34

becomes
cosh {\/E(M )}
FO,s)m— Ve d (36)

cosh {\/g(MJr 1)] ‘

By inverting the above Laplace transform (58), we can express the
distribution of pause duration, P(r) = F(0,t) (for times >1/c) in terms of the
Jacobi 6, function,

P(t) = a*‘%e, (%va’l ta’z) ; (37

where v =M/+/c, a=(M+1)/\/c and 0,(z|f) can be expressed as the
infinite series (58)

6, (2|t Z Yexp[—(z+n—1/2)*/1.  (38)

n*—oo

Equation 37 leads to an expression for P(¢). In particular, we obtain

2
M+1) = ()
D S e Fl

e

Simpler expressions for () can be obtained in the limits ¢ < M? /c and
> MZ/(' (see Eq. 4 in main text). Plots of the analytic expression for P(f)
along with the two asymptotic limits are shown in Fig. 11 a.

P(1) =

Case 2: backtracking with transcript arrest

In this case (see schematic diagram in Fig. 10 b) the boundary conditions
imposed on Eq. 3 are: P(0, t) = P(M, t) = 0. Once again, we solve Eq. 33
with boundary conditions j(0,s) = p(M,s) = 0 to obtain a closed expres-
sion for the Laplace transforms of the exit probabilities to either boundary,

o sinb(M = 1)(s)
FOS = GnhMo(s)] (402)
_ _ sinh[$(s)]

FM,s) = sinh[M¢(s)]’ (400)
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Probability Density

Analytic result
—— t& M3c
— — —t3> M3¥c

1/

(b) ©

Probability Density
5

Analytic result

— -t M¥e —— Analytic result
107 — — 3 M3 — — —t3 M*c
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FIGURE 11 Analytic results for the duration of backtracking pauses, cases

1 and 2, for M = 10. (a) Case 1: restricted, uninterrupted backtracking.
Probability distribution P(7) of exit time to absorbing boundary / = 0 in the
presence of a reflecting boundary at / = M. Solid line corresponds to the
analytic result Eq. 39, and dashed and dash-dotted lines to the two asymptotic
limits in Eq. 4. (b, ¢). Case 2: restricted backtracking with transcript arrest. (b)
Probability distribution Py(f), of exit time to absorbing boundary / = 0 in the
presence of an absorbing boundary at / = M. Solid line corresponds to the
analytic result Eq. 45a, and dashed and dash-dotted lines to the two asymptotic
limits in Eq. 5. (c) Probability distribution Py(f) of exit time to absorbing
boundary / = M in the presence of an absorbing boundary at / = 0. Solid line
corresponds to the analytic result Eq. 45b, and dashed line to the asymptotic
limit in Eq. 5. In all cases, the initial state is assumed to be / = 1.

where tanh ¢p(s) = 1/1 — 1/(s/2¢+1)?. Evaluating the Laplace transforms
at s = 0, we find that the TEC will eventually exit the pause either through
state / = M with probability 1/M or through state / = 0 with probability
1 — 1/M. Once again, since Eq. 40a and Eq. 40b are generating functions,
we can expand them in power series in s to obtain the mean exit times to
either boundary, {r)y and {)u:

2M — 1
o) =6 (412)
C
O (41b)

In the presence of accessory factors the arrested transcript is cleaved and the
TEC returns to a polymerization competent state. If we assume that the
accessory factors act on relatively fast timescales, then the overall mean
pause duration is just the weighted sum of (#), and (), (f) = (M — 1)/2c.
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We can also use F(0, s) and F(M, s) to calculate the full distribution for the
exit times to either boundary. For times much longer than the time for a
single step, ¢ > 1/c, Egs. 40a and 40b become

sinh {\/i(Mf 1)]

JI 0 Fo A — @2a)
sinh [\/EM}
c
sinh {\/E}
F(M,s)~— LV L (42b)

o]

By inverting the above Laplace transforms (58), the distribution of exit times
to the boundaries at [ = 0, Py(t) = F(0,¢), and at | = M, Py(t) = F(M.t) (for
times much greater than 1/c) can be expressed in terms of the Jacobi 6,
function

L0 (1 ] L
730(z):a0187094 <§V0110] ta, ) (43a)
L0 (1 ] -
Pult) = aM‘—avMOA (EVM(IMI raM2>, (43b)

where vy = (M — 1)/\/c, vm = 1/+/c, ag = ay = M/+/c, and 04(z|t) can
be expressed as the infinite series (58)

0(zlr) = \/% im(fl)"exp[f(z-&- W12, (44)

Equations 43a and 43b lead to the following expressions for Py() and Py(r):

-M i (1) 1
)= 7o gea £ e[ H | (1=g). o

-M pig M (e Ma)? M+1
N Zexp{e (. *:M)antw).msw

Simpler expressions for both Py(r) and Py(r) can be obtained in the limits
t < M?/c and t > M?/c (see Eq. 5 in main text). Plots of the analytic
expression for Py(t) and Py(t), along with the corresponding asymptotic
limits are shown in Fig. 11, panels b and c, respectively.

Pu(t)

APPENDIX C: TRANSCRIPTION WITH
RESTRICTED BACKTRACKING

Parameter d, the transition rate from translocation state m =0 to m = —1 (see
Fig. 2), determines the density of backtracking. If we assume rapid transition
between the active transition states m = 0 and m = 1, then at each
template position the TEC can 1), proceed with polymerization, with rate
p+ = ki(b/(a+b)); 2), proceed with depolymerization, with rate p_ =
ko(a/(a+b)); or 3), enter state m = -1, with an effective rate
d' =d(a/(a+b)) (see Fig. 2 b). Therefore, at a given position 7, the TEC
enters a pause with probability
d'

Prause d+ps +[L. (46)
Since we assume that a pause occurs independently at each template po-
sition, we can estimate the probability Ppausg as the ratio of the expected
number of pauses to the DNA template length i.e., §/N = Ppaysg-
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Simulations

Simulated data were generated using standard Monte Carlo techniques
(Gillespie algorithm) (59,60), implemented in ANSI-C. At each step a
random, exponentially distributed, number was generated that was used as
the time interval until the next transition. The parameter, A, of the ex-
ponential distribution was set equal to the sum of the transition rates to all
accessible states. To decide to which state the transition will occur, a state
was picked randomly from all accessible states with a probability pro-
portional to the corresponding transition rate. The total elapsed time and the
state were updated accordingly and the process was repeated.

In the case of Model A and for each set of parameter values, data were
generated by 10° independent simulation runs. Since the values of param-
eters ¢ and b are not known, arbitrary ones where used, which preserved the
ratio found in the literature (see Table 1 of main text) and were higher than
the rates of polymerization/depolymerization. In the case of the models of
backtracking pauses and Model B, 10° simulations were performed for each
set of parameter values to accurately capture the shape of the distribution and
the scaling behavior. The parameters for Model B were selected so as to
yield the experimentally observed values (19,22). In particular, a, b, k;, and
ky, were selected to yield an average velocity of 10 bp/s, while d was chosen
to yield 1 and 10 pauses/kb. For simulations of the integrated initiation/
elongation/degradation model the parameters used were selected to match
the ones observed in Golding et al. (11): N =4 kb, L = 100 bp, M = 10 bp,
p+ =505, K=00l,c=01s"4=002s" and ks =310"*s ' and
d' =0.05 s~ (yielding 1 pause/kb).

Note added in proof: After submission we became aware of the recent
experimental work by Galburt et al. (57), which studies the distribution of
durations of pauses of RNAP II and finds a 7~ dependence as predicted by
Eqgs. 4 and 5.

This work was supported by the Engineering and Physical Sciences
Research Council under grants No. EP/D003105 and EP/C011953/1 (N.C.),
the Medical Research Council under grant No. G0300556 (N.C., C.M.P.,
T.B.L.), the Royal Society (T.B.L.), and the University of Leeds (M.V.).
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Biological cell function crucially relies on the accuracy of RNA sequences, transcribed from the DNA
genetic code. To ensure sufficiently high fidelity in the face of high spontaneous error rates during
transcription, error correction mechanisms must play an important role. A particular mechanism of
transcriptional error correction involves backtracking of the RNA polymerase and RNA cleavage.
Motivated by recent single molecule experiments characterizing the dynamics of backtracking, we
present a microscopic model of this editing process. We show that such a mechanism can yield error
frequencies that are in agreement with in vivo observations.

DOI: 10.1103/PhysRevLett.102.258101

The accuracy with which genetic information is pro-
cessed is an essential factor in the survival and perpetu-
ation of life. Efficient error correction mechanisms are
therefore necessary for countering the frequent errors in-
troduced by thermal fluctuations. For example, simple
thermodynamic considerations suggest that during DNA
transcription passive errors should occur with high propen-
sity [1073-1072 errors/nucleotide (nt)]. Nevertheless,
transcriptional error rates appear significantly lower
(1073 errors/nt) [1]. Kinetic proofreading (KP) [2] pro-
vides a general phenomenological framework for under-
standing mechanisms that ensure low error rates and
increased specificity in life processes [2]. To complement
this general level of description, quantitative and predictive
models that incorporate detailed information about specific
biological processes are needed [3].

A particularly important example is the transcription of
DNA into RNA. However, a comprehensive understanding
of the mechanisms involved in transcriptional error correc-
tion is still lacking. Classical KP postulates the existence of
a high energy intermediate along the polymerization path-
way [2], acting as a fidelity checkpoint and enhancing the
discriminatory power of the RNA polymerase (RNAP).
Such an intermediate has indeed been suggested by recent
structural studies of DNA transcription [4]. In addition, the
RNAP’s ability to induce cleavage of the RNA (or its so-
called nuclease activity) suggests an alternative mode of
transcriptional error correction, hereafter referred to as
nucleolytic proofreading. This involves the backward slid-
ing (backtracking) of the RNAP on the DNA template
followed by cleavage of the nascent transcript [5]. In this
manner previously misincorporated nucleotides can be
discarded and repolymerized. The existence of these differ-
ent proofreading mechanisms raises interesting questions
regarding their relative roles in enhancing transcriptional
fidelity. These can be answered by the construction of
predictive models able to discriminate between the differ-
ent processes.

0031-9007/09/102(25)/258101(4)

258101-1

PACS numbers: 87.15.rp, 82.39.Fk, 87.10.Mn, 36.20.Fz

During backtracking, the active site of the RNAP disen-
gages from the 3’ end of the transcript, and the transcrip-
tion elongation complex (TEC), consisting of the RNAP
and the DNA-RNA hybrid, steps backwards along the
DNA [5]. The subsequent cleavage of the RNA chain is
catalyzed by the active site of the polymerase and in certain
cases accessory proteins are necessary to stimulate the
reaction [6,7]. Recent single molecule experiments [8]
provide support for nucleolytic proofreading by showing
that (i) artificially induced misincorporation increases
backtracking and (ii) cleavage factors reduce backtracking
lifetimes.

In this Letter, we propose a stochastic, nonequilibrium
model of transcription elongation involving polymeriza-
tion of correct and incorrect nucleotides, backtracking, and
RNA cleavage. We use the model to assess the role of
nucleolytic proofreading in terms of the error fraction,
defined as the ratio of probabilities of incorporating an
incorrect as compared to a correct nucleotide at a given
position of the transcript [2]. We study the problem both
analytically, in different limits, and numerically, using
stochastic simulations. Our results indicate that transcrip-
tional error correction, involving backtracking by multiple
nucleotides [8] and RNA cleavage, yields results consistent
with multistep KP in the limit of high backtracking rates.
More importantly, our results offer a quantitative under-
standing of nucleolytic proofreading by linking the ob-
served error rate directly to the microscopic rates of the
process. Finally, we suggest a number of experiments to
test our model and clarify the role of nucleolytic proof-
reading in transcription.

Transcription elongation can be described in terms of
two variables [9]. Let n = 0, ..., N denote the length of the
transcript or equivalently the template position of the last
transcribed nucleotide [10]. Let m = 0, ..., M denote the
position of the TEC (specifically the RNAP’s active site)
relative to n (i.e., the corresponding position of the active
site along the DNA template is n — m). State m = 0 cor-

© 2009 The American Physical Society
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responds to a TEC in an active state, where polymerization
of the next nucleotide can occur, while m > 0 corresponds
to a TEC in a backtracked state [see Fig. 1(a)]. Extensive
backtracking is often blocked by RNA secondary struc-
tures (e.g., hairpins) that are formed in the portion of the
transcript outside the TEC [5]. Therefore, we assume that
backtracking is restricted to a fixed distance m = M, which
we take to be independent of n [11]. The process starts
with the TEC at (n = 0, m = 0) and terminates at (n =
N,m = 0).

A schematic diagram of state transitions for the model is
given in Fig. 1(b). Given a TEC in an active state (n, m =
0), the TEC can either backtrack to state (n, m = 1) with
rate k;, or polymerize the next nucleotide (n + 1, m = 0).
Polymerization of correct and incorrect nucleotides pro-
ceeds with effective rates k,, and €k, respectively, yielding
a spontaneous error fraction €. Once backtracked the TEC
hops randomly between adjacent backtracked states
(n,0<m = M) at rate c. However, given an error at
some position n — [ (I = 0) transition of the TEC from
state (n, m = [ + 1) to (n, m = [) occurs at a slower rate ¢.
Finally, from each backtracked state cleavage can occur
with rate k.. Cleavage from any state (n, m > [) ensures
removal of the error.

The distinct hopping rate at an error site (¢ < c¢) is the
key ingredient of this error correction process since it
increases the likelihood of cleavage at states (n, m > [).
The ratio of the two hopping rates is given by ¢/c =
e AG/KT [12], where AG is the free energy increase due
to the incorporation of an incorrect nucleotide in the RNA-
DNA hybrid. The ratio of the polymerization rates for
correct and incorrect nucleotides can also be approximated
by AG, ie., € = ¢ A/ = /¢ [2].

For the analytic treatment of the model we first consider
the dynamics of the process at a fixed template position n

i RNA-DNA hybrid
aqretd
i RNA-DNA hybrid

()

() e

O active site(n—m)

<]

|

cleavage enzymes
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%
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FIG. 1. (a) Schematic illustration of the model. The RNA is

marked by 3’ and 5'. The transcription elongation complex
(TEC) is depicted in the active (n, m = 0) (top) and in a back-
tracked (n,m =3) (bottom) state, both with M =S5.
(b) Schematic illustration of the TEC dynamics at a given
position n. The TEC will eventually polymerize forward or
cleave from one of the backtracked states.

which allows us to construct an effective model of the full
elongation process. The master equation

P(t) = WY - P(r) (n

defines the stochastic dynamics of the TEC at a fixed
position n. P is a column vector of size (M + 1) with
entries P,,(t), the probabilities of finding the TEC at trans-
location state m at time ¢, having started fromm = O atr =
0. WY is the (M + 1) X (M + 1) transition matrix. The
transcription index s is a binary list of 0’s and 1’s repre-
senting the sequence of correct (0) and incorrect (1) nu-
cleotides along the entire transcript. In particular, s € S"
with § = {0, 1} (i.e., for an error at position n — I, 5, ; =
1). The general tridiagonal structure of W) is given below.
Along the main diagonal: Wf-f} = —[2c + 5,_j:2(c —
¢)+ k.] except for Wfrl) =—[(1+ek,+k,] and
WELLMH = —[c+ s,_p+1(¢ — ¢) + k.]. Along the first
diagonal below the main: Wf?l; = ¢, except for W;? =
k. Along the first diagonal above the main: WI(S/) g =c*
$y—j+1(¢ — ¢). All other components are zero. Note that
the form of the matrix depends only on the last M elements
of s.

The above formulation of W implies M + 1 absorbing
boundaries, corresponding either to polymerization from
state m = 0 or cleavage from each possible backtracked
state (1 = m = M). By applying the Laplace transform
P(z) = [ e “P(r)dt to Eq. (1), we obtain a system of
algebraic difference equations, which can be used to derive
the splitting probabilities p,, for eventually hitting bound-
ary m (0 =m = M) and the corresponding conditional
mean exit times, #,, [13]. Note that both p,, and #,, depend
on the sequence s.

‘We now use the splitting probabilities p,, to construct an
effective model for the elongation dynamics. Let I1%(1) be
the probability of finding a transcript of length n and index
s at time ¢. The transcript can either be extended by one
nucleotide (through polymerization) or get shortened by up
to M nucleotides (through backtracking and cleavage).
These transitions occur with rates r,,, proportional to the
splitting probabilities obtained above, i.e., r, = p,,/T
(0 = m = M), where 7 defines a sufficiently long time
scale (i.e., 7> t,,, 0 = m = M). We note that all results
given below depend only on the relative rates and hence do
not depend on the exact definition of 7. Summing over s,
one obtains I1,,(1) = 3,c I15(1), the probability of find-
ing a transcript of length n irrespective of its composition.
The dynamics of 11,(7) can be expressed as

dll
dt

M

1= jn—llO - JnlO + Z (jn+m|m - jnlm)’ (2)
m=1

where T, = Xesr rOTIY(1). For any specific M,

Eq. (2) can be used to obtain an expression for 2, (P,),

the probability of reaching the terminal position N, having
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incorporated a correct (incorrect) nucleotide at position 7.
The error fraction for position 7 is defined as £ = P,/P,.
Given a large ensemble of completed transcripts, £ gives
the ratio of the number of transcripts with correct nucleo-
tides to those with incorrect nucleotides at position 7.

For simplicity, in most of the analysis below, we treat the
case M = 1, where the TEC can backtrack by only one
nucleotide. We introduce the following dimensionless
quantities to characterize the competing processes in the
model: a; =k./c and a, =k./C = a,/€ capture the
efficiency of cleavage of correct and incorrect nucleotides,
respectively, and K = kp/ k;, the tendency of the TEC to
backtrack. The splitting probabilities, obtained from
Eq. (1), are determined completely by the identity of the
last incorporated nucleotide, s,. We denote these splitting
probabilities when s, = 0 or 1 with p; and p;, respectively,
where i = 0 corresponds to polymerization of s, and i = 1
to cleavage. The splitting probabilities take the form p, =
k(e a))/[r(e @) + 1], pr=1—po. po= k(e ay)/
[k(e, ay) + ay], and py =1— py, where k(€ a)=
K(1+ €)1+ a).

Given the above splitting probabilities, Eq. (2) can now
be written for M = 1. Laplace transform techniques [13]
then yield the termination probabilities P, = N p,/(1 —
A,po) and P, = Nep,/(1 — A, py). Here, N is the nor-
malization constant (such that 2, + 7_’,, = 1), and in the
limit € — 0, one has A, = B(BN™" — 1)/(BN "1 — 1),
where 8 = p,/po [14]. Thus, the error fraction for M = 1
is

_ €Po(l = Avpo)

. 3
po (1 = A, py) @

Figure 2 (top panel) shows the error fraction £ for different
positions # as a function of K.

We next consider two limits where £ attains a constant
value independent of position 7. In the limit K >> 1, one
expects that the rare backtracking can hardly improve the
error fraction. Indeed, in this limit Eq. (3) reduces to £ =
€. On the other hand, in the limit K < a; < €, cleavage
events dominate the process, and Eq. (3) reduces to £ =
€po/ po» or, in terms of the microscopic rate parameters,
& = €c¢/c. Hence, the error fraction depends only on € and
the ratio of hopping rates. Since we take these two quan-
tities to be approximately equal, we obtain the limiting
error fraction for M = 1 tobe & = €2. These two limits are
illustrated in Fig. 2 (bottom panel). Numerical data were
generated using stochastic simulations [15] of the full
elongation model.

In the more general case of | = M < 1/¢€ (i.e., with at
most one error occurring in a region of M nucleotides), it
can similarly be shown that in the same limit (K < o <
€) the error fraction is

MM

~ M+
£ I'(M+ 1)

(C))

where I' denotes the Gamma function. Thus, nucleolytic

“n
10°Fen
an

107

Error fraction

10" A e

sy =10"2a; =107
2| say=1,a;, =107 _ €

10°

Error fraction

FIG. 2. The error fraction as a function of K (M = 1 case).
Analytic results [Eq. (3)] are plotted as solid lines, while markers
show results obtained from stochastic simulations of the elon-
gation model. Top: The error fraction for different positions with
a) = 1074, a, = 1072, e =102, and N = 9. Bottom: The
error fraction for different cleavage efficiencies with € =
1072, n =N — 2, and N = 4. Dashed lines show limits dis-
cussed in text.

proofreading can result in error fractions that scale expo-
nentially with the maximum backtracking distance M. We
note that the error fraction attained by KP has a similar
dependence on the number of intermediate states [2].

So far we have assumed a constant backtracking rate.
However, the presence of an error in the RNA-DNA hybrid
could destabilize the TEC, causing more frequent back-
tracks. A simple model capturing this has backtracking rate
k,, if an error is within M nucleotides from the 3/ RNA end,
and k,, otherwise (k, < k). This can be approximated by
an effective backtracking rate kj = Mek,, + k,, giving rise
to an effective K* = k,/k;, = K/[e/e" + 1], where K =
k,/k, and €* = k;/(k,M). Furthermore, a reasonable as-
sumption is that the TEC rarely backtracks when no errors
are present, i.e., K >> 1. Parameter €” is an intrinsic error
scale: When €/€* < 1 the high K* regime is obtained,
whereas for €/€* >> 1 the behavior of the model is shifted
towards the low K™ regime [16].

Let us now estimate the error fractions implied by our
model taking into account information from experimental
studies. The spontaneous error fraction € can be calcu-
lated from the free energy difference due to a misincorpo-
rated nucleotide (AG =~ 4-7kT), ie., €= e AG/KT ~
10731072 [1]. An estimate of the cleavage rate (for
bacterial RNAP in the presence of saturating concentra-
tions of accessory cleavage factors) based on biochemical
experiments is k. = 0.1-1 s~! [17]. Finally, single mole-
cule experiments have suggested that the TEC hops be-
tween backtracked states with rate ¢ =~ 1-10s~! [8].
Using estimates of the maximum error € = 0.01, slowest
cleavage rates k. =~ 0.1 s™! and fastest hopping rate ¢ =~
10 s~! we can obtain estimates of the lower bounds on the
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FIG. 3. Error fraction as a function of K (M = 2 case). Results

were obtained using stochastic simulations of the model for
N=4,e=102and @) = 1072, 107 %

“cleavage efficiencies” a; ~ 0.01 and a, ~ 1. These es-
timates yield error fractions comparable to the ones ob-
served in vivo, even for M = 1 but sufficiently low values
of K (see Fig. 2, bottom panel). Most importantly, however,
low error fractions can be obtained in our model even well
away from the limiting regime with small M (see Fig. 3 for
the M = 2 case).

In summary, we have presented a microscopic model of
a transcription editing mechanism, involving backtracking
and RNA cleavage. Our work extends the existing quali-
tative description of the process by linking the observed
error rates directly to microscopic rate parameters.
Backtracking by more than one nucleotide provides a
multiple-checking reaction, which probes the fidelity of
the last few nucleotides before the next polymerization
step. We find, in accordance with the KP scheme, that
the greater the delay introduced by this step, the greater
the accuracy of the process [2]. Consistent with this pic-
ture, the minimum error fraction is obtained in the limit
where backtracking and cleavage dynamics dominate the
process. In this limit, the error fraction scales exponentially
with the maximum backtracking distance M.

Recent experiments have provided support for at least
two mechanisms of transcriptional error correction
[4,8,18,19]. The first one involves a fidelity checkpoint
during the nucleotide addition cycle [20], whereas the
second involves backtracking of the RNAP and RNA
cleavage. Our model suggests experiments that would
provide the quantitative details required to discriminate
between these mechanisms and elucidate their relative
roles in transcriptional proofreading.

A particular prediction of our model is the strong de-
pendence of transcriptional fidelity on backtracking rates.
For example, guanine-cytosine-rich domains that lead to
lower backtracking rates (due to the increased stability of
the RNA-DNA hybrid) [21] should reduce the efficiency of
error correction. More importantly, single molecule ma-
nipulation techniques can be used to vary backtracking
rates in a controlled manner and validate our model. In
particular, applying a load is expected to strongly affect

nucleolytic proofreading since the TEC moves a distance
~M&x (where 6x =3.4 A) during the backtracking
phase. In contrast, minor effects are expected for proof-
reading mechanisms along the polymerization pathway,
since they should only involve small movements (<K x)
of the enzyme. Finally, experimental studies have already
revealed that specific mutations in the sequence of RNAP
can have a profound effect on transcriptional fidelity [22].
By precisely studying the effects of the mutations on back-
tracking rates, single molecule experiments with such mu-
tant RNAPs can be used to assess whether nucleolytic
proofreading can compensate for such deficiencies.
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