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Abstract
Gene expression constitutes a vital life process through which pieces of genetic in-

formation stored in the nucleotide sequence of DNA are transformed into functional

molecules, namely proteins and RNA chains. These moleculesand the intricate network

of interactions among them are the driving force behind mostcellular processes, including

gene expression itself. Also, of particular importance is the regulation of gene expression.

By modulating the levels of proteins they produce, cells manage to synchronise their in-

ternal workings and adapt to various environmental conditions. Moreover, in this manner

cells manage to coordinate their genetically prescribed behaviour when present in popula-

tions, such as a developing embryo or a bacterial colony. This thesis presents a theoretical

study of gene expression within the context of different organisational levels from the

molecular to the cell population level.

On the single molecule level special emphasis is given on thedynamics of the RNA

polymerase, the enzyme that carries out the transcription of DNA into RNA. Recent single

molecule experiments have shed light on the dynamical behaviour of this molecule as it

transcribes DNA. Of particular importance is the direct observation of transient pauses

in the process of transcription, induced by the he backward translocation of the enzyme

along the DNA template, a phenomenon dubbedbacktracking. Motivated by this finding

and the implications transcriptional pausing has for the regulation of DNA transcription,

our work aims at providing a quantitative characterisationof backtracking and the effect

of such pauses on the temporal dynamics of the process. Our results indicate that the

lifetime of such pauses should obey a wide distribution and can have dramatic effects on

the temporal statistics of the transcription process.

A particularly interesting function of backtracking is transcriptional error correction.

Indeed, RNAP does not copy the genetic information accurately; thermal fluctuations

introduce errors to the process that must be corrected on thefly. A proposed mechanism

of transcriptional error correction involves backtracking of the RNA polymerase and the

subsequent cleavage of the the erroneous RNA segment. Basedon the picture of DNA

transcription provided by single molecule experiments we propose a putative model of this

editing process. Our work offers a quantitative picture of transcriptional error correction,

predicting the error rate in terms of microscopic rates parameters and allowing one to

assess the role of backtracking in transcriptional fidelity. Furthermore, our model puts the

specific mechanism of error correction into context by linking it to kinetic proofreading,

a general principle of biological accuracy.

On a different level, the microscopic dynamics of the DNA transcription ought to have

direct implications regarding fluctuations in the numbers of RNA species observed within
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the cell. These fluctuations have on their turn far-reachingimplications regarding cell fate,

behaviour and function. To study the effect transcriptional pauses have on the statistics of

RNA production we propose an integrated model of DNA transcription. A key element of

our model is that several RNAP molecules can transcribe DNA at the same time, moving

in tandem on the template. Our results indicate that transcriptional pauses and exclusive

interactions between the RNAP molecules, lead to bursts of RNA production and therefore

make the process appear more random. Interestingly such pattern of mRNA production

has been observed experimentally and hence our model provides a possible explanations

of the phenomenon. It also demonstrates how interactions between molecules can affect

behaviour at cellular level by introducing fluctuations in the process of gene expression.

At an even higher level, one should appreciate the fact that cells rarely exist in iso-

lation. At this level of description we are interested in howintra-cellular fluctuations of

molecular species affect the behaviour of populations of cells. In particular, motivated

by the complex social behaviour observed in certain bacterial species, we propose anin-

silico paradigm of bacterial communication. In a nutshell, the circuit enables cells to

communicate and choose between two antagonistic social behaviours. We find that ow-

ing to intra-cellular fluctuations the population can existin two states: for low values

of intra-cellular coupling the population appears mixed (disordered), with approximately

one half of the cells adopting each behaviour. As the coupling is increased the population

a consensus state starts to appear. We study the transition between the two regimes of be-

haviour and find that intra-cellular fluctuations as well as the size of the population affect

the steepness of this transition.
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Chapter 1

Introduction

This thesis presents a theoretical study ofgene expression, the vital cellular process

through which genetic information is transformed into cellfunction and structure. The

stochastic nature of the process poses as a unifying theme inour work. Indeed, it has

long been appreciated that within the cellular environmentstochasticity and noise ought

to play an important role [122]. In particular, thermal noise constitutes a major player

at the molecular level; driving the motion of bio-moleculesand the interactions between

them. At a higher organisational level, these interactionsgive rise to cellular processes,

such as the one of gene expression. However, due to the stochastic and discrete nature of

molecular interactions, cellular processes are endowed with a certain degree of variability.

For example, genetically identical cells, under the same environmental conditions can dis-

play wide variations in growth rates and physiology [86, 102]; and in general all cellular

function and behaviour is subject to probability laws rather than being deterministic. The

scope of our work is two-fold: (i) to quantitatively understand certain microscopic aspects

of gene expression and characterise phenomena observed at the single-molecule level and

(ii) to understand from a bottom-up perspective how dynamics at single molecule level

give rise to fluctuations at the cellular level and in turn howthese fluctuations affect cel-

lular behaviour.

Cells constitute the building blocks of life [3]. Their essence lies in DNA, the molecule

that stores thegenetic information. During the life-time of a cell, pieces of DNA are con-

stantly transformed into functional molecules, namely proteins and RNA chains, through

a process known asgene expression. These molecular species participate in the various

10



Chapter 1 Introduction

structural entities of the cell, drive the various catalytic reactions – including those that

are necessary for gene expression – and in general their interactions allow for structure

and function to emerge at higher organisational levels. Notsurprisingly, in the last century

most scientific efforts of understanding life had been in terms of cataloging and charac-

terising (functionally and structurally) these molecules– an approach termedreduction-

ism. More recently, advancements in experimental techniques have allowed for a more

comprehensive molecular picture to emerge. In particular,the advent of single molecule

manipulation techniques [70] has enabled the study of bio-molecules with unprecedented

spatial and temporal resolution and has provided a dynamical characterisation of the pro-

cesses underpinning life at the molecular level.

Part of our work considers the single molecule dynamics of the RNA polymerase

(RNAP) – a key player in the process of gene expression. RNAP is the molecule that car-

ries out DNA transcription, copying genetic information from DNA into RNA molecules.

RNA transcripts are subsequently used as templates for protein synthesis and in many

cases participate actively in other cellular processes. Owing to its essential role, RNAP

has been the subject of extensive study and scientific endeavours leading to the discovery

and characterisation of RNAP have rewarded researchers with prestigious Nobel prises.

More recently, RNAP has also been put under the the scrutiny of single-molecule ma-

nipulation techniques [63]. These studies revealed, for example, how RNAP molecules

harness thermal fluctuations to drive their motion along theDNA [1]. They also reported

frequent pauses during the process of transcription [47, 64, 124]. Such transcriptional

pauses had been a well known phenomenon for quite some time and their implications re-

garding the regulation of the process well appreciated [58,119]. However, single molecule

studies provided for the first time a close look at how some of these pauses are induced. In

particular, they reported that during some pauses the RNAP translocates backward along

the DNA template, a phenomenon dubbedbacktracking. Motivated by these findings and

the biological implications transcriptional pausing could have for DNA transcription, our

work aims at providing a quantitative characterisation of backtracking. Our results indi-

cate that the lifetime of backtracking pauses should obey a wide distribution and can have

dramatic effects on the temporal statistics of the transcription process.

Backtracking has also been implicated with transcriptional error correction [3]. In-

deed, RNAP does not copy the genetic information accurately. Thermal fluctuations driv-

ing the motion of the RNAP along the DNA also introduce errorsto the process. These

errors must be corrected on the fly to allow for functional RNAs and proteins to be pro-

duced [3]. One proposed mechanisms of transcriptional error correction involves a tran-

sient pause during which the RNAP steps back along the DNA to allow cleavage of the
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erroneous RNA segment [3,58]. However key questions still remain open [30]. How does

the RNAP know where to cleave? What fidelity levels are accomplished through such a

mechanism? Based on the picture of DNA transcription provided by single-molecule

experiments we propose a putative model of this editing process. Our model offers a

quantitative picture of transcriptional error correctionthat allows one to assess the role of

backtracking in providing the necessary levels of transcriptional fidelity. Furthermore, our

model puts the specific mechanism of error correction into context by linking it tokinetic

proofreading[68,101], a general principle regarding accuracy in biological processes.

Transcriptional pauses, however, can also have implications that are perhaps better

appreciated at a higher level of organisation. Inside cells, bio-molecules are constantly

interacting with each other. It is this inherently complex network of interactions that gives

rise to interesting behaviour not seen in inanimate physical systems. Here, one custom-

arily thinks in terms of modules instead of individual molecules [62]. These modules,

similar to engineering disciplines, correspond to small groups of interacting components

that give rise to quasi-independent functions such as gene expression, signal transduction

and cell division, to name a few. The study of life this level of organisation provides a

complementary picture to that of reductionism and has lately has lately come to be known

asmolecular systems biology[75]. At this level, one is particularly interested in the role

of gene expression noise and how fluctuations in the levels ofmolecular species affect the

functions and behaviour of the cell [83].

Transcriptional pauses affect the temporal dynamics of transcription and hence ought

to have a direct effect on the fluctuations in the levels of RNAs and proteins within cells.

These fluctuations have on their turn far-reaching implications regarding cell fate, be-

haviour and functioning [25]. To study the effect transcriptional pauses have on the statis-

tics of RNA populations we propose and study an integrated model of DNA transcription.

A key element of our model is that several RNAP molecules can transcribe DNA at the

same time, moving in tandem on the template. Our results indicate that due to transcrip-

tional pauses and exclusive interactions between the RNAP molecules, RNA production

appears more random, occurring in bursts. Interestingly, this pattern of RNA production

has been experimentally observed [27, 55, 114]. Our model, therefore, provides a pos-

sible explanations of the phenomenon. It also demonstrateshow interactions between

molecules can affect behaviour at cellular level by introducing fluctuations in the process

of gene expression.

At an even higher level, one should appreciate the fact that cells rarely exist in iso-

lation. Higher organisms (eukaryotes) usually consist of a number of cells. These cells

constantly communicate and interact to achieve common goals. During development, for
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example, cells are constantly coordinated through chemical signals and differentiate to

achieve the genetically prescribed anatomy of the organisms. Unicellular organisms are

also capable of communication when present in populations or colonies. Communication

enables bacterial cells to coordinate their behaviour withrespect to environmental stim-

uli and renders them with astonishingly complex social behaviours [150]. Moreover, it

enables certain species to break the barriers of unicellularity and behave remarkably simi-

larly to multi-cellular organisms, cooperating for the survival of the whole rather than the

individual [131].

At this level of description we are interested in how sub-cellular fluctuations in the

levels of molecular species affect the behaviour of populations of cells. In particular, mo-

tivated by the complex social behaviour observed in certainbacterial species, we propose

an in-silico paradigm of bacterial communication. In a nutshell, the circuit enables cells

to communicate and choose between two antagonistic social behaviours. We find that

owing to sub-cellular fluctuations the population can existin two states: for low values

of intra-cellular coupling the population appears mixed (disordered), with approximately

one half of the cells adopting each behaviour. As the coupling is increased the population

a consensus state starts to appear. We study the transition between the two regimes and

find that sub-cellular fluctuations hinder the ability of cell to synchronise their behaviour.

The thesis is organised as follows. Chapters 2 and 3 present background material that

is regarded essential for the reading of the thesis. In particular, Chapter 2 introduces the

reader to some key concepts of molecular biology, focusing on the processes of gene ex-

pression and DNA transcription. Chapter 3 provides a brief introduction to the mathemat-

ical and computational tools used throughout the thesis. More specifically, the theory of

stochastic processes is reviewed, and the reader is introduced to the Master equation and

existing analytical and computational methods used for solving it. Chapter 4-7 present the

main results of the thesis. In Chapter 4 a stochastic model ofthe transcription elongation

dynamics is presented and used to study transcriptional pausing. In Chapter 5 we build

upon the model of the elongation dynamics focusing on a quantitative characterisation of

transcriptional error correction. Next (Chapter 6), an integrated model of DNA transcrip-

tion is presented and used to study the effect of transcriptional pauses on the statistics of

RNA production. Finally, Chapter 7 focuses on the cell population level: thein-silico

model of bacterial communication is presented and the effects of sub-cellular fluctuations

on the population wide dynamics are considered. The final chapter of the thesis (Chap-

ter 8) includes a summary of the different results presentedalong with some concluding

remarks.
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Chapter 2

Molecular Biology of Gene Expression

Gene expression is a vital life process through which genetic information is transformed

into functional and structural molecules. The aim of this Chapter is to give a brief

overview of the process: introducing the reader to the key steps and the major players

involved, and highlighting its vital role for cell behaviour and fate. Special attention is

given to DNA transcription – the first step of gene expression– and in particular to new

knowledge regarding this process gained from single molecule experiments. The new,

dynamical picture of DNA transcription revealed by such experiments facilitates, for the

first time, the development of quantitative and predictive models of the process. Such

models will be the subject of the following chapters.

2.1 Gene Expression

DNA (deoxyribonucleic acid) is the molecule of life; it contains thegenetic information

that defines every living organism. From the rod-like shape of Escherichia colicells

to complex human bodies and from bacterial chemotaxis to thesexual preferences of

peahens, characteristics or even behaviours have a basis onpieces of information stored

in the DNA, calledgenes. Species perpetuate and evolve as this genetic informationis

replicated and passed down to next generations. Moreover, during the lifetime of an

individual this information is constantly accessed and cell constituents are produced from

it, namely RNA (ribonucleic acid) and proteins. Complex interactions between these
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Figure 2.1: Simplified illustration of the nucleotide and DNA structure.

molecules and DNA give rise to the complex cellular behaviour we perceive.

In the remainder of this section we review some well established biological facts re-

garding how genetic information is stored, transformed andmanaged. This review is

meant to provide the biological context for the work presented in the following chapters.

2.1.1 DNA Structure

DNA is a polymer made up of simple units callednucleotides. Each of these small

monomers (∼ 3.4Å), consists of three parts (see Fig. 2.1):

1. a core sugar made up of five carbons (pentose)

2. abaseattached to the2-carbon of the sugar

3. a phosphate group attached to the5-carbon of the sugar

As the term deoxyribonucleic acid suggests, nucleotides that make up DNA carry the

sugar deoxyribose. Additionally, they can be loaded with four different bases:adenine

(A), cytocine(C) guanine(G) andthymine(T). Physically, genetic information is stored

in the sequence of these four types of nucleotides along the DNA. Two nucleotides are

linked together via bonds that are created between the phosphate group of the first one

and the3-carbon site of the second. Successive sugars on the DNA are,therefore, linked

via phosphodiester bonds between their5 and3-carbon sites. Owning to the asymmetric

structure of the nucleotides and the resulting asymmetry intheir bonding, DNA is en-

dowed with directionality. Customarily, the notation3′ and5′ is used to denote the ends

of a DNA chain with regard to which carbon site is free at the terminal nucleotide.

Within cells, DNA usually occurs in a stable, double-stranded form (dsDNA), which

when relaxed attains the familiar double helical structure[151]. The two strands run on
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different directions and are linked to each other through what is known ascomplementary

or Watson-Crick base-pairing. Bases come in two types (i) purines, consisting of A and

G and (ii) pyrimidines, consisting of C and T. Hydrogen bondscan be formed between

purines and pyrimidines: A binds to T via 2 hydrogen bonds andG binds to C via 3

hydrogen bonds (see Fig. 2.1). In other words, A is complementary to T as G is to C,

and DNA strands with complementary sequences can base-pairwith one another forming

dsDNA.

2.1.2 From DNA to RNA

The stability of DNA makes it ideal as a long-term storage device for genetic informa-

tion. However, for cells to function, pieces of the genetic information, customarily called

genes, 1 must beexpressed– transformed into protein molecules that carry out specialised

functions. DNA transcription refers to the initial step of gene expression, where genetic

information is read from DNA and copied onto RNA.

RNA molecules, similar to DNA, are a polymeric chains made upof four nucleotides.

Nucleotides that comprise RNA are, however, slightly different form those used in DNA.

The first difference lies in the sugar component, where ribose is is used instead of deoxyri-

bose (hence the name ribonucleic acid). Furthermore, RNA nucleotides use a slightly

different set of bases, namely A, C, G, U. Here U stands for thebaseuracil which is the

RNA analog of T (thymine).

An RNA chain that has been transcribed from a gene on the DNA isreferred to as mes-

senger RNA (mRNA). Messenger RNAs are subsequently used as templates for proteins

synthesis. At this step, dubbedtranslation, the genetic code conveyed by the mRNA is

finally decoded a protein – a sequence of amino acids.2 Proteins constitute the functional

and structural elements of cells, participating for example in various reactions as catalysts

(including DNA and RNA synthesis) or as building blocks in various cellular structures

(e.g., cytoskeleton).

Unlike mRNAs, certain classes of RNA molecules transcribedfrom the DNA are not

used as templates for protein synthesis (non-coding RNAs).Being single stranded, RNA

is a rather flexible molecule, which can fold in a sequence dependent manner forming

various distinctive structures (e.g., RNA hairpins) [3]. These structures can in some cases

recognise other molecules and participate in various catalytic reactions, hence enabling

RNA molecules to play various functional roles within the cell [152]. For example, tRNAs

and rRNA are two classes of functional RNA molecules that participate in translation

1see Ref. [110] for a detailed discussion on the definition of the gene.
2Every three nucleotides in the sequence of the mRNA map to an amino acid in the protein sequence.
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and are constantly expressed from the DNA. Finally, it has been appreciated that various

small RNA molecules can have regulatory functions, dictating which of the genes get to

be expressed [78–81].

The crucial role RNA molecules play in cell function places DNA transcription among

the most vital life processes. The microscopic dynamics of the process will be the sub-

ject of Chapter 4 and in Chapter 6 will shall focus on how thesedynamics affect RNA

production.

2.1.3 RNA Polymerase

Across all domains of life, transcription is carried out by specialised enzymes known as

RNA polymerases(RNAPs). These remarkable enzymes slide along the DNA producing

RNA. To do so, they possess an impressive repertoire of functions. Initially RNAP binds

to DNA and unwinds (melts) the double helix. Subsequently, the RNAP moves along the

DNA in a stepwise fashion, using the one strand of the DNA as a template for the produc-

tion of the RNA chain. At each step the RNAP selects the RNA nucleotide that base-pairs

with the corresponding DNA nucleotide, and catalyses the creation of the phosphodiester

bond linking the nucleotide to the rest of the RNA chain. An additional important feature

of the RNAP is its ability to catalyse the cleavage of the RNA chain (nucleolyticactivity).

As we will see in more detail in Chapter 5 such a function is crucial for the correction of

errors (misincorporated nucleotides) that occur due to thermal fluctuations.

2.1.4 Orchestrating the Code

To keep pace with environmental changes and synchronise itsinternal workings the cell

must be able to control the timing and levels of gene expression. This vital ability, referred

to asgene regulation, constitutes the very essence of cellular behaviour and fate.

In the 1960s seminal work by Jacob and Monod [93] showed that the process of DNA

transcription of specific genes can be turned on and off in response to environmental stim-

uli. More recently it has been appreciated that this mechanism, known astranscriptional

regulation, is just one of the many that cells use to the modulate the expression of their

genes. In fact within cells, proteins, RNA molecules and genes form complex networks of

interactions. As we will see in more detail in Chapter 7, suchnetworks produce non-trivial

genetic behaviour at the cellular level. In this manner, forexample, different cell types

of multicellular organisms can demonstrate different physiology and functionality despite

the fact that they all share the same genetic information. Similarly, bacteria can switch
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Figure 2.2: Simplified illustration of the transcription cycle.

between alternate genetic programs enabling them to survive under a wide spectrum of

environmental conditions.

2.2 Dissecting DNA Transcription

DNA transcription is a rather intricate process. Several key events are involved some

of which we are only beginning to understand in fine detail [119]. To this end single

molecule techniques as well as crystallography proved to bepowerfull tools, enabling the

study of transcription at an unprecedented scale [31, 33, 63]. In this section we briefly

review knowledge of the process that we have gained from suchexperimental studies.

Such knowledge facilitates and motivates the development of predictive models of tran-

scription, which will be the subject of subsequent chapters.

Like every life process, DNA transcription is subject to thelaws of evolution. With

this in mind, it should be noted that differences exist in theactual process between the

different domains of life [3]. However, the vital role of DNAtranscription for life is

exemplified by the conservation of the core process across all organisms. In this re-

spect, the overview presented below is meant to be as generalas possible, focusing on

our knowledge from bacterial transcription and pointing out similarities and differences

with eukaryotic transcription.

On a crude level, the process of DNA transcription can be broken up into three main

phases: (see Fig. 2.2)

1. initiation,

18



Chapter 2 Molecular Biology of Gene Expression

2. elongation,

3. termination.

In the initiation phase the RNAP recognises and binds to specific DNA sequences, which

mark the beginning of genes. During the subsequent phase of transcription elongation the

enzyme translocates along DNA using the3′ → 5′ strand as a template for the polymeri-

sation of the RNA chain. Finally, sites of transcriptional termination cause disassociation

of the RNAP from the DNA and the release of the transcript. In the remainder of this

section for the sake of completeness we consider all three stages. Special emphasis is

given, however, to the elongation phase that is the major subject of study in our work.

2.2.1 Initiation

The initiation phase involves loading of the RNAP onto the DNA template and the sub-

sequent transcription of the first few nucleotides [58]. To accomplish the former, the

RNAP is capable of binding to specific DNA sites, dubbedpromoters.3 Physically, within

cells, DNA occupies some3D volume most often in a highly condensed form. Hence,

finding the right place to bind is a non-trivial problem. It has been proposed, that the di-

mensionality of the promoter search problem is reduced by a combination of1D and3D

diffusion [145]; the RNAP scans for promoters by binding weakly and sliding along non-

specific DNA and occasionally jumps between distant DNA segments. Such a mechanism

explains the rapid promoter binding, which can be as fast as afew seconds [15].

The initial loading of the RNAP on the DNA is a major step of transcriptional regu-

lation across all domains of life. Specific proteins, known as transcription factors(TFs),

can assist or hinder the binding of RNAP on the DNA, either through direct interactions

with the enzyme or indirectly by exposing or hiding DNA promoter sequences [112]. In

this manner the expression of genes is tuned in response to various cues through the action

of one or more TFs. In addition “master” TFs, having under their control a large number

of genes, add higher layers of genetic regulation.

Once bound and properly positioned on the DNA, the RNAP unwinds the double

helix, uncovering the template strand to be transcribed. Then, the RNAP attempts to

initiate the processive elongation of the transcript through a process known asabortive

initiation [58]. During this stage the initial fragment of the DNA template is repeatedly

transcribed and cleaved, owing to the inability of the RNAP to efficiently disassociate

from the promoter and proceed further downstream [73]. The eventual clearance of the

3In eukaryotes promoter binding is mediated by accessory proteins [3]
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Figure 2.3: Schematic illustration of transcription elongation complex (TEC), consisting
of the RNA polymerase, a region of melted DNA (transcriptionbubble) and the RNA-
DNA hybrid. Polymerisation of the nascent RNA is catalysed by the active site of the
polymerase.

promoter results in the formation of a stable complex, know as transcription elongation

complex, and which signals the entrance into the elongationphase [58].

2.2.2 Elongation

During the elongation phase the RNAP slides along the DNA template polymerising the

transcript at a rate of30 − 100 nucleotides/sec. However, processive RNA synthesis is

often disrupted by specific DNA sequences; lesions or roadblocks present in the DNA;

nucleotide misincorporation events; and proteins that regulate RNAP function. Recently

in-vivoandin-vitro experimental studies have demonstrated the prevalence of these pauses

during DNA transcription and highlighted their possible biological significance [32, 47,

53,65,95,99,124,136,149].

Of particular relevance to our work is the dynamical pictureof the elongation phase

uncovered by single molecule manipulation experiments. These studies provided a more

thorough understanding of how the RNAP motors along the DNA producing the RNA

transcript [1, 65]. They also observed frequent pausing by the RNAP and shed light on

some of the mechanisms inducing these pauses [47, 99, 124]. Below we briefly review

some key experimental findings.

Transcription Elongation Complex

As the elongation phase is entered the RNAP forms a stable complex along with the DNA

and the RNA transcript. This complex is known as thetranscription elongation complex

(TEC). The TEC covers a region of approximately 25 DNA base pairs (bp), the central
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Figure 2.4: Schematic illustration of the pre- and post-translocation state of the tran-
scription elongation complex (TEC). The pre-translocation state corresponds to the state
immediately after the polymerisation of a nucleotide. The post-translocation state corre-
sponds to the state after the forward translocation of the TEC and before polymerisation
of the next nucleotide takes place.

part (12 bp) of which is “melted”,4 forming thetranscription bubble[76]. Within the

bubble a double stranded helix (approximately8 − 9 bp long) is formed between the

nascent RNA and the DNA template. This structure is know as the RNA-DNA hybrid.

The RNA-DNA hybrid as well as nonspecific interactions between the RNAP, the DNA

and the RNA are the major contributors to the stability of thecomplex [104]. Upstream of

the RNA-DNA hybrid, the RNA chain exits the complex through theRNA exit channelof

the polymerase. Free nucleotides (NTP) enter the complex through thesecondary channel

of the RNAP and are polymerised at the3′ end of the transcript by theactive siteof the

RNAP. A schematic illustration of the TEC is given in Fig. 2.3

Single Nucleotide Addition Cycle

The elongation of the RNA transcript is accomplished through thepolymeraseandhe-

licasecapabilities of the RNAP. The former corresponds to the ability of the RNAP to

catalyse the addition of nucleotides at the3′ end of the RNA chain, while the latter to the

ability of translocating along the DNA template while unwinding the double helix.

The two activities operate in tandem, so that each polymerisation event is closely fol-

lowed by the forwardtranslocationof the TEC by one nucleotide. Experimental evidence

suggests that the two steps are not energetically coupled,i.e., no energy exerted during

the polymerisation step is utilised for translocation [1].Rather, the TEC is behaving like a

thermal ratchet with forward translocation driven solely by diffusion. Schematically, the

4The two DNA stands are separated.
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Figure 2.5: Schematic illustration of class I and class II transcriptional pauses. Class I
pauses are induced by RNA hairpins that interact with the RNAP, while class II pauses
involve the backward translocation of TEC along the DNA, a phenomenon dubbed as
backtracking.

single nucleotide addition cycle is captured by

TECn,pre ⇄ TECn,post
+NTP−−−−→ TECn+1,pre+ PPi. (2.1)

where TECn,pre and TECn,postcorrespond to thepre- andpost-translocatedstate of the

complex; before and after the translocation step has been achieved and prior to the poly-

merisation of the next nucleotide (n→ n + 1) (see Fig. 2.4).

Transcriptional Pausing

Often, the processive polymerisation of the RNA transcriptis disrupted by pauses of the

RNAP, a phenomenon dubbedtranscriptional pausing. Still a hot subject of biological

research, transcriptional pausing has been endowed with a wide variety of roles. For ex-

ample, it has has been proposed that transcriptional pausing can assist the recruitment of

regulatory proteins to the TEC [100]; function as a precursor to transcriptional termina-

tion [94]; and play a role in transcriptional error correction [124,147].

Early biochemical assays with bacterial RNAP focused on theidentification of pauses

induced by specific DNA sequences. In particular, these studies revealed two distinct

classes of DNA signals that give rise to transcriptional pausing [7] (see Fig. 2.5). The

major difference between the two classes of signals lies in the mechanistic details through

which pausing is induced: Class I signals encode for RNA hairpins that interact with the

RNAP, blocking its movement, whereas class II signals result in repositioning of the active

site and the backward translocation of the RNAP on the DNA template (backtracking).

Additionally, it was shown that specific proteins (e.g., NusA, NusG and GreA) help the
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RNAP recover such pauses, pointing to a novel mode of transcriptional regulation [7].

A more thorough investigation of transcriptional pausing came with advancements in

single molecule manipulation techniques. Such studies with bacterial RNAP reported a

wide distribution of pauses, ranging from a few seconds up toseveral minutes [46,99,124].

In particular, Shaevitzet al. [124] directly observed that particularly long pauses (> 25

s) were induced by backtracking of the RNAP with a frequency of 1 pause/kbp. More

recently, backtracking and the wide temporal distributionof pauses were also observed

for the case of eukaryotic transcription [47].

Shorter pauses (1 − 6 s) were found to be insensitive to hindering or assisting loads

acting on the RNAP [99]. This observation suggested that thepauses did not involve

any translocation of TEC whatsoever. Rather, it was proposed that they form a separate

class of elemental pauses, termedubiquitous pauses[99]. Such pauses seem to occur

due to small conformational changes of the RNAP molecule, which are induced by DNA

sequences with specific characteristics [64].

RNA Polymerase Backtracking

Backtracking is a major player in transcriptional pausing [47, 124]. At each template

position, backtracking constitutes an alternative reaction pathway that is in kinetic com-

petition with polymerisation [58]. Entrance into this pathway is particularly favoured in

the presence of a weak RNA-DNA hybrid, such as in the case of a misincorporated nu-

cleotide [124] or when strong forces are exerted on the polymerase while it transcribes

the DNA [47,124].

During backtracking the RNAP freely diffuses back and forthalong the DNA tem-

plate [58]. In particular, the backward translocation of the RNAP causes the3′ end of

the transcript to break loose from the RNA-DNA hybrid and move out of the complex

(through the secondary channel) while the two DNA strands are rejoined. Similarly, at

the 5′ end of the transcription bubble dsDNA is re-opened and part of the RNA tran-

script is moved inside the complex (through the RNA-exit channel) where it becomes re-

hybridised with DNA. Once backtracked, the TEC can presumably slide back and forth

until it retains its polymerisation-competent state, withthe3′ end of the transcript posi-

tioned in the active site.

In general, during backtracking the TEC can move as far as8−9 nucleotides from the

transcriptional starting point. Moving past this point is thermodynamically unfavourable

since it would result in shortening of the RNA-DNA hybrid anddestabilisation of the

complex. Such extensive backtracks, however, are thought to be precluded mainly due to

structural elements (e.g., hairpins) of the transcript that interact with the TEC [58].
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2.2.3 Termination

Termination corresponds to the disassociation of the RNAP from the DNA and the release

of the RNA transcript. In bacterial transcription, termination is usually marked by specific

sequences, termedintrinsic terminators; they code for an RNA hairpin structure followed

a U-rich sequence. Such sequences destabilise the TEC and causes the transcript to be

released [146]. Regulated termination, mediated by specific proteins, is also widespread.

For example, theRhofactor binds to specific sites on the nascent RNA and slides along

it towards the TEC causing it to terminate transcription. Onthe contrary, theMfd fac-

tor does not recognise any particular sequence but directlyinteracts with paused TECs

causing them to collapse. This last case of regulated terminations exemplifies the role of

transcriptional pausing in regulating the process of transcription.

2.3 Summary

In this Chapter we presented a brief review of the biology that has motivated the work pre-

sented in the subsequent chapters. Some elements of molecular biology regarding how

genetic information is stored and expressed were presentedalong with a more detailed de-

scription of DNA transcription, the process through which the genetic information stored

in the DNA is copied in RNA.

Recent advancements in experimental techniques have enabled the study of transcrip-

tion at the single molecule level [47, 124, 147]. This unprecedented level of detail has

highlighted interesting phenomena, such as transcriptional pausing, with important bio-

logical implications for the regulation of the process and therefore the functionality of the

cell. Moreover, it facilitates the development quantitative models that can explain exist-

ing data and make quantitative predictions regarding the process. Such models will be the

main subject of the chapters to follow.
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Chapter 3

Theoretical Background

In this Chapter we give an overview of the mathematical and computational tools that will

be used throughout this thesis. In particular, it includes abrief introduction to probability

theory and stochastic processes. Our main aim is to enable the non-expert reader to un-

derstand key concepts that will be used in subsequent Chapters without being referred to

the vast literature. For the sake of brevity, rigorous derivations and technical details are

skipped and in this respect the material presented should beconsidered as a catalogue of

key concepts, facts and notations that will be used later on.

3.1 Elements of Probability Theory

In everyday life, we all have a rather intuitive understanding of what probability is: it

merely quantifies our expectations of how likely it is for a certain event to occur. Imagine,

for example, a not so serious gambler stepping into a casino in Monte Carlo and placing

all his money at a roulette table on18 red. Before the croupier spins the wheel, we

would expect that the odds of our friend winning are1/37. Our intuition is based on

the assumption (and trust in the casino owners) that all37 possible events are equally

likely. This simple example allows us to sketch how probability is formulated on solid

mathematical grounds. For more rigorous definition howeverthe reader is referred to any

advanced textbook on probability theory (e.g., see Refs. [44,106]).
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3.1.1 Basic Concepts and Notation

A central concept in probability theory is that of astochasticor random variableX.

Stochastic variables are used to describe real-world observations or the outcome of cer-

tain actions such as spinning the roulette wheel or throwinga die. They can also be

multidimensional objects, in which case they are conveniently thought of vectorsX, such

as the position vector of a small particle suspended in water(Brownian particle). De-

pending on the system at hand,X can attain certain values (or states)x that constitute a

set, customarily denoted byΩ and calledsample spaceor set of states. For example in the

case of a roulette consists of all possible outcomes, i.e.,0, 1R, 2B, . . . 36R. A function,

called thedistribution function, is then defined overΩ mapping to every subsetA of Ω

a real-valued number, representing the probability thatX attains a value withinA. To

satisfy our intuition that probability is non-negative andmust always sum to1 one would

have to impose certain restrictions on the choice of the distribution function.

WhenΩ consists of discrete values (states) the distribution function is

PX(x) = Prob(X = x), (3.1)

subject to the conditions
(i) PX(x) ≥ 0,

(ii)
∑

x

PX(x) = 1.

EstablishingΩ andPX is the key step for any practical application of probabilitytheory.

In every case, these are constructed based on prior knowledge and intuition as well as on

physical consideration of the specific problem at hand. In this sense, the terma priori

probabilitiesis often used forPX to stress the fact that in most casePX is just assumed

and therefore subject to experimental validation [141].

When the valuesx form a continuous range,PX(x) is used to denote theprobability

density function(PDF). Then the probabilityX attains a value betweenx andx + dt is

Prob(x ≤ X ≤ +dt) = PX(x)dx. (3.2)

One immediately sees that this probability goes to zero asdt → 0. Therefore, the prob-

ability thatX has exactly the valuex is zero. A way around this is to make use ofDirac

delta functiondefined as

δ(x) =

{

∞, x = 0

0, x 6= 0
(3.3)
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subject to the additional constrain

∫ +∞

−∞

δ(x)dx = 1. (3.4)

For example,PX(x) = δ(x − xa) defined over(−∞, +∞) states that the probability of

observing any value other thatxa is zero. In fact, one can use delta functions to rewrite any

discrete probability distributionΠN(n) in terms of a probability density functionPX(x).

In particular, one has
PX(x) =

∑

n

ΠN(n)δ(x− xn), (3.5)

where the discrete stochastic variableN is mapped into a a continuous one,X and the dis-

crete valuesn are mapped to set of pointsxn embedded in a continuous interval. Having

said that, in what follows we focus on continuous stochasticvariables.

3.1.2 Moments

Themean valueof a stochastic variableX is given by

〈X〉 =

∫

xPX(x)dx. (3.6)

More generally, one can define the average of any functionf(x) as

〈f(X)〉 =

∫

f(x)PX(x)dx. (3.7)

One is particularly interested in the quantities

µ′
m ≡ 〈Xm〉, (3.8a)

µ′
m ≡ 〈(X − µ1)

m〉 (3.8b)

which are called theraw andcentral momentsof the distribution respectively.

3.1.3 Other Important Functions

In addition to the PDFPX(x), a few other functions are also of key importance in prob-

ability theory. In particular, thecumulative distribution function(CDF), gives the total
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probability ofX attaining a value less than or equal tox, i.e.,

Prob(X ≤ x) = FX(x) =

∫ x

−∞

PX(x′)dx′ (3.9)

In fact, for real-valued stochastic variables, first the CDFis defined over the state space

and subsequently the PDF is obtained as the derivative of theCDF,

PX(x) = F ′
X(x). (3.10)

That is why the name probability function is often used (especially in the mathematical

literature) instead of CDF. However, since “probability function” has also been used for

the discrete version ofPX(x), we shall stick to the term CDF term to avoid confusion.

A closely related function is thesurvival function, SX(x), describing the probability

of the stochastic variableX to attain a value greater thanx. One readily obtains

SX(x) + FX(x) = 1⇒
F ′

X(x) = −S ′
X(x)⇒

PX(x) = −S ′
X(x), (3.11)

which relates the PDF of a stochastic variable to its survival function.

Thecharacteristic function(CF) is yet another alternative description to the PDF (see

[106]). The CF,GX(k), of real-valued stochastic variableX is defined as the Fourier

transform of the PDF:

GX(k) =

∫ +∞

−∞

eikxPX(x)dx = 〈eikX〉. (3.12)

GX(k) also allows us to illustrate the notion of amoment generating function(MGF). In

particular,GX(k) encodes all raw moments in the coefficients of its Taylor expansion in

k:

GX(k) =

∫ +∞

−∞

eikxPX(x)dx

=

∫ +∞

−∞

[

1 + ikx− (kx)2

2
+ . . .

]

PX(x)dx

= 1 + ikµ′
1 −

k2

2
µ′

2 + . . .

=

∞∑

m=0

(ik)m

m!
µ′

m.

(3.13)

Finally, alternative MGFs can be constructed, using for example〈esX〉,〈e−sX〉 and〈zX〉.
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These different formulations of the MGF offer certain advantages depending on the range

over whichX is defined [141].

3.1.4 Multivariate Distributions

As noted above, the notion of a random variable can also be generalised ton-dimensions

by regarding a vectorX consisting ofn componentsX1, X2 . . . , Xn. Here, we catalogue

some special density functions that are relevant to this case. For the sake of brevity we re-

strict ourselves to the two-dimensional case, noting that results can readily be generalised

to more dimensions.

Let X = (X1, X2) be a two component stochastic variable. The probability that X1

has a value betweenx1 andx1 +dx1 and thatX2 a value betweenx2 andx2 +dx2 is given

by:

PX(x1, x2)dx1dx2. (3.14)

PX(x1, x2) denotes the PDF of the composite variableX or thejoint probability density

functionof the two variablesX1 andX2 and is subject to the normalisation condition:

∫

PX(x1, y2)dx1dx2 = 1. (3.15)

The marginal probability density functionsare concerned with each stochastic variable

regardless the value of the other one. For example, the marginal PDF ofX1 can be

obtained from the joint PDF as

PX1(x1) =

∫

PX(x1, x2)dx2 (3.16)

One can now consider the distribution of one variable given that the other variable has

some fixed value . For example, theconditional probability density functionof X1 condi-

tional onX2 having the valuex2 is denoted by

PX1|X2(x1|x2). (3.17)

According toBayes’ rulethe conditional PDF can be written as

PX1|X2(x1|x2) =
PX1,X2(x1, x2)

PX2(x2)
(3.18)

A final point is that of statistical independence. Two stochastic variables are said to

be statistically independent if their joint PDF can be factorised into the product of the
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marginal ones, viz.

PX1,X2(x1, x2) = PX1(x1)PX2(x2). (3.19)

Consequently, the conditional PDF becomes

PX1|X2
(x1|x2) = PX1(x1). (3.20)

3.2 Stochastic Processes

Our lucky friend steps out of the casino with his winnings, and is challenged by a stranger

into a game involving tossing a coin. He is promised that eachtime he tosses a head he

will win an amount of money which he will lose in case of a tail.Feeling lucky he accepts.

The capital of our friend constitutes astochastic process, that is, at any time his capital

will depend on the number of tosses he has made so far. In particular, his capital after

each toss depends on his capital prior to the toss and the random outcome of the toss. The

process is a trulyMarkovianone.

3.2.1 Basic Concepts and Definitions

Following Ref. [141], in mathematical terms a stochastic processesY can be described

by as time-dependent stochastic variable. Therefore, one can assume a hierarchy of joint

PDFs,

Pn(y1, t1; . . . ; yn, tn), (3.21)

thatY attains the valuesy1, y2 . . . yn at timest1, t2, . . . , tn, respectively. The definition of

Pn should be independent of the ordering of times and moreover one must require that

∫

P1(y1, t1)dy1 = 1, (3.22a)
∫

Pn(y1, t1; . . . ; yn, tn)dyn = Pn(y1, t1; . . . ; yn−1, tn−1). (3.22b)

Under these conditions the infinite hierarchy ofPn (n = 1, 2, . . . ) completely specifies

the stochastic process [141]. In particular it enables one to compute averages as

〈Y (t1) · · ·Y (tn)〉 =

∫

y1 . . . ynPn(y1, t1; . . . ; yn, tn)dy1 . . . dyn. (3.23)
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Moreover, one can define the conditional PDFs in terms ofPn

P (y1, t1; . . . ; ym; tm|y′
1, t

′
1; . . . ; y

′
l; t

′
l) =

Pm+l(y1, t1; . . . ; ym; tm|y′
1, t

′
1; . . . ; y

′
l; t

′
l)

Pl(y
′
1, t

′
1; . . . ; y

′
l; t

′
l)

,

(3.24)

that is the PDF ofY at timesti, (i = 1 . . .m) having fixed the values ofY at time

t′i, (i = 1 . . . l).

A key concept in that of astationary stochastic process. These are processes whose

statistical properties do not depend on time. One can express this mathematically, by

allowing the hierarchy ofPn to be unaffected by an arbitrary shift in timeτ :

Pn(y1, t1; . . . ; yn, tn) = Pn(y1, t1 + τ ; . . . ; yn, tn + τ). (3.25)

One can see that such a condition is met ifP1 is independent of time and all otherPn

depend solely on time differencest2 − t1, t3 − t2, etc.

The simplest case of a stochastic process, occurs when the value of Y at different

times are statistically independent to each other. Take, for example, the process defined

by successively tossing of a die. The result of each toss is independent of any previous

one. In the case of independence,P1 suffice to describe the stochastic process since the

hierarchyPn can be expressed as the product

Pn(y1, t1; . . . ; yn, tn) =

n∏

i=1

P1(y1, t1). (3.26)

Moreover, ifP1 is also independent of time (as in the case of tossing a die) the process is

stationary. The next simplest case is known as aMarkov process, in which the future is

determined solely by the present.

3.2.2 Markov Processes

A Markov process, named after the Russian mathematician Andrei Andreyevich Markov,

is a stochastic process in which the state at any time dependssolely on the state in the

immediate past and not on previous history. Mathematicallythe Markov property of a

stochastic processY is formulated in terms of conditional PDFs, stating that forany set

of successive time points(t1 < t2 < · · · < tn) one has

P (yn, tn|y1, tt; . . . ; yn−1, tn−1) = P (yn, tn|yn−1, tn−1). (3.27)
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This property enables one to fully describe the evolution ofthe Markov process using the

one-step conditional PDF and the PDF for the initial observation at t1. In particular, the

hierarchyPn can be expressed as:

Pn(y1, t1; y2, t2; . . . ; yn−1, tn−1; yn, tn) =

= Pn−1(y1, t1; y2, t2; . . . ; yn−1, tn−1)P (yn, tn|y1, t1; y2, t2; . . . ; yn−1, tn−1)

= Pn−1(y1, t1; y2, t2; . . . ; yn−1, tn−1)P (yn, tn|yn−1, tn−1)

= . . .

= P1(y1, t1)P (y2, t2|y1, t1)P (y3, t3|y2, t2) · · ·P (yn, tn|yn−1, tn−1).
(3.28)

provided the time orderingt1 < t2 < t3 < · · · < tn−1 < tn.

3.2.3 Brownian Motion

The capital of our friend after successive tosses of the coinconstitutes atruly Marko-

vian process. For many physical systems, however, the Markovian property is merely

an assumption made possible by the coarseness of our observations or description of the

system [141]. To illustrate this point one usually appeals to the seminal paradigm of

Brownian motion [50, 141]. This is the first application of a Markovian stochastic pro-

cess for describing a physical phenomenon, in particular the motion of a light particle

immersed in water. The motion of a Brownian particle is mainly driven by collisions

with surrounding water molecules. The large number of watermolecules and collisions

occurring is prohibitive for a complete description of the system, however it allow for a

statistical treatment. In particular, Einstein showed that the position of a Brownian par-

ticle at successive time pointst0, t0 + τ, t0 + 2τ, . . . could accurately be captured by a

Markovian process. However, this is merely allowed by the coarseness of our observa-

tions Choosing a sufficiently large time intervalτ ensures a large number of collisions so

that the net displacement of the particle will appear uncorrelated at different times. On

this coarse-grained time-scale the process can be regardedas Markovian. Similarly, for

most practical applications one seeks an appropriate time-scaleτ , such that changes of

the system during[t, t + τ ] depend on the state of the system att but not on any prior

times.

3.2.4 The Master Equation

The Markovian property (or assumption) enables the characterisation of a stochastic pro-

cess by means of a differential equation, most commonly known as theMaster equation.
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Below we present a sketch for deriving the Master equation stressing some crucial points

and the implicit assumptions made when one directly writes down the Master equation for

a system. For a more detailed treatment, however, the readeris referred to the literature

(e.g., see Refs. [50,141]).

From the Markovian property follows that

P3(y1, t1; y2, t2; y3, t3) = P1(y1, t1)P (y2, t2|y1, t1)P (y3, t3|y2, t2). (3.29)

Integrating overy2 and dividing withP (y1, t1) one obtains

P (y3, t3|y1, t1) =

∫

P (y2, t2|y1, t1)P (y3, t3|y2, t2)dy2. (3.30)

Equation 3.30 is called theChapman-Kolmogorov equationand imposes a functional re-

lationship between the conditional probabilitiesP (yi, ti|yj, tj). The Master equation is a

reformulation of the Chapman-Kolmogorov equation obtained in the limit of vanishingly

small time differences,t3 − t2 = τ → 0.

To proceed any further, one has to write

lim
∆t→0

P (x, t + ∆t|y, t)

∆t
= W (x|y), (3.31)

W (x|y) assumes that the probability per unit time for a transition to occur between from

statex to statey depends solely on theses states and is independent of time. This enables

one to writeP (y3, t2 + τ |y2, t2) as

P (y3, t2 + τ |y2, t2) =

[

1− τ

∫

W (y|y2)dy

]

δ(y3 − y2) + τW (y3|y2) +O(τ 2). (3.32)

Here, the first term in the above is the probability that no transition occurs duringτ .

Substituting this in Eq. (3.30) yields:

P (y3, t2 + τ |y1, t1) = P (y3, t2|y1, t1)− τ

∫

W (y|y3)dxP (y3, t2|y1, t1)

+τ

∫

W (y3|y2)P (y2, t2|y1, t1)dx2 +O(τ 2)
(3.33)

Finally, dividing byτ and lettingτ → 0 one obtains the Master equation describing the
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stochastic process

dP (y3, t2|y1, t1)

dt2
=

∫

{W (y3|y2)P (y2, t2|y1, t1)−W (y2|y3)P (y3, t2|y1, t1)} dy2.

(3.34)

The Master equation is usually written in the simpler and more readable form,

dP (y, t)

dt
=

∫

{W (y|y′)P (y′, t)−W (y′|y)P (y, t)}dy′. (3.35)

In this form, however, it should be stressed thatP (y, t) does not stand for the marginal

PDF P1(y, t) but for the one-step conditional PDF,i.e., P (y, t) ≡ P (y, t|y′, t′) for any

choice ofy′ andt′. To obtainP1(y, t) one uses the initial conditionP1(y
′, 0) = δ(y′− y0)

to obtain

P1(y, t) =

∫

P (y, t|y′, 0)P1(y
′, 0)dy′

=

∫

P (y, t|y′, 0)δ(y′ − y0)

= P (y, t|y0, 0)

(3.36)

The Master equation can also be formulated for discrete processes, provided that one

replaces the integral with a sum and interpretsP (x) as probability rather than probability

density,i.e.,

dP (x, t)

dt
=

∑

x

{W (x|x′)P (x′, t)−W (x′|x)P (x, t)} . (3.37)

The Master equation has a rather simple intuitive meaning. It describes the change

in probability (or probability density) for observing any given state as the net outcome

of gain and loss terms. In particular, the first term in Eq. (3.35) describes gain in the

probability of observingy due to transitionsy′ → y, while the second term captures the

loss due to transitionsy → y′.

One further remark is perhaps important at this point. In obtaining the Master equation

we required the condition given by Eq. (3.31) to hold.W (x|y) has units reciprocal to time

and can intuitively be thought as the rate at which transitionsy → x occur. As the notation

implies,W (x|y) does not depend on time and therefore implies that the process occurs

homogeneously in time. This has important implications forthe temporal dynamics of

the stochastic process which remain implicit when one writes down the Master equation.

To illustrate this point we consider a transition to statey that occurs at timet0. The
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probability per unit time for any transition to occur from that point onwards is given by

α(y) =

∫

W (x|y)dx. (3.38)

Therefore,w(t), the PDF for no transition to have occurred up to timet0 + t obeys

w(t + ∆t) = (1− α∆t)w(t) ⇒
dw(t)

dt
= −αw(t) ⇒

w(t) = e−αt,

(3.39)

where at the last state we made use of the initial conditionw(0) = 1. One readily sees

thatw(t) is just the survival function of the probability density,f(t), for the time to the

next transition event, hence

f(t) = −w′(t) = αe−αt. (3.40)

It is clear the time needed for a transition to occur is exponentially distributed with mean

1/α. Transitions, therefore, proceed without memory and the process appear homoge-

neous in time. We shall return to this point when discussing methods for simulating

continuous-time Markov processes.

3.3 One Step Processes

A special case of stochastic processes obeying the Markov property are the so calledone-

stepor birth-and-deathprocesses. Let us denote such a stochastic process byN(t). At

any timeN(t) attains values in the range of integersn and the only permissible transitions

are
n → n + 1 (birth),

n → n− 1 (death)

These transitions occur with probabilities given by

P (n + 1, t + dt|n, t) = gndt, (3.41a)

P (n− 1, t + dt|n, t) = rndt. (3.41b)

Therefore, the total transition probability per unit time can be expressed concisely as

W (n′|n) = rnδn′,n−1 + gnδn′,n+1 (3.42)
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where we have introduced theKronecker’s delta(the discrete analog of the Dirac delta

function) defined as

δi,j =

{

0 , i 6= j

1 , i = j
(3.43)

SubstitutingW (n′|n) in Eq. (3.37) one obtains the Master equation describing theone-

step process:
dP (n, t)

dt
= rn+1P (n + 1, t) + gn−1P (n− 1, t)

−[gn + rn]P (n, t),
(3.44)

subject to the initial conditionP (n, 0) = δn,n0. The first two terms on the right-hand side

capture the gain in probabilityP (n, t) due to transitionsn + 1 → n andn − 1 → n,

respectively. Similarly the last term describes losses dueto transitionsn → n + 1 and

n→ n− 1.

At this point a few remarks concerning the application of onestep processes to prac-

tical problems are perhaps essential. The Master equation given by Eq. 3.44 was defined

over the range of all integers. However, in most cases, one-step processes with half-

infinite (n = 0, 1, . . . ) or finite (n = 0, 1, . . . , N) range suffice to capture the stochastic

dynamics of real-world systems. Moreover, no specific form for gn andrn has been as-

sumed; these rates can indeed be described by any collectionof non-negative numbers. It

is usually the case, however, that for most real-world applicationsgn arern are given as

some analytic function of variablen, i.e.,

rn = r(n), (3.45a)

gn = g(n). (3.45b)

In the simplest caser(n) andr(n) attain constant values for alln. This gives rise to,

perhaps, the most well known examples of an one-step processes, thenearest-neighbour

random walks. It turn out that in this case the Master equation can be solved completely,

and an analytic form ofP (n, t) can be obtained [116]. Ifg(n) and g(n) are at most

linear inn one has alinear one-step process, for which the Master equation can also be

solved [141]. Finally, the termnonlinear one-step processis reserved for processes with

non-linearg(n) and/orr(n). Not surprisingly, time dependent solutions of the Master

equation for nonlinear processes are in most cases not available.

Most often, one-step processes are used to describe the stochastic dynamics of sys-

tems consisting of a number of entities. Specific examples could be the growth of a

bacterial colony, where individual bacteria duplicate anddie with certain probabilities

36



Chapter 3 Theoretical Background

per unit time, or the fluctuating levels of a specific protein within a cell, due to the ran-

dom production and degradation of individual molecules. Insuch cases, a linear form

of g(n) and/orr(n) merely states that individuals are independent of each other. This

allows one to treat the random behaviour of each individual in isolation, as a separate

stochastic process, and superimpose them to obtain the dynamics at the population level.

Hence, the superposition principle (true for any linear system) provides the intuition for

why one should expect linear one-step processes to be solvable. It also makes clear how

nonlinearities introduce difficulties. In particular, non-linear terms ing(n), r(n) capture

interactions between individuals that destroy independence and make the random history

of each individual dependent on those of others. Intuitively, the system can no longer be

broken up into independent components.

For most nonlinear one-step processes, therefore, one may either resort to approxima-

tion schemes and numerical methods for obtaining time dependent results or alternatively

focus on the stationary distributionPs(n) ≡ P (n, t → ∞). These topics will be subject

of the following sections.

3.3.1 Boundary Conditions

When modelling the stochastic behaviour of a system, one often has to take into account

certain physical restrictions concerning the range of values the systems’ variables are

allowed to take on and the behaviour of the system at the boundaries of these ranges. Take

for example a population of bacteria dividing and dying or the arrivals and departures in

a bank queue. Obviously, both the size of the population and the size of the queue ought

to be positive at all times. However, a key difference existsbetween the two systems.

When all bacteria have died the population becomes extinct.No individual can be born

out of thin air and therefore the process is trapped in this statead infinitum. On the other

hand, an empty queue does in no way preclude the possibility of someone walking in and

requesting to be served.

The above examples illustrate the two types ofboundary conditions(BCs) one comes

across when dealing with one step processes. The first type ofboundary, referred to as

absorbing, traps the process, whereas the second, referred to asreflecting, precludes the

process from exiting a certain range of values. In most cases, boundaries are introduced

naturally by the formulation ofg(n) andr(n). For example, assuming that Eq. (3.44) is

defined in the rangen = 0, 1 . . . , one can see that a reflecting boundary is introduced at
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n = 0 if r(0) = 0. Thus, the Master equation takes the form:

Ṗ (n, t) = r(n + 1)P (n + 1, t) + g(n− 1)P (n− 1, t)− [g(n) + r(n)]P (n, t),

(3.46)

for n = 1, 2, . . . , and

Ṗ (0, t) = r(1)P (1, t)− g(0)P (0, t). (3.47)

Clearly, even if the processes was defined forn = −∞· · · + ∞, it would have been

trapped in the region of positive integers (provided of course that it starts at this region)

since the transition down ton = −1 is not allowed.

Similarly, g(0) = 0 imposes an absorbing boundary. Conventionally, the absorbing

boundary is defined atn = 1 although staten = 0 is actually the absorbing state [116].

In this case the Master equation takes the form:

Ṗ (n, t) = r(n + 1)P (n + 1, t) + g(n− 1)P (n− 1, t)− [g(n) + r(n)]P (n, t),

(3.48)

for n = 2, 3, . . . and

Ṗ (1, t) = r(2)P (2, t)− [r(1) + g(1)]P (0, t) (3.49a)

Ṗ (0, t) = r(1)P (1, t). (3.49b)

The absence of negative terms on the right-hand side of the last equation implies that

staten = 0 acts as a probability sink. Once the process reaches that state it remains there.

In general, natural boundaries are introduced at all pointsn = nb where the form of

the analytic functionsg, r dictateg(nb) = 0 or r(nb) = 0. However, in certain cases

(as we shall see when discussing the first passage propertiesof one step processes) one

is interested in erecting artificial boundaries so that the behaviour of the process can be

studied within a given interval. Of course this can be accomplished by arbitrarily requiring

certain transition probabilities to be zero. However, to preserve the the analytic form

of g(n) and r(n) one usually resorts to a mathematically more convenient method of

formulating boundary conditions. Consider the one step process described by Eq. (3.47):

r(0) = 0 does not hold, nevertheless, one is interested in confining the process in the

semi-infinite range (n = 0, 1, . . . ). By imposing the condition

r(0)P (0, t) = g(−1)P (−1, t), (3.50)
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one readily sees that forn = 0 Eq. (3.46) is retrieved. Therefore a reflecting boundary

has been implemented by introducing thefictitiousstaten = −1 and requiring the above

condition.

Similarly one can impose an absorbing boundary atn = 0, not by settingg(0) = 0

but by treatingn = 0 as afictitiousstate with the property

P (0, t) = 0 (3.51)

The Master equation now defined forn = 1, 2, . . . reads

Ṗ (n, t) = r(n + 1)P (n + 1, t) + g(n− 1)P (n− 1, t)− [g(n) + r(n)]P (n, t).

(3.52)

In this case it should be stressed that the total probabilityis not conserved
∑∞

n=1 P (n, t).

Actually, probability is accumulated atn = 0, although for our convenience this is ignored

by settingP (0, t) = 0.

The two equivalent formulations of reflecting and absorbingBCs, presented above for

a boundary atn = 0, can be used for setting a boundary at any point. In particular, for

a Master equation defined on the interval[a, b] the BCs are summarised in the following

table

Boundary Reflecting Absorbing

a r(a)P (a, t) = g(a− 1)P (a− 1, t) P (a− 1, t) = 0

r(a) = 0 g(a− 1) = 0

b g(b)P (b, t) = r(b + 1)P (b + 1, t) P (b + 1, t) = 0

g(b) = 0 r(a + 1) = 0

3.3.2 Stationary Solutions

In the long time limit all solutions of the Master equation [see Eq 3.44],P (n, t) will

tend to thestationary solution, Ps(n). In other words ast → ∞ the process becomes a

stationary one and its statistical properties become time-independent. This is always the

case for one-step processes with a finite state space, but canalso be true for processes

defined on an infinite range under certain conditions [141]

To obtain the stationary solution of a one-step process one has to set the derivative on

the left hand-side of Eq. (3.44) equal to zero. After some rearrangement one obtains

0 = {g(n + 1)Ps(n + 1)− r(n)Ps(n)}+ {r(n− 1)Ps(n− 1)− g(n)Ps(n)} .
(3.53)
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The above is usually written in the form

0 = J(n + 1)− J(n), (3.54)

where we have defined

J(n) ≡ r(n)Ps(n)− g(n− 1)Ps(n− 1). (3.55)

The quantityJ(n) describes the net probability flux between any two adjacent statesn

andn− 1.

To proceed any further one should also take under consideration the range ofn for

which the process is defined. Let us first consider the case of aprocess bounded within

some interval which, without loss of generality, we take to ben = 0 . . . N . The reflecting

boundary at the origin allows us to writeJ(0) = 0 and subsequently this gives rise to

J(n) = 0 ⇒
r(n)Ps(n) = g(n− 1)Ps(n− 1),

(3.56)

for all n. To the physicist the above condition is reminiscent of thedetailed balance

condition met in equilibrium statistical mechanics [50, 141]. However, here, it merely

states that for one step processes at the stationary state the net probability flow between

any two states is zero. By repeatedly applying the above relationship, one ends up with

Ps(n) =
1

N
∏n

k=1

g(k − 1)

r(k)
. (3.57)

where1/N = Ps(0). This prefactor can be obtained from the normalisation condition
∑N

n=0 Ps(n) = 1 as follows

N∑

n=0

Ps(n) = 1⇒

Ps(0) +
N∑

n=1

Ps(n) = 1⇒

1

N

(

1 +

N∑

n=1

n∏

k=1

g(k − 1)

r(k)

)

= 1⇒

N =

(

1 +
N∑

n=1

n∏

k=1

g(k − 1)

r(k)

)

.

(3.58)

Equation (3.57) enables us to calculate the stationary solution of the Master equation even
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in the case of nonlinearg(n) andr(n). However, special care is needed if the form ofr(n)

allows for zeros within the rangen = 0, 1, . . . , N (see unsolved exercise in Ref. [141],

p.141). The existence of pointsn∗
i , i = 1, 2, . . . , k with the propertyg(n∗

i ) = 0 imposes a

sequence of reflecting boundaries and in the long time limit the process will be confined

within the regionn∗
k, . . . , N . The stationary distribution in this case will be given by

Ps(n) =







0, n < n∗
k

1

N , n = n∗
k

1

N
∏n

k=n∗
k+1

g(k − 1)

r(k)
, n∗

k < n ≤ N

. (3.59)

subject to normalisation.

The above results also apply for the case of a half-infinite range (n = 0, 1, 2 . . . ), if

one replacesN with ∞. However, attention must be paid as one must make sure that

the normalisation factorN in Eq. (3.57) does indeed converge (see unsolved exercise in

Ref. [141] p.142). A sufficient though not necessary condition of convergence is obtained

by applying the ratio test on the infinite sum
∑∞

n=1

∏n
k=1

g(k − 1)

r(k)
appearing inN . One

obtains

limn→∞
g(n− 1)

r(n)
< 1. (3.60)

The above condition makes intuitive sense as it does not allow probability escape to∞.

3.3.3 System Size Expansion

As stated above, time dependent solutions of the Master equation [Eq. (3.44)] are not

generally possible in the case of nonlinearg(n) andr(n). One can, however, make use of

approximation techniques provided that the system obeys certain conditions.

One-step processes capture the the stochastic dynamics of systems where only tran-

sitions of size±1 are possible. In many cases such transitions are small compared to a

characteristic quantityΩ describing the size of the system. The precise prescriptionof

Ω will depend on the nature of the system considered and can forexample be the total

size of a bacterial population (assumed constant) or the volume of a reaction cube which

is proportional to the total number of molecules present. The requirementΩ ≫ 1 sets a

clear distinction between two scales: a microscopic one described byn (extensive vari-

able) and a macroscopic one described byx = n/Ω (intensive variable). This separation

of scales allows one to perform a systematic expansion of theMaster equation in terms

of the small parameterΩ−1/2. Below we sketch the key steps involved in performing the
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expansion [141].

One starts by noting that the transition probabilitiesg(n) andr(n) can be written in

the form:

g(n) = f(Ω)

[

g0

(n

Ω

)

+
1

Ω
g1

(n

Ω

)

+
1

Ω2
g2

(n

Ω

)

+ . . .

]

, (3.61a)

r(n) = f(Ω)

[

r0

(n

Ω

)

+
1

Ω
r1

(n

Ω

)

+
1

Ω2
r2

(n

Ω

)

+ . . .

]

, (3.61b)

known as theircanonicalform [141]. In this form the transition probabilities become

functions of the intensive variablex = n/Ω and depend onΩ only through the positive

prefactorf(Ω). Of course, the existence of the canonical form is not guaranteed for any

arbitrary function. Nonetheless it turns out that such a form can be written down for most

of the cases one meets in practice [141]. Next one has to postulate that

n

Ω
= φ(t) +

ξ√
Ω

. (3.62)

This is a key step, since the aboveanstantzimposes certain conditions on the time evolu-

tion of the stochastic process. In particular, Eq. (3.62) states that at all times our stochastic

observable can be decomposed into two parts: a deterministic one,Ωφ(t), and a fluctuat-

ing one,Ω1/2ξ. One can visualise,P (n, t) therefore as a peak centered aroundΩφ(t) and

of width proportional toΩ1/2. As we shall see, theΩ−1/2 scaling of the fluctuating term

allows a purely deterministic description of the system asΩ→∞; for finite system sizes

it give rise to Gaussian noise around the deterministic value as a first approximation.

The transformation given by Eq. (3.62) yields

P (n, t) = Π(ξ, t), (3.63a)

∂Π

∂t
=

∂P

∂t
+ Ω1/2 dφ

dt

∂Π

∂ξ
. (3.63b)

Using Eq. 3.63 the above as well as the canonical forms ofg(n) andr(n) one can trans-
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form Eq. (3.44) into

∂Π(ξ, t)

∂t
− Ω1/2 dφ

dt

∂Π

∂ξ
=

f(Ω)

[

r0

(

φ(t) +
ξ + Ω−1/2

Ω1/2

)

+
1

Ω
r1

(

φ(t) +
ξ + Ω−1/2

Ω1/2

)

+ . . .

]

Π(ξ + Ω−1/2, t)

+f(Ω)

[

g0

(

φ(t) +
ξ − Ω−1/2

Ω1/2

)

+
1

Ω
g1

(

φ(t) +
ξ − Ω−1/2

Ω1/2

)

+ . . .

]

Π(ξ − Ω−1/2, t)

−f(Ω)

[

r0

(

φ(t) +
ξ

Ω1/2

)

+
1

Ω
r1

(

φ(t) +
ξ

Ω1/2

)

+ . . .

]

Π(ξ, t)

−f(Ω)

[

g0

(

φ(t) +
ξ

Ω1/2

)

+
1

Ω
g1

(

φ(t) +
ξ

Ω1/2

)

+ . . .

]

Π(ξ, t).

(3.64)

Finally, by Taylor expanding one has (writing up to first order terms)

∂Π(ξ, t)

∂τ
− Ω1/2 dφ

dτ

∂Π

∂ξ
= Ω1/2 [r0(φ(t))− g0(φ(t))]

∂Π

∂ξ

+ [r′0(φ(t))− g′
0(φ(t))]

∂(ξΠ)

∂ξ

+
1

2
[r′0(φ(t)) + g′

0(φ(t))]
∂2Π

∂ξ2
+O(Ω−1/2).

(3.65)

whereτ = f(Ω)t.

So farφ has been an arbitrary function of time. At this point howeverone has to

chooseφ so as to make theΩ1/2 terms vanish. In particular, one has

dφ

dτ
= g0(φ)− r0(φ), (3.66)

which gives themacroscopicbehaviour of the system. Along with the initial condition

φ(0) = x0 = n0/Ω it completely describes the system in the limitΩ → ∞ and provides

the macroscopic part of the solutions in the case of finite yetlargeΩ. It should be noted

that for nonlinearg(n) andr(n) Eq. (3.66) is an nonlinear ordinary differential equation.

There is no guarantee that it can be solved explicitly not even for its stationary solutions

φs, i.e., roots of the equation

g0(φs)− r0(φs) = 0. (3.67)
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Nevertheless, in the case the Master equation describes some physical system, one expects

that Eq. 3.66 possesses at least one stable stationary solution, which the time-dependent

solutionsφ(t) will approach ast→∞. For the sake of brevity, in the rest we just assume

that such a stable stationary solutionφs exist and is unique. In particular, we require the

following stability conditions to hold

g0(φs)− r0(φs) = 0 for a uniqueφs, (3.68a)

g′
0(φ)− r′0(φ) < 0 for all φ(t). (3.68b)

Terms of orderΩ0 give rise to

∂Π(ξ, t)

∂t′
= − [g′

0(φ)− r′0(φ)]
∂(ξΠ)

∂ξ
+

1

2
[r′0(φ) + g′

0(φ)]
∂2Π

∂ξ2
(3.69)

describing the time evolution of the fluctuating partξ. This is a linear Fokker-Planck

equation describing aOrnstein-Uhlenbeckprocess [118], that is a process involving dif-

fusion (second term) and linear drift (first term). The solution to any linear Fokker-Planck

equation is be found to be Gaussian, so the first moments〈ξ〉 and〈ξ〉 suffice to describe

the process. By multiplying Eq. (3.69) byξ andξ2 and integrating one obtains

d〈ξ〉
dτ

= (g′
0(φ)− r′0(φ))〈ξ〉 (3.70a)

d〈ξ2〉
dτ

= 2(g′
0(φ)− r′0(φ))〈ξ2〉+ [r′0(φ) + g′

0(φ)], (3.70b)

subject to the initial conditions〈ξ(0)〉 = 〈ξ2(0)〉 = 0 From the equations above one can

directly see why the stability conditiong′
0(φ) − r′0(φ) < 0 is required. It prevents the

moments from growing without bounds and therefore allows for a stationary distribution.

From the above one readily finds that in the stationary state

〈ξ〉s = 0, (3.71a)

〈ξ2〉s =
r′0(φ) + g′

0(φs)

2[g′
0(φ)− r′0(φs)]

, (3.71b)

whereφs is the stable steady state of Eq. (3.66). Finally, the stationary autocorrelation

function is given by [141]

〈ξ(0)ξ(τ)〉s = 〈ξ2〉s exp [−(g′
0(φ)− r′0(φs))τ ] (3.72)
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The results of the system size expansion presented above, namely Equations (3.66),

(3.70a) and (3.70b) give to a first approximation the pictureof the time dependent and

stationary properties of the process for finiteΩ. At this point the reader should be referred

to reference [141] for a more detailed discussion of the system size expansion as well

as appropriate discussion of specific situations where the stability conditions given by

Eq. 3.68 are violated. The reader should also be referred to Chapter 7 of this thesis where

such a case is treated.

3.3.4 Numerical Methods

Numerical methods constitute an alternative approach for dealing with Master equations

where time-dependent solutions are not available. Perhapsthe simplest and most widely

method used is theGillespie algorithm(or kinetic Monte Carlo method), originally pro-

posed by Dan Gillespie for simulating systems of chemical reactions [52]. It generates

stochastic trajectories of the system that are in exact agreement with the formulation of

the Master equation. In this respect, it should be considered an exact method, that is one

that does not introduce any errors as for example Euler’s method for numerically solving

differential equations.

The algorithm is summarised as follows [52]

1. Initialisation step:

(a) Initialise system variablesn→ n0.

(b) Initialise timet→ t0.

2. MonteCarlo step:

(a) For each possible transitioni (1, . . . , k) calculate the quantity

ri =

∑j=i
j=1 aj

∑k
j=1 aj

, (3.73)

whereai is the probability per unit time transitioni has to occur.

(b) Generate a uniformly random numberp in the interval[0, 1]

(c) Choose the first transitioni for which the following condition holds

p ≤ ri. (3.74)

(d) Save the change this transition yields to the system variablesns.
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(e) Generate a random numberts obeying an exponential distribution with rate

parameter

λ =
∑N

i=1 a1. (3.75)

3. Update step:

(a) Update system variablesn→ n + ns.

(b) Update timet→ t + ts.

4. Iteration step: If the time limit has been exceed or an absorbing boundary has

been reached terminate otherwise go to step2.

The Monte Carlo step is the key step of the algorithm. The ideabehind it is a simple

one, complying with our formulation of the Master equation.In particular, at each step

one chooses asingle transition to occur with probability that is proportional to the its

propensity functionai. Furthermore, the time need for a transition to occur isexponen-

tially distributedwith mean1/
∑

i ai. These two considerations are identical to the ones

we made when deriving the Master equation. Therefore one expects that the Gillespie

algorithm yields trajectories that are statistically correct as far as the formulation of the

Master equation is concerned.

Each run of the Gillespie algorithm provides one sample trajectory from the infinitely

many implied by the Master equation. The method, however, does not assume a constant

time-step and therefore to obtain time dependent properties of P (n, t) one must proceed

with caution. In particular, one has to run the algorithm a considerable number of times

so that adequate statistics are gathered for any time interval [t, t + δt] asδt → 0. For

stationary solutions, one usually runs the algorithm allowing the system to reach its steady

state. This can be ensured, by using results obtained form the system size expansion

presented above. For example, initialising the system at steady state and allowing the

algorithm to run for times much longer than the autocorrelation time will suffice. One can

therefore run the algorithm repeatedly and calculate the properties ofPs(n) with arbitrary

precision. Alternatively, one long run of the algorithm canbe performed. By sampling

this single trajectory at times much longer that the autocorrelation time one can obtain

the stationary properties of the process. This is ensured bythe ergodicity of stationary

processes, that is, time averaging is equivalent to ensemble averaging. Summarising,

when using the Gillespie algorithm one must pay special attention to errors introduced

during sampling. Such errors are unavoidable since one cannot sample the whole space

of possible trajectories. One is pacified, however, by the fact that the Gillespie algorithm

is an otherwise exact method.
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Several other numerical methods for solving the Master equation exist in the litera-

ture. Some of these methods can be considered as extensions to the Gillespie algorithm:

they allow for more efficient simulations when the system size is large or consists of many

variables, whilst remaining exact. Others, compromise exactness by making certain as-

sumptions which allow for faster computation times.

3.4 First Passage Processes

Our friend is engaged in his game with the stranger. He has already lost half of his initial

capital and he starts thinking whether he should withdraw. After some more thought he

decides to continue playing until he regains the amount he has lost or loose everything.

Will he break even? For how many more tosses will he have to wait until he breaks even

or looses everything? Such questions illustrate the concepts ofa first-passage probability

andfirst-passage times, that is, the probability and time for a stochastic processes to reach

some state.

Consider the Master equation for a general one-step processgiven in Eq. (3.44) de-

fined for in some intervaln = L, . . . , R. One wants to know the timeTR,m it takes

for the system to reach siten = R for the first time having started from some arbitrary

point within the intervalm (R < m < L). Of course,TR,m is not a fixed quantity but a

stochastic variable obeying the PDFfTR,m
(t), i.e.,

Prob(t < TR,m < t + dt) = fTR,m
(t)dt. (3.76)

Writing down the Master Equation with a reflecting boundary at L and an absorbing

one atR one has

Ṗ (L, t) = r(L + 1)P (L + 1, t)− g(L)P (n, t), (3.77a)

Ṗ (n, t) = r(n + 1)P (n + 1, t) + g(n− 1)P (n− 1, t)

−[g(n) + r(n)]P (n, t), (3.77b)

Ṗ (R− 1, t) = g(R− 2)P (R− 2, t)

−[g(R− 1) + r(R− 1)]P (R− 1, t), (3.77c)

subject to the initial conditionP (n, 0) = δn,m. BoundaryR acts as a probability sink,
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therefore, the probabilityS(t) that the system at timet has not yet reachedR is given by

S(t) =

R−1∑

n=L

P (n, t). (3.78)

S(t) is merely the survival PDF ofTR,m linked tofTR,m
(t) via the relationship

fR,m(t) = − d

dt
S(t) = −

R−1∑

n=L

d

dt
P (n, t) = g(R− 1)P (R− 1, t) (3.79)

where the last step was performed by summing the Master equation over all permissible

n.

Similar considerations allow us to calculate the PDFs ofTR,m and TL,m, the time

needed for the process to reach either stateR of L. One has to write the Master equation

with two absorbing boundaries present atL andR and obtains

fTR,m
(t) = g(R− 1)P (R− 1, t) (3.80a)

fTL,m
(t) = g(R− 1)P (L− 1, t) (3.80b)

The probabilities of arriving first to either absorbing boundary are given by

πR,m =

∫ ∞

0

fTR,m
(t)dt, (3.81a)

πL,m =

∫ ∞

0

fTL,m
(t)dt. (3.81b)

These are referred to in the literature of first passage processes assplitting probabili-

ties[116] and must of course obey

πR,m + πL,m = 1. (3.82)

Finally using the above one also can obtain theconditional mean first passage times,

〈TR,m〉 and〈TL,m〉 as well as theunconditional mean first passage time(to either bound-

ary) 〈Tm〉:

〈TR,m〉 =
1

πR,m

∫ ∞

0

tfTR,m
(t)dt, (3.83a)

〈TL,m〉 =
1

πL,m

∫ ∞

0

tfTL,m
(t)dt. (3.83b)

〈Tm〉 = τR,m + τL,m (3.83c)
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3.4.1 Solving the Master Equation in a Bounded Interval

Therefore, for both cases presented above (reflecting/absorbing and absorbing/absorbing

boundaries) the problem of obtaining the PDFs of the first passage times boils down to

solving the Master equation in the interval[L, R]. In particular, in the case of reflect-

ing/absorbing boundaries on seeks an expression forP (R − 1, t) while in the absorb-

ing/absorbing case one seeks expressions for bothP (R− 1, t) andP (L− 1, t).

A straightforward yet laborious technique for solving the Master equation in a bounded

interval involves using some integral transform ofP (n, t). Most often theLaplace trans-

form is chosen:

P̃ (n, s) = L{P (n, t)} =

∫ ∞

0

e−stP (n, s)dt. (3.84)

Under this transformation, timet is mapped into a new variables having units of1/[time].

Therefore, thes-domain is customarily interpreted as the frequency domain. Nothing is

lost under such a transformation and convert back to the timedomain using theinverse

Laplace transform

P (n, t) = L−1{P̃ (n, s)} =
1

2πi
lim

T→∞

∫ γ+iT

γ−iT

estP̃ (n, s)ds. (3.85)

wherei2 = −1 andγ some real number appropriately chosen (greater than the thereal

part of all singularities ofP̃ (n, s)). P̃ (n, s) is particularly useful due to the following

property

L
{

dP (n, t)

dt

}

= sP̃ (n, s)− P (n, 0). (3.86)

Using this property one can transform the Master equation into an algebraic set of differ-

ence equations. For example in the case of a reflecting boundary atL and an absorbing at

R applying and the Laplace transform on the Master equation yields:

sP̃ (L, s) = r(L + 1)P̃ (L + 1, s)− P̃P (n, s), (3.87a)

sP̃ (n, s)− δn,m = r(n + 1)P̃ (n + 1, s) + g(n− 1)P̃ (n− 1, s)

−[g(n) + r(n)]P̃ (n, s), (3.87b)

sP̃ (R− 1, s) = g(R− 2)P̃ (R− 2, s)− [g(R) + r(R)]P̃ (R, s), (3.87c)

where he have also made use of the initial conditionP (n, 0) = δn,m The above system

consists ofL − R equations withL− R unknowns (viz.P̃ (n, t), n = L, . . . , R − 1) and
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can therefore be solved. Subsequently,fTR,m
(t) can be obtained as

fTR,m
(t) = g(R− 1)P (R− 1, t) = g(R− 1)L−1{P̃ (R − 1, s)} (3.88)

Moreover, all integer moments offTR,m
can be obtained without performing the inverse

Laplace transform. This is accomplished by noticing thatf̃TR,m
(s) = g(R − 1)P̃ (R −

1, s) is the moment generating function offTR,m
(t) containing all integer moments as

coefficients of it power expansion ins:

f̃R,m(s) = g(R− 1)P̃ (R− 1, s)

=

∫ ∞

0

g(R− 1)e−stP (R− 1, t)dt

=

∫ ∞

0

g(R− 1)

[

1− st +
(st)2

2
− . . .

]

P (R− 1, t)dt

=

∫ ∞

0

[

fR,m(t)− stfTR,m
(t) +

(st)2

2
fTR,m

(t)− . . .

]

dt

= 1− s〈TR,m〉+
(s)2

2
〈T 2

R,m〉 − . . .

(3.89)

The above described method can be easily be extended for the case two absorbing bound-

aries are present atL andR [116].

3.4.2 The Backward Master Equation

A particularly useful tool for solving first passage problems is thebackwardor adjoint

Master equation that describes the time evolution of a process backward in time. The mas-

ter equation defined by Eq. (3.44) describes the time evolution ofP (n, t) ≡ P (n, t|n0, t0)

the probability density of finding the system at staten at timet given that it was initially

prepared at statem. In this respect,P (n, t|m, t0) is to be considered as a function of(n, t)

while holding(m, t0) fixed. One can, alternatively also regardP (n, t|m, t0), as a function

of (m, t0) holding(n, t) fixed, in this case it describes the probability of the initial value

m given the system is observed at staten at timet. It turns out that the time evolution

of P (n, t|m, t0) obeys an equation similar to the Master equation, dubbed as backward

Master equation

dP (n, t|m, t0)

dt0
= gmP (n, t|m + 1, t0) + rmP (n, t|m− 1, t0)

−[gm + rm]P (n, t|m, t0).
(3.90)
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Also by noting that for homogeneous processes

P (n, t|m, t0) = P (n, t− t0|m, 0) = P (n, t′|m, 0) (3.91)

one can rewrite the backward Master equation as

−dP (n, t′|m, 0)

dt′
= gmP (n, t′|m + 1, 0) + rmP (n, t′|m− 1, 0)

−[gm + rm]P (n, t′|m, 0).
(3.92)

Let us assume in the rest that the process is confined in the intervaln = L, . . . , R. with

an reflecting boundary atL (implemented in the backward equation by settingP (n, t′|L−
1, 0) = P (n, t′|L, 0) ) and an absorbing boundary atR (P (n, t′|R + 1, 0)) 1. We once

again focus on the stochastic quantityTR,m, the first passage time toR given the process

started at statem, which obeys the PDFfTR,m
(t). The survival probabilityS(t, m) that

the process has not yet reached the absorbing boundary is

S(t, m) =
R−1∑

n=L

P (n, t′|m, 0). (3.93)

where we explicitly stated that the survival probability isalso a function of the initial state

m. The mean first passage time toR is given by

T (m) ≡ 〈TR,m〉
=

∫∞

0
tfTR,m

(t)

= −
∫∞

0
t∂tS(t, m)dt

= −
∫∞

0
t∂tS(t, m)dt

= −
∫∞

0
S(t, m)dt.

(3.94)

where in the last term we have used integration by parts and the fact thatG(∞, 0) = 0

andG(0, m) = 1. Summing Eq. (3.92) overn = L, . . . , R − 1 yields an equation for

S(t, m). In particular, one has

−dS(t′, m)

dt′
= gmS(t, m + 1) + rmS(t, m− 1)− [gm + rm]S(t, m). (3.95)

Now, by integrating over time and making use of the relationship T (m) =
∫∞

0
S(t, m)dt

1Note the introduction of the fictitious stateL− 1 andR + 1
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obtained above yields an equation for the mean first passage time

−dS(t′, m)

dt′
= gmT (m + 1) + rmT (m− 1)− [gm + rm]T (m) ⇒

−[G(∞, m)−G(0, m)] = gmT (m + 1) + rmT (m− 1)− [gm + rm]T (m) ⇒
1 = gmT (m + 1) + rmT (m− 1)− [gm + rm]T (m).

(3.96)

subject to the boundary conditionsT (R − 1) = T (R) andT (L + 1) = 0 The above set

of difference equations can easily be solved forT (m) yielding [116]

T (m) =
R∑

i=m

A(i)
i∑

k=L

1

gkA(k)
. (3.97)

where

A(n) =

n∏

i=L+1

ri

gi
. (3.98)

The above result can be used to obtain the mean first passage times to any pointR for

an one-step process defined on the range of positive integers(0, 1, . . . ). The result can be

written in terms of the stationary solutionPs(n) (see unsolved exercise in [141], p.3201)

as

T (m) =
R∑

i=m

A(i)
i∑

k=L

1

gkA(k)

=

R∑

i=m

g0Ps(0)

giPs(i)

i∑

k=0

Ps(k)

g0Ps(0)

=
R∑

i=m

1

giPs(i)

i∑

k=0

Ps(k).

(3.99)

Finally, multiplying Eq. 3.95 byt′ and integrating overt′ one obtains

−2T (m) = gmT2 (m + 1) + rmT2 (m− 1)− (gm + rm) T2 (m)

= gm (T2 (m + 1)− T2 (m)) + rm (T2 (m− 1)− T2 (m)) ,
(3.100)

This equation relates the mean first passage timeT (m) to the second momentT2(m) ≡
〈T 2

R,m〉. Having already obtained an expression forT (m) the above equation can be

solved recursively yielding a result forT2(m). Similarly, successive moments of the first

passage probability can be obtained from equation Eq. 3.95 by multiplying with higher

powers oft′.
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3.5 Summary

In this Chapter, we presented a brief introduction to the theory of stochastic processes.

The aim was to provide the general reader with sufficient background knowledge to un-

derstand and appreciate the work presented in subsequent chapters. As the acquainted

reader might have noticed, in certain occasions the material presented lacks mathematical

rigour and generality and should therefore not be considered as sufficient or complete.

The literature, however, on stochastic processes is vast including many comprehensive

and coherent introductory books and manuscripts. Refs. [50,116,141] are just a few, par-

ticularly tailored for interdisciplinary audiences, and upon which the presentation of this

Chapter was based.
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Chapter 4

Single Molecule Level: The Dynamics of

a Transcribing RNA Polymerase

As described in Chapter 2, transcriptional pauses disrupt the processive synthesis of RNA

and can play a profound role in regulating gene expression. Aparticular class of pauses

is induced by backtracking, a phenomenon that involves the backward translocation of

the TEC along the DNA template. In this Chapter, motivated byrecent single molecule

studies, we present a stochastic model of the transcriptionelongation phase incorporating

backtracking dynamics. Using the model we study the statistics of elongation pauses

induced by RNAP backtracking, as well as the effect of these pauses on the statistics of

the elongation phase. Our results indicate that pauses due to RNAP backtracking obey

a heavy tailed distribution and can significantly alter the statistics of the total elongation

times.

4.1 Introduction

DNA Transcription constitutes a vital life process throughwhich genetic information

stored in DNA is expressed into RNA. The ability of cells to carry out their genetically

prescribed function and behaviour crucially relies on the regulation of this process. For

example, it has long been know that transcription initiation poses a key step of regulation;

enabling cells to modulate the levels of gene expression andhence synchronise their inter-
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nal workings or adapt to environmental changes [93,112]. More recently, the regulation of

the transcription elongation phase has also become widely appreciated. Regulation at this

level is often mediated by transcriptional pauses, which allow specific proteins to interact

with poised RNAP molecules and exert their regulatory function [119]. The implication

of transcriptional pausing with regard to gene regulation has attracted lately much interest

in the dynamics of the elongation phase [32,53,63].

A more thorough understanding of DNA transcription has become possible with the

in-vitro study of the process using single molecule manipulation techniques [63]. In par-

ticular, the usage of optical traps has enabled one to track the motion of the transcribing

RNAP molecule along the DNA template with near base-pair resolution. (see Fig. 4.1(A)),

shedding light on the dynamics of transcription. Such single molecule studies have, for

example, showed how RNAP molecules harness thermal noise totranslocate along the

DNA template, achieving polymerisation rates up to25 nt/sec [1]. More importantly,

they have revealed that RNAP does not transcribe the template at a constant rate. Rather

transcription is frequently interrupted by pauses obeyinga wide temporal distribution and

lasting up to several minutes (see Fig. 4.1(B-C)). In many cases, pausing is induced by the

backward motion of the RNAP on the DNA template, a phenomenondubbedbacktrack-

ing [58]. During backtracking the RNAP looses grip of the3′ end of the RNA, and the

transcription elongation complex (TEC) slides backwards along the DNA. The process

from there on is diffusional; that is the RNAP is kicked back and forth along the DNA

template by thermal noise until the active site reattains its initial position and polymerisa-

tion is resumed (see Fig. 4.1(D)). Although backtracking has only been observedin-vitro,

there is ample evidence concerning its biological significance. In particular, the existence

of DNA sequences that promote backtracking indicate that this phenomenon can also play

a significant role in the regulation of the elongation phase [7]. Furthermore, backtracking

has been directly implicated in transcriptional error correction [124,136], suggesting that

backtracking is also relevant forin-vivo transcription.

In this Chapter we aim to quantitatively understand backtracking and its effect on the

temporal dynamics of the elongation phase. The remainder ofthis Chapter is organised

as follows. We first present a stochastic model of the transcription elongation phase. The

model incorporates polymerisation and depolymerisation of the nascent RNA as well as

backtracking. Unlike previous modelling attempts [10, 60,71, 137], we use the model to

provide a quantitative characterisation of transcriptional pausing based on the underlying

mechanistic details of backtracking. Our results show thatpause lifetimes should obey a

wide distribution, and are consistent with experimental findings [47,65,92,99,124]. Next,

we study how pauses affect the statistic of the total elongation time. Our results indicate
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Figure 4.1: Experimental findings from single molecule studies of DNA transcription
demonstrating the prevalence of pauses. (A) Schematic illustration of an optical method
used for in single molecule studies of DNA transcription. Two beads are held in separate
optical traps. A single RNAP molecule is bound to one of the beads while the other one
is bound to the downstream end of the DNA. As the RNAP transcribed the DNA, the
beads are pulled together. The motion of the RNAP along the DNA template is registered
as a displacement of the right bead, which is held by a weaker optical trap. Reprinted
by permission from Macmillan Publishers Ltd: E. A. Abbondanzieri et al., Nature,438
(2005), copyright (2005). (B) Representative trace of the RNAP position along the DNA
template. Transcription is interrupted by frequent pauseslasting from∼ 1 (right inset,
arrows) to several seconds. Reprinted by permission from Elsevier: K. C. Neumanet al.,
Cell, 115 (2003) Copyright(2003). (C) Distribution of pause lifetimes. Transcriptional
pausing occurs on multiple timescales. Here, the distribution is fitted by a sum of two
exponentials (solid line) with lifetimes of1.20.1 s and6.00.4. Reprinted by permission
from Elsevier: K. C. Neumanet al., Cell, 115(2003) Copyright(2003). (D) Backtracking
motion of the RNAP molecule along the DNA template. Horizontal lines denote0.34 nm
spacing (nucleotide length-scale).
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(b)

5’ 3’

(a) (c)

last transcribed nucleotide(n)
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3’

(n,m=−3)

(n,m=0)

5’ 3’

RNA−DNA hybrid

(n,m=1)

active site(n−m)

RNA polymerase

Figure 4.2: Schematic illustration of the transcription elongation complex (TEC) in dif-
ferent translocation states: (a) Post-translocated stateat (n, m = 1), (b) pre-translocated
state(n, m = 0) and (c) backtracked state(n, m = −3). The position of the last tran-
scribed nucleotide is denoted byn. The physical position of the TEC along the DNA
template is marked bym, the position of the active site relative ton.

that backtracking pauses can dramatically affect the temporal statistics of the process,

giving rise to a heavy-tailed distribution of elongation times.

4.2 A Stochastic Model of the Elongation Phase

In this section we present a stochastic model of the elongation dynamics. The model,

motivated by recent experimental findings, incorporates polymerisation and depolymeri-

sation of the nascent RNA as well as backtracking of the RNAP.The basic notation is

first introduced and polymerisation/depolymerisation andbacktracking dynamics are ex-

plained in detail. Finally, key assumptions underlying ourmodelling attempt are discussed

and justified.

4.2.1 Basic Notation

A simple model that captures the essence of the elongation phase can be described in

terms of two discrete variablesn andm. Variablen denotes the size of the nascent RNA

or equivalently the position of the last transcribed DNA nucleotide. We should note that

these two definitions will be used interchangeably throughout the Chapter depending on

whether emphasis is wished to be given to the position of the TEC along the DNA or

to the length of the RNA. Since our model does not capture transcription initiation,n
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5’ 3’ 5’ 3’

(n,m=0) (n,m=1) (n+1,m=0)

Polymerisation/DepolymerisationDiffusional Translocation

Energy

Energy5’ 3’

Figure 4.3: Schematic illustration of the state transitions leading to polymerisation and
depolymerisation.

is not defined relative to the actual transcriptional starting point (TSP). Rather,n = 0

corresponds to the position at which the elongation phase isentered by the formation of

the stable TEC usually a few (8− 10) nucleotides downstream of the TSP [see Chapter 2

(2.2)]. Finally, n = N denotes the end of the transcriptional unit, where the process

terminates. The second variablem denotes the position of the polymerase’s active site

relative ton and ranges from−n to 1. In particular, statesm = 0 andm = 1 correspond

to the pre-translocated and post-translocated states of the TEC, respectively, whilem < 0

denotes backtracked states (see Fig. 4.2).

In summary,n marks the overall progress of the process and is hence affected only by

polymerisation and depolymerisation events. On the other hand,m indicates the physical

position of the TEC along the DNA template relative ton. Alternatively, one could use

the absolute position the RNAP active site on the DNA template, i.e.,x = m + n.

4.2.2 Polymerisation/Depolymerisation Dynamics

Our model of the elongation phase starts with the TEC occupying state(n = 0, m =

0). The only transition possible from this state is to the post-translocated state(n =

0, m = 1), from which the TEC can translocate back to(n = 0, m = 0) or proceed with

polymerisation(n = 1, m = 0). In general, nucleotide polymerisation can only proceed

from the post-translocated state. Thus, with the TEC occupying the pre-translocated state

(n, m = 0), polymerisation of a single nucleotide to the nascent RNA chain requires

two steps: (1) the TEC sliding forward to the post-translocated state (n, m = 1) and

(2) the extension of mRNA by one nucleotide, which leaves theTEC in the next pre-

translocated state (n + 1, m = 0). Conversely, the reverse process of depolymerisation

can only proceed from the pre-translocated state and leavesthe TEC in the previous post-

translocated state (n − 1, m = 1). A schematic diagram of state transitions leading to

polymerisation/depolymerisation of the nascent RNA is given in Fig. 4.3.

The above described state transitions capture the dynamicsof the RNAP as it moves
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(n,m=−2)

... ...

(n,m=−3)

Figure 4.4: Schematic illustration of the state transitions capturing backtracking dynam-
ics. The process involves the diffusional translocation ofthe TEC along the DNA tem-
plate, while the length of the RNA transcript remains constant.

along the DNA polymerising the RNA chain, and which are reminiscent of aBrownian

ratchet [1]. For any given template positionn, therefore, the TEC owning to thermal

noise freely moves back and forth between the pre-translocated(n, m = 0) and the post-

translocated(n, m = 1) states. From the post-translocation state(n, m = 1) polymeri-

sation of the next nucleotide is possible. Polymerisation dissipates energy and marks the

transition to(n+1, m = 0). Once polymerisation has occurred going back to(n, m = 1)

requires further energy dissipation (to break the phosphodiester bond). Such a depoly-

merisation event is of course always possible, but on a much longer time-scale than that

needed for thermal noise to push the TEC into the post-translocated state(n + 1, m = 1)

and enable it to carry on with polymerisation.

4.2.3 Backtracking Dynamics

Inclusion of backtracking in the model provides an additional pathway, as the TEC can

now hop from the pre-translocated state(n, m = 0) into the first back-tracked state

(n, m = −1). Subsequent translocation events, driven by thermal noise, shift the TEC’s

active site back and forth along the DNA template (see Fig. 4.4). In some cases, backtrack-

ing will end as the TEC reattains the pre-translocated state(n, m = 0) (allowing poly-

merisation/depolymerisation to resume). In other instances, backtracking is interrupted

(so calledtranscriptional arrest) and the TEC stalls at some state(n, m = m∗) [58].

In such a scenario accessory proteins1 can induce cleavage of the exposed3′ RNA end,

bringing the TEC once again in the pre-translocated state(n−m∗, m = 0).

In theory, backtracking can move the TEC as far back as(n, m = −n) [58]. How-

ever, backtracking is often restricted up to a few nucleotides from the last transcribed

nucleotide. This restriction stems mainly from interactions between the TEC and the

nascent RNA [58]. As the5′ end of the RNA exits the TEC, it is free to fold upon itself

1such as the Gre/TFIIS cleavage factors [20,45]
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and form stable structures such as RNA hairpins. Subsequently, when the TEC backtracks

and slides backwards it interacts with these RNA structures, which preclude extensive

backtracking and can even lead to transcriptional arrest. To accommodate the above, in

our model we impose a backtracking boundaryM so that backtracking is restricted up to

m = −M < −n andm = −n whenn ≤M .

4.2.4 Some Key Notes on the Model

The model, presented above, provides a simplified physical picture of the transcription

elongation dynamics, particularly relevant to the questions regarding the temporal dynam-

ics of the process that we seek to answer. Here, we discuss andjustify key simplifications

and assumptions that underlie our modelling attempt.

In our model the TEC is pictured as a rigid body moving along the DNA. Such a

simplification allows us to follow the motion of TEC by just using the position of the

RNAP’s active site as a marker. As far as our model is concerned, all other structural

characteristics of the TEC such as the length of RNA-DNA hybrid or the size of the melted

DNA region, remain unchanged during its motion. This is approximately valid since large

scale conformational changes of TEC have not been observed during its motion and the

picture of inchworm-like motion has been abandoned [1,63].

Furthermore, we picture DNA as a linear chain of sites, whichdenote the position

of nucleotides. Translocation events are assumed to reposition the RNAP’s active site

by one nucleotide along the DNA chain, either forwards or backwards. In this manner,

our model only allows for a finite number of translocation states. These states effectively

corresponds to minima in the energy landscape that transiently trap the motion of the

TEC.

For the backtracking dynamics, we have assumed that a boundary exists atm = M .

As discussed above, this boundary captures interactions between the TEC and the nascent

RNA that restrict extensive backtracking. However, it should be noted that the distance

the TEC is allowed to backtrack is not in general constant butdepends on the specific se-

quence of the RNA and fluctuates owning to the stochasticity with which RNA structures

appear and disappear. The fast RNA dynamics however render variations inM rather

small of the order of a few nucleotides. Therefore treatingM as constant, is not expected

to significantly alter the dynamics and constitutes a valid approximation.

So far the model has been presented in its most general form: state transitions cap-

turing the polymerisation/depolymerisation of the RNA andthe translocation of the TEC

have been defined, however, no rates have been associated with any of these transitions.
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Figure 4.5: (a-b) Schematic illustration of the two cases ofbacktracking: (a) restricted
backtracking and (b) backtracking leading to transcriptional arrest. Variablel denotes the
number of nucleotides that the TEC has translocated backwards. Translocation is possible
up to l = M . A backtracking pause commences with the TEC at statel = 1 (dotted
arrow) and terminates when statel = 0 has been reached. In the second case, the TEC is
arrested at statel = M , and of elongation factors are necessary to regain a polymerisation
competent state (dotted arrow). (c) Schematic illustration of the free-energy landscape
during backtracking. According to Kramer’s rate theory therate of hopping depends
on the difference between the height of the activation barrier and the free-energy of the
current state. Assuming that energetic variations due to sequence inhomogeneities are
negligible, an isoenergetic landscape (bottom) is obtained giving rise to equal rates of
hopping.

This is left for the subsequent sections where rates are introduced and further assumptions

regarding their dependence on the underlying sequence are made.

4.3 Backtracking and Elongation Pauses

We first treat the dynamics of RNAP backtracking in isolationfrom the rest of the process.

This enables us to ask the question: what is the lifetime of a single pause induced by

backtracking? By formulating the question as a simple first passage problem we are able

to obtain analytic results for the distribution of the pausedurations. Our results indicate

that pauses induced by RNAP backtracking obey a heavy-tailed distribution, which is in

agreement with experimental observations [47,124].
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4.3.1 Mathematical Formulation

As described in section 4.2.3 during backtracking the TEC hops between consecutive

translocation states denoted bym < 0. Here, however, to avoid negative integers we shall

use the notationl ≡ −m. Backtracked states correspond to minima in the free energy

landscape that transiently trap the diffusional motion of the TEC. The rate (cl→l±1) at

which transition between consecutive states (l → l ± 1) occur will depend on the free

energy landscape and according to Kramer’s rate theory [69]is given by

cl→l±1 = c0 exp [−(∆Gl↔l±1 −∆Gl)/kBT ], (4.1)

wherec0 is a prefactor,kB is the Boltzmann constant,T is the absolute temperature,

and∆Gl and∆Gl↔l+1 denote the free energy of the current state and the height of the

activation barrier, respectively [see Fig. 4.5(c)].

Initially, the TEC is considered to attain statel = 1. From there, the dynamics of

P (l, t), the PDF of finding the TEC in statel at timet given it was in statel = 1 at t = 0,

are described by the Master equation:

∂P (l, t)

∂t
= cl−1→lP (l − 1, t) + cl+1→lP (l + 1, t)− (cl→l+1 + cl→l−1)P (l, t) .(4.2)

Backtracking terminates when the TEC slides back to statel = 0, therefore we impose

on Eq. (4.2) the boundary conditionP (0, t) = 0. Furthermore we consider two biologi-

cally relevant scenarios (discussed in section 4.2.3) corresponding to different boundary

conditions imposed on statel = M :

1. Restricted backtracking– no translocation is possible beyond statel = M (reflect-

ing boundary)

2. Backtracking leading to transcriptional arrest– the TEC gets trapped at statel =

M (absorbing boundary)

The free-energy landscape that dictates the rates of hopping between contiguous states

is shaped mainly by the length of the RNA-DNA hybrid, which isthe major contributor

to the stability of the TEC [58]. Additional contributions come from the actual sequence

of hybrid as well as from nonspecific interactions between the RNAP, the DNA and the

transcript [58]. Since we have assumed that the length of thehybrid and all other structural

properties of the TEC remain relatively unchanged, we can neglect energetic variations

due to changes in the sequence,2 and regard the TEC as moving in a periodic free-energy

2We assume that energetic variations due to sequence inhomogeneity are averaged out over the length
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landscape [see Fig. 4.5(c)]. This enables us to treat backtracking as purely diffusional

process (unbiased random walk) with a constant ratec. Equation (4.2) then becomes:

∂P (l, t)

∂t
= cP (l − 1, t) + cP (l + 1, t)− 2cP (l, t) , (4.3)

subject to the same boundary conditions as above.

4.3.2 Case I –Restricted Backtracking

In this case backward translocation beyond statel = M is blocked, owing to interactions

between structural elements of the transcript and the TEC. The corresponding boundary

conditions for Eq. (4.3) are:P (0, t) = 0 (absorbing) andcP (M, t) = cP (M + 1, t)

(reflecting).

We are interested in the statistics of the pause lifetimeT0, or alternatively the first

passage time to statel = 0. As we have seen in Chapter 3 (3.4) the PDF ofT0 is given

by the probability flux to statel = 0, i.e., PT0(t) ≡ cP (1, t), which can be obtained

using the Laplace transform method [116]. In particular, using the Laplace transform

p̃(l, s) =
∫∞

0
P (l, t)e−stdt, we can eliminate the time derivative in Eq. (4.3) and obtaina

set of algebraic difference equations:

sp̃ (l, s)− δl,1 = cp̃ (l − 1, s) + cp̃ (l + 1, s)− 2cp̃ (l, s) , (4.4)

whereδl,1 is the Kronecker delta. The corresponding boundary conditions in the Laplace

domain arẽp(0, s) = 0 andcp̃(M, s) = cp̃(M + 1, s). We solve Eq. (4.4) recursively to

obtain a closed formula for̃PT0(s) ≡ cp̃(1, s), the Laplace transform of the probability

flux to statel = 0:

P̃T0(s) =
sinh [Mφ(s)]− sinh [(M − 1)φ(s)]

sinh [(M + 1)φ(s)]− sinh [Mφ(s)]
, (4.5)

wheretanh [φ(s)] =
√

1− 1
(s/2c+1)2

.

Moments ofPT0(t)

Equation 4.5 is an exact result as far as our model of backtracking is concerned as̃PT0(s)

is the moment generating function of the PDF we seek,PT0(t). In particular,P̃T0(s = 0)

yields the probability of eventually hitting statel = 0. This quantity can be trivially

of the RNA-DNA hybrid.
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calculated to be1, that is, the TEC will eventually exit the pause and resume elongation.

Furthermore, the coefficients of the Taylor expansion ofP̃T0(s) arounds = 0 yield the

raw moments of the distribution [116]:

P̃T0(s) = P̃(s = 0) +
s

1!

dP̃T0(s)

ds

∣
∣
∣
s=0

+
s2

2!

d2P̃T0(s)

ds2

∣
∣
∣
s=0

+O(s3)

= 1 + 〈T0〉s +
〈T 2

0 〉s2

2
+O(s3). (4.6)

Some straightforward calculations lead to expressions forthe mean pause duration〈T0〉
and varianceσ2

T0

〈T0〉 =
M

c
, (4.7a)

σ2
T0

= 〈T 2
0 〉 − 〈T0〉2 =

M + 2M3

3c2
. (4.7b)

Approximate Result for PT0(t)

From Eq. (4.5), using the addition theorem for the hypebolicsine3 and taking the limit

s/c≪ 1 (corresponding tot≫ 1/c), one obtains an approximate result forP̃T0(s):

P̃T0(s) = sinh [Mφ(s)]−sinh [Mφ(s)] cosh [−φ(s)]−cosh [Mφ(s)] sinh [−φ(s)]
sinh [(M+1)φ(s)]−sinh [(M+1)φ(s)] cosh [−φ(s)]−cosh [(M+1)φ(s)] sinh [−φ(s)]

≈ sinh
h

M
√

s/c
i

−sinh
h

M
√

s/c
i

cosh
h

−
√

s/c
i

−cosh
h

M
√

s/c
i

sinh
h

−
√

s/c
i

sinh
h

(M+1)
√

s/c
i

−sinh
h

(M+1)
√

s/c
i

cosh
h

−
√

s/c
i

−cosh
h

(M+1)
√

s/c
i

sinh
h

−
√

s/c
i

=
sinh

h

M
√

s/c
i

−sinh
h

M
√

s/c
i

(1+... )−cosh
h

M
√

s/c
i“

−
√

s/c+...
”

sinh
h

(M+1)
√

s/c
i

−sinh
h

(M+1)
√

s/c
i

(1+... )−cosh
h

(M+1)
√

s/c
i“

−
√

s/c+...
”

≈ cosh
h

M
√

s/c
i

cosh
h

(M+1)
√

s/c
i .

The above result can be readily transformed back to the time domain, yielding an approx-

imation forPT0(t) valid for times much longer than the average stepping time,t ≫ 1/c.

In terms of the Jacobiθ1 the inversion yields [105]

PT0(t) ≈ a−1 ∂

∂ν
θ1

(
1

2
νa−1

∣
∣
∣ta−2

)

, (4.8)

3sinh(x + y) = cosh(x) sinh(y) + sinh(x) cosh(y)

64



Chapter 4 Single Molecule Level: The Dynamics of a Transcribing RNA Polymerase

whereν = M/
√

c, a = (M + 1)/
√

c andθ1(z|q) can be expressed in series as [105]

θ1(z|q) =
1√
πt

∞∑

n=−∞

(−1)n exp
[
−(z + n− 1/2)2/q

]
. (4.9)

Simpler expressions forPT0(t), exemplifying the behaviour of the process, can be

obtained in the limitst≪M2/c andt≫M2/c

PT0(t) ≈







t−3/2

2
√

πc
,

1

c
≪ t≪ M2

c
,

πc

(1 + M)2
sin

(
π

2(M + 1)

)

exp

[

− cπ2

4(1 + M)2
t

]

, t≫ M2

c
.

(4.10)

The picture obtained from the above form ofPT0(t) is a rather simple one. For times short

compared to the time scale of diffusion to the reflecting state l = M (i.e., t ≪ M2/c),

PT0(t) scales ast−3/2, as expected for the first passage probability of a random walker in

a semi-infinite, one-dimensional domain [116]. Conversely, for times much longer than

M2/c, the effect of the reflecting boundary becomes apparent, altering the asymptotics of

PT0(t) and imposing a rapid exponential decay. The two different asymptotic behaviours

are illustrated in Fig. 4.6, where the analytic result [Eq. (4.8)] have been plotted together

with the data obtained from stochastic simulations of the model.

4.3.3 Case II –Backtracking Leading to Transcriptional Arrest

In this case the TEC initially occupies statel = 1 and can resume polymerisation when

statel = 0 has been reached. However, here, statel = M signals the entrance into an

arrested state, form which the TEC can only escape with the aid of accessory elongation

factors [20, 45]. Hence, the boundary conditions imposed onEq. (4.3) are absorbing at

both ends:P (0, t) = P (M, t) = 0.

The existence of two absorbing boundaries introduces only minor differences from

Case I. Here, we are interested in both the PDF of the recoverytimeT0,PT0(t) ≡ cP (1, t),

and the PDF of time to arrestTM , PTM
(t) ≡ cP (M − 1, t). Following a similar treatment

as in Case I we obtain an exact analytic result for the moment generating functions of the
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Figure 4.6: The probability density function of pause lifetimes (PT0(t)) in the case of
restricted backtracking (M = 10). Plotted are the analytic result [Eq. (4.8)] (solid line)
and the results of stochastic simulations of the model (circles). The PDFPT0(t) exhibits
a power law decay (1/c ≪ t ≪ M2/c), followed by an exponential cutoff in long time
limit ( t≫M2/c).

two probability distributions

P̃T0(s) =
sinh [(M − 1)φ(s)]

sinh [Mφ(s)]
, (4.11a)

P̃TM
(s) =

sinh [(φ(s)]

sinh [Mφ(s)]
, (4.11b)

wheretanh [φ(s)] =
√

1− 1
(s/2c+1)2

.

Moments ofPT0(t) andPTM
(t)

As before by evaluating the above equations ats = 0 yields the probability of eventual

recovery,π0 and eventual arrestπM , which should sum to1:

π0 = 1− 1

M
; πM = 1− π0 (4.12)
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Furthermore one can obtain the conditional mean times for each event by evaluating the

s derivative ofP̃T0(s) andP̃TM
(s) at s = 0

〈T0〉 =
2M − 1

6c
, (4.13a)

〈TM〉 =
M2 − 1

6c
. (4.13b)

Higher moments〈T k
0 〉 and 〈T k

M〉 can be obtained by evaluating thekth derivative of

P̃T0(s) andP̃TM
(s) at s = 0, respectively.

In the presence of accessory factors, such as the bacterial Gre proteins, the arrested

transcript is cleaved and the TEC returns to a polymerisation competent state. If we

assume that the accessory factors act on a relatively fast time-scale (as compared with

〈T0〉 and〈TM〉), then the overall mean pause duration is just the weighted sum of〈T0〉 and

〈TM〉
〈T 〉 = π0〈T0〉+ πM〈TM〉 =

M − 1

2c
(4.14)

Approximate Result for PT0(t) andPTM
(t)

Moreover, in the limitt ≫ 1/c, approximate analytic expression can be obtained for

PT0(t) andPTM
(t) by inverting the Laplace transforms given in Eq. (4.11) The inversion,

in terms of the Jacobiθ4 function, yields [105]

PT0(t) ≈ a−1
0

∂

∂ν0
θ4

(
1

2
ν0a

−1
0

∣
∣
∣ta−2

0

)

, (4.15a)

PTM0
(t) ≈ a−1

M

∂

∂νM

θ4

(
1

2
νMa−1

M

∣
∣
∣ta−2

M

)

, (4.15b)

whereν0 = (M − 1)/
√

c, νM = 1/
√

c, a0 = aM = M/
√

c, andθ4(z|q) can be expressed

in series as [105]

θ4(z|q) =
1√
πt

∞∑

n=−∞

(−1)n exp
[
−(z + n + 1/2)2/q

]
. (4.16)

Compact expressions forPT0(t) are obtained in the limitst≪ 1/c andt≫M2/c:

PT0(t) ≈







t−3/2

2
√

πc
,

1

c
≪ t≪ M2

c
,

2πc

M2
sin
( π

M

)

exp

(

−π2c

M2
t

)

, t≫ M2

c
.

(4.17)
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Figure 4.7: Results obtained for backtracking leading to transcriptional arrest (Case II)
with M = 10: (left) distribution of self-recovered pauses,PT0(t), and (right) distribution
of time to arrest,PTM

(t). Plotted are the analytic results [Eq. (4.15a) and (4.15b) respec-
tively] as solid lines and the results of stochastic simulations as circles.PT0(t) exhibit a
power law decay for1/c ≪ t ≪ M2/c, followed by an exponential cutoff in long time
limit ( t≫M2/c).

Once again, the PDF demonstrates a power law decay for1/c≪ t≪M2/c, followed by

an exponential cutoff. For sufficiently long times,t ≫ M2/c, that allow diffusion to the

boundaryl = M , the PDF of the time to arrest decays exponentially and is given by

PTM
(t) ≈ 2πc

M2
sin
( π

M

)

exp

(

−π2c

M2
t

)

, t≫ M2

c
. (4.18)

The different asymptotic behaviours are illustrated in Fig. 4.7, where the analytic re-

sults have been plotted together with the data obtained fromstochastic simulations of the

model.

4.3.4 The Effect of Applied Force

A key characteristic of the single molecule techniques usedto study the dynamics of the

elongation phase is that they allow the application of loadson the RNAP as it transcribes

the DNA. Studying the effect that external forces have on theelongation dynamics is of

key importance, since RNAP molecules continuously have to overcome transcriptional

roadblocks or forces due to the coiling of the DNA molecule [47]. In this section we

briefly discuss the effect of forcing on backtracking dynamics.

So far the TEC has been assumed to diffuse on periodic free-energy landscape where

minima correspond to distinct backtracked states that are separated by the length-scale

of a nucleotide,δx = 3.4Å. External forcing tilts this energy landscape resulting in a
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Figure 4.8: Schematic illustration of the free-energy landscape during backtracking with
and without external forcing. As a result of an external force with magnitude+F (assist-
ing) the free-energy landscape is tilted by a factor ofFδx per backtracked state.

translocation bias. In particular, the application of an external force on the RNAP tilts the

free-energy landscape by a factor ofFδx per translocation state, whereF is the magnitude

of the force in the direction of movement (see Fig. 4.8). Thatis, the energy of successive

backtracked states differs byFδx [69]. According to Kramer’s rate theory, the forward

and backward translocation rates become

cf = c exp

[
Fδx

2 kBT

]

, (4.19a)

cb = c exp

[

− Fδx

2 kBT

]

, (4.19b)

wherec is the translocation rate in the absence of any forcing.

The Master master equation describing the backtracking dynamics in the presence of

force is given by

∂P (l, t)

∂t
= cbP (l − 1, t) + cfP (l + 1, t)− (cf + cb)P (l, t) . (4.20)

subject to the same boundary conditions discussed in preceding sections:P (0, t) = 0,

cbP (M, t) = cfP (M+1, t) for Case I (restricted backtracking) andP (0, t) = 0,P (M, t) =

0 for Case II (backtracking leading to transcriptional arrest). In what follows we focus on

the case of restricted backtracking. However, similar results can be be obtained for the

second scenario as well.

As before an exact result can be obtained for the Laplace transform ofPT0(t), the PDF

69



Chapter 4 Single Molecule Level: The Dynamics of a Transcribing RNA Polymerase

of the pause lifetimesT0:

P̃T0(s) =
√

r

√
r sinh [Mφ(s)]− sinh [(M − 1)φ(s)]√
r sinh [(M + 1)φ(s)]− sinh [Mφ(s)]

, (4.21)

wheretanh φ(s) =
√

1− 4R
(s/cb+r+1)2

, andr ≡ cf

cb
= exp

[
Fδx

kBT

]

. Parameterr quantifies

the effect of the force, withr > 1 indicating an assisting force andr < 1 an opposing

one. In the absence of external forcing (r = 1) one can easily verify that the above

equation reduces to Eq. (4.5). The expression found forP̃T0(s) can be used to obtain

analytic results for the moments of the probability distributionPT0(t). In particular, the

mean pause duration〈T0〉 and varianceσT take the form

〈T0〉 =
1− 1/rM

cf (1− 1/r)
(4.22a)

σ2
T0

=
1

c2
f (1− 1/r)2

[

(1 + r)
1− 1/rM

1− 1/r
− 4 M

rM

]

. (4.22b)

Note that once again taking the limitR→ 1 yields the results obtained for the symmetric

case [Eq. (4.7)].

As it stands Eq. (4.21) cannot be easily inverted back into the time domain. Instead,

numerical methods are used to obtain an estimate ofPT0(t) (see section 4.5). Figure 4.9

illustrates distribution of the pause lifetimes for different magnitudes of external forces

(assisting or opposing the forward motion of the RNAP). In particular, the heavy-tailed

characteristics of the pause distribution, seen in the symmetric case, are still evident for

assisting forces up toF ∼ kBT/δx ≈ 10pN (at room temperatureT = 300K).

4.4 The Statistics of the Elongation Phase

Having studied the statistics of backtracking pausing in detail, in this section we use the

model of the elongation phase to assess the effect of the transcriptional pauses on the

overall dynamics of the process. We particularly focus on the statistics of the elongation

times,i.e., the time needed for the TEC to reach position(n = N, m = 0) having started

from state(n = 0, m = 0). Two variants of model are considered. First in a model

without backtracking (Model A), we show that elongation times scales linearly with the

DNA template size. Second in a model that incorporates backtracking (Model B) we find

that elongation pauses can dominate the process and give rise to a heavy-tailed distribution

of the elongation times.
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Figure 4.9: Results obtained for restricted backtracking (Case I) in the presence of ex-
ternal forcing andM = 10. Solid lines were obtained by numerically inverting̃PT0(s)
[Eq. (4.21)], while markers correspond to results obtainedfrom stochastic simulations
of the model [Eq. (4.20) with boundary conditionsP (0, t) = 0 and cbP (M, t) =
cfP (M + 1, t)].

4.4.1 Model A – Translocation Limited Polymerisation

In this variant of the model backtracked states are ignored,and at each template position

n only two translocation states are possible:m = 1 andm = 0, which allow transcript

polymerisation and depolymerisation, respectively. The rates of polymerisation and de-

polymerisation are given byk+ andk−, whilea andb is the translocation rate fromm = 0

to m = 1 andb the reverse rate fromm = 1 to m = 0. (See typical values in Table 4.1).

The dynamics ofPn,m(t), the probability of finding the TEC in state(n, m) at timet,

are described by the Master equation [50,141]:

∂Pn,0(t)

∂t
= k+Pn−1,1 + bPn,1 − (k− + a)Pn,0, (4.23a)

∂Pn,1(t)

∂t
= k−Pn+1,0 + aPn,0 − (k+ + b)Pn,1, (4.23b)

wheren varies from0 to N − 1. We assume that depolymerisation is impossible from

(n = 0, m = 0) and that the process is terminated when state(n = N, m = 0) has been

reached. Consequently, the boundary conditions imposed onEq. (4.23) are reflecting at

(n = 0, m = 0) and absorbing at(n = N, m = 0). As discussed in Chapter 3 (3.3.1),

reflecting boundaries can be implemented by defining a fictitious staten = −1 and setting

k−P0,0 = k+P−1,1. On the other hand, to obtain the absorbing boundary, it suffices to set
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Figure 4.10: (a) Schematic illustration of Model A, including polymerisation depoly-
merisation, and transitions between the pre- and post-translocated states. (b) A mean field
approximation of Model A, yielding a biased random walk, is obtained in the limit of fast
translocation dynamics

PN,0 = 0 [50], which is equivalent to setting the transition rate from (N, 0) to (N − 1, 1)

equal to zero.

If we assume that translocation occurs at a much faster time-scale that polymerisa-

tion/depolymerisation,i.e., k+, k− ≪ a, b [10, 60], amean-field(or quasi-steady state)

approximation is obtained, equivalent to a biased random walk. In this limit, at each posi-

tion n equilibrium between the two translocation states (m = 0, 1) is established rapidly;

hence we can write

Pn,1(t) ≈
a

a + b
Pn(t), Pn,0(t) = Pn(t)− Pn,1(t). (4.24)

Summing Eq. (4.23) overm and using the above relationship one obtains the Master

equation describing the the dynamics ofPn(t) = Pn,0(t) + Pn,1(t), the probability of

finding the TEC at positionn:

∂Pn

∂t
= p+Pn−1 + p−Pn+1 − (p− + p+)Pn, (4.25)

where theeffectivepolymerisation and depolymerisation rates are given by:

p+ ≈ k+ a

a + b
, p− ≈ k− b

a + b
. (4.26)

We focus on the total elongation time,TN , i.e., the time it takes the TEC to arrive
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Parameter Value References
b/a 0.8 [74,156]

kb/kf 0.01 [60]
kf 36s−1 [121]

Table 4.1: Typical values for the rates of polymerisation, depolymerisation and transloca-
tion between the post- and pre-translocated states.

at (n = N, m = 0) starting position from(n = 0, m = 0). Using the method of the

backward Master equation [see Chapter 3 ( 3.4.2)] we calculate the mean(µ ≡ 〈TN〉) and

variance(σ2 ≡ 〈T 2
N〉 − 〈TN〉2) of TN :

µ =
1

p+ (1−K)

[

N − K
(
1−KN

)

1−K

]

, (4.27a)

σ2 =

(
1 + K + K1+N

)

p2
+ (1−K)3

[

N − K
(
1−KN

) (
4 + K + K1+N

)

(1−K) (1 + K + 4K1+N )

]

, (4.27b)

whereK = p−/p+.

Figure 4.11 shows results obtained from stochastic simulations of model A [Eq. (4.23)],

along with the analytic results obtained in the mean field approximation, for different val-

ues ofN andK. In the smallK regime and for small values ofN , the elongation times

are approximately Gamma distributed:

PTN
(t) = tα−1 e−tββα

Γ(α)
, (4.28)

whereΓ denotes the Gamma function andα = µ2/σ2, β = σ2/µ are the shape and scale

parameters of the distribution, respectively. AsN is increased the distribution approaches

a Gaussian, in agreement with the Central Limit Theorem, with mean and variance given

by Eq. (4.27).

Under normal conditions, one expects polymerisation to be overwhelmingly favoured

over depolymerisation [58],i.e., K = p−/p+ ≪ 1. Taylor expandingµ andσ2 around

K = 0 yields

µ =
N

p+
+ K

(N − 1)

p+
+O

(
K2
)
, (4.29a)

σ2 =
N

p2
+

+ K
(4N − 4)

p2
+

+O
(
K2
)
. (4.29b)

Hence, in the limitK → 0 both µ andσ2 scale linearly with the template lengthN ,
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Figure 4.11: The probability density function of the elongation times in the absence of
backtracking. Marker denote results obtained from stochastic simulations of the model
[see Eq. (4.23)] and are fitted with either a Gamma (N = 10) or a Gaussian distribution
(N = 102, 103) with mean and variance given by Eq. (4.27). (a) Results forK = 0.01,
p+ = 20 s−1 and different template lengthsN = 10, 102, 103 bp. (b) Results forN = 103

bp,p+ = 20 s−1 and different polymerisation biasesK = 0.01, 0.5, 0.99.

and consequently fluctuations around the mean are of the order 1/
√

N . In other words,

the distribution of the elongation times becomes narrowly peaked around the mean as

N is increased, and in the limitN → ∞, where fluctuations tend to zero, the process

becomes essentially deterministic. Conversely, in theK → 1 limit, polymerisation and

depolymerisation tend to play equal roles, leading to fluctuations in the transcription time

that do not vanish asN is increased (see Fig. 4.12).

4.4.2 Model B – Elongation with Backtracking

In this case, in addition to polymerisation/depolymerisation and transitions between the

the pre-translocated (m = 0) and post-translocated (m = 1) states, the TEC is allowed

to backtrack. In particular the TEC hops from the pre-translocated state (n, m = 0) into

the first back-tracked state (n, m = 1) with rate kb. Subsequent translocation events

can randomly shift the TECs active site back and forth, with rate c up to some limit

(n, m = M). Furthermore, we focus on the case of restricted backtracking, i.e active

polymerisation/depolymerisation resumes when the TEC reattains the active states (m =

0, 1) and no transcriptional arrest is possible.

The dynamics ofPn,m(t), the probability of finding the TEC in state(n, m) at timet,
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are described by:

∂Pn,1

∂t
= k−Pn+1,0 + aPn,0 − (k+ + b)Pn,1, (4.30a)

∂Pn,0

∂t
= k+Pn−1,1 + bPn,1 + cPn,−1 − (k− + a + kb)Pn,0, (4.30b)

∂Pn,−1

∂t
= kbPn,0 + cPn,−2 − 2cPn,−1 (4.30c)

... (4.30d)
∂Pn,−M

∂t
= cPn,−M+1 − cPn,−M (4.30e)

with boundary conditionsk−P0,0 = k+P−1,1 (reflecting) andPN,0 = 0 (absorbing).

Once again, assuming that the pre-translocated and post-translocated states are in

equilibrium one obtains

∂Pn,∗

∂t
= cPn,−1 + p+Pn−1,∗ + p−Pn+1,∗ − (p− + p− + pb)Pn,0, (4.31a)

∂Pn,−1

∂t
= pbPn,∗ + cPn,−2 − 2cPn,−1 (4.31b)

... (4.31c)
∂Pn,−M

∂t
= cPn,−M+1 − cPn,−M (4.31d)
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Figure 4.13: Schematic illustration of Model B, involving polymerisa-
tion/depolymerisation dynamics and backtracking depolymerisation and backtracking.
Model B allows backtracking as far asm = −M , with M ≪ N . If n < M , backward
translocation is permitted up to statem = −n (not shown).

wherePn,∗ = Pn,0 + Pn,1 and the effective rates are given by

p+ ≈ k+a

a + b
, p− ≈ k−b

a + b
, and pb ≈

kbb

a + b
(4.32)

Having characterised backtracking statistics, we use stochastic simulations of the

model given by Eq. (4.31) to examine the effects of backtracking on the total elongation

time. In particular, the macroscopic (observable) properties that we consider are:

1. the number of pausesδ over a DNA template of lengthN

2. the aggregate lifetime of all the pauses,τp relative to the time spent on active poly-

merisationτa.

As we shall see these properties are linked to the microscopic parameterspb, p+ andc and

will be varied in our stochastic simulations to assess the contribution of pauses to the total

elongation time.

Since at every site backtracking is kinetic competition with polymerisation and de-

polymerisation, one expects that for large templates the number of pausesδ observed

should obey:
δ

N
=

p′b
pb + p+ + p−

≈ pb

p+

, (4.33)
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where in taking the last step we have assumed that the rate of polymerisation is the fastest

one,i.e., p+ ≫ pb, p−.

Moreover, as seen in section 4.3.2 the mean pause duration isM/c. Hence, an estimate

of the aggregate pause duration is given by

τp = δ
M

c
≈ N

pb

p+
· M

c
. (4.34)

On the other hand, the time spent on active polymerisation isthe one obtained in our

treatment of Model A,i.e.,

τa ≈
N

p+
. (4.35)

The ratio of these two time-scales is therefore,

R ≡ τp

τa

≈ pb
M

c
, (4.36)

which is a dimensionless measure of pausing, quantifying its relative contribution to the

elongation time.

Figures 4.14 and 4.15 illustrate the results of the stochastic simulations of Model B

[Eq. (4.31)] for different values ofR and keeping the frequency of pausesδ/N constant.

As expected, forR → 0 the polymerisation-only model (Model A) is recovered. In par-

ticular, the width of the distribution scales like1/
√

N (see Fig. 4.15) and the distribution

of elongation times demonstrates a high peak around the meanelongation time predicted

by Model A (see Fig. 4.14 left panel), indicating that eitherno pauses or only brief ones

occur. AsR is increased, rare pauses with prolonged durations (≫ M2/c) start to have a

significant contribution to the overall elongation time. This effect is clearly illustrated by

the heavy-tailed distribution of elongation times seen in Fig. 4.14 (left panel) forR = 0.1.

In particular, the exponential tail resembles the one foundfor individual pause lifetimes

(see Fig. 4.6) indicating that the total elongation time is often dominated by single rather

long-lived pauses. For even higher values ofR the elongation phase is dictated by back-

tracking dynamics and the distribution of elongation timesillustrates quasi-exponential

characteristics (see Fig. 4.15). For increasing pause frequency (higherδ/N) the effect on

the total elongation time is clearly more profound; the distribution becomes broader and

exhibits a general shift towards longer elongation times [see Fig. 4.14(b)].
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Figure 4.14: Distributions of dimensionless elongation times (scaled byN/p+) in the
presence of backtracking (Model B) for different values of the control parameterR. The
distributions were obtained using stochastic simulationsof the model [Eq. (4.31)]. Pa-
rameters used: (a)N = 4 kb, M = 10 bp,p+ = 10 s−1, K = 0.01 andpb chosen to yield
δ/N ≈ pb/p+ = 1 pauses/kb (Refs. [46, 124]). (b)N = 1 kb, M = 10 bp,p+ = 10 s−1,
K = 0.01 andpb chosen to yieldδ/N ≈ pb/p+ = 10 pauses/kb.

4.5 Numerical Methods

In this section we give an overview of the computational tools and numerical methods

used to obtain the various results presented.

4.5.1 Models of Backtracking

To verify the validity of the analytic results obtained for the statistics of the backtracking

pauses (see section 4.3) stochastic simulations of the model [Eq. (4.3)] were performed

using the Gillespie algorithm [52]. In particular, the state of the system was monitored

using

• a variablem denoting the translocation state of the TEC,

• a timert.

The system was initialised withm = 0 and t = 0. At each step of the algorithm, all

permissible state transitions were calculated based on current translocation state. Then

one transition was chosen with probability proportional tothe corresponding transition

probability and the state of the system was updated [see Chapter 3 (3.3.4)]. The simulation

was terminated when an absorbing boundary had been reached and the value of the timert

was saved for analysis. The code was implemented in ANSI-C. Each of the data sets used

in Figures 4.6, 4.7, and 4.9 was generated by105 independent simulation runs. Finally, for
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Figure 4.15: Coefficient of variation (σ/µ) of the elongation times for Model B as a func-
tion of the control parameter1/R and for different values of the of pause frequencies
(pb/p+). As 1/R→ 0, pauses become more significant and the distribution of elongation
times becomes broader. In the case of frequent pausing (pb/p+ = 2 · 10−3) the distribu-
tion exhibits exponential characteristics (σ/µ = 1). As 1/R → ∞ the effect of pauses
vanishes and Model B approaches Model A, whereσ/µ ≈ 1/

√
N . Results were obtained

using stochastic simulations of the model [Eq. (4.31)]. Parameters used:N = 4 kb,
M = 10 bp,pb = 0.01 s−1, K = 0.01 andp+ = 2, 10 and20 s−1.

the numerical inversion of the Laplace transform in Eq. (4.20) (see Fig 4.9) a MATLAB

implementation of the Gaver-Stehfest algorithm4 was used.

4.5.2 Models of Elongation Phase

All data presented in section 4.4 were generated using stochastic simulations of the mod-

els given by Equations 4.25 and 4.31. For the simulations theGillespie algorithm [52]

was used. In particular the state of the system was monitoredusing

• a two variables(n, m) denoting the translocation state of the TEC,

• a timert.

The system was initialised with(n = 0, m = 0) andt = 0. At each step of the algorithm,

all permissible state transitions were calculated based oncurrent translocation state. Then

one transition was chosen with probability proportional tothe corresponding transition

probability and the state of the system was updated [see Chapter 3 (3.3.4)]. The simulation

4freely available from http://www.mathworks.com/matlabcentral/fileexchange/9987
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was terminated when the absorbing boundary(n = N, m = 0) had been reached and the

value of the timert was saved for analysis. The code was implemented in ANSI-C and

105 independent simulation runs were performed generating thedata used in Figures 4.11,

4.12, 4.14, and 4.15 (see captions for the numerical values of the parameters).

4.6 Summary and Discussion

In this Chapter, motivated by recent experimental studies [1, 99, 124], we presented a

stochastic model of the single molecule dynamics during thetranscription elongation

phase. The model incorporates polymerisation and depolymerisation of the nascent RNA

as well as the backward translocation of the TEC along the DNAtemplate, a phenomenon

dubbed backtracking [58]. Unlike previous modelling attempts [10,60,71,137], our main

focus was to to provide a quantitative picture of the temporal dynamics of the process.

Special emphasis was given on the quantitative characterisation of the transcriptional

pauses induced via backtracking. Two biologically relevant scenarios were considered;

backtracking pauses that end with the TEC sliding back into an elongation competent

state and pauses that can potentially lead to transcriptional arrest. For both scenarios

we obtained analytic results for the distribution of the pause duration, which we verified

with computer simulations. Our results show that transcriptional pausing induced via

backtracking obeys a broad distribution, with a power law decay (t−3/2) followed by an

exponential cutoff. Furthermore, the wide temporal distribution is maintained even in the

presence of moderate external loads acting on the RNAP molecule.

Interestingly, our findings are consistent with the non-exponential, heavy-tailed dis-

tribution of pause lifetimes observed in single molecule studies of bacterial transcrip-

tion [99,124]. Indeed, re-analysis of the data indicates that the pauses are well-fitted by a

model similar to the one presented here [35]. More recently,a power law (t−3/2) in the dis-

tribution of pauses has been also observed for eukaryotic transcription (see Fig. 4.16) [47]

. This result was independently explained by the authors using a continuous analog of the

model of backtracking present here. In this model during backtracking the TEC is al-

lowed to diffuse continuously on the DNA template, rather than by taking discrete steps

(as allowed in our model). The two models become equivalent,however, as long as the

length-scale of the stepping in our model is much smaller than the length-scale by which

the TEC is allowed to backtrack (i.e.,M ≫ 1). It should also be stressed that the spatial

resolution of the experiment did not allow the direct observation of backtracking for all

pauses. This leaves open the possibility that shorter pauses did not involve backtracking

but were induced through a different mechanism – perhaps similar to the one suggested
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for ubiquitous pausing [see Chapter 2 (2.2)] observed in bacterial transcription [63, 99].

In summary, further experiments and more thorough analysisof the data seem to be nec-

essary before a final conclusion could be drawn regarding thedynamics of backtracking

and transcriptional pausing.

We also used the model to study how backtracking pauses affect the overall elongation

dynamics. In particular, by means of mean field theory and stochastic simulations we

obtained results regarding the mean elongation time and itsvariance. Our key results

are particularly instructive in two limits: (i) when pausescause a weak perturbation to

elongation dynamics and (ii) when they significantly affectit. In the first case, elongation

times follow a narrow Gaussian distribution with fluctuations around the mean scaling

like 1/
√

N , whereN is the length of the DNA template. In the second regime, when

there is a significant number of backtracking pauses whose duration is comparable to the

active polymerisation time, there is a dramatic change in the distribution of transcriptional

times. In particular, the distribution becomes broader anddemonstrates quasi-exponential

characteristics

The existence of specific DNA sequences inducing backtracking pauses as well as the

presence of accessory proteins assisting their recovery indicate that backtracking plays

an important role in the regulation of the elongation phase [7]. To this end, our results

have direct implications regarding the simple birth and death models used to interpret

the stochastic nature of RNA production and its implicationregarding cell behaviour and

fate [27,55,114]. In these models, DNA transcription is assumed to obey Poisson statistics

under the assumption that the initiation phase constitutesthe rate limiting step of the

process – an assumption that allows one to disregard elongation dynamics. In general,

however, the frequency of transcription initiation has a wide dynamical rangein vivo [85],

andin vitro studies have shown that initiation times can be as fast as a few seconds [15,

89, 127, 160]. Hence, rapid initiation times can be significantly shorter than the time

needed for elongation, which as we have seen demonstrates features (i.e., pauses) that

could dominate the overall rate of transcription [119]. In such cases, simple Poisson

models of transcription might need to be revised to incorporate the intrinsic fluctuations

of the elongation phase (see Chapter 6).
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Figure 4.16: Distribution of measured pause durations in single molecule experiments.
Data are fitted with at−3/2 power law [47]. Reprinted by permission from Macmillan
Publishers Ltd: E. A. Galburtet al., Nature (London)446, 820 (2007), copyright (2007)
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Chapter 5

Transcriptional Error Correction

Life crucially relies on the accuracy with which RNA sequences are transcribed from

DNA. To ensure the required levels of fidelity in the face of high spontaneous error rates,

DNA transcription relies on error correction mechanisms. Aproposed mechanism of

transcriptional error correction involves backtracking of the RNA polymerase and mRNA

cleavage. In this Chapter we present and study a microscopicmodel of this editing pro-

cess. The model offers a quantitative understanding of transcriptional error correction

by linking the observed error rate directly to the microscopic rate parameters of the pro-

cess. Our results indicate that transcriptional error correction via backtracking and RNA

cleavage is consistent with a multistep kinetic proofreading scheme. Furthermore, we

show that such a mechanism can significantly enhance the fidelity of DNA transcription,

yielding error frequencies that are in agreement within-vivo observations.

5.1 Introduction

DNA transcription constitutes a vital life process. As discussed in Chapter 2, RNA

molecules that are transcribed from the DNA are subsequently used as templates for pro-

tein synthesis or can have key roles in various other cellular processes, such as gene

regulation and DNA replication. For all these functions to be carried out properly the

accuracy of RNA sequences is a crucial requirement. Indeed,errors introduced as the

genetic information is transferred into RNA can have far-reaching implications, leading
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to the production or non-functional or even malfunctioningproteins and compromising

the robust function of the cell [30].

The importance of accuracy during DNA transcription becomes even more profound if

one takes into consideration the scale at which the process takes place and the underlying

physics. During transcription the RNA polymerase (RNAP) moves along the DNA adding

nucleotides to the RNA chain. Let us for the sake of the argument assume that the RNA

nucleotides are picked solely on the basis of how well they basepair with the correspond-

ing DNA nucleotide. As we have seen in Chapter 2, basepairingbetween complementary

nucleotides is enabled by hydrogen bonds, which keep the twonucleotides together. In

particular, two hydrogen bonds are involved in the formation of a adenine-uracil (A-U)

base-pair while three in the case of a guanine-cytosine (G-C) base-pair. This difference

of one hydrogen bond is the basis of nucleotide complementarity and is indeed a a very

subtle one. Since the energetic contribution of one hydrogen bond is relatively small, in

the order of a fewkBT [18], thermal fluctuations dominating the cellular environment are

expected to frequently force basepairing between non-complementary nucleotides. More

specifically, simple thermodynamics arguments predict that during transcription passive

errors should occur at a rate of10−2 − 10−3 errors/nucleotide [18].

Such high error rates are prohibiting for the survival and perpetuation of life. This

is exemplified by the fact that transcriptional error rates observedin-vivo are order of

magnitudes lower (10−5 errors/nt) [18]. Therefore, error correction mechanisms must ex-

ist that enhance the discriminatory power of the RNAP and enable it to transcribe RNA

chains more accurately than expected from the simple basepairing rule. In particular,

experimental evidence is in support of two proofreading mechanisms: one acting at the

level of nucleotide addition [143] and the other one mediated through RNAP backtrack-

ing and subsequent cleavage of the RNA [124,147,159]. The existence of these different

proofreading mechanisms raises interesting questions regarding their relative roles in en-

hancing transcriptional fidelity. These can be answered by the construction of predictive

models able to discriminate between the different processes.

In this Chapter we present a theoretical study of the error correcting mechanism me-

diated by RNAP backtracking and RNA cleavage, hereafter referred to asnucleolytic

proofreading. Our effort is particularly motivated by recent single molecule studies of

DNA transcription that shed light on the microscopic details of backtracking [47, 124]

[see also Chapter 4 (4.2.3)] The remainder of this Chapter isorganised as follows. We

embark by discussing the general problem of biological accuracy and how cellular pro-

cesses accomplish reduced error rates and increased specificity. We then turn to DNA

transcription and present the model of the elongation dynamics involving polymeriza-
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tion of correct/incorrect nucleotides, backtracking and RNA cleavage. Using this model

we study the role on nucleolytic proofreading in enhancing transcriptional fidelity. Our

key results link the observed error rate directly to the microscopic rate parameters of the

process and make specific predictions which can be experimentally tested.

5.2 Kinetic Proofreading

The question of how cellular processes achieve astonishingly low error rates despite the

inherently stochastic environment in which they occur had been puzzling the physics and

biology community for quite some time. The motivation had mainly been from DNA

replication, where error rates as low as10−9 errors/nt had been observed. Although the

ability of the DNA polymerase (the enzyme that carries out DNA replication) to cleave

nucleotides was a well established fact, the question of howthe enzyme was distinguish-

ing between correct and incorrect nucleotides still remained open [96].

Breakthrough finally came around the mid-70’s through the seminal work of J. J. Hop-

field and J. Ninio [68,101]. Their work proposed an elegant phenomenological framework

for explaining how the discriminatory power of enzymes could be enhanced due to dif-

ferences between the kinetic rates for incorporation and catalysis of correct and incorrect

substrates. This now well established framework, known askinetic proofreading(KP)

or kinetic amplification(KA), provides the fundamental mechanism of accuracy in many

diverse biological processes. Examples found in the literature include the antigen recog-

nition by T-cell receptors [90], the disentanglement of DNAby topoisomerases [155],

signal transduction [134] and gene expression [19].

The conventional description of KP involves the enzymatic catalysis of two substrates,

Sc andSw, obeying Michaelis-Menten kinetics [68]:

E + Sc

k′
c

⇋
kc

ESc
αc→ E + Pc Correct product,

E + Sw

k′
w

⇋
kw

ESw
αw→ E + Pw Wrong product,

whereE is the enzyme carrying out the catalysis,ESc, ESw denote the intermediate

species andPc, Pw the end products. To quantify the discriminatory power of the enzyme,

we define the error fractionE as

E =
rate ofPw formation
rate ofPc formation

. (5.1)

Assuming that bothSc andSw are present in equal concentrations and that their discrim-
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ination is based on the “off” reaction rates,i.e., k′
c = k′

w, αc = αw = α, andkc < kw,

it can be shown [68] that the limiting error fractionE0 is attained in the limitα ≪ kc, kw

and is given by

E0 ≡
kc

kw
= exp [−∆G/(kBT )], (5.2)

where∆G is the free energy difference between the intermediates (ESw andESc), T

the absolute temperature, andk is the Boltzmann constant. Therefore, the fidelity of the

process is limited by the energy difference between the two intermediate species.

Kinetic proofreading captures the essence of error correction by stipulating the ex-

istence of one or more non-equilibrium (irreversible) intermediate steps in the catalytic

process. These steps dissipate energy and act as fidelity checkpoints, enhancing the dis-

criminatory power of the catalytic enzyme and resulting in reduced error rates. The simple

reaction scheme, treated above, with the inclusion of an additional irreversible step takes

the form:

E + Sc

k′
c

⇋
kc

ESc
αc→ ES∗

c

βc→ E + Pc

↓ lc

E + Sc

E + Sw

k′
w

⇋
kw

ESw
αw→ ES∗

w

βw→ E + Pw

↓ lw

E + Sw

Once again, all corresponding rates being equal exceptkc < kw and lc < lw, it can be

shown that in the limitα, β ≪ kc, kw, lc, lw the error fraction is given by

E =
kc

kw

lc
lw

= E2
0 , (5.3)

where for the sake of simplicity we have assumed that the freeenergy difference between

the two intermediatesES∗
c andES∗

w is also∆G. Therefore, as far as the fidelity of the

process is concerned the incorporation of a single irreversible step in the catalytic pathway

is equivalent to doubling the energy difference∆G in the original catalytic scheme. More

generally, the inclusion ofm irreversible steps can reduce the error fraction up toEm+1
0 .

However, it should be noted that the enhancement in the fidelity of the process does not

come without a cost. In particular, the time-scale separation α, β ≪ kc, kw, lc, lw means

that substrate catalysis (even in the case of the correct substrate) undergoes several cycles

before the end product is achieved. The energy dissipated ineach of these cycles is the

price paid for the enhanced accuracy of the process.

Because of its remarkable generality, KP is regarded as a guiding principle for under-
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standing how biological processes accomplish the necessary levels of accuracy. However,

to complement this general level of description, quantitative and predictive models that

incorporate detailed information about specific biological processes are needed. With this

in mind, in the remainder of this Chapter we focus on DNA transcription and on nucle-

olytic proofreading Recent experimental studies on DNA transcription have shed light on

the microscopic dynamics of backtracking [47,124,147,159] enabling the construction of

predictive models of transcriptional error correction mechanism.

5.3 Mechanism of Transcriptional Error Correction

The low error rates (10−5 errors/nt) accomplished by the RNAP can be attributed to at

least two distinct proofreading mechanisms. The first mechanisms acts at the level of

nucleotide addition and is similar to the mechanism of kinetic proofreading discussed in

the preceding section. In particular, the mechanism relieson the existence of a high energy

intermediate along the polymerization pathway, which actsas a fidelity checkpoint and

enhances the discriminatory power of the RNAP [143]. We shall refer to this mechanism

asclassical proofreading(CP).

Nucleolytic proofreading(NP) on the other hand is mediated through RNAP back-

tracking and the nuclease character of the RNAP [4, 58],i.e., the ability of the active

site of the polymerase to induce cleavage of the nascent RNA [58]. As we have seen in

Chapter 4 (4.2.3), during backtracking the transcription elongation complex slides back-

wards along the DNA template [58]. Being relocated away fromthe3′ end of the nascent

RNA, the active site can now exert its nucleolytic function and cleave the RNA chain.

In general, different RNA pols demonstrate different endonuclease activities [138] and

in certain cases accessory proteins (such as Gre, TFIIS) arenecessary to stimulate RNA

cleavage [45]. However, how does the RNAP manage to cleave atthe right place, achiev-

ing discrimination between correct and incorrect nucleotides? We propose that the answer

lies in the different translocation rates that are imposed by the presence or absence of an

erroneous nucleotide. In particular, the presence of an error will cause the the RNAP to

stagger making the catalysis of RNA cleavage and therefore excision of the erroneous

nucleotide more probable.

5.4 Model of Nucleolytic Proofreading

In this section we present and study a stochastic model of thetranscription elongation

phase involving polymerization of correct and incorrect nucleotides, backtracking, and
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RNA cleavage. The model is an extension of the one presented in Chapter 4 (4.2), and

aims at capturing the essence of NP.

5.4.1 Basic Notation

Transcription elongation can be described in terms of two variables,n andm. Variable

n = 0, . . . , N denotes the template position of the last transcribed nucleotide or equiv-

alently the length of the mRNA transcript up to a small offset. In particular, we define

n = 0 to be the position at which the elongation phase is entered, by the formation of

the TEC a few (8-10) nucleotides downstream of the actual transcriptional starting point.

Positionn = N corresponds to the terminal position up to this offset.

On the other hand, variablem = 0, . . . , M marks the physical position of the TEC

along the DNA template, and in particular the position of thepolymerase active site rela-

tive ton. Here,m = 0 indicates that the TEC is in the active state,1 where polymerization

of the next nucleotide can occur, whilem > 0 indicates that the TEC is in a backtracked

state [see Fig. 5.1(a)]. Since extensive backtracking is often blocked by hairpins or other

secondary RNA structures that are formed as the RNA exits theTEC [58], we assume that

backtracking is restricted to a fixed distancem = M , which we take to be independent

of n.2 The process starts with the TEC at(n = 0, m = 0) and terminates upon reaching

state(n = N, m = 0).

Given a TEC in an active state(n, m = 0), the TEC can either backtrack to state

(n, m = 1) with ratekb or polymerize the next nucleotide(n + 1, m = 0). Polymeriza-

tion of correct nucleotides occurs with ratekp, while incorrect nucleotides are polymer-

ized with ratek̄p. We useǫ to denote thespontaneouserror fraction,i.e., the fraction of

thermally induced errors

ǫ =
k̄p

kp

⇒ k̄p = ǫkp. (5.4)

Once backtracked the TEC hops between contiguous translocation states,(n, 0 <

m ≤ M) with ratec, except when the TEC hops into an error sitem = l from a deeper

backtracked statel + 1 which occurs with a reduced ratēc (see Fig. 5.1). Finally, from

each backtracked state,(n, m = m∗ > 0), cleavage occurs at ratekc, removing the last

m∗ − 1 nucleotides from the RNA chain and leaving the TEC in state(n −m∗, m = 0).

1Unlike the model presented in Chapter 4, the model here does not consider pre- and post-translocated
states. Rather, for the sake of simplicity, these two stateshave been lumped together into a single state
under the assumption that equilibrium is readily achieved between them.

2For positionsn < M we assume that backtracking is restricted tom = n.
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Therefore, given an erroneous nucleotide at some positionn−l (l ≥ 0), cleavage from any

state(n, m > l) ensures its removal. Note that the difference in the hoppingrates (̄c < c)

at an error site is the key ingredient of error correction since it increases the likelihood of

cleavage at states(n, m > l). A schematic diagram of state transitions for the model is

given in Fig. 5.1(b).

5.4.2 Physical Picture

As discussed in Chapter 4 (4.2.4) backtracked states correspond to wells in the free-energy

landscape that transiently trap the diffusional motion of the TEC along the DNA template.

The depth of these wells is dictated by the interactions between the RNAP, the DNA and

the RNA transcript that contribute to the structural stability of the TEC, with the RNA-

DNA hybrid being a major contributor. In the absence of any errors along the RNA-DNA

hybrid, our model assumes a periodic free-energy landscapethat gives rise to a constant

hopping ratec [see Fig. 5.1(c), right panel]. On the other hand, the presence of an er-

roneous nucleotide along the RNA-DNA hybrid partially destabilises the TEC,i.e., in-

creases the free-energy. This increase in the free-energy,∆G, is due to the mispairing be-

tween the erroneous RNA nucleotide and its corresponding DNA nucleotide and should,

therefore, also be approximately equal to the free-energy difference dictating the sponta-

neous error fractionǫ. As the TEC backtracks past the error site the erroneous nucleotide

diassociates from the RNA-DNA hybrid and therefore the hybrid becomes error-free once

again. This leads to a drop in the free-energy by∆G. Now, to reincorporate the erroneous

nucleotide into the RNA-DNA hybrid the TEC needs to overcomean enhanced energetic

barrier, which gives rise to a slower hopping ratec̄. Other than this decrease (increase)

in the free-energy as the erroneous nucleotide exits (re-enters) the RNA-DNA hybrid we

assume that free-energy landscape remains qualitatively unchanged, that is remains peri-

odic [see Fig. 5.1(c), left panel]. According to Kramer’s rate theory [141] the ratio of the

two hopping rates is given by

c̄

c
≈ exp [−∆G/kBT ] ≈ ǫ. (5.5)

As we have seen in Section 5.2 kinetic proofreading capturesthe essence of error cor-

rection by stipulating the existence of one or more non-equilibrium (irreversible) interme-

diate steps in the catalytic process. In our model these intermediate steps that dissipate

energy are the successive polymerisation events that add nucleotides on the RNA chain

and push already incorporated ones pass the backtracking limit M (where cleavage is no

longer possible).
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Figure 5.1: Schematic illustration of the model of transcriptional error correction. (a)
Schematic illustration of the model. Variablen denotes the position of the last transcribed
nucleotide, whereas variablem denotes the position of the polymerase’s active site relative
to n. The RNA is marked by3′ and5′. The transcription elongation complex (TEC) is
depicted in the active(n, m = 0) (top) and in a backtracked(n, m = 3) (bottom) state.
(b) Schematic illustration of the TEC dynamics at a given position n. The TEC will
eventually polymerize forward or cleave from one of the backtracked states. The slow
rate of hoppinḡc into the error state(n.m = l) increases the likelihood of cleavage from
states(n, m > l) and therefore the removal of the error. (c) Schematic illustration of
the energy landscape driving backtracking dynamics in the presence or absence of an
erroneous nucleotide. The presence of an error results in anincrease of the free-energy
by ∆G.
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5.4.3 Dynamics at the Single Nucleotide Level

For the analytic treatment of the model we first consider the dynamics of the process at a

fixed template positionn. Results obtained in this section we later on be used to construct

an effective model of the full elongation process.

The stochastic dynamics of the TEC at a fixed positionn are described by the Master

equation

Ṗ(t) = W
(s) ·P(t). (5.6)

Here,P is a column vector of size(M + 1):

P(t) = (P (m = 0, t), P (m = 1, t), . . . , P (m = M, t)) ′, (5.7)

where prime (′) denotes transposition. Each element,P (m, t), of the vector corresponds

to the PDF of finding the TEC at translocation statem at timet having started fromm = 0

at t = 0. W
(s) is the(M + 1) × (M + 1) transition matrix. Superscripts denotes the

dependence of the matrix on the sequence of the correct and incorrect nucleotides along

the transcript. In particular,s ∈ Sn with S ≡ {0, 1}, is a binary list of0s and1s, which

represent correct and erroneous nucleotides respectively:

s = {0, 1, . . . , 0}
︸ ︷︷ ︸

n elements

The general tridiagonal structure ofW
(s), is given by















−[(1+ǫ)kp+kb] c+sn(c̄−c) 0 · · ·
kb −[2c+sn(c̄−c)+kc]

0 c
... c+sn−j+2(c̄−c)

... −[2c+sn−j+2(c̄−c)+kc]

c
... c+sn−M+1(c̄−c)

−[c+sn−M+1(c̄−c)+kc]















.

Specifically, off-diagonal elements of the matrix correspond to transition probabilities

between the different translocation states. In particular, the element of the matrix at the

kth row andj th column,W (s)
kj (k 6= j), yields the transition rate from translocation state

m = j to m = k. On the other hand, elements in the diagonal of the matrix correspond

to the total transition probabilities out of a state. Note thatW(s) depends only on the last
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M elements ofs, i.e., sn, sn−1, . . . , sn−M+1.

The model allows only transitions between contiguous translocation states, hence the

matrix has non-zero elements only along the main diagonal and the first diagonals above

and below the main one. However, the columns ofW
(s) do not sum up to1. This indicates

that probability is lost to some absorbing boundaries. In fact, the above formulation of

W
(s) impliesM + 1 absorbing boundaries, through which the TEC can leave template

positionn:

• Boundaryi = 0: polymerization of the next nucleotide (n→ n+1) occurring from

the active statem = 0.

• Boundariesi = 1, . . . , M + 1: cleavage of the transcript (n → n − i) occurring

from each backtrack statem = i.

As described in Chapter 3 (3.4) , by applying the Laplace transformP̃(z) =
∫∞

0
e−zt

P(t)dt

to Eq. (5.6), we obtain a system of algebraic equations, which can be solved for all

P̃ (m, z) (m = 0, . . . , M). Subsequently, the splitting probabilitiespi for eventually

hitting boundaryi as well as the corresponding conditional mean exit times,τi can be

obtained using the Laplace transform of the probability fluxes to each boundary [116]:

p0 = (1 + ǫ)kpP̃ (0, z = 0); τ0 = (1 + ǫ)kp
P̃ ′(0, z = 0)

P̃ (0, z = 0)
, (5.8a)

pi = kcP̃ (i, z = 0); τi = kc
P̃ ′(i, z = 0)

P̃ (i, z = 0)
, i = 1, . . . , M (5.8b)

Note thatpi andti will depend on the sequence of correct and incorrect nucleotides,s. In

the following the notationpi(s) andτi(s) will be used to make this dependence explicit.

5.4.4 Effective Model of the Elongation Dynamics

So far we have formulated the stochastic dynamics of the TEC at fixed nucleotide po-

sition n. Here, we present how aneffectivemodel of overall elongation dynamics can

be constructed for timesτ much longer than the typical dwell time at each position,i.e.,

τ ≫ τi(0 ≤ i ≤ M). 3

At the coarse-grained time-scaleτ one observes the TEC polymerising and cleaving

the RNA transcript at rates which are proportional to the splitting probabilitiespi obtained

above. LetΠ(n, s, τ) be the probability of finding the TEC at positionn at timet having

3We note that all results obtained below do not depend on the exact definition ofτ .
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produced a transcripts ∈ Sn. From each positionn, the TEC can either polymerize or

cleave the RNA transcript with ratesri (i = 0, . . . , M) given by

r0(s) = p0(s)/τ : n→ n + 1 (polymerisation), (5.9a)

ri(s) = pi(s)/τ : n→ n− i (cleavage). (5.9b)

SummingΠ(n, s, t) over all possible configurations ofs, one obtains the probability

of finding the TEC at positionn at timet, irrespective of the transcript sequence:

Π(n, t) =
∑

s∈Sn

Π(n, s, t). (5.10)

The stochastic dynamics ofΠ(n, t) can therefore be expressed as

dΠ(n, t)

dt
= J(n− 1|n)− J(n|n + 1) +

M∑

i=1

[J(n + i|n)− J(n|n− i)] , (5.11)

whereJ(n1|n2) denotes the probability flux fromn1 to n2. In particular one has

lllJ(n1|n1 + 1) =
∑

s∈Sn1

r0(s)Π(n1, s, t), (5.12a)

J(n1 + i|n1) =
∑

s∈Sn1+i

ri(s)Π(n1 − i, s, t). (5.12b)

The process starts atn = 0 and is terminated when positionn = N has been reached. We

therefore impose the boundary conditionsJ(0|−1) = J(−1|0) (reflecting) andJ(N |N−
1) = 0 (absorbing).

In the following, Eq. (5.11) will be used to obtain an expression for Pn, P̄n, the

probability of reaching the terminal position (n = N), having incorporated a correct or

an incorrect nucleotide at positionn, and irrespective of the rest of the sequence. We use

Pn andP̄n to quantify the transcriptional fidelity in terms of the error fraction, defined at

each positionn as [68,101]:

En ≡
P̄n

Pn

. (5.13)

5.4.5 Analytic Results

Here, for the sake of simplicity, we present a detailed treatment ofM = 1 case. The

generalised results forM > 1 are then presented and discussed (for a detailed derivation
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see Appendix A).

Most of the results presented below are given in terms of following dimensionless

quantities, which characterise the competing processes inthe model:

• α1 ≡ kc/c captures the efficiency of cleavage for correct nucleotides

• α2 ≡ kc/c̄ = α1/ǫ captures the efficiency of cleavage for incorrect nucleotides

• K ≡ kp/kb captures the tendency of the TEC to backtrack

M = 1 case

In this case the TEC can backtrack by only one nucleotide. Therefore, the transition

matrix, W
(s) in Eq. (5.6) will depend solely on whether the last nucleotide has been

correctly or incorrectly transcribed. In particular one has

W
(sc) =

[

− [(1 + ǫ)kp + kb] c

kb −(c + kc)

]

, (5.14a)

W
(sw) =

[

− [(1 + ǫ)kp + kb] c̄

kb −(c̄ + kc)

]

. (5.14b)

where we have used the notationsc = (. . . , 0) andsw = (. . . , 1) to denote transcripts

whose last nucleotide has been correctly and incorrectly transcribed, respectively. Apply-

ing the Laplace transform,̃P(z) =
∫∞

0
e−zt

P(t)dt, on Eq. (5.6) and evaluating atz = 0

one can obtain the splitting probabilitiespi ≡ pi(s
c) andp̄i ≡ pi(s

w):

p0 =
K(1 + ǫ)(1 + α1)

K(1 + ǫ)(1 + α1) + α1
; p1 = 1− p0, (5.15a)

p̄0 =
K(1 + ǫ)(1 + α2)

K(1 + ǫ)(1 + α2) + α2
; p̄1 = 1− p̄0, (5.15b)

wherep0, p̄0 correspond to the polymerisation andp1, p̄1 to cleavage.

The splitting probabilities divided byτ yield the effective rates,ri andr̄i (i = 0, 1), in

Eq. (5.11) (forM = 1). The process starts at positionn = 0 and is terminated when state

n = N has been reached. To calculate the probability that the terminal positionn = N

is reached with a correct or incorrect nucleotide incorporated at positionn = n′ we break

the domain of the process into 3 regions, namely

• RegionR−: n = 0, . . . , n′ − 1,

• RegionR0: n = n′,
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• RegionR+: n = n′ + 1, . . . , N − 1.

The process enters regionR0 when a nucleotide is polymerised at positionn = n′. In

particular, the probability flux fromR− to R0 is given by

J(R−|R0) =
∑

s∈Sn−1

r0(s)Π(n− 1, s, t). (5.16)

This polymerisation event will result in either a correct oran incorrect nucleotide at po-

sition n′, This gives rise to two independent branches in the process,the “correct” and

the “erroneous” one. Hence, the reverse probability flux, fromR0 to R−, will be through

both of these branches,i.e.

J(R0|R−) = r1Π(n, sc, t) + r̄1Π(n, sw, t),

≡ Jc(R0|R−) + Jw(R0|R−).
(5.17)

The two branches evolve independently of one another and will lead to probability flowing

into regionR+:
J(R0|R+) = r0Π(n, sc, t) + r̄0Π(n, sw, t),

≡ Jc(R0|R+) + Jw(R0|R+).
(5.18)

Of course when the process enters regionR+ it branches once again. However, the total

probability enteringR+ should be conserved, either flowing back toR0 or to the absorbing

boundaryn = N . This allows us to write

J(R+|R0) = Jc(R+|R0) + Jw(R+|R0), (5.19a)

J(R+|N) = Jc(R+|N) + Jw(R+|N). (5.19b)

In the long time limitt→∞ the fluxes in and out of the different regions will balance

and a steady probability flow towards the terminal positionn = N will be achieved.

Applying the Laplace transform̃Π(n, s, z) =
∫∞

0
e−ztΠ(n, s, t)dt on Eq. (5.11), summing

over the three regions of interest (R−, R0, R+) and evaluating atz = 0 one can obtains a
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system of equations relating the Laplace transform of the aforementioned fluxes:

J̃c(R0|R−) + J̃w(R0|R−)− J̃(R−|R0) + 1 = 0, (5.20a)
ǫ

ǫ + 1
J̃(R−|R0)− J̃w(R0|R−) + J̃w(R+|R0)− J̃w(R0|R+) = 0, (5.20b)

1

ǫ + 1
J̃(R−|R0)− J̃c(R0|R−) + J̃c(R+|R0)− J̃c(R0|R+) = 0, (5.20c)

J̃w(R0|R+)− J̃w(R+|R0)− J̃w(R+|N) = 0, (5.20d)

J̃c(R0|R+)− J̃c(R+|R0)− J̃c(R+|N) = 0, (5.20e)

where the notatioñJ is used to denote the Laplace transform of the correspondingprob-

ability flux evaluated atz = 0. All of these quantities have probability status [116].

Note, for example that in the last line terms̃Jc(R+|RN) and J̃c(R+|R0) up to division

by J̃c(R0|R+) can be interpreted as splitting probabilities; some probability J̃c(R0|R+)

is injected intoR+ (through the “correct” branch) and subsequently divided among the2

boundaries,n = N andn = n′. More importantly, the division does not depend through

which of the two branches the probability ends up in regionR+. This consideration allows

us to write

J̃c(R+|N) = AT J̃c(R0|R+) = AT r0Π(n, sc, t),

J̃c(R+|R0) = An′J̃c(R0|R+) = An′r1Π(n, sc, t),

J̃w(R+|N) = AT J̃w(R0|R+) = AT r̄0Π(n, sw, t),

J̃w(R+|R0) = An′J̃w(R0|R+) = An′ r̄1Π(n, sw, t),

(5.21)

subject to the condition

AT + An′ = 1. (5.22)

Substituting the relationships given by Eq. 5.17, 5.18, and5.21 into the system of

equations one can obtain an expression for the probabilities of interest:Pn′ andP̄n′ :

Pn′ = J̃c(R+|N) =
1

N
p0

1− An′p0
, (5.23a)

P̄n′ = J̃w(R+|N) =
ǫ

N
p̄0

1− An′ p̄0

. (5.23b)

Here,N can be obtained from the normalisation conditionPn + P̄n = 1 andAn′ corre-

sponds to the probability that starting fromn = n′ + 1 cleavage to positionn = n′ will

occur prior to termination. An expression forAn can be obtained by initialising the pro-

cess atn = n′ + 1, and regarding the process bounded inR+, with R0 andn = N being
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absorbing boundaries [see Chapter 3 (3.3.1]. This yield thegeneral recursion formula

An =
ǫ

(ǫ + 1)

p̄1

(1− p̄0An+1)
+

1

(ǫ + 1)

p1

(1− p0An+1)
, (5.24)

with boundary conditionAN = 0. In the limit ǫ→ 0, the above reduces to

An ≈
β(βN−n − 1)

(βN−n+1 − 1)
, (5.25)

whereβ = p1/p0.

Finally, the error fraction at any positionn for M = 1 is given by

En ≡
P̄n

Pn
=

ǫp̄0

p0

1−Anp0

1−Anp̄0
. (5.26)

Fig. 5.2 (top panel) showsEn as a function ofK, for different positions along the template.

Let us now consider two limits whereE attains a constant value independent of po-

sition n. First we examine the limitK ≫ 1, where polymerization is overwhelmingly

favored over cleavage (p0 → 1 andp̄0 → 1). As expected, in this limit Eq. (5.26) reduces

to E ≈ ǫ. On the other hand, in the limitK ≪ α1 ≪ ǫ, cleavage events dominate the

process. In this regime Eq. (5.26) reduces toE ≈ ǫp̄0/p0, or, in terms of the microscopic

rate parameters

E ≈ ǫ · c̄
c
. (5.27)

Hence, in this limit the error fraction depends only onǫ and the ratio of hopping rates.

Since we take these two quantities to be approximately equal, we haveE ≈ ǫ2.

M > 1 case

For the more general caseM ≥ 1 similar results can be obtained in the limitǫ ≪ 1/M ,

i.e., at most one error can occur in a region ofM nucleotides. In particular, it can be

shown that in the same limit (K ≪ α1 ≪ ǫ) the error fraction is given by

E ≈ ǫM+1 · MM

Γ(M + 1)
, (5.28)

whereΓ denotes the Gamma function. Thus, the combined action of backtracking and

cleavage can result in error rates that scale exponentiallywith M , the maximum back-

tracking distance. We note that the error fraction attainedby KP with M intermediate
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Figure 5.2: Error fraction (En) as a function ofK for M = 1. Analytic results [Eq. (5.26)]
are plotted as solid lines and markers show results obtainedfrom stochastic simulations:
(top)En at different positions forα1 = 10−4, α2 = 10−2, ǫ = 10−2 andN = 9. (bottom)
En for different cleavage efficiencies,α1 andα2 at positionn = N − 2, with ǫ = 10−2

andN = 4. Dashed lines show limits discussed in text.

steps has a similarM dependence [68]. The two limits discussed above are illustrated in

Fig. 5.2 (bottom panel). Numerical data were generated using stochastic simulations [52]

of the full transcription elongation model.

5.4.6 An Estimating the Error Fraction

Estimates of the error fractions predicted by our model can be obtained by taking into ac-

count information from experimental studies. First of all,the spontaneous error fraction

ǫ can be calculated from the free energy difference due to a misincorporated nucleotide

(∆G ≈ 4 − 7kBT ), i.e., ǫ ≈ e−∆G/kBT ≈ 10−2 − 10−3 [18]. The cleavage rate,kc, for

bacterial RNAP was measuredkc ≈ 0.1 − 1s−1 in the presence of saturating concentra-

tions of accessory cleavage factors [128]. Moreover, single molecule experiments have

suggested that the TEC hops between backtrack states with rate c ≈ 1− 10 s−1 [47,124].

Using estimates of the maximum spontaneous error fractionǫ = 0.01, slowest cleavage

ratekc = 0.1s−1 and fastest hopping ratec = 1s−1 we can obtain estimates of the lower

bounds on cleavage efficienciesα1 ≈ 10−2 andα2 ≈ 1. These estimates yield error

fractions comparable to the ones observedin vivo (10−4 − 10−5), even forM = 1 but
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Figure 5.3: Error fraction as a function ofK for M = 2. Results were obtained using
stochastic simulations of the model forN = 4, ǫ = 10−2, andα1 = 10−2, 10−4.

sufficiently low values ofK (see Fig. 5.2 bottom panel). Most importantly, however, low

error fractions can be obtained in our model even well away from the limiting regime with

smallM (see Fig. 5.3 forM = 2 case).

5.4.7 Some Key Notes on the Model

We should note that certain simplifications were made in the model that do not however

alter the essence of the results. In particular, depolymerisation as well as the dependence

of the microscopic rates on the sequence composition were neglected. Interestingly, se-

quence heterogeneity can affect transcriptional fidelity.For example, GC rich domains

can lead to slower backtracking rates (due to the increased stability of the RNA-DNA

hybrid) [5]. Our model then predicts that the slower backtracking dynamics imposed by

the sequence will slightly reduce the efficiency of the errorcorrection.

Also, alternative formulations of the model are possible depending on which step is

assumed to provide the discriminatory power to the process.In our current formulation,

discrimination between correct and incorrect nucleotidesis solely provided during back-

tracking, where hopping back into an error site occurs at a much slower rate,̄c ≪ c.

A more general formulation (see Fig. 5.4), which yields however quantitatively similar

results, involves:

1. a fast rate of backtrackinḡkb in the presence of an misincorporated nucleotide at

positionn as compared tokb in the presence of a correct one.

2. a fast hopping ratecf (c < cf ) from state(n, m = l) (error site) into state(n, m =

l + 1)
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Figure 5.4: Schematic illustration of an alternative formulation of the error correction
model. In the alternative formulation of the model discrimination between correct and
incorrect nucleotides is achieved not only during backtracking, owing to the differential
hopping rates, but also at the active state, where TECs with an misincorporated nucleotide
at register would tend to backtrack more often.

3. a slow hopping ratecs (c > cs) from state(n, m = l + 1) into state(n, m = l)

(error site)

As before, one expects that the ratio of the above rates wouldbe approximately equal to

the spontaneous error fractionǫ since all processes are driven by approximately the same

free energy difference∆G

cs

cf

≈ kb

k̄b

cs

c
≈ ǫ ≈ exp [−∆G/(kBT )]. (5.29)

In this scenario discrimination would not only occur duringbacktracking, owing to the

differential hopping rates, but also at the active state, where TECs with an misincorporated

nucleotide at register would tend to backtrack more often.

5.4.8 Numerical Methods

To validate the analytic results obtained, we performed stochastic simulations of the full

transcription elongation model using the Gillespie algorithm [17,52]. Each simulation run

started with the TEC in state(n = 0, m = 0) and terminated when state(n = N, m = 0)

had been reached. From each state, the next state was randomly selected among all acces-

sible states with a probability proportional to the corresponding transition rate. The se-

quences was implemented as a binary list and used at each step of the algorithm to assign

the correct transition rate to each accessible state. Whereas polymerization corresponds

to the addition of an element (0 or 1) to the list, cleavage,(n, m = l) → (n− l, m = 0),

corresponds to the removal of the lastl elements of the list. The sequences was saved at

100



Chapter 5 Transcriptional Error Correction

the end of each simulation run.

For each set of parameters, simulations of the model were repeated until at least100

errors had been observed for each position. The error fraction at each position was then

calculated as

Error fraction =
# incorrect nucleotides(1s)
# correct nucleotides(0s)

. (5.30)

5.5 Summary and Discussion

In this Chapter we presented and studied a microscopic modelof a transcriptional error

correction mechanism involving RNAP backtracking and RNA cleavage. Our model in-

corporates polymerisation of correct and incorrect nucleotides, RNAP backtracking and

RNA cleavage. In analogy with kinetic proofreading, in our model backtracking provides

a multiple-checking reaction, which probes the fidelity of the last few nucleotides several

times before the next polymerization occurs. In fact, the greater the delay introduced by

this mechanism, the greater the accuracy of the process [68,101]. Consistent with this

picture we find a minimum error fraction, which scales exponentially with the maximum

backtracking distanceM , in the limit where backtracking and cleavage dominate the pro-

cess.

Recent experiments have provided support for at least two mechanisms of transcrip-

tional error correction. The first one involves a fidelity checkpoint during the nucleotide

addition cycle [143], whereas the second involves backtracking of the RNAP and RNA

cleavage [4, 124, 143, 147, 159]. Our model suggests experiments that would provide the

quantitative details required to discriminate between these mechanisms and elucidate their

relative roles in transcriptional proofreading.

A particular prediction of our model is the strong dependence of transcriptional fi-

delity on the translocation rates. For example, GC rich domains that lead to lower back-

tracking rates (due to the increased stability of the RNA-DNA hybrid) [5] should reduce

the efficiency of error correction. More importantly, single molecule manipulation tech-

niques can be used to vary backtracking rates in a controlledmanner and validate our

model. In particular, applying a load is expected to strongly affect nucleolytic proofread-

ing since the TEC moves at least a distance∼ δx (whereδx = 3.4Å) during the backtrack-

ing phase. In contrast, minor effects are expected for proofreading mechanisms along the

polymerization pathway, since they should only involve small movements (≪ δx) of the

enzyme.

Our model also predicts that RNAP species with a greater tendency to backtrack

should accomplish lower error rates. Experimental studieshave already revealed that
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specific mutations in the sequence of RNAP can have profound effects on transcriptional

fidelity [66]. It is therefore particularly interesting to study exactly how these mutations

affect transcriptional accuracy and whether these effectsare mediated through changes in

the rates of backtracking or translocation rates.
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Chapter 6

Cell Level: The Stochastic Nature of

RNA Production

In the preceding two chapters we have focused on the single molecule dynamics of the

transcription elongation phase. Ultimately, however, oneis interested in the process of

DNA transcription as a whole and the dynamics of RNA production. The aim of this

Chapter is to bridge these two levels of description by providing an integrated picture

of DNA transcription and characterising how the underlyingmicroscopic dynamics of

the process affect the cellular levels of RNA. To do so we formulate a multistep, coarse

grained model of DNA transcription and using stochastic simulations, we examine the

statistics of RNA production in relation to transcriptional pausing. In particular, we find

that long-lived elongation pauses can lead to bursts of RNA production and non-Poisson

RNA statistics. Our results have direct implications forin-vivo transcription since they

provide a microscopic mechanism for transcriptional bursts that have been observed ex-

perimentally.

6.1 Introduction

It has long been appreciated that life at the cellular level is noisy [122]. Indeed, all cellu-

lar processes rely on random encounters between bio-molecules and are therefore discrete

and inherently stochastic in nature. This consideration along with the fact that that most
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molecular species are only present in small numbers within cells constitutes stochasticity

a major player at the cellular level. However, it has only been with recent advancements

in experimental techniques that a more quantitative description of cellular processes has

become possible [70,115,154]. In particular, the advent offluorescence techniques, allow-

ing to track levels of chemical species within cells, renewed the interest in the stochastic

nature of cellular processes and its consequences [83].

This experimental endeavour has largely been complementedby mathematical and

computational models that take the apparent stochasticityinto account [107, 133]. Such

models are essential not only for interpreting experimental data but also for providing

fresh insight into the processes that underpin life. However, any attempt of mathematical

or computational modelling is severely hindered by the inherent complexity of life pro-

cesses and our limited knowledge. To be useful and instructive, therefore, models have

to rely on certain assumptions regarding which are the critical aspects of the process con-

sidered and which can safely be neglected. The validity of these assumptions is ensured

through experimental studies that ultimately verify or disprove the predictions made by

different models.

Of particular importance is understanding the stochastic nature of gene expression

and gene regulation. These processes underlie every aspectof the cell and therefore their

stochastic dynamics ought to have the most direct implications regarding cell behaviour

and fate [25, 72, 83]. One of the major assumptions behind standard models of gene ex-

pression and gene regulation is the Poisson character of thesteps involved [107,133]. For

example, transcription is usually described as a single-step reaction occurring at a constant

rate. However, as we have seen in the previous chapters, thisis roughly the case. In partic-

ular, transcription as well as translation are in themselves multi-step processes involving

initiation, elongation and termination. Most importantly, these processes can exhibit bio-

chemical fluctuations at each of these stages due to their complex microscopic dynamics

and cannot in general be described as simple Poisson processes. Several question there-

fore arise concerning such simplifications. Under what conditions are they valid? Are

we missing key aspects of gene expression by ignoring the microscopic dynamics of the

processes involved?

Such questions become even more relevant in the light of recent experimental obser-

vations that highlight the non-Poisson character of DNA transcription. Utilising artificial

reporter genes, which give rise to mRNA chains carrying several binding sites for fluores-

cently labeled probes (see Fig. 6.1), experimental studies[27,55,114] suceeded in tracking

mRNA levels within living cells with single molecule resolution. The key finding of these

studies was that mRNA production both in bacterial and eukaryotic cells occurs in bursts.
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In particular, Goldinget al. [55] obsereved intense periods of rapid mRNA production

followed by periods of transcriptional inactivity (see Fig. 6.1). This mode of mRNA pro-

duction gives rise to enhanced variability in the mRNA levels and cannot be captured by

simple Poisson models of transcription.

The aim of this Chapter is to provide a quantitative picture of how the microscopic

dynamics of DNA transcription affect gene expression and inparticular RNA production.

The remainder of the Chapter is organised as follows. We firstgive a brief overview of a

simple model that has found wide appreciation in describingstochastic gene expression.

We mainly focus on assumptions underlying the model as well as the predictions the

model makes. We then motivate the need for more detailed picture of DNA transcription

by considering a model that incorporates the microscopic elongation dynamics discussed

in Chapter 4. Finally, we present a coarse grained model of DNA transcription involving

elongation pauses. Using stochastic simulations of the model we examine the effect that

the microscopic dynamics of the process (i.e., pausing) have on the statistics of mRNA

production. Our results indicate that long-lived elongation pauses can play a significant

role in the fluctuations of RNA species leading to bursts of RNA production and non-

Poisson RNA statistics.

6.2 Standard Models of Stochastic Gene Expression

In this section we present a simple model of stochastic gene expression. The model,

hereafter referred as thestandard model(SM), captures the apparent stochasticity of gene

expression by considering the random birth and death of RNA and protein molecules [107,

133]. Effectively, SM coarse grains all processes involvedinto elementary reactions obey-

ing Poisson statistics. Despite its simplicity, SM (and itsdifferent variants) have been suc-

cessfully used to interpret experimental data and to provide a first handle of the stochastic

nature of gene expression [42,109,158]. However, SM relieson certain assumptions that

limit its validity. We discuss some of these assumptions andmotivate the need for more

detailed, microscopically grounded, models, especially for the case of DNA transcription.

6.2.1 Mathematical Formulation

As described in chapter 2, at a coarse grained level, the expression of a protein-coding

gene can be considered as two-step process involving (i) transcription and (ii) translation.

During transcription mRNA molecules are produced from the DNA. At the subsequent

step of translation each mRNA molecule is used as a template for the production of pro-
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A
C

B

Figure 6.1: Experimental results demonstrating bursts of mRNA transcription. (A)
Schematic illustration of the mRNA detection method. Multiple fluorescent labeled
probes bind to each mRNA molecule, yielding a bright signal that enables detection
of the mRNA. Reprinted from A. Rajet al., PLOS Biol., 4 (2006). (B) Number of
mRNA moleculesn per cell, as a function of time. Intense periods of mRNA produc-
tion are followed by periods og transcriptional inactivity. Reprinted from I. Goldinget
al., Cell, 123(2005). (C) Variance (σ2) versus average (〈n〉) of mRNA numbers. The ra-
tio σ2/〈n〉 = 4.1 is significantly higher than that predicted from a simple Poisson model
of transcription (σ2/〈n〉 = 1). Reprinted by permission from Elsevier: I. Goldinget al.,
Cell, 123(2005) Copyright(2005).
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mRNA ProteinDNA

TranslationTranscription

protein degradationmRNA degradation

Figure 6.2: Schematic illustration of a simple model of geneexpression. Transcription,
translation as well as RNA and proteins degradation are captured as single-step reactions.

Processes Reaction representation Probabilities
Transcription (m→ m + 1) ∅→mRNA km ∆t

Translation (n→ n + 1) mRNA→mRNA + protein m kp ∆t
mRNA degradation (m→ m− 1) mRNA→ ∅ m dm ∆t
Protein degradation (n→ n− 1) protein→ ∅ p dp ∆t

Table 6.1: Reactions involved in the standard model of stochastic gene expression.

teins. Of course, due to active cell processes or cell dilution mRNA and protein molecules

are constantly lost. This simple picture, schematically illustrated in Fig. 6.2, sets the start-

ing point for the formulation of SM.

Let us focus on gene expression dynamics for a single gene present on the DNA. The

system consists of the mRNA and protein molecules produced from this gene, which we

denote bym andp, respectively. SM assumes that all processes have a constant proba-

bility of occurring over some time interval∆t [108]. For example, transcription events,

resulting in the production of mRNA (m→ m + 1), occur with probabilitykm∆t. Trans-

lation on the other hand, resulting in the production of proteins (p→ p + 1), occurs with

probability proportional to the number of mRNA molecules present,i.e., mkp∆t. Finally,

degradation of mRNA (m → m − 1) and proteins (p → p − 1) occur with probabilities

mdm∆t andpdp∆t, respectively. The reactions involved in the SM are summarised in

Table 6.1.

Implicit in the above picture is the Markovian assumption. In particular, SM describes

the evolution of the system at a coarse-grained time-scale∆t during which transcription,

translation, and degradation events have a constant probability to occur. Hence, at this

level of description, the change observed in the mRNA and protein molecules betweent

andt+∆t has a certain probability distribution, which depends on the state of the system

at timet but not on previous times.
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As we have seen in Chapter 3 (3.2.4) the above consideration allow us to formulate

the Master equation describing the dynamics ofP (m, p, t) ≡ P (m, p, t|m0, p0, t0), the

PDF of observingm mRNA molecules andp proteins at timet given that att = t0 one

hasm0 andp0 molecules, respectively. The Master equation given by

d P (m, p, t)

dt
= km P (m− 1, p, t)− km P (m, p, t) (transcription)

(m + 1) dm P (m + 1, p, t)−m dm P (m, p, t) (mRNA degradation)

m kp P (m, p− 1, t)−m kp P (m, p, t) (translation)

(p + 1) dp P (m, p + 1, t)− p dp P (m, p, t) (protein degradation)
(6.1)

The picture conveyed by the above equation is the following.All processes that alter

the state of the system obey exponential temporal statistics and, therefore, appear un-

correlated in time. For example, the timeτ between successive transcription events is

distributed according to

P (τ) = kme−km τ . (6.2)

Similar, exponential distributions describe the successive translation events of individual

mRNA molecules as well as the lifetime of any mRNA or protein.The dynamics of the

system is simply a combination of all these mutually independent processes.

6.2.2 Remarks on the Standard Model

As formulated above, SM attributes fluctuations in gene expression to the apparent ran-

domness with which the processes considered (i.e., transcription, translation, and degra-

dation) occur over time. In this respect, SM only captures the intrinsic fluctuations of

the system, and disregards external sources that effect thesystem in an apparently ran-

dom fashion. Particular examples ofextrinsicsources are bio-molecules that are actively

involved in the processes of transcription (e.g., RNAP), translation (e.g.,ribosomes), or

degradation (e.g.,proteases). Such bio-molecules demonstrate fluctuations in their num-

bers that affect the expression of genes. Such effects can beintroduced in the SM by

allowing the rates of transcription, translation, and degradation to vary in some stochastic

manner.

Here, we should also stress the fact that SM captures the intrinsic fluctuations of gene

expression in a phenomenological manner, since it disregards all the microscopic dynam-

ics of the processes involved. Processes are effectively treated as elementary chemical

reactions obeying either zero or first order kinetics. As we will see in greater detail below,
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the phenomenology invoked by SM relies on the assumption that all processes involve a

rate limiting step that dominates their microscopic dynamics. In this respect they can be

approximated by single-step processes.

For example, in the case of transcription this rate limitingstep is assumed to be due

to the slow time-scale at which the RNAP recognises the promoter sequences and ini-

tiates transcription. In general, however, the frequency of transcription initiation has a

wide dynamical rangein-vivo [85], andin-vitro studies have shown that initiation times

can be as fast as a few seconds [89, 127, 160]. Clearly then, rapid initiation times can be

significantly shorter than the time needed for elongation, especially for long DNA tem-

plates or bacterial genes transcribed in operons. In these cases, a Poisson representation

of the process might be an inadequate approximation. Indeed, recent experimental studies

focusing on thein-vivo transcription have demonstrated the non-Poisson character of the

process [27,55,114], highlighting the need for more detailed microscopic models able to

capture the intrinsic fluctuations of the process.

With the above in mind, in the following, we aim to qualitatively and quantitatively

characterise the effect that the microscopic dynamics of DNA transcription have on the

statistics of mRNA production. In particular, we use the model of elongation dynamics

presented in Chapter 4 (4.4) as a starting point to demonstrate the effect of pauses due to

backtracking on the statistics of the mRNA population. We then formulate a more general

model of transcription incorporating elongation pauses and study the problem in greater

detail.

6.3 Incorporating Elongation Dynamics

The elongation phase of transcription demonstrates non-trivial dynamics [82], such as

RNAP pausing, that can significantly alter the statistics ofthe process. Here, we present

an integrated model of DNA transcription and demonstrate how transcriptional pausing

can qualitatively alter the statistic of mRNA production. The model is based on the model

of elongation dynamics presented in Chapter 4 [see Eq. (4.31)]

As described in Chapter 4 elongation dynamics can be captured in terms of two dis-

crete variables(n, m). Variablen denotes the position of the last transcribed nucleotide

(or length of the RNA), whereasm the position of the active site relative ton. From

the active state(n, m = 0) the TEC can proceed with polymerisation(n + 1, m = 0)

or depolymerisation(n − 1, m = 0) of the nascent RNA at ratesp+ and p−, respec-

tively. Moreover, it backtracks(n, m = −1) at a ratepb. During backtracking the TEC

hops between contiguous translocation state(n, m = l) → (n, m = l ± +1) at ratec.
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x=n+m n

k i

Paused

Blocked

Termination
Elongation

Ln=0 n=N

Initiation

DNA

mRNA
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Figure 6.3: Schematic illustration of an integrated model involving initiation, elongation
and mRNA degradation. Initiation occurs at a constant rateki and multiple TECs are
allowed to transcribe the same DNA template. During elongation the state of individual
TECs is characterised by two variablesn andm. Variablen denotes the position of the last
transcribed nucleotide, whereasm the position of the active site relative ton. The actual
position of the TEC along the DNA template is given byx = n + m. Initiation involves
the the formation of a TEC in state(n = 0, m = 0) and termination of transcription
occurs when state(n = N, m = 0) has been reached. For RNA degradation a constant
ratekd has been assumed.

Backtracking is restricted up to some boundary(m, m = M) and polymerisation can pro-

ceed when the active state(n, m = 0) is reattained. The elongation phase starts at state

(n = 0, m = 0) and terminates at state(n = N, m = 0).

To provide a more complete model of transcription, we regardthat that the initiation

step, involving the loading of the RNAP on the DNA template and the formation of a TEC

occupying state(n = 0, m = 0) occurs at a constant rateki. Furthermore, we assume that

termination takes place instantaneously when the transcript reaches its designated size

N . To assess the dynamics of the RNA population we also includedegradation which we

model as a first order process with rate constantkd. The combination of mRNA production

and degradation gives a first handle on RNA levels and fluctuations in the cell.

In fact, RNA production is complicated by the fact that multiple initiation events can

occur within the time it takes to produce a single RNA. This would lead to several TECs

moving in tandem on the same DNA template [57], each synthesising a different RNA.

To capture the physical restriction that two TECs cannot come in close proximity due to

non-specific interactions between them or to the additionalwork required to deform the

DNA helix [28, 88], we set a minimum (exclusion) distance ofL nucleotides (L ≪ N)

between the active sites of any two contiguous TECs. In termsof variablesn andm
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Figure 6.4: Results obtained from stochastic simulations of the integrated model of DNA
transcription, illustrating the burst-like RNA production induced by backtracking pauses.
The bottom panel shows the mRNA production events in time andthe trace above illus-
trates the resulting mRNA count fluctuations. In the third panel dmRNA/dt is plotted
(dt = 6min), along with an arbitrary threshold (dotted line, set to1/dt mRNA/sec).
The threshold enables us to visualise the transcriptional process as a telegraph process
with ‘off’ and ‘on’ states corresponding to low and high rates of mRNA production (top
panel). The parameters used in the simulation are summarised in Section 6.5

the active site of a TEC is located at positionx = n + m along the DNA template.

Therefore, a TEC, positioned atx1, can translocate forward (backward) if the leading

(trailing) TEC, positioned atx2, is at distance of more thanL nucleotides,i.e., |x1−x2| >
L. A similar argument also applies for transcription initiation, that is, no RNAP can

initiate transcription if a TEC is present at positionx ≤ L. A schematic illustration of the

model is given in Fig. 6.3.

Stochastic simulations (see section 6.5) of the model described above indicate that

transcriptional pausing due to backtracking can give rise to burst-like production of RNA

transcripts (see Fig. 6.4). Intuitively, sufficiently longpauses induced via backtracking

can shut down mRNA production by blocking trailing TECs. In the intervals between

pauses, multiple blocked TECs that have accumulated at the congestion site are likely to

be transcribed in a burst of rapid mRNA production. In the following Section we study

this phenomenon in greater detail using a coarse grained model of DNA transcription.
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6.4 Coarse-Grained Model of DNA Transcription

In the previous Section we devised an integrated model of thetranscription process and

demonstrated that backtracking can result (under certain conditions) into bursts of mRNA

production. However, long lived transcriptional pauses can be induced, besides back-

tracking, through a wide variety of mechanism such as sequence encoded signals [7],

nucleosome packaging [24,82] and DNA lesions [95].

Here we formulate a more general model of DNA transcription with the aim of quanti-

tatively studying the effect of transcriptional pausing onthe statistics of RNA production.

The model is inspired by asymmetric exclusion processes (ASEP) that have been widely

used in non-equilibrium statistical mechanics to model transport and traffic [36,43].

6.4.1 Model Formulation

At a coarse grained level, DNA transcription can be described by a one dimensional totally

asymmetric exclusion process [36,43]. Within this picture, TECs are thought as particles

moving on a chain, which represents the DNA template. Each site of the chain maps to

a DNA region rather than a single nucleotide. As described inthe previous section the

length of this region is set by the minimum distance that two complexes can approach

each other due to steric interactions between them or the additional work required to

deform the DNA helix. Since at any point during transcription the footprint of a TEC is

approximately30 nucleotides long [58], a reasonable estimate of the exclusion distance

would of the order of50− 100 nucleotides.

Transcription initiation occurs with rateki and involves loading of a particle at position

n = 1. While moving on the chain, particles can exist in two statesrepresenting active

and paused TECs. Active particles hop forward with ratekf provided that the next site is

not occupied. Forward movement is in kinetic competition with pausing which occurs at

ratekp. Once paused a particle can hop forward with a reduced ratek̄f (k̄f < kf ) and its

state is reset to active. Finally, a particle terminates transcription from siten = N with

ratekt. The above transitions are schematically illustrated in Fig 6.5.

The four relevant time-scales associated with the model are

• τi = 1/ki: time-scale of initiation

• τf = 1/kf : time-scale of active elongation

• τp = 1/k̄f : time-scale of a single pause

• τt = 1/kt: time-scale of termination
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Figure 6.5: Schematic illustration of the state transitions involved in the coarse-grained
ASEP type model of DNA transcription. Initiation,i.e., loading of a particle at position
n = 0, occurs at rateki. During elongation particles move forward on the chain (n →
n+1) at ratekf . At any position particles can enter a paused state (red) at ratekp. Forward
movement of a paused particle occurs at ratek̄f . Termination occurs from positionn = N
at ratekf .

The overall dynamics of the process depend on the relationship between these time-scales.

In particular, we define two dimensionless quantitiesE andS as:

S ≡ kf

k̄f

, (6.3)

E ≡ kp

kf

. (6.4)

S (S ≥ 1) quantifies the time overhead introduced by transcriptional pausing, that is

S ≈ 1 indicates short pauses, whileS ≫ 1 long lived ones. On the other hand,E relates

to the probability of entering the paused state at a specific site via

Probability to pause=
E

1 + E . (6.5)

AsE → 0, pauses become more and more infrequent whileE → ∞ essentially guarantees

pausing at each site.
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6.4.2 Inter-arrival Statistics

Using stochastic simulations (see section 6.5) of the modelpresented above we examine

the steady state statistics of theinter-arrival times(T ), defined as the intervals between

successive termination (RNA production) events. Our choice of studying the inter-arrival

times instead of RNA populations levels enables us to disregard the process of mRNA

degradation and focus solely on the microscopic dynamics oftranscription. Furthermore,

advancements in fluorescent techniques, allowing for single molecule resolution, make

the direct measurement of inter-arrival times possible [70,115,154].

In particular we focus on the squared coefficient of variation CV 2
T defined as

CV 2
T =

σ2
T

〈T 〉2 . (6.6)

CV 2
T is a normalised measure for the dispersion of a probability distribution and pro-

vides a first handle on the temporal fluctuations of the process. Furthermore, it provides

a useful measure for qualitative comparison with the Poisson process, which has been

used in standard models of gene expression to model the transcription step. Events occur-

ring according to a Poisson process are randomly and independently distributed in time.

Therefore, the inter-arrival times follow an exponential distribution that yieldsCV 2
T = 1.

Consequently, super-Poisson (high variance) processes are indicated byCV 2
T > 1, while

sub-Poisson (low variance) processes byCV 2
T < 1.

6.4.3 Statistics of RNA Production in the Absence of Pauses

We start our analysis by considering the simplest scenario,in which TECs are not allowed

to enter the paused state,i.e., E = 0. As illustrated in Fig. 6.6, the relation between the

three relevant time-scalesτi, τf , andτf alter the statistics of the inter-arrival times from

Poisson to sub-Poisson.

In particular, forτi ≫ τf , τt [regime (I) in Fig. 6.6], initiation becomes the rate limit-

ing step and fully determines the dynamics of the process. Inthis regime the mean inter-

arrival time scales like1/ki and the squared coefficient of variation approaches unity (see

Fig. 6.7). Effectively, the model becomes equivalent to a Poisson process with rate pa-

rameterki and hence the inter-arrival times obey an exponential distribution (see Fig. 6.8).

Similar results are also obtained forτf ≫ τi, τf [regime (III) in Fig. 6.7].

As τf is increased relative to the two other time-scales, the elongation phase starts

adding more and more to the total transcription time. This has as a consequence the

decrease of the temporal fluctuations (see Fig. 6.7), since the dynamics of the process
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Figure 6.6: Heat maps of the squared coefficient of variationof the inter-arrival times
(CV 2

T ) in the absence of transcriptional pauses (E = 0). Depending on the relation be-
tween the three relevant time-scalesτi, τf , τt, the behaviour of the model can be classified
into three regimes. Regime (I) and (III) correspond to Poisson statistics (CV 2

T = 1),
whereas, regime (II) corresponds to sub-Poisson statistics (CV 2

T < 1). Results were ob-
tained using stochastic simulation of the model forN = 20.

cease to be governed by a single rate limiting step. Whenτf & τi, τt the dynamics of

transcription are dominated by the elongation phase, whichmakes the process appear

sub-Poisson [regime (II) in Fig. 6.6]. In this regime the DNAtemplate is fully occupied

by TECs moving in tandem. A TEC will occasionally be blocked behind another one, but

on average their motion will be regular and mRNA production will be occurring at rather

fixed intervals. This is demonstrated in the distribution ofthe inter-arrival times, which

becomes narrowly peaked around the mean and can be well fittedby a gamma distribution

(see Fig.6.8).

In summary, when transcriptional pauses are negligible thedynamics of the process

depend on whether a single rate limiting step is present or not. Given sufficiently low

rates of initiation or termination the process demonstrates Poisson characteristics, while

when the elongation phase becomes significant temporal fluctuations tend to get averaged

out.

6.4.4 The Effect of Pause Lifetimes

We now turn to the question of how transcriptional pauses affect the statistics of the inter-

arrival times. Inclusion of transcriptional pauses adds anadditional time-scaleτp and

the relation between this time-scale and those of initiation (τi) and active elongation (τf )

dictates the behaviour of the process. As illustrated in Fig. 6.9, we can distinguish three

main regimes in the parameter space giving rise to qualitatively different behaviour.
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Figure 6.7: The mean inter-arrival time (〈T 〉) and the squared coefficient of variation
(CV 2

T ) as a function of the initiation rate (ki/kf ) for E = 0. When initiation is the rate
limiting step〈T 〉 demonstrates a linear variation andCV 2

T = 1, indicating the Poisson
character of the process. For higher values ofki the time spent on active elongation
becomes significant and wipes out temporal fluctuation. Results were obtained using
stochastic simulation of the model forN = 20.

In the limit of τi ≫ τf , τp [regime (I) in Fig. 6.6] initiation dynamics dominate the

process. In this regime the density of TECs on the DNA template is low and therefore

transcriptional pauses and interactions between TECs are expected to have only marginal

effects. Therefore, as discussed above, the model becomes equivalent to a Poisson process

and inter-arrival times obey an exponential distribution.For τf ≫ τi, τp [regime (III) in

Fig. 6.9] fast transcription initiation is blocked by the slow movement of the TECs on

the DNA template, while the relatively short-lived transcriptional pauses, as in the case

above, play no significant role. In particular, in this regime the density of the TECs

along the DNA is maximal and their regular motion gives rise to a sub-Poisson statistics

(CV 2
T < 1).

However, the behaviour of the model changes significantly when pauses dominate

transcription. In particular, forτp ≫ τi, τf [regime (II) in Fig. 6.6] we observeCV 2
T > 1

indicating the super-Poisson behaviour of the process. In particular, the distribution of

inter-arrival times becomes heavy-tailed and two bumps appear in its shape, indicative of a

burst-like production of RNA transcripts (see Fig. 6.10). The physical picture behind such

behaviour is a simple one. Long lived transcriptional pauses can create congestion points

by blocking the movement of trailing TECs, while the leadingTECs continue to transcribe

normally. In this way the uniform [regime (I)] or Poisson [regime (III)] distribution of

TECs on the DNA template is disrupted, resulting in a burst-like production of mRNA

transcripts.

116



Chapter 6 Cell Level: The Stochastic Nature of RNA Production

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0 1 2 3 4
0

0.2

0.4

0.6

0.8

t[〈T 〉]t[〈T 〉]

P
ro

b
ab

il
it
y

D
en

st
it
y

P
ro

b
ab

il
it
y

D
en

st
it
y

TimeTime

Figure 6.8: The distribution of the inter-arrival times (scaled by the mean) in the absence
of pauses (E = 0) at the two limiting regimes:τi ≫ τi, τt (left panel) andτf ≫ τi, τt

(right panel). For low rates of initiation the inter-arrival times are in agreement with an
exponential distribution with rate parameterki (red line). For higher values the distribu-
tion become narrowly peaked around the mean value. Here the red line denotes a Gamma
distribution with the same mean and variance. Results we obtained using stochastic simu-
lation of the model forN = 20, kt/ki = 1 ki/kf = 10−2 (left panel) andki/kf = 1 (right
panel).

6.5 Numerical Methods

For the model presented in Section 6.3 results were obtainedusing stochastic simulations

(Gillespie algorithm) [52] with the following set of parameters:N = 4 kbp,L = 100 bp,

M = 10 bp, p+ = 50 s−1, p− = 0.5 s−1, c = 0.1 s−1, ki = 0.02 s−1 andkd = 310−4

s−1 andpb = 0.05 s−1 (yielding approximately1 pause/kb). The code was implemented

in JAVA and a single run was performed, shown in Fig. 6.4. The system was monitored

using

• a list of state variables(ni, mi), denoting the state of theith TEC along the DNA

template,

• a counterCmRNA keeping track of RNA molecules,

• a timert.

The system was initialised with an empty list of state variables (no TECs on the DNA

template),CmRNA = 0, andt = 0. Each time an initiation event occurred a new set

of variables(n = 0, m = 0) was added at the beginning of the list. In the case of a

termination or degradation eventCmRNA was updated accordingly. At each step of the

algorithm, all permissible transitions for each TEC present on the DNA template were

calculated based on the list of state variable and were addedto an “event” list. This list
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Figure 6.9: Heat maps of the squared coefficient of variationof the inter-arrival times
(CV 2

T ) in the presence of transcriptional pauses (E > 0). Depending on the relation
between the three relevant time-scalesτi, τf , τp, the behaviour of the model can be clas-
sified into three regimes. Regime (I) (τi > τf , τp) corresponds to sub-Poisson statistics
(CV 2

T < 1), regime (II) (τp > τf , τp) to super-Poisson statistics (CV 2
T < 1), and regime

(III) ( τi > τf , τp) to Poisson statistics (CV 2
T = 1). Results were obtained using stochastic

simulation of the model forN = 20, E = 0.05.

was also appended with the events of initiation (whenn1+m1 < L), and RNA degradation

(whenCmRNA > 0). From the list of events, one was chosen with probability proportional

to the corresponding rate [see Chapter 3 (3.3.4)] and the system state was updated.

All results presented in Section 6.4 were obtained using stochastic simulation of the

coarse grained model of DNA transcription. As above the state of the model was moni-

tored using

• a list of state variables(ni, li), denoting the position (ni) of the ith particle along

the chain and its current state (li = 0, 1, either paused or active)

• a list of termination timesTi

• a timert.
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Figure 6.10: The distribution of the inter-arrival times (scaled by the mean) in the presence
of pauses (E > 0) at two limiting regimes:τi ≫ τi, τt (left panel) andτf ≫ τi, τt (right
panel). For low rates of initiation the inter-arrival timesare in good agreement with an
exponential distribution with rate parameterki. For higher values the distribution becomes
fat-tailed and RNA production appears to occur in bursts. Results were obtained using
stochastic simulation of the model forN = 20, E = 0.05

The system was initialised with an empty list of state variables and termination times and

t = 0. Each time an initiation event occurred a new set of variables (n = 0, l = 1) was

added at the beginning of the list. In the case of a termination event the current time was

appended in the list of termination times,i.e., Tlast = t. At each step of the algorithm, all

permissible transitions for each particle on the DNA chain were calculated based on the

list of state variable and were added to an “event” list. Fromthe list of events, one was

chosen with probability proportional to the correspondingrate [see Chapter 3 (3.3.4)] and

the system was updated accordingly. The code was implemented in JAVA and a single

simulation run was performed for each for each set of parameters allowing the list of

times to reach a size of105 elements. For the analysis, however, the first103 elements

were neglected to ensure that the density of the particles onthe DNA chain had reached

a steady state. Inter-arrival times were calculated by subtracting consecutive elements of

the list, i.e.,Ti = Ti+1 − Ti.

For the distribution presented in Fig. 6.8 and 6.10 the data obtained (Ti) were rescaled

by their mean value,

T̄i =
Ti

∑

j Tj
(6.7)

and binned. Bin frequencies were subsequently transformedinto probabilities by division

with the size of the sample and finally into probability densities by division with the bin
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Regime Behaviour

τi ≫ τp, τf
τp ≫ τf Poisson
τf ≫ τp Poisson

τf ≫ τp, τi
τi ≫ τp sub-Poisson
τ3 ≫ τ1 sub-Poisson

τp ≫ τi, τf
τi ≫ τf super-Poisson
τf ≫ τi super-Poisson

τi ∼ τf ≫ τp sub-Poisson
τi ∼ τp ≫ τf super-Poisson
τf ∼ τp ≫ τi super-Poisson

Table 6.2: Table summarising the behaviour of RNA production in the different limiting
regimes.

size.

6.6 Summary and Discussion

In this Chapter we have presented a integrated model of DNA transcription linking the

microscopic dynamics of the process to fluctuations in mRNA production and gene ex-

pression. The model incorporated the initiation, elongation, and termination phases of

DNA transcription and was formulated in terms of a totally asymmetric exclusion process

to take into account that multiple RNAPs with repulsive interactions can simultaneously

transcribe the DNA template. Our results indicate that the interplay between the different

time-scales of the model in combination with the exclusive interactions between transcrib-

ing TECs can significantly alter the temporal statistics of mRNA production. A qualitative

description of the different classes of behaviour obtainedis presented in Table 6.2.

Following the work presented in previous chapters we particularly focused on char-

acterising the effect of transcriptional pauses on the statistics of mRNA production. Our

results suggest rare and long pauses can result in a burst-like production of mRNA tran-

scripts and super-Poisson mRNA statistics. The effect of pauses can be linked heuris-

tically to a switching mechanism between high and low rates of mRNA production. In

particular, sufficiently long pauses shut down mRNA production by jamming TEC traf-

ficking on the DNA template. Once the leading TEC resumes elongation multiple blocked

TECs that have accumulated at the congestion site are likelyto terminate transcription re-

sulting in burst of rapid mRNA production. Similar findings illustrating the effect of

transcriptional pauses on the statistics of RNA productionwere independently reported in

Ref. [37].

120



Chapter 6 Cell Level: The Stochastic Nature of RNA Production

Interestingly, recent experiments have provided evidenceof the existence of bursts of

transcription both in bacterial [55] and eykaryotic cells [27, 114]. Our model attributes

this phenomenon to particularly long pauses that occur during transcription elongation.

Such pauses can be attributed to a wide range of factors such as RNAP backtracking,

sequence encoded signals [7], molecules that interact withthe transcribing RNAP, DNA

lesions ,or nucleosome packaging [24, 82]. We note, however, that burst of mRNA pro-

duction can also be attributed to other phenomena. For example, changes in the state of

the promoter due to chromatin remodelling [27, 114] or the the diffusive motion of regu-

latory molecules [142] can also provide a switching mechanism between rapid and slow

mRNA production

Advancements in experimental techniques, which allow one to track levels of chemi-

cal species within cells, have renewed the interest in the stochastic nature of gene expres-

sion and its implications regarding cell behaviour and fate. So far, however, modelling

attempts have focused on a coarse grained level of description ignoring the microscopic

details of the processes involved in gene expression. The results presented in this Chapter

can also be relevant for translation and highlight the need for a finer level of description

to understand gene expression and regulation and fluctuations therein.
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Chapter 7

Population Level: The Social Behaviour

of Bacteria

The stochastic nature of subcellular processes plays a crucial role in determining cellular

behaviour and cell fate. However, cells rarely exist in isolation, and their behaviour is also

shaped to a large extent by inter-cellular communication. In this Chapter, we aim to study

in a simplified context how the dynamics and behaviour of a cell population, shaped by

interactions between individual cells, is affected by intra-cellular fluctuations. Inspired by

real life bacterial communication, we propose and study an artificial gene regulation net-

work. The network couples bacterial cells via two distinct communication channels and

gives rise to two mutually exclusive bacterial behaviours.Beyond some critical thresh-

old of coupling, coordination at the population level is achieved, with the majority of the

cells adopting one of the two behaviours. Our results indicate that subcellular fluctuations

raise the critical coupling strength at which transition tomajority consensus is observed.

We provide a physical explanation of the phenomenon using a coarse-grained, Ising-type

model of the bacterial population. Thein-silico paradigm of bacterial social behaviour

presented in this Chapter illustrates the bidirectional relationship between cellular and

population-level dynamics exemplifying possible effectsthat intra-cellular fluctuations

can have at the population level.
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7.1 Introduction

Cells are constantly presented with “choices” regarding their fate and behaviour. The

mechanisms underlying their apparent decision making are intricate networks of regula-

tory interactions between genes and proteins. These networks function as genetic pro-

grams giving rise to distinct cellular behaviours in response to changes in environmental

conditions or changes of the cell’s internal state. However, these modules of cellular

functionality are far from reliable. Instead it has long been appreciated that the inherent

stochasticity of subcellular processes renders randomness a key player in dictating cel-

lular phenotype, behaviour and fate [86, 102], one that cells must adapt to cope with or

occasionally exploit to their advantage.

A simple, yet illustrative example comes from the lifestyleof λ phage, a virus infect-

ing bacterial (Escherichia Coli) cells. Upon infection, the genome of the phage (∼ 50

genes) is integrated into the bacterial DNA, and subsequently host machinery facilitates

the expression (transcription and translation) of its genes. Theλ phage genome contains

a rather simple genetic programme enabling the phage to choose between two distinct

lifestyles, thelysogenicand thelytic one [112]. Under conditions that allow bacterial pro-

liferation, the phage adopts the lysogenic lifestyle, where the protein product of a master

regulator gene is responsible for repressing the the rest ofthe phage genes. Hence, the

phage remains dormant and its genetic material is passivelyreplicated along with the rest

of the bacterial DNA. When, however, the bacterial population is stressed through expo-

sure to UV light, the phage switches to its lytic lifestyle. Expression of phage genes is

rapidly turned on and as many as100 phage particles are assembled causing the bacterial

cell to lyse (burst) [112]. Importantly, switching from thelysogenic to the lytic lifestyle

can also be triggered in the absence of environmental stimuli, solely due the stochastic na-

ture of the processes involved in gene expression. Not surprisingly λ phage has evolved

elegant mechanisms for minimising these randomly induced lytic events [142], Theλ

phage paradigm illustrates the crucial role of fluctuationsin dictating the behaviour and

fate of individual cells.

Of course, one should also appreciate the fact that cells rarely exist in isolation. In

multicellurar organisms, for example, cells are constantly signalling to each other, syn-

chronising their activities in this manner and coordinating their fates during develop-

ment [21]. Similar cell-to-cell communication is observedin the bacterial kingdom. Bac-

terial communication, termed asquorum sensing, is mediated by small molecules called

autoinducersthat bacterial cells produce, release to their environment, and detect [150].

When the autoinducer molecules reach some critical concentration within a bacterium
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they trigger a quorum response by activating certain transcription factor proteins that reg-

ulate the expression of quorum-specific genes [150]. In thismanner, bacterial cells are

constantly communicating with one another orchestrating their behaviour in response to

environmental stimuli and changes in their density.

The dependence of population-wide dynamics on the inter-cellular communication

raises the question of how noise present at the intra-cellular level affects the behaviour at

the cell population level. Such a question is particularly interesting to the physics commu-

nity that has extensively studied the collective behaviourof noise-driven, non-linear sys-

tems in many different contexts [48]. Specific examples of particular interest are ensem-

bles of noise-driven bistable switches [111]. Effectively, each switch can be considered

as a system possessing a double-well energy landscape with the two wells corresponding

to the two discrete states that the switch can attain. In the absence of any coupling, due to

intrinsic fluctuations individual switches undergo randomtransitions from one state to the

other. The presence of a uniform all-to-all coupling, however, gives rise to a critical cou-

pling strength at which the population undergoes a phase transition from a “disordered”

state – where noise dominates and the switches are partitioned between the two states – to

an “ordered” one – where the majority of the switches occupy one the two states. In this

Chapter, we study how intra-cellular fluctuations affect the behaviour at the population

level using a gene-regulatory network that demonstrates qualitatively similar behaviour

to the toy model described above.

The remainder of this Chapter is organised as follows. We start with a brief review of

bacterial communication and its importance for bacterial life. Next, inspired by real-life

bacterial behaviour, we propose and analyse anin-silico gene regulatory network. This

network enables us to dissect bacterial communication and study it in a simplified context.

More importantly, it serves as a fine system to study how intrinsic fluctuations at the cel-

lular level affect the behaviour of bacterial populations.In a nutshell, the circuit enables

cells to choose between two antagonistic social behaviours. Beyond some critical thresh-

old of cell coupling, coordination at the population level is achieved, with the majority of

the cells adopting one of the two behaviours. Our results illustrate that subcellular fluc-

tuations hinder the ability of cells to achieve majority consensus, making the population

appear more disordered. Finally, to gain a deeper insight into the transition between the

two regimes of behaviour we present and analyse a coarse grained, Ising-type model of

the dynamics at the population level.
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Figure 7.1: The Quorum sensing system inV. fisheri(adapted from Ref. [150]). Com-
munication inV. fisheriis mediated by small molecules called autoinducers (AI). These
molecules are produced by specific enzymes (LuxI synthetase) and in turn diffuse in and
out of bacterial cells. When present in sufficiently high concentrations within cells, in-
dicative of high cell density, autoinducers trigger a quorum response by activating specific
proteins (LuxR receptor) that control the expression of genes.

7.2 Bacterial Communication

The gene regulatory network we propose and study here enables coupling between cells

via two mutually inhibiting quorum sensing modules. Beforepresenting the actual net-

work it is therefore essential to give a brief overview of quorum sensing and its importance

for bacterial life as well as to present specific real-life examples of bacterial communica-

tion that have motivated the design of the network.

7.2.1 TheVibrio fischeriParadigm

Quorum sensing was first discovered and described in the marine bacteriumVibrio fis-

cheri [98]. This bacterium colonises the light organ of the Hawaiian squid,Eupryman

scolopes[144], where necessary nutrients are provided for its proliferation. In exchange,

V. fischeriuses quorum sensing to induce expression of bioluminesencegenes once it has

grown to sufficiently high cell densities. The light emittedby the bacterial colony is used

by the squid to mask its shadow and avoid predation [98].

As illustrated in Fig. 7.1, the quorum sensing system inV. fischericonsists of two pro-

teins, LuxI and LuxR. The former (I protein) is involved in the synthesis of autoinducer
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molecules (AI molecules), the chemical signal used for bacterial communication. In the

case ofV. fischerithis signal is an Acyl-homoserine lactone (AHL). Followingproduc-

tion, autoinducer molecules freely diffuse in and out of thecell and their concentration

increases with increasing cell density. The second protein(R protein) is the autoinducer

receptor. When present at sufficiently high concentrations, autoinducer molecules readily

bind to LuxR and promote its dimerisation [26,61]. In this form, LuxR can recognise and

bind specific promoter sequences upregulating the expression of certain genes [126,129].

Among these genes are ones responsible for bioluminesence as well as the gene encoding

for the LuxI protein [126]. This gives rise to a positive feedback loop that locks cells into

a quorum sensing mode [150].

7.2.2 An Overview of the Complexity in Bacterial Communication

Following the seminal discovery of quorum sensing inV. fischeri it was appreciated

that a large number of bacteria possess communication systems obeying similar prin-

ciples [87, 150]. In particular, different autoinducer molecules are produced by many

bacterial species. These molecules either diffuse or are actively transported to the extra-

cellular environment and their concentration is constantly gauged. Beyond some critical

concentration (corresponding the high cell density) autoinducers trigger a quorum re-

sponse by regulating the expression of specific genes. The similarities of quorum systems

across different bacterial species, points to a common ancestral origin and is perhaps the

strongest evidence for the importance of quorum sensing forbacteria and their survival.

Nonetheless, closely related (homologous) quorum sensing systems of different bacteria

demonstrate extreme specificity: differences in the structure of the autoinducers as well

as in the structure of the receptor proteins play an important role in conveying signalling

specificity [150]. That is, autoinducers can only activate their cognate receptor proteins

and therefore allow only for intraspecies communication.

The social life of bacteria becomes even more intriguing when one recognises that

many bacterial species possess multiple quorum sensing systems. Such systems are most

often interweaved with one another, arranged in parallel [23], in series [123] and in some

cases in direct competition with one another [59] resultingin rather complex behaviour.

One particular example comes from the well studied bacterium Bacillus subtilis. When

presented with stress conditions,B. subtiliscommits to one of two mutually exclusive

lifestyles: sporulation or competence. In the first state the bacterium undergoes a physio-

logical change that enables it to survive for extended periods of time under unfavourable

environmental conditions. The second state enables the bacterial cells to uptake exoge-
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nous DNA to be utilised as energy source or incorporated intothe genome. Interestingly

B. subtilis relies on inter-cellular communication through two competitive (inhibiting)

quorum sensing systems to decide which of the two fates to choose [29,59,97].

Unlike the classicV. fischeriexample, bacterial communication is blocked in many

cases by signals coming from the host or even other bacteria growing in the same niche.

Such inhibition, termed asquorum quenching,enables hosts to prevent colonisation by

pathogenic bacteria or allows certain bacterial species toproliferate faster than others [38,

150]. A particularly interesting example of the second scenario comes from the social

life of Staphylococcus aureus. This pathogenic bacterium comes in different strains that

are classified according to the autoinducer molecules they produce [39, 103]. Surpris-

ingly, autoinducers of one strain directly inhibit the quorum sensing machinery of other

strains [84]. For example such behaviour imposes direct competition between populations

of different strains ofS. aureuswhen they co-infect a host.

7.3 An in-silico Paradigm for Bacterial Communication

In this section we present an artificial gene regulatory network consisting of two mutually

inhibiting quorum sensing modules similar to the one found in the bacteriumV. fischeri.

Our primary goal is to study the dynamics that the regulatorynetwork conveys at the pop-

ulation level, and in particular the effect of subsecullar fluctuations. The construction of

the network was inspired by the complex social lives ofB. subtilisandS. aureuspresented

in the preceding section. In this respect, the proposed regulatory network can also serve

as an paradigm for bacterial communication, enabling one todissect complex bacterial

social behaviour and study it in a simplified context, in the spirit of synthetic biology.

Synthetic biology is a young discipline that is already changing the life sciences as

we know them. The main aim of synthetic biology is the bottom up construction of novel

biological systems, ranging from small genetic circuits tofully functional cells and even

ecosystems [113]. From an engineering perspective, such systems have potential appli-

cations in a wide range of areas, with medicine [6], drug synthesis [2] and sustainable

energy production [120] being a few indicative examples. Onthe other hand the con-

struction of simple synthetic systems with predefined functions enables one to dissect life

processes and study them within a simplified context and under controlled conditions. In

this manner, synthetic biology has a crucial role to play in understanding natural biologi-

cal processes and the first principles underpinning life.

Early efforts in synthetic biology have been particularly successful in assembling

small regulatory networks from basic elements, such as promoters and genes encoding
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Figure 7.2: Schematic illustration of the proposed gene regulatory network. It consists
of two mutually inhibiting quorum sensing modules giving rise to two mutually exclu-
sive behaviours. Two species of autoinducers (AI1/AI 2) are produced intra-cellularly by
synthetase enzymes (I1/I2). In turn, autoinducer molecules diffuse in and out of the cells.
When an autoinducer species is present in high concentrations it triggers a quorum re-
sponse by binding to its cognate receptor protein (R1/R2) and activating it. Activated
receptor proteins (TF1/TF2) upregulate the expression of the cognate synthetase and re-
press the expression of non-cognate one.

transcriptional factors [113]. Such circuits were used to generate different kinds of be-

haviour, including oscillations [8, 41, 54, 130, 135, 139] ,bistability [8, 51, 77], pulse

generation [13], spatial patterning [12] and logic functions [117, 153]. Also, synthetic

paradigms have been extensively used to study the design principles and dynamical prop-

erties of small, naturally occurring, regulatory motifs that include linear and feed-forward

regulatory cascades and autoregulation [9, 14, 40, 67]. More recently, attention has also

been given to synthetic ecosystems and the design of synthetic gene networks that are

capable of conveying nontrivial population wide behaviour. Examples include usage of

synthetic quorum sensing modules to achieve regulation of cell density [157], predator-

prey dynamics [11] and coordinated behaviour between cells[125]. The artificial gene

regulatory network we propose here can, therefore, be particularly motivating with regard

to these recent bio-engineering efforts.
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7.3.1 The Synthetic Circuit

Figure 7.2 gives a schematic illustration of the proposed gene regulatory network. It con-

sists of two mutually repressing quorum sensing modules. Similar to V. fischeri, each

module consists of two genes encoding for the autoinducer synthetase enzyme (denoted

by I1/I2) and the autoinducer receptor (denoted by R1/R2). Initially, both of the genes

are expressed at a basal rate. Proteins I1 and I2 produce distinct autoinducer signalling

molecules (denoted by AI1/AI 2) that are free to diffuse in and out of the cell. This enables

cells to communicate via two distinct channels. When autoinducer molecules are present

at high concentrations (corresponding to a high cell density) they convey a quorum re-

sponse by readily binding to their cognate receptor proteins and enabling dimerisation. In

the dimeric form (denoted by TF), R proteins bind to promotersites on the DNA (denoted

by P1/P2) and regulate the expression of the synthetases. In particular, each promoter

contains two binding sequences, one for each TF. These sequences enable each TF to

upregulate the expression of its cognate I protein while downregulating the expression of

the non-cognate one.

The positive feedback established for each quorum sensing module along with the

mutual inhibition established between them allow cells to adopt one of two mutually

exclusive behaviours (states): expressing one of the two autoinducer synthetase proteins

and therefore communicating via one of the two channels. Such behaviour where the

bacterium chooses between two distinct physiological states using two mutually inhibiting

quorum sensing modules is reminiscent ofB. subtilis. The picture is also similar to the

competition observed between differentS. aureusstrains. This is readily seen if the gene

regulatory network is broken into two parts and placed in distinct cell types, as Fig. 7.3

illustrates. In this case, each cell type is capable of producing only one autoinducer signal

but responds to both. In particular, each cell type respondsto cognate (non-cognate)

autoinducer molecules by up(down)-regulating the production of the I protein. In this

manner, when present in the same environment the two cell types are in direct competition

with each other.

7.3.2 Modelling the Dynamics

At a coarse grained level the dynamics of gene regulatory networks can be described in

terms of chemical reactions occurring at constant rates. Here we summarise the reactions

that capture the key behaviour of the gene regulatory network and their corresponding

rates. The dynamics of the network can be broken up into the following three components.
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Figure 7.3: Schematic illustration of the proposed gene regulatory network giving rise
inter-species competition. The two bacterial cell types (Aand B) produces different au-
toinducer molecules (AI1/AI 2). However, they are capable of detecting and responding to
both signals. Cognate autoinducer molecules upregulate the production of the synthetase
proteins (I1/I2) whereas non-cognate ones downregulate it. Regulation is achieved via
receptor proteins (R1/R2), which – upon binding to their cognate autoinducers – are able
to dimerise and form active transcription factors (TF1/TF2). In turn, transcription factors
molecules bind to the promoters (P1/P2) driving the expression of the synthetase proteins.

Autoinducer Dynamics

Autoinducer molecules, AIi, are produced by their cognate synthetases, Ii, at rateαA.

Following their production, AIi diffuse in and out of the cell with ratesη andηext, respec-

tively. Following [49] we define the diffusion rates asη = σA/Vc andηext = σA/Ve,

whereσ represents the membrane permeability,A the surface area, andVc, Ve denote the

intra-cellular and extra-cellular volumes, respectively. Finally, due to different conditions,

autoinducer molecules degrade with ratesδA andδA,ext depending on whether they reside

inside or outside the cell.

Ii → Ii + Ai : αA (7.1a)

AI i ⇋ Ai i,ext : η(→), ηext(←) (7.1b)

AI i → ∅ : δA (7.1c)

AI i,ext→ ∅ : δA,ext (7.1d)

Transcription Factor Formation

Autoinducer receptor proteins Ri are constitutively expressed at all times and we therefore

assume their numbers constant. As the autoinducer molecules start growing in numbers
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Species Description
AI i autoinducer
Ii autoinducer synthetase
Ri autoinducer receptor
Ri-AI i receptor-autoinducer complex
TFi transcription factor
Pi promoter driving the expression of the synthetase

Table 7.1: Summary of species involved in the gene regulatory network.

they bind to Ri forming Ri-AI i complexes. These complexes then dimerise to form the

active transcription factors, TFi.

Ri + AI i ⇋ Ri-AI i : k1(→), k2(←) (7.2a)

2Ri-AI i ⇋ TFi : k3(→), k4(←) (7.2b)

Autoinducer Synthetase Dynamics

In the absence of any signal, Ii is expressed at some basal rateαI . As transcription factors,

TFi, start to form they bind to promoters Pi either activating or repressing the expression

of Ii. In particular, binding of the cognate TFi to the promoter Pi increases the rate of

expression toα′
I , while binding of the antagonist TFī blocks any transcription reducing

the rate of expression to zero. Finally the rate of Ii degradation isδI .

Pi → Pi + Ii : αI (7.3a)

Pactive
i → Pactive

i + Ii : α′
I (7.3b)

Prepressed
i → Prepressed

i + Ii : 0 (7.3c)

Pi + TFi ⇋ Pactive
i : kON(→), kOFF(←) (7.3d)

Pi + TF̄i ⇋ Prepressed
i : kON(→), kOFF(←) (7.3e)

Ii → ∅ : δI (7.3f)

7.3.3 Formulating a Rate Equation Model

We can use the above chemical reaction picture to formulate arate-equation model,i.e., a

system of ordinary differential equations describing the time evolution of the concentra-

tion of the different species (denoted by square brackets).Such a model will be valid as

long as all participating species are: (i) present in large numbers (so that their concen-
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trations can be represented as continuous variables) and (ii) homogeneously distributed

within and outside the cell (so that reactions occur homogeneously in time and space).

The rate-equation model therefore captures the deterministic behaviour of the gene regu-

latory network embedded within a homogeneous population. The stochastic nature of the

system will be phenomenologically captured by subsequently adding white noise terms

to our ordinary differential equations.

Autoinducer Synthetase Dynamics

Reactions (7.3) give rise to the following set of rate equations:

d
[
Pactive

i

]

dt
= kON[TFi] [Pi]− kOFF

[
Pactive

i

]
, (7.4)

d
[

Prepressed
i

]

dt
= kON[TF̄i] [Pi]− kOFF

[

Prepressed
i

]

, (7.5)

d [Pi]

dt
= kOFF

([
Pactive

i

]
+
[

Prepressed
i

])

− kON ([TF̄i] [Pi] + [TFi] [Pi]) , (7.6)

d[Ii]
dt

= αI [Pi] + α′
I

[
Pactive

i

]
− δI [Ii]. (7.7)

Of course the total number of promoters is conserved so we additionally have

Ptotal
i = [Pi] +

[
Pactive

i

]
+
[

Prepressed
i

]

. (7.8)

In what follows we will assume that binding and unbinding of transcription factors

occurs on a short time-scale. This will enable us to eliminate the fast varying variables
[
Pactive

i

]
,
[

Prepressed
i

]

and[Pi] and end up with a single equation describing the slow dynam-

ics of [Ii].

By settingd
[
Pactive

i

]
/dt = 0 andd

[

Prepressed
i

]

/dt = 0 we obtain:

[
Pactive

i

]
=

kON

kOFF
[Pi] [TFi], (7.9)

[

Prepressed
i

]

=
kON

kOFF
[Pi] [TF̄i]. (7.10)

Substituting the above relations into Eq. (7.8) yields:

[Pi] =
KIPtotal

i

KI + [TFi] + [TF̄i]
, (7.11)

132



Chapter 7 Population Level: The Social Behaviour of Bacteria

whereKI ≡
kON

kOFF
. Finally, upon substitution, Eq. (7.7) becomes

d[Ii]
dt

= [Ptotal
i ]

αIKI + α′
I [TFi]

KI + [TFi] + [TF̄i]
− δI [Ii]

=
ᾱIKI + ᾱ′

I [TFi]

KI + [TFi] + [TF̄i]
− δI [Ii],

(7.12)

where we have absorbed the quantity
[
Ptotal

i

]
into the rates of production,i.e., ᾱI =

αI

[
Ptotal

i

]
andᾱ′

I = α′
I

[
Ptotal

i

]
.

Transcription Factor Formation

Turning on the dynamics of the transcription factor formation, reactions (7.2) give rise to

d [Ri-AI i]

dt
= k1[Ri][AI i]− k2 [Ri-AI i]

2 , (7.13)

d[TFi]

dt
= k3 [Ri-AI i]

2 − k4[TFi]. (7.14)

We will also assume that the characteristic time-scale of the binding events leading to the

formation of the transcription factor are fast. Therefore assuming that variables[Ri-AI i]

and[TFi] are at quasi-steady state and setting the above equations tozero we obtain

[TFi] =
(R0[AI i])

2

KDK2
C

, (7.15)

whereK =
k4

k3
andKC =

k2

k1
. Furthermore, since the concentration ofR does not change

due to the internal dynamics of the system we have regarded itas a constant parameter,

viz. [Ri] = R0.

Autoinducer Dynamics

The intra-cellular and extracellular concentrations of AIi denoted by[AI i] and [AI i,ext],

respectively are described by the following rate equations

d[AI i]n
dt

= αA[Ii]n − δA[AI i]n +
η

Vc

([AI i]n − [AI i,ext]) (7.16)

d[AI i,ext]

dt
= −δA,ext[AI 1,ext] +

η

Ve

N∑

n=1

([AI i,ext]− [AI i]n) (7.17)
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where the subscriptn was used to denote individual cells in the population and thesum in

the second equation is taken over a population ofN cells. Note that the above set of equa-

tions states that cells are coupled via the extracellular concentrations of the autoinducer

molecules. Our assumption of spatial homogeneity therefore gives rise to an all-to-all

coupling; that is autoinducer molecules, irrespective of where they are produced, rapidly

diffuse throughout the whole extra-cellular volume and aretherefore detected equally by

all cells.

Once again invoking the quasi steady-state approximation for variables[AI 1,ext] and

[AI 2,ext] we can write

[AI i,ext] =
ηN/Ve

δA,ext + ηN/Ve

〈[AI i]〉 ≡ Q〈[AI i]〉 (7.18)

where

〈[AI i]〉 =
1

N

∑N
n=1[AI i]n.

The equation describing the dynamics of the intra-cellularconcentration of the autoin-

ducer molecules then takes the form

d[AI i]n
dt

= αA[Ii]n − δA[AI i]n +
η

Vc
([AI i]n − 〈[AI i]]〉). (7.19)

Note that the above equation was obtained assuming that diffusion of autoinducer

molecules in and out of the cells is a rather fast process so that quasi-steady state is es-

tablished for the extracellular concentrations of AIi. This assumption allows us to regard

mean-field couplingbetween cells, i.e, cells are coupled to each other via the mean-field

quantities〈[AI i]〉. Furthermore, parameterQ quantifies the strength of this coupling. In

what follows we useQ as a control parameter to study the effect that the population has

on internal dynamics of each cell; how this effect feeds backto the population, causing

consensus behaviour, and how intrinsic fluctuation affect the population dynamics.

7.3.4 Reduced Mean-Field Model

Equations (7.12) and (7.19) along with the relation given byEq. (7.15) constitute a re-

duced model describing the deterministic dynamics of the system under the assumptions

of mean-field coupling and spatial homogeneity. To take intoaccount the intrinsically

stochastic nature of the processes involved in our system weadd to this set of equations

Gaussian white noise terms, effectively turning them into stochastic differential equations

(or Langevinequations). This is, indeed, a phenomenological way to proceed since the
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intrinsic fluctuations of the system are captured byad hocterms and are not derived by

considering the randomness of the processes involved [141]. However, this phenomeno-

logical approach is justified by the scope of our model, whichis to study the effect of

fluctuations on the population level dynamics and not to accurately capture the stochastic

dynamics of the system from first principles.

The final rate-equation model with the addition of Gaussian white noise takes the

form:

d[I1]n
dt

=
ᾱIK + α′

I [AI 1]n
K2 + [AI 1]2n + [AI 2]2n

− δI [I1] +
√

DI
1ξn(t) (7.20)

d[I2]n
dt

=
ᾱIK + α′

I [AI 2]n
K2 + [A2]2n + [A1]2n

− δI [I2] +
√

DI
2ζn(t) (7.21)

d[AI 1]n
dt

= αA[I1]n − δA[AI 1]n +
η

Vc
([AI 1]n −Q〈[AI 1]〉) +

√

DA
1 λn(t) (7.22)

d[AI 2]n
dt

= αA[I2]n − δA[AI 2]n +
η

Vc

([AI 2]n −Q〈[AI 2]〉) +
√

DA
2 κn(t) (7.23)

whereK =
(KIKD)1/2KC

R0
, and indexn = 1 . . .N denotes the cell. Termsξn(t), ζn(t),

λn(t), κn(t) are Gaussian white noise with zero mean and delta-peaked auto-correlation

functions,i.e.,
〈ξi(t)〉 = 0, 〈ξi(t)ξj(t

′)〉 = δijδ(t− t′)

〈ζi(t)〉 = 0, 〈ζi(t)ζj(t
′)〉 = δijδ(t− t′)

〈λi(t)〉 = 0, 〈λi(t)λj(t
′)〉 = δijδ(t− t′)

〈κi(t)〉 = 0, 〈κi(t)κj(t
′)〉 = δijδ(t− t′).

(7.24)

Finally, DI
1, DI

2, DA
1 , DA

2 quantify the magnitude of the fluctuations for each chemical

species.

7.3.5 Numerical Results

To study the effect of coupling on the population dynamics wefocus our attention on the

mean-field quantity

〈[I1]〉 =
1

N

N∑

n=1

[I1]n. (7.25)

We first set to study the deterministic behaviour of the system by setting

DA
1 = DA

2 = DI
1 = DI

2 = 0. (7.26)
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Figure 7.4 (solid and dotted lines) illustrates the long-time steady state behaviour of the

population dynamics as a function of the coupling strengthQ. In the absence of intrinsic

noise a transition is observed at some critical value of coupling (Q = Qc ≈ 0.13). Below

Qc, cells are effectively behaving independently. In particular, I1 andI2 are expressed at

basal rates and autoinducers are not present in high enough levels to trigger the quorum

response. AsQ is increased above the critical value, two stable steady-states appear at

the population level. Each branch corresponds to a state in which one of the two quorum

sensing modules is activated in bacterial cells and the other one is repressed. Of course,

in the absence of noise, the choice between the two stable points depends solely on the

initial conditions. AsQ reaches unity all cells become synchronised communicatingvia

the same channel.

Intrinsic fluctuations qualitatively change the above picture by shifting transition to

consensus behaviour to higherQ values. The above is illustrated in Fig. 7.4 (circles).

As before forQ > Qc, each individual triggers a quorum response, activating one of

the quorum sensing systems. However, in this case the choiceis not fixed. Rather, due

to intrinsic fluctuation each cell randomly switches between the two states. Hence at

the population level, this is perceived as disorder, with approximately half of the cells

occupying each of the two states (see left and centre panels in Fig. 7.5). The behaviour

changes once again when the coupling strength exceeds some other critical value,Q >

Q̄c. Above Q̄c coupling is strong enough to make random transitions between the two

states less frequent. The population, therefore, relaxes to one of the two consensus states

with the majority of the cells communicating through the same quorum sensing system.

Random fluctuations can still induce random transitions between the two states, though

on a much slower time-scale (see right panel in Fig. 7.5).

7.3.6 Numerical Methods

The results presented in Fig. 7.4 and 7.5 were obtained by numerical integration of the

reduced mean-field model given by Eqs. (7.20)-(7.23). The parameter values that were

used are summarised in Table 7.2.

In the absence of noise, the system was integrated using MATLAB built-in ODE

solver (functionode45with default settings). The function implements an explicit Runge-

Kutta variant with adaptive timestep. For every value of thecoupling strengthQ (0 to

1 with step size0.01), 10 random sets of initial conditions were prepared in the range

[I1]n = [0, 10], [I2]n = [0, 10], [AI 1]n = [0, 10], [AI 2]n = [0, 10] along with the set

[I1]n = 0, [I2]n = 0, [AI 1]n = 0, [AI 2]n = 0. The system was then integrated with
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Figure 7.4: Bifurcation diagram for the long time (steady state) levels of〈[I1]〉. Solid lines
indicate the behaviour in the absence of intrinsic fluctuations. At some critical coupling
strengthQc the population undergoes a supercritical pitchfork bifurcation. AboveQc a
quorum response is triggered leading to two steady states, each one corresponding to cells
sharing the same communication channel. In the presence of noise (circles) the critical
coupling strength for a majority consensus to be reached is shifted. A higher coupling
strength is necessary for the population to reach the consensus regime.

these initial condition and in each case the steady-state, mean-field quantity〈[I1]〉∞ (see

Eq. 7.25) was recorded. We ensure steady state has been reached by checking that all sys-

tem variables do not change more than10−3 between successive time-steps. In all cases

integration up toτ = 500 fulfilled this criterion.

For numerical integration in the presence of noise, the Euler method was used as

implemented in the XPPAUT software (version5.98) with time stepδt = 10−3. For every

value ofQ (0.1 to0.4 with step size0.025), 103 independent runs were performed using as

initial conditions[I1]n = 0, [I2]n = 0, [AI 1]n = 0, [AI 2]n = 0. In each run integration was

performed as before upτ = 500, allowing the system to reach steady state and〈[I1]〉∞
was calculated. The data obtained for each value ofQ were non-parametrically fitted to a

probability distribution using MATLAB built-in functionksdensity(default settings). The

function essentially computes a smooth estimate of the probability density function from

the histogram using a Gaussian kernel. The circles shown in Fig. 7.4 denote the position

and number of peaks in the estimated probability distribution for each value ofQ.
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Figure 7.5: Time traces and the stationary distribution of the mean-field quantity〈[I1]〉 for
different values ofQ. For coupling strengths high enough to trigger a quorum response,
the dynamics at the population level initially appear disordered due to random transitions
of individual cells between the two states (left panel). Within a critical regime of coupling
the distribution flattens (centre panel) and above this regime the two meta-stable states of
the population are clearly discerned (right panel). The stationary distributions presented
in the second row are non-parametric fits to simulation data (see section 7.3.6).

138



Chapter 7 Population Level: The Social Behaviour of Bacteria

Parameter Value Dimensionless value Reference
time (t) sec τ = t · δI = t/t∗

αI 0.02 nM/sec 60 nM [56]
α′

I 0.002 nM/sec 30 nM Tunable parameter
αA 0.01 sec−1 33 [56]
δI 0.0003 sec−1 1 [56,91]
δA 0.0003 sec−1 1 [56,91]
δAe 0.0003 sec−1 1 [56,91]
KI 102 nM [56,91]
KC 102 nM [56,91]
KD 102 nM [56,91]
R0 102 nM Tunable parameter
K 100 nM Tunable parameter
Vc 10−15 L [3]
N 40
η 6 · 10−21 m3/sec 15Vc [91]
√

DA
1 -
√

DA
2 10

√

DI
1 -
√

DI
2 5

Table 7.2: Parameters used in the reduced rate-equation model.

7.4 An Ising Model of the Population Dynamics

The results presented in the preceding section illustrate that sub-cellular fluctuations hin-

der the ability of cells to coordinate their behaviour and achieve consensus. Under weak

coupling (yet strong enough to trigger the quorum response)intrinsic fluctuations induced

random switching between the two lifestyles in individual cells. In this regime, the be-

haviour at the population level appears disordered with roughly one half of the population

occupying each state. As the coupling strength is increasedthe population undergoes a

transition into a ordered state where the majority of cells occupy one of the two states. In

the presence of noise, therefore, higher values of couplingstrength are necessary for the

population to reach the consensus regime.

In this section, we present and study a coarse grained model that demonstrates quan-

titatively similar behaviour to the bacterial quorum. In a nutshell, the model considers

cells in the quorum as a population of interacting bistable switches. To the physicist this

coarse grained picture will bear close resemblance to an Ising-type model capturing the

collective behaviour of mean-field coupled spins. We use this Ising-type model to study

the transition between the two regimes of behaviour in greater detail. For a finite systems

this transition is blurred in the region around the criticalcoupling strength. We find a

condition that marks the clear transition to the ordered state, linking the coupling strength
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to the magnitude of fluctuations and size of the population.

7.4.1 Master Equation Formulation

Consider a population ofN cells capable of occupying two distinct states,A andB. The

number of cells occupying each state is denoted bynA andnB = N − nA, respectively.

Furthermore, we allow cells to interact with each other. Forsimplicity, we restrict our-

selves to a mean-field coupling and ignore any spatial effects. In particular, we regard that

cells occupying stateA(B) exert a force+F (−F ) on every other cell. Furthermore, we

limit the forcing capability of each cell by imposing a functional relationship of the force

magnitude on the size of the population:

|F | = F0

N + K
(7.27)

whereK is some arbitrary, non-negative constant. ForK ≫ N interactions between cells

are negligible, while forK ≪ N each cell exerts a maximum forceF0/N on every other.

The total force,FT , exerted on each cell is therefore given by

FT = |F |(nA − nB) =
NF0

N + K

2nA −N

N
≡ Q

2nA −N

N
(7.28)

Here, parameterQ quantifies the coupling strength between the cells and will be used to

study the effect of the interactions on the dynamics of the population.

Since we consider the size of the population fixed we can studyits dynamics by con-

sidering the time evolution of a single variable, for examplenA, nB or m ≡ nA − nB. In

terms ofnA, the Master equation describing the stochastic dynamics ofthe system is

dP (n)

dt
= (N − n + 1)W+(n− 1)P (n− 1)

+(n + 1)W−(n + 1)P (n + 1)

− [(N − n)W+(n) + nW−(n)] P (n)

(7.29)

whereP (n) = P (nA = n, t|nA = no, t0) is the probability of observingn cells occupying

stateA at timet given that at timet0 there weren0 such cells. Moreover, the transition

ratesW± are given by

W±(n) = w± exp

[

±βQ
2n−N

N

]

. (7.30)

Prefactorsw+ andw− represent the basal switching rates from stateB to stateA and vice
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versa when the net force acting on each cell isFT = 0. One can regard them as being

∼ exp[−βEb], whereEb is the energy barrier the cell must overcome to get from one

state to the other andβ a temperature parameter quantifying the magnitude of the intrinsic

fluctuations driving the transitions. The symmetric construction of the synthetic circuit

(see Fig. 7.2) enables us to consider a symmetric energy potential so thatw+ = w− = w.

WhenFT 6= 0 the exponential factor in Eq. (7.30) tilts the energy landscape, hence biasing

the transitions to one of the two states.

7.4.2 The Macroscopic Behaviour

As described in Chapter 3 (3.3.3), a rate equation describing the macroscopic dynamics

(N →∞) of the system,φ(t), can be obtained as the lowest order terms in the system-size

expansion of the Master equation. In our case, Eq. (7.29) [141] yields

dφ(t)

dt
= −V ′(φ(t)), (7.31)

where

V ′(φ(t)) = φ exp [−βQ(2φ− 1)]− (1− φ) exp [βQ(2φ− 1)]. (7.32)

The functionV (φ) can be considered as a potential landscape driving the time evolution

of variableφ, i.e., φ will move towards values minimisingV (φ).

One can study the long time (steady state) behaviour of the system by settingdφ/dt =

0, and looking for the steady state pointsφs as solutions of the equationV ′(φs) = 0.

Inspection yields the trivial rootφs = 1/2, however, a closed formula for any other root

is not possible. Alternatively, one can Taylor expandV ′(φ) aroundφs = 1/2 and look

for roots in this neighbourhood. For clarity we use the transformationφ̄s = 2φs − 1 and

obtain

(βQ− 1)φ̄s −
(βQ)2

2

(

1− βQ

3

)

φ̄3
s +O(φ̄5

s) = 0 (7.33)

The first two terms of the Taylor expansion suffice to describethe behaviour of system.

We note that forβQ close to unity the coefficient of the cubic term is strictly negative and

therefore the number of roots depends solely on the sign of the linear term. IfβQ ≤ 1

a single root exists corresponding to a stable fixed point (φs = 1/2) (see left and centre

panel in Fig. 7.7). In the caseβQ > 1 the picture is altered: two stable steady states exist

separated by an unstable one atφs = 1/2 (see right panel in Fig. 7.7). This describes a
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Figure 7.6: Bifurcation diagram for the deterministic behaviour (N → ∞) of the Ising-
type model. The system undergoes a supercritical pitchforkbifurcation atQ = 1/β. For
Q ≤ 1/β the population exists in a disordered state where half of thecells occupy each
state (φs = 1/2). For Q > 1/β the majority of the population occupies one of the two
states. The stationary pointsφs were obtained by numerically solvingV ′(φs) = 0 [see
Eq. (7.32)], using Gauss-Newton algorithm (MATLAB built-in functionfsolve).

supercritical pitchfork bifurcation atβQ = 1 [132], with the population crossing from

the disordered (low coupling) state to the ordered (high-coupling) one. The bifurcation

diagram obtained by numerically solvingV ′(φs) = 0 is illustrated in Fig. 7.6.

7.4.3 Stationary Distribution

So far we have presented the deterministic behaviour of the model in the limitN → ∞.

Now we turn and study the behaviour of the model for finiteN . Once again we focus

on the long time limit (t→∞) and present analytic results for the stationary distribution

Ps(n) = P (nA = n, t = ∞|nA = n0, t = t0). These results will used in subsequent

sections to obtain the transition times between the two stable states.

As seen in Chapter 3 (3.3.2) for finite systems the stationarydistribution,Ps obeys the

recursion relation [50,141]

Ps(n) =
(N − n + 1)W+(n− 1)

nW−(n)
Ps(n− 1), (7.34)

from which one obtains

Ps(n) =
(N − n + 1)(N − n + 2) · · ·N

n!
· W+(n− 1) · · ·W+(0)

W−(n) · · ·W1
· Ps(0) (7.35)

Finally, using the definition of the transition probabilities [Eq (7.30)] the stationary dis-
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tribution can be written as

Ps =
1

N

(
N

n

)

exp

[

−2βQ

N
n(N − n)

]

, (7.36)

whereN is the normalisation constant such that

N∑

n=0

Ps(n) = 1. (7.37)

In general,N depends on parameters of the model, namelyβ, Q andN . For example,

in the trivial case ofQ = 0, one readily obtainsN = 1/2N . As expected, in this scenario

the stationary distribution is just the binomial distribution for equally likely events. Below,

we provide approximations forN in the three regimes of behaviour,βQ < 1, βQ = 1

andβQ > 1, using standard perturbation techniques. Our approximation are valid for

sufficiently large populations for which the discrete quantity x = n/N can be treated as a

continuous variable.

We first expressPs(n) as

Ps(n) =
exp [−E(n)]

N , (7.38)

whereE(n) can be though as the energy landscape. From Eq. (7.36) one readily sees that

E(n) = − ln

[
N !

n!(N − n)!

]

+
2βQ

N
n(n−N). (7.39)

Writing the above expression in terms of the intensive variable x = n/N and Taylor

expanding yields

E(n) ≈
[

n

N
ln

(
n/N

1− n/N

)

+ log
(

1− n

N

)

− 2Q n
N

( n

N
− 1
)]

N
[

x ln

(
x

1− x

)

+ log (1− x)− 2Qx (x− 1)

]

N

= U(x)N

(7.40)

Hence, in the continuum limit the stationary distribution becomes

Ps(x) =
exp [−U(x)N ]

C , (7.41)
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Figure 7.7: The shape ofV andU for βQ < 1, βQ = 1 andβQ > 1. V corresponds to
the potential landscape driving the macroscopic (N → ∞) behaviour of the population.
Minima of V correspond to stable steady state solutions of Eq. (7.32), while maxima to
unstable ones. The energy landscapeU dictates the stationary distribution for finite yet
large population sizes,N ≫ 1 [see Eq. (7.41)]. ForQ ≤ 1, bothV andU have a single
minimum at (or around)x = 1/2 (left and centre column). ForQ > 1 two minima exist
atx = xa > 1/2 andx = xb < 1/2 separated by a maximum atx = 1/2 (right panels).

whereC and can be evaluated from the normalisation constrain

∫ 1

0

Ps(x)dx = 1 ⇒ C =

∫ 1

0

exp [−U(x)N ] . (7.42)

Figure 7.7 illustrates the general shape ofU(x). U(x) is closely related to the poten-

tial V [Eq. (7.32)] driving the macroscopic (N → ∞) behaviour of the population. In

particular, they both undergo the same change of shape asβQ = 1 is crossed and both

possess the same minima and maxima. Therefore, one should expect that for finite sys-

tem sizes the stationary distribution of the system is peaked around the stable points of

the macroscopic behaviour.

Case I (βQ < 1)

ForQ < 1 the integral in Eq. (7.42) can be evaluated using the Laplacemethod [34]. The

method relies on approximating the integral of a function that possesses a sharp peak at
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some point with the integral of its parabolic approximationaround that point. In our case,

for largeN the mass of the probability density function is located around the deterministic

stable pointx = 1/2. This allows us to writePs(x) as

Ps(x) ≈







1

C exp {−[U(1/2)− (x− 1/2)2U ′′(1/2)]N} |x− 1/2| ≪ 1

0 elsewhere.
(7.43)

Using the above equation we can evaluate the integral in Eq. (7.42) as

C ≈
∫ 1

0

exp
{
−[U(1/2)− (x− 1/2)2U ′′(1/2)]N

}
dx

≈
∫ ∞

−∞

exp
{
−[U(1/2)− (x− 1/2)2U ′′(1/2)]N

}
dx

= 2N exp

[−βQN

2

]√
π

N(1− βQ)
.

(7.44)

We note that in the second step of the above calculation, the limits of the integral were

replaced by±∞; errors introduced at this point are negligible since the contribution from

any region outside the neighbourhood ofx = 1/2 are expected to be exponentially small.

Substituting back to Eq. (7.41) one obtains a Gaussian stationary distribution

Ps(x) ≈ 1

σ
√

2π
exp

[
(x− µ)2

2σ2

]

, (7.45)

with µ = 1/2 andσ2 =
1

4N(1− βQ)
. Alternatively, the same result can be obtained by

performing the system size expansion [141] on Eq. (7.29).

Case II (βQ = 1)

Using similar arguments one can obtain an approximation forthe stationary distribution

in the caseQ = Qc = 1/β. SinceQc is the critical point where the bifurcation oc-

curs the second and third derivatives ofU(x) vanish atx = 1/2. Hence the following

approximation forPs(x) should be used

Ps(n) ≈







1

C exp
{
−[U(1/2)− (x− 1/2)4U (4)(1/2)/24]N

}
|x− 1/2| ≪ 1

0 elsewhere.
(7.46)
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The integration yields

C ≈
∫ 1

0

Ps(x)dx

≈
∫ ∞

−∞

Ps(x)dx

= 2N exp

[−N

2

]
Γ
(

5
4

)√

2
√

3

N1/4
.

(7.47)

From the above one can easily calculate the variance to be

σ2 =

∫ 1

0

(

x− 1

2

)2

Ps(x)

≈
∫ +∞

−∞

(

x− 1

2

)2

Ps(x)

=
2Γ
(

7
4

)

√
3NΓ

(
1
4

) ,

(7.48)

whereΓ(x) is the Gamma function. Therefore at the critical pointQc, stationary fluctua-

tions around the mean are amplified,i.e., σ ∼ N−1/4 rather thanN−1/2 [as in Eq. (7.45)].

Case III (βQ > 1)

For βQ > 1, minor complications are introduced due to the existence oftwo minima in

the shape ofU(x) at xa < 1/2 andxb > 1/2. From Eq. (7.41) it is readily seen that

the two minima inU(x) correspond to maxima of the stationary distributionPs. That is

the probability mass is concentrated around the pointsxa andxb. Hence, to evaluate the

integral in Eq. (7.42) one must make use of the following parabolic approximation

Ps(n) =







1

C exp {−[U(xa)− (x− xa)
2U ′′(xa)/2]N} |x− xa| ≪ 1

1

C exp {−[U(xb)− (x− xb)
2U ′′(xb)/2]N} |x− xb| ≪ 1

0 elsewhere,

(7.49)
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and the normalisation constant is given by

C ≈
∫ 1/2

0

e−[U(xb)−(x−xb)
2U ′′(xb)/2]Ndx +

∫ 1

1/2

e−[U(xa)−(x−xa)2U ′′(xa)/2]Ndx

≈
∫ 1/2

−∞

e−[U(xb)−(x−xb)
2U ′′(xb)/2]Ndx +

∫ ∞

1/2

e−[U(xa)−(x−xa)2U ′′(xa)/2]Ndx.

(7.50)

Pointsxa andxb coincide with the stable stationary points corresponding to the macro-

scopic behaviour of the model. Although there is no close formula giving them as a

function of Q, they can approximated numerically,e.g., using Newton’s method [34].

The above formulae can consequently be used to obtainC. Similar toQ < 1/β, the ap-

proximation yields a stationary distribution that will be the mixture of two Gaussian peaks

centred aroundxa andxb and with widths that scales likeN−1/2.

Some Final Remarks

At this point we should note that a more careful examination of the validity of our ap-

proximations forQ ≶ 1/β is needed. To illustrate our point we note that nearx = 1/2,

Ps(x) can be approximated (keeping up to4th order terms) by

Ps(x) ≈ 2Ne−
βQN

2

C exp

[

−2N(1− βQ)(x− 1/2)2 − 4N

3
(x− 1/2)4

]

. (7.51)

In our treatment so far, the use of the parabolic approximation, implicitly assumed that for

all Q < 1/β the quadratic term in the exponent is the dominant one. Let usnow be a bit

more precise. AsQ → 1/β from below, the peak ofPs aroundx = 1/2 becomes wider

and wider, and as we have seen the width of the distribution atthe critical point scales

like N−1/4. Therefore, to accurately capture the shape of the distribution at all times the

approximation should be valid for|x− 1/2| ∼ N−1/4. Now, by comparing the two terms

in the exponent of Eq. (7.51) it is evident that if

1− βQ≫ 1√
N

, (7.52)

the quadratic term is the leading term whereas for

1− βQ≪ 1√
N

, (7.53)
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the fourth order term dominates. Therefore, when1 − βQ . N−1/2 more accurate ap-

proximations can be obtained by Taylor expanding the exponential factor in Eq. (7.51)

Ps(x) ≈ 2N

C e−
βQN

2 e−
4N
3

(x−1/2)4
[

1 +
N(1−Q)

2
(1 + 4(x− 1/2)2 + · · · )

]

.

(7.54)

It should be noted that the above approximation scheme is equally valid asQ ap-

proaches unity from above. To illustrate this point further, from Eq. (7.33) we find that as

βQ approaches unityxa andxb are given by

xa ≈
1−

√

3(βQ− 1)

2
, (7.55a)

xb ≈
1 +

√

3(βQ− 1)

2
. (7.55b)

Hence, the distance separating the two points scales like

δ = xa − xb ∼ (βQ− 1)1/2. (7.56)

Now, the condition1 − βQ . N−1/2 can be translated intoδ . N−1/4, i.e., the two

maxima being sufficiently close together can be approximated as a single peak.

Summarising, the validity of approximations presented above for theβQ ≶ 1 cases,

does not depend solely on theN ≫ 1 condition but also on howQ approaches the critical

point. In particular, they accurately capture the stationary distribution provided that

|1− βQ| ≫ 1√
N

. (7.57)

Otherwise alternative approximation schemes [see Eq. (7.54)] are more suitable.

7.4.4 Transition Times in theβQ > 1 Regime

As we have seen forβQ > 1, the energy landscapeU(x) possesses two wells which

correspond to the twometa-stable statesof the system. Therefore, starting from some

initial configuration the system will end up jittering in oneof the two wells ofU(x). Of

course giant fluctuations can still induce random transitions between the two stable states

(hence the term meta-stable). In this section we examine thestatistics of the transition

times between the two wells, a well studied problem tackled in Kramer’s rate theory [50,

141]. We use this result to provide the physical picture behind the transition to the ordered

(or majority consensus) regime observed in our results for the gene regulatory network
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Figure 7.8: The stationary distributionPs(x) and time traces of the system for different
values ofβQ and N ≫ 1. Solid lines corresponds to analytic approximations while
markers denote results obtained from stochastic simulations of the model (104 indepen-
dent runs). For the simulationsN = 4000 was used.
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(see section 7.3.5).

The First Passage Problem

As we have discussed in Chapter 3 ( 3.4), first passage theory [116] states that the mean

time needed for the system originally occupying staten = n1 to reach staten = n2 is

given by

T (n1 → n2) =

n2∑

n=n1

1

W+(n)Ps(n)

n∑

n′=0

Ps(n
′). (7.58)

This result allows us to calculate the mean transition time between the two stable points

as

τ = T (nb → na). (7.59)

wherena andnb correspond to the two minima of the energetic landscapeU(n).

The above yield an exact result of the problem as defined by theformulation the

Eq. (7.29). However, to evaluate the sums and obtain and closed formula forτ we once

again make use of the largeN approximation to enable us to treat our model as a contin-

uous one. Hence. in terms of the intensive variablex = n/N , the transition time is given

by

τ ≈
∫ xa

xb

Ndx

W+(x)Ps(x)

∫ x

0

NPs(x
′)dx′, (7.60)

where we have replaced sums by integrals andxa andxb are the minima ofU(x). Once

again the integrals that appear in Eq. (7.60) can be evaluated asymptotically using the

parabolic approximation [34, 141]. In particular, the maincontribution for the outer in-

tegral comes from the neighbourhood aroundx = 1/2 where1/Ps(x) demonstrates a

maximum. The contributions fromW+(x) are negligible since it varies slowly compared

to Ps(x),; hence, it can safely be replaced byW+(1/2) = N/2 (higher order approxima-

tions can however be used). Subsequently, the inner integral is large aroundx = xb and

otherwise exponentially smaller. Therefore,τ can be written as

τ ≈
∫ +∞

−∞

2Ne
N

h

U(1/2)− |U′′(1/2)|
2

(x−1/2)2
i

dx

∫ +∞

−∞

e
N

»

−U(xb)−
|U′′(xb)|

2
(x−xb)

2

–

dx

=
4Nπ

√

U ′′(xb)|U ′′(1/2)|
exp

[
U(1/2)− U(xb)

N

]

. (7.61)

This is a well celebrated result of Kramer’s rate theory. It gives the rate of transitionr =

1/τ in terms of some general characteristics of the energy landscapeU(x). In particular,

the rate includes a prefactor that depends on the curvature near the maximum and at the
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bottom of the well. The flatter these areas are the harder the transitions become. The

exponential term is the Arrhenius factor and depends solelyon the height of the transition

barrier.

In the above treatment we have tacitly assumed that pointsxa, xb andx = 1/2 are well

separated. This assumption allowed us to evaluate the integrals in Eq. (7.61) by using the

parabolic approximation. This assumption, however, imposes some additional conditions

on the validity of our result. In particular, the width of each peak ofPs(x) obtained by the

parabolic approximation isδ0 ∼ 1/
√

N . One would therefore additionally require

δ ≡ xa − xb ≫ δ0 (7.62)

so that the two pointsxa andxb are sufficiently far to allow a clear distinction of the two

peaks. As we have seen whenβQ→ 1+ one obtains

xb ≈
1−

√

3(βQ− 1)

2
, (7.63a)

xa ≈
1 +

√

3(βQ− 1)

2
. (7.63b)

Therefore, the distance between the two points is given by

δ ∼
√

3(βQ− 1), (7.64)

and the condition for two peaks to be well separates takes theform

βQ ≫ 1 + 1/
√

N. (7.65)

When the condition given in Eq. (7.65) breaks down a more appropriate scheme for the

calculation ofτ is needed. It involves inclusion of up to fourth order terms in the evalua-

tion of the integral in Eq. (7.60) [118].

The Physical Picture Behind the Transition to the ConsensusRegime

The physical picture behind the transition to the ordered regime is indeed a simple one,

involving the separation between two time-scales [141]. The first time-scale is the one set

by τ at which transitions between the two meta-stable states areobserved. We calculate
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for Q→ 1+

U ′′(xa) ≈ 8(βQ− 1), (7.66a)

U ′′(1/2) = −4(βQ− 1), (7.66b)

U(1/2)− U(xa) =
3

4
(βQ− 1)2. (7.66c)

and hence from Eq. (7.60) one obtains

τ ≈ π√
2N(Q− 1)

exp

[
3

4
(Q− 1)2N

]

. (7.67)

The second time-scale,τeq, is determined by the rate at which equilibrium is estab-

lished around each stable point. This is essentially the autocorrelation time of the process

and depends on the curvature at ofU(x) atx = xa andx = xb, respectively [141], that is

τeq =
1

NU ′′(xa)
∼ 1

N(βQ− 1)
. (7.68)

It is easily verified that the condition given by Eq. (7.65) ensures a clear separation be-

tween these two time-scales,

τ ≫ τeq. (7.69)

In other words the system rapidly equilibrates around one ofthe two stable points before

giant fluctuations induce a transition to the other one. Equation (7.65), therefore, gives

a relation between the coupling strengthQ, the noise intensityβ and the population size

N ensuring a clear transition into the ordered regime. When this condition breaks the

distinction between the two meta-stable states of the population is not clear.

7.4.5 A Two Population Model

So far we have considered an Ising-type model demonstratingqualitatively similar be-

haviour to a population of cells bearing the gene regulatorynetwork presented in Fig. 7.2.

We now turn briefly to the alternative design presented in Fig. 7.3. As discussed this de-

sign gives rise to two competing bacterial populations bearing resemblance to the case of

competingS. auruesstrains. Using a similar coarse-grained, Ising-type modelwe demon-

strate the relationship between the two designs.

At a coarse grained level, we can characterise the behaviourof the two-population

model by considering a mixed population of two distinct celltypesA andB. The number

of type-A and type-B cells is denoted byNA andNB, respectively. For reasons that will
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become apparent below we set the total size of the populationto 2N , that isNA + NB =

2N .

Both cell types are capable of switching between two states:a social (quorum-aware)

one and a solitary (quorum-unaware) one. We usenA andnB to denote the number of

social cells of type A and B respectively, whereas the numberof solitary one is denoted by

n̄A, n̄B. As in the model presented above, we allow all-to-all interactions but in this case,

we allow only social cells to exert forces. In particular, social cells of each type exert

forces on their own kind pulling solitary ones into social behaviour and keeping social

ones in their current state. Furthermore, they interact with social cell on the other kind

pushing them towards isolation. The total force exerted on each cell is therefore

FT = Q
nA − nB

2N
, (7.70)

where once again Q quantifies the strength of coupling between individual cells.

The dynamics ofP (n1, n2) = P (nA = n1, nB = n2, t|nA = n0
A, nB = n0

B, t), the

probability of observingn1 type-A andn2 type-B social cell at timet having initially

(t = t0) n0
A andn0

B, respectively are described by the Master equation

dP (n1, n2)

dt
= (E−1

A − 1)(NA − n1)W
A
+ (n1, n2)P (n1, n2)

+(E+1
A − 1)n1W

A
− (n1, n2)P (n1, n2)

+(E−1
B − 1)(NB − n2)W

B
+ (n1, n2)P (n1, n2)

+(E+1
B − 1)n2W

B
− (n1, n2)P (n1, n2)

(7.71)

where for compactness we introduced the step operators [141]

E
a
Af(n1, n2) = f(n1 + a, n2), (7.72a)

E
a
Bf(n1, n2) = f(n1, n2 + a). (7.72b)

Furthermore the transition rates are given by

W A
± (n1, n2) = wA

± exp

[

±βAQ
n1 − n2

N

]

, (7.73a)

W B
± (n1, n2) = wB

± exp

[

∓βBQ
n1 − n2

N

]

. (7.73b)

As before,wA
± andwB

± represent the basal switching rates between two states for the two

cell types, when the net force acting on each individual isFT = 0. The exponential factor,

captures the change of the basal rates due to interaction forces.
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Once again one can readily obtain the deterministic law describing the dynamics of

the system asNA → ∞ andNB → ∞. In terms of the extensive variabley1 = n1/2N

andy2 = n2/2N , one has

dy1

dt
=

(
NA

2N
− y1

)

W A
+ (y1, y2)− y1W

A
− (n1, n2) (7.74a)

dy2

dt
=

(
NB

2N
− y2

)

W B
+ (y1, y2)− y2W

B
− (n1, n2) (7.74b)

whereW A
+ (y1, y2) andW A

+ (y1, y2) are the rates given by Eq. (7.73) rewritten in terms of

y1 andy2.

One readily sees by imposing the symmetry conditions

wA
± = wB

± ≡ w, (7.75a)

βA = βB ≡ β, (7.75b)

the above system of equations reduces to

x

dt
=

(
NA

2N
− x

)

W+(x)−
(

NB

2N
+ x

)

W−(x) (7.76)

where
x = y1 − y2,

W±(x) = w exp [±βQx].

In fact, by applying the transformationx = 2x′−1 one retrieves the deterministic law ob-

tained for the preceding model [see Eq. (7.32)], provided thatNA = NB. The symmetries

render the two models equivalent, hence the stochastic dynamics of the current model can

be captured by a single variablem = nA − nB. In particular, Eq. (7.71) reduces to

dP (m)

dt
= (E−1 − 1)(NA −m)W+(m)P (m) + (E− 1)(NB + m)W−(m)P (m)

(7.77)

which is equivalent to Eq. (7.29) whenNA = NB. Therefore results presented in the

preceding sections also apply for this model provided thatNA = NB.

7.5 Summary and Future directions

In this Chapter, motivated by the complex social behaviour of bacteria we proposed and

analysed an artificial gene regulatory network. The main aimof our work was to study,
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in a simplified context, how population dynamics – shaped by interactions between indi-

vidual cells – is affected by fluctuations dominating at the intra-cellular level. The gene

network, which we proposed, consists of two mutually repressing quorum sensing mod-

ules similar to the one found in the bacteriumV. fischeri. The reciprocal repression gives

rise to two distinct states that a cell can occupy when present in a quorum.

We studied the dynamics that the gene network conveys at the population level using

a stochastic differential equation model of the genetic circuit. Our results indicate that

the bacterial population can exhibit two different behaviours depending on the strength

of the coupling between cells. In the low coupling regime thepopulation appears mixed

(disordered) with approximately one half of the populationoccupying each state. In the

high coupling regime cells coordinate their behaviour, with the majority occupying one

of the two states; hence the population appears ordered. Thecrossover between the two

regimes depends on the intra-cellular fluctuations. We alsoused a coarse grained, Ising-

type model to study in greater detail the transition betweenthe two regimes of behaviour.

In particular, we find a condition that marks the clear transition to the ordered state, linking

the coupling strength to the magnitude of fluctuations and size of the population.

The work presented here sets the starting point for a more thorough analysis of our

in-silico paradigm of bacterial communication that is left for the future. In particular,

in our analysis so far we have assumed a mean field, all-to-allcoupling between cells.

In practise, spatial aspects ought to play an important role. For example, diffusion of

signalling molecules, spatial inhomogeneities of the population, and cellular motility, can

give rise to pattern and clique formation, phenomena particularly interesting to the physics

community [16].

Furthermore, our current design of the gene regulatory circuit is perfectly symmetric

with regard to the two quorum sensing modules. Investigation of how different asymme-

tries introduced in the system affect the population dynamics are also left for the future.

This will be particularly relevant since it can shed light ondifferent adaptations bacterial

species can exploit to outperform competing species.

Similar artificial gene regulatory networks, enabling interaction between cells and,

hence, conveying population wide behaviour (e.g., oscillations, bistability), have been

proposed in the literature [49, 91, 140, 148]. The novel ingredient of our gene network

is the mutual inhibition between the two distinct quorum sensing channels, giving rise to

competitive behaviour, similar to the one observed forS. aureusandB. subtilis. In this

respect ourin-silico paradigm of bacterial communication can be particularly motivating

for synthetic biology efforts on understanding complex bacterial behaviour. Recently,

several gene regulatory systems, giving rise to non-trivial population dynamics have been
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engineered in living cells [11,22,125,157]. By constructing and analysing such synthetic

ecosystems we ought to improve our understanding of naturally occurring systems as well

as uncover design principles underpinning how cells interact and coordinate their fate and

behaviour.
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Discussion

In this Thesis we presented a theoretical study of gene expression at different organisa-

tional levels of life. At the microscopic (single-molecule) level the stochastic dynamics

of RNA polymerase were considered. In particular, a stochastic model of the transcrip-

tion elongation phase was proposed and used to study the phenomenon of transcriptional

pausing induced via backtracking. Following that, the model was extended with the aim

to study transcriptional error correction and the role of backtracking in achieving reduced

error rates. Then we aimed to understand how the microscopicdynamics of the process

affect RNA levels observed at the cellular level. By constructing an integrated stochastic

model model of DNA transcription we studied the effect of transcriptional pausing on the

fluctuations of RNA production. Finally, we aimed in understanding how cellular fluctu-

ations of molecular species could affect the dynamics and behaviour of cell populations.

To this end, we proposed a simplified system for bacterial communication and studied the

effect of intrinsic fluctuations on the ability of cells to coordinate their behaviour.

Special emphasis was placed on the quantitative characterisation of transcriptional

pauses caused by backtracking of the RNAP. These pauses dominatein-vitro transcrip-

tion [63] and the existence of specific DNA signals inducing them as well as the presence

of accessory proteins assisting their recovery indicate their important role in the regu-

lation of the elongation phase [7]. To understand the phenomenon and its implication in

greater detail we presented a stochastic model of the transcription elongation phase, which

incorporates polymerisation and backtracking dynamics. Unlike previous modelling at-

tempts [10, 60, 137], our main goal was to to provide a quantitative picture of temporal

dynamics of the process. Our results show that owning to the diffusional character of

backtracking this class of pauses should obeys a broad temporal distribution, with a power

law decay (t−3/2). Such finding is consistent with the non-exponential, heavy-tailed distri-

bution of pause lifetimes observed in bacterial and eukaryotic transcription [47,99,124].
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The phenomenon of RNAP backtracking is also thought to convey transcriptional

proofreading [58], however the microscopic details of how error correction is accom-

plished remain elusive. Motivated by recent experiments [124, 159], we extended our

stochastic model of the elongation dynamics to incorporatepolymerisation of correct and

incorrect nucleotides, and RNA cleavage. Our aim here was toprovide a quantitative

picture of transcriptional proofreading based on the underlying microscopic dynamics of

backtracking. In analogy with kinetic proofreading, in ourmodel backtracking provides

a multiple-checking reaction, which probes the fidelity of the last few nucleotides sev-

eral times before the next polymerization occurs. In fact, the greater the delay introduced

by this mechanism, the greater the accuracy of the process [68, 101]. Our model makes

specific prediction regarding the observed error rate in terms of the microscopic rates

involved in the process. and can be used to assess the overallrole of backtracking in

enhancing transcriptional fidelity.

At a higher organisation level, one is particularly interested in the role of fluctuations

in gene expression and its implications regarding cell behaviour and fate [72,83]. To this

end we aimed to bridge the gap between the microscopic dynamics of DNA transcrip-

tion and apparent randomness in the production of RNA species by studying a integrated

model of DNA transcription. The model involved the initiation, elongation, and termina-

tion phases of the DNA transcription and was formulated in terms of totally asymmetric

exclusion process to take into account that multiple RNAPs with repulsive interactions

can simultaneously transcribe the DNA template. Our results indicate that the interplay

between the different time-scales of the model in combination with the exclusive inter-

actions between transcribing TECs can significantly alter the temporal statistics of RNA

production. In particular, we found is that rare and long pauses can result in a burst-

like production of RNA transcripts and hence super-PoissonRNA statistics. The effect

of pauses can be linked heuristically to a switching mechanism between high and low

rates of mRNA production. More specifically, sufficiently long pauses shut down RNA

production by jamming TEC trafficking on the DNA template. Once the leading TEC

resumes elongation multiple blocked TECs that have accumulated at the congestion site

are likely terminate transcription resulting in burst of rapid RNA production. Our find-

ings are particularly relevant forin-vivo systems demonstrating burst-like RNA produc-

tion [27,55,114].

At an even higher level, that of cell populations, we aimed tounderstand how cellular

fluctuations of gene expression affect population dynamics. Motivated by the complex

social behaviour of bacteria we proposed and analysed an artificial gene regulatory net-

work. The gene network consisted of two mutually repressingquorum sensing modules
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similar to the one found in the bacteriumV. fischeri. The reciprocal repression gives rise to

two distinct states that a cell can occupy when present in a quorum. Our results indicated

that owning to intra-cellular fluctuations the bacterial population can exist in two different

states depending on the strength of the coupling between cells. In the low coupling regime

the population appears mixed (disordered) with approximately one half of the population

occupying each state. In the high coupling regime cells coordinate their behaviour, with

the majority occupying one of the two states, hence the population appears ordered. The

crossover between the two regimes depends on the intra-cellular fluctuations. We also

used a coarse grained, Ising-type model to study in greater detail the transition between

the two regimes of behaviour. In particular, we found a condition that marks the clear

transition to the ordered state, linking the coupling strength to the magnitude of fluctu-

ations and size of the population. The work presented here sets the starting point for a

more thorough analysis of ourin-silico paradigm of bacterial communication that is left

for the future.

Similar artificial gene regulatory networks, enabling interaction between cells and,

hence, conveying population wide behaviour (e.g., oscillations, bistability), have been

proposed and studied bothin-silico [49, 91, 140, 148] andin-vivo [11, 22, 125, 157]. The

novel ingredient of our gene network is the mutual inhibition between the two distinct

quorum sensing channels, giving rise to competitive behaviour, similar to the one ob-

served forS. aureusandB. subtilis. In this respect ourin-silico paradigm of bacterial

communication can be particularly motivating for synthetic biology efforts seeking to

understand complex bacterial behaviour. By constructing and analysing such synthetic

ecosystems we ought to improve our understanding of naturally occurring systems as

well as uncover design principles behind how cells interactand coordinate their fate and

behaviour.
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Appendix A

Transcriptional error correction:

M > 1 case

Here, we present a detailed treatment of the transcriptional error correction model for the

case ofM > 1. We will restrict our analysis in the limitǫ≪ 1/M , which allows to safely

assume that at most one error can occur everyM nucleotides.

Dynamics at the single nucleotide level

In the general case ofM > 1, the transition matrixW(s) will depends on the lastM en-

tries of the indexs. We use the notations∗ to denote all transcripts that have no erroneous

nucleotides at theM last places of their sequence,i.e.,

s0 = . . . , 0, 0, . . . , 0
︸ ︷︷ ︸

M elements.

Similarly, we usesl (0 ≤ l ≤ M − 1) to denote all transcripts that have one error in

positionn− l. For example

s1 = . . . , 0, 0, . . . , 1
︸ ︷︷ ︸

M elements.

Using the transition matrixW corresponding to each of the sequencess∗ sl (0 ≤ l ≤
M − 1) one can obtain from Eq. (5.6) all the splitting probabilities: pi(s

l) ≡ p̄i(l) =

(the probabilities of hitting boundaryi given an error in positionn − l of the transcript)

andpi(s
∗) ≡ pi (the probabilities of hitting boundaryi given no errors in the lastM
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nucleotides) . In particular, the splitting probabilitiescorresponding to boundaryi = 0

(polymerisation) in the limitK ≪ alpha1 ≪ ǫ become

p0 ≈
1

2M

K

α1

, (A.1a)

p̄0(l) ≈
1

2(M − l)

K

α2

, 0 ≤ l ≤M − 1 (A.1b)

Effective model

As in the case forM = 1 to calculate the probabilities,Pn, P̄n, of reaching the the

terminal positionn = N having transcribed a correct or wrong nucleotide at position

n = n′ we make use of the effective model of an elongation dynamics.In particular,

the splitting probabilities divided by some coarse-grained time-scaleτ yield the effective

rates,ri and r̄i (i = 0, 1), and Eq. (5.11) can be used to describe the dynamics of the

system. Similar to the case ofM = 1 presented in the main text we proceed our analysis

by breaking the domain of the process into 3 regions:

• RegionR−: n = 0, . . . , n′ − 1,

• RegionR0: n = n′, . . . , n′ + M − 1,

• RegionR+: n = n′ + M, . . . , N − 1.

Let us consider the probability fluxes between these regions. The probability flux from

R− to R0 is due to polymerisation occurring from the boundary positionn = n′ − 1:

J(R−|R0) =
∑

s∈Sn−1

r0(s)Π(n− 1, s, t). (A.2)

Polymerisation will result in either a correct or an incorrect nucleotide at positionn′, This

gives rise to two independent branches in the process. The probability flux formR0 to R−

will be through both of this branches

J(R0|R−) = Jc(R0|R−) + Jw(R0|R−) (A.3)
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In particular each term can be decomposed into intoM terms, each one corresponding to

cleavage from a different position inR0:

Jc(R0|R−) ≡
M−1∑

i=0

Jc
i (R0|R−)

≈
M−1∑

i=0

M∑

l=i+1

rlΠ(n′ + i, s∗, t), (A.4a)

Jw(R0|R−) ≡
M−1∑

i=0

J i
c(R0|R−)

≈
M−1∑

i=0

M∑

l=i+1

r̄l(i)Π(n′ + i, si, t). (A.4b)

In the second line of the above equations the fluxes where approximated using the as-

sumptionǫ ≫ 1/M . This effectively allows us to neglect misincorporations and conse-

quently any further branching of the process within the regionR0. Therefore probability

flows between states belonging inR0 as

Jc(n′ + l|n′ + m) ≈ rm−lΠ(n′ + l, s∗, t) for 0 ≤ l < m ≤M − 1, (A.5a)

Jc(n′ + l|n′ + l + 1) ≈ r0Π(n′ + l, s∗, t) for 0 ≤ l ≤M − 1, (A.5b)

Jw(n′ + l|n′ + m) ≈ r̄m−l(l)Π(n′ + l, sl, t) for 0 ≤ l < m ≤M − 1, (A.5c)

Jw(n′ + l|n′ + l + 1) ≈ r̄0(l)Π(n′ + l, sl, t) for 0 ≤ l ≤M − 1. (A.5d)

The two branches will evolve independently of one another and will lead to probability

flowing into regionR+. In particular, probability will flow through polymerisation event

occurring at the boundary of the two regions:

Jc(R0|R+) ≈ r0Π(n′ + M − 1, s∗, t), (A.6a)

Jw(R0|R+) ≈ r0(M − 1)Π(n′ + M − 1, sM−1, t). (A.6b)

Once in regionR+ we allow the process to branch once again. However, the total

probability enteringR+ should be conserved, either flowing back toR0 or to the absorbing
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boundaryn = N . This allows us to write

Jc(R0|R+) = Jc(R+|N) +

M−1∑

i=0

Jc
i (R+|R0), (A.7a)

Jw(R0|R+) = Jw(R+|N) +

M−1∑

i=0

Jw
i (R+|R0), (A.7b)

where once again we have decomposed the probability flux intoR0 into M independent

terms,Jc
i (R+|R0), corresponding to the probability fluxes into each positionof n = n′+ i

of R0 respectively.

In the long time limitt→∞ the fluxes in and out of the different regions will balance

and a steady probability flow towards the terminal positionn = N will be achieved. In

this limit one obtains a set of equations relating the Laplace transform of the aforemen-
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tioned probability fluxes

M−1∑

i=0

[

J̃c(R0|R−) + J̃w(R0|R−)
]

+ J̃(R−|R0) + 1 = 0

ǫ

ǫ + 1
J̃(R−|R0)− J̃c

0(R0|R−) + J̃c
0(R+|R0)+

M∑

i=1

J̃c(n′ + i|n′)− J̃c(n′|n′ + 1) = 0

1

ǫ + 1
J̃(R−|R0)− J̃w

0 (R0|R−) + J̃w
0 (R+|R0)+

M∑

i=1

J̃w(n′ + i|n′)− J̃w(n′|n′ + 1) = 0

...

−J̃c
l (R0|R−) + J̃c

l (R+|R0) +

M∑

i=l+1

J̃c(n′ + i|n′ + l)−
l∑

i=1

J̃c(n′ + l|n′ + l − i) + J̃c(n′ + l − 1|n′ + l)− J̃c(n′ + l|n′ + l + 1) = 0

−J̃w
l (R0|R−) + J̃w

l (R+|R0) +
M∑

i=l+1

J̃w(n′ + i|n′ + l)−
l∑

i=1

J̃c(n′ + l|n′ + l − i) + J̃w(n′ + l − 1|n′ + l)− J̃w(n′ + l|n′ + l + 1) = 0

...

−J̃c
M−1(R0|R−) + J̃c

M−1(R+|R0)

−
M∑

i=1

J̃c(n′ + M − 1|n′ + M − 1− i) + J̃c(n′ + M − 2|n′ + M − 1) = 0

−J̃w
M−1(R0|R−) + J̃w

M−1(R+|R0)

−
M∑

i=1

J̃w(n′ + M − 1|n′ + M − 1− i) + J̃w(n′ + M − 2|n′ + M − 1) = 0

J̃c(R0|R+)− J̃c(R+|N)−
M−1∑

i=0

J̃c
i (R+|R0) = 0

J̃w(R0|R+)− J̃w(R+|N)−
M−1∑

i=0

J̃w
i (R+|R0) = 0

(A.8)

All terms in the above set of equation have the status of probability. Note, for example

that in the last line terms̃Jw(R+|N) andJ̃w
i (R+|R0) up to division byJ̃w(R0|R+) can be

interpreted as splitting probabilities, that is, some probability J̃w(R0|R+) is injected into

R+ and subsequently divided amongM +1 absorbing boundaries. More importantly, the
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division does not depend through which of the two branches the probability ends up in

regionR+. This consideration allows us to make the following Anstantz

J̃c(R+|N) = Ac
T J̃c(R0|R+)

≈ AT r0Π(n′ + M − 1, s∗, t), (A.9a)

J̃c
i (R+|R0) = Ac

n′+iJ̃
c(R0|R+)

≈ An′+ir0Π(n′ + M − 1, s∗, t), (A.9b)

J̃w(R+|N) = Aw
T J̃w(R0|R+)

≈ AT r̄0(M − 1)Π(n′ + M − 1, sM−1, t), (A.9c)

J̃w
i (R+|R0) = Aw

n′+iJ̃
w(R0|R+)

≈ An′+ir̄0(M − 1)Π(n′ + M − 1, sM−1, t), (A.9d)

subject to the condition

AT +
M∑

i=0

An′+i = 1, (A.10)

Substituting in the system of Equations (A.8) the approximations given by Eqs. (A.4)-

(A.6) and (A.9) one can solve for allΠ(n′+ l, s0, t) andΠ(n′+ l, sl+1, t) and subsequently

obtain an approximate expression for the probabilities of interest:

Pn′ = J̃c(R+|N) ≈ Ac
T r0Π(n′ + M − 1, s∗, t), (A.11a)

P̄n′ = J̃w(R+|N) ≈ Aw
T r̄0(M − 1)Π(n′ + M − 1, sM−1, t). (A.11b)

Error fraction

In particular, one finds that the the error fraction at positionn′ is given by

En′ ≡ P̄n′

Pn′

= ǫ
M−1∏

i=0

(
p̄0(i)

p0

wM−1−i

w̄M−1−i

)

(A.12)
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wherewk
n andw̄k

n are defined as follows

w̄k = 1− p̄0(M − k)
k−1∑

i=1

p̄i(M − i)

w̄i

i−1∏

j=1

p̄0(M − i)

w̄i

−p̄0(M − k)An′+M−k

k−1∏

i=1

p̄0(M − i)

w̄i

(A.13a)

wk = 1− p0

k−1∑

i=1

pi

wi

i−1∏

j=1

p0

wi
− p0An′+M−k

k−1∏

i=1

p0

wi
(A.13b)

with w0 = w̄0 = 0. Of courseAn′+k terms are still unknown, however, they can be

calculated by treating the process in the RegionR+, with R0 andn = N being absorbing

boundaries. One can readily see that forM = 1, Eq. (A.12) reduces to the result obtained

in Chapter 5 [see Eq. (5.26)] In particular, one hasw1 = 1 − An′p0 and w̄1
n = 1 −

An′ p̄0(0), whereAn′ corresponds to the spitting probability of exiting regionR+ through

the boundary atn = n′.

Using induction once can show that in the limitK ≪ α1 ≪ ǫ≪ 1/M bothwi andw̄i

approach unity. Therefore, in this limit the error fractionbecomes [using Eq. (A.1)]

En ≈ ǫ

M−1∏

i=0

(
p̄0(i)

p0

)

= ǫM+1MM

M !
. (A.14)
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Fluctuations, Pauses, and Backtracking in DNA Transcription

Margaritis Voliotis,*y Netta Cohen,* Carmen Molina-Parı́s,y and Tanniemola B. Liverpoolyz

*School of Computing, yDepartment of Applied Mathematics, University of Leeds, Leeds, United Kingdom; and zDepartment of Mathematics,
University of Bristol, Bristol, United Kingdom

ABSTRACT Transcription is a vital stage in the process of gene expression and a major contributor to fluctuations in gene
expression levels for which it is typically modeled as a single-step process with Poisson statistics. However, recent single
molecule experiments raise questions about the validity of such a simple single-step picture. We present a molecular multistep
model of transcription elongation that demonstrates that transcription times are in general non-Poisson-distributed. In particular,
we model transcriptional pauses due to backtracking of the RNA polymerase as a first passage process. By including such
pauses, we obtain a broad, heavy-tailed distribution of transcription elongation times, which can be significantly longer than
would be otherwise. When transcriptional pauses result in long transcription times, we demonstrate that this naturally leads to
bursts of mRNA production and non-Poisson statistics of mRNA levels. These results suggest that transcriptional pauses may
be a significant contributor to the variability in transcription rates with direct implications for noise in cellular processes as well as
variability between cells.

INTRODUCTION

It has long been appreciated that noise and fluctuations play

an important role in the cellular environment (1). Small

numbers of molecules as well as the intrinsically stochastic

nature of biochemical reactions mean that fluctuations must

be taken into account to understand cellular function. More

recently there has been renewed interest in genetic noise (see,

e.g., (2–4)) and fluctuations at the molecular level, driven by

new observational techniques which allow one to track levels

of chemical species in bacterial and yeast cells (5–7). These

experiments have allowed the identification of a number of

different sources of fluctuations in the expression levels of a

particular gene. Low numbers of macromolecules that par-

ticipate in gene regulation and expression, as well as mac-

roscopic fluctuations in the environment, are likely to affect

the statistics of gene expression. In addition, the stochastic

nature of the production and degradation of RNA transcrip-

tion products introduces an important source of intrinsic

genetic noise.

Within the central dogma of molecular biology, gene ex-

pression can be split into two distinct phases, transcription of

DNA to mRNA and translation of mRNA into protein. How-

ever, the production (and degradation) of proteins and mRNA

transcripts are themselves multistage processes. Transcription,

in particular, can be crudely broken up into three main stages:

initiation, elongation, and termination. During initiation, RNA

polymerase (RNAP) binds to a promoter sequence on the

DNA and opens the double helix, uncovering the template

strand to be transcribed. The subsequent transcription of

the first few (8–12) nucleotides leads to the formation of the

transcription elongation complex (TEC) which consists of the

RNAP, the DNA, and the nascent mRNA (8). The formation

of the TEC signals the entrance into the elongation phase

where, under normal conditions, the TEC slides along the

DNA, extending the transcript one nucleotide at a time.

Destabilization of the TEC (at specific sites or by certain

factors) leads to the termination of the process and the release

of the nascent mRNA (9).

In fact, the transcription process can exhibit biochemical

fluctuations at each stage and cannot, in general, be de-

scribed by the simple exponential (Poisson) birth and death

Markov processes that are currently used to analyze experi-

ments ((4,10) and references therein). This naturally leads

one to ask under what conditions is the Poisson approxima-

tion valid (11). To answer this question, a more detailed

analysis of the dynamics of transcription is required. Recent

single molecule experiments (12,13) also provide a new

window into the dynamics of transcription, offering a moti-

vation as well as a solid basis for constructing more detailed

mathematical models.

As demonstrated below, implicit in the Poisson approx-

imation for the stochastic description of transcription is the

assumption that the rate-limiting step is initiation, i.e., that

the time taken for the polymerase to find the promoter

sequence by random diffusion is longer than the total time

for elongation. If so, fluctuations in the initiation step would

be the major contributor to genetic noise due to transcription.

In general, the frequency of transcription initiation has a

wide dynamical range in vivo (14), and in vitro studies have

shown that initiation times can be as fast as a few seconds

(15–17). Clearly then, rapid initiation times can be signif-

icantly shorter than the time needed for elongation, espe-

cially for long DNA templates or bacterial genes transcribed

in operons. In such cases, modeling transcription as a

Markovian process, obeying Poisson statistics, may be an

inadequate approximation. In fact, transcription elongation
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demonstrates features that suggest that it could play as sig-

nificant a role in the overall rate of transcription and hence

the regulation of gene expression (18).

Of particular interest are transcriptional pauses that disrupt

the processive mRNA synthesis. Single-molecule techniques

have made a more quantitative characterization of elongation

pauses possible. Recent in vitro experimental studies with

Escherichia coli RNAP have classified elongation pauses

into long (.20 s) and short (1–6 s) pauses (19,20). It has also

been suggested that elongation pauses can occur either in a

sequence-dependent manner (21) or irrespective of the

underlying sequence (19) and some pauses were linked

with the reverse translocation of the RNAP (backtracking)

(19,22). Backtracking may be caused by nucleotide

misincorporation or a weak RNA-DNA hybrid (8,23) and

can also be regulated by specific proteins (24). In general,

backtracking can significantly increase the total elongation

time, and in many cases is the precursor to transcriptional

arrest (25).

In this article we point out that a single step Poissonian

picture of transcription implies that the rate-limiting step (in

transcription) is transcription initiation, i.e., the elongation

process that follows is fast and straightforward. We present a

molecular model of transcription elongation (26–29) with

very different, heavy-tailed distributions of transcription

times. Furthermore, we show that elongation can be

sufficiently slow to be rate-limiting, providing the cell with

ample targets for regulation. In particular, we highlight the

very important role transcriptional pauses play in determin-

ing the distribution of total transcription times and therefore

the statistics of the mRNA levels. Our results should have

direct implications for the fluctuations observed in the levels

of gene expression, which lead to noise in cellular processes

and may play a role in generating variability between cells.

We study two classes of models both analytically, within a

mean field approximation, and numerically, using stochastic

simulations. First in a model of transcription without tran-

scriptional pauses (Model A), we find that the transcription-

elongation adds a typical delay that scales linearly with the

transcript size. In this model, the contribution from fluctu-

ations is small (especially for large transcript lengths) and

leads to elongation times that are described by a Gaussian

distribution. Second, we construct a model that incorporates

backtracking pauses during the elongation phase (Model B).

We develop a detailed model of backtracking pauses as a

first-passage process and study the distribution of their

duration considering two different scenarios: 1), pauses that

end with the TEC sliding back into position (case 1); and 2),

backtracking pauses that can also lead to transcriptional

arrest (case 2). In addition, using stochastic simulations, we

investigate the effect of backtracking pauses on the distri-

bution of elongation times, as well as on the statistics of the

mRNA production. We show that pauses can dominate the

elongation process and lead to a heavy-tailed distribution

of elongation, and hence transcription completion times.

Finally, we use Model B to perform simulations of mRNA

production, allowing multiple RNAP molecules to transcribe

the same gene.We demonstrate that rare and long-lived pauses

result in bursts of mRNA production, in agreement with

experimentally observed transcriptional bursting (11,30,31).

TRANSCRIPTION ELONGATION COMPLEX

At a typical template position the RNAP covers a region of

;25 DNA basepairs (bp), of which the central part (12 bp) is

melted, forming the transcription bubble (32). Within the

bubble, a hybrid (8–9 bp) is formed between the nascent

mRNA and the complementary DNA strand that contributes

to the stability of the TEC (33). Elongation (polymerization)

describes the addition of a nucleotide to the 39 end of the

transcript, which is catalyzed by the active site of the RNAP

and hence conditional on the active site being locked in the

appropriate position. In the simplest scenarios, polymeriza-

tion of the nascent mRNA can be interrupted by the reverse

process of pyrophosphorolysis (depolymerization), which

leads to shortening of the mRNA transcript (8), or by pauses,

due to translocation of the TEC (see below).

After a polymerization step has taken place the TEC is

thought to occupy the pretranslocated state. From this

position the TEC must translocate forward on the DNA

template, to the posttranslocated state, so that the active site

is in position to catalyze the next nucleotide addition. In

general, the TEC is also capable of translocating backward

on the template (backtracking) or even ahead of the target

DNA nucleotide (hypertranslocation). During backtracking

the TEC is moved upstream along the DNA template. This

translocation causes the 39 end of the nascent mRNA to

dissociate from the DNA and exit the TEC through the

secondary channel of the polymerase (34). Effectively, this

rearward motion dissociates the active site from the 39 end of
the transcript, temporarily halting the elongation, until the

TEC is in position once again. The posttranslocated, pre-

translocated, and backtracked states are illustrated schemat-

ically in Fig. 1, a–c.
A simple mathematical model that captures the essence

of polymerization, depolymerization, and backtracking can

be described in terms of two discrete variables n and m.
Variable n denotes the position of the last transcribed

nucleotide, or equivalently, the size of the nascent mRNA,

and ranges from 0 to N. In our model, n counts nucleotides

relative to the position at which the elongation phase is

entered by the formation of the stable TEC. Thus, position

n ¼ 0 does not correspond to the actual transcriptional start-

ing point, but usually a few (8–10) nucleotides downstream.

Finally, transcription will terminate at position n ¼ N. Note
that n is only affected by polymerization (lengthening) and

depolymerization (shortening) of the nascent mRNA. The

second variable m denotes the position of the polymerase’s

active site relative to n and ranges from�n to 1. Statesm¼ 0

and m ¼ 1 are defined as the pre- and posttranslocated states
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of the TEC, respectively, while m , 0 corresponds to a

backtracked (or reverse translocated) state. Hypertransloca-

tion (which would lead to m . 1) is ignored.

The elongation phase starts with the TEC in state (n ¼ 0,

m ¼ 0). The only transition possible from this state is to the

posttranslocated state (n ¼ 0, m ¼ 1), from which the TEC

can revert to (n ¼ 0, m ¼ 0) or proceed with polymerization.

Polymerization, or the addition of a single nucleotide to the

nascent mRNA strand, can only proceed from the post-

translocated state. Thus, with the TEC occupying the

pretranslocated state (n, m ¼ 0), polymerization by a single

nucleotide requires two steps: 1), the TEC sliding forward to

the posttranslocated state (n, m ¼ 1); and 2), the extension of

mRNA by one nucleotide (n 1 1, m ¼ 0), which leaves the

TEC in the next pretranslocated state. Conversely, the

reverse process of depolymerization can only proceed from

the pretranslocated state and leaves the TEC in the previous

posttranslocated state (n – 1, m ¼ 1). Thus, at any given

template position n, the TEC can freely move back and forth

between the pretranslocated (n, m ¼ 0) and the posttrans-

located (n, m ¼ 1) states, allowing depolymerization and

polymerization, respectively, (except from the two boundary

points n ¼ 0 and n ¼ N). A schematic diagram of state

transitions for a simplified model excluding backtracking

(Model A) is given in Fig. 2 a.
Inclusion of backtracking in the model provides an

additional pathway, as the TEC can now hop from the

pretranslocated state (n, m ¼ 0) into the first backtracked

state (n, m ¼ –1). Subsequent backward translocation events

can randomly shift the TEC’s active site back and forth,

possibly backtracking as far back as (n, m ¼ –n) (8). In

practice, backtracking is often restricted to m ¼ �M . –n.
In some cases, backtracking will consist of random reverse

and forward translocations that eventually end as the TEC

returns to the nucleotide target position (allowing polymer-

ization to resume). In other instances, backtracking is interrupted

(in a so-called transcript arrest (8)) and the pause eventually

ends when the TEC is rescued by accessory factors, such as

the Gre/TFIIS cleavage proteins (35,36). Note that back-

tracking affects only variable m, since it disrupts the

positioning of the active site, leaving the length of the

nascent mRNA (variable n) unaffected. In other words, both

polymerization and depolymerization are blocked during

backtracking until the corresponding target positions are

recovered, i.e., (n, 1) and (n, 0), respectively. A schematic

diagram of state transitions for a model of elongation with

restricted backtracking (Model B) is given in Fig. 2 a.
For both Models A and B, we seek the statistics of the

elongation time, i.e., the time needed for the TEC to reach

position (n ¼ N, m ¼ 0) with the elongation phase starting

with the TEC in state (n ¼ 0, m ¼ 0).

FIGURE 1 Schematic representation of the transcription elongation

complex (TEC) at different translocation states: (a) Posttranslocated state

at (n, m ¼ 1), (b) pretranslocated state (n, m ¼ 0), and (c) backtracked state

(n, m ¼ �2). The position of the TEC on the DNA template is characterized

by the position of the active site, which in terms of variables n and m is

x ¼ n 1 m.

FIGURE 2 Schematic illustration of discrete models of transcription elon-

gation. (a) Model A (dotted rectangular) includes polymerization, depoly-

merization, and transitions between the post- and pretranslocated states.

Model B also allows for backward translocation of the TEC as far as m ¼
�M, withM� N . If n,M, backward translocation is permitted up to state

m ¼ �n (not shown). In the case of uninterrupted backtracking (case 1), the

TEC can return from state m ¼ �M (white arrow), whereas in the case of

transcript arrest (case 2), the TEC is halted at m ¼ �M until it is rescued by

accessory factors, which move it to state (n � M, 0). The table includes

typical values for parameters of Model A. (b) Schematic illustration of a

simplified version of Models A and B when transition between pre- and

posttranslocated states is the fastest process. The active states (m ¼ 0, 1) have

been collapsed into one state, denoted by the asterisk (*). At each template

position the TEC can either proceed with polymerization, depolymerization, or

enter a backtracked state, with effective rates p1, p–, or d9, respectively.
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Model A: translocation-limited polymerization

In this model, backtracked states are ignored, and at each

template position n only two translocation states are pos-

sible: m ¼ 1 and m ¼ 0, which allow transcript polymer-

ization and depolymerization, respectively. The rates of

polymerization and depolymerization are given by kf and kb,
while a is the translocation rate from m ¼ 0 to m ¼ 1 and b
the reverse rate from m ¼ 1 to m ¼ 0. (See typical values in

the table of Fig. 2.)

The dynamics of Pn,m(t), the probability of finding the

polymerase in state (n, m) at time t, are described by the

Master equation (37,38),

@Pn;0

@t
¼ kfPn�1;1 1 bPn;1 � ðkb 1 aÞPn;0; (1a)

@Pn;1

@t
¼ kbPn11;0 1 aPn;0 � ðkf 1 bÞPn;1; (1b)

where n varies from 0 to N – 1. We assume that depo-

lymerization is impossible at position n ¼ 0 and that the

process is terminated when position n ¼ N is reached.

Consequently, the boundary conditions (BC) imposed on

Eq. 1 should be reflecting at n ¼ 0 and absorbing at n ¼ N.
The reflecting BC is obtained by defining a fictitious state

n¼�1 and setting kbP0,0 ¼ kf P–1,1. To obtain the absorbing

BC, it is convenient to introduce a fictitious position at N and

set PN,0 ¼ 0 (38), which is equivalent to setting the transition

rate from (N – 1, 1) to (N, 0) equal to zero.

A mean-field (quasi-steady-state) approximation yielding

a biased random walk is obtained in the limit that the rates of

polymerization are much slower than the rates of transloca-

tion (i.e., kf, kb � a,b) (26,28). The effective polymerization

and depolymerization rates are p1 � kfa=ða1 bÞ and

p� � kbb=ða1 bÞ: We calculate m, the mean elongation

time (i.e., the time it takes for the TEC to arrive at n¼ N,m¼
0 from a starting position at n ¼ 0, m ¼ 0) and the variance

s2 as a function of the template length N (see Appendix A for

a complete derivation). Under normal conditions, elongation

is overwhelmingly favored over chain shortening (8)

K ¼ p�/p1 � 1. Therefore, we have

m ¼ N

p1

1K
ðN � 1Þ
p1

1OðK2Þ; (2a)

s
2 ¼ N

p2

1

1K
ð4N � 4Þ

p2

1

1OðK2Þ: (2b)

Fig. 3 shows results obtained from stochastic simulations

of Model A (Eq. 1), along with the analytic results obtained

FIGURE 3 (a, b) Distribution of dimensionless elonga-

tion times (scaled by the mean elongation time) for Model

A (Eq. 1). Mean-field analytic results are plotted in solid

curves, and superimposed with stochastic simulations

results. (a) Results for N ¼ 1000 bp, p1 ¼ 20 s�1 and

different polymerization biases K ¼ 0.01, 0.5, 0.99. (b)

Results for K ¼ 0.01, p1 ¼ 20 s�1 and different template

lengths N ¼ 10, 100, 1000 bp. (c) Standard deviation over

mean (s/m) plotted against the template length N for

different values of K. As expected, the width of the dis-

tribution scales as 1=
ffiffiffiffi
N

p
:
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in the mean-field approximation, for different values of N
and K. In the small K regime and for small values of N, the
elongation times are approximately g-distributed, with shape
parameter a¼ m2/s2 and scale parameter b¼ s2/m2. As N is

increased, the distribution approaches a Gaussian, in agree-

ment with the Central Limit Theorem, with mean and

variance given by Eqs. 2a and 2b, respectively. Since both m
and s2 scale linearly with the template length N, fluctuations
around the mean are of the order 1=

ffiffiffiffi
N

p
: As a result, the

distribution becomes narrowly peaked around the mean as N
is increased, and in the limit N / N, where fluctuations

tend to zero, the process becomes essentially deterministic.

Conversely, in the K / 1 limit, polymerization and depo-

lymerization tend to play equal roles, leading to fluctuations

in the transcription time that do not vanish as N is increased.

Model B: transcription with backtracking pauses

We now extend Model A to include elongation pauses that

arise when the TEC occupies backtracked states (m , 0). In

particular, a pause is signaled when the TEC enters the

backtracked state m ¼ �1 from state m ¼ 0. We denote the

corresponding transition rate by d and assume a slow rate

relative to polymerization d � p1. From m ¼ �1 the TEC

hops across contiguous backtracked states with rate c. In
principle, at each template position n, backtracking can

proceed up to m ¼ �n (8). However, in practice, different

mechanisms, such as RNA hairpins, RNA-DNA interac-

tions, and cleavage enzymes preclude extensive backtrack-

ing (33). A more reasonable assumption is that backtracking

is restricted in length; we assume backtracking to be

restricted to a fixed number of steps m ¼ �M � �n, which
we take to be independent of position n. Also, for values of
template position n that are smaller than M, backtracking is

permitted to extend as far as m ¼ – n. In fact, hairpins are

dynamic (breaking and reforming), implying that the choice

of fixed M is only a first approximation. If the hairpin

relaxation time is sufficiently fast (as compared with the

backtracking rate), such dynamics could lead to fluctuations

in the value of M.

Dynamics of backtracking pauses

To gain insight into the statistics of transcriptional pauses,

we describe and examine the dynamics of backtracking as a

separate process. Without loss of generality, we describe

backtracking by a symmetric hopping process, or unbiased

random walk with rate c. The asymmetric case, equivalent to

a biased random walk, is quite a straightforward generali-

zation (39). For simplicity, we characterize backtracked

states by a new variable l ¼ – m, where 1 # l # M. The

probability P(l, t), of finding the polymerase in state l at time

t given that it was in state l ¼ 1 at t ¼ 0, follows the Master

equation:

@Pðl; tÞ
@t

¼ cPðl� 1; tÞ1 cPðl1 1; tÞ � 2cPðl; tÞ: (3)

We use the Laplace transform, p̃ðl; sÞ ¼ RN
0

Pðl; tÞe�stdt;
to obtain exact expressions for the probability distribution of

the duration of backtracking pauses for two different

scenarios:

1. Uninterrupted backtracking: l ¼ M is a reflecting bound-

ary, and termination of the pause occurs when the TEC

eventually slides back to state l ¼ 0 and

2. Transcript arrest: The TEC is irreversibly halted at l ¼ M.

Elongation can be resumed either from state l ¼ 0 or

from position l ¼ M with the aid of accessory factors.

Detailed derivations are given in Appendix B.

Case 1: uninterrupted backtracking

In this case no backward translocation is possible beyond

state l ¼ M, and the pause is ended when state l ¼ 0 is

reached. The corresponding boundary conditions for Eq. 3

are: P(0, t) ¼ 0 (absorbing) and cP(M, t) ¼ cP(M 1 1, t)
(reflecting). The mean pause duration is Ætæ ¼ M/c and an

analytic expression for the probability distribution P(t) of
pause duration is given in Appendix B. Simple expressions

for P(t) are obtained in the following limits:

PðtÞ �

1

2
ffiffiffiffi
p

p ffiffiffi
c

p
t
3=2;

1

c
� t �M

2

c
;

pcsin
p

2ðM1 1Þ
� �

ð11MÞ2 exp e
�

cp
2

4ð11MÞ2t
2
664

3
775; t � M

2

c
:

8>>>>>>><
>>>>>>>:

(4)

For times short compared to the timescale of diffusion to the

reflecting state l ¼ M (t� M2/c), but still longer than the time

for the TEC to diffuse by one nucleotide (t � 1/c), P(t) scales
as t�3/2. Interestingly, the power law behavior characteristic of

this regime is consistent with the heavily skewed and heavy-

tailed distribution observed by Shaevitz et al. (19). Conversely,

for times much longer than M2/c, which ensure reflection, the

asymptotics are altered and P(t) exhibits a rapid exponential

decay. The two different asymptotic behaviors are illustrated in

Fig. 4 a, where the analytic results have been plotted together

with the data obtained from stochastic simulations of the model.

Case 2: backtracking with transcript arrest

As before, pauses begin with a transition into state l ¼ 1 and

terminate when state l ¼ 0 is reached. However, in this

scenario, backtracking will also be terminated by the arrest of

transcription if the TEC arrives at l ¼ M. Transcription can

only resume from the arrested state with the aid of a rescue

mechanism (35,36). The boundary conditions imposed to Eq. 3

are therefore absorbing at both ends: P(0, t) ¼ P(M, t) ¼ 0.
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It can be shown (see Appendix B) that the probability of

eventual arrest of the TEC is pM ¼ 1/M; the probability of

TEC recovery from the pause is p0 ¼ 1�pM; and the

corresponding mean time for each case is ÆtæM ¼ (M2 – 1)/6c
and Ætæ0 ¼ (2M – 1)/6c. Compact expressions for P0(t), the
probability distribution of recovering from the pause at time

t, are obtained in the two limits discussed above:

P0ðtÞ �

1

2
ffiffiffiffi
p

p ffiffiffi
c

p
t
3=2;

1

c
� t � M

2

c
;

2pcsin
p

M

� �
M

2 exp e
�
p

2
c

M2 t

2
64

3
75; t � M

2

c
:

8>>>>>><
>>>>>>:

(5)

Once again, the distribution demonstrates a power law decay

for 1/c � t � M2/c, followed by an exponential cutoff. For

sufficiently long times t � M2/c that allow diffusion to the

boundary l ¼ M, the probability distribution of the TEC

arrest decays exponentially with PM(t) � P0(t). The above

analytic results, along with stochastic simulations, are sum-

marized in Fig. 4.

Stochastic simulations of Model B

Having characterized backtracking statistics, we are now in a

position to examine the effects of backtracking on the total

elongation time. The macroscopic (observable) properties

that we must consider are: 1), the number of pauses d over a

DNA template of length N, and 2), the aggregate lifetime of

all the pauses relative to the time spent on active polymeri-

zation. These properties are linked to the microscopic param-

eters d and c, respectively. In particular, when translocation

between pre- and posttranslocated states is the fastest process,

the number of pauses d is given by:

d

N
¼

d
a

a1 b

d
a

a1 b
1 p1 1 p�

¼ d9

d91 p1 1 p�
; (6)

where d9 ¼ dða=ða1bÞÞ is the effective rate of entering into

a backtracked state (see Fig. 2 b). Moreover, the distribution

of pause durations (for the case of uninterrupted backtrack-

ing) is determined by the symmetric diffusion rate c, with
M/c being the mean pause duration.

As expected, in the limit of short-lived pauses, even the

aggregate pause duration will be negligible relative to the

time spent on processive polymerization, N=p1 � dðM=cÞ;
and so the distribution of elongation times will approach that

of Model A. Conversely, when N=p1 � dðM=cÞ; pauses
dominate the total elongation time and the distribution of

elongation times is significantly affected by the large fluc-

tuations in the duration of the pauses. In the limit p1 � d9
and p1 � p�, Eq. 6 becomes d=N � d9=p1 and the above

limits can be written as d9ðM=cÞ � 1 and d9ðM=cÞ � 1:We

therefore introduce R ¼ d9ðM=cÞ as a dimensionless measure

of pauses which quantifies their relative contribution to the

elongation time. This measure of pause durations is partic-

ularly useful as it is directly linked to the macroscopic

parameters of the system (i.e., mRNA production rate) but is

derived from the microscopic rate parameters.

Figs. 5 and 6 illustrate the results of the stochastic simu-

lations of Model B, i.e., transcription with restricted, uninter-

rupted backtracking, for different values of R (keeping the

frequency of pauses d/N constant). As expected, for R / 0

the polymerization-only model (Model A) is recovered and

s=m ¼ 1=
ffiffiffiffi
N

p
(Fig. 6). This is also evident from the dis-

tribution of elongation times, where for small R the high peak

close to the mean elongation time predicted by Model A indi-

cates that either no pauses or only brief ones occur. The effect

of backtracking events is most evident in the heavier tail of

the distribution since rare prolonged pauses can give rise to

significantly longer elongation times. This effect is magnified

as the fraction of time spent in pauses is increased (i.e., for

higher values of R) (Fig. 5 a). For increasing pause frequency

FIGURE 4 Results for case 1 (uninterrupted backtracking) and case 2

(transcript arrest) pauses with M ¼ 10. Distributions of (a) pause duration

P(t) for case-1; (b) self-recovered pause durationP0(t) for case-2; and (c) time

to arrest PM(t) for case-2. Plotted are the analytic results (Eq. 39, and Eqs.

45a and 45b, respectively) as solid lines and the results of stochastic simula-

tions as circles.P(t) andP0(t) exhibit a power law decay for 1/c� t�M2/c,

followed by an exponential cutoff in long time limit (t � M2/c).
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(higher d/N) the effect on the total elongation time is clearly

more profound; the distribution becomes broader and exhibits

a general shift toward longer elongation times (Fig. 5 b).

mRNA transcript levels: production
and degradation

Models A and B capture the statistics of the elongation

phase. Ultimately, however, one is interested in the mRNA

levels, which are the combined action of mRNA production

(transcription) and degradation. In general, the transcription

process involves an initiation phase (which includes pro-

moter binding, open complex formation, and promoter clear-

ance), an elongation phase, and termination. As a more

complete model of transcription, we assume fast termination

and combine the model of elongation presented above (Model

B) with a simplified, first-order initiation step. Degradation is

also represented as a Poisson, single-step process. Using

stochastic simulations of this combined transcription-degra-

dation model, we examine how the elongation and possible

pauses therein affect steady-state mRNA levels.

We denote the initiation rate as ki. The elongation phase

proceeds as described by Model B and instantaneous ter-

mination takes place when the transcript reaches its desig-

nated size, leading to mRNA production. Finally, mRNA

degradation is modeled as a first-order process with rate

constant kd. The combination of mRNA production and

degradation gives a first handle on mRNA levels and

fluctuations in the cell.

In fact, mRNA production is complicated by the fact that

multiple initiation events can occur within the time it takes to

produce a single mRNA. This would lead to several TECs

moving in tandem on the same DNA template (40), each

synthesizing a nascent mRNA. To capture the fact that two

TECs cannot come in close proximity due to nonspecific

interactions between them or to the additional work required

to deform the DNA helix (41,42), we set a minimum

(exclusion) distance of L nucleotides (L � N) between the

active sites of any two contiguous TECs. In terms of variables

n and m of Model B, the active site of a TEC is located at

position x ¼ n 1 m along the DNA template. Therefore, a

TEC, positioned at x1, can translocate forward (backward) if

the leading (trailing) TEC, positioned at x2, is at distance of at
least L nucleotides, i.e., jx1 – x2j , L. A similar argument

applies for transcription initiation, that is, no RNA polymerase

can initiate transcription if a TEC is at position x # L. A
schematic illustration of the model is given in Fig. 7.

The relevant timescales associated with the above model

are: 1), the time needed for transcription initiation t1 ¼ 1/ki;
2), the time needed by the TEC to transcribe L nucleotides

t2 � L/p1; and 3), the mean time of a pause due to

backtracking t3 ¼ M/c. When initiation is the rate-limiting

step (t1 � t2,t3), the density of TECs on the DNA template

is low and therefore transcriptional pauses and interactions

between TECs are expected to have marginal effects.

Consequently, the rate of mRNA production is set mainly

by the rate of initiation ki and the statistics of the mRNA

levels are expected to be approximately Poisson with the

mean equal to the variance (mmRNA ¼ s2
mRNA; see Fig. 8

III). If the rate of polymerization is the rate-limiting step

FIGURE 5 Distributions of dimensionless elongation

times (scaled by N/p1) for Model B for different values of

R ¼ d9M/c. The distributions were obtained from stochas-

tic simulations. (a) N ¼ 4 kb, M ¼ 10 bp, p1 ¼ 10 s�1,

K¼ 0.01 and d9 chosen to yield d/N� d9/p1¼ 1 pauses/kb

(19,22). (b) N ¼ 1 kb,M ¼ 10 bp, p1 ¼ 10 s�1, K ¼ 0.01,

and d9 chosen to yield d/N� d9/p1 ¼ 10 pauses/kb. (Inset)

R ¼ 1. The effect of the pauses is evident in the heavy tails

that broaden with decreasing R or increasing d/N.

FIGURE 6 Standard deviation over mean (s/m) of elongation times

(Model B) plotted against 1/R for different values of the ratio d9/p1 (pause

frequency). As 1/R/ 0, pauses becomemore significant and the distribution

of elongation times becomes broader. In the case of frequent pausing (d9/p1
¼ 2 3 10�3), the distribution exhibits characteristics of an exponential

distribution, i.e., s/m¼ 1 (indicated by the upper dashed line). As 1/R/N,

the effect of pauses vanishes and Model B approaches Model A, where

s=m � 1=
ffiffiffiffi
N

p
(indicated by the lower dashed line). Parameters used: N ¼ 4

kb, M ¼ 10 bp, d9 ¼ 0.01 s�1, K ¼ 0.01, and p1 ¼ 2, 10, and 20 s�1.
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(t2 � t1,t3), fast transcription initiation is blocked by the

slow movement of the TECs on the DNA template, while

the relatively short-lived backtracking events, as in the case

above, play no significant role. In particular, the density

of TECs along the DNA is expected to be maximal (N/L),
with the TECs kept evenly spaced (L nucleotides apart) by

exclusive interactions. In this regime the statistics of the

mRNA levels are sub-Poisson with more evenly distributed

TECs along the DNA template (mmRNA.s2
mRNA; see Fig. 8

II). Finally, t3 � t1,t2 corresponds to a regime where long

pauses dominate transcription. Such pauses can create

congestion points by blocking the movement of trailing

TECs, while the leading TECs continue to transcribe

normally. In this way the uniform (t2 � t1) or Poisson

(t1 � t2) distribution of TECs on the DNA template is

disrupted, resulting in a burstlike production of mRNA

transcripts (Fig. 9) and super-Poisson mRNA statistics (i.e.,

mmRNA,s2
mRNA; see Fig. 8 I).

In the bursting regime, the effect of elongation pauses can

be linked heuristically to a switching mechanism between

high and low rates of mRNA production. In particular,

sufficiently long pauses shut down mRNA production by

blocking trailing TECs. In the intervals between pauses,

multiple blocked TECs that have accumulated at a conges-

tion site are likely to be transcribed in a burst of rapid mRNA

production. A qualitative description of the different classes

of behavior obtained for the integrated initiation, elongation,

degradation model is presented in Table 1. Stochastic simu-

lations of the model confirm that rare and long-lived pauses

give rise to jamming of TEC trafficking during transcription

and therefore bursts of mRNA production. We note that such

abrupt switching between two states is reminiscent of dy-

namic phenomena observed in studies of the asymmetric ex-

clusion process (43,44).

FIGURE 8 Distribution of steady-state number of

mRNA molecules (solid line). Simulations included tran-

scription initiation, elongation, and mRNA degradation

and allowed multiple RNAP molecules to transcribe the

DNA template at the same time. A Poisson distribution

with the same mean value is given for reference (dash-

dotted line). (I) When elongation pauses are longer than the

time needed for transcription initiation and the time needed

by the TEC to transcribe L nucleotides (t3 � t1,t2), the

mRNA distribution is expected to be broader than Poisson.

(II) When the movement of RNAP molecules on the DNA

template is the rate-limiting step (t2 � t1,t2), the mRNA

distribution predicted by the model is sub-Poisson. (III)

When transcription initiation is the rate-limiting step (t1�
t2,t3), the mRNA distribution predicted by the model is

Poisson.

FIGURE 7 Schematic illustration of multiple RNAP molecules simulta-

neously transcribing a DNA template. Transcription initiation proceeds with

an effective rate of ki. The position of each TEC on the DNA is characterized

by the position of its active site, which is given by x ¼ n1 m. We also set a

minimum (exclusion) distance of L nucleotides between any two TECs. If

transcriptional pauses are sufficiently long they can block the progress of

trailing RNAP molecules and subsequently lead to a burst in mRNA pro-

duction. Such a scenario suggests a significant link between transcriptional

pauses and mRNA production statistics.
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DISCUSSION

We have presented a stochastic model of transcription,

including initiation, elongation, and mRNA degradation.

Our main focus has been on the elongation phase for which

we obtained analytic results both for the polymerization

dynamics (ignoring backtracking) and for the dynamics of

backtracking pauses. Our model of backtracking pauses as a

first passage process is consistent with recent single molecule

experiments (19). By means of stochastic simulations we

have also examined how pauses affect the total elongation

times. Finally, we have developed a model of mRNA pro-

duction and degradation that combines transcription initia-

tion, transcription elongation, and mRNA degradation. In

this model, multiple RNAPs with repulsive interactions can

move in tandem on the same DNA template. We used

stochastic simulations of this model to examine how the

dynamics of the elongation phase and backtracking pauses

therein affect the statistics of the mRNA population levels.

Our key results are particularly instructive in two limits:

first, when pauses cause a weak perturbation to elongation

dynamics and secondly, when they significantly affect it. The

third regime, in which initiation is the rate-limiting step (with

relatively rapid elongation), recovers previously predicted

Poisson statistics. As expected, if the elongation phase

dominates transcription, but the time spent in backtracking

pauses is brief relative to that spent on active polymerization,

similar results to the polymerization-only model are recov-

ered. That is, for sufficiently long sequences (N � 1) the

elongation times follow a narrow Gaussian distribution with

fluctuations around the mean scaling like 1=
ffiffiffiffi
N

p
; where N is

the length of the gene. This leads to a characteristic delay in

the total time of transcription. Coupling fast transcriptional

initiation with such a model of transcription elongation pre-

dicts a more homogeneous transcription process and hence

steadier mRNA population levels than would be produced by

a model of initiation alone.

In the opposite regime, when there is a significant number

of backtracking pauses whose duration is comparable to the

active polymerization time, there is a dramatic change in the

distribution of transcriptional times. We considered two types

of backtracking pauses; pauses that end with the TEC sliding

back into position and backtracking pauses that can lead to

transcriptional arrest. For both classes of pauses we found a

broad distribution of pause durations with a power law decay

cutoff by an exponential one. Consequently, the statistics of

the elongation phase can be dramatically altered, with in-

creased mean and a significantly broader distribution of elonga-

tion times, which mirrors the distribution of pause durations.

Recent experiments have provided evidence for the ex-

istence of bursts of transcription both in bacterial (11) and

eukaryotic cells (30,31). We have found that our model of

the dynamics of elongation with pauses leads naturally to

switching between high and low mRNA production rates,

resulting in transcriptional bursts. Our findings suggest that

rare and long elongation pauses (from the tails of the

distribution) act as congestion points turning off mRNA

FIGURE 9 Simulation of mRNA population levels in

an integrated model of transcription initiation, elongation,

and mRNA degradation (parameters given in Appendix C;

103 runs). The inclusion of transcriptional pausing (when

multiple initiations are permitted) results in bursts of

mRNA production and super-Poisson mRNA statistics

(s2
mRNA=mmRNA ¼ 4:25). The bottom panel shows the

mRNA production events in time and the trace above

illustrates the resulting mRNA count fluctuations. In the

third panel, dmRNA/dt is plotted (dt ¼ 6 min), along with

an arbitrary threshold (dotted line, set to 1/dt mRNA/s).

The threshold enables us to visualize the transcriptional

process as a telegraph process with off- and on-states

corresponding to low and high rates of mRNA production

(top panel).

TABLE 1 Table summarizing the behavior of mRNA production

in the different limiting regimes (with time-limiting initiation,

polymerization, or pausing kinetics)

Regime Behavior

t1 � t2,t3 t1 � t2,t3 Poisson

t1 � t2,t3 Poisson

t2 � t1,t3 t1 � t3 sub-Poisson

t3 � t1 sub-Poisson

t3 � t1,t2 t1 � t2 super-Poisson

t1 � t2 super-Poisson

t1 � t2 � t3 sub-Poisson

t1 � t3 � t2 super-Poisson

t2 � t3 � t1 super-Poisson
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production for long periods, while allowing rapid mRNA

production for short intervals. Such long pauses, therefore,

give rise to more strongly fluctuating mRNA levels. Thus, in

this regime, elongation pauses act as a rate-limiting step.

In fact, experimental reports of transcriptional bursting

measure mRNA population levels (rather than production

rates). We obtain consistent fluctuations in mRNA popula-

tion levels, in a model that combines transcription with

mRNA degradation kinetics. Other possible elongation

pauses (which are not linked to backtracking) could result

in similar bursting effects (45). Indeed, pauses can, in

general, result from sequence-encoded signals (46), elonga-

tion factors, or nucleosome packaging (47,48). We note,

however, that the rate-limiting step can also be provided by a

number of different mechanisms associated with the tran-

scription process, such as changes in the state of the promoter

(30,31) (e.g., by chromatin remodeling) or the diffusivemotion

of regulatory molecules (49).

While single molecule studies have provided evidence that

RNAP backtracking dominates in vitro transcription and

results in pauses of significant (.20 s) duration (19), it is

interesting to consider how frequent they are and what role

they may play in vivo. For example, backtracking pauses

have been previously implicated in mRNA editing and error

correction (8,23) and could therefore partially account for

discrepancies between theoretically expected and observed

error rates in mRNA transcripts. Differences in free energies

between correct and incorrect nucleotides yield an expected

error rate of 10�3 errors/bp. This high rate contrasts with

experimentally measured values of 10�5 errors/bp (50). This

discrepancy in error rates could presumably be accounted for

by error correction mechanisms, which may include back-

tracking pauses (M. Voliotis, N. Cohen, C. Molina-Parı́s,

and T. B. Liverpool, unpublished). Of course, the situation in

vivo is further complicated by the effects of transcription

factors and other regulatory proteins. Nevertheless, if back-

tracking pauses are significant in the elongation process they

could provide the cell with ample opportunity for a range of

regulation mechanisms.

The models presented here relied on a number of sim-

plifying assumptions. In particular, both polymerization and

elongation pauses were taken to be sequence-independent.

The assumption that polymerization takes place on a ho-

mogeneous DNA template is likely to be a simplification,

since the local rates of translocation have been suggested to

depend on the underlying local DNA sequence. Moreover,

our models have neglected any sequence dependence that

has been attributed to short-lived pauses (20,21). We leave

the development of more detailed sequence-dependent

kinetic models of elongation dynamics for future research.

While in this article we restrict our calculations to models

of transcription, similar arguments regarding pauses and

bursting should also be relevant for translation. Applications

of these results will ultimately contribute to a more complete

understanding of gene expression and regulation, and

fluctuations therein. A better understanding of these pro-

cesses will also shed light on the differences between the

effects of gene regulatory mechanisms, which act during

transcription and translation (18,52–56) as compared to

those which act by controlling the initiation of these

processes. Ultimately, models of noise generation in the

cellular environment may lead to new insights on the ways in

which cells survive and adapt, with consequences for cell

development, function, and fate.

APPENDIX A: TRANSLOCATION-LIMITED
POLYMERIZATION

For Model A, the Master equation describing the dynamics of Pn,m(t), the
probability of finding the TEC in state (n,m) at time t, starting from an initial

state (0, 0) at t ¼ 0, is given by Eq. 1. Since we take N to be the termina-

tion site, we implement an absorbing boundary at position (n ¼ N, m ¼ 0).

Such a boundary can in general be obtained by setting the depolymerization

rate at n ¼ N equal to 0. By doing so, Eq. 1b is affected only for (n ¼ N – 1,

m ¼ 1):

@PN�1;1

@t
¼ aPN�1;0 � ðkf 1 bÞPN�1;1: (7)

The same result can be obtained by setting PN,0 ¼ 0 and regarding Eq. 1b

valid for every n in f0; 1; . . . ;N � 1g: Also, since we assume (n¼ 0, m¼ 0)

to be a reflecting boundary, we set the depolymerization rate at n ¼ 0 to

0 and P–1,1 ¼ 0, i.e., there is no probability flow from or to state (n ¼ �1,

m ¼ 1). In this way, Eq. 1a is affected only for (n ¼ 0, m ¼ 0):

@P0;0

@t
¼ bP0;1 � aP0;0: (8)

The same result can be obtained by setting kbP0,0 ¼ kfP–1,1 such that Eq. 1a

is valid for every n in f0; 1; . . . ;N � 1g:
We can define a mean occupancy for each translocation state (m ¼ 0, 1)

by summing over all possible template positions, PmðtÞ ¼ +N�1

n¼0
Pn;mðtÞ.

From Eq. 1a, we obtain

@P0

@t
¼ ðkf 1 bÞP1 � ðkb 1 aÞP0; and P1 ¼ 1�P0: (9)

The solution to Eq. 9 that satisfies initial conditions P0(0) ¼ 1 relaxes on a

timescale t ¼ ða1b1kf1kbÞ�1 � k�1
f : On timescales longer than t,

this solution attains steady-state values such that Ps
0 ¼ (kf 1 b)t and

Ps
1 ¼ (kb 1 a)t. For such long times the fluctuations in n and m become

independent and we can write Pm,n ¼ Ps
mPn: Substituting back into Eq. 1

and summing over m, we obtain

@Pn

@t
¼ p�Pn11 1 p1Pn�1 � ðp� 1 p1 ÞPn; (10)

which is equivalent to a biased random walk with effective polymerization

and depolymerization rates

p1 ¼ kfðkb 1 aÞt � kfa

a1 b
; (11a)

p� ¼ kbðkf 1 bÞt � kbb

a1 b
; (11b)

where we have used kf, kb � a,b. Note that the boundary conditions for

Eq. 10 are PN ¼ 0 (absorbing) and p�P0 ¼ p1P�1 (reflecting).

The elongation time is defined as the time needed for the TEC to reach

position (n ¼ N, m ¼ 0) starting from (n ¼ 0, m ¼ 0). In the mean-field

model the mean and variance of the elongation time can be calculated using

the backward Master equation (38). We denote the initial template position
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of the TEC at time t0 ¼ 0 by n0 and rewrite Eq. 10 in terms of conditional

probabilities:

@Pðn; tjn0; t0Þ
@t

¼ p1Pðn� 1; tjn0; t0Þ1 p�Pðn1 1; tjn0; t0Þ
� ðp1 1 p�ÞPðn; tjn0; t0Þ:

(12)

The backward Master equation is (38)

@Pðn; tjn0; t0Þ
@t0

¼ p1 ½Pðn; tjn0; t0Þ � Pðn; tjn0 1 1; t0Þ�
1 p�½Pðn; tjn0; t0Þ � Pðn; tjn0 � 1; t0Þ�:

(13)

Since the system is homogeneous, we can write

Pðn; tjn0; t0 ¼ 0Þ ¼ Pðn; 0jn0;�tÞ; (14)

so that the backward Master equation takes the form

@Pðn; tjn0; 0Þ
@t

¼ p1 ½Pðn; tjn0 1 1; 0Þ � Pðn; tjn0; 0Þ�
1 p�½Pðn; tjn0 � 1; 0Þ � Pðn; tjn0; 0Þ�:

(15)

The boundary conditions for the backward Master equation are P(n,tjn0 ¼
0,0) ¼ P(n,tjn0 ¼ �1,0) (reflecting) and P(n,tjn0 ¼ N,0) ¼ 0 (absorbing).

The probability that at time t the TEC has not yet reached the absorbing

boundary is given by

+
N�1

n¼0

Pðn; tjn0; 0Þ ¼ Gðn0; tÞ: (16)

If T is the elongation time (time needed to complete elongation by reaching

the absorbing boundary at position n ¼ N), G(n0, t) is the probability that

T$ t. In other words, the cumulative distribution function of the elongation

times is 1 – G(n0, t). We sum Eq. 15 over n from n¼ 0 to n¼ N – 1 to obtain

@Gðn0; tÞ
@t

¼ p1 ½Gðn0 1 1; tÞ � Gðn0; tÞ�
1 p�½Gðn0 � 1; tÞ1Gðn0; tÞ�; (17)

subject to the initial condition G(n0,0) ¼ 1 and boundary conditions

G(N,t) ¼ 0 and G(0,t) ¼ G(�1,t).

Equation 17 can be expressed and solved in terms of the first and second

moments of the elongation time T, which can be written as

Tðn0Þ ¼ ÆTæ¼�
Z 1N

0

t@tGðn0; tÞdt¼
Z 1N

0

Gðn0; tÞdt;
(18)

T2ðn0Þ ¼ ÆT2æ¼�
Z 1N

0

t
2
@tGðn0; tÞdt¼ 2

Z 1N

0

tGðn0; tÞdt:
(19)

We integrate Eq. 17 with respect to t to obtain

�1 ¼ p1Tðn0 1 1Þ1 p�Tðn0 � 1Þ � ðp1 1 p�ÞTðn0Þ
¼ p1 ½Tðn0 1 1Þ � Tðn0Þ�1 p�½Tðn0 � 1Þ � Tðn0Þ�:

(20)

The boundary conditions imply T(N) ¼ 0, T(0) ¼ T (�1). To solve this

difference equation we introduce

Uðn0Þ ¼ Tðn0Þ � Tðn0 � 1Þ; (21)

and substituting into Eq. 20 yields

p1Uðn0 1 1Þ � p�Uðn0Þ ¼ �1: (22)

Solving the above two difference equations recursively, we obtain (38)

Tðn0Þ ¼ +
N

n¼n0 1 1

1

p1

+
n�1

n9¼0

p�
p1

� �n9

: (23)

By setting K ¼ p�=p1 and observing that 0 # K , 1, we can write

Tðn0Þ ¼ 1

p1

+
N

n¼n011

1� Kn

1� K

¼ 1

p1 ð1� KÞ N � n0 � K
n0 1 1 � K

N1 1

1� K

� �
: (24)

Finally by letting n0 ¼ 0, we obtain the mean elongation time

m ¼ 1

p1 ð1� KÞ N � Kð1� K
NÞ

1� K

� �
: (25)

For the variance of the elongation time we carry out a similar derivational.

Multiplying by t and integrating Eq. 17 over t, we obtain

�2Tðn0Þ ¼ p1T2ðn011Þ1p�T2ðn0�1Þ� ðp1 1p�ÞT2ðn0Þ
¼ p1 ½T2ðn011Þ�T2ðn0Þ�1p�½T2ðn0�1Þ�T2ðn0Þ�:

(26)

Once again solving the above equation recursively leads to

T2ðn0Þ ¼� +
N

n¼n011

UðnÞ; (27)

where U(n) is given by

UðnÞ ¼� 2

p1

+
n�1

i¼0

K
n�i�1

TðnÞ: (28)

For n0 ¼ 0, the second moment becomes

ÆT2æ¼ð1�K16K
N11Þ

p
2

1ð1�KÞ3 N1
ð11KÞ

ð1�K16K
N11ÞN

2

�

� 2Kð1�KNÞð21KN11Þ
ð1�KÞð1�K16K

N11Þ

�
: (29)

Finally, the variance of the elongation time is given by

s
2 ¼ ÆT2æ� ÆTæ2

¼ ð11K1K
11NÞ

p
2

1ð1�KÞ3 N�Kð1�K
NÞð41K1K

11NÞ
ð1�KÞð11K14K

11NÞ

� �
:

(30)

In the limit K � 1 (polymerization is overwhelmingly favored over

depolymerization) we can express the mean elongation time and variance

up to first-order in K (see Eq. 2). In this regime, both the mean and the

variance of the elongation time depend linearly on the template length N.

Also the mean elongation time and variance approach the mean and variance
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of the sum of N independent and identically distributed (i.i.d.) exponential

steps. Since the sum of i.i.d. exponential random variables is g-distributed

we can assume that in the small K limit the elongation time, T, follows a

g-distribution

GðTja;bÞ ¼ T
a�1

e
�T
b

GðaÞba: (31)

The parameters a and b can be calculated from the mean and variance using

the relationships m ¼ ab and s2 ¼ ab2:

a¼ ðN1KN�KÞ2
N14KN�4K

; (32a)

b¼ 1

p1

N14NK�4K

N1NK�K
: (32b)

In the limit of large N the distribution of elongation times approaches

a Gaussian with mean and variance given by Eqs. 2a and 2b, respectively,

in agreement with the Central Limit Theorem.

APPENDIX B: ELONGATION PAUSES
AND BACKTRACKING

We model the dynamics of backtracking in terms of an unbiased random

walk with rate c. For simplicity, we characterize backtracked states by

l¼ – m where 1# l#M. The probability, P(l, t), of finding the TEC in state

l at time t given it was in state l ¼ 1 at t ¼ 0, follows the Master equation

given in Eq. 3. By using the Laplace transform p̃ðl; sÞ ¼ RN
0

Pðl; tÞe�stdt;we

can eliminate the time derivative in Eq. 3 and obtain an algebraic difference

equation,

sp̃ðl;sÞ�dl;1 ¼ cp̃ðl�1;sÞ1cp̃ðl11;sÞ�2cp̃ðl;sÞ; (33)

where dl,1 is the Kronecker delta.

Case 1: uninterrupted backtracking

In this case (see schematic diagram in Fig. 10 a), the boundary conditions

for Eq. 3 are: P(0, t) ¼ 0 (absorbing) and cP(M, t) ¼ cP(M 1 1, t)
(reflecting).

We solve Eq. 33 (as described in (39)), with boundary conditions

p̃ð0; sÞ ¼ 0 cp̃ðM; sÞ ¼ cp̃ðM11; sÞ; and obtain a closed formula for the

Laplace transform of the probability flux to state l ¼ 0, F̃ð0; sÞ ¼ cp̃ð1; sÞ;

F̃ð0;sÞ ¼ sinh½MfðsÞ�� sinh½ðM�1ÞfðsÞ�
sinh½ðM11ÞfðsÞ�� sinh½MfðsÞ�; (34)

where tanhfðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=ðs=2c11Þ2

q
The probability flux F(0, t) is equi-

valent to the probability of exiting the pause at time t, and its Laplace transform,
F̃ð0; sÞ; evaluated at s¼ 0, gives the probability of eventually exiting the pause

(39). From Eq. 34, one obtains F̃ð0; s ¼ 0Þ ¼ 1; i.e., the TEC will eventually

exit the pause and resume elongation. F̃ð0; sÞ is also the moment-generating

function containing all the positive integer moments of the exit time, as the

coefficients of its power expansion in s (39). We expand Eq. 34 to get

F̃ð0;sÞ ¼ 1�M

c
s1Oðs2Þ; (35)

from which we obtain the mean pause duration Ætæ ¼ M=c:

We can also use F̃ð0; sÞ to calculate the distribution of pauses. In the limit

t � 1=c; i.e., for times much longer than the time for a single step, Eq. 34

becomes

F̃ð0;sÞ �
cosh

ffiffiffi
s

c

r
ðMÞ

� �

cosh

ffiffiffi
s

c

r
ðM11Þ

� �: (36)

By inverting the above Laplace transform (58), we can express the

distribution of pause duration, P(t)[ F(0,t) (for times.1/c) in terms of the

Jacobi u1 function,

PðtÞ ¼ a
�1 @

@n
u1

1

2
na

�1

				ta�2

� �
; (37)

where n ¼ M=
ffiffiffi
c

p
; a ¼ (M11)=

ffiffiffi
c

p
and u1(zjt) can be expressed as the

infinite series (58)

u1ðzjtÞ ¼ 1ffiffiffiffiffi
pt

p +
N

n¼�N

ð�1Þnexp½�ðz1n�1=2Þ2=t�: (38)

Equation 37 leads to an expression for P(t). In particular, we obtain

PðtÞ ¼ �ðM11Þffiffiffiffi
p

p ffiffiffi
c

p
t
3=2 +

1N

n¼�N

ð�1Þn exp e
�ð11MÞ2

ct n� 1
2ðM11Þ

� �2
2
4

3
5

n� 1

2ðM11Þ
� �

: (39)

Simpler expressions for P(t) can be obtained in the limits t � M2=c and

t � M2=c (see Eq. 4 in main text). Plots of the analytic expression for P(t)
along with the two asymptotic limits are shown in Fig. 11 a.

Case 2: backtracking with transcript arrest

In this case (see schematic diagram in Fig. 10 b) the boundary conditions

imposed on Eq. 3 are: P(0, t) ¼ P(M, t) ¼ 0. Once again, we solve Eq. 33

with boundary conditions p̃ð0; sÞ ¼ p̃ðM; sÞ ¼ 0 to obtain a closed expres-

sion for the Laplace transforms of the exit probabilities to either boundary,

F̃ð0;sÞ ¼ sinh½ðM�1ÞfðsÞ�
sinh½MfðsÞ� ; (40a)

F̃ðM;sÞ ¼ sinh½fðsÞ�
sinh½MfðsÞ�; (40b)

FIGURE 10 Schematic illustration of the two cases of restricted back-

tracking: (a) uninterrupted backtracking and (b) backtracking with transcript
arrest. In both cases, variable l denotes the number of nucleotides that the

TEC has translocated backward. Translocation is possible up to l ¼ M. A

backtracking pause commences with the TEC at state l ¼ 1 (dashed arrow)

and terminates when state l ¼ 0 is reached. For the case of backtracking

with transcript arrest, the TEC is halted at state l ¼ M and can resume

polymerization only with the aid of accessory factors (left dashed arrow).
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where tanhfðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=ðs=2c11Þ2

q
: Evaluating the Laplace transforms

at s ¼ 0, we find that the TEC will eventually exit the pause either through

state l ¼ M with probability 1=M or through state l ¼ 0 with probability

1� 1=M: Once again, since Eq. 40a and Eq. 40b are generating functions,

we can expand them in power series in s to obtain the mean exit times to

either boundary, Ætæ0 and ÆtæM:

Ætæ0 ¼
2M� 1

6c
; (41a)

ÆtæM ¼M
2�1

6c
: (41b)

In the presence of accessory factors the arrested transcript is cleaved and the

TEC returns to a polymerization competent state. If we assume that the

accessory factors act on relatively fast timescales, then the overall mean

pause duration is just the weighted sum of Ætæ0 and ÆtæM, Ætæ ¼ ðM � 1Þ=2c:

We can also use F̃ð0; sÞ and F̃ðM; sÞ to calculate the full distribution for the

exit times to either boundary. For times much longer than the time for a

single step, t � 1=c; Eqs. 40a and 40b become

F̃ð0;sÞ �
sinh

ffiffiffi
s

c

r
ðM�1Þ

� �

sinh

ffiffiffi
s

c

r
M

� � ; (42a)

F̃ðM;sÞ �
sinh

ffiffiffi
s

c

r� �

sinh

ffiffiffi
s

c

r
M

� �: (42b)

By inverting the above Laplace transforms (58), the distribution of exit times

to the boundaries at l ¼ 0, P0(t)[ F(0,t), and at l ¼ M, PM(t) [ F(M,t) (for

times much greater than 1/c) can be expressed in terms of the Jacobi u4
function

P0ðtÞ ¼ a�1

0

@

@n0

u4

1

2
n0a

�1

0

				ta�2

0

� �
; (43a)

PMðtÞ ¼ a�1

M

@

@nM

u4

1

2
nMa

�1

M

				ta�2

M

� �
; (43b)

where n0 ¼ ðM � 1Þ= ffiffiffi
c

p
; nM ¼ 1=

ffiffiffi
c

p
; a0 ¼ aM ¼ M=

ffiffiffi
c

p
; and u4(zjt) can

be expressed as the infinite series (58)

u4ðzjtÞ ¼ 1ffiffiffiffiffi
pt

p +
N

n¼�N

ð�1Þnexp½�ðz1n11=2Þ2=t�: (44)

Equations 43a and 43b lead to the following expressions for P0(t) and PM(t):

P0ðtÞ ¼ �Mffiffiffiffi
p

p ffiffiffi
c

p
t
3=2 +

1N

n¼�N

exp e
�M

2

ct n� 1
2Mð Þ2

� �
n� 1

2M

� �
; (45a)

PMðtÞ ¼ �Mffiffiffiffi
p

p ffiffiffi
c

p
t3=2

+
1N

n¼�N

exp e
�M

2

ct n1M11
2Mð Þ2

� �
n1

M11

2M

� �
: (45b)

Simpler expressions for both P0(t) and PM(t) can be obtained in the limits

t � M2=c and t � M2=c (see Eq. 5 in main text). Plots of the analytic

expression for P0(t) and PM(t), along with the corresponding asymptotic

limits are shown in Fig. 11, panels b and c, respectively.

APPENDIX C: TRANSCRIPTION WITH
RESTRICTED BACKTRACKING

Parameter d, the transition rate from translocation statem¼ 0 tom¼�1 (see

Fig. 2), determines the density of backtracking. If we assume rapid transition

between the active transition states m ¼ 0 and m ¼ 1, then at each

template position the TEC can 1), proceed with polymerization, with rate

p1 ¼ kfðb=ða1bÞÞ; 2), proceed with depolymerization, with rate p� ¼
kbða=ða1bÞÞ; or 3), enter state m ¼ –1, with an effective rate

d9 ¼ dða=ða1bÞÞ (see Fig. 2 b). Therefore, at a given position n, the TEC
enters a pause with probability

PPAUSE ¼ d9

d91p1 1p�
: (46)

Since we assume that a pause occurs independently at each template po-

sition, we can estimate the probability PPAUSE as the ratio of the expected

number of pauses to the DNA template length i.e., d/N ¼ PPAUSE.

FIGURE 11 Analytic results for the duration of backtracking pauses, cases

1 and 2, for M ¼ 10. (a) Case 1: restricted, uninterrupted backtracking.

Probability distribution P(t) of exit time to absorbing boundary l ¼ 0 in the

presence of a reflecting boundary at l ¼ M. Solid line corresponds to the

analytic result Eq. 39, and dashed and dash-dotted lines to the two asymptotic

limits in Eq. 4. (b, c). Case 2: restricted backtracking with transcript arrest. (b)

Probability distribution P0(t), of exit time to absorbing boundary l ¼ 0 in the

presence of an absorbing boundary at l ¼ M. Solid line corresponds to the

analytic result Eq. 45a, and dashed and dash-dotted lines to the two asymptotic

limits in Eq. 5. (c) Probability distribution PM(t) of exit time to absorbing

boundary l ¼ M in the presence of an absorbing boundary at l ¼ 0. Solid line

corresponds to the analytic result Eq. 45b, and dashed line to the asymptotic

limit in Eq. 5. In all cases, the initial state is assumed to be l ¼ 1.
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Simulations

Simulated data were generated using standard Monte Carlo techniques

(Gillespie algorithm) (59,60), implemented in ANSI-C. At each step a

random, exponentially distributed, number was generated that was used as

the time interval until the next transition. The parameter, l, of the ex-

ponential distribution was set equal to the sum of the transition rates to all

accessible states. To decide to which state the transition will occur, a state

was picked randomly from all accessible states with a probability pro-

portional to the corresponding transition rate. The total elapsed time and the

state were updated accordingly and the process was repeated.

In the case of Model A and for each set of parameter values, data were

generated by 103 independent simulation runs. Since the values of param-

eters a and b are not known, arbitrary ones where used, which preserved the
ratio found in the literature (see Table 1 of main text) and were higher than

the rates of polymerization/depolymerization. In the case of the models of

backtracking pauses and Model B, 105 simulations were performed for each

set of parameter values to accurately capture the shape of the distribution and

the scaling behavior. The parameters for Model B were selected so as to

yield the experimentally observed values (19,22). In particular, a, b, kf, and

kb were selected to yield an average velocity of 10 bp/s, while d was chosen
to yield 1 and 10 pauses/kb. For simulations of the integrated initiation/

elongation/degradation model the parameters used were selected to match

the ones observed in Golding et al. (11): N ¼ 4 kb, L ¼ 100 bp,M ¼ 10 bp,

p1 ¼ 50 s�1, K ¼ 0.01, c ¼ 0.1 s�1, ki ¼ 0.02 s�1, and kd ¼ 310�4 s�1 and

d9 ¼ 0.05 s�1 (yielding 1 pause/kb).

Note added in proof: After submission we became aware of the recent

experimental work by Galburt et al. (57), which studies the distribution of

durations of pauses of RNAP II and finds a t�3/2 dependence as predicted by

Eqs. 4 and 5.
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Biological cell function crucially relies on the accuracy of RNA sequences, transcribed from the DNA

genetic code. To ensure sufficiently high fidelity in the face of high spontaneous error rates during

transcription, error correction mechanisms must play an important role. A particular mechanism of

transcriptional error correction involves backtracking of the RNA polymerase and RNA cleavage.

Motivated by recent single molecule experiments characterizing the dynamics of backtracking, we

present a microscopic model of this editing process. We show that such a mechanism can yield error

frequencies that are in agreement with in vivo observations.
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The accuracy with which genetic information is pro-
cessed is an essential factor in the survival and perpetu-
ation of life. Efficient error correction mechanisms are
therefore necessary for countering the frequent errors in-
troduced by thermal fluctuations. For example, simple
thermodynamic considerations suggest that during DNA
transcription passive errors should occur with high propen-
sity [10�3–10�2 errors=nucleotide (nt)]. Nevertheless,
transcriptional error rates appear significantly lower
(10�5 errors=nt) [1]. Kinetic proofreading (KP) [2] pro-
vides a general phenomenological framework for under-
standing mechanisms that ensure low error rates and
increased specificity in life processes [2]. To complement
this general level of description, quantitative and predictive
models that incorporate detailed information about specific
biological processes are needed [3].

A particularly important example is the transcription of
DNA into RNA. However, a comprehensive understanding
of the mechanisms involved in transcriptional error correc-
tion is still lacking. Classical KP postulates the existence of
a high energy intermediate along the polymerization path-
way [2], acting as a fidelity checkpoint and enhancing the
discriminatory power of the RNA polymerase (RNAP).
Such an intermediate has indeed been suggested by recent
structural studies of DNA transcription [4]. In addition, the
RNAP’s ability to induce cleavage of the RNA (or its so-
called nuclease activity) suggests an alternative mode of
transcriptional error correction, hereafter referred to as
nucleolytic proofreading. This involves the backward slid-
ing (backtracking) of the RNAP on the DNA template
followed by cleavage of the nascent transcript [5]. In this
manner previously misincorporated nucleotides can be
discarded and repolymerized. The existence of these differ-
ent proofreading mechanisms raises interesting questions
regarding their relative roles in enhancing transcriptional
fidelity. These can be answered by the construction of
predictive models able to discriminate between the differ-
ent processes.

During backtracking, the active site of the RNAP disen-
gages from the 30 end of the transcript, and the transcrip-
tion elongation complex (TEC), consisting of the RNAP
and the DNA-RNA hybrid, steps backwards along the
DNA [5]. The subsequent cleavage of the RNA chain is
catalyzed by the active site of the polymerase and in certain
cases accessory proteins are necessary to stimulate the
reaction [6,7]. Recent single molecule experiments [8]
provide support for nucleolytic proofreading by showing
that (i) artificially induced misincorporation increases
backtracking and (ii) cleavage factors reduce backtracking
lifetimes.
In this Letter, we propose a stochastic, nonequilibrium

model of transcription elongation involving polymeriza-
tion of correct and incorrect nucleotides, backtracking, and
RNA cleavage. We use the model to assess the role of
nucleolytic proofreading in terms of the error fraction,
defined as the ratio of probabilities of incorporating an
incorrect as compared to a correct nucleotide at a given
position of the transcript [2]. We study the problem both
analytically, in different limits, and numerically, using
stochastic simulations. Our results indicate that transcrip-
tional error correction, involving backtracking by multiple
nucleotides [8] and RNA cleavage, yields results consistent
with multistep KP in the limit of high backtracking rates.
More importantly, our results offer a quantitative under-
standing of nucleolytic proofreading by linking the ob-
served error rate directly to the microscopic rates of the
process. Finally, we suggest a number of experiments to
test our model and clarify the role of nucleolytic proof-
reading in transcription.
Transcription elongation can be described in terms of

two variables [9]. Let n ¼ 0; . . . ; N denote the length of the
transcript or equivalently the template position of the last
transcribed nucleotide [10]. Let m ¼ 0; . . . ;M denote the
position of the TEC (specifically the RNAP’s active site)
relative to n (i.e., the corresponding position of the active
site along the DNA template is n�m). State m ¼ 0 cor-
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responds to a TEC in an active state, where polymerization
of the next nucleotide can occur, while m> 0 corresponds
to a TEC in a backtracked state [see Fig. 1(a)]. Extensive
backtracking is often blocked by RNA secondary struc-
tures (e.g., hairpins) that are formed in the portion of the
transcript outside the TEC [5]. Therefore, we assume that
backtracking is restricted to a fixed distancem ¼ M, which
we take to be independent of n [11]. The process starts
with the TEC at ðn ¼ 0; m ¼ 0Þ and terminates at ðn ¼
N;m ¼ 0Þ.

A schematic diagram of state transitions for the model is
given in Fig. 1(b). Given a TEC in an active state (n;m ¼
0), the TEC can either backtrack to state (n;m ¼ 1) with
rate kb or polymerize the next nucleotide (nþ 1; m ¼ 0).
Polymerization of correct and incorrect nucleotides pro-
ceeds with effective rates kp and �kp, respectively, yielding

a spontaneous error fraction �. Once backtracked the TEC
hops randomly between adjacent backtracked states
ðn; 0<m � MÞ at rate c. However, given an error at
some position n� l (l � 0) transition of the TEC from
state ðn;m ¼ lþ 1Þ to ðn;m ¼ lÞ occurs at a slower rate �c.
Finally, from each backtracked state cleavage can occur
with rate kc. Cleavage from any state ðn;m > lÞ ensures
removal of the error.

The distinct hopping rate at an error site ( �c � c) is the
key ingredient of this error correction process since it
increases the likelihood of cleavage at states (n;m > l).

The ratio of the two hopping rates is given by �c=c �
e��G=kT [12], where �G is the free energy increase due
to the incorporation of an incorrect nucleotide in the RNA-
DNA hybrid. The ratio of the polymerization rates for
correct and incorrect nucleotides can also be approximated

by �G, i.e., � � e��G=kT � �c=c [2].
For the analytic treatment of the model we first consider

the dynamics of the process at a fixed template position n

which allows us to construct an effective model of the full
elongation process. The master equation

_PðtÞ ¼ WðsÞ � PðtÞ (1)

defines the stochastic dynamics of the TEC at a fixed
position n. P is a column vector of size (Mþ 1) with
entries PmðtÞ, the probabilities of finding the TEC at trans-
location statem at time t, having started fromm ¼ 0 at t ¼
0. WðsÞ is the ðMþ 1Þ � ðMþ 1Þ transition matrix. The
transcription index s is a binary list of 0’s and 1’s repre-
senting the sequence of correct (0) and incorrect (1) nu-
cleotides along the entire transcript. In particular, s 2 Sn

with S � f0; 1g (i.e., for an error at position n� l, sn�l ¼
1). The general tridiagonal structure ofWðsÞ is given below.
Along the main diagonal: WðsÞ

j;j ¼ �½2cþ sn�jþ2ð �c�
cÞ þ kc	 except for WðsÞ

1;1¼�½ð1þ�Þkpþkb	 and

WðsÞ
Mþ1;Mþ1 ¼ �½cþ sn�Mþ1ð �c� cÞ þ kc	. Along the first

diagonal below the main: WðsÞ
jþ1;j ¼ c, except for WðsÞ

2;1 ¼
kb. Along the first diagonal above the main: WðsÞ

j;jþ1 ¼ cþ
sn�jþ1ð �c� cÞ. All other components are zero. Note that

the form of the matrix depends only on the lastM elements
of s.

The above formulation ofWðsÞ impliesMþ 1 absorbing
boundaries, corresponding either to polymerization from
state m ¼ 0 or cleavage from each possible backtracked
state (1 � m � M). By applying the Laplace transform
~PðzÞ ¼ R1

0 e�ztPðtÞdt to Eq. (1), we obtain a system of

algebraic difference equations, which can be used to derive
the splitting probabilities pm for eventually hitting bound-
ary m (0 � m � M) and the corresponding conditional
mean exit times, tm [13]. Note that both pm and tm depend
on the sequence s.
We now use the splitting probabilities pm to construct an

effective model for the elongation dynamics. Let�ðsÞ
n ðtÞ be

the probability of finding a transcript of length n and index
s at time t. The transcript can either be extended by one
nucleotide (through polymerization) or get shortened by up
to M nucleotides (through backtracking and cleavage).
These transitions occur with rates rm, proportional to the
splitting probabilities obtained above, i.e., rm ¼ pm=�
(0 � m � M), where � defines a sufficiently long time
scale (i.e., � 
 tm, 0 � m � M). We note that all results
given below depend only on the relative rates and hence do
not depend on the exact definition of �. Summing over s,

one obtains �nðtÞ ¼
P

s2Sn�
ðsÞ
n ðtÞ, the probability of find-

ing a transcript of length n irrespective of its composition.
The dynamics of �nðtÞ can be expressed as

d�n

dt
¼ J n�1j0 � J nj0 þ

XM

m¼1

ðJ nþmjm � J njmÞ; (2)

where J njm ¼ P
s2Snr

ðsÞ
m �ðsÞ

n ðtÞ. For any specific M,

Eq. (2) can be used to obtain an expression for P n ( �P n),
the probability of reaching the terminal position N, having

(1+  )

kb

kp

kc kc kc kc kc kc

(b) ... ...

...... (n−l,0) (n−1,0)(n−M,0)

(n,l) (n,0)(n,1)(n,M)

c

c c

c

c

cc

(a)

5’
3’

..

RNA−DNA hybrid

(n,m=3)

(n,m=0)

RNA−DNA hybrid

5’ 3’

TEC

last transcribed
nucleotide (n)

error

cleavage enzymes

active site(n−m)

(M)
backtracking limit

FIG. 1. (a) Schematic illustration of the model. The RNA is
marked by 30 and 50. The transcription elongation complex
(TEC) is depicted in the active (n;m ¼ 0) (top) and in a back-
tracked (n;m ¼ 3) (bottom) state, both with M ¼ 5.
(b) Schematic illustration of the TEC dynamics at a given
position n. The TEC will eventually polymerize forward or
cleave from one of the backtracked states.
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incorporated a correct (incorrect) nucleotide at position n.

The error fraction for position n is defined as E � �P n=P n.
Given a large ensemble of completed transcripts, E gives
the ratio of the number of transcripts with correct nucleo-
tides to those with incorrect nucleotides at position n.

For simplicity, in most of the analysis below, we treat the
case M ¼ 1, where the TEC can backtrack by only one
nucleotide. We introduce the following dimensionless
quantities to characterize the competing processes in the
model: �1 � kc=c and �2 � kc= �c ¼ �1=� capture the
efficiency of cleavage of correct and incorrect nucleotides,
respectively, and K � kp=kb the tendency of the TEC to

backtrack. The splitting probabilities, obtained from
Eq. (1), are determined completely by the identity of the
last incorporated nucleotide, sn. We denote these splitting
probabilities when sn ¼ 0 or 1 with pi and �pi, respectively,
where i ¼ 0 corresponds to polymerization of sn and i ¼ 1
to cleavage. The splitting probabilities take the form p0 ¼
�ð�; �1Þ=½�ð�; �1Þ þ �1	, p1 ¼ 1� p0, �p0 ¼ �ð�; �2Þ=
½�ð�; �2Þ þ �2	, and �p1 ¼ 1� �p0, where �ð�; aÞ ¼
Kð1þ �Þð1þ aÞ.

Given the above splitting probabilities, Eq. (2) can now
be written for M ¼ 1. Laplace transform techniques [13]
then yield the termination probabilities P n ¼ N p0=ð1�
Anp0Þ and �P n ¼ N � �p0=ð1� An �p0Þ. Here,N is the nor-

malization constant (such that P n þ �P n ¼ 1), and in the
limit � ! 0, one has An � �ð�N�n � 1Þ=ð�N�nþ1 � 1Þ,
where � ¼ p1=p0 [14]. Thus, the error fraction forM ¼ 1
is

E ¼ � �p0

p0

ð1� Anp0Þ
ð1� An �p0Þ: (3)

Figure 2 (top panel) shows the error fraction E for different
positions n as a function of K.

We next consider two limits where E attains a constant
value independent of position n. In the limit K 
 1, one
expects that the rare backtracking can hardly improve the
error fraction. Indeed, in this limit Eq. (3) reduces to E �
�. On the other hand, in the limit K � �1 � �, cleavage
events dominate the process, and Eq. (3) reduces to E �
� �p0=p0, or, in terms of the microscopic rate parameters,
E � � �c=c. Hence, the error fraction depends only on � and
the ratio of hopping rates. Since we take these two quan-
tities to be approximately equal, we obtain the limiting
error fraction forM ¼ 1 to be E � �2. These two limits are
illustrated in Fig. 2 (bottom panel). Numerical data were
generated using stochastic simulations [15] of the full
elongation model.

In the more general case of 1 � M � 1=� (i.e., with at
most one error occurring in a region of M nucleotides), it
can similarly be shown that in the same limit (K � �1 �
�) the error fraction is

E � �Mþ1 MM

�ðMþ 1Þ; (4)

where � denotes the Gamma function. Thus, nucleolytic

proofreading can result in error fractions that scale expo-
nentially with the maximum backtracking distance M. We
note that the error fraction attained by KP has a similar
dependence on the number of intermediate states [2].
So far we have assumed a constant backtracking rate.

However, the presence of an error in the RNA-DNA hybrid
could destabilize the TEC, causing more frequent back-
tracks. A simple model capturing this has backtracking rate
�kb if an error is withinM nucleotides from the 30 RNA end,
and kb otherwise (kb < �kb). This can be approximated by
an effective backtracking rate k�b ¼ M� �kb þ kb, giving rise
to an effective K� ¼ kp=k

�
b ¼ K=½�=�� þ 1	, where K ¼

kp=kb and �� ¼ kb=ð �kbMÞ. Furthermore, a reasonable as-

sumption is that the TEC rarely backtracks when no errors
are present, i.e., K 
 1. Parameter �� is an intrinsic error
scale: When �=�� � 1 the high K� regime is obtained,
whereas for �=�� 
 1 the behavior of the model is shifted
towards the low K� regime [16].
Let us now estimate the error fractions implied by our

model taking into account information from experimental
studies. The spontaneous error fraction � can be calcu-
lated from the free energy difference due to a misincorpo-

rated nucleotide (�G � 4–7kT), i.e., � � e��G=kT �
10�3–10�2 [1]. An estimate of the cleavage rate (for
bacterial RNAP in the presence of saturating concentra-
tions of accessory cleavage factors) based on biochemical
experiments is kc � 0:1–1 s�1 [17]. Finally, single mole-
cule experiments have suggested that the TEC hops be-
tween backtracked states with rate c � 1–10 s�1 [8].
Using estimates of the maximum error � � 0:01, slowest
cleavage rates kc � 0:1 s�1 and fastest hopping rate c �
10 s�1 we can obtain estimates of the lower bounds on the

FIG. 2. The error fraction as a function of K (M ¼ 1 case).
Analytic results [Eq. (3)] are plotted as solid lines, while markers
show results obtained from stochastic simulations of the elon-
gation model. Top: The error fraction for different positions with
�1 ¼ 10�4, �2 ¼ 10�2, � ¼ 10�2, and N ¼ 9. Bottom: The
error fraction for different cleavage efficiencies with � ¼
10�2, n ¼ N � 2, and N ¼ 4. Dashed lines show limits dis-
cussed in text.
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‘‘cleavage efficiencies’’ �1 � 0:01 and �2 � 1. These es-
timates yield error fractions comparable to the ones ob-
served in vivo, even for M ¼ 1 but sufficiently low values
ofK (see Fig. 2, bottom panel). Most importantly, however,
low error fractions can be obtained in our model even well
away from the limiting regime with smallM (see Fig. 3 for
the M ¼ 2 case).

In summary, we have presented a microscopic model of
a transcription editing mechanism, involving backtracking
and RNA cleavage. Our work extends the existing quali-
tative description of the process by linking the observed
error rates directly to microscopic rate parameters.
Backtracking by more than one nucleotide provides a
multiple-checking reaction, which probes the fidelity of
the last few nucleotides before the next polymerization
step. We find, in accordance with the KP scheme, that
the greater the delay introduced by this step, the greater
the accuracy of the process [2]. Consistent with this pic-
ture, the minimum error fraction is obtained in the limit
where backtracking and cleavage dynamics dominate the
process. In this limit, the error fraction scales exponentially
with the maximum backtracking distance M.

Recent experiments have provided support for at least
two mechanisms of transcriptional error correction
[4,8,18,19]. The first one involves a fidelity checkpoint
during the nucleotide addition cycle [20], whereas the
second involves backtracking of the RNAP and RNA
cleavage. Our model suggests experiments that would
provide the quantitative details required to discriminate
between these mechanisms and elucidate their relative
roles in transcriptional proofreading.

A particular prediction of our model is the strong de-
pendence of transcriptional fidelity on backtracking rates.
For example, guanine-cytosine–rich domains that lead to
lower backtracking rates (due to the increased stability of
the RNA-DNA hybrid) [21] should reduce the efficiency of
error correction. More importantly, single molecule ma-
nipulation techniques can be used to vary backtracking
rates in a controlled manner and validate our model. In
particular, applying a load is expected to strongly affect

nucleolytic proofreading since the TEC moves a distance

�M�x (where �x ¼ 3:4 �A) during the backtracking
phase. In contrast, minor effects are expected for proof-
reading mechanisms along the polymerization pathway,
since they should only involve small movements (��x)
of the enzyme. Finally, experimental studies have already
revealed that specific mutations in the sequence of RNAP
can have a profound effect on transcriptional fidelity [22].
By precisely studying the effects of the mutations on back-
tracking rates, single molecule experiments with such mu-
tant RNAPs can be used to assess whether nucleolytic
proofreading can compensate for such deficiencies.
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