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Summary	

Changes	 in	 both	 the	 biotic	 and	 abiotic	 environment	 influence	 individuals’	 physiology,	

morphology	 and	 behaviour	 and	 influence	 key	 ecological	 rates	 underpinning	 population	

dynamics.	Environmental	change	is	ubiquitous	in	natural	systems	and	is	often	multifaceted,	as	

multiple	aspects	of	the	climate	often	change	simultaneously	and	the	abundance	and	traits	of	

species	 in	 the	 community	 are	 constantly	 fluctuating.	 In	 this	 thesis,	 we	 study	 the	 ecological	

consequences	 of	 environmental	 changes.	We	 identify	 fundamental	 factors	 complicating	 our	

understanding	of	population	dynamics	and	develop	analytical	tools	to	reliably	infer,	from	data,	

the	impacts	of	environmental	change	on	key	biological	processes.	

We	present	evidence	that	 the	 impacts	of	environmental	change	on	population	dynamics	can	

be	modified	by	other	concurrent	environmental	changes.	Furthermore,	the	impacts	on	a	focal	

species	will	 likely	be	 strongly	dependent	on	how	 the	performance	of	 interacting	 species	 are	

affected.	

We	 then	 show	 that	 the	 addition	of	 predators	 to	 an	environment	 can	 cause	prey	 to	become	

more	 defended	 against	 predation,	 at	 a	 cost	 of	 reduced	 population	 growth.	 Such	 growth-

defence	trade-offs	are	expected	to	drive	complex	population	dynamics.	

We	 demonstrate	 that	 our	 understanding	 of	 community	 dynamics	 can	 be	 improved	 by	

identifying	how	consumption	 rates	vary	with	 changes	 in	morphological	or	behavioural	 traits.	

We	identify	feedbacks	between	species’	trait	and	abundance	dynamics.	

We	then	provide	evidence	that	environmental	warming	can	modify	the	impacts	of	trait	change	

on	 species	 interactions.	 We	 inferred	 that	 this	 likely	 resulted	 from	 a	 modified	 life	 history	

strategy	or	altered	resources	allocation	to	growth	rather	than	defence.		

Finally,	 we	 use	 simulation	 studies	 to	 assess	 the	 reliability	 of	 current	 methods	 at	 inferring	

climate	effects	on	the	demography	of	wild	populations.	We	demonstrate	that	commonly	used	

approaches	perform	poorly	and	also	identify	a	reliable	modelling	framework.	

The	 findings	 of	 this	 work	 provided	 quantitative	 insights	 into	 the	 impacts	 of	 environmental	

change	 on	 the	 processes	 driving	 species’	 dynamics.	 It	 also	 highlights	 the	 role	 of	 combined	

environmental	 change,	 trait	 change	and	species	 interaction	 in	complicating	 the	prediction	of	

population	dynamics.	
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Chapter	1:	Introduction	

Environmental	change	

Environmental	 change	 is	 a	 ubiquitous	 feature	 of	 natural	 systems,	 occurring	 at	 a	 range	 of	

scales,	 including	 inter-annual	 trends,	 seasonal	 cycles,	 and	 small	 scale	 stochastic	 variation	

(Halpern	 et	 al.	 2008;	 Pachauri	 et	 al.	 2014).	 Changing	 environmental	 conditions	 influence	

individuals’	 physiological	 and	metabolic	 processes	 and	modify	 organisms’	 traits	 such	 as	 size,	

movement	and	behaviour	 (Brown	et	al.	2004;	Walther	2010;	Sheridan	&	Bickford	2011).	The	

impacts	 of	 environmental	 change	on	 a	 species	 physiological	 performance	 can	be	 considered	

the	 direct	 effects	 of	 environmental	 change.	 However,	 the	 environment	 also	 influences	 the	

performance	of	 interacting	species,	 influencing	rates	of	resource	consumption	and	predation	

for	 example	 (Tylianakis	 et	 al.	 2008;	 Lindegren	 et	 al.	 2010;	 Gilman	 et	 al.	 2010;	 Kordas	 et	 al.	

2011).	 The	 environmental	 impacts	 resulting	 from	modified	 interactions	 between	 species	 are	

known	 as	 indirect	 effects.	 Both	 direct	 and	 indirect	 environmental	 effects	 may	 substantially	

influence	 the	 key	demographic	 process,	 such	 as	 birth,	 growth,	maturation	 and	death,	which	

govern	 changes	 in	 species	 abundance.	 Consequently,	 determining	 how	 vital	 rates	 such	 as	

population	growth	or	predation	are	influenced	by	environmental	change	is	a	key	component	in	

understanding	 community’s	 dynamics,	 structure	 and	 functioning	 (Harvell	 et	 al.	 2002;	

Emmerson	et	al.	2004;	Post	et	al.	2008;	Gilman	et	al.	2010;	Kordas	et	al.	2011;	O’Connor	et	al.	

2009;		O’Connor	et	al	2011;	O’Connor	et	al.	2012;	Griffiths	et	al.	2014).	This	understanding	is	

necessary	 for	 the	 development	 of	 a	 predictive	 framework	 to	 forecast	 the	 ecological	

consequences	 of	 climate	 change	 regarding	 species	 conservation,	 sustainable	 resource	

management	and	pest	control	(Petchey	et	al.	1999;	Hughes	2000;	Harvell	et	al.	2002;	Pounds	

et	al.	2006;	Post	et	al.	2008;	Brook	et	al.	2008;	Gilman	et	al.	2010;	Kordas	et	al.	2011;	Walsh	et	

al.	2012;	Cahill	et	al.	2013).	

	

Impacts	of	changes	in	the	abiotic	environment	

Abiotic	environmental	changes	such	as	changes	in	temperature,	salinity	or	precipitation	often	

influence	several	demographic	rates	simultaneously	 (Doney	et	al.	2012;	Régnière	et	al.	2012;	

Jenouvrier	 2013).	 Furthermore,	multiple	 environmental	 conditions	may	 change	 concurrently	

and	their	impacts	may	depend	on	the	state	of	the	other	variables	(Paine	et	al.	1998;	Didham	et	

al.	2007;	Brook	et	al.	2008;	Darling	&	Côté	2008;	Laurance	&	Useche	2009).	For	example,	the	
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survival	of	Soay	sheep	in	warm	years	depends	on	the	concurrent	precipitation	levels	(Coulson	

et	al.	2001).	Moreover,	conditions	at	a	specific	time	of	year	can	be	especially	influential	upon	

vital	rates	(Ireland	et	al.	2004;	Luis	et	al.	2010;	Jansen	et	al.	2014).	For	example,	warm	spring	

conditions	 have	 been	 linked	 to	 earlier	 breeding	 and	 increased	 clutch	 and	 egg	 sizes	 in	 avian	

populations	(Crick	2004;	Robinson	et	al.	2007).	Extreme	weather	events	and	other	stochastic	

factors	 can	 also	 play	 an	 important	 role	 in	 determining	 demographic	 rates	 (Descamps	 et	 al.	

2015).	Consequently,	population	dynamics	may	be	very	sensitive	to	environmental	shifts	and	

often	change	in	unpredicted	ways	(Paine	et	al.	1998;	Christensen	et	al.	2006;	Doak	et	al.	2008).	

Meta-analyses	 indicate	 that	 combined	 environmental	 changes	 may	 frequently	 have	 non-

additive	 impacts	 on	 individual	 level	 processes	 (Crain	 et	 al.	 2008;	 Darling	 &	 Côté	 2008),	

however	the	long-term	population	level	impacts	of	this	remain	largely	unknown.	

	

Impacts	of	changes	in	the	biotic	environment:	Density	and	trait	dependent	ecology	

Both	 the	 abundance	 of	 species	 within	 a	 community	 and	 the	 traits	 they	 possess	 can	 be	

considered	as	biotic	components	of	the	environment.	It	is	well	understood	that	key	ecological	

processes	are	dependent	on	the	density	of	species	within	the	community	(Lande	et	al.	2002;	

Coulson	et	al.	2008;	Bassar	et	al.	2013).	For	example,	 the	 intake	rate	of	a	predator	generally	

increases	with	the	density	of	its	prey,	up	to	a	point	where	the	consumption	rate	is	limited	by	

the	 time	 taken	 to	handle	 and	digest	 prey	 (Holling	 1965;	Dawes	&	 Souza	 2013).	 Importantly,	

changes	 in	 species	 densities	 can	 also	 drive	 rapid,	 ecologically	 relevant	 trait	 change	 (Endler	

1991;	Thompson	1998;	Hairston	et	al.	2005;	Ellner	&	Becks	2010).	Such	changes	can	be	driven	

by	 phenotypic	 plasticity,	 when	 a	 single	 genotype	 produces	 different	 phenotypes	 under	

differing	 environments	 (Tollrian	&	Harvell	 1999;	 Agrawal	 2001;	 Fordyce	 2006;	 Cortez	 2011).	

Recently,	 it	 has	 also	 been	 realized	 that	 rapid	 evolution	 can	 also	 drive	 trait	 change	 at	

ecologically	 relevant	 time	 scales	when	 heritable	 traits	 are	 favoured	 in	 a	 genetically	 variable	

population	 (Thompson	 1998;	 Yoshida	 et	 al.	 2004;	 Hairston	 et	 al.	 2005;	 Ellner	 et	 al.	 2011;	

Kasada	et	al.2014).	

Trait	change	 in	one	species	can	alter	 interspecific	 interactions,	by	modifying	 feeding	rates	or	

other		non-consumptive	interactions	(Peacor	&	Werner	2001;	Bolker	et	al.	2003).	An	example	

of	 such	 trait-mediated	 interactions	 is	 the	 inducible	morphological	 or	 behavioural	 defence	 of	

prey	 in	 response	 to	 high	 predation	 (Schmitz	 et	 al.	 1997;	 Tollrian	 &	 Harvell	 1999;	 Peacor	 &	

Werner	 2001;	 Altwegg	 et	 al.	 2006;	 Hammill	 et	 al.	 2010).	 Alternatively,	 prey	 can	 respond	 to	
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intense	predation	by	altering	the	timing	of	life	history	events,	for	example	reproducing	earlier	

(Spitze	 1992;	 Chivers	 et	 al.	 2001;	 Travis	 et	 al.	 2014).	 Importantly,	 trait	 driven	 temporal	

variation	in	key	ecological	rates	influences	population	dynamics	(Bolker	et	al.	2003;	Preisser	et	

al.	 2005;	 Pelletier	 et	 al.	 2007;	 Harmon	 et	 al.	 2009;	 Bassar	 et	 al.	 2010;	 terHorst	 et	 al.	2010;	

Turcotte	 et	 al.	 2011).	 In	 turn,	 the	 resulting	 changes	 in	 species	 abundances	 may	 alter	 the	

direction	or	magnitude	of	trait	selection.	This	implies	the	existence	of	feedbacks	between	trait	

dependent	ecological	rates	and	density	dependent	trait	change	(Pelletier	et	al.	2009;	Schoener	

2011;	 Hanski	 2012).	 Feedbacks	 between	 species	 densities	 and	 their	 traits	 may	 permit	 a	

diversity	 of	 community	 dynamics	 to	 occur	 that	would	 be	 unexpected	 from	purely	 ecological	

theories	based	on	 species	 abundances	 (Abrams	&	Matsuda	1997;	 Yoshida	et	al.	 2003,	 2007;	

Pelletier	et	al.	2007;	Jones	et	al.	2009;	Berg	&	Ellers	2010;	Kishida	et	al.	2010;	Becks	et	al.	2010,	

2012;	Ellner	&	Becks	2010;	Cortez	2011;	Schoener	2011;	Mougi	2012a;	b;	Agrawal	et	al.	2013;	

Cortez	&	Weitz	2014;	Hiltunen	et	al.	 2014a).	Despite	 the	 theoretical	 literature	 indicating	 the	

potential	 importance	 of	 trait	 mediated	 processes	 in	 driving	 species	 dynamics	 (Abrams	 &	

Matsuda	1997;	Ellner	&	Becks	2010;	Cortez	&	Weitz	2014),	the	coupling	between	the	dynamics	

of	 traits	 and	 abundance	 in	 real	 communities	 is	 unknown	 	 (Kishida	 et	 al.	 2010).	 It	 has	 been	

proposed	that	trait	and	abundance	dynamics	should	be	studied	in	parallel	to	allow	inference	of	

the	feedbacks	between	these	variables	(Hiltunen	et	al.	2014b).		

	

Ecological	inferences	in	complex	environments		

The	multifaceted	nature	of	environment	change	can	make	it	difficult	to	quantify	how	specific	

environmental	 variables	 influence	 the	 key	 ecological	 processes	 underpinning	 population	

dynamics	 (Shertzer	et	 al.	 2002;	 Bakker	et	 al.	 2009).	 Due	 to	 uncertainty	 in	 the	 structure	 and	

functioning	 of	 communities,	 environmental	 change	 often	 causes	 unexpected	 fluctuations	 in	

population	 abundances	 and	 demographic	 rates	 (Paine	 et	 al.	 1998;	 Wood	 &	 Thomas	 1999;	

Christensen	et	al.	2006;	Fox	&	Barreto	2006;	Doak	et	al.	2008;	Darling	&	Côté	2008).	There	is	a	

large	theoretical	literature	investigating	the	likely	impacts	of	environmental	change	on	species	

dynamics	(Savage	et	al.	2004;	Brown	et	al.	2004;	Woodward	et	al.	2010;	Petchey	et	al.	2010;	

Binzer	et	 al.	 2012;	 Reuman	et	 al.	 2014).	 However	 the	 predictions	 of	 conceptual	models	 are	

rarely	 tested	 and	 theoretical	models	 are	 seldom	 applied	 to	make	 inferences	 from	 empirical	

datasets	(For	examples	of	combining	theoretical	models	and	data	see:	Desharnais	2005;	King	

et	al.	2008;	Hiltunen	et	al.	2014).	
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As	multiple	environmental	changes	often	occur	concurrently,	it	can	also	be	difficult	to	reliably	

identify	the	major	environmental	drivers	of	variation	in	ecological	rates	(Teller	et	al.	2016).	In	

wild	 populations,	 this	 inference	 is	 made	more	 difficult	 because	 data	 is	 usually	 observation,	

rather	than	experimental,	and	often	restricted	to	annual	samples	over	a	fairly	small	number	of	

years	 (Grosbois	 et	 al.	 2008;	 Frederiksen	 et	 al.	 2014).	 Furthermore,	 only	 a	 limited	 set	 of	

environmental	variables	that	may	influence	demographic	rates	are	measured,	despite	a	 large	

number	of	unmeasured	 factors	also	having	 influences.	To	allow	reliable	quantification	of	 the	

drivers	of	variation	 in	ecological	rates,	data-driven	analytical	tools	need	to	be	developed	and	

validated	(for	examples	of	this	see	Lebreton	et	al.	2012;	Gimenez	et	al.	2012).	

	

Purpose	of	this	thesis	

In	 this	 thesis,	 we	 examine	 the	 impacts	 of	 multi-faceted	 abiotic	 and	 biotic	 environmental	

change	on	species	traits,	vital	rates	and	population	dynamics.	The	main	objectives	of	this	work	

are	 to:	 A)	 examine	 how	 environmental	 changes	 influence	 species	 dynamics	 and	 their	

interaction	with	other	species,	and	B)	determine	how	reliable	inferences	of	climatic	impacts	on	

vital	rates	can	be	made	in	complex	environments.		

We	develop	data	driven	modelling	approaches	to	confront	ecological	and	evolutionary	theory	

concerning	the	environmental	impacts	on	populations,	with	empirical	data	from	the	field	and	

laboratory.	Throughout	the	thesis	we	use	models	to	formalise	rival	hypotheses	of	how	climate	

influences	 populations	 and	 their	 vital	 rates.	 We	 then	 use	 a	 range	 of	 statistical	 tools	 to	

determine	 the	 likelihood	 of	 these	 hypotheses	 and	 to	 gain	 quantitative	 insights	 into	 the	

environmental	impacts	on	species	abundances	and	vital	rates.			

In	 Chapter	 2,	 we	 present	 a	 study	 of	 the	 experimentally	 observed	 invasion	 dynamics	 of	

competing	species	under	each	combination	of	three	environmental	manipulations.	We	assess	

whether	the	 impacts	of	environmental	change	upon	species	dynamics	can	be	assumed	to	be	

independent	 of	 the	 other	 environmental	 conditions.	 We	 also	 develop	 a	 novel	 method	 to	

partition	the	relative	importance	of	a)	direct	effects	of	environmental	change	on	physiological	

processes	from	b)	the	indirect	effects	mediated	by	changes	in	species	interactions.	

It	is	increasingly	appreciated	that	evolution	and	trait	plasticity	have	important	roles	in	driving	

species	 dynamics	 by	 temporally	 modifying	 the	 biotic	 environment.	 For	 example,	 inducible	

defence	of	prey	can	effectively	 reduce	the	availability	of	resources	 for	a	predator	 (Tollrian	&	
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Harvell	 1999;	 Yoshida	 et	 al.	 2007).	 In	 Chapter	 3	 we	 describe	 a	 novel	 methodology	 for	

quantifying	 the	 impacts	of	predator	exposure	on	 the	key	ecological	 rates	of	prey	population	

growth	 and	 predator	 defence	 against	 consumption.	 Theory	 predicts	 that	 under	 sufficiently	

strong	 predation,	 prey	 should	 increase	 their	 resource	 allocation	 to	 defence	 at	 the	 cost	 of	

growth	 (Coley,	 Bryant	 &	 Chapin	 1985;	 Tollrian	 &	 Harvell	 1999).	 However,	 if	 the	 predation	

pressure	 is	 removed,	 we	 would	 expect	 an	 inducible	 defence	 to	 be	 lost	 and	 the	 positive	

selection	for	a	costly	defence	trait	to	be	relaxed,	causing	prey	to	revert	to	the	undefended	and	

fast	 growing	 state.	 To	 test	 this	prediction,	we	examine	 the	differences	 in	population	growth	

and	defence	between	microbial	populations	that	are	either:	1)	naive	to	predation,	2)	exposed	

to	 predation,	 or	 3)	 have	 historically	 been	 exposed	 to	 predation,	 but	 not	 for	 several	

generations.	

Our	findings	from	Chapter	3	lead	us	to	question	which	individual	morphological	or	behavioural	

traits	were	linked	to	the	dynamics	of	species	abundance	and	how	changes	in	species	densities	

feedback	 to	 influence	 trait	 change.	 Therefore,	 in	 Chapter	 4	 we	 simultaneously	 study	 the	

dynamics	of	species’	traits	and	abundances	in	a	predator-prey-resource	system.	We	develop	a	

novel	 approach	 to	 connect	 trait	 and	 abundance	 dynamics,	 allowing	 identification	 of	

ecologically	 important	 traits.	 This	 allows	 the	 quantification	 of	 the	 trait	 dependence	 of	 vital	

rates,	such	as	predation.	We	then	identify	species	whose	density	influences	the	direction	and	

magnitude	of	trait	change.	The	analysis	of	these	two	processes	allows	unique	insights	into	the	

feedbacks	 between	 trait	 and	 ecological	 change	 and	 permits	 a	 better	 understanding	 of	 the	

resource	allocation	trade-offs	influencing	the	community	dynamics.	

In	 Chapter	 5,	 we	 examine	 how	 environmental	 warming	 influenced	 the	 trait	 dependent	

community	 dynamics	 and	 the	 nature	 of	 interspecific	 interactions,	 using	 the	 predator-prey-

resource	system	established	in	Chapter	4.	We	investigate	the	traits	that	influence	species	vital	

rates	at	a	range	of	temperatures	along	an	environmental	gradient,	assessing	whether	the	key	

traits	vary	in	response	to	environmental	change.	We	then	investigate	how	warming	effects	the	

way	that	species	interactions	depend	on	species’	traits.		

Finally,	 in	 Chapter	 6	we	 evaluate	 the	methods	 used	 to	 identify	 the	 environmental	 variables	

driving	 species	 demographic	 rates.	We	 focus	 specifically	 on	 the	 reliability	 of	 statistical	 tools	

used	 to	 identify	 the	 climate	 dependence	 of	 survival	 when	 analysing	 individual	 mark	 and	

recapture	data	from	long	term	field	studies.	We	identify	statistical	 issues	that	complicate	the	

identification	of	the	main	drivers	when	there	are	many	potential	hypotheses.	We	then	review	

the	 recent	 literature	 to	 assess	 if	 and	how	 these	 statistical	 challenges	 are	overcome.	We	use	
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simulations	 to	 test	 the	 performance	 of	 potential	 frameworks	 at	 identifying	 and	 quantifying	

climate	effects.	This	allows	us	to	provide	guidance	about	the	modelling	approaches	that	should	

be	 undertaken	 in	 future	 to	 determine	 the	 effects	 of	 environmental	 change	 on	 the	

demographic	rates.	
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Chapter	 2:	 Multiple	 environmental	 changes	 interact	 to	 modify	 species	

dynamics	and	invasion	rates	

Jason	 I.	Griffiths,	Philip	H.	Warren	&	Dylan	Z.	Childs	 (manuscript	appears	as	published	 in	the	

peer-reviewed	journal	OIKOS	(2015)	124.4,458-468.	)	

Abstract	

Multiple	aspects	of	 the	environment	often	change	at	 the	same	time,	 influencing	populations	

directly	 by	 modifying	 their	 physiology,	 but	 also	 indirectly	 by	 influencing	 other	 interacting	

species.	 	 The	 impacts	 of	 each	 environmental	 change	 upon	 population	 dynamics	 are	 usually	

assumed	be	independent	of	the	state	of	other	aspects	of	the	environment,	despite	evidence	at	

the	 individual	 level	 indicating	 that	 the	 combined	 impacts	 are	 often	 non-additive.	 The	

importance	 of	 indirect	 effects	 mediated	 through	 community	 interactions	 also	 has	 high	

uncertainty.	We	used	experimental	microcosms	to	determine	whether	environmental	 factors	

interact	to	affect	species	dynamics	and	the	relative	importance	of	direct	and	indirect	effects	on	

species	dynamics.		

We	 factorially	manipulated	 three	aspects	of	 the	environment	 (temperature,	 food	availability	

and	 salinity)	 and	 examined	 reciprocal	 invasions	 of	 competing	 protist	 species	 under	 each	

environment.	Experimental	observations	were	used	to	parameterize	a	dynamic	model	of	 the	

system.	 Using	 this	 model	 and	 a	 novel	 variance	 decomposition	 method,	 we	 examined	 the	

mechanisms	by	which	environmental	changes	altered	species	invasion	rates.		

The	 three	environmental	 factors	 interacted	when	modifying	 species	growth	 rates,	 intra-	 and	

interspecific	 competition,	 causing	 the	 impact	 of	 each	 environmental	 change	 on	 species	

dynamics	 to	 depend	 crucially	 on	 the	 state	 of	 other	 aspects	 of	 the	 environment.	 Indirect	

changes	 in	 the	abundance	of	 the	resident	competitor	and	 its	 interspecific	competitive	ability	

were	the	main	cause	of	environmental	driven	variation	in	 invasion	rates,	whilst	direct	effects	

on	 species	 intrinsic	 growth	 rates	 were	 relatively	 unimportant.	 This	 indicates	 that,	 to	

understand	 and	 ultimately	 predict	 species	 and	 community	 responses	 to	 multiple	

environmental	changes,	we	should	consider	their	joint	impacts	and	the	mechanisms	by	which	

they	interact	to	modify	key	ecological	processes	such	as	competition.	

Key	 words:	 Environmental	 change;	 Protist	 microcosms;	 Population	 dynamics;	 Invasion;	

Maximum	likelihood	estimation;	ANOVA	decomposition	
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Introduction		

Environmental	 change	 is	 a	 pervasive	 feature	 of	 natural	 systems	 (Halpern	 et	 al.	 2008),	

influencing	species	physiology,	behaviours	and	phenology	(Tylianakis	et	al.	2008;	Gilman	et	al.	

2010).	These	changes	impact	upon	species	abundances	and	interactions	(Jiang	&	Morin	2007;	

Tylianakis	et	al.	2008;	Lafferty	2009;	Beveridge	et	al.	2010a;	Reuman	et	al.	2013).	Consequently	

they	can	modify	ecological	processes	such	as	the	invasion	rates	of	non-native	species	and	alter	

the	structure	and	functioning	of	natural	communities	(Walther	et	al.	2010;	Didham	et	al.	2007;	

Villalpando	 et	 al.	 2009;	 Sorribas	 et	 al.	 2012;	 Cockrell	 &	 Sorte	 2013).	 These	 environmental	

impacts	 have	 primarily	 been	 studied	 by	 considering	 the	 effects	 of	 specific	 environmental	

drivers	or	large	scale	climatic	patterns	(Sala	et	al.	2000;	Stenseth	et	al.	2002;	Ruete	et	al.	2012;	

Jenouvrier	et	al.	2013).	However,	because	environmental	changes	rarely	occur	in	isolation,	it	is	

increasingly	 appreciated	 that	 there	 may	 be	 interactions	 between	 them	 (Brook	 et	 al.	 2008;	

Laurance	&	Useche	2009;	Paine	et	al.	1998;	Didham	et	al.	2007;	Wernberg	et	al.	2012;	Kroeker	

et	al.	2013).		

Evaluating	whether	 the	 effects	 of	 particular	 environmental	 factors	 are	 dependent	 upon	 the	

state	 of	 others	 has	 important	 consequences	 for	 understanding	 and,	 ultimately,	 predicting	

species	 responses	 to	 environmental	 change	 (Evans	 et	 al.	 2012;	 Parmesan	 et	 al.	 2013).	 	 If	

multiple	 environmental	 drivers	 interact	 to	 modify	 species	 growth	 rates	 or	 intra-	 and	

interspecific	density	dependence,	community	 level	 responses	may	occur	which	would	not	be	

predictable	 from	 knowledge	 of	 the	 effects	 of	 the	 same	 drivers	 individually	 (Bellwood	 et	 al.	

2004;	Moe	et	al.	2013).	Several	ecological	catastrophes	are	now	thought	to	have	resulted	from	

the	 combined	 effects	 of	 co-occurring	 environmental	 drivers.	 	 For	 example,	 the	 unforeseen	

crash	of	the	Peruvian	anchovy	populations	 is	proposed	to	have	resulted	from	the	 interaction	

between	 El	 Niño	 driven	warming	 and	 reduced	 productivity,	 in	 combination	with	 overfishing	

(Jackson	 et	 al.	 2001;	 Cushing	 1995).	 Likewise,	 in	 Costa	 Rica,	 the	 rapid	 extinction	 of	 67%	 of	

endemic	 frog	 species	 	 has	 been	 attributed	 to	 the	 combined	 changes	 in	 temperature	 and	

humidity	and	subsequent	effects	of	trophic	interactions	(Pounds	et	al.	2006).		More	generally,	

meta-analyses	of	individual	level	studies	have	indicated	that	the	cumulative	effects	of	multiple	

environmental	changes	upon	birth,	survival	and	death	rates	are	frequently	non-additive,	each	

change	influencing	the	effects	of	others	(Craine	et	al.	2008;	Darling	&	Côté	2008).		

As	well	as	identifying	when	environmental	changes	interact	to	modify	species	abundances,	it	is	

important	to	appreciate	the	key	biological	processes	that	are	affected	in	order	to	understand	

the	mechanisms	that	produce	the	resulting	dynamics.	Environmental	changes	may	have	direct	
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effects	on	a	focal	species’	physiology,	vital	rates	and	intraspecific	density	dependence	(Reading	

2007;	 Tylianakis	 et	 al.	 2008),	 but	 may	 also	 have	 indirect	 effects	 through	 changes	 in	 the	

abundance	 or	 interaction	 strength	 of	 other	 species	 with	 which	 the	 focal	 species	 interacts	

(Emmerson	 et	 al.	 2004,	 2005;	 Suttle	 et	 al.	 2007).	 Understanding	 the	 relative	 importance	 of	

direct	and	 indirect	mechanisms	 is	essential	 for	developing	a	predictive	 framework.	 If	 indirect	

effects	 are	 relatively	 unimportant,	 physiological	 based	 predictive	 methods	 can	 be	 used	 to	

forecast	species	responses	and	range	shifts	(e.g.	Bradley	et	al.	2010).	Alternatively	if,	as	Gilman	

et	 al.	 (2010)	 suggest,	 species	 interactions	 frequently	 influence	 how	 environmental	 changes	

affect	 individual	 fitness,	 and	 the	 dynamics	 and	 structure	 of	 communities,	 then	 predictions	

from	such	methods	will	be	inadequate.	However,	there	are	very	few	empirical	tests	examining	

the	relative	contribution	of	direct	and	indirect	impacts	of	environmental	change	(Allison	et	al.	

2007;	Adler	et	al.	2009;	Barton	et	al.	2009).		

Assessing	how	multiple	environmental	changes	interact	to	modify	natural	communities	is	very	

difficult,	requiring	long-term	data	sets	and	knowledge	of	the	state	of	the	system	when	singular	

and	 combined	 changes	 in	 the	 environment	 occur.	 Here	 we	 utilize	 an	 experimental	 protist	

microcosm	system	to	obtain	such	data;	observing	and	quantifying	the	effects	of	combinations	

of	 environmental	 change	 on	 the	 invasion	 dynamics	 of	 competing	 species.	 We	 manipulated	

three	 aspects	 of	 the	 environment:	 food	 availability,	 salinity	 and	 temperature,	 in	 a	 factorial	

design	and	fitted	a	statistical	model	to	the	observed	invasion	dynamics	in	order	to	quantify	the	

extent	to	which	environmental	changes	interact	when	modifying	species	intrinsic	growth	rates,	

intra-	and	interspecific	competition.	We	then	present	a	novel	variance	decomposition	method,	

which	 uses	 the	 parameterized	model	 to	 calculate	 the	 changes	 in	 species	 invasion	 rates	 that	

result	 from	 environmental	 impacts	 on	 the	 species	 intrinsic	 growth	 rates	 and	 inta-	 and	

interspecific	 competition.	 This	 gives	 a	 quantitative	 understanding	 of	 the	 mechanisms	 that	

cause	variation	in	species	invasion	rates	under	different	environmental	conditions,	allowing	us	

to	evaluate	how	direct	and	indirect	effects	contributed	to	this	variation.	
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Methods	

EMPIRICAL	SYSTEM	

STUDY	ORGANISMS	AND	CULTURING	

We	 examined	 the	 impacts	 of	 combined	 environmental	 changes	 by	 examining	 the	 reciprocal	

invasion	dynamics	of	two	species	of	bacterivorous	protist:	Blepharisma	japonicum	(Suzuki)	and	

Paramecium	 caudatum	 (Ehrenberg).	 	 Microcosms	 consisted	 of	 240ml	 glass	 jars	 containing	

100ml	 Chalkley’s	 solution	 (Thompson	 et	 al.	 1988),	 0.55gL-1	 of	 crushed	 protozoan	 pellets	

(Carolina	Biological	Supply,	USA)	and	2	wheat	seeds.		Jars	were	capped	with	aluminium	foil	and	

kept	in	controlled	temperature	chambers	at	200C.	All	microcosms,	and	media,	were	autoclaved	

before	 use.	 Two	 days	 prior	 to	 the	 initiation	 of	 the	 experiment,	 the	medium	was	 inoculated	

with	 a	 known	 bacterial	 species	 (Serratia	 marcescens).	 This	 allowed	 the	 development	 of	 a	

resource	base	for	establishment	of	the	two	competing	protists.		

	

ENVIRONMENTAL	MANIPULATION	TREATMENTS	

Three	 components	 of	 the	 environment	were	manipulated,	 each	 relative	 to	 the	 above	 stock	

culture	 conditions	 (Control).	 The	 selected	 factors	 represent	 distinctly	 different	 type	 of	

environmental	 influence	and	are	conditions	that	often	covary	 in	aquatic	systems	(Crain	et	al.	

2008).	 These	manipulations	were:	a)	 reduced	 food	availability	 (F⇓),	b)	 increased	 salinity	 (S⇑)	

and	c)	 increased	temperature	(T⇑).	Following	a	three-way	fully	factorial	design	(Fig.2.1.a),	we	

manipulated	 each	 of	 the	 three	 environmental	 factors	 individually	 (F⇓; T⇑;	 S⇑),	 in	 paired	

combinations	(F⇓+ T⇑;	F⇓+S⇑; T⇑+	S⇑)	and	all	together	(F⇓+ T⇑+	S⇑).	This	resulted	in	eight	

environmental	 treatment	groups,	 representing	each	possible	combination	of	manipulation	of	

the	three	factors.	

Low	food	treatments	(F⇓)	contained	less	protozoan	pellet	mass	 in	the	medium	(0.25gL-1)	and	

just	one	wheat	seed.		In	increased	salinity	treatments	(S⇑),	the	osmolarity	was	increased	from	

0.0001	 osM	 (standard	 salt	 concentration	 in	 Chalkley’s	 medium)	 to	 0.0006	 osM,	 whilst	

maintaining	 the	 same	 ratios	 of	 salts.	 Finally,	 microcosms	 from	 increased	 temperature	

treatments	(T⇑)	were	kept	in	controlled	temperature	chambers	set	to	250C	(50C	warmer	than	

controls).	 Manipulation	 levels	 were	 selected	 that	 caused	 moderate	 but	 detectable	 shifts	 in	

carrying	 capacities	 or	 population	 growth	 rates,	 based	 on	 preliminary	 tests	 of	 the	 individual	
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species	along	gradients	of	each	 factor.	The	bench	positions	of	microcosms	were	 randomized	

with	respect	to	the	treatments,	with	the	exception	of	the	temperature	treatments	for	which	all	

microcosms	 from	 a	 specific	 temperature	 were	 kept	 in	 the	 same	 controlled	 environment	

chamber.	Cultures	were	replenished	weekly	by	replacing	the	small	amount	of	evaporative	loss	

with	sterile	distilled	water.	

	

Figure	 2.1)	 Schematic	 of	 experimental	 design	 showing:	 A)	 the	 three	 way	 factorial	 environmental	
manipulation	 of	 food	 availability	 (F⇓),	 temperature	 (T⇑)	 and	 salinity	 (S⇑),	 relative	 to	 control	 stock	
conditions,	and	B)	the	controlled	and	reciprocal	invasion	experiments	nested	within	each	environmental	
treatment.		Under	each	environmental	condition,	Blepharisma	and	Paramecium	are	cultured	individually	
and	subject	to	invasion	by	its	competitor	at	day	15	(dashed	lines).	

	

INVASION	EXPERIMENT	UNDER	COMBINED	ENVIRONMENTAL	STRESSES	

Under	 each	 environmental	 manipulation	 treatment,	 reciprocal	 invasion	 experiments	 were	

undertaken	 between	 the	 two	 species	 (Fig.2.1.b).	 	 Our	 invasion	 experiments	 consisted	 of	

replicate	populations	 in	 four	 invasion	 treatments:	 a)	Blepharisma	uninvaded,	b)	Blepharisma	

invaded	 by	 Paramecium,	 c)	 Paramecium	 uninvaded,	 and	 d)	 Paramecium	 invaded	 by	

Blepharisma.		

Under	 each	 environmental	 treatment,	 five	 single-species	 replicates	 were	 initiated	 for	 each	

species.	Protists	were	obtained	from	2	week	old	stock	cultures,	standardizing	any	influences	of	

individual	 quality	 and	 thus	 growth	 rates	 (Price	 &	 Morin	 2004;	 Olito	 &	 Fukami	 2009).		

Populations	were	 left	 to	 grow	 for	 15	 days,	 by	which	 time	 species	 abundances	 had	 stopped	

increasing	exponentially.	After	this	growth	phase,	three	replicate	microcosms	of	each	resident	

species	were	 invaded	by	 its	competitor.	 Inoculation	abundances,	at	both	the	 initiation	of	the	

experiment	and	the	 invasion	time,	were	of	120	 individuals	 if	Blepharisma	or	80	 individuals	 if	
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Paramecium	(to	allow	for	the	latter’s	faster	growth	rate).	At	the	invasion	time,	the	remaining	

two	control	replicates	received	an	equivalent	volume	of	stock	medium	that	had	been	sieved	to	

remove	 protists.	We	 used	 this	 controlled	 competition	 experimental	 design,	with	 un-invaded	

replicates	 and	 differential	 replication,	 to	 give	 high	 statistical	 power,	 for	 inference	 of	 key	

biological	processes	such	as	the	intensity	of	competition.	

SAMPLING	

For	all	replicates,	we	sampled	species	densities	twice	a	day	over	the	first	4	days	and	then	daily	

over	the	growth	phase,	until	the	invasion	point	(day	15).	After	this,	sampling	was	done	3	times	

a	week	for	the	duration	of	the	experiment.	 	Prior	to	sampling,	the	medium	was	agitated	and	

0.2ml	of	medium	was	then	transferred	(with	replacement)	 to	a	sterile	petri	dish	and	protists	

were	 counted	 under	 a	 stereoscopic	 microscope	 (surveyed	 at	 7.5	 -	 30	 x	 magnification).	

Microcosms	were	sampled	40	times.	

	

MODEL	INFERENCE:	DYNAMIC	MODEL	PARAMETERIZATION		

QUANTIFICATION	OF	THE	EFFECTS		OF	COMBINED	ENVIRONMENTAL	CHANGES	ON	DYNAMICS	

We	used	maximum	likelihood	based	inference	to	fit	dynamic	models	to	the	observed	species	

abundances,	 in	 order	 to	 describe	 how	 ecological	 processes	 drive	 changes	 in	 species	

abundances	 under	 each	 experimental	 condition	 (Bolker	 2005).	 For	 each	 environmental	

treatment	 level,	 sample	 data	 from	 all	 invasion	 replicates	 and	 the	 uninvaded	 single	 species	

replicates	 were	 simultaneously	 used	 to	 parameterize	 a	 dynamic	 model	 with	 a	 common	

structure	 across	 all	 environments.	 This	 approach	 explicitly	 linked	 hypotheses	 with	 data,	

accounted	 for	 non-independence	 of	 repeat	 samples	 and	 allowed	 long	 term	 trend	 in	

abundances,	which	occur	at	varying	rates	between	environmental	treatments,	to	be	accounted	

for.	 Such	 trends	 are	 common	 in	 microcosm	 dynamics,	 resulting	 from	 gradual	 changes	 in	

conditions	 due	 to	 bacterial	 decomposition	 of	 abiotic	 nutrient	 stores	 or	 environmental	

degradation	 (e.g.	 Fox	2007).	Additionally,	 the	parameterized	model	was	 further	 analyzed,	 to	

investigate	 how	 environmental	 changes	 influence	 specific	 ecological	 processes	 (i.e.	 intra-	 or	

interspecific	 competition)	 and	 how	 these	 changes	 individually	 contribute	 to	 changes	 in	

invasion	 rates.	 This	 novel	 insight	 could	 not	 have	 been	 exposed	 by	 analyzing	 differences	 in	

invasion	 rates	 between	 treatment	 groups,	 as	 the	 direct	 and	 indirect	 component	 of	

environmental	change	are	entirely	confounded.	
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Two-species	 competition	 models	 were	 formulated	 in	 continuous	 time,	 allowing	 for	

nonstationary	parameters	and	non-Gaussian	observational	error	distributions.	 	The	dynamics	

were	assumed	to	be	governed	by	a	deterministic	model	that	followed	a	simple	Lotka-Volterra	

(L-V)	competition	model:	

𝑑𝑁!
𝑑𝑡

= 𝑟! ∗ 𝑁! ∗ 1 − 𝛼!!(𝑡) ∗ 𝑁! − 𝛼!"(𝑡) ∗ 𝑁!                                                               1        	

Here	𝑁! 	is	the	state	variable	of	the	abundance	of	species	i,	𝑟! 	is	the	intrinsic	growth	rate,	𝛼!!(𝑡)	

is	 the	 intraspecific	 competition	 term	 and	 𝛼!"(𝑡)	 is	 the	 interspecific	 competition	 coefficient	

which	 signifies	 the	 per	 capita	 effect	 of	 species	 j	 on	 the	 abundance	 of	 species	 i.	 This	model	

choice	reflects	the	asexual	and	largely	unstructured	life	history	of	protists	and	follows	from	the	

observation	 that	 protists	 are	 a	 rare	 example	 where	 species	 interactions	 and	 dynamics	 are	

often	well	approximated	by	L-V	models	(Jiang	&	Morin	2004;	Fox	2007),	with	few	higher	order	

interactions	 (Vandermeer	 1969).	 As	 in	 Fox	 (2007),	 competition	 terms,	 which	 define	 density	

dependence,	were	allowed	to	vary	over	time	(Appendix.1)	to	reflect	the	trends	in	abundance	

and	 interaction	 strength	 over	 the	 experiment.	 More	 complex	 model	 structures	 were	 fitted	

which	 incorporated:	decreasing	𝑟!  with	abundance	 (theta	 logistic),	more	complex	patterns	of	

change	 in	 completion	 with	 time	 or	 thresholds	 in	 parameter	 values	 after	 invasion.	 The	

alternative	 models	 did	 not	 sufficiently	 improve	 the	 model	 fit	 to	 justify	 their	 increased	

complexity.	

We	assumed	a	negative	binomial	sampling	process,	 𝑌! ~ 𝑁𝐵 𝑋! ,
!

!!!!
	,	to	accommodate	for	

overdispersion	(𝛾)	which	results	from	aggregative	behaviours	of	individuals	and	would	also	be	

further	inflated	by	process	variability.	A	simplifying	assumption	of	the	deterministic	method	of	

parameter	 estimation	 employed	 here	 is	 that	 process	 variability	 is	 absent;	 meaning	 that	 all	

error	was	assumed	observational.	 In	validation	of	 this	assumption,	 the	overdispersion	of	 the	

negative	binomial	was	not	greatly	more	than	expected	under	a	Poisson	sampling	process	and	a	

comparison	 with	 estimates	 of	 a	 more	 computationally	 expensive	 stochastic	 dynamic	 model	

revealed	no	significant	difference	in	parameter	estimates;	indicating	that	process	variation	was	

small	(Appendix.2A).	Due	to	this	simplifying	assumption	the	likelihood	function	could	be	more	

rapidly	 optimized	 allowing	 parameter	 confidence	 intervals	 to	 be	 obtained	 from	 likelihood	

profiles.	
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COUNTERFACTUAL	ANOVA	DECOMPOSITION		

This	 analysis	 decomposes	 how	 each	 species	 per	 capita	 invasion	 rate	 was	 modified	 by	

combinations	of	environmentally	driven	effects	that	 influence:	the	intrinsic	growth	rate	(𝑟!!),	

intraspecific	competition	(𝛼!!!)	and	 interspecific	competition	(𝛼!"!);	where	the	superscript	E	

specifies	the	environment	under	which	the	model	coefficient	 is	evaluated.	 	The	 invasion	rate	

under	 a	 specific	 environmental	 condition	 (𝜈!!)	 is	 the	 rate	 that	 a	 rare	 colonizer	 of	 species	 i	

invades	an	equilibrium	 resident	population	of	 the	 competitor	 j.	 Formally,	 it	 is	 the	per	 capita	

rate	of	change	given	𝑁! ≈ 1		and		𝑁! 	=		𝑁!∗	and	was	calculated	as:	

              𝜈!! = 𝑟!! ∗ 1 −
!!"!

!!!!
                                        																																																													[2] 

The	 fitted	 model	 estimates	 of	 our	 factorial	 experimental	 design	 provided	 coefficients	 to	

calculate	 𝜈!! 	 under	 all	 combinations	 of	 our	 environmental	 manipulation.	 Additionally,	

individual	 coefficients	 in	 Eq.	 2	 can	 be	 independently	 modified	 to	 reflect	 their	 value	 under	

alternative	environmental	treatments.	This	allows	simulation	of	counterfactual	environments,	

where	only	certain	biological	quantities	are	altered	by	environmental	change.		For	example,	by	

only	 allowing	 environmental	 effects	 on	 intrinsic	 growth	 rates,	 the	 direct	 effects	 of	

environmental	change	can	be	estimated.	Conversely	by	allowing	only	competition	coefficients	

of	 the	 resident	 to	 vary,	 the	 indirect	 effects	 of	 environmental	 change	 are	 identified.	 We	

calculated	invasion	rates	for	both	species	under	all	512	possible	counterfactual	environments	

(i.e.	all	possible	combinations	of	treatment	effects	modifying	each	parameter	individually).	

ANOVA	 decomposition	 was	 then	 undertaken	 to	 partition	 the	 pathways	 of	 effect	 of	

environmental	 factors	 on	 invasion	 rate	 (Rees	 et	 al.	 2004).	We	 defined	 the	 environmentally	

dependent	invasion	rate	of	a	species	(𝜈!!),	as	a	linear	function	of	its	invasion	rate	in	a	control	

environment	(𝜈!!),	plus	the	effects	on	invasion	rate	of	each	environmental	manipulation	acting	

on:	 (i)	 the	 intrinsic	 growth	 rate	 (Δ!⇓𝑟! ,Δ!⇑𝑟! ,Δ!⇑𝑟!),	 (ii)	 the	 residents	 intraspecific	 density	

dependence	 (Δ!⇓𝑎!! ,Δ!⇑𝑎!! ,Δ!⇑𝑎!!),	 and	 (iii)	 the	 interspecific	 competition	

(Δ!⇓𝑎!" ,Δ!⇑𝑎!" ,Δ!⇑𝑎!")	.	Delta	subscripts	refer	to	the	specific	environmental	factor	and	arrows	

signify	its	direction	of	change	(e.g. Δ!⇓𝑟! 	=the	effect	of	decreased	food	on	invasion	rate,	caused	

by	changes	to	the	invaders	intrinsic	growth	rate).	
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The	 resulting	 simulation	 experiment	 followed	 a	 nine-way	 fully	 factorial	 ANOVA	 without	

replication,	with	the	following	linear	model	structure:			

                             𝑚𝑎𝑖𝑛 𝑒𝑓𝑓𝑒𝑐𝑡𝑠 𝑜𝑓 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝑚𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑛 𝑏𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡	

𝜈!! = 𝜈!! +  𝛥!⇓𝑟! + 𝛥!⇑𝑟! + 𝛥!⇑𝑟! + 𝛥!⇓𝑎!" + 𝛥!⇑𝑎!" + 𝛥!⇑𝑎!" + 𝛥!⇓𝑎!! + 𝛥!⇑𝑎!! + 𝛥!⇑𝑎!! 	

                           + 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠                                                                                                                               [3.a] 

The	 sum	 of	 model	 predictors	 (𝑒.𝑔.  𝛥!⇓𝑟! +  𝛥!⇑𝑟!)	 gives	 the	 additive	 expectation	 of	 the	

combined	 independent	 effects	 of	 environmental	 changes	 on	 invasion	 rate,	 via	 those	model	

coefficients.	

By	definition,	this	gives	the	expected	effect	size	if	one	predictor	does	not	moderate	the	effect	

of	 the	 other	 on	 invasion	 rate.	 Additionally,	 higher	 order	 interaction	 terms	 between	 model	

predictors	were	 considered.	 For	 example,	 variation	 in	 invasion	 rate	 could	 be	 caused	 by	 the	

effects	of	 the	 three	 factors	acting	on	 the	 intrinsic	growth	 rate	and	 the	 interactions	between	

pairs	of	them.	In	this	case,	the	appropriate	linear	model	would	include	the	main	effects	of	the	

factors	 on	 𝑟! 	 and	 the	 second	 order	 interactions	 between	 them.	 Here	 we	 use	 the	 following	

short-hand	 notation	 to	 describe	 this: 𝜈!!~𝜈!! + 𝛥!⇓𝑟! + 𝛥!⇑𝑟! + 𝛥!⇑𝑟! !.	 Alternatively,	

variation	in	invasion	rate	could	be	due	to	the	effect	of	temperature	acting	on	three	different	L-

V	 coefficients	 and	 third	 order	 interactions	 of	 them.	 	 In	 this	 case,	 the	 linear	model	 structure	

should	be: 𝜈!!~𝜈!!+ 𝛥!⇑𝑟! + 𝛥!⇑𝛼!! + 𝛥!⇑𝛼!" 
!
.	

Such	rival	hypotheses	about	the	important	causes	of	variation	in	invasion	rate	were	formalized	

as	competing	linear	models	and	were	fitted	to	the	counterfactual	data	set	(Appendix.3).	These	

differed	in	the	predictors	they	use	to	explain	environmentally	driven	changes	in	invasion	rate	

and	the	highest	order	of	interactions	between	predictors.	Decomposition	revealed	the	amount	

of	 variation	 in	 invasion	 rate	 accounted	 for	 by	 a	 specific	 level	 of	model	 complexity,	 allowing	

identification	 of	 the	 major	 sources	 of	 differences	 from	 control	 invasion	 rates	 and	 an	

examination	of	the	importance	of	higher	order	interactions.	All	analyses	were	carried	out	using	

the	R	statistical	program	(R	Development	Core	Team	2006).	
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Results	

All	populations	persisted	for	the	duration	of	the	experiment	and	the	observed	dynamics	were	

largely	consistent	within	replicates	treatments	(Fig.2.2).	 	 	Across	treatments	there	were	 large	

differences	 in	 observed	 species	 abundances	 and	 variation	 in	 the	 direction	 of	 population	

trends.	 These	 differences	 reflected	 whether	 or	 not	 environments	 were	 warmed	 as	 these	

tended	to	deteriorate	faster	(Appendix.1).		

	
Figure	 2.2	 )	 Observed	 invasion	 dynamics	 of	 protists	 under	 eight	 treatment	 combinations	 with	 fitted	
models	predicted	from	equation	1.	Sampled	abundances	of	Blepharisma	 (Blue)	and	Paramecium	 (Red)	
are	 plotted	 when	 alone	 (filled	 circles;	 solid	 fitted	 line),	 as	 a	 resident	 (invaded	 at	 day	 15)	 (open	
downward	 triangles;	 short-dashed	 fitted	 line)	 and	 as	 an	 invader;	 increasing	 into	 a	 near	 equilibrium	
population	of	the	competitor	(invade	on	day	15)	(Filled	upward	triangles;	long-dashed	fitted	line).	Black	
dashed	 line	 is	 the	 invasion	 time	 and	 grey	 line	 is	 the	midpoint	 of	 the	 experiment,	 when	 competition	
coefficients	are	considered.		

	

MODEL	 INFERENCE:	 ENVIRONMENTAL	 EFFECTS	 ON	 BIOLOGICAL	 	 PROCESSES	 AND	 SPECIES	

DYNAMICS		

The	 fitted	 model	 captured	 the	 differences	 in	 dynamics	 between	 environmental	 conditions;	

using	 a	 common	 deterministic	 structure	 across	 environments	 to	 allow	 direct	 comparisons	

(Fig.2.2).	 One	 model	 simultaneously	 describes	 species	 dynamics	 in	 isolation	 and	 their	

reciprocal	 invasion	 dynamics.	 This	 is	 a	 strong	 structural	 assumption,	 but	 nonetheless,	 the	

model	generally	fits	the	data	well.	There	is	a	minor	bias	in	the	model	prediction	of	Paramecium	

abundance	 in	 isolation,	which	 is	most	 evident	 towards	 the	end	of	 the	experiment.	 This	may	

reflect:	i)	a	deviation	in	the	carrying	capacity	of	single	and	joint	species	(e.g.	as	a	response	to	

changing	 grazer	 pressure	 on	 their	 bacterial	 resource),	 or	 ii)	 a	 minor	 humpback	 trend	 in	
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abundance	 is	 apparent	 under	 some	 but	 not	 all	 environments,	 producing	 a	 small	 systematic	

deviation	 in	the	model	fits	over	the	final	stages.	We	believe	the	additional	model	complexity	

required	 to	 capture	 these	 detailed	 inter-treatment	 differences	 would	 result	 in	 poorly	

identifiable	 parameter	 estimates.	 Moreover,	 the	 invasion	 dynamics	 do	 not	 show	 large	

deviations	over	the	invasion	phase	and	so	parameter	estimates	will	be	robust	to	the	structural	

constraints.	 	 The	model	 correctly	predicts	 the	 reciprocal	 success	of	 invasion	of	both	 species,	

allowing	 coexistence	 under	 all	 environments.	 The	 rate	 of	 change	 in	 both	 species	 was	 also	

accurately	 captured.	 The	 parameters	 quantifying	 the	 dynamics	 of	 each	 treatment	were	well	

identified,	as	indicated	by	an	analysis	of	the	parameters	likelihood	profiles	(Appendix.2B).	Non-

overlap	 of	 model	 coefficients	 confidence	 intervals	 represents	 a	 highly	 conservative	 test	 of	

treatment	 differences	 at	 the	 95%	 level.	 Figure	 2.3	 reveals	 the	 substantial	 and	 statistically	

significant	variation	across	treatments	in	the	processes	driving	the	dynamic	behaviours.		

Intrinsic	 growth	 rates	 of	 both	 species	 increased	 significantly	with	warming	 (Fig.2.3a+b).	One	

apparent	 exception	 in	 Fig.2.3.a.	 is	 that	 of	 Blepharisma	 under	 increased	 temperature	 and	

salinity	 environments.	 	 However,	 examination	 of	 the	 time	 series,	 during	 the	 growth	 phase	

(Fig.2.2.	T⇑+S⇑)	indicates	that	this	was	a	result	of	be	a	brief	plateau	during	the	growth	phase	

which	is	not	captured	by	the	deterministic	model.	Therefore	we	do	not	consider	this	estimate	

to	 be	 good	 evidence	 of	 interactions	 between	 environmental	 effects.	 We	 do	 however	 find	

reliable	evidence	of	interactions	between	environmental	factors	on	other	biological	quantities.	

In	 Paramecium,	 under	 the	 same	 environmental	 treatment	 of	 increased	 salinity	 and	

temperature	 we	 	 did	 reveal	 evidence	 of	 interactions	 between	 environmental	 factors.		

Increased	salinity	caused	an	 increase	 in	 the	 intrinsic	growth	 rate	under	cool	 condition,	but	a	

reduction	under	warmed	conditions.	

	Environmental	factors	also	clearly	interacted	to	influence	intra-	and	interspecific	competition	

(Fig.2.3.	 c-f).	 Competition	 was	 greatly	 intensified	 under	 low	 resource	 conditions	 in	 both	

species,	 however	 resource	 depletion	 caused	 larger	 increases	 in	 the	 competitive	 effects	 of	

Paramecium	 (𝛼!! &  𝛼!";	 Fig.2.3.	 d+e)	 compared	 to	 Blepharisma	 (α!! &  α!";	 	 Fig.2.3.	 c+f).	

Warming	 had	 the	 opposite	 effect,	 reducing	 interspecific	 competition	 and	 allowing	 higher	

abundances.	 Importantly,	 the	 intensification	 of	 competition	 produced	 in	 low	 resource	

environments	 under	 cooler	 conditions	 was	 greatly	 reduced	 in	 warm	 environments.	 This	

antagonistic	 interaction	 between	 warming	 and	 resource	 depletion	 acted	 on	 both	 intra-and	

interspecific	 competition.	 Finally,	 a	 subtle	 third	 order	 interaction	 between	 all	 three	 factors	

affected	 intraspecific	 competition	 (Fig.2.3.c+d).	 Here	 increased	 salinity	 	 interacted	 with	 low	
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resource	 conditions	 only	 at	 lower	 temperatures	 to	 produce	 a	 synergistic	 increase	 in		

𝛼!!(Fig.2.3.c)	and	an	antagonistic	reduction	of	𝛼!!(Fig.2.3.d).	This	translates	into	a	reduction	

in	Blepharisma	abundance	and	an	 increase	 in	Paramecium	abundance	with	 increased	salinity	

which	 is	 only	 meaningfully	 apparent	 under	 low	 resource	 and	 low	 temperature	 conditions.	

These	non-additive	effects	of	combined	environmental	changes,	which	were	usually	common	

to	both	species,	produced	species	dynamics	that	would	be	unexpected	from	the	study	of	the	

effects	of	drivers	in	isolation.	

	

Figure	2.3)	Model	inference:	maximum	likelihood	estimates	of	the	intrinsic	growth	rate,	intraspecific	and	
interspecific	 compeitition	 coefficients	 of	 Blepherisma	 (blue)	 and	 Paramecium	 (red)	 under	 each	
environmental	treatment.	Bars	represent	95%	confidence	intervals	obtained	from	profile	likelihoods.	

	

COUNTERFACTUAL	ANOVA	DECOMPOSITION	

A)	IDENTIFYING	THE	BIOLOGICAL	PROCESSES	CAUSING	VARIATION	IN	INVASION	RATES	

Applying	our	counterfactual	ANOVA	decomposition	method	to	the	fitted	models,	we	examined	

the	mechanisms	by	which	combined	environmental	changes	cause	variation	in	species	invasion	

rates.	The	simplest	decomposition	model	with	an	R-squared	value	accounting	for	over	90%	of	

the	 variance	was	 chosen	 to	 infer	 the	 change	 in	 invasion	 rate	 associated	with	 environmental	

driven	changes	in	intrinsic	growth	rate,	and	competitor	abundance	or	interaction	strength.	For	

both	species,	the	same	candidate	model	most	simply	and	sufficiently	explains	this	variation:		

𝜈!!  ~ 𝜈!! + 𝛥!⇓𝛼!! + 𝛥!⇑𝛼!! + 𝛥!⇑𝛼!! + 𝛥!⇓𝛼!" + 𝛥!⇑𝛼!" + 𝛥!⇑𝛼!"
!
		,					[3.b]	
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This	model	captures	above	93%	of	the	variation,	using	just	22/512	coefficients	of	the	saturated	

model	 (Appendix.3).	 Notably,	 the	 model	 structure	 (eq	 3.b)	 neglects	 the	 impacts	 of	

environmental	change	on	the	intrinsic	growth	rate	and	limits	interactions	of	the	remaining	six	

predictors	of	invasion	rate	to	the	second		order.	These	predictors	reflect	impacts	of	the	three	

environmental	factors	upon	intra-	and	interspecific	competition.	Thus,	ANOVA	decomposition	

revealed	that	the	major	pathways	by	which	environmental	changes	modified	invasion	rates	are	

two	 indirect	 competitive	 effects.	 Invasion	 rates	were	 largely	 dependent	 upon	 the	 effects	 of	

environmental	manipulations	on:	1)	 the	 intensity	of	 intraspecific	 competition	 in	 the	 resident	

population;	which	determines	competitor	abundance	(𝛥𝛼!!),	and	2)	 interspecific	competitive	

effect	of	each	competitor	upon	the	invader	(𝛥𝛼!").	Further,	the	environmental	effects	on	both	

pathways	were	modified	through	interactions	between	pairs	of	environmental	changes,	whilst	

higher	order	interactions	had	small	effects.	

		

B)	QUANTIFYING	MECHANISMS	BY	WHICH	 ENVIRONMENTAL	 FACTORS	 INFLUENCE	 INVASION	

RATES	

The	decomposition	model	coefficients	 (Eq.	3b	 -	predictors	&	2nd	order	 interactions)	provided	

estimates	of	the	 invasion	rates	 in	the	control	environment.	They	also	show	the	direction	and	

magnitude	of	changes	in	invasion	rate,	associated	with	environmental	effects	via	two	distinct	

components	 of	 competition:	 1)	 alterations	 to	 the	 interspecific	 competitive	 effect	 of	 the	

resident	and	2)	changes	in	the	intensity	of	intraspecific	competition	and	thus	abundance	of	the	

resident	 population.	 Finally	 the	 interaction	 coefficients	 indicate	 the	 effect	 of	 interactions	

between	pairs	of	environmental	 factors	on	 the	 invasion	 rates;	acting	via	both	pathways.	We	

present	 these	quantitative	 results	 in	Figure	2.4	and,	with	 reference	 to	 it,	describe	below	the	

inferred	mechanisms	by	which	environmental	factors	alter	invasion	rates.	This	analysis	isolates	

how	 the	 environmental	 impacts	 upon	 each	 component	 of	 competition	 independently	

influence	invasion	rates.	As	a	result,	the	total	environmental	impact	upon	invasion	rates	should	

not	be	re-estimated	from	the	decomposition	output	by	summing	the	effects	via	both	pathways	

as	 the	 competition	 coefficient	 (𝛼!"  and	 𝛼!!)	 in	 the	 invasion	 calculation	 (equ2)	 are	 non-

additively	related.			
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i)	How	individual	environmental	changes	modify	invasion	rates	

Consistent	 with	 our	 observations,	 the	 estimated	 invasion	 rate	 under	 control	 conditions	

(horizontal	solid	black	line)	was	lower	for	Blepharisma	than	Paramecium	(𝜈!!=	0.215	vs.	𝜈!!=	

0.360).	The	three	environmental	factors	caused	differing	directional	changes	in	invasion	rates	

(coloured	 capped	bars),	 acting	 via	 the	 two	 indirect	 pathways	 (left	 vs.	 right	 panel	 of	 Fig.2.4).		

Notably,	 the	 direction	 of	 change	 caused	 by	 an	 environmental	 factors	 effect	 on	 interspecific	

competition	consistently	opposed	its	main	effect	on	invasion	rates	via	impacts	on	intraspecific	

competition	 in	 the	 resident	 (compare	 the	 direction	 of	 light	 and	 dark	 shades).	 This	 occurred	

because	 the	 environmental	 effects	 on	 competition	 were	 in	 the	 same	 direction	 within	 and	

between	 species	 and	 because	 these	 pathways	 have	 opposing	 effects	 on	 invasion	 rates.		

Reducing	 intraspecific	 competition	 in	 the	 resident	 (𝛼!!)	 increases	 equilibrium	 competitor	

abundance	 (𝑁!∗);	 indirectly	 decreasing	 the	 invasion	 rate	 by	 raising	 the	 total	 population	 level	

competitive	effect	(𝛼!! ∗  𝑁!∗).	Contrastingly,	reducing	interspecific	competition	(𝛼!")	decreases	

this	total	competitive	effect,	increasing	the	invasion	rate.			

The	greatest	magnitude	of	change	in	invasion	rate	was	caused	by	decreasing	food	availability.	

Predominantly,	low	food	availability	reduced	invasion	rates,	with	the	main	mechanism	causing	

this	being	an	increase	in	the	per	capita	interspecific	competitive	effect	of	the	resident	(Fig.2.4-	

light	green	bars;	𝛥!⇓𝑎!"=-0.803;	𝛥!⇓𝑎!"=-1.16).	Low	food	availability	also	produced	a	strong	

but	only	partially	opposing	increase	in	invasion	rates	by	increasing	intraspecific	competition	in	

the	 resident	 population,	 which	 reduced	 the	 number	 of	 resident	 competitors	 and	 the	

population	 level	 competitive	 effect	 (Fig.2.4-	 dark	 green	 bar;	 𝛥!⇓𝑎!!=0.34;	 𝛥!⇓𝑎!! =0.55).	

Temperature	had	the	next	largest	main	effects	on	invasion	rates,	also	predominantly	reducing	

them.	 This	 was,	 however,	 caused	 by	 a	 intraspecific	 process,	 where	 the	 invasion	 rate	 was	

primarily	 reduced	 due	 to	 an	 increase	 in	 the	 number	 of	 resident	 competitors,	 due	 to	 a	

reduction	 in	 the	 intensity	 of	 intraspecific	 competition	 (Fig.2.4-dark	 red	 bars;	 𝛥!⇑𝑎!!=-

0.77;  𝛥!⇑𝑎!!=-0.124).	The	reduction	 in	the	 interspecific	competitive	effect	of	the	resident	 in	

warmed	environments	allowed	only	a	smaller	counteracting	increase	in	invasion	rate	(Fig.2.4-	

light	 red	 bars;	𝛥!⇑𝑎!"=0.57;	𝛥!⇑𝑎!"=0.023).	 Relative	 to	 the	 effects	 of	 other	 environmental	

factors,	 the	 magnitude	 of	 the	 temperature	 effects	 on	 invasion	 rate	 were	 much	 greater	 in	

Paramecium	 than	Blepharisma.	 This	was	 true	 for	 effects	 on	 both	 indirect	 pathways.	 Finally,	

increasing	salinity	alone	had	negligible	effects	on	the	invasion	rate	of	both	species;	minimally	

affecting	 the	 intra-	 or	 interspecific	 competition	 pathways	 (Fig.2.4-	 blue	 bars	 𝛥!⇑𝑎!!=-0.12;	

𝛥!⇑𝑎!"=0.08;	 𝛥!⇑𝑎!"=0.025;	𝛥!⇑𝑎!!=-0.005	=-0.12).	
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ii)	Environmental	factors	interact	to	modify	mechanisms	influencing	invasion	rates		

Pairs	of	environmental	changes	interacted,	via	both	intra-	and	interspecific	pathways,	causing	

invasion	 rates	 to	 be	modified	 in	 a	way	 that	would	 be	 unanticipated	 if	 the	 individual	 factors	

were	assumed	 to	act	 independently.	These	non-additive	effects	of	environmental	 change	on	

species	 invasion	 rates	 can	be	 seen	 in	 Fig.2.4	 as	 the	 vertical	 difference	between	 the	 additive	

expectations	 if	 factors	acted	 independently	 (white	bars)	and	the	calculated	combined	effects	

(thick	grey	bars).		

Under	combined	warming	and	food	reduction,	the	interspecific	competitive	effect	of	residents	

increased	much	less	than	expected	if	the	effects	of	the	factors	were	additive	and	independent.	

This	 reduced	 intensification	 of	 competition	 resulted	 in	 invasion	 rates	 being	 less	 reduced	

(Fig.2.4-	 light	 green	 +	 red	 vs.	 grey	 bars).	 This	 antagonistic	 interaction	was	 common	 to	 both	

Blepharisma	 and	 Paramecium	 (𝛥!⇓𝑎!" ∗ 𝛥!⇑𝑎!"=0.507;	𝛥!⇓𝑎!" ∗ 𝛥!⇑𝑎!"=0.482).	 Increased	

temperature	and	food	reduction	also	interacted	to	affect	the	opposing	intraspecific	pathway,	

which	modifies	 invasion	 rates	by	changing	 the	abundance	of	 residents	 (Fig.2.4-	dark	green	+	

red	 vs.	 grey	 bars).	 Additively,	 this	 pathway	 would	 be	 expected	 to	 allow	 invasion	 rates	 to	

increase,	 due	 to	 the	 larger	 impact	 of	 reduced	 food	 availability	 compared	 to	 temperature,	

which	 intensifies	 competition	between	 residents,	 reducing	 their	abundance.	Here	 the	 size	of	

the	non-additive	effect	differed	between	the	species;	with	Paramecium’s	 invasion	rate	being	

further	 increased,	 whilst	 Blepharisma’s	 was	 relatively	 unaffected	 (𝛥!⇓𝑎!! ∗ 𝛥!⇑𝑎!!=0.203;	

𝛥!⇓𝑎!! ∗ 𝛥!⇑𝑎!!=-0.087).		

High	salinity	and	temperature	also	 interacted	to	modify	 invasion	rates,	primarily	by	affecting	

the	intensity	of	intraspecific	competition	and	thus	abundance	of	the	resident	competitor.	The	

interaction	 between	 these	 factors	 had	 differing	 effects	 on	 the	 two	 species,	 reflecting	 their	

differential	responses	to	salinity.	In	Paramecium,	the	reduction	in	invasion	rate,	expected	due	

to	the	 large	negative	main	effect	of	temperature,	was	 largely	reduced	by	an	 interaction	with	

salinity	 (Fig.2.4b-	 dark	 red	 +	 blue	 vs.	 grey	 bars).	Notably,	 the	magnitude	of	 this	 antagonistic	

interaction	 is	 5	 times	 greater	 than	 the	 small	 main	 effect	 of	 increased	 salinity	 (𝛥!⇑𝑎!! ∗

𝛥!⇑𝑎!!=0.416).	 This	 large	 effect	 reflects	 part	 of	 the	 subtle	 three-way	 interaction	 identified	

above.	 Contrastingly,	 in	 Blepharisma,	 this	 pair	 of	 factors	 interacted	 less	 strongly	 to	 modify	

intraspecific	competition	and	invasion	rates,	as	the	resident	(Paramecium)	is	less	variable	in	its	

sensitivity	to	salinity	across	other	environmental	treatments		(𝛥!⇑𝑎!! ∗ 𝛥!⇑𝑎!!=-0.0764).	We	

also	 found	 that	 other	 pairs	 of	 environmental	 factors	 only	 interacted	 to	modify	 the	 invasion	

rate	of	Paramecium.	These	remaining	interactions	are	weaker	in	magnitude	but	all	include	the	
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effect	 of	 salinity	 and	 one	 other	 factor	 upon	 the	 invasion	 rate	 of	 Paramecium	 (𝛥!⇑𝑎!! ∗

𝛥!⇓𝑎!!=-0.145;	 𝛥!⇑𝑎!" ∗ 𝛥!⇑𝑎!"=-0.129;	 𝛥!⇑𝑎!" ∗ 𝛥!⇓𝑎!"=-0.195).	 Indirectly,	 these	

interactions	 further	 reflect	 the	 higher	 variability	 in	 the	 sensitivity	 of	 Blepharisma	 to	 salinity	

sensitivity;	with	its	competitive	ability	being	more	variably	affected	by	salinity	between	other	

environmental	conditions.	

	

Figure	2.4)	ANOVA	decomposition-	How	estimated	 invasion	rates	of	Blepharisma	and	Paramecium	are	
modified	by	the	impacts	of	environmental	changes,	acting	upon	competition	with	the	resident	species.	
The	two	subpanels	of	each	plot	relate	to	the	components	of	the	total	competitive	effect:	(left	panel)	the	
intensity	of	the	resident’s	per	capita	interspecific	competitive	effect	on	the	invader,	and	(right	panel)	the	
intensity	of	intraspecific	competition	among	residents	(inversely	proportional	to	the	resident’s	carrying	
capacity).	 Environmental	 effects	 on	 invasion	 rate	 are	 plotted	 as	 the	 magnitude	 and	 direction	 of	 the	
changes	they	cause	relative	to	the	 invasion	rate	under	control	 treatments	 (solid	horizontal	black	 line).	
Within	 each	 subpanel,	 the	 three	 sets	 of	 bars	 (i.e.	 an	 open	 bar,	 a	 grey	 bar,	 and	 two	 green/blue/red	
capped	 bars)	 represent	 the	 effects	 of	 pairs	 of	 environmental	 changes	 on	 the	 invasion	 rate,	 via	 a	
component	 of	 competition	 (e.g.	 the	 left-hand	 group	 in	 the	 left	 panel	 of	 A	 represents	 the	 impacts	 on	
Blepharisma’s	invasion	rate	of	reduced	food	availability	(F⇓)	and	increased	temperature	(T⇑)	caused	by	
changes	 in	 the	 per	 capita	 interaction	 strength	of	 the	 resident	 competitor,	Paramecium).	 	 The	 narrow	
capped	 bars	 show	 the	 individual	 impacts	 of	 reduced	 food	 availability	 (F⇓,	 green	 bars),	 increased	
temperature	(T⇑,	red	bars)	and	increased	salinity	(S⇑,	blue	bars).	Regular	white	bars	show	the	combined	
effects	of	the	pairs	of	environmental	changes,	assuming	that	the	factors	act	independently	(i.e.	the	sum	
of	 the	 two	 individual	 effects	 shown	 by	 the	 coloured	 lines).	 	 In	 comparison,	 thick	 grey	 bars	 show	 the	
combined	impact	when	the	interaction	between	factors	is	included.	The	horizontal	dashed	line	indicates	
the	threshold	for	species	invasions	to	be	successful,	to	give	a	scale	to	the	magnitude	of	these	effects.	

		

Discussion 

In	this	study,	we	obtain	a	quantitative	understanding	of	the	combined	effects	of	environmental	

changes	on	the	dynamics	of	coexisting	species,	by	fitting	simple	statistical	models	to	empirical	

data.	We	show	that	 there	were	strong	non-additive	effects	of	productivity,	 temperature	and	

salinity,	 acting	 upon	 intra-	 and	 interspecific	 competition,	 modifying	 the	 invasion	 dynamics.	

Decomposition	of	the	overall	effect	on	species	invasion	rates	into	its	component	parts	reveals	

the	relative	unimportance	of	direct	effects	on	species	intrinsic	performance	compared	to	that	

of	indirect	effects	of	competitor	abundance	and	per	capita	interaction	strength.	
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These	 results	 provide	 clear	 evidence	 that	 environmental	 changes	 are	 likely	 to	 interact	when	

modifying	population	 level	processes,	 supporting	 the	widely	documented	evidence	of	 similar	

non-additive	 effects	 on	 key	 life	 history	 processes	 (e.g.	 Folt	 1999).	 In	 a	meta-analysis	 of	 112	

studies,	 Darling	 &	 Côté	 2008	 uncovered	 nonadditve	 effects	 of	multiple	 drivers	 on	mortality	

rates	 in	 75%	 of	 relevant	 studies.	 Crain	 et	 al.	 (2008),	 expanded	 this	meta-analysis	 approach,	

examining	 interactions	 between	 drivers	 on	 other	 individual	 level	 responses	 in	 marine	

communities	 and	 similarly	 found	 non-additive	 effects	 in	 74%	 of	 cases.	 However,	 interactive	

effects	 at	 the	 individual	 level	 do	 not	 necessarily	 translate	 simply	 to	 the	 population	 and	

community	 level.	 By	 excluding	 experiments	 focusing	 on	 indirect	 effects	 via	 trophic	

interactions,	 this	meta-analysis	 fails	 to	account	 for	 the	 long	 term	population	and	community	

effects	of	combined	drivers.	It	may	therefore	provide	a	conservative	estimate	of	the	frequency	

of	non-additive	environmental	 effects.	Our	 study	addresses	 this	problem,	 thus	helping	 to	 fill	

this	widely	acknowledged	(Paine	et	al.	1998;	Breitburg	et	al.	1998;	Crain	et	al.	2008;	Moe	et	al.	

2013)	knowledge	gap.		

Considering	 the	 causes	 of	 coexistence	 in	 this	 system	 is	 an	 important	 prerequisite	 to	

understanding	the	dynamics	and	the	combined	impacts	of	environmental	changes.	Despite	the	

apparent	 overlap	 of	 resource	 base	 between	 competitors	 in	 laboratory	 microcosms,	

coexistence	 frequently	 occurs	 (e.g.	 Vandermeer	 1969).	 Although	 coexistence	 may	 be	

permitted	through	a	combination	of	several	mechanisms,	Fox	&	Barrento	(2006)	have	shown	

that	 even	 after	 experimentally	 ruling	 out	 interspecific	 bacterial	 diversity,	 differential	 habitat	

use	 and	 chemical	 interference,	 unexplained	 coexistence	 still	 occurs.	 The	 demonstration	 by	

Delong	 &	 Vasseur	 (2012)	 of	 protist	 coexistence	 based	 on	 size	 partitioning	 of	 their	 bacterial	

resource,	 indicates	that	 intraspecific	bacterial	variation,	over	their	 life	history	or	evolutionary	

divergence,	is	potentially	a	general	mechanism	mediating	coexistence.	

In	addition	to	the	role	of	bacterial	variation	in	permitting	coexistence,	changes	in	the	bacterial	

abundance	 have	 a	 crucial	 role	 in	 driving	 the	 protist	 responses	 to	 environmental	 change,	

potentially	 explaining	 the	 non-additive	 effects	 of	 combined	 changes.	 Bacterial	 responses	 to	

reduced	 resource	 levels	 have	 been	 shown	 to	 follow	 simple	 models	 of	 consumer	 resource	

theory	(Abrams	1998;	Tilman	1982).	Under	low	resource	conditions,	bacterial	resource	density	

is	 reduced,	 subsequently	 driving	 the	 reduction	 in	 the	 abundance	 of	 bactiverous	 protists	

(Balčiūnas	&	Lawler	1995;	Kaunzinger	&	Morin	1998).	The	increase	in	protist	abundance	under	

warmed	 conditions,	 which	 is	 consistent	 with	 previous	microcosm	 studies	 (e.g.	 Fox	 &	Morin	

2001;	Beveridge	et	al.	2010b),	is	also	likely	to	be	largely	driven	by	increased	bacterial	resource	
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abundance	(Jiang	&	Morin	2004).	Under	similar	warming,	increased	bacterial	productivity	and	

specific	growth	is	known	to	be	accompanied	by	increased	protist	consumption	and	metabolism	

(White	et	al.	1991;	Peters	1994).	This	is	consistent	with	metabolic	theory,	which	suggests	that	

motility	 and	 consumption	 rates	 are	 initially	 expected	 to	 increase	 faster	 than	 increases	 in	

mortality	and	metabolism	under	moderate	warming	(Savage	et	al.	2004;	Rip	&	McCann	2011).	

This	 mechanism	 speeds	 up	 growth	 and,	 by	 shifting	 energy	 up	 trophic	 levels,	 reduces	 the	

intensity	of	density	dependence.	At	higher	temperatures,	increases	in	metabolic	cost	will	begin	

to	outweigh	the	benefits	of	 increased	prey	assimilation	rates,	preventing	further	 increases	 in	

protist	abundances.	However	 the	species	used	here	are	well	adapted	 to	warm	temperatures	

and	we	have	observed	that	their	abundances	continue	to	 increase	until	substantially	warmer	

temperatures	 (personal	 unpublished	 observations).	 These	 mechanisms	 explain	 the	 similar	

responses	of	the	competitors	to	changes	in	productivity	and	temperature.	

Together,	environmental	changes	clearly	moderated	the	effect	of	one	another.	This	generated	

non-additive	 effects	 on	 both	 species’	 intrinsic	 growth	 rates	 and	 intra-	 and	 interspecific	

competitive	effects	which	translated	into	variation	in	the	rate	of	invasion.		Most	prominently,	

we	 found	that	 the	 intensification	of	 intra-	and	 interspecific	competition,	which	 is	anticipated	

under	resource	depletion	(Abrams	1998),	was	consistently	offset	at	higher	temperatures.	The	

mechanism	 driving	 this	 may	 be	 a	 modification	 of	 ecosystem	 functioning	 at	 higher	

temperatures.	Warming	has	been	demonstrated	to	increase	bacterial	decomposition	of	wheat	

seeds	 and	 recycling	 of	 nutrients	 (Beveridge	 et	 al.	 2010a).	 This	 modification	 would	 offset	

competition	 by	 unlocking	 a	 greater	 amount	 of	 potential	 resource	 from	 abiotic	 source.	 Our	

study	was	designed	 to	quantify	 the	 interactive	effects	 rather	 than	 to	 identify	 the	underlying	

physiological	 mechanisms,	 however	 warmed	 treatments	 showed	 more	 rapid	 declines	 in	

abundance,	 suggesting	 more	 rapid	 exploitation	 of	 the	 wheat	 seed,	 which	 acts	 as	 a	 slow	

nutrient	 release.	 Future	 experiments	 aiming	 to	 identify	 these	 mechanisms	 should	 consider	

monitoring	changes	in	the	bacterial	abundance,	the	biomass	decomposition	of	the	wheat	seed	

and	 may	 also	 need	 to	 consider	 how	 demographic	 processes	 of	 the	 competing	 species	 are	

influenced.	 Changes	 in	 body	 size	 in	 response	 to	 warming	 may	 be	 important	 in	 altering	

individual	 resource	 requirements	 and	driving	 these	 interactive	 effects	 on	 species	 abundance	

patterns	(Reuman	et	al.	2013).	

Our	 analysis	 also	 reveals	 subtle	 interactions	 of	 increased	 salinity	 when	 in	 combination	with	

cool	temperatures	and	low	food	levels.	The	impacts	of	salinity	upon	protist	dynamics	have	not	

previously	been	reported.	However,	in	short	term	experiments	Blepharisma	is	known	to	have	a	
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lower	 tolerance	to	 increased	salinity	compared	to	Paramecium,	which	performs	well	even	at	

much	 higher	 salinities	 (Finley	 1930;	 Smurov	 &	 Fokin	 2001).	 We	 found	 that	 under	 most	

combinations	of	 conditions	 studied,	 the	dynamics	of	both	 species	were	 largely	 insensitive	 to	

differences	 in	 salinity,	 although	 Paramecium	 showed	 a	 small	 increase	 in	 abundance	 due	 to	

increased	salinity,	whilst	Blepharisma	showed	a	slight	decline.	There	was	however	a	subset	of	

conditions	causing	the	abundance	of	both	species	to	be	affected	by	salinity	to	a	greater	extent,	

through	strengthened	impacts	on	intraspecific	competition.	These	changes	are	in	the	direction	

expected	 based	 on	 our	 limited	 knowledge	 of	 their	 salinity	 tolerances	 (i.e.	 Paramecium	

increased	in	abundance	whilst	Blepharisma	decreased).		

Although	 these	 interactions	 were	 smaller	 than	 the	 interactions	 of	 productivity	 and	

temperature,	they	were	large	relative	to	the	lesser	main	effect	of	increased	salinity	under	most	

conditions.	This	finding	suggests	that	 it	may	be	difficult	to	 identify	some	important	drivers	of	

change	 in	 species	 abundance	 because	 the	 main	 effect	 size	 is	 generally	 small,	 but	 becomes	

much	more	 important	under	a	narrow	set	of	environmental	conditions.	This	 is	 in	accordance	

with	shorter	 term	evidence	of	density	dependence	 in	Soay	sheep	populations:	Coulson	et	al.	

(2008)	 revealed	 that	 harsh	 winter	 weather	 produced	 strong	 density	 dependence,	 through	

mortality,	 but	 this	 only	 occurs	 after	 previous	 periods	 of	 high	 resource	 conditions	 which	

produce	a	population	boom.		Interestingly,	in	this	system,	it	is	only	when	bacterial	abundance	

is	 expected	 to	 be	 low	 (i.e.	 low	 resources	 and	 temperature)	 that	 salinity	 strongly	 influences	

protist	dynamics	and	only	via	 intraspecific	competition.	 It	appears	that	differences	 in	species	

physiological	 performance	 between	 salinity	 levels	 are	 amplified	 under	 these	 low	 prey	

conditions.	 Identifying	 conditions,	 and	 the	 underlying	mechanisms,	 that	 are	 likely	 to	 lead	 to	

these	amplification	effects	is	essential	for	a	transition	to	a	more	predictive	framework.	

Unconsidered	 interactions	between	many	environmental	changes	may	prove	problematic	 for	

the	development	of	predictive	 frameworks	mechanistically	 linking	environmental	 changes	 to	

species	 dynamics.	 Metabolic	 theory,	 for	 example,	 has	 shown	 promise,	 in	 tightly	 controlled	

laboratory	microcosms,	 as	 a	method	 for	 scaling	 species	 feeding	 rates,	 interaction	 strengths	

and	 extinction	 risks	with	 temperature	 (Rall	et	 al.	 2010,	 Petchey	et	 al.	 1999;	O'Connor	et	 al.	

2009;	2013;	Clements	et	al.	2014).	However	 in	natural	 systems,	 these	scaling	 rates	may	vary	

continuously	as	other	interacting	facets	of	the	environment	change.	Thus	strong	interactions,	

such	 as	 that	 seen	 here	 between	 temperature	 and	 productivity,	 will	 have	 important	

ramifications	for	the	development	of	predictive	frameworks	for	forecasting	species	responses	

under	environmental	change.		
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Fortunately,	 our	 results	 also	 indicate	 that	 by	 considering	 the	 impacts	 of	 environmental	

changes	 on	 species’	 physiological	 performances,	 their	 prey	 resource	 and	 ecosystem	

functioning,	 these	 interactions	may	be	quite	predictable.	Given	the	 large	possible	number	of	

interactions	that	could	have	occurred	between	our	treatments,	we	actually	find	a	fairly	small	

number	 of	 rather	 consistent	 effects.	 It	 appears	 likely	 that	 general	 bottom-up	 mechanisms	

produce	the	comparable	responses	of	the	competing	species	and	causes	the	similar	changes	to	

intra	 and	 interspecific	 competition.	 This	 is	 likely	 the	 case	 in	 many	 natural	 systems.	 For	

example,	nutrient	enrichment	is	generally	beneficial	to	the	performance	of	all	plant	species	in	

a	community,	although	they	will	vary	in	their	sensitivity.	As	a	result	the	per	capita	intensity	of	

intra-	 and	 interspecific	 competition	 can	be	 reduced.	Notably,	when	 the	 resultant	 changes	 in	

abundance	 of	 competitors	 and	 its	 interaction	 strength	 are	 considered,	 the	 net	 effect	 of	

enrichment	can	still	be	negative	(Suttle	et	al.	2007).	

Our	 counterfactual	 decomposition	 analysis	 revealed	 that	 much	 of	 the	 dynamic	 changes	 in	

invasibility	were	mediated	via	such	indirect	changes	in	the	density	of	the	resident	species	and	

its	 competitive	 ability.	 This	 is	 surprising	 as	 increases	 in	 intrinsic	 growth	 rates	 caused	 by	

temperature	 were	 large;	 representing	 a	 switch	 from	 approximately	 two	 to	 three	 protist	

generations	 per	 day.	 Such	 increases	 in	 species	 intrinsic	 growth	 rates	 are	 often	 assumed	 to	

drive	 substantial	 increases	 in	 species’	 invasion	 rates	 (Sorribas	et	al.	 2012;	 Sorte	et	al.	 2012),	

but	were	unimportant	here.	Our	results	echo	the	theoretical	conclusions	of	Case	(1990)	that	in	

communities	of	strongly	interacting	species,	the	possibility	of	invasion	is	reduced.	The	invasion	

rate	 in	 this	 system	 is	 largely	 dependent	 upon	 the	 ratio	 of	 interspecific:	 intraspecific	

competition.	Therefore	in	order	to	deduce	if	some	combination	of	environmental	changes	will	

be	good	or	bad	for	an	invader,	understanding	whether	the	changes	raises	or	lowers		density	of	

residents	 is	 highly	 informative	 (although	 our	 results	 suggest	 that	 density	 and	 interaction	

strength	may	often	be	negatively	related)	.	

When	 indirect	 effects	 of	 environmental	 change	 predominate,	 the	 direct	 effects	 of	

environmental	changes	on	a	species	alone	will	be	very	poor	predictors	of	changes	in	invasion	

rates	and	the	dynamics	in	general	(Barton	et	al.	2009;	Gilman	et	al.	2010).	Direct	effects	may	

be	 more	 important	 in	 situations	 where	 the	 focal	 species	 has	 a	 significant	 intraspecific	

competitive	 effect	 (𝛼!! ∗ 𝑁!∗).	 	 For	 example,	 the	 resilience	 of	 an	 established	 species	 or	 the	

immediate	 response	 to	 environmental	 trends	 in	 an	 equilibrium	 population	 may	 be	 more	

dependent	 on	 the	 direct	 response	 of	 the	 focal	 species.	 When	 questioning	 the	 relative	

importance	 of	 direct	 and	 indirect	 effects	 of	 environmental	 change,	 the	 answer	 will	 vary	
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depending	on	 the	biological	process	of	 interest.	Our	work	 indicates	 that	 forecasts	of	 species	

responses	 to	 environmental	 changes,	 which	 do	 not	 incorporate	 species	 interactions	 (e.g.	

species	distribution	models),	will	have	limited	predictive	capacity.		It	is	therefore	important	to	

develop	methods	to	integrate	interspecific	interactions	into	abundance	and	range	forecasting	

model	 (e.g.	 species	 interaction	 distribution	 models;	 Kissling	 et	 al.	 2012)	 in	 order	 to	 make	

accurate	predictions	of	the	consequences	of	environmental	change.	

Overall	our	results	support	two	important	points.	Firstly,	as	combined	environmental	changes	

impacted	species	dynamics	non-additively	through	effects	on	several	biological	processes,	the	

response	 of	 species	 will	 depend	 crucially	 upon	 the	 states	 of	 numerous	 aspects	 of	 the	

environment	experiencing	change.	This	suggests	that	multiple	features	of	the	environment	will	

need	 to	 be	 incorporated	 into	 population	 models	 in	 order	 to	 understand	 responses	 to	

environmental	change.	Furthermore,	as	environmental	effects	are	frequently	non-additive,	the	

mechanisms	driving	the	interactions	between	must	be	identified.	Fortunately,	the	interactions	

between	environmental	drivers	are	not	as	complex	as	may	be	expected	given	the	vast	number	

of	 possible	 interactive	 effects.	 By	 considering	 both	 the	 direct	 impacts	 of	 climate	 on	 species	

physiology	as	well	 as	 the	 indirect	effects	on	competitors	and	 their	 resources,	 the	underlying	

mechanisms	 causing	 these	 interactive	 effects	 appear	 quite	 interpretable.	 This	 suggests	 the	

possibility	 of	 anticipating	 and	 generalizing	 about	 these	 effects	 in	 other	 environments.	 This	

understanding	will	likely	require	detailed	demographic	data	relating	environmental	conditions	

to	 individual	 birth,	 growth	 and	 survival	 rates	 rather	 than	 phenomenological	 time	 series	

approaches.	Methods	linking	demographic	and	abundance	data	into	a	single	model	inference	

framework	are	now	beginning	to	be	utilized	(Coulson	et	al.	2008),	but	the	prediction	of	species	

responses	 to	 environmental	 change	 is	 still	 a	 nascent	 field	 (Jenouvrier	et	al.	 2013).	 Secondly,	

invasion	rates	can	be	strongly	influenced	by	environmental	changes	as	a	result	of	variation	in	

the	abundance	and	per	capita	interaction	strength	of	competitors;	not	just	by	impacts	on	their	

intrinsic	physiological	performance.	Therefore	ecological	models	must	embrace	 the	 interplay	

of	species	within	a	community	by	 incorporating	strongly	 interacting	species	 into	models.	Our	

work	 demonstrates	 that	 even	 in	 very	 simple	 systems,	 different	 components	 of	 the	

environment	 interact	 to	 strongly	 impact	on	 the	many	aspects	of	 species	biology	 and	modify	

community	level	processes	via	the	interactions	with	other	species.	
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Appendices	
Appendix	1)	Competition	terms	modelled	as	a	function	of	time	

It	 is	common	to	find	non-stationary	dynamics	 in	closed	microcosm	systems	(e.g.	Vandermeer	

1969).	Trends	of	increasing	abundance,	after	the	population	growth	phase,	is	often	attributed	

to	a	net	 influx	of	 resource	 from	decomposition	of	wheat	 seeds,	whilst	declining	abundances	

results	from	depletion	of	the	protozoan	pellet	resource	base.	An	inspection	of	our	time	series	

suggested	 that	we	 needed	 to	 include	 temporal	 variation	 in	 the	 parameters	 of	 the	model	 to	

reflect	 this.	 For	 all	 treatments,	 the	 functional	 form	 of	 temporal	 changes	 in	 parameters	was	

examined	and	models	were	compared	based	on	AIC	scores	(Table.2.S1).			

	

Table	2.S1)	Comparison	of	the	relative	performance	of	candidate	models	defining	the	temporal	variation	
in	the	intrinsic	growth	rate,	intra	–	and	interspecific	competition.	AIC	scores	averaged	across	treatments	
are	used	to	select	the	preferred	model	structure	(shaded).	

	

	

Model	 comparisons	 advocated	 that	 intraspecific	 density	 dependence (𝛼!!)	 changed	 as	 an	

exponential	 function	 of	 time,	whilst	 interspecific	 density	 dependence	 (𝛼!")	 changed	 linearly.	

Temporal	 variation	 in	 the	 intrinsic	 growth	 rate	 was	 also	 examined,	 however	 this	 did	 not	

significantly	 improve	 the	 model	 fits.	 A	 translation	 was	 applied	 to	 the	 parameters	 which	

temporally	 moderate	 the	 intensity	 of	 competition,	 so	 that	 we	 could	 assess	 the	 relative	

Form	of	temporal	variation	 	

AIC	

	

d.f.	Intrinsic	growth	rate		

	(𝒓𝒊)	

Intraspecific	

competition	(𝜶𝒊𝒊(t))	

Interspecific	

competition	(𝜶𝒊𝒋(t))	

Exponential	 Exponential	 Linear	 2960	 13	

Linear	 Exponential	 Linear	 2963	 13	

Constant	 Exponential	 Exponential	 2748	 11	

Constant	 Exponential	 Linear	 2746	 11	

Constant	 Linear	 Exponential	 2784	 11	

Constant	 Linear	 Linear	 2785	 11	

Constant	 Exponential	 Constant	 3068	 9	

Constant	 Linear	 Constant	 3101	 9	

Exponential	 Constant	 Constant	 3064	 9	

Linear	 Constant	 Constant	 3132	 9	

Constant	 Constant	 Constant	 3079	 7	
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importance	 of	 direct	 and	 indirect	 effects	 of	 environmental	 change	 at	 the	 midpoint	 of	 the	

experiment	(day	25).	Thus	the	functional	form	of	the	competition	coefficients	where:	

                                               𝛼!! 𝑡 =   𝛼!! ∗ 𝑒!!! !!!"     																																												[1a]																																											

                                               𝛼!" 𝑡 =   𝛼!" ∗ 1 + 𝜓!" 𝑡 − 25                               		[1b]				

The	 intensity	of	 intra-	and	 interpecific	competition	varied	over	time,	however	the	magnitude	

and	 direction	 of	 these	 changes	 varied	 between	 treatments	 and	 species.	 The	 maximum	

likelihood	models	 estimates	 (Fig.2.S1),	 quantified	 the	 nonstationarity	 that	 this	 caused	 in	 the	

dynamics.	 In	many	 replicates,	especially	 those	 initiated	with	 low	nutrient	 levels,	 intraspecific	

competition	 lessened	over	the	experimental	period	(Fig.2.S1.A+B;	negative	values	of	𝛽!).	This	

produced	the	trends	of	increasing	abundance	of	sinlge	species	systems	in	many	treatments.	It	

is	likely	that	bacterial	decomposition	of	the	wheat	seed	nutrient	source	caused	this	decline	of	

intra-specific	competition	 	 through	a	net	 influx	of	energy	 into	the	system.	 In	hot	treatments,	

Blepharisma	showed	a	noticably	different	behaviour.	The	positive	estimates	of	𝛽! 	under	warm	

conditions	 (Fig.2.S1.A),	 captures	 the	 intensification	of	 intraspecific	 competition,	 causing	 their	

declining	abundances.	Paramecium	also	had	higher	values	of	𝛽! 	in	hot	environments,	although	

stilll	 negative	 (Fig.2.S1.B).	 This	 commonality	 indicates	 that	 warming	 had	 a	 general	 effect	 of	

causing	 these	 microcosms	 to	 be	 degraded	 more	 rapidly.	 This	 is	 in	 line	 with	 expections	 of	

metabolic	 theory	 and	 other	 microcosm	 experiment	 that	 manipulate	 temperature.	 Warming	

induces	metabolic	rises,	increasing	decomposition	of	nutrients	stored	in	the	wheat	grains	and	

the	rate	that	the	nutrients	within	this	closed	system	will	be	depleted	(Beveridge	et	al.	2010a;	

Binzer	et	al.	2012).		
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Figure	 2.S1)	 Maximum	 likelihood	 estimates	 of	 the	 temporal	 changes	 in	 intra-	 and	 interspecific	
competition	 in	Blepherisma	 (blue)	 and	Paramecium	 (red)	 under	 each	 environmental	 treatment.	 Note	
that	 positive	 coefficients	 signify	 an	 intensification	 of	 competition	 over	 time.	 Bars	 represent	 95%	
confidence	intervals	obtained	from	profile	likelihoods.	

	

Although	 temporal	 changes	 in	 interspecific	 competiton	 were	 more	 difficult	 to	 identify,	 the	

results	 suggest	 a	 slight	 decline	 in	 interspecific	 competition	 over	 time	 in	 most	 treatments	

(Fig.2.S1.C+D;	negative	𝜓!" 	 values).	 Such	an	amealoration	of	 interspecific	 competition	would	

be	the	result	of	niche	seperation,	which	could	have	occurred	over	this	time	scale	as	a	result	of	

character	displacement.	Additional	and	more	detailed	observations	would	be	needed	 to	 test	

this	hypothesis.	

The	 temporal	 variation	 in	 competition	 coefficients	 indicated	 that	 despite	 the	 simplicity	 of	

microcosm	 systems,the	 abiotic	 conditions	 varied	 considerably	 over	 the	 experiemntal	 period	

and	influenced	the	two	species	to	differing	extents.The	frequency	and	magnitude	with	which	

competition	 varied	 suggests	 that	 temporal	 varaition	 in	 density	 dependence	 is	 likely	 to	 be	 a	

pervasive	and	important	feature	of	natural	systems.		
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Appendix	2)	Reliability	and	accuracy	of	parameter	estimation	

2A)	Reliability	of	estimates:	The	deterministic	assumption	is	valid	for	this	microcosm	system.	

Stochastic	 environmental	 and	 demographic	 effects	 produce	 process	 variability,	 which	

influences	 the	 future	 trajectories	 of	 population	 dynamics.	 This	 is	 distinctly	 different	 from	

observation	(measurement)	error,	which	is	not	inherent	to	the	system	and	therefore	does	not	

influence	 future	 dynamics	 (Turchin	 1995;	 Hilborn&	Mangel	 1997).	 Both	 sources	 of	 variation	

can	 be	 large	 in	 ecological	 data	 sets,	 and	 improper	 attribution	 can	 result	 biased	 parameter	

estimates	 (Ellner	et	 al.	 1998;	 Bjørnstad	 et	 al.	 2001,	 Dennis	 et	 al.	 2006).	 	 As	we	 employed	 a	

deterministic	model	to	estimate	biological	quantities	from	our	experimental	data,	we	assume	

implicitly	that	the	process	variability	is	absent.	This	assumption	made	feasible	the	comparison	

of	 rival	 model	 structures	 and	 the	 estimation	 of	 parameter	 confidence	 intervals.	 Here	 we	

present	 two	 analyses	 that	 strongly	 verify	 our	 modelling	 approach	 for	 these	 controlled	

laboratory	 experiments.	 Firstly,	 we	 examined	 whether	 there	 was	 evidence	 of	 excessive	

variability	 in	 the	 abundances	 in	 samples,	 which	 would	 signify	 a	 large	 stochastic	 source.	

Secondly,	we	 constructed	 a	 stochastic	model	 and	 compared	 the	 estimate	 of	 the	 two	model	

types.	

i)	Inspection	of	overdispersion	in	the	samples	of	species	abundance,	which	could	be	attributed	

to	a	stochastic	source.	

In	our	deterministic	model,	all	variability	 in	the	data	is	attributed	to	the	observation	process.	

Resultantly,	additional	process	variation	would	inflate	the	amount	of	sample	variability	above	

that	expected	by	a	random	sampling	process	alone.	By	formalizing	the	observation	process	as	

a	negative	binomial,	we	could	estimate	the	amount	of	excessive	variation	in	the	data.	This	was	

quantified	 by	 a	 stochastic	 parameter	 (𝛾).	 This	 captures	 overdispersion	 of	 variance	 in	 the	

likelihood	function	relative	to	a	poisson	(i.e.	random	samples	in	a	well	mixed	environment).		

Overdispersion	was	 consistently	 small	 across	 treatments.	 It	 increased	 the	 variation	 in	 count	

(averaged	 across	 treatments)	 by	 0.45	 individuals	 above	 the	mean	 over	 the	 entire	 duration,	

which	is	46.92	individuals	per	0.2ml	sample.	This	lack	of	overdispersion	indicates	that,	process	

variability	was	minimal	and	also	that	spatial	clumping	was	unimportant.	

ii)	Comparison	of	deterministic	and	stochastic	model	estimates.	

Computational	 advances	 and	 the	 development	 of	 statistical	 algorithms	 are	 making	 it	

increasingly	possible	to	tailor	statistical	models	to	describe	the	biological	scenario	of	 interest	
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whilst	 concurrently	 accounting	 for	 both	 process	 and	 observational	 uncertainty	 (Clark	 &	

Bjornstad	2004;	de	Valpine	2002,	de	Valpine	and	Hastings	2002,	Calder	et	al.	2003).	We	used	

one	recently	developed	package,	POMP	(King	et	al	2009),	which	aids	the	construction	of	semi-

mechanistic	 partially-observed	 Markov	 process	 models.	 This	 supports	 likelihood	 based	

parameter	 inference	 in	 nonlinear	 stochastic	 dynamic	 systems	 that	 contain	 both	process	 and	

observation	error	(Ionides	et	al	2006;	King	et	al.	2008).		

Partially-observed	 Markov	 process	 (POMP)	 models	 comprise	 of	 the	 unobserved	 Markovian	

state	process,𝑋!,	and	an	observation	process	generating	the	observed	data,	𝑌!.	 	Given	a	time	

series	of	𝑛	observations, 𝑌!:!,	taken	at	discrete	times	𝑡!:!,	the	model	is	fully	specified	by:		

1) The	 process	 model	 defining	 the	 conditional	 transition	 density	 of	 the	 hidden	

state, 𝑓 𝑋! 𝑋!!!,𝜃 ,	dependent	on	a	vector	of	(unknown)	parameters.		

2) The	observation	model,	defining	the	measurement	process	and	 its	probability	

density	 function,	expressed	by	 the	 conditional	distribution	of	 the	observation	

process:	𝑓 𝑌! 𝑌!:(!!!),𝑋!:! ,𝜃  = 𝑓 𝑌! 𝑋! ,𝜃 .		

3) The	initial	densities	of	the	system:	      𝑓 𝑋! 𝜃 .	

The	 state	 of	 the	 system	 at	 t1:N	 then	 contribute	 to	 the	 likelihood	 of	 the	 data:	 𝑓 𝑌!:! 𝜃 =

𝑓 𝑌! 𝑌!:(!!!),  𝜃!
!!! .		

Utilizing	 this	 state	 space	 framework,	 two	 species	 stochastic	 competition	 models	 were	

formulated	 in	 continuous	 time,	 allowing	 for	 nonstationary	 parameters,	 non-Gaussian	 error	

distributions,	 and	 hidden	 and	 discrete	 state	 variables.	 	 This	 stochastic	 differential	 equation	

model,	with	a	time	step	(δt)	of	0.1,	mirrored	the	deterministic	Lotka-Volterra	(L-V)	competition	

model	 in	the	main	paper	 (Equ1.).However	the	stochasticity	parameters	 (𝜎!where	 introduced,	

changing the stochastic process 𝑥! at each δt by a normally distributed amount 

with expectation µ(𝑥!, 𝑡)  and variance σ(𝑥!, 𝑡)².	These	parameters	determined	the	amount	of	

demographic	 noise	 and	 the	 extent	 of	 the	 diffusion	 process.	 The	 resulting	 stochastic	 model	

structure	was:	

𝑑𝑁! = 𝑟! ∗ 𝑁! ∗ 1 − 𝛼!! 𝑡 ∗ 𝑁! − 𝛼!" 𝑡 ∗ 𝑁!  𝑑𝑡 +  𝜎𝑥!𝑑𝑊                                         1. 𝑎        	

Measurements	 were	 assumed	 to	 follow	 a	 poisson	 process, 𝑝 𝑌𝑡 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑋𝑡 ,	 given	 that	

microcosms	 were	 well	 mixed	 prior	 to	 a	 random	 sampling	 of	 a	 small	 proportion	 of	 discrete	

individuals.			
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To	 verify	 if	 the	 deterministic	model	 provides	 a	 reliable	 simplification,	we	 used	 simple	 linear	

models,	 comparing	 the	 estimates	 of	 the	 two	 methods.	 We	 examined	 whether	 the	

deterministic	 estimates	 differ	 from	 those	 of	 the	 complex	 stochastic	 model.	 	 	 When	 the	

parameter	 estimates	 of	 the	 two	 techniques	 are	 compared,	we	 expect	 that	 the	 values	 to	 lie	

along	the	1:1	 line,	 if	the	estimates	are	equivalent.	 	Thus	we	test	whether	the	gradient	of	the	

linear	model	is	significantly	different	from	one;	taking	differences	in	the	gradient	and	intercept	

of	different	parameters	into	account.	

	

Figure	2.S2)	Comparison	of	the	deterministic	and	stochastic	parameter	estimates	for	all	treatments.	All	
parameters	have	a	gradient	 that	 is	estimated	not	 significantly	differ	 from	one.	Furthermore,	although	
there	 are	minor	 differences	 in	 the	 intercept	 of	 competition	 coefficients	 versus	 intrinsic	 growth	 rates,	
intercepts	 are	 not	 significantly	 different	 to	 one.	 The	 confidence	 intervals	 reveal	 that	 stochastic	 and	
deterministc	models	are	likely	to	follow	a	1:1	relationship;	verifying	that	the	methods		give	very	similar	
results.	

	The	 comparison	 of	 the	 stochastic	 and	 deterministic	 model	 estimates	 revealed	 a	 strong	

agreement	 of	 the	 two	 parameter	 estimation	methodologies	 (Fig.2.S2	 ;	 F=19740,	 df=39,	 	 p	 <	

0.001).	There	 is	no	significant	evidence	 to	 reject	 the	hypothesis	 that	parameter	estimates	of	

these	model	types	follow	a	1:1	relationship	(t=-1.84,	p=0.08).	Therefore,	we	conclude	that	our	

deterministic	methodology	provided	estimates	which	are	not	significantly	different	to	a	more	

complex	 stochastic	model.	 This	 result	 strongly	 justifies	 the	 use	 of	 our	 practical	 approach	 in	

further	analysis	of	the	data	set.		

The	 result	 that	 process	 variation	 appears	 not	 to	 be	 dynamically	 important	 in	 this	 system	 is	

likely	a	reflection	of	the	controlled	nature	of	our	experimental	system.	This	precludes	many	of	

the	natural	sources	of	natural	variation,	diminishing	environmental	stochasticity.	Additionally,	
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the	 high	 abundances	 of	 individuals	 in	 our	 study	 system	 means	 that	 effect	 of	 demographic	

stochasticity	are	likely	to	be	small	(Lande	et	al.	2003).	This	suggests	that	in	this	system,	where	

coexistence	 is	 stable	 and	 densities	 of	 both	 species	 remain	 high,	 issues	 of	 demographic	

stochasticity	 can	 be	 neglected.	 However,	 in	 systems	 with	 fluctuating,	 non-equilibrium	

dynamics	or	where	species	abundances	fall	to	low	levels,	process	variability	is	far	more	likely	to	

produce	phase	shifts	or	stochastic	extinction	events.	Process	error	cannot	therefore	be	ignored	

in	these	cases	(Ellner	et	al.	1998).	For	this	reason	we	endorse	the	continued	development	of	

state	space	models	to	separate	these	sources	of	variation	in	the	data.	

	

2B)	Accuracy	of	estimates	

So	 that	 we	 could	 identify	 significant	 treatment	 effects	 and	 interactions	 between	

environmental	drivers,	it	was	vital	that	we	could	estimate	or	uncertainty	of	parameter	values.	

To	do	this	we	constructed	likelihood	profile	curves	for	all	parameters.	This	technique	requires	

estimation	 of	 how	 the	 likelihood	 of	 observing	 the	 dataset	 changes	 as	 the	 value	 of	 a	 focal	

parameter	varies	around	its	maximum	likelihood	point.	In	this	process	all	other	parameters	are	

optimized	 at	 each	 value	 of	 the	 focal	 parameter.	 The	 functional	 form	of	 the	 likelihood	 curve	

(the	 number	 of	 degrees	 of	 freedom)	 was	 determined	 by	 penalized	 regression	 splines	 and	

generalized	cross	validation	(Wood	2001).	Confidence	intervals	were	then	computed	from	this	

curve	using	 the	 likelihood	 ratio	 test	 (Bolker	2005).	 The	 likelihood	profiling	methodology	was	

necessary	as	not	all	parameters	could	be	closely	estimated	using	a	quadratic	approximation,	

due	to	a	log	transformation	enforced	in	the	parameter	estimation	process.		
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Figure	 2.S3)	 Example	 likelihood	 profile	 curve	 for	 one	 parameter	 under	 a	 specific	 environment	 .	 This	
captures	how	the	 likelihood	of	observing	the	data	changes	as	the	value	of	parameter	𝛽!is	varied.	This	
process	 allows	 the	 likelihood	 function	 to	 be	 optimized	 under	 each	 fixed	 value	 of	 the	 parameter	 by	
allowing	other	biological	quantities	tovary	in	the	optimization	process.	General	Additive	Models	used	to	
obtain	fitted	curve	and	Likelihood	ratio	test	used	to	obtain	95%	confidence	intervals	(solid	line)	around	
the	MLE	(dashed	line).	

The	smoothness	of	the	likelihood	profile	curves	and	the	small	residuals	of	individual	likelihood	

calculation	points	from	their	smoothing	spline	(Fig.2.S3),	 indicate	that	the	 likelihood	function	

was	 consistently	 optimized.	 The	 smooth	 decline	 in	 	 the	 likelihood	 away	 from	 the	maximum	

likelihood	 estimate	 and	 uni-modal	 shape	 of	 curves	 in	 the	 95%	 confidence	 interval	 indicates	

that	parameters	were	well	identified	and	without	evidence	of	multiple	local	maxima.	

	

Appendix	3	Formalizing	rival	linear	model	hypotheses	of	the	important	causes	of	variation	in	

invasion	rate		

In	order	to	assess	relatively	how	much	the	direct	and	indirect	effects	of	environmental	change	

impacted	 invasion	rates	 (i.e.	effects	on	the	focal	species	physiology	vs.	effects	of	variation	 in	

the	 abundance	 and	 interaction	 strength	 of	 resident	 competitors),	 we	 formalized	 a	 suite	 of	

linear	 models.	 These	 models	 (Table	 2.S2+2.S3),	 defining	 rival	 hypotheses	 of	 the	 important	

sources	 of	 variation	 in	 invasion	 rates,	 were	 fitted	 to	 the	 counterfactual	 data	 set.	 Our	

counterfactual	 decomposition	method	 then	 allowed	 us	 to	 reveal	 the	 amount	 of	 variation	 in	

invasion	rate	accounted	for	by	a	specific	 level	of	model	complexity,	allowing	 identification	of	

the	major	sources	of	variance	from	control	invasion	and	an	examination	of	the	importance	of	

higher	order	interactions.	
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We	 found	 that	 simple	 linear	 models,	 which	 did	 not	 account	 for	 the	 effects	 of	 on	 both	

competition	 coefficients	 (e.g	 Table.2.S2+	 2.S3:	 mod.1+2)	 and	 interactions	 between	

environmental	drivers	on	these	coefficients,	captured	a	small	proportion	of	 the	variance	 (e.g	

Table.2.S2+2.S3:	mod.3).	Models	 incorporating	 the	effects	of	 changes	 in	 the	 intrinsic	 growth	

rate	 did	 not	 greatly	 improve	 the	 amount	 of	 variance	 accounted	 for.	 In	 both	 species	

environmental	 effects	on	 the	 intrinsic	 growth	 rate	poorly	explained	 the	variation	 in	 invasion	

rates.	 Models	 neglecting	 environmental	 effects	 on	 intrinsic	 growth	 rates	 but	 instead	

accounting	 for	 variation	 due	 to	 interactions	 of	 environmental	 drivers	 upon	 competition	

coefficients	 had	 greater	 explanatory	 power	 (Table.2.S2.mod	 1	 vs.	 mod	 7).	 This	 meant	 that	

much	 simpler	 models	 could	 account	 for	 most	 of	 the	 variance	 in	 invasion	 rate,	 without	

incorporating	effects	of	environmental	drivers	on	intrinsic	growth	rate	(Table.2.S2:	mod.6).	

The	complex	models,	with	higher	order	interactions,	did	not	improve	the	amount	of	variation	

explained,	 with	 the	 addition	 134	 more	 parameters	 being	 required	 to	 explain	 an	 additional	

5.6%	 of	 the	 variance	 (Table.2.S2:	 mod6	 vs.	 mod.14).	 This	 suggests	 that	 many	 interactions	

between	drivers	acted	on	different	biological	rates	in	our	experimental	system,	but	the	effect	

size	 of	 many	 were	 small.	 Yet	 there	 were	 clearly	 several	 strong	 interactions	 that	 required	

inclusion	in	order	to	account	for	a	great	deal	of	the	variation.	

The	 selected	decomposition	model	 (highlighted	 in	 Table.2.S2+2.S3),	which	was	 the	 same	 for	

both	species,	is	actually	rather	simple.	It	has	only	22	out	of	a	possible	512	parameters.	Beyond	

this	level	of	complexity	we	found	that	little	extra	explanatory	power	is	gained	by	adding	extra	

term.	Thus	higher	order	 interactions	appear	relatively	unimportant	 in	this	study.	Notably	the	

decomposition	model	does	not	 include	environmental	 impacts	on	 intrinsic	growth	 rates	as	a	

predictor,	 revealing	 that	 effects	 on	 this	 biological	 quantity	 are	 unimportant	 in	 modifying	

invasion	rates.	 	Variation	in	species	 invasion	rates	 is	 largely	dependent	environmental	effects	

upon	 the	 ratio	 between	 intra-	 and	 interspecific	 competition;	 as	 modified	 by	 interactions	

between	 pairs	 of	 environmental	 drivers.	 These	 interactions	 encompass	 the	 effect	 of:	 a)	

combined	 environmental	 changes	 modifying	 one	 coefficient;	 	 b)	 two	 environmental	 drivers	

effecting	different	coefficients;	and	c)	a	single	driver	mediating	both	the	intra-	and	interspecific	

parameter	pathways.			
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Table	2.S2)	Comparison	of	proportion	of	variance	in	Blepharisma’s	invasion	rate	explained	by	rival	linear	
models	decomposing	the	counterfactual	data	set:	as	signified	by	the	adjusted	R2	value.	The	predictors	in	
the	formula	brackets	define	interacting	main	effects,	with	the	maximum	order	of	interactions	limited	to	
the	integer	superscript.	The	chosen	model	is	highlighted	in	grey.	

	

	

We	 concentrate	 on	 interactions	 of	 type	a):	 examining	 the	main	 effects	 on	 invasion	 rates	 of	

pairs	 of	 environmental	 changes	 and	 their	 interactive	 effects,	 acting	 via	 upon	 a	 single	

bioological	 quantity.	 Several	 interactions	 were	 found	 belonging	 to	 the	 other	 categories;	

however	 they	do	not	 reflect	 interactive	effects	by	any	single	ecological	process.	Because	 the	

coefficients	 are	 multiplicative	 terms	 in	 the	 invasion	 rate	 calculation	 (Eq.2),	 an	 exact	

interpretation	of	these	coefficients	is	difficult.		

	

	

	

Model	 						Blepharisma	model	structure:		

																																(response~	control	intercept	+	(predictors)max	order	of	interactions	)										

No.	 of	

coefficients	

Adj.R2	

value	

1	 𝝂𝑩𝑬~𝝂𝑩𝑪 + 𝜟𝑭⇓𝒓𝑩 + 𝜟𝑻⇑𝒓𝑩 + 𝜟𝑺⇑𝒓𝑩 𝟑         + 𝜟𝑭⇓𝜶𝑷𝑷 + 𝜟𝑻⇑𝜶𝑷𝑷 + 𝜟𝑺⇑𝜶𝑷𝑷 𝟑	 15	 0.297	

2	 𝝂𝑩𝑬~𝝂𝑩𝑪 + 𝜟𝑭⇓𝒓𝑩 + 𝜟𝑻⇑𝒓𝑩 + 𝜟𝑺⇑𝒓𝑩 𝟑         + 𝜟𝑭⇓𝜶𝑩𝑷 + 𝜟𝑻⇑𝜶𝑩𝑷 + 𝜟𝑺⇑𝜶𝑩𝑷 𝟑	 15	 0.552	

3	 𝝂𝑩𝑬~𝝂𝑩𝑪 + 𝜟𝑭⇓𝒓𝑩 + 𝜟𝑻⇑𝒓𝑩 + 𝜟𝑺⇑𝒓𝑩           + 𝜟𝑭⇓𝜶𝑷𝑷 + 𝜟𝑻⇑𝜶𝑷𝑷 + 𝜟𝑺⇑𝜶𝑷𝑷     

+  𝜟𝑭⇓𝜶𝑩𝑷 + 𝜟𝑻⇑𝜶𝑩𝑷 + 𝜟𝑺⇑𝜶𝑩𝑷  	

10	 0.768	

4	 𝝂𝑩𝑬~𝝂𝑩𝑪  + 𝜟𝑭⇓𝒓𝑩 + 𝜟𝑻⇑𝒓𝑩 + 𝜟𝑺⇑𝒓𝑩 𝟐         + 𝜟𝑭⇓𝜶𝑷𝑷 + 𝜟𝑻⇑𝜶𝑷𝑷 + 𝜟𝑺⇑𝜶𝑷𝑷 
𝟐   

+ 𝜟𝑭⇓𝜶𝑩𝑷 + 𝜟𝑻⇑𝜶𝑩𝑷 + 𝜟𝑺⇑𝜶𝑩𝑷 𝟐	

19	 0.868	

5	 𝝂𝑩𝑬~𝝂𝑩𝑪  + 𝜟𝑭⇓𝜶𝑷𝑷 + 𝜟𝑻⇑𝜶𝑷𝑷 + 𝜟𝑺⇑𝜶𝑷𝑷 𝟐 + 𝜟𝑭⇓𝜶𝑩𝑷 + 𝜟𝑻⇑𝜶𝑩𝑷 + 𝜟𝑺⇑𝜶𝑩𝑷 𝟐	 13	 0.869	

6	 𝝂𝑩𝑬~𝝂𝑩𝑪 + 𝜟𝑭⇓𝒓𝑩 + 𝜟𝑻⇑𝒓𝑩 + 𝜟𝑺⇑𝒓𝑩 𝟑         + 𝜟𝑭⇓𝜶𝑷𝑷 + 𝜟𝑻⇑𝜶𝑷𝑷 + 𝜟𝑺⇑𝜶𝑷𝑷 
𝟑   

+ 𝜟𝑭⇓𝜶𝑩𝑷 + 𝜟𝑻⇑𝜶𝑩𝑷 + 𝜟𝑺⇑𝜶𝑩𝑷 𝟑	

22	 0.875	

7	 𝝂𝑩𝑬~𝝂𝑩𝑪 + 𝜟𝑭⇓𝜶𝑷𝑷 + 𝜟𝑻⇑𝜶𝑷𝑷 + 𝜟𝑺⇑𝜶𝑷𝑷 𝟑 + 𝜟𝑭⇓𝜶𝑩𝑷 + 𝜟𝑻⇑𝜶𝑩𝑷 + 𝜟𝑺⇑𝜶𝑩𝑷 𝟑	 15	 0.876	

8	 𝝂𝑩𝑬~𝝂𝑩𝑪 + 𝜟𝑭⇓𝜶𝑷𝑷 + 𝜟𝑻⇑𝜶𝑷𝑷 + 𝜟𝑺⇑𝜶𝑷𝑷 + 𝜟𝑭⇓𝜶𝑩𝑷 + 𝜟𝑻⇑𝜶𝑩𝑷 + 𝜟𝑺⇑𝜶𝑩𝑷 𝟐			 22	 0.942	

9	 𝝂𝑩𝑬~𝝂𝑩𝑪  + 𝜟𝑭⇓𝒓𝑩   + 𝜟𝑻⇑𝒓𝑩    + 𝜟𝑺⇑𝒓𝑩    + 𝜟𝑭⇓𝜶𝑷𝑷 + 𝜟𝑻⇑𝜶𝑷𝑷
+ 𝜟𝑺⇑𝜶𝑷𝑷 + 𝜟𝑭⇓𝜶𝑩𝑷 + 𝜟𝑻⇑𝜶𝑩𝑷 + 𝜟𝑺⇑𝜶𝑩𝑷 

𝟐  	

46	 0.954	

10	 𝝂𝑩𝑬~𝝂𝑩𝑪 + 𝜟𝑭⇓𝜶𝑷𝑷 + 𝜟𝑻⇑𝜶𝑷𝑷 + 𝜟𝑺⇑𝜶𝑷𝑷 + 𝜟𝑭⇓𝜶𝑩𝑷 + 𝜟𝑻⇑𝜶𝑩𝑷 + 𝜟𝑺⇑𝜶𝑩𝑷 𝟑			 42	 0.965	

11	 𝝂𝑩𝑬~𝝂𝑩𝑪 + 𝜟𝑭⇓𝜶𝑷𝑷 + 𝜟𝑻⇑𝜶𝑷𝑷 + 𝜟𝑺⇑𝜶𝑷𝑷 + 𝜟𝑭⇓𝜶𝑩𝑷 + 𝜟𝑻⇑𝜶𝑩𝑷 + 𝜟𝑺⇑𝜶𝑩𝑷 𝟒			 57	 0.966	

12	 𝝂𝑩𝑬~𝝂𝑩𝑪 + 𝜟𝑭⇓𝜶𝑷𝑷 + 𝜟𝑻⇑𝜶𝑷𝑷 + 𝜟𝑺⇑𝜶𝑷𝑷 + 𝜟𝑭⇓𝜶𝑩𝑷 + 𝜟𝑻⇑𝜶𝑩𝑷 + 𝜟𝑺⇑𝜶𝑩𝑷 𝟓			 63	 0.966	

13	 𝝂𝑩𝑬~𝝂𝑩𝑪  + 𝜟𝑭⇓𝒓𝑩  + 𝜟𝑻⇑𝒓𝑩   + 𝜟𝑺⇑𝒓𝑩   + 𝜟𝑭⇓𝜶𝑷𝑷 + 𝜟𝑻⇑𝜶𝑷𝑷

+ 𝜟𝑺⇑𝜶𝑷𝑷 +𝜟𝑭⇓𝜶𝑩𝑷 + 𝜟𝑻⇑𝜶𝑩𝑷 + 𝜟𝑺⇑𝜶𝑩𝑷 
𝟑  	

130	 0.991	

14	 𝝂𝑩𝑬~𝝂𝑩𝑪  + 𝜟𝑭⇓𝒓𝑩  + 𝜟𝑻⇑𝒓𝑩   + 𝜟𝑺⇑𝒓𝑩   + 𝜟𝑭⇓𝜶𝑷𝑷 + 𝜟𝑻⇑𝜶𝑷𝑷
+ 𝜟𝑺⇑𝜶𝑷𝑷 + 𝜟𝑭⇓𝜶𝑩𝑷 + 𝜟𝑻⇑𝜶𝑩𝑷 + 𝜟𝑺⇑𝜶𝑩𝑷 

𝟒  	

256	 0.998	
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Table	2.S3)	Comparison	of	proportion	of	variance	in	Paramecium’s	invasion	rate	explained	by	rival	linear	
models	decomposing	the	counterfactual	data	set:	as	signified	by	the	adjusted	R2	value.	The	predictors	in	
the	formula	brackets	define	interacting	main	effects,	with	the	maximum	order	of	interactions	limited	to	
the	integer	superscript.	The	chosen	model	is	highlighted	in	grey.	
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Model	 						Paramecium	model	structure:		

																																(response~	control	intercept	+	(predictors)max	order	of	interactions	)										

No.	 of	

coefficients	

Adj.R2	

value	

1	 𝝂𝑷𝑬~𝝂𝑷𝑪 + 𝜟𝑭⇓𝒓𝑷 + 𝜟𝑻⇑𝒓𝑷 + 𝜟𝑺⇑𝒓𝑷 𝟑         + 𝜟𝑭⇓𝜶𝑩𝑩 + 𝜟𝑻⇑𝜶𝑩𝑩 + 𝜟𝑺⇑𝜶𝑩𝑩 𝟑	 15	 0.420	

2	 𝝂𝑷𝑬~𝝂𝑷𝑪 + 𝜟𝑭⇓𝒓𝑷 + 𝜟𝑻⇑𝒓𝑷 + 𝜟𝑺⇑𝒓𝑷 𝟑         + 𝜟𝑭⇓𝜶𝑷𝑩 + 𝜟𝑻⇑𝜶𝑷𝑩 + 𝜟𝑺⇑𝜶𝑷𝑩 𝟑	 15	 0.447	

3	 𝝂𝑷𝑬~𝝂𝑷𝑪 + 𝜟𝑭⇓𝒓𝑷 + 𝜟𝑻⇑𝒓𝑷 + 𝜟𝑺⇑𝒓𝑷            + 𝜟𝑭⇓𝜶𝑩𝑩 + 𝜟𝑻⇑𝜶𝑩𝑩 + 𝜟𝑺⇑𝜶𝑩𝑩      

+ 𝜟𝑭⇓𝜶𝑷𝑩 + 𝜟𝑻⇑𝜶𝑷𝑩 + 𝜟𝑺⇑𝜶𝑷𝑩  	

10	 0.837	

4	 𝝂𝑷𝑬~𝝂𝑷𝑪  + 𝜟𝑭⇓𝜶𝑩𝑩 + 𝜟𝑻⇑𝜶𝑩𝑩 + 𝜟𝑺⇑𝜶𝑩𝑩 𝟐 + 𝜟𝑭⇓𝜶𝑷𝑩 + 𝜟𝑻⇑𝜶𝑷𝑩 + 𝜟𝑺⇑𝜶𝑷𝑩 𝟐	 13	 0.882	

5	 𝝂𝑷𝑬~𝝂𝑷𝑪  + 𝜟𝑭⇓𝒓𝑷 + 𝜟𝑻⇑𝒓𝑷 + 𝜟𝑺⇑𝒓𝑷 𝟐           + 𝜟𝑭⇓𝜶𝑩𝑩 + 𝜟𝑻⇑𝜶𝑩𝑩 + 𝜟𝑺⇑𝜶𝑩𝑩 𝟐    

+ 𝜟𝑭⇓𝜶𝑷𝑩 + 𝜟𝑻⇑𝜶𝑷𝑩 + 𝜟𝑺⇑𝜶𝑷𝑩 𝟐	

19	 0.884	

6	 𝝂𝑷𝑬~𝝂𝑷𝑪 + 𝜟𝑭⇓𝜶𝑩𝑩 + 𝜟𝑻⇑𝜶𝑩𝑩 + 𝜟𝑺⇑𝜶𝑩𝑩 𝟑 + 𝜟𝑭⇓𝜶𝑷𝑩 + 𝜟𝑻⇑𝜶𝑷𝑩 + 𝜟𝑺⇑𝜶𝑷𝑩 𝟑	 15	 0.889	

7	 𝝂𝑷𝑬~𝝂𝑷𝑪 + 𝜟𝑭⇓𝒓𝑷 + 𝜟𝑻⇑𝒓𝑷 + 𝜟𝑺⇑𝒓𝑷 𝟑           + 𝜟𝑭⇓𝜶𝑩𝑩 + 𝜟𝑻⇑𝜶𝑩𝑩 + 𝜟𝑺⇑𝜶𝑩𝑩 𝟑    

+ 𝜟𝑭⇓𝜶𝑷𝑩 + 𝜟𝑻⇑𝜶𝑷𝑩 + 𝜟𝑺⇑𝜶𝑷𝑩 𝟑	

22	 0.891	

8	 𝝂𝑷𝑬~𝝂𝑷𝑪 + 𝜟𝑭⇓𝜶𝑩𝑩 + 𝜟𝑻⇑𝜶𝑩𝑩 + 𝜟𝑺⇑𝜶𝑩𝑩 + 𝜟𝑭⇓𝜶𝑷𝑩 + 𝜟𝑻⇑𝜶𝑷𝑩 + 𝜟𝑺⇑𝜶𝑷𝑩 𝟐			 22	 0.933	

9	 𝝂𝑷𝑬~𝝂𝑷𝑪 + 𝜟𝑭⇓𝜶𝑩𝑩 + 𝜟𝑻⇑𝜶𝑩𝑩 + 𝜟𝑺⇑𝜶𝑩𝑩 + 𝜟𝑭⇓𝜶𝑷𝑩 + 𝜟𝑻⇑𝜶𝑷𝑩 + 𝜟𝑺⇑𝜶𝑷𝑩 𝟓			 63	 0.945	

10	 𝝂𝑷𝑬~𝝂𝑷𝑪 + 𝜟𝑭⇓𝜶𝑩𝑩 + 𝜟𝑻⇑𝜶𝑩𝑩 + 𝜟𝑺⇑𝜶𝑩𝑩 + 𝜟𝑭⇓𝜶𝑷𝑩 + 𝜟𝑻⇑𝜶𝑷𝑩 + 𝜟𝑺⇑𝜶𝑷𝑩 𝟒			 57	 0.946	

11	 𝝂𝑷𝑬~𝝂𝑷𝑪 + 𝜟𝑭⇓𝜶𝑩𝑩 + 𝜟𝑻⇑𝜶𝑩𝑩 + 𝜟𝑺⇑𝜶𝑩𝑩 + 𝜟𝑭⇓𝜶𝑷𝑩 + 𝜟𝑻⇑𝜶𝑷𝑩 + 𝜟𝑺⇑𝜶𝑷𝑩 𝟑			 42	 0.946	

12	 𝝂𝑷𝑬~𝝂𝑷𝑪  + 𝜟𝑭⇓𝒓𝑷    + 𝜟𝑻⇑𝒓𝑷   + 𝜟𝑺⇑𝒓𝑷   + 𝜟𝑭⇓𝜶𝑩𝑩 + 𝜟𝑻⇑𝜶𝑩𝑩

+ 𝜟𝑺⇑𝜶𝑩𝑩+𝜟𝑭⇓𝜶𝑷𝑩 + 𝜟𝑻⇑𝜶𝑷𝑩 + 𝜟𝑺⇑𝜶𝑷𝑩 𝟐  	

46	 0.976	

13	 𝝂𝑷𝑬~𝝂𝑷𝑪  + 𝜟𝑭⇓𝒓𝑷   + 𝜟𝑻⇑𝒓𝑷   + 𝜟𝑺⇑𝒓𝑷   + 𝜟𝑭⇓𝜶𝑩𝑩 + 𝜟𝑻⇑𝜶𝑩𝑩 + 𝜟𝑺⇑𝜶𝑩𝑩
+ 𝜟𝑭⇓𝜶𝑷𝑩 + 𝜟𝑻⇑𝜶𝑷𝑩 + 𝜟𝑺⇑𝜶𝑷𝑩 𝟑  	

130	 0.998	

14	 𝝂𝑷𝑬~𝝂𝑷𝑪  + 𝜟𝑭⇓𝒓𝑷    + 𝜟𝑻⇑𝒓𝑷  +  𝜟𝑺⇑𝒓𝑷  + 𝜟𝑭⇓𝜶𝑩𝑩 + 𝜟𝑻⇑𝜶𝑩𝑩 + 𝜟𝑺⇑𝜶𝑩𝑩

+ 𝜟𝑭⇓𝜶𝑷𝑩 + 𝜟𝑻⇑𝜶𝑷𝑩 + 𝜟𝑺⇑𝜶𝑷𝑩 𝟒  	

256	 0.999	
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Chapter	3:	Quantifying	the	ecological	costs	and	benefits	of	inducible	defence.	

Jason	I.	Griffiths,	Philip	H.	Warren	&	Dylan	Z.	Childs	

Abstract	

Ecologists	 often	 examine	 the	 individual	 level	 impacts	 of	 producing	 defences	 to	 reduce	

predation.	However,	the	population	level	costs	and	benefits	of	developing	defence	are	rarely	

investigated.	In	this	chapter,	we	developed	a	novel	methodology	for	quantifying	the	impacts	of	

predator	exposure	on	the	key	ecological	rates	of	prey	population	growth	and	defence	against	

consumption.	The	method	combines	data	collected	in	prey	growth	trials	and	predator	feeding	

assays,	 to	 allow	 changes	 in	 species	 abundances	 driven	 by	 population	 growth	 to	 be	 clearly	

distinguished	from	changes	driven	by	consumption	by	a	predator.		

Theory	 predicts	 under	 sufficiently	 strong	 predation,	 prey	 should	 increase	 their	 resource	

allocation	to	defence	at	the	cost	of	growth.	If	however	the	predation	pressure	is	removed,	we	

would	 expect	 an	 inducible	 defence	 to	 be	 lost.	 To	 test	 this	 prediction,	 we	 used	 our	 novel	

methodology	 to	 examine	 the	 population	 growth	 and	 defence	 of	 microbial	 populations	 that	

were	recently	either:	1)	naive	to	predation,	2)	exposed	to	predation	or	3)	historically	exposed	

to	predation,	but	not	recently.		

Application	of	 this	 analysis	 revealed	 clear	 evidence	of	 such	 a	 trade-off	 between	 growth	 and	

defence.	 Prey	 exposed	 to	 predation	 developed	 a	 lower	 vulnerability	 to	 predation	 (reduced	

attack	rate	and	increased	handling	time).	However,	this	came	with	a	cost	of	reduced	resource	

allocation	into	population	growth.	When	the	predator	was	removed,	the	defence	was	lost	and	

growth	rates	increased	to	the	levels	observed	in	naive	populations.	This	temporal	variation	in	

species	 growth	 and	 consumption	 rates	 is	 expected	 if	 prey	 resource	 allocation	 is	 driven	 by	 a	

growth-defence	 trade-off.	 Such	 variation	 in	 vital	 rates	 is	 theoretically	 predicted	 to	 permit	

complex	dynamical	behaviours	to	occur.	

Key	words:	Inducible	defences;	Growth-defence	trade-offs;	Functional	responses;	Predator-

prey	interactions;	Protist	microcosms;	State	space	model	
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Introduction	

A	wide	variety	of	species	develop	defensive	traits,	 in	response	to	increasing	densities	of	their	

predators	(Schmitz,	Beckerman	&	Brien	1997;	Tollrian	&	Harvell	1999;	Agrawal	2001;	Peacor	&	

Werner	2001;	Karban	&	Baldwin	2007;	Bourdeau	&	 Johansson	2012;	Padilla	&	Savedo	2013;	

Shaffery	 &	 Relyea	 2015).	 Defence	 may	 result	 from	 an	 evolutionary	 response	 in	 a	 variably	

defended	population	 (Yoshida	et	 al.	2004;	 Kasada	et	 al.	 2014)	 or	 from	 changes	 in	 individual	

resource	 allocation	 permitted	 through	 trait	 development	 plasticity	 (Agrawal	 2001;	 Fordyce	

2006).	 A	 key	 factor	 driving	 temporal	 variation	 in	 defence	 is	 that,	 under	 different	 predator	

abundances,	different	levels	of	defence	gives	the	highest	individual	fitness	and	population	rate	

of	increase	(Abrams	et	al.	1993).	When	predators	are	abundant	and	prey	are	relatively	rare,	it	

is	 advantageous	 for	 prey	 to	 invest	 resources	 into	 defence,	 rather	 than	 growth,	 to	 reduced	

vulnerability	 to	 mortality	 through	 predation.	 However,	 when	 predators	 are	 rare	 and	

conspecifics	are	abundant,	the	limited	resources	available	would	be	better	allocated	to	growth	

instead	 (Tollrian	 &	 Harvell	 1999;	 Andersson	 &	 Hughes	 2010).	 This	 trade-off	 prevents	 the	

predators	defended	 state	 from	always	being	beneficial,	 driving	 temporal	 variation	 in	 growth	

and	consumption	(Coley	et	al.	1985;	Abrams	et	al.	1993).	

Defence	 driven	 variation	 in	 ecological	 rates,	 allows	 populations	 to	 exhibit	 a	 rich	 array	 of	

dynamical	behaviours	that	are	not	expected	from	purely	ecological	theories	based	on	species	

abundances	(Abrams	et	al.	1993;	Tien	&	Ellner	2012;	Kasada	et	al.	2014;	Koch	et	al.	2014).	For	

example,	a	well-known	consequence	of	defence	trait	dependent	predation	is	the	modification	

of	 predator-prey	 cycles	 from	 classical	 quarter-period	 lagged	 oscillations	 to	 anti-phase	 cycles	

(Abrams	&	Matsuda	1997;	Cortez	2011;	Mougi	2012;	Cortez	&	Weitz	2014).	Such	signatures	of	

fluctuating	defence	have	recently	been	identified	in	many	previously	published	predator-prey	

experimental	 systems	 (Hiltunen	 et	 al.	 2014),	 although	 the	 mechanisms	 generating	 the	

dynamics	were	not	usually	explored.			

To	understand	how	predation	induced	defences	influence	population	level	processes,	we	need	

to	determine	how	defence	impacts	on:	A)	the	growth	rate	of	the	prey	population,	B)	the	rate	

at	 which	 predators	 search	 for	 and	 attack	 prey	 (the	 attack	 rate)	 and	 C)	 the	 time	 taken	 by	

predators	to	process	a	captured	prey	item	(the	handling	time).	Contrastingly,	many	studies	of	

predation	driven	defence	focus	on	individual	level	comparisons	of	the	traits	known	to	convey	

defence	 against	 predation	 in	 predated	 and	 un-predated	 populations,	 but	 do	 not	 provide	

quantitative	estimates	of	population	level	ecological	rates	(Lass	&	Spaak	2003;	Van	Donk	et	al.	
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2011).	Conversely,	when	population	level	rates	of	consumption	are	estimated,	concurrent	prey	

population	growth,	during	the	study	period,	is	not	usually	accounted	for.	

Here	 we	 develop	 a	 novel	 methodology	 to	 quantify	 the	 impacts	 of	 predator	 exposure	 on	 a	

prey’s	 population	 growth	 and	 its	 vulnerability	 to	 consumption	 by	 predators.	 	We	 use	 short	

term	experiments	to	observe	prey	population	growth	and	density	dependent	consumption	of	

prey	by	 the	predator.	We	 then	construct	a	novel	 functional	 response	analysis	 that	combines	

these	 two	sources	of	data,	 to	disentangle	changes	 in	prey	population	abundances	caused	by	

consumption	 by	 a	 predator	 from	 the	 balancing	 increases	 in	 abundance	 cause	 by	 prey	

reproduction	during	the	exposure	to	predation.	Accounting	for	this	prey	population	growth	is	

particularly	 important	when	analysing	data	on	species	with	short	generation	times	compared	

to	 the	 duration	 of	 study	 (Juliano	&	Williams	 1987).	 Otherwise,	 estimates	 of	 predation	 rates	

may	 be	 systematically	 biased.	 Using	 the	 highly	 flexible	 dynamic	 state	 space	 framework,	 we	

were	able	to	account	for	differential	sampling	effort,	which	depended	on	population	density.	

We	also	accounted	for	the	chance	demographic	variation	inherent	in	the	change	in	population	

abundances.		

We	apply	this	methodology	to	replicate	microbial	prey	populations	that	have	been	previously	

either	exposed	or	naive	to	predation	for	many	generations.	We	estimate	and	compare	rates	of	

growth	and	consumption	 in	these	two	groups.	This	allowed	us	to	evaluate	the	presence	of	a	

theoretically	 predicted	 trade-off	 between	 growth	 and	 defence	 which	 is	 expected	 to	 drive	

temporal	 variation	 in	 species	 growth	 and	 consumption	 rates	 and	 permit	 complex	 dynamical	

behaviours	to	occur.	

	

Methods	

EMPIRICAL	MICROCOSM	SYSTEM	

STUDY	ORGANISMS:	CULTURING	&	ESTABLISHING	THE	PREDATOR-PREY	SYSTEM	

We	studied	a	predator-prey	 system,	consisting	of	a	bacteria	 resource,	Serratia	marcescens,	 a	

bactiverous	 ciliate	 prey	 Colpidium	 striatum	(Stokes	 1886),	 and	 a	 predator,	Stentor	

coeruleus	(Ehrenburg	 1830).	 Laboratory	 microcosm	 cultures	 consisted	 of	petri	 dishes	

containing	 50ml	Chalkley’s	 solution	 (Thompson	et	 al.	 1988),	 0.7gL-1	of	 crushed	 protozoan	

pellets	(Carolina	 Biological	 Supply,	 USA)	and	 3	 wheat	 seeds.		All	 equipment	 was	autoclaved	
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before	use.	Culture	medium	was	first	inoculated	with	bacteria,	allowing	the	establishment	of	a	

resource	 base.	 Two	 days	 later,	 100	 individuals	 of	 the	 Colpidium	 prey	 were	 added	 to	 each	

microcosm.	These	were	maintained	at	200C	with	a	16:	8	light-dark	photoperiod.	The	positions	

of	microcosms	within	 controlled	 temperature	 environments	was	 randomized	 and	 frequently	

permuted.	 Cultures	 were	 replenished	 three	 times	 a	 week	 by	 renewing	 1ml	 of	medium	 and	

replacing	any	evaporative	loss	with	distilled	water.	

	

TREATMENTS	

Microcosms	were	initially	divided	into	two	treatment	groups.	Microcosms	assigned	to	the	first	

treatment	(Naive	to	predation:	10	replicates)	were	not	exposed	to	predation	by	Stentor.	These	

microcosms	were	cultured	in	isolation	from	the	predator	for	a	175	day	period.	The	microcosms	

assigned	 to	 the	 second	 treatment	 (Predator	 exposed:	 23	 replicates)	 were	 invaded	 with	 25	

individuals	of	the	predator	Stentor	on	day	12	and	also	received	a	second	equal	invasion	2	days	

later,	reducing	the	 impacts	of	demographic	stochasticity	on	the	 initial	population	trajectories	

and	 preventing	 chance	 predator	 extinctions.	The	 replicates	 in	 the	 “naive	 to	 predation”	

treatment	received	additions	of	an	equivalent	volume	of	Stentor	culture	medium,	but	sieved	to	

remove	predators.	

In	10	replicates	of	the	predator	exposed	treatment,	the	predator	went	extinct	prior	to	day	175.	

As	replicate	were	monitored	every	two	days	during	the	exposure	period,	the	extinctions	were	

known	to	have	occurred	during	a	window	of	time	in	the	middle/second	half	of	the	experiment,	

after	day	90	and	before	day	140.	These	populations	were	classified	into	a	third	treatment,	of	

being	previously	exposed	to	predation	(n=10).		They	provided	information	about	the	response	

of	 the	population	once	 the	predation	pressure	was	 removed.	 The	 remaining	 replicates	were	

exposed	 to	 predation	 for	 duration	 of	 exposure	 period	 (n=13).	 Time	 series	 analyses	 of	 these	

predator-prey	dynamics	showed	evidence	of	a	transition	from	classical	¼	lagged	predator-prey	

cycles	 to	 non-classical	 antiphase	 cycles	 indicative	 of	 systems	 experiencing	 inducible	 prey	

defence	(Appendix.1;	Hiltunen	et	al.	2014).	
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GROWTH	RATE	&	PREDATION	ASSAYS	

After	 the	 exposure	 period	 (day	 175),	 prey-containing	 medium	 was	 extracted	 from	 each	

replicate	 population,	 ensuring	 that	 any	 predators	 were	 removed.	 Extracted	 medium	 was	

divided	into	8	subsamples	and	diluted	with	protist-free	medium	(bacterially-inoculated),	using	

dilution	factors	of:	1,	1.2,	1.5,	2,	3,	6,	12,	or	30.	Each	dilution	subsample	was	used	to	initiate	a	

pair	of	subpopulations.	This	produced	eight	pairs	of	prey	populations	along	a	gradient	of	prey	

densities.	Each	population	was	3ml	in	volume	and	was	located	in	a	separate	compartment	of	a	

5ml	 well	 plate.	 One	 of	 each	 pair,	 along	 the	 gradient	 of	 prey	 densities,	 was	 invaded	 with	 8	

predators.	 The	 other	 served	 as	 a	 predation	 free	 control	 treatment,	 allowing	 changes	 in	

abundance	due	to	predation	to	be	un-confounded	from	effects	of	prey	reproduction.			

	

SAMPLING	

Replicate	exposure	microcosms	were	each	agitated	and	then	sampled	three	times	a	week	for	

the	 duration	 of	 the	 exposure	 period.	 To	 count	 predator	 density,	 5ml	 of	 medium	 was	

transferred	 (with	 replacement)	 to	 a	 sterile	 petri	 dish	 and	 scanned	 under	 a	 stereoscopic	

microscope	 (surveyed	 at	 7.5–30	 x	 magnification).	 Prey	 density	 was	 estimated	 by	 visually	

scanning	a	0.1ml	subsample.	This	sampling	effort	was	increased	when	Colpidium	was	rare	and	

the	 proportion	 of	 habitat	 recorded.	 For	 all	 populations	 in	 the	 growth	 and	 predation	 assays,	

prey	abundance	was	sampled	immediately	after	initiation	and	then	after	4	and	24	hours	later.	

This	 produced	 observations	 of	 the	 changes	 in	 prey	 abundances	 under	 a	 range	 of	 initial	

population	 densities	 in	 the	 presence	 and	 absence	 of	 predation	 and	 enabled	 growth	 and	

consumption	rates	to	be	estimated.		

	

INFERRING	THE	GROWTH-DEFENCE	TRADE-OFF:	A	DYNAMIC	FUNCTIONAL	RESPONSE	ANALYSIS	

Changes	 in	prey	abundances,	observed	during	growth	and	predator	 feeding	trials,	were	used	

to	estimate	prey	growth	and	predator	consumption	rates.	By	combining	both	sources	of	data,	

population	increases,	caused	by	prey	population	growth	in	the	predation	trials,	was	accounted	

for	 when	 assessing	 the	 reduction	 of	 prey	 abundance	 caused	 by	 predator	 consumption.	

Comparison	of	the	rates	of	growth	and	predation	between	prey	that	were	exposed	and	naive	
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to	 predation	 allowed	 evaluation	 of	 the	 presence	 of	 inducible	 prey	 defence	 and	 the	

theoretically	predicted	growth	defence	trade-off	.	

	

Model	formalization	and	parameterization	

The	 change	 in	 abundance	 of	prey	 (N)	 during	 the	 growth	 and	 predation	 trials,	was	 described	

using	 a	Rosenzweig-MacArthur	 stochastic	 differential	 equation	model,	where	 the	 abundance	

of	predators	is	fixed	(predation	trials	P=8;	growth	trials	P=0)	(Rosenzweig	&	MacArthur	1963):	

𝑑𝑁 = 𝑟𝑁 1 −
𝑁
𝐾

 −
𝑎𝑃𝑁

1 + 𝑎ℎ𝑁
𝑑𝑡 +  𝜎𝑥!𝑑𝑊                           1a)       	

Here	 the	 prey’s	 intrinsic	 growth	 rate	 is	r	and	 population	 growth	 is	 prey	 density	 dependent,	

towards	a	carrying	capacity	(K).	Predation	depends	on	prey	density,	following	a	satiating	type	II	

functional	 response	 (Hollings	 1959).	 The	 attack	 rate	(a)	denotes	 the	 rate	 that	 a	 predator	

searches	for	prey	when	it	is	not	currently	consuming	a	prey.	The	predators	handling	time	(h)	is	

the	 average	 proportion	 of	 time	 a	 predator	 uses	 to	 consume	 a	 prey.	 At	 high	 prey	 densities	

predators	 become	 limited	 by	 their	 handling	 time	h	and	 so	 the	maximum	 prey	 consumption	

rate	 is	1/h.	 Stochastic	 dynamics	were	 simulated	 using	 a	 Euler	 approximation.	 A	 stochasticity	

parameter,	introduces	normally	distributed	demographic	noise	(dW)	 into	the	changes	 in	prey	

abundance	at	 each	 Euler	 time	 step	 (δt	 =0.025	 hrs)	 with	 expectation	μ(Nt,	 t)	 and	 noise	

intensity	σ(Nt,	t)2.	

The	 parameters	 of	 the	 dynamic	 model	 were	 inferred	 by	 constructing	 a	partially-observed	

Markov	 process	 (POMP)	 model	 within	 the	POMP	 package	 (Appendix.2)	 (King,	 Nguyen	 &	

Ionides	 2015).	POMP	 models	comprise	 of	 the	 unobserved	 state	 transition	 process	 and	 an	

experimental	 observation	 process	 generating	 the	 data.		 Thus,	 they	explicitly	 account	 for	 the	

separate	sources	of	process	and	sampling	variation.		Measurements	were	assumed	to	follow	a	

Poisson	 process,	 given	 that	 microcosms	 were	 well	 mixed	 prior	 to	 a	 random	 sampling	 of	 a	

proportion	 of	 individuals.	The	 Sequential	Monte	 Carlo	 (SMC)	 algorithm	 (Liu	 and	West	 2001)	

was	utilized	to	perform	parameter	estimation,	with	uninformative	uniformly	distributed	priors	

covering	a	broad	range	of	biologically	reasonable	values.	This	allowed	estimation	of	population	

growth	and	predation	rates	for	each	of	the	replicate	populations.			
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Identifying	differences	between	treatments	

Multiple	 regression	was	 used	 to	model	 the	 differences	 in	 population	 growth,	 handling	 time	

and	attack	rate	between	replicate	populations	that	were	a)	naive	to	predation,	b)	exposed	to	

predation	or	c)	previously	exposed	to	predation,	but	the	predator	previously	went	extinct.	 	A	

model	was	constructed	formalizing	the	hypothesis	that	all	three	predation	treatments	(treats:	

naive,	 exposed,	 previously	 exposed)	 influence	 the	 response	 variables	 (vars:	 attack	 rate,	

handling	time	and	population	growth	rate):	𝑌! × !"#$ =  𝑋! × !"#$!%  𝐵!"#$!%×!"#$ + 𝜀! × !"#$!%.	

Here	 the	 sample	 size	 (n=33)	 is	 the	 total	 number	 of	 microcosms.	 This	 full	 model	 was	 then	

compared	with	the	nested	models	in	which	certain	treatment	effects	were	removed	(i.e.	some	

microcosms	 with	 differing	 histories	 of	 predation	 had	 the	 same	 ecological	 rates).	 The	

appropriate	 model	 structure	 was	 identified	 using	 likelihood	 ratio	 testing.	 Treatments	 that	

caused	significantly	different	responses	 (vars)	could	then	be	 identified.	For	treatments	group	

that	 differed	 significantly,	 the	 probable	 distribution	 of	 the	 three	 response	 variables	 was	

characterized	by	performing	discriminant	analysis	using	Gaussian	finite	mixture	modelling.	

	

Results	

PARAMETER	ESTIMATION	

The	dynamical	 state	 space	 functional	 response	analysis	allowed	changes	 in	prey	abundances	

driven	by	population	growth	to	be	clearly	distinguished	from	changes	driven	by	consumption	

by	 the	 predator	 (Fig.3.1).	 This	 is	 evident	 from	 the	 weak	 correlation	 in	 the	 values	 of	 the	

posterior	samples	between	model	parameters.	Our	approach	also	provided	precise	estimates	

of	the	rate	of	growth	and	consumption.	For	example,	in	the	analysis	of	the	first	replicate	in	the	

naive	to	predation	treatment	group,	 the	high	probability	density	 interval	 for	 the	growth	rate	

parameter	indicates	that	the	generation	time	of	Colpidium	could	be	identified	to	be	between	

12.7	and	14	hours.	With	similar	precision,	the	attack	rate	of	a	predator	that	is	not	satiated	by	

prey,	could	be	identified	to	be	between	16.7	and	19%	of	the	prey	per	day.	
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Figure	3.1)	Model	inferences	of	the	dynamical	state-space	functional	response	analysis.	Results	obtained	
when	the	analysis	is	applied	to	the	growth	rate	and	predation	assay	data	set	for	the	first	replicate	in	the	
naive	to	predation	treatment	group.	Bayesian	posterior	distributions	of	the	growth	rate	(r)	of	Colpidium,	
and	the	attack	rate	(a)	and	handling	time	(h)	of	its	predator	Stentor.	The	marginal	probability	density	of	
each	parameter	estimate	are	shown	on	the	diagonal	panels.	The	lower	off-diagonal	panels	use	contour	
plots	 to	 display	 the	 bivariate	 probability	 density	 of	 pairs	 of	 parameters	 to	 show	 the	weakness	 of	 the	
correlation	between	estimates	(correlation	values	are	shown	in	the	upper	off-diagonals).	

	

INFERRING	THE	GROWTH-DEFENCE	TRADE-OFF	

We	evaluated	whether	 extended	exposure	 to	 predation	 caused	 changes	 in	 prey	 growth	 and	

consumption	 by	 predators.	 These	 rates	 were	 compared	 between	 populations	 exposed	 to	

predation	 and	 those	 naive	 to	 predation.	 Populations	 that	 had	 been	 exposed	 to	 predation	

exhibited	significantly	different	ecological	 rates	compared	to	 	populations	that	were	naive	to	

predation	(Fig.3.2).	Vulnerability	to	predation	was	reduced,	through	a	reduction	in	attack	rate	

(t=4.0,	d.f.=30,	p<0.001)	and	increase	in	per	capita	handling	time	(t=2.8,	d.f.=30,	p<0.001).	As		

theoretically	predicted,	this	defence	was	associated	with	a	reduction	in	population	growth	rate	

(t=-4.7,	 d.f.=30,	 p<0.001).	 	 Populations	 that	 experienced	 predation	 in	 the	 past	 but	 had	 not	

been	exposed	recently,	due	to	predator	extinction,	no	 longer	showed	this	defence.	They	had	

attack	rates	and	handling	 times	that	were	not	significantly	different	 from	naive	prey	 (	attack	



56	
	

	
	

rate:	 t=-1.6,	d.f.=30,	p=0.27;	handling	 time:	 t=0.28,	d.f.=30,	p=0.78).	When	defence	was	 lost,	

the	 growth	 rate	 returned	 to	 the	 higher	 level	 found	 in	 the	 naive	 populations;	 causing	 no	

significant	difference	in	growth	between	these	groups	(	t=-0.4,	d.f.=30,	p=0.96).	

	

	

Figure	 3.2)	 The	 growth	 defence	 trade-off	 identified	 by	 examining	 the	 growth	 and	 predation	 rates	 of	
populations	with	differing	histories	of	predation.	Growth	rate	was	related	to	the	level	of	prey	defence	in	
population	 naive	 to	 predation,	 exposed	 to	 predation	 or	 previously	 exposed	 to	 predation,	 but	 with	 a	
recent	history	in	isolation.	Defence	was	quantified	based	on:	A)	the	estimated	inverse	of	the	attack	rate,	
which	measures	 the	 time	 required	 for	 a	 successful	 prey	 capture	 and	 B)	 the	 estimated	 handling	 time	
required	for	a	predator	to	process	a	captured	prey	 individual.	The	difference	of	the	ecological	rates	 in	
the	exposed	populations	was	 identified	using	multivariate	regression.	The	ellipses	show	the	regions	 in	
the	growth-defence	space	 in	which	the	exposed	populations	occur	 (dotted	 line)	and	the	region	where	
the	 naïve	 and	 previously	 exposed	 groups	 are	 found	 (solid	 line).	 The	 regions	 were	 identified	 using	
discriminant	analysis.	

	

Discussion	

We	developed	a	novel	method	for	quantifying	the	impacts	of	exposure	to	predation	on	the	key	

ecological	 rates	of	 prey	population	 growth	 and	predator	 consumption.	 This	method	allowed	

data	 from	 prey	 growth	 trials	 and	 predator	 feeding	 trials	 to	 be	 combined.	 	 By	 incorporating	

greater	 biological	 detail	 into	 functional	 response	 analyses,	 our	 method	 allowed	 changes	 in	

species	abundances	caused	by	population	growth	to	be	distinguished	from	decreases	caused	

by	predation.	The	technique	was	used	to	analyse	prey	growth	and	predation	feeding	trial	data	

from	 experiments	 conducted	 using	 replicate	 microbial	 prey	 populations.	 Populations	 came	

from	three	treatment	groups	which	beforehand	were	either:	1)	naive	to	predation,	2)	exposed	
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to	 predation	 or	 c)	 previously	 exposed	 to	 predation.	 By	 comparing	 the	 rates	 of	 growth	 and	

predation	between	populations	in	these	groups,	we	revealed	a	trade-off	between	growth	and	

defence.	 Prey	 exposed	 to	 predation	 displayed	 a	 reduced	 vulnerability	 to	 predation	 (lower	

attack	rate	and	higher	handling	time),	at	the	cost	of	reduced	resource	allocation	to	population	

growth.	This	costly	defence	was	 lost	when	the	predator	was	absent	once	more,	with	growth	

and	defence	returning	back	to	the	levels	found	in	naive	populations.		

Evaluation	of	the	inferred	functional	response	curves,	reveals	that	over	the	observed	range	of	

prey	densities,	changes	in	both	attack	rate	and	handling	time	contributed	to	the	difference	in	

predation	 between	 defended	 and	 undefended	 populations	 (Fig.3.3).	 	 Similar	 changes	 in	

defence	have	been	identified	between	populations	that	are	naive	and	exposed	to	predation,	in	

other	protist	predator-prey	systems	(Altwegg	et	al.	2006;	Hammill	et	al.	2010).	 In	agreement	

with	 our	 results,	 both	 studies	 identify	 changes	 in	 the	 attack	 rate	 and	 handling	 time.	 This	

indicates	 that	multiple	 defence	mechanisms	may	 be	 operating,	 as	modified	 attack	 rates	 are	

driven	by	changes	in	the	catchability	of	prey	whereas	modified	handling	time	suggests	altered	

digestibility.	 There	 is	 evidence	 in	 the	 literature	 of	 predation	 driven	 changes	 in	morphology,	

behaviours	 and	 chemical	 composition	 in	 similar	 protist	 species	 (Kusch	 1993;	 Hammill	 et	 al.	

2010;	 Roberts	 et	 al.	 2011).	 Generally,	 further	 research	 is	 needed	 to	 elucidate	 these	

mechanisms.	 Previous	 studies	 investigating	 inducible	 protist	 defence	 have	 not	 assessed	 the	

concurrent	changes	 in	prey	growth	rates	and	therefore	do	not	allow	evaluation	of	 trade-offs	

between	growth	and	defence.	

	

Figure	 3.3)	 Evaluation	of	 the	 estimated	density	 dependent	 rate	of	 prey	 consumption	by	 the	predator	
when	prey	are	previously	naive	or	exposed	 to	predation.	Functional	 responses	curves	predicted	using	
the	 average	point	 estimate	of	 attack	 rate	 and	handling	 time	 for	 each	 treatment.	 Prey	density	 (x-axis)	
spans	the	range	of	densities	observed.	
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Combining	experimental	assays	and	statistical	analyses	to	understand	the	ecological	costs	and	

benefits	of	defence	is	a	key	tool	for	identifying	whether	dynamics	are	likely	to	be	influenced	by	

changes	 in	 defence.	 The	 use	 of	 our	 innovative	 dynamic	 state	 space	 functional	 response	

analysis	 has	 several	 advantages	 over	 a	 conventional	 functional	 response	 analysis.	 These	

benefits	largely	result	from	the	improved	biological	realism	that	is	incorporated	into	the	state	

space	approach	and	the	fact	that	the	models	explicitly	describe	changes	in	abundance	through	

time,	 rather	 than	 simply	 fitting	 nonlinear	 curves	 to	 observed	 changes	 in	 abundances.	 An	

important	benefit,	 resulting	 from	the	dynamic	modelling,	 is	 that	estimates	are	not	biased	by	

the	depletion	of	available	prey	to	very	low	levels.	Using	the	typical	static	functional	response	

approach	 of	 fitting	 a	 type	 of	 parametric	 functional	 response	 curve	 to	 changes	 in	 prey	

abundance	does	not	allow	for	prey	depletion	(Vonesh	&	Bolker	2005).	This	makes	the	method	

only	suitable	for	modelling	predation	studies	where	prey	are	replenished	or	are	too	numerous	

to	overexploit	(Bolker	2005).	Using	dynamic	models	instead	is	known	to	be	a	suitable	approach	

to	 account	 for	 resource	 depletion,	 because	 the	 approach	 towards	 prey	 extinction	 can	 be	

modelled	directly.	For	example,	the	Rogers	random-predator	equation	is	a	dynamic	equivalent	

to	fitting	a	type	2	functional	response	but	accounts	for	prey	depletion	(Rogers	1972;	Juliano	&	

Williams	1987).		

We	extend	the	dynamics	modelling	approach	in	several	ways.	Firstly,	by	modelling	the	growth	

of	 the	 prey	 concurrently	 with	 its	 consumption	 by	 predators	 we	 were	 able	 to	 combine	

information	 from	 replicate	 trials	 and	 multiple	 sources	 of	 information.	 This	 approach	 was	

permitted	by	using	the	state	space	framework	along	with	Bayesian	estimation	procedures.	This	

meant	 that	 we	 were	 able	 to	 use	 stochastic	 dynamic	 models	 to	 account	 for	 chance	

demographic	 changes	 in	 population	 abundance,	 caused	 by	 random	 variation	 in	 births	 and	

deaths.	 Closed	 form	 solutions	 to	 the	 transition	 likelihood	 function	 of	 such	 models	 are	 not	

usually	known,	causing	it	to	be	very	difficult	to	parameterize	them	without	using	estimation	of	

the	likelihood	through	simulation	(Clark	&	Bjørnstad	2004;	King	2012).	Furthermore,	the	state	

space	approach	separately	models	the	biological	process	and	the	sampling	procedure,	allowing	

variable	and	complex	sampling	efforts	to	be	easily	accounted	for.	As	a	result,	rare	individuals	

could	be	searched	for	more	thoroughly	for	and	this	effort	 incorporated	into	the	model.	Non-

Gaussian	 error	 distributions	 and	 discrete	 individual	 abundances	 are	 also	 accounted	 for	

(Newman	et	al.	2006).	

Due	to	 the	 flexibility	of	 the	state	space	approach,	extra	biological	 realism	can	be	 included	 in	

the	 analysis,	 by	 modifying	 the	 part	 of	 the	 model	 simulating	 the	 biological	 process	 or	 the	
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sampling	procedure.	Given	that	the	system	can	be	simulated,	the	likelihood	of	a	parameter	set	

can	 be	 estimated.	 Therefore,	 the	 approach	 is	 generalizable	 to	 systems	 with	 predator	

interference,	multiple	predator,	or	a	few	competing	prey	species.		

The	methodology	developed	in	this	study	allowed	us	to	identify	predator	induced	defences	in	

prey	populations	and	the	presence	of	a	theoretically	predicted	trade-off	between	growth	and	

defence.	 This	 trade-off	 is	 expected	 to	 drive	 temporal	 variation	 in	 species	 growth	 and	

consumption	 rates	 and	 permit	 complex	 dynamical	 behaviours	 to	 occur	 (Abrams	et	 al.	 1993;	

Tien	&	Ellner	2012;	Kasada	et	al.	2014;	Koch	et	al.	2014).	Investigation	of	the	trait	dependence	

of	species	interactions	would	allow	greater	understanding	of	the	growth	defence	trade-off	and	

the	 long-term	 population	 dynamics	 of	 this	 system.	 Our	 findings	 indicate	 that,	 ecological	

interpretations	population	dynamics	may	be	 challenging,	without	 considering	 the	 impacts	of	

defensive	 traits	on	 the	ecological	 rates	of	population	growth	and	 consumption.	 Future	work	

should	 concurrently	 study	 the	 dynamics	 of	 species	 traits	 as	 well	 as	 abundance	 in	 order	 to	

permit	 an	 understanding	 of	 the	 feedbacks	 between	 these	 components	 and	 their	 linked	

dynamics.		
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Appendices	

Appendix.1)	 Time	 series	 analysis	 of	 predator-prey	 abundances	 reveals	 evidence	 of	 trait	

dependent	predation	and	community	dynamics		

“Ecological	 predictability”	 refers	 to	 the	 idea	 that	 changes	 in	 species’	 abundances	 can	 be	

predicted	 from	 knowledge	 of	 densities	 of	 other	 species.	 This	 is	 the	 basis	 of	 much	 classical	

ecological	theory	and	underpins	many	contemporary	efforts	to	develop	predictive	theories	of	

ecology.	 However,	 recent	 theoretical	 and	 empirical	 work	 have	 emphasized	 that	 both	 rapid	

evolution	and	trait	change	driven	by	phenotypic	plasticity	will	reduce	ecological	predictability	

because	variation	in	species’	abundance	and	traits	determine	ecological	dynamics	(Thompson	

1998;	Agrawal	2001;	Yoshida	et	al.	2003;	Yoshida	 et	al.	2007a;	Fussmann	et	al.	2003;	Cortez	

2011).	It	is	now	widely	accepted	that	trait	change,	driven	by	evolution	or	plasticity,	is	common	

and	often	occurs	over	similar	time-scales	to	ecological	changes	in	species	abundance	(Hairston	

et	al.	2005;	Pelletier	et	al.	2007;	Berg	&	Ellers	2010;	Schoener	2011;	Ellner	et	al.	2011;	Travis	et	

al.	2014).	

Trait	 changes	 influencing	behaviour	 and	morphology	 alter	 individual	 performance	and	 cause	

key	ecological	rates	such	as	consumption,	growth,	birth,	and	death	to	vary	over	time	(Bolker	et	

al.	 2003;	 Preisser	 et	 al.	 2005;	 Pelletier	 et	 al.	 2007;	 Harmon	 et	 al.	 2009;	 Bassar	 et	 al.	 2010;	

terHorst	et	al.	2010;	Turcotte	et	al.	2011).	When	the	strength	or	direction	of	trait	change	is	in	

turn	modified	by	the	resulting	change	in	ecological	conditions,	a	feedback	loop	between	trait	

dependent	 demography	 and	 density	 dependent	 trait	 evolution	 is	 produced	 (Yoshida	 et	 al.	

2003;	 Yoshida	 et	 al.	 2007;	 Pelletier	 et	 al.	 2007;	 Becks	 et	 al.	 2010,	 2012;	 Schoener	 2011;	
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Agrawal	 et	 al.	 2013).	 The	 feedback	 between	 ecological	 and	 trait	 dynamics	 permits	 a	 wide	

range	 of	 community	 dynamics	 that	 would	 not	 be	 expected	 from	 purely	 ecological	 theories,	

based	on	species	abundances	(Abrams	&	Matsuda	1997;	Jones	&	Ellner	2007;	Palkovacs	et	al.	

2009;	Pelletier	et	al.		2009;	Jones	et	al.	2009;	Berg	&	Ellers	2010;	Kishida	et	al.	2010;	Ellner	&	

Becks	2010;	Mougi	2012a;	b;	Cortez	&	Weitz	2014;	Hiltunen	et	al.	2014a).		

A	well-known	 consequence	 of	 trait	 dependent	 predation,	 driven	 specifically	 by	 evolution,	 is	

the	 modification	 of	 predator-prey	 cycles	 from	 classical	 ¼-period	 lagged	 oscillations	 to	 anti-

phase	 cycles	 (Abrams	 &	 Matsuda	 1997;	 Cortez	 2011;	 Mougi	 2012a;	 Cortez	 &	 Weitz	 2014;	

Hiltunen	 et	 al.	 2014b).	 Dynamic	 behaviours	 such	 as	 this,	 where	 trajectories	 can	 differ	 over	

time,	 despite	 having	 equal	 states	 of	 abundance,	 are	 not	 possible	 in	 unstructured	 ecological	

models	 (but	 see	 de	 Roos	 &	 Persson	 2003	 for	 an	 alternate	 mechanism	 based	 on	 predator	

maturation	delays).	Such	“eco-evolutionary”	signatures	have	recently	been	identified	in	many	

previously	published	experimental	systems	(Hiltunen	et	al.	2014b),	although	the	mechanisms	

generating	 them	were	not	usually	explored	at	 the	 time	 (Ellner	&	Becks	2010;	Hiltunen	et	al.	

2014a).		

In	 such	 anti-	 phase	 cycles,	 the	maximum	predator	 abundance	 coincides	with	minimum	prey	

abundance.	This	shift	from	¼-period	lagged	to	antiphase	cycles	can	be	identified	when	plotting	

predator	vs.	prey	abundance	over	the	course	of	the	time	series.	In	this	phase	plane	view,	the	

expected	 eco-evolutionary	 signature	 is	 a	 transition	 from	 an	 elliptical	 phase	 plane	 trajectory	

(produced	 by	 standard	 predator–prey	 models	 without	 prey	 evolution)	 to	 a	 pattern	

approaching	a	line	with	negative	slope	(indicating	that	prey	abundance	is	 inversely	related	to	

predator	 number).	 By	 analysing	 changes	 in	 the	 elliptical-ness	 of	 this	 phase	 plane	 over	 the	

experiment,	 statistical	 method	 can	 be	 used	 to	 probe	 for	 a	 transition	 from	 classic	 to	 eco-

evolutionary	cycles.	Here	we	apply	this	statistical	 time	series	analysis,	developed	by	Hiltunen	

et	al.	 (2014a),	 to	probe	predator-prey	datasets	 for	 evidence	of	 a	 transition	 from	classical	¼-

period	 lag	 consumer-resource	 dynamics	 to	 anti-phase	 “eco-evolutionary”	 dynamics.	 The	

presence	of	such	a	signature	would	suggest	that	population	trajectories	are	not	governed	by	

purely	density	dependent	processes	that	are	constant	over	time.		

	

Materials	and	methods	

EMPIRICAL	MICROCOSM	SYSTEM	

STUDY	ORGANISMS,	CULTURING	&	ESTABLISHING	THE	PREDATOR-PREY	SYSTEM	
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We	 examined	 the	 population	 dynamics	 of	 an	 experimental	 predator-prey	 system	 containing	

two	protist	 species;	 the	predator	Stentor	 coeruleus	 (Ehrenburg	1830)	 and	 its	 prey	Colpidium	

striatum	 (Stokes	 1886).	 Experimental	 microcosms	 consisted	 of	 aluminium	 foil	 capped	 glass	

dishes	 containing	 50ml	 Chalkley’s	 solution	 (Thompson	 et	 al.	 1988)	 and	 0.7gL-1	 of	 crushed	

protozoan	 pellets	 (Carolina	 Biological	 Supply,	 USA).	 	 All	 microcosms,	 and	 media,	 were	

autoclaved	before	use	and	kept	in	controlled	temperature	chambers	at	200C.	Two	days	prior	to	

the	 initiation	of	 the	experiment,	 the	medium	was	 inoculated	with	a	 known	bacterial	 species	

(Serratia	marcescens).	 This	 allowed	 the	 establishment	 of	 a	 resource	 base	 for	Colpidium,	 the	

bactiverous	prey.	On	day	zero,	five	replicates	were	initiated	with	100	Colpidium,	which	were	all	

obtained	from	2	week	old	stock	cultures,	standardizing	any	influences	of	individual	quality	and	

thus	 growth	 rates	 (Price	 &	Morin	 2004;	 Olito	 &	 Fukami	 2009).	 	 The	 microcosms	 were	 first	

invaded	with	 25	 individuals	 of	 the	 predator	 Stentor	on	day	 12.	 They	 also	 received	 a	 second	

equal	 invasion	 2	 days	 later,	 reducing	 the	 impacts	 of	 demographic	 stochasticity	 on	 the	 initial	

population	trajectories	and	preventing	chance	predator	extinctions.		

	

SAMPLING	

For	all	 replicates,	we	sampled	species	densities	daily	during	the	prey	growth	phase,	until	 the	

predator	 invasion	(day	12).	After	this,	sampling	was	done	every	third	day	for	the	duration	of	

the	experiment.	In	order	to	obtain	reliable	estimates	of	species	densities,	sampling	effort	was	

modified	 between	 species	 and	 over	 time,	 reflecting	 changing	 densities	 (approx.	 3-5ml	 for	

predators	and	0.1ml	for	prey).	Prior	to	sampling,	the	medium	was	agitated.	Medium	was	then	

transferred	 (with	 replacement)	 to	 a	 sterile	 petri	 dish	 and	 protists	 were	 counted	 under	 a	

stereoscopic	microscope	(surveyed	at	7.5	-	30	x	magnification).	All	microcosms	were	sampled	

62	times	over	175	days.	

	

ANALYSIS	-	INFERENCE	TECHNIQUES	

QUANTIFYING	PHASE-SHIFTS	AWAY	FROM	CLASSICAL	P-P	CYCLES	

Predator-prey	 replicates	were	analysed	 to	detect	 signatures	of	eco-evolutionary	dynamics.	A	

transition	from	classical	¼-period	lagged	predator–prey	cycles	to	out	of	phase	eco-evolutionary	

dynamics	 over	 the	 course	 of	 our	 experimental	 time	 series	 can	 be	 identified	 in	 phase-plane	

plots	 of	 predator	 versus	 prey	 abundance.	 In	 this	 phase-plane	 view,	 the	 expected	 eco-
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evolutionary	 signature	 is	 a	 transition	 from	 an	 elliptical	 phase-plane	 trajectory	 (produced	 by	

standard	predator–prey	models	without	prey	evolution)	to	a	pattern	approaching	a	line	with	a	

negative	slope	(indicating	that	prey	abundance	is	inversely	related	to	predator	number).		

Following	the	methodology	of	Hiltunen	et	al.	(2014a),	changes	in	the	predator-prey	phase	lag	

over	the	time	series	can	be	quantified	by	defining	an	Evolutionary	Dynamics	Index	(EDI)	which	

evaluates	the	elliptical-ness	of	the	phase	trajectory	over	successive	windows	of	the	data.	The	

EDI	 is	 calculated	 by	 measuring	 the	 orbits	 inverse	 eccentricity	 (the	 ratio	 between	 the	

orthogonal	 short	and	 long	axes	of	an	ellipse)	over	moving	windows	of	 the	data.	 The	 inverse	

eccentricity	 is	 a	 measure	 of	 the	 circularity	 of	 an	 ellipse,	 with	 bounds	 of	 0	 and	 1	 signifying	

parabolic	 and	 circular	 orbits	 respectively.	 Reductions	 in	 inverse	 eccentricity	 measures	 over	

successive	windows	 of	 the	 time	 series	 generates	 a	 negative	 EDI,	 indicating	 a	 transition	 to	 a	

more	linear	phase-plane	and	therefore	anti-phase	dynamics.	

When	 calculating	 the	 EDI,	 phase-plane	 trajectories	 are	 first	 estimated	 by	 applying	 a	 spline	

smoother	 to	 log-transformed	 abundance	 data	 for	 each	 population	 (smoothing	 parameter	

chosen	 by	 ordinary	 cross-validation).	 Smoothed	 phase-plane	 trajectories	 were	 then	

constructed	 by	 evaluating	 the	 fitted	 spline	 at	 100	 equally	 spaced	 time	 points	 and	 were	

rescaled	to	have	standard	deviation	1.The	 inverse	eccentricity	of	smoothed	trajectories	were	

then	 analysed	 for	moving	windows,	 each	 containing	 50	 interpolated	 points	 (more	 than	 one	

complete	 predator	 prey	 oscillation),	 using	 a	 principal	 components	 analysis.	 The	 change	 in	

inverse	eccentricity	across	windows	was	characterized	by	fitting	a	suite	of	nonlinear	regression	

models	 (Linear,	 exponential,	 hyperbolic	 and	 translated	 hyperbolic)	 and	 using	 model	

comparison	 based	 upon	 AIC	 scores	 to	 select	 a	 best	 fitting	 model.	 Finally,	 the	 EDI	 values	 is	

calculated	 by	 multiplying	 the	 estimated	 initial	 slope	 of	 the	 fitted	 nonlinear	 model	 by	 the	

difference	in	the	first	and	last	inverse	eccentricity	estimates.		

The	statistical	significance	of	phase	transitions	from	clasical	to	antiphase	cycles	(negative	EDI)	

were	 estimated	 using	 a	 residual	 bootstrap	 approach.	 To	 implement	 this,	 bias-corrected	

residuals	 were	 resampled	 and	 added	 to	 the	 fitted	 values.	 The	 EDI	 calculation	 procedure	

(described	above)	was	then	applied	to	the	resulting	bootstrap	data	set.	For	each	replicate,	this	

was	repeated	5000	times.	Due	to	the	clear	nonlinearity	of	trends,	significance	was	additionally	

tested	 based	 on	 non-parametric	 correlation	 (Kendall’s	 tau)	 between	 window	 number	 and	

inverse	eccentricity.	For	each	method,	the	EDI	of	the	observed	data	set	was	then	judged	to	be	

significant	at	the	5%	level	if	95%	or	more	of	the	bootstrap	EDI	values	or	resampled	tau	values	
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were	 less	than	zero.	The	qualitative	results	of	the	tests	were	similar	although	the	parametric	

approach	consistently	gave	more	conservative	probability	estimates.	

	

Results	&	Discussion	

QUANTIFYING	PHASE-SHIFTS	AWAY	FROM	CLASSICAL	P-P	CYCLES	

Analysis	 of	 predator-prey	 time	 series	 revealed	 a	 consistent	 transition	 from	 classic	 predator–

prey	 cycles	 to	 anti-phase	 cycles,	 characteristic	 of	 eco-evolutionary	 dynamics	 (Fig.3.S1).	 A	

transition	 to	 anti-phase	 dynamics	 can	 be	 seen	 as	 a	 transition	 from	 an	 elliptical	 phase	 plane	

trajectory	 (produced	 by	 standard	 predator–prey	 cycles	without	 prey	 evolution)	 to	 a	 pattern	

approaching	a	 line	with	negative	slope.	The	transition	from	an	elliptical	phase	trajectory	to	a	

linear	 phase	 trajectory	 (indicative	 of	 eco-evolutionary	 dynamics)	 was	 quantified	 using	 the	

eccentricity	analysis	(see	materials	and	methods	&	Fig.3.S1).		

	

Figure	3.S1)	Transition	from	classic	¼	lagged	predator–prey	cycles	to	anti-phase	cycles	characteristic	of	
eco-evolutionary	dynamics.	Subpanels	 show	the	main	steps	 in	quantifying	 the	 transition	 to	anti-phase	
cycles:	 (i)	 Raw	 experimental	 predator-prey	 population	 abundances	were	 smoothed	 using	 a	 piecewise	
polynomial	 model.	 Here	 we	 show	 a	 representative	 replicate	 showing	 abundances	 of	 predators	 (red	
points)	 and	 prey	 (green	 points).	 Smoothed	 predator	 and	 prey	 dynamics	 are	 displayed	 using	 coloured	
lines.	 	 Time	 is	 rescaled	 so	 that	 the	 time	 range	 of	 the	 experiment	 is	 between	 zero	 and	 one.	 (ii)	 At	
equidistant	times	the	abundance	of	predators	 is	plotted	against	the	number	of	prey	(darkening	colour	
indicates	movement	forwards	in	time).	In	this	phase	plane,	a	pattern	of	points	approximating	a	line	with	
negative	slope	shows	antiphase	dynamics.	 (iii)	The	phase	of	the	dynamics	 is	measured	for	windows	of	
the	time	series.	The	lower	the	elliptical-ness	of	the	trajectories	the	more	anti-phase	the	dynamics.	This,	
is	measured	 based	 on	 the	 ratio	 of	 the	 trajectories	 eigenvalues	 (individual	 points).	 The	 change	 in	 the	
elliptical-ness	(phase	of	dynamics)	over	time	is	captured	using	an	exponential	decay	model	(solid	line).	
The	rate	of	this	decline	is	the	evolutionary	dynamic	index	(EDI).	A	statistically	significant	negative	slope	
indicates	a	transition	to	antiphase	dynamics.	

	

	



66	
	

	
	

Over	 successive	 windows	 of	 time,	 all	 five	 predator-prey	 time	 series	 showed	 a	 significant	

transition	 in	 the	phase	of	predator	and	prey	oscillations	 (Supplement.1).	All	 replicates	had	a	

negative	 evolutionary	 dynamic	 index	 (EDI)	 indicating	 a	 transition	 from	 limit	 cycles	 towards	

anti-phase	dynamics	 (Table.3.S1;	 combing	 replicates,	 p<0.001).	 This	 pattern	 is	 thought	 to	be	

diagnostic	 of	 the	 appearance	 of	 prey	 traits	 that	 confer	 reduced	 vulnerability	 to	 predation	

(Abrams	&	Matsuda	1997;	Becks	et	al.	2010).	

Our	findings	suggest	that	the	population	dynamics	of	this	predator-prey	systems	dynamics	are	

not	 purely	 driven	 by	 density	 dependent	 processes.	 The	 nature	 of	 the	 observed	 changes	 in	

phase	 are	 consistent	with	 the	 predictions	 of	 theoretical	models	 in	which	 prey	 evolve	 costly	

defences	 in	 response	 to	high	predator	 abundance	 (Abrams	&	Matsuda	1997;	Mougi	 2012a).	

One	 mechanism	 generating	 antiphase	 consumer–resource	 cycling	 is	 rapid	 contemporary	

evolution	of	either	prey	defence	or	competitive	ability	as	predator	densities	oscillate	(Abrams	

&	Matsuda	1997;	Yoshida	et	al.	2003;	Jones	&	Ellner	2007;	Becks	et	al.	2012).	Under	this	eco-

evolutionary	model,	 there	 is	 selection	 for	 prey	 defence,	when	predators	 are	 numerous.	 The	

resulting	increase	in	the	frequency	of	defended	individuals	then	causes	a	decrease	in	predator	

abundance,	 even	 though	 defended	 prey	 are	 abundant.	 However,	 the	 costliness	 of	 defence	

produces	 a	 competitive	 advantage	 for	 undefended	 genotypes	when	prey	 are	 numerous	 and	

predators	 are	 rare.	 This	 then	 drives	 selection	 for	 less	 defended	 prey,	 allowing	 predators	 to	

increase	once	more.	

Table	3.S1)	Quantification	of	the	transition	to	anti-phase	dynamics	from	an	inverse	eccentricity	analysis	
(Hiltunen	et	al.2014a).	For	each	replicate,	the	changes	in	predator-prey	phase	lag	over	time	was	defined	
as	the	initial	rate	of	change	in	inverse	eccentricity	(trajectories	eigenvalue	ratio)	over	time	and	gave	an	
Evolutionary	 Dynamics	 Index	 (EDI;	 see	 Hiltunen	 et	 al.2014a),	 based	 on	 the	 slope	 of	 a	 non-linear	
regression	model.	A	significant	negative	EDI	(slope)	indicates	a	transition	towards	anti-phase	dynamics.	
Significance	 of	 EDI	 was	 assessed	 parametrically	 using	 a	 residual	 bootstrap	 significance	 test	 and	 non-
parametrically	using	a	Kendall’s	tau	correlation	test.	

Replicate	
	 Evolutionary	Dynamics		

Index	

Residual	Bootstrap		

significance	test	

Kendall’s	tau		

significance	test	

1	 	 -604	 0.0001	 0.0001	

2	 	 -381	 0.0734	 0.0322	

3	 	 -273	 0.0058	 0.0014	

4	 	 -361	 0.0438	 0.0232	

5	 	 -218	 0.0145	 0.0212	
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Our	results	contribute	to	the	increasing	evidence	suggesting	that	temporal	changes	in	traits	of	

individuals	in	the	population	drive	changes	in	demographic	rate	over	time.	Contemporary	work	

indicates	 that	 the	 trait	 dependencies	 of	 demographic	 rates	 has	 important	 impacts	 on	

population	 dynamics.	 The	 “ecological	 predictability”	 of	 many	 population	 dynamics	 may	 be	

greatly	improved	by	combining	observations	of	abundance	with	trait	and	genetic	information	

when	making	 inferences.	 It	has	 long	been	realized	that	 individuals	within	a	population	differ.	

They	can	have	multiple	 life	history	stages	and	sexes	(Coulson	et	al.	2001;	Cameron	&	Benton	

2004;	de	Roos	et	al.	2008),	exhibit	inducible	phenotypic	variation	to	environmental	conditions	

(Tollrian	&	Harvell	1999)	and	evolve	in	response	to	selection	pressures	(Grant	&	Grant	2002).	

Future	work	 should	be	 focused	on	understanding	 the	 role	 of	 trait	 change	 in	 population	 and	

community	dynamics,	by	unifying	ecological	and	evolutionary	theories.		
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Supplement	1:	Phase	transition	analysis	results	for	each	replicate	

Summary	 plots	 of	 the	 eccentricity	 analysis	 applied	 to	 each	 replicate	 individually	 are	 shown	
below	 (Fig.3.S2).	 There	 is	 consistency	 across	 replicates.	 Between	 replicates,	 smoothed	
predator-prey	 datasets	 look	 qualitatively	 similar	 and	 phase	 plane	 dynamics	 show	 similar	
patterns.	 The	 form	 and	 rate	 of	 change	 in	 phase	 is	 also	 consistent	 between	 replicates.	 In	 all	
cases,	the	phase	shifts	rapidly	towards	antiphase	dynamics	and	the	rate	of	change	then	slows	
as	populations	remain	in	this	out	of	phase	state.	

A) 	 B) 	
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C)	 	 D) 	

E)	 	

Figure	3.S2)	Identifying	a	transition	from	classic	predator–prey	cycles	to	anti-phase	cycles	characteristic	
of	 eco-evolutionary	 dynamics	 in	 the	 five	 predator-prey	 replicates.	 For	 each	 of	 the	 five	 replicate	
predator-prey	 populations,	 an	 inverse	 eccentricity	 analysis	was	 performed	 (see	Hiltunen	 et	 al.	 2014).	
The	four	main	steps	of	the	leading	to	the	inverse	eccentricity	analysis	are	summarised	for	each	replicate:	
a)	 Original	 time	 series	 data	 of	 predator	 and	 prey	 density	 are	 log	 transformed	 and	 plotted	 against	
standardized	 time	 (black	 part	 omitted	 from	 analysis),	 b)	 Time	 series	 are	 smoothed	 using	 penalized	
splines,	 c)	 Smoothed	 predator-prey	 densities	 are	 plotted	 in	 phase	 plane	 with	 darkening	 of	 colour	
indicating	movement	forwards	in	time.	A	transition	to	out	of	phase	dynamics	can	be	seen	as	a	transition	
from	 an	 elliptical	 phase	 plane	 trajectory	 (produced	 by	 standard	 predator–prey	 cycles	 without	 prey	
evolution)	to	a	pattern	approaching	a	line	with	negative	slope.	d)	This	change	in	phase	plane	trajectory	
is	quantified	as	 the	decrease	 in	 inverse	eccentricity	 (the	 ratio	between	 the	orthogonal	 long	and	short	
axes	 of	 an	 ellipse).	 This	 is	measured	 over	 a	moving	window	of	 the	 smoothed	 data	 as	 the	 eigenvalue	
ratios	 (circles)	 of	 a	 principal	 components	 analysis.	 The	 solid	 blue	 curves	 show	 the	 fitted	 nonlinear	
regression	of	eigenvalue	ratio	over	the	windows	of	data.	Linear,	exponential,	hyperbolic	and	translated	
hyperbolic	model	were	fitted	and	model	comparison	was	made	based	on	AIC	scores.	
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Appendix.2)	Constructing	the	stochastic	dynamic	functional	response	model		

Utilizing	 the	 state	 space	 framework,	 continuous	 time	 Rosenzweig-MacArthur	 stochastic	

predator-prey	 models	 were	 formulated	 and	 parameterized.	 During	 the	 simulation	 of	 the	

stochastic	differential	 equations,	 the	Euler	 approximation	was	used.	At	each	Euler	 time	 step	

(dt),	the	population	rate	of	change	was	calculated	and	used	to	forecast	the	expected	change	in	

abundance	 by	 the	 next	 time	 step.	 Process	 variation	was	 then	 added	 to	 the	 one	 step	 ahead	

prediction	of	abundance,	by	allowing	the	simulated	abundance	at		t+dt	to	be	sampled	from	a	

normal	 distribution	 with	 a	 mean	 equal	 to	 the	 expected	 value	 and	 a	 standard	 deviation	

determined	by	a	demographic	stochasticity	parameter.	

Given	 a	 time	 series	 of	observations,	 taken	 at	 discrete	 times,	 the	 state	 space	 model	 is	 fully	

specified	by:	

1)					X!:	The	initial	abundances	in	the	system:	

2)					𝑓 (𝑋(𝑡)|𝑋(𝑡 − 1) ;  𝜃)	 :	 The	 process	 model,	 simulating	 stochastic	 realizations	 of	 the	
hidden	 predator-prey	 interaction,	 dependent	 on	 a	 vector	 of	 unknown	 parameters	 (𝜃).This	
defines	the	conditional	transition	density:	𝑓 𝑌! 𝑌!:(!!!),𝑋!:! , 𝜃  = 𝑓 𝑌! 𝑋! , 𝜃 	.	

3)					𝑓 (𝑌(𝑡)|𝑋(𝑡) ;  𝜃)	 :	The	 measurement	 model,	 defining	 the	 observation	 process	 and	 its	
probability	 density	 function	 (𝑃(𝑌(𝑡)|𝑋(𝑡) ;  𝜃)).		Measurements	 were	 assumed	 to	 follow	 a	
Poisson	 process,	 given	 that	 microcosms	 were	 well	 mixed	 prior	 to	 a	 random	 sampling	 of	 a	
known	proportion	of	habitat.		

The	 state	 of	 the	 system	 at	t1:N	then	 contribute	 to	 the	 likelihood	 of	 the	 data: 𝑓 𝑌!:! 𝜃 =
𝑓 𝑌! 𝑌!:(!!!),  𝜃!

!!! 	.	Within	 this	 state	 space	 framework,	 we	 accounted	 for,	 non-Gaussian	
error	 distributions,	 discrete	 abundances,	 variation	 in	 sampling	 effort	 and	 the	 confounding	
sources	 of	process	 and	 observation	variation	 (Clark	&	Bjornstad	 2004,	de	Valpine	&	Hastings	
2002,	Newman	et	 al.	2008).	The	 Bayesian	 sequential	 Monte	 Carlo	 BSMC	 algorithm	 of	 Liu	 &	
West	 (2001)	 was	 utilized	 to	 perform	 parameter	 estimation,	 using	 uninformative	 priors	
covering	a	broad	range	of	biologically	reasonable	values.	
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Chapter	4:	 Linking	 trait-abundance	dynamics	 to	quantify	 feedbacks	driving	

trait	dependent	species	interactions	

Jason	I.	Griffiths,	Owen	Petchey,	Frank	Pennekamp,	Philip	H.	Warren	&	Dylan	Z.	Childs	

Abstract	

Traits	 change	 can	 cause	 significant	 temporal	 variation	 in	 key	 ecological	 rates.	 In	 turn,	 the	

modification	of	ecological	 interactions	can	simultaneously	 feedback	to	alter	the	strength	and	

direction	of	trait	change.	The	resulting	trait	dependent	vital	rates	and	ecologically	dependent	

trait	change	permits	a	wide	range	of	community	dynamics	 that	would	not	be	expected	from	

ecological	theories	purely	based	on	species	abundances.	 It	has	been	recommended	that	trait	

dynamics	should	be	directly	studied	in	parallel	with	the	dynamics	of	community	abundances,	

however	so	far	these	two	dynamic	components	remain	largely	disconnected.	

Here	 we	 investigated	 the	 role	 of	 trait	 mediated	 demography	 in	 determining	 community	

dynamics	 and	 also	 examined	 how	 ecological	 interactions	 influence	 trait	 change.	 	 Using	 an	

experimental	 microbial	 predator-prey-resource	 system,	 we	 concurrently	 monitored	 the	

dynamics	of	community	abundances	and	various	traits	at	the	individual	 level.	We	formulated	

an	empirically	derived	trait	dependent	community	model,	to	identify	key	ecologically	relevant	

traits	 and	 to	 link	 their	 dynamics	 with	 those	 of	 species	 abundances.	 By	 modelling	 the	 trait	

dependence	of	population	growth	and	species	interactions,	we	obtained	an	understanding	of	

the	growth-defence	trade-offs	that	underpin	the	temporal	variation	in	ecological	rates.		

Our	results	provide	clear	evidence	of	a	feedback	between	trait	change	and	species	dynamics.	

This	suggests	that	an	understanding	of	trait	or	community	dynamics	will	require	unification	of	

theories	of	trait	dependent	ecological	interactions	and	ecologically	dependent	trait	change.	

	

Key	 words:	 Community	 dynamics;	 Trait	 dependent	 interaction;	 Density	 dependent	 trait	

change;	 Trait-abundance	 feedbacks;	 Growth-defence	 trade-offs;	 Predator-prey	

experiment;	Generalized	additive	models	
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Introduction	

Trait	 variation	within	 species	 is	 increasingly	 recognized	 as	 having	 impacts	 on	 the	 population	

dynamics	 of	 natural	 communities	 (Berg	 &	 Ellers	 2010;	 Schoener	 2011).	 It	 can	 be	 driven	 by	

evolutionary	 selection	 pressures,	 favouring	 certain	 heritable	 traits	 in	 a	 genetically	 variable	

population	 (Thompson	 1998;	 Yoshida	 et	 al.	 2004;	 Kasada	 et	 al.	 2014)	 or	 alternatively,	 trait	

variation	 can	be	 caused	by	phenotypic	plasticity,	when	a	 single	 genotype	produces	different	

phenotypes	 under	 differing	 environments	 (Tollrian	 &	 Harvell	 1999;	 Agrawal	 2001;	 Fordyce	

2006;	Cortez	2011).	For	example	the	timing	of	life	history	events	or	the	allocation	of	resource	

to	 growth	 and	 defence	 may	 depend	 on	 the	 density	 of	 predators	 and	 resources	 or	 the	

environmental	conditions	 (Finlay	1977;	Lampert	1994;	Travis	et	al.	2014;	Riessen	2015).	Trait	

change	 can	mediate	 significant	 temporal	 variation	 in	 vital	 ecological	 rates	 such	 as	 resource	

consumption,	growth,	birth,	and	death	 (Bolker	et	al.	2003;	Preisser,	Bolnick	&	Bernard	2005;	

Pelletier	et	al.	2007;	Harmon	et	al.	2009;	Bassar	et	al.	2010;	 terHorst,	Miller	&	Levitan	2010;	

Turcotte,	 Reznick	&	Hare	 2011).	When	 the	modification	 of	 ecological	 interactions	 alters	 the	

strength	 or	 direction	 of	 trait	 change,	 a	 feedback	 loop	 is	 produced	 between	 ecological	

abundance	and	evolutionary/plasticity-driven	trait	dynamics	(Yoshida	et	al.	2003;	Yoshida	et	al.	

2007;	Pelletier	et	al.	2007;	Becks	et	al.	2010,	2012;	Schoener	2011;	Agrawal	et	al.	2013).		

Trait	dependent	vital	rates	permit	a	broad	array	of	community	dynamics	that	are	not	expected	

from	purely	ecological	theories	based	on	species	abundances	(Abrams	&	Matsuda	1997;	Jones	

&	Ellner	2007;	Palkovacs	et	al.	2009;	Pelletier,	Garant	&	Hendry	2009;	Jones	et	al.	2009;	Berg	&	

Ellers	2010;	Kishida	et	al.	2010a;	Ellner	&	Becks	2010;	Mougi	2012a;	b;	Cortez	&	Weitz	2014;	

Hiltunen	 et	 al.	 2014a).	 For	 example,	 in	 intra-guild	 predation	 systems,	 where	 a	 predator	

consumes	a	prey	and	simultaneously	competes	for	the	resource	of	the	prey,	purely	ecological	

theory	predicts	 that	peaks	of	 resource	abundance	 should	be	 followed	by	a	peak	 in	 the	prey	

and	then	in	the	predator	(“turn-taking”)	(Holt	&	Polis	1997;	Hipfner	et	al.	2013).	The	inclusion	

of	trait	mediated	variation	of	interaction	strengths	makes	possible	a	variety	of	novel	dynamical	

behaviours,	 by	 allowing	 the	 community	 to	 have	 differing	 trajectories,	 at	 different	 times,	

despite	having	equal	 states	of	 abundance	 (Ellner	&	Becks	2010;	Hiltunen	et	al.	 2014a).	 Such	

crossing	of	 trajectories	 is	not	possible	 in	unstructured	ecological	models	 (but	 see	de	Roos	&	

Persson	2003	for	an	alternate	mechanism	based	on	predator	maturation	delays).	The	dynamics	

can	 become	 increasingly	 complex	 as	 the	 number	 of	 species,	 interactions	 and	 trait	

dependencies	 increases	(Jones	et	al.	2009;	Ellner	&	Becks	2010;	Strauss	2014;	Hiltunen	et	al.	

2014a).	
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For	trait	change	to	substantially	influence	community	dynamics,	it	must	be	sufficiently	rapid	to	

influence	demographic	processes	on	an	ecological	timescale	(Thompson	1998;	Hairston	et	al.	

2005;	Ellner	et	al.	2011).	Observations	of	rapid	trait	change,	in	response	to	predation	or	other	

selection	 processes,	 are	 increasingly	 being	 reported	 (Kuhlmann	 &	 Heckmann	 1985;	 Kusch	

1993;	Relyea	&	Auld	2004;	Losos	et	al.	2004;	Boulanger	et	al.	2013).		When	rapid	trait	change	

substantially	 impacts	 ecological	 rates,	 purely	 ecological	 theories	 will	 not	 allow	 a	 full	

understanding	 of	 a	 community’s	 dynamics	 and	 may	 give	 unreliable	 predictions	 of	 future	

abundances	(Shertzer	et	al.	2002;	Schreiber	et	al.	2011;	Ellner	&	Becks	2011;	Strauss	2014).	It	

has	been	proposed	that	trait	dynamics	should	be	directly	studied	in	parallel	with	the	dynamics	

of	 species	 abundances	 (Hiltunen	 et	 al.	 2014b).	 The	 difficulty	 of	 using	 empirical	 datasets	 to	

statistically	 model	 the	 linked	 dynamics	 of	 trait	 dependent	 communities	 and	 ecological	

dependent	 trait	 change	 has	 resulted	 in	 these	 two	 dynamic	 components	 remaining	 largely	

disconnected	 (Kishida	 et	 al.	 2010b),	 despite	 the	 body	 of	 theoretical	 work	 suggesting	 the	

importance	and	interrelatedness	of	these	processes	(Abrams	&	Matsuda	1997;	Ellner	&	Becks	

2010;	Cortez	&	Weitz	2014).	

Here	 we	 investigate	 the	 role	 of	 trait	 mediated	 demography	 in	 determining	 community	

dynamics	 and	 also	 examine	 how	 ecological	 interactions	 in	 turn	 influence	 trait	 change.	 	We	

examine	whether	the	feedback	between	these	processes	can	be	understood	by	modelling	the	

trait	dependence	of	population	growth	and	species	interaction	and	the	ecological	dependence	

of	 trait	 change.	 Using	 an	 experimental	 microbial	 predator-prey	 system,	 we	 concurrently	

monitored	 the	 dynamics	 of	 community	 abundances	 and	 a	 range	 of	 traits.	We	 identified	 key	

ecologically	 relevant	 traits	 and	 linked	 their	 dynamics	 with	 those	 of	 species	 abundances,	 by	

formulating	an	empirically-derived	trait-dependent	community	model.	Finally,	the	divergence	

of	individual	traits	between	predator	exposed	and	un-exposed	populations	was	evaluated	and	

we	examined	the	selection	pressure,	acting	on	these	traits	during	a	brief	period	of	predation.	
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Methods	

EMPIRICAL	MICROCOSM	SYSTEM	

STUDY	ORGANISMS:	CULTURING	&	ESTABLISHING	THE	PREDATOR-PREY	SYSTEM	

We	studied	 the	 community	 dynamics	 of	 a	 tri-trophic	 predator-prey-resource	 system,	

consisting	 of	 a	 bacteria	 resource,	Serratia	 marcescens,	 an	 intermediate	 bactiverous	 ciliate	

Colpidium	 striatum	(Stokes	 1886;	 referred	 to	 as	 the	 prey),	 and	 a	 top	 predator,	Stentor	

coeruleus	(Ehrenburg	1830).	Stentor	populations	consume	bacteria	during	filter	feeding,	but	do	

not	 persist	 on	 a	 purely	 bacterial	 diet,	 generating	 weak	intra-guild	 predation	 (Slabodnick	 &	

Marshall	 2014).	 The	 microcosm	 experiments	 consisted	 of	petri	 dishes	 containing	

50ml	Chalkley’s	solution	(Thompson	et	al.	1988),	0.7gL-1	of	crushed	protozoan	pellets	(Carolina	

Biological	Supply,	USA)	and	3	wheat	seeds.		All	microcosms	and	media	were	autoclaved	before	

use.	 Two	 days	 prior	 to	 the	 initiation	 of	 the	 experiments,	 the	 medium	 was	 inoculated	 with	

bacteria	and	kept	at	370C,	allowing	the	establishment	of	a	resource	base.	Protist	microcosms	

were	 subsequently	maintained	 at	 200C	with	 a	16:	 8	 light-dark	 photoperiod.	 The	 positions	 of	

microcosms	 within	 controlled	 temperature	 environments	 was	 randomized	 and	 frequently	

permuted.	 Cultures	 were	 replenished	 three	 times	 a	 week	 by	 renewing	 1ml	 of	medium	 and	

replacing	any	evaporative	loss	with	distilled	water.	

	

TREATMENTS	

Microcosms	 were	 either	 assigned	 to	 a	 predator-prey-resource	 treatment	 (exposed	 to	

predation:	 replication	 =10)	 or	 a	 prey-resource	 treatment	 (naive	 to	 predation:	 replication=4).	

Higher	 replication	 was	 used	 to	 study	 the	 treatment	 including	 predation	 to	 provide	 more	

information	to	infer	vital	rates	in	this	more	complex	system.	On	day	zero,	replicate	microcosms	

were	initiated	with	100	Colpidium.	 	During	the	first	12	days,	all	treatments	contained	just	the	

prey	 and	 resource,	 and	 were	 treated	 identically.	 On	 day	 12,	 the	 microcosms	 exposed	 to	

predation	were	each	invaded	with	25	individuals	of	Stentor.	They	also	received	a	second	equal	

invasion	 2	 days	 later,	 reducing	 the	 impacts	 of	 demographic	 stochasticity	 on	 the	 initial	

population	 trajectories	 and	 preventing	 chance	 predator	 extinctions.	The	 replicates	 in	 which	

prey	 were	 naive	 to	 predation	 received	 additions	 of	 equivalent	 volumes	 of	Stentor	culture	

medium,	but	sieved	to	remove	predators.	All	populations	persisted	for	the	82-day	duration	of	

the	study.	
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SAMPLING	

Replicates	 were	 agitated	 and	 then	 sampled	 three	 times	 a	 week	 for	 the	 duration	 of	 the	

experiment.	To	count	predator	density,	5ml	of	medium	was	transferred	(with	replacement)	to	

a	 sterile	 petri	 dish	 and	 scanned	 under	 a	 stereomicroscope	 (Leica	M205	 C:	 surveyed	 at	 7.8x	

magnification).	 Prey	 density	 was	 measured	 by	 transferring	 0.044ml	 of	 medium	 into	 a	

Sedgewick	Rafter	cell	(S52,	SPI	supplies,	Westchester,	PA),	and	taking	a	5	second	video	(25	fps)	

using	 the	 stereomicroscope	 with	 a	 259	 magnification	 mounted	 digital	 CMOS	 camera	

(Hamamatsu	 Orca	 C11440,	 Hamamatsu	 Photonics,	 Japan).	 The	 automated	 digital	 video	

processing	R	package,	bemovi	(Pennekamp	et	al.	2015)	was	used	to	remove	static	background	

debris,	 located	 and	 measure	 individual	 prey	 and	 link	 their	 trajectories.	 This	 allowed	

measurement	 of	 a	 range	 of	 individual	 level	 behavioural	 and	 morphological	 traits	 including:	

body	 size	and	shape,	movement	 speed,	net	displacement	 rate,	 step	 lengths	per	video	 frame	

and	 turning	 angles.	 	 Bacteria	 density	 was	 estimated	using	 flow	 cytometry,	 based	 on	 a	 20μl	

sample	of	medium.	Analysis	of	the	flow	cytometry	measurements	of	scatter	and	absorbance,	

associated	with	each	observation,	allows	the	groups	with	similar	qualities	to	be	distinguished.	

As	a	characteristic	background	noise	pattern	was	identified	across	samples,	a	Gaussian	mixture	

model	 (GMM)	 was	 constructed	 to	 filter	 noise	 observations	 from	 the	 signal	 of	 bacterial	

observations	 (Fraley	 et	 al.	 2006;	 Appendix.1.A).	 To	 identify	 different	 components	 in	 the	

bacterial	 resource,	 the	 signal	 observations	 were	 grouped	 into	 clusters	 of	 observations	 with	

differing	 characteristics.	 Model-based	 clustering	 was	 undertaken	 to	 achieve	 this	 and	 to	

determine	the	number	of	bacterial	classes	in	the	data	(Appendix.1.B).	During	this	process	a	set	

of	GMM’s	were	fitted,	each	hypothesizing	a	different	number	of	clusters	 in	the	data.	 	Model	

comparison	was	then	applied,	based	on	Bayesian	Information	Criterion	(BIC)	scores,	to	identify	

the	most	parsimonious	model.	Observations	were	then	classified	into	bacterial	categories.	Two	

main	distinct	bacterial	classes	were	 identified	and	the	proportion	 in	each	class	calculated	for	

every	sample.		

	

PREDATION	&	GROWTH	TRIALS	

At	 the	 end	 of	 the	 experiment,	 prey-containing	 medium	 was	 extracted	 from	 each	 replicate	

population,	ensuring	that	any	predators	were	removed.	Extracted	medium	was	divided	into	8	

subsamples	 and	 diluted	 with	 protist-free	 medium	 (bacterially-inoculated),	 using	 dilution	

factors	of:	1,	1.2,	1.5,	2,	3,	6,	12,	or	30.	Each	dilution	subsample	was	used	to	initiate	a	pair	of	
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subpopulations.	 This	 produced	 eight	 pairs	 of	 prey	 populations	 along	 a	 gradient	 of	 prey	

densities.	Each	population	was	3ml	in	volume	and	was	located	in	a	separate	compartment	of	a	

5ml	 well	 plate.	 One	 of	 each	 pair,	 along	 the	 gradient	 of	 prey	 densities,	 was	 invaded	 with	 8	

predators.	 The	 other	 served	 as	 a	 predation	 free	 control	 treatment,	 allowing	 changes	 in	 size	

due	to	predation	to	be	separated	from	effects	of	prey	population	density.		For	all	populations,	

prey	 populations	 were	 sampled	 immediately	 after	 initiation	 and	 then	 after	 4	 and	 24	 hours	

later.	 This	 produced	 observations	 of	 the	 changes	 in	 prey’s	 individual	 trait	 distributions	

following	the	long-term	exposure	to	predation	and	then	over	the	course	of	a	short	feeding	and	

growth	trials.	

	

MODEL	INFERENCE	

PARAMETERIZATION	OF	AN	EMPIRICALLY	DERIVED	TRAIT	DEPENDENT	PREDATION	MODEL		

Deriving	a	community	model	of	traits	and	abundance	

By	 combining	 the	 theoretical	 frameworks	 for	modelling	 trait	 dependent	 species	 interactions	

(Holt	&	Polis	1997)	and	fitness	dependent	trait	selection	(Abrams	et	al.	1993),	we	formulated	a	

community	model	 to	 	 describe	 the	 linked	 dynamics	 of	 species	 traits	 and	 abundances.	 From	

this,	theoretical	continuous	time	dynamic	model,	we	derived	non-parametric	regression	model	

structures.	 These	 describe	 changes	 in	 community	 abundances	 and	 trait	 values	 between	

observations	as	smooth	functions	of	species	densities	and	mean	trait	values	(Appendix.2).	This	

allowed	 trait	dependent	community	 interactions	and	ecological	 impacts	on	 trait	dynamics	 to	

be	 described	 flexibly,	 without	 strong	 constraints	 on	 the	 functional	 forms	 of	 the	 model	

equations.	The	community	dynamics	were	discretized	into	the	following	system	of	difference	

equations:	

E(log !!!!

!!
) = g!! R, Z!  –  f!" R, Z!  !

!
 –  f!" R !

!
												1a)	

E(log !!!!

!!
) = α!"f!" R, Z!  −  f!" N, Z!  !

!
− d!													1b)	

E(log !!!!

!!
) = α!"f!! N, Z! + α!"f!" R, P − d!														1c)	

E(log !!!!

!!
) = s! R,N, P, Z! 																																																						1d)	
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Here	we	model	 the	 expected	 (𝐸)	 log	 difference	 in	 species	 abundances	 and	 trait	 values.	 The	

densities	of	the	resource,	prey	and	predator	are,	respectively,	R,	N,	and	P.	Ecologically	relevant	

traits	 influencing	 dynamics	 are	 denoted	 by	 Z!.	 The	 term	 g!! R, Z! 	 is	 a	 smooth	 function	

describing	the	intra-specific	density	dependence	of	growth	in	the	resource.	The	quantities	f!"	

(X,	 Y)	 are	 smooth	 functional	 response	 terms	describing	 the	dependence	of	 the	 consumption	

rate,	 of	 species	 a	 by	 species	 b,	 on	 the	 state	 variables	 X	 and	 Y	 at	 the	 prior	 time	 step.	 For	

example,	 f!" R, P, Z! 	 describes	 the	 trait	 and	 density	 dependent	 intra-guild	 predation	

interaction	 between	 the	 resource	 and	 predator.	 The	 per	 capita	mortality	 term	 of	 species	 a	

(d!) and	the	conversion	efficiency	of	biomass	between	species	i	and	j	(α!")	are	constants	to	be	

estimated.	 Finally,	 s! R,N, P, Z! 	 is	 the	 density	 dependent	 rate	 of	 trait	 change	 and	 is	

proportional	to	the	ecological	selection	pressure	acting	on	the	trait.	

	

Model	parameterization	

Prior	to	model	fitting,	individual	trait	measurements	were	square	root	transformed	to	reduce	

skew	 in	 the	data.	Mean	 trait	measurements	were	 then	 calculated	 for	each	 replicate	at	each	

sample	 point.	 	 Population	 abundance	 and	 trait	 dynamics	 were	 interpolated,	 using	 cubic	

hermite	splines,	to	obtain	data	with	equidistant	time	intervals	and	then	standardized	to	have	a	

standard	deviation	of	1.	The	finite	rate	of	change	of	each	species	population	abundance	(𝑋!)	

was	 calculated,	based	on	non-standardized	measurements	and	 log	 transformed	 to	provide	a	

measure	 of	 the	 observed	 linearized	 per	 capita	 rate	 of	 population	 growth:	 log !!(!!!)
!!(!)

.	

Similarly,	 the	 first	 log	 difference	 of	 dynamics	 of	 each	 trait	 (𝑍!)	 was	 also	 calculated:	

log !!(!!!)
!!(!)

.	

We	used	the	“mgcv”	package	in	R	to	construct	generalized	additive	models	(GAM)	describing	

the	 linked	 community	 dynamics	 (equ.1)	 (Wood	 2006).	 To	 account	 for	 heavy	 tailed	 response	

variables,	we	used	a	 scaled-t	distribution	model.	 To	avoid	over-fitting,	 the	model	degrees	of	

freedom	in	the	gcv	criterion	was	inflated	by	a	factor	of	1.2,	following	recommendations	of	Gu	

(2013)	 and	Hiltunen	et	al.	 (2014a).	Numerical	 optimization,	 using	 a	box	 constrained	 variable	

metric	 algorithm	 (Limited-memory	 BFGS	 quasi-Newton	method),	was	 applied	 to	 identify	 the	

remaining	constants	(d! and α!").	
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Formulation	and	comparison	of	candidate	hypotheses	

Competing	hypotheses	about	the	trait	dependence	of	demography	and	community	dynamics	

were	 formalized,	 by	 constructing	 a	 set	 of	 regression	 models.	 In	 these	 candidate	 models	

population	 growth	 and	 consumption	 rates	 depended	 upon	 different	 behavioural	 and	

morphological	traits	as	well	as	species	abundances.	Similarly,	hypotheses	about	the	impacts	of	

species	 abundances	 on	 trait	 dynamics	 were	 also	 formalized.	 Here	 regression	 models	 were	

constructed	in	which	the	rate	of	trait	change	depended	upon	species.	There	was	a	high	degree	

of	collinearity	between	the	measurements	of	several	traits.	Those	showing	strong	correlation,	

such	 as	 body	 length	 and	 width,	 were	 reduced	 to	 a	 single	 variable.	 The	 resulting	 candidate	

predictor	variables	describing	prey	 traits	were:	body	size	 (Z!"#$;  area µm!),	 swimming	speed	

(Z!"##$;  µm sec!!),	 displacement	 rate	 (Z!"#$; describing	 the	 linear	 distance	 of	 habitat	

explored; µm sec!!)	 and	 turning	 movement	 variability	 (Z!"#$; describing	 the	 variability	 of	

movement	 direction;	 radians turned sec!!).	 Finally,	 the	 composition	 of	 the	 resource	

population	was	also	used	as	a	putative	predictor	of	changes	in	species	abundances	(Z!"#$),	by	

using	the	proportion	of	the	total	resource	that	was	categorized	into	the	initially	rare	bacterial	

class	 as	 an	 additional	 candidate	 model	 covariate.	 We	 constructed	 models	 including	 (or	

excluding)	each	prey	 trait	 individually,	and	 including	 (or	excluding)	 the	 resource	composition	

information.	

To	test	whether	the	 inclusion	of	 trait	 information	 improved	our	ability	to	explain	community	

dynamics,	the	trait-dependent	community	models	were	compared	with	the	null	model	based	

on	abundance	only.	Cross	validation	was	used	to	compare	the	predictive	ability	of	candidate	

models.	All	but	one	replicate	was	used	to	parameterize	the	model	and	the	remaining	replicate	

was	 used	 to	 estimate	 the	 model’s	 predictive	 performance.	 Predicted	 population	 changes	

between	each	observation	were	then	compared	against	the	observed	data	and	the	root	mean	

square	 error	 (RMSE)	 was	 calculated	 to	 quantify	 model	 prediction	 error.	 This	 process	 was	

repeated,	sequentially	leaving	out	each	replicate	and	measuring	RMSE.	

	

EXAMINING	TRAIT	SELECTION	THROUGH	PREDATION	

The	 shift	of	 individual-level	 trait	 values	 in	 response	 to	exposure	 to	predation	was	quantified	

following	 the	 long-term	 study	 of	 community	 and	 trait	 dynamics.	 Trait	 measurements	 were	

taken	from	individuals	 in	replicate	populations	during	the	subsequent	short-term	growth	and	

predation	 trials.	 We	 examined	 how	 the	 log-normally	 transformed	 distribution	 of	 individual	
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trait	 values	 (𝑧!)	 varied	 between	 populations	 depending	 upon:	 a)	 the	 initial	 density	 of	 the	

populations	in	feeding	trials	(𝑥!"!#_!"#),	b)	the	amount	of	time	that	the	trials	had	been	running	

( 𝑥!"#$),	c)	the	history	of	predation	( 𝑥!"#$_!!"#: i.e.	the	presence/absence	of	predators	in	the	

microcosm	 from	 which	 the	 initial	 individuals	 in	 the	 trials	 where	 obtained)	 and	 d)	 the	

presence/absence	of	predators	during	the	short	term	trials	( 𝑥!"#$_!"##).	A	linear	mixed	model	

was	 formulated	 to	 incorporate	 random	 effects	 (𝛾)	 of	 replicate	 and	 incubator.	 Interactions	

between	the	four	fixed	effects	(𝛽)	were	proposed	leading	to	the	following	full	model:	

log (𝑧!) =  𝑥!"!#_!"#  𝛽!"!#_!"#$%&'  × 𝑥!"#$   𝛽!"#$  × 𝑥!"#$_!!"#  𝛽!"#$_!!"# 

×  𝑥!"#$_!"##   𝛽!"#$_!"## + 𝑢!"#$%&'("𝛾!"#$%&'(" + 𝑢!"#$%&'()𝛾!"#$%&'() 	

A	model	reduction	approach	of	model	comparison	was	then	applied	using	likelihood	ratio	tests	

to	compare	nested	models	and	to	obtain	a	parsimonious	description	of	the	factors	influencing	

individual	trait	distributions.	

	

Results	

EVALUATION	OF	THE	TRAIT	DEPENDENT	COMMUNITY	MODEL	

We	assessed	 the	predictive	 ability	 of	 community	models	 that	 included	different	 information	

about	 prey	 traits	 and	 the	 resource	 composition.	 The	 inclusion	 of	 information	 about	 the	

dynamics	of	prey	body	size	and	the	resource	composition,	produced	the	 largest	 reduction	 in	

the	 prediction	 error	 of	 the	 empirically	 derived	 community	 model	 (Fig.4.1).	 The	 inclusion	 of	

these	 factors	 individually	was	 not	 sufficient	 to	 greatly	 reduce	 prediction	 error,	 but	 together	

they	 gave	 a	 16.3%	 reduction	 in	 prediction	 error.	 The	 inclusion	 of	 other	 prey	 traits	 in	

combination	 with	 the	 resource	 composition	 information	 did	 not	 improve	 the	 predictive	

performance	of	the	empirically	derived	models.				

Inclusion	of	the	body	size	and	resource	composition	information	into	the	model	improved	the	

agreement	 between	predicted	 and	observed	 changes	 in	 the	 abundance	of	 the	 resource	 and	

prey,	 but	 did	 not	 greatly	 improve	 the	 prediction	 of	 predator	 change	 in	 abundance	 (Fig.4.2;	

time	series	of	observed	species	and	trait	dynamics	are	presented	in	Appendix.3).	
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Figure	 4.1)	 Predictability	 of	 changes	 in	 species	 abundances	 in	 population	models	 containing	 different	
combinations	of	 information	about	prey	 traits	 (x-axis)	and	 the	 resource	composition	 (bar	 colour).	The	
predictability	is	quantified	by	measuring	the	prediction	error	between	the	observed	rates	of	change	of	
species	 abundances	 and	model	predictions,	 based	on	 the	RMSE	of	predictions	during	 cross	 validation	
(lower	 RMSE	 is	 better).	 Error	 bars	 show	 the	 confidence	 interval	 of	 the	 prediction	 error	 observed	
between	rounds	of	the	cross	validation,	the	midpoint	being	the	mean	prediction	error.	

	

	

Figure	 4.2)	 Comparison	 of	 the	 correspondence	 between	 predicted	 and	 observed	 changes	 in	 species	
abundances	 in	 models	 with	 and	 without	 trait	 information.	 Predicted	 and	 observed	 changes	 in	 A)	
resource,	B)	prey	and	C)	predator	abundance	are	shown	for	models	with	the	trait	 information	of	prey	
size	 and	 resource	 composition	 either	 included	 (red)	 or	 excluded	 (blue).	 Linear	 regression	 is	 used	 to	
summarize	the	relationship	and	shaded	regions	show	the	standard	errors	of	the	regression.	
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Evaluation	 of	 the	 empirically	 derived	 trait	 dependent	 community	 model	 revealed	 density	

dependent	 processes	 and	 species	 interactions	 that	 were	 consistent	 with	 theoretical	

expectations	 (Fig.4.3).	 The	 resources	 growth	 rate	 showed	 negative	 density	 dependence,	 as	

would	 be	 expected	 when	 a	 finite	 nutrient	 supply	 limits	 population	 growth	 (Fig.4.3A).	 The	

functional	 form	 of	 consumer	 interaction	 between	 the	 prey	 and	 the	 predator	 (Fig.4.3C)	 is	

similar	 to	 a	 type	 one	 functional	 response	 when	 prey	 are	 small,	 and	 similar	 to	 a	 type	 two	

functional	 response	 when	 prey	 are	 large	 (Holling	 1965).	 Consumption	 increases	 with	 victim	

density,	but	then	saturates	as	the	density	gets	higher.	The	consumer	interaction	between	the	

resource	and	the	prey	also	showed	a	pattern	of	increased	consumption	with	increased	victim	

density	 (Fig.4.3B),	 with	 a	 relationship	 similar	 to	 a	 type	 one	 functional	 response,	 i.e.,	

consumption	a	linearly	increasing	function	of	resource	density.	

Inclusion	 of	 resource	 composition	 information	 into	 the	 community	model	 revealed	 that	 the	

resource	 growth	 rate	 depended	 upon	 its	 composition.	 Resource	 growth	 decreased	 as	 the	

composition	of	the	resource	became	increasingly	comprised	of	the	initially	rare	resource	class	

(Fig.4.3A;	 line	 transparency	 related	 to	 resource	 composition).	 The	 consumption	 rate	 of	

resources	by	the	prey	was	also	 influenced	by	the	resource	composition	(Fig.4.3B).	The	preys’	

resource	consumption	was	reduced	as	the	composition	of	the	resource	became	dominated	by	

the	originally	 rare	bacterial	 class	 (line	 transparency).	 This	 effect	was	dependent	on	 the	prey	

size	 (line	 colour),	 which	 had	 the	 largest	 influence	 on	 the	 consumption	 rate.	 As	 prey	 size	

decreased	 over	 the	 course	 of	 the	 experiment,	 the	 rate	 of	 resource	 consumption	 declined.	

When	prey	were	of	a	 reduced	size	 (red	vs	blue	 lines),	 the	 influence	of	 resource	composition	

was	lessened,	probably	because	consumption	rates	were	already	rather	low.		

The	consumption	 rate	of	prey	by	 the	predator	was	also	dependent	on	 the	size	of	prey,	with	

larger	 prey	 being	 more	 rapidly	 consumed	 (Fig.4.3C).	 Over	 time,	 prey	 individuals	 became	

smaller	 and	were	 both	 consumed	by	 predators	 less	 rapidly	 and	 also	 ingested	 resources	 less	

quickly.	 The	 size	 of	 the	 prey	 changed	 considerably	 over	 the	 course	 of	 the	 experiment	

(Appendix.3).	Figure	4.3D	indicates	that	the	reduction	in	size	was	related	to	higher	density	of	

predators	 (line	 colour)	 and	 prey	 themselves	 (x-axis).	 The	 negative	 effect	 of	 prey	 abundance	

may	reflect	a	delayed	feedback	from	resource	availability,	as	current	resource	abundance	did	

not	 help	 explain	 body	 size	 change.	 The	 negative	 effect	 of	 increased	 predator	 abundance	 on	

body	size	indicates	that	predation	pressure	is	either	directly	selecting	for	smaller	individuals	or	

indirectly	causing	altered	resource	allocation	to	growth	through	plasticity.	
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Figure	4.3)	 Evaluation	of	 the	 trait	 and	density	dependence	of	 community	processes	 and	 trait	 change,	
identified	 in	 the	 empirically	 derived	 community	 model.	 The	 model	 showed:	 A)	 density	 dependent	
resource	growth,	which	varied	with	the	resource	composition	(fraction	of	resource	composed	of	initially	
rare	resource	class;	line	transparency),	B)	Consumption	of	resources	by	prey,	which	varied	with	prey	size	
(line	wavelength	colour)	and	resource	composition,	C)	consumption	of	prey	by	predators,	which	varied	
with	 prey	 size,	 and	 D)	 change	 in	 prey	 size	 trait,	 which	was	 dependent	 on	 predator	 and	 prey	 density	
(brightness	of	blue).			

	

TRAIT	SELECTION	THROUGH	PREDATION	

The	shift	of	individual	trait	distributions	in	response	to	exposure	to	predation	was	quantified	at	

the	end	of	the	experiment.	During	the	long-term	community	dynamic	experiment	there	was	a	

significant	divergence	in	body	size	between	individuals	from	populations	that	were	previously	

exposed	or	naive	to	predation	(n=535,	d.f.=6,	𝜒! = 387.08,	p<0.001).	The	size	of	prey	exposed	

to	predation,	declined	substantially	compared	to	populations	that	were	naive	to	predation	but	

were	 otherwise	 kept	 in	 identical	 environmental	 conditions	 (Fig.4.4;	 transparent	 blue	 versus	

transparent	red	distributions).		

During	 the	 repeated	 observation	 in	 the	 predation	 feeding	 trials,	 the	 mean	 body	 size	 in	

populations	 exposed	 to	 predation	 approached	 the	 level	 of	 naive	 populations	 (Fig.4.4	 red	
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distributions	 of	 decreasing	 transparency,	 n=535,	 d.f.=8,	 𝜒! = 105.39,	 p<0.0001).	 This	

transition	back	towards	the	state	of	naive	individuals	is	likely	because	the	predator	density	in	

the	 feeding	 trials	 was	 relatively	 low	 compared	 to	 that	 experienced	 in	 the	 microcosm	

experiment.	An	increased	allocation	to	growth	rather	than	defence	may	have	been	favoured,	

causing	the	increase	in	prey	body	size	and	a	reduction	in	the	trait	divergence.	The	previously	

naive	populations,	which	were	exposed	to	a	small	number	of	predators,	showed	a	stable	body	

size	distribution	(Fig.4.4	blue	distributions).		This	further	indicates	that	the	predation	pressure	

was	 not	 strong	 enough	 to	 elicit	 a	 reduction	 in	 the	 size	 of	 prey	 over	 the	 short	 period	 of	

exposure.	

	

Figure	4.4)	Shifting	individual	body	size	distribution	of	prey	following	a	microcosm	experiment	in	which	
some	 populations	were	 exposed	 to	 predation	 (red)	 and	 others	 left	 naive	 (blue).	 During	 feeding	 trials	
populations	 of	 prey	 previously	 exposed	 and	 naive	 to	 predation	 were	 measured	 on	 three	 occasions	
(transparency	 levels).	 First,	 the	 individuals	 in	 feeding	 and	 growth	 trials	 were	 measured	 immediately	
after	 the	microcosm	experiment	 (most	 transparent),	second	after	4	hours	 (medium	transparency)	and	
finally	24	hours	later	(least	transparent).	

	

Discussion	

In	this	study,	we	use	a	novel	approach	to	connect	abundance	dynamics	with	the	dynamics	of	

individual	 traits.	 We	 identified	 traits	 that	 were	 modified	 by	 the	 ecological	 conditions	 and	

simultaneously	 influenced	 demographic	 rates	 and	 community	 dynamics.	 This	 allowed	 us	 to	

quantify	the	trait	dependence	of	species	growth	and	consumption	rates.	It	also	allowed	us	to	

understand	 how	 changes	 in	 species	 density	 feeds	 back	 to	 drive	 temporal	 trait	 change.	 Our	

results	revealed	a	rich	network	of	relationships	among	traits	and	resource,	prey,	and	predator	

abundances,	 and	 demonstrated	 how	 inclusion	 of	 trait-abundance	 feedbacks	 increase	 the	

ability	to	predict	ecological	dynamics	(Fig.4.5).	
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Figure	4.5)	A	conceptual	diagram	illustrating	key	relationships	 identified	 in	the	predator-prey-resource	
microbial	system.	Ecological	interactions	between	species	are	depicted	by	thick	grey	arrows	(dot	dashed	
thick	 grey	 line	 signifies	 resource	 density	 dependent	 growth).	 Trait	 change	 (blue)	 and	 resource	
composition	(green)	influenced	species	consumptive	interactions	(dashed	lines)	and	density	dependent	
population	growth	(solid	line).	Predator	and	prey	density	influenced	trait	change	(red	and	yellow	dotted	
lines),	creating	a	feedback	between	the	dynamics	of	species	traits	and	abundance.	

	

BODY	SIZE	DEPENDENT	PREY	INTERACTIONS	&	THE	FEEDBACK	WITH	TRAIT	CHANGE	

Body	 size	 has	 an	 important	 role	 in	 mediating	 the	 strength	 of	 predator-prey	 interactions	 in	

many	ecological	 systems	 (Brooks	&	Dodson	1965;	Zaret	&	Kerfoot	1975;	Yoshida	et	al.	2004;	

Tucker	et	al.	 2015).	The	 substantial	 two-third	 reduction	of	prey	body	size	observed	over	 the	

course	of	our	experiment	was	found	to	be	coupled	with	two	 important	community	 feedback	

processes:	 A)	 the	 top	 down	 effect	 of	 predation	 and	 B)	 the	 bottom	 up	 effect	 of	 resource	

consumption.	We	identified	that	temporal	changes	in	prey	body	size	modified	its	vulnerability	

to	predation	by	Stentor	and	 its	 resource	consumption.	As	body	size	declined,	partially	driven	

by	reduced	resource	availability,	the	vulnerability	of	prey	(Colpidium)	to	predation	decreased,	

but	they	also	consumed	resources	at	a	 lower	rate.	These	ecological	changes	may	result	 from	

changes	 in	 either	 the	 life	 history	 or	 resource	 allocation	 of	 the	 prey.	 We	 then	 linked	 the	

temporal	 changes	 in	 body	 size	 back	 to	 the	 abundance	 of	 predators	 and	 conspecifics.	 This	

implies	a	feedback	between	the	ecological	impacts	of	the	trait	change	and	the	future	selection	

pressure	on	the	body	size	trait	in	the	prey.	

	The	reduced	vulnerability	to	predation	at	small	sizes	could	have	been	attained	through	some	

combination	 of:	 a)	 reduced	 frequency	 of	 predator	 encounter,	 b)	 investment	 in	 physical	
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defence,	 c)	 improved	 escape/avoidance	 behaviour	 when	 encountering	 predators	 or	 d)	

predator	saturation	through	increased	consumption	time.	If	high	predator	density	caused	prey	

to	reduce	their	movement	and	foraging	in	order	to	reduce	predator	contacts,	we	would	have	

expected	 the	 inclusion	 of	 movement	 rate	 information	 into	 our	 community	 model	 to	 have	

improved	our	ability	 to	explain	changes	 in	species	abundances.	This	was	not	 the	case.	There	

was	no	obvious	evidence	of	physical	defence	 in	Colpidium	and	chemical	defences	are	usually	

associated	with	other	species	that	have	pigmented	granules	(Miyake	et	al.	2001).		An	improved	

ability	 to	 escape	 following	 predator	 encounters	 may	 have	 occurred	 if	 Colpidium	 utilize	

chemical	cues	or	developed	an	aversion	to	 the	vortex	of	Stentors	 filtering.	Such	mechanisms	

have	been	proposed	to	be	common	in	ciliates	(Kusch	1993;	Roberts	et	al.	2011).	However,	we	

have	 no	 direct	 measurements	 of	 such	 kairamones,	 nor	 behavioural	 changes.	 Finally,	 the	

handling	 time	of	 captured	prey	may	have	 increased	 if	 predators	 required	 longer	 to	 capture,	

subdue,	and	digest	prey.	Such	changes	has	previously	been	reported	in	similar	protist	systems	

and	 may	 be	 related	 to	 an	 altered	 cellular	 composition	 (Hammill	 et	 al.	 2010).	 The	 lower	

resource	consumption	in	smaller	prey	is	likely	an	acclimatory	response	to	low	energy	inflow	by	

switching	to	a	life	history	strategy	that	uses	minimal	resources.	Several	previous	studies	have	

identified	that	Colpidium	striatum	responds	to	decreased	productivity	or	 lower	effective	prey	

availability	by	decreasing	cell	size	(Balciunas	&	Lawler	1995;	Jiang	&	Morin	2005).	

Predator	driven	changes	in	body	size,	similar	to	those	that	we	observed,	appear	to	be	common	

in	similar	microbial	systems	(Wiackowski	&	Starońska	1999;	Kishida	et	al.	2010b;	Kratina	et	al.	

2010).	 For	 example,	 Fyda	 et	 al.	 (2005)	 observed	 that	 Colpidium	 exposed	 to	 predation	 by	

Euplotes	or	Stylonychia,	became	shorter	and	wider.	Predator	induced	changes	in	growth	rates	

and	 defence	 have	 also	 been	 observed	 (Fyda	 1998;	 terHorst	 et	 al.	 2010),	 however	 the	 links	

between	 individual	 traits,	 demographic	 rates	 and	 community	 dynamics	 have	 not	 previously	

been	made	(Kishida	et	al.	2010b).	In	systems	where	predators	hunt	for	prey	more	active,	such	

as	the	Trinidadian	guppy	system	(Travis	et	al.	2014)	or	fish-zooplankton	communities	(Brooks	

&	 Dodson	 1965),	 predation	 is	 often	 size	 selective.	 Predators	 preferentially	 attack	 larger	

individuals	in	order	to	obtain	greater	energetic	gains	per	attack.	Although	Stentor	is	known	to	

exhibit	 preferential	 feeding	 on	 certain	 prey	 species,	 prey	 consumption	 is	 thought	 to	 be	

unrelated	 to	 prey	 size	 (Tartar	 1961;	 Rapport	 et	 al.	 1972).	 It	 is	 therefore	 unlikely	 that	 the	

predation	directly	induces	smaller	prey	size	through	size	selective	predation.	Instead,	it	is	likely	

an	 indirect	 outcome	 of	 a	 reduced	 investment	 of	 resources	 into	 somatic	 growth	 due	 to	 an	

energetic	cost	of	defence	(Riessen	&	Sprules	1990;	Schmitz	et	al.	1997;	Bolker	et	al.	2003)	or	a	

modified	life	history	strategy	to	allow	earlier	reproduction	(Finlay	1977;	Travis	et	al.	2014).	
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RESOURCE	GROWTH	DEFENCE	TRADE-OFF	

Protist	 grazing	on	a	bacterial	 resource	has	been	 shown	 to	 lead	 to	 rapid	 changes	 in	bacterial	

morphology,	 providing	 defence	 against	 predation	 and	 incurring	 an	 energetic	 cost	 to	 the	

bacteria	 (Jürgens	&	Güde	1994;	Pernthaler	et	al.	1997;	Hahn	&	Höfle	1999;	Corno	&	 Jürgens	

2006).	As	 the	prey,	Colpidium,	 is	known	to	show	selective	 feeding	behaviour	 (Thurman	et	al.	

2010),	it	is	likely	that	the	temporal	change	in	the	resource	composition	that	we	identified	was	

driven	 by	 the	 strong	 consumptive	 selection	 pressure	 and	 represents	 a	 transition	 towards	 a	

population	dominated	by	more	defended	and	slow	growing	bacteria.	The	initially	rare	resource	

class	 became	 abundant	 and	 this	 was	 associated	 with	 a	 reduction	 in	 prey	 growth	 and	 also	

consumption.	 Increased	defence	 in	 the	resource	population	would	produce	a	 lower	effective	

productivity	 for	 Colpidium,	 negatively	 affecting	 its	 population	 growth.	 We	 were	 able	 to	

separate	the	effects	of	changing	resource	abundance	and	availability/nutritional	quality.	 	Our	

results	suggest	that	changes	in	resource	quality	or	availability	may	have	been	as	important	as	

changes	in	the	overall	resource	density	in	determining	changes	in	consumer	abundances.	The	

rapid	emergence	of	defence	appears	to	be	common	in	the	basal	trophic	level	of	experimental	

aquatic	 food	 chains	 (Lampert	 1994;	 Yoshida	 et	 al.	 2003,	 2004).	 It	 is	 important	 to	 examine	

whether	 this	 also	 occurs	 at	 higher	 trophic	 level,	 in	 established	 field	 systems,	 and	 in	 more	

complex	communities,	where	conflicting	energetic	trade-offs	potentially	occur.	

Overall,	 our	 results	 provide	 clear	 evidence	 of	 a	 feedback	 between	 trait	 change	 and	 species	

dynamics.	This	feedback	appears	to	be	underpinned	by	changes	in	the	defence	or	life	history	of	

the	 species	 being	 consumed.	 Our	 findings	 indicate	 that	 theoretical	 frameworks	 for	

understanding	trait	or	community	dynamics	will	perform	poorly	 in	 isolation.	Theories	of	 trait	

dependent	 ecological	 interactions	 and	 ecological	 dependent	 trait	 change	 are	 now	 well	

developed,	 however	 there	 is	 a	 clear	 empirical	 gap.	 Data	 driven	modelling	 is	 needed	 to	 link	

theoretical	and	empirical	insights	into	community	and	trait	dynamics	in	a	way	that	incorporate	

the	feedbacks	between	these	processes.	A	more	mechanistic	understanding	of	the	processes	

driving	the	temporal	variation	in	defence	is	required.	This	can	be	obtained	by	investigating	the	

roles	 of	 evolution	 and	 plasticity	 in	 permitting	 trait	 change.	 This	 will	 allow	 an	 improved	

understanding	of	the	costs	and	benefits	of	defences,	 the	process	driving	trait	dependence	of	

ecological	rates	and	the	rates	of	trait	change.	
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Appendices	

Appendix.1)	 Resource	 enumeration	 and	 classification	 into	 bacterial	 categories	 using	

Gaussian	mixture	modelling.	

A)	Removal	of	the	noise	background	

Estimates	 of	 bacterial	 densities,	 sampled	 from	 experimental	 microcosms,	 were	 obtained	 by	

performing	DNA	marking	of	samples	and	undertaking	flow	cytometry	(FCM).		As	sterile	protist	

pellet	medium	was	found	to	have	a	characteristic	auto-flourescent	signal,	the	raw	data	had	to	

be	 filtered.	 This	 allowed	 the	 removal	 of	 the	background	noise,	which	would	otherwise	have	

biased	estimates	of	bacterial	densities.		Using	a	validation	data	set	comprised	of	samples	from	

medium	with	a	known	composition,	we	characterised	the	regions	of	the	FCM	parameter	space	

where	 observations	would	 be	 expected	 to	 be	 noise.	 By	 removing	 observations	 that	 fall	 into	

this	 region	 from	 the	 overall	 FCM	 counts	 we	 obtained	 a	more	 reliable	 estimate	 of	 bacterial	

density.	 FCM	 counts	 were	 found	 to	 be	 consistent	 with	 manual	 counts	 based	 on	 bacterial	

plating	and	also	highly	consistent	between	replicates.	

	

Validation	data	set	

A	 validation	 data	 set	 was	 produced	 in	 order	 to	 characterise	 the	 distribution	 of	 noise	 and	

bacteria	 events	within	 the	 FCM	parameter	 space.	Different	 types	of	medium	were	 sampled,	

including:	highly	purified	water,	sterilized	standard	tap	water,	sterilized	protist	pellet	medium	

(PPM)	and	bacteria	 inoculated	PPM.	We	assayed	samples	of	PPM	of	differing	concentrations	

(0.5,	 1,	 2	 gL-1)	 and	ages	 (approx.	 0.5,1,2	months).	We	also	 sampled	 cultures	where	 the	PPM	

had	been	filtered	to	remove	large	debris.	Six	replicate	samples	of	each	culture	were	made	and	

FCM	was	used	to	analyse	the	resulting	84	samples	

	

Data	processing	

FCM	data	comprises	of	a	set	of	observations,	each	with	a	set	of	corresponding	measurements	

about	 the	 scattering	 and	 colour	 intensity	 recorded	 for	 that	 observation.	 This	 provides	 a	

multidimensional	characterisation	of	the	individual	observations,	which	allows	different	types	

of	particles	to	be	easily	distinguished.	The	response	measurements	were	log	transformed	and	
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principle	 components	 analysis	 (PCA)	 was	 used	 to	 transform/rotate	 the	 data	 and	 allow	

dimension	reduction	to	a	smaller	set	of	uncorrelated	response	variables.		

	

Noise	characterisation	

A	 Gaussian	 mixture	 model	 (GMM)	 was	 used	 to	 compare	 the	 observations	 from	 samples	

containing	bacteria	with	those	without	bacteria.	By	comparing	samples	of	known	composition	

we	were	able	to	characterize	the	location	of	noise	events	in	this	FCM	space.		We	first	extracted	

a	subset	of	the	validation	data	set	corresponding	to	data	from	samples	containing	bacteria	(i.e.	

signal	+	noise).	We	parameterized	the	GMM	to	identify	clusters	within	this	data	and	produced	

an	 overall	 model	 of	 the	 FCM	 parameter	 space.	 The	 “mclust”	 package	 in	 R	 was	 used	 to	

construct	the	GMM	using	the	expectation–maximization	algorithm	(Fraley	&	Raftery	2007).	We	

then	used	the	subset	of	the	validation	data	set	corresponding	to	data	from	samples	containing	

no	bacteria	(i.e.	noise	only)	to	identify	regions	of	this	space	that	can	be	characterized	as	noise.	

(Fig.4.S1A).	 Clusters	 into	 which	 a	 high	 proportion	 of	 noise	 samples	 fell	 were	 identified	 and	

removed	 from	 the	 counts	of	bacteria	density.	Using	 this	model	 and	 the	 inference	about	 the	

characteristics	of	noise	observations,	novel	observations	could	then	be	predicted	to	be	noise	

or	 signal	 (Fig.4.S1B).	 We	 subsequently	 used	 the	 trained	 GMM	 to	 predict	 whether	 each	

observation	from	our	experimental	samples	had	characteristics	of	a	bacterial	signal	or	that	of	

the	noise	background.	Finally,	 signal	observations	were	enumerated	and	 their	characteristics	

stored.	

	

Figure	4.S1)	Distribution	of	noise	and	signal	observations	in	the	FCM	parameter	space.	In	Subpanel	(A)	
shows	 the	 distribution	 of	 observations	 from	 samples	 containing	 both	 bacteria	 and	 background	 noise.	
Observations	are	classified	as	background	(grey)	and	signal	(red).	Subpanel	(B)	shows	the	distribution	of	
observations	 from	 samples	 known	 to	 contain	 no	 bacteria	 (background	 only:	 grey).	 This	 characterize	
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characterises	the	region	of	the	noise	background.		The	bacterial	signal	is	clearly	visible	in	subpanel	A	as	a	
large	 cluster	 that	 is	 separate	 from	 the	 noise	 component.	 	 FCM	 observation	 measurements	 are	
transformed	using	PCA	of	logged	data	and	the	three	dominant	axes	of	variation	are	plotted.	

	

B)	Classification	of	bacterial	categories	

To	 identify	 groups	 of	 differing	 bacterial	 classes,	 we	 further	 examined	 the	 bacterial	 signal	

remaining	 after	 filtering	 of	 the	 background	 noise	 component.	 A	 second	 GMM	 was	

parameterized	 using	 just	 the	 signal	 observations.	 Model-based	 hierarchical	 clustering	 was	

applied	to	identify	the	number	of	bacterial	categories	present	in	the	data.	To	do	this	we	fitted	

a	 set	 of	 models	 in	 which	 the	 number	 of	 clusters	 ranged	 from	 one	 to	 eight.	 Bayesian	

Information	 Criterion	 (BIC)	 was	 used	 to	 perform	model	 comparison	 between	models	 in	 the	

candidate	set	and	identify	the	most	parsimonious	clustering	structure.	Observations	were	then	

classified	into	different	bacterial	categories	and	the	proportion	in	each	calculated.	

The	 model-based	 hierarchical	 clustering	 revealed	 two	 major	 bacterial	 clusters	 in	 the	 data	

(Fig.4.S2).	Two	other	clusters	were	identified	but	the	abundances	of	observations	predicted	to	

belong	to	these	categories	was	low.		

	

Figure	 4.S2)	 Classification	of	 the	observations	 from	 the	bacterial	 signal	 into	bacterial	 categories	 using	
model-based	hierarchical	clustering.	The	FCM	observations	are	classified	into	two	major	categories	(blue	
vs	 red).	 FCM	 observation	 measurements	 are	 transformed	 using	 PCA	 of	 logged	 data	 and	 the	 three	
dominant	axes	of	variation	are	plotted.	
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Appendix.2)	Deriving	the	trait	dependent	community	model	structures	

By	combining	the	theoretical	 frameworks	of	Holt	&	Polis	 (1997)	and	Abrams	et	al.	 (1993)	we	

formulated	 a	 community	 model	 with	 trait	 dependent	 species	 interactions	 and	 fitness	

dependent	 trait	 selection.	An	 intra-guild	predation	 food-web	can	 then	be	 characterized	with	

the	following	coupled	differential	equations:	

!"
!"
= g!! R, Z!  R –  f!" R, Z!  N –  f!" R  P																															1.a)	

!"
!"
= α!"f!" R, Z!  N –  f!" N, Z!  P −m!																																	1.b)	

!"
!"
= α!"f!" N, Z!  P + α!"f!" R, P  P –m!																														1.c)	

!!!
!"
=  G!  ! !!

! !!
|𝑍! = 𝑍! 																																																																					1.d.i)	

												W! =
!
!

 !"
!"
																																																																																1.d.ii)	

The	 densities	 of	 the	 resource,	 prey,	 and	 predator	 are,	 respectively,	 R,	N,	 and	 P.	 Ecologically	

relevant	traits	influencing	predation	are	denoted	by	Z!.	The	term	g!! R 	is	a	smooth	function	

describing	the	intra-specific	density	dependence	of	growth	in	the	resource.	The	quantities	f!"	

(X,	 Y)	 are	 functional	 response	 terms	describing	 the	dependence	of	 the	 consumption	 rate,	 of	

species	a	by	species	b,	on	the	state	variables	X	and	Y	which	can	be	either	abundance	or	trait	

variables.	 For	 example,	 f!" R, P, Z! 	 describes	 the	 trait	 and	 density	 dependent	 intra-guild	

predation	of	the	resource	by	the	predator.	The	conversion	efficiency	during	the	consumption	

of	species	a	by	species	b	 is	denoted	α!".	Mortality	of	species	a	 is	m!.	Trait	change	dynamics	

are	 modelled	 using	 a	 quantitative	 trait	 evolution	 model	 where	 G!	 represents	 the	 additive	

genetic	 variance	 divided	 by	 the	 prey	 generation	 time	 and	 characterizes	 the	 speed	 of	

evolutionary	adaptation	or	acclimation.	Prey	 fitness	 (W!)	 is	defined	as	 the	per	capita	rate	of	

population	 growth	 conditional	 on	 the	 mean	 trait	 value 𝑜𝑓 𝑍!.	 The	 change	 in	 fitness	 with	

respect	to	trait	change	signifies	the	steepness	of	the	selection	gradient.		

	

Appendix.3)	Species	and	trait	dynamics	

All	populations	persisted	for	the	duration	of	the	experiment	and	the	observed	dynamics	were	

largely	 consistent	 between	 replicates	 (Fig.	 4.S3).	 We	 observed	 substantial	 fluctuations	 and	

trends	in	the	abundances	of	species,	prey	body	size	and	the	resource	composition	over	time.	
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Resource	 density	 showed	 a	 declining	 trend,	 but	 also	 spikes	 of	 increased	 abundance.	 Prey	

density	 initially	 increased,	 plateaued	 and	 began	 to	 decline	 after	 day	 40.	 Similarly,	 predator	

density	 initially	 increased,	 then	 appeared	 to	 fluctuate	 before	 subsequently	 declining	 around	

the	 same	 time.	 The	 community	 models	 allowed	 a	 more	 detailed	 understanding	 of	 the	

relationships	 between	 changes	 in	 species	 densities.	 Prey	 body	 size	 decreased	 substantially	

over	 the	 course	 of	 the	 experiment	 (66%	 reduction).	 Some	 systematic	 fluctuations	were	 also	

clearly	 identifiable	 across	 replicates.	 Finally,	 the	 resource	 composition	 also	 showed	marked	

fluctuations	in	the	relative	frequency	of	different	bacterial	types,	however	no	clear	directional	

trend	was	apparent.	

	

Figure	4.S3)	The	observed	dynamics	of	A)	resources,	B)	prey,	C)	predators,	D)	prey	body	size	and	E)	the	
composition	over	the	experiment	(points).	Predator	additions	were	made	on	day	12.	Population	trends	
are	 indicated	 by	 smoothed	 population	 trajectories	 (coloured	 lines.	 These	 are	 local	 polynomial	
regressions	and	confidence	bands).		
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Chapter	5:	The	impacts	of	warming	on	trait	dependent	community	dynamics.	
Jason	I.	Griffiths,	Owen	Petchey,	Frank	Pennekamp,	Philip	H.	Warren	&	Dylan	Z.	Childs	

Abstract	

Warming	 can	 influence	 species’	 physiological	 performance	 and	 also	 drive	 changes	 in	

interspecific	 interactions,	 by	 modifying	 metabolic	 demands	 for	 consumption.	 Changes	 in	

species	densities	can	drive	temporal	trait	change,	also	driving	variation	in	species	interaction.	

Trait	dependent	interactions	can	permit	complex	community	dynamics	that	are	not	expected	

by	 ecological	 theories	 based	on	 species	 abundances.	 As	warming	 can	 concurrently	 influence	

many	ecological	processes,	including	metabolism	and	development,	it	may	modify	the	impacts	

of	trait	change	on	species	consumption	rates,	driving	unanticipated	community	dynamics.	

Here	 we	 use	 an	 experimental	 predator-prey-resource	 system,	 to	 concurrently	 monitor	 the	

dynamics	 of	 species	 abundance	 and	 individual	 level	 traits	 at	 a	 range	 of	 temperatures.	 	We	

formulated	 empirically	 derived	 trait	 dependent	 community	 models,	 to	 identify	 whether	

warming	modifies	 the	key	 traits	 associated	with	variation	 in	 consumption.	We	 then	quantify	

how	the	trait	dependence	of	species	consumption	rates	varies	along	a	temperature	gradient.		

Across	temperatures,	body	size	was	consistently	associated	with	temporal	variation	in	species	

interactions.	Body	size	declines	were	observed	at	all	temperatures,	but	were	greatest	in	warm	

environments.	 Interestingly,	 in	 cool	 conditions,	 body	 size	 reductions	 were	 associated	 with	

reduced	 consumption	 by	 predators	 and	 consumption	 of	 resources.	 Conversely,	 at	 higher	

temperatures,	 reduced	 size	 was	 associated	 with	 increased	 intake	 of	 resources	 and	

consumption	by	predators.		

Changes	in	prey	body	size	may	have	indirectly	resulted	from	a	modified	life	history	strategy	or	

altered	 resources	 allocation.	 The	 findings	 indicates	 that	 warming	 reversed	 the	 life	 history	

strategy	 of	 prey	 to	 an	 investment	 of	 resources	 into	 consumption	 and	 growth	 rather	 than	

defence.	 This	 is	 likely	 a	 response	 to	 the	 increased	metabolic	 demand	 of	 inhabiting	 a	 warm	

environment.		

	

Key	 words:	 Climate	 warming;	 Community	 dynamics;	 Trait	 dependent	 interaction;	 Growth-

defence	trade-offs;	Predator-prey	experiment;	Generalized	additive	models	
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Introduction	

Climatic	warming	 has	 the	 potential	 to	 profoundly	 influence	 species	 abundances,	 through	 its	

impacts	on	a	range	of	biological	processes.	Warming	influences	biochemical	and	physiological	

processes,	modifying	metabolic	 requirements	 and	 resource	 usage	 (Finlay	 1977;	 Brown	et	 al.	

2004;	Clarke	&	Fraser	2004;	Diamond	et	al.	2012;	Ohlberger	2013).	This	can	drive	behavioural	

or	morphological	change,	as	well	as	changes	to	 life	history	schedules	and	resource	allocation	

strategies	(e.g.	timing	of	reproduction	or	investment	to	growth	and	defence)	(Post	et	al.	1999;	

Musolin	 2007;	 Barros	 et	 al.	 2010;	 Gardner	et	 al.	 2011).	 As	 a	 result,	warming	 influences	 key	

ecological	processes	such	as	growth,	birth,	and	death	rates	(Tylianakis	et	al.	2008a;	Régnière	et	

al.	 2012;	 Schaper	 et	 al.	 2012).	 Furthermore,	 warming	 induced	 changes	 in	 traits,	 metabolic	

demands	 or	 population	 abundance	 are	 likely	 to	modify	 the	 strength	 of	 species	 interactions	

(Rall	et	al.	2010;	Vucic-Pestic	et	al.	2011;	Binzer	et	al.	2012;	Lang	et	al.	2012;	Ohlberger	2013;	

Öhlund	 2015).	 For	 example,	 warming	 has	 been	 associated	 with	 intensification	 of	 pathogen	

effects	 on	 amphibians,	 greater	 predation	 rates	 in	 rocky	 intertidal	 ecosystems	 and	 disrupted	

plant	 pollinator	 interactions	 (Sanford	 1999;	 Pounds	 et	 al.	 2006;	 Memmott	 et	 al.	 2007).	 By	

modifying	 interactions	 between	 species,	 warming	 can	 substantially	 modify	 a	 community’s	

dynamics,	 structure	 and	 functioning	 (Harvell	 et	 al.	 2002;	 Emmerson	 et	 al.	 2004;	 Post	 et	 al.	

2008;	 Gilman	 et	 al.	 2010;	 Kordas	 et	 al.	 2011;	 O’Connor	 et	 al.	 2009;	 	 O’Connor	 et	 al	 2011;	

O’Connor	 et	 al.	 2012;	 Griffiths	 et	 al.	 2014).	 Understanding	 how	 warming	 influences	 the	

strength	 of	 species	 interactions	 is	 therefore	 a	 vital	 component	 in	 the	 development	 of	 a	

predictive	 understanding	 of	 the	 ecological	 consequences	 of	 climate	 change	 (Hughes	 2000;	

Tylianakis	et	al.	2008b).	

Changes	 in	 species	 densities	 can	 also	 influence	 species	 traits	 	 (Berg	&	 Ellers	 2010;	 Schoener	

2011).	 Trait	 change	 can	 be	 driven	 by	 density-dependent	 evolutionary	 selection	 pressures,	

favouring	certain	heritable	traits	in	a	genetically	variable	population	(Thompson	1998;	Yoshida	

et	 al.	 2004;	 Kasada	 et	 al.	 2014).	 Alternatively,	 trait	 change	 can	 result	 from	 phenotypic	

plasticity,	 where	 a	 single	 genotype	 produces	 different	 phenotypes	 under	 differing	 biotic	

environments	 (Tollrian	 &	 Harvell	 1999;	 Agrawal	 2001;	 Fordyce	 2006;	 Cortez	 2011).	 For	

example,	 the	 life	 history	 schedule	 or	 the	 resource	 allocation	 to	 growth	 and	 defence	 may	

depend	 on	 the	 density	 of	 predators	 and	 resources	 (Finlay	 1977;	 Lampert	 1994;	 Travis	 et	 al.	

2014;	Riessen	2015).	Density	mediated	trait	change	can	cause	temporal	variation	in	vital	rates,	

such	 as	 resource	 consumption	 and	 population	 growth,	 modifying	 interspecific	 interactions.	

(Bolker	et	al.	2003;	Preisser	et	al.	2005;	Pelletier	et	al.	2007;	Harmon	et	al.	2009;	Bassar	et	al.	
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2010;	 terHorst	 et	 al.	 2010;	 Turcotte	 et	 al.	 2011).	 When	 the	 modification	 of	 interspecific	

interactions,	such	as	the	intensity	of	predation,	alters	the	strength	or	direction	of	trait	change,	

a	 feedback	 loop	 is	 produced	 between	 abundance	 and	 trait	 dynamics	 (Yoshida	 et	 al.	 2003;	

Yoshida	et	al.	2007;	Pelletier	et	al.	2007;	Becks	et	al.	2010,	2012;	Schoener	2011;	Agrawal	et	al.	

2013).	This	coupling	between	trait	dependent	vital	 rates	and	density	dependent	 trait	change	

allows	 a	 diversity	 of	 community	 dynamics	 to	 occur	 that	 would	 be	 unexpected	 from	 purely	

ecological	theories,	based	on	species	abundances	(Abrams	&	Matsuda	1997;	Jones	et	al.	2009;	

Berg	&	 Ellers	 2010;	 Kishida	 et	 al.	 2010;	 Ellner	 &	 Becks	 2010;	 Cortez	 2011;	Mougi	 2012a;	 b;	

Walsh	et	al.	2012;	Cortez	&	Weitz	2014;	Hiltunen	et	al.	2014).	

Ecologically	relevant	traits,	that	can	modify	species	interactions,	may	be	influenced	by	changes	

in	both	species	density	and	climate	conditions.	For	example,	changes	 in	body	size	have	been	

observed	 in	many	 taxa,	either	 in	 response	 to	warming	 (Atkinson	1994;	Brakefield	&	Kesbeke	

1997;	Bradshaw	&	Holzapfel	2006;	Gardner	et	al.	2011;	Sheridan	&	Bickford	2011)	or	due	 to	

changes	 in	 resource	 or	 predator	 abundances	 (Blumenshine	et	 al.	 2000;	 Yoshida	 et	 al.	 2004;	

Travis	et	al.	2014;	Reznick	2016).	Such	changes	in	body	size	can	substantially	modify	predation	

rates	(Brooks	&	Dodson	1965;	Vonesh	&	Bolker	2005).	Crucially,	because	warming	concurrently	

alters	a	range	of	metabolic	and	physiological	processes,	it	may	alter	the	impact	of	trait	change	

on	the	strength	of	species	interactions.	

Theory	 and	 empirical	 evidence	 indicates	 that	 warming	 generally	 intensifies	 consumptive	

interactions,	 by	 accelerating	 the	 metabolism	 of	 predators,	 increasing	 their	 growth,	 activity,	

and	digestion	rates	(Sanford	1999;	Brown	et	al.	2004;	Jiang	&	Morin	2004;	Vasseur	&	McCann	

2005;	O’Connor	et	al.	2009;	Beveridge,	Humphries	&	Petchey	2010;	Yvon-Durocher	et	al.	2010;	

Hoekman	 2010;	 Rall	et	 al.	 2010;	Öhlund	 2015).	 However,	 the	 impacts	 of	 climate	 change	 on	

trait	dependent	consumption	rates	are	largely	unknown.	Despite	this,	recent	theory	indicates	

that	such	dependencies	may	be	highly	influential	in	determining	community	dynamics	(Moya-

Larano	et	al.	2012;	Northfield	&	Ives	2013;	Koch	et	al.	2014).		

The	 relative	 influence	 of	 different	 morphological	 and	 behavioural	 traits	 in	 determining	

consumption	 rates	may	 change	with	warming	 (Dijk	et	 al.	 2015).	 For	 example,	 in	 lizards,	 the	

importance	 of	 behavioural	 defence	mechanisms	depends	 on	 the	 climate	 and	 the	 individuals	

body	size	(Barros	et	al.	2010).	Furthermore,	the	strength	of	the	trait	dependence	of	vital	rates	

may	 be	modified	 by	 climate	 change.	 For	 example,	 populations	may	 shift	 from	 strongly	 trait	

dependent	 dynamics	 to	 predominantly	 density	 dependent	 dynamics,	 or	 vice	 versa.	

Furthermore,	the	effect	of	trait	change	on	vital	rates	may	vary	over	a	climatic	gradient.	That	is,	
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large	trait	values	may	increase	vital	rates	under	some	climate	conditions,	but	reduce	them	in	

others.		

Here	we	develop	a	novel	approach	to	examine	the	consequences	of	climate	warming	on	the	

trait	 dependence	 of	 vital	 rates.	 We	 utilize	 an	 experimental	 microbial	 community	 to	

concurrently	study	species’	abundance	and	trait	dynamics	at	a	range	of	environments	along	a	

temperature	gradient.	At	each	temperature,	we	identified	key	ecologically	relevant	traits	and	

linked	their	dynamics	with	 those	of	 species	abundances,	by	 fitting	community	models	 to	 the	

observed	dynamics	at	each	environmental	condition.	Using	this	approach	we	determined	the	

temperature	and	trait	dependence	of	community	dynamics	along	a	temperature	gradient	and	

quantify	 the	 influences	 of	 warming	 on	 the	 trait	 dependence	 of	 species	 interactions.	 This	

allowed	us	 to	 examine	how	warming	 impacts	 upon	 the	 strength	of	 intraspecific	 interactions	

and	how	they	varied	with	temporal	changes	in	species’	traits	and	densities.		

	

Methods	

EMPIRICAL	MICROCOSM	SYSTEM	

STUDY	ORGANISMS:	CULTURING	&	ESTABLISHING	THE	PREDATOR-PREY	SYSTEM	

We	studied	 the	 community	 dynamics	 of	 a	 tri-trophic	 predator-prey-resource	 system	 along	 a	

temperature	gradient.	The	community	 consisted	of	a	bacteria	 resource,	Serratia	marcescens,	

an	 intermediate	bactiverous	ciliate	Colpidium	striatum	(Stokes	1886;	referred	to	as	the	prey),	

and	a	top	predator,	Stentor	coeruleus	(Ehrenburg	1830).	Stentor	populations	consume	bacteria	

during	 filter	 feeding,	 but	 do	 not	 persist	 on	 a	 purely	 bacterial	 diet,	 generating	 intra-guild	

predation	 (Slabodnick	 &	 Marshall	 2014).	 Microcosm	 experiments	 were	 conducted	 in	petri	

dishes	 containing	 50ml	Chalkley’s	 solution	 (Thompson	 et	 al.	 1988),	 0.7gL-1	of	 crushed	

protozoan	pellets	(Carolina	Biological	Supply,	USA)	and	3	wheat	seeds.		Microcosms	and	media	

were	autoclaved	 before	 use.	 Two	 days	 prior	 to	 the	 experiments	 initiation,	 the	medium	was	

inoculated	with	bacteria	and	kept	at	370C,	allowing	the	establishment	of	a	resource	base.	
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TREATMENTS	

Temperature	and	species	manipulations	

During	the	experiment,	14	microcosm	populations	were	maintained	at	each	of	6	temperature	

treatment	 levels:	 14,	 16,	 18,	 20,	 22	 and	 24°C.	 	 These	microcosms	 were	 equally	 distributed	

between	 two	 controlled	 temperature	 incubators	 and	 exposed	 to	 a	16:	 8	 light-dark	

photoperiod.	 The	 positions	 of	microcosms	within	 controlled	 temperature	 environments	was	

randomized	 and	 frequently	 permuted.	 Cultures	 were	 replenished	 three	 times	 a	 week	 by	

renewing	1ml	of	medium	and	replacing	any	evaporative	loss	with	distilled	water.	

Of	the	14	microcosms,	at	each	temperature	 level,	10	replicates	were	assigned	to	a	predator-

prey-resource	 treatment	 (exposed	 to	 predation:	 5	 reps	 per	 incubator).	 The	 remaining	 4	

replicates	 were	 assigned	 to	 a	 prey-resource	 treatment	 (naive	 to	 predation:	 2	 reps	 per	

incubator).	On	day	zero,	all	microcosms	were	initiated	with	100	Colpidium	and	populations	of	

prey	were	allowed	to	grow	by	feeding	on	the	bacterial	resource.	On	day	12,	each	microcosms	

in	the	exposed	to	predation	treatment	was	invaded	with	25	Stentor	predators.	Two	days	later	

25	more	were	 added,	 to	 prevent	 chance	predator	 extinctions.	The	 replicates	 in	 the	 naive	 to	

predation	treatment	received	an	equivalent	volume	of	Stentor	culture	medium,	but	sieved	to	

remove	predators.	Populations	were	maintained	for	an	82	day	study	duration.		

	

SAMPLING	

Replicates	 were	 agitated	 and	 then	 sampled	 three	 times	 a	 week.	 Predator	 density	 was	

estimated	 by	 transferring	 (with	 replacement)	 5ml	 of	 medium	 to	 a	 sterile	 petri	 dish	 and	

scanning	 the	 medium	 under	 a	 stereomicroscope	 (Leica	 M205	 C:	 surveyed	 at	 7.8x	

magnification).	To	measure	prey	density	and	trait	values,	0.044ml	of	medium	was	transferred	

into	a	Sedgewick	Rafter	cell	(S52,	SPI	supplies,	Westchester,	PA).	A	5	second	video	(25	fps)	of	

the	 medium	 was	 taken	 using	 a	 digital	 CMOS	 camera	 (Orca	 C11440,	 Hamamatsu	 Photonics,	

Japan)	mounted	on	a	stereomicroscope	with	a	259	magnification.	Individual	prey	were	located,	

measured	and	had	 their	 trajectories	mapped	using	 the	automated	digital	 video	processing	R	

package,	bemovi	 (Pennekamp	et	al.	2015).	For	each	sample,	 individual	 level	behavioural	and	

morphological	trait	measurements	were	produced	summarising	body	size	and	shape	as	well	as	

movement	speed	and	pattern.		



102	
	

	
	

Bacteria	density	was	estimated	by	passing	a	20μl	sample	of	medium	through	a	flow	cytometer.	

A	characteristic	background	noise	pattern	was	 identified	across	 samples,	generated	by	auto-

florescence	of	the	sterile	protest	pellet	medium.	To	filter	noise	observations	from	the	signal	of	

bacterial	observations,	a	Gaussian	mixture	model	(GMM)	was	constructed	using	the	“mclust”	R	

package	 (Fraley	et	al.	2006)	and	parameterized	using	 subsidiary	 training	data	 (Chapter.4	 see	

Appendix.4.1.A).	Model-based	 clustering	 was	 then	 undertaken	 to	 determine	 the	 number	 of	

distinct	 bacterial	 types	 in	 the	 data	 set	 and	 to	 classify	 signal	 observations	 into	 appropriate	

bacterial	type	categories.	Two	main	distinct	bacterial	types	were	identified	and	the	proportion	

in	each	class	calculated	for	every	sample.		

	

MODEL	INFERENCE	

PARAMETERIZATION	OF	AN	EMPIRICALLY	DERIVED	TRAIT	DEPENDENT	PREDATION	MODEL		

Deriving	a	community	model	of	traits	and	abundance	

A	 community	 model	 describing	 the	 linked	 dynamics	 of	 species	 traits	 and	 abundances	 was	

formulated,	 by	 combining	 theoretical	 frameworks	 for	 modelling	 trait	 dependent	 species	

interactions	(Holt	&	Polis	1997)	and	fitness	dependent	trait	selection	(Abrams	et	al.	1993).	We	

then	derived	 a	discretized	non-parametric	 regression	model	 structure,	 describing	 changes	 in	

community	abundances	and	trait	values	between	observations	(Chapter.4	Appendix.4.2).	This	

allowed	 trait	dependent	community	 interactions	and	ecological	 impacts	on	 trait	dynamics	 to	

be	 described	 flexibly	 as	 smooth	 functions	 of	 species	 densities	 and	mean	 trait	 values.	 It	 also	

avoids	 strong	 assumptions	 about	 the	 functional	 forms	 of	 species	 interaction	 terms.	 The	

community	dynamics	were	described	by	the	following	system	of	difference	equations:	

E(log !!!!

!!
) = g!! R, Z! ,T  –  f!" R, Z! ,T  !

!
 –  f!" R,T !

!
												1a)	

E(log !!!!

!!
) = α!"f!" R, Z! ,T  −  f!" N, Z! ,T  !

!
− d!																	1b)	

E(log !!!!

!!
) = α!"f!" N, Z! ,T + α!"f!" R, P,T − d!																			1c)	

E(log !!!!

!!
) = s! R,N, P, Z! ,T 																																																														1d)	
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Here	we	model	 the	 expected	 (E)	 log	 difference	 in	 species	 abundances	 and	 trait	 values.	 The	

densities	 of	 the	 resource,	 prey,	 and	 predator	 are,	 respectively,	 R,	 N,	 and	 P.	 Ecologically	

relevant	 traits	 influencing	 dynamics	 are	 denoted	 by	 Z!.	 And	 the	 temperature	 of	 the	

environment	 is	 denoted T.	 The	 term	g!! R, Z! ,T 	 is	 a	 smooth	 function	 describing	 the	 intra-

specific	 density	 dependence	of	 growth	 in	 the	 resource.	 The	quantities	 f!"	 (X,	 Y)	 are	 smooth	

functional	response	terms	describing	the	dependence	of	the	consumption	rate,	of	species	a	by	

species	b,	on	 the	 state	variables	X	and	Y	at	 the	prior	 time	step.	For	example,	 f!" R, P, Z! ,T 	

describes	 the	 temperature,	 trait	 and	 density	 dependent	 consumption	 of	 prey	 by	 predators.	

The	 per	 capita	 mortality	 term	 of	 species	 a	 (d!) and	 the	 conversion	 efficiency	 of	 biomass	

between	 species	 i	 and	 j	 (α!")	 are	 constants	 to	 be	 estimated.	 Finally,	 s! R,N, P, Z! ,T 	 is	 the	

temperature	and	density	dependent	rate	of	trait	change	and	is	proportional	to	the	ecological	

selection	pressure	acting	on	the	trait.	

	

Model	parameterization	

Prior	to	model	fitting,	individual	trait	measurements	were	square	root	transformed	to	reduce	

skew	 in	 the	data.	Mean	 trait	measurements	were	 then	 calculated	 for	each	 replicate	at	each	

sample	 point.	 	 Population	 abundance	 and	 trait	 dynamics	 were	 interpolated,	 using	 cubic	

hermite	splines,	to	obtain	data	with	equidistant	time	intervals	and	then	standardized	to	have	a	

standard	deviation	of	1.	The	finite	rate	of	change	of	each	species	population	abundance	(𝑋!)	

was	 calculated	 based	 on	 non-standardized	measurements	 and	 log	 transformed	 to	 provide	 a	

measure	 of	 the	 observed	 linearized	 per	 capita	 rate	 of	 population	 growth:	 log !!(!!!)
!!(!)

.	 The	

first	log	difference	of	trait	dynamics	(𝑍!)	were	also	calculated:	log
!!(!!!)
!!(!)

.		

Using	data	from	replicates	at	each	temperature,	we	used	the	“mgcv”	package	in	R	to	construct	

generalized	additive	models	(GAM)	describing	the	linked	community	dynamics	(equ.1)	(Wood	

2006).	To	account	for	heavy	tailed	response	variables,	we	used	a	scaled-t	distribution	model.	

To	 avoid	 over-fitting,	 the	 model	 degrees	 of	 freedom	 in	 the	 gcv	 criterion	 was	 inflated	 by	 a	

factor	of	1.2,	 following	recommendations	of	 (Gu	2013)	and	 (Hiltunen	et	al.	2014).	Numerical	

optimization,	using	a	box	constrained	variable	metric	algorithm	(Limited-memory	BFGS	quasi-

Newton	method),	was	applied	to	identify	the	remaining	constants	(d! and α!").	
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Formulation	and	comparison	of	candidate	hypotheses	

Competing	hypotheses	about	the	trait	dependence	of	demography	and	community	dynamics	

were	 formalized	 by	 constructing	 a	 set	 of	 regression	 models.	 In	 these	 candidate	 models	

population	 growth	 and	 consumption	 rates	 depended	 upon	 different	 behavioural	 and	

morphological	traits	as	well	as	species	abundances.	Similarly,	hypotheses	about	the	impacts	of	

species	 abundances	 on	 trait	 dynamics	 were	 also	 formalized.	 Here	 regression	 models	 were	

constructed	in	which	the	rate	of	trait	change	depended	upon	species.	There	was	a	high	degree	

of	collinearity	between	the	measurements	of	several	traits.	Those	showing	strong	correlation,	

such	 as	 body	 length	 and	 width,	 were	 reduced	 to	 a	 single	 variable.	 The	 resulting	 candidate	

predictor	 variables	 describing	 prey	 traits	 were:	 body	 size	 (Z!"#$; area µm sec-1),	 swimming	

speed	 (Z!"##$ ; µm sec-1),	 displacement	 rate	 (Z!"#$; describing	 the	 rate	 of	 habitat	

exploration;  µm sec-1)	 and	 turning	 movement	 variability	 (Z!"#$; describing	 the	 variability	 of	

movement	 direction; radians turned sec-1).	 Finally,	 the	 composition	 of	 the	 resource	

population	was	also	used	as	a	putative	predictor	of	changes	in	species	abundances	(Z!"#$),	by	

using	the	proportion	of	the	total	resource	that	was	categorized	into	the	initially	rare	bacterial	

class	 as	 an	 additional	 candidate	 model	 covariate.	 We	 constructed	 models	 including	 (or	

excluding)	each	prey	 trait	 individually,	and	 including	 (or	excluding)	 the	 resource	composition	

information.	

To	test	whether	the	 inclusion	of	 trait	 information	 improved	our	ability	to	explain	community	

dynamics	at	each	 temperature,	 the	 trait-dependent	community	models	were	compared	with	

the	null	model	based	on	abundance	only.	Cross	validation	was	used	to	compare	the	predictive	

ability	of	candidate	models.	All	but	one	replicate	was	used	to	parameterize	the	model	and	the	

remaining	 replicate	 was	 used	 to	 estimate	 the	 models	 predictive	 performance.	 Predicted	

population	changes	between	each	observation	were	then	compared	against	the	observed	data	

and	the	root	mean	square	error	(RMSE)	was	calculated	to	quantify	model	prediction	error.	This	

process	 was	 repeated,	 sequentially	 leaving	 out	 each	 replicate	 and	 measuring	 RMSE.	 Linear	

mixed	effects	modelling	was	then	used	to	identify	which	traits	produced	significant	reductions	

in	prediction	error.	The	estimated	prediction	error	scores	obtained	from	leaving	out	different	

replicates	of	each	treatment	were	defined	as	a	random	effects.	
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Constructing	a	temperature	dependent	community	model	of	traits	and	abundance	

To	quantify	how	 the	 trait	 dependence	of	 species	 interactions	 varied	across	 the	 temperature	

gradient,	 a	 temperature	 dependent	 community	 model	 was	 constructed,	 describing	 species	

trait	dependent	interactions	across	all	the	experimental	temperature	gradient.	First,	the	traits	

dependence	 of	 vital	 rates	 was	 identified	 for	 each	 level	 of	 the	 temperature	 gradient	 by	

parameterizing	temperature	specific	community	models	(as	in	Chapter.4).		

Subsequently,	the	traits	which	were	found	to	influence	vital	rates	in	the	temperature	specific	

community	models	were	used	as	predictors	when	parameterizing	full	temperature	dependent	

community	 model	 following	 equ.1.	 These	 full	 community	 models	 describe	 the	 dynamics	 of	

species	abundances	across	all	the	experimental	temperature	conditions.	The	trait	dependence	

of	vital	rates	was	assumed	to	change	smoothly	with	temperature.	Cross	validation	was	again	

used	compare	the	predictive	ability	of	candidate	models.	

	

Results	

TEMPERATURE	MEDIATED	CHANGES	IN	ABUNDANCE	AND	TRAIT	DYNAMICS	

Across	 the	 temperature	 gradient,	 we	 observed	 gradual	 changes	 in	 the	 dynamics	 of	 species	

abundances	 and	 traits	 and	 the	 resource	 composition	 (Fig.5.1).	 At	 higher	 temperatures,	

resource	 abundance	 was	 initially	 highest	 and	 then	 declined	 to	 a	 lower	 level	 than	 at	 cooler	

temperatures.	 	 This	 pattern	 was	 mirrored	 in	 the	 abundance	 of	 prey.	 Similarly,	 at	 higher	

temperatures,	predators	generally	reached	higher	initial	abundance	but	showed	rapid	declines	

towards	 extinction.	 The	 traits	 associated	 with	 these	 species	 dynamics	 also	 showed	 clear	

temperature	 dependent	 patterns.	 At	 higher	 temperatures,	 prey	 size	 decreased	more	 rapidly	

over	 time.	 This	 caused	prey	 in	warmer	 environments	 to	 be	much	 smaller	 by	 the	 end	of	 the	

experiment.	Prey	that	were	not	exposed	to	predation	declined	in	size	as	well	as	those	exposed	

to	predation,	especially	at	warm	temperatures.	However,	across	temperatures,	the	size	of	prey	

exposed	 to	 predation	 declined	 substantially	more	 than	 those	 in	 the	 un-predated	 treatment	

(Appendix	 5.2).	 Finally,	 at	 higher	 temperatures,	 the	 initially	 rare	 resource	 class	 became	

common	around	day	20	and	declined	to	a	low	frequency	towards	the	end	of	the	experiment.	In	



106	
	

	
	

contrast,	at	lower	temperatures,	the	frequency	of	the	initially	rare	resource	class	did	not	reach	

as	high,	but	was	more	stable	over	time.		

	

	

Figure	5.1)	The	effects	of	temperature	on	the	dynamics	of	A)	resources,	B)	prey,	C)	predators,	D)	prey	
body	 size	 and	 E)	 the	 resource	 composition	 (fraction	 of	 resource	 composed	 of	 initially	 rare	 resource	
class).	Observations	 from	 replicates	 at	 each	 temperature	 are	 plotted	over	 time	 (coloured	points)	 and	
population	 trends	 are	 indicated	 by	 smoothed	 population	 trajectories	 (coloured	 lines;	 these	 are	 local	
polynomial	regressions	and	confidence	bands).		

	

THE	TRAIT	DEPENDENCE	OF	COMMUNITY	DYNAMICS	ACROSS	THE	TEMPERATURE	GRADIENT	

For	 the	 six	 temperature	 levels,	we	assessed	 the	predictive	ability	of	 community	models	 that	

included	different	information	about	the	state	of	prey	traits	and	the	resource	composition.	At	

each	 of	 the	 six	 temperatures,	 the	 inclusion	 of	 information	 about	 prey	 size	 and	 resource	

composition	 produced	 the	 most	 significant	 reduction	 in	 the	 prediction	 error	 (Fig.5.2).	 The	

inclusion	of	these	factors	individually	did	not	greatly	reduce	prediction	error,	but	together	they	

provided	a	17%	reduction	in	prediction	error	(𝑍!"#! ∗ 𝑍!"#$:	d.f.(7,6), 𝜒!=37.74,p<0.001).	The	

other	prey	traits	did	not	improve	the	predictive	performance	of	the	empirically	derived	models	

(trait	dynamics	are	shown	in	Appendix.5.1).				
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Figure	 5.2)	 Predictability	 of	 changes	 in	 species	 abundances	 in	 population	models	 containing	 different	
combinations	of	 information	about	prey	 traits	 (x-axis)	and	 the	 resource	composition	 (bar	 colour).	The	
predictability	is	quantified	by	measuring	the	prediction	error	between	the	observed	rates	of	change	of	
species	 abundances	 and	model	predictions,	 based	on	 the	RMSE	of	predictions	during	 cross	 validation	
(lower	RMSE	 is	better).	 Error	bars	 show	 the	 standard	error	of	 the	prediction	error	observed	between	
rounds	of	the	cross	validation,	the	midpoint	being	the	mean	prediction	error.	

	

TEMPERATURE	&	BODY	SIZE	DEPENDENT	CONSUMPTION	

The	temperature	specific	community	models	revealed	that,	across	the	temperature	gradient,	

changes	in	prey	body	size	influenced	community	dynamics	via	its	effect	on	the	consumption	of	

resources	by	prey	and	the	consumption	of	prey	by	predators	(Appendix.5.1).	The	predictions	of	

the	 full	 temperature	 dependent	 community	 model	 were	 consistent	 with	 the	 findings	 from	

temperature	 specific	 models	 (Appendix.5.1).	 Allowing	 the	 trait	 dependence	 of	 species	

interactions	 to	 vary	 smoothly	 with	 temperature	 significantly	 improved	 the	 predictive	

performance	of	the	full	community	model	relative	to	a	model	assuming	the	trait	dependence	

of	 consumption	did	not	vary	with	 temperature	 (Table.5.1).	Therefore,	warming	modified	 the	

trait	dependence	of	the	predator	and	prey’s	consumption	(Fig.5.3	&	Fig.5.4).			
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Table	5	1)	The	prediction	error	(RMSE)	of	full	community	models	allowing	the	trait	dependence	of	prey’s	
consumption	of	resources	(𝑓!")	and	predator’s	consumption	of	prey	(𝑓!")	to	vary	with	temperature	(+)	
or	 to	 be	 constant	 (-).	 Standard	 error	 of	 RMSE	 (s.e)	 shows	 variability	 of	 predictive	 error.	 Akaike	
information	 criterion	 (AIC)	 provides	 an	 alternative	 measure	 of	 relative	 model	 fit	 and	 gives	 results	
consistent	with	 those	 from	cross-validation.	 Selected	model,	with	 the	 lowest	prediction	error	and	AIC	
score	is	shaded	in	grey.	

Model	
	 Temperature	

dependence	 Prediction	 error	

(RMSE)	
RMSE	s.e	 AIC	

Term	1	 Term	2	
	

𝒇𝑹𝑵	 𝒇𝑵𝑷	

𝒇𝑹𝑵 𝐑,𝐙𝒊,𝐓 	 𝑓!"(𝑁, Z! ,T)	
	

+	 +	 0.341	 0.0178	 1616.9	

𝒇𝑹𝑵 𝐑,𝐙𝒊 	 𝑓!"(𝑁, Z! ,T)	
	

-	 -	 0.360	 0.0174	 1663.6	

𝒇𝑹𝑵 𝐑,𝐙𝒊,𝐓 	 𝑓!"(N, Z!)	
	

+	 -	 0.357	 0.0180	 1694.6	

𝒇𝑹𝑵 𝐑,𝐙𝒊 	 𝑓!"(N, Z!)	
	

-	 -	 0.368	 0.0174	 1707.0	

	

Across	 the	 temperature	 gradient,	 the	 consumption	 of	 resources	 by	 prey	 (𝑓!")	 was	 greatest	

when	 resource	 density	 was	 high	 (Fig.5.3).	 The	 effect	 of	 decreasing	 prey	 size	 on	 the	

consumption	rate	of	resources	by	prey	switched	as	temperature	increased.	At	low	to	medium	

temperatures	(14	-20	°C),	the	prey’s	consumption	of	resources	was	reduced	when	prey	body	

size	declined.	However,	as	the	temperature	increased	to	the	warmest	temperatures	(22-24°C),	

this	 relationship	 reversed.	Consumption	of	 resource	was	 then	greatest	 for	prey	with	 a	 small	

body	 size.	 Populations	 of	 these	 smallest	 individuals	 where	 only	 observed	 at	 the	 warmest	

temperatures	 and	 these	 populations	 had	 high	 rates	 of	 resource	 consumption	 compared	 to	

populations	at	other	temperatures	and	of	other	sizes.	

The	 temperature,	 trait	 and	 density	 dependence	 of	 consumption	 of	 prey	 by	 predators	 (𝑓!")	

followed	a	similar	pattern	(Fig.5.4).	Across	the	temperature	gradient,	the	consumption	of	prey	

by	 predators	 increased	with	 prey	 density.	 Furthermore,	 the	 effect	 of	 warming	 on	 the	 	 trait	

dependence	 of	 consumption	 varied	 in	 a	 comparable	 way	 to	 that	 of	 resource	 consumption	

(compare	 pattern	 in	 Fig.5.3	 &	 Fig.5.4).	 At	 low	 to	 medium	 temperatures	 (14	 -20	 °C),	 the	

consumption	of	prey	by	predators	was	lowest	when	prey	body	size	was	small.	This	relationship	

was	 also	 reversed	 as	 the	 temperature	 increased	 to	 the	 warmest	 temperatures	 (22-24°C).	

Consumption	of	prey	was	then	higher	when	prey	had	small	body	size.	
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Figure	5.3)	The	effect	of	temperature	on	the	trait	dependence	of	resource	consumption	by	prey	(𝑓!").	
Subpanels	 show	 the	 trait	 dependence	 of	 consumptiion	 infered	 for	 each	 experimentally	 observed	
temperature.	Consumption	depended	on	prey	body	area	 (Darker	green	signifies	higher	 consumption).	
The	range	of	prey	body	sizes	predicted	at	each	temperature	corresponds	to	that	observed	in	replicates	
under	experiencing	that	environment.	

	

	

Figure	5.4)	The	effect	of	temperature	on	the	trait	dependence	of	predator	consumption	of	prey	(𝑓!").	
Subpanels	 show	 the	 trait	 dependence	 of	 consumptiion	 infered	 for	 each	 experimentally	 observed	
temperature.	Consumption	depended	on	prey	body	area	(Darker	red	signifies	higher	consumption).	The	
range	 of	 prey	 body	 sizes	 predicted	 at	 each	 temperature	 corresponds	 to	 that	 observed	 in	 replicates	
under	experiencing	that	environment.	
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Discussion	

In	 this	 study,	 we	 investigated	 the	 link	 between	 the	 dynamics	 of	 species	 traits	 and	 their	

abundances	at	temperatures	along	an	environmental	gradient.	We	quantified	the	temperature	

and	 trait	 dependence	 of	 the	 vital	 rates	 underpinning	 community’s	 interactions	 and	 species	

dynamics.	 We	 found	 that	 across	 a	 temperature	 gradient,	 community	 dynamics	 were	

influenced	by	 temporal	 variation	 in	 species	 consumptive	 interactions	which	were	 associated	

with	 changes	 in	 the	 prey’s	 body	 size.	We	predicted	 that	 the	 traits	 associated	with	 temporal	

changes	 in	consumption	may	have	differed	across	the	temperature	gradient	(as	described	by	

Dijk	et	al.	2015).	However,	this	was	not	to	be	the	case	in	this	system.	By	modelling	community	

dynamics	 across	 the	 temperature	 range	 we	 revealed	 that	 warming	 modified	 the	 trait	

dependence	 of	 consumptive	 interactions.	 As	 a	 result,	 the	 reduction	 of	 prey	 body	 size,	

observed	in	all	replicates,	had	very	different	 impacts	on	consumption	rates	 in	warmer	versus	

cooler	environments.	

	

Trait	dependent	changes	in	consumption	in	cool	environments	

	At	lower	temperatures,	decreased	prey	body	size	was	linked	to	reductions	in	both	the	prey’s	

consumption	of	resource	and	also	the	predator’s	consumption	of	prey.	Over	time,	prey	shrank	

and	became	 less	vulnerable	to	predation	but	also	 less	effective	at	consuming	resources.	This	

indicates	 the	 presence	 of	 a	 growth-defence	 trade-off	 and	 suggests	 selection	 for	 individuals	

allocating	resources	into	defence.		

Smaller	prey	may	have	attained	better	defence	against	predation	as	a	 result	of	a	number	of	

mechanisms.	 Reduced	 size	 may	 not	 convey	 defence	 directly,	 but	 may	 be	 an	 indirect	

consequence	 of	 being	 defended	 or	 modifying	 its	 life	 history.	 Here	 we	 outline	 several	

mechanisms	 (see	 discussion	 in	 Chapter	 4).	 Firstly,	 smaller	 individuals	 may	 have	 invested	

resources	 in	 physical	 defence	 or	 earlier	 reproduction	 rather	 than	 growth	 (Riessen	&	 Sprules	

1990;	 Bolker	 et	 al.	 2003;	 Travis	 et	 al.	 2014).	 Secondly,	 they	 may	 have	 had	 an	 improved	

escape/avoidance	behaviour	when	encountering	predators,	which	comes	at	a	metabolic	cost.	

Thirdly,	 they	may	have	had	a	 reduced	 frequency	of	 predator	 encounters	but	 simultaneously	

decreased	resource	intake	due	to	altered	behaviour,	for	example	through	aggregation	(Schmitz	

et	al.	1997).	Finally,	 small	 individuals	may	have	saturated	predation	by	 increasing	processing	
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time	 through	production	of	 tough	 cellular	 structures.	 Further	work	 is	 required	 to	determine	

the	underlying	mechanism,	but	there	is	support	in	the	literature	for	a	role	of	several	of	these	

factors	in	microbial	communities	(Kusch	1993;	Hammill	et	al.	2010;	Roberts	et	al.	2011).	

	

Trait	dependent	changes	in	consumption	in	warm	environments	

At	 higher	 temperatures,	 the	 effect	 of	 trait	 change	 on	 consumption	 rates	 was	 reversed.	 As	

observed	at	 lower	temperatures,	prey	body	size	decreased	over	time.	Contrastingly,	this	was	

associated	with	increased	consumption	by	predators	and	prey.	This	 indicates	that,	over	time,	

prey	 became	 more	 effective	 at	 consuming	 resources	 but	 became	 more	 vulnerable	 to	

predation.	This	suggests	a	modification	of	the	growth-defence	trade-off	and	a	switch	towards	

selection	for	individuals	allocating	resources	into	ingestion	(growth)	instead	of	defence.		

Metabolic	theory	provides	an	explanation	for	this	contrasting	relationship	between	body	size	

and	 consumption	 rates	 at	 higher	 temperatures.	 Firstly,	 it	 predicts	 that	warming,	 to	within	 a	

species	 thermal	 range,	 increases	 both	 metabolism	 and	 consumption,	 with	 metabolic	 rates	

rising	at	a	faster	rate	(Binzer	et	al.	2012;	Reuman	et	al.	2013).	Secondly,	theory	predicts	that	

metabolic	 demands	 increases	 with	 body	 size	 and	 that	 warming	 should	 steepen	 this	 scaling	

relationship	(Atkinson	1994;	Gillooly	et	al.	2002;	Savage	et	al.	2004;	Binzer	et	al.	2012;	Reuman	

et	 al.	 2013).	 The	 “temperature-size-rule”	 (Atkinson	 1994)	 proposes	 that	 the	 relative	

performance	 of	 smaller	 individuals	 will	 increase	 with	 temperature	 as	 their	 lower	 metabolic	

demands	for	survival	in	warm	environments	can	more	easily	be	met	by	increased	consumption	

(Ohlberger	 2013).	 Accordingly,	 recent	 reviews	 have	 found	 warming-induced	 declines	 in	 the	

body	sizes	in	a	wide	range	of	taxa	(Gardner	et	al.	2011;	Sheridan	&	Bickford	2011).		

As	predicted	by	metabolic	theory,	we	found	that	consumption	rates	were	generally	higher	 in	

warmed	 environments.	 Although	 we	 did	 not	 directly	 measure	 metabolic	 rates	 across	 the	

temperature	 gradient,	 there	 is	 strong	empirical	 evidence	 that	metabolic	 rates	 in	 this	 system	

also	 increase	with	warming.	 In	agreement	with	the	“temperature-size-rule”,	 	a	wide	range	of	

protist	species,	are	known	to	show	body	size	reductions	in	response	to	warming	(Atkinson	et	

al.	 2003).	 It	 is	 also	 known	 that	 warming	 drives	 earlier	 reproduction	 of	 the	 prey	 species	

(Colpidium),	 as	 well	 as	 increasing	 respiration	 rates	 in	 this	 system	 (Pace	 &	 Kimura	 1944;	

Laybourn	1975;	Finlay	1977;	Fenchel	&	Finlay	1983;	Caron	et	al.	1986).	It	is	therefore	likely	that	

the	 body	 size	 declines	we	 observed	 are	 a	 physiological	 response	 to	warming,	 rather	 than	 a	

response	 to	 predation,	 as	 at	 lower	 temperatures.	 Future	 work	 could	 use	 ecosystem	
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measurements	 of	 oxygen	 and	 carbon	 fluxes	 to	 assess	 the	 dynamics	 of	 metabolic	 rates	 and	

obtain	a	fuller	understanding	of	the	temperature	driven	changes	in	body	size	and	the	ratio	of	

consumption	to	metabolism.	

Warm	 environmental	 conditions	 may	 have	 driven	 selection	 for	 smaller	 prey	 with	 higher	

feeding	rates,	due	to	the	high	metabolic	demands.	The	increased	consumption	of	small	prey	by	

predator,	 indicates	 that	 there	 was	 a	 concurrent	 reduction	 in	 the	 prey’s	 investment	 into	

defence	 against	 predation.	 Therefore,	 across	 temperatures,	 there	 appears	 to	 be	 a	 trade-off	

operating	between	resource	allocation	into	growth	and	defence.	Under	the	cooler	conditions,	

resource	 allocation	 into	 defence	 appears	 to	 be	 increased	 over	 time,	 whilst	 in	 the	 warmest	

conditions	 resources	 appear	 to	 be	 redirected	 into	 attaining	 growth	 in	 the	 metabolically	

demanding	environment.		

Our	 finding	 that	 reduced	 size	 is	 associated	 with	 increased	 predator	 vulnerability	 at	 high	

temperatures	but	decreased	vulnerability	at	low	temperatures,	indicates	that	body	size	is	not	

the	 directly	 influencing	 predation	 risk	 in	 this	 system.	 Instead,	 body	 size	 change	 is	 likely	 an	

indirect	consequence	of	modifications	in	life	history	strategy	or	resources	allocation	to	growth	

and	defence.	A	more	detailed	 knowledge	of	 trait	 underpinning	defence	would	 allow	a	more	

mechanistic	 understanding	 of	 the	 impacts	 of	 temperature	 change	 on	 trait	 dependent	

demography.	Nevertheless,	we	found	that	across	climate	conditions,	prey	body	size	variation	

was	consistently	associated	with	changes	in	species	interaction	strength.	Because	it	provides	a	

measure	 of	 resource	 allocation	 to	 growth,	 it	 is	 likely	 to	 be	 a	 useful	 trait	 to	 study	 when	

identifying	energetic	trade-offs	and	trait	dependent	processes.	Overall,	this	study	suggest	that	

environmental,	 density,	 trait	with	metabolic	measurements	may	need	 to	 be	 analysed	 in	 the	

context	of	metabolic	and	eco-evolutionary	and	 life	history	theory	 in	order	to	understand	the	

impacts	of	environmental	change	on	community	dynamics.	
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Appendices	

Appendix	1)	Trait	dependence	of	community	dynamics	and	trait	dynamics	

A)	Evaluation	of	temperature	specific	trait	dependent	community	models	

At	 each	 temperature	 along	 the	 experimental	 environmental	 gradient,	 we	measured	 species	

abundance	and	 trait	dynamics.	These	observed	dynamics	of	 community	abundance	and	 trait	

values	were	modelled	separately	for	each	temperature	level.	The	changes	in	abundance	were	

modelled	 as	 the	 combined	 impacts	 of	 resource	 population	 growth,	 consumption	 and	

predation.	 These	 were	 additively	 combined	 smooth	 functions	 of	 density	 and	 trait	 values	

(Following	 the	 methodology	 developed	 in	 Chapter	 4).	 Rival	 hypotheses	 about	 the	 trait	

dependence	 of	 community	 dynamics	 were	 compared	 at	 each	 temperate	 and	 the	 variables	

giving	with	the	lowest	overall	prediction	error	were	identified	using	cross	validation.	Here	we	

present	 summary	 figures	 describing	 the	 trait	 dependence	 of	 vital	 rates	 and	 the	 density	

dependence	of	trait	change	(Fig.S5.1:S5.6).	

At	 all	 temperatures,	 the	 inclusion	 of	 information	 about	 the	 dynamics	 of	 prey	 body	 size	 and	

resource	 composition	produced	 the	most	 significant	 reduction	 in	 the	prediction	error	of	 the	

empirically	 derived	 community	 models.	 Changes	 in	 prey	 body	 size	 influenced	 community	

dynamics	by	 influencing	both	the	consumption	of	resources	by	prey	and	the	consumption	of	

prey	by	predators.	Comparing	between	these	model	outputs	it	appears	that	warming	modified	

the	 trait	 dependence	 of	 the	 predator	 and	 prey’s	 consumption.	 At	 lower	 temperatures,		

decreased	 prey	 body	 size	 generally	 reduces	 resource	 consumption	 and	 the	 loss	 rate	 to	

predation.	 Conversely	 at	 the	 warmest	 temperatures	 (22-24	 degrees),	 	 decreased	 prey	 body	

size	 generally	 increased	 resource	 consumption	 and	 the	 loss	 rate	 to	 predation.	 A	 full	

temperature	 dependent	 community	 model	 was	 constructed	 to	 investigate	 the	 effect	 of	

warming	on	the	trait	dependence	of	species	interactions	(see	Fig.5.3	&	Fig.5.4	in	main	text).			

Across	 the	 temperature	 gradient,	 changes	 in	 prey	 body	 size	 were	 influenced	 by	 species	

densities,	 producing	 feedbacks	between	 trait	 and	ecological	 dynamics.	At	 low	 temperatures,	

high	predator	density	was	associated	with	a	reduction	in	prey	body	size.	This	was	reversed	at	

the	highest	two	temperatures.	High	predator	density	was	associated	with	increased	body	size.	

The	 results	 indicate	 that	 the	 body	 size	 responds	 differently	 to	 changes	 in	 predation	 rates.	

Across	temperatures,	a	 trade-off	appears	to	be	operating	between	growth	and	defence.	This	

would	drive	temporal	variation	in	demographic	rates.	
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Figure	 5.S2)	 Communities	 at	 14	 degrees:	 Trait	 and	 density	 dependence	 of	 community	 processes	 and	
trait	 change,	 identified	 in	 the	 empirically	 derived	 community	 model.	 The	 model	 showed:	 A)	 density	
dependent	 resource	 growth,	which	 varied	with	 the	 resource	 composition	 (line	 transparency),	 B)	 prey	
consumption	 of	 resources	 ,	 which	 varied	 with	 prey	 area	 (line	 wavelength	 colour)	 and	 resource	
composition,	C)	predator	consumption	of	prey,	which	varied	with	prey	area,	and	D)	change	in	prey	area	
trait,	which	was	dependent	on	predator	and	prey	density	(brightness	of	blue).			

	

Figure	 5.S3)	 Communities	 at	 16	 degrees:	 Trait	 and	 density	 dependence	 of	 community	 processes	 and	
trait	 change,	 identified	 in	 the	 empirically	 derived	 community	 model.	 The	 model	 showed:	 A)	 density	
dependent	 resource	 growth,	which	 varied	with	 the	 resource	 composition	 (line	 transparency),	 B)	 prey	
consumption	 of	 resources,	 which	 varied	 with	 prey	 area	 (line	 wavelength	 colour)	 and	 resource	
composition,	C)	predator	consumption	of	prey,	which	varied	with	prey	area,	and	D)	change	in	prey	area	
trait,	which	was	dependent	on	predator	and	prey	density	(brightness	of	blue).			
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Figure	 5.S4)	 Communities	 at	 18	 degrees:	 Trait	 and	 density	 dependence	 of	 community	 processes	 and	
trait	 change,	 identified	 in	 the	 empirically	 derived	 community	 model.	 The	 model	 showed:	 A)	 density	
dependent	 resource	 growth,	which	 varied	with	 the	 resource	 composition	 (line	 transparency),	 B)	 prey	
consumption	 of	 resources,	 which	 varied	 with	 prey	 area	 (line	 wavelength	 colour)	 and	 resource	
composition,	C)	predator	consumption	of	prey,	which	varied	with	prey	area,	and	D)	change	in	prey	area	
trait,	which	was	dependent	on	predator	and	prey	density	(brightness	of	blue).			

	

Figure	 5.S5)	 Communities	 at	 20	 degrees:	 Trait	 and	 density	 dependence	 of	 community	 processes	 and	
trait	 change,	 identified	 in	 the	 empirically	 derived	 community	 model.	 The	 model	 showed:	 A)	 density	
dependent	 resource	 growth,	which	 varied	with	 the	 resource	 composition	 (line	 transparency),	 B)	 prey	
consumption	 of	 resources,	 which	 varied	 with	 prey	 area	 (line	 wavelength	 colour)	 and	 resource	
composition,	C)	predator	consumption	of	prey,	which	varied	with	prey	area,	and	D)	change	in	prey	area	
trait,	which	was	dependent	on	predator	and	prey	density	brightness	of	blue).			
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Figure	 5.S6)	 Communities	 at	 22	 degrees:	 Trait	 and	 density	 dependence	 of	 community	 processes	 and	
trait	 change,	 identified	 in	 the	 empirically	 derived	 community	 model.	 The	 model	 showed:	 A)	 density	
dependent	 resource	 growth,	which	 varied	with	 the	 resource	 composition	 (line	 transparency),	 B)	 prey	
consumption	 of	 resources,	 which	 varied	 with	 prey	 area	 (line	 wavelength	 colour)	 and	 resource	
composition,	C)	predator	consumption	of	prey,	which	varied	with	prey	area,	and	D)	change	in	prey	area	
trait,	which	was	dependent	on	predator	and	prey	density	(brightness	of	blue).			

	

Figure	 5.S7)	 Communities	 at	 24	 degrees:	 Trait	 and	 density	 dependence	 of	 community	 processes	 and	
trait	 change,	 identified	 in	 the	 empirically	 derived	 community	 model.	 The	 model	 showed:	 A)	 density	
dependent	 resource	 growth,	which	 varied	with	 the	 resource	 composition	 (line	 transparency),	 B)	 prey	
consumption	 of	 resources,	 which	 varied	 with	 prey	 area	 (line	 wavelength	 colour)	 and	 resource	
composition,	C)	predator	consumption	of	prey,	which	varied	with	prey	area,	and	D)	change	in	prey	area	
trait,	which	was	dependent	on	predator	and	prey	density	(brightness	of	blue).			
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B)	Additional	trait	dynamics	

In	 addition	 to	body	 size,	 other	prey	 traits	were	measured	 for	 replicate	populations	over	 the	

course	of	the	experiment	(Fig.S.7).	Their	dynamics	were	not	associated	with	changes	in	species	

abundance,	however	there	were	some	fluctuations	in	the	trait	dynamics	that	were	consistent	

across	replicates.		A	decreasing	swimming	speed	was	observed	at	all	temperatures	during	the	

first	30	days.	A	second	peak	in	swimming	speed	was	apparent	at	 lower	temperatures	around	

day	 50.	 A	 similar	 pattern	was	 observed	 for	 the	 dispersal	 rate.	 Finally,	 the	 turning	 variability	

showed	less	clear	trends	over	time	or	across	the	temperature	gradient.	

		

	

Figure	5.S8)	The	effects	of	temperature	on	the	dynamics	of	A)	prey	swimming	speed,	B)	prey	dispersal	
rate	and	C)	prey	turning	variability.	Observations	from	replicates	at	each	temperature	are	plotted	over	
time	 (coloured	 points)	 and	 population	 trends	 are	 indicated	 by	 smoothed	 population	 trajectories	
(coloured	lines;	these	are	local	polynomial	regressions	and	confidence	bands).		
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C)	Body	size	in	predated	and	un-predated	treatments	at	different	temperatures.	

Prey	body	size	dynamics	were	 fairly	 consistent	between	 replicates	 that	were	exposed	 to	 the	
same	 temperature	 and	 predation	 treatment.	 Across	 temperature	 and	 predation	 treatments,	
prey	body	 size	 decreased	over	 the	duration	of	 the	 experiment.	 The	body	 size	declines	were	
greatest	 at	 high	 temperatures.	 Notably,	 at	 all	 temperatures,	 prey	 that	 were	 exposed	 to	
predation	decreased	in	size	more	than	those	that	were	not	exposed.	

	

Figure	 5.S	 9)	 The	 effects	 of	 temperature	 on	 the	 dynamics	 of	 prey	 body	 size	 in	 treatments	 that	 are	
exposed	to	predation	(red)	or	not	exposed	to	predation	(grey).For	each	temperature,	 the	dynamics	of	
mean	body	size	are	shown	for	each	replicate	in	the	predation	treatments	(Solid	lines).	Error	bars	at	each	
time	point	(often	very	small)	indicate	the	standard	error	of	body	size	measurements	in	that	sample.	
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Chapter	 6:	 Do	 mark-recapture	 analyses	 using	 AIC	 model	 comparisons	 produce	

reliable	inferences	about	the	climate	dependence	of	demographic	rates?	

Jason	 I.	 Griffiths,	 Robert	 P.	 Freckleton,	 Karl	 L.	 Evans,	 Ben	 J.	 Hatchwell,	 Philippa	R.	Gullett	&	

Dylan	Z.	Childs	

Abstract	

1. Impacts	of	climate	on	demographic	rates	 (e.g.	annual	survival)	are	frequently	 inferred	by	

comparing	 the	 performance	 of	 alternative	 mark-recapture	 climate	 models	 at	 explaining	

individual	encounter	histories.	Information	theoretic	methods,	such	as	AIC,	are	often	used.	

Reliable	 inference	 requires	 identification	 of	 appropriate	 climate	 models	 and	 accurate	

estimation	of	climate	effects.	Unmeasured	processes	complicate	inferences	by	introducing	

random	 year-specific	 deviations	 in	 survival.	 Furthermore,	 non-independence	 of	

observations	within	years	complicates	definitions	of	sample	sizes,	potentially	substantially	

biasing	conclusions.		

2. A	 review	 of	 recent	mark-recapture	 studies	 of	 climatic	 dependent	 survival	 revealed	 that	

87%	of	 information	 theoretic	based	 investigations	use	a	 standard	 fixed	effects	 likelihood	

framework.	 This	 ignores	 unmeasured	 processes	 that	 could	 influence	 survival.	 The	

remaining	13%	constructed	 random	effects	models	 to	account	 for	 these	processes	using	

either	 the	method	of	moments	 or	marginal	 likelihood	 random	effects	 frameworks.	 Such	

studies	usually	calculate	sample	size	as	the	number	of	released	individuals	rather	than	the	

number	 of	 years	 of	 study	 (which	 is	 justifiable	 in	 the	 context	 of	 climate-survival	

relationships).	

3. We	simulated	mark-recapture	datasets	with	a	known	climatic	dependence	of	survival	and	

analysed	 them	 using	 each	 likelihood	 framework	 and	 sample	 size	 definition.	 The	 fixed	

effects	analyses	rarely	supported	the	data-generating	survival	model,	frequently	identified	

spurious	 climate	 variables	 and	 underestimated	 genuine	 climatic	 effects.	 Incorporating	

random	 effects	 using	 the	method	 of	 moment	 was	 ineffective.	 Favourably,	 the	marginal	

likelihood	 random	 effects	 framework	 consistently	 allowed	 identification	 and	 unbiased	

estimation	of	climatic	effects.	Defining	the	effective	sample	size	as	the	number	of	year	of	

study,	rather	than	the	number	of	observations,	generated	more	reliable	inference.		

4. Analyses	of	a	real	world	long-term	dataset	highlighted	the	impact	of	these	methodological	

choices	 on	 our	 inferences	 of	 climatic	 dependence	 and	 future	 survival	 projections.	 Using	

standard	 methodologies,	 spurious	 climate	 effects	 were	 detected	 and	 climate	 effects	

misestimated.			
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5. Overall,	we	argue	 that	numerous	 studies	use	 inadequate	methods	 to	estimate	effects	of	

climate	change	on	survival.	To	reliably	detect	climatic	dependencies	and	avoid	incorrectly	

attributing	 random	variation	 in	 survival	 to	 climate	 variables,	marginal	 likelihood	 random	

effects	 analyses	 are	 required	 in	 which	 the	 sample	 size	 is	 defined	 as	 the	 number	 of	

occasions	when	survival	is	estimated.	

	

Key	 words:	 Climate	 change,	 Survival,	 Capture-mark-recapture,	 Demographic	 modelling,	

Alternative	 likelihood	frameworks,	Environmental	stochasticity,	 Information	theoretic	

approach,	Marginal	likelihood	Random	effects,	Long-tailed	tit,	Aegithalos	caudatus	

	

Introduction	

Climatic	 conditions	 strongly	 influence	 species’	 demographic	 rates	 and	 local	 abundances	 (	

Sæther	et	al.	2000;	Walther	et	al.	2002;	Jenouvrier	2013),	but	identifying	and	quantifying	the	

climatic	variables	with	the	greatest	impact	is	challenging	(Sæther	et	al.	2004;	Ådahl,	Lundberg	

&	 Jonzén	 2006).	 Multiple	 climatic	 variables	 may	 interact	 to	 influence	 demographic	 rates	

(Parmesan	 et	 al.	 2013;	 Griffiths	 et	 al.	 2014),	 specific	 seasonal	 conditions	 may	 be	 highly	

influential	(Ireland	et	al.	2004;	Luis	et	al.	2010;	Jansen	et	al.	2014)	and	numerous	unmeasured	

stochastic	 factors	will	produce	additional	chance	variation	(Sæther	1997;	Jonzén	et	al.	2010).	

Analyses	 are	 increasingly	 undertaken	 to	 project	 species	 responses	 to	 forecasted	 climate	

changes	(IPCC	2013;	Wolf	et	al.	2010;	Ruete	et	al.	2012;	Jenouvrier	et	al.	2009,	2012),	but	for	

inferences	and	projections	to	be	informative	we	require	methods	that	can:	(1)	identify	the	true	

climatic	dependencies	of	demographic	 rates	 from	a	suite	of	possible	climatic	drivers;	and	 (2)	

accurately	quantify	the	effect	sizes	of	these	climatic	impacts.		

This	 paper	 focuses	 on	 methods	 used	 when	 data	 are	 observational	 and	 there	 is	 little	 prior	

knowledge	of	the	prevailing	climatic	dependencies	of	demography.	In	this	situation,	competing	

potential	climate	hypotheses	must	be	formalized	into	statistical	models	and	compared	in	their	

relative	 consistency	 with	 data	 (Burnham	 et	 al.	 2011).	 Alternatively,	 when	 a	 clearly	 defined	

hypothesis	 can	 be	 defined	 about	 the	 climate	 dependence	 of	 demography,	 well	 established	

methodologies	are	available	(Gimenez	et	al.	2007;	Gimenez	et	al.	2012;	Grosbois	et	al.	2008;	

Lebreton	et	al.	2012;	Frederiksen	et	al.	2014).	The	reliability	of	demographic	analyses	used	in	

the	former	context	remain	largely	unevaluated.	
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To	 study	 the	 demography	 of	 wild	 populations,	 mark	 recapture	 field	 studies	 are	 frequently	

undertaken.	To	 identify	climatic	drivers	of	variation	 in	survival	 rates,	capture	mark	recapture	

(CMR)	 models	 are	 commonly	 constructed	 to	 describe	 a	 suite	 of	 hypotheses	 about	 climate	

dependent	 survival.	 These	 can	 be	 parameterized	 using	 data	 on	 the	 encounters	 of	 marked	

individuals	over	a	study	period.	A	likelihood	of	each	model	is	obtained,	as	well	as	estimates	of	

the	 postulated	 climatic	 effects	 (Lebreton	 et	 al.	 1992;	 Maunder	 et	 al.	 2009).	 The	 relative	

strength	of	support	for	each	climate	hypothesis	can	be	measured	using	information	theoretic	

model	 comparison,	 commonly	 based	 on	 Akaike’s	 information	 criterion	 (AIC)	 or	 a	 corrected	

form	(e.g.	QAIC	or	AICc)	 (Akaike	1973;	Burnham	&	Anderson	2002).	These	criteria	penalize	a	

model	likelihood	term	based	on	the	model’s	complexity.		

When	information	theoretic	comparisons	are	applied	to	sets	of	models	parameterised	using	a	

limited	dataset,	a	finite	sample	size	correction	term	is	required	(Burnham	&	Anderson	2002).	

This	applies	stronger	penalties	to	complex	models	when	data	is	sparse,	to	prevent	overfitting.	

However,	 determining	 the	 number	 of	 effectively	 independent	 samples	 in	 a	 CMR	 climate	

analyses	is	not	straightforward	(Kendall	&	Bjorkland	2001).	Many	individuals	can	be	observed	

each	year,	suggesting	a	very	large	sample	size,	however	they	all	experience	the	common	year-

specific	 climate	 conditions	 and	 therefore	 have	 non-independent	 survival.	 When	 inferring	

climate	 drivers	 of	 variation	 in	 survival	 over	 time,	we	 propose	 that	 the	 effective	 sample	 size	

may	more	justifiably	be	defined	as	the	number	of	occasions	in	which	climate	variables	can	be	

related	 to	 survival	 (Lukacs	 et	 al.	 2004;	 Grosbois	 et	 al.	 2008).	 In	 contrast,	 mark-recapture	

programs	frequently	used	to	perform	climate	analyses	(MARK	and	E-SURGE)	define	the	sample	

size	as	the	number	of	individuals	released	prior	to	the	final	capture	occasion.	This	implies	that	

each	 recapture	 provides	 independent	 information	 to	 infer	 the	 climate	 dependence	 of	

demography.	By	ignoring	the	non-independence	of	individuals’	environments,	the	sample	size	

may	 be	 vastly	 overestimated.	 This	 would	 cause	 information	 theoretic	 corrections	 to	

insufficiently	penalize	overly	 complex	models	 resulting	 in	 the	 frequent	detection	of	 spurious	

relationships	between	survival	and	climate.	

Information	theoretic	approaches	are	used	for	two	purposes:	firstly	to	identify	climatic	factors	

influencing	survival	and	secondly	to	make	predictions	of	climate	dependent	survival.	However,	

information	 theoretic	 approaches	 are	 conceptually	 designed	 to	 produce	 a	 good	 predictive	

model,	and	not	necessarily	to	reliably	identify	climatic	impacts	on	survival,	though	the	latter	is	

the	context	in	which	they	are	frequently	applied.	Grosbois	et	al.	(2008)	note	that	the	efficacy	

of	AIC	to	identify	influential	climatic	variables	has	received	little	evaluation.	Nevertheless,	such	
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approaches	 are	 widely	 applied	 as	 they	 are	 thought	 to	 alleviate	 the	 problems	 of	 multiple	

hypothesis	 testing	and	account	 for	model	uncertainty	 through	model	averaging	 (Burnham	et	

al.	2011).	

The	 construction	 of	 CMR	models	 describing	 the	 climate	 dependence	 of	 demography	 is	 also	

complicated	 by	 the	 ubiquitous	 presence	 of	 unmeasured	 environmental	 factors	 that	 have	

demographic	effects	(e.g.	extreme	weather	events	or	disease	outbreaks)(Grosbois	et	al.	2008;	

Frederiksen	et	al.	2014).	Reliable	 inference	of	 the	climate	dependence	of	demographic	 rates	

requires	that	inter-annual	variation	in	these	rates	is	correctly	attributed	to	climatic	causes	and	

not	 inflated	 by	 attribution	 of	 variation	 resulting	 from	 unmeasured	 factors	 (Lebreton	 et	 al.	

2012).	 The	 consequence	 of	 this	 can	 be	 the	 frequent	 identification	 of	 spurious	 climate	

relationships.	 A	 review	 by	Grosbois	et	 al.	 (2008)	 proposed	 that	 information	 theoretic	 based	

analyses	of	climatic	impacts	upon	survival	may	be	greatly	improved	by	utilizing	random	effects	

CMR	 models	 to	 describe	 the	 impacts	 of	 unmeasured	 factors	 as	 random	 year	 effects.	 In	

contrast,	 CMR	 climate	 implemented	 in	 commonly	 used	 programs	 such	 as	 MARK	 (White	 &	

Burnham	1999)	or	E-SURGE	(Choquet	et	al.	2009)	are	usually	performed	using	a	fixed	effects	

likelihood	framework	in	which,	conditional	on	measured	climate	variables,	the	values	of	model	

coefficients,	such	as	mean	survival	rate,	are	assumed	to	be	constant	across	years.	This	assumes	

that	 temporal	 variation	 in	 demographic	 rates	 is	 completely	 determined	 by	 the	 climatic	

variables	 included	 in	 the	 model,	 with	 additional	 variation	 resulting	 only	 from	 observational	

uncertainty	(Lebreton	et	al.	1992).	Since	every	climatic	process	influencing	demography	cannot	

be	 measured,	 the	 assumption	 that	 other	 stochastic	 processes	 are	 negligible	 is	 likely	 to	 be	

frequently	violated.	

We	 conducted	 a	 review	 of	 subsequently	 published	 studies	 (2008-2015)	 investigating	 the	

climatic	 dependence	 of	 survival	 using	 mark-recapture	 methodologies	 (Supplement	 1).	 We	

focused	on	studies	where	multiple	climatic	variables	were	considered	as	drivers	of	variation	in	

survival	and	information	theoretic	model	selection	was	carried	out	to	identify	climate	drivers.	

Of	 the	 71	 relevant	 studies,	 only	 9	 used	 a	 random	 effects	 framework	 to	 account	 for	

unmeasured	 environmental	 causes	 of	 inter-annual	 variation	 in	 survival	 and	 this	 has	 been	

achieved	using	two	fundamentally	different	frameworks	(Supplement	1b).	First,	the	method	of	

moments	(MOM)	framework	initially	fits	time-varying	survival	models,	and	then	uses	shrinkage	

estimation	 and	 variance	 components	 analyses	 to	 attribute	 variation	 in	 survival	 to	 explicitly	

modelled	 covariates	 and	 stochastic	 effects	 (Franklin	 et	 al.	 2000;	 Burnham	 &	 White	 2002;	

Loison	et	al.	2002;	Royle	&	Link	2002).	Secondly,	the	marginal	likelihood	framework	specifies	a	
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hierarchical	 model	 to	 describe	 stochastic	 inter-annual	 variation	 and	 uses	 a	 numerical	

integration	 scheme	 to	 marginalise	 the	 likelihood	 with	 respect	 to	 these	 random	 effects	

(Maunder	 et	 al.	 2009).	 The	 MOM	 approach	 is	 relatively	 easily	 implemented,	 whilst	 the	

marginal	 likelihood	 framework	 requires	 the	 numerical	 integration	 of	 a	 high	 dimensional	

integral,	making	it	more	difficult	and	rarely	employed	(but	Laake	et	al.	2013	provides	a	tool	to	

aid	this).	Furthermore,	the	sample	size	in	information	theoretic	model	comparison	calculations	

was	almost	always	defined	as	the	number	of	 individuals	 released	(but	see	Lukacs	et	al.	2004	

and	Grosbois	et	al.	2008	for	alternate	calculations).				

We	 evaluated	 the	 reliability	 of	 the	 CMR	 analyses	 in	 identifying	 and	 quantifying	 the	 climate	

dependent	 demography.	 Firstly	 we	 examined	 the	 performance	 of	 the	 three	 likelihood	

frameworks	for	relating	survival	to	climate:	(i)	the	fixed	effects	framework,	(ii)	the	method	of	

moments	 random	 effects	 framework,	 and	 (iii)	 the	 marginal	 likelihood	 random	 effects	

framework.	Secondly,	we	evaluated	whether	information	theoretic	model	selection	should	be	

applied	using	corrections	for	sample	size	based	on	either	a)	the	number	of	individuals	released	

or	 b)	 the	 number	 of	 years	 of	 study.	We	use	 individual	 based	 simulations	 to	 generate	mark-

recapture	 datasets	 with	 a	 known	 climatic	 dependence	 of	 survival.	 We	 then	 used	 each	

combination	 of	 likelihood	 framework	 and	 information	 theoretic	 sample	 size	 correction	 to	

perform	 CMR	 climate	 analyses.	 We	 assessed	 the	 ability	 of	 each	 framework	 to:	 distinguish	

among	candidate	hypotheses,	detect	the	data-generating	model	and	quantify	climatic	effects	

on	 survival.	 The	 concordance	 of	 the	 inferred	 climate	 dependencies	 of	 survival	 with	 the	

simulated	causal	processes	provides	a	direct	test	of	the	performance	of	the	CMR	frameworks	

(Taper	et	al.	2008).	Finally,	we	use	a	19-year	real	world	dataset	of	avian	survival	 to	 illustrate	

how	the	choice	of	framework	influences	our	inference	about	the	climatic	dependence	of	avian	

survival	and	the	projections	of	future	rates.	

	

Methods		

We	used	three	types	of	datasets	to	test	how	the	choice	of	likelihood	modelling	framework	and	

sample	 size	 definition	 influences	 the	 reliability	 of	 inferences.	 The	 first	 two	 datasets	 were	

derived	 from	 two	 individual-based	 simulation	 models	 in	 which	 climatic	 impacts	 on	 survival	

were	either	present	or	absent.	We	varied	the	number	of	years	of	observations	and	the	number	

of	individuals	that	were	captured	and	marked	each	year.	This	variation	reflected	the	range	of	

research	 effort	 observed	 in	 the	 published	 studies	 included	 in	 our	 literature	 review.	We	 also	
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varied	 the	 magnitude	 of	 environmental	 stochasticity,	 which	 encompasses	 the	 year-specific	

variation	 in	 survival	 caused	 by	 unmeasured	 sources.	 The	 third	 dataset	 comprised	 real-world	

data	 on	 survival	 rates	 in	 an	 individually	 colour	 ringed	 long-tailed	 tit	 (Aegithalos	 caudatus)	

population	in	the	Rivelin	Valley,	Sheffield	(UK).		

We	applied	three	mark-recapture	modelling	frameworks	to	each	dataset.	For	all	simulations,	a	

common	model	set	 that	captured	climate	dependencies	was	parameterized.	To	compare	the	

performance	of	these	candidate	climatic	models,	an	information	theoretic	model	comparison	

was	used,	with	a	correction	applied	for	small	sample	sizes.	To	investigate	whether	the	effective	

sample	size	of	analyses	is	more	appropriately	defined	as	the	number	of	individual	releases	or	

the	 number	 of	 years	 of	 study,	 the	 model	 comparison	 process	 was	 repeated	 under	 each	

assumption.	 Model	 averaging	 was	 then	 applied	 over	 the	 model	 set.	 An	 equivalent	

methodology	was	then	applied	to	the	long-tailed	tit	dataset,	and	the	inferences	of	each	CMR	

framework	were	used	 to	predict	 future	climate	dependent	 survival	under	a	 range	of	 climate	

conditions.		

	

SIMULATION	ANALYSES	

Individual-based	 simulations	 were	 used	 to	 generate	 encounter	 history	 datasets	 with	 known	

sources	 of	 variation	 in	 survival.	 The	 first	 scenario	 was	 used	 to	 assess	 the	 ability	 of	 the	

alternative	 mark-recapture	 frameworks	 to	 identify	 support	 for	 the	 data-generating	 climatic	

model	(test	1).	The	second	scenario	was	used	to	determine	the	accuracy	of	estimated	climatic	

effects	(test	2).		

	

Simulation	of	climatic	dependent	survival	and	encounter	history	observation		

Individual-based	 simulations	 of	 survival	 and	 re-sighting	 were	made	 under	 a	 spatially	 closed	

population,	 two-sex	 Cormack-Jolly-Seber	 (CJS)	 model	 (Appendix.2).	 Individual	 survival	 was	

simulated	 based	 on	 year-specific	 survival	 rates,	 which	 depended	 on	 climate	 covariate	

measurements	and	also	unmeasured	stochastic	processes.	Standardised	measurements	of	four	

climate	variables	(𝑋!:!)	were	simulated	as	independent	random	variables	drawn	from	a	normal	

distribution,	with	a	mean	of	zero	and	standard	deviation	of	one:	𝑋!~𝑁 0,1 .	The	 logit-linear	

impacts	of	climatic	conditions	on	survival	were	defined	by	the	parameter 𝛽!!.		
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Under	the	first	simulation	scenario,	survival	and	re-sighting	were	independent	of	all	measured	

climate	 variables.	 Year-specific	 survival	 (ф 𝑡 )	 varied	 randomly	 around	 the	 mean	 annual	

survival	 probability	 (𝜇ф),	 with	 the	 intensity	 of	 variation	 depending	 on	 the	 environmental	

stochasticity	 parameter	 (𝜎ф).	 In	 the	 second	 set	 of	 simulations,	 year-specific	 survival	 was	

dependent	upon	a	single	climatic	variable	(𝑋!"#)	but	independent	of	all	other	climate	variables	

(𝑋!"#$%)	(i.e.	only	one	of	the	model	covariates	reflect	the	causes	of	variation	in	survival).	Year-

specific	 survival	 (ф 𝑡 )	 varied	 randomly,	 on	 the	 logit	 scale,	 around	 the	 expected	 annual	

survival	 probability	 (𝜇ф + 𝑋!  𝛽!!).	 Year-specific	 impacts	 of	 unmeasured	 processes	 were	

incorporated	 by	 adding	 normally	 distributed	 year-specific	 deviation	 (𝜀ф(!)),	 again	 with	 an	

intensity	 determined	 by	 the	 environmental	 stochasticity	 parameter	 (𝜎ф).	 Therefore,	 in	 both	

simulations	 the	 year-specific	 survival	 (ф 𝑡 )	 was	 calculated	

as: ф 𝑡 = !

!!!"#! !ф!( !!∗!!!
!
!!!  )! !ф(!)  

 ,	where	𝜀ф(!)~𝑁 0,𝜎ф .		

An	individual’s	annual	survival	from	time	t	to	t+1	(𝑆!,!)	was	simulated,	using	the	year-specific	

survival	 probability	 (ф 𝑡 )	 as	 the	 success	 probability	 parameter	 of	 a	 Bernoulli	 distribution:	

𝑆!,!~𝐵𝑒𝑟𝑛(ф t ).	 Re-sighting	 of	 surviving	 individuals	 (𝑂𝑏𝑠!,!|𝑆!,!)	 was	 then	 simulated	 as	 a	

second	Bernoulli	process	with	a	constant	probability	of	re-sighting	(𝜇!):	𝑂𝑏𝑠!,!|𝑆!,!~𝐵𝑒𝑟𝑛(𝜇!).	

Encounter	 histories	 were	 simulated	 for	 equal	 numbers	 of	 male	 and	 female	 individuals	 and	

both	sexes	had	a	true	mean	annual	survival	probability	(𝜇ф)	of	0.5	and	re-sighting	probability	

(𝜇!)	of	0.9.	

	

Defining	the	candidate	model	set	

A	set	of	25	candidate	CJS	models	were	constructed,	under	each	of	the	three	alternate	mark-

recapture	 frameworks:	 fixed	 effects,	marginal	 likelihood	 random	 effects,	 and	MOM	 random	

effects.	 	 The	 models	 formalise	 a	 common	 set	 of	 competing	 hypotheses	 about	 the	 climatic	

dependence	 of	 survival	 underlying	 our	 simulated	 datasets.	 The	 set	 included	 the	 data-

generating	 climate	 model	 and	 a	 suite	 of	 plausible	 candidate	 models	 defining	 alternate	

hypotheses	 about	 the	 climate	 dependence	 of	 survival.	 Specifically,	 we	 first	 formulated	 a	

candidate	 model,	 in	 which	 year-specific	 survival	 (ф 𝑡 )	 depends	 on	 the	 mean	 survival	 rate	

( 𝜇ф),	 the	 additive	 effects	 of	 four	 climatic	 variables	 (𝛽!!),	 and	 the	 interactions	 between	 two	

pairs	of	these	variables	(𝛽!!"):	

	𝜇ф + 𝛽!!𝑋! = 𝜇ф + 𝛽!!𝑋! + 𝛽!!𝑋! + 𝛽!!𝑋! + 𝛽!!𝑋! + 𝛽!!"(𝑋!.𝑋!) + 𝛽!!"(𝑋!.𝑋!))
!
!!! 	
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We	 then	 constructed	 all	 24	 nested	 models	 which	 can	 be	 derived	 from	 this	 model.	 The	 re-

sighting	probability	was	modelled	as	a	climate	independent	constant.		

	

Mark-recapture	analyses	under	alternate	likelihood	frameworks	

Under	 each	 likelihood	 modelling	 framework,	 the	 candidate	 set	 of	 25	 models	 was	

parameterised	 for	each	simulated	dataset.	The	 frameworks	differ	 in	whether,	and	how,	 they	

account	 for	 impacts	 of	 unmeasured	 sources	 of	 variation	 in	 survival	 and	 also	 the	 way	 they	

calculate	the	effective	number	of	parameters	to	be	estimated.	

Fixed	 effects	 models	 were	 fitted	 by	 assuming	 that	 model	 coefficients	 are	 constant	 across	

years.	 Under	 this	 approach,	 encounter	 histories	 provide	 information	 that	𝑀! 	 individuals	 are	

marked	 at	 time	 j	 and	 that	 of	 these	 individuals,	𝑅!" 	 are	 first	 recaptured	 at	 time	 i.	 Under	 the	

assumptions	of	a	CJS	model,	the	probability	of	an	individual	marked	at	time	j	being	recaptured	

in	 time	 i,	 but	 not	 before,	 can	 be	 calculated	 (𝑃𝑟!,! =  ф 𝑖 𝑝 𝑖 ф 𝑡 1 − 𝑝 𝑡  !!!
!!! )	 and	 a	

likelihood	 function	 defined.	 Fixed	 effects	 models	 were	 fitted	 using	 the	 widely	 used	 mark	

recapture	software	MARK	and	the	R	package	“RMark”	(Laake	2013;	R	Core	Team	2014).	

The	two	random	effects	frameworks	account	for	inter-annual	variation	in	survival	that	cannot	

be	explained	by	the	covariates,	but	do	so	 in	different	ways.	Under	the	MOM	random	effects	

framework,	 a	 fully	 time-dependent	 fixed	 effects	 survival	model	 is	 first	 parameterised.	 From	

this,	 a	 conditional	 maximum	 likelihood	 estimate	 of	 mean	 survival	 𝑆	 can	 be	 obtained.	

Subsequently,	 variance	 components	 estimation	 is	 applied	 using	 derived	 estimates	 of	 year-

specific	 survival	 𝑆!  and	 estimated	 variance-covariance	 matrix	of	 temporal	 deviations	 in	

survival.	 This	 allows	 time-varying	 covariates	 to	 be	 accommodated	 while	 simultaneously	

estimating	 the	 environmental	 stochasticity	 (Burnham	 &	 White	 2002).	 The	 MOM	random	

effects	models	were	implemented	using	“RMark”.	

Under	the	marginal	likelihood	random	effects	framework,	year-specific	deviations	(𝜀ф(!))	from	

the	 mean	 survival	 rate 𝜇ф 	 followed	 a	 normal	 distribution	 (on	 a	 logit	 scale),	 where	

𝜀ф(!)~𝑁 0,𝜎ф 	 (Royle	&	 Link	 2002).	 The	marginal	 likelihood	 random	effects	 framework	was	

implemented	 using	 the	 automatic	 differentiation	 model	 builder	 (ADMB)	 software	 which	

employs	 the	 Laplace	approximation	 to	approximate	 the	high-dimensional	 integral	 associated	

with	 the	 random	 effects	 (Fournier	 et	 al.	 2012).	 Simulations	 were	 automated	 through	
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generation	 of	 input	 files	 in	 R	 and	 interfacing	 with	 ADMB	 was	 then	 achieved	 using	 the	

“R2admb”	R	package	(Bolker,	Skaug	&	Laake	2013).		

	

Model	comparison		

An	 information	 theoretic	 approach	was	used	 to	 compare	 the	 support	 for	 each	model	 in	 the	

candidate	set	in	each	CMR	analysis	(Burnham	&	Anderson	2002).	Model	comparison	was	based	

on	 AICc	 scores: 𝐴𝐼𝐶𝑐 =  −2𝐿 + 2𝑘 + !! !!!
!!!!!

.	 This	 approach	 compares	 model	 likelihoods	 (L)	

whilst	penalising	based	on	the	effective	number	of	estimated	parameters	(k)	and	correcting	for	

small	 sample	 sizes	 (n)	 (Burnham	&	 Anderson	 2002).	 Notably,	 the	 CMR	 frameworks	 differ	 in	

how	they	define	the	number	of	estimated	parameters	(k).	Under	the	fixed	effects	framework,	

k	 is	 simply	 the	 total	 number	 of	 model	 coefficients,	 whilst	 under	 the	 marginal	 likelihood	

framework,	k	is	the	number	of	fixed	effects	parameters	plus	one	random	effect	parameter	for	

the	variance 𝜎ф .	Finally,	the	MOM	framework	estimates	k	based	on	the	dimension	of	random	

effects	parameter	space	(Hodges	&	Sargent	2001;	Burnham	&	White	2002).	

The	effective	sample	size	(n)	in	AICc	comparisons	of	CMR	models	can	be	defined	as	either:	a)	

the	number	of	individuals	released	prior	to	the	last	capture	occasion	(n=𝑛!"#)	or	b)	the	number	

of	years	of	study	(n=𝑛!"#).	If	the	first	definition	is	used,	the	sample	size	will	be	much	larger	and	

the	correction	for	having	a	limited	amount	of	data	will	be	negligible.		For	example,	consider	a	

situation	in	which	a	very	large	number	of	individuals	were	observed	over	just	three	years.	In	a	

CMR	 analysis	 linking	 inter-annual	 variation	 in	 survival	 to	 climatic	 drivers,	 there	 is	 very	 little	

information	 to	determine	 the	 factors	driving	variation	between	years,	 as	all	 individuals	have	

experienced	 the	 same	 conditions	 over	 just	 a	 few	 years.	 However,	 standard	 analyses	

implemented	using	common	mark-recapture	software	would	define	the	sample	size	to	be	very	

large	and	would	not	apply	a	strong	AIC	penalty	term	to	correct	for	data	limitation.	Therefore,	

when	the	aim	is	to	identify	the	climatic	drivers	of	variation	in	survival	between	years,	it	may	be	

more	 appropriate	 to	 define	 the	 sample	 size	 of	 effectively	 independent	 data	 points	 as	 the	

number	of	years	of	study,	rather	than	the	number	of	individuals	released.	To	determine	which	

definition	 is	 most	 appropriate,	 we	 repeated	 the	 AICc	 calculations	 and	 subsequent	 analyses	

under	each	assumption.		

The	relative	support	for	each	candidate	model	 in	a	set	was	determined	by	calculating	∆𝐴𝐼𝐶𝑐		

scores:	𝐴𝐼𝐶𝑐! − 𝐴𝐼𝐶𝑐!"#.	This	quantifies	the	difference	in	information	discrepancy	of	model	 i	
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(AICci)	relative	to	that	of	the	“best”	model	(𝐴𝐼𝐶!"#).	Akaike	model	weights	were	calculated	as	

the	 relative	 likelihood	 of	 model	 i	 divided	 by	 the	 sum	 of	 these	 values	 across	 the	 candidate	

set: Weight! = (exp ((𝐴𝐼𝐶!"# − 𝐴𝐼𝐶!)/2))/ (exp ((𝐴𝐼𝐶!"# − 𝐴𝐼𝐶!)/2))!
! .	

	

MODEL	 ADEQUACY	 TEST	 1:	 What	 is	 the	 probability	 of	 detecting	 support	 for	 the	 data-

generating	model?	

In	 this	 first	 simulation	 test,	 the	 true	effect	 size	of	measured	covariates	on	 survival	 (𝛽!!)	was	

zero	and	inter-annual	variation	in	survival	was	due	to	the	effects	of	unmeasured	processes.	A	

range	of	encounter	history	datasets	were	simulated	which	varied	in	the	duration	of	the	mark	

recapture	 study	 (𝑥!"#),	 the	 number	 of	 individuals	marked	 on	 each	 capture	 occasion	 (𝑥!"#$),	

and	 the	 intensity	 of	 environmental	 stochasticity	 (𝑥!"#$!)	 (Table.6.1).	 Two	 realisations	 were	

simulated	at	each	of	the	764	different	combinations	of	these	three	variables.		

	

Table	 6.1)	 Simulation	 variables	 factorially	 manipulated	 in	 simulation	 test	 1,	 to	 generate	 encounter	
history	 datasets	 reflecting	 a	 range	 of	mark-recapture	 study	 conditions.	 The	 values	 of	𝑥!"#	 	 and	𝑥!"#$	
reflect	 the	 range	 of	 duration	 and	 intensity	 of	 mark-recapture	 studies	 reported	 from	 the	 reviewed	
literature	(Appendix.1).	The	maximum	value	of	𝑥!"#$!	corresponds	to	a	realised	variation	in	year-specific	
survival	between	approximately	0.25-0.75.	

Variables	 Range	 Interval	

Number	of	recapture	occasions		(𝑥!"#)	 10	-	40	 2	year	

Number	of	individuals	released	(𝑥!"#$)	 10	-	54	 4	individuals	

Intensity	of	environmental	stochasticity	(𝑥!"#$!)	 0	-	0.5	 0.025	units	of	deviation	

	

These	 simulations	were	used	 to	determine	whether	CMR	 frameworks	 vary	 in	 their	 ability	 to	

distinguish	 the	 amount	 of	 support	 for	 different	 hypotheses,	 and	 to	 identify	 the	 data-

generating	model.	Successful	detection	of	support	for	the	data-generating	model	was	defined	

conservatively	as	this	model	having	an	AICc	score	less	than	4	units	more	than	the	“best”	fitting	

model.	 This	 follows	 the	 commonly	 used	 rule	 of	 thumb	 proposed	 by	 Burnham	 &	 Anderson	

(2002)	and	Richards	 (2005).	We	fitted	generalized	additive	models	 (GAMs)	 to	summarise	 the	

relationships	of	the	probability	of	successful	detection	of	the	data-generating	model	with	the	

duration	of	mark-recapture	study	(𝑥!"#),	the	numbers	of	individuals	released	annually	(𝑥!"#$),	
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and	 the	 intensities	 of	 environmental	 stochasticty	 (𝑥!"#$!).	Models	were	 implemented	 in	 the	

“mgcv”	R	package	(Wood	&	Augustin	2002).	The	conclusions	are	not	affected	by	choice	of	the	

AICc	threshold	for	defining	sufficient	support	(Appendix.2).	

	

MODEL	ADEQUACY	TEST	2:	Which	frameworks	give	unbiased	estimates	of	climatic	effects	on	

survival?	

In	 the	 second	 simulation	 test,	 encounter	 histories	 were	 generated	 in	 which	 year-specific	

survival	 was	 dependent	 upon	 one	 climatic	 variable	 ( 𝛽!!"#)	 but	 independent	 of	 all	 other	

climate	variables	(𝛽!!"#$% 	=	0).	Stochastic	inter-annual	variation	in	survival	was	also	introduced.	

We	 simulated	 480	 encounter	 histories	 for	 subsequent	 analysis	 with	 each	 mark-recapture	

framework.	Within	 these	simulations,	we	 followed	a	 two-way	 factorial	design,	varying:	 i)	 the	

duration	 of	 the	 mark	 recapture	 study	 and	 ii)	 the	 size	 of	 the	 climatic	 effect	 impacting	

survival (𝛽!!"#)	(Table.6.2).			

	

Table	 6.2)	 Simulation	 variables	 factorially	 manipulated	 in	 simulation	 test	 2,	 to	 generate	 encounter	
histories	that	are	relatively	 long	for	ecological	datasets,	representing	a	gradient	towards	the	best	case	
scenarios	of	data	availability.	Two	realizations	were	simulated	at	each	combination	of	 𝛽!!"!and 𝑥!"#.		In	
all	simulations,		𝑥!"#$	and	𝑥!"#$!	were	the	same.	

Variables	 Range	 Interval	

Climate	effect	impacting	survival (𝛽!!"#)	 ±	(	0.1	-	0.45	)	 0.05	

Number	of	recapture	occasions		(𝑥!"#)	 30	-	50	 5	year	

Number	of	individuals	released	(𝑥!"#$)	 20	 -	

Intensity	of	environmental	stochasticity	(𝑥!"#$!)	 0	.3	 -	

	

Under	each	framework,	CMR	analyses	were	performed	on	the	simulated	encounter	histories,	

AICc	 model	 comparison	 was	 applied	 and	 model	 weights	 were	 used	 to	 perform	 model	

averaging.	 This	 multi-model	 inference	 provides	 overall	 estimates	 of	 the	 effect	 size	 of	 the	

climate	 covariates	 on	 survival	 (𝛽!!"#),	 taking	 into	 account	 model	 structure	 uncertainty	

(Burnham	et	al.	2011).	Each	candidate	model	contributes	to	the	overall	estimate	of	the	effect	

size,	 based	 on	 the	 relative	weight	 of	 support	 for	 that	model.	 Linear	 regression	was	 used	 to	
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model	the	estimation	error	of	climate	effect	under	each	inference	framework	as	a	function	of	

the	 actual	 climatic	 effect	 size	 in	 the	 simulation.	 The	 observed	 estimate	 (𝛽!!"#)	 was	 first	

regressed	 against	 the	 actual	 climate	 effect	 size	 ( 𝛽!!"#).	 The	 true	 climatic	 effect	 was	 then	

subtracted	from	the	model	average	estimates	and	model	prediction	 in	order	to	calculate	the	

magnitude	and	direction	of	bias	in	parameter	inference (𝛽!!"# − 𝛽!!"#).	

	

REAL	WORLD	MARK-RECAPTURE	EXAMPLE:	COMPARING	ANALYSIS	FRAMEWORKS		

Study	system:	Long-tailed	tit	Mark-Recapture	Analyses	

We	 explored	 how	 real	 world	 conclusions	 about	 the	 climatic	 dependence	 of	 survival	 are	

influenced	 by	 our	 choice	 of	 CMR	 framework,	 by	 comparing	 their	 inferences	 regarding	 the	

climatic	 dependence	 of	 survival	 in	 a	 long-tailed	 tit	 population	 (Location:	 Rivelin	 Valley,	

Sheffield,	 England	 (53°38ʹN	 1°56W;	 altitude	 =168	 m	 a.s.l.,	 range	 =	 150–270	 m).	 Encounter	

histories	 of	 985	 individuals	 of	 genetically	 confirmed	 sex	 were	 constructed	 following	 mark-

recapture	 protocols	 during	 the	 breeding	 seasons	 of	 1994–2012	 (Gullett	 et	 al.	 2014).	 To	

investigate	 how	 inter-annual	 variation	 in	 seasonal	 climate	 influences	 survival,	 four	 seasonal	

variables	 relevant	 to	 long-tailed	 tit	 biology	were	defined:	1.	 Spring	 (March-May),	 2.	 Summer	

(June-August),	 3.	 Autumn	 (September-November)	 and	 4.	 Winter	 (December-February).	 For	

each	 season,	measurements	 of	 average	 local	 daily	 temperature	 and	 total	 precipitation	were	

calculated	and	these	climatic	covariates	were	then	standardized	(mean=0,	s.d.=1).	

Previous	 results,	 using	 the	 fixed	 effects	 framework,	 suggested	 that	 survival	 is	 largely	

determined	by	temperature	and	precipitation	levels	in	Spring	(t1	&	p1)	and	Autumn	(t3	&	p3)	

and	the	 interaction	of	these	two	climate	variables	 in	Spring	(Gullett	et	al.	2014).	A	candidate	

model	set	was	developed	to	formalize	different	hypotheses	about	the	climatic	dependence	of	

long-tailed	 tit	 survival.	 This	 set	 included	 all	 24	 nested	 models	 of	 the	 full	 model	 which	

characterized	the	seasonal	interactions	of	these	two	variables:	

 Ф! =
!

!!!"#
! !ф!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!.!! !!!.!!! !!!!!.!! !!!.!!!

 

.	

The	 same	 structural	 model	 was	 used	 as	 in	 the	 original	 publication	 by	 Gullett	 et	 al.	 (2014)	

(Appendix.3).	 Candidate	 climatic	 models	 were	 parameterised	 under	 each	 CMR	 framework:	

fixed	 effects,	 marginal	 likelihood	 random	 effects,	 and	 MOM	 random	 effects.	 	 Model	

comparison	 and	 averaging	 was	 applied,	 to	 provide	 overall	 estimates	 of	 the	 impacts	 of	
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temperature	 and	precipitation	 in	 Spring	 and	Autumn	on	 long-tailed	 tit	 survival.	 Future	 long-

tailed	tit	climate	dependent	survival	probability	was	then	predicted	using	the	model	average	

parameter	estimates	from	each	framework	and	based	upon	different	climate	change	scenarios	

(as	in	Gullett	et	al.	2014;	see	Appendix.3).	

	

Results	

Model	adequacy	test	1	-	What	is	the	probability	of	detecting	support	for	the	data-generating	

model?		

Using	 each	 combination	 of	 CMR	 framework	 and	 sample	 size	 definition,	 the	 probability	 of	

finding	 support	 for	 the	data-generating	 climate	model	was	 assessed	under	 a	 range	of	mark-

recapture	study	conditions.	Regardless	of	how	the	AICc	score	was	calculated,	the	fixed	effects	

framework	 typically	 performed	 poorly	 compared	 to	 the	 marginal	 likelihood	 random	 effects	

framework,	only	having	a	high	probability	of	supporting	the	data-generating	model	under	very	

low	levels	of	environmental	stochasticity	(Fig.6.1	grey	lines).	As	the	amount	of	environmental	

stochasticity	 increased,	 the	 probability	 of	 successful	model	 detection	 declined	 substantially.	

Analyses	of	simulated	datasets	that	were	longer	or	had	a	larger	number	of	individuals	released	

annually	 exhibited	 increasingly	 worse	 performance.	 These	 large	 datasets	 contained	 more	

information	 about	 variation	 in	 inter-annual	 survival	 which	 could	 be	 falsely	 attributed	 to	

spurious	climatic	variables.		

The	MOM	 framework	 performed	 badly	 (Fig.6.1	 blue	 lines).	When	 the	 AICc	 sample	 size	 was	

defined	as	the	number	of	years	of	study,	it	often	failed	to	find	support	for	the	data-generating	

climate	 model	 and	 was	 not	 robust	 to	 the	 presence	 of	 environmental	 stochasticity.	

Alternatively,	when	 the	AICc	 sample	 size	was	defined	as	 the	number	of	 individuals	 released,	

the	MOM	approach	was	unable	to	distinguish	rival	hypotheses	and	rarely	allowed	rejection	of	

any	models.	 Therefore	 the	data-generating	model	 could	not	 actually	be	detected	despite	 its	

ΔAICc	value	being	low	(Appendix.2).	We	therefore	do	not	present	this	method	in	Figure	6.1A.	

The	marginal	likelihood	random	effects	framework	(Fig.6.1	green	lines)	gave	the	most	reliable	

inference,	having	a	 substantially	higher	probability	of	 successfully	 identifying	support	 for	 the	

data-generating	 climate	 model.	 Its	 performance	 was	 also	 robust	 to	 the	 introduction	 of	

environmental	stochasticity.	When	the	AICc	sample	size	was	defined	as	the	number	of	years	of	

study,	 the	 marginal	 likelihood	 framework	 provided	 the	 highest	 probability	 of	 detecting	 the	
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data-generating	model,	and	this	probability	did	not	depend	strongly	upon	the	number	of	years	

of	study	or	individuals	released	annually.		

	

Figure	6.1)	The	probability	of	mark-recapture	analyses	successfully	 finding	support	 (ΔAICc	<	4)	 for	 the	
data-generating	model	of	climatic	dependent	survival.	AICc	calculations	are	made	under	the	assumption	
that	the	sample	size	is:	the	number	of	individuals	released	(subpanel	A)	or	the	number	of	years	of	study	
(subpanel	 B).	 The	 probability	 of	 success	 is	 characterized	 for	 each	 framework:	 the	 fixed	 effects	
framework	 (grey	 lines),	 the	marginal	 likelihood	random	effects	 framework	 (green	dashed	 lines)	or	 the	
MOM	framework	 (blue	dashed	 lines).	Successful	detection	 is	 related	to	 the	gradient	of	environmental	
stochasticity,	darker	shades	indicate	higher	levels	of	stochasticty	(𝜎ф	0	-	0.5)	and	i)	the	duration	of	the	
mark-recapture	study,	and	ii)	the	number	of	individuals	released	at	each	occasion.	The	MOM	approach	
is	 not	 presented	 in	 subpanel	 A	 (sample	 size=𝑛!"#$)	 as	 this	 approach	 does	 not	 allow	 models	 to	 be	
distinguished.	

	

Model	adequacy	test	2	-	Estimation	bias	of	alternative	mark-recapture	frameworks		

Using	the	results	of	the	second	simulation	study,	in	which	survival	was	dependent	on	a	single	

climatic	variable,	we	assessed	the	estimation	accuracy	of	the	alternative	CMR	frameworks	by	

comparing	 the	 model	 averaged	 climate	 effect	 estimate	 obtained	 from	 the	 CMR	 analysis	 of	

each	simulation	to	the	known	climate	effect	size	underlying	simulations	 (Fig.6.2).	The	bias	of	

the	 three	 frameworks	 was	 independent	 of	 how	 the	 AICc	 score	 was	 calculated,	 probably	

because	the	number	of	years	of	study	 in	these	simulations	was	reasonably	 large	(𝑛!"# ≥ 30)	

and	 greater	 than	 the	 number	 of	 years	 in	 many	 datasets	 generated	 in	 the	 first	 simulation	

(10 ≤ 𝑛!"# ≤ 40).	Both	the	fixed	effects	and	the	MOM	frameworks	showed	strong	systematic	
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estimation	 bias,	 consistently	 underestimating	 the	 magnitude	 of	 the	 actual	 climatic	 effect	

( 𝛽!!"#).		The	MOM	framework	performed	the	worst,	inferring	only	very	small	climatic	effects,	

even	 when	 the	 true	 effects	 were	 large.	 The	 marginal	 likelihood	 framework	 performed	

substantially	 better,	 with	 no	 biologically	 significant	 bias	 occurring	 across	 the	 range	 of	 true	

effect	sizes.	These	results	did	not	depend	on	the	duration	of	the	synthetic	dataset.	

	

Figure	6.2)	The	accuracy	of	 inferred	climatic	effects	under	the	alternative	frameworks	as	a	 function	of	
the	simulated	climatic	effect	size.	The	error	in	model	averaged	estimates	of	the	true	climatic	effect	size	
 (𝛽!!"# − 𝛽!!"#)	is	shown	for:	fixed	effects	framework	(grey),	the	method	of	moments	framework	(blue)	
and	 the	marginal	 likelihood	random	effects	 frameworks	 (green).	Each	point	 represents	 the	error	 for	a	
single	simulation	and	solid	lines	show	linear	model	fits.		Patterns	of	bias	are	independent	of	the	choice	
of	AICc	sample	size	definition	and	here	we	present	results	assuming	the	sample	size	 is	 the	number	of	
years	of	study.	

	

Real	world	example	-	Impact	of	framework	choice	on	inferences	about	climate	dependence	of	

survival	and	future	projections	

Depending	on	how	AICc	scores	were	calculated	and	the	CMR	framework	applied,	we	obtained	

contrasting	 inferences	 about	 the	 climate	 factors	 related	 to	 long-tailed	 tit	 survival	 (see	

Appendix.3	for	details).	When	AICc	scores	were	calculated	by	assuming	that	the	sample	size	is	

the	number	 years	of	 study,	 as	our	 simulations	 and	 reasoning	 suggests,	 the	 fixed	effects	 and	

random	effects	 analysis	 give	 strikingly	 different	 results.	 Fixed	effects	 analysis	 suggested	 that	

survival	 was	 likely	 influenced	 by	 the	 interaction	 between	 temperature	 and	 precipitation	 in	

Spring	and	possibly	also	Autumn.	 In	contrast,	the	marginal	 likelihood	random	effects	analysis	

strongly	 indicated	 that	 survival	was	 related	only	 to	 the	 level	 of	Autumn	precipitation.	Other	
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hypotheses	 received	 minor	 support	 (ΔAICc	 >	 4).	 These	 inferences	 are	 supported	 by	 a	

diagnostic	regression	tool	which	we	present	in	Appendix.4.	As	in	the	simulations,	the	methods	

of	moments	analyses	do	not	allow	hypotheses	to	be	distinguished.	

After	 model	 averaging,	 the	 magnitude	 of	 climatic	 effects	 on	 survival	 strongly	 differed	

depending	 on	 the	 CMR	 framework	 and	 the	 AICc	 sample	 size	 definition	 (Fig.6.3).	 As	 in	 our	

simulation	studies,	larger	effects	of	the	climate	variables	on	survival	were	identified	under	the	

marginal	 likelihood	 random	 effects	 framework	 compared	 to	 the	 fixed	 effects	 framework,	

suggesting	that	the	fixed	effects	framework	underestimates	genuine	climate	effects	whilst	also	

identifying	 several	 spurious	 relationships.	 This	 probably	 results	 from	 the	 inability	 of	 fixed	

effects	 analyses	 to	 attribute	 variation	 in	 survival	 caused	 by	 unmeasured	 factors	 to	 a	 source	

other	 than	 those	 unrelated	 measured	 variables	 included	 in	 the	 model.	 The	 projections	 of	

future	 climate-dependent	 long-tailed	 tit	 survival	 therefore	 depended	 strongly	 on	 the	 CMR	

framework	applied	and	how	AICc	sample	size	was	defined	(Appendix.3).	

	

Figure	 6.3)	 Relationships	 between	 estimated	 long-tailed	 tit	 survival	 (open	 circles)	 and	 four	 climate	
variables:	 (i)	 mean	 Spring	 temperature	 (°C),	 (ii)	 total	 Spring	 precipitation	 (mm),	 (iii)	 mean	 Autumn	
temperature	(°C)	and	(iv)	total	Autumn	precipitation	(mm).	Solid	lines	indicate	model-averaged	survival	
estimates,	 predicted	 over	 the	 range	 in	 climate	 experienced	 during	 the	 study.	Model	 comparison	 and	
averaging	calculations	are	made	under	the	assumption	that	the	sample	size	is	the	number	of	individuals	
released	 (A),	 or	 the	 number	 of	 years	 of	 study	 (B).	 The	 relationships	 between	 survival	 and	 climate	 is	
predicted	for	each	framework:	the	fixed	effects	framework	(grey	lines),	the	marginal	likelihood	random	
effects	framework	(green	lines)	or	the	method	of	moments	framework	(blue	lines).	
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Discussion	

We	present	a	thorough	evaluation	of	the	reliability	of	mark-recapture	methods	at	inferring	the	

climatic	 dependence	of	 demographic	 rates.	 Three	mark-recapture	 analysis	 frameworks	were	

compared	under	two	definitions	of	sample	size	 in	AICc	model	comparisons.	We	demonstrate	

that	both	the	choice	of	likelihood	framework,	used	to	account	for	unmeasured	processes,	and	

the	 assumptions	 made	 about	 the	 extent	 of	 data	 independence	 substantially	 influence	

conclusions	about	past	survival	and	quantitative	projections	into	the	future.	

Simulation	analyses	showed	that	the	fixed	effects	analyses	generally	performed	poorly,	having	

a	low	probability	of	identifying	the	true	climate	variables	influencing	survival.	Unless	a	suitable	

random	effects	framework	is	applied,	spurious	climatic	relationships	are	likely	to	be	detected.	

The	magnitudes	of	genuine	climatic	effects	are	also	likely	to	be	increasingly	underestimated	as	

the	 true	 effect	 size	 increases.	 Biased	 inferences	 likely	 occur	 because	 the	 impacts	 of	

unmeasured	 factors,	 responsible	 for	 significant	 inter-annual	 variation	 in	 survival,	 are	 not	

appropriately	 partitioned.	 The	 marginal	 likelihood	 framework	 provides	 a	 robust	 method	 to	

incorporate	 year-specific	 random	 effects	 of	 unmeasured	 factors	 into	 CMR	models,	 allowing	

accurate	 and	 unbiased	 inference	 of	 the	 climatic	 dependence	 of	 survival.	 Conversely,	 the	

method	of	moments	random	effects	framework	is	not	appropriate	for	inferring	the	effects	of	

climate	on	survival	as	candidate	hypotheses	were	not	reliably	distinguished,	the	probability	of	

identifying	data-generating	model	was	low	and	estimated	climatic	effects	were	heavily	biased.	

In	 CMR	 analyses	 of	 limited	 datasets,	 AICc	 comparisons	 are	 routinely	 applied	 assuming	 the	

effective	sample	size,	in	the	correction	term,	to	be	the	number	of	individuals	released	prior	to	

the	 final	 occasion.	Our	 analyses	 revealed	 that	 this	 definition	 produced	 unreliable	 inferences	

about	the	climatic	dependence	of	survival.	More	reliable	 inferences	are	obtained	by	defining	

the	 AICc	 effective	 sample	 size	 as	 the	 number	 of	 years	 of	 study.	 Switching	 to	 this	 latter	

definition	generally	favours	simpler	climate	models.	In	our	case	study	this	substantially	altered	

inferences	about	the	climatic	drivers	and	future	projections	of	long-tailed	tit	survival.	

	

Statistical	justification	

The	statistical	literature	offers	insight	into	the	appropriate	types	of	questions	that	can	reliably	

be	 addressed	 by	 the	 two	 alternative	 CMR	 random	 effects	 frameworks.	 Vaida	 &	 Blanchard	

(2005)	 reviewed	 an	 analogous	 problem	 of	 using	 linear	mixed-effects	models	 and	 AIC	model	
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comparison	in	the	analysis	of	non-independent	data.	They	stressed	that	when	random	effects	

are	 present	 AIC	 comparisons	 are	 not	 straightforward.	 It	 is	 difficult	 to	 determine:	 a)	 what	

likelihood	 calculation	 should	 be	 used,	 b)	 how	 the	 effective	 degrees	 of	 freedom	 (number	 of	

parameters)	of	a	model	should	be	determined	and	c)	how	to	define	the	effective	sample	size	

of	 the	 finite	 sample	 size	 correction	 term	 when	 data	 is	 limited.	 To	 help	 determine	 the	

appropriate	likelihood	framework	and	definition	to	calculate	the	effective	degrees	of	freedom,	

Vaida	&	Blanchard	 (2005)	emphasize	 the	need	 to	distinguish	 two	different	 levels	of	 focus	of	

analyses	and	argue	that	the	same	likelihood	structure	and	AIC	calculation	is	not	appropriate	in	

both	cases.		

Firstly,	 there	 are	 questions	 relating	 to	 individual	 clusters	 of	 data,	 which	 in	 a	 CMR	 setting	

equates	to	inferences	such	as	survival	in	a	specific	year.	For	such	questions,	where	the	random	

effects	 are	 themselves	 of	 interest,	 conditional	 likelihood	 inferences	 should	 be	 applied,	

meaning	 that	 the	 probability	 of	 a	 given	 set	 of	 climate	 parameters	 is	 dependent	 upon	 the	

model,	 the	 data	 and	 the	 estimated	 year-specific	 random	 deviations	 in	 expected	 survival.	

Random	effects	then	count	towards	fractions	of	degrees	of	freedom	and	the	effective	degrees	

of	 freedom	calculation	 is	 estimated	based	on	 the	 leverage	of	 each	 year-specific	 deviation	 in	

survival	 on	 the	 estimated	mean	 survival	 (Hodges	 &	 Sargent	 2001).	 The	MOM	 framework	 is	

more	 closely	 aligned	with	 conditional	 inference	 approaches	 in	 the	way	 that	 it	 calculates	 the	

likelihood	 and	 the	 number	 of	 effective	 parameters.	 It	 may	 therefore	 be	 more	 suitable	 for	

learning	about	individual	clusters	in	the	data,	potentially	providing	more	accurate	estimates	of	

year-specific	survival	probability,	for	example.	

Secondly,	 there	are	population-level	questions	 regarding	 the	difference	between	clusters	 i.e.	

explaining	differences	 in	 survival	between	years.	 For	 such	questions,	 the	 random	effects	are	

not	 themselves	 the	 focus,	 but	 simply	 a	 device	 to	 model	 correlation	 of	 responses	 within	

clusters.	 Therefore,	marginal	 likelihood	 inferences	 should	 be	 applied,	 allowing	 calculation	 of	

the	probability	of	a	given	set	of	climate	parameters	given	a	climate	model	and	data	once	the	

random	year	specific	nuisance	effects	are	partitioned	out	(marginalized/integrated).	Here,	the	

degrees	 of	 freedom	 of	 a	 model	 can	 be	 simply	 defined	 as	 the	 sum	 of	 the	 number	 of	 fixed	

parameters	and	variance	components.	Investigations	of	the	impacts	of	climate	on	inter-annual	

survival	 have	 a	 population-level	 focus,	 as	 we	 are	 interested	 in	 inferring	 population	 mean	

survival	and	the	effect	sizes	of	 important	climatic	drivers.	This	 justifies	 the	use	of	a	marginal	

likelihood	 random	 effects	 framework	 with	 a	 degrees	 of	 freedom	 calculation	 based	 on	 the	

number	of	fixed	and	random	parameters.		
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The	AICc	finite	sample	size	correction	term,	can	have	 important	 impacts	on	 inferences	 in	the	

linear	mixed-effects	modelling	context	(Vaida	&	Blanchard	2005),	and	we	also	found	this	to	be	

true		in	CMR	analyses.	The	magnitude	of	the	correction	depends	on	the	sample	size,	however,	

in	 many	 types	 of	 ecological	 analyses	 of	 non-independent	 data,	 	 appropriate	 definitions	 of	

effective	 sample	 size	 have	 to	 be	 fully	 investigated	 (Kendall	 &	 Bjorkland	 2001;	 Burnham	 &	

Anderson	2002;	MacKenzie	2006).	Considering	the	level	of	focus	of	an	analysis	elucidates	the	

appropriate	definition	of	the	effective	sample	size,	for	investigations	of	the	impacts	of	climate	

on	 demographic	 rates.	 The	 theoretical	 sample	 space	 is	 the	 set	 of	 all	 combinations	 of	 the	

climate	 conditions	 which	 influence	 demography.	 Given	 that	 demographic	 rates	 are	 usually	

estimated	 and	 related	 to	 the	 climate	 sample	 space	 only	 once	 per	 year,	 the	 sample	 size	 is	

simply	the	number	of	years	of	study.		

Following	this	 logic,	 it	becomes	apparent	why	overfitting	 is	common	when	the	sample	size	 is	

defined	 as	 the	 number	 of	 individuals	 released.	 The	 AICc	 finite	 sample	 size	 correction	 is	

intended	to	penalize	models	with	a	high	number	of	estimated	climate	parameters	relative	to	

the	 number	 of	 independent	 observations.	 This	 prevents	 complex	 models	 from	 simply	

describing	random	variation	in	inter-annual	survival.	Defining	the	effective	sample	size	as	the	

number	of	 individuals	released	falsely	 implies	that	models	with	as	many	parameters	as	there	

are	 independent	 estimates	of	 climate	dependent	demography	have	only	 a	modest	 flexibility	

with	which	to	explain	inter-annual	variation	in	survival.	This	underestimation	of	the	degrees	of	

freedom:sample	 size	 ratio,	 possibly	 by	 an	 order	 of	 magnitude,	 results	 in	 the	 AICc	 data	

limitation	penalty	term	being	far	too	small	(approximately	zero	in	the	case	of	the	long-tailed	tit	

dataset).	

	

Practical	application	of	random	effects	mark–recapture	methods	

Although	the	necessity	to	account	for	data	non-independence	has	been	widely	documented	in	

statistical	 literature,	 methods	 to	 achieve	 this	 have	 not	 been	 widely	 adopted	 in	 the	 CMR	

literature	 (but	see	Gimenez	et	al.	2012	&	Appendix.1	 for	examples	of	 the	 implementation	of	

random	effects	models).	 The	 large	number	of	 studies	 failing	 to	 identify	 their	 assumptions	of	

negligible	unmeasured	processes	and	 independent	data,	 indicates	that	ecologists	are	unclear	

about	the	limitations	of	classical	fixed	effects	CMR	analyses.	When	a	few	climatic	factors	have	

overwhelming	 impacts	on	demographic	 rates	and	other	sources	of	 inter-annual	variation	are	

small,	 the	 fixed	 effects	 framework	 may	 provide	 reasonable	 estimates.	 This	 may	 be	 true	 in	
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extreme	 ecosystems,	 such	 as	 polar	 regions,	 where	 the	 effect	 of	 sea	 surface	 temperature	 is	

overwhelmingly	important	(Jenouvrier	et	al.	2009),	or	arid	ecosystems,	where	precipitation	is	a	

key	driver	(Jonzén	et	al.	2010).	However,	in	temperate	ecosystems,	numerous	climatic	factors	

may	have	important	impacts	at	key	seasonal	times	(Robinson	et	al.2007).	We	advise	that	the	

marginal	 likelihood	 random	 effects	 framework	 is	 utilised	 in	 future	 analyses	 of	 climate	

dependent	 demography,	 as	 the	 stochastic	 variability	 in	 inter-annual	 survival	 is	 not	 known	

beforehand	and	must	be	established	during	the	analysis.		

Our	 literature	 review	 revealed	 that	 marginal	 likelihood	 random	 effects	 analyses	 are	 not	

applied	 in	 the	 overwhelming	 majority	 of	 CMR	 climate	 studies,	 perhaps	 because	 different	

procedures	to	account	for	unmodelled	stochastic	processes	have	been	proposed	(Burnham	&	

White	2002;	Royle	&	Link	2002;	Barry	et	al.	 2003).	A	major	 factor	 limiting	 the	application	of	

marginal	 likelihood	 analyses	 has	 likely	 been	 the	 technical	 difficulty	 of	 their	 implementation.	

Fortunately,	software	is	increasingly	available	to	aid	these	analyses	(Fournier	et	al.	2012).	The	

R	package	“marked”,	by	 Laake	et	al.	 (2013),	offers	a	user	 friendly	way	 to	 implement	 several	

categories	 of	 CMR	 models,	 although	 manual	 implementations	 in	 ADMB	 provide	 substantial	

computational	gains.		

	

Alternative	inference	approaches		

Although	we	have	 focused	on	maximum	 likelihood	 inference,	 analogous	Bayesian	 inferences	

can	 also	 be	 conducted	 by	 constructing	 hierarchical	 models	 and	 using	 a	 numerical	 sampling	

scheme	 to	 integrate	 out	 the	 random	 year	 effects	 (Brooks	 et	 al.	 2002;	 Grosbois	 et	 al.	 2008;	

Gimenez	et	al.	2012;	King	2012).	Likewise,	although	we	focus	on	AIC	model	comparison,	other	

information	 theoretic	 approaches	 such	 as	 BIC	 and	 DIC	 can	 also	 be	 used.	 Notably,	 if	 prior	

knowledge	 is	 strong	 enough	 that	 the	 effects	 of	 only	 a	 few	 climatic	 drivers	 need	 to	 be	

evaluated,	 the	 classical	 null	 hypothesis	 testing	 (NHT)	 approach	 can	 be	 used	 to	 detect	

significant	 impacts	 of	 a	 specific	 climatic	 driver	 without	 constructing	 random	 effect	 models	

(Lebreton	 et	 al.	 2012).	 In	 this	 situation,	 the	 analysis	 of	 deviance	 (ANODEV)	 test	 has	 been	

developed	to	be	simple	and	yet	robust	to	the	effects	of	unmeasured	variables	(Grosbois	et	al.	

2008;	 Lebreton	et	al.	 2012).	However,	 it	 should	not	be	applied	when	many	 combinations	of	

putative	 climatic	 factors	 are	 examined	 as	 this	 will	 lead	 to	 multiple	 significance	 testing	

problems	and	high	rates	of	false	detections.		
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Considering	the	results	of	our	literature	review	and	simulation	studies	together,	it	appears	that	

a	substantial	proportion	of	 inferences	of	published	studies	about	the	climatic	dependence	of	

demographic	 rates	may	 be	 biased	 or	 entirely	 spurious.	 Analyses	 conducted	 under	 the	 fixed	

effects	 framework	 are	 likely	 to	 generate	misleading	 predictions	 of	 the	 ecological	 impacts	 of	

climate	change.	These	analyses	readily	find	support	for	an	impact	of	many	unrelated	variables	

and	 also	 underestimate	 the	 effects	 of	 genuine	 climatic	 variables	 that	 they	 do	 identify.	 This	

issue	will	be	particularly	severe	when	there	are	large	stochastic	sources	of	variation	in	survival.	

Unfortunately,	 under	 these	 conditions	 having	 more	 data	 (more	 individuals	 or	 more	 years	

studied)	 intensifies	 these	 problems.	 Future	 ecological	 studies	 that	 aim	 to	 infer	 the	 abiotic	

sources	of	temporal	variation	in	biotic	rates	should	recognize	the	importance	of	accounting	for	

unmodelled	factors	causing	random	temporal	variation	in	the	biological	response	variable	and	

should	 ensure	 that	 a	marginal	 likelihood	 framework	 is	 implemented,	 with	 appropriate	 AICc	

correction.		
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Appendices	

Appendix.1)	Literature	review	of	method	recently	used	to	detect	the	climatic	dependence	of	

survival	with	mark-recapture	models	

We	examined	the	mark	recapture	methods	used	to	detect	the	climatic	dependence	of	species	

survival	 by	 conducting	 a	 systematic	 literature	 search.	 	We	 surveyed	 the	 literature	 using	 the	

Web	 of	 Knowledge	 database	 and	 the	 search	 topics	 “mark	 recapture”	 and	 “climate	 or	

environment”.	Of	the	articles	returned	by	this	search,	we	evaluated	the	relevance	of	all	peer-

reviewed	manuscripts	published	between	2008	and	2014	(n=553).	This	covers	the	period	since	

the	review	paper	of	Grosbois	et	al.	(2008)	until	present.	We	found	111	studies	that	used	mark-

recapture	models	 to	 relate	 climatic	 or	 environmental	 covariates	 to	 temporal	 changes	 in	 the	

survival	 of	 animals	 using	 mark-recapture	 data.	 For	 each	 paper,	 we	 determined	 the	 model	

comparison	approach	used	 to	 test	 for	 statistical	 support	 for	a	 climatic	effect	hypothesis	 and	

also	 determined	 whether	 the	 analysis	 used	 a	 method	 to	 account	 for	 variation	 in	 survival	

between	years	not	attributable	to	climatic	covariates	(process	variation)	(Fig.6.S1).	

In	 the	 ecological	 literature,	 one	 of	 two	 different	 model	 comparison	 methodologies	 has	

generally	 been	 use	 to	 examine	 the	 support	 for	 hypotheses	 about	 the	 climatic	 dependence	

demographic	rates	(Grosbois	et	al.	2008).	These	approaches	are:	a)	the	null	hypothesis	testing	

(NHT)	 approach	 and	 b)	 the	 information	 theoretic	 approach	 of	 model	 comparison.	 The	

distinction	between	these	approaches	lies	in	their	enterprise.		The	first	aims	to	detect	whether	
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there	is	a	significant	effect	of	a	specific	climatic	driver	(versus	the	null	hypothesis	of	no	effect).	

The	 latter	 compares	 relatively	 how	 well	 a	 set	 of	 models,	 hypothesizing	 the	 climatic	

dependence	of	demography,	describe	the	data.	Lebreton	et	al.	2012	developed	and	evaluated	

a	procedure	 for	 testing	 for	 effect	 of	 a	 climate	 variable	 (using	NHT),	when	 constructing	 fixed	

effects	 models	 but	 in	 the	 presence	 of	 stochastic	 interannual	 variation.	 This	 can	 be	

implemented	in	the	software	package	U-CARE.	Our	review	shows	that	many	studies	using	the	

NHT	 approach	 now	 adopt	 this	method.	 The	 use	 of	 information	 theoretic	model	 comparison	

was	 very	 common,	 especially	when	 there	 is	 little	 prior	 knowledge	 of	 the	 climatic	 drivers	 of	

demography.	

There	 are	 some	 recent	 papers	 indicating	 that	 unmeasured	 inter-annual	 variation	 in	 survival	

should	 be	 accounted	 for	 by	 incorporating	 random	 yearly	 deviations	 in	 survival	 into	 model	

structures	(Grosbois	et	al.	2008;	Frederikson	et	al.	2014).	Despite	this,	our	review	shows	that	

this	is	rarely	attempted	(only	9/71	studies)	and	has	been	done	using	two	differing	frameworks.		

Firstly,	the	method	of	moments	framework	can	be	applied,	by	using	shrinkage	estimation	and	

variance	components	analysis	to	account	for	process	variation	without	explicitly	incorporating	

it	 into	 the	 model	 structure.	 This	 method	 of	 implementing	 random	 effect	 mark-recapture	

models	represents	an	 intermediate	 level	of	technical	difficulty.	 It	can	be	 implemented	within	

MARK,	although	additional	work	is	required	to	fit	these	models	and	understand	their	working.	

The	 second	 methodology	 is	 to	 explicitly	 incorporate	 temporal	 random	 effects	 into	 the	

structural	equation	of	the	mark	recapture	model	and	to	then	marginalize	these	random	effects	

back	 out	 during	 the	 inference	 process.	 This	 can	 be	 achieved	 under	 either	 a	 hierarchical	

Bayesian	approach	or	a	maximum	likelihood	approach	(King	2012;	Gimenez	et	al.	2012;	Jansen	

et	al.	2014;	Maunder	et	al.	2009)	These	techniques	are	the	most	difficult	as	they	are	not	yet	

implemented	 in	 common	 mark-recapture	 programmes	 (e.g.	 MARK	 and	 U-CARE).	 Instead	

models	must	 be	 constructed	 using	more	 technically	 challenging	 software	 such	 as	 winBUGS,	

JAGS	or	ADMB.	However	 the	marginalization	of	 random	effects	 is	 being	 increasingly	 applied	

under	both	 the	NHT	and	 information	 theoretic	 approach	 and	more	user	 friendly	 software	 is	

becoming	available	(Laake	et	al.	2013).	
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Figure	 6.S1)Summary	 of	 the	 frequency	 with	 which	 published	 studies	 use	 different	 methodologies	 to	
account	 for	 process	 variation	 when	 using	 the	 information	 theoretic	 approach	 (grey	 bars)	 or	 using	
classical	null	hypothesis	testing	(white	bars)	to	infer	climatic	effects	on	survival.	

	

Table	6.S	1)	Summary	information	of	methodological	details	extracted	from	the	studies	examined	in	the	
literature	review.	

Author	 Year	 Model	 comparison	
approach	

Model	
selection	tool	

Framework	 to	 model	
process	variation	

Software	 Number	 of		
years	

Muncy	et	al.		 2014	 Information	theoretic	 AICc	 None	 MARK	 5	

Inoue	et	al.		 2014	 Information	theoretic	 AICc	 None	 MARK	 15	

Horswill	et	al.		 2014	 Null	hypothesis	testing	 LRT	 Method	of	moments	 MARK	 9	

Hovenin	et	al.	 2014	 Information	theoretic	 AICc	 None	 MARK	 7	

Wellicome	et	al.		 2014	 Information	theoretic	 AICc	 None	 MARK	 15	

Soldatini	et	al.	 2014	 Information	theoretic	 AIC	 None	 U-CARE	 21	

Gullett	et	al.	 2014	 Information	theoretic	 AICc	 None	 MARK	 18	

	Jansen	et	al.	 2014	 Null	hypothesis	testing	 Analysis	 of	 95%	
Credible	region	

Marginalization	 of	
random	effects	

R	 (R2jags)	
JAGS	

12	

Jergenson	et	al.	 2014	 Information	theoretic	 AICc	 Method	of	moments	 MARK	
using	
MCMC	

16	

Altwegg	et	al.	 2014	 Null	hypothesis	testing	 LRT	 ANODEV	 model	
comparison	

MARK	 17	

Garcia-Perez	et	al.	 2014	 Information	theoretic	 AICc	 None	 MARK	 10	

Troyer	et	al.	 2014	 Information	theoretic	 AICc	 None	 MARK	 36	

Lovich	et	al	.	 2014	 Information	theoretic	 AIC	 None	 R	 34	

Jonker	et	al.	 2014	 Information	theoretic	 AICc	 None	 MARK	 22	

Phillott	et	al.	 2013	 Information	theoretic	 AICc	 None	 MARK	 15	

Pavón-Jordán	et	al.	 2013	 Information	theoretic	 AICc	 Method	of	moments	 MARK	 29	

Lok	et	al.	 2013	 Information	theoretic	 AICc	 Method	of	moments	 MARK	 22	
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Earl	&		
Semlitsch	

2013	 Information	theoretic	 AICc	 None	 MARK	 6	

Zylstra	et	al.	 2013	 Information	theoretic	 AICc	 None	 MARK	 22	

Winkler	et	al.	 2013	 Information	theoretic	 AICc	 None	 MARK	 11	

Dybala	et	al.	a.	 2013	 Null	hypothesis	testing	 LRT	 ANODEV	 model	
comparison	

MARK	 30	

Boulanger	et	al.	 2013	 Information	theoretic	 AIC	or	AICc	 None	 MARK	&	U-
CARE	

10	

Patil	et	al.		 2013	 Information	theoretic	 AIC	 None	 MARK	 6	

Schwarz	et	al.	 2013	 Information	theoretic	 DIC	 None	 	MTG	 12	

Chambert	et	al.	 2013	 Null	hypothesis	testing	 posterior	
predictive	
checking	

Marginalization	 of	
random	effects	

OpenBUGS	
&	R	

30	

Dybala	et	al.	b.	 2013	 Null	hypothesis	testing	 LRT	 ANODEV	 model	
comparison	

MARK	 30	

Brown	et	al.	 2013	 Information	theoretic	 AICc	 None	 MARK	 &	
RMARK	

14	

Salewski	et	al.	 2013	 Null	hypothesis	testing	 LRT	 ANODEV	 model	
comparison	

MARK	 &	
UCARE	

33	

Hedger	et	al.	 2013	 Information	theoretic	 AIC	 None	 MARK	 8	

Genovart	et	al.	 2013	 Null	hypothesis	testing	 LRT	 ANODEV	 model	
comparison	

E-SURGE	 &	
U-CARE	

7	

Pardo	et	al.	 2013	 Null	hypothesis	testing	 LRT	 ANODEV	 model	
comparison	

MARK	 and	
R	

43	

Seward	et	al.	 2013	 Information	theoretic	 AIC	 None	 MARK	 &	
RMARK	

4	

Aubry	et	al.	 2013	 Information	theoretic	 AICc	 None	 MARK	 &	
RMARK	

27	

Peacock	et	al.	 2012	 Information	theoretic	 AICc	 None	 MARK	 &	
RMARK	

30	

Korfanta	et	al.	 2012	 Information	theoretic	 AICc	 None	 MARK	 22	

Juillet	et	al.	 2012	 Null	hypothesis	testing	 LRT	 ANODEV	 model	
comparison	

E-SURGE	 &	
U-CARE	

13	

Reichert	et	al.	 2012	 Information	theoretic	 AIC	 None	 MARK	 14	

Fordham	et	al.	 2012	 Information	theoretic	 AICc	 None	 MARK	 12	

Hiert	et	al.		 2012	 Information	theoretic	 AICc	 None	 MARK	 24	

Jenouvrier	et	al.	 2012	 Information	theoretic	 AIC	 None	 M-SURGR	 28	

Price	et	al.	 2012	 Information	theoretic	 AICc	 None	 MARK	 5	

Campbell	et	al.	 2012	 Information	theoretic	 AICc	 Method	of	moments	 MARK	 13	

Robert	et	al.	 2012	 Null	hypothesis	testing	 LRT	 ANODEV	 model	
comparison	

MARK	 18	

Blomberg	et	al.	 2012	 Null	hypothesis	testing	 LRT	 ANODEV	 model	
comparison	

MARK	 7	

Gimenez	et	al.	 2012	 Null	hypothesis	testing	 Posterior	model	
probability	

Marginalization	 of	
random	effects	

WinBUGS	&	
U-CARE	

17	

Heard	et	al.	 2012	 Null	hypothesis	testing	 Posterior	model	
probability	

Marginalization	 of	
random	effects	

OpenBUGS	 4	

Calvert	et	al.	 2012	 Null	hypothesis	testing	 Analysis	 of	 95%	
Credible	region	

Marginalization	 of	
random	effects	

WinBUGS	 19	

Russell	&	Ruffino	 2012	 Null	hypothesis	testing	 Analysis	 of	 95%	
Credible	region	

Marginalization	 of	
random	effects	

WinBUGS	 10	

Jørgensen	et	al.	 2012	 Information	theoretic	 AICc	 None	 MARK	&	U-
CARE	

18	

Melnychuk	et	al.	 2012	 Information	theoretic	 AIcc	 None	 MARK	 12	

Smith	et	al.	 2012	 Information	theoretic	 AICc	 None	 MARK	 &	
RMARK	

2	

Hegg	et	al.	 2012	 Information	theoretic	 DIC	 Marginalization	 of	
random	effects	

WinBUGS	 25	

Emmerson	 &	
Southwell	

2011	 Null	hypothesis	testing	 LRT	 ANODEV	 model	
comparison	

MARK	 &	
RELEASE	

16	

Morris	et	al.	 2011	 Information	theoretic	 AICc	 None	 MARK	 5	

Bergeron	et	al.	 2011	 Information	theoretic	 AICc	 None	 MARK	 5	
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Gamelon	et	al.	 2011	 Information	theoretic	 AICc	 None	 E-SURGE	 22	

Péron	et	al.	a.	 2011	 Null	hypothesis	testing	 LRT	 ANODEV	 model	
comparison	

E-SURGE	 20	

Keech	et	al.	 2011	 Information	theoretic	 AICc	 None	 MARK	 6	

Péron	et	al.	b.	 2011	 Information	theoretic	 DIC	 Marginalization	 of	
random	effects	

WinBUGS	&	
R	

20	

Muths	et	al.	 2011	 Information	theoretic	 AICc	 None	 MARK	 6	

Lebl	et	al.	 2011	 Information	theoretic	 AICc	 None	 MARK	 &	
RMARK	

12	

Goswami	et	al.	 2011	 Information	theoretic	 AICc	 None	 MARK	 25	

Lee	 2011	 Information	theoretic	 AIC	 None	 MARK	 20	

O'Shea	et	al.	 2011	 Information	theoretic	 AIC	 None	 MARK	 4	

Heulin	et	al.	 2011	 Information	theoretic	 AIC	 None	 M-SURGE	&	
U-CARE	

7	

Reid	et	al.	 2011	 Information	theoretic	 AICc	 None	 MARK	 3	

Welch	et	al.		 2011	 Information	theoretic	 AICc	 None	 MARK	 &	
RMARK	

13	

Cubaynes	et	al.	 2011	 Null	hypothesis	testing	 LRT	 ANODEV	 model	
comparison	

E-SURGE	 19	

Martins	et	al.	 2011	 Information	theoretic	 AICc	 None	 MARK	 &	
RMARK	

5	

Arizaga	et	al.	 2011	 Information	theoretic	 AICc	 None	 MARK	&	U-
CARE	

46	

Glenn	et	al.	 2010	 Information	theoretic	 AICc	 None	 MARK	 &	
RELEASE	

14	

Macdonald	et	al.	 2010	 Information	theoretic	 AICc	 None	 MARK	 21	

Le	Galliard	et	al.	 2010	 Null	hypothesis	testing	 Combined	 AICc	
and	LRT		

ANODEV	 model	
comparison	

MARK	 M-
SURGE	

16	

Mabille	et	al.	 2010	 Information	theoretic	 AICc	 None	 M-SURGE	&	
U-CARE	

32	

Shueller	 &	
Peterson	

2010	 Information	theoretic	 AICc	 None	 ?	 3	

Dugger	et	al.	 2010	 Information	theoretic	 AICc	 None	 MARK	&	U-
CARE	

12	

Oro	et	al.	 2010	 Null	hypothesis	testing	 Combined	 AICc	
and	LRT		

ANODEV	 model	
comparison	

M-SURGE	&	
U-CARE	

16	

Luis	et	al.	 2010	 Information	theoretic	 AICc	 None	 MARK,	
RMARK	 &	
U-CARE	

15	

Previtali	et	al.	 2010	 Information	theoretic	 AICc	 None	 MARK	 17	

Nevoux	et	al.	 2010	 Null	hypothesis	testing	 LRT	 ANODEV	 model	
comparison	

MARK	&	U-
CARE	

15	

Boano	et	al.	 2010	 Null	hypothesis	testing	 LRT	 ANODEV	 model	
comparison	

RELEASE,	
U-CARE	 &	
MARK	

18	

Frick	et	al.	 2010	 Information	theoretic	 AICc	 None	 MARK,	
RMARK	 &	
RDSURVIV	

16	

Schorcht	et	al.	 2010	 Information	theoretic	 AICc	 None	 MARK	&	U-
CARE	

20	

Grosbois	et	al.	 2009	 Information	theoretic	 DIC	 Marginalization	 of	
random	effects	

WinBUGS	
&U-CARE	

11	

Altwegg	et	al.	 2009	 Information	theoretic	 AICc	 None	 MARK	 11	

Hall	et	al.	 2009	 Information	theoretic	 AICc	 None	 MARK	 6	

Liu	et	al.	 2009	 Information	theoretic	 AICc	 None	 MARK	&	U-
CARE	

12	

Ballerini	et	al.	 2009	 Information	theoretic	 AICc	 None	 MARK	 U-
CARE	 &	 M-
SURGE	

11	

Low	&	Pärt	 2009	 Information	theoretic	 AICc	 None	 MARK	 8	

Catry	et	al	.	 2009	 Information	theoretic	 AICc	 None	 MARK	 12	

Lescroel	et	al.	 2009	 Null	hypothesis	testing	 Combined	 AICc	
and	LRT		

None	 MARK	&	U-
CARE	

9	
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	Vasconcellos	 &	
Colli	

2009	 Information	theoretic	 AICc	 None	 MARK	 34	

Hario	et	al.	 2009	 Information	theoretic	 AICc	 None	 MARK,	 U-
CARE	 &	
RELEASE	

47	

Calvert	et	al.		 2009	 Information	theoretic	 AICc	 None	 MARK	 AND	
R	lmer	

11	

Schorr	et	al.	 2009	 Information	theoretic	 AICc	 None	 MARK	 11	

Bakker	et	al.	 2009	 Null	hypothesis	testing	 AICc	and	LRT	 None	 MARK	&	U-
CARE	

5	

Jenouvrier	et	al.	 2009	 Null	hypothesis	testing	 AICc	and	LRT	 None	 MARK,	 U-
CARE	 &	 M-
SURGE	

24	

Gimenez	&		
Barbraud	

2009	 Information	theoretic	 DIC	 Marginalization	 of	
random	effects	

U-CARE,	M-
SURGE,	
WinBUGS	
and	R	

40	

Nevoux	et	al.	 2009	 Null	hypothesis	testing	 LRT	 None	 M-SURGE	&	
U-CARE	

22	

Gruebler	&		
Naef-Daenzer	

2009	 Information	theoretic	 AICc	 None	 MARK	 15	

Barbraud	et	al.	 2008	 Null	hypothesis	testing	 LRT	 None	 M-SURGE	&	
U-CARE	

13	

Focardi	et	al.	 2008	 Information	theoretic	 AIC	 None	 U-CARE	 &	
SURGE		

8	

Frederiksen	et	al.	 2008	 Null	hypothesis	testing	 LRT	 None	 MARK	 43	

Votier	et	al.	 2008	 Null	hypothesis	testing	 LRT	 None	 U-CARE	 &	
M-SURGE		

20	

Scherer	et	al.	 2008	 Information	theoretic	 AICc	 None	 MARK	 &	
RELEASE	

7	

Plummer	et	al.	 2008	 Null	hypothesis	testing	 LRT	 None	 MARK	 &	
RELEASE	

10	

Grosbois	et	al.	 2008	 Null	hypothesis	testing	 LRT	AICc	&	DIC	 Marginalization	 of	
random	effects	

MARK,	 M-
SURGE,	 U-
CARE,	
WinBUGS	

16	

Reid	et	al.		 2008	 Information	theoretic	 AICc	 Method	of	moments	 MARK	 25	

Guitiérrez	et	al.	 2008	 Information	theoretic	 AICc	 None	 MARK	 &	
CONTRAST	

13	

Taylor	et	al.		 2008	 Information	theoretic	 AICc	 None	 MARK	 5	

Nevoux	et	al.	 2008	 Null	hypothesis	testing	 LRT	 None	 U-CARE	 &	
M-SURGE		

12	

	

Appendix.2)	Simulation	of	individual	encounter	histories	and	additional	details	of	analysis	of	

simulation	study	

A)	Individual	based	simulation		

The	encounter	history	of	an	individual	in	a	mark	recapture	study	consists	of	a	time	series	of	‘1’s	

and	 ‘0’s,	with	 ‘1’	 indicating	 that	 the	animal	has	been	sighted	and	 is	alive	 in	a	year,	whilst	 ‘0’	

indicates	 that	 the	 animal	 was	 not	 encountered.	 We	 used	 individual-based	 simulations	 to	

generate	encounter	histories,	by	specifying	a	model	underlying	temporal	variation	 in	survival	

and	 using	 this	 to	 calculate	 year-specific	 survival	 and	 re-sighting	 probability.	 These	 two	

probabilities	were	then	used	to	simulate	the	survival	of	each	 individual	 from	one	year	to	the	
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next.	 Once	 these	 stochastic	 realizations	 of	 individual	 survival	 between	 years	was	 simulated,	

individual	sighting	of	survivors	was	simulated.		

	

B)	 Influence	 of	∆AICc	 threshold	 level	 on	 the	 probability	 of	 detecting	 support	 for	 the	 data-

generating	climate	model	

Under	a	range	of	mark	recapture	study	conditions	we	assess	the	probability	of	finding	support	

for	the	data-generating	climate	model,	for	each	CMR	framework.	The	relative	level	of	support	

of	each	model	 is	measured	as	the	difference	 in	AICc	score	of	 that	model	relative	to	the	best	

supported	model	(the	minimum	AICc	model).		A	threshold	level	of	support	has	to	be	defined	at	

which	a	model	is	defined	as	being	supported.	In	the	main	manuscript	we	present	the	findings	

for	the	case	when	support	is	conservatively	defined	as	an	AICc	value	within	4	units	of	the	best	

supported	model	(∆AICc < 4).	This	represents	just	a	moderate	amount	of	support,	but	is	still	

distinguishable	 from	 the	 most	 supported	 model.	 A	 framework	 failing	 to	 identify	 even	 this	

moderate	amount	of	support	for	the	true	climatic	model	can	therefore	be	classified	as	failing	

to	infer	the	climatic	dependence	of	survival.	

As	this	threshold	criteria	for	sufficient	support	is	to	some	extent	arbitrary,	we	provide	output	

for	 the	analysis	when	the	 threshold	 is	 set	 to	2	AICc	 levels	above	 the	best	 supported	climatic	

model	(Fig.6.S2)	and	when	we	simply	assess	whether	the	data-generating	climate	model	is	the	

best	supported	model	(Fig.6.S3).	Under	these	different	support	threshold	criteria	we	see	that	

the	 qualitative	 relationships	 between	 success	 probability	 and	 A)	 the	 number	 of	 recapture	

occasions	and	B)	the	number	of	individuals	released	annually	remains	the	same	as	presented	

in	the	main	text.	At	each	threshold	the	marginal	 likelihood	random	effects	framework	allows	

more	robust	inference	in	the	presence	of	environmental	stochasticity.	The	main	difference	of	

having	 a	 lower	 ∆AICc	 score	 defining	 sufficient	 support,	 is	 simply	 that	 the	 probability	 of	

identifying	 the	 data-generating	 model	 is	 decreased.	 This	 is	 an	 inevitable	 consequence	 of	

having	more	stringent	criteria	for	support.	
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Figure	 6.S2)	 The	 probability	 of	 mark-recapture	 analyses	 successfully	 finding	 support	 for	 the	 data-
generating	climate	model	at	the	support	threshold	of	ΔAICc	<	2.	AICc	calculations	are	made	under	the	
assumption	that	the	sample	size	 is:	 the	number	of	 individuals	released	(subpanel	A)	or	the	number	of	
years	of	 study	 (subpanel	B).	 The	probability	of	 success	 is	 characterized	 for	each	 framework:	 the	 fixed	
effects	 framework	 (grey	 lines),	 the	marginal	 likelihood	 random	effects	 framework	 (green	 lines)	or	 the	
method	 of	 moments	 framework	 (blue	 lines).	 Successful	 detection	 is	 related	 to	 the	 gradient	 of	
environmental	stochasticity,	darker	shades	 indicate	higher	 levels	of	stochasticty	 (𝜎ф	0	 -	0.5)	and	 i)	 the	
duration	of	the	mark-recapture	study,	and	ii)	the	number	of	individuals	released	at	each	occasion.	The	
method	of	moments	approach	is	not	presented	in	subpanel	A	(𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 =  𝑛!"#$)	as	this	approach	
does	not	allow	models	to	be	distinguished.	
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Figure	 6.S3)	 The	 probability	 of	 mark-recapture	 analyses	 successfully	 finding	 support	 for	 the	 data-
generating	 climate	model	 at	 the	 support	 threshold	of	 ΔAICc=0.	AICc	 calculations	 are	made	under	 the	
assumption	that	the	sample	size	 is:	 the	number	of	 individuals	released	(subpanel	A)	or	the	number	of	
years	of	 study	 (subpanel	B).	 The	probability	of	 success	 is	 characterized	 for	each	 framework:	 the	 fixed	
effects	 framework	 (grey	 lines),	 the	marginal	 likelihood	 random	effects	 framework	 (green	 lines)	or	 the	
method	 of	 moments	 framework	 (blue	 lines).	 Successful	 detection	 is	 related	 to	 the	 gradient	 of	
environmental	stochasticity,	darker	shades	indicate	higher	levels	of	stochasticty	(𝜎ф	0	-	0.5)	and		 i)	the	
duration	of	the	mark-recapture	study,	and	ii)	the	number	of	individuals	released	at	each	occasion.	The	
method	of	moments	approach	is	not	presented	in	subpanel	A	(𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 =  𝑛!"#$)	as	this	approach	
does	not	allow	models	to	be	distinguished.	

	

Appendix.3)	 Long-tailed	 tit	 example:	 Comparison	 of	 inferences	 from	 alternate	 mark-

recapture	analysis	of	climatic-dependent	survival.		

A	 candidate	 set	 of	 models	 was	 produced	 relating	 to	 hypotheses	 about	 the	 main	 seasonal	

climatic	 factors	 influencing	 long-tailed	 tit	 survival	 and	 how	 these	 climatic	 factors	 interact	

within	seasons.	The	candidate	set	includes	25	models,	with	the	most	complex	model	reflecting	

the	 findings	 of	 Gullet	 et	 al.	

(2014):  Ф! =
!

!!!"#
! !ф!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!.!! !!!.!!! !!!!!.!! !!!.!!!

 

.	 Each	

logical	nested	model	of	 this	 full	model	was	also	considered	 (presented	 in	 the	 first	column	of	

table	6.S2).	The	simplest	model	was	therefore	an	intercept	only	model.	The	number	of	climatic	

predictors	included	in	the	candidate	models	varied	between	zero	and	six.	
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Alternate	mark-recapture	 analyses	of	 the	 long-tailed	 tit	 encounter	 histories	were	performed	

by	parameterizing	the	candidate	set	under	each	CMR	framework:	fixed	effects	framework,	the	

methods	of	moment’s	random	effects	and	the	marginal	likelihood	random	effects	frameworks.	

AICc	 model	 comparison	 was	 applied	 and	 a	 full	 model	 comparison	 table	 of	 results	 for	 each	

framework	 is	 shown	 in	 Table.6.S2	 and	 Table.6.S3.	 We	 adopt	 the	 short	 hand	 notation	 of	

Lebreton	et	al.	(1992)	to	refer	to	each	candidate	model	 in	a	concise	way.	 In	this	scheme,	the	

full	 climatic	 model	 of	 survival	 defined	 above	 is	 denoted:	 ф	 (~t1	 x	 p1	 +	 t3	 x	 p3).	

Correspondingly,	 the	 simple	 intercept	 only	 model	 is	 denoted	 ф	 (~1).	Models	 are	 presented	

from	most	to	least	complex.	The	relative	support	for	each	model	is	given	by	the	ΔAICc	scores	

and	model	weights.	Cell	colouring	reflects	the	degree	of	support	for	each	model	under	a	given	

framework.	 Models	 with:	 a)	 ΔAICc	 <2	 are	 most	 supported	 and	 roughly	 equivalent	 (darkest	

grey),	 b)	 2>	 ΔAICc	 <4	 are	 marginally	 less	 supported	 (dark	 grey),	 c)	 4>	 ΔAICc	 <7	 are	

distinguishably	less	supported	(mid	grey),	d)7>	ΔAICc	<10	are	rather	less	supported	(light	grey)	

and	 e)	 ΔAICc	 >	 10	 are	 very	 poorly	 supported	 (white).	 This	 classification	 follows	 the	 rules	 of	

thumb	recommended	by	Burnham	&	Anderson	(2002)	and	Richards	(2005).	

The	outcome	of	the	AICc	model	comparison	depends	strongly	upon	the	CMR	framework	used	

to	analyse	 the	data	but	 is	 also	 strongly	 influenced	by	 the	definition	of	 the	AICc	 sample	 size.	

Firstly,	 consider	 the	 differences	 between	 the	 inferences	 of	 CMR	 frameworks	when	 the	 AICc	

sample	 size	 is	 assumed	 to	 be	 the	 number	 of	 individuals	 released	 (Table.6.S2).	 This	 is	 the	

default	 assumption	 of	 analyses	 in	 standard	 mark-recapture	 software	 (e.g.	 MARK).	 When	

applying	 fixed	 effects	 and	 marginal	 likelihood	 analyses,	 strong	 support	 is	 found	 for	 the	

hypothesis	(model)	that	 long-tailed	tit	survival	 is	 largely	 influenced	by	the	seasonal	effects	of	

temperature	and	precipitation	in	Spring	and	Autumn,	as	well	as	the	interactions	between	the	

two	climatic	drivers	within	each	season.	Specifically,	strong	support	was	found	for	the	climatic	

model:	 ф(~t1*p1+	 t3+p3)(AIC	 weight:	 fixed=0.51,	 marginal	 likelihood	 =0.47)	 and	 the	 full	

climatic	 model	 ф(~t1*p1+	 t3*p3)	 (AIC	 weight:	 fixed=0.35,	 marginal	 likelihood	 =0.36).	

Dissimilarly,	under	the	method	of	moments	framework,	the	support	was	distributed	between	

most	of	 the	models	 rather	evenly	 (all	models	have	similarly	 low	AICc	scores:	dark	grey).	This	

large	uncertainty	 in	 the	choice	of	best	model	 indicates	 that	 the	competing	hypotheses	could	

not	be	sufficiently	distinguished	based	on	the	available	data	using	this	framework.	

Now	 consider	 the	 differences	 between	 the	 inferences	 of	 CMR	 frameworks	 when	 the	 AICc	

sample	size	 is	assumed	to	be	the	number	of	years	of	study	(Table.6.S3).	The	inference	of	the	

fixed	and	marginal	 likelihood	 frameworks	about	 the	 climatic	 variables	 related	 to	 variation	 in	
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survival	become	much	more	dissimilar.	 In	 fact,	 the	 fixed	and	marginal	 likelihood	 frameworks	

identify	 completely	different	 climate	models.	 The	 fixed	effects	 framework	 found	 support	 for	

two	 complex	 climate	 models,	 indicating	 that	 survival	 was	 influenced	 by:	 a)	 the	 interaction	

between	 Spring	 temperature	 and	 precipitations	 plus	 an	 additive	 effects	 of	 Autumn	

temperature	 (AIC	weight:	 fixed=0.63)	 or	 b)	 the	 interaction	between	 Spring	 temperature	 and	

precipitations	plus	the	additive	effects	of	Autumn	temperature	and	precipitation	(AIC	weight:	

fixed=0.24).	 In	 contrast,	 the	marginal	 likelihood	 random	 effects	 framework	 did	 not	 support	

these	complex	models.	Instead	a	high	weight	of	support	was	given	to	a	single	climate	model,	

hypothesising	 that	 survival	 is	 related	 just	 to	 the	 level	of	Autumn	precipitation	 (AICc	weight=	

0.69).	Other	simple	models	received	minor	amounts	of	support,	but	were	distinguishably	less	

well	supported	(daicc	>4).	The	method	of	moments	random	effects	framework	gave	support	to	

a	 single	 climate	 model,	 however	 the	 extreme	 difference	 in	 AICc	 relative	 to	 nested	 models	

indicates	 that	 this	 framework	 is	 not	 providing	 reliable	 inferences.	 This	 inadequacy	 stems	

partially	from	the	relatively	 large	effective	number	of	parameters	relative	to	the	sample	size.	

This	causes	the	AICc	correction	term	to	penalize	in	an	overly	extreme	way.	
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Table	 6.S2)	 Information	 theoretic	 comparisons	 of	 the	 performance	 of	 alternate	 climate	 models	 for	
alternate	CRM	frameworks	under	the	assumption	that	the	AICc	sample	size	is	the	number	of	individuals	
released.	 Models	 describe	 hypotheses	 of	 drivers	 in	 variation	 in	 long-tailed	 tit	 survival	 (ф).	 Climate	
covariates	of	temperature	(t)	and	precipitation	(p)	during	both	Spring	(t1	and	p1)	and	Autumn	(t3	and	
p3)	 were	 used	 to	 explain	 variation	 in	 survival.	 Cell	 colouring	 reflects	 the	 degree	 of	 support	 for	 each	
model	under	a	given	framework.	Darker	colours	 indicate	stronger	support	(see	main	appendix	text	for	
details).	

	

	

	

	

	

	

	

	

Survival	model	

Fixed	effects	Framework	
	

Random	effects	Framework	
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ф	~	t1	x	p1	+	t3	x	p3	 459.3	 10	 2422.16	 0.74	 0.35	 443.2	 18.31	 2423.02	 1.38	 0.05	 414.5	 11	 2402.41	 0.53	 0.36	

ф	~	t1	x	p1	+	t3	+	p3	 460.6	 9	 2421.43	 0.00	 0.51	 443.2	 18.14	 2422.67	 1.03	 0.06	 418.0	 10	 2401.88	 0.00	 0.47	

ф	~	t1	+	p1	+	t3	x	p3	 472.2	 9	 2433.02	 11.59	 0.00	 442.0	 18.94	 2423.08	 1.44	 0.05	 426.	 10	 2410.88	 9.00	 0.01	

ф	~	t1	x	p1	+	t3	 466.2	 8	 2424.99	 3.56	 0.09	 442.8	 18.54	 2423.06	 1.42	 0.05	 428.4	 9	 2405.26	 3.37	 0.09	

ф	~	t1	x	p1	+	p3	 471.9	 8	 2430.74	 9.32	 0.00	 442.4	 18.01	 2421.64	 0.00	 0.11	 430.0	 9	 2407.9	 6.01	 0.02	

ф	~	t1	+	t3	x	p3	 481.2	 8	 2440.05	 18.62	 0.00	 442.0	 19.78	 2424.88	 3.24	 0.02	 432.8	 9	 2412.66	 10.77	 0.00	

ф	~	p1	+	t3	x	p3	 477.1	 8	 2435.93	 14.50	 0.00	 442.0	 19.81	 2424.90	 3.26	 0.02	 430.7	 9	 2411.56	 9.67	 0.00	

ф	~	t1	+	p1	+	t3	+	p3	 481.8	 8	 2440.65	 19.22	 0.00	 442.1	 19.63	 2424.64	 2.99	 0.02	 434.7	 9	 2413.60	 11.71	 0.00	

ф	~	t1	x	p1	 483.5	 7	 2440.32	 18.90	 0.00	 441.8	 18.94	 2422.90	 1.26	 0.06	 444.6	 8	 2413.45	 11.57	 0.00	

ф	~	t3	x	p3	 485.2	 7	 2441.97	 20.54	 0.00	 442.1	 19.61	 2424.58	 2.93	 0.02	 438.5	 8	 2412.37	 10.49	 0.00	

ф	~	t1	+	p1	+	t3	 489.3	 7	 2446.08	 24.65	 0.00	 442.1	 19.62	 2424.58	 2.94	 0.02	 445.9	 8	 2415.71	 13.83	 0.00	

ф	~	t1	+	p1	+	p3	 482.5	 7	 2439.36	 17.93	 0.00	 442.2	 19.50	 2424.43	 2.78	 0.03	 440.9	 8	 2411.75	 9.87	 0.00	

ф	~	t1	+	t3	+	p3	 486.0	 7	 2442.84	 21.41	 0.00	 442.0	 19.71	 2424.65	 3.00	 0.02	 441.0	 8	 2412.81	 10.93	 0.00	

ф	~	p1	+	t3	+	p3	 483.7	 7	 2440.51	 19.09	 0.00	 442.2	 19.50	 2424.42	 2.78	 0.03	 439.5	 8	 2412.33	 10.45	 0.00	

ф	~	t1	+	p1	 492.1	 6	 2446.92	 25.49	 0.00	 441.9	 18.91	 2422.91	 1.27	 0.06	 454.1	 7	 2414.91	 13.03	 0.00	

ф	~	t1	+	t3	 502.0	 6	 2456.84	 35.41	 0.00	 441.5	 20.36	 2425.55	 3.91	 0.02	 456.8	 7	 2418.65	 16.77	 0.00	

ф	~	t1	+	p3	 486.3	 6	 2441.08	 19.65	 0.00	 442.1	 19.44	 2424.27	 2.63	 0.03	 448.0	 7	 2410.85	 8.97	 0.01	

ф	~	p1	+	t3	 496.2	 6	 2451.03	 29.60	 0.00	 442.0	 19.71	 2424.66	 3.02	 0.02	 451.6	 7	 2415.39	 13.50	 0.00	

ф	~	p1	+	p3	 484.5	 6	 2439.34	 17.91	 0.00	 442.2	 19.34	 2424.17	 2.53	 0.03	 445.8	 7	 2410.57	 8.69	 0.01	

ф	~	t3	+	p3	 488.0	 6	 2442.81	 21.38	 0.00	 442.1	 19.50	 2424.35	 2.71	 0.03	 445.7	 7	 2411.55	 9.67	 0.00	

ф	~	t1	 504.1	 5	 2456.89	 35.46	 0.00	 441.6	 20.29	 2425.45	 3.80	 0.02	 462.9	 6	 2417.73	 15.85	 0.00	

ф	~	p1	 501.1	 5	 2453.91	 32.48	 0.00	 441.9	 18.79	 2422.73	 1.09	 0.06	 459.3	 6	 2415.11	 13.23	 0.00	

ф	~	t3	 515.6	 5	 2468.39	 46.97	 0.00	 441.5	 18.38	 2423.50	 1.85	 0.04	 462.2	 6	 2419.01	 17.13	 0.00	

ф	~	p3	 488.4	 5	 2441.14	 19.71	 0.00	 442.3	 18.21	 2421.87	 0.23	 0.10	 451.8	 6	 2409.63	 7.75	 0.01	

ф	~		1	 520.9	 4	 2471.66	 50.23	 0.00	 441.5	 20.30	 2425.45	 3.80	 0.02	 442.0	 5	 2418.74	 16.86	 0.00	
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Table	 6.S3)	 Information	 theoretic	 comparisons	 of	 the	 performance	 of	 alternate	 climate	 models	 for	
alternate	CRM	frameworks	under	 the	assumption	 that	 the	AICc	sample	size	 is	 the	number	of	years	of	
study.	 Models	 describe	 hypotheses	 of	 drivers	 in	 variation	 in	 long-tailed	 tit	 survival	 (ф).	 Climate	
covariates	of	temperature	(t)	and	precipitation	(p)	during	both	Spring	(t1	and	p1)	and	Autumn	(t3	and	
p3)	 were	 used	 to	 explain	 variation	 in	 survival.	 Cell	 colouring	 reflects	 the	 degree	 of	 support	 for	 each	
model	under	a	given	framework.	Darker	colours	 indicate	stronger	support	(see	main	appendix	text	for	
details).	

	

	

	

	

	

	

Survival	model	

Fixed	effects	Framework	
	

Random	effects	Framework	
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ф	~	t1	x	p1	+	t3	x	p3	 459.3	 10	 2449.52	 10.22	 0.00	 443.2	 18.31	 2784.17	 1656.34	 0.00	 414.5	 11	 2446.24	 29.02	 0.00	

ф	~	t1	x	p1	+	t3	+	p3	 460.6	 9	 2441.31	 2.01	 0.24	 443.2	 18.14	 2746.73	 1618.90	 0.00	 418.0	 10	 2433.17	 15.95	 0.00	

ф	~	t1	+	p1	+	t3	x	p3	 472.2	 9	 2452.90	 13.60	 0.00	 442.0	 18.94	 1127.829	 0.00	 1.00	 426.0	 10	 2442.17	 24.95	 0.00	

ф	~	t1	x	p1	+	t3	 466.2	 8	 2439.30	 0.00	 0.65	 442.8	 18.54	 3209.89	 2082.06	 0.00	 428.4	 9	 2427.66	 10.42	 0.00	

ф	~	t1	x	p1	+	p3	 471.9	 8	 2445.05	 5.75	 0.04	 442.4	 18.01	 5625.278	 497.45	 0.00	 430.0	 9	 2430.28	 13.06	 0.00	

ф	~	t1	+	t3	x	p3	 481.2	 8	 2454.35	 15.05	 0.00	 442.0	 19.78	 1655.96	 528.13	 0.00	 432.8	 9	 2435.04	 17.82	 0.00	

ф	~	p1	+	t3	x	p3	 477.1	 8	 2450.24	 10.94	 0.00	 442.0	 19.81	 1505.44	 377.61	 0.00	 430.7	 9	 2433.94	 16.72	 0.00	

ф	~	t1	+	p1	+	t3	+	p3	 481.8	 8	 2455.00	 15.70	 0.00	 442.1	 19.63	 1830.65	 702.82	 0.00	 434.7	 9	 2435.98	 18.76	 0.00	

ф	~	t1	x	p1	 483.5	 7	 2450.43	 11.13	 0.00	 441.8	 18.94	 1911.61	 783.78	 0.00	 444.6	 8	 2429.36	 12.14	 0.00	

ф	~	t3	x	p3	 485.2	 7	 2452.08	 12.78	 0.00	 442.1	 19.61	 1719.88	 592.05	 0.00	 438.5	 8	 2428.28	 11.06	 0.00	

ф	~	t1	+	p1	+	t3	 489.3	 7	 2456.19	 16.89	 0.00	 442.1	 19.62	 2050.63	 922.80	 0.00	 445.9	 8	 2431.62	 14.40	 0.00	

ф	~	t1	+	p1	+	p3	 482.6	 7	 2449.47	 10.17	 0.00	 442.2	 19.50	 1653.49	 525.66	 0.00	 440.9	 8	 2427.66	 10.44	 0.00	

ф	~	t1	+	t3	+	p3	 486.0	 7	 2452.96	 13.66	 0.00	 442.0	 19.71	 1785.92	 658.09	 0.00	 441.0	 8	 2428.72	 11.50	 0.00	

ф	~	p1	+	t3	+	p3	 483.7	 7	 2450.62	 11.32	 0.00	 442.2	 19.50	 1745.26	 617.43	 0.00	 439.5	 8	 2428.24	 11.02	 0.00	

ф	~	t1	+	p1	 492.2	 6	 2453.86	 14.56	 0.00	 441.9	 18.91	 2054.08	 926.25	 0.00	 454.0	 7	 2426.04	 8.82	 0.01	

ф	~	t1	+	t3	 502.0	 6	 2463.79	 24.49	 0.00	 441.5	 20.36	 2163.52	 1035.69	 0.00	 456.8	 7	 2429.78	 12.56	 0.00	

ф	~	t1	+	p3	 486.3	 6	 2448.02	 8.72	 0.01	 442.1	 19.44	 1571.74	 443.91	 0.00	 448.0	 7	 2421.98	 4.76	 0.06	

ф	~	p1	+	t3	 496.2	 6	 2457.97	 18.67	 0.00	 442.0	 19.71	 2066.68	 938.85	 0.00	 451.6	 7	 2426.52	 9.30	 0.01	

ф	~	p1	+	p3	 484.5	 6	 2446.28	 6.98	 0.02	 442.2	 19.34	 1545.26	 417.41	 0.00	 445.8	 7	 2421.70	 4.48	 0.07	

ф	~	t3	+	p3	 488.0	 6	 2449.75	 10.45	 0.00	 442.1	 19.50	 1705.872	 578.04	 0.00	 445.7	 7	 2422.68	 5.46	 0.05	

ф	~	t1	 504.1	 5	 2461.47	 22.17	 0.00	 441.6	 20.29	 2165.23	 1037.40	 0.00	 462.9	 6	 2425.32	 8.10	 0.01	

ф	~	p1	 501.1	 5	 2458.48	 19.18	 0.00	 441.9	 18.79	 2093.20	 965.37	 0.00	 459.3	 6	 2422.70	 5.48	 0.04	

ф	~	t3	 515.6	 5	 2472.97	 33.67	 0.00	 441.5	 18.38	 2187.15	 1059.31	 0.00	 462.2	 6	 2426.60	 9.38	 0.01	

ф	~	p3	 488.4	 5	 2445.72	 6.64	 0.03	 442.3	 18.21	 1461.91	 334.08	 0.00	 451.8	 6	 2417.22	 0.00	 0.69	

ф	~		1	 520.9	 4	 2474.49	 35.19	 0.00	 441.5	 20.30	 2200.89	 1073.06	 0.00	 442.0	 5	 2423.70	 6.48	 0.03	
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Chapter	7:	General	Discussion	

Evaluation	of	aims	and	objectives	

The	aim	of	this	thesis	was	to	examine	the	impacts	of	abiotic	and	biotic	environmental	changes	

on	species	vital	rates	and	population	dynamics.	In	the	introduction,	two	main	objectives	were	

outlined:	 A)	 to	 examine	 how	 environmental	 changes	 influences	 species	 dynamics	 and	 their	

interaction	with	other	community	members	and	B)	to	determine	how	inferences	can	be	made	

about	 the	 impacts	 of	 biotic	 and	 abiotic	 environmental	 change	 on	 species	 vital	 rates.	 In	 the	

subsequent	chapters	we	utilized	data	driven	modelling	approaches	to	address	these	questions,	

deriving	quantitative	 insights	 into	 the	ecological	 impacts	of	 changes	 in	 temperature,	 salinity,	

productivity	and	precipitation.	We	examined	the	impacts	on	species	dynamics	of:	i)	combined	

environmental	 change,	 ii)	 inducible	 defence,	 iii)	 trait-abundance	 feedbacks	 and	 iv)	

temperature	 dependent	 species	 interactions.	 We	 developed	 improved	 methodologies	 to:	 i)	

partition	 the	 pathways	 by	 which	 environmental	 changes	 altered	 species	 invasion	 rates,	 ii)	

identify	growth-defence	trade-offs,	iii)	quantify	the	trait,	density	and	temperature	dependence	

of	 species	 interactions	 and	 iv)	 identify	 and	 measure	 the	 impacts	 of	 climate	 change	 on	 the	

demography	of	wild	populations.	

	

	Influences	of	combined	environmental	change	on	community	dynamics	

It	 is	 expected	 that	 environmental	 change	 will	 have	 a	 multifaceted	 impact	 on	 a	 species	

population’s	 dynamics,	 influencing	multiple	 demographic	 rates	 simultaneously	 (Doney	 et	 al.	

2012;	Régnière	et	al.	2012;	Jenouvrier	2013).	The	findings	of	Chapter	2	show	that	the	effects	of	

combined	 environmental	 changes	 on	 species	 vital	 rates	 can	 have	 non-additive	 impact	 on	

population	dynamics.	In	agreement	with	our	population	level	findings,	previous	individual	level	

studies	also	 indicate	 that	 the	cumulative	effects	of	multiple	environmental	changes	on	birth,	

survival	 and	 death	 rates	 are	 frequently	 non-additive	 (Darling	&	 Côté	 2008).	 Together,	 these	

results	show	that	the	dynamical	consequences	of	changes	 in	one	environmental	variable	will	

often	 be	 modified	 by	 concurrent	 changes	 in	 the	 state	 of	 other	 environment	 conditions.	

Therefore,	multiple	aspects	of	the	environment	may	need	to	be	incorporated	into	population	

prediction	models.	 There	 is	 also	 a	 need	 to	 investigate	 the	 functional	mechanisms	 by	 which	

environmental	changes	influences	vital	rates	in	order	to	understand	the	non-additivity	of	their	

effects.	 The	 interactive	 effects	 of	 environmental	 change	 that	 were	 observed	 in	 Chapter	 2	

appeared	to	be	relatively	simple,	given	the	vast	number	of	possible	synergisms,	but	this	may	
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not	 be	 a	 general	 result.	 However,	 the	 underlying	 mechanisms	 driving	 these	 interactions	

appeared	 to	 be	 interpretable	 based	 on	 metabolic	 theory	 and	 a	 consideration	 of	 nutrient	

cycling,	 suggesting	 that	 it	 may	 indeed	 be	 possible	 to	 anticipate	 and	 generalize	 about	 such	

synergies(Savage	et	al.	2004;	Beveridge,	Petchey	&	Humphries	2010)	

	 	

Factors	complicating	predictions	of	species	responses	to	environmental	change	

Perhaps	 the	 most	 fundamental	 question	 in	 our	 endeavours	 to	 understand	 population	

responses	 to	 environmental	 change	 concerns	 the	 level	 of	 biological	 detail	 that	 must	 be	

modelled	 in	 to	 give	 sufficiently	 accurate	 representations	 of	 the	 system.	 That	 is,	 in	 which	

situations	 do	 we	 need	 to	 include	 information	 about:	 a)	 genetic,	 physiological	 or	 trait	

differences	 at	 the	 individual	 level,	 b)	 differences	 between	 subgroups	 of	 a	 population	 (age,	

stage,	 or	 trait-based),	 c)	 population	 level	 changes	 in	 mean	 trait	 values	 (physiological	

performance,	 resource	 consumption	 and	 defence),	 d)	 community	 level	 interspecific	

interactions,	e)	ecosystem	level	processes	(oxygen	or	carbon	fluxes)?	

Our	findings	from	Chapter	2	support	the	view	that	it	is	crucial	to	model	the	coupled	dynamics	

of	interacting	species	when	investigating	the	dynamic	consequences	of	environmental	change.	

The	 impacts	 of	 environmental	 change	 on	 a	 species	 invasion	 rate	 was	 found	 to	 be	 strongly	

influenced	by	environmental	 impacts	on	 the	performance	of	 the	 resident	population	and	 its	

interaction	strength.	Recent	reviews	examining	climate	change	impacts	on	species	interactions	

and	 population	 declines	 have	 also	 indicated	 that	 changes	 to	 species	 interactions	 frequently	

play	 an	 important	 role	 (Tylianakis	et	 al.	 2008;	 Cahill	et	 al.	 2013).	As	 species	 do	not	 occur	 in	

isolation	 but	 instead	 interact	 with	 other	 community	 members,	 predictions	 of	 species	

performance	and	range	shifts	under	future	environmental	conditions	will	likely	be	inaccurate	if	

interspecific	interactions	are	not	incorporated	(Bradley	et	al.	2010;	Gilman	et	al.	2010).	

In	 Chapter	 3	 and	 4	 we	 provide	 evidence	 that	 it	 is	 also	 important	 to	 consider	 phenotypic	

responses	 of	 individuals	 to	 environmental	 change,	 in	 order	 to	 understand	 the	 dynamics	 of	

even	 simple	 microbial	 systems.	 Considering	 changes	 in	 consumptive	 interactions	 between	

species	in	response	to	individual	level	morphological	and	behavioural	trait	change	significantly	

improved	our	ability	to	explain	community	dynamics	of	a	predator-prey-resource	system.	The	

trait	 dependencies	 of	 consumption	 could	 then	 be	 interpreted	 using	 life	 history	 theory	 and	

through	consideration	of	resource	allocation	trade-offs	(Coley	et	al.	1985;	Abrams	et	al.	1993).	

Exposure	 to	 predation	 was	 found	 to	 cause	 a	 gradual	 decline	 in	 prey	 vulnerability	 and	 was	
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associated	with	 a	 reduction	 in	 body	 size.	 The	 defensive	 response	 of	 prey	 came	 at	 a	 cost	 of	

reduced	 allocation	 to	 population	 growth.	 Removal	 of	 the	 predatory	 pressure	 permitted	

resources	to	be	redirected	to	growth.	Similar	growth	defence	trade-offs	have	been	identified	

in	 other	 systems,	 but	 usually	 at	 the	 individual	 level	 (Tollrian	 &	 Harvell	 1999;	 Andersson	 &	

Hughes	2010;	Travis	et	al.	2014).	To	our	knowledge,	our	approach	in	Chapter	4	was	the	first	to	

show	a	complete	feedback	between	trait	dependent	vital	rates,	species	dynamics	and	density	

dependent	trait	change.	The	implications	of	this	work	is	that	over	multigenerational	timescales	

the	vital	rates	underpinning	population	dynamics	should	not	be	assumed	to	be	constants,	but	

instead	variables	that	will	likely	depend	on	individual’s	morphology,	behaviour	or	condition.	

The	 feedbacks	 between	 species’	 traits	 and	 abundances	 may	 have	 been	 driven	 by	 either	

evolutionary	 selection	 or	 phenotypic	 plasticity	 (Thompson	 1998;	 Tollrian	 &	 Harvell	 1999;	

Agrawal	 2001;	 Yoshida	et	 al.	2004;	 Fordyce	 2006;	 Cortez	 2011;	 Kasada	et	 al.	 2014).	 Further	

empirical	 work	 is	 required	 to	 determine	 the	 relative	 contribution	 of	 these	 mechanisms.	 In	

natural	 systems,	 such	 experiments	 are	 not	 possible,	 however	 the	 use	 of	 decomposition	

analyses	 may	 allow	 a	 partitioning	 of	 contribution	 of	 each	 of	 these	 mechanisms	 in	 driving	

observed	 changes	 in	 individuals’	 traits	 (Ozgul	 et	 al.	 2009).	 Current	 eco-evolutionary	 theory	

indicates	 	 that	both	evolution	and	plasticity	can	drive	trait	dependent	variation	 in	vital	rates,	

permitting	 a	 wide	 range	 of	 complex	 dynamical	 behaviours	 that	 would	 not	 occur	 in	 purely	

ecological	 systems,	 due	 to	 temporal	 variation	 in	 species	 growth	 and	 consumption	 rates	

(Abrams	et	al.	 1993;	Cortez	2011;	 Tien	&	Ellner	2012;	Kasada	et	al.	 2014;	Koch	et	al.	 2014).	

Resultantly,	 inferring	 the	 drivers	 of	 population	 dynamics	 may	 be	 challenging	 without	

considering	 the	 feedbacks	 between	 defence	 traits,	 predation	 pressures,	 population	 growth	

and	 trait	 change	 (as	 suggested	 by	Hiltunen	et	 al.	 2014).	This	 provides	 strong	motivation	 for	

long-term	population	studies	 to	concurrently	assess	 the	dynamics	of	abundance,	ecologically	

relevant	traits	and	metabolic	cost	and	benefits.		

In	Chapter	5,	we	identified	that	the	nature	of	trait	dependent	consumptive	interactions	varied	

across	an	environmental	 gradient.	At	 all	 temperatures,	 temporal	 variation	 in	 the	 strength	of	

predation	was	 associated	with	decreases	 in	prey	body	 size.	However,	 environmental	 change	

reversed	the	impact	of	trait	changes	on	consumption	rates.	Reduced	body	size	was	associated	

with	prey	defence	against	predation	at	low	temperatures	(as	described	above),	but	increased	

vulnerability	at	high	temperatures.	From	this	we	inferred	that	body	size	was	probably	not	the	

trait	directly	influencing	predation	risk.	Instead,	changes	in	prey	body	size	was	likely	an	indirect	
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result	of	a	modified	life	history	strategy	or	altered	resources	allocation	to	growth	and	defence	

(as	described	in	Travis	et	al.	2014).		

Although	body	size	may	not	directly	mediate	defence,	 it	 is	nonetheless	a	very	useful	 trait	 to	

measure	 as	 it	 provides	 a	 simple	 surrogate	 measure	 of	 allocation	 to	 cell	 growth.	 It	 may	

therefore	be	useful	for	identifying	how	energetic	trade-offs	and	trait	dependent	processes	vary	

with	 respect	 to	environmental	 conditions.	 It	 also	allows	calculation	of	 changes	 in	population	

biomass	which	may	in	some	cases	be	more	predictable.	The	changes	in	body	size	and	the	trait	

dependence	 of	 consumption	 rates	 observed	 at	 warm	 temperatures	 were	 consistent	 with	

metabolic	theory	and	were	 interpreted	as	a	response	to	the	energetic	demands	of	the	warm	

conditions	(Atkinson	1994;	Savage	et	al.	2004;	Binzer	et	al.	2012a;	Reuman	et	al.	2014).		These	

findings	 highlight	 a	 potential	 challenge	 in	 understanding	 the	 response	 of	 communities	 to	

gradual	environmental	change.	If	interactions	are	trait-dependent,	but	the	dependence	varies	

across	 environments,	 it	 may	 be	 difficult	 to	 anticipate	 changes	 in	 prey	 vulnerability	 in	 novel	

conditions,	 without	 a	 detailed	 knowledge	 of	 the	 defence	 traits	 driving	 variation	 in	 species	

interactions.	 Predicting	 how	 environmental	 change	 will	 influence	 the	 defence	 traits	 may	

require	 a	 detailed	 understanding	 of	 the	 physiological	 and	 life	 history	 consequences	 of	

environmental	change	(Coley	et	al.	1985;	Abrams	et	al.	1993;	Gillooly	et	al.	2002;	Savage	et	al.	

2004;	Bassar	et	al.	2010;	Binzer	et	al.	2012b;	Travis	et	al.	2014;	Reuman	et	al.	2014).	The	use	of	

dynamic	energy	budget	theory	and	physiologically	structured	population	models	may	improve	

predictability	(de	Roos	1997;	Kooijman	2000).	

	

Methods	to	reliably	infer	impacts	of	environmental	change	

Throughout	this	thesis	we	developed	new	approaches	to	infer	the	causes	and	consequences	of	

environmentally-driven	 changes	 in	 vital	 rates.	 In	 Chapter	 2,	 we	 developed	 a	 novel	 variance	

decomposition	method,	to	partition	the	contribution	of	different	mechanisms	by	which	species	

invasion	 rates	 were	 influenced	 by	 environmental	 changes.	 This	 revealed	 the	 importance	 of	

inter-specific	 interactions	 in	 determining	 invasion	 dynamics.	 We	 argue	 that	 similar	

decomposition	 	 analyses	 should	 be	more	widely	 adopted	 to	 quantify	 the	 roles	 of	 the	many	

processes	that	often	influence	ecological	systems	(Price	1970;	Rees	et	al.	2004;	Hairston	et	al.	

2005;	Ellner	et	al.	2011;	Griffiths	et	al.	2015).	

In	Chapter	3,	we	constructed	a	novel	methodology	for	quantifying	the	impacts	of	exposure	to	

predation	 on	 the	 key	 ecological	 rates	 of	 prey	 population	 growth	 and	 defence	 against	
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consumption.	Data	collected	 in	prey	growth	trials	and	predator	feeding	assays	could	then	be	

combined,	allowing	changes	in	species	abundances	caused	by	population	growth	to	be	clearly	

distinguished	 from	 changes	 driven	 by	 predator	 consumption.	 By	 constructing	 models	 that	

reflect	the	observation	process	as	well	as	the	biological	processes,	we	revealed	clear	evidence	

of	a	trade-off	between	growth	and	defence.	This	trade-off	is	predicted	by	theories	of	resource	

allocation	 and	 is	 an	 assumption	 underpinning	 eco-evolutionary	 theory	 (Coley	 et	 al.	 1985;	

Abrams	&	Matsuda	1997;	Mougi	2012a).	

In	 Chapters	 4	 and	 5,	 we	 established	 an	 innovative	 approach	 to	 empirically	 model	 the	 link	

between	 the	 dynamics	 of	 species	 traits	 and	 their	 abundances.	 This	 improved	 our	 ability	 to	

explain	 community	 dynamics	 and	 provided	 clear	 evidence	 of	 a	 feedback	 between	 trait	

dependent	 vital	 rates	 and	 density	 dependent	 trait	 change.	 The	 approach	 was	 derived	 from	

models	 underpinning	 theories	 of	 trait	 dependent	 ecological	 interactions	 and	 density	

dependent	 trait	 change	 (Abrams	&	Matsuda	1997;	 Ellner	&	Becks	2010;	Cortez	2011;	Mougi	

2012b;	Cortez	&	Weitz	2014).	The	 theoretical	 frameworks	are	now	well	developed,	however	

there	is	a	clear	gap	between	theoretical	predictions	and	empirical	tests.	Data-driven	modelling	

is	required	to	test	theoretical	expectations	and	gain	quantitative	 insights	 into	the	strength	of	

feedbacks	between	trait	and	abundance	dynamics.		

Finally	 in	 Chapter	 6	we	 conducted	 formal	 tests	 of	 the	performance	of	 information	 theoretic	

methods	 used	 to	 infer	 the	 climate	 dependencies	 of	 demographic	 rates.	 By	 simulating	

demographic	 datasets,	 with	 a	 known	 climatic	 dependence	 of	 survival,	 and	 using	 alternate	

mark-recapture	 frameworks	 to	 analyse	 them,	 we	 evaluated	 the	 performance	 of	 several	

common	approaches.	We	demonstrate	that	both	the	choice	of	likelihood	framework,	used	to	

account	 for	 unmeasured	 processes,	 and	 the	 assumptions	 made	 about	 the	 extent	 of	 data	

independence	 substantially	 influence	 conclusions	 about	 past	 survival	 and	 quantitative	

projections	 into	the	future.	Continued	efforts	are	needed	to	ensure	that	robust	methods	are	

developed	 and	 distributed	 to	 allow	 reliable	 ecological	 inferences	 to	 be	 made	 and	 theories	

tested.	The	use	of	simulation	and	verification	of	model	performance,	using	a	model	structure	

adequacy	approach	should	be	more	widely	adopted	(Taper	et	al.	2008).	
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Utility	of	small	scale	experiments	to	address	questions	about	the	prediction	of	
population	responses	to	environmental	change.	

A	 large	 fraction	 of	 the	 empirical	 data	 used	 in	 this	 thesis	 was	 generated	 using	 microbial	

microcosm	experiments.	The	use	of	microcosm	experiments	provides	several	advantages	when	

addressing	questions	about	population	responses	to	environmental	change.	Firstly,	they	allow	

rapid	and	replicated	generation	of	data	sets	which	follow	the	dynamics	of	species	abundance	

for	 many	 generations.	 Their	 small	 size	 permits	 large	 populations	 to	 be	 examined	 and	

manipulated	 experimentally.	 Finally,	 their	 cellular	 simplicity	 removes	 complexity	 that	 is	

present	in	size	structured	organisms	with	complex	life	histories.		

This	 allows	 the	 identification	 of	 fundamental	 factors	 which	 complicate	 the	 prediction	 of	

population	 dynamics,	 without	 the	 complexity	 of	 natural	 climate	 regimes	 or	 community	

complexity.	 Even	 in	 these	 simple	 unicellular	 organisms,	 we	 uncovered	 a	 network	 of	

relationships	 among	 traits	 and	 resource,	 prey	 and	 predator	 abundances	 and	 showed	 that	

modelling	the	feedbacks	between	these	processes	improved	our	ability	to	explain	community	

dynamics.	To	understand	and	predict	population	dynamics,	there	is	a	need	for	high	temporal	

resolution	 data	 on	 the	 dynamics	 of	 species	 physiology,	 traits	 and	 abundances	 as	 well	 as	

ecosystem	 processes.	 Current	 studies	 rarely	 contain	 more	 than	 100	 temporal	 samples	 and	

usually	 do	 not	 measure	 individual	 characteristics.	 Fortunately,	 it	 is	 becoming	 increasingly	

viable	 to	 collect	 such	 data	 sets	 with	 the	 invention	 of	 novel	 automated	 monitoring	 and	

measuring	 equipment	 (e.g.	 Pennekamp	 2015).	 To	 make	 powerful	 inferences,	 it	 would	 be	

beneficial	 to	 increase	 sampling	 frequency	 by	 an	 order	 of	magnitude,	 allowing	measurement	

uncertainty	 to	 be	 substantially	 reduced	 (due	 to	 temporal	 autocorrelation)	 and	 allow	 high	

frequency	dynamic	changes	to	be	identified.		

	

Future	research	developments	

The	multifaceted	and	complex	nature	of	environmental	change	may	mean	that	the	forecasting	

horizon	of	many	systems	is	a	rather	short	amount	of	time	(Selvam	2007;	Petchey	et	al.	2015).	

Research	 effort	 should	 therefore	 focus	 on	 identifying	 the	 potential	 prediction	 horizon	 of	

important	systems	and	identify	predictive	frameworks	appropriate	for	this	time	scale.	To	make	

truly	predictive	 forecasts	will	be	much	more	challenging	 than	explaining	previously	observed	

dynamics,	but	provides	an	extremely	 strong	 test	of	our	understanding	of	a	system’s	biology.	

This	 predictive	 understanding	 will	 likely	 require	 detailed	 demographic	 data	 relating	
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environmental	 conditions	 to	 individual	 birth,	 growth	 and	 survival	 rates	 rather	 than	

phenomenological	time	series	approaches.	Methods	linking	demographic	and	abundance	data	

into	 a	 single	 model	 inference	 framework	 are	 increasingly	 well	 developed	 (Lee	 1985;	 He,	

Ionides	&	King	2010;	Ozgul	et	al.	2010;	Hartig	et	al.	2011;	González	&	Martorell	2013;	González	

et	al.	2016;	Barthold	et	al.	2016),	but	forecasting	species	responses	to	environmental	change	is	

still	 a	 nascent	 field	 (Jenouvrier	 et	 al.	 2013).The	 dynamical	 consequences	 of	 environmental	

change	are	also	likely	to	be	dependent	on	the	strength	of	species	 interactions.	 In	such	cases,	

multi-species	 forecasting	 methodologies	 will	 be	 needed	 to	 model	 the	 coupled	 dynamics	 of	

strongly	interacting	species.	Parameterizing	such	forecasting	model	will	requiring	substantially	

more	empirical	data	to	quantify	the	functional	forms	of	the	interactions	and	the	potential	trait	

dependencies.	

Our	findings	indicate	that	concepts	from	several	related	fields	within	evolution,	physiology	and	

ecology	may	need	to	be	unified	to	understand	the	behavioural	and	morphological	responses	of	

individuals	 to	 environmental	 change.	 Identifying	 the	 feedbacks	 between	 the	 dynamics	 of	

species	abundance	and	traits	 influencing	defence,	or	altering	other	vital	 rates,	appears	 to	be	

an	 important	prerequisite	for	predicting	environmental	 impacts	on	population	dynamics.	The	

complex	dynamics,	anticipated	by	eco-evolutionary	theory,	may	not	easily	be	explained	using	

classical	 ecological	 theory,	 based	 purely	 on	 species	 abundance.	 Detailed	 physiological	 and	

metabolic	analyses,	and	modelling	frameworks	to	integrate	the	resulting	data	are	need.	There	

is	also	a	need	to	make	these	complex	mathematical	models	more	widely	applicable	(de	Roos	

1997).		

Continued	work	is	required	to	unify	theories	of	population	and	community	ecology	with	those	

of	 physiology,	 life	 history	 and	 evolutionary	 biology.	 Concerted	 effort	 is	 needed	 to	 develop	

methods	to	obtain	inferences	from	empirical	data	related	to	each	of	these	fields	and	combine	

the	 findings	 to	 make	 powerful	 dynamics	 forecasts.	 Finally	 we	 need	 to	 identify	 types	 of	

forecasting	 approaches	 that	 can	 probabilistically	 combine	 theoretical	 expectations	 from	

different	 levels	 of	 biological	 detail	 and	 empirical	 data	 from	multiple	 sources	 into	 a	 common	

predictive	framework.		
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