Activity Analysis: Finding Explanations
for Sets of Events

by

Dima Jamal Al Damen

Submitted in accordance with the requirements
for the degree of Doctor of Philosophy.

a
-

o

UNIVERSITY OF LEEDS

The University of Leeds
School of Computing

September 2009

The candidate confirms that the work submitted is her own
and that the appropriate credit has been given where referece has been made
to the work of others.

This copy has been supplied on the understanding that it is gryright material
and that no quotation from the thesis may be published withotiproper
acknowledgement.



Vision is the art of seeing the invisible...

Thoughts on Various subjects
Jonathan swift (1667-1745)



Abstract

Automatic activity recognition is the computational presef analysing visual in-
put and reasoning about detections to understand the petbevents. In all but the
simplest scenarios, an activity involves multiple intarled events, some related and oth-
ers independent. The activity in a car park or at a playgramadld typically include
many events. This research assumes the possible eventayaodretraints between the
events can be defined for the given scene. Analysing theitsgcsivould thus recognise
a complete and consistent set of events; this is referred toglobal explanation of the
activity. By seeking a global explanation that satisfiesativity’s constraints, infeasible
interpretations can be avoided, and ambiguous obsergatiary be resolved.

An activity’s events and any natural constraints are defusdg a grammar formal-
ism. Attribute Multiset Grammars (AMG) are chosen becatsg allow defining hierar-
chies, as well as attribute rules and constraints. When fasedcognition, detectors are
employed to gather a set of detections. Parsing the setedti@ts by the AMG provides
a global explanation. To find the best parse tree given a sidtettions, a Bayesian net-
work models the probability distribution over the space a@dgible parse trees. Heuristic
and exhaustive search techniques are proposed to find thenomaxa posteriori global
explanation.

The framework is tested for two activities: the activity iigycle rack, and around
a building entrance. The first case study involves peopliemgcbicycles onto a bicycle
rack and picking them up later. The best global explanatiorafl detections gathered
during the day resolves local ambiguities from occlusionlotter. Intensive testing on 5
full days proved global analysis achieves higher recognitates. The second case study
tracks people and any objects they are carrying as they anteexit a building entrance.
A complete sequence of the person entering and exiting pheilitimes is recovered by
the global explanation.
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Chapter 1

Introduction

The word “activity” is defined in Merriam-Webster and Oxfdeshglish dictionaries as
the “state of being active” [1,119]. It, by definition, invas the motion or translation of
objects in the environment. Visual sensors are essentiahg suitable for distinguishing
motion than other sensors. Analysing the activity, usirsgial information, is thus finding
an explanation for the detections that conform to the undedsng of possible scenarios.

Automatic activity recognition, which is the main subjettlus thesis, is part of the
discipline of artificial intelligence, and is the processaoialysing visual input and rea-
soning about detections, using a computerised algoritbnuntlerstand the performed
events. This thesis proposes overcoming the unrelialaifitysual detection methods by
seeking global explanations for activity recognition. &iva noisy visual input, and ex-
ploiting our knowledge of the activity and its constrairdsge can provide a consistent set
of events explaining all the detections. The proposed fraoniebridges the gap between
noisy visual observations and higher-level activity radtign. The introduction explains
the need for global explanations, and the range of domaimsevtecognition is assisted
by seeking a global explanation. The rest of this chapteodhices the novelties of this
research along with an overview of the chapters of the thesis
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1.1 Global explanations for activity recognition

Activity recognition has been studied intensively in congwision. Simple actions
like walking, running, waving or boxing have been recogdisgthin clear or cluttered
scenes [82,92]. Sequences of events performed by the sdmlual, or events involv-
ing interactions between multiple people have also beetiestu Current research has
achieved significant progress towards recognising comguents in difficult scenes.

One of the major limitations in most state-of-the-art atfivecognition techniques is
their focus on recognising a single event given a set of tietec Some of the approaches
assume that only one event can occur at each point in timerntively, other approaches
can recognise multiple events by assuming the detectidoadiag to each event can be
separated from the remaining detections. Figure 1.1 shawgieal set of surveillance
scenes, where the ability to separate the detections igjmigli sets cannot be realistically
assumed.

Figure 1.1: Three examples of surveillance scenes from BlEFdatasets (2006, 2007 and 2009).

The terms ‘activity’ and ‘event’ have been used in variodtgrambiguous, ways by
the computer vision community. To avoid confusion, the &are defined here and then
used consistently throughout the remainder of the thesiseventis a context-related
interpretation for a detection or a group of detections. a&tivity, on the other hand, is
a set of related events. One can refer to the ‘activity’ witthe car park as the set of all
events that occur within the car park. Similarly, the *aityivaround the office is the set
of events, that could be dependent or independent, yet atedeoy the space in which
they occur. In the simplest case of only one event occurtimg activity and the event
would be the same. Yet, in the general case the activity waginultiple related events.

To automatically analyse the activity, some evidence ibg&d from observing the
scene to assist recognising the occurring eventsletctoris an independent evidence
collector that targets certain evidence types, like modietectors, car detectors or pedes-
trian detectors. The same detector can be used to recogmisely events of different
activities. It is unaware of the context in which it operatédsdetectionis a discovered
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entity that is acquired by a detector. For example, thedtajg of a moving objectis a de-
tection obtained using a motion detector. Given an activélyable detectors are chosen
to retrieve a set of detections that would assist recogmisia activity’s events. Aeature

is a measurable characteristic of the detection. For exantipe velocity is a feature of
the trajectory. The detector would measure the value of¢aiure for each detection.

The set of detections obtained during an observed periodtivity typically belongs
to several events within the activity. The recognition thegguires partitioning the detec-
tions along with recognising the eventsghobal explanatiorfor the set of detections is a
consistent set of events that covers all the detectibhe number of events is not known
in advance, and varies between the different explanatmmfié same set of detections.

To understand the value of global explanations, let us denghe activity at a train
platform. As trains approach and depart, some trajectafigeeople end close to the
train, other trajectories appear, and some continue to rabvke platform. A global
explanation would recognise all the boarding and alighéwngnts along with recognising
those waiting for the next train. Assume a person is obsemating at a train platform.
As the train approaches, the person could not be detecteslimjlies the person boarded
the train, or is still waiting another train and is currertdlycluded. After the train departs,
the person is again detected at the platform. A global exgpianwould correctly attribute
the person’s absence to occlusion despite the initial anitlyig

In addition to resolving uncertainties, recognising esentlependently can result in
an inconsistent set of events. For example, a person camaot bhe train while it is
moving. A train can be boarded by many people at once, yet soperannot board
multiple trains. A person can though alight from one traierttiboard another. Human
cognition naturally allows explanations that satisfy sochstraints. A global explanation
satisfies the natural constraints by finding a consistenvfsetents. Figure 1.2 shows
three diagrammatic sets of events for a period of activigythin platform. These events
involve people boarding and alighting trains. The thregdms show one inconsistent
set of events and two consistent sets that represent globlainations.

Though the ternglobal explanationmplies the complete set of events, the tezra
planationon its own is used in the thesis at times to refer to the glok@lemation. The
soughtexplanationis the best complete and consistent set of events, coveliirigea
detections during a period of activity. Thoest explanations found using a Bayesian
approach.

In this thesis, | assume the expected activity, given a scarebe defined, and the
recognition focuses merely on the activity’s events. Fanegle, the activity at a train
platform can be defined as sets of trains approaching andtdepaalong with people
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Figure 1.2: For the activity at a train platform, two trainsnd four people were detected, three
sets of events are shown. A border is used to associate easbnpeith a train. Dotted borders
indicate alighting while solid borders indicate boardingrain. The first diagram (a) is an incon-
sistent set of events as a person is thought to have boardettdims. The second (b) and third
(c) diagrams are consistent sets of events.

boarding, alighting and waiting. Detections are explajmeterms of this defined activity.

1.2 Motivation, goals and novelty

Seeking global explanations and the framework proposeHistihesis were motivated
by theBicyclesproblem discussed in Chapter 5. When observing a rack aneiipla
people are seen simultaneously dropping and picking kesycThe ambiguity in each
event increases with occlusion, and the uncertainty ingeising the event performed by
each person can be resolved by finding a global explanatidmie\ackling this problem,

I noticed the significant improvement in recognising uraertnput when seeking global
explanations. The framework used for solving Bieyclesproblem was generalised and
applied to a different problem for tracking people and tleairied objects in and out of a
building.

The goal is to propose a framework that starts by formallynilegithe activity’s events
and the natural constraints. This framework should enabting the best global ex-
planation for all detections in a video input. Given prioplpabilities, and the events’
likelihoods, a Bayesian approach finds the best explan#t@inmaximises the posterior
probability.

Figure 1.3 shows the different components of the framew&tkhe top of the figure,
a box indicates the tasks to be performed once for each cmesicctivity. The activity
and the natural constraints are employed to create an iigérMultiset Grammar (AMG).
This process is manual, and the notations and formulatibtisecAMGs are explained
in Chapter 3. AMG is used, along with a labeled set of trairseguences, to define
probabilities that favour some global explanations oveed.

For a given video sequence, detectors gather a set of detectvhich represents ter-
minal symbols, along with assigning values to the selecisalV features. A parse of the
AMG generates a global explanation for all the detectiontse ffamework proposes an
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Figure 1.3: A flowchart indicating the proposed framework.

algorithm to transform the AMG, given a finite set of detextipinto a Bayesian network
structure. Along with the learned probabilities, this Bsiga network models the prob-
ability distribution over the space of global explanatidosthis set of detections. The
MAP solution of the Bayesian network is then believed to leedglobal explanation that
best suits the detections.

The primary contributions of this research are:

e A framework for defining global explanations to recognise tomplete and con-
sistent set of events that occurred during an observeddefiactivity. The best
explanation is found in a Bayesian approach, given a settettiens, based on the
defined activity and its constraints.

e Case studies of two activities in which the framework can$edito provide global
explanations.

e An experimental demonstration which shows that globaltemhs resolve visual
ambiguities that cannot be locally resolved.

e A comparison of different techniques for searching the sgd@xplanations.
Secondary contributions are:
¢ A novel detector for carried objects in short video sequsnce

e A system for analysing activities in a bicycle rack. The swysis tested using data
recorded over 5 days at two different sites.
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e A system for associating people and carried objects emgtamal exiting a building
entrance. The system was tested on 12 hours of data.

1.3 Thesis overview

The rest of the thesis is organised as follows. Chapter 2wes/the previous attempts in
the literature to recognise complex activities using héesed, logic-based and graphical
models. The relevance of these techniques for finding glekahnations is discussed.

Chapter 3 presents a grammar formalism that encodes theinlsrkaowledge and
constraints, in order to express the global explanationtribite Multiset Grammars
(AMG) are used to explain activities as hierarchies of ewgwhere the leaves are prim-
itive events that are directly detected from input videaotriButes of the grammar corre-
spond to features of these events, and can be propagated dpan the hierarchy. The
probability distribution over all global explanationsygn a set of detections, is modeled
by a Bayesian Network (BN). For simplicity, the chapter opigsents an abstract AMG
that does not correspond to a real-life problem.

The exhaustive search for the Maximum A Posteriori (MAPElabg of the Bayesian
network is intractable in all but the simplest problems. @ka4 presents a number of
heuristic search techniques that have previously beeningbe literature for searching
such a BN. The chapter explains how these approaches campledaip searching the
BN representing global explanations for activity recoigpmit

The framework is applied to two problems. The first, and estteaty analysed case
study is theBicyclesproblem briefly explained previously. An AMG is detailed ih&p-
ter 5 for the activity, given tracked people and the appesaf@isappearance of bicycles
within the rack area. The chapter explains the differergctet] features, and how they
are retrieved from the input video. The approach is tested mral dataset of 67 hours
recorded at two sites. This case study compares the sealshdaes, and experimentally
evaluates the ability of heuristic searches to find the Hesiadexplanation given 7 video
sequences of varying length and complexity.

The second case study, tRater-Exitproblem, is studied in Chapter 6. Similar to the
first case, an AMG, Bayesian network, experiments and imggults are presented. The
second case study differs from the first in its ability to ig@uise sequences representing
the individual entering and exiting a building multiple #sduring the course of the day.
It tracks both people and their carried objects using a sisgmera mounted next to a
building entrance. Tested on a single day of video, prelaninmesults demonstrate the
validity of the framework for a different activity.
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TheEnter-Exitproblem requires detecting carried objects from video seges. One
of the contributions of this thesis is a novel detector faried objects that is based on
detecting protrusions from the silhouette of the personap@dr 7 gives details of this

detector along with examples and extensive testing.
Finally, Chapter 8 offers insights into future directionglahe framework’s limita-

tions. It summarises the findings and contributions, andlcaies the thesis.



Chapter 2

Background Review

The approach presented in this thesis attempts to find géeodpddnations given a set of
detections. Section 2.1 highlights the recent successfudittoward global analysis to re-
solve local ambiguities in various computer vision proldeM/hen all the detections are
evaluated simultaneously, or constraints within the exgii@n are considered, a ‘better’
explanation can be found.

Though little previous work deals with global explanatiadsactivities, Section 2.2
reviews previous frameworks for complex activity recogmmt An activity recognition
framework enables defining activities, then recognisiregaétivity from the input video,
based on the definition. The ability of each reviewed fram&imrecognise the complete
and consistent set of events is discussed.

When recognising interleaved events, partitioning thedeins is required. This is
very similar to the data association task used for trackidgta association techniques
were first introduced to establish trajectories from radaasurements, and used later for
visual tracking. In the radar surveillance problem, thecspaf possible associations is
huge. Searching this space is a combinatorial optimisgiioblem. Many search tech-
niques like multiple-hypotheses trees, integer programymand reversible jump Markov
chain Monte Carlo, were compared in this domain. Section&gws the radar surveil-
lance problem and the seminal papers in this area. It alseshow these techniques
were used for visual tracking; for connecting trackletdwwitthe field of view of a single
camera, or between non-overlapping cameras.
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2.1 Global analysis in computer vision

The simultaneous analysis of all the detections has prosegrdageous in many areas of
computer vision, like image denoising, segmentation, sfaqalysis and object recogni-
tion. As detections are noisy, and often incomplete, glaialysis has been introduced
in these domains, and shown to outperform local intergoetat This section highlights
some of the previous work that adopts global analysis, wbitdn involves defining hard
or soft constraints between local detections. Though #mmot be an exhaustive review
of global analysis in vision, it motivates the significanéglobal explanations for activity
analysis.

Several image interpretation problems can be expresseagelsipse labelling of the
image. Labeling a pixel in isolation from its surroundingoiféen noisy, while global
analysis combines all the information to provide a reliadtplanation. Global explana-
tions maximise the joint probability distribution of allq&l labels in the image. Using the
Markovian assumption, each pixel is dependent on its neighibg pixels, and the joint
probability distribution is factorised as a Markov RandoreléF (MRF). This remains to
date one of the most influential models in image analysidjquaarly since the discov-
ery of efficient optimisation methods, such as the Gibbs $anjp0]. Used initially for
image denoising and restoration, the technique was emglayer for binary image seg-
mentation [121] and multi-class image labeling [6, 38, 14Ak Figure 2.1 shows, the
local interpretation for each pixel (referred to as unakglihood) is assisted by pairwise
terms to result in a reliable segmentation. Despite the aoabdrial complexity in in-
ference using MRFs, and the delicate choice of the energymisation function [90],
efficient exact and approximate solutions were proposecatahsively used for the op-
timisation [20, 21, 89].

o Oy
L. e é;} ¥l

Pair-wise Terms MAP Solution

Data (D)

Figure 2.1: Energy minimisation for object segmentatiomgsx MRF. Figure from [138]

Shape from Shading is an under-determined problem whenm@aehis considered
independently. Given the intensity at each pixel, one wadloedetermine the surface
gradient. Solutions incorporated global constraints sik@othness and integrability, and
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introduced global energy functions for minimisation [153he minimum solution, de-
pending on the chosen constraints, can produce a conssstape given a single image.
Global analysis was also introduced, around the same tinWRdss, for shape anal-
ysis. Defining algebraic and geometric constraints betwedimetric object parts was
used by Brooks in the novel framework ACRONYM for recogngsimbjects in images
from 3D models [23]. Each class of objects is defined as a edarfine hierarchy, where
the root is a general class model with the minimum conssaiSpecialised classes are
recursively defined, adding geometric and algebraic camés between the model parts,
until the leaves represent specific object instances. fidenbtors and planes are modeled
as examples, and line segments in the images are interpgitegithe models. After the
model parts are detected, a combinatorial search is camigtd collect object hypotheses
which represent the location, the scale and the viewpoihe dssignment of detections
to model parts are globally satisfiable according to the ttamgs defined in the model.
Such hierarchical models were also defined as a grammar g Bxad Henderson [35].
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Figure 2.2: Part of the human-annotated AND-OR graph foeipteting images (left), and a
corresponding recognition for rectangles (right). Figargom [157]

Closely related, attribute graph grammars have been dgogsed to identify man-
made rectangular objects like tables, floor tiles and wirgliovstatic images [62]. Strong
rectangle candidates from edge detection are used to lggisélarger structures through
the application of grammar rules. This can initiate a seboctveaker evidence of rectan-
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gles consistent with these larger structures. This topadoaitom-up approach was fur-
ther justified and explained by Zhu and Mumford in their syridé7]. The paper argues
that the ultimate goal of image interpretation is to gereeeatomprehensive stochastic
grammar that can interpret all images, as represented AmtieOr graph in Figure 2.2.
An And-Or graph is an equivalent representation to confted-grammars [60]. Given a
grammar, learning the parameters and the spatial rel&iion®etween image parts can
be achieved from training images. The grammar is thoughigeohby an expert, as struc-
tural decomposition is steered by the objective of this dgmasition. To parse a given
image, recursive top-down/bottom-up parsing is used, aadkb chain Monte Carlo
(MCMC) samples the possible top-down hypotheses. The appreas applied to recog-
nising human clothing and object categories like bicyckegure 2.3 shows examples of
the applications from [157]. A related work for recognisfagades using grammars was
introduced in [118]. The derivation tree that best suitsdhlven image is found using
reversible jump Markov chain Monte Carlo.

Figure 2.3: Examples of global analysis using stochastangmars in images. Figures from [157]

Recognising an object using the joint recognition of seMatarrelated parts can also
be considered a global approach, albeit for a single obfath models are often referred
to as ‘pictorial structures’. A pictorial structure is a dehable configuration of parts, that
can be perceived as a graph with links between dependest jtatbmbines a hierarchy
of parts with spatial relationships between neighbourargs Since an efficient inference
approach approximated the graph by a tree [43], pictoniattires were used frequently
for object detection. A global energy function matches gaath to image features along
with maintaining the spatial relationships between pafigure 2.4 shows an example of
how global analysis using pictorial structures can assidirig ambiguous body parts. In
the figure, edge detection is used to retrieve the evideece fhe image. The pictorial
structure represents the person as a tree of ten parts: dlde the torso, and four limbs
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divided into upper and lower parts. Searching for each patie image is local analysis
that can miss some parts or hallucinate others. A globabegtion is though capable of
resolving such uncertainties and providing a consistepiaeation.

initial parse

ballucinated leg

Figure 2.4: Body-pose estimation using pictorial struesir Figures from [115]

Wu and Nevatia detect multiple, possibly occluded, peoplergall edgelet features
in a single image [145]. The paper shows that the joint Ii@dd of all the edgelets
produces better detections, as the occlusion inter-depmeydaioes not penalise the hidden
body parts. The paper uses an iterative search algorithmddHie best explanation for
all the detections simultaneously.

Global analysis has also been recently employed to joirttpgnise an object and
its surrounding context. By learning the spatial relatlops between the object and its
context, Heitz and Koller improved the detection of objentaerial images [68]. While
object detection can often lead to unrealistic explanati@onsidering the surrounding
supports weaker evidence or rejects inconsistent exptansat In Figure 2.5, false car
detections were rejected by studying the context, as carsot@xist on top of roof build-
ings. Similarly, the output of a bicycle detector can be iayed by recognising the
surrounding context.

Figure 2.5: Detecting objects is improved by studying thatigbrelationships between an object
and its surrounding. Figure from [68]
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2.2 Activity recognition frameworks

By contrast, global analysis for activity recognition hast been widely used. As ex-
plained in the introduction, this thesis proposes a frammkvi@r finding global explana-
tions for all detections during a period of activity. Thiscgen reviews the influential
research in the area of recognising complex activitiexrRoi the review, different types
of activities can be defined. An activity is said to contaiterleavedevents when, at
a point in time, more than one event can occur. This disallparsitioning the period
of activity temporally so only one event occurs within eaelntipion. Figure 2.6 distin-
guishes interleaved from single-event activities. Moexpactivities can contain ordered
or unordered events. Two events arderedif they end in the same order they started.
The need for definingrderedevents arises from certain solutions for recognising multi
ple interleaved events that assume the detection is askigriee event that started first,
like queues or production lines. In these cases, the detelbglongs to the earliest event
expecting a detection of this type. Figure 2.6 also distisiges ordered from unordered
activities. Activities involving interleaved unorderedeats is the most general case.

——a}— {a] { ’ {a] {
+—{b}— —{b}— —b}—1
interleaved X v v
ordered v_ v“ X

Figure 2.6: In a single-event activity, the timeline can lztjpioned so one event occurs within
each patrtition. Interleaved-event activity, on the othantl, expects more than one event at each
point in time. In ordered activities, like queues, the etkat ends first is the one that started first.
In unordered activities, events can end in any order regessllof their starting order.

Generally, two kinds of events are distinguished. | willeretio these as primitive and
compound events. Arimitive evenis an event that is detected directly and corresponds
to one detection exactly. A primitive event thus labels tleéedtion depending on the
activity. For example, a trajectory detection could cqoeesd to the primitive event of a
person walking across the platform when analysing the iactat the train platform. A
compound evens a grouping of other simpler, compound or primitive, egeniin the
literature, the phrasempound/primitive evengse substituted with event/subevent [69,
108], compound/simple events [25], compound/atomic eyemtthe words are simply
used interchangeably [139]. Aactivity is thus recursively defined as a composition of
events, until primitive events are only available.

This thesis covers recognising activities with interlehuaordered compound events.
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A framework designed to recognise such activities dependsi® choice of detections.
Previous work often used motion detectors to retrieve ¢tajees [40,69,77,96,108,109,
120,127]. Some of these researches assume all moving ®hjecof the same type like
people [109] or cars [71]. Others used object detectorsassdly trajectories like people
detectors [120] or hand detectors [127]. Some detectors @emain-specific like de-
tecting fridges and hobs [109] or even a glucose monitorati@teising template match-
ing [127]. Differently, low-level recognisers were modsllby hidden Markov models
that retrieve temporally overlapping durations as detestialong with a likelihood of
the primitive events [74]. The framework would then contawo parts. The first is the
definition part, where the activity is formally expresseuakl és events are specified. The
second is the recognition part for finding a consistent setvehts, given the definition,
for a finite set of detections. Though the framework requireth parts, this section ex-
plains each one separately to clarify the different apgreaan the literature for each
task.

2.2.1 Frameworks for defining activities

The work of lvanov and Bobick [74] highlighted the importanaf formal methods to
encode expert knowledge for recognising activities in @idEhis is because the recogni-
tion expects a “rich knowledge base” to make out the possikfganations [18]. While
learning the structure of the activity from noisy image sawes is hard, this structure is
explicit and known in advance.

The decomposition of the activity into a set of events, whiah be further decom-
posed into simpler events, is naturally represented by raftiey. Two different hierar-
chical representations are shown in Figure 2.7. In thedlitee, some define the activity
by drawing those hierarchies [42, 69].

S S S S
/N /N /I /I
b/A\ b/A\ /Y\a/x\ /X\a/Y\
c B d B bd bc bc bd
/N /N
a/C\ a/C\
b d b ¢

Figure 2.7: Hierarchical representations of the activity.

Grammars naturally define a hierarchy, and were used to daftnaties in video as
early as in 1998 [148]. Different types of grammars can gise to different hierarchical
structures. The hierarchies on the left of Figure 2.7 carepeesented by a regular gram-
mar, while the ones on the right can be represented by a deinéexgrammar (which is
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more general) [5]. Regular grammars are used to define tee ofdanguages accepted
by finite state automata, while context free grammars defi@elass of languages that are
accepted by push-down automata. Figure 2.8 shows regullac@rtext-free grammars
corresponding to the hierarchies in Figure 2.7.

Regular Grammar Context-Free Grammar
S— bA S— XaY | YaX

A —cB|dB X — bc

B — aC Y — bd

C— bC| bd

Figure 2.8: Regular grammar (left) can represent the hietaes in Figure 2.7 (left), while
Context-Free grammar represents the hierarchies in Figuie(right).

When used for recognising activities, regular grammarssar@ble for modelling a
series of parallel models [104], but as the number of vannestincreases it becomes harder
to represent them using a concise finite state machine sese&or example, ball passes
between players in a game of tennis can easily be modelled) asregular grammar,
but in a football game a context-free grammar provides a rnonepact representation
by allowing chains of passes of arbitrary length. A contiege grammar rulé — BbC
rewrites a compound event into a sequence of primitive antponind events. Stochastic
Context Free Grammars (SCFG) can be defined where a prdipabiassociated with
each rule indicating its preference over alternative rutegnov and Bobick used SCFG
to represent the different ways in which complex activites be constructed, and as-
sign probabilities to each [74]. They evaluated their apphoon gesture recognition and
surveillance within a car park. An example SCFG presentdtieir paper for the car
pickup task is shown in Figure 2.9. They realised that SCHE&®at sufficient to define
the valid explanations, and therefore added an additiomasistency check enforcing
temporal constraintshat allow or prevent overlapping events. This is becauseatte
A — abBdoes not specify whether the events can overlap or not. Tilégchthis check
to the recognition process, rather than the formal defmititthe activity.

SCFGs have been intensively used since then to recognieeedif activities, like
events in a blackjack game [104] and surveillance apptoati44, 86]. The work of
Zhanget al. augments the grammatical rule with a matrix of temporatfti@ts R [152].
Each element;jj in the matrix R defines the temporal relationship [7] betwsgmboli
and symbolj in the rewritten string.

Non-temporal constrainfsuch as limits on the separation of objects involved in an
event, can also be formally defined. Ivareial. textually describe the spatial constraints
between the events in SCFG [75]. To provide such constramigart of the activity’s



Chapter 2 16 Background Review

Gp:
TRACK - CAR-TRACK [0.5]

|  PERSON-TRACK [0.5]
CAR-TRACK — CAR-THROUGH [0.25]

| CAR-PICKUP [0.25]

| CAR-OUT [0.25]

|  CAR-DROP [0.25]
CAR-PICKUP — ENTER-CAR-B CAR-STOP PERSON-LOST B-CAR-EXIT [1.0]
ENTER-CAR-B  — CAR-ENTER [0.5]

| CAR-ENTER CAR-HIDDEN [0.5]
CAR-HIDDEN — CAR-LOST CAR-FOUND [0.5]

|  CAR-LOST CAR-FOUND CAR-HIDDEN [0.58]
B-CAR-EXIT — CAR-EXIT [0.5]

| CAR-HIDDEN CAR-EXIT [0.5]
CAR-EXIT — car-exit [0.7]

| SKIP car-exit [0.3]
CAR-LOST — car-lost [0.7]

|  SKIP car-lost [0.3]
CAR-STOP - car-stop [0.7]

| SKIP car-stop [0.3]
PERSON-LOST — person-lost [0.7]

| SKIP person-lost [0.3]

Figure 2.9: A car-pickup SCFG as presented in [74].

definition, different linguistic formulations have beemposed [69,108,120,128]. Neva-
tia et al. proposed the ‘Event Recognition Language’ (ERL) [108]. EREn ontology
that includes a complex set of spatio-temporal relatigrshit divides events into three
types: primitive events that can be directly detected;|shtigread events made up of one
sequence of events; and multi-thread events where tem@paiial and ‘logical’ rela-
tionships are allowed. The paper argues that activitiedheatefined more easily using
this ontology than using stochastic grammars. The ontotlwgs not only define events,
but also allows defining the scene, regions of interestualesk, etc. A predefined set of
temporal, spatial and logical relationships is presented.

In Rota and Thonnat [120], an activity is defined as a foutetup

1. A set of positive events that should occur for the actitatyoe recognised, along
with a set of negative events that should not occur.

2. Temporal constraints between positive events in theigcti

3. Non-temporal constraints, such as spatial relatiosgbétween the events or object
sizes.

4. Any action that needs to be taken if the event was recognidas is defined in the
context of surveillance applications to raise a warningnheeded.

The approach is applied to define certain activities in a ongttation. An example of a
defined activity is shown in Figure 2.10.
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Name = “forbidden access to area”,

Events = (t1, enters(pi : Person, a; : Area)),
not(te, leaves(py : Person, a1 : Area)),
Constraints =t < to, to < t; + 1.0,
Conditions = function(a, “forbidden_access”),
Success = alarm(p1, “has entered area”,a1)

Figure 2.10: A tuple defined for the activity of detecting aspe in a forbidden area. Figure
from [120]

A simpler approach by Chaat al.[25] defines positive and negative events; though is
only suitable for two levels of hierarchy, where an activgylefined as a set of complex
events that are directly decomposed into primitive eveltsible is used to represent the
domain’s knowledge, where rows represent primitive evant$ columns are the com-
pound events representing consecutive states of thetgct\cell in that table is labeled
0 if the primitive event is not allowed, 1 if the primitive evds required, and is left empty
if the compound event is indifferent to the detection of fignitive event.

The work of Siskind is based on the assumption that the werldade up of lines,
and thus lists general spatial relationships like ‘supgirand ‘attached’ [128]. An event
is then recognised as a logical expression made up of sgatiperal relationships to
govern the interacting objects. The work though expecth e&gect to be detected and
tracked correctly. This approach was later used by Eet@l. to query a database of
primitive spatio-temporal relationships for interestegents [40].

Intille and Bobick defined multi-agent activities as seteompound and fundamen-
tal (i.e. primitive) goals (i.e. events) with temporal andical constraints governing the
relationships [72]. The activity is viewed as a ‘partial sétgoals, where temporal rela-
tionships are identified between some of the goals. Logistramts, like ‘or’ and ‘xor’
relations, are added to the definition when needed. The iehmodels interactions of
players in American football. A collection of ‘plays’ arefdeed by an expert, and the
definition is then mapped to a Bayesian network that linkspiéially-ordered events
defining causality and allowing for parallel relations. T¢sme approach was used by
Shiet al. to define activities [127] (Figure 2.11). In addition to trizig the probabilities
and the observation likelihoods, a Gaussian models thedlapsed for each event.

The recent work of Tran and Davis [139] uses first-order Iqgduction rules to
encode the domain’s knowledge. Four rule types are usednitgefilauses which are
hierarchical decompositions of activities into eventsjutictions which provide alterna-
tive explanations; negative preconditions which are qairsis on applying the rules; and
exclusion relations which model relationships betweemts/erhe work provides an in-
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Figure 2.11: The activity of glucose calibration is reprated by a Bayesian network. Figure
from [127]

sight into constraints between events occurring at the sanee For example, a person
belongs to only one group of walking pedestrians at a tima p@rson drives only one car.
These constraints are modeled using exclusion relatiottasrwork. Some of the rules
presented in their approach for activities in a car park atantuitive to think of, like:

‘if a person opens the trunk of the car, he/she will (likelgjex that car’, or ‘two persons
shaking hand with each other will (likely) not enter the sa@me. They extend beyond the
hierarchy of events. A simple hierarchy cannot relate th&ipg event to hand shaking.
Weights are assigned to the clauses to differentiate hand $oft constraints, and imply
rule preferences. Tran and Davis introduce logic rules imeatochastic grammars are
incapable of defining constraints.

Attribute grammars are one way to define constraints withgrammar formula-
tion [87]. These have recently been used to recognise tesivh a car park by different
authors [77,78,96]. This follows previous success in usitigbute grammars to con-
strain the spatial relationships in visual languages [68] &nd the detection of objects in
images [62,157]. Attribute grammars allow defining atttés.to accompany terminal and
nonterminal symbols, and defining constraints that goveeratlowable values of those
attributes (more in Section 3.2). Using attribute grammaittsibute rules and constraints
are incorporated into the grammar. The previous approanhég, 78,96] do not employ
the full abilities of attribute grammars to define rules andstraints. Attributes are only
sparsely defined, while our approach incorporates att&ibules that evaluate the likeli-
hoods for all events at higher levels in the hierarchy, antstaints between dependent
events. Figure 2.12 shows a sample attribute grammar farathgark from [77]. The ap-
proach rewrites a nonterminal as a string of symbols. Thengrars in this thesis rewrite
a nonterminal as a multiset, and only introduce temporatigiships as constraints on
valid interpretations. This avoids multiple rules thatyodiffer in the ordering of sym-
bols such as the rules rewriting the PARKING event in the Bgiioreover, the grammar
in Figure 2.12 does not define how the events can be shared mvbkiple interleaved
events are to be recognised. A car can pick up multiple peaplde a person cannot be
picked up by multiple cars at the same time. These approadbesliffer from the work
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Grammar productions

Attribute rules and Semantic conditions

PARKINGLOT — PARKINGy | PARKOUTy | DROPOFFy
PARKINGLOT — PICKUPy | WALKTHRUy | CARTHRUy
PARKING — CARPARKqperappydisappearscarstat;
PARKING — CARPARKgperappycarstat; disappears
CARPARK — carappgearstart,carstop

CARSTOP — carstoppcarstarty CARSTODP,
CARSTOP — carstopy
PARKOUT —
perappgdisappear; carappy CARSTART sdisappears
CARSTART — carstartpcarstop; CARSTART,
CARSTART — carstartgcarstop;
CARSTART — carstartg
DROPOFF — CARSTANDgperappydisappear, CARSTART,
DROPOFF — CARSTANDperappy CARSTART disappears
CARSTAND — carappgearstart; CARSTOP,
PICKUTP — perapppdisappear; CARSTART ydisappears

WALKTHRU — perappgdisappear;

(Near(X2.loc.X1.loc), sNearPt(X3.loc, BldgEnt))
(Near(X2.1oc.X1.loc), sNearPt(X4.loc, BldgEnt))
X0.1oc¢ := X3.loc (NotInside(X 1.loc.Fov),
sInside(X3.loc. PkSpacel, PkSpace2))

X0.loc := X3.loc

X0.loc := X1.loc
(sNearPt(X1.loc.BldgEnt).Near(X3.loc.X2.1oc),
NotInside(X5.loc,Fov))

X0.loc := X1.loc

X0.loc := X1.loc

X0.loc ;= X1.loc

(Near(X2.1oc.X1.1oc). sNearPt(X3.loc.BldgEnt))
(Near(X2.loc.X1.1oc), sNearPt(X4.loc.BldgEnt))
X0.1oc¢ ;= X3.loc (Notlnside(X 1.loc.Fov))
(sNearPt(X1.loc, BldgEnt), Near(X3.loc,X2.loc).
NotlInside(X4.1oc,Fov))

(NotInside(X1.loc.Fov), Notlnside(X2.loc,Fov),

sFar(X2.loc. X1.loc))
CARTHRU — carappyCARSTART), disappear

Figure 2.12: Attribute grammar for car parking scenario.gkire from [77]

in this thesis in the recognition methods as will be expldimeSection 2.2.2.

Other approaches define the activity using graphical modeHierarchical Hidden
Markov Model (HHMM) was used in [109] for modelling actives in a domestic envi-
ronment. These are more suitably learnt rather than defigeduman expert. Gong
and Xiang learn the temporal and causal dependencies bewweats using Dynamic
Multi-linked HMMs [56]. As opposed to the other frameworksthis section, this work
used unsupervised learning for activity definition. Therapph learns causal and tem-
poral relationships from videos of loading and unloadirangls. The number of possible
dependencies in the BN is limited using the Bayesian inftionecriterion (BIC). The
emerging structure of the BN would then be used to define theitgcalong with the
entries in a state transitions matrix.

Most of the previous work for activity recognition distingbes between temporal and
non-temporal constraints [56,74,108,120,128]. In factetcan just be treated as another
attribute in the framework - temporal and non-temporal t@nsts need not be made
distinct. For example, given two everggndb, wheret is an attribute that signifies time
andcis an attribute for position, then constraints likke< b.t + 10 anda.c—b.c| < 25 can
be treated in the same way. Moreover, a general list of datthtemporal relationships
does not need to be gathered in advance, given the difficalgompiling such a list.
The framework proposed in this thesis treats all types o$tramts in the same way, and
allows defining any relationships between the events. Biyung the method of defining
temporal and non-temporal constraints, the sequencingti@nts can be dropped from
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the grammar. This thesis uses multiset grammars where @maoingal is rewritten as
a multiset of other symbols. Previous work based on strirgngnars had to provide
solutions to resolve cases when the ordering is not strievents can occur in parallel.
This is because temporal constraints are enforced in stpiagnmar in all cases, even
when no temporal ordering of the events is required.

Apart from [96, 109, 139], all the frameworks presented @&@mcognise one event
given a video sequence. Typically, one video sequence\viesamhultiple interleaved
events. Defining activities with interleaved events shaubdtlide defining the constraints
between the events. In [139], first order logic capturesdloemstraints. Liret al. [96]
and Nguyeret al. [109] assume each detection participates in one and onlyeoeaet.
This may be an incorrect assumption for some activities, €og the activity of cars
picking-up individuals, the pick-up event involves a capgiing, the person approaching
then disappearing close to the car, followed by the car'sadape. As the car can pick up
several people, the detected car can be shared by multgidiegtup events. A person can
though be picked up by one car. The formal definition shoultsmter these constraints
between the recognised events to provide a consistent seenfs.

After formally defining the activity, this definition can beed to recognise activities.
The next subsection reviews techniques used for activitygeition.

2.2.2 Activity recognition methods

Recognising a previously-defined event is the task of finding or more instances of
that event in a given video input, or indicating that suchrestance is not present. The
recognition technique is thus dependent on the way the éasbeen defined.

Assuming a SCFG is used to define the activity, a probaldlsrser can be used for
the recognition. One efficient parser, referred to as théyEtplcke parser, can parse
probabilistic production rules and find the parse with thghlkst probability [135]. The
parser uses top-down dynamic programming performed iresyad three tasks: predict-
ing, scanning and completion until the input sequence Ig Bdanned. At the prediction
stage, the set of all possible productions is accumulatdte stanning then reads the
input and calculates the probability of the produced striigally, the completion step is
performed when all the symbols in the production rule aresssfully scanned. Parsing
a string of primitive events can then be performed by this@agiven a SCFG.

Such recognition has two underlying assumptions. The {reiries the uncertainty in
detecting primitive events. Often detections are ambiguand the primitive events can
only be probabilistically defined. The second assumptiexjecting only one compound
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event within a given input video. Previous work has attempdedrop one or both of these
assumptions.

The uncertainty of the input can be resolved independerdiyn the recognition task,
where Maximum a Posteriori (MAP) assigns a primitive eveneéach detection. Alter-
natively, incorporating the uncertainty in the recogmttask can resolve local ambigui-
ties. In [74], the recognition is decoupled into two stagesst, hidden Markov models
(HMMs) are used to detect primitive events. The likelihoddeach primitive event is
retained and used in the parsing process. A modified Eatlggke parser generates the
parse with the highest posterior probability given a seqaeai uncertain events and the
SCFG. During scanning, the posterior is calculated as tHaptication of the rule’s prior
probability and the events’ likelihood terms. Three typesroors in the input have to be
dealt with. Insertion errors arise when one of the detectedts is actually a noisy ob-
servation or does not belong to the activity. Substitutioors occur when a detection is
misclassified, and the actual primitive event is not dettatethe most likely one. Dele-
tion errors occur when a primitive event fails to be detectkkdgether. When the parser
fails to parse the given input, it attempts to correct somelese errors, before running
the parser again. The method also checks for temporal eamstr During the completion
step of parsing, the parser rejects parses that do notystiesfconstraints. Ivanov and
Bobick recognise a single compound event, involving one oreninteracting agents, in
each given video.

While Ivanov and Bobick only correct for errors when the infails to be parsed,
Moore and Essa [104] expand the approach and modify the topatcommodate for
possible insertion/deletion/substitution errors everemthe current input can be parsed
correctly. The parse with the highest probability is founydnbaintaining multiple hy-
potheses at a time. At each step, the possible three ermrsoasidered, and differ-
ent parses are generated. The work discusses pruning tls¢hlegps to avoid growing
complexity, yet in their work exhaustive search was trdetgiiven the small number of
detections.

Kitani et al. build a hierarchical Bayesian network from the SCFG [86h[dabilities
are embedded in the hierarchical Bayesian network. Insitagarser, deleted interpo-
lation is used to find the explanation with the maximum pastein ‘deleted interpola-
tion’, the probability distribution at each point in timedalculated as a weighted sum of
explaining partial evidences over a window of sizé solution that strongly explains re-
cent observations is favoured. Unlike [74, 104], they doinocbrporate the uncertainties
in recognising the primitive events into the approach. Tiwdabilities are only confined
to priors of the grammar rules. Though the paper argues thizitees are ‘constrained
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and temporally overlapped’, no explanation was providedow the constraints were
satisfied.

Shiet al. use discrete condensation [127] for finding the best expilamasing their
P-Net representation. They modify the condensation algor[73] to sample a discrete
search space, and refer to this as discrete condensatiey.cbmpare discrete condensa-
tion with the parsing from [74] and present results that destrate discrete condensation
has a higher capability of recovering from errors and uaaeties in the data.

Hongenget al. build a Bayesian network so primitive events are indepetderd
compound events are conditionally dependent on the sinepkants [69]. The posterior
of the Bayesian network is evaluated using belief propagat one direction, from the
bottom layer to the top layer. The joint probability of priae and compound events
is thus simplified to that in Figure 2.13. The approach themmaresp(H|e;, e, €3)
with p(—H|e;, e, e3). The same independence assumptions for the joint protyahik
used in [98]. Hongeng’s novel framework recognises one @ung event given each
sequence. It exhaustively searches the possible comimsati primitive events to find
the one that maximises the posterior. The method presentéus thesis adopts the
same independence assumptions as these in Figure 2.13vill s further explained in
Chapter 3.

H)
ORCRC)

Figure 2.13: In [69], primitive events are assumed indeparicand compound events depend on
their primitive events. Graphical model from [69]

Similarly in [108], the event with the least uncertainty ecognised by finding the
combination of primitive events that satisfies the tempomalstraints with the highest
likelihood. The paper suggests pruning methods to limitcih@plexity of the approach,
but it focuses on formulating the problem rather than sgj\tire recognition task.

Intille and Bobick automatically build a Bayesian networiddink each event to an
observed node [72]. All the observed nodes are binary oatgrrAn observed node is
labeled as (yes/maybe/no), which does not probabili¢gicatorporate the underlying
uncertainty. When applied to the activity of American faatpmultiple Bayesian net-
works are tested at each point in time to determine whichegyas used by the players.
The network with the highest confidence is selected as tlogresed strategy, which suits
the context of a football game, where one strategy is pregemntime.
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Despite the majority of activity recognition frameworksésing on recognising a
single instance of the compound event given a separated detextions, some recent
work deals with the more realistic situation where a congpdett of detections, belonging
to different events within the activity, is available. Chetnal. argue that joining track-
lets into complete trajectories can benefit from recoggisive events performed by each
tracklet [25]. Applied to plane refueling activities, a nwot tracker yields broken track-
lets representing the movements of different actors (eesgm, hose, plane). A combined
approach is sought where tracking and activity recognii@ndecided-upon jointly. The
work builds a dynamic Bayesian network, then uses bruteeftwsearch through the set
of possible explanations. Though this framework is veryade for jointly recognising
primitive and compound events, it expects one compoundtesea time, which suits
plane refueling scenes. It cannot be used to recognisddated events.

Recognising interleaved -yet ordered- activities, likeaghter scanning items one at
a time, is achieved in [42] using a special Viterbi algorith@rdered activities expect
events to end in the same order they started, which suits/drgsat a point of sale. The
approach is though unsuitable for unordered activities.

Tran and Davis use Markov logic networks, built using firedey logic rules from the
activity definition [139]. Observed events are grounded amdcursive procedure adds
new ground atoms using the logic rules to the Markov logiowoek. Inference is then
performed using Gibbs sampling with simulated annealing.

A recent attempt to recognise interleaved unordered evertkst of Joo and Chel-
lappa [77,78]. Similar to lvanov and Bobick’s work, HMMs arsed to recognise prim-
itive events, and parsing recognises the compound evasfysag the constraints and
considering the uncertainty of the primitive events. Tamgguse interleaved events, mul-
tiple threads are maintained and detections are greediigraed to threads. The resulting
explanation is not necessarily one that maximises the mosterior of the activity, as
detections are assigned independently in a sequential orde

Nguyenet al. proposed a framework to assign detections and recognisgeaved
events [109]. The authors acknowledge that a reliable assgt of detections to events
is often unavailable. The proposed approach splits thestax& two. First, detections
are partitioned into events. Then, multiple hierarchigdten Markov models (HHMM)
are used to recognise the events. This though assumes theenwievents is fixed
and known in advance, in order to decide on the number of HHMMssigning detec-
tions uses the Joint Probabilistic Data Association Fi{#&DAF). This maximises the
joint probability of assigning all detections to events atle point in time. A combined
HHMM-JPDAF is presented using a dynamic Bayesian netwoiguie 2.14). The ap-
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proach uses MCMC to sample from the set of possible assigtsiten exact inference
is used for each HHMM. Though the problem solved by Ngusfeal. is the closest to the

complex behaviour
primitive behaviour
end status

state

complex behaviour

o . erson 2
primitive behaviour p

end status

state

set of observations

assignment

time t—1 time t

Figure 2.14: A DBN representing the HHMM-JPDAF in the caséwd compound events. Each
one is represented by a Hierarchical HMM. The assignmenetéations to events is performed
separately at each time step. Diagram from [109]

problem posed in this thesis, the number of events cannatliadly known in advance.
In [109], the assignment was not formally defined, and is §mmafdl-1 assignment in the
discussed cases.

A recent attempt to overcome an assumed partitioning ottetes into events com-
bines SCFG with a Markov Random Field (MRF). The MRF is defiagé joint proba-
bility on nodes in the possible parse trees. The unary tefmegethe primitive event’s
likelihood, while pairwise terms define the relationshipsieen nodes. Applied to pick-
ing up people in a car park, the pairwise potentials in the MiR¥-calculated from the
spatial proximities of people and cars. A Gibbs sampler edus find the best set of
objects for each event. While this framework can partittomdetections, it does not take
into consideration the constraints between events. Asiqusly explained, this could
lead to an inconsistent set of events. For example, a carropaadf several people, yet a
person can be dropped off by only one car. The MRF should besasiaguch constraints
when sampling from the list of candidate objects.

This section highlights the need for a framework that defares recognises activ-
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ities taking into consideration not only the temporal andtisph constraints within the

events, but also the constraints between the events. Abuddtrgrammars have been
used successfully for defining spatial and temporal comssathey will be adopted in

the suggested framework. For recognition, a Bayesian apprsimilar to [69] has been
extended to jointly recognise the complete set of eventsinvd period of activity.

2.3 Data association for tracking

Section 2.2 explained how recognising interleaved evesddeen previously tackled in
the literature. When interleaved events are expected leut tmmber is unknown, and
constraints between the events should be satisfied, thgnidiom task involves a data
association process. Data association maps detectiongrev@usly unknown number
of identities, in this case - events. The mapping shouldfyatine association constraints.
As explained in [95], data association has two componensgndarity measure which
favours some associations over others, and an associgitonigation method which
finds the best association satisfying defined constraintta Bssociation has been em-
ployed often in tracking to assign detections or measurésnenobjects. This section
reviews proposed solutions for three relevant problens tite tracking literature: multi-
target tracking within radar surveillance, intra-cameisual tracking and inter-camera
visual tracking. In all these problems global consistesbagtions have been used to
resolve uncertainties and improve tracking performance.

2.3.1 Multitarget radar tracking

The problem of data association for detections from raddisanilar sensors is explained
using the following example. Assume a radar periodicalgnscfor aircraft in a speci-
fied area. Detections represent aircraft as well as falsenalaFigure 2.15 shows the
detections at times— 1, t andt + 1. The detections are recorded asynchronously, as
such sensors require a specified time to scan the obsenaelefre starting a new scan.
The data association problem tries to group those deteciima trajectories, identifying
any false alarms. It assumes targets move independentlydaeg to a Markovian pro-
cess [112]. A target can appear at any point in time, persish fandom duration, then
disappear. The task would be to partition the detectiorstiajectories representing tar-
gets. Each detection at tinh@epresents one target at most. If the detection is not part of
any trajectory, it is thought to be a false alarm. At least tetections are expected for a
trajectory to be established. Alternative variations @& tadar problem expect at least
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detections before a trajectory is considered.

6/122000 122030

Figure 2.15: Three images from Airport Monitdt 2.0 (Copyright of PASSUR-AEROSPACE
www.passur.com) covering JFK Airport area within a ranget6fmiles on the 12 of June 2009
at 12:10, 12:20 and 12:30.
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Figure 2.16: An abstract 4-scan example of multi-targetkiag.

As the detections are not visually distinguished from edhlbemthis task is referred to
as the ‘motion correspondence’ task. Given these indigigigble detections, distances
and velocities must be used to resolve ambiguities in thigipaing process. Though the
search space of all possible partitions is huge, the difficnlthe motion correspondence
task is not measured by the number of detections, but by tihégarty in the partitioning
process. Even if the number of detections is vast, but eagettés moving far enough
from other targets, the task would be considered triviadl simple Kalman filtering [9]
would be sufficient. The uncertainty arises from dense dete; and a high rate of
false detections [112]. When the ambiguities increaseareders in the radar domain
proposed techniques that rely on deferred logic [36], whe@lecision could be amended
by future scans. In deferred logic, detections within aisgdvindow are analysed and
the best global explanation is considered. Figure 2.16eptssa 4-scan example along
with the corresponding correct trajectories, and detefetise alarms.

The paper ‘A Review of Statistical Data Association Teclueis| for Motion Corre-
spondence’ by Cox in IJCV(1993) lists the various technggioe data association used
to solve the radar problem until then [28]:

e Nearest Neighbour: matches each detection attitmés nearest neighbour at time
t—1.
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e Track Splitting Filter: Instead of taking the decision fach consecutive pair of
scans, this technique splits the trajectory into the bestpwassible explanations.
Branching is performed independently for each track. Theshod does not ensure
disjoint tracks. The solution can associate a single detetd two separate tracks.

¢ Joint Probabilistic Data Association Filter (JPDAF): Atchascan, the joint prob-
ability for assigning new detections to trajectories, gitlee previous assignment,
is considered. The JPDAF does not change the assignedtdragscfor previous
scans and expects a fixed number of trajectories.

e Integer Programming: In 1977, Morefield formulated the rgol@blem as a set
packing task, and solved it using integer programming [10&E set of all possible
trajectories' is accumulated, along with the probability (or cost) fortetrajectory.
The trajectories in this set are not disjoint, as the samectiet is assigned to
multiple trajectories. Set packing then creates hypotesgeere the trajectories in
each hypothesis are disjoint and all detections are exgdailmteger programming
is used to find the hypothesis with the highest probabilityisTechnique performs
an exhaustive search through the space of explanations.

e Multiple Hypotheses Tracking (MHT): Reid proposed a hdigisearch using the
multiple hypotheses tree (MHT) [116]. Reid's tree has a nemdf levels that
equals the number of scans. At each level, the detectiorfeeaturrent scan are
assigned to existing or new targets. For each branch in #& tonstrained ex-
planations for the current scan are added as children nodée tranch. Notice
that the set of possible explanations differs between Im@sdepending on previ-
ous scans. As the tree grows exponentially, it is pruned la@ktbest explanations
are retained at each level. This search is heuristic, anitatebe guaranteed in
advance that the correct assignment will remain within thee&t hypotheses as fu-
ture scans are considered. Increaditbough increases the required calculations
and memory resources. Cox re-formulated the problem, wmmngarlier work of
Murty [106], to find the k-best hypotheses in polynomial timéhout enumerating
all the assignments [29]. The technique uses the Hungaganitam and amends
the cost matrix to block the best-solution’s assignments.

Recent solutions to the radar multi-target problem use MCi@nd the optimal
association. Oh, Russell and Sastry introduced MCMCDA (MCBlata Association)
for multi-target tracking [111,112]. In Oé&t al’s work, given a set of detections the

Lgiven a maximum distance between detections in subseqczms s this is known as gating
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search is for the best associati@rthat maximises the posteripfw|Y). By defining the
set of associationQ, a Makrov chain is constructed to sample the space of asgoEa
At each step in the Markov chain, a new association is prapbg@pplying a move to the
current association. MCMCDA is further explained in Sectio4.1. The set of reversible
moves proposed in the paper for multi-target tracking acsvehin Figure 2.17.
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Figure 2.17: The set of reversible moves proposed by Oh efal.the multi-target tracking
problem. Diagram from [111]

2.3.2 Intra-camera global tracking

Visual trackingis the task of associating detections, retrieved from Viseasors like
CCTV cameras, to form complete trajectories. It differarirthe multi-target tracking
problem introduced in Section 2.3.1 in that appearance eamsbd to relate detections,
and distances are affected by the unknown depth of the vidav fighis section reviews
techniques that employ global analysis to achieve bettes-teamera tracking. Broken
trajectories, tracklets and noisy detections have to ba@ced into complete trajecto-
ries. Traditionally, detections are associated by comsigea couple of frames. A recent
trend toward global solutions, despite the combinatooatplexity, uses approaches such
as multiple-hypotheses trees [13, 24, 81], cost-flow ndte/{it52], Bayesian network in-
ference [79], Expectation-Maximisation [150, 156], quetlr Boolean optimisation [94],
dynamic programming [14] and linear programming [126].

The closest form of intra-camera visual tracking to that afitirtarget tracking is
tracking ants and bees [85], because the detections agingliishable. Khawet al’s
work [84, 85] tested the ability to track ants and bees withatosed environment, where
the number of targets is fixed, as well as an open environmbatevants can leave the
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field of view via an opening and return again. MCMCDA was ugesiample the space of
global explanations. The recent work of Zeual.[158] tries to establish 3D trajectories
from stereo data of fruit fly swarms. A global approach is uske@re the trajectory is
defined as a sequence of stereo correspondences betweemathe projections across
the entire duration. To accommodate for the combinatoaaiexity, the approach uses
Gibbs sampling to sample the set of possible correspondeacel the optimal global
explanation is found using dynamic programming.

Pedestrian tracking associates foreground segmentatiftas represented by blobs,
to form trajectories. Sampling the distribution of possillajectory assignments has
been increasingly employed in tracking pedestrians usimgprtance sampling [147] or
MCMC sampling [2,131,149,154]. Zhao and Nevatia's work roael work in this area,
where the best interpretation of all detections in a videqusace is found by Bayesian
inference [154]. The work reformulates the intra-cameaaking task as the estimation
of the number of objects, the correspondence between tleetsbpn consecutive frames,
and the positions of those objects. The paper uses MCMC fopkag the possible
explanations, and highlights the importance of ‘informpiposal distributions (referred
to as ‘weighted’ proposal distributions in Section 4.4). eThork assumes each blob
belongs to a single trajectory, and each target is repreddryta maximum of one blob at
each frame.

Smith [131] uses Reversible Jump MCMC (RIMCMC) for the saas&.tSmith’s the-
sis discusses how RIMCMC, proposed by Green [57], is seitfablsampling the joint
distribution of target numbers and their positions. Tragks performed in a sliding win-
dow, and the globally optimal trajectories are computecetizh window independently.
Building on this, Yuet al.[149] combine segmentation along with tracking. As the same
target can be split into several blobs during tracking, ersame blob can be composed
of multiple targets, this work merges and splits blobs to fyhmbal trajectories. They
model both spatial and temporal moves (extending those @h$rand search the space
of explanations within a sliding window. Figure 2.18 shotvs moves suggested in [149].

While all the presented techniques provide an explanatorlf the detections, up
to the current time stamp, some approaches postpone th&ateantil the data is dis-
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Figure 2.18: Spatial and temporal moves for intra-camekcking. Diagram from [149]
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ambiguated [124]. Ambiguous trajectories are flagged, aadaly explained when the
uncertainty can be confidently disambiguated.

2.3.3 Inter-camera global tracking

Global analysis for trajectories in non-overlapping caasenas previously been used to
relate entry and exit points in camera views, and to trackviddals across blind re-
gions [14,19, 76,101, 155]. The work related to this probtam be divided into three
categories. In the first category, the topology of a netwdidameras is established with-
out directly associating the detections [97, 101, 133].sTddtegory does not include a
data association task. The second category aims at ekiablitie correspondences for
a given camera topology. The third hybrid category finds tip@logy along with estab-
lishing correspondences between detections.

For the second category, features of the pedestriansyedfén as passive [52] or
soft-biometrics [141, 146], are compared to assess whetledetections correspond to
the same person. Most of these features are session-basedheéy might differ for
the same individual if observed at a later point in time. @ilog colour is a common
matching feature to connect two trajectories as it is easstteeve [19,52,53,76,129,146].
Other passive features have been used, like texture [58}hthf’0, 99] and gait [63,
110]. In solving the data association task, one-to-onegassent has generally been
assumed [19,83,151], and a greedy search [70,129] or thga#am algorithm [83] have
been employed to find the best assignment.

The work by Zajdelet al. is one example of the hybrid approach [150], as it finds
the topology and connects the trajectories. It considérghaldetections and builds a
dynamic Bayesian network. Expectation-Maximisation (EMysed to retrieve the BN
structure that best suits the detections, and the parasradtdrat structure.

Inter-camera tracking becomes more complex when new peaplappear anywhere
across the network, and people can depart at any blind areaof@he earliest solutions to
this complex inter-camera tracking was introduced by HuamdyRussell [71], as part of
‘Roadwatch’ for tracking cars across wide-area traffic ssehey assign each car seen
upstream to its corresponding observation downstrearovidg for on-ramp and off-
ramp detections. Their solution uses MHT, thus it cannotestwatracking cars between
more than two cameras due to the growing complexity. An MCM@gling approach is
proposed for a scalable solution [113].

Figure 2.19 provides an example that shows how multi-targeking, intra-camera
and inter-camera tracking can be perceived as differemtdaf the data association prob-
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lem. Global optimisation techniques like multiple-hypesles tracking or sampling using
MCMC can be employed for data association. The search ihéobeést global explana-
tion that associates all the detections.

Multi-target Tracking Intra-Camera Tracking Inter-Camera Tracking

Figure 2.19: The three different data association problemesshown. In each problem, the detec-
tions are partitioned into a previously unknown number ofiéss or considered false detections.
Intra-camera diagram taken from [149] and inter-cameragtiam from [150]

2.4 Summary

This chapter reviewed some of the previous work related edajl analysis for activ-
ity recognition and data association. As the thesis is mibgpglobal explanations for
activity recognition, a quick overview of global analysisdgomputer vision was first pre-
sented. Global analysis assists resolving local ambgguilty considering hard and soft
constraints.

A collection of previous frameworks for activity recogmiti was discussed. For each
framework, the method to define the activities was first arpld, followed by the recog-
nition technique. Global explanations of activities reguiot only recognising all events,
but also partitioning the detections into the activity'sets. This is a data association
task. A review of data association for tracking was preskfaethree tracking problems:
multi-target tracking of radar detections, intra-cameisual tracking and inter-camera
visual tracking. The next chapter introduces the framewoesented in this thesis to find
global explanations for activity recognition.



Chapter 3

Global Explanations for Activity
Recognition

Analysing an activity involves recognising a consistemniodevents. While most existing
activity recognition techniques deal with a single evesglistic surveillance typically
involves interleaved unordered events, extending oveng temporal duration. In these
situations, the events are often mutually dependent. Famele, a person entering a
building can be observed departing only once at a later timevisual analysis, these
dependencies can be exploited to disambiguate uncertsuahdata by seeking a global
explanation.

This chapter presents a complete framework that startsargneral way to formalise
the set of global explanations for a given problem usinghatte multiset grammars.
Parsing a set of detections by such a grammar finds a consisteset of events that
satisfies the activity’s natural constraints Each parse tree has a posterior probability
in a Bayesian approach that considers the prior probalailagg with the likelihoods of
the recognised events. To find the best parse tree given adstieations, the approach is
accompanied with an algorithm that transforms the gramma&inite set of detections
into a Bayesian Network (BN). The set of possible labellingshe Bayesian network
corresponds to the set of all parse trees for the given settetctions. The best global
explanation is the Maximum a Posteriori (MAP) solution othex space of explanations.

32
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3.1 Activities as hierarchies of events

As explained in Section 2.2, an activity is a set of relateenés, which can be recur-
sively defined as sets of simpler events until primitive ¢seme reached. For a chosen
activity, the composition of the activity forms a hierarcl§onsider the activity in a car
park, Figure 3.1 shows a plausible decomposition into etygres. In addition to cars
and people passing by, cars can be left in the parking areactmneled later. Six types

car-park-activity

e

parking-a-car car person
/ \ passing-by  passing-by
leaving-car retrieving-car

car person person car
stopping leaving approaching departing

Figure 3.1: The activity in a car park is represented as a &aiehy of compound and primitive
event types.

of primitive events are expected in this activity - these theeleaves of the tree in Fig-
ure 3.1. In addition to directly detecting these primitivelets, compound events need
to be recognised by grouping simpler events. For exampleptobine detections of a
car stopping with a person moving away as a ‘leaving-camguwle person must emerge
close to the right frontal door of the car. Similarly, to cam#ba ‘leaving-car’ event with
a ‘retrieving-car’ event, the same car (parked at the saroefsp example) should be
detected in both events. The hierarchy in Figure 3.1 reptegmssible event types. The
activity will actually include multiple interleaved evesf these types.

Figure 3.2 shows an illustrative timeline for a set of detetws in a car park (5 car
detections and 6 person detections). The bar shows the tahgdent of each detec-
tion, for example the temporal extent of a car stopping stom the moment the car

carA| —
carB| —
car C —q
person M —
person N —
carD —_
person O —_
person P —
person Q —
person R } |
carE —
tlme)

Figure 3.2: Five cars and six people detected in a car park.
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appears until it fully stops. Given this set of detections] ghe expected activity hier-
archy (Figure 3.1), a global explanation partitions alledéibns into a consistent set of
compound and primitive events. Figure 3.3 represents angbeeof such an explanation.
This global explanation contains a set of five events, thfeehach are further defined as
a set of simpler events. Some compound events might not bpletemlike the third car
parking, as there was no observation of the car being takeg.aw

parking-a-car -1 | car A stopping person M leaving person Q approaching car E departing
} . N bt lic: o cthedontlele AU = |
parking—a—car -2 car C stopping  person N leaving person R approaching
———— e PO RAPPIOGEANI

car passing-by - 1 car|B passing-by
parking-a-car - 3 22 S10PPINg person PIeaving e

person passing-by - 1 pgrson 0 passing-g‘y

Figure 3.3: A global explanation for interleaved unordemeents. Each row represents one event
in the activity. Dotted lines show the temporal gaps betweeamts.

Figure 3.4 expresses the global explanation in Figure 388hasrarchy. Each row in
Figure 3.3 corresponds to one of the sub-hierarchies ofainatg. The left-right order of
the events in the tree is irrelevant. Accordingly, each rniadée hierarchy is a set of its
subordinates, rather than a tuple. Using sets, insteadotdgusimplifies the definition,
as many compound events can be carried out in different ®r@efining the event as an
ordered tuple would require multiple tuples for the diff@rpossible orders. When sets
are used, only one set can represent the various cases. fEropastraints can still be
defined, but only when needed.

car-park activity

T

parking- carB parking- person O parking-
a-car passing-by a-car passing-by a-car
SN \
leaving retrieving leaving retrieving leaving
car car car car car
/ / /
car A person M person Q carE carC person N person R carD person P

stopping leaving approaching departing stopping leaving approaching  stopping leaving

Figure 3.4: The global explanation is expressed as a hidmawf events.

A set though, by definition, contains distinct objects. Ativaky can contain multiple
instances of the same event. For example, the hand shakimyalves two people per-
forming the same event. A multiset is better suited to regrethe collection. A multiset
(or a bag) is a generalisation of a set where the order iguraelt although each symbol
can still appear more than once. The global explanation thpiesents the activity as
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a multiset of compound and primitive events. Each compoweateshould be further
defined as a multiset of simpler events until primitive egeare reached.

When recognising an activity, a collection of constraintsconsistent events can be
defined. For example, a car needs to stop before a person @antlee car. Failing
to enforce these constraints results in inconsistent svefihese constraints anetra-
activity constraintsas they govern the relationships between the events makirgeu
same compound event. Temporal and spatial intra-actieitgitaints can be identified in
the car parking activity.

Another set of constraints, often ignored in activity reaitign, is referred to as the
inter-activity constraints While intra-activity constraintsensure each recognised event
is internally consistentinter-activity constraintensure the complete set of recognised
events is consistent. For example, dropping a person off tgranvolves one person
detection and one car detection. A person can be dropped affily one car, while the
same car can drop off multiple people. Allowing two cars topdoff the same person
results in an inconsistent set of events, regardless of hase ¢he person was to both
cars. On the other hand, a solution that allows the car to offagnly one person is over-
constrained. Explaining each event independently failske inter-activity constraints
into consideration, and can result in an inconsistent sewvehts. This research makes
a clear distinction between the two types of constraints tduevo reasons. The first
is that inter-activity constraints are often ignored iniatt recognition, so are worth
highlighting. The second is that the two types are definedfferént ways as will be
shown in Section 3.2.

The framework presented in this chapter attempts to defotgagjexplanations, where
all detections are explained, maintaining intra- and Haigtivity constraints. Section 3.2
proposes a grammatical representation to define consst&nof events that satisfy the
activity’s constraints.

3.2 Attribute Multiset Grammars

A general way to formalise the set of globally consisteni@xations for a given activity
is not yet available, particularly in the formalisation @nstraints within a structural rep-
resentation. In this section, a grammar formalism is pregdder this task. The grammar
is defined so the language it describes corresponds to théakglobal explanations.
Attribute Grammars as first introduced by Knuth [87]also referred to as Feature-

LAn inspiring reflective narrative about the historical dmig of attribute grammars was written by
Knuth [88]
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Based Grammars [17] and Attribute-Value Grammars [3], dtlibates to the terminal
and nonterminal symbols of a grammar. These attributes eanskd in three ways.
The first is to propagate information towards the root of thesp tree; ancestors derive
their attribute values from those of their descendants.sEgend is to propagate attribute
values down towards the leaves; descendants inherit ¢bastics of their ancestors. The
third is to use attributes to govern the application of piittun rules, thereby constraining
the language generated by the grammar.

While a conventional string grammar rewrites a symbol ingequence of symbols,
multiset grammars rewrite a symbol into a multiset. AtttéoMultiset Grammars (AMG)
were introduced in [55] for representing the constituemis kayout of a picture. They
have also been referred to as Constraint Multiset Gramni®2][ Visual languages
were later defined as graph grammars because connectomsdoetsighbouring shapes
require a formal definition of edges. A review of grammarsvisual languages can be
found in [10].

Conventional approaches to activity recognition expedhlrrent order of events to
define a compound event. Context-Free (string) grammars tirets used for the def-
inition. When a compound event can be carried out in diffeceders, each order has
to be defined separately. This research adopts the viewmaihthe compound event is
made up of an (unordered) set of events. Temporal (i.e. Hawdationships between
some of these events could be defined, but an ordering is fatced when it does not
exist naturally. The AMG formalism thus satisfies the reguoients introduced in Sec-
tion 3.1 for formally defining global explanations. It retes the activity as a multiset
of events, which can be further defined as multisets of othents. Note that two event
instances of the same type are considered identical, whgdetred the usage of the multi-
set grammar. Moreover, attributes allow defining and canstrg intra- and inter-activity
relationships. The terminology used in the rest of the dadvaiptlows the one introduced
by Knuth in [87]. Here, an AMG is defined as a five-tu@de= (N, T, S, A, P)where
N is the set of nonterminal symbols denoted with capitaklsttT is the set of terminal
symbols denoted by lower case letters, S is the start synghel {l), A(X) is a set of
attributes defined for the symb&l € NUT, and P is the set of production rules. The
notationX.a is used to denote the value of the attribate A(X). Attributes are of two
types,A(X) = Ag(X) UA1(X), whereAyg(X) is the set olyntheticattributes which have
predefined values for all terminals and are calculated foteroninals based on their de-
scendants, and; (X) is the set ofinheritedattributes which are calculated based on the
attributes of the ancestors [87].

Each production rule € P is a three-tuple (r, M, C) where r issyntactic ruleof the
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form Xo — X1, X2, ..., Xn, that rewrites the nontermina, as a multiset of nonterminal
and terminal symbolXj, X5, ...,an. M is a set ofattribute rules where each rulene M
assigns a value to one of the attributes of the symbols ieebinr. C defines a set of
attribute constraintghat govern the application of the production rule. The picin
rule can only be applied if all the attribute constraintssatsfied.

Analogous to the types of attributes, an attribute mle M is synthetic M) if it
assigns a value to a synthetic attribute, and is an inhegiteitbute rule ;) otherwise.
Similarly, there are two types of attribute constrai@synthetic constraint<g) which
specify allowed values for synthetic attributes and irteerconstraintsG;) which limit
the values assigned to inherited attributes.

AMG can thus be used to define activities as follows:

e The start symbol (S) represents the complete activity.

e Nonterminal symbols (N) represent the compound eventsHrabe rewritten into
a multiset of simpler events.

e Terminal symbols (T) represent primitive events that areatly detected.

e Synthetic attributesAp) are features extracted for each primitive event or detec-
tion. These can be used to calculate attributes of compouert® For example,
the temporal extent for each primitive event is retrievee@aty by the detector.
The temporal extent of a compound event is the union of alpritsitive events’
durations.

¢ Inherited attributesA;) are explanation-related. For example, the person who is
part of a car-leaving event is a driver. Such attributes atecalculated from the
input, but are assigned based on the explanation, and Hétereen explanations

e Synthetic rules (r) define the structure of the activitysrarchy. The rule: A—a,b
means the compound event A is made up of the primitive evearsl d.

e Synthetic constraints3y) define intra-activity constraints. They limit the tempora
and spatial relationships between the grouped events.eatntle and location of
the event are synthetic attributes.

¢ Inherited constraints}) define inter-activity constraints. Sharing an event betwe
two compound events can be forbidden by maintaining a caurthe number of
times each event is shared. Such a count is decided by therckgplanation and
varies between explanations. It thus is an inherited aiieib

To illustrate, consider the AMG gramm@, defined next
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Nonterimanls (N): S start symbol
A compound event 1
B compound event 2
Terminals (T): a primitive event 1
b  primitive event 2
c  primitive event 3
Attributes (A):
attribute name type domain defined for
time €Ay Z {a,b,c,A/B
count €A Z {b, B}
Production Rules (P):
rule  Syntactic Rule (r) Attribute Rules (M) Attribute Corants (C)
p1 S — A%LBYa,c
p2 A — aB Atime = a.time+B.time atime < B.time
B.count = 1 B.count # 1
ps B — bc B.time = c.time b.time < c.time
b.count = B.count b.count # 1

The sample AMG(5,, defines three nonterminal symbols of which ‘S’ is the starti
symbol of the grammar. It defines three terminals that canebected directly from the
input. One synthetic and one inherited attribute is definedgwith three production
rules. The first production rulp; rewrites the start symbol into the possible event types.
The multiset{ A*,B*,a*,c* } indicates that the activity is a multiset of events of theae f
types. The star indicates the presence of zero or more eveedsh type in the multiset.
A primitive event of typea can then be part of a compound evéntor not. Primitive
events of typd on the other hand, cannot occur on their own.

The second production rulp, specifies the hierarchy of the compound event ‘A.
Two attribute rules and two attribute constraints are ddfifoe po,. The first attribute
rule Atime= a.time+ B.timeis synthetic as it calculates the value of the attributeétim
from some values of the descendants’ attributes. The seaibmioute ruleB.count= 1
is inherited as it assigns a value of 1 to the attribute ‘coahthe descendent symbol
B. The two attribute constraints are synthetic and inhéniespectively. Notice that the
event ‘B’ can participate in only one event of type A by sejtthe count to 1 when the
rule is applied and constraining it to non-1 values by thesritbd constraint.

Figure 3.5 shows the dependency graph corresponding tdttitite rules inG;. A
dependency graph [87] graphically represents the depereteamongst attributes. In
the graph, each symbol is surrounded by its attributes. H&yictattributes are listed to
the right while inherited attributes are to the left of thendyol. A dotted line shows the
derivations of the syntactic rules, while an arrow dendtesdttribute dependencies. The
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dependency — y means attributg is dependent or. The value of attributg cannot be
known beforex is assigned a value. Arrows pointing upwards indicate stritfattribute
rules, while downward arrows denote inherited attributesu

Though any set of attributes and attribute rules can giestoan AMG, all the gram-
mars used in this thesis are Ordered Attribute Grammars (J8@. An ordered gram-
mar assumes a partial order over the attributes is definddhéhttributes can then be
evaluated in this order in a finite number of passes. Kastemades an algorithm to
check whether an AMG is an ordered grammar [80]. This is noésgary if the attribute
dependency graph clearly shows the non-circulatory nagtithe grammars. This the-
sis assumes the AMG for activity recognition is an OAG, asptframmars cannot be
evaluated into parse trees with values for all the attrufénis is though not a restric-
tion to defining activities, because attributes are feataral interpretations that should
have values in all cases. When activities are representesh MG, and the attribute
dependency graph is not obviously non-circular, the atgoriin [80] can check that the
grammar is ordered.

S
S S
A 7 I\ 7\
i Pl A a2 C2 B ai a2 Ci
' : / \ b/ \
A time countB_time a /B\ 1 C2
\ b1 c1
Countbtime C time Figure 3.6: Two parse trees given a multiset

Figure 3.5: Attributes dependency graph show-Of detections and AMG G
ing synthetic and inherited attributes.

For each input video, detectors are used to retrieve a rautifsdetection®. Each
detection is an instance of one of the termingls the grammar, together with assigned
values for the synthetic attributes defined for that termiitde set of all derivations of
D, givenGg, is the set of all possible explanations for the input videor the grammar
Ga, suppose the detectors generated the following multise{& ftime=1),a, (time=2),
b1 (time=2),c; (time=3),c;, (time=4)} - subscripts distinguish different instances of the
same terminal. Values for the only synthetic attriltin@eare assigned by the detector for
each detected instance of the terminal symbols. Figurei®®stwo possible derivations
(i.e. parse trees). Starting from the start symbol ‘'S’, teeds all distinct explanations
equals the set of all possible parse trees. Recall that thex of branches in the tree is
irrelevant.

Attribute constraints ensure that only consistent everggyanerated. For example,
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Derivation Check constraints Apply attribute rules

B — b, bi.time< c;.time B.time =¢.time =3
bi.count=1

A — a3, B ag.time> B.time

Figure 3.7: An example of a violation constraint. The sytitaile cannot be parsed.

given a new detections (time = 5), Figure 3.7 shows that the second production rule
cannot be applied as the constraint was violated.

This section showed how Attribute Multiset Grammars (AM@heepresent the do-
main’s knowledge for global analysis of activities. Syni@acules of the grammar encode
the hierarchical structure of the activity. Attribute rsiend constraints enforce the natural
constraints.

3.3 A Bayesian approach to finding the best parse tree

Section 3.2 detailed how global explanations for a multidetetections arise as parses
according to a given grammar. Given the same detectionseahef different possible
parse trees corresponds to the set of all global explargtido find the best parse tree
given a multiset of detections in a Bayesian approach, adlaiens need to be assessed
along with prior probabilities that would favour some patrees over others. The prob-
ability distribution over the space of possible explanagics modelled using a Bayesian
network.

In this Bayesian network, a Boolean node is added for eactpoand or primitive
event in all the possible parse trees. Each global exptamaithus a labelling of the
BN, so only the nodes corresponding to the set of events sphiise tree are labelled
true. Finding the best explanation is then finding the MaxmrauPosteriori (MAP) la-
belling of the Bayesian network. The joint probability of #ie nodes in the BN is
factorised. Conditional links are formed between eventstarir associated evidences,
between compound events and their constituent events,eineén related events when
enforcing consistency in the parse tree. This is explaimed in detail.

Bayesian Networks (BNs) are directed graphical modelstbratey the independence
assumptions in a joint probability distribution [16]. In @&NBnodes represent random
variables (RVs), while directed edges represent the degrmydbetween these variables.
A directed edge from node ‘a’ to node ‘b’ symbolises that thkig of ‘b’ depends on the
value assigned to ‘a’. This is often informally referred ®'a’ being the parent of node
‘b’. In Bayesian networks, the value assigned to a randonabt is only dependent on
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the values of its parents, children and co-parents (reféoas the Markovian blanket of
the RV). Three types of random variables are used in thisosetd build the BN:

e Observed Random Variables, or observables: denoted bydhmadies, and repre-
sent discrete or continuous values that can be directly uned$rom input data.

e Hidden Random Variables, or latent variables: denoted lnysi@mded nodes, and
represent the explanation inferred from the node’s Maikowlanket.

e Deterministic Random Variables: denoted by double-atfeledes, and represent
variables that functionally depend on the values of its pigreA Boolean function
decides the value of the deterministic random variabledasdhe values assigned
to its parents.

A simple one-rule example is presented first. Given a pairiafifive eventsx andy,
and one syntactic ruleZ(— x,y), Figure 3.8 (left) shows a Bayesian network with three
evidencespy, oy ando, representing the set of synthetic attribute values for egatbol.
The evidence;, is the calculated synthetic attribute values associatd the syntactic
rule. Three hidden random variabl€g,y,Z), explain the two primitive events and one
compound event. The joint probability is factorised so tbmpound event is dependent
on its constituent events. It is important to clarify thhée descendants in the parse
tree are the parents in the Bayesian networkEach hidden random variable is Boolean
(t/f), where t’ represents the occurrence of the event, whilandicates the event is not
recognised. For each synthetic attribute, a conditior@bability density function (cpdf)
needs to be defined for each labelling. In this examplex|x =t) and p(ox|x = f) are
required, and similarly for the other two observed randomnealdes. These cpdfs can be
learned from labeled data as will be shown in Chapters 5 and 6.

7

' Zij

o N
X y % 2zl0y,
OX Oy Oxi OYJ' m

n Xi

Figure 3.8: Directed graph for the production rule-2 x,y given two detections (left) and a plate
representation for multiple events (right).

For a multiset of detections with detections of typex and m detections of type,
then Figure 3.8 (right) shows a plate representation ligkdachx event to all possiblg
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events according to the production rule. Though each comgbeuent is dependent on
its constituent events, inter-activity constraints skaalso be governed. A deterministic
random variable is added to link inter-dependent eventshdrplate representation, all
Z compound events are assumed inter-dependent and thuiskae to one deterministic
random variable c. The inter-dependent nodes are thoseswaalese production rules
include inherited attribute constraints governing the samherited attribute. This will be
further explained later in this section. Figure 3.9 is anollad example fom = 3 and
m = 2. The different kinds of nodes in the Bayesian network doelkd on the left hand
side. Each pair ok andy RVs parents one compound event n@dd-igure 3.10 shows a
parse tree and the corresponding labeled Bayesian network.

constraints
compound
events

synthetic
attributes
primitive
events

synthetic
attributes

X1 X2 X3 Y1 Y2

Figure 3.11: The Bayesian network for the grammarakong with two labellings that reflect the
parse trees in Figure 3.6. A node is labeled true if it appdarthe parse tree. The deterministic
function evaluates to 1 for labellings that satisfy the iiteel constraints.

In Section 3.2, an AMG was introduced as an example alongtwittparse trees for a
multiset of detections. Figure 3.11 shows the Bayesianarétior the specified detection
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multiset along with two labellings that reflect the parses$ren Figure 3.6. Notice that
each possible nonterminal in the parse trees is represbgptachidden random variable
(RV), and is labeled true if the nonterminal appears in th@anation’s parse tree, and
false otherwise.

The method for building this BN might not seem obvious. Algon 3.1 details the
steps for building a BN out of a set of detectidbsand an AMG. Figure 3.12 traces the
algorithm to build the sample BN in Figure 3.11. The set ofduciion rules is ordered
(ps3, p2, p1), then a hidden-and-observed RV pair is created for all #tealions inD.
The observed RV holds the value(s) of the synthetic atteia)tfor each detection.

Lines 7-23 in the algorithm build the BN's structure. For finst production rule s :

B — b, ¢), the possible combinations (line 10) are

comb ={ (b1, ¢1), (b1, &) }

For each of these two tuples, the synthetic attribute caméts.time < c.timeis checked
(line 13). As the constraint is satisfied for both tuples, twaden RVs of type B are cre-
ated{B1, B,}. The synthetic attributes are calculated for eacht{Be = 3, B.time = 4),
and represented by a related observed RV. The dependeksyalia established between
the compound event and its constituent events. Simildre/second level of the BN is
built for the rulep, : A— a,B.

To accommodate fodirect recursionin grammars, the loop (lines 11-23) checks if
new tuples (lines 20-23) have been added. Direct recursioars when the multiset at
the right hand side of the production rule contains an ircstafithe nonterminal at the left
hand side, for example A> a, A, b. The algorithm cannot deal with indirect recursion,
like

A — aB
B — DbA

A — ¢
These cases can be checked while establishing the ordes pfalduction rules (line 2).

%a« %b‘ %az %c' %m %a
Figure 3.12: An example of constructing the BN from the AMGa@d a set of detections, shown
in steps.
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input :Grammar G =(N, T, S, A, P), detections multiset D

output : Bayesian network structure BN
1 initialise an empty Bayesian Network (BN)
2 orders ruled starting with those containing terminals then bottom-up
3 foreachterminal instance £ D
4 add hidden RV to BN of typé
5 if t has synthetic attributethen
6 L add a related observed RV to hold the synthetic attributeegl
7 foreachrule pe P (pr: Xo — X1, X, ..., Xn)
8 if Xo # Sthen

Let I(X;) be the set of nodes in BN of typg

10 comb=1(X1) x 1(X2) X ... x 1(Xn)
11 while size of comb> 0 do
12 foreach tuple be comb
13 if b satisfies synthetic attribute constraint&Cgthen
14 add hidden RV to the BN of typX,
15 foreach attribute rule me p.M
16 if m updates a synthetic attributken
17 L L applymassigning a synthetic attribute valueXg
18 add a related observed RV to hold synthetic attribute values
19 all nodes in the tuplé parent the created hidden RV
20 comb=1(X1) x I(X2) x ... x I(X;) - comb
21 foreach new tuple be comb
22 if the primitive events of b has redundanciben
23 | removeb from comb
24 Let Nodeg be the set of all hidden RVs associated with nonterminal st
25 while Nodeg # ¢ do
26 find Nodeg with inherited constraints limiting the same inheritedibttte values
27 Nodes = Nodes - Nodes,
28 if size of Nodgs> 1then
29 add deterministic R\¢ to hold the inherited constraints
30 L all nodes inNodeg, parent the deterministic RY

Algorithm 3.1: Mapping a multiset of detectior3 to the Bayesian network (BN) structure
that represents the probability distribution over the $egtossible parses, given an AMG.

Grammars with indirect recursion would have ambiguousrandeof the rules. Handling
indirect recursion could be done in principle, because tNe<Bbased on a finite set of
detections. A possible (yet inefficient) algorithm can ldbmugh all rules until the BN
is completely built. Designing an efficient algorithm istlédr future work. This is not
seen as a limitation to defining activities, because directirsion is sufficient to define
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repetitive patterns in the grammar.

Lines 24-30 explain how inter-dependent nodes can be fouddiaked to deter-
ministic random variables. First, the set of all nonterrimades along with the set
of inherited attributes each one constrains, is accundilateor the example BN, this
set is{B; — {bj.count§, B, — {bj.coun§, A; — {Bj.coun§, A, — {Bj.count,
Az — {Ba.count, A, — {Bs.count}. Lines 24-25 iteratively find the sets of inter-
dependent events. In this example, three sets of interdepérevents are identified;
{B1, B2}, {A1, Ao}, {As, A4}. For each set of inter-dependent events, one deterministic
random variable is created. In this case, the determiriigtictions check that a maximum
of one node in each inter-dependent set is recognised ata 8ymbolically,

p(Cler, &) = ~(e1A &) (3.1)

wheree; is assigned true when the event is recognised and the layipedssion evaluates
to zero for false expressions and 1 for true ones.

3.3.1 Multi-labelled Bayesian networks

All the BN examples presented up till now assume a Booleaellialy which indicates
whether an event is recognised. Let’s take another AB4Gwith the following synthetic
rules,

S — B+,C
A — ab
B — ab
C —- A,cC

In this example the same multiset of detectigasb} can be combined into two dif-
ferent event types. For example, a person can either ged icaio or leave a car. Given the
detections multiseéby = {as, b1, ¢1,C2}, then the BN would be presented in Figure 3.13.
Two Boolean hidden RVs are created, one for event ‘A’ andlesrdor event ‘B’, and are
constrained. Alternatively, one multi-labeled hidden RAhde used. The more concise
grammalrGy can be introduced.

S —- D,C D.action ='B’
D — ab

CcC — D,c D.action ='A
The hidden RV ‘D’ has three possible labe{#,, B, f}. The Bayesian network is then

represented in Figure 3.14. Algorithm 3.1 can still be usedednerate the Bayesian
network’s structure. The set of possible labels allowedefach hidden RV needs to be
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specified. A special attribute, called ‘action’, is defined these grammar symbols. For
each symbol, the values assigned to ‘action’ by the prodnctiles form the set of non-
false labels for nodes of that type. The false label is assignhen the event is not
recognised. While Boolean labelling is the default optiojti-labelling enables a more
concise formulation and decreases the number of congti@will be shown in the AMG
for the Bicyclesproblem (Chapter 5) and thenter-Exitproblem (Chapter 6).

Figure 3.13: Boolean BN for the AMG  Figure 3.14: Multi-labelled BN for the
Gx AMG G,

After building the topology of the BN, priors and conditidpaobabilities need to be
specified. Priors are defined for primitive events. For eaobuyiction rule, the conditional
probability of the nonterminal at the left hand side givea thultiset at the right hand
side should be specified. For example, for the derivallon> a,b, where the set of
possible labels are as followd.actione€ {A,B, f},a.actione {t, f} ,b.actione {t, f},
thenp(D|a,b) can be defined by assigning a value to each conditional pildigab the
following table:

p(Dl|a,b) D=A D=B D=f
a=tb=t
a=tb="f
a=f,b=t
a=fb="f

Notice thatp(D|a, b) should more precisely be written peD.actionja.action b.action)
as the possible values of the attribute ‘action’ are theipteskbels of the hidden random
variable. In the rest of the thesis, for each symkat NUT, X andX.action are used
interchangeably, and is often used for simplicity.

In our research, these conditional probabilities are edBohby an expert without ob-
serving the testing data, and are kept fixed for all experimérrhis is because estimating
them from training data requires a significant amount ohirej data and is a computa-
tionally hard optimisation problem due to the dependenos®/een the production rules
that arise from the constraints. Abney [3] explained how dbeditional probabilities
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can be correctly estimated from training data, using sarg@nd selecting features that
incorporate the dependencies between the rules.

This section has shown that the search for the best parsedrebe performed by
transforming the detections into a single Bayesian netWBN) that models the proba-
bility distribution over the space of all possible explaoas for those detections. Each
global explanation, represented by a parse tree correspiond labelling of the BN.
Boolean and multi-labelled BNs have been discussed. Thepagse tree then corre-
sponds to the Maximum a Posteriori labelling of the BN. Tlaisteon presented an algo-
rithm that automatically performs this transformatiomfrthe AMG to the BN.

3.4 The posterior probability

The BN built in Section 3.3 models the probability distrilout over the set of all global
explanations given a multiset of detections. To find the b&ptanation, one needs to
infer the Maximum A Posteriori (MAP) labelling* of all the hidden random variables,
given all observed RV¥;

w" =arg ngoaxo(w\Y) (3.2)

For the simple AMG of one production rule in Figure 3.9, anditiset of detections
{xi},{y;}, the posterior is written as

p(w]Y) =7 |i‘| P(0x %) P(Xi) q p(oy; ly;)p(y;j) '._,' P(0g |zj)p(zj[x,y;)p(cl{z;}) (3.3)

The posterior can be re-arranged as (Appendix C)

p(wlY) =% |i‘| P(Xi|ox ) II' p(yjloy;) ||‘J| P(zj|%,Yj,0z;) P(cl{zj }) (3.4)

where % is the normalising factor that need not be evaluated whercisieg for the
maximum. p(X;|ox ) is the posterior of the label assignedxdayiven the evidence from
the synthetic attribute valuex, and similarly forp(y;|oy;). The deterministic function
p(c/{z;}) evaluates the labels of @linking nodes, and equals 1 if the labels are consis-
tent, and zero otherwise. Accordingly, the posterior feoimsistent labelling evaluates to
zero always.

The third factor in Equation 3.4 becomes intractable to asti@@s the number of
detections increases. Fortunately, this can be avoidedimpuating a proportional quan-
tity instead. This is derived as follow(zj|x;,Yj,0z;) is abbreviated t@(z|-) in the
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derivation)
el = [ p@="f-) N p@a=t) (3.5)
! iiz=f i:z=t
'~z|i1t p(z=f[)
= i = fl- =) e 3.6
iiz=f P(z | >i:ZIa_|=t P( | )i:zli_l_tp(2i=f|') (3.6)
= = fl. p(z=t|-)
= Mp@E=f )i:a:t Sa =) (3.7)
p(z=t|-)
S = (3.8)

This derivation specifically enables finding a quantity,qmdional to the original poste-
rior, that is independent of all false-labelled nodes (uerecognised events). Accord-
ingly, evaluating the posterior of a single parse tree sthouly take into consideration
the events recognised within the parse tree, and shouldenarticerned with the remain-
ing unrecognised events. This uses the fact that labelllribeanodes as false is a fixed
quantity. For nodes labelled true, the ratio of labellingpdeaas true to labelling it as false
is sufficient to compare the posterior across various latgslof the Bayesian network.
Thus, the posteriop(w|Y) is rewritten to be

p(Z” :t‘Xi,yj,Oz”
wlY) = Xi|o (c{z 3.9
( ‘ Ql_lp ‘ Xi I_lpyl‘oyj Ejl:t p(zij:f‘xhyj,Oz” |_|p |{ J} ( )

1]

Notice the difference between the normalising factom Equation 3.4 and the normaliz-
ing factor2 in Equation 3.9. Thisis because the term in Equation 3.8lisgmoportional,
but not equal, to the term in 3.5. In Figure 3.15, the unreeghevents in the BN are

o «ox “

Figure 3.15: The highlighted nodes are the only nodes iredluh calculating the posterior in
Equation 3.10 for the labeled explanation.

drawn in light grey to show the compound events that are éabielie and their accompa-
nying observed random variables. Only these nodes areregbjoi calculate the posterior
for this explanation. This shows that evaluating the pastéor a parse tree only consid-
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ers the non-terminal symbols in this tree. Accordingly, plesterior for the parse tree in
Figure 3.15 equals

p(Bl = t|OBl’ blvcl) p(Al = t|OA17 Bi, al)

3.10
p(By = [Og,,b1,c1) p(Ar = f|Op,,B1,a1) (3.10)

PLIY) = 25 P(as/Oa) pz/On b1 O, (€110 P2/

This is extensible to multi-labeled BN (Section 3.3.1). Posterior would still be inde-
pendent of all false labelling. Recall that in both Booleand &ulti-labelled BN, ‘false’
is a possible label for all hidden RVs. Using the posterionfrEquation 3.9 decreases
the number of likelihoods calculated to evaluate each dlekalanation.

Chapter 4 explains that exact inference is intractable istngases, and presents
heuristic search techniques to find the MAP labelling of tihe B

3.5 Synthetic attributes

In the previous sections, the synthetic attributes for egahbol were already known and
encoded in the AMG. The choice of the synthetic attributes m@ discussed, and is the
topic of this section. These synthetic attributes are featselected for each detection.
The features should be selected to help distinguish therdiit events.

Some synthetic attributes of the primitive event are usezhtoulate attribute values
for the compound events. For example, in the &le: x,y, the compound event Z can
be measured by the spatial proximity betweeandy. Accordingly, the locations ok
andy have to be measured, ang is the distance between these locations, calculated
by a function defined in the grammar. Thus, some synthetiibatés distinguish the
occurrence of primitive events, and others are used to leskcthe values of synthetic
attributes for more complex events.

Selecting which feature best distinguishes whether ant@aenirred or not can be per-
formed manually or automatically. Learning varies betwsgpervised, semi-supervised
and unsupervised methods. For the cases studies in Cha@rds6, features that could
distinguish the event types are manually selected. Thigla¥eatures that are specific to
the training data, because they are based on the expertddahge. The expert selects
these features while defining the AMG. The framework thosgieineral and is indepen-
dent of the choice of the features. One can replace thesedsavith different or multiple
features, and follow the same recognition procedure.

If multiple synthetic attributes are chosen to distingwdether an event occurred
(e.g. location and time), independence is assumed givefe#iteres are retrieved inde-
pendently from the data. The cpdfis then the product of #edihioods of those features:
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p(or|r) =[] p(r.akr). Given training data for different labels of a conditional pdf can
k

be learnt over each attributey and each labet: p(r.ax|r = ).

3.6 Conclusion

This chapter explained how AMG can be used to present the iddnativities as hier-
archies of compound and primitive events, along with indirad inter-activity constraints.
In an AMG, terminals represent primitive events that disecbrrespond to detections,
and nonterminals represent compound events. Each symdadigiminal or nonterminal)
has synthetic and inherited attributes. Each productida iruthe grammar rewrites a
nonterminal into a multiset of symbols. A production ruleatscompanied by attribute
rules that traverse values up and down the parse tree, aititgtconstraints that ensure
the natural constraints are satisfied.

Parsing a multiset of detections by the AMG generates a géipdanation that covers
all the detections, and satisfies all constraints. The s@t pbssible parse trees represents
the set of global explanations for the detections. The @rgptesents an algorithm to
transform the multiset of detections, given the AMG, intoay8sian network structure.
The set of labellings of the BN corresponds to the set of ab@#&rees. After setting the
priors and the conditional probabilities for the BN, the MA#lution represents the best
explanation for the detections. The next chapter explaattable techniques to search
the BN for the MAP explanation.



Chapter 4

Searching for the Best Explanation by
Optimising a Bayesian Network

Chapter 3 shows how to build a Bayesian Network (BN), giverteo$ detections, that
models the probability distribution over the space of glabglanations. The complete
set of labellings of the Bayesian network corresponds tséht®f all explanations. The
Maximum a Posteriori (MAP) explanation is the best explemmaaccording to the prob-
ability distribution. This chapter presents an exhausthathod for finding the MAP
solution that is tractable in certain cases. It also prestmee heuristic methods that are
tractable in general.

The three heuristic search techniques are: greedy seaechid® 4.2), Multiple Hy-
potheses Tree (MHT) (Section 4.3) and sampling the digiohwsing Reversible Jump
Markov Chain Monte Carlo (RIMCMC) with Simulated Anneali(®A) (Section 4.4).
The RIMCMC section introduces general reversible movesddna traverse the space
of binary event hierarchies. Finding the solution usingd@r Programming (IP) is the
proposed exhaustive search method, and is explained iro8dch.

This chapter motivates the usage of these techniques, @aatgreviously been pro-
posed in the literature for similar problems. It also expdagach technique and details
how it can be applied to search the BN of global explanatiofise search techniques
introduced in this chapter are compared experimentallyhapgfers 5 and 6 for the two
case studies.

51
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4.1 The complexity of the search space

The size of the search space can be estimated from the nuihbedes in the BN and
the different labellings of each node. First a detectiondtis®t D ={ay, &, ..., &,, b1,

bo, ... , Iy} is acquired using the detectors, where eacks a different detection of
type a and similarly forb;. For an AMGG, and the detections multiset D, the number
of hidden RV nodes in the BN cannot be calculated in advaresyathetic constraints
govern the ways nodes are combined. An upper bound on thearnwhbodes can though
be calculated. Assuming all rules rewrite a nonterminad imto symbols (i.e. binary
parse trees)h is the maximum depth of the parse tree, anid the maximum number
of detections of the same type iy then the number of nodes is of ord®fn"). The
number of constrained labellings representing explanat@annot be calculated either,
as it depends on the inter-activity constraints. For a BmolBN, the upper bound on
the number of explanations B(Z”h). This is a multi-dimensional assignment problem,
which is an NP-hard combinatorial optimisation problem4JL1

Production Rules (P):

rule  Syntactic Rule (r) Attribute Rules (M) Attribute Coraints (C)
P1 S — GHE\ A% a, b c,d
p2 A — ab AQOn = fa(aOg bOy) b.count< 1
b.count = 1
P3 E — ¢A E.Oe = feg (c.Oc A.Op) c.count< 1
ccount = 1
P4 G — E,d GOg = fg(EOg,dOg) d.count<l
d.count = 1

Figure 4.1: The production rules of a sample AMG.

To explain the different search techniques, the productites of a sample grammar
are specified in Figure 4.1. Given the following detectidas,a, b1, c1,d1,d2}, Fig-
ure 4.2 presents the Boolean BN. This sample BN will be searcising the different
technigues. Recall that the search is for the completeliagedf the Bayesian network
@ that maximises the posterior probability, given the obatonsY. Figure 4.3 shows
the exponential relationship between the number of prumiévents and the number of
hidden RVs for this example.

4.2 Greedy search

A simple technique to find a good global explanation givenBlagesian network is to
work from the bottom layer up, incrementally assigning late the hidden random vari-
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Conditional Probability Priors
p(A=tla=t,b=t) | 0.7 || pla=t) | 1.0
p(E=t|A=t,c=t) | 0.8 p(lb=t) | 1.0
p(G=tlE=t,d=t) | 0.5 p(c=t) | 0.9

p(d=t) | 0.8

Observations cpdf

p(Oalar=t) | 0.6 | p(Oylaa=1) | 0.7
P(Oa,laz=t) | 0.4 | p(Oglao=1) | 0.1
p(Op, /b1 =t) | 0.8 ] p(Op,b1=1) | 0.4
p(Oglci=t) | 0.7 | p(Oglca=1) | 0.2
P(Og,|d1 =t) 0.1 ] p(Og,ldi=1) 0.8
p(Od2 dy=t) 0.9 p(0d2 do=1) 0.3
p(OA1 Ar=t) | 0.6 p(OA1 A;=1) | 0.6
p(OA2 A= ) 0.4 p(OA2 A= f) 0.9
P(Og|E1=t) | 0.8 | p(Og|E1=f) | 0.5
P(Og,|E2=t) | 0.9 | p(Og,|Ex=1) | 0.2
p(Og,|G1=t) | 0.1 | p(Og,|G1=1) | 0.7
p(OGZ Gy, = ) 0.2 p(OG2 G, = f) 0.8
p(OG3 G;=t) | 04 p(OG3 Gs=1"f) | 0.9
p(OG4 Gy= ) 0.8 p(OG4 Gy= f) 0.02

Figure 4.2: A Boolean BN along with a chosen set of priors,dittonal probabilities, and the
observations likelihoods.

10

total number of
hidden RVs in BN
o = N w S 5 (=) ~ = ©

0O 10 20 30 40 5 60 70 8 90 100
number of primitive events

Figure 4.3. The number of nodes in the BN increases expailsnivith the number of primitive
events.

ables, and checking constraints at each stage. Algorithmetails how the greedy search
is performed for a hierarchical Bayesian network. First,dach primitive evenk, the
posterior ratidy is evaluated,

_ Ploxx=t)p(x=1)
p(ox[x= f)p(x=f)

(4.1)

X

The node is labeled truelif > 1, and false otherwise. This is shown for the sample BN
in the first step of Figure 4.4.
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Figure 4.4: Searching the BN in Figure 4.2 using greedy deanéellow shading of hidden RVs
is used to highlight the set of nodes labeled at each steprekudting parse tree is shown at the
end, and corresponds to the fully labeled BN.

input : Bayesian Network BN
output : wyreedy labelling of the BN

1 while more nodes to be labelatb

2 Let {X;} be the sequence of unlabeled nodes with all parents alrehéjed (or
without any parents), in descending order of the rbtie= %m wherepay,
are the parents of; '

3 while more nodes i{X;} are to be labeledio

4 Let X, be the first unlabeled node {x}

5 if 1, > 1then

6 label Xy in Wyreedyast

7 if X, is constrainedhen

8 L propagate labelling according to the constraintifeedy

9 else

10 L label all remaining unlabeled nodes{iX } in wyreedyas f

Algorithm 4.1: Greedy search for labelling a BN

Next, the hierarchyA — a, b is assessed. Two nodAs andA; are considered.

p(Al - t|0A17 aip, bl)
P(AL = f|oa,,a1,b1)

la, = (4.2)

If 15, > 1 thenAy is labeled true, and similarly fok,. Yet, if |5, > 1 andla, > 1, only
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the one with the higher ratio is labeled true to satisfy thest@intcl . The evaluation
continues up the hierarchy until all nodes are labeled. rféigu4 shows how the greedy
search can be performed for the sample BN. This is though ec¢ssarily the MAP
solution of the BN. This is because each node is evaluatezhdhe pre-labeled parents
and those cannot be changed. The greedy search is used asliaebtts compare the
results found by the other search techniques.

4.3 Multiple hypotheses tree

The Multiple Hypotheses Tree (MHT) algorithm, first used ®idRfor multi-target radar
tracking [116], propagates a tree of multiple hypothesgplémations). It assumes the

A1 c1 At

ar=t ar=t
b1 =t bi=t
Air=f A=t
ci=f||ci=t] |ct=f||ci=t||c1=t ozt cot cr=t
1= 1= 1= 1= 1= Ei=f Ei=f Ei=t
Er=f| [E1=f] |Ex=f||Ex=f||Ex=t ; : 1‘
| di=fl|di=t| |[di=f|ldi=t| [di=f||di=t]||di=t
prune Gi=f||Gi=f] |G1=f]|Gi1=f| |G1=f||G1=f]|G1=t

t
f

=t
Ei=f

c1=t
Ei=t

C1
E«

C1

di=f
Gi=f

di=f
Gi=f

di=t
Gi=f

Figure 4.5: MHT considers one detection at a time. The BN tfierdetections up to that level)
is shown at the top with yellow shading for the detection dhoetated hidden RVs to be labeled
at that level. All feasible labellings are added to the cutréree branches. Feasible labellings
differ between branches depending on the already labelddsiat each branch. If the number of
branches exceeds k £ 3 in this example), the tree is pruned. Shaded nodes in thedpmesent
the leaves of the highest k posterior branches with the damepresenting the highest posterior
up to that level.

For the constraint that allows only one of the inter-depen@sents to be recognised, line 8 in the
algorithm labels all conflicting nodes ds This is the most common constraint in the AMGs presented in
this thesis.
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detections have an ordering (usually temporal) and stams the first detection working
through to the last. Each level in the tree is thus expandednades representing the
different hypotheses explaining the detection in hand hgeath, from root to leaf, in the
tree corresponds to an explanation.

Due to the ambiguities in the visual data, the current bett pey not be part of
the best path to lower levels of the tree as it propagatestimduture. Yet it would be
impractical to maintain the complete tree, due to the nurob@ossible hypotheses for
all but the simplest cases. The tree is pruned at each stegefotke search tractable by
retaining only the bedt hypotheses. This is a beam search [123]. The number of eetain
branchesk, is selected based on a trade-off between number of calmsednd accuracy.

If k=1, this search becomes a best-first search [123].

Figures 4.5 and 4.6 show how the sample BN (Section 4.1) casearched using
MHT. The search is split into two figures for claritik was set to 3, and the following
ordering of detection$a;, bs,c1,d;,a82,dz} was assumed. The resulting explanation de-
pends on the ordering and might differ between orderingseakh step, a detection is
considered along with all ‘related’ event nodes. The relaeent nodes are the ancestors

di=f

di=t

Gi=f Gi=f||G1=f
a=t||a=t||az=t| |a2=t||az=t
Ae=f||Ae=t||Ae=t]| |Ae=f||Aa="f
E2=f||E2=f||E2=t| |E2=f||E2=f
Gs=f| |Gs=f| |Gs=f] |Gs=f||Gs=f
de=f|lde=t||d2=t| |d2=f||d2=t|[d2=1t]| |d2=f||d2=t|d2=t
G2 =f||G2=f||G2=f| |G2=f||G2=f||G2=1| |G2=f||G2=f||Gz2=t

Ga=f||Ga=Ff||Ga=1t| |Ga=f||Ga=f||Ga=F| |Ga=F||Ga=f|Ga=Ff

Figure 4.6: MHT search is continued from Figure 4.5. The BNd BIHTs are shown. The parse
tree with the maximum retained posterior is shown in a boxhenright. Notice that the branch
with the maximum posterior changes as the last observatios added.
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of the considered node which have all their other childreaaaly labeled. All consistent
labels of these nodes are evaluated at this level of the Mighs{dering consistent la-
bellings only increases the speed, as all inconsistenliiladpe evaluate to a posterior of
zero. It should be noted that the consistent labels diffenéen tree branches depending
on the previously labeled nodes in each branch.

After all consistent labels are added to each branch in th@ e tree is pruned to
retaink branches only. This is accomplished by evaluating eachchraand keeping the
k branches with the highektposteriors. As Figure 4.6 shows, the branch with the highest
posterior might change when more evidence is consider&dvds small, and that branch
was not retained, the MAP solution cannot be found. It is ¢iomiot possible to estimate
the optimalk in advance, as it depends on the ambiguity in the detectiligerithm 4.2
shows a pseudo-code for searching a BN using MHT

input : Bayesian Network BN, ordering of detections D, number ainchesk
output : wynT: labelling of the BN

1 initialise treet with one empty branch
2 foreach primitive event d= D

3 Let {X;} be the list of nodes related tbof sizem
4 Let Ly, be the set of possible labels of noge

5 Lm:LxleXZX...XLXm

6 foreach branch be tree branches

7 foreach labelling I € L™

8 if | is consistent with explanationthen
9 L | add nodd to branchb

10 if no labelling is consisterthen

11 | remove branclh

12 prune tree (i.e. keek-best branches)

13wyt = labelling of branch with maximum posterior
Algorithm 4.2: Multiple Hypotheses Tree (MHT) search for labelling a BN

4.4 Markov chain Monte Carlo sampling

Instead of exhaustively searching the space, MCMC samp&gpdsterior distribution
m(w) = p(w|Y) using a Markov chain. The set of possible states in the Madkain
Q is the set of all global explanations, and a conditiqguraposal distribution Q(w'|w)
defines the probability of proposing staté given the current state i®. After a state
is proposed usin@®, the move to that state is made with the probabilifyy’|w) known
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as theacceptance probability A thorough review of MCMC techniques can be found
in [8]. For readers who are not familiar with it, MCMC and theetybpolis-Hastings
algorithm are explained in Appendix A.

4.4.1 Markov chain Monte Carlo data association

The work of Oh, Russell and Sastry [111] proposed using Maf&bain Monte Carlo
(MCMC) for data association because it scales better thalipiHypotheses Trees
(MHT) when the probabilities of different explanations &exy close, and the MAP ex-
planation is unlikely to reside amongst the k-best expianatfor a reasonable beam
width k (Section 4.3). The space of possible explanatiQnis a discrete space, thus
moves are designed to change a certain explanatiomo a slightly different one. Each
move amends part of the explanatian preserving the constraints. After each move is
applied, the resulting explanation should still be a valabgl explanation. These moves
need to be carefully designed to traverse the whole spacessilje explanations. They
can be simple or complex moves, although complex moves cachtieved via applying
a sequence of simpler moves. MCMCDA then starts from anylglbbal explanation
and produces a sample from the posterior distribution ofeagtions’. The sample size
equals the length of the Markov chaim{;).

Assuméet is the set of all move types. MCMCDA (Algorithm 4.3) amends gieneral
Metropolis-Hastings algorithm (Appendix A.2) to includgogaor step for selecting the
move typem. Due to the nature of the explanation and its constraintsalhanove types
are allowed given a certain explanation, tifysefers to the set of allowed move types
given the current explanatian. The algorithm requires a choice of the sample sizg
as well as an initial elemerty. At each step, a new explanation is proposed and the
acceptance probability is computed. A sampla is drawn from% [0, 1]; the uniform
distribution in the closed interval from O to 1. The proposg@lanation is accepted in
the sample ifx > u.

As data association aims to find the best explanation, ratlaersample the distribu-
tion of explanations, the best explanati@ris maintained throughout the Markov chain.
At each iteration, the chosen sample is compared to the hgistration found so far. The
required solution is thus chosen from amongst the sampheegits.

W= arg max:lunmc p(@ ‘Y> (43)

2The chain should be long enough to guarantee convergengeiix A)
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1 initialise ay

2 W=y

3 fori=1tonmcdo

4 sample m frong;

5 | samplew* from Qm(w*|w_1)
6 calculatea (w*|w_1) = min{17 %}
7 sampleu from %[0, 1]

8 if u< a(w|w_1)then

9 W =w

10 if 724 > 1then

11 L W=w

12 else

13 L W=w-_

Algorithm 4.3: Markov Chain Monte Carlo Data Association Algorithm

There are two obvious obstacles when using MCMCDA. The fargiaiculating the
proposal distributiorQ at each configuration. This is because the choice of the next
step is split into selecting a move-type, followed by seteria specific move of that
type. Reversible Jump MCMC (RIMCMC), explained in Sectioh 2, allows clearer
formulations for the proposal distribution and the accepégprobability.

The second obstacle is expecting MCMCDA to find the best exgtian while being
a sampling technique. Adding simulated annealing is a mmodification, explained
in Section 4.4.5, and is tailored to locate the best explanatather than sample the
distribution of explanations. RIMCMC and the addition ehglated annealing have not
featured in most of the literature that adopts MCMCDA foraadnd visual surveillance.

4.4.2 Reversible jump Markov chain Monte Carlo

Green suggested using MCMC for sampling the joint distrdsubf both the model di-
mension and the model parameters [57]. This technique,citgd trans-dimensional
MCMC and later referred to as Reversible Jump MCMC (RIMCMs@) be used to
solve a wide variety of problems where the joint distribntiof model dimension and
model parameters needs to be optimised to find the best pdimehsion and parameters
that suits the observations.

By analogy, given a set of detectiols the search is for the number of events and
which detections belong to each event. There are two wayssiog MCMC to find the
best explanation. The first approach is to use within-modeM{ where one chainis run
for each possible number of events. Within-model MCMC iggmred when the numbers
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are limited and separate optimisation for each can improgeefficiency. Alternatively,
across-model MCMC is expected to converge faster, espeeraen the number of di-
mensions is huge [54]. Reversible Jump MCMC (RIMCMC) appdieross-model and
within-model reversible moves.

Several applications of RIMCMC have been proposed in tbrtiire - for example
finding the number and parameters of Gaussians in a Gaussidar&[117]. A thor-
ough review of alternatives to RIMCMC can be found in [54].eThain drawback of
RJIMCMC is the difficulty in designing the move types. Thougime moves are general
across a collection of applications, most moves are agpicapecific. It has been con-
jectured that some reported inefficiencies of RIMCMC hawnlzkie to poor design of
the reversible moves [8].

RJIJMCMC generalises the acceptance probability formulalgoAthm 4.3 to include
the probability of selecting the move type, and a move-dpgumiobability [58].

() jpr(@) gor(U) ‘0@’ U')D (4.4)

a(@1e) =min(L, 2 @) gm0 | 9@, U)

In Equation 4.4,j refers to the probability of selecting a move-type. Assunrep-
resents the set of all move types, thgiiw) is the probability of selecting the move type
m € & given the current explanation ®. jm(w) = 0 for impossible move types that
would result in an inconsistent set of events. For each mgwerh, mR refers to the re-
verse move type. Some move types are self-reversible, whezns a move of the same
type is applied to return to the previous explanatiéiﬁ% is the ratio of the probability
of selecting the reverse move type (back from the new exptamay to w) to that of
selecting the move type from the current explanation.

Using Green's formulations of RIMCMC, each move typéhas its own ‘within-
move’ proposal distributioy,. In Equation 4.4y refers to the random variables used
to transform the current explanatiemto the new explanationy using the move type.
Some move types result in a change in the explanation’s dimenThis is when the new
explanation has a different number of recognised eventsttieprevious one. i is the
dimension of the explanatiom, d’ is the dimension of the new explanatian, r is the
dimension of the random vectoandr’ is the dimension of the random vector required for
the reverse move/, then the transformation froifaw, u) to («/, ') is a diffeomorphism if
d+r=d +r’. The last factor in Equation 4.4 is the absolute determioftite Jacobian
matrix of this diffeomorphism. This section will not exptaiurther how the determinant
of the Jacobian matrix is handled for the proposed discreteesn The reader can refer
to Smith [131] for proofs.
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4.4.3 Designing reversible moves

When using RIMCMC to traverse the space of explanationsffereht explanation is

proposed at each step along the Markov chain based on thentwame. For discrete
search spaces, multiple types of moves are needed to eaWersearch space [58]. For
binary event hierarchies where each production rule in thi5Aeplaces a symbol by a

connect

(04
a b di T /
isconnec 3 \)

2 6
/>< of /%b\b

Figure 4.7: Four move types are proposed to link events, lbigks, change linked events and
switch linkages.

change

multiset of two symbols, 4 move types were designed to tsvédre search space (Fig-
ure 4.7). These connect or disconnect a pair, change one dihited events or switch
two pairs. It should be noted that this is not the minimal dahove types. A change
move for example can be constructed from a disconnect mdievied by a connect
move. Disconnecting would often decrease the posteridogimtity significantly, which
makes it a less probable move along the chain. Accordingignge and switch move
types enable efficient search of the space and faster cane¥g Other complex moves
can be constructed from a sequence of these moves. The cahadgsvitch moves are
self-reversible, while the connect and disconnect moves freversible pair. They al-
ter the dimension of the explanation by changing the numbeompound events. The
AMGs introduced in this thesis define binary hierarchieghese moves were sufficient
for the purpose.

RJIMCMC splits sampling from the proposal distribution topose a new explanation
into two steps: choosing the move typgthen choosing a specific mogg,. Uniformly
choosing a move type from the set of possible mo§jedoes not efficiently search the
space of explanations. The weighted distributjgns thus estimated from the number of
distinct moves of each type that can be applied to the cuesgrianationwy. Accordingly

f(m w)
> fy,a)

yeéi

jm(@) = (4.5)



Chapter 4 62 Searching for the Best Explanation

wheref(m, ¢y) is a function that maps the move type and an explanation touh#er of
possible moves of that type that can be applied to the exfitamaCalculating the number
of possible moves does not require enumerating the actuatsnobut is estimated from
the number of recognised events of each type within the eafilanc.

Next, a specific move of that type is chosen and applied to tineist explanation.
This ‘within-move’ proposal distributiogy, can also be uniform. Alternatively, a cus-
tomised ‘within-move’ proposal distribution can be desdrfor each proposed move
type. These are application-specific and depend on the &gambiguities in the ob-
servations. Further explanation of these within-move psapdistributions will be given
along with the two case studies in Chapters 5 and 6.

4.4.4 Example of searching using RIMCMC

This section explains by example how the space of globalaggtions can be searched
using RIMCMC. The set of discrete moves to traverse the spaceintroduced in Fig-
ure 4.7. For the given BN in Figure 4.2, three layers of conmgbevents are present.
This section labels these layers as ‘A, ‘E’ and ‘G’ based ba tompound event they
recognise. For simplicity, within-move proposal disttibns g, (see Section 4.4.2) are
uniform distributions over the possible moves of each tyfige Markov chain can start
from any global explanation.

For an initial configuratioruy, Figure 4.8 shows a 4-steps Markov chain. At each
step, a list of move types with the number of possible movesach type is shown as
a label on the arrow. A move type is not mentioned if no possibbves can be found
of that type. In the figure, a subscript indicates the layexfath the move is applied.
disconnedgt, for example, disconnects anand ab detection that are connected to a
compound evenA. The proposal distribution(wy) is a weighted distribution by the
number of possible moves of each type. The weighted distoibis randomly sampled
and a move type is chosen (bounded by a rectangle). Figurshé\8s a sequence of
applied moves, regardless of the acceptance probabilityprésenting the figure, the
parse tree is shown rather than the labeled BN. This presamtuits the moves better.
Recall that there is a 1-1 mapping between a labeled BN andsa pae.

S S
/S‘\\\ ) / I\ disconnecta 1 / ™\ disconnecta 1 S
// ‘\\\ di 1 disconnecta 1 G ar1 d2  disconnecte 1 G a2 d2 [disconnecte 1 // ‘\\\
Isconnec E a1 di dz2 disconnecte 1 /N disconnecte 1 /N disconnects 1
A\ ar ¢ di do N [connecte 2] /E\ ds connects 1 /E\ d changeA 1 A\ a c1 di d:
; changer 1 © /
az b1 - . 7 \b changer 1 ¢ A 9 1 ¢ A changes 1 7 .
az 1

NN

\ /\
az b1 ar b1

Figure 4.8: Four moves are applied in sequence. The labehaharrow shows the number of
possible moves of each type. The rectangle indicates thsenhmove type.
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Next, Figure 4.9 shows the posterior calculations, alornp Wie acceptance proba-
bility a for the first two moves. The figure shows two possible movesematliates the
acceptance probability for each. For the first move, th@% shows an increase in

the posterior probability. When evaluating the raﬁ%), the numerator is evaluated
to jdisconneqt (1) Which is the probability of choosing the reverse move typegithe
explanation iswy. jdisconneqt (1) equals% and can be calculated from the label on the
arrow departing froma. The denominatojconnegt () equals% given 3 moves are only
feasible. As only one move of each type is availat%@% = 1. These calculations
guarantee the detailed balance explained in Appendix Ah2.alcceptance probability is
1 as the minimum function compares to a ratio higher than toAting to the RIMCMC
algorithm, the move is certainly made, atg is the next sample element in the Markov

chain.

o Wy W
S
S S )
IR dscomest /NN dscomect i
/A\ air ¢ di d2 /E\ ai di d2 E/ \d
a b changea 1 ct A changea 1 /A !
\ ct A
az b1 7/ \
az bi
mw) PpE=tA=t,c=t)p(Cg|[E=1) 0.8x0.9 mw,) Pp(G=tlE=t,d=t)p(Og|G=t) 05x04
man) pE=flA=t,c=t)p(Og|[E=f) 02x0.2 mw) p(G=fE=td=1t)p(Og|G="f) 05x0.9
ij((A}l) _ jdisconnetg (a}l) _ % ij(&k) _ jdisconne%(wz) _ %
]m(ab) jconneog(“b) 1/3 ]m(a}l) jconnec{;(a}l) 2/5
gR(@) 1 gR(@2) 1
Im( @) 1 Om(er) 1/2

men) Jor(wr) gmre<w1>) 1

() R (w2) gmre<wz>) _4
(o) jm(@)  Gm(wn)

@(6gleon) =min 3, m(en) jm(wr) gm(wn) ’ 9

a(w|ap) = min(1,

Figure 4.9: The acceptance probabilitiesfor the first two moves from Figure 4.8 are detailed.
The first move is certainly accepted. The second move’s &cwpdepends on the random uni-
form sample u (see Algorithm 4.3).

The second move does not increase the posterior. It is axtepth a probability
equal toa. When samplings from the uniform distribution, the move @, is made if
o > u. Alternatively, the next sampled element will bg again.

4.4.5 Adding simulated annealing

MCMC is a sampling technique that aims at producing a sarhplegipproximates the tar-
get distribution. MCMCDA (Section 4.4.1) uses sampling talfthe global maximum of
the target distribution [111], and so is the case with sonpdiegetions of RIMCMC [117].

Although MCMC ensures more sample elements are chosen frempdak(s) of the dis-



Chapter 4 64 Searching for the Best Explanation

tribution, it does not guarantee the maximum is found. USAG@MC for global optimi-
sation is theoretically an approximation, hoping one elanrethe sample will match the
distribution’s highest peak.

An alternative method to find the maximum is adding simulatedealing. Simulated
Annealing (SA) is a global optimisation technique that dees the physical process of
pre-heated and controlled slow cooling of material crgstéihis physical process ensures
finding the crystal with the largest size and fewest defelie® SA algorithm by analogy
introduces a fictional temperatuile and updates it at each iteratidnvia a cooling
schedule. The Markov chain with SA is non-homogeneous anidvariant distribution
at each iteratiomequals

o (o) = ()t (4.6)

With each iteration, the temperature and the target digidh are updated. AS3; de-

creases, the SA algorithm slowly restricts accepting thgento a lowerrt value, so it
would reach the maximum. SA requires a choice of the coolofgedule. Figure 4.4
displays the MCMC-SA general algorithm.

1 initialise wy

2 initialise To, Tp,,.

3 define cooling schedule cddb, Ty, i)
4 W=y

5 for i=11to npcdo

6 sample m frong;

7 samplew* from Qm(w*|w 1)

8 updateT; = cool(To, Tn,,.,1)

) * 1 >
9 calculated (w*|w 1) = min{1, (,T](T(cii))“ Sﬁﬁqiﬂﬂ%}
10 sampleu from %[0, 1]

11 if u< a(w*w-1) then
12 w = w*

13 if % > 1then
14 | o=

15 else

16 | a=w

Algorithm 4.4: Markov Chain Monte Carlo with Simulated Annealing Algorith

The differences between MCMC and MCMC-SA are;:

e MCMC guarantees a representative sample of the targeibdistm, but does not
search for the global maximum. MCMC-SA aims at finding thebglanaximum,
but the resulting sample does not approximate the targetidison.
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e MCMC only requires choosing the suitable proposal distiduQ. MCMC-SA
also expects a suitable cooling schedule. The choice of dbéng schedule is
essential for finding the global maximum.

e For multi-peak distributions, the chance of jumping betwpeaks remains steady
in MCMC. In MCMC-SA, the chance of jumping between peaks ghlerr at the
start and decreases constantly as time passes.

When adding simulated annealing and searching using MCMCHS probability
of accepting the move fromv to w' changes along the Markov chain according to the
cooling schedule. Assume the ra&é%) = % Figure 4.10 plots the ratio after applying

1
the cooling(%) T along the chain, using different cooling schedules With- 1.5 and

Tnne = 0.01. The figure compares the linear, exponential and signmutirgg schedules
(Equations 4.7 - 4.9).

1. Linear cooling schedule

Ti=To—i (To%mTC””“) (4.7)
2. Exponential cooling schedule
T = TO(T;—:;C)nrinc 4.8)
3. Sigmoid cooling schedule
Too Dol g (4.9)

T 1+ €030 -Mme/2)

WhenT; > 1, the probability of accepting the move increases. Alteval, whenT; < 1,
the algorithm becomes more restrictive to accept movegit@aease the posterior.

4.4.6 Online RIMCMC

RJIJMCMC can be modified to consider new detections. The glekalbnation calculated
up to now is used to initialise the Markov chain. This mearsitiitial solutionay is the

MAP explanation for all the previous detections, along vatty consistent labelling of
the new ones. It should not be misunderstood that the prewbsgervations cannot be



Chapter 4 66 Searching for the Best Explanation
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Figure 4.10: Four cooling schedules are compared by plgttihe ratio ("(“"))Tli across 500

m(w)
iterations of the Markov chain. The horizontal line shows triginal % When the result
is higher than this line, the move has a higher acceptancéabiity. As the Markov chain
progresses, the chance of accepting this move decreaste figure = 1.5and T, .= 0.01.

re-considered (as in the case of MHT). The same set of mowagspiged and could affect
any of the new or original detections.

To speed convergence, the Markov chain can be run in two phade first phase
Is confined to moves that involve new detections. This phasatés a local optimum
involving the new detections. The second phase runs the RIM{@ the normal fashion
introducing changes to the global explanation of all ded@st This technique is similar
to the burn-in sampling idea used in Markov chains, whergainsamples affected by
the starting position are discarded to speed convergerjcdf[8nly the second phase
was used, the chance of the moves involving new detecticreases as more detections
are added. The first phase cannot be run alone to achievedhal ghaximum. This
is because the best explanation can introduce changesvioysesvents, which might
accordingly introduce more changes to other events. Desipgrimentation, the Markov
chain had to be run for much longer when only one phase wasAsrthe number of
detections increased, the chance of proposing a move tlidvés the new data tended to
decrease, and the length of the required Markov chain hael itedoeased. The two-phase
solution was able to solve this problem. The length of thekdarchain in the first phase
is set to a factoy of the Markov chain’s lengthy was set to 0.25 in all the experiments.

4.5 Integer programming

While the three methods explained above are heuristic,they cannot guarantee the
MAP is found. Integer Programming (IP) is an exhaustive négptee that finds the MAP
explanation. The next subsection explains the basics e§@rtprogramming, while Sec-
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tion 4.5.2 illustrates how IP can search the BN of global axptions for the MAP expla-
nation.

4.5.1 Introduction to integer programming

An integer program is generally given in the following fornf@] 3

Given a matrixA € R™" and two column vectors € R™, ve R"
Find maxv' x such that

Ax< Db, and

xezZ"

All combinatorial optimisation problems can be formulatexinteger programs [91],
yet these are NP-hard problems, which cannot be solved ynpoiial time. A linear
(rather than integer) solution can be found if the intetyatbonstraint is dropped. The
problem would thus bémaxv' x: Ax< b}. This is referred to as the linear relaxation of
the integer program. Polynomial-time algorithms have emreloped for solving linear
programs [125]. For the linear program, a feasible solusore R" such thalAx<b. The
space of feasible solutions is the intersection of many $y@dices, given a finite number
of linear inequalities. This set is a polyhedron.

Figure 4.11: For a solution space, the polyhedron P is theisoh space for the linear program
found by relaxing an integer program, while iB the convex hull of P and represents the solution
space for the integer program. Diagram from [91]

Figure 4.11 shows that once the polyhedron which represieatsolution to the lin-
ear progranP is found, the solution to the corresponding integer progiithe convex
hull of integer vector$§. Techniques for finding the convex hull given the polyhedeon
have been proposed, such as branch and bound and cuttires p&tj. In branch-and-
bound techniques, the solution to the linear program issageskfor integrality. For each

3The cost vectow is usually represented by the symlmolThis was not used here to avoid ambiguity
with the detections.
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0 < x < 1, the tree is branched with two optiors= 0 andx; = 1 [143]. Two new so-
lutions are investigated, and further branching is doné tim& integer solution is found.
Alternatively, cutting planes finds a polyhedrBhby cutting off certain parts d?, main-
tainingR c P’ c P. If { maxv'x:x € P} is an integral vector, the sought solution to
the integer program is found. Alternativel, is cut again to obtaif®” until the integral
solution is found [91].

4.5.2 |IP for searching a constrained BN

To use a linear solver, one must formulate the problem as tagen program. More-
field [105] first formulated the multi-target tracking prebt as an integer program using
implicit enumeration. In implicit enumeration, the list afl partial explanationg is
accumulated, and a solution to the problem is an integeovedtall these partial ex-
planations. Assume there argartial explanations it , the explanatiorw is then an
r-dimensional vector of Os and 1s. df (the " component ofw) is set to 1 then the
corresponding partial explanation € F is part of the chosen set of consistent events
making the explanatiomw. Alternatively, a component ab set to 0 corresponds to a
possible partial explanation that is not considered. Tsitiate, assume there are 5 partial
explanations, then the vectar= [0 1 1 0 1] means the second, third and fifth partial
explanations make up the global explanation.

To understand this representation, one must explain whattepexplanation is. In
the case of global explanations for activities, a partigllaxation is one event from the
possible set of events. Recall from Section 3.2 that thegnasduction rule rewrites the
start symbol S as a multiset of other terminal and nonterihgpabols, for example:
S — A*, B*, a5, b*. The given options are the types of events in this activitye $et of
all possibleA compound event& compound events, along with any primitive events that
can be left ungrouped equals the set of all partial explanafi. For the detections set
D = {a(time=1),ax(time= 2), by (time= 2),c1(time= 3),cy(time= 4)}, the list is:
Ag:az
A&

)\2 :C1

)\3 o)

)\4 . B]_, b]_,C]_

As By, by,
As:A1,a1,B1,b1,C1
A7:A0,a2,B1,b1,01
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)\8 : A3, ai, Bz, bl, C2
Ag i Ag,a2,B2,b1,Co
The probability of each partial explanation can be caledahdependently. Assunes
an r-dimensional real-valued vector wherds the lod p(A;)) of the partial explanation
Ai. The search for the MAP using implicit enumeration would ®&d max' w. This
is because

Viw= Y vi= Y log(p(A)) (4.10)

itw=1 itw=1

Accordingly,cy =[0101001000] andw, =[111001 0000 correspond to the
two parse trees in Figure 4.12. The posterior of each exptang simplyv.c andv. wy.

S S
AN 7NN
A a c B aa a2 &
/ \ /\
a1 B b1 c2

/\

b: &1

Figure 4.12: Two parse trees given a multiset of detectiolndAMG G..

While maximisingv'.w, some of the r-dimensional vectors are an inconsistent or
incomplete set of events, like the vectars =[1 01000000} andws =[110
011100]. wsisincomplete, as each explanation should explain all thectiens.
wy 1S inconsistent as it violates the constraints in the sarAMES. The solution to the
IP problem should include constraints that ensure the tiegudet of events makes up a
global explanation. Three types of constraints can be difmrethe global explanations:

¢ All terminals should be explained - referred to as the ‘t@@hconstraints’.
T is a matrix of size| D | xr. Each celltjj has the value 1 if the terminalis
explained in the partial explanatign To ensure each terminal is explained at least
once, the constraint.co > 1 should be maintained, whefeis a vector of 1s of
dimension D |.

e A maximum of one of the inter-dependent nodes, that coms&rabommon inherited
attribute, is allowed - referred to as the ‘consistency tangs’.
0 is a matrix of sizan x r wheremis the number of inter-dependent node sets, and
equals the number of deterministic nodes in the BN. Each6geis of value 1 if
one of the inter-dependent nodes of s&t explained in the partial explanatign
The constraint would then b w < 1.

¢ Nodes should have the same label in all the different paatiplanations - referred
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to as the ‘conflict constraints’.
K is the node labelling constraint. This matrix of size r wheren is the number of
nodes inthe BN. Each cedlj has a value 0 if the nodes not labeled in explanation
J, Lif it has a true label, and 2 if it's labeled false. Note tegira possible values
can be added for multi-labelled BNs. To ensure the node ildabcorrectly, the
following non-linear constraint should be added for eactieion the BN
r r

lkzl(Kij # Kik)-(Kij # 0).(Kik # 0).wj.a = 0 (4.11)
S1k=T+

J

The constraint in Equation 4.11 is non-linear, and cannatdbeed by a linear solver.
This constraint can be converted to a set of linear consgralfor eachdj = wjax, then
three linear constraints can ensdg equals 1 only when botty; anday equal 1.

Ok < W (4.12)
Ok < @ (4.13)
Ok > wj+w—1 (4.14)

For eachdjk, a constraint would check that

n
Z(Kij # Kik)-(Kij # 0).(Kik # 0).6jk = 0 (4.15)
i=

Algorithm 4.5 shows the steps of generating the set of gatiglanationg , and the
three constraints matrices; 8, k. Though these constraints make the set of all needed
constraints, the complete set of these constraints hashdedgies. If a terminah is
constrained to be consumed once, then no conflict would bectsg, and both the first
and the second constraints can be substitutetyay= 1. Similarly, if a nonterminal is
constrained to one, then it can be dropped from the checkdioflict constraint. This
decreases the number of constraints significantly.

Next, Algorithm 4.6 shows how the integer program can be tdated and solved.
Instead of finding an integer solution (Os and 1s), lineax@&lion substitutes this with a
linear constraint & w < 1. After finding the linear answer, techniques such as branch
and-bound can correct non-integer values in the solutionsolving the problem, two
solvers were employed. The first is part of the Optimisationlfox of MATLAB. It
is based on branch-and-bound algorithm [103]. The secowdrs&XPRESS-MP, tries a
collection of breadth-first, depth-first, best-first bras@sid-bound techniques along with
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LetH be the set of all deterministic random variables in BN

LetPs: S— X, Xz, ..., Xn,, be the production rule rewriting the start symbol S
Leti= 0 be the counter for partial explanations

foreach x € X1, Xo, ..., Xn
Let Nodeg be the set of all nodes in BN of type

: Bayesian Network BN, AMG G = (N,T,S,A,P), detections naétiD
output : Partial Explanationg, Terminal constraints, Consistency constrain,

Conflict constraintx

ps

foreachy € Nodeg

Ai ==y U pa, wherepa, is the set of all ancestors gf

vi = log(p(Ai))
foreachd € D
if d € Aj then
L Gi=1
else
L T5i=0

foreachh e H
if A; constrained by lthen

| &hi=1
else
| 6hi=0

foreach Node ne BN
if n labeled true inA; then

if n labeled false im; then

if n not labeled in; then
i=i+1

F = UjA

Algorithm 4.5: Integer Programming (IP) - implicit enumeration

advanced cutting-plane strategies [45]. To use XPRESSHMHNnteger program is for-
mulated using the modelling language MOSEL. The MOSEL mogfor the problem in
Section 4.1 is shown in Appendix D.

4.6 Comparing the search techniques

Table 4.2 compares the techniques introduced in this chbpsed on four aspects. The
first aspect is the type of search. The first four techniqueshauristic, as they do not
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input : Partial Explanationg , Terminal constraintg, Consistency constraints,
Conflict constraintsk, Cost vectonv
output : wp: labelling of the BN

Let r be the number of partial explanations
Let w be an r-dimensional vector of Os and 1s
maxv'.w
Tw>1
b.w<1
foreachj=1..r
foreachk = j+1..r
Ok < W
Ojk <
5jk > wj+w—1
¥ (Kij # Kik) (Kij # 0)(Kik # 0)djx =0

© 00 N O O B~ W N P

=
o

=
[N

12 % finding wp

13 run linear solver

14 foreachj=1..r

15 if wj =1 then

16 L L Aj is part ofwp

Algorithm 4.6: Formulating the problem as an integer program

search the full space of explanations. Integer Programpnoim¢he other hand, is exhaus-
tive as it searches for the set of partial explanations thetimise the posterior while
satisfying the constraints.

The second aspect is the randomness. While greedy, MHT aprbtRice the same
result every time they are run, RIMCMC and RIMCMC-SA havelament of random-
ness that might change the obtained explanation betwefenetif runs of the algorithm.

The table also compares the ability of the technique to kaaran ‘online’ fashion.
The algorithm is online if it builds on the already-found &mtion when new detec-
tions are added. The greedy algorithm is not ‘online’, ashedldetections are evaluated
before the next layer is considered. The MHT algorithm isseesmce online. This is
because it considers the detections in a sequence, ang builoreviously labelled RVs.
The RIMCMC can be online as described in Section 4.4.6, andasly for the simu-
lated annealing addition (RIMCMC-SA). The IP algorithmfifiree as it re-evaluates the
complete solution when new detections are added.

The table also details any parameters the algorithms eqGireedy and IP searches
do not require any parameters. MHT is pruned to the k-besidhes, and the choice of
k represents a trade-off between accuracy and resourcesCIROMVexpects the length
of the Makrov chain to be known, an initial explanation, apdafying the ‘within-type’
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proposal distributions which are application-dependRdMCMC-SA requires the same
parameters as RIMCMC in addition to a choice of the coolihgdale.

type random?| online/offline | parameters
Greedy heuristic no offline -
MHT heuristic no online k
RIMCMC heuristic yes online/offline | Nme, X0, Om
RIMCMC-SA | heuristic yes online/offline | Nmc, Xo, 9m, cool (To, T 1)
IP exhaustive) no offline -

Table 4.2: Comparing different search techniques preskint¢he chapter

Section 4.1 presented a sample BN. As a precursor to the cmopan real data in
the next two chapters, the quantitative results of seagahiis BN using all the techniques
are compared here. Table 4.3 showkg(p) for the recorded results; maximising the
posterior is equal to minimising-log(p). The table shows that the greedy search was
unable to find the MAP, and that RIMCMC-SA finds the MAP wath= 0.0 which is a
better result than sampling using RIMCMC

Greedy | MHT | RIMCMC | RIMCMC-SA | IP
k=3 u o u ()
MAP | 13.80 | 9.88 | 10.32| 1.29| 9.88 0.0 9.88

Table 4.3: —log(p) for the MAP solution for the sample BN searched using theréifit search
methods discussed in this chapter.

4.7 Conclusion

The space of global explanations was transformed into a ®ayenetwork in Chap-
ter 3. The set of labellings with a positive posterior cqoaeds to the space of expla-
nations. Enumerating all labellings to find the Maximum atPosri (MAP) solution is
intractable, in most cases. Thus, tractable methods amedde search the space and
find the MAP explanation.

This chapter presented four techniques to search the spgtmbal explanations. For
each technique, an algorithm is presented and applied topls®8N of exponential com-
plexity. The search techniques were: greedy, MHT, RIMCMCa8d IP. The result of
the greedy search forms a baseline for heuristic searchitpods. Multiple-Hypotheses
Tree (MHT) retains the bektexplanations as detections are considered sequentially. S
tion 4.4 explains MCMCDA and the Reversible-Jump formualas. It shows how adding

4100 runs of 10 parallel independent chaingd= 30)
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simulated annealing targets finding the MAP solution rathan sampling the distribu-
tion, and proposes general moves that can traverse the gplicery event hierarchies.

For comparison with exhaustive search techniques, findiagtAP explanation was
formulated as an integer program. Section 4.5 reviews @ntpgpgramming and presents
an algorithm to transform the BN inference to an integer paog where the set of partial
explanations is first enumerated, along with the postefieach explanation. Each partial
explanation is internally consistent, and the global exalen is one that explains all the
detections satisfying the inter-activity constraints.e®ection presents an algorithm for
transforming an AMG given a set of detections into an intggegram. Linear solvers
can then find the best global explanation.

The search techniques presented in this chapter are exqedhy compared in the
next two chapters for thBicyclesproblem and th&nter-Exitproblem.



Chapter 5

Case |: TheBicycles Problem

This chapter presents the first of two case studies of theefnark presented in Chapter
3. The first case study, tH&icyclesproblem, concerns activity in a bicycle rack over a
full day. The activity is first described textually, and incBen 5.2 it is formulated as
an attribute multiset grammar. The AMG combines detectadrtsio types, people and
bicycle-clusters, into a two-layer hierarchy. Next, they&sian network structure is built
from the AMG given a set of detections as explained in Chapt&riors and conditional
probabilities are based on expert knowledge, and adapi@tréining set.

In accordance with the proposed framework, the set of syiotagributes required to
recognise each event is calculated from certain visualifeat Section 5.3 shows how
these features are obtained and how the likelihoods amettaiThe method was tested
extensively on 5 full days from two different sites. One itggtsite was located in the
campus of the University of Leeds, and the other one wasdmiSambridge railway
station. The dataset is described in Section 5.5. The MaxirauPosteriori solution
of the BN is obtained using the various search techniques fthapter 4. The results
(Section 5.6) demonstrate the ability of the framework tmgmise the activity in a bicycle
rack.

75
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5.1 TheBicyclesproblem

In theBicyclesproblem, a surveillance camera overlooks bicycle racksapeople lock
their bicycles and retrieve them later. In this chapter atteof leaving the bicycle in the
rack is referred to as@rop, and the act of retrieving the bicycle apiak. The task is to
correctly associate people to the bicycle they have droppettked, and to link picks to
earlier drops when the corresponding events are both adxbemwo types of detections
are considered; the first is of people entering and leaviagdhbk area, and the second is
of changes within the racks that indicate the appearancalisagpearance of bicycles.
These are referred to as ‘bicycle-clusters’, as each matgiromultiple bicycles.

Ambiguities in the recognition process increase with osido when multiple indi-
viduals approach the racks. Due to occlusion and cluttercannot always be sure about
the event in which each person participated. Yet some egelean be gathered from
the change in foreground blob size along the person’s t@jgahe changes within the
rack area and spatial proximities. These time intervalsnduvhich one or more peo-
ple are simultaneously inside the rack area, are caltgity units, consistent with the
terminology in [56] for plane refueling scenes. Figure 3ldsirates an example of an
activity unit by highlighting the detected people and theyble-clusters. Within each
activity unit, the explanation is constrained so each perstinked to one bicycle-cluster
at most. This emerges from the natural constraint that sopezannot drop/pick more
than one bicycle per visit to the racks. On an even highel,léJgoth a drop and a pick
of the same bicycle are observed, the solution should lialdtiop event to its subsequent
pick event generating a higher-level compound event. Eamh can be connected to one
pick at most from a later activity unit, and vice versa.

 21,05,2008
‘Yg:41:23

Figure 5.1: An example of an activity unit showing 5 indivatiu(left) and several bicycle-clusters
(right).
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It should be mentioned that tiBacyclesproblem is harder than other parking scenarios
like those in car parks. This is because bicycles are parkgdolose to each other, and are
sometimes ‘piled’ on top of one another. This makesBIeycleproblem a challenging
one, which would benefit from pursuing global explanatioffie complexity of this
problem demonstrates the generality and capabilitieseofrdmework.

For a given input video, this section explains how the deiastare collected. Notice
that if a detector fails to detect a person or a bicycle-eltighat detection will not be
included in the global explanation.

5.1.1 Detecting people

The input data for th&icyclesproblem is video recorded from one static camera that is
assumed to be mounted high above the ground. Figure 5.2 siowgample of such

a viewpoint. An off-the-shelf blob tracker is used [100]. igtracker uses a per-pixel
background model, based on the work of Stauffer and Grim&84][ together with a
simple foreground model. It assigns a unique identifier tcheabject moving over a
continuous trajectory. It requires an estimate of objex § addition to extra parameters
that are tuned depending on the noise level in the image sequeExamples of the
retrieved trajectories are found in Figure 5.3. The trackeorporates shadow removal
by dropping any pixel with colour similar to the backgrounddel at the pixel.

Figure 5.3: Retrieved trajectories for the

Figure 5.2: Example of the camera’s view- " oo R
viewpoint in Figure 5.2.

point.

For each person, the foreground pixels’ position and coéoerretrieved for each
frame during the time the person is visible. Only people &éméer the manually bounded
rack area for longer than a certain duration, are considéreel extent of the rack area is
represented by a convex polygbnit is assumed that each individual can be tracked sep-
arately for some time. Tracked groups cannot be segmemddhay would be identified
as a single detection.

LAn efficient implementation to find whether a point is insideaygon can be found at [48]
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The tracker has been extended for this application to dedal elivious errors in the
trajectories. Trajectories generated are often brokeimgwcclusion or when individuals
are walking in close proximity. Moreover, the trajectoryagberson dropping a bicycle is
often broken after the bicycle is left in the rack area. Thibecause the foreground blob
representing the person and the bicycle is split into twd,tae tracker assigns a new id
to one of the two blobs. Broken trajectories that are simiigheir colour and reappear
within allowable spatial and temporal ranges are mergeajectories with spatial jumps
are split if the colour profile is dissimilar before and aftiee discontinuity.

It should be mentioned that a person detection starts franfitst appearance of a
moving blob within the camera’s field of view and ends when pleeson departs the
scene or is fully occluded. If the same person returns agathe field of view, it is
considered a new detection by the tracker. This is becaesegabker does not maintain
the identity after the person leaves the field of view. Thyss@on detectiors in effect a
single continuous appearance of the person. If a persoraeppuaultiple times, different
unconnected detections are retrieved by the tracker.

5.1.2 Detecting bicycle-clusters

The motion tracker cannot be used to identify static objelierefore to detect bicycles,
‘before’ and ‘after’ reference images of the rack area ammared, thereby revealing
changed pixels, representing objects that have been dep@sid removed. This is in
fact a ‘change detector’ as it simply records the changeimvitfie rack area between
two points in time. The ‘before’ reference image is autowaly stored whenever the
tracker identifies a person approaching the rack area. Adlagtito automatically record
the ‘after’ reference image once the rack area is clearethadgbone or more people

enter the area prior to the departure of the first person, dfter* reference image is

only taken after all have departed. The reference imagesrduord the upper and lower
limits of the activity units. Figure 5.4 shows the ‘beforeida‘after’ reference images
and the differences by subtracting the pixels, along witheonorphological operations
like erosion, dilation and closing. The morphological @iems attempt to enclose the
bicycle’s pixels in one cluster. Notice that the changectlsixan signify a dropped or a
picked bicycle.

The changed image pixels are then grouped into connectezhsegepresenting sev-
eral clusters. Multiple bicycles can be dropped/pickedinibne detected cluster. The
risk of changes due to noise or lighting effects is minimibgdaking reference images
before a person enters the rack area and after departingnnbt be completely ignored
though. Figure 5.5 shows some cases where a cluster contailtiple bicycles or no
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bicycles. Abicycle-cluster detectiors thus a connected component of changed pixels
containing an unknown number of dropped or picked bicycles.

Figure 5.4: Before (a) and after (b) reference images, réimgechanged pixels (c) that signify 3
picked bicycles and one dropped bicycle.

Figure 5.5: The left example shows a noise blob caused byiriglthanges. The right example
shows one bicycle-cluster made up of 2 bicycles.

It should be mentioned that object detection based on appeaicould be used to de-
tect bicycles in static images, using supervised or sepesused learning. The PASCAL
challenge, for example, presents a suitable dataset oflbgy41]. This approach was
not tried because the camera’s viewpoint results in vefgrint bicycle appearances, and
the cluttered environment makes it difficult to recognisdividual bicycles. Figure 5.6
shows a collection of viewpoints and cluttered scenariogained in the dataset.

Figure 5.6: A collection of bicycles detected from différeiewpoints.
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5.2 An AMG for the Bicycles problem

This section formally defines an Attribute Multiset Gramrf@rthe activity in a bicycle
rack area. The terminal and nonterminal symbols, along atitibutes for each symbol,
are listed. The attributes are explained and grouped imtthsyic and inherited attributes.
Functions defined by the AMG are listed before the set of prbidn rules. Refer to
Section 3.2 for the AMG formulation and notations.

Terminals (T): person detection
bicycle-cluster detection
an unobserved drop or pick event

X
y
u

Nonterimanls (N): S  Start symbol representing the global explanation
Vv
z

Drop-Pick: relates a drop event to a later pick
Drop or pick: relates a person to a bicycle-cluster

Attributes (A):
symbol att. name type 2 domain  description pdf 3
X id Ay Z a unique id differentiating people detections
au Ay Z activity unit during which the person was detected
n Ay Z number of frames with the person visible
traj Ag zZ*n bounding boxes representing the extent of the per-
son in each frame
sizeRatio Ay R ratio of the mean number of pixels representing thp(x.sizeRatifx) 4
foreground before the person enters the rack area to
the mean number after departing
count A1 {0,1} number of events in which the person participates
action A1 {drop (d), pick (p), pass-by (k)
y au Ay Z activity unit at which the cluster was detected
pos Ay 74 bounding box of the cluster
fMap Ao Image map of foreground pixels representing the cluster
edgeRatio Ay R ratio of new to removed edges within the cluster p(y.edgeRat
count A ZF inferred number of bicycles in the bicycle-cluster
action A1 {drop (d), pick (p), noise (1})
z id Ay Z =x.id
pos Ay 74 =y.pos
au Ay Z =x.au
traj Ay z* = x.traj
edgeRatio Ay R =y.edgeRatio
fMap Ao Image =y.fMap
dist Ay R spatial proximity between a person and a bicyclep(Z.dis{Z)
cluster
count A1 {0,1} number of drop-pick events in which this event par-
ticipates
action A1 {drop (d), pick (p), }
\% clustOverlap A0 R pixel overlap between the dropped and the pickeg(V.clustOverlapV)

bicycle-clusters

2]\ are synthetic attributes, whike, are inherited attributes.

3pdf: the probability density function for the syntheticrittite values given the possible actions. Train-
ing is required for these pdfs.

4This should be written as p(x.sizeRdsi@ction) but x was used for a more concise representation.
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pos Ay 74 bounding box of the intersection area between the
dropped and the picked bicycle-clusters

psDropDist Ay R post-segmented distance for the drop event p(V.psDropDist
psPickDist A0 R post-segmented distance for the pick event p(V.psPickDist
psDropEdges Ay R post-segmented edge ratio for the drop event p(V.psDrog&dp
psPickEdges A0 R post-segmented edge ratio for the pick event p(V.psPickEdy
action A1 {drop-pick (dp), drop-only (dx), pick-only (xp)}f

Attribute Functions

Ygist(x.traj,y.pos

Yeo(Z1.fMap, Z;. fMap)

Yedgeratidy-€dgeRatioy.

Production Rules (P)
Syntactic Rule (r)
pr S — V5 x5y

P2 V — 21,2

ps V —Z,u

ps V —u,Z

ps Z — X, ¥y

calculates the spatial proximity between a person and @leiatuster
(Section 5.3.3)

calculates the overlap in foreground map between the dbapeé the
picked bicycle-clusters (Section 5.3.4)

pos)

calculates the ratio of new to removed edges within a pdaticect-

angular area (Section 5.3.5)

y.action
x.action
V.action
Zj.action
Zy.action
V.clustOverlap
V.pos
V.psDropDist
V.psPickDist
V.psDropEdges
V.psPickEdges
Zy.count
Z,.count
V.action
Z.action
Z.count

V.pos
V.psDropDist
V.psPickDist
V.psDropEdges
V.psPickEdges
V.action
Z.action
Z.count

V.pos
V.psDropDist
V.psPickDist
V.psDropEdges
V.psPickEdges
x.action
y.action

Z.au

Att

ribute Rules (M) Attribute Constresr{C)
“noise” ycount < 1
“pass-by” x.count # 1
“drop-pick” Z.au < Zzau
“drop” Z.count # 1

“pick” Zy.count # 1

Yeo (Z1.fMap, Z;.fMap)
Z;.p0SN Z5.p0os

Waist (Z1.traj, V.pos)
Waist (Z2-traj, V.pos)

= YedgeRratio(Z1-€dgeRatio, V.pos)

Wedgeratio(Z2-€dgeRatio, V.pos)
1

1

“drop-only”

“drop”

1

Z.pos

Z.dist

1
Z.edgeRatio
1

“pick-only”

“pick”

1

Z.pos

1

Z.dist
1
Z.edgeRatio

Z.count

£ 1

Z.count

£ 1

Z.action
Z.action
x.au

x.au =
x.count # 1

y.au
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Z.raj = X.trgj

Z.pos = y.pos
Z.edgeRatio = y.edgeRatio
Z.fMap = y.fMap

Z.dist = yist (X.traj, y.pos)
x.count = 1

y.count = y.count+l

action clustOverlap, pos, psDropDist, psPickDist, psDropEdges, psPickEdges

action, count Z1 au, traj, pos, dist, edgeRatio, fMap action, count ZZ au, traj, pos, dist, edgeRatio, fMap

\

action, COuntyBU, pos, edgeRatio, fMap  action, countX au, traj action, count Y au, pos, edgeRatio, fMap

action, countX au, traj

Figure 5.7: The attribute dependency graph for the Bicypledblem AMG.

Figure 5.7 presents the attribute dependency graph for k@ AAfter presenting the
AMG, Algorithm 3.1 is used to build the Bayesian network givbe set of detections.
Figure 5.8 represents this two-layered activity for 3 pe@pid 3 bicycle-clusters. Events
within each activity unit are surrounded with a dotted froreclarity. The AMG specifi-
cally constrains drop and pick events between people apdlbiclusters detected within
the same activity unit{au = y.auin ps). Moreover, possible drops are only linked to
picks in later activity units4;.au < Zp.auin po).

The Boolean unobserved node ‘U’ is labeled true if an opendaamsumption is con-
sidered. Alternatively, if ‘U’ is labeled false, all drop épick events are forced to be
linked and the world is assumed closed. This would be uséiirtput video starts from
an empty rack area and ends in an empty rack area again, vghachunrealistic assump-
tion in real datasets. Some drops remain unlinked, indigattie bicycle is still within
the racks, and some picks are related to drops that occuefedetthe observation period.
While introducing this node might be seen as hallucinatmgnections that do not exist,
it provides a more specific parse tree, and enables switdhehgeen open and closed
world assumptions. Connecting a drop event to an unobsgrie&dndicates that either
the pick did not occur yet, or the relevant detections werereinieved by the detector.
An alternative approach is to rewrite the activity (repreed by the start symb@) into
drops and picks without introducing the unobserved events iB left for the designer,
and here the unobserved node was added for an explicit nmogleflunobserved connec-
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Figure 5.8: The structure of the Bayesian network for the/Blie Problem given a set of detections.
Dotted boxes surround activity units (not to be confuseth piate diagrams). Detected people
(x) and bicycle-clusters (y) are linked within activity tsio explain drops and picks. Events are
linked in a second layer to explain drop-pick events. Exglimms at each layer are constrained
by deterministic RVs.

tions. Figure 5.9 shows a parse tree of the AMG along with ale&abBayesian network.

\ V. ¥
/N /\
Z Z Z u
AN
X2 y1 X3 y3 X1 y1

Figure 5.9: A sample parse tree and the corresponding laeBN.

Figure 5.10 presents the complete Bayesian Network (BNystgopriors and condi-
tional probabilities. These have been estimated usingrekpewledge from the training
sequence and the corresponding hand-generated grouhd Tiugy were kept constant
for all other sequences (Section 5.6).

To realise the size of the search space, one can evaluatartiteen of hidden random
variables for a given set of people and bicycle-clusteramtes. For each activity unit
k=12, ..,n, assumean is the number of people detected in this activity unit, ghd
is the number of bicycle-clusters. The number of hidden Ren¥ariables (RV) in the
activity unit equalsxy + Bk + akfk. The productyfx equals the number of drop and pick
eventsZy within the activity unit. For the next hierarchical leve§ahZ, can connect to
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p(vlz,u) |[dp dx xp f p(v|z,z2) [dp dx xp f
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Figure 5.10: Priors and conditional probabilities for thedycles problem.

all Z; variables wherd < |, plus it has one more connection to the unobserved terminal
u. Accordingly, the number of hidden random variables atlénsl is,

n n

iBi)+1 51
kzlakﬁk(j%rl(ajﬁj) ) (5.1)

To simplify Equation 5.1 further, assumeis the average ambiguity within all activity
units wherey = 2=t from 5.1,

n

n k
ZGMZZWM—ZWQZW—W (5.2)
j=k+1 =1 j

Substituting 5.2 into 5.1,
n n
> owB(nu — ki +1) = n’p® — Y kawf+nu (5.3)
k=1 k=1

The second term in Equation 5.8, kayB«) cannot be simplified further using. The
summation would be higher if the ambiguity is higher at earéictivity units. One can
though find the lower bound of Equation 5.3, wharax ayB¢) = u to ben?u?. This re-
veals exponential complexity in the number of hidden Ran¥anmables in the Bayesian
network of theBicyclesproblem.

The posterior probability can be retrieved from the BN, aewritten, according to
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Equation 3.8, to be independent of false links.

p(zk|02kvxa y) p(V| |0V| 4, ZZ)
p(wlY) = |'| p(xilox) [ P(yiloy) [ p(zszlozk,x,y)“ﬂf p(vl:flow’zl,zz)mp(cnlpach)

i j kiz #f
(5.4)
In Equation 5.4 pa, is the set of parent nodes for the deterministic random bk,
and represents a set of interdependent events.

5.3 Feature selection and supervised training

Eight conditional probability density functions (pdf) lealveen listed in the last column of
the attributes in the AMG (Section 5.2). These specify tkelilnood of attribute values
given an occurring event. Recall that the attributes areutatied from features of the
detections. This section explains how these features amneldl and their ability to
distinguish events of different types at the various hehmal levels of the explanation.
A training set was manually labeled to generate parametelikelihood distributions.

It should be noted here that the framework is totally indeleem from the choice of
the features. Other features can be specified in the AMG asllinstead. Also, multiple
features can be added. When multiple features are useditoggish the same event, the
likelihoods are just multiplied in the posterior calcutats, assuming independence. The
remainder of this section explains the selected features.

5.3.1 p(x.sizeRatigx.action)

This conditional pdf uses the change in blob size acrossdhsop’s trajectory to distin-
guish people dropping a bicycle, picking one up or passingHiyding a visual feature
that is able to distinguish this from the person’s detectinly was not easy. Attempts to
use common pedestrian recognition techniques [33] fadedistinguish between pedes-
trians and cyclists. Other simple features like speed coatde used either, as cyclists
slow down or even drag their bicycle as they approach theaeek.

The attributesizeRatiadescribes the change in the foreground blob size before-ente
ing the rack area and after exiting it. A significant changthablob size usually occurs
for a person involved in a drop or a pick event. Figure 5.1 shibiree graphs where the
blob size before the rack area and after it are plotted, wiiteak that indicates the time
spent within the racks. The blob size within the rack aredieas ignored due to two rea-
sons. The first is that the person bends to perform the loakinglocking actions which
results in smaller blobs. Secondly, as the person pausesftom the action, the adaptive
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background tracking procedure dissolves the person’dgint the background. These
pixels are later retrieved into the foreground when thegeraoves again. This makes
the blob size within the rack area ambiguous and noise-prone
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Figure 5.11: Three examples of blob size changes througg, tiepresenting a drop (left), pick
(middle) and pass by (right). The three examples are selefcten the training sequencd¥
sequence). The blob sizes have been smoothed (window sie = 1

The change in blob size can be used in any drop/pick scendmgrerthe possessed
object is comparable to the individual’s projected ared, #se case of bicycles. For each
person, the blob sizes from the first appearance up to egtdrendefined rack area are
calculated and smoothed. A fixed smoothing window of size &8 shosen throughout
all the experiments. The same is accomplished for the frdraggeen the exit from the
rack area and the last appearance. The ratio of the mean ialobefore and after the
racks is used to assign a probability to the three possildatdypes: dropping, picking
and passing by.

A training set is obtained where people are categorisedydicg to the ground truth,
into the three event types. Maximum likelihood estimatidiLE) is used to estimate
Gaussian class conditional densifte&igure 5.12 (left) shows the three Gaussians trained
for the Leeds dataset (Section 5.5.1) obtained from thergrtowth of the first sequence.
As expected, the Gaussian frisizeRatioof dropping people has a mean higher than
one, because the blob size before entering the racks cosithiaeof the pedestrian and
the dragged/drove bicycle, while the blob size after depgurthe racks represents the
pedestrian only. The picking person tends to have a meaitHasone, while a passing
by person has a mean as close to 1 as possible. For the Cambatiget (Section 5.5.2),
different training was required due to the difference intidgetween the two entrance/exit
spots for the rack area. Figure 5.12 (right) shows MLE edesdased on data from
one hour of training. The situation is clearly more ambigaiodraining a mixture of
Gaussians based on the different entrance and exit losatiold have resulted in a
more discriminative feature in this case.

SAppendix B explains the usage of Z-score to calculate tha areler Gaussians for constrained do-
mains as.sizeRatio> 0.
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Figure 5.12: MLE for sizeRatio. The trained Gaussians aespnted for the Leeds dataset (left)
and the Cambridge dataset (right).

5.3.2 p(y.edgeRati¢y.action)

For each bicycle-cluster detection, this feature compheemtensity edges in the ‘before’
and ‘after’ reference images. Edges are retrieved by thelStdtector [132] and are
masked by the changed pixels, then removed and new intetgigs can be identified. A
removed edge is one that appears only in the ‘before’ reéer@nage, while a new edge
is introduced in the ‘after’ reference image. By assumirg lackground is relatively
free of edge features, the ratio of new to removed edges givestimate of whether the
cluster included dropped or picked bicycles. Figures 5@ &.14 show examples of
removed and new edges. By plotting the removed versus neasddgthe training set,
two thresholds were defined that split the space into thrgiems: dropped, picked and
noisy or multiple bicycle-clusters (Figure 5.15). For thestfiwo regions, the cluster is
classified into drop and pick respectively. Alternativehg bicycle-cluster detection is
duplicated so one can represent a dropped cluster and teeazth represent a picked
cluster. The two thresholds are the lines with slopes 0.22ahd

The ratio of new to removed edges was not probabilisticatigelled due to the effect
of the viewpoint on how many edge pixels are introduced/needo Figure 5.6 showed
how bicycles can be added in different ways, which affeagiimmber of new or removed
edges. A higher ratio of new to removed edges does not irdlugher confidence in
the event’s occurrence. Training a single Gaussian wouldtakenly, favor the bicy-
cles parked in common ways. In the experiments, all bicgtiisters with a significant
edgeRatidabove the threshold), are equally treated as clustersopped bicycles.

5.3.3 p(Z.dist|Z.action)

Given the temporal constraint, a person can only drop/pitkcgcle to/from a cluster
detected within the same activity unit. Yet, multiple bieclusters can actually be de-
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(b) (d) ()
Figure 5.13: Two reference images are compared, beforerfd)adter (b) the activity unit. Edges,
masked by the changed pixels between the before (c) anddfierages, are compared to decide

on the removed (e) and new edges (f). Notice that droppingyalai results in concealing edges
in the background.

Figure 5.14: Another example from the Cambridge datasete fifst column shows the before
and after reference images, the middle column shows thd 8dges, while the removed and new
edges are shown in the right-most column.

tected within a single activity unit. The featudést is used to assess the probability of
linking the person to a bicycle-cluster, on the assumpthan the person comes close to
the cluster when interacting with it. The plausibility ofiad between the person and
a bicycle-cluster is calculated from the maximum degreeveflap between the bound-
ing box of the cluster and the bounding boxes of the foregiaegions representing the
person across the whole trajectory. For a persand a bicycle-clustey, wherex.traj
represents the bounding boxes of the foreground regionsscn frames and. posrep-
resents the bounding box of the detected cluster, then tikemaen overlap is calculated
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Figure 5.15: Removed versus new edges are plotted for migniabkeled bicycle-clusters. All
clusters with ratio< 0.5 are clusters of picked bicycles, while those with rati@ are clusters of
dropped bicycles. The ambiguous area contains heterogsngasters.

using functionyyist(x.traj,y.pos € [0,1] as defined in Equation 5.5.

A(x.traj(i)Ny.pos
(min(A(x.traj (i), Aly. pOS)))

max

ie{l.xn} (5:5)

Yaist(x-traj,y.pos) =
In Equation 5.5, A() gives the area of the given rectangtdraj(i) is the bounding box
at framei, andn is the (rectangular) intersection between the two boundogs.

A training set was created by computing the overlap for aliexi and incorrect dis-
tances between people and bicycle-clusters (within theessotivity unit) in the dataset.
Figure 5.16 shows the histograms created from this trais@gtigand the estimated cpdf
composed of half Gaussians. The centre of the full Gausssafised at O and 1 for
incorrect and correct half Gaussians respectively.
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Figure 5.16: Non-interaction (left) and interaction (midyl distance histograms show how this
feature can assess the likelihood of the event involvingpdrson and the bicycle-cluster. The
cpdfs (right) are trained using half Gaussians.

This feature is though not ideally informative since thesparcan pass close to several
clusters before performing the event. This has clearly be#ited in the Cambridge
dataset (Section 5.5.2).
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5.3.4 p(V.clustOverlapV.action)

A feature is needed to connect the drop event to its subsepiokn Each drop of a bicycle
needs to be connected to the pick of that bicycle regardlefiseoperson performing
the event. A measure is thus needed to compare bicycleecdusthis match function
accommodates any object type, and assumes objects do mgectheir shape or position
between being dropped and picked. For two bicycle-cluste@ndys,, the overlap is

measured as

M(y:. fMap&ys. fMap)
min(M(y1. fMap), M(y>. fMap))

Weo(ya1- fMap, y2. fMap) = (5.6)

In Equation 5.6, the function MY returns the number of non-zero pixels in the binary
image, and the operator & is the ‘Boolean and’ of two imagesiltang in overlapping
pixels between the two bicycle-clusters.

(9)

(d) (e) (f)

Figure 5.17: Two consecutive reference images (a) and @rampared to reveal changes (c) rep-
resenting a dropped bicycle, and a noise cluster. Later,¢amsecutive reference images (d) and
(e) are also compared to reveal two picked bicycles (f). Bpgaring the changed blobs (g), the

clusters overlap gives a high likelihood and a pixel match.86 (calculated using Equation 5.6).

Yellow pixels represent the dropped clusters while pinklpirepresent the picked cluster. White
pixels signify the overlapped pixels.

Figure 5.17 shows an example of a drop and a pick that wereatyrconnected
by comparing the changed blobs despite the temporal gapebatihe two events. Fig-
ure 5.18 shows another example from a more challengingetategure 5.19 presents
the trained Gaussians.
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Figure 5.18: A harder example of bicycle-clusters pixelertap. ‘Before’ (a) and ‘after’ (b)
reference images are compared for three activity unitsePlia-pixel matches (c) are capable of
detecting the correct pick with higher pixel overlap. Thismmple is from the Cambridge dataset
where clutter and ambiguity are significantly high.
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Figure 5.19: Training labelled data is fitted into half-Gasisns with a fixed mean of 1 for correct
values and a fixed mean of 0 for incorrect connections.

5.3.5 Post-segmentation

Assume several people dropped bicycles within the sameleigjuster. The distance
between a person and the bicycle-cluster will produce alikghhood between all these
people and the combined cluster. When one bicycle amongsgtitister is later picked,
the pixel overlap helps refining the bounding box estimatiemicycle object. This can
be clarified by an example shown in Figure 5.20.

Notice that this assists segmenting the bicycle from a lecgluster composed of
several bicycles for both the drop and the pick events. Thiseferred to as ‘post-
segmentation’ because the bicycle is segmented after tpepick link is established.
The post-segmented positigtposis the intersection between the dropped and the picked
clusters. After this position is determined, the distanwtae ratio of edges can be revis-
ited. The maximum overlap between the person’s trajedtaryand the post-segmented
positionV.posis calculated using the functiogyis; for both the dropping and picking
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(@) (b) (©) (d)

Figure 5.20: Two bicycle-clusters are identified during oativity unit (a). The top clus-
ter combines three bicycles that cannot be individuallynssgted. Two people’s trajectories
(x1(top),x2(bottom) are displayed (b) and are linked to the cluster. During alaactivity unit,
one bicycle was picked (c) by a person (d). Matching pixelthefdropped and picked clusters
enables segmenting the bicycle and provides a better astiofdts location and bounding box
(e). Only one of the people shown in (b) can now be linked ®rafined boundary, due to the
post-segmentation information. (f) shows the persocexinot be part of this drop-pick event.

trajectories, and is referred to asDropDistand psPickDist Similarly YeggeratiolS cal-
culated, so the new and removed edges are limited withinélaeboundary. The latter
is efficiently performed using integral histograms [4]. Pesgmentation is incorporated
into the grammar as synthetic attributes.

This section has reviewed all the likelihoods required fa Bicyclesproblem BN.
Figure 5.21 labels the example BN with the likelihood fuans for completeness.

—_— p(V.clustOverlap|v)
- S V psDropDist|v)
V psPickDist|v)
Vi Va (Vs V9p(V psDropEdgelv)
p(V.psPickEdge|v)
© o

z,( )z, (z( )z ()2 u
p(Z.dist|2) 5 ; 6
O
i i %)Q 8)(2 %% %yz 8)(3 %)G X
p(x.sizeRatio|x) p(y.edgeRatioly)

Figure 5.21: The different likelihoods/features shownim@m BN structure.
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5.4 Reversible moves for thdicycles problem

After the BN is built, the MAP solution is sought using thetiaues from Chapter 4.
This section explains how the general RIMCMC moves can bkedpip theBicycles
problem. The four move types introduced in Section 4.4.2canglicated for the two
layers of binary event linkage (Figure 5.22). The subsédpthe move type indicates the
layer. In the initial explanationy, all people are passing by the rack area and all bicycle-
clusters are noise. This is a valid explanation, thoughkehfito result in the MAP
solution. At each step of the Markov chain, a move is appleetthé current explanation.
Figure 5.23 shows a sequence of moves. For each move, thsid@anove is shown
to indicate the chain can run both ways. Each applied mowe&sea new explanation
«/, and can change multiple labels in the Bayesian network. ddf type changefor
example, change the labels of four hidden RVs of typ@&igure 5.24).

connect, Z yA change, z ZZ switch, ZZ
(A) disconnect / \ (B) / \ / \ (C) / A \ / N\
X Yy zx Y Xx 'Y XX 'Y XX VYYy XX VYYy
connect,, \% \ change, \Y V.V switch, vV
(D) disconnect / \ (E) / \ / \ (F) / )& \ / N\
Z Z vZ Z 27 Z 272 Z 272 727 272 27

Figure 5.22: Generalised reversible moves, for both laydrhe Bicycles problem.

Next, one needs to define the proposal distribution for thekblachain Q(w'|w).
RJIMCMC uses two proposal distributions to propose a newaagtion: one for choosing
the move typgj,, and another for choosing a specific maye Randomly choosing a
move type does not efficiently search the space of explamati®ection 4.4.2 suggested
estimating the number of distinct moves of each type thatosaapplied to the current
explanation. For example, the number of possible ‘discopnmoves equals the total
number of drop and pick events in the current explanationes&éhcounts are used as
weights in choosing the move type.

Next, a specific move of that type is chosen and applied to tineiot explanation.
This ‘within-move’ choice can also be performed uniformlyrandom. Alternatively,

S S S S

V/ \\/\2 connect,, V/ \ connect, V/ \V change V/ \V disconnect , \}\Xa\yz
X: X _— v

/NN i / N\ i /N [\ e——— S\ /\ /N /N

zu d y disconnect, 7 disconnect; ;% 7y 7 7z 7z u connect; U 7z U

/\ /

\ /\ /N /N /N /N / / /NN
X1 y1 X3 y2 X1 Y1 X3 y2 X1 y1X3 y2x2 y1 X2

\ \
1X3 y2X1 y1 X2 y1 X1 y1

<

Figure 5.23: A sequence §€onnect — connect — changg — disconnect} moves was applied.
The last move affects both layers as disconnecting a picketsithe drop-pick linked to that pick.
The subscript next to the move type indicates the compowemd far which the move is applied.
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v~ TV change v© o v
AN AL L L T A NN
Z z zu Z z zu
AN A A A A
X1 y1 X3 y2x2 y1 X2 y1X3 y2X1 y1

Figure 5.24: The effect of the third move in the sequencedwslon the BN. Shadowed hidden
RVs have been affected by the move. This move changes tlsedtoeir hidden RVs in the BN.

one can design a customised proposal distribution for eamlentype. Section 4.4.2 ex-
plained that these proposal distributions are applicadipendent. This section lists a
measuremend; for each move type that weights the preference for choosing moves
of that type. The proposal distributiap, is then a weighted distribution from which a
move is selected at random. For example, the ‘cogheuive type prefers connecting
people to bicycle-clusters without existing links. The s@o weights for all move types
are described next. In the coming equatid®(s; ) yields the set of clusters that could be
connected to persox, while T(y;j) yields the set of people that could be connected to
clustery;.

Move type (A) connect/disconnect

The ambiguity related to each person is calculated from threber of bicycle-clusters
to which the person can be connected, and the ambiguityetetateach of these clus-
ters. For person;, the measurement for weighting moves of tyjoanect is defined in
Equation 5.7.

1
Oconnect(Xi) = (5.7)
o T
The measurement for tltisconnegtmove type is the inverse of that foonnect.
1
Odisconnect(X1) = ﬁ (5.8)
yieBx) [T(y;)l

Recall thatdconnec is defined for all passing-by people, whlgsconnee is defined for alll
dropping and picking people.

Move type (B) change
This move type is defined for all Z events, and is self-re\desi For each connected
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person and bicycle-cluste¥nhangg tests whether the cluster is better connected to another
person, or the person is better connected to another cluster

o Waist(X-traj, yj. pos Waist(Xi-traj, yk. pos)
5change(xlay]> =
xeT (G- Waist(Xi-traj,y;. pos yeeB&T— 1y} Waist(Xi-traj,yj. pos)
(5.9)
dchange SUMS the relative weight of all alternative links. A relatiweight of 1 is given
to all equally-likely connectionss 1 for less-likely connections, and 1 for more-likely
connections.

Move type (C) switch,

Waist (%> Y1) Yaist (X Yj)
Waist (%, Yj ) Watist (X, Y1)
Oswitch, Weights switching two drop/pick events based on the ratihefnew connection

likelihoods to the current connection likelihoods. Notibat this weighting does not take
into consideration the changes that can be introduced tcedatyed drop-pick events. This
will be evaluated when the move is actually applied. For gdamsyitch, Can be greater

than 1 for a specific move, yet it would result in a lower pdsteRefer to 4.4.2 for the

explanation of how RIMCMC formulations can preserve thaitkgt balance condition,

and thus convergence.

(5.10)

5SWitC|}(Xi 7yJ ; Xk Wi ) =

Move type (D) connec}/disconnecy
Proposing to connect an unconnected drop to a later pick ightexl by the bicycle-
clusters overlap

Oconnect (Zi,Zj) = Yeo(Zi- TMap, Zj. fMap) (5.11)

The disconnect move measurement is the inverse

1

5.12
Yeo(Zi. fMap, Zj. fMap) ( )

5disconneqx(zi ) Zj) =

Notice that whiledconneg Calculates the number of ambiguous alternative connestion
this does not suit theonnect move type. Introducing a similar measure would favour
connecting older drops, which cannot be justified.



Chapter 5 96 Case I: The Bicycles Problem

Move type (E) change
max max Z 7Z' ) max Z,Z
Caca M g Yool ZoZi)s o pmax | ool Z)
LPco(Zi,Zj)
Ochange dives a weight of 0 when there are no alternative drops orspick if the current
connection has the highest likelihood, and. if a better connection is available.

(5.13)

5change(zi ) Zj) =

Move type (F) switch,
For two pairs of drop-pickéZ;, Zj) and(Z, Z; ), the measurement for switching is depen-
dent on the ratio of the new cluster-overlap likelihoodse tld likelihoods.

_ l,Uco(Zi > Zl)wco(zka Zj)
’~»Uco(zi ) Zj)(/—’co(zk7 ZI)

Sswitch, (4, Zj, Z, Z) (5.14)

In addition to the within-move proposal distributions, Itosild be mentioned that,
when a move is applied;(%)) can be simplified based on knowing the move type. Thus,
the full posterior need not be evaluated at each step of th&dvahain. For example,
for the connegtmove type, where person drops a bicycle into the bicycle-clustgr
that was initially a noise cluster, the similar termsrifw) and r7(«w’) cancel each other
resulting in the ratio

m(w) _ PO =d[og)plyj = d|oy;)P(zj = d|X;,Yj, 0z))
m(w)  px = flog)p(y; = floy,)p(zj = f|xi,yj,04;)

(5.15)

Only these 6 terms are evaluated when applying a move of ypis. t The remaining
simplified ratios for all the move types are not listed herauwoid redundancy.

5.5 Datasets

Two locations have been chosen for recording. The first isiwihe University of Leeds.

It is referred to as the ‘Leeds’ dataset, and consists of 2itshof recording. Another

dataset was obtained from National Express. This was redavdtside Cambridge train
station. It is referred to as the ‘Cambridge’ dataset, ansists of 30 hours of recorded
video. Table 5.5 contains a summary of statistics for bothgis.
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sequences
Leeds Cambridge
1727 3 4 5 6 7
Duration 1h | 1h | 11h| 12h| 12h| 15h| 15h
Activity Units 35|17| 19 | 118| 96 | 87 | 132
{x} 58 | 27| 128 126 137 | 112 | 197
{y} 59| 25| 72 | 175| 128 | 206 | 1847
Drops 241111 20| 20 | 14 | 28 | 39
Picks 201 12| 19 | 20 | 13 | 17 41
Drop-Picks 20[ 11| 18| 20| 13| 14 | 22
Simulated Theft§ 7 | 0 7 1 0 0 0

Table 5.5: Dataset statistic${x}|: number of detected peopldy}|: number of detected bicycle-
clusters.

5.5.1 Leeds dataset

A rack area containing 6 racks was chosen for recording. Bingeca was mounted in
a third floor window to capture the full rack area and a leadirep showing people ap-
proaching and departing. Two 1 hour sequences were recdudady busy periods (1-2).
Three full days (8am to 7/8pm) were also recorded to test thmgtion (3-5). Table 5.5
details the number of events of each type in the ground triithese five sequences. It
also lists the number of detected people and bicycle-atsiste

This dataset provided a thorough test, and was recorded parage days between
Oct 2006 and May 2008. It proves the ability of the prototypenmork under severe
weather conditions (rain, hail, shadowed and sunny perwodsll part of the dataset).
No recording was done at night as the tracker fails in dimtirgh All sequences were
recorded in a 366 288 screen size at full frame rate (25fps). This enabled latiraa
performance of the tracker. The location of the rack areamasually selected, as shown
in Figure 5.25.

For this dataset, the participants were regular staff andestts that would use the
rack, as well as actors to simulate extra complexity likegbeaeturning with differ-
ent clothing or simulated thefts. As indicated in Table S&ne simulated thefts were
recorded to ensure the system succeeds in linking dropsiekslywhen different individ-
uals perform the events. This is also used to assess thyy albithe prototype to detect
thefts as will be explained in Section 5.6.3.

5.5.2 Cambridge dataset

Figure 5.26 shows the viewpoint from the Cambridge datdsetgawith the manually
defined rack area. The provided videos were recorded fromté&pm on the 1% and
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Figure 5.25: Viewpoint of the Leeds dataset. A manually ddftonvex polygon delimits the rack
area.

Figure 5.26: The Viewpoint of the Cambridge dataset.

215t of May 2008. A Pan-Tilt-Zoom (PTZ) camera, outside Cambeitigin station, was
fixed for collecting this dataset. The resolution of 20876 was retrieved from the source
at full frame rate (25 fps). After receiving this datasety#s noticed that many bicycles
were kept in the racks for long durations. The number of drapg@ck events is thus less
than anticipated when viewing the cluttered bicycles inuFeg5.26. This dataset differs
from the one recorded in Leeds in the following aspects:
e The rack area occupies most of the viewpoint, leaving Igpace for the leading
area. This affected the ability to observe the change in tbe size before ap-
proaching the area and after departing (Figure 5.12).

e The recording quality is lower, introducing more noise aliasang effects.

e No actors were involved, and no thefts were recorded.
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e The racks are not fully visible. Some racks are hidden bethiedree and others
are not within the camera’s viewpoint. People passing withlicycle in front of
the camera, but parking the bicycle outside the field of viewbghind the tree),
were labeled as passing-by individuals in the ground truth.

e Due to the cluttered bicycle racks, a higher number of beyelere shifted from
their position while another bicycle is being dropped okpit. This increased the
size of detected bicycle-clusters.

e Due tothe over-cluttered racks as well, a considerable ruofndividuals tried to
squeeze their bicycles in, and then departed without Igeaibicycle behind. Such
events result in a change within the rack area, through tieenats of squeezing
the bicycle. As the solution detects changes within the esdiicycle-clusters, and
associates these with people using spatial proximity,réssilted in a decrease in
the explanation’s accuracy.

Despite the challenge of the Cambridge dataset, the ppotgs used without change
following development on the Leeds dataset. The durati@hramber of events in this
dataset has been presented in Table 5.5 under'tren@ ?" columns. To simplify the
results, the Leeds dataset sequences are numbered 1 td& 6vamd 7 denote the two
days of the Cambridge dataset.

5.6 Results

This section shows the results of searching for the MAP goiutvhich corresponds to
the best explanation, using different search methods #rdtitaset sequences. Upon
achieving the maximum a posteriori explanati@nthe accuracy is calculated by com-
parison to the ground truth. Finally, this section discasa® application of this activity
recognition task to bicycle theft detection. Although tapplication requires further re-
search related to passive biometrics and risk managenmenglobal explanation forms
the basis for its solution.

5.6.1 MAP explanation results

The search is for the global explanati@rthat maximises the posterior probability. Thus,
comparing two search algorithms is based on comparing teeepor probabilities of
the explanations found by the algorithms. This is done iedépntly of the accuracy
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attained, which is considered in Section 5.6.2. In whabfed, the negative log is min-
imised rather than the probability maximised. This is beeaamall numbers cause over-
flowing.

The MAP is compared across all sequences for greedy, MHT, GM® and IP
searches. The greedy search is performed as explainedtiorsé2. MHT is compared
for k =50, 100 and 500 branches as explained in Section 4.3. Tatlgdahains {mc =
5000) are run for each of RIMCMC and RIMCMC-SA recording th&PVamongst all
chains. These are run starting at the greedy solution andeftlinear cooling is used for
SA. The length of the Markov chain and linear cooling weresarobased on experiments
on the training sequenceXsequence). It was noticed that the chains converge afté 300
steps or sonmc was accordingly chosen to be 5000. Similar performance eesrded
for linear and exponential cooling, while sigmoid coolingrformed slightly worse. The
RJIJMCMC search is run 40 times, recording the mean and thelatdrdeviation. 1P
is run on both the MATLAB and XPRESS-MP solvers. Table 5.6vshthe complete
MAP results for all the dataset sequences. In all cases,rdeslg search could not find
the MAP explanation. RIMCMC achieved better results thanTMitifour out of the
seven sequences, and comparable results in the remaimeggsbquences. RIMCMC-
SA achieved the best results amongst heuristic methodsgdnfrogramming shows the
MAP solution by exhaustive searching.

Greedy MHT RIMCMC RIMCMC-SA IP

k=50 k=100 k=500 u [ u o MATLAB | XPRESS-MP
102.25 | 58.78 58.78 57.86 5790 | 0.11| 57.86 | 0.00 | 57.86 57.86
23.54 4.64 4.64 4.64 4.64 0.00 4.64 0.00 4.64 4.64

609.66 | 493.18 | 468.80 | 468.80 | 429.30 | 3.23 | 423.98 | 2.36 | 416.64 416.64
6272.69| 6149.95| 6144.98| 6144.30| 6079.88| 3.43 | 6078.40| 3.23 | 6065.0 6065.00
5034.46| 4998.39| 4982.86| 4975.82| 4943.71| 3.59 | 4939.33| 1.87 | 4937.1 4937.08
860.37 | 812.96 | 812.96 | 812.96 | 814.71 | 1.69 | 811.50 | 2.36 | 797.29 797.29
934.36 | 608.92 | 607.39 - 451.92 | 9.29 | 433.50 | 7.76 - 283.51

~N| O O B W N| -

Table 5.6:—log(p) compared across greedy, MHT (k = 50, 100, 500), 40 runs of RUKZC40
runs of RIMCMC-SA and Integer Programming. The results ateamailable for MHT (k=500)
or MATLAB linear solver on sequence 7 due to the implememtatinning out of memory.

The comparison is also presented visually in Figure 5.27e MIAP (presented as
—log(p)) is compared across the sequences, where the posteriardisimg MHT k=50)
is vertically aligned for all sequences. For RIMCMC and RMAIZSA bars, the height
of the bar represents mean of the different runs, and a aklitne presents the standard
deviation .

To visualize the different explanations during a Markovioh&igure 5.28 demon-
strates a diagram for the explanation every 250 steps in #r&d chain. These diagrams
are for one run of RIMCMC-SA on thé%sequence. Starting from passing-by events for
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Figure 5.27: MAP is compared for the full day sequences (8adwing RIMCMC-SA achieves the
best heuristic search results. The vertical line represe¢hé standard deviatioo for RIMCMC
and RIMCMC-SA.

all people detections, drop and pick events are recognisédiked (represented by a
line connecting the pair of events). The visualization shoanvergence to the best ex-
planation at the end of the sequence. The diagram shows thelexity of the solution
and the interleaved unordered events.

When comparing the time required for each of the search tqahs, it is worth men-
tioning that each run of the RIMCMC chains executes withih @inutes for the se-
quences in thBicyclesproblem. This is an unoptimised code implemented using'Yava
and run on a 4GB server. The time needed to run MHT depend®anthber of branches
k and was around 20minutes foe= 500. IP using the linear solvers takes between 5 and
30 minutes with the varying complexity in the code, run on eveseof 10GB memory.
Note that the code was not optimised for performance corsqavi

For the Integer Programming results, Table 5.7 shows thebeuof partial explana-
tionsF for each of the 7 sequences.

After comparing the different search techniques, resuéshown for different ways
of searching using RIMCMC and RIMCMC-SA. Results are aladabte for the online
search and starting from a completely unconnected exptematable 5.8 shows the com-



Chapter 5 102 Case I: The Bicycles Problem

1000 1250 500 750

Figure 5.28: A visual representation of the explanationngl@ Markov chain (p. = 5000, where
dots denote person detections equally spaced between 0ai0@H700H. Drops (red dots) and
picks (blue dots) are linked by a straight line to form drdpkpevents.
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sequence| | f
784
171
1492

2381
1303
1484
7963

~N| O Ol W N[ =

Table 5.7: The number of partial explanations in the intggegram for each of the 7 sequences.

plete results for RIMCMC search under different starting{sosimulated annealing and
online performance for thé®sequence. The complete results are shown in Appendix E.1
for the remaining sequences. The coming subsections exgp¢aieral aspects regarding
the different ways to run Markov chains.

RJIJMCMC RIJMCMC-SA | Online | From Local Max Nmc min u 5
X 5,000 | 4937.10| 4941.01| 4.06
X 5,000 | 4943.71| 4939.37| 1.96
X X 5,000 | 4943.71| 4943.71| 3.59
X X 5,000 | 4943.71| 4939.33| 1.87
X X 1000/au| 4927.60| 4963.7 | 22.45
X X 1000/au| 4956.55| 4968.5 | 5.16
X X X 1000/au| 4924.08| 4945.8 | 12.60
X X X 1000/au| 4929.63| 4956.3 | 16.17

Table 5.8: MAP results using different variations of the FEIIC search for the 8 sequence.
Results for the other sequences are shown in Appendix E.1.

5.6.1.1 RJMCMC proposal distribution choices

To assess the effect of proposal distribution choices orctimeergence of the Markov
chain, this section presents results using different @soaf the proposal distributions.
In RIMCMC, first the move-type is to be selectigg then a move from the within-move
proposal distributiorgy, is chosen. These choices can be made uniformly at random
(u.a.r.) or weighted. The choice of the move type is weighgdhle estimated count
of possible moves of that type, while the choice of individuaves is weighted by the
designed measurements (Equations 5.7- 5.14). Figure B@8ssan example of con-
vergence for both RIMCMC and RIMCMC-SA under various cleomfethe proposal
distribution. Three choices are presented, the first cheiedien both the move type and
the individual move are chosen u.a.r. The chains are far fromvergence in both cases
Alternatively, if the move type choices are weighted usisjneated move counts, while
the actual move within that type is selected u.a.r., therdlgo converges but requires
a longer Markov chain. Weighted choices in both proposatitigions are capable of
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converging significantly faster.

Proposal Distributions for RIMCMC Proposal Distributions for RIMCMC-SA

uniform j ., uniform g uniform . uniform 9

weighted j_, uniform g,

weighted I uniform [

weighted S weighted 9

weighted . weighted 9,

—log(p)
~log(p)

. . . . . . . . f . . . . . h ! n n N ]
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
iteration iteration

Figure 5.29: Two figures presenting convergence under varina.r and weighted proposal dis-
tribution Q(w'|w) choices using RIMCMC (left) and RIMCMC-SA (right) for4Hesequence.

Table 5.9 compares the results across the seven sequencesféom and weighted
Om choices. 100 chains are run with a weighjgcand uniformgy, proposal distributions,
and another 100 chains were run with the weightte@ndgy, distributions. The results
show lower—log(p) for all the datasets when weightgg distributions are used. When
testing for significance using the two-sample t-test, 6 ¢t sequences (except th&92
sequence) proved the difference is statistically sigmti€a

Uniform gm Weighted gm

U o u o
5951 1.28 58.57 0.60
4.78 0.72 4.74 0.58
451.27 | 10.03 | 437.19 | 5.37
6165.87 | 17.21 | 6130.34| 19.47
4986.91 | 10.47 | 4950.89| 6.27
862.30 | 6.09 819.20 | 3.73
486.95 | 9.41 | 469.90 | 12.12

~N| O O B W N -

Table 5.9:—log(p) compared for all the sequences, with 100 chains with a umfgy, and 100
chains with weighted,g

5.6.1.2 Running multiple Markov chains

Being a Monte Carlo process, which is inherently randons, liglieved that running mul-
tiple chains can result in a better chance of finding the dlaeximum [142]. These
chains can run in parallel and are independent of each dtlgere 5.30 shows the poste-
rior and acceptance rate for three RIMCMC chains testedeoBtisequence. Similarly,
Figure 5.31 compares three RIMCMC-SA chains.

6at 5% significance level
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Figure 5.30: Three RIMCMC runs for th&Sequence. In this figure, the chain plotted in black
finds the highest posterior. The figure to the right shows tlueptance rat@accept for the three
chains in corresponding line styles.
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Figure 5.31: Three RIMCMC-SA runs for th& Sequence. Though all SA runs converge, they
tend to converge to different peaks (local maxima) of theildigion. The chain plotted in black
finds a higher posteriompaccept results are shown to the right.

Table 5.10 compares a single long chain with multiple smatt@ins containing the
same total number of sample elements. The experiments argé0rdimes to estimate
the mean and the standard deviatfon The table shows a higher posterior mean for
the single chain in three sequences, in comparison with lzehigosterior mean for the
multiple chains in two other sequences. The performandrisd¢omparable for multiple
short chains and a single long chain. As the multiple chaiashorter and were run in
parallel, the potential time it takes is significantly redd&. Multiple chains were used
in the results presented in Table 5.8. For all experimerdg/amext,n,: was set to 5000
for offline search and to 1000 for each activity unit duringjrme search.

’Statistical significance cannot be concluded from this thalssample size
8A 64-dual processor parallel cluster was used. This sewaseprovided by the White Rose Grid.
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single chain fimc=50,000) | multiple chains (10 x n,c=5000)
[ [ [ [
3| 424.99 5.44 428.68 4.12
4 | 6077.32 3.98 6080.57 3.88
5| 4947.30 5.56 4941.11 3.65
6 | 814.77 1.72 813.83 2.24
7 | 429.39 15.03 433.01 8.43

Table 5.10: —log(p) compared for 10 runs of a single long chain versus 10 runs dfipfe
parallel shorter chains.

5.6.1.3 Adding simulated annealing

When using simulated annealing, a choice of the tempereange (initial and final tem-
peratures) and a cooling schedule is needed. The choicedyver4.00 andT, . = 0.01.
Linear cooling was found suitable for the training sequenkethe remaining results,
RIJMCMC-SA uses linear cooling (Equation 4.7) when updatitegtemperature.

To test whether adding simulated annealing is a statitisanificant improvement,
Table 5.11 shows the results of a two-sample t-test. Theagssimes the two samples
are generated from Gaussian distributions. For each c@G8endependent chains were
run from a local maximun? for each of RIMCMC and RIMCMC-SA. Linear cooling
schedule was used for SA. To test that each sample is getid¢rabte a Gaussian distri-
bution, the chi-square goodness-of-fi£@of) is tested for each sample. Tlxégof test
checks whether the sample is a random sample from a normabdign with a mean
and standard deviation estimated from the sample. Thetailbd Welch t-test ar=0.05
is used, as it does not assume the variances of the two saanplegqual. The test returns
1 if RIMCMC-SA generates statistically significant higheARIthan RIMCMC at 5%
significance level. The table demonstrates the statigtigaificance for the third, fourth,
sixth and seventh sequences. T{fgof test failed in the remaining three cases. Though
RIJMCMC was used in previous work to find the MAP solution, thpegimental results
here support the theoretical concept that adding SA caerstarch the distribution for
the MAP solution.

5.6.1.4 Initialising the Markov chain

Two methods were used to initialise the Markov chain. The firethod is to start from
scratch with all people considered passing-by and all kecglusters labeled as noise.
Another way to initialise the Markov chain is to start frometlkexplanation found by
the greedy search. Choosing the second initialisationpg&ed to speed convergence.
Nevertheless, the theory of MCMC proves its immunity toiatistates. MCMC'’s con-

9These are the same as the independent chains used in Table 5.8
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sequence RIMCMC RIMCMC-SA Welch t-test
u o | x*gof u o | x*gof
1 58.71 | 0.84 1 5929 | 2.14 1 0
2 519 | 1.30 1 553 | 1.56 0 0
3 438.66 | 6.04 0 43234 | 5.88 0 1
4 6092.93| 9.93 0 6090.40| 9.11 0 1
5 4956.36| 9.17 1 494711 6.08 1 1
6 819.61 | 3.20 0 817.62 | 4.12 0 1
7 47251 | 13.16| 0O 45774 | 1667| 0O 1

Table 5.11: Welch t-test to compare 400 runs of RIMCMC and@®J/-SA. In the last column,
1 indicates the right-tailed null hypothesis was rejecteb® significance level. This means
the —log(p) was higher for RIMCMC when compared with RIMCMC-SA (reball this means
lower MAP). For thex?gof columns, 0 indicates the sample is drawn from a normaitidigion
when tested witly? goodness-of-fit at 5% signifcance level.

vergence to the target distribution is independent of thtealrstate. Figure 5.32 shows
two different initialisations of the Markov chain. Initialng the chain with the solution in
which all people are passing-by and all bicycle-clusteesraise takes longer to achieve

convergence.
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Figure 5.32: Two runs of RIMCMC from different initial expiions applied to the'Ssequence.

For the complete results of the dataset, 400 chains areaundach of the two initial
explanations. Table 5.12 compares the results. In 6 out egdences, the means are
within 1 standard deviation @) of each other. Also, in four out of the seven sequences,
the difference in means of the two samples is not consideatigtscally significant using
the two-sample t-test, i.e. they originate from the sameg@sal distribution.

5.6.1.5 Online optimisation

Figure 5.33 shows online RIMCMC-SA, run in two phases at tite# each activity
unit, as explained in Section 4.4.6. For each chain, the fi$drmance initialises the
Markov chain for the next activity unit. Some activity unitave higher ambiguity in the
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From scratch From greedy
u [ [ [
58.61 | 0.63 58.71 0.84
473 0.58 5.19 1.30
438.45 | 6.26 | 438.66 | 6.04
6127.57| 21.70| 6092.93| 9.92
4951.30| 6.19 | 4956.36| 9.17
819.30 | 3.33 | 819.61 | 3.20
469.18 | 30.15| 472.51 | 13.16

~N| O O B W N| -

Table 5.12: —log(p) compared for all the sequences, with 400 chains started foratch, and
400 chains started from the solution found by greedy search.

detections. The plot in Figure 5.33 is though misleadinghastormalising factor in the
posterior changes when new detections are added. Accdyding y-axis data cannot be
compared across activity units. Complete results for entiptimisation can be found in
Appendix E.1.
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Figure 5.33: Online RIMCMC-SA for thé'sequence. Vertical dotted lines separate the optimi-
sation at each activity unit. The Markov chain length is 188ps for each activity unit.

5.6.2 Accuracy results

The ground truth was manually obtained for each sequeniellillg each person with
the event accomplished (dropping, picking or passing-then connecting any pick to
its earlier drop. Figure 5.34 shows an example of the recbgieund truth. Notice that
this ground truth is partial, as it does not connect peopleidgcle-clusters. This was
avoided due to the complexity of manually deciding on thasenections. Recall that a
drop event cannot be connected to its pick event unless tyelbiclusters are correctly
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connected. Thus, comparing an explanation to this part@lrgd truth is sufficient to
assess the accuracy of the global explanation.
Upon retrieving the MAP global explanation, it is comparedhte ground truth to cal-

track ID track Name event (d/p/s) previous drop diff Person? diff Clothing?

19234 N s
21586 o) d
26353 Q d
28402 R d
29978 z d
30310 oP p o) 0 1
30355 OP p o) 0 1
31027 Y s
31445 QP p Q 0 0
31623 QP p Q 0 0

Figure 5.34: A sample ground truth from tH&' sequence. Each track is assigned an ID by the
tracker. A unique name is given to each person to show brakgactories, along with the event
performed. For pick events, the track name of the previoap @ recorded. Simulated thefts and
people with different clothing are recorded as Boolean ahlés.

culate the accuracy. Figure 5.35 presents a partial exjerizom the 4" sequence that
corresponds to the ground truth in Figure 5.34. When contpar¢he ground truth, the
accuracy equals the ratio of the correctly explained rectodhe total number of records
in the sequence. A record is explained correctly if it masdhe ground truth, or is redun-
dant to a correctly-explained record. The latter case @xplaroken tracks. For example,
the last two records in Figure 5.34 are 2 tracklets of the smaoik. Explaining any of
them correctly, while explaining the other as an unconrtkptek (as in Figure 5.35) is
considered a correct explanation for both records. Whenishtompared to the ground
truth, 9 out of 10 records in Figure 5.35 are correctly exgdiresulting in 90% accuracy.

track ID bicycle-cluster No event (d/p/s) previous drop

19234 0 s

21586 124 d

26353 126 d

28402 127 d

29978 128 d

30310 130 p 21586
30355 0 s

31027 129 d

31445 131 p -
31623 131 p 26353

Figure 5.35: A sample partial explanation from t4& sequence.

The MAP results from the previous section are compared t@tbend truth. Sev-
eral explanations evaluate to the same accuracy rate ifdetain the same number of
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correctly explained records. Figure 5.36 plots the pastgarobability along with the
accuracy results for one RIMCMC run from tH8 Sequence. The figure demonstrates
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Figure 5.36: The posterior results and the correspondinguaacy rates for one RIMCMC run
(5" sequence). The vertical line shows the MAP solution, arzbit@sponding accuracy. Higher
accuracy rates are present, yet those have lower posteriors

a general trend of increase in accuracy with the increasestepor. Yet, the MAP ex-

planation does not correspond to the highest retrievedracguThis could have resulted
from two different causes:

1. Incorrect modeling of the priors and conditional proliaibs.
2. Insufficient information in the features selected.

The accuracies for the MAP explanations from table 5.6 amsvehin Table 5.13. In
the table, five out of the seven sequences have the highesaagcorresponding to the
MAP. In all sequences, a higher posterior corresponds a&stitm a lower accuracy. The
complete tables of accuracies are shown in Appendix E.2.

Local Global
Greedy MHT RJIJMCMC RJMCMC-SA P
k=50 k=100 | k=500 u o m o MATLAB XPRESS-MP
1| 74.13 72.41 91.38 91.38 91.38 88.36 | 1.09 | 87.46 | 1.79 91.38 91.38
2 | 85.19 85.19 100.00 | 100.00 | 100.00 | 100.00 | 0.00 | 100.00 | 0.00 100.00 100.00
3 | 64.06 58.59 84.38 84.38 84.38 87.68 | 0.89 | 83.36 | 1.65 88.28 87.5
4 | 74.60 73.81 74.60 75.40 75.40 83.93 | 1.09 | 83.15 | 1.31 81.75 83.33
5| 86.13 89.05 82.48 84.67 88.32 91.90 | 0.79 | 92.65 | 0.90 94.16 94.16
6 | 65.18 66.07 60.71 60.71 60.71 68.53 | 1.68 | 70.98 | 1.04 73.21 73.21
7 | 46.18 45.69 44.67 45.69 - 4728 | 1.18 | 47.61 | 0.88 - 46.70

Table 5.13: The accuracy results (%) for the MAP solutiondenotes that for the same MAP, two
or more explanations are found, and only the one with the mari accuracy is recorded.

The table also compares local and global analysis. A lodatisa is finding the best
event for each person independently then linking drops &g @llowing the same drop
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Figure 5.37: Five examples of connected events. The firsafeworrectly connected. The fourth
column represents a simulated theft. The fifth example showscorrect connection. Recall that
no clothing color comparison is performed. Individuals amnected by linking the person to a
cluster and correctly linking dropped to picked bicyclesters.

to link to several pick events and vice versa. The local smius thus a complete but pos-
sibly inconsistent set of events, as the inter-activitystaants are not maintained. The
results show higher accuracy for global explanations. Truiates that global explana-
tions can resolve ambiguities that cannot be resolved 3} ETalysis.

It is expected that the accuracies for sequences (6-7) arer Idue to the increase
in clutter. The ¥ sequence suffers from frequent abrupt lighting changesréisallt in
bicycle clusters being poorly detected. Figure 5.37 giwsesexamples of recognized
and linked drop and pick events across the dataset.

5.6.3 Theft detection

The explanations for thB8icyclesproblem can be used to detect thefts.th&ftis de-
fined as a drop-pick compound event where the person who edothie bicycle does
not ‘look-like’ the person picking the bicycle. Soft-biotnies can be used to compare

(b) (d)

Figure 5.38: Examples of the best-matched pair of framesnwdwemparing two people. This
technique finds the best match for the same person (a), andranmaich for different individuals
(b). Nevertheless, it tries to find as high match as possiblesz different people (c) and fails in
cases of poor segmentation (d) and occlusion (e).
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the appearances from the CCTV camera. Clothing colourhh@igbody build can be
compared. In this section, only clothing colour is used fatching. This is based on
the assumption that people do not change their clothingd®ivthe two events. This as-
sumption is of course not always valid. Moreover, colourchatg is affected by lighting
changes in outdoor scenes. This section first explains hewdlour information can be
retrieved, summarised and compared. Then, the resultsesenged.

The tracker [100] provides colour information for foregnaipixels per frame through-
out the trajectory’s duration. For efficiency, the colouommation is summarised across
the whole trajectory. First, data is summarised per framre8A 8 x 8 scale-normalised
equal-bin-size RGB colour histogram was generated fronidireground pixels at each
frame. ‘Scale-by-max’ per channel is used as a simple calonstancy algorithm [11].
One way to measure the similarity between two peoplandx; is to compare the his-
tograms for all pairs of frames. Assunk&xs, j) represents the colour histogram for
persorx; at framej, and that; is a certain bin in the histogram of sige The similarity
between histograms is produced using the symmetric verditime histogram intersec-
tionintroduced in [136].

HI Xl, H'(X27k>
1,1)" ¥ jHj(%2, k)

X (H(x,1),H(x2, k) mem ) (5.16)
Sincex;.n measures the number of frames for each person, askwire..x;.n and
k=1...x2.n, then the overall similarity:(x1, x2) between two people is defined in Equa-

tion 5.17

O (X1, %2) = maX(X( (x1,1), H (%2, k))) (5.17)

This computation is expensive as it requires maintainingstéogram for each frame,
and calculating the intersection of all pairs. Moreoveisierror-prone to foreground
segmentation problems. Figure 5.38 contains a collecti@xamples showing the best
matched pair of frames.

Alternatively, all histograms for a person can be combirggther. A per-bin median
histogramH was calculated across all frames as explained in [19].

Hi(x1) = median_1._x, nHi(x1, j) (5.18)

The similarity between two people is then calculated asntersection between the per-
bin median histograms.

(X1, %2) = X (A (x1), H(x2)) (5.19)
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After the global explanation is found, the drop-pick evaarts studied further, and the
clothing colour is compared for the dropping and pickinggdeo If the clothing match
J is below a certain threshold, a theft warning is raised. FEdgu39 presents the ROC
curve for different thresholds summed over all the sequenigecall that clothing colour
was not used in the activity recognition.

The ground truth contains information about whether th&ipg individual is a dif-
ferent person. When compared to ground truth, a True PegiliR) is a labeled theft case
when different people in the ground truth are recorded. AeTdegative (TN) indicates
the same individual, and the explanation not raising a thwafhings. A False Positive
(FP) is recorded when a warning is raised while the grounith trecords the events are
performed by the same person. A FP can be generated from amaotexplanation,
different clothing, or poor colour matching. Finally, a 8@Negative (FN) is caused by a
theft case that is not detected.

0ol e e MHT Predicted

08 Actual Thief Non-Thief

Thief 13 2
g il ' Non-Thief| 122 648
RIJMCMC-SA Predicted

03y Actual Thief Non-Thief

-~ ~MHT (k=100) Thief 13 2

" . | [TZRIMEME=SAl - Non-Thief 84 686

0 0.05 0.1 0.15 0.2

1-specificity

Figure 5.39: ROC curve (left) representing theft detectisults. 0.7 was selected as the threshold
to calculate the confusion matrix (right).

At a threshold of 0.7, 87% (13 out of 15) of the theft cases veargyht for a 10.9%
(RIMCMC-SA) false-positive rate. This section shows howabgl explanations can be
used for theft detection. The results are a promising dtattfurther soft biometrics (see
Section 2.3.3) and colour constancy analysis are requiegord the application can be
tested. Moreover, a theft warning should marginalise owsssible explanations rather
than conclude from the MAP. Using the application in praetiequires a wider analysis
of the risk and the reward in raising theft warnings (seeie@.3).
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5.7 Conclusion

This chapter shows how thgicyclesproblem can be solved using the framework pre-
sented in Chapters 3 and 4. This includes the formulatiom&MG and the estimation
of the likelihood functions for different attribute valueshe method is evaluated on 67
hours of video from two bicycle racks.

Searching for the best explanation is performed using ttlenigues from Chapter 4.
Tested on 7 sequences of varying length and complexity, RMEKSA achieved the best
heuristic search results. The results section presentstanséve analysis for finding the
MAP solution. This solution is then compared to the manuabiyained ground truth to
calculate accuracy rates.

Results presented demonstrate the ability of the framewmffind the best global
explanation. It makes the case for global explanations meal analysis of events, by
proving global analysis achieves better accuracy resultee next chapter applies the
framework to a related but different problem.



Chapter 6

Case |l: The Enter-Exit Problem

This chapter presents a different challenging problemrdgtires tracking people, and
any objects they might be carrying, as they enter and exitildibg. The number of
interleaved events is substantial, and the combinatofitiseoproblem can easily prove
intractable. A global explanation links the event of a parsotering the building, possibly
with some carried objects, to a later departure of a persith avwithout carried objects.
It also can link the departing person to him/her returnirtgrlaThe linking depends on
comparing the person and the baggage biometrics betwebrappearances. Matching
the objects these people are carrying could assist in lgigtiig potential threats from a
security perspective - for example discovering any baggégadoned within the build-
ing.

In achieving this task, the carried object detector, to les@nted in Chapter 7, is used.
Section 6.2 presents a complete attribute multiset granfonahe task. The grammar
parses all detections into a global explanation. The Bayasetwork can then be searched
for the MAP solution. Section 6.3 reviews how the values ef shinthetic attributes are
assigned, and assesses the ability of each feature to isedfe occurring event. Next,
the reversible moves used by the RIMCMC search are revieé®exdion 6.4). The pro-
totype was evaluated on 12 hours of recorded video. Regel@realysed in Section 6.5.

115
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6.1 TheEnter-Exit problem

TheEnter-Exitproblem discussed in this chapter is the task of recognz@agple as they
enter and exit a building, using one camera mounted next tolditg entrance. Natural
constraints govern the possible sequence of detectiansa person entering the building
can be observed departing only once, and at a later poininie. tiThe explanation is
a consistent set of links between people entering and gxitie building together with
information on any objects they might be carrying.

This problem is similar to the task of tracking people aci$dind area, or between
non-overlapping cameras. Two essential differences dhbiolugh be highlighted. The
first is that blind area tracking usually relies on tempgrhiiking the detections. A per-
son is expected to emerge again within a certain amount @& tirhis limits the number
of interleaved events making the number of possible expilamatractable in most cases.
The second difference is that blind area tracking classifegectories in advance into
those entering and exiting the blind area. This classificatannot be amended.

TheEnter-Exitproblem resembles tHgcyclesproblem presented in Chapter 5 in that
two types of detections are available; people and bicyalésa first case, and people and
bags in the second. It also has two types of events to be ljndkexgbs and picks ver-
sus enters and exits. It differs though in that each eventaate to both an earlier and
a subsequent event of the opposite type. This enables nstagisequences of events:
enter-exit-enter-exit-enter, while tfgcyclesproblem only recognises a single drop-pick
instance of the bicycle. This adds extra complexity to thendim and the search space.
The next section presents the complete attribute multisetgnar for théenter-Exitprob-
lem that tracks people and carried objects around one hgilelntrance.

The person detections were retrieved using the same oftbaE tracker [100]. As
before, a separate person detection is derived from eaettvey. The identity of the
person cannot be maintained by the tracker after depaittedie¢ld of view. Detecting
bags is based on a novel detector presented in the next chRptesach trajectory, pro-
trusions representing candidate carried objects areevetti The location and colour of
the pixels representing the candidate bag are recordeddbrfeame along the trajectory.

6.2 An AMG for the Enter-Exit problem

For this new problem, the activity is defined using the follogPAMG.

Terminals (T): t  person detection
b  baggage detection
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u unobserved enter or exit events
Nonterimanls (N): S  Start symbol
X Exit-Enter link - linking an exit event to a subsequent emeent
E Enter-Exitlink - linking an enter event to a subsequent exént
C Linking the person to a collection of carried objects
B Collection of carried objects
Attributes (A):
symbol att. name type domain description pdf
t id Ay Z a unique id differentiating people detections
time Ay 72 duration in which the person is tracked
n Ay Z number of frames with the person visible
medianColour Ay R>2  per-bin median histogram of pixel colours
projectedHeightsAy R" list of projected heights across frames
angle Ao R mean walking direction p(t.angte
count A1 {0,1} number of enter or exit events for the detection
action A1 {enter, exit, pass-gy
b id Ao Z id of the trajectory
frequency Ay R ratio of frames in which the protrusion is detected  p(b.Greryb)
colourSimilarity Ag R colour similarity with neighbouring clothing p(b.coloungb)
relativeHeight Ag R? vertical extent of the carried object relative to the
individual
medianColour Ay R>2  per-bin median histogram of pixel colours
count A1 {0,1} number of enter or exit events for the bag
action A;  {carried, othey
X bagDiff Ao Z number of bags that do not match
match Ay R likelihood of matching an exit to a later enter p(X.maXh
action A; {exit-enter, exit-u, u-enter}f
E bagDiff Ay Z number of bags that do not match
match Ao R likelihood of matching an enter to a later exit p(E.makh
action A1 {enter-exit, enter-u, u-exit}f
C trajlD Ao Z = t.trajID
nb Ay Z =B.nb
time Ay 72 = t.time
relativeHeights Ag R2*"° = B.relativeHeights
medianColours A, R512"b= B medianColours
medianColour Ay R52  =t.medianColour
projectedHeightsAy R" = t.projectedHeights
angle Ao R =t.angle
eCount A; {0,1} the number of enter-exit events
xCount A1 {0,1} the number of exit-enter events
action Ay {enter, exit, }
B trajlD Ao Z = b.trajID
nb Ao Z number of carried bags
relativeHeights Aq R?"® list of b.relativeHeight
medianColours Ay R512Mjist of b.medianColour
action A; {enter, exit, }

Attribute Functions
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time; < timey this operator ensures thiene; ends beforéime, starts.
Um(C1,Cy) measures the likelihood of matching two people

Production Rules (P)

Syntactic Rule (r) Attribute Rules (M) Attribute Constr&r{C)

pr S — X* Eft, b b.action = ‘“other” b.count # 1
t.action = ‘“pass-by” t.count # 1

p2 X — C,C Cj.action = ‘“exit” Cy.action # ‘“enter”
Co.action = ‘“enter” G.action # ‘“exit”
X.action = ‘“exit-enter” G.time < Cotime
X.match = UYm(Cqg, C) Ci.xCount # 1
X.bagDiff = |Cy.nb-G.nb) Co.xCount # 1
Ci.xCount = 1
CoxCount = 1

ps X — C,u C.action = ‘“exit” C.action # “enter”
X.action = ‘“exit-u” CxCount # 1
C.xCount 1

psg X —uC C.action = ‘“enter” C.action # “exit”
X.action = ‘“u-enter” CxCount # 1
C.xCount 1

ps E — C1,C Cy.action = ‘“enter” G.action # ‘“exit”
Cy.action = ‘“exit” G.action  #  “enter”
E.action = ‘“enter-exit” G@.time < Cytime
E.match = Pum (Cg, C) Cp.eCount # 1
E.bagDiff = |Cy.nb-G.nh CoeCount # 1
Ci.eCount = 1
Co.eCount = 1

ps E — C,u C.action = ‘“enter” C.action # ‘“exit”
E.action = ‘“enter-u” C.eCount # 1
C.eCount 1

pr E —uC C.action = ‘“exit” C.action # “enter”
E.action = ‘“u-exit” C.eCount # 1
C.eCount 1

ps C —tB t.action = C.action t.trajID = B.trajID
B.action = C.action t.count # 1
C.nb = B.nb
C.time = ttime
t.count = 1

pp C —t t.action = C.action t.count # 1
C.time = ttime
C.nb = 0
t.count = 1

pio B — b* b.action = ‘“carried” btrajlD = Dbj.trajlD
b.count = 1 b.count # 1
B.trajID = b.trajlD
B.nb = |b*|

Figure 6.1 presents the attribute dependency graph for #h& An accordance with
the framework presented in Chapter 3, given a set of detes;taoparse tree of this gram-
mar represents a global explanation. The Bayesian netwaookielling the probability
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action _X_bagMatch, match action E bagMatch, match

C action, nCount, eCount C trajID, nb, time, relativeHeights, medianColours, medianColour, projectedHeights, angle C

action, count t id, time, medianColour, projectedHeight, angle action, count l=d  trajID, nb, relativeHeights, medianColours

Nyl N A

action id, freq, colourSimilarity, relativeHeight, medianColour

Figure 6.1: The attribute dependency graph for the Enteit-groblem AMG.

distribution over all possible parse trees, can be builtseaiched in a similar way to that
presented in the previous case study.

Given a multiset of detections with some attribute values {¥;%trajlD=1, time=1),
to (trajlD=2, time=2),b; (trajiD=1), b, (trajiD=1), bs (trajlID=1), b, (trajiD=2)}, Fig-
ure 6.2 shows a parse tree and the corresponding Bayesiaorket

S x X x E X o
/ | \\ O
X E X b3 A5
/N7 N/ N\
u C C u
[ £ enter,
t1 B t2 B exit 5
bq Bz bl4 carried carried other carried

5b1 gbz gba gb“
Figure 6.2: A sample parse tree and labelled BN for the EReit-problem.

After building the structure of the Bayesian network for a&fedetections based on
the AMG, the Bayesian network’s parameters (i.e. priors @ntlitional probabilities)
can be defined. Figure 6.3 shows the set of priors and condltimrobabilities for the
problem based on expertise knowledge. The next sectiomidesdow the observed RV
likelihoods were trained.

6.3 Features selection and supervised training

The detectors are expected to retrieve a multiset of tedlmalang with specified values
for the synthetic attributes of each terminal. These sytitttadtributes are described in
the AMG above. This section describes how these featurestreved from the video,
and trained for the possible labels. The median colour featudentical to that used for
the Bicyclesproblem (Section 5.6.3). This section describes how theaneimg features
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o 'S
‘\> "@ o
Ql?lw -\§ Q‘?P -\'.§ 5@ -\’Q
X 2 o o
p(EIC1,C2) , & & & ¢ pX|C1,C2) | & & & ¢
Ci=enter,C2 = enter | 0 0o 0 1 Ci=enter,C2 = enter| 0 0o 0 1
Ci=enter,C2=exit [03 0 0 07 Ci=enter,C2=exit | 0 0 0o 1
Ci=enter,C2=f 0 0 08 0.2 Ci=enter,C2=f 0 0 0o 1
Ci=exit ,C2=-enter | 0 0 0o 1 Ci=exit ,C2=enter|0.3 0 0 07
Ci=exit ,C2 = exit 0 0 0o 1 Ci=exit ,C2 = exit 0 0 0o 1
Ci=exit ,C2=f 0 0 0o 1 Ci=exit ,C2=f 0 0 08 02
Ci=f ,C2=enter | 0 0 0o 1 C1=f C2o=enter] 0 08 0 02
C1=f ,C2 = exit 0O 08 0 02 C1=f C2 = exit 0 0 0o 1
Ci=f ,C2=f 0 0 0o 1 Cq=f C2= 0 0 0o 1
4 & «
p(CItB), & &
t=enterB| 1 0 0
t=exitB[ 0 1 0
=pass-by,B[ 0 0 1
. B
PN
& & F &
p(t) |0.450.45 0.1 ba &g
[

Figure 6.3: Priors and conditional probabilities estimadtéor the Enter-Exit BN.

are obtained and trained. The training sequence was twe lmeoorded from the same
viewpoint on a separate day.

6.3.1 t.projectedHeights

Previous work tried to estimate the actual height of theviadial to be used in matching
people between non-overlapping cameras [99]. Estimatemgctual height requires a full
camera calibration. This section presents a way to comparedight distributions for two
person detections viewed within the same camera using thadfplane homography.

Given the vanishing point and the horizon’s vanishing lthe, height of a vertically-
standing object can be computed, up to a constant factochtfemme. As the person is
not standing upright during walking, only the elevation lo¢ ttop of the head from the
ground plane can be estimated. The top of the head is appatedito be the highest
point of the foreground segmentation blob. The elevatiothisf point above the ground
is referred to as the projected height. The projected hesgéxpected to vary with the
phase of the gait. The distribution of projected heightslmarestimated from all frames
of the person’s trajectory. Two such distributions repnéisg the projected heights of
two people can then be compared as will be shown in Sectiofi.6.3

The projected height of the individual, up to a constantdgatan be calculated from
the cross-ratio illustrated in Figure 6.4.is the position of the top of the heax,is the
vertical projection of that point on the ground plarés the vanishing point representing
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A
I head projection
foreground on gr(?unjd
point plane (x')

vanishing point (v)

Figure 6.4: The cross-ratio is calculated using the pointg’xv, c.

the vertical projection of the camera’s position onto theumd plane, and is the inter-
section of the line connecting the heado the vanishing point with the horizon line.
The horizon line can be calculated for a given scene, usitgyafeparallel lines on the
ground plane. The vanishing point is calculated from thergection of parallel lines that
are perpendicular to the ground plane.

The vertical projection of the head on the ground plgneas estimated by projecting
the lowest vertical point in the foreground segmentatioto dhe linevx. The Euclidean
distanced between two points can then be used to find the cross-ratieimiage plane.
Given the camera’s height above the ground plagnethe height of the individuak is

given by [30]: A VdOE.
x,v)d(X,c
Z=2(1= X 9dx.v)’ (6.1)

ThoughZ; is unknown, the cross-ratio= %m can be calculated for each frame.

Figure 6.5 shows an example of the variation in cross-nafior a single person over
several frames. Assuming a Gaussian distribution, the mesard the standard deviation
o are calculated for the complete trajectory.

6.3.2 b.relativeHeight

The relative height of each carried object is the vertic&eikof the baggage’s bounding
box relative to that of the temporal template (Section 7 &3sume(hy,hy) define the
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0 10 20 30 40 50 60 70 80 920 100
frame

Figure 6.5: An example of the cross-ratio r along the tragegtof a walking person. The horizon-
tal line marks the mean of the Gaussian distribution estaaditom this data.

top and bottom vertical positions of the temporal template] (b1,b,) are the top and
bottom vertical positions of the carried object as in Figbu@ then the relativeHeight is

the tuple:
b1 —hy by —hy

ho—hy ho—hy
This attribute is used to match carried objects between Ipeap will be seen in Sec-
tion 6.3.6.

b.relativeHeight= (

(6.2)

Figure 6.6: The relative height of the baggage from the temmp@mplate. Temporal templates
will be explained in Section 7.2.

6.3.3 p(t.anglgt.action)

The angle of the walking direction is calculated from the neeaf the foreground blobs in
the image plane. Considering the positions of the persoasgfitting vector is found by
linear regression, and the angle of that vector is used ssifjgpeople entering, exiting or
passing by. The conditional probability of an angle givea ohthese classes is estimated
from labelled examples using a wrapped Gaussian. A wrap@eggtan (also referred
to as the von Mises distribution) is suitable for representirectional statistics as it is
wrapped around the circumference of a unit circle [46]. Thapped Gaussian probability
density functionp,, is defined in terms of the Gaussian functigyin Equation 6.3.

pu(B) = T Py(8+27) (6.3)

k:—OO
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The mean of the wrapped Gaussian is defined in terms of the af¢lha sine and cosine
values of the angles in the sample Slis the mean of the sines a@is the mean of the
cosines, then the mean andlés as defined in Equation 6.4 [46].

6 = arctan(S/C) (6.4)

Figure 6.7 illustrates the trained wrapped Gaussians &ottttee possible event types.

=]

%

| I Enter ]
. et
# Nt . |[IPass-By|

—Enter
- - -Exit
o Pass—hy

wrapped normal pdf

0 0.5

20l R g

Figure 6.7: Angular histogram of walking directions usedraining (left) and wrapped Gaussians
estimated from the angular histograms (right).

6.3.4 p(b.frequencyb.action)

The frequency of a protrusion is the ratio of the number afiga during which the pro-
trusion was detected to the total number of frames. Thisésnay to classify protrusions
into carried objects and other protrusions, but proved tordg weakly discriminative.
Figure 6.8 shows the trained Gaussians. It is still includetie posterior calculations.

181

160 s 2 —— carried objects
< R other protrusions

14t
12f
1L

k<]
Q
08t
o6f
0.4f

0.2

0 . . . . . . . . . )
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
frequency

Figure 6.8: Trained Gaussians for the frequency of carriéfeots and other protrusions.
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6.3.5 p(b.colourSimilarityb.action)

Another feature to classify protrusions into carried otgemnd other protrusions is to
compare the colour of the foreground segment represerimg@riotrusion to that of the
neighbouring foreground region. The set of pixels repreésgrthe neighbouring fore-
ground region is defined g9 : 3q € bagPixels (d(p,q) < €)}. The horizontal distance
is usedd(p,q) = |p.x— .|, ande is set to one sixth of the person’s height. Figure 6.9
shows an example of this region.

—— carried objects
-+ other protrusions

bag and neighbours colour histogram intersection
Figure 6.9: The red-coloured region signifies the
pixels added to the carried object's colour his- Figure 6.10: Trained Gaussians for the
togram, while the yellow-bounded region signi- ©aggage colour similarity.
fies the neighbouring region’s pixels.

The per-bin median histogram of all frames is then accuradl&br the bag pixels
Hp and the neighbouring pixeld,,. The histogram intersection [13&]Hp,Hn) is used
to measure the colour similarity between the bag and thehbeigring foreground pix-
els. The cpdf for these similarity values given carried otgeand other protrusions is a
Gaussian with mean and standard deviation estimated framebes. Figure 6.10 shows
the trained Gaussians. The results demonstrate that #itisréeis not very discrimina-
tive either. This is because colour is illumination varjaendd many people carry bags
of matching colours to their clothes. A person wearing albkgt and carrying a black
suitcase is a common detection within the recorded data.

6.3.6 p(X.matchX.action) and p(E.matcHE.action)

The functionyy (C1,Cz) matches the median colour histograms and projected height d
tributions of two person detections. It also considers matgany carried objects these
people are carrying; the colour and relative height of thgslkere compared. This section
describes how the matching is performed.
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Section 6.3.1 described how the distribution of projecteyhits is calculated for a
single person. When matching two people, the Welch t-tespewes the two samples of
projected heights and generates a matching score. For stribdtions.#1 (1, 01,N1),
N2(U2,02,N2), t is evaluated using Equation 6.5

| M1 H2

- 2 2
of o
N, ~ N,

(6.5)

Figure 6.11 shows Gaussians estimated front ttadues for examples of projected height
matches for the same person and different people. Corréchesmwere based on ground
truth pairs within the training data. All the remaining pibés pairings, within the training
data, are used to train for incorrect projected height nestch

Next, clothing colour matching is achieved by histograneiséction of per-bin me-
dian histograms (Equation 4.7). By training for the samedifidrent people, Figure 6.12
shows the probability density functions for clothing calooatches.

35
3 = = =Incorrect
—correct
25

pdf
pdf

-
-r

1s
t 0.3 04 05 06 0.7
Colour Histogram Intersection

Figure 6.11: Gaussian density func- Figure 6.12: Gaussian density functions

tions for height rg;zt%h scotres gl\I/en the for colour histogram intersection given the
same person and different people. same and different people.

When matching carried object$heightoveriapis the likelihood of matching two bags
based on their relative heights. The relative height of dxathis calculated as explained
in Section 6.3.2, and is matched using the interval overidpguation 6.6 where relative
height tuples are treated as closed intervals. For two bagadb,,

|by.relativeHeighth by.relativeHeight

|by.relativeHeightU by.relativeHeight (6.0

WheightOverIap:

UheightoverlaplS trained for correct and incorrect bag matches, as showigure 6.13.
Also the colour of the bags are compared. The pdfs of the mechéour histogram
intersection @nagcoloun, Modelled as Gaussians, are shown in Figure 6.14

Given two event€; andCy, whereC;.nb signifies the number of objects carried by
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pdf
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Baggage Colour Histogram Intersection
Figure 6.13: Correct and incorrect carried
baggage relative height matchings traine

into Gaussians.

¢ Figure 6.14: Correct and incorrect baggage
colour matchings trained into Gaussians.

each person, assunie= Yheightoverlagl, ) @and ¢ = Ypagcoloudi, j), then the baggage
match

C1.nb=08&C.nb=0 «k

Cpnb=0/C.nb=0 1—«k
Wearried (C1,C2) = | otherwise max{K x max
i=1..C;.nb,j=1..C,.nb
b( pd fheightoveriag hlincorrect) pd feolour(clincorrect)) }

(6.7)
In Equation 6.7k is the expected prior of baggage matches, and was set to @V in
experiments.
Thus, p(X.matchX.action) and p(E.matcHE.action) match the person’s projected
height and clothing colour along with matching any carriegeots usinglcarried-

(Pd fheightoveriag hcorrect) pd feolour(clcorrect)),

(1-k)x max
i=1..C1.nb,j=1..Co.n

6.4 Reversible moves for thénter-Exit problem

The same general set of reversible moves from Section 44%ed to traverse the space
of explanations. Figure 6.15 shows a three-step Markowcsianilar to Section 5.4 for
theBicyclesproblem. Yet, within-move proposal distributions are aggiion-dependent.
This section presents the proposal distribution withirheaove type.

S S S
x/llzm x/llz\x X/E/ \E\X
3
/N /7 N /\ _commecte /N / N\ / \ _dicommecte /N /N /N / N\
u C Gc u disconnect, U C C U ~%mea, U C UU C u
/\ /\ /\ /\ /\ /\
t1 /B\ t2 B t1 /B\ t2 /B\ t1 /B\ t2 /B\
b1 b2 b|4 b1 b2 b3 b4 b1 b2 b3 b4

Figure 6.15: A three-step reversible Markov chain for thedg+Exit problem.
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Move type (A) connect/disconnect

Connecting a person to a bag is achieved by changing the twagan ‘other’ protrusion
to a ‘carried’ protrusion. For a protrusidn, the measurement for weighting moves of
typeconnect is defined in Equation 6.8.

p(bi.colourSimilarityb;.action= carried)

Oconnegs (i) = p(bi.colourSimilarityb;.action= noise

(6.8)

The measurement for tlthsconnegt move is the inverse of that for tlemnnect move.

p(bj.colourSimilarityb;.action= noise
p(b;.colourSimilarityb;.action= carried)

Adisconnegt(D1) = (6.9)

Notice that the moveshangg andswitch. are not defined as the protrusion can only be
related to one trajectory.trajlD = b.trajlD in pg).

Move type (B) connecg/disconnect and conneck/disconneck
To connect an enter to a subsequent exit, or an exit to a suésegnter, each possible
move is weighted by:

5connecé(Ci,Cj> = 5connec>t(Ci,Cj> = Pm (Ciucj) (6-10)

The disconnect move is weighted by the inverse.

1

Ym(Gi,Cj) (641

5disconnecg(ci,cj> = 5disconne(;¢(ci,cj) =

Move type (C) change and changeg

Equation 6.12 shows the weight of changing an enter-exiitevde approach tries to find
whether better alternatives are provided. Similar to thgglated measures in Chapter 5,
dchange > 1 when better alternatives are available, and when the current connection
has the highest likelihood.

. c
maX({k:Ckg%i{j} P (Gi, Cy), ko mRX, m(Cx,Cj))

Ochange (Gi.Cj) = Ym(Gi,Cj)

(6.12)

Ochangg IS calculated in the same way.
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Move type (D) switche and switchy

_ n(G,G)Pm (G, Cj)
Um(Gi,Cj)m (G, G)

Oswitch, favours better connections, and similarly ®gitch,.

Aswitch ((Ci,Cj), (Ck,G))) (6.13)

6.5 Experiments and results

While the Bicyclesproblem was applied to an extended dataset across two #iiss,
section only presents results for tBmter-Exit problem applied to one day of people
entering and departing a building. It demonstrates tholglpower of the framework, and
how it can be applied to analyse a different activity. A fullyd(12 hours) was recorded
outside a building entrance. Figure 6.16 shows the viewpdihe vanishing line was
estimated from the image using the paving slabs on the grd@edple standing upright
were used in approximating the vanishing point, as the sisedear of static vertically
standing objects.

326 instances of someone passing through the entrance arealetected after man-
ually rejecting groups of people walking together. The lzagmdetector from Chapter 7
resulted in 429 candidate bags. Section 7.3.2 will preseat af results for applying the
baggage detector to this video sequence. It should be nmexdtitihat previous research
had investigated automatically counting the number of fEom a group of walking
pedestrians [39, 66]. Automatic detection of groups coblgstbe performed based on
such research.

Figure 6.16: The camera viewpoint.

For 326 person detections and 429 candidate bags, a BN igectesl for the AMG
presented in Section 6.2. The number of hidden RVs in thergestk BN is 190849
(I1(B)| = 116,|1(C)| = 435I (X)| = |I(E)| = 95149. The MAP solution is obtained
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using greedy search, MHT and RJIMCMC. Table 6.5 compares the epresented as
—log(p)) obtained using the heuristic search techniques for theolishvideo sequence.

Greedy MHT RIMCMC RIMCMC-SA
k=1 k=20 u o u o
MAP | 1143.47| 1146.58| 1137.70| 1143.09| 0.40| 1123.02| 1.12

Table 6.5:—log(p) compared across greedy, MHT (k = 1, 20), 40 runs of 10 paralfeins (i
= 5000) of RIMCMC and RIMCMC-SA. The result was not availémehe MHT search with
larger k due to the implementation running out of memory.

The IP solvers could not exhaustively search the space démeapons in reasonable
time ! as the constraints in this problem are far more complex thasetin theBicycles
problem. Recall that the drop or the pick event in Bieyclesproblem can participate in
only one higher level event. Conflict constraints (refer éattHn 4.5) are not required in
that case. In th&nter-Exitproblem, on the other hand, the enter event can be linked to
an earlier exit as well as a later one. Conflict checking is tteaquired, which increases
the number of constraints to be satisfied by the solver cersiody. Both linear solvers
(MATLAB and XPRESS-MP) were not able to reach a solution fer tcomplete problem.

For a smaller-scale problem, Table 6.6 shows the MAP saidtiothe first 25 people
(out of 326 in the dataset) and their corresponding canelidags. The table shows that
RIJMCMC-SA is once again the best heuristic search technitjisethe only technique
that was able to find the exact MAP (at some chains).

Greedy MHT RIJIMCMC | RIMCMC-SA IP
k=1 | k=50 | k=500 u o u g XPRESS-MP
—log(p) | 85.61 | 85.49| 84.47| 84.47 | 85.55] 0.13| 84.29| 0.03 84.27

Table 6.6: For a smaller-scale version, the results are carag for the first 25 people detections
and the corresponding candidate bagslog(p) compared across greedy, MHT (k = 1, 50, 500),
40 runs of parallel chains RIMCMC and 40 runs of parallel ¢is|aRIMCMC-SA and Integer

Programming.

The ground truth was manually obtained, in which 62 pairiagsfound, with each
pair connecting a person entering the building to him/havileg later, or a person leaving
the building and subsequently returning to it. Performimgeaual ground truth proved to
be a tedious task. For each observed person, the obsenterd@mthrough the rest of the
recorded video and check whether the person has been seenlagas noticed that one
cannot keep in the memory more than a few people (2-3) at atbreerrectly perform

Leven using 20GB of memory for about 10 hours
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the matches. After several rounds, 62 pairs were found, etrekghe ground truth for the
video.

Figure 6.17 presents a precision-recall curve that consgheethree search techniques
when varying the priors for connecting enter and exit evefdble 6.7 shows the number
of correctly paired activities using the priors in Figur&.6Notice that the best search
technique only found 19 of the 62 ground truth pairs. Thisisduse the selected features
(height and clothing colour) are only weak cues, as they watysegmentation errors and
illumination changes. Moreover, a high number of false fpsiconnections indicates

that while the priors are favouring connections more thay tshould, the weak cues
make it hard to distinguish correct from incorrect connatii

1r

—RJIMCMC (n_ = 10,000)
- - =MHT (k = 10)
------ Greedy
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Figure 6.17: Precision-Recall curve for the three heudstearch techniques.

Local Global
Greedy | MHT | RIMCMC-SA
Paired 13 14 16 19
Unpaired | 49 48 46 43
Incorrect | 173 133 135 142
Pairs

Table 6.7: The number of correctly paired activities, giwxpertise knowledge priors, compar-

ing the unconstrained local explanation with global exglions found using heuristic search
techniques.

Figure 6.18 shows three sequences that were correctlgvettionly when the global
explanation is found using RIMCMC-SA. The intermediateepia failed to be correctly
paired originally because the object carried as the perstomns to the building was not
recognised as a carried protrusion. As the search progtessegher posterior was found
by labelling the protrusion as a carried object and linking texit’ to the subsequent

‘enter’. The figure also shows the framework’s ability toreatly discover an ‘exit-enter-
exit-enter’ sequence.
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Figure 6.18: Correctly paired sequences when global exgtians are considered.

6.6 Conclusion

This chapter has presented a second case study using trewfoaknpresented in Chap-
ters 3 and 4. Th&nter-Exitproblem, introduced in this chapter, is formally definechgsi
an AMG. All attributes, rules and constraints enable pardive detections of people and
carried objects into global explanations. The detectairserke a multiset of terminals
along with values assigned to the synthetic attributes éefin the grammar. The frame-
work introduced in Chapter 3 is used to transform the AMG gonultiset of detections,
into a Bayesian network.

Tested on 12 hours of recorded video, the framework enallém{ global explana-
tions that relate people tracked around a building entrahlse global explanation tracks
people, along with any objects they might be carrying, in antof the building. This
problem demonstrates the generality of the framework artti¢u supports the case for
searching the solution space using RIMCMC-SA. ResultsatdiMHT does not scale
well and IP linear solvers could not cope with the increag@énumber of constraints.

When compared to ground-truth data, tBeter-Exitglobal explanation achieves a
recall of around 30%, yet a precision of only 12%. This is liseathe features used to
link events are weakly discriminative. People tracked id ant of the building cannot
be linked by matching their projected height and clothintpapalone. A high number
of false links originate from people of similar clothing oalr and height. Decreasing the
priors would increase the precision yet decrease the reGdlier features like gait [63,
110], spatial histograms [151], build and skin tone [141¢lothing description [26] can
be incorporated. When people are not expected to leave ¢hgied objects behind,
carried objects can assist the matching of individuals asotstrated in this chapter’s
results.

A different variation of théenter-Exitproblem is to distinguish groups of people walk-
ing together using a global explanation. An AMG would thenspaboth individual and
group trajectories as detections. The explanation woyldiotidistinguish group trajec-
tories and link them to subsequent appearances of the googeparate appearances of
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its individuals. A global explanation can be used to disajuate the uncertainty in the
number of people within each tracked blob. If two people wdrgerved entering a build-
ing together and yet each of them left alone, the global exgtian can provide a more
reliable estimate of the number of people in the enter exaard, probably segment the
blobs into separate individuals. This application is aern@sting one that could benefit
from pursuing global explanations, and is mentioned heradbtivate other scholars.



Chapter 7

Detecting Carried Objects in Short
Video Sequences

The detection of carried objects is a potentially importabjective for many security
applications of computer vision. However, the task is iehdy difficult due to the wide
range of objects that can be carried by a person, and theafiffevays in which they
can be carried. This makes it hard to build a detector fornedmwbjects based on their
appearance in isolation or jointly with the carrying indival. An alternative approach is
to look for irregularities in the silhouette of a person, gesting they could be carrying
something. This is the approach that the method presenttdsichapter adopts, and
whilst there are other factors that may give rise to irregtés, such as clothing and
build, experiments on a standard dataset are promising.

The detector assumes a static background and starts bygagedigned foreground
regions of a walking pedestrian to produce a representafiomotion and shape (known
as atemporal templatgthat has some immunity to noise in foreground segmentaiiod
phase of the walking cycle. This representation, introdund34], was used in [64, 66]
for the same application. The temporal template is then neat@gainst a pre-compiled
exemplar temporal template of an unencumbered pedesiaased from the same direc-
tion. Protrusions from the exemplar are detected as catedpeels for carried objects.
Finally, prior information about the expected locationsafried objects is incorporated
together with a spatial continuity assumption in order tpriave the segmentation of pix-
els representing the carried objects. Figure 7.1 sumnsargeng with an example, the

133
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Figure 7.1: All the frames across the sequence are first aligrimhe temporal template represents
the frequency of each aligned pixel being part of the foregh The exemplar temporal template
from a similar viewing angle is transformed (translatiomakng and rotation) to best match the
generated temporal template. By comparing the temporaplaie to the best match, protruding
regions are identified. MRF with a trained map of prior locats is used to decide on the exact
pixels representing carried objects.

process of detecting carried objects.

Section 7.1 reviews previous work on the detection of cdrabjects. Section 7.2
presents the new method, based on matching temporal texaplastudies the pros and
cons of using periodicity analysis to classify protrusiarsd then incorporates locational
priors and a spatial continuity assumption for segmentangi@d objects. Experiments
comparing the performance with the earlier work from Hawgga et al. on the PETS2006
dataset [44] are presented in Section 7.3, along with atatia® discussion on applying
the results to th&nter-Exitproblem dataset. The chapter concludes with an overall dis-
cussion.

7.1 Previous work

Several previous methods have been proposed for detechiather an individual is car-
rying an object. TheBackpacki64, 66] system detects the presence of carried objects
from short video sequences of pedestrians (typicallyrigsti few seconds) by assuming
the pedestrian’s silhouette is symmetric, and that peodibe periodic motion while
moving unencumbered. Foreground segmentations are dligsiag edge correlation.
The aligned foreground masks are combined into the tempemgblate that records the
proportion of frames in the video sequence in which eachl pigs segmented within
the foreground. Next, symmetry analysis is performed. Tiecppal axis is computed
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using principal component analysis of two-dimensionahtamns, and is constrained to
pass through the median coordinate in the vertical and twatd directions. For each lo-
cationx, relative to the median of the blob, asymmetry is detecterkbigcting the point
in the principal axis (Figure 7.2). The proportion of framesvhich each location was
classified as asymmetric is calculated. Consistent asynmh@tations are grouped into
connected components representing candidate blobs.

pi

Figure 7.2: For each foreground segmentation, the printiges is found and is constrained to
pass through the median coordinate of the foreground setatien. Light grey represents the
asymmetric regions.

Backpackthen distinguishes between blobs representing carriexttsogand those be-
ing parts of limbs by analysing the periodicity of the hona projection histograms.
The periodicity analysis calculates the periodic freqyeoicthe full body, and that of
each asymmetric regionBackpackassumes the frequency of an asymmetric blob that
represents a limb is numerically comparable to that of tiiebfady. Otherwise, it is be-
lieved to be a carried object. Figure 7.3 reviews the proaoesy) an re-implementation
of Backpack based on their published work.

From the re-implementation, errors in tBackpackmethod arise from four sources.
Firstly, the asymmetric assumption is frequently violat&tcondly, the position of the
principal axis is often displaced by the presence of thaezhwbject. It should be men-
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Figure 7.3: Light grey represents the two detected asynimedgions. Asymmetric regions are
projected onto the horizontal projection histogram. Pdrigity analysis is performed for the full
histogram [Freq = 21] and for regions 1 [Freq = 11] and 2 [Freq 21]. As region 2 has the same
frequency as the full body, it is not considered a carrieceob)j
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tioned that there are other methods to position the majas, dikie forcing it to pass
through the centroid of the head [65] or the ground point ef person walking [70].
Thirdly, accurate periodicity analysis requires a suffitieumber of walking cycles to
successfully retrieve the frequency of the gait. Fourtthlg, periodicity of the horizontal
projection histogram does not necessarily reflect thegyadtiodicity.

Later work by Benabdelkader and Davis [12] expanded the wbHaritaogluet al.
by dividing the person’s body horizontally into three stic&he periodicity and amplitude
of the time series along each slice are studied to detecatiens from the ‘natural’
walking person and locate the vertical position of the ea@robject. They verified that
the main limitation in Haritaoglet al’s method is the sensitivity of the axis of symmetry
to noise, as well as to the location and size of the carriedad(s).

The work of Lee and Elgammal also uses silhouettes for ptiadithe locations of
carried object and segmenting them on per-frame basis T9%.training process finds a
low-dimensional representation of the kinematics maditpVen the joint angles in three
dimensional space. For each silhouette, an iterative psoftieds the best match of the
pose, the viewpoint and the shape. The iterative processH#l holes in the foreground
segmentation to find better matches, as matching reliesgmiraj) the centres of gravity
of the shape and the foreground region. Carried objectharedefined as the unmatched
pixels in the foreground region. The approach does not assyatially continuous car-
ried object pixels. Similar to the method presented in thegter, this work only detects
protruding carried objects, yet is sensitive to foregrosagdmentation errors as it does
not use temporal templates [12,66]. The approach was ormltatively analysed.

Brancaet al.[22] try to identify intruders in archaeological sites.rinders are defined
as those carrying objects such as a probe or a tin. It assuipesan is detected and
segmented. Their approach thus tries to detect such cajedts within the segmented
foreground region. Detection is based on wavelet decortipnsand the classification
uses a supervised three layer neural network, trained angea of probes and tins in
foreground segmentations.

Differentiating people carrying objects, without locafithe carried object, has also
been studied. One example is the work by Naatlal. [107]. Supervised learning was
accomplished based on examples of unencumbered pedsstndmoutliers. Outliers are
“unusual-looking pedestrians... caused by wearing a heawwying an object”. A three-
layer neural network was used for classification. This wopgérformance depends on the
presence of a similar object within the same viewpoint inttaing data.

Alternatively, the work of Tacet al. [137] tries to detect pedestrians carrying heavy
objects by performing gait analysis. The task was perforomdg general tensor dis-
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criminant analysis, and was tested on the USF HumanlID galysis dataset.

Recent work by Ghanem and Davis [51] detects abandoned gadnacomparing
the person before approaching a region of interest andla#teing it. Carried objects are
detected by comparing the temporal templates (the ternufmanecy map’ is used in their
work to reference the same concept) and colour histograntiseofoefore’ and ‘after’
sequences. The approach assumes the person is detectedamdcthat the trajectory
of the person before approaching the region of interest #iled departing are always
correctly connected. It also assumes all observed indaldiollow the same path, and
thus uses two static cameras to record similar viewpoints.

Similarly, Chuanget al.s recent work assumes the person is seen with and without
the bag [27]. The ratio of the colour histograms between ecms/e frames is used to
detect the change in colour components and thus the preseraraoval of an object. By
observing people coming in close proximities, the work aimsdetect the exchange of
carried baggage, which signifies suspicious events likiessth€he assumption of observ-
ing the person before and after the change in carrying ststagplication-specific and
cannot be used as a general carried object detector.

The novel method, described in Section 7.2, also uses thegoritemplate but dif-
fers from earlier work [51, 64] in matching the generatedgenal template against an
exemplar temporal template generated offline from a 3D maidelvalking person. Sev-
eral exemplars, corresponding to different views of a wagkperson, are generated from
reusable silhouettes. The temporal templates provideretimunity to noise in fore-
ground segmentations, and enable matching each sequelycenae to the exemplar.
The new approach does not require the pedestrian to be el@teith and without the car-
ried object, and can handle different viewpoints. It deteaty type of carried object (not
merely backpacks), and can be considered a general appi@alehtecting protrusions
from other deformable tracked objects.

7.2 Description of the method

The method starts by creating the temporal template frongaesee of tracked pedestri-
ans as proposed by Haritaogltial.[66]. The foreground segmentations at each frame are
often noisy due to shadows and camouflage. The temporal &enplcreated by aligning
and then averaging the foreground segmentations. Figdrehows a set of foreground
segmentations and their corresponding temporal templedealign the segmentations,
Haritaogluet al. suggested an edge correlation with & 8 search window. To avoid
a predefined displacement window, Iterative Closest PdCR) is applied, instead of
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Figure 7.4: Foreground segmentations along with the crdamporal template.

edge correlation, to align successive boundaries. The I@étidom aligns two clouds
of points. It finds the closest match for each point and esémthe least square error
transformation. The calculated transformation (tramshgtrotation and scaling) is ap-
plied, and the procedure is iterated until the error fallewea threshold or the maximum
number of iterations is reached [15]. ICP is performed oneitige points of the traced
boundary around the foreground segmentation. Experirtigntagives a more accurate
alignment in the presence of shape variations between cotige frames (Figure 7.5).
While the original method averages all aligned silhoud@6é§ an additional step is intro-
duced to further decrease the noise in the temporal tensplateanks the frames by their
similarity to the generated temporal template. The highastedp% of the frames are
used to re-calculate a more stable templatis. set to 80 in the results shown below. The
more expensive Least Median of Squares (LMedS) estima®@] [dave similar results.

QUL

Figure 7.5: Edge correlation temporal template withis x 15 (left) and 30 x 30 (middle) dis-
placement windows. ICP model (right) does not require amaipeters.

Having derived a temporal template from a tracked pedestoae of eight exem-
plars are used to identify protrusions by matching. Thesengtar temporal templates
represent a walking unencumbered pedestrian viewed fréfereht directions. A set of
exemplars for eight viewing directions was created usirgdéitaset of silhouettes gath-
ered at the Swiss Federal Institute of Technology (EPFL).[3he dataset is collected
from 8 people (5 men and 3 women) walking at different speadstoeadmill. Their mo-
tion was captured using eight cameras and mapped onto a 3@ Maglel (Figure 7.6).
The dataset is comprised of all the silhouettes of the mapfa@d model, and has previ-
ously been used for pose detection, 3D reconstruction amdegagnition [37,47]. The
temporal templates of different individuals in this datese averaged to create the ex-
emplar for each camera view. The eight exemplars (Figunearefused for detecting the
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areas representing the pedestrian. The unmatched regmes@ected to correspond to

[SRRENAT:

carried object(s).

Figure 7.6. Eight cameras for
capturing the Silhouettes atFigure 7.7: Eight exemplar temporal templates, created to
EPFL. Diagram from [37] represent eight viewpoints.

To decide on which exemplar to use, a homography is estinfictedthe image plane
to a coordinate frame on the ground-plane. This allows ediom of the position and
direction of motion of each pedestrian on the ground. Thetgm the ground-plane di-
rectly below the camera is estimated from the vertical \i@nggpoint. The angle between
the line connecting this point to the pedestrian and thectioe of the pedestrian’s motion
gives the viewing direction, assuming the pedestrian isfatheir direction of motion.
This ignores the elevation of the camera above the groungdil generating new ex-
emplars for different elevations, although this approxioramay be unnecessary since
generating the prototypes is fast and need only be done dheemean of the computed
viewing directions over the short video sequence is usedlextthe corresponding ex-
emplar. Diagonal views (2,4,6,8) are used to match a widegeaf angles (60 in
comparison to frontal views. This is because the silhosett@nge more drastically near
frontal views.

The chosen exemplar is first scaled so that its height is the sa that of the generated
temporal template. The median coordinate of the tempamgbkate is aligned with that of
the corresponding exemplar. An exhaustive search is théarpeed for the best match
over a range of transformations. In the results, the choaeges for scales, rotations
and translations are [0.75:0.05:1.25], [-15:5:15] and®{3330] respectively. The cost
of matching two templates is am lmeasure, linearly weighted by the y coordinate of
each pixel (plus a constant offset), giving higher weighti®head and shoulders region.
Equation 7.1 represents the cost of matching a transfornatehiViT) to the person’s
temporal templateR), whereh represents the height of the matched matrices.

d(Mr,P) =% [Mr(xy) —P(x,y)[(2h—Y) (7.1)
29Y%
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The best mathAT is the one that minimises the matching cost
Mt = argmind (M, P) (7.2)

Figure 7.8 shows an example of such a match and the locatbdlgionimum. The
best matchMy is then used to identify areas protruding from the temp@maiiate:

prOtrUdinqxv y) = maX(O, P<X7 y) - '\//ITF(Xv y)) (73)

Pixels whereP(x,y) < I\/IAT(X, y) are assumed to have been caused by noise, or poor fore-
ground segmentation. For the initial results in Section & protruding values are
thresholded and grouped into connected components reprggeandidate segmenta-
tions of carried objects. Another threshold limits the minim area of accepted connected
components to remove very small blobs. An enhanced approatitonstrained by se-
lecting thresholds, is presented in Section 7.2.2 wherensatation is achieved using
binary-labeled MRF formulation, combining prior inforn@t and spatial continuity.

(@) (b)

|

15707 o8 ©
cale

Figure 7.8: The temporal template of the person (a) is mat¢behe corresponding exemplar (b),
the global minimum (d) results in a map of protruding pixeds (In (d), the best translation for
each scale and rotation is only shown.

7.2.1 Periodicity analysis

Periodicity analysis was proposed by Haritaogi@l. to distinguish carried objects from
other asymmetric regions. This section is devoted to emlgiperiodicity analysis, as

results demonstrate improved performance when perigdioilysis is used classify pro-
trusions. The algorithm for periodicity analysis descdlheere is based on the original
work by Cutler and Davis [31,32]. This is because the methedgnted in [64] to find the

periodicity from horizontal projection histograms lackstimematical justification when

compared to the work of Cutler and Dauvis.
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After aligning foreground segmentations using ICP,i4. used to compare two fore-
ground segmentations. Figure 7.9 (a) shows the similardtrisn(S) where darker cells
indicate higher similarity. The contrast in the similarityage is sometimes not so clear.
Thus an adaptive histogram equalisation is used to enhaa@®htrast within the image.
This contrast-enhancement technique is added to the atiGuitler and Davis technique
as it improves performance for noisy foreground segmenntati

Next, the similarity matrix (S) was converted to an autoefation matrix (A) using
Equation 7.4 from [32]. The size of the autocorrelation imxatepends on the autocorre-
lation regionR around each point in the similarity matrix.

> (V%) —V(x+dxy+dy))

A(dx, dy) - (X7y)ER (7'4)
Y V(xy)? 3 V(x+dxy+dy)?
(xy)eR (xy)eR

In Equation 7.4V (x,y) = S(X,¥) — Sr(X,y) whereSy is the region of siz& centred around
(x,y¥). The functionV subtracts the mean of the values in regidoentred afx,y) from
the similarity valueS(x,y).

After obtaining the autocorrelation image, °48quare lattices are used to find the
dominant frequency. For a range of possible frequergtiesminFreq maxFred, square
lattices are compared to the autocorrelation matrix to five dutocorrelation matrix’s
frequency. Thd.; measure between the autocorrelation image and a squace latt
frequencyd is normalised (i.e. divided by the number of points in theida). The
lattice with the minimum normalisediimeasure is selected as the dominant frequency. If
multiple minima are found, the smallest frequency is comi®d as the image’s frequency.
Figure 7.9 presents an example of how the dominant frequierfoynd.

In addition to the periodicity analysis performed for thé body, a similar analysis is
performed for each protruding region. The foreground insaaye masked by the detected
protrusion region, and the masked foreground images aarakysed for periodicity. The
periodicity analysis though requires a sufficient numbecyfles to produce accurate
autocorrelation images. The baggage detector presentisichapter relies on short
video sequences, as the person is not expected to changalitiegndirection within the
sequence. Short sequences often fail to show any detegiidelicity. By implementing
the periodicity analysis, only 35% of the retrieved proions showed any detectable
periodic motion.
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(a) 9 @)

Figure 7.9: The sequence on top shows 12 frames of a sequepgesenting half a walking
cycle. The frequency (f=12) is found using periodicity gsa&. First, the similarity matrix (s) is
calculated (a). When (a) is directly converted to an autoelation image (b), the periodicity is
not obvious. Adaptive histogram equalisation is appliedapto generate a contrast enhanced
image (c). The resultant autocorrelation image (d) wouldrtlshow clear periodicity, and the
chosen square lattice (e) represents the correct frequérdy).

7.2.2 Using prior information and assuming spatial continuty

The protruding connected components can be at locationsevdagried objects are not
expected like hats on top of heads. Training for carried adgcations relative to the
person’s silhouette can better differentiate carried abjérom other protrusions. This
could also be considered a labelling problem that bene@ite fissuming spatial continu-
ity amongst neighboring locations.

Training is used to generate a map of prior locati®@sfor each viewpoind. Prior
information for each location is calculated by the frequeatits occurrence within a
correctly-detected carried object across the training 3edining values are also used
to estimate the distribution of protrusion values condi&id on their labelling. Finally,
this information is combined into a Markov Random Field (MR#etermining an energy
function which is minimised.

Training for carried object locations is accomplished byppiag the temporal tem-
plate, using the inverse of the best transformation, tonahbgts corresponding exemplar.
Each locatiorx within the person’s temporal template has to be labeled lambmg to a
carried objectify = 1) or not fny = 0). Using the raw protrusion valugs= protrudingx)
calculated in Equation 7.3, the class-conditional dessi{v|my = 1) and p(v|my = 0)
are modeled based on training data. The energy function tmibenised EM) over
Imagel is given by Equation 7.5.

Em) = 5 (@0md +omi@)) + 5 yimem) (7.5)

(xy)e?
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o(v|my) represents the cost of assigning a label to the locatibased on its protrusion
valuev in the image:

iy — {Iog(p(vmx 1) ifme=1 76

—log(p(vimy=0)) if mx=0

w(my|©) is based on the map of prior probabilit®syiven a specified walking direction:

wim@) — 4 ~09PC®)  ifme=1 -
—log(1-p(x©)) if m=0 '

The interaction potentiap follows the Ising model over the cliques, whe&ferepresents
all the pairs of neighboring locations in the imdge

A ifmy#Emy
0 ifmy=m

(Mg, my) = { (7.8)

The interaction potentiap is fixed regardless of the difference in protrusion values
locationsx andy. A data-dependent term was not chosen because the protnedices
represent the temporal continuity, and not the colour dutexinformation.

7.3 Experiments and results

This section presents results on two datasets. First augbrevaluation on the publicly

available PETS2006 dataset is presented. The ground trudafried objects was manu-
ally obtained, thus a quantitative and qualitative analisprovided for this dataset. Next,
the trained priors from PETS2006 are used to detect carbtts in the video sequence
used for theEnter-Exitproblem. A qualitative discussion of the results is present

7.3.1 PETS2006

The third camera of the PETS2006 dataset is selected, as ithargreater number of
people seen from the side. Side-views usually result in #reed objects protruding
from the silhouette. The ground-plane homography was ksitilol using the ground truth
measurements provided as part of the dataset. Moving sbjexe detected and tracked
using the same tracker [100] to retrieve foreground segatients. The tracker's shadow
remover worked reasonably well on the dataset. Trajed@t®rter than 10 frames in
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length were discarded. As this method cannot deal with grofipeople tracked together,
such trajectories were also manually removed. The cariigects in the dataset varied
between boxes, hand bags, briefcases and suitcases. Upbges are also present
like a guitar in one example. In some cases, people wereiogrmyore than one object.
The number of individually tracked people was 106. Groumdhtifor carried objects

was obtained manually for all 106 individuals. 83 carriegecots were tracked, and the
bounding box of each was recorded for each frame (Figure.7Bd&unding boxes were

chosen instead of pixel masks for simplicity.

Figure 7.10: PETS2006 Third camera viewpoint showing gcuath bounding boxes represent-
ing carried objects.

The results compare the re-implementatioBatkpaclas specified in their papers [64,
66] with the proposed method (Section 7.2). To ensure fampgarison, the same tem-
poral templates are used as the input for both methods. Atitatds labeled as true if
the overlap between the bounding box of the predicted chatigect pp) and that of the
ground truth By) exceeds 15% in more than 50% of the frames in the sequence. Th
measure of overlap criterion is defined by Equation 7.9 [41]:

aredbpnbgt)

overlagbp,bgt) = aredb, U bgt)

(7.9)
A low overlap threshold is chosen because the ground trutindiog boxes enclose the
whole carried object, while both methods only detect thespair the object that do not
overlap the body. Multiple detections of the same objectartmted as false positives.
The results are first compared without periodicity anal¢ESigplained in Section 7.2.1).
Each of the two algorithms has two parameters to tune, onghfesholding and one for
the minimum size of the accepted connected component. dtvedRecall (PR) curves
for the two methods are shown in Figure 7.11 (left). Theseevgemerated by linearly
interpolating the points representing the maximum preni$or each recall. They show
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Figure 7.11: PR curves for the proposed method compared titddglu et al.'s method without
(left) and with (right) periodicity analysis to classifyehetrieved blobs.

a substantial improvement in performance for the proposetthod. Maximum precision
on a recall of 0.5, for example, was improved from 0.25 usisygnanetry to 0.51 using
matching. Maximum recall was 0.74 for both techniques, asytemporal templates and
non-protruding carried objects affect both techniquegufg 7.12 shows some examples
comparing asymmetry analysis with matching temporal tenegsl

To further compare the methods, the results after perfagmpariodicity analysis are
compared. To achieve that, all optimal setting points akbegurves in Figure 7.11 (left)
are used, and the two thresholds for periodicity analyssvaried. These are for the
minimum confidence for periodicity and the threshold for thierence in periodicity.
Figure 7.11 (right) shows PR curves analogous to those ior€i@.11 (left) but now
including periodicity analysis, again taking the maximuragision for each recall. The
improved performance of the matching method is still appiaren addition, comparing
the corresponding curves shows that periodicity analydsimproving the performance
for both methods.

Next, spatial continuity is assumed along with trained gzioResults are presented
along with a discussion of the advantages of training foorplocations. The pedestri-
ans in the dataset were divided into two sets, the first coimzi56 pedestrians (Sets
1-4 in PETS2006) and the second containing 50 pedestriaats §57). Two-fold cross
validation was used to detect carried objects.

During training, connected components are obtained usihgeahold of 0.5. Correct
detections, by comparing to bounding boxes from the grouutti,tare used to train for
locations of carried objects separately for each direeligrspecific exemplar. To make
use of the small training set, maps of opposite exemplars@rined. For example,
the first and the fifth exemplars are separated by 183 and®s are thus combined by
horizontally flipping one and calculating the weighted age©, 5 (by the number of
blobs). The same applies f@ ¢, ©37 and©4g. Figure 7.13 show®, g using the two
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(b) (c) (d)

Figure 7.12: Three examples (a), along with their tempoeahplates (b) are assessed using both
techniques. The asymmetric regions (c-top) thresholdem@d and the protruding regions (c-
bottom) thresholded (d-bottom) show some examples of hopldée matching retrieves better
estimate of the carried objects.

disjoint training sets.

Figure 7.13: For the second exemplar (lef,e(middle) was generated using sets 1-4, and
O, 6(right) was generated using sets 5-7. The location m@lbahks high values where stronger
evidence of carried objects had been seen in training. Armi®.2 was used when no bags were
seen. By symmetr§s is a horizontal flip.

Figure 7.14 presents the distribution of protrusion valeesarried objectsr{y = 1)
and other protrusionsrg = 0). By studying these density distributiongy|my = 1) was
approximated by two Gaussian distributions, one for stableied objects, and another
for swinging objects. The parameters of the two Gaussiame weanually chosen to
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Figure 7.14: Pixel values distribution for objects (leftydnon-objects (right) protruding pixels.
Thresholded pixels{0.5) that match true detections are compared to ground tribn are used
to train p(v|my = 1). The rest are used to train(gmy = 0).

approximately fit the training density distributions.
p(vimy =1) = y.4'(v;0.6,0.3) + (1 — y).4"(v; 1.0,0.05) (7.10)

y is the relative weight of the first Gaussian in the training $ts value resulted to be
0.64 for the first training set, and 0.66 for the second disjget. The density distribution
p(vimy = O0) resembles a reciprocal function. It was thus modeled as:
1/(v+B)
PO Tog(1-+ B) - Tog(B) 71

B was setto 0.01. The denominator represents the area urdasre for normalisation.

The max-flow algorithm, proposed in [21], and its publicaailable implementa-
tion, minimises the energy function (Equation 7.5) retngwegions representing carried
objects. The smoothness cost teknwas optimised based on the used training set. In
order to compare the MRF formulation with simple threshaiglithe parameters are op-
timised on each training dataset and tested on the othelMR##, A was optimised on
the training datasets resulting in 2.2 and 2.5 respectiVielyle 7.1 presents the precision
and recall results along with the actual counts combineth®two test datasets, showing
that MRF produces higher precision and recall results.

Precision Recall TP FP FN
Thresholding| 39.8% | 49.4% | 41| 62 | 42
MRF - Prior 50.5% | 55.4% | 46 | 45 | 37

Table 7.1: Better performance was achieved by introdudmegMRF representation.

To evaluate the effect of introducing location models, teentw(my|©®) was re-
moved from the energy function and the results were re-tatled. A was varied between
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[0.1:0.1:6] to produce the PR curves in Figure 7.15 that destrate the advantage of in-
troducing location prior models. Examples in Figure 7.16vslmow prior models affect
estimating carried objects.

0.2 | —— MRF With Prior

0.1} | ==~ MRF Without Prior

0

0O 01 02 03 04 05 06 07 08 09 1
Recall

Figure 7.15: PR Curves for detecting carried objects usingMIntroducing location maps to
encode prior information about carried object location®guces better performance.

© © )

(b (d

Figure 7.16: The yellow rectangles show the choice of cdrogjects using MRF with location
models. Red rectangles refer to MRF without location mod&i®r information drops candidate
blobs at improbable locations (a,b), and better segmem®tject (a,c). It nevertheless decreases
support for carried objects in unusual locations (d).

Quantitatively, for the 45 false positive, and 37 false niegacases, Figure 7.17 dis-
sects these results according to the reason of their ocmareFigure 7.18 presents a
collection of results highlighting reasons of success aathrsources of failure.

7.3.2 LEEDS 2009

This section details how the baggage detector was run orfexatit dataset, which has
been used to test the global explanation for Erger-Exit problem (Chapter 6). The
dataset consists of a full working day (12 hours of recorflinghe tracker retrieved
only the set of trajectories that passed through the iniagegone (marked with a grey
rectangle in Figure 7.19, to track people around the buldintrance. After manually
removing groups of people walking together, 326 trajeesowere considered for baggage
detection.

The new dataset differs in that a person is tracked for a lopgdod, and people
often change their walking direction. The depth of the viewpalso introduces a change
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Reasons behind FP detections Reasons behind FN detections
Protruding parts of clothing 15 Bag with little or no protrusion 9
Protruding body parts 10 Dragged bag tracked separately by tracker | 6
Extreme body proportions | 6 Carried object between legs 5
Incorrect template matching 5 Carried object not segmented from background
Noisy temporal template 5 Little evidence of prior location in training 3
Duplicate matches 4 Swinging small object 3

Total | 45 Noisy template 3
Incorrect template matching 2

Merging two protruding regions into one 2

Total | 37

Figure 7.17: Reasons behind False Positive (FP) and Falggahe (FN) detections.

(b) © @ © 0 © )

Figure 7.18: The proposed method can identify single (a) altiple (b,c) carried objects. (d)
shows its ability to classify true negative cases. Objedtsraling over the body are split into two
(e). Failure cases may result from poor temporal templatgs t poor foreground segmentation
(). The map of prior locations could favor some false puesitbbjects (g). This method is not ex-
pected to cope with extreme body proportions (h). The semwwmdhows the detections projected
into the temporal templates, and the third row shows deiastprojected into a single frame of
the sequence.

in scale along the trajectory for people walking toward oagrom the camera. Thus,
each trajectory is partitioned into sequences, each ofd&sfids maximum. The temporal
template is created separately for each partition. Figuir@ Shows the dataset’s viewpoint
along with multiple foreground segmentations for the samgd¢tory. This trajectory
was split into three parts, and Figure 7.20 shows the bagdetgetion results for one
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frame from each part. As the baggage detector assumes the pegfruding from the
normal silhouette, different viewpoints give rise to diffat detections. While the first
viewpoint did not detect any protrusions, the second diagewpoint enabled detecting
the carried bag, while the third horizontal viewpoint shavbeth the carried bag and the
held jacket as protrusions.

-

Figure 7.19: The viewpoint for the second baggage datasewsty the different viewpoints.

Figure 7.20: A trajectory was split into three sequenceghinfirst sequence, carried objects were
not protruding. In the intermediate one, the carried bag wetected, while both the bag and the
jacket were detected from the third viewpoint.

The trajectories are partitioned uniformly regardless bkther the viewpoint, the
direction of motion or the scale have changed. Alternagjv&lsliding window detector
could be established instead of slicing the trajectory. fEselts presented here did not
use a sliding window approach to speed detection. The grplarte homography was
manually obtained, along with finding the vanishing poinheTbaggage detections for
the complete dataset were based on the same location paorsd using the PETS2006
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dataset. The encouraging results prove the ability of longbriors to be transformed
between different camera viewpoints and elevations asdheynapped to the same 3D

exemplars.

Figure 7.22: LEEDS2009 - a collection of incorrect baggagtettions.

This section does not present any quantitative results,magraual ground truth was
not obtained. A selected collection of success and failagghge detections are shown
in Figures 7.21 and 7.22. Figure 7.21 shows 8 trajectori¢ls successful detections.
The detections are shown on the temporal template and pedjen a single frame in
each case. Figure 7.22 shows 7 incorrect detections. Thesr @orange of cases in
which the detector fails. The first case results from pooedoound segmentation. The
tracked individual is wearing a jacket which is very similarthe background’s colour.
Camouflaging results in a noisy temporal template and iecbetections. The second
failure case results from the baggage not being segmenieattsf the foreground. The



Chapter 7 152 Detecting Carried Objects

stationary arm holding the bag is detected as the carriegtbhlijstead. The third, fourth
and fifth examples are false negative cases where the cainjedt is not sufficiently
protruding to be detected. Example six successfully deteat objects but the bounding
box extends to include the stationary arms carrying theabbjas well as a protruding
coat. The last case fails in matching the temporal temptatee unencumbered model.
By reviewing Equation 7.2, the match gives higher weight &tching the head and the
shoulders of the model. In this example, the head and thdd#rsuare occluded by the
carried object, which resulted in an incorrect match. Thitection of success and failure
cases adds to the reader’s understanding of the strenglhsesaknesses of the baggage
detector.

7.4 Conclusion

This chapter proposed a novel method to detect carried tshjgiecning at higher robust-
ness than noisy single frame segmentations. Carried shgeetassumed to cause pro-
truding regions from the normal silhouette. Like an eantreethod, this method uses a
temporal template but matches against exemplars rathea#sming that unencumbered
pedestrians are symmetric. Evaluated on the PETS2006etatias method achieves a
substantial improvement in performance over the prevjopsblished method. Training
for locations of carried objects and using an MRF to enco@éiapconstraints results in
further improved performance.

The method depends on two assumptions, the first is that aoramigmplate can
be constructed from foreground segmentations, and thaxdesahat carried objects are
protruding from the body’s silhouettes. Temporal tem@atemetimes fail to produce
adequate results due to poor foreground segmentation asejonented shadows. The
baggage detector does not currently evaluate the qualityeofalculated temporal tem-
plate prior to matching the template to an unencumbered pkeemA measure of the
temporal template’s quality is left for future work.

Due to its dependence on protrusion, the method cannottdedeeprotruding car-
ried objects. It may not be able to distinguish carried disjéom protruding clothing or
non-average build. Future improvements to this method tiighachieved using texture
templates to assist segmentation based on color informatio addition, the indepen-
dence assumption in learning prior bag locations could bdiedl to utilise shapes of
previously seen bags in producing better segmentationseniatured, this technique
can be embedded into surveillance and security systemaithadt tracking carried ob-
jects or detecting abandoned objects in public places.
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Conclusion and Future Work

This thesis proposes a framework for explaining an actgyitgn an input video sequence.
The approach uses the natural constraints within the actwifind a consistent set of
events that covers all detections. This complete and demsiset of events is referred to
as a global explanation. Using a Bayesian approach, theriMaria Posteriori (MAP)
explanation is selected as the best explanation.

In achieving the task, the activity and its constraints agscdbed using Attribute
Multiset Grammars (AMG). AMGs allow specifying attributées, as well as constraints
that confine the grammar’s parses to consistent ones. Eadhgiion rule in the grammar
rewrites a nonterminal into an un-sequenced collectiomopker events (i.e. a multiset).
The composition thus does not enforce any temporal relstiips, and those are defined
as constraints in the grammar only when needed. Using atitritules, the features re-
trieved for each detection can be propagated up the paeséteyaluate the interactions
between objects representing compound events. Priorsarditional probabilities are
assigned by expert knowledge. A labeled set of training seces is used to learn the
likelihoods for the selected features.

For each input video, detectors retrieve the set of detestiwhich represents terminal
symbols along with the synthetic attribute values. An atpan then builds a Bayesian
Network (BN) to model the probability distribution over tlset of global explanations
for these detections. Each possible event, given the dmtscis represented by a node
in the BN. The set of possible labellings of the BN corresmotadthe set of all global
explanations. Heuristic search techniques are propodetitthe MAP, as combinatorial
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search becomes intractable when the complexity and darafithe activity increase.

The framework is tested for two problems, and experimemsililts are compared.
This chapter discusses the ability to generalise the frasrieto other problems, along
with its limitations. For a comprehensive conclusion, a fegues are incorporated into
this chapter. Section 8.2 reviews alternative technigaesdmbining multiple features.
Section 8.3 introduces risk management and utility thessythe best global explanation
need not be the MAP solution when used for a specific appticaiihe chapter concludes
with suggested future work for interested scholars.

8.1 Generalisation and limitations

Several aspects need to be emphasised to explain the ggnasalvell as the limita-
tions of the proposed framework. First of all, both case issidre defined as binary
AMGs, where each nonterminal is rewritten as a multiset of $yymbols. The method in
Chapter 3 can build the BN structure for any production Xje— Xi,...X,,, and deals
with direct recursion in the production rules. As to the shdechniques, greedy, MHT
and IP can deal with any Bayesian network, whether it is yimamot. RIMCMC and
RIJMCMC-SA on the other hand require more move types to ddalwan-binary struc-
tures, because the proposed set of general moves suit lewemyhierarchies. The moves
can be extended, yet the same performance cannot be predidtes is because an in-
crease in the number of move types requires longer chainsnamnel complex proposal
distributions.

The generality of the framework can be tested by applying different activities. In
addition to the two case studies, the thesis proposes otimeaids where the framework
can be applied like car parks, and train platforms. Theseagtmsninclude multiple inter-
leaved unordered events with natural constraints thatel¢fie consistent set of events.
The domains are structured so the types of expected evenisiawn in advance, and
the gathered detections can be explained using the evethts activity’s hierarchy. For
example, sports games are structured activities that dmuttbfined and recognised using
this framework. Some scenarios in public surveillance #e structured like flowing
traffic, metro stations and car parks. Similarly, the evenis performs at the bank or the
post office are also typically structured.

In scenes where the activity consists of a large indepersitnof possible events,
the approach would obviously not show a significant improsetover local analysis.
For example, consider the activity in the main hall of a trstiation. It is challenging
to define in advance the possible events, and a person camrmeahy combination of



Chapter 8 155 Conclusion and Future Work

events, like pausing to make a phone call, waiting, pas$ingugh, etc. There are no
natural constraints in the relationship between thosetswemich could assist recognition.
Global explanations do not promise recognition improvetethis scenario. Moreover,
unstructured or unpredictable activities, like chaotiersrios or anomaly detection, are
not suitable for our framework.

Another issue worth discussing is the choice of detectarsecognising the events.
Detectors range from very general ambiguous ones to sproify detectors. For exam-
ple, the bicycle-cluster detector used in Chapter 5 is argédetector of change and its
detections are ambiguous as they include dropped and pirkegs of bicycles. Alterna-
tively, one can design a specialised detector for singlpkd bicycles. Such a detector
would be less ambiguous but subsequently more noisy. Gearakaguous detectors in-
crease the complexity of the global explanation, yet stiteggthe power of constraints
in disambiguating uncertain detections. Specific noisgdets, on the other hand, result
in simpler global structures. This trade-off is an interesissue for future research. In
this thesis, the detectors are general as the focus of tharasis on testing the ability of
global explanations to recognise events from ambiguotectens.

To apply the framework to a different activity, the AMG shdude defined. Given
a set of detections, the Bayesian network structure is tvoith the AMG. Then, priors
and conditional probabilities need to be estimated. Thsoimehow different from the
approach adopted in stochastic grammars. Figure 8.1 showsanple AMG and an
equivalent stochastic grammar with prior probability asated with each rule. The pos-
terior probability in the proposed framework is over all pibde parse trees, compared
to the stochastic grammar approach where the posterioapiltly depends only on the
parsed rules for this parse tree. Both approaches are g@earathat explanations can
be sampled from the posterior probability distribution.

Using the proposed framework, the required Bayesian né&tmaidels the probability
distribution over all explanations, and is built bottom+ngtead of top-down. The advan-
tage of bottom-up is shown when events are shared. The plttse AMG is not strictly
atree. Figure 8.2 shows an example where the event B is shatesh compound events
A; andAy. When this parse tree is evaluated, the probability of treneB should be
included only once in the posterior. In the bottom-up BNstkieasily achieved as com-
pound events are dependent on their constituent eventspiddwn approaches, a list of
already evaluated rules should be maintained by the parsenid duplication. It should
though be clarified that a stochastic grammar and top-doywnoaghes can be used in-
stead. It is a mirrored version of the approach. Furtherarebeis needed to compare
which probabilities are easier to define or learn.
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Proposed framework Stochastic grammar
S—A S—A [p1]
S—b S—b [p2]
S—c S—c  [1-pi-p]
A—c,b A —cb [1.0]
S
P(Alb,c)
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Figure 8.1: Comparison between the proposed framework soahastic grammar.
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Figure 8.2: When an event is shared (B in this example), #eis represented by a graph (left),
or the sub-tree can be duplicated (right).

Learning the prior and conditional probabilities from tiaig data would certainly
facilitate applying the framework to solve other probler@sie needs to be careful when
learning the probabilities. While the probability asstethwith each rule in SCFG can
be easily estimated from labelled training data, this isthetcase with AMG. In SCFG,
the weight of the ruleX — Y is obtained from the ratio of timex is rewritten asy to
the total number of timeX has been rewritten in the training data. This is referred to
as the Empirical Relative Frequency (ERF) estimates. Alsheyvs that ERF estimates
cannot be used to learn the probabilities for AMG from tnagndata, as ERF estimates
do not take into consideration the dependencies in appti@groduction rules [3]. ERF
estimates do not converge to the correct distribution asréneing set increases in size.
Abney proposes sampling to learn the correct probabiligs
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8.2 Likelihood of synthetic attributes

Chapter 3 assumed the synthetic attributes are indepeadénhe likelihood is obtained
from the product of cpdfs. Some synthetic attributes mightriore discriminative than
others, and attributes chosen by an expert might fail toyredignificant differences due
to noise in the measurements. For example, colour provee #\®ry ambiguous cue
when used in Chapter 6, though it was the obvious attribulbe tchosen by the expert.

Instead of treating the attributes separately, boostingldvbe an efficient way to
combine the different classifiers obtained from training $lgnthetic attribute values, and
form a more powerful classifier [16]. Boosting has been ssftdly applied for com-
bining features for classification [140]. A recent proposegroach is the HybridBoost
approach for jointly ranking and classifying detectionS][9Ranking would favour the
attribute values that correspond to correct events ovevahees of other events, while
classifying distinguishes the values of correct eventsiftbose of incorrect events. The
proposed HybridBoost combines Adaboost with RankBooseaon the parameters for
both ranking and classifying jointly.

Moreover, it is worth investigating whether dimensionahéduction techniques can
compress the features and generate attribute values titbat distinguish the occurrence
of events. Though these attributes would not be conceptaalaningful, there is scope
for unsupervised feature selection to combine featuresviayethat may better distinguish
event types.

8.3 Decision theory and utility management

Throughout the previous chapters, thest explanatioms thought to be the one that cor-
rectly recognises all the events. Given the uncertaingcteng for the MAP solution
tries to decrease the missed or incorrectly recognised®v&iten, when such a system
IS put to use, the objective is more complex than maximisiegdorrectly recognised
events [16]. This is well-explained in decision theory.

When used in surveillance, for example, recognising aeeaents would trigger ac-
tions. A reward for the recognition is measured by the clighb would be using the
system. A utility functioru is a numerical measure of this reward. Thus, if one esgist
preferred over anothep by the client, them(s;) > u(sp) [130]. For example, the reward
of catching a theft in th&icyclesproblem is higher than detecting a bicycle was safely
retrieved by its owner. The best explanation, in these tersngne that maximises the
utility of all recognised events. Some authors refer aliiwely to a loss functiom(s),
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which represents the loss resulting in misclassifying thenes. The optimal explanation
would then try to minimise the loss function [49].

When events are only probabilistically recognised due toetmrinty, decision anal-
ysis can be carried out in a Bayesian manner. The objectivédatben be to maximise
the expected utility. Thenaximum expected utility principle (MEW)aximises the sum
of the probability of each outcome times the utility of theéeaame.

maxz p(s)u(s) (8.1)

The recognition then extends beyond finding the MAP, to fig@in optimal recognition
strategy that maximises the expected utility. The utilyarely a static function. Often
the domain has a ‘finite horizon’, which means the client'irapl explanation changes
with time [49]. For example, the tolerance for abandonedjbgg in surveillance changes
according to the threat level at that time. Future work cam\stncorporating utility
management in the proposed framework.

Moreover, sensitivity analysis is particularly importamtdecision making systems.
Sensitivity analysishecks whether the decision taken is sensitive to smallggsim the
probabilities and utilities. In this case, the decision Imigot be safe to take, and the
output should at least be labeled accordingly. This can biemeed by systematically
changing the probability values and evaluating the efféche change on the decision
taken.

8.4 Future directions

The ideas introduced in this thesis can be further expanhbed alifferent paths. First
and most importantly, using the framework to recognise rofiogivities is the best way
to assess its generality or highlight any shortcomingstdrid to compile a toolbox that
would enable researchers to define activities using AMG teeognise detections as seen
in the given two case studies.

Second, learning the parameters of the BN from unlabelea watild facilitate the
framework’s applicability. As previously mentioned, trenstraints in the grammar make
this learning difficult. This requires further research.

Third, learning the hierarchical structures themselvaswining spatio-temporal re-
lationships is worth investigating. Though Zhu and Mumferdphasise that learning
a compositional structure depends on the objective of tlmeposition, and cannot be
merely based on statistical data [157], recent advancememliscovering activities us-
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ing unsupervised learning are promising [61].

Fourth, researchers might wish to expand the carried olojetdctor presented in
Chapter 7. Although developed for a specific problem, theaet could be applied
to the detection of irregularities in appearance for otlaegories of object that move in
a periodic fashion.

On a wider scale, activity recognition would undoubtediguiee less erroneous mo-
tion detectors (i.e. trackers) and better colour constatggrithms. The recognition
progress is hindered by these unsolved problems. Givenuttent ambiguities in the
detections, a limit is present on how much can be achieved.

8.5 A final word...

This thesis proposes a method to recognise an activitydmassearching for a consistent
set of events that best explains all the detections. It id irsecenarios where the number
of possible events performed by each person is limited andealefined. By satisfying
natural constraints, global explanations can resolvd kxmdiguities and avoid inconsis-
tencies. The thesis is thus a small step further to highai-lenderstanding of low-level
visual detections. In perceiving the visual world, we unatedly use our understanding
of possible outcomes to explain the detections.

In pursuing this research, | hoped to expand my understgrasnwvell as highlight
new ideas that can be investigated further to achieve tel@mmputerised visigrsome
time in the foreseeable future.
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Markov Chain Monte Carlo (MCMC)

Monte Carlo simulation was first introduced by Stan Ulam @)9ds a way to compute
the chances that a particular layout of cards would resalismccessful solitaire game [8].
Ulam thought of randomly selecting layouts and calculatirgchances from the random
set. He proved that the chances calculated from a randomppebxamate the exact
chances for ‘large-enough’ random sets. Monte Carlo sitimmédecame an attractive
way of approximating an intractable search space.

Assumertrepresents a probability distribution; RY — Rt U{0}. Any distributionst
can be approximated by a sample of smaghere the distribution of the sample elements
1" satisfies Equation A.1.

m= lim (A1)

n—oo

Monte Carlo simulation assumes independent and identidastributed (i.i.d.) samples.

For some distributions, selecting an i.i.d. sample fromdis¢ribution is not an easy
job to accomplish. When the distribution can be evaluatedngt point up to a con-
stant normalising factor, Monte Carlo processes can betitutiesl with Markov Chain
Monte Carlo (MCMC) sampling where choosing a sample eledepénds on the choice
of the previous element along the chain. The Markov chainssguence of variables
X1,X2, ..., Xy that represents a sample from the domain. The histogramostteample
elements approximates the proposal distribution for 8aegough’ examples. The prob-
ability for selecting the next variable along the chain; is solely based on the last vari-
able added to the chain assuming a first-order Markoviangst@mp(Xn+1|X1, X2, ... Xn) =
P(Xn+1/Xn). Despite the dependency, MCMC converges to the invariattilolition that
is independent of the starting point. For lamyethe distribution of sample elements re-
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sembles that of the target distribution.

To define a Markov chain, the set of possible st&®and the transition probabilities
between these states should be specified. The transitibalpiity is referred to as the
proposal distribution Q(y|x). By definition, the integral of the proposal distribution
along the domain equals 1.

/Rd Q(y|x)dy=1; (A.2)

Designing a Markov Chain Monte Carlo sampler thus focusetherchoice of the pro-
posal distributiorQ. The next subsection explains how to choose a sui@liteat would
converge to the required target distribution.

A.1 Markov chains for finite search space

If the search space is finite, then the proposal distribi@can be represented by a matrix
where thgx,y)!" element is equal tQ(y|x). Q is a right stochastic matfisince the sum
of elements along the row Q(y|x) equals 1.

y

The Perron-Frobenius theorem states that for any squdne gigchastic matrix,
there exists a stochastic vectibi(associated with the eigen-value 1), where

lim Q* =V, (A.3)

Given a Markov chain with a proposal distributi@Qy the probability of selecting a state
y afterk steps given the current statedsqualsQX(y|x). Thus, according to the theorem,
the Markov chain converges at the limit to a proposal digtidn that is stationary and
independent of the initial stat& defines the stationary distribution (also referred to as
the invariant distribution) of the Markov Chain. If the Markchain is irreducible and
aperiodic, the stationary distribution is unique.

When using MCMC for sampling a probability distributionp one needs to find a
suitable transition matriQ) that converges to the required probability distributign=
ni(y). If the matrix satisfies thdetailed balancecondition stated in Equation A.4, then
the invariant distribution is guaranteed to be unique andhksqgt.

Q(y|X)1(x) = Q(x|y) () (A.4)

The ‘detailed balance’ condition ensures the number of mdre@m x to y equals the

LA right stochastic matrid is a matrix where\(i, j) > 0 andy A(i,j) =1
]
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number of moves frony to x along the chain. The number of moves fromto y is the
probability of being ak, 1(x), times the probability of proposing the next move toybe
Q(yIx).
For continuous distributions, the Markov chain convergethé invariant distribution
if
T (dy) = / ni(y)dy (A.5)

The transition matrixQ is defined so that thé, j)!" element states the probability
of moving from statd to statej. This is defined a®)(j|i) in this appendix. At each
step along the chain, the probability of picking a samplennrdervaldy is defined by
m*(dy) as in Equation A.6. This is defined as the integral of the podity of being at
any other poink along the domaifR® times the transition probability from that poixto
the intervaldy.

(dy) = [ Qldybmix)dx (A6)
For a particular intervah : dy, assume the transition kern@(dy|x) is expressed as:
QY = [ QYdy-+r(x8dy) (A7)

wheredy(dy) = 1 if x € dyand 0 otherwise, andx) = 1— [z Q(y|X)dyis the probability
that the chain remains at x.
If function Q(y|x) satisfies the “detailed balance” condition where

Q(y|X)1(x) = Q(x|y) 71(y) (A.8)

thenrt(.) is the invariant stochastic vector @ The following derivation proves conver-
gence of the target distribution when the detailed balanoceélition is satisfied.
From A.6,

r(dy) = [ Quymdx (A.9)
= / /Q y|x)dy] 17(x) dx+/ r(X)Ox(A) T(x)dx (A.10)
_ / / QyX) dy+/ (xdx{3=1forxc Al (A.11)
_ /A [ / Q(xly) 7i(y)dX dy+ / (x)dx {detailed balance(A.12)
— /A[/ Q(x|y)dx]| 1t dy+/ (A.13)

- /( —r(y) nydy+/rxnx X (A.14)
A A
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= /n(y)dy—/r(y)rr(y)dy+/r(x)n(x)dx (A.15)
A A A

~ [ miy)ay (A.16)
A

The Markov chain that satisfies the ‘detailed balance’ domdliis said to be ‘re-
versible’. To achieve the detailed balance, the simplesicehof a proposal distribution
is one whereQ(y|x) = m(y). This implies the ability to sample directly from the target
distribution. This is not helpful as MCMC was needed in th&t filace to approximate the
sampling. An alternative solution is the Metropolis-Hags algorithm described next.

A.2 Metropolis-Hastings algorithm for MCMC

In 1953, Metropolis et. al. placed the foundations of a gaingigorithm that guarantees
convergence of the MCMC to the target proposal distributiomhis was later generalised
by Hastings (1970) [67]. For a selected proposal distrdsu®(y|x), most likely Q will
not satisfy the detailed balance for af y) pairs. For som& andy choices,

Q(YIX) () > Q(Xy) 1(y) (A.17)

The process would then move franto y too often and frony to x too rarely. A conve-
nient way to correct this is to reduce the number of moves fxamy by introducing an
acceptance probabilitya (y|x) < 1 that the move is made.

Qun (YX) =Q(yX)a(ylx),  x#y (A.18)

a(y|x) is to be determined. Notice that@(y|x)m(x) > Q(x|y)m(y) then the move from
y to x is not made enough times sgx|y) should be made as large as possible. Being a
probability, the largest is to set it to & (x|y) = 1).

To satisfy the detailed balance

QuHYIX)TT(X) = QmH(Xy)TI(y) (A.19)
Q¥ a(y¥)m(x) = Q(Xy)a(xXy)m(y) (A.20)

Sincea (x|y) = 1 then
a(y|x) = ) Q) (A.21)
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To accommodate for both cases [67],

., THY)Q(XY)
a(y|x) =min{1, m} (A.22)
As mentioned earlier, MCMC can be used to sample from a Higian that can be eval-
uated at any point up to a constant normalising factor. Asatteeptance probabilitgy
only contains the ratid;%%, the normalising factor cancels and is not required for the
calculations.

The Metropolis-Hastings algorithm remains one of the moténtial algorithms in
modern science and engineering [8]. Many other common i#thgos are special cases of
the general Metropolis-Hastings algorithm, such as Gilansping, hybrid MCMC and
Monte Carlo Expectation-Maximisation [8]. Algorithm A.h@ws the general Metropolis-
Hastings algorithm. The algorithm requires a choice of e size which represents
the length of the Markov chaimy,¢, as well as an initial elemeng. Recall that the initial
element does not affect the convergence of the algorithne distributionZ/[0,1] is a
uniform distribution in the closed interval from O to 1.

initialise xg
fori=1tonmcdo
samplex* from Q(x [Xi—1)
calculatea (x*|x_1) = min{1, =
sampleu from %[0, 1]
if u< a(x|x_1)then
[ x=x
8 else
9 | %=X

w N

Q(xi—1/x")

n(X. 1)Q (¢ [ 1)}

~N o o A

Algorithm A.1: The General Metropolis-Hastings Algorithm

Figure A.1 shows a distribution of sample elements gengnaseng the Metropolis
Hastings algorithm. For this example(x) = 0.3.47(x,0.3,0.5) +0.7.47(x,0.7,0.2), and
Q(y|x) = % [-9d,0](y — x), where.#" is the normal (i.e. Gaussian) distribution a#d
is a uniform distribution within a closed interval. The figulshows how the distribution
converges as the sample size increases.

Accepting the moves with a probability guarantees converggyet the performance
of the algorithm cannot be known in advance. It might takeléog to converge depend-
ing on the choice of the transition matix A transition matrix where the majority of the
moves are rejected converges slower. Thusait@eptance ratgoacceptalong the chain
is often used to assess the performance, and thus the cencergThe acceptance rate
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Figure A.1: Histogram of Markov chain sample elements foieeig target distributionit and a

closed interval uniform proposal distribution Q using Mmiolis-Hastings Algorithm. The last
plot superimposes the actual functiaron the histogram.

Paccept IS the ratio of the number of accepted moves to the lengtheMharkov chain.
The acceptance rate should be around 0.5 for a random walk cha

Another method to assess the convergence is to take one gtarafor example the
mean of the sample, and run several independent Markovsh@he convergence is as-
sessed by comparing the value of this parameter betweemschtir(x) = . 47(x,0.7,0.25)
andQ(y|x) = Z [0, 8](y—x) then Figure A.2 plots the mean of the retrieved sample us-

ing the Metropolis-Hastings algorithm for 3 different Makkchains. Convergence is
believed to be reached fop,c > 500.

Figure A.2: Convergence of the sample mean under diffexemd of the Markov chain
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Using MLE for Fitting a Gaussian to a
Constrained Domain Training Data

When estimating the conditional probability density fuontp(x|e) by a Gaussian, the
area under the pdf equals 1 as the area under the Gaussiansone. Ifp(xje) : R —
[0,1] is approximated with the norma¥ (u, o) then

[ pe) = [ A (n.0)=1 (B.1)
Rd R

Nevertheless, when the domain of the functiors to a closed intervala,b] or half-
open intervala, «) or (e, b], the area under the Gaussian would not be 1. For constrained
domains, the conditional pdf needs to be normalized.ifthe Gaussian function defined

in Equation B.2,
Buol) = e ' (8.2)
— 20" .
HO oV 21

then the conditional probability density function for a sal interval domairja, b] is
defined to be,

b‘i’u,o(x) (B.3)
A (u,0)

a
To be able to calculate the conditional density functiomaSquation B.3, one needs
to evaluate the area under the Gaussian for a fixed intervedt, Ehe z-score of each

p(xle) =

166
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boundary limit is calculated to transform it into the stamtdistributionZ = .47(0,1)
Gaussian. Z-score for each value is calculated to be,

ZScoréx) =~ (B.4)
Tables generated from numerically integrating the stah@aussian distribution are
available. The tables present the area above and below eaxtlimthe standard Gaussian
distributionZ. Figure B.1 presents the standard Gaussian distribidteord the area under
the curve for the Z-score of 1 (representing 1 standard tleamfrom the mean). From
the available calculators or tables, the area above theras¢ 1 equals 0.1586, while the
area under the z-score is calculated from 1-0.1586 = 0.8414.

L i I
-40 -30 -20 -10 0 10 20 30 40

Figure B.1: Z-score transforms the Gaussiati(u, o) into .4 (1,0)

If the domain is constrained from both sids= [a, b], and f (2) gives the area above
a point in the distribution then the integral required formalizing in Equation B.3 is
calculated from:

b
/ N (1, 0) = f(ZScoréa)) — f(ZScoreb)) (B.5)
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The Posterior Probability - a derivation

The posterior in Equation C.1 can be rearranged.
p(wlY) =3 [1P(0x %) P(x) |:| P(oy; i) p(Yi) rj| P(0gz|zj)P(zj[%,y;)p(c{zj}) (C.1)
Using Bayes, the first product can be substituted

p(ox %) p(Xi)

C.2
p(0x) (c.2)

P(xi|0x) =
The denominator is a constant that can be part of the nonm@lfactor¥. Similarly

p(yiloy) can be rewritten. Accordingly Equation C.1 because:

p(w]Y) =5 |j P(xi|ox ) |7| p(yjloy;) ||‘J| P(0z; |zij) p(zj[%,Y;)p(cl{z;}) (C.3)

168



Appendix C 169 Posterior Probability - a derivation

For the third producf] p(oz|zj)p(zj|xi,Y;), then
1

P(Zj|oz; ) p(0z;)

p(0z1zj)P(zij %, Y)) = o)) p(zj %, Y;) (C.4)
p(zij|02ij> o e

0 p(T,j)p(zu\thl) (C.5)
~ P(zjloz;)p(zij[%,Yi)

B & P(zj %, yi) (©0)

O p(zjlog;)p(zj[x,Y;) (C.7)

= p(zjloz;,%,Yj) (C.8)

As 5 p(zj|x,Yi) is constant
Ry
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MOSEL program for formulating an
Integer Program

nodel ' exanpl e’
uses 'mmetc’,’ mmxprs’;

decl arati ons
term nal s= 6
constraints= 3
nodesSi ze= 14
onegaSi ze= 17

THETAT: array(1..termnals,1..onegaSi ze) of integer
THETAC:. array(1l..constraints, 1..onegaSi ze) of integer
THETAK: array(1..nodesSize, 1..onegaSi ze) of integer
cost: array(1l..onegaSize) of rea

seed: array (1..onegaSize) of npvar

DELTA: array (1..onegaSize, 1..onegaSize) of npvar
end- decl arati ons

I read data

di skdat a( ETC_I N, " ch4_t het at. dat’, THETAT)
di skdat a( ETC_I N, ' ch4_t het ac. dat’, THETAC)
di skdat a( ETC_I N, ' ch4_t het ak. dat’ , THETAK)
di skdata(ETC_IN, " ch4_c.dat’, cost)

| objective is min cost*xonmega = co
f:= SUMi in 1..omegaSize) cost(i) * seed (i)
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MOSEL

I every termnal nust be expl ai ned
forall (i in 1..term nals)
PASSI GN(i):= SUMK in 1..onegaSi ze) THETAT(i, k)=*seed(k) >= 1

I every constraint nust also be satisfied
forall (i in 1..constraints)
BASSI GN\(i):= SUMKk in 1..onegaSi ze) THETAC(i, k)*seed(k) <=1

I check for conflict
forall (j in 1..omegaSize, k in (j+1)..onmegaSi ze)
CASSI GN(j, k) := DELTA(j, k) <= seed (j)
forall (j in 1..omegaSize, k in (j+1)..onmegaSi ze)
DASSI G\(j , k) := DELTA(j, k) <= seed (k)
forall (j in 1..omegaSize, k in (j+1)..onmegaSi ze)
EASSI GN\(j, k) := DELTA(j,k) >= seed (j) + seed (k) - 1
forall (j in 1..omegaSize, k in (j+1)..onmegaSi ze)

FASSIGN (j,k) := SUMi in 1..nodesSize) (THETAK(i,j) - THETAK (i, k))

* THETAK(i,j) * THETAK (i, k) * DELTA(j,k) =
forall (i in 1..omegaSize) seed(i) is_binary

exportprob(EP_M N, ' ch4’ | f)
exit(0)

end- nodel



Appendix E

Experimental Results for the Bicycles

Problem

This appendix presents complete results for the seven segsién the bicycles dataset
from Chapter 5. For each record in the tables below, the mimimean and standard
deviations are recorded from 40 runs. During each run, 18lleachains are run and
the MAP is the maximum across the parallel chains. For eagheseee, RIMCMC (two
initial states) is compared to RIMCMC-SA (two initial s&teMoreover, online perfor-
mance is shown for the same settings. Some of the resultegrere have been shown

in various tables in Section 5.6.

E.1 MAP results

RIMCMC | RIMCMC-SA | Online | From Local Max Nme min U o
X 5,000 | 57.86 | 57.89 | 0.08
X 5,000 | 57.86 | 57.86 | 0.00
X X 5,000 | 57.86| 57.90 | 0.11
X X 5,000 | 57.86| 57.86 | 0.00
X X 1000/au| 57.86 | 59.60 | 1.13
X X 1000/au| 57.86 | 60.80 | 1.80
X X X 1000/au| 58.83 | 60.41 | 0.90
X X X 1000/au| 58.23 | 61.29 | 2.28

Table E.1: MAP results -3 sequence
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Results for the Bicycles Problem

RIMCMC

RIMCMC-SA

Online

From Local Max

Nmc

min

X

5,000

4.63

4.63

0.00

5,000

4.63

4.63

0.00

X

5,000

4.63

4.64

0.00

5,000

4.63

4.64

0.00

1000/au

4.63

4.63

0.00

1000/au

4.63

4.63

0.00

X[ X|X| X

X

1000/au

4.63

6.97

4.17

X

1000/au

4.63

15.32

6.49

Table E.2: MAP results -"® sequence

RIMCMC

RIMCMC-SA

Online

From Local Max

Nmc

min

X

5,000

420.23

[T
428.12

3.87

5,000

420.20

424.31

2.19

X

5,000

421.00

429.30

3.23

5,000

420.50

423.98

2.36

1000/au

426.64

434.42

4.24

1000/au

435.90

442.53

3.71

X

1000/au

429.57

432.87

1.86

X[ X|X| X

X

1000/au

433.13

444.50

7.38

Table E.3: MAP results -'8 sequence

RIMCMC

RIMCMC-SA

Online

From Local Max

Nmc

min

X

5,000

6073.10

[T
6086.67

15.69

X

5,000

6071.30

6080.02

4.62

X

5,000

6073.60

6079.88

3.43

X

5,000

6071.10

6078.40

2.36

1000/au

5895.99

5941.1

24.13

1000/au

5950.38

5961.6

7.78

X

1000/au

5925.13

5949.1

16.45

X[ X|X| X

X

1000/au

5929.47

5943.7

10.96

Table E.4: MAP results - sequence

RIMCMC

RIMCMC-SA

Online

From Local Max

Nmc

min

X

5,000

4937.10

[T
4941.01

4.06

X

5,000

4943.71

4939.37

1.96

X

5,000

4943.71

4943.71

3.59

X

5,000

4943.71

4939.33

1.87

1000/au

4927.60

4963.7

22.45

1000/au

4956.55

4968.5

5.16

X

1000/au

4924.08

4945.8

12.60

X[ X|X| X

X

1000/au

4929.63

4956.3

16.17

Table E.5: MAP results -8 sequence

E.2 Accuracy Results
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Results for the Bicycles Problem

RIMCMC RIMCMC-SA | Online | From Local Max Nmc min u o
X 5,000 | 805.55| 814.22| 2.29
X 5,000 | 806.05| 811.62| 2.02
X X 5,000 811.70| 814.71| 1.69
X X 5,000 | 807.00| 811.50| 2.36
X X 1000/au| 800.35| 804.00 | 2.62
X X 1000/au| 787.62| 797.96 | 4.54
X X X 1000/au| 797.30| 806.61 | 6.09
X X X 1000/au| 796.72 | 805.08 | 4.56
Table E.6: MAP results -8 sequence
RIMCMC | RIMCMC-SA | Online | From Local Max Nmc min u o
X 5,000 | 418.14| 437.32| 8.51
X 5,000 | 401.29| 429.19| 12.14
X X 5,000 | 429.96 | 451.92| 9.29
X X 5,000 | 411.58| 433.50| 7.76
Table E.7: MAP results -7 sequence
RIMCMC | RIMCMC-SA | Online | From Local Max Nmc min u o
X 5,000 | 91.38| 90.52 | 0.91
X 5,000 | 91.38| 90.69 | 1.45
X X 5,000 | 91.38| 88.36 | 1.09
X X 5,000 | 91.38| 87.46| 1.79
X X 1000/au| 91.38 | 90.34 | 2.18
X X 1000/au| 91.38 | 91.20 | 2.98
X X X 1000/au| 96.55 | 89.48 | 3.20
X X X 1000/au| 89.66 | 91.90 | 2.58
Table E.8: Accuracy results Stsequence
RIJIMCMC | RIMCMC-SA | Online | From Local Max Nmc min u o
X 5,000 100.00 | 100.00 | 0.00
X 5,000 100.00| 99.26 | 1.56
X X 5,000 | 100.00| 100.00]| 0.00
X X 5,000 | 100.00| 100.00| 0.00
X X 1000/au| 100.00| 100.00 | 0.00
X X 1000/au| 100.00| 100.00 | 0.00
X X X 1000/au| 96.30 | 96.30 | 0.00
X X X 1000/au| 96.30 | 96.30 | 0.00
Table E.9: Accuracy results " sequence
RIMCMC | RIMCMC-SA | Online | From Local Max Nme min U o
X 5,000 | 82.81| 82.87 | 1.27
X 5,000 | 82.03| 82.93| 1.29
X X 5,000 | 85.94| 87.68 | 0.89
X X 5,000 | 82.03| 83.36 | 1.65
X X 1000/au| 90.63 | 95.98 | 3.42
X X 1000/au| 92.19| 96.07 | 3.54
X X X 1000/au| 91.41| 96.30 | 2.99
X X X 1000/au| 93.75| 97.02 | 2.23

Table E.10: Accuracy results {Bsequence
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RIMCMC | RIMCMC-SA | Online | From Local Max Nmc min u o
X 5,000 | 8254 82.96 | 1.21
X 5,000 | 82.54| 82.70 | 1.95
X x 5,000 | 84.92| 83.93| 1.09
X X 5,000 | 82.54| 83.15| 1.31
X X 1000/au| 84.13| 82.94 | 2.52
X X 1000/au| 84.13 ] 93.49 | 2.11
X X X 1000/au| 84.82 | 84.68 | 3.18
X X X 1000/au| 88.89 | 86.75 | 1.63
Table E.11: Accuracy results f4sequence
RIMCMC | RIMCMC-SA | Online | From Local Max Nmc min u o
X 5,000 | 93.43] 93.12] 0.92
X 5,000 | 91.24 ] 92.65| 0.87
X x 5,000 | 93.43] 91.90| 0.79
X x 5,000 | 94.16| 92.65 | 0.90
X x 1000/au| 94.89 | 90.66 | 2.92
X X 1000/au| 91.97 | 88.10 | 2.67
X X X 1000/au| 93.43| 89.05 | 3.10
X X X 1000/au| 92.70 | 88.25 | 2.19
Table E.12: Accuracy results {Ssequence
RIMCMC | RIMCMC-SA | Online | From Local Max Nme min U o
X 5,000 | 69.64| 68.97 | 1.10
X 5,000 | 70.53] 69.62 | 1.02
X X 5,000 | 68.75| 68.53 | 1.68
X X 5,000 | 71.43| 70.98 | 1.04
X x 1000/au| 68.75 | 64.38 | 3.02
X x 1000/au| 70.54| 63.39 | 2.82
X x x 1000/au| 72.32| 68.04 | 1.56
X X X 1000/au| 71.42| 67.14 | 2.34
Table E.13: Accuracy results fesequence
RIMCMC | RIMCMC-SA | Online | From Local Max Nmc min u o
X 5,000 | 45.18 | 45.23] 1.30
X 5,000 | 45.69 | 46.74| 0.90
X X 5,000 | 45.69 | 47.28 | 1.18
X X 5,000 | 47.21| 47.61| 0.88

Table E.14: Accuracy results {"7sequence
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Conference Posters
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