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Vision is the art of seeing the invisible...

Thoughts on Various subjects

Jonathan swift (1667-1745)



Abstract

Automatic activity recognition is the computational process of analysing visual in-

put and reasoning about detections to understand the performed events. In all but the

simplest scenarios, an activity involves multiple interleaved events, some related and oth-

ers independent. The activity in a car park or at a playgroundwould typically include

many events. This research assumes the possible events and any constraints between the

events can be defined for the given scene. Analysing the activity should thus recognise

a complete and consistent set of events; this is referred to as a global explanation of the

activity. By seeking a global explanation that satisfies theactivity’s constraints, infeasible

interpretations can be avoided, and ambiguous observations may be resolved.

An activity’s events and any natural constraints are definedusing a grammar formal-

ism. Attribute Multiset Grammars (AMG) are chosen because they allow defining hierar-

chies, as well as attribute rules and constraints. When usedfor recognition, detectors are

employed to gather a set of detections. Parsing the set of detections by the AMG provides

a global explanation. To find the best parse tree given a set ofdetections, a Bayesian net-

work models the probability distribution over the space of possible parse trees. Heuristic

and exhaustive search techniques are proposed to find the maximum a posteriori global

explanation.

The framework is tested for two activities: the activity in abicycle rack, and around

a building entrance. The first case study involves people locking bicycles onto a bicycle

rack and picking them up later. The best global explanation for all detections gathered

during the day resolves local ambiguities from occlusion orclutter. Intensive testing on 5

full days proved global analysis achieves higher recognition rates. The second case study

tracks people and any objects they are carrying as they enterand exit a building entrance.

A complete sequence of the person entering and exiting multiple times is recovered by

the global explanation.
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Chapter 1

Introduction

The word “activity” is defined in Merriam-Webster and OxfordEnglish dictionaries as

the “state of being active” [1, 119]. It, by definition, involves the motion or translation of

objects in the environment. Visual sensors are essentiallymore suitable for distinguishing

motion than other sensors. Analysing the activity, using visual information, is thus finding

an explanation for the detections that conform to the understanding of possible scenarios.

Automatic activity recognition, which is the main subject of this thesis, is part of the

discipline of artificial intelligence, and is the process ofanalysing visual input and rea-

soning about detections, using a computerised algorithm, to understand the performed

events. This thesis proposes overcoming the unreliabilityof visual detection methods by

seeking global explanations for activity recognition. Given a noisy visual input, and ex-

ploiting our knowledge of the activity and its constraints,one can provide a consistent set

of events explaining all the detections. The proposed framework bridges the gap between

noisy visual observations and higher-level activity recognition. The introduction explains

the need for global explanations, and the range of domains where recognition is assisted

by seeking a global explanation. The rest of this chapter introduces the novelties of this

research along with an overview of the chapters of the thesis.

1
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1.1 Global explanations for activity recognition

Activity recognition has been studied intensively in computer vision. Simple actions

like walking, running, waving or boxing have been recognised within clear or cluttered

scenes [82, 92]. Sequences of events performed by the same individual, or events involv-

ing interactions between multiple people have also been studied. Current research has

achieved significant progress towards recognising complexevents in difficult scenes.

One of the major limitations in most state-of-the-art activity recognition techniques is

their focus on recognising a single event given a set of detections. Some of the approaches

assume that only one event can occur at each point in time. Alternatively, other approaches

can recognise multiple events by assuming the detections belonging to each event can be

separated from the remaining detections. Figure 1.1 shows atypical set of surveillance

scenes, where the ability to separate the detections into disjoint sets cannot be realistically

assumed.

Figure 1.1: Three examples of surveillance scenes from the PETS datasets (2006, 2007 and 2009).

The terms ‘activity’ and ‘event’ have been used in various, often ambiguous, ways by

the computer vision community. To avoid confusion, the terms are defined here and then

used consistently throughout the remainder of the thesis. An eventis a context-related

interpretation for a detection or a group of detections. Anactivity, on the other hand, is

a set of related events. One can refer to the ‘activity’ within the car park as the set of all

events that occur within the car park. Similarly, the ‘activity’ around the office is the set

of events, that could be dependent or independent, yet are related by the space in which

they occur. In the simplest case of only one event occurring,the activity and the event

would be the same. Yet, in the general case the activity involves multiple related events.

To automatically analyse the activity, some evidence is gathered from observing the

scene to assist recognising the occurring events. Adetectoris an independent evidence

collector that targets certain evidence types, like motiondetectors, car detectors or pedes-

trian detectors. The same detector can be used to recognise various events of different

activities. It is unaware of the context in which it operates. A detectionis a discovered
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entity that is acquired by a detector. For example, the trajectory of a moving object is a de-

tection obtained using a motion detector. Given an activity, reliable detectors are chosen

to retrieve a set of detections that would assist recognising the activity’s events. Afeature

is a measurable characteristic of the detection. For example, the velocity is a feature of

the trajectory. The detector would measure the value of thisfeature for each detection.

The set of detections obtained during an observed period of activity typically belongs

to several events within the activity. The recognition thusrequires partitioning the detec-

tions along with recognising the events. Aglobal explanationfor the set of detections is a

consistent set of events that covers all the detections. The number of events is not known

in advance, and varies between the different explanations for the same set of detections.

To understand the value of global explanations, let us consider the activity at a train

platform. As trains approach and depart, some trajectoriesof people end close to the

train, other trajectories appear, and some continue to moveat the platform. A global

explanation would recognise all the boarding and alightingevents along with recognising

those waiting for the next train. Assume a person is observedwaiting at a train platform.

As the train approaches, the person could not be detected. This implies the person boarded

the train, or is still waiting another train and is currentlyoccluded. After the train departs,

the person is again detected at the platform. A global explanation would correctly attribute

the person’s absence to occlusion despite the initial ambiguity.

In addition to resolving uncertainties, recognising events independently can result in

an inconsistent set of events. For example, a person cannot board the train while it is

moving. A train can be boarded by many people at once, yet a person cannot board

multiple trains. A person can though alight from one train then board another. Human

cognition naturally allows explanations that satisfy suchconstraints. A global explanation

satisfies the natural constraints by finding a consistent setof events. Figure 1.2 shows

three diagrammatic sets of events for a period of activity ata train platform. These events

involve people boarding and alighting trains. The three diagrams show one inconsistent

set of events and two consistent sets that represent global explanations.

Though the termglobal explanationimplies the complete set of events, the termex-

planationon its own is used in the thesis at times to refer to the global explanation. The

soughtexplanationis the best complete and consistent set of events, covering all the

detections during a period of activity. Thebest explanationis found using a Bayesian

approach.

In this thesis, I assume the expected activity, given a scene, can be defined, and the

recognition focuses merely on the activity’s events. For example, the activity at a train

platform can be defined as sets of trains approaching and departing, along with people
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(a) (b) (c)

Figure 1.2: For the activity at a train platform, two trains and four people were detected, three
sets of events are shown. A border is used to associate each person with a train. Dotted borders
indicate alighting while solid borders indicate boarding atrain. The first diagram (a) is an incon-
sistent set of events as a person is thought to have boarded two trains. The second (b) and third
(c) diagrams are consistent sets of events.

boarding, alighting and waiting. Detections are explained, in terms of this defined activity.

1.2 Motivation, goals and novelty

Seeking global explanations and the framework proposed in this thesis were motivated

by theBicyclesproblem discussed in Chapter 5. When observing a rack area, multiple

people are seen simultaneously dropping and picking bicycles. The ambiguity in each

event increases with occlusion, and the uncertainty in recognising the event performed by

each person can be resolved by finding a global explanation. While tackling this problem,

I noticed the significant improvement in recognising uncertain input when seeking global

explanations. The framework used for solving theBicyclesproblem was generalised and

applied to a different problem for tracking people and theircarried objects in and out of a

building.

The goal is to propose a framework that starts by formally defining the activity’s events

and the natural constraints. This framework should enable finding the best global ex-

planation for all detections in a video input. Given prior probabilities, and the events’

likelihoods, a Bayesian approach finds the best explanationthat maximises the posterior

probability.

Figure 1.3 shows the different components of the framework.At the top of the figure,

a box indicates the tasks to be performed once for each considered activity. The activity

and the natural constraints are employed to create an Attribute Multiset Grammar (AMG).

This process is manual, and the notations and formulations of the AMGs are explained

in Chapter 3. AMG is used, along with a labeled set of trainingsequences, to define

probabilities that favour some global explanations over others.

For a given video sequence, detectors gather a set of detections, which represents ter-

minal symbols, along with assigning values to the selected visual features. A parse of the

AMG generates a global explanation for all the detections. The framework proposes an
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Figure 1.3: A flowchart indicating the proposed framework.

algorithm to transform the AMG, given a finite set of detections, into a Bayesian network

structure. Along with the learned probabilities, this Bayesian network models the prob-

ability distribution over the space of global explanationsfor this set of detections. The

MAP solution of the Bayesian network is then believed to be the global explanation that

best suits the detections.

The primary contributions of this research are:

• A framework for defining global explanations to recognise the complete and con-

sistent set of events that occurred during an observed period of activity. The best

explanation is found in a Bayesian approach, given a set of detections, based on the

defined activity and its constraints.

• Case studies of two activities in which the framework can be used to provide global

explanations.

• An experimental demonstration which shows that global solutions resolve visual

ambiguities that cannot be locally resolved.

• A comparison of different techniques for searching the space of explanations.

Secondary contributions are:

• A novel detector for carried objects in short video sequences.

• A system for analysing activities in a bicycle rack. The system is tested using data

recorded over 5 days at two different sites.
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• A system for associating people and carried objects entering and exiting a building

entrance. The system was tested on 12 hours of data.

1.3 Thesis overview

The rest of the thesis is organised as follows. Chapter 2 reviews the previous attempts in

the literature to recognise complex activities using rule-based, logic-based and graphical

models. The relevance of these techniques for finding globalexplanations is discussed.

Chapter 3 presents a grammar formalism that encodes the domain’s knowledge and

constraints, in order to express the global explanations. Attribute Multiset Grammars

(AMG) are used to explain activities as hierarchies of events, where the leaves are prim-

itive events that are directly detected from input video. Attributes of the grammar corre-

spond to features of these events, and can be propagated up and down the hierarchy. The

probability distribution over all global explanations, given a set of detections, is modeled

by a Bayesian Network (BN). For simplicity, the chapter onlypresents an abstract AMG

that does not correspond to a real-life problem.

The exhaustive search for the Maximum A Posteriori (MAP) labelling of the Bayesian

network is intractable in all but the simplest problems. Chapter 4 presents a number of

heuristic search techniques that have previously been usedin the literature for searching

such a BN. The chapter explains how these approaches can be applied to searching the

BN representing global explanations for activity recognition.

The framework is applied to two problems. The first, and extensively analysed case

study is theBicyclesproblem briefly explained previously. An AMG is detailed in Chap-

ter 5 for the activity, given tracked people and the appearance/disappearance of bicycles

within the rack area. The chapter explains the different selected features, and how they

are retrieved from the input video. The approach is tested ona real dataset of 67 hours

recorded at two sites. This case study compares the search techniques, and experimentally

evaluates the ability of heuristic searches to find the best global explanation given 7 video

sequences of varying length and complexity.

The second case study, theEnter-Exitproblem, is studied in Chapter 6. Similar to the

first case, an AMG, Bayesian network, experiments and initial results are presented. The

second case study differs from the first in its ability to recognise sequences representing

the individual entering and exiting a building multiple times during the course of the day.

It tracks both people and their carried objects using a single camera mounted next to a

building entrance. Tested on a single day of video, preliminary results demonstrate the

validity of the framework for a different activity.
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TheEnter-Exitproblem requires detecting carried objects from video sequences. One

of the contributions of this thesis is a novel detector for carried objects that is based on

detecting protrusions from the silhouette of the person. Chapter 7 gives details of this

detector along with examples and extensive testing.

Finally, Chapter 8 offers insights into future directions and the framework’s limita-

tions. It summarises the findings and contributions, and concludes the thesis.
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Background Review

The approach presented in this thesis attempts to find globalexplanations given a set of

detections. Section 2.1 highlights the recent successful trend toward global analysis to re-

solve local ambiguities in various computer vision problems. When all the detections are

evaluated simultaneously, or constraints within the explanation are considered, a ‘better’

explanation can be found.

Though little previous work deals with global explanationsof activities, Section 2.2

reviews previous frameworks for complex activity recognition. An activity recognition

framework enables defining activities, then recognising the activity from the input video,

based on the definition. The ability of each reviewed framework to recognise the complete

and consistent set of events is discussed.

When recognising interleaved events, partitioning the detections is required. This is

very similar to the data association task used for tracking.Data association techniques

were first introduced to establish trajectories from radar measurements, and used later for

visual tracking. In the radar surveillance problem, the space of possible associations is

huge. Searching this space is a combinatorial optimisationproblem. Many search tech-

niques like multiple-hypotheses trees, integer programming, and reversible jump Markov

chain Monte Carlo, were compared in this domain. Section 2.3reviews the radar surveil-

lance problem and the seminal papers in this area. It also shows how these techniques

were used for visual tracking; for connecting tracklets within the field of view of a single

camera, or between non-overlapping cameras.

8
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2.1 Global analysis in computer vision

The simultaneous analysis of all the detections has proven advantageous in many areas of

computer vision, like image denoising, segmentation, shape analysis and object recogni-

tion. As detections are noisy, and often incomplete, globalanalysis has been introduced

in these domains, and shown to outperform local interpretations. This section highlights

some of the previous work that adopts global analysis, whichoften involves defining hard

or soft constraints between local detections. Though this cannot be an exhaustive review

of global analysis in vision, it motivates the significance of global explanations for activity

analysis.

Several image interpretation problems can be expressed as pixel-wise labelling of the

image. Labeling a pixel in isolation from its surrounding isoften noisy, while global

analysis combines all the information to provide a reliableexplanation. Global explana-

tions maximise the joint probability distribution of all pixel labels in the image. Using the

Markovian assumption, each pixel is dependent on its neighbouring pixels, and the joint

probability distribution is factorised as a Markov Random Field (MRF). This remains to

date one of the most influential models in image analysis, particularly since the discov-

ery of efficient optimisation methods, such as the Gibbs sampler [50]. Used initially for

image denoising and restoration, the technique was employed later for binary image seg-

mentation [121] and multi-class image labeling [6, 38, 144]. As Figure 2.1 shows, the

local interpretation for each pixel (referred to as unary likelihood) is assisted by pairwise

terms to result in a reliable segmentation. Despite the combinatorial complexity in in-

ference using MRFs, and the delicate choice of the energy minimisation function [90],

efficient exact and approximate solutions were proposed andextensively used for the op-

timisation [20,21,89].

Figure 2.1: Energy minimisation for object segmentation using a MRF. Figure from [138]

Shape from Shading is an under-determined problem when eachpixel is considered

independently. Given the intensity at each pixel, one wishes to determine the surface

gradient. Solutions incorporated global constraints likesmoothness and integrability, and
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introduced global energy functions for minimisation [153]. The minimum solution, de-

pending on the chosen constraints, can produce a consistentshape given a single image.

Global analysis was also introduced, around the same time asMRFs, for shape anal-

ysis. Defining algebraic and geometric constraints betweenvolumetric object parts was

used by Brooks in the novel framework ACRONYM for recognising objects in images

from 3D models [23]. Each class of objects is defined as a coarse-to-fine hierarchy, where

the root is a general class model with the minimum constraints. Specialised classes are

recursively defined, adding geometric and algebraic constraints between the model parts,

until the leaves represent specific object instances. Electric motors and planes are modeled

as examples, and line segments in the images are interpretedusing the models. After the

model parts are detected, a combinatorial search is carriedout to collect object hypotheses

which represent the location, the scale and the viewpoint. The assignment of detections

to model parts are globally satisfiable according to the constraints defined in the model.

Such hierarchical models were also defined as a grammar by Davis and Henderson [35].

Figure 2.2: Part of the human-annotated AND-OR graph for interpreting images (left), and a
corresponding recognition for rectangles (right). Figures from [157]

Closely related, attribute graph grammars have been recently used to identify man-

made rectangular objects like tables, floor tiles and windows in static images [62]. Strong

rectangle candidates from edge detection are used to hypothesise larger structures through

the application of grammar rules. This can initiate a searchfor weaker evidence of rectan-
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gles consistent with these larger structures. This top-down/bottom-up approach was fur-

ther justified and explained by Zhu and Mumford in their survey [157]. The paper argues

that the ultimate goal of image interpretation is to generate a comprehensive stochastic

grammar that can interpret all images, as represented by theAnd-Or graph in Figure 2.2.

An And-Or graph is an equivalent representation to context-free grammars [60]. Given a

grammar, learning the parameters and the spatial relationships between image parts can

be achieved from training images. The grammar is though provided by an expert, as struc-

tural decomposition is steered by the objective of this decomposition. To parse a given

image, recursive top-down/bottom-up parsing is used, and Markov chain Monte Carlo

(MCMC) samples the possible top-down hypotheses. The approach was applied to recog-

nising human clothing and object categories like bicycles.Figure 2.3 shows examples of

the applications from [157]. A related work for recognisingfacades using grammars was

introduced in [118]. The derivation tree that best suits thegiven image is found using

reversible jump Markov chain Monte Carlo.

Figure 2.3: Examples of global analysis using stochastic grammars in images. Figures from [157]

Recognising an object using the joint recognition of several interrelated parts can also

be considered a global approach, albeit for a single object.Such models are often referred

to as ‘pictorial structures’. A pictorial structure is a deformable configuration of parts, that

can be perceived as a graph with links between dependent parts. It combines a hierarchy

of parts with spatial relationships between neighbouring parts. Since an efficient inference

approach approximated the graph by a tree [43], pictorial structures were used frequently

for object detection. A global energy function matches eachpart to image features along

with maintaining the spatial relationships between parts.Figure 2.4 shows an example of

how global analysis using pictorial structures can assist finding ambiguous body parts. In

the figure, edge detection is used to retrieve the evidence from the image. The pictorial

structure represents the person as a tree of ten parts: the head, the torso, and four limbs
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divided into upper and lower parts. Searching for each part in the image is local analysis

that can miss some parts or hallucinate others. A global explanation is though capable of

resolving such uncertainties and providing a consistent explanation.

Figure 2.4: Body-pose estimation using pictorial structures. Figures from [115]

Wu and Nevatia detect multiple, possibly occluded, people given all edgelet features

in a single image [145]. The paper shows that the joint likelihood of all the edgelets

produces better detections, as the occlusion inter-dependency does not penalise the hidden

body parts. The paper uses an iterative search algorithm to find the best explanation for

all the detections simultaneously.

Global analysis has also been recently employed to jointly recognise an object and

its surrounding context. By learning the spatial relationships between the object and its

context, Heitz and Koller improved the detection of objectsin aerial images [68]. While

object detection can often lead to unrealistic explanations, considering the surrounding

supports weaker evidence or rejects inconsistent explanations. In Figure 2.5, false car

detections were rejected by studying the context, as cars cannot exist on top of roof build-

ings. Similarly, the output of a bicycle detector can be improved by recognising the

surrounding context.

Figure 2.5: Detecting objects is improved by studying the spatial relationships between an object
and its surrounding. Figure from [68]
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2.2 Activity recognition frameworks

By contrast, global analysis for activity recognition has not been widely used. As ex-

plained in the introduction, this thesis proposes a framework for finding global explana-

tions for all detections during a period of activity. This section reviews the influential

research in the area of recognising complex activities. Prior to the review, different types

of activities can be defined. An activity is said to containinterleavedevents when, at

a point in time, more than one event can occur. This disallowspartitioning the period

of activity temporally so only one event occurs within each partition. Figure 2.6 distin-

guishes interleaved from single-event activities. Moreover, activities can contain ordered

or unordered events. Two events areorderedif they end in the same order they started.

The need for definingorderedevents arises from certain solutions for recognising multi-

ple interleaved events that assume the detection is assigned to the event that started first,

like queues or production lines. In these cases, the detection belongs to the earliest event

expecting a detection of this type. Figure 2.6 also distinguishes ordered from unordered

activities. Activities involving interleaved unordered events is the most general case.

Figure 2.6: In a single-event activity, the timeline can be partitioned so one event occurs within
each partition. Interleaved-event activity, on the other hand, expects more than one event at each
point in time. In ordered activities, like queues, the eventthat ends first is the one that started first.
In unordered activities, events can end in any order regardless of their starting order.

Generally, two kinds of events are distinguished. I will refer to these as primitive and

compound events. Aprimitive eventis an event that is detected directly and corresponds

to one detection exactly. A primitive event thus labels the detection depending on the

activity. For example, a trajectory detection could correspond to the primitive event of a

person walking across the platform when analysing the activity at the train platform. A

compound eventis a grouping of other simpler, compound or primitive, events. In the

literature, the phrasescompound/primitive eventsare substituted with event/subevent [69,

108], compound/simple events [25], compound/atomic events, or the words are simply

used interchangeably [139]. Anactivity is thus recursively defined as a composition of

events, until primitive events are only available.

This thesis covers recognising activities with interleaved unordered compound events.
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A framework designed to recognise such activities depends on the choice of detections.

Previous work often used motion detectors to retrieve trajectories [40,69,77,96,108,109,

120, 127]. Some of these researches assume all moving objects are of the same type like

people [109] or cars [71]. Others used object detectors to classify trajectories like people

detectors [120] or hand detectors [127]. Some detectors were domain-specific like de-

tecting fridges and hobs [109] or even a glucose monitor detector using template match-

ing [127]. Differently, low-level recognisers were modelled by hidden Markov models

that retrieve temporally overlapping durations as detections along with a likelihood of

the primitive events [74]. The framework would then containtwo parts. The first is the

definition part, where the activity is formally expressed, and its events are specified. The

second is the recognition part for finding a consistent set ofevents, given the definition,

for a finite set of detections. Though the framework requiresboth parts, this section ex-

plains each one separately to clarify the different approaches in the literature for each

task.

2.2.1 Frameworks for defining activities

The work of Ivanov and Bobick [74] highlighted the importance of formal methods to

encode expert knowledge for recognising activities in video. This is because the recogni-

tion expects a “rich knowledge base” to make out the possibleexplanations [18]. While

learning the structure of the activity from noisy image sequences is hard, this structure is

explicit and known in advance.

The decomposition of the activity into a set of events, whichcan be further decom-

posed into simpler events, is naturally represented by a hierarchy. Two different hierar-

chical representations are shown in Figure 2.7. In the literature, some define the activity

by drawing those hierarchies [42,69].

Figure 2.7: Hierarchical representations of the activity.

Grammars naturally define a hierarchy, and were used to defineactivities in video as

early as in 1998 [148]. Different types of grammars can give rise to different hierarchical

structures. The hierarchies on the left of Figure 2.7 can be represented by a regular gram-

mar, while the ones on the right can be represented by a context-free grammar (which is
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more general) [5]. Regular grammars are used to define the class of languages accepted

by finite state automata, while context free grammars define the class of languages that are

accepted by push-down automata. Figure 2.8 shows regular and context-free grammars

corresponding to the hierarchies in Figure 2.7.

Regular Grammar Context-Free Grammar
S→ bA S→ XaY | YaX
A → cB | dB X → bc
B → aC Y → bd
C→ bc | bd

Figure 2.8: Regular grammar (left) can represent the hierarchies in Figure 2.7 (left), while
Context-Free grammar represents the hierarchies in Figure2.7 (right).

When used for recognising activities, regular grammars aresuitable for modelling a

series of parallel models [104], but as the number of variations increases it becomes harder

to represent them using a concise finite state machine increases. For example, ball passes

between players in a game of tennis can easily be modelled using a regular grammar,

but in a football game a context-free grammar provides a morecompact representation

by allowing chains of passes of arbitrary length. A context-free grammar ruleA→ BbC

rewrites a compound event into a sequence of primitive and compound events. Stochastic

Context Free Grammars (SCFG) can be defined where a probability is associated with

each rule indicating its preference over alternative rules. Ivanov and Bobick used SCFG

to represent the different ways in which complex activitiescan be constructed, and as-

sign probabilities to each [74]. They evaluated their approach on gesture recognition and

surveillance within a car park. An example SCFG presented intheir paper for the car

pickup task is shown in Figure 2.9. They realised that SCFGs are not sufficient to define

the valid explanations, and therefore added an additional consistency check enforcing

temporal constraintsthat allow or prevent overlapping events. This is because the rule

A→ abBdoes not specify whether the events can overlap or not. They added this check

to the recognition process, rather than the formal definition of the activity.

SCFGs have been intensively used since then to recognise different activities, like

events in a blackjack game [104] and surveillance applications [44, 86]. The work of

Zhanget al. augments the grammatical rule with a matrix of temporal relations R [152].

Each elementr i j in the matrix R defines the temporal relationship [7] betweensymboli

and symbolj in the rewritten string.

Non-temporal constraints, such as limits on the separation of objects involved in an

event, can also be formally defined. Ivanovet al. textually describe the spatial constraints

between the events in SCFG [75]. To provide such constraintsas part of the activity’s
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Figure 2.9: A car-pickup SCFG as presented in [74].

definition, different linguistic formulations have been proposed [69,108,120,128]. Neva-

tia et al. proposed the ‘Event Recognition Language’ (ERL) [108]. ERLis an ontology

that includes a complex set of spatio-temporal relationships. It divides events into three

types: primitive events that can be directly detected; single-thread events made up of one

sequence of events; and multi-thread events where temporal, spatial and ‘logical’ rela-

tionships are allowed. The paper argues that activities canbe defined more easily using

this ontology than using stochastic grammars. The ontologydoes not only define events,

but also allows defining the scene, regions of interest, occluders, etc. A predefined set of

temporal, spatial and logical relationships is presented.

In Rota and Thonnat [120], an activity is defined as a four-tuple:

1. A set of positive events that should occur for the activityto be recognised, along

with a set of negative events that should not occur.

2. Temporal constraints between positive events in the activity.

3. Non-temporal constraints, such as spatial relationships between the events or object

sizes.

4. Any action that needs to be taken if the event was recognised. This is defined in the

context of surveillance applications to raise a warning when needed.

The approach is applied to define certain activities in a metro station. An example of a

defined activity is shown in Figure 2.10.
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Figure 2.10: A tuple defined for the activity of detecting a person in a forbidden area. Figure
from [120]

A simpler approach by Chanet al.[25] defines positive and negative events; though is

only suitable for two levels of hierarchy, where an activityis defined as a set of complex

events that are directly decomposed into primitive events.A table is used to represent the

domain’s knowledge, where rows represent primitive eventsand columns are the com-

pound events representing consecutive states of the activity. A cell in that table is labeled

0 if the primitive event is not allowed, 1 if the primitive event is required, and is left empty

if the compound event is indifferent to the detection of thisprimitive event.

The work of Siskind is based on the assumption that the world is made up of lines,

and thus lists general spatial relationships like ‘supported’ and ‘attached’ [128]. An event

is then recognised as a logical expression made up of spatio-temporal relationships to

govern the interacting objects. The work though expects each object to be detected and

tracked correctly. This approach was later used by Ersoyet al. to query a database of

primitive spatio-temporal relationships for interestingevents [40].

Intille and Bobick defined multi-agent activities as sets ofcompound and fundamen-

tal (i.e. primitive) goals (i.e. events) with temporal and logical constraints governing the

relationships [72]. The activity is viewed as a ‘partial set’ of goals, where temporal rela-

tionships are identified between some of the goals. Logic constraints, like ‘or’ and ‘xor’

relations, are added to the definition when needed. The technique models interactions of

players in American football. A collection of ‘plays’ are defined by an expert, and the

definition is then mapped to a Bayesian network that links thepartially-ordered events

defining causality and allowing for parallel relations. Thesame approach was used by

Shi et al. to define activities [127] (Figure 2.11). In addition to training the probabilities

and the observation likelihoods, a Gaussian models the timeelapsed for each event.

The recent work of Tran and Davis [139] uses first-order logicproduction rules to

encode the domain’s knowledge. Four rule types are used: definite clauses which are

hierarchical decompositions of activities into events; disjunctions which provide alterna-

tive explanations; negative preconditions which are constraints on applying the rules; and

exclusion relations which model relationships between events. The work provides an in-
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Figure 2.11: The activity of glucose calibration is represented by a Bayesian network. Figure
from [127]

sight into constraints between events occurring at the sametime. For example, a person

belongs to only one group of walking pedestrians at a time, ora person drives only one car.

These constraints are modeled using exclusion relations inthis work. Some of the rules

presented in their approach for activities in a car park are not intuitive to think of, like:

‘if a person opens the trunk of the car, he/she will (likely) enter that car’, or ‘two persons

shaking hand with each other will (likely) not enter the samecar’. They extend beyond the

hierarchy of events. A simple hierarchy cannot relate the parking event to hand shaking.

Weights are assigned to the clauses to differentiate hard from soft constraints, and imply

rule preferences. Tran and Davis introduce logic rules because stochastic grammars are

incapable of defining constraints.

Attribute grammars are one way to define constraints within agrammar formula-

tion [87]. These have recently been used to recognise activities in a car park by different

authors [77, 78, 96]. This follows previous success in usingattribute grammars to con-

strain the spatial relationships in visual languages [55,102] and the detection of objects in

images [62,157]. Attribute grammars allow defining attributes to accompany terminal and

nonterminal symbols, and defining constraints that govern the allowable values of those

attributes (more in Section 3.2). Using attribute grammars, attribute rules and constraints

are incorporated into the grammar. The previous approachesin [77,78,96] do not employ

the full abilities of attribute grammars to define rules and constraints. Attributes are only

sparsely defined, while our approach incorporates attribute rules that evaluate the likeli-

hoods for all events at higher levels in the hierarchy, and constraints between dependent

events. Figure 2.12 shows a sample attribute grammar for thecar park from [77]. The ap-

proach rewrites a nonterminal as a string of symbols. The grammars in this thesis rewrite

a nonterminal as a multiset, and only introduce temporal relationships as constraints on

valid interpretations. This avoids multiple rules that only differ in the ordering of sym-

bols such as the rules rewriting the PARKING event in the figure. Moreover, the grammar

in Figure 2.12 does not define how the events can be shared whenmultiple interleaved

events are to be recognised. A car can pick up multiple people, while a person cannot be

picked up by multiple cars at the same time. These approachesalso differ from the work
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Figure 2.12: Attribute grammar for car parking scenario. Figure from [77]

in this thesis in the recognition methods as will be explained in Section 2.2.2.

Other approaches define the activity using graphical models. A Hierarchical Hidden

Markov Model (HHMM) was used in [109] for modelling activities in a domestic envi-

ronment. These are more suitably learnt rather than defined by a human expert. Gong

and Xiang learn the temporal and causal dependencies between events using Dynamic

Multi-linked HMMs [56]. As opposed to the other frameworks in this section, this work

used unsupervised learning for activity definition. The approach learns causal and tem-

poral relationships from videos of loading and unloading planes. The number of possible

dependencies in the BN is limited using the Bayesian information criterion (BIC). The

emerging structure of the BN would then be used to define the activity, along with the

entries in a state transitions matrix.

Most of the previous work for activity recognition distinguishes between temporal and

non-temporal constraints [56,74,108,120,128]. In fact, time can just be treated as another

attribute in the framework - temporal and non-temporal constraints need not be made

distinct. For example, given two eventsa andb, wheret is an attribute that signifies time

andc is an attribute for position, then constraints likea.t < b.t +10 and|a.c−b.c|< 25 can

be treated in the same way. Moreover, a general list of spatial and temporal relationships

does not need to be gathered in advance, given the difficulty in compiling such a list.

The framework proposed in this thesis treats all types of constraints in the same way, and

allows defining any relationships between the events. By unifying the method of defining

temporal and non-temporal constraints, the sequencing constraints can be dropped from
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the grammar. This thesis uses multiset grammars where a nonterminal is rewritten as

a multiset of other symbols. Previous work based on string grammars had to provide

solutions to resolve cases when the ordering is not strict orevents can occur in parallel.

This is because temporal constraints are enforced in stringgrammar in all cases, even

when no temporal ordering of the events is required.

Apart from [96, 109, 139], all the frameworks presented above recognise one event

given a video sequence. Typically, one video sequence involves multiple interleaved

events. Defining activities with interleaved events shouldinclude defining the constraints

between the events. In [139], first order logic captures these constraints. Linet al. [96]

and Nguyenet al. [109] assume each detection participates in one and only oneevent.

This may be an incorrect assumption for some activities, e.g. for the activity of cars

picking-up individuals, the pick-up event involves a car stopping, the person approaching

then disappearing close to the car, followed by the car’s departure. As the car can pick up

several people, the detected car can be shared by multiple picking-up events. A person can

though be picked up by one car. The formal definition should consider these constraints

between the recognised events to provide a consistent set ofevents.

After formally defining the activity, this definition can be used to recognise activities.

The next subsection reviews techniques used for activity recognition.

2.2.2 Activity recognition methods

Recognising a previously-defined event is the task of findingone or more instances of

that event in a given video input, or indicating that such an instance is not present. The

recognition technique is thus dependent on the way the eventhas been defined.

Assuming a SCFG is used to define the activity, a probabilistic parser can be used for

the recognition. One efficient parser, referred to as the Early-Stolcke parser, can parse

probabilistic production rules and find the parse with the highest probability [135]. The

parser uses top-down dynamic programming performed in cycles of three tasks: predict-

ing, scanning and completion until the input sequence is fully scanned. At the prediction

stage, the set of all possible productions is accumulated. The scanning then reads the

input and calculates the probability of the produced string. Finally, the completion step is

performed when all the symbols in the production rule are successfully scanned. Parsing

a string of primitive events can then be performed by this parser given a SCFG.

Such recognition has two underlying assumptions. The first ignores the uncertainty in

detecting primitive events. Often detections are ambiguous and the primitive events can

only be probabilistically defined. The second assumption isexpecting only one compound
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event within a given input video. Previous work has attempted to drop one or both of these

assumptions.

The uncertainty of the input can be resolved independently from the recognition task,

where Maximum a Posteriori (MAP) assigns a primitive event to each detection. Alter-

natively, incorporating the uncertainty in the recognition task can resolve local ambigui-

ties. In [74], the recognition is decoupled into two stages.First, hidden Markov models

(HMMs) are used to detect primitive events. The likelihood of each primitive event is

retained and used in the parsing process. A modified Earley-Stolcke parser generates the

parse with the highest posterior probability given a sequence of uncertain events and the

SCFG. During scanning, the posterior is calculated as the multiplication of the rule’s prior

probability and the events’ likelihood terms. Three types of errors in the input have to be

dealt with. Insertion errors arise when one of the detected events is actually a noisy ob-

servation or does not belong to the activity. Substitution errors occur when a detection is

misclassified, and the actual primitive event is not detected as the most likely one. Dele-

tion errors occur when a primitive event fails to be detectedaltogether. When the parser

fails to parse the given input, it attempts to correct some for these errors, before running

the parser again. The method also checks for temporal constraints. During the completion

step of parsing, the parser rejects parses that do not satisfy the constraints. Ivanov and

Bobick recognise a single compound event, involving one or more interacting agents, in

each given video.

While Ivanov and Bobick only correct for errors when the input fails to be parsed,

Moore and Essa [104] expand the approach and modify the inputto accommodate for

possible insertion/deletion/substitution errors even when the current input can be parsed

correctly. The parse with the highest probability is found by maintaining multiple hy-

potheses at a time. At each step, the possible three errors are considered, and differ-

ent parses are generated. The work discusses pruning the hypotheses to avoid growing

complexity, yet in their work exhaustive search was tractable given the small number of

detections.

Kitani et al. build a hierarchical Bayesian network from the SCFG [86]. Probabilities

are embedded in the hierarchical Bayesian network. Insteadof a parser, deleted interpo-

lation is used to find the explanation with the maximum posterior. In ‘deleted interpola-

tion’, the probability distribution at each point in time iscalculated as a weighted sum of

explaining partial evidences over a window of sizel . A solution that strongly explains re-

cent observations is favoured. Unlike [74, 104], they do notincorporate the uncertainties

in recognising the primitive events into the approach. The probabilities are only confined

to priors of the grammar rules. Though the paper argues that activities are ‘constrained
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and temporally overlapped’, no explanation was provided onhow the constraints were

satisfied.

Shi et al. use discrete condensation [127] for finding the best explanation using their

P-Net representation. They modify the condensation algorithm [73] to sample a discrete

search space, and refer to this as discrete condensation. They compare discrete condensa-

tion with the parsing from [74] and present results that demonstrate discrete condensation

has a higher capability of recovering from errors and uncertainties in the data.

Hongenget al. build a Bayesian network so primitive events are independent, and

compound events are conditionally dependent on the simplerevents [69]. The posterior

of the Bayesian network is evaluated using belief propagation in one direction, from the

bottom layer to the top layer. The joint probability of primitive and compound events

is thus simplified to that in Figure 2.13. The approach then comparesp(H|e1,e2,e3)
with p(¬H|e1,e2,e3). The same independence assumptions for the joint probability are

used in [98]. Hongeng’s novel framework recognises one compound event given each

sequence. It exhaustively searches the possible combinations of primitive events to find

the one that maximises the posterior. The method presented in this thesis adopts the

same independence assumptions as these in Figure 2.13. Thiswill be further explained in

Chapter 3.

Figure 2.13: In [69], primitive events are assumed independent and compound events depend on
their primitive events. Graphical model from [69]

Similarly in [108], the event with the least uncertainty is recognised by finding the

combination of primitive events that satisfies the temporalconstraints with the highest

likelihood. The paper suggests pruning methods to limit thecomplexity of the approach,

but it focuses on formulating the problem rather than solving the recognition task.

Intille and Bobick automatically build a Bayesian network and link each event to an

observed node [72]. All the observed nodes are binary or ternary. An observed node is

labeled as (yes/maybe/no), which does not probabilistically incorporate the underlying

uncertainty. When applied to the activity of American football, multiple Bayesian net-

works are tested at each point in time to determine which strategy is used by the players.

The network with the highest confidence is selected as the recognised strategy, which suits

the context of a football game, where one strategy is presentat a time.
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Despite the majority of activity recognition frameworks focusing on recognising a

single instance of the compound event given a separated set of detections, some recent

work deals with the more realistic situation where a complete set of detections, belonging

to different events within the activity, is available. Chanet al. argue that joining track-

lets into complete trajectories can benefit from recognising the events performed by each

tracklet [25]. Applied to plane refueling activities, a motion tracker yields broken track-

lets representing the movements of different actors (e.g. person, hose, plane). A combined

approach is sought where tracking and activity recognitionare decided-upon jointly. The

work builds a dynamic Bayesian network, then uses brute force to search through the set

of possible explanations. Though this framework is very suitable for jointly recognising

primitive and compound events, it expects one compound event at a time, which suits

plane refueling scenes. It cannot be used to recognise interleaved events.

Recognising interleaved -yet ordered- activities, like a cashier scanning items one at

a time, is achieved in [42] using a special Viterbi algorithm. Ordered activities expect

events to end in the same order they started, which suits the events at a point of sale. The

approach is though unsuitable for unordered activities.

Tran and Davis use Markov logic networks, built using first-order logic rules from the

activity definition [139]. Observed events are grounded anda recursive procedure adds

new ground atoms using the logic rules to the Markov logic network. Inference is then

performed using Gibbs sampling with simulated annealing.

A recent attempt to recognise interleaved unordered eventsis that of Joo and Chel-

lappa [77, 78]. Similar to Ivanov and Bobick’s work, HMMs areused to recognise prim-

itive events, and parsing recognises the compound event satisfying the constraints and

considering the uncertainty of the primitive events. To recognise interleaved events, mul-

tiple threads are maintained and detections are greedily assigned to threads. The resulting

explanation is not necessarily one that maximises the jointposterior of the activity, as

detections are assigned independently in a sequential order.

Nguyenet al. proposed a framework to assign detections and recognise interleaved

events [109]. The authors acknowledge that a reliable assignment of detections to events

is often unavailable. The proposed approach splits the tasks into two. First, detections

are partitioned into events. Then, multiple hierarchical hidden Markov models (HHMM)

are used to recognise the events. This though assumes the number of events is fixed

and known in advance, in order to decide on the number of HHMMs. Assigning detec-

tions uses the Joint Probabilistic Data Association Filter(JPDAF). This maximises the

joint probability of assigning all detections to events at each point in time. A combined

HHMM-JPDAF is presented using a dynamic Bayesian network (Figure 2.14). The ap-
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proach uses MCMC to sample from the set of possible assignments, then exact inference

is used for each HHMM. Though the problem solved by Nguyenet al. is the closest to the

Figure 2.14: A DBN representing the HHMM-JPDAF in the case oftwo compound events. Each
one is represented by a Hierarchical HMM. The assignment of detections to events is performed
separately at each time step. Diagram from [109]

problem posed in this thesis, the number of events cannot be reliably known in advance.

In [109], the assignment was not formally defined, and is simply a 1-1 assignment in the

discussed cases.

A recent attempt to overcome an assumed partitioning of detections into events com-

bines SCFG with a Markov Random Field (MRF). The MRF is definedas a joint proba-

bility on nodes in the possible parse trees. The unary term defines the primitive event’s

likelihood, while pairwise terms define the relationships between nodes. Applied to pick-

ing up people in a car park, the pairwise potentials in the MRFare calculated from the

spatial proximities of people and cars. A Gibbs sampler is used to find the best set of

objects for each event. While this framework can partition the detections, it does not take

into consideration the constraints between events. As previously explained, this could

lead to an inconsistent set of events. For example, a car can drop-off several people, yet a

person can be dropped off by only one car. The MRF should be aware of such constraints

when sampling from the list of candidate objects.

This section highlights the need for a framework that definesand recognises activ-
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ities taking into consideration not only the temporal and spatial constraints within the

events, but also the constraints between the events. As attribute grammars have been

used successfully for defining spatial and temporal constraints, they will be adopted in

the suggested framework. For recognition, a Bayesian approach, similar to [69] has been

extended to jointly recognise the complete set of events within a period of activity.

2.3 Data association for tracking

Section 2.2 explained how recognising interleaved events has been previously tackled in

the literature. When interleaved events are expected but their number is unknown, and

constraints between the events should be satisfied, the recognition task involves a data

association process. Data association maps detections to apreviously unknown number

of identities, in this case - events. The mapping should satisfy the association constraints.

As explained in [95], data association has two components, asimilarity measure which

favours some associations over others, and an association optimisation method which

finds the best association satisfying defined constraints. Data association has been em-

ployed often in tracking to assign detections or measurements to objects. This section

reviews proposed solutions for three relevant problems from the tracking literature: multi-

target tracking within radar surveillance, intra-camera visual tracking and inter-camera

visual tracking. In all these problems global consistent associations have been used to

resolve uncertainties and improve tracking performance.

2.3.1 Multitarget radar tracking

The problem of data association for detections from radar and similar sensors is explained

using the following example. Assume a radar periodically scans for aircraft in a speci-

fied area. Detections represent aircraft as well as false alarms. Figure 2.15 shows the

detections at timest − 1, t and t + 1. The detections are recorded asynchronously, as

such sensors require a specified time to scan the observed area before starting a new scan.

The data association problem tries to group those detections into trajectories, identifying

any false alarms. It assumes targets move independently according to a Markovian pro-

cess [112]. A target can appear at any point in time, persist for a random duration, then

disappear. The task would be to partition the detections into trajectories representing tar-

gets. Each detection at timet represents one target at most. If the detection is not part of

any trajectory, it is thought to be a false alarm. At least twodetections are expected for a

trajectory to be established. Alternative variations of the radar problem expect at leastn
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detections before a trajectory is considered.

Figure 2.15: Three images from Airport MonitorTM 2.0 (Copyright of PASSUR-AEROSPACE
www.passur.com) covering JFK Airport area within a range of40 miles on the 12th of June 2009
at 12:10, 12:20 and 12:30.

Figure 2.16: An abstract 4-scan example of multi-target tracking.

As the detections are not visually distinguished from each other, this task is referred to

as the ‘motion correspondence’ task. Given these indistinguishable detections, distances

and velocities must be used to resolve ambiguities in the partitioning process. Though the

search space of all possible partitions is huge, the difficulty in the motion correspondence

task is not measured by the number of detections, but by the ambiguity in the partitioning

process. Even if the number of detections is vast, but each target is moving far enough

from other targets, the task would be considered trivial, and simple Kalman filtering [9]

would be sufficient. The uncertainty arises from dense detections, and a high rate of

false detections [112]. When the ambiguities increase, researchers in the radar domain

proposed techniques that rely on deferred logic [36], wherethe decision could be amended

by future scans. In deferred logic, detections within a sliding window are analysed and

the best global explanation is considered. Figure 2.16 presents a 4-scan example along

with the corresponding correct trajectories, and detectedfalse alarms.

The paper ‘A Review of Statistical Data Association Techniques for Motion Corre-

spondence’ by Cox in IJCV(1993) lists the various techniques for data association used

to solve the radar problem until then [28]:

• Nearest Neighbour: matches each detection at timet to its nearest neighbour at time

t−1.
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• Track Splitting Filter: Instead of taking the decision for each consecutive pair of

scans, this technique splits the trajectory into the best two possible explanations.

Branching is performed independently for each track. This method does not ensure

disjoint tracks. The solution can associate a single detection to two separate tracks.

• Joint Probabilistic Data Association Filter (JPDAF): At each scan, the joint prob-

ability for assigning new detections to trajectories, given the previous assignment,

is considered. The JPDAF does not change the assigned trajectories for previous

scans and expects a fixed number of trajectories.

• Integer Programming: In 1977, Morefield formulated the radar problem as a set

packing task, and solved it using integer programming [105]. The set of all possible

trajectories1 is accumulated, along with the probability (or cost) for each trajectory.

The trajectories in this set are not disjoint, as the same detection is assigned to

multiple trajectories. Set packing then creates hypotheses, where the trajectories in

each hypothesis are disjoint and all detections are explained. Integer programming

is used to find the hypothesis with the highest probability. This technique performs

an exhaustive search through the space of explanations.

• Multiple Hypotheses Tracking (MHT): Reid proposed a heuristic search using the

multiple hypotheses tree (MHT) [116]. Reid’s tree has a number of levels that

equals the number of scans. At each level, the detections at the current scan are

assigned to existing or new targets. For each branch in the tree, constrained ex-

planations for the current scan are added as children nodes to the branch. Notice

that the set of possible explanations differs between branches depending on previ-

ous scans. As the tree grows exponentially, it is pruned and thek-best explanations

are retained at each level. This search is heuristic, as it cannot be guaranteed in

advance that the correct assignment will remain within the k-best hypotheses as fu-

ture scans are considered. Increasingk though increases the required calculations

and memory resources. Cox re-formulated the problem, usingan earlier work of

Murty [106], to find the k-best hypotheses in polynomial timewithout enumerating

all the assignments [29]. The technique uses the Hungarian algorithm and amends

the cost matrix to block the best-solution’s assignments.

Recent solutions to the radar multi-target problem use MCMCto find the optimal

association. Oh, Russell and Sastry introduced MCMCDA (MCMC Data Association)

for multi-target tracking [111, 112]. In Ohet al.’s work, given a set of detectionsY, the

1given a maximum distance between detections in subsequent scans - this is known as gating
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search is for the best associationω̂ that maximises the posteriorp(ω|Y). By defining the

set of associationsΩ, a Makrov chain is constructed to sample the space of associations.

At each step in the Markov chain, a new association is proposed by applying a move to the

current association. MCMCDA is further explained in Section 4.4.1. The set of reversible

moves proposed in the paper for multi-target tracking are shown in Figure 2.17.

Figure 2.17: The set of reversible moves proposed by Oh et al.for the multi-target tracking
problem. Diagram from [111]

2.3.2 Intra-camera global tracking

Visual trackingis the task of associating detections, retrieved from visual sensors like

CCTV cameras, to form complete trajectories. It differs from the multi-target tracking

problem introduced in Section 2.3.1 in that appearance can be used to relate detections,

and distances are affected by the unknown depth of the view field. This section reviews

techniques that employ global analysis to achieve better intra-camera tracking. Broken

trajectories, tracklets and noisy detections have to be connected into complete trajecto-

ries. Traditionally, detections are associated by considering a couple of frames. A recent

trend toward global solutions, despite the combinatorial complexity, uses approaches such

as multiple-hypotheses trees [13,24,81], cost-flow networks [152], Bayesian network in-

ference [79], Expectation-Maximisation [150,156], quadratic Boolean optimisation [94],

dynamic programming [14] and linear programming [126].

The closest form of intra-camera visual tracking to that of multi-target tracking is

tracking ants and bees [85], because the detections are indistinguishable. Khanet al.’s

work [84,85] tested the ability to track ants and bees withina closed environment, where

the number of targets is fixed, as well as an open environment where ants can leave the
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field of view via an opening and return again. MCMCDA was used to sample the space of

global explanations. The recent work of Zouet al. [158] tries to establish 3D trajectories

from stereo data of fruit fly swarms. A global approach is usedwhere the trajectory is

defined as a sequence of stereo correspondences between the image projections across

the entire duration. To accommodate for the combinatorial complexity, the approach uses

Gibbs sampling to sample the set of possible correspondences, and the optimal global

explanation is found using dynamic programming.

Pedestrian tracking associates foreground segmentations, often represented by blobs,

to form trajectories. Sampling the distribution of possible trajectory assignments has

been increasingly employed in tracking pedestrians using importance sampling [147] or

MCMC sampling [2,131,149,154]. Zhao and Nevatia’s work is anovel work in this area,

where the best interpretation of all detections in a video sequence is found by Bayesian

inference [154]. The work reformulates the intra-camera tracking task as the estimation

of the number of objects, the correspondence between the objects in consecutive frames,

and the positions of those objects. The paper uses MCMC for sampling the possible

explanations, and highlights the importance of ‘informed’proposal distributions (referred

to as ‘weighted’ proposal distributions in Section 4.4). The work assumes each blob

belongs to a single trajectory, and each target is represented by a maximum of one blob at

each frame.

Smith [131] uses Reversible Jump MCMC (RJMCMC) for the same task. Smith’s the-

sis discusses how RJMCMC, proposed by Green [57], is suitable for sampling the joint

distribution of target numbers and their positions. Tracking is performed in a sliding win-

dow, and the globally optimal trajectories are computed foreach window independently.

Building on this, Yuet al. [149] combine segmentation along with tracking. As the same

target can be split into several blobs during tracking, or the same blob can be composed

of multiple targets, this work merges and splits blobs to findglobal trajectories. They

model both spatial and temporal moves (extending those of Smith), and search the space

of explanations within a sliding window. Figure 2.18 shows the moves suggested in [149].

While all the presented techniques provide an explanation for all the detections, up

to the current time stamp, some approaches postpone the decision until the data is dis-

Figure 2.18: Spatial and temporal moves for intra-camera tracking. Diagram from [149]
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ambiguated [124]. Ambiguous trajectories are flagged, and are only explained when the

uncertainty can be confidently disambiguated.

2.3.3 Inter-camera global tracking

Global analysis for trajectories in non-overlapping cameras has previously been used to

relate entry and exit points in camera views, and to track individuals across blind re-

gions [14, 19, 76, 101, 155]. The work related to this problemcan be divided into three

categories. In the first category, the topology of a network of cameras is established with-

out directly associating the detections [97, 101, 133]. This category does not include a

data association task. The second category aims at establishing the correspondences for

a given camera topology. The third hybrid category finds the topology along with estab-

lishing correspondences between detections.

For the second category, features of the pedestrians, referred to as passive [52] or

soft-biometrics [141, 146], are compared to assess whethertwo detections correspond to

the same person. Most of these features are session-based, i.e. they might differ for

the same individual if observed at a later point in time. Clothing colour is a common

matching feature to connect two trajectories as it is easy toretrieve [19,52,53,76,129,146].

Other passive features have been used, like texture [59], height [70, 99] and gait [63,

110]. In solving the data association task, one-to-one assignment has generally been

assumed [19,83,151], and a greedy search [70,129] or the Hungarian algorithm [83] have

been employed to find the best assignment.

The work by Zajdelet al. is one example of the hybrid approach [150], as it finds

the topology and connects the trajectories. It considers all the detections and builds a

dynamic Bayesian network. Expectation-Maximisation (EM)is used to retrieve the BN

structure that best suits the detections, and the parameters of that structure.

Inter-camera tracking becomes more complex when new peoplecan appear anywhere

across the network, and people can depart at any blind area. One of the earliest solutions to

this complex inter-camera tracking was introduced by Huangand Russell [71], as part of

‘Roadwatch’ for tracking cars across wide-area traffic scenes. They assign each car seen

upstream to its corresponding observation downstream, allowing for on-ramp and off-

ramp detections. Their solution uses MHT, thus it cannot scale to tracking cars between

more than two cameras due to the growing complexity. An MCMC sampling approach is

proposed for a scalable solution [113].

Figure 2.19 provides an example that shows how multi-targettracking, intra-camera

and inter-camera tracking can be perceived as different forms of the data association prob-
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lem. Global optimisation techniques like multiple-hypotheses tracking or sampling using

MCMC can be employed for data association. The search is for the best global explana-

tion that associates all the detections.

Figure 2.19: The three different data association problemsare shown. In each problem, the detec-
tions are partitioned into a previously unknown number of targets or considered false detections.
Intra-camera diagram taken from [149] and inter-camera diagram from [150]

2.4 Summary

This chapter reviewed some of the previous work related to global analysis for activ-

ity recognition and data association. As the thesis is proposing global explanations for

activity recognition, a quick overview of global analysis in computer vision was first pre-

sented. Global analysis assists resolving local ambiguities by considering hard and soft

constraints.

A collection of previous frameworks for activity recognition was discussed. For each

framework, the method to define the activities was first explained, followed by the recog-

nition technique. Global explanations of activities require not only recognising all events,

but also partitioning the detections into the activity’s events. This is a data association

task. A review of data association for tracking was presented for three tracking problems:

multi-target tracking of radar detections, intra-camera visual tracking and inter-camera

visual tracking. The next chapter introduces the frameworkpresented in this thesis to find

global explanations for activity recognition.
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Global Explanations for Activity

Recognition

Analysing an activity involves recognising a consistent set of events. While most existing

activity recognition techniques deal with a single event, realistic surveillance typically

involves interleaved unordered events, extending over a long temporal duration. In these

situations, the events are often mutually dependent. For example, a person entering a

building can be observed departing only once at a later time.In visual analysis, these

dependencies can be exploited to disambiguate uncertain visual data by seeking a global

explanation.

This chapter presents a complete framework that starts witha general way to formalise

the set of global explanations for a given problem using attribute multiset grammars.

Parsing a set of detections by such a grammar finds a consistent set of events that

satisfies the activity’s natural constraints. Each parse tree has a posterior probability

in a Bayesian approach that considers the prior probabilityalong with the likelihoods of

the recognised events. To find the best parse tree given a set of detections, the approach is

accompanied with an algorithm that transforms the grammar and a finite set of detections

into a Bayesian Network (BN). The set of possible labellingsof the Bayesian network

corresponds to the set of all parse trees for the given set of detections. The best global

explanation is the Maximum a Posteriori (MAP) solution overthe space of explanations.

32
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3.1 Activities as hierarchies of events

As explained in Section 2.2, an activity is a set of related events, which can be recur-

sively defined as sets of simpler events until primitive events are reached. For a chosen

activity, the composition of the activity forms a hierarchy. Consider the activity in a car

park, Figure 3.1 shows a plausible decomposition into eventtypes. In addition to cars

and people passing by, cars can be left in the parking area andretrieved later. Six types

Figure 3.1: The activity in a car park is represented as a hierarchy of compound and primitive
event types.

of primitive events are expected in this activity - these arethe leaves of the tree in Fig-

ure 3.1. In addition to directly detecting these primitive events, compound events need

to be recognised by grouping simpler events. For example, tocombine detections of a

car stopping with a person moving away as a ‘leaving-car’ event, the person must emerge

close to the right frontal door of the car. Similarly, to combine a ‘leaving-car’ event with

a ‘retrieving-car’ event, the same car (parked at the same spot for example) should be

detected in both events. The hierarchy in Figure 3.1 represents possible event types. The

activity will actually include multiple interleaved events of these types.

Figure 3.2 shows an illustrative timeline for a set of detections in a car park (5 car

detections and 6 person detections). The bar shows the temporal extent of each detec-

tion, for example the temporal extent of a car stopping starts from the moment the car

Figure 3.2: Five cars and six people detected in a car park.
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appears until it fully stops. Given this set of detections, and the expected activity hier-

archy (Figure 3.1), a global explanation partitions all detections into a consistent set of

compound and primitive events. Figure 3.3 represents an example of such an explanation.

This global explanation contains a set of five events, three of which are further defined as

a set of simpler events. Some compound events might not be complete, like the third car

parking, as there was no observation of the car being taken away.

Figure 3.3: A global explanation for interleaved unorderedevents. Each row represents one event
in the activity. Dotted lines show the temporal gaps betweenevents.

Figure 3.4 expresses the global explanation in Figure 3.3 asa hierarchy. Each row in

Figure 3.3 corresponds to one of the sub-hierarchies of the activity. The left-right order of

the events in the tree is irrelevant. Accordingly, each nodein the hierarchy is a set of its

subordinates, rather than a tuple. Using sets, instead of tuples, simplifies the definition,

as many compound events can be carried out in different orders. Defining the event as an

ordered tuple would require multiple tuples for the different possible orders. When sets

are used, only one set can represent the various cases. Temporal constraints can still be

defined, but only when needed.

Figure 3.4: The global explanation is expressed as a hierarchy of events.

A set though, by definition, contains distinct objects. An activity can contain multiple

instances of the same event. For example, the hand shaking act involves two people per-

forming the same event. A multiset is better suited to represent the collection. A multiset

(or a bag) is a generalisation of a set where the order is irrelevant although each symbol

can still appear more than once. The global explanation thusrepresents the activity as
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a multiset of compound and primitive events. Each compound event should be further

defined as a multiset of simpler events until primitive events are reached.

When recognising an activity, a collection of constraints on consistent events can be

defined. For example, a car needs to stop before a person can leave the car. Failing

to enforce these constraints results in inconsistent events. These constraints areintra-

activity constraintsas they govern the relationships between the events making up the

same compound event. Temporal and spatial intra-activity constraints can be identified in

the car parking activity.

Another set of constraints, often ignored in activity recognition, is referred to as the

inter-activity constraints. While intra-activity constraintsensure each recognised event

is internally consistent,inter-activity constraintsensure the complete set of recognised

events is consistent. For example, dropping a person off by acar involves one person

detection and one car detection. A person can be dropped off by only one car, while the

same car can drop off multiple people. Allowing two cars to drop off the same person

results in an inconsistent set of events, regardless of how close the person was to both

cars. On the other hand, a solution that allows the car to dropoff only one person is over-

constrained. Explaining each event independently fails totake inter-activity constraints

into consideration, and can result in an inconsistent set ofevents. This research makes

a clear distinction between the two types of constraints dueto two reasons. The first

is that inter-activity constraints are often ignored in activity recognition, so are worth

highlighting. The second is that the two types are defined in different ways as will be

shown in Section 3.2.

The framework presented in this chapter attempts to define global explanations, where

all detections are explained, maintaining intra- and inter-activity constraints. Section 3.2

proposes a grammatical representation to define consistentsets of events that satisfy the

activity’s constraints.

3.2 Attribute Multiset Grammars

A general way to formalise the set of globally consistent explanations for a given activity

is not yet available, particularly in the formalisation of constraints within a structural rep-

resentation. In this section, a grammar formalism is proposed for this task. The grammar

is defined so the language it describes corresponds to the setof all global explanations.

Attribute Grammars as first introduced by Knuth [87]1, also referred to as Feature-

1An inspiring reflective narrative about the historical origins of attribute grammars was written by
Knuth [88]
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Based Grammars [17] and Attribute-Value Grammars [3], add attributes to the terminal

and nonterminal symbols of a grammar. These attributes can be used in three ways.

The first is to propagate information towards the root of the parse tree; ancestors derive

their attribute values from those of their descendants. Thesecond is to propagate attribute

values down towards the leaves; descendants inherit characteristics of their ancestors. The

third is to use attributes to govern the application of production rules, thereby constraining

the language generated by the grammar.

While a conventional string grammar rewrites a symbol into asequence of symbols,

multiset grammars rewrite a symbol into a multiset. Attribute Multiset Grammars (AMG)

were introduced in [55] for representing the constituents and layout of a picture. They

have also been referred to as Constraint Multiset Grammars [102]. Visual languages

were later defined as graph grammars because connectors between neighbouring shapes

require a formal definition of edges. A review of grammars forvisual languages can be

found in [10].

Conventional approaches to activity recognition expect aninherent order of events to

define a compound event. Context-Free (string) grammars were thus used for the def-

inition. When a compound event can be carried out in different orders, each order has

to be defined separately. This research adopts the viewpointthat the compound event is

made up of an (unordered) set of events. Temporal (i.e. causal) relationships between

some of these events could be defined, but an ordering is not enforced when it does not

exist naturally. The AMG formalism thus satisfies the requirements introduced in Sec-

tion 3.1 for formally defining global explanations. It rewrites the activity as a multiset

of events, which can be further defined as multisets of other events. Note that two event

instances of the same type are considered identical, which triggered the usage of the multi-

set grammar. Moreover, attributes allow defining and constraining intra- and inter-activity

relationships. The terminology used in the rest of the chapter follows the one introduced

by Knuth in [87]. Here, an AMG is defined as a five-tupleG = (N, T, S, A, P) where

N is the set of nonterminal symbols denoted with capital letters, T is the set of terminal

symbols denoted by lower case letters, S is the start symbol (S ∈ N), A(X) is a set of

attributes defined for the symbolX ∈ N∪T, and P is the set of production rules. The

notationX.a is used to denote the value of the attributea∈ A(X). Attributes are of two

types,A(X) = A0(X)∪A1(X), whereA0(X) is the set ofsyntheticattributes which have

predefined values for all terminals and are calculated for nonterminals based on their de-

scendants, andA1(X) is the set ofinheritedattributes which are calculated based on the

attributes of the ancestors [87].

Each production rulep∈ P is a three-tuple (r, M, C) where r is asyntactic ruleof the
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form X0 → X1,X2, ...,Xnp that rewrites the nonterminalX0 as a multiset of nonterminal

and terminal symbolsX1,X2, ...,Xnp. M is a set ofattribute rules, where each rulem∈ M

assigns a value to one of the attributes of the symbols involved in r. C defines a set of

attribute constraintsthat govern the application of the production rule. The production

rule can only be applied if all the attribute constraints aresatisfied.

Analogous to the types of attributes, an attribute rulem∈ M is synthetic (M0) if it

assigns a value to a synthetic attribute, and is an inheritedattribute rule (M1) otherwise.

Similarly, there are two types of attribute constraintsC; synthetic constraints (C0) which

specify allowed values for synthetic attributes and inherited constraints (C1) which limit

the values assigned to inherited attributes.

AMG can thus be used to define activities as follows:

• The start symbol (S) represents the complete activity.

• Nonterminal symbols (N) represent the compound events thatcan be rewritten into

a multiset of simpler events.

• Terminal symbols (T) represent primitive events that are directly detected.

• Synthetic attributes (A0) are features extracted for each primitive event or detec-

tion. These can be used to calculate attributes of compound events. For example,

the temporal extent for each primitive event is retrieved directly by the detector.

The temporal extent of a compound event is the union of all itsprimitive events’

durations.

• Inherited attributes (A1) are explanation-related. For example, the person who is

part of a car-leaving event is a driver. Such attributes are not calculated from the

input, but are assigned based on the explanation, and differbetween explanations

• Synthetic rules (r) define the structure of the activity’s hierarchy. The rule: A→ a,b

means the compound event A is made up of the primitive events aand b.

• Synthetic constraints (C0) define intra-activity constraints. They limit the temporal

and spatial relationships between the grouped events, as the time and location of

the event are synthetic attributes.

• Inherited constraints (C1) define inter-activity constraints. Sharing an event between

two compound events can be forbidden by maintaining a count for the number of

times each event is shared. Such a count is decided by the chosen explanation and

varies between explanations. It thus is an inherited attribute.

To illustrate, consider the AMG grammarGa defined next
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Nonterimanls (N): S start symbol
A compound event 1
B compound event 2

Terminals (T): a primitive event 1
b primitive event 2
c primitive event 3

Attributes (A):
attribute name type domain defined for
time ∈ A0 Z {a, b, c, A, B}
count ∈ A1 Z {b, B}

Production Rules (P):

rule Syntactic Rule (r) Attribute Rules (M) Attribute Constraints (C)

p1 S → A?, B?, a?, c?

p2 A → a, B A.time = a.time+B.time a.time < B.time
B.count = 1 B.count 6= 1

p3 B → b,c B.time = c.time b.time < c.time
b.count = B.count b.count 6= 1

The sample AMG,Ga, defines three nonterminal symbols of which ‘S’ is the starting

symbol of the grammar. It defines three terminals that can be detected directly from the

input. One synthetic and one inherited attribute is defined along with three production

rules. The first production rulep1 rewrites the start symbol into the possible event types.

The multiset{A?,B?,a?,c?} indicates that the activity is a multiset of events of these four

types. The star indicates the presence of zero or more eventsof each type in the multiset.

A primitive event of typea can then be part of a compound eventA, or not. Primitive

events of typeb on the other hand, cannot occur on their own.

The second production rulep2 specifies the hierarchy of the compound event ‘A’.

Two attribute rules and two attribute constraints are defined for p2. The first attribute

ruleA.time= a.time+B.timeis synthetic as it calculates the value of the attribute ‘time’

from some values of the descendants’ attributes. The secondattribute ruleB.count= 1

is inherited as it assigns a value of 1 to the attribute ‘count’ of the descendent symbol

B. The two attribute constraints are synthetic and inherited respectively. Notice that the

event ‘B’ can participate in only one event of type A by setting the count to 1 when the

rule is applied and constraining it to non-1 values by the inherited constraint.

Figure 3.5 shows the dependency graph corresponding to the attribute rules inGa. A

dependency graph [87] graphically represents the dependencies amongst attributes. In

the graph, each symbol is surrounded by its attributes. Synthetic attributes are listed to

the right while inherited attributes are to the left of the symbol. A dotted line shows the

derivations of the syntactic rules, while an arrow denotes the attribute dependencies. The
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dependencyx→ y means attributey is dependent onx. The value of attributey cannot be

known beforex is assigned a value. Arrows pointing upwards indicate synthetic attribute

rules, while downward arrows denote inherited attribute rules.

Though any set of attributes and attribute rules can give rise to an AMG, all the gram-

mars used in this thesis are Ordered Attribute Grammars (OAG) [80]. An ordered gram-

mar assumes a partial order over the attributes is defined. All the attributes can then be

evaluated in this order in a finite number of passes. Kastens provides an algorithm to

check whether an AMG is an ordered grammar [80]. This is not necessary if the attribute

dependency graph clearly shows the non-circulatory natureof the grammars. This the-

sis assumes the AMG for activity recognition is an OAG, as other grammars cannot be

evaluated into parse trees with values for all the attributes. This is though not a restric-

tion to defining activities, because attributes are features and interpretations that should

have values in all cases. When activities are represented byan AMG, and the attribute

dependency graph is not obviously non-circular, the algorithm in [80] can check that the

grammar is ordered.

Figure 3.5: Attributes dependency graph show-
ing synthetic and inherited attributes.

Figure 3.6: Two parse trees given a multiset
of detections and AMG Ga.

For each input video, detectors are used to retrieve a multiset of detectionsD. Each

detection is an instance of one of the terminalsT in the grammar, together with assigned

values for the synthetic attributes defined for that terminal. The set of all derivations of

D, givenGa, is the set of all possible explanations for the input video.For the grammar

Ga, suppose the detectors generated the following multiset D ={a1 (time=1),a2 (time=2),

b1 (time=2),c1 (time=3),c2 (time=4)} - subscripts distinguish different instances of the

same terminal. Values for the only synthetic attributetimeare assigned by the detector for

each detected instance of the terminal symbols. Figure 3.6 shows two possible derivations

(i.e. parse trees). Starting from the start symbol ‘S’, the set of all distinct explanations

equals the set of all possible parse trees. Recall that the order of branches in the tree is

irrelevant.

Attribute constraints ensure that only consistent events are generated. For example,
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Derivation Check constraints Apply attribute rules
B → b1,c1 b1.time< c1.time B.time = c1.time = 3

b1.count = 1
A → a3, B a3.time> B.time

Figure 3.7: An example of a violation constraint. The syntactic rule cannot be parsed.

given a new detectiona3 (time = 5), Figure 3.7 shows that the second production rule

cannot be applied as the constraint was violated.

This section showed how Attribute Multiset Grammars (AMG) can represent the do-

main’s knowledge for global analysis of activities. Syntactic rules of the grammar encode

the hierarchical structure of the activity. Attribute rules and constraints enforce the natural

constraints.

3.3 A Bayesian approach to finding the best parse tree

Section 3.2 detailed how global explanations for a multisetof detections arise as parses

according to a given grammar. Given the same detections, theset of different possible

parse trees corresponds to the set of all global explanations. To find the best parse tree

given a multiset of detections in a Bayesian approach, all detections need to be assessed

along with prior probabilities that would favour some parsetrees over others. The prob-

ability distribution over the space of possible explanations is modelled using a Bayesian

network.

In this Bayesian network, a Boolean node is added for each compound or primitive

event in all the possible parse trees. Each global explanation is thus a labelling of the

BN, so only the nodes corresponding to the set of events in this parse tree are labelled

true. Finding the best explanation is then finding the Maximum a Posteriori (MAP) la-

belling of the Bayesian network. The joint probability of all the nodes in the BN is

factorised. Conditional links are formed between events and their associated evidences,

between compound events and their constituent events, and between related events when

enforcing consistency in the parse tree. This is explained next in detail.

Bayesian Networks (BNs) are directed graphical models thatconvey the independence

assumptions in a joint probability distribution [16]. In a BN, nodes represent random

variables (RVs), while directed edges represent the dependency between these variables.

A directed edge from node ‘a’ to node ‘b’ symbolises that the value of ‘b’ depends on the

value assigned to ‘a’. This is often informally referred to as ‘a’ being the parent of node

‘b’. In Bayesian networks, the value assigned to a random variable is only dependent on
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the values of its parents, children and co-parents (referred to as the Markovian blanket of

the RV). Three types of random variables are used in this section to build the BN:

• Observed Random Variables, or observables: denoted by shaded nodes, and repre-

sent discrete or continuous values that can be directly measured from input data.

• Hidden Random Variables, or latent variables: denoted by non-shaded nodes, and

represent the explanation inferred from the node’s Markovian blanket.

• Deterministic Random Variables: denoted by double-circled nodes, and represent

variables that functionally depend on the values of its parents. A Boolean function

decides the value of the deterministic random variable based on the values assigned

to its parents.

A simple one-rule example is presented first. Given a pair of primitive eventsx andy,

and one syntactic rule (Z → x,y), Figure 3.8 (left) shows a Bayesian network with three

evidences;ox, oy andoz representing the set of synthetic attribute values for eachsymbol.

The evidenceoz is the calculated synthetic attribute values associated with the syntactic

rule. Three hidden random variables,(x,y,Z), explain the two primitive events and one

compound event. The joint probability is factorised so the compound event is dependent

on its constituent events. It is important to clarify thatthe descendants in the parse

tree are the parents in the Bayesian network. Each hidden random variable is Boolean

(t/ f ), where ‘t ’ represents the occurrence of the event, while ‘f ’ indicates the event is not

recognised. For each synthetic attribute, a conditional probability density function (cpdf)

needs to be defined for each labelling. In this example,p(ox|x = t) and p(ox|x = f ) are

required, and similarly for the other two observed random variables. These cpdfs can be

learned from labeled data as will be shown in Chapters 5 and 6.

Figure 3.8: Directed graph for the production rule Z→ x,y given two detections (left) and a plate
representation for multiple events (right).

For a multiset of detections withn detections of typex andm detections of typey,

then Figure 3.8 (right) shows a plate representation linking eachx event to all possibley
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events according to the production rule. Though each compound event is dependent on

its constituent events, inter-activity constraints should also be governed. A deterministic

random variable is added to link inter-dependent events. Inthe plate representation, all

Z compound events are assumed inter-dependent and thus are linked to one deterministic

random variable c. The inter-dependent nodes are those nodes whose production rules

include inherited attribute constraints governing the same inherited attribute. This will be

further explained later in this section. Figure 3.9 is an unrolled example forn = 3 and

m= 2. The different kinds of nodes in the Bayesian network are labeled on the left hand

side. Each pair ofx andy RVs parents one compound event nodeZ. Figure 3.10 shows a

parse tree and the corresponding labeled Bayesian network.

Figure 3.9: An unrolled Bayesian network for multiple events.

Figure 3.10: A sample explanation (left) and its corresponding labelling of the BN (right).

Figure 3.11: The Bayesian network for the grammar Ga along with two labellings that reflect the
parse trees in Figure 3.6. A node is labeled true if it appearsin the parse tree. The deterministic
function evaluates to 1 for labellings that satisfy the inherited constraints.

In Section 3.2, an AMG was introduced as an example along withtwo parse trees for a

multiset of detections. Figure 3.11 shows the Bayesian network for the specified detection
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multiset along with two labellings that reflect the parse trees in Figure 3.6. Notice that

each possible nonterminal in the parse trees is representedby a hidden random variable

(RV), and is labeled true if the nonterminal appears in the explanation’s parse tree, and

false otherwise.

The method for building this BN might not seem obvious. Algorithm 3.1 details the

steps for building a BN out of a set of detectionsD and an AMG. Figure 3.12 traces the

algorithm to build the sample BN in Figure 3.11. The set of production rules is ordered

(p3, p2, p1), then a hidden-and-observed RV pair is created for all the detections inD.

The observed RV holds the value(s) of the synthetic attribute(s) for each detection.

Lines 7-23 in the algorithm build the BN’s structure. For thefirst production rule (p3 :

B → b, c), the possible combinations (line 10) are

comb ={ (b1, c1), (b1, c2) }

For each of these two tuples, the synthetic attribute constraintb.time< c.time is checked

(line 13). As the constraint is satisfied for both tuples, twohidden RVs of type B are cre-

ated{B1, B2}. The synthetic attributes are calculated for each (B1.time = 3, B2.time = 4),

and represented by a related observed RV. The dependency links are established between

the compound event and its constituent events. Similarly, the second level of the BN is

built for the rulep2 : A→ a,B.

To accommodate fordirect recursionin grammars, the loop (lines 11-23) checks if

new tuples (lines 20-23) have been added. Direct recursion occurs when the multiset at

the right hand side of the production rule contains an instance of the nonterminal at the left

hand side, for example A→ a, A, b. The algorithm cannot deal with indirect recursion,

like
A → a, B

B → b, A

A → c
These cases can be checked while establishing the order of the production rules (line 2).

Figure 3.12: An example of constructing the BN from the AMG Ga and a set of detections, shown
in steps.
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input : Grammar G = (N, T, S, A, P), detections multiset D
output : Bayesian network structure BN

initialise an empty Bayesian Network (BN)1

orders rulesP starting with those containing terminals then bottom-up2

foreach terminal instance t∈ D3

add hidden RV to BN of typet4

if t has synthetic attributesthen5

add a related observed RV to hold the synthetic attribute values6

foreach rule p∈ P (p.r : X0 → X1,X2, ...,Xn)7

if X0 6= S then8

Let I(Xi) be the set of nodes in BN of typeXi9

comb= I(X1) × I(X2) × ... × I(Xn)10

while size of comb> 0 do11

foreach tuple b∈ comb12

if b satisfies synthetic attribute constraints p.C0 then13

add hidden RV to the BN of typeX014

foreach attribute rule m∈ p.M15

if m updates a synthetic attributethen16

applym assigning a synthetic attribute value toX017

add a related observed RV to hold synthetic attribute values18

all nodes in the tupleb parent the created hidden RV19

comb= I(X1) × I(X2) × ...× I(Xn) - comb20

foreach new tuple b∈ comb21

if the primitive events of b has redundanciesthen22

removeb from comb23

Let Nodesn be the set of all hidden RVs associated with nonterminal symbols N24

while Nodesn 6= φ do25

find Nodesp with inherited constraints limiting the same inherited attribute values26

Nodesn = Nodesn - Nodesp27

if size of Nodesp > 1 then28

add deterministic RVc to hold the inherited constraints29

all nodes inNodesp parent the deterministic RVc30

Algorithm 3.1: Mapping a multiset of detectionsD to the Bayesian network (BN) structure
that represents the probability distribution over the set of possible parses, given an AMGG.

Grammars with indirect recursion would have ambiguous ordering of the rules. Handling

indirect recursion could be done in principle, because the BN is based on a finite set of

detections. A possible (yet inefficient) algorithm can loopthrough all rules until the BN

is completely built. Designing an efficient algorithm is left for future work. This is not

seen as a limitation to defining activities, because direct recursion is sufficient to define
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repetitive patterns in the grammar.

Lines 24-30 explain how inter-dependent nodes can be found and linked to deter-

ministic random variables. First, the set of all nonterminal nodes along with the set

of inherited attributes each one constrains, is accumulated. For the example BN, this

set is{B1 → {b1.count}, B2 → {b1.count}, A1 → {B1.count}, A2 → {B1.count},
A3 → {B2.count}, A4 → {B2.count}}. Lines 24-25 iteratively find the sets of inter-

dependent events. In this example, three sets of interdependent events are identified;

{B1, B2}, {A1, A2}, {A3, A4}. For each set of inter-dependent events, one deterministic

random variable is created. In this case, the deterministicfunctions check that a maximum

of one node in each inter-dependent set is recognised at a time. Symbolically,

p(C|e1,e2) = ¬(e1∧e2) (3.1)

wheree1 is assigned true when the event is recognised and the logicalexpression evaluates

to zero for false expressions and 1 for true ones.

3.3.1 Multi-labelled Bayesian networks

All the BN examples presented up till now assume a Boolean labelling which indicates

whether an event is recognised. Let’s take another AMGGx, with the following synthetic

rules,
S → B?, C?

A → a, b

B → a, b

C → A, c
In this example the same multiset of detections{a,b} can be combined into two dif-

ferent event types. For example, a person can either get intoa car or leave a car. Given the

detections multisetDx = {a1,b1,c1,c2}, then the BN would be presented in Figure 3.13.

Two Boolean hidden RVs are created, one for event ‘A’ and another for event ‘B’, and are

constrained. Alternatively, one multi-labeled hidden RV can be used. The more concise

grammarGy can be introduced.

S → D?, C? D.action = ‘B’

D → a, b

C → D, c D.action = ‘A’
The hidden RV ‘D’ has three possible labels,{A, B, f}. The Bayesian network is then

represented in Figure 3.14. Algorithm 3.1 can still be used to generate the Bayesian

network’s structure. The set of possible labels allowed foreach hidden RV needs to be
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specified. A special attribute, called ‘action’, is defined for these grammar symbols. For

each symbol, the values assigned to ‘action’ by the production rules form the set of non-

false labels for nodes of that type. The false label is assigned when the event is not

recognised. While Boolean labelling is the default option,multi-labelling enables a more

concise formulation and decreases the number of constraints as will be shown in the AMG

for theBicyclesproblem (Chapter 5) and theEnter-Exitproblem (Chapter 6).

Figure 3.13: Boolean BN for the AMG
Gx

Figure 3.14: Multi-labelled BN for the
AMG Gy

After building the topology of the BN, priors and conditional probabilities need to be

specified. Priors are defined for primitive events. For each production rule, the conditional

probability of the nonterminal at the left hand side given the multiset at the right hand

side should be specified. For example, for the derivationD → a,b, where the set of

possible labels are as followsD.action∈ {A,B, f},a.action∈ {t, f},b.action∈ {t, f},
thenp(D|a,b) can be defined by assigning a value to each conditional probability in the

following table:
p(D|a,b) D = A D = B D = f

a = t,b = t

a = t,b = f

a = f ,b = t

a = f ,b = f
Notice thatp(D|a,b) should more precisely be written asp(D.action|a.action,b.action)

as the possible values of the attribute ‘action’ are the possible labels of the hidden random

variable. In the rest of the thesis, for each symbolX ∈ N∪T, X andX.action are used

interchangeably, andX is often used for simplicity.

In our research, these conditional probabilities are estimated by an expert without ob-

serving the testing data, and are kept fixed for all experiments. This is because estimating

them from training data requires a significant amount of training data and is a computa-

tionally hard optimisation problem due to the dependenciesbetween the production rules

that arise from the constraints. Abney [3] explained how theconditional probabilities
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can be correctly estimated from training data, using sampling and selecting features that

incorporate the dependencies between the rules.

This section has shown that the search for the best parse treecan be performed by

transforming the detections into a single Bayesian network(BN) that models the proba-

bility distribution over the space of all possible explanations for those detections. Each

global explanation, represented by a parse tree corresponds to a labelling of the BN.

Boolean and multi-labelled BNs have been discussed. The best parse tree then corre-

sponds to the Maximum a Posteriori labelling of the BN. This section presented an algo-

rithm that automatically performs this transformation from the AMG to the BN.

3.4 The posterior probability

The BN built in Section 3.3 models the probability distribution over the set of all global

explanations given a multiset of detections. To find the bestexplanation, one needs to

infer the Maximum A Posteriori (MAP) labellingω? of all the hidden random variables,

given all observed RVsY;

ω? = argmax
ω

p(ω|Y) (3.2)

For the simple AMG of one production rule in Figure 3.9, and multiset of detections

{xi},{y j}, the posterior is written as

p(ω|Y) = 1
G ∏

i
p(oxi |xi)p(xi)∏

j
p(oy j |y j)p(y j)∏

i j
p(ozi j |zi j )p(zi j |xi ,y j)p(c|{zi j}) (3.3)

The posterior can be re-arranged as (Appendix C)

p(ω|Y) = 1
Z ∏

i
p(xi |oxi)∏

j
p(y j |oy j )∏

i j
p(zi j |xi ,y j ,ozi j )p(c|{zi j}) (3.4)

whereZ is the normalising factor that need not be evaluated when searching for the

maximum. p(xi |oxi) is the posterior of the label assigned toxi given the evidence from

the synthetic attribute valuesoxi and similarly forp(y j |oy j ). The deterministic function

p(c|{zi j}) evaluates the labels of allz linking nodes, and equals 1 if the labels are consis-

tent, and zero otherwise. Accordingly, the posterior for inconsistent labelling evaluates to

zero always.

The third factor in Equation 3.4 becomes intractable to compute as the number of

detections increases. Fortunately, this can be avoided by computing a proportional quan-

tity instead. This is derived as follows (p(zi j |xi ,y j ,ozi j ) is abbreviated top(zi |·) in the
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derivation)

∏
i

p(zi |·) = ∏
i:zi= f

p(zi = f |·) ∏
i:zi=t

p(zi = t|·) (3.5)

= ∏
i:zi= f

p(zi = f |·) ∏
i:zi=t

p(zi = t|·)
∏

i:zi=t
p(zi= f |·)

∏
i:zi=t

p(zi= f |·) (3.6)

= ∏
i

p(zi = f |·) ∏
i:zi=t

p(zi=t|·)
p(zi= f |·) (3.7)

∝ ∏
i:zi=t

p(zi=t|·)
p(zi= f |·) (3.8)

This derivation specifically enables finding a quantity, proportional to the original poste-

rior, that is independent of all false-labelled nodes (i.e.unrecognised events). Accord-

ingly, evaluating the posterior of a single parse tree should only take into consideration

the events recognised within the parse tree, and should not be concerned with the remain-

ing unrecognised events. This uses the fact that labelling all the nodes as false is a fixed

quantity. For nodes labelled true, the ratio of labelling a node as true to labelling it as false

is sufficient to compare the posterior across various labellings of the Bayesian network.

Thus, the posteriorp(ω|Y) is rewritten to be

p(ω|Y) =
1
Q ∏

i
p(xi |oxi)∏

j
p(y j |oy j ) ∏

i j :Zi j =t

p(zi j = t|xi,y j ,ozi j )
p(zi j = f |xi ,y j ,ozi j )

∏
i j

p(c|{zi j}) (3.9)

Notice the difference between the normalising factorZ in Equation 3.4 and the normaliz-

ing factorQ in Equation 3.9. This is because the term in Equation 3.8 is only proportional,

but not equal, to the term in 3.5. In Figure 3.15, the unrecognized events in the BN are

Figure 3.15: The highlighted nodes are the only nodes included in calculating the posterior in
Equation 3.10 for the labeled explanation.

drawn in light grey to show the compound events that are labeled true and their accompa-

nying observed random variables. Only these nodes are required to calculate the posterior

for this explanation. This shows that evaluating the posterior for a parse tree only consid-
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ers the non-terminal symbols in this tree. Accordingly, theposterior for the parse tree in

Figure 3.15 equals

p(ω|Y) =
1
Q

p(a1|Oa1)p(a2|Oa2)p(b1|Ob1)p(c1|Oc1)p(c2|Oc2)
p(B1 = t|OB1,b1,c1)
p(B1 = f |OB1,b1,c1)

p(A1 = t|OA1,B1,a1)
p(A1 = f |OA1,B1,a1)

(3.10)

This is extensible to multi-labeled BN (Section 3.3.1). Theposterior would still be inde-

pendent of all false labelling. Recall that in both Boolean and Multi-labelled BN, ‘false’

is a possible label for all hidden RVs. Using the posterior from Equation 3.9 decreases

the number of likelihoods calculated to evaluate each global explanation.

Chapter 4 explains that exact inference is intractable in most cases, and presents

heuristic search techniques to find the MAP labelling of the BN.

3.5 Synthetic attributes

In the previous sections, the synthetic attributes for eachsymbol were already known and

encoded in the AMG. The choice of the synthetic attributes was not discussed, and is the

topic of this section. These synthetic attributes are features selected for each detection.

The features should be selected to help distinguish the different events.

Some synthetic attributes of the primitive event are used tocalculate attribute values

for the compound events. For example, in the ruleZ → x,y, the compound event Z can

be measured by the spatial proximity betweenx andy. Accordingly, the locations ofx

and y have to be measured, andoz is the distance between these locations, calculated

by a function defined in the grammar. Thus, some synthetic attributes distinguish the

occurrence of primitive events, and others are used to calculate the values of synthetic

attributes for more complex events.

Selecting which feature best distinguishes whether an event occurred or not can be per-

formed manually or automatically. Learning varies betweensupervised, semi-supervised

and unsupervised methods. For the cases studies in Chapters5 and 6, features that could

distinguish the event types are manually selected. This avoids features that are specific to

the training data, because they are based on the expert’s knowledge. The expert selects

these features while defining the AMG. The framework though is general and is indepen-

dent of the choice of the features. One can replace these features with different or multiple

features, and follow the same recognition procedure.

If multiple synthetic attributes are chosen to distinguishwhether an event occurred

(e.g. location and time), independence is assumed given thefeatures are retrieved inde-

pendently from the data. The cpdf is then the product of the likelihoods of those features:
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p(or |r) = ∏
k

p(r.ak|r). Given training data for different labels ofr, a conditional pdf can

be learnt over each attributer.ak and each labelx: p(r.ak|r = x).

3.6 Conclusion

This chapter explained how AMG can be used to present the domain’s activities as hier-

archies of compound and primitive events, along with intra-and inter-activity constraints.

In an AMG, terminals represent primitive events that directly correspond to detections,

and nonterminals represent compound events. Each symbol (i.e. terminal or nonterminal)

has synthetic and inherited attributes. Each production rule in the grammar rewrites a

nonterminal into a multiset of symbols. A production rule isaccompanied by attribute

rules that traverse values up and down the parse tree, and attribute constraints that ensure

the natural constraints are satisfied.

Parsing a multiset of detections by the AMG generates a global explanation that covers

all the detections, and satisfies all constraints. The set ofall possible parse trees represents

the set of global explanations for the detections. The chapter presents an algorithm to

transform the multiset of detections, given the AMG, into a Bayesian network structure.

The set of labellings of the BN corresponds to the set of all parse trees. After setting the

priors and the conditional probabilities for the BN, the MAPsolution represents the best

explanation for the detections. The next chapter explains tractable techniques to search

the BN for the MAP explanation.



Chapter 4

Searching for the Best Explanation by

Optimising a Bayesian Network

Chapter 3 shows how to build a Bayesian Network (BN), given a set of detections, that

models the probability distribution over the space of global explanations. The complete

set of labellings of the Bayesian network corresponds to theset of all explanations. The

Maximum a Posteriori (MAP) explanation is the best explanation according to the prob-

ability distribution. This chapter presents an exhaustivemethod for finding the MAP

solution that is tractable in certain cases. It also presents three heuristic methods that are

tractable in general.

The three heuristic search techniques are: greedy search (Section 4.2), Multiple Hy-

potheses Tree (MHT) (Section 4.3) and sampling the distribution using Reversible Jump

Markov Chain Monte Carlo (RJMCMC) with Simulated Annealing(SA) (Section 4.4).

The RJMCMC section introduces general reversible moves that can traverse the space

of binary event hierarchies. Finding the solution using Integer Programming (IP) is the

proposed exhaustive search method, and is explained in Section 4.5.

This chapter motivates the usage of these techniques, that have previously been pro-

posed in the literature for similar problems. It also explains each technique and details

how it can be applied to search the BN of global explanations.The search techniques

introduced in this chapter are compared experimentally in Chapters 5 and 6 for the two

case studies.

51
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4.1 The complexity of the search space

The size of the search space can be estimated from the number of nodes in the BN and

the different labellings of each node. First a detections multiset D = {a1, a2, ..., ana, b1,

b2, ... , bnb} is acquired using the detectors, where eachai is a different detection of

type a and similarly forb j . For an AMGG, and the detections multiset D, the number

of hidden RV nodes in the BN cannot be calculated in advance, as synthetic constraints

govern the ways nodes are combined. An upper bound on the number of nodes can though

be calculated. Assuming all rules rewrite a nonterminal into two symbols (i.e. binary

parse trees),h is the maximum depth of the parse tree, andn is the maximum number

of detections of the same type inD, then the number of nodes is of orderO(nh). The

number of constrained labellings representing explanations cannot be calculated either,

as it depends on the inter-activity constraints. For a Boolean BN, the upper bound on

the number of explanations isO(2nh
). This is a multi-dimensional assignment problem,

which is an NP-hard combinatorial optimisation problem [114].

Production Rules (P):
rule Syntactic Rule (r) Attribute Rules (M) Attribute Constraints (C)
p1 S → G?, E?, A?, a?, b?, c?, d?

p2 A → a, b A.OA = fA (a.Oa, b.Ob) b.count< 1
b.count = 1

p3 E → c, A E.OE = fE (c.Oc, A.OA) c.count< 1
c.count = 1

p4 G → E, d G.OG = fG (E.OE, d.Od) d.count< 1
d.count = 1

Figure 4.1: The production rules of a sample AMG.

To explain the different search techniques, the productionrules of a sample grammar

are specified in Figure 4.1. Given the following detections{a1,a2,b1,c1,d1,d2}, Fig-

ure 4.2 presents the Boolean BN. This sample BN will be searched using the different

techniques. Recall that the search is for the complete labelling of the Bayesian network

ω̂ that maximises the posterior probability, given the observationsY. Figure 4.3 shows

the exponential relationship between the number of primitive events and the number of

hidden RVs for this example.

4.2 Greedy search

A simple technique to find a good global explanation given theBayesian network is to

work from the bottom layer up, incrementally assigning labels to the hidden random vari-
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Conditional Probability Priors
p(A = t|a = t,b = t) 0.7 p(a = t) 1.0
p(E = t|A = t,c = t) 0.8 p(b = t) 1.0
p(G = t|E = t,d = t) 0.5 p(c = t) 0.9

p(d = t) 0.8
Observations cpdf

p(Oa1|a1 = t) 0.6 p(Oa1|a1 = f ) 0.7
p(Oa2|a2 = t) 0.4 p(Oa2|a2 = f ) 0.1
p(Ob1|b1 = t) 0.8 p(Ob1|b1 = f ) 0.4
p(Oc1|c1 = t) 0.7 p(Oc1|c1 = f ) 0.2
p(Od1|d1 = t) 0.1 p(Od1|d1 = f ) 0.8
p(Od2|d2 = t) 0.9 p(Od2|d2 = f ) 0.3
p(OA1|A1 = t) 0.6 p(OA1|A1 = f ) 0.6
p(OA2|A2 = t) 0.4 p(OA2|A2 = f ) 0.9
p(OE1|E1 = t) 0.8 p(OE1|E1 = f ) 0.5
p(OE2|E2 = t) 0.9 p(OE2|E2 = f ) 0.2
p(OG1|G1 = t) 0.1 p(OG1|G1 = f ) 0.7
p(OG2|G2 = t) 0.2 p(OG2|G2 = f ) 0.8
p(OG3|G3 = t) 0.4 p(OG3|G3 = f ) 0.9
p(OG4|G4 = t) 0.8 p(OG4|G4 = f ) 0.02

Figure 4.2: A Boolean BN along with a chosen set of priors, conditional probabilities, and the
observations likelihoods.
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Figure 4.3: The number of nodes in the BN increases exponentially with the number of primitive
events.

ables, and checking constraints at each stage. Algorithm 4.1 details how the greedy search

is performed for a hierarchical Bayesian network. First, for each primitive eventx, the

posterior ratiolx is evaluated,

lx =
p(ox|x = t)p(x= t)
p(ox|x = f )p(x = f )

(4.1)

The node is labeled true iflx ≥ 1, and false otherwise. This is shown for the sample BN

in the first step of Figure 4.4.
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Figure 4.4: Searching the BN in Figure 4.2 using greedy search. Yellow shading of hidden RVs
is used to highlight the set of nodes labeled at each step. Theresulting parse tree is shown at the
end, and corresponds to the fully labeled BN.

input : Bayesian Network BN
output : ωgreedy: labelling of the BN

while more nodes to be labeleddo1

Let {Xi} be the sequence of unlabeled nodes with all parents already labeled (or2

without any parents), in descending order of the ratiolXi = p(Xi=t|oXi ,paXi )
p(Xi= f |oXi ,paXi )

, wherepaXi

are the parents ofXi

while more nodes in{Xi} are to be labeleddo3

Let Xu be the first unlabeled node in{Xi}4

if lXu ≥ 1 then5

labelXu in ωgreedyast6

if Xu is constrainedthen7

propagate labelling according to the constraint inωgreedy8

else9

label all remaining unlabeled nodes in{Xi} in ωgreedyas f10

Algorithm 4.1: Greedy search for labelling a BN

Next, the hierarchyA→ a,b is assessed. Two nodesA1 andA2 are considered.

lA1 =
p(A1 = t|oA1,a1,b1)
p(A1 = f |oA1,a1,b1)

(4.2)

If lA1 ≥ 1 thenA1 is labeled true, and similarly forA2. Yet, if lA1 ≥ 1 andlA2 ≥ 1, only
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the one with the higher ratio is labeled true to satisfy the constraintc1 1. The evaluation

continues up the hierarchy until all nodes are labeled. Figure 4.4 shows how the greedy

search can be performed for the sample BN. This is though not necessarily the MAP

solution of the BN. This is because each node is evaluated given the pre-labeled parents

and those cannot be changed. The greedy search is used as a baseline to compare the

results found by the other search techniques.

4.3 Multiple hypotheses tree

The Multiple Hypotheses Tree (MHT) algorithm, first used by Reid for multi-target radar

tracking [116], propagates a tree of multiple hypotheses (explanations). It assumes the

Figure 4.5: MHT considers one detection at a time. The BN (forthe detections up to that level)
is shown at the top with yellow shading for the detection and all related hidden RVs to be labeled
at that level. All feasible labellings are added to the current tree branches. Feasible labellings
differ between branches depending on the already labeled nodes at each branch. If the number of
branches exceeds k (k= 3 in this example), the tree is pruned. Shaded nodes in the treerepresent
the leaves of the highest k posterior branches with the darkest representing the highest posterior
up to that level.

1For the constraint that allows only one of the inter-dependent events to be recognised, line 8 in the
algorithm labels all conflicting nodes asf . This is the most common constraint in the AMGs presented in
this thesis.
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detections have an ordering (usually temporal) and starts from the first detection working

through to the last. Each level in the tree is thus expanded into nodes representing the

different hypotheses explaining the detection in hand. Each path, from root to leaf, in the

tree corresponds to an explanation.

Due to the ambiguities in the visual data, the current best path may not be part of

the best path to lower levels of the tree as it propagates intothe future. Yet it would be

impractical to maintain the complete tree, due to the numberof possible hypotheses for

all but the simplest cases. The tree is pruned at each step to keep the search tractable by

retaining only the bestk hypotheses. This is a beam search [123]. The number of retained

branches,k, is selected based on a trade-off between number of calculations and accuracy.

If k = 1, this search becomes a best-first search [123].

Figures 4.5 and 4.6 show how the sample BN (Section 4.1) can besearched using

MHT. The search is split into two figures for clarity.k was set to 3, and the following

ordering of detections{a1,b1,c1,d1,a2,d2} was assumed. The resulting explanation de-

pends on the ordering and might differ between orderings. Ateach step, a detection is

considered along with all ‘related’ event nodes. The related event nodes are the ancestors

Figure 4.6: MHT search is continued from Figure 4.5. The BNs and MHTs are shown. The parse
tree with the maximum retained posterior is shown in a box on the right. Notice that the branch
with the maximum posterior changes as the last observation d2 is added.
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of the considered node which have all their other children already labeled. All consistent

labels of these nodes are evaluated at this level of the MHT. Considering consistent la-

bellings only increases the speed, as all inconsistent labellings evaluate to a posterior of

zero. It should be noted that the consistent labels differ between tree branches depending

on the previously labeled nodes in each branch.

After all consistent labels are added to each branch in the MHT, the tree is pruned to

retaink branches only. This is accomplished by evaluating each branch, and keeping the

k branches with the highestk posteriors. As Figure 4.6 shows, the branch with the highest

posterior might change when more evidence is considered. Ifk was small, and that branch

was not retained, the MAP solution cannot be found. It is though not possible to estimate

the optimalk in advance, as it depends on the ambiguity in the detections.Algorithm 4.2

shows a pseudo-code for searching a BN using MHT

input : Bayesian Network BN, ordering of detections D, number of branchesk
output : ωMHT : labelling of the BN

initialise treet with one empty branch1

foreach primitive event d∈ D2

Let {Xi} be the list of nodes related tod of sizem3

Let LXi be the set of possible labels of nodeXi4

Lm = LX1 ×LX2× ...×LXm5

foreach branch b∈ tree branches6

foreach labelling l ∈ Lm7

if l is consistent with explanation bthen8

add nodel to branchb9

if no labelling is consistentthen10

remove branchb11

prune tree (i.e. keepk-best branches)12

ωMHT = labelling of branch with maximum posterior13

Algorithm 4.2: Multiple Hypotheses Tree (MHT) search for labelling a BN

4.4 Markov chain Monte Carlo sampling

Instead of exhaustively searching the space, MCMC samples the posterior distribution

π(ω) = p(ω|Y) using a Markov chain. The set of possible states in the Markovchain

Ω is the set of all global explanations, and a conditionalproposal distribution Q(ω ′|ω)
defines the probability of proposing stateω ′ given the current state isω. After a state

is proposed usingQ, the move to that state is made with the probabilityα(ω ′|ω) known
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as theacceptance probability. A thorough review of MCMC techniques can be found

in [8]. For readers who are not familiar with it, MCMC and the Metropolis-Hastings

algorithm are explained in Appendix A.

4.4.1 Markov chain Monte Carlo data association

The work of Oh, Russell and Sastry [111] proposed using Markov Chain Monte Carlo

(MCMC) for data association because it scales better than Multiple-Hypotheses Trees

(MHT) when the probabilities of different explanations arevery close, and the MAP ex-

planation is unlikely to reside amongst the k-best explanations for a reasonable beam

width k (Section 4.3). The space of possible explanationsΩ is a discrete space, thus

moves are designed to change a certain explanationω into a slightly different one. Each

move amends part of the explanationω, preserving the constraints. After each move is

applied, the resulting explanation should still be a valid global explanation. These moves

need to be carefully designed to traverse the whole space of possible explanations. They

can be simple or complex moves, although complex moves can beachieved via applying

a sequence of simpler moves. MCMCDA then starts from any valid global explanation

and produces a sample from the posterior distribution of explanations2. The sample size

equals the length of the Markov chain (nmc).

Assumeξ is the set of all move types. MCMCDA (Algorithm 4.3) amends the general

Metropolis-Hastings algorithm (Appendix A.2) to include aprior step for selecting the

move typem. Due to the nature of the explanation and its constraints, not all move types

are allowed given a certain explanation, thusξi refers to the set of allowed move types

given the current explanationωi . The algorithm requires a choice of the sample sizenmc,

as well as an initial elementω0. At each step, a new explanation is proposed and the

acceptance probabilityα is computed. A sampleu is drawn fromU [0,1]; the uniform

distribution in the closed interval from 0 to 1. The proposedexplanation is accepted in

the sample ifα > u.

As data association aims to find the best explanation, ratherthan sample the distribu-

tion of explanations, the best explanationω̂ is maintained throughout the Markov chain.

At each iteration, the chosen sample is compared to the best explanation found so far. The

required solution is thus chosen from amongst the sample elements.

ω̂ = argmaxi=1..nmc p(ωi |Y) (4.3)

2The chain should be long enough to guarantee convergence (Appendix A)
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initialise ω01

ω̂ = ω02

for i = 1 to nmc do3

sample m fromξi4

sampleω? from Qm(ω?|ωi−1)5

calculateα(ω?|ωi−1) = min
{

1, π(ω?)Q(ωi−1|ω?)
π(ωi−1)Q(ω?|ωi−1)

}
6

sampleu from U [0,1]7

if u < α(ω?|ωi−1) then8

ωi = ω?9

if π(ωi)
π(ω̂) > 1 then10

ω̂ = ωi11

else12

ωi = ωi−113

Algorithm 4.3: Markov Chain Monte Carlo Data Association Algorithm

There are two obvious obstacles when using MCMCDA. The first is calculating the

proposal distributionQ at each configuration. This is because the choice of the next

step is split into selecting a move-type, followed by selecting a specific move of that

type. Reversible Jump MCMC (RJMCMC), explained in Section 4.4.2, allows clearer

formulations for the proposal distribution and the acceptance probability.

The second obstacle is expecting MCMCDA to find the best explanation while being

a sampling technique. Adding simulated annealing is a minormodification, explained

in Section 4.4.5, and is tailored to locate the best explanation rather than sample the

distribution of explanations. RJMCMC and the addition of simulated annealing have not

featured in most of the literature that adopts MCMCDA for radar and visual surveillance.

4.4.2 Reversible jump Markov chain Monte Carlo

Green suggested using MCMC for sampling the joint distribution of both the model di-

mension and the model parameters [57]. This technique, firstcalled trans-dimensional

MCMC and later referred to as Reversible Jump MCMC (RJMCMC),can be used to

solve a wide variety of problems where the joint distribution of model dimension and

model parameters needs to be optimised to find the best pair ofdimension and parameters

that suits the observations.

By analogy, given a set of detectionsY, the search is for the number of events and

which detections belong to each event. There are two ways forusing MCMC to find the

best explanation. The first approach is to use within-model MCMC where one chain is run

for each possible number of events. Within-model MCMC is preferred when the numbers
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are limited and separate optimisation for each can improve the efficiency. Alternatively,

across-model MCMC is expected to converge faster, especially when the number of di-

mensions is huge [54]. Reversible Jump MCMC (RJMCMC) applies across-model and

within-model reversible moves.

Several applications of RJMCMC have been proposed in the literature - for example

finding the number and parameters of Gaussians in a Gaussian Mixture [117]. A thor-

ough review of alternatives to RJMCMC can be found in [54]. The main drawback of

RJMCMC is the difficulty in designing the move types. Though some moves are general

across a collection of applications, most moves are application-specific. It has been con-

jectured that some reported inefficiencies of RJMCMC have been due to poor design of

the reversible moves [8].

RJMCMC generalises the acceptance probability formula in Algorithm 4.3 to include

the probability of selecting the move type, and a move-specific probability [58].

α(ω ′|ω) = min
(
1,

π(ω ′)
π(ω)

jmR(ω ′)
jm(ω)

gmR(u′)
gm(u)

∣∣∂ (ω ′,u′)
∂ (ω,u)

∣∣) (4.4)

In Equation 4.4,j refers to the probability of selecting a move-type. Assumeξ rep-

resents the set of all move types, thenjm(ω) is the probability of selecting the move type

m∈ ξ given the current explanation isω. jm(ω) = 0 for impossible move types that

would result in an inconsistent set of events. For each move typem, mR refers to the re-

verse move type. Some move types are self-reversible, whichmeans a move of the same

type is applied to return to the previous explanation.
jmR(ω ′)
jm(ω) is the ratio of the probability

of selecting the reverse move type (back from the new explanation ω ′ to ω) to that of

selecting the move type from the current explanation.

Using Green’s formulations of RJMCMC, each move typem has its own ‘within-

move’ proposal distributiongm. In Equation 4.4,u refers to the random variables used

to transform the current explanationω to the new explanationω ′ using the move type.

Some move types result in a change in the explanation’s dimension. This is when the new

explanation has a different number of recognised events than the previous one. Ifd is the

dimension of the explanationω, d′ is the dimension of the new explanationω ′, r is the

dimension of the random vectoruandr ′ is the dimension of the random vector required for

the reverse moveu′, then the transformation from(ω,u) to (ω ′,u′) is a diffeomorphism if

d+ r = d′+ r ′. The last factor in Equation 4.4 is the absolute determinantof the Jacobian

matrix of this diffeomorphism. This section will not explain further how the determinant

of the Jacobian matrix is handled for the proposed discrete moves. The reader can refer

to Smith [131] for proofs.
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4.4.3 Designing reversible moves

When using RJMCMC to traverse the space of explanations, a different explanation is

proposed at each step along the Markov chain based on the current one. For discrete

search spaces, multiple types of moves are needed to traverse the search space [58]. For

binary event hierarchies where each production rule in the AMG replaces a symbol by a

Figure 4.7: Four move types are proposed to link events, break links, change linked events and
switch linkages.

multiset of two symbols, 4 move types were designed to traverse the search space (Fig-

ure 4.7). These connect or disconnect a pair, change one of the linked events or switch

two pairs. It should be noted that this is not the minimal set of move types. A change

move for example can be constructed from a disconnect move followed by a connect

move. Disconnecting would often decrease the posterior probability significantly, which

makes it a less probable move along the chain. Accordingly, change and switch move

types enable efficient search of the space and faster convergence. Other complex moves

can be constructed from a sequence of these moves. The changeand switch moves are

self-reversible, while the connect and disconnect moves form a reversible pair. They al-

ter the dimension of the explanation by changing the number of compound events. The

AMGs introduced in this thesis define binary hierarchies, sothese moves were sufficient

for the purpose.

RJMCMC splits sampling from the proposal distribution to propose a new explanation

into two steps: choosing the move typejm then choosing a specific movegm. Uniformly

choosing a move type from the set of possible movesξi does not efficiently search the

space of explanations. The weighted distributionjm is thus estimated from the number of

distinct moves of each type that can be applied to the currentexplanationωi . Accordingly

jm(ωi) =
f (m,ωi)

∑
γ∈ξi

f (γ,ωi)
(4.5)
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where f (m,ωi) is a function that maps the move type and an explanation to thenumber of

possible moves of that type that can be applied to the explanation. Calculating the number

of possible moves does not require enumerating the actual moves, but is estimated from

the number of recognised events of each type within the explanationωi .

Next, a specific move of that type is chosen and applied to the current explanation.

This ‘within-move’ proposal distributiongm can also be uniform. Alternatively, a cus-

tomised ‘within-move’ proposal distribution can be designed for each proposed move

type. These are application-specific and depend on the expected ambiguities in the ob-

servations. Further explanation of these within-move proposal distributions will be given

along with the two case studies in Chapters 5 and 6.

4.4.4 Example of searching using RJMCMC

This section explains by example how the space of global explanations can be searched

using RJMCMC. The set of discrete moves to traverse the spacewere introduced in Fig-

ure 4.7. For the given BN in Figure 4.2, three layers of compound events are present.

This section labels these layers as ‘A’, ‘E’ and ‘G’ based on the compound event they

recognise. For simplicity, within-move proposal distributionsgm (see Section 4.4.2) are

uniform distributions over the possible moves of each type.The Markov chain can start

from any global explanation.

For an initial configurationω0, Figure 4.8 shows a 4-steps Markov chain. At each

step, a list of move types with the number of possible moves ofeach type is shown as

a label on the arrow. A move type is not mentioned if no possible moves can be found

of that type. In the figure, a subscript indicates the layer atwhich the move is applied.

disconnectA, for example, disconnects ana and ab detection that are connected to a

compound eventA. The proposal distributionj(ω0) is a weighted distribution by the

number of possible moves of each type. The weighted distribution is randomly sampled

and a move type is chosen (bounded by a rectangle). Figure 4.8shows a sequence of

applied moves, regardless of the acceptance probability. In presenting the figure, the

parse tree is shown rather than the labeled BN. This presentation suits the moves better.

Recall that there is a 1-1 mapping between a labeled BN and a parse tree.

Figure 4.8: Four moves are applied in sequence. The label at each arrow shows the number of
possible moves of each type. The rectangle indicates the chosen move type.
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Next, Figure 4.9 shows the posterior calculations, along with the acceptance proba-

bility α for the first two moves. The figure shows two possible moves andevaluates the

acceptance probability for each. For the first move, the ratio π(ω1)
π(ω0)

shows an increase in

the posterior probability. When evaluating the ratio
jmR(ω1)
jm(ω0)

, the numerator is evaluated

to jdisconnectE(ω1) which is the probability of choosing the reverse move type given the

explanation isω1. jdisconnectE(ω1) equals1
5 and can be calculated from the label on the

arrow departing fromω1. The denominatorjconnectE(ω0) equals1
3 given 3 moves are only

feasible. As only one move of each type is available,
gmR(ω1)
gm(ω0)

= 1. These calculations

guarantee the detailed balance explained in Appendix A.2. The acceptance probability is

1 as the minimum function compares to a ratio higher than 1. According to the RJMCMC

algorithm, the move is certainly made, andω1 is the next sample element in the Markov

chain.

ω0 ω1 ω2

π(ω1)
π(ω0)

=
p(E = t|A = t,c = t)p(OE|E = t)
p(E = f |A = t,c = t)p(OE|E = f )

=
0.8×0.9
0.2×0.2

π(ω2)
π(ω1)

=
p(G = t|E = t,d = t)p(OG|G = t)
p(G = f |E = t,d = t)p(OG|G = f )

=
0.5×0.4
0.5×0.9

jmR(ω1)
jm(ω0)

=
jdisconnectE (ω1)
jconnectE (ω0)

=
1/5
1/3

jmR(ω2)
jm(ω1)

=
jdisconnectG

(ω2)
jconnectG

(ω1)
=

1/5
2/5

gmR(ω1)
gm(ω0)

=
1
1

gmR(ω2)
gm(ω1)

=
1

1/2

α(ω1|ω0) = min
(
1,

π(ω1)
π(ω0)

jmR(ω1)
jm(ω0)

gmR(ω1)
gm(ω0)

)
= 1 α(ω2|ω1) = min

(
1,

π(ω2)
π(ω1)

jmR(ω2)
jm(ω1)

gmR(ω2)
gm(ω1)

)
=

4
9

Figure 4.9: The acceptance probabilitiesα for the first two moves from Figure 4.8 are detailed.
The first move is certainly accepted. The second move’s acceptance depends on the random uni-
form sample u (see Algorithm 4.3).

The second move does not increase the posterior. It is accepted with a probability

equal toα. When samplingu from the uniform distribution, the move toω2 is made if

α > u. Alternatively, the next sampled element will beω1 again.

4.4.5 Adding simulated annealing

MCMC is a sampling technique that aims at producing a sample that approximates the tar-

get distribution. MCMCDA (Section 4.4.1) uses sampling to find the global maximum of

the target distribution [111], and so is the case with some applications of RJMCMC [117].

Although MCMC ensures more sample elements are chosen from the peak(s) of the dis-
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tribution, it does not guarantee the maximum is found. UsingMCMC for global optimi-

sation is theoretically an approximation, hoping one element in the sample will match the

distribution’s highest peak.

An alternative method to find the maximum is adding simulatedannealing. Simulated

Annealing (SA) is a global optimisation technique that simulates the physical process of

pre-heated and controlled slow cooling of material crystals. This physical process ensures

finding the crystal with the largest size and fewest defects.The SA algorithm by analogy

introduces a fictional temperatureT, and updates it at each iterationTi via a cooling

schedule. The Markov chain with SA is non-homogeneous and its invariant distribution

at each iterationi equals

ϕ(ωi) = π(ωi)
1
Ti (4.6)

With each iteration, the temperature and the target distribution are updated. AsTi de-

creases, the SA algorithm slowly restricts accepting the move to a lowerπ value, so it

would reach the maximum. SA requires a choice of the cooling schedule. Figure 4.4

displays the MCMC-SA general algorithm.

initialise ω01

initialise T0, Tnmc2

define cooling schedule cool(T0,Tnmc, i)3

ω̂ = ω04

for i = 1 to nmc do5

sample m fromξi6

sampleω? from Qm(ω?|ωi−1)7

updateTi = cool(T0,Tnmc, i)8

calculateα(ω?|ωi−1) = min
{

1,
( π(ω?)

π(ωi−1)

) 1
Ti

Q(ωi−1|ω?)
Q(ω?|ωi−1)

}
9

sampleu from U [0,1]10

if u < α(ω?|ωi−1) then11

ωi = ω?12

if π(ωi)
π(ω̂) > 1 then13

ω̂ = ωi14

else15

ωi = ωi−116

Algorithm 4.4: Markov Chain Monte Carlo with Simulated Annealing Algorithm

The differences between MCMC and MCMC-SA are:

• MCMC guarantees a representative sample of the target distribution, but does not

search for the global maximum. MCMC-SA aims at finding the global maximum,

but the resulting sample does not approximate the target distribution.
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• MCMC only requires choosing the suitable proposal distribution Q. MCMC-SA

also expects a suitable cooling schedule. The choice of the cooling schedule is

essential for finding the global maximum.

• For multi-peak distributions, the chance of jumping between peaks remains steady

in MCMC. In MCMC-SA, the chance of jumping between peaks is higher at the

start and decreases constantly as time passes.

When adding simulated annealing and searching using MCMC-SA, the probability

of accepting the move fromω to ω ′ changes along the Markov chain according to the

cooling schedule. Assume the ratioπ(ω ′)
π(ω) = 1

2, Figure 4.10 plots the ratio after applying

the cooling
(π(ω ′)

π(ω)

) 1
Ti along the chain, using different cooling schedules withT0 = 1.5 and

Tnmc = 0.01. The figure compares the linear, exponential and sigmoid cooling schedules

(Equations 4.7 - 4.9).

1. Linear cooling schedule

Ti = T0− i
(T0−Tnmc

nmc

)
(4.7)

2. Exponential cooling schedule

Ti = T0
(Tnmc

T0

) i
nmc (4.8)

3. Sigmoid cooling schedule

Ti =
T0−Tnmc

1+e0.3(i−nmc/2) +Tnmc (4.9)

WhenTi > 1, the probability of accepting the move increases. Alternatively, whenTi < 1,

the algorithm becomes more restrictive to accept moves thatdecrease the posterior.

4.4.6 Online RJMCMC

RJMCMC can be modified to consider new detections. The globalexplanation calculated

up to now is used to initialise the Markov chain. This means the initial solutionω0 is the

MAP explanation for all the previous detections, along withany consistent labelling of

the new ones. It should not be misunderstood that the previous observations cannot be



Chapter 4 66 Searching for the Best Explanation

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

itertion

α

 

 
linear
exponential
sigmoid

π(ω′)/π(ω)

Figure 4.10: Four cooling schedules are compared by plotting the ratio
(π(ω ′)

π(ω)

) 1
Ti across 500

iterations of the Markov chain. The horizontal line shows the original π(ω ′)
π(ω) . When the result

is higher than this line, the move has a higher acceptance probability. As the Markov chain
progresses, the chance of accepting this move decreases. Inthe figure T0 = 1.5 and Tnmc = 0.01.

re-considered (as in the case of MHT). The same set of moves isapplied and could affect

any of the new or original detections.

To speed convergence, the Markov chain can be run in two phases. The first phase

is confined to moves that involve new detections. This phase locates a local optimum

involving the new detections. The second phase runs the RJMCMC in the normal fashion

introducing changes to the global explanation of all detections. This technique is similar

to the burn-in sampling idea used in Markov chains, where initial samples affected by

the starting position are discarded to speed convergence [8]. If only the second phase

was used, the chance of the moves involving new detections decreases as more detections

are added. The first phase cannot be run alone to achieve the global maximum. This

is because the best explanation can introduce changes to previous events, which might

accordingly introduce more changes to other events. Duringexperimentation, the Markov

chain had to be run for much longer when only one phase was run.As the number of

detections increased, the chance of proposing a move that involves the new data tended to

decrease, and the length of the required Markov chain had to be increased. The two-phase

solution was able to solve this problem. The length of the Markov chain in the first phase

is set to a factorγ of the Markov chain’s length.γ was set to 0.25 in all the experiments.

4.5 Integer programming

While the three methods explained above are heuristic, i.e.they cannot guarantee the

MAP is found. Integer Programming (IP) is an exhaustive technique that finds the MAP

explanation. The next subsection explains the basics of integer programming, while Sec-
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tion 4.5.2 illustrates how IP can search the BN of global explanations for the MAP expla-

nation.

4.5.1 Introduction to integer programming

An integer program is generally given in the following format [91] 3

Given a matrixA∈Rm×n, and two column vectorsb∈Rm, v∈ Rn

Find maxvTx such that

Ax≤ b, and

x∈ Zn

All combinatorial optimisation problems can be formulatedas integer programs [91],

yet these are NP-hard problems, which cannot be solved in polynomial time. A linear

(rather than integer) solution can be found if the integrality constraint is dropped. The

problem would thus be{maxvTx : Ax≤ b}. This is referred to as the linear relaxation of

the integer program. Polynomial-time algorithms have beendeveloped for solving linear

programs [125]. For the linear program, a feasible solutionis x∈Rn such thatAx≤ b. The

space of feasible solutions is the intersection of many halfspaces, given a finite number

of linear inequalities. This set is a polyhedron.

Figure 4.11: For a solution space, the polyhedron P is the solution space for the linear program
found by relaxing an integer program, while PI is the convex hull of P and represents the solution
space for the integer program. Diagram from [91]

Figure 4.11 shows that once the polyhedron which representsthe solution to the lin-

ear programP is found, the solution to the corresponding integer programis the convex

hull of integer vectorsPI . Techniques for finding the convex hull given the polyhedronP

have been proposed, such as branch and bound and cutting planes [91]. In branch-and-

bound techniques, the solution to the linear program is assessed for integrality. For each

3The cost vectorv is usually represented by the symbolc. This was not used here to avoid ambiguity
with the detections.
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0 < xi < 1, the tree is branched with two optionsxi = 0 andxi = 1 [143]. Two new so-

lutions are investigated, and further branching is done until the integer solution is found.

Alternatively, cutting planes finds a polyhedronP′ by cutting off certain parts ofP, main-

tainingPI ⊂ P′ ⊂ P. If { max vTx : x ∈ P′} is an integral vector, the sought solution to

the integer program is found. Alternatively,P′ is cut again to obtainP′′ until the integral

solution is found [91].

4.5.2 IP for searching a constrained BN

To use a linear solver, one must formulate the problem as an integer program. More-

field [105] first formulated the multi-target tracking problem as an integer program using

implicit enumeration. In implicit enumeration, the list ofall partial explanationsz is

accumulated, and a solution to the problem is an integer vector of all these partial ex-

planations. Assume there arer partial explanations inz, the explanationω is then an

r-dimensional vector of 0s and 1s. Ifωi (the ith component ofω) is set to 1 then the

corresponding partial explanationλi ∈ z is part of the chosen set of consistent events

making the explanationω. Alternatively, a component ofω set to 0 corresponds to a

possible partial explanation that is not considered. To illustrate, assume there are 5 partial

explanations, then the vectorω = [0 1 1 0 1]T means the second, third and fifth partial

explanations make up the global explanation.

To understand this representation, one must explain what a partial explanation is. In

the case of global explanations for activities, a partial explanation is one event from the

possible set of events. Recall from Section 3.2 that the firstproduction rule rewrites the

start symbol S as a multiset of other terminal and nonterminal symbols, for example:

S→ A?, B?, a?, b?. The given options are the types of events in this activity. The set of

all possibleA compound events,B compound events, along with any primitive events that

can be left ungrouped equals the set of all partial explanationsz. For the detections set

D = {a1(time= 1),a2(time= 2),b1(time= 2),c1(time= 3),c2(time= 4)}, the list is:

λ0 : a1

λ1 : a2

λ2 : c1

λ3 : c2

λ4 : B1,b1,c1

λ5 : B2,b1,c2

λ6 : A1,a1,B1,b1,c1

λ7 : A2,a2,B1,b1,c1
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λ8 : A3,a1,B2,b1,c2

λ9 : A4,a2,B2,b1,c2

The probability of each partial explanation can be calculated independently. Assumev is

an r-dimensional real-valued vector wherevi is the log(p(λi)) of the partial explanation

λi. The search for the MAP using implicit enumeration would be to find maxvTω. This

is because

vTω = ∑
i:ωi=1

vi = ∑
i:ωi=1

log(p(λi)) (4.10)

Accordingly,ω1 = [0 1 0 1 0 0 1 0 0 0]T andω2 = [1 1 1 0 0 1 0 0 0 0]T correspond to the

two parse trees in Figure 4.12. The posterior of each explanation is simplyv.ω1 andv.ω2.

Figure 4.12: Two parse trees given a multiset of detections and AMG Ga.

While maximisingvT .ω, some of the r-dimensional vectors are an inconsistent or

incomplete set of events, like the vectorsω3 = [1 0 1 0 0 0 0 0 0]T and ω4 = [1 1 0

0 1 1 1 0 0]T . ω3 is incomplete, as each explanation should explain all the detections.

ω4 is inconsistent as it violates the constraints in the sampleAMG. The solution to the

IP problem should include constraints that ensure the resulting set of events makes up a

global explanation. Three types of constraints can be defined for the global explanations:

• All terminals should be explained - referred to as the ‘terminal constraints’.

τ is a matrix of size| D | ×r. Each cellτi j has the value 1 if the terminali is

explained in the partial explanationj. To ensure each terminal is explained at least

once, the constraintτ.ω ≥ 1 should be maintained, where1 is a vector of 1s of

dimension| D |.

• A maximum of one of the inter-dependent nodes, that constrain a common inherited

attribute, is allowed - referred to as the ‘consistency constraints’.

θ is a matrix of sizem× r wherem is the number of inter-dependent node sets, and

equals the number of deterministic nodes in the BN. Each cellθi j is of value 1 if

one of the inter-dependent nodes of seti is explained in the partial explanationj.

The constraint would then beθ .ω ≤ 1.

• Nodes should have the same label in all the different partialexplanations - referred
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to as the ‘conflict constraints’.

κ is the node labelling constraint. This matrix of sizen× r wheren is the number of

nodes in the BN. Each cellκi j has a value 0 if the nodei is not labeled in explanation

j, 1 if it has a true label, and 2 if it’s labeled false. Note thatextra possible values

can be added for multi-labelled BNs. To ensure the node is labeled correctly, the

following non-linear constraint should be added for each node i in the BN

r

∑
j=1

r

∑
k= j+1

(κi j 6= κik).(κi j 6= 0).(κik 6= 0).ω j .ωk = 0 (4.11)

The constraint in Equation 4.11 is non-linear, and cannot besolved by a linear solver.

This constraint can be converted to a set of linear constraints. For eachδ jk = ω jωk, then

three linear constraints can ensureδ jk equals 1 only when bothω j andωk equal 1.

δ jk ≤ ω j (4.12)

δ jk ≤ ωk (4.13)

δ jk ≥ ω j +ωk−1 (4.14)

For eachδ jk, a constraint would check that

n

∑
i=1

(κi j 6= κik).(κi j 6= 0).(κik 6= 0).δ jk = 0 (4.15)

Algorithm 4.5 shows the steps of generating the set of partial explanationsz, and the

three constraints matrices:τ,θ ,κ . Though these constraints make the set of all needed

constraints, the complete set of these constraints has redundancies. If a terminala is

constrained to be consumed once, then no conflict would be expected, and both the first

and the second constraints can be substituted byτaω = 1. Similarly, if a nonterminal is

constrained to one, then it can be dropped from the check for conflict constraint. This

decreases the number of constraints significantly.

Next, Algorithm 4.6 shows how the integer program can be formulated and solved.

Instead of finding an integer solution (0s and 1s), linear relaxation substitutes this with a

linear constraint 0≤ ωi ≤ 1. After finding the linear answer, techniques such as branch-

and-bound can correct non-integer values in the solution. In solving the problem, two

solvers were employed. The first is part of the Optimisation Toolbox of MATLAB. It

is based on branch-and-bound algorithm [103]. The second solver, XPRESS-MP, tries a

collection of breadth-first, depth-first, best-first branch-and-bound techniques along with
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input : Bayesian Network BN, AMG G = (N,T,S,A,P), detections multiset D
output : Partial Explanationsz, Terminal constraintsτ , Consistency constraintsθ ,

Conflict constraintsκ

Let H be the set of all deterministic random variables in BN1

Let Ps : S→ X1,X2, ...,Xnps be the production rule rewriting the start symbol S2

Let i = 0 be the counter for partial explanations3

foreach x∈ X1,X2, ...,Xnps4

Let Nodesx be the set of all nodes in BN of typex5

foreach y ∈ Nodesx6

λi := y ∪ pay, wherepay is the set of all ancestors ofy7

vi = log(p(λi))8

foreach d∈ D9

if d ∈ λi then10

τdi = 111

else12

τdi = 013

foreach h∈ H14

if λi constrained by hthen15

θhi = 116

else17

θhi = 018

foreach Node n∈ BN19

if n labeled true inλi then20

κni = 121

if n labeled false inλi then22

κni = 223

if n not labeled inλi then24

κni = 025

i = i + 126

z = ∪iλi27

Algorithm 4.5: Integer Programming (IP) - implicit enumeration

advanced cutting-plane strategies [45]. To use XPRESS-MP,the integer program is for-

mulated using the modelling language MOSEL. The MOSEL program for the problem in

Section 4.1 is shown in Appendix D.

4.6 Comparing the search techniques

Table 4.2 compares the techniques introduced in this chapter based on four aspects. The

first aspect is the type of search. The first four techniques are heuristic, as they do not
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input : Partial Explanationsz, Terminal constraintsτ , Consistency constraintsθ ,
Conflict constraintsκ , Cost vectorv

output : ωIP: labelling of the BN

Let r be the number of partial explanationsz1

Let ω be an r-dimensional vector of 0s and 1s2

maxvT .ω3

τ .ω ≥ 14

θ .ω ≤ 15

foreach j = 1..r6

foreach k = j+1..r7

δ jk ≤ ω j8

δ jk ≤ ωk9

δ jk ≥ ω j + ωk−110

∑
i
(κi j 6= κik)(κi j 6= 0)(κik 6= 0)δ jk = 0

11

% findingωIP12

run linear solver13

foreach j = 1..r14

if ω j = 1 then15

λ j is part ofωIP16

Algorithm 4.6: Formulating the problem as an integer program

search the full space of explanations. Integer Programming, on the other hand, is exhaus-

tive as it searches for the set of partial explanations that maximise the posterior while

satisfying the constraints.

The second aspect is the randomness. While greedy, MHT and IPproduce the same

result every time they are run, RJMCMC and RJMCMC-SA have an element of random-

ness that might change the obtained explanation between different runs of the algorithm.

The table also compares the ability of the technique to search in an ‘online’ fashion.

The algorithm is online if it builds on the already-found explanation when new detec-

tions are added. The greedy algorithm is not ‘online’, as allthe detections are evaluated

before the next layer is considered. The MHT algorithm is in essence online. This is

because it considers the detections in a sequence, and builds on previously labelled RVs.

The RJMCMC can be online as described in Section 4.4.6, and similarly for the simu-

lated annealing addition (RJMCMC-SA). The IP algorithm is offline as it re-evaluates the

complete solution when new detections are added.

The table also details any parameters the algorithms require. Greedy and IP searches

do not require any parameters. MHT is pruned to the k-best branches, and the choice of

k represents a trade-off between accuracy and resources. RJMCMC expects the length

of the Makrov chain to be known, an initial explanation, and specifying the ‘within-type’
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proposal distributions which are application-dependent.RJMCMC-SA requires the same

parameters as RJMCMC in addition to a choice of the cooling schedule.

type random? online/offline parameters
Greedy heuristic no offline -
MHT heuristic no online k
RJMCMC heuristic yes online/offline nmc, x0, gm
RJMCMC-SA heuristic yes online/offline nmc, x0, gm, cool (T0, Tnmc, i)
IP exhaustive no offline -

Table 4.2: Comparing different search techniques presented in the chapter

Section 4.1 presented a sample BN. As a precursor to the comparison on real data in

the next two chapters, the quantitative results of searching this BN using all the techniques

are compared here. Table 4.3 shows− log(p) for the recorded results; maximising the

posterior is equal to minimising− log(p). The table shows that the greedy search was

unable to find the MAP, and that RJMCMC-SA finds the MAP withσ = 0.0 which is a

better result than sampling using RJMCMC4.

Greedy MHT RJMCMC RJMCMC-SA IP
k=3 µ σ µ σ

MAP 13.80 9.88 10.32 1.29 9.88 0.0 9.88

Table 4.3:− log(p) for the MAP solution for the sample BN searched using the different search
methods discussed in this chapter.

4.7 Conclusion

The space of global explanations was transformed into a Bayesian network in Chap-

ter 3. The set of labellings with a positive posterior corresponds to the space of expla-

nations. Enumerating all labellings to find the Maximum a Posteriori (MAP) solution is

intractable, in most cases. Thus, tractable methods are needed to search the space and

find the MAP explanation.

This chapter presented four techniques to search the space of global explanations. For

each technique, an algorithm is presented and applied to a sample BN of exponential com-

plexity. The search techniques were: greedy, MHT, RJMCMC-SA and IP. The result of

the greedy search forms a baseline for heuristic search techniques. Multiple-Hypotheses

Tree (MHT) retains the bestk explanations as detections are considered sequentially. Sec-

tion 4.4 explains MCMCDA and the Reversible-Jump formulations. It shows how adding

4100 runs of 10 parallel independent chains (nmc = 30)
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simulated annealing targets finding the MAP solution ratherthan sampling the distribu-

tion, and proposes general moves that can traverse the spaceof binary event hierarchies.

For comparison with exhaustive search techniques, finding the MAP explanation was

formulated as an integer program. Section 4.5 reviews integer programming and presents

an algorithm to transform the BN inference to an integer program, where the set of partial

explanations is first enumerated, along with the posterior of each explanation. Each partial

explanation is internally consistent, and the global explanation is one that explains all the

detections satisfying the inter-activity constraints. The section presents an algorithm for

transforming an AMG given a set of detections into an integerprogram. Linear solvers

can then find the best global explanation.

The search techniques presented in this chapter are experimentally compared in the

next two chapters for theBicyclesproblem and theEnter-Exitproblem.



Chapter 5

Case I: TheBicycles Problem

This chapter presents the first of two case studies of the framework presented in Chapter

3. The first case study, theBicyclesproblem, concerns activity in a bicycle rack over a

full day. The activity is first described textually, and in Section 5.2 it is formulated as

an attribute multiset grammar. The AMG combines detectionsof two types, people and

bicycle-clusters, into a two-layer hierarchy. Next, the Bayesian network structure is built

from the AMG given a set of detections as explained in Chapter3. Priors and conditional

probabilities are based on expert knowledge, and adapted toa training set.

In accordance with the proposed framework, the set of synthetic attributes required to

recognise each event is calculated from certain visual features. Section 5.3 shows how

these features are obtained and how the likelihoods are trained. The method was tested

extensively on 5 full days from two different sites. One testing site was located in the

campus of the University of Leeds, and the other one was outside Cambridge railway

station. The dataset is described in Section 5.5. The Maximum a Posteriori solution

of the BN is obtained using the various search techniques from Chapter 4. The results

(Section 5.6) demonstrate the ability of the framework to recognise the activity in a bicycle

rack.

75
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5.1 TheBicycles problem

In theBicyclesproblem, a surveillance camera overlooks bicycle racks where people lock

their bicycles and retrieve them later. In this chapter, theact of leaving the bicycle in the

rack is referred to as adrop, and the act of retrieving the bicycle as apick. The task is to

correctly associate people to the bicycle they have droppedor picked, and to link picks to

earlier drops when the corresponding events are both observed. Two types of detections

are considered; the first is of people entering and leaving the rack area, and the second is

of changes within the racks that indicate the appearance anddisappearance of bicycles.

These are referred to as ‘bicycle-clusters’, as each may contain multiple bicycles.

Ambiguities in the recognition process increase with occlusion when multiple indi-

viduals approach the racks. Due to occlusion and clutter, one cannot always be sure about

the event in which each person participated. Yet some evidence can be gathered from

the change in foreground blob size along the person’s trajectory, the changes within the

rack area and spatial proximities. These time intervals, during which one or more peo-

ple are simultaneously inside the rack area, are calledactivity units , consistent with the

terminology in [56] for plane refueling scenes. Figure 5.1 illustrates an example of an

activity unit by highlighting the detected people and the bicycle-clusters. Within each

activity unit, the explanation is constrained so each person is linked to one bicycle-cluster

at most. This emerges from the natural constraint that a person cannot drop/pick more

than one bicycle per visit to the racks. On an even higher level, if both a drop and a pick

of the same bicycle are observed, the solution should link the drop event to its subsequent

pick event generating a higher-level compound event. Each drop can be connected to one

pick at most from a later activity unit, and vice versa.

Figure 5.1: An example of an activity unit showing 5 individuals (left) and several bicycle-clusters
(right).
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It should be mentioned that theBicyclesproblem is harder than other parking scenarios

like those in car parks. This is because bicycles are parked very close to each other, and are

sometimes ‘piled’ on top of one another. This makes theBicycleproblem a challenging

one, which would benefit from pursuing global explanations.The complexity of this

problem demonstrates the generality and capabilities of the framework.

For a given input video, this section explains how the detections are collected. Notice

that if a detector fails to detect a person or a bicycle-cluster, that detection will not be

included in the global explanation.

5.1.1 Detecting people

The input data for theBicyclesproblem is video recorded from one static camera that is

assumed to be mounted high above the ground. Figure 5.2 showsan example of such

a viewpoint. An off-the-shelf blob tracker is used [100]. This tracker uses a per-pixel

background model, based on the work of Stauffer and Grimson [134], together with a

simple foreground model. It assigns a unique identifier to each object moving over a

continuous trajectory. It requires an estimate of object size in addition to extra parameters

that are tuned depending on the noise level in the image sequence. Examples of the

retrieved trajectories are found in Figure 5.3. The trackerincorporates shadow removal

by dropping any pixel with colour similar to the background model at the pixel.

Figure 5.2: Example of the camera’s view-
point.

Figure 5.3: Retrieved trajectories for the
viewpoint in Figure 5.2.

For each person, the foreground pixels’ position and colourare retrieved for each

frame during the time the person is visible. Only people thatenter the manually bounded

rack area for longer than a certain duration, are considered. The extent of the rack area is

represented by a convex polygon1. It is assumed that each individual can be tracked sep-

arately for some time. Tracked groups cannot be segmented, and they would be identified

as a single detection.

1An efficient implementation to find whether a point is inside apolygon can be found at [48]
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The tracker has been extended for this application to deal with obvious errors in the

trajectories. Trajectories generated are often broken during occlusion or when individuals

are walking in close proximity. Moreover, the trajectory ofa person dropping a bicycle is

often broken after the bicycle is left in the rack area. This is because the foreground blob

representing the person and the bicycle is split into two, and the tracker assigns a new id

to one of the two blobs. Broken trajectories that are similarin their colour and reappear

within allowable spatial and temporal ranges are merged. Trajectories with spatial jumps

are split if the colour profile is dissimilar before and afterthe discontinuity.

It should be mentioned that a person detection starts from the first appearance of a

moving blob within the camera’s field of view and ends when theperson departs the

scene or is fully occluded. If the same person returns again to the field of view, it is

considered a new detection by the tracker. This is because the tracker does not maintain

the identity after the person leaves the field of view. Thus, aperson detectionis in effect a

single continuous appearance of the person. If a person appears multiple times, different

unconnected detections are retrieved by the tracker.

5.1.2 Detecting bicycle-clusters

The motion tracker cannot be used to identify static objects. Therefore to detect bicycles,

‘before’ and ‘after’ reference images of the rack area are compared, thereby revealing

changed pixels, representing objects that have been deposited and removed. This is in

fact a ‘change detector’ as it simply records the change within the rack area between

two points in time. The ‘before’ reference image is automatically stored whenever the

tracker identifies a person approaching the rack area. A flag is set to automatically record

the ‘after’ reference image once the rack area is cleared again. If one or more people

enter the area prior to the departure of the first person, the ‘after’ reference image is

only taken after all have departed. The reference images thus record the upper and lower

limits of the activity units. Figure 5.4 shows the ‘before’ and ‘after’ reference images

and the differences by subtracting the pixels, along with some morphological operations

like erosion, dilation and closing. The morphological operations attempt to enclose the

bicycle’s pixels in one cluster. Notice that the changed pixels can signify a dropped or a

picked bicycle.

The changed image pixels are then grouped into connected regions representing sev-

eral clusters. Multiple bicycles can be dropped/picked within one detected cluster. The

risk of changes due to noise or lighting effects is minimisedby taking reference images

before a person enters the rack area and after departing. It cannot be completely ignored

though. Figure 5.5 shows some cases where a cluster containsmultiple bicycles or no
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bicycles. Abicycle-cluster detectionis thus a connected component of changed pixels

containing an unknown number of dropped or picked bicycles.

(a) (b) (c)

Figure 5.4: Before (a) and after (b) reference images, revealing changed pixels (c) that signify 3
picked bicycles and one dropped bicycle.

Figure 5.5: The left example shows a noise blob caused by lighting changes. The right example
shows one bicycle-cluster made up of 2 bicycles.

It should be mentioned that object detection based on appearance could be used to de-

tect bicycles in static images, using supervised or semi-supervised learning. The PASCAL

challenge, for example, presents a suitable dataset of bicycles [41]. This approach was

not tried because the camera’s viewpoint results in very different bicycle appearances, and

the cluttered environment makes it difficult to recognise individual bicycles. Figure 5.6

shows a collection of viewpoints and cluttered scenarios contained in the dataset.

Figure 5.6: A collection of bicycles detected from different viewpoints.
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5.2 An AMG for the Bicycles problem

This section formally defines an Attribute Multiset Grammarfor the activity in a bicycle

rack area. The terminal and nonterminal symbols, along withattributes for each symbol,

are listed. The attributes are explained and grouped into synthetic and inherited attributes.

Functions defined by the AMG are listed before the set of production rules. Refer to

Section 3.2 for the AMG formulation and notations.

Terminals (T): x person detection
y bicycle-cluster detection
u an unobserved drop or pick event

Nonterimanls (N): S Start symbol representing the global explanation
V Drop-Pick: relates a drop event to a later pick
Z Drop or pick: relates a person to a bicycle-cluster

Attributes (A):
symbol att. name type 2 domain description pdf 3

x id A0 Z a unique id differentiating people detections
au A0 Z activity unit during which the person was detected
n A0 Z number of frames with the person visible
traj A0 Z4n bounding boxes representing the extent of the per-

son in each frame
sizeRatio A0 R ratio of the mean number of pixels representing the

foreground before the person enters the rack area to
the mean number after departing

p(x.sizeRatio|x) 4

count A1 {0,1} number of events in which the person participates
action A1 {drop (d), pick (p), pass-by (s)}

y au A0 Z activity unit at which the cluster was detected
pos A0 Z4 bounding box of the cluster
fMap A0 Image map of foreground pixels representing the cluster
edgeRatio A0 R ratio of new to removed edges within the cluster p(y.edgeRatio|y)
count A1 Z∗ inferred number of bicycles in the bicycle-cluster
action A1 {drop (d), pick (p), noise (n)}

Z id A0 Z = x.id
pos A0 Z4 = y.pos
au A0 Z = x.au
traj A0 Z4n = x.traj
edgeRatio A0 R = y.edgeRatio
fMap A0 Image = y.fMap
dist A0 R spatial proximity between a person and a bicycle-

cluster
p(Z.dist|Z)

count A1 {0,1} number of drop-pick events in which this event par-
ticipates

action A1 {drop (d), pick (p), f}
V clustOverlap A0 R pixel overlap between the dropped and the picked

bicycle-clusters
p(V.clustOverlap|V)

2A0 are synthetic attributes, whileA1 are inherited attributes.
3pdf: the probability density function for the synthetic attribute values given the possible actions. Train-

ing is required for these pdfs.
4This should be written as p(x.sizeRatio|x.action) but x was used for a more concise representation.
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pos A0 Z4 bounding box of the intersection area between the
dropped and the picked bicycle-clusters

psDropDist A0 R post-segmented distance for the drop event p(V.psDropDist|V)
psPickDist A0 R post-segmented distance for the pick event p(V.psPickDist|V)
psDropEdges A0 R post-segmented edge ratio for the drop event p(V.psDropEdges|V)
psPickEdges A0 R post-segmented edge ratio for the pick event p(V.psPickEdges|V)
action A1 {drop-pick (dp), drop-only (dx), pick-only (xp), f}

Attribute Functions
ψdist(x.tra j,y.pos) calculates the spatial proximity between a person and a bicycle-cluster

(Section 5.3.3)

ψco(Z1. f Map,Z2. f Map) calculates the overlap in foreground map between the dropped and the
picked bicycle-clusters (Section 5.3.4)

ψedgeRatio(y.edgeRatio,y.pos) calculates the ratio of new to removed edges within a particular rect-
angular area (Section 5.3.5)

Production Rules (P)

Syntactic Rule (r) Attribute Rules (M) Attribute Constraints (C)

p1 S → V?, x?, y? y.action = “noise” y.count < 1
x.action = “pass-by” x.count 6= 1

p2 V → Z1, Z2 V.action = “drop-pick” Z1.au < Z2.au
Z1.action = “drop” Z1.count 6= 1
Z2.action = “pick” Z2.count 6= 1
V.clustOverlap = ψco (Z1.fMap, Z2.fMap)
V.pos = Z1.pos∩ Z2.pos
V.psDropDist = ψdist (Z1.traj, V.pos)
V.psPickDist = ψdist (Z2.traj, V.pos)
V.psDropEdges = ψedgeRatio(Z1.edgeRatio, V.pos)
V.psPickEdges = ψedgeRatio(Z2.edgeRatio, V.pos)
Z1.count = 1
Z2.count = 1

p3 V → Z, u V.action = “drop-only” Z.count 6= 1
Z.action = “drop”
Z.count = 1
V.pos = Z.pos
V.psDropDist = Z.dist
V.psPickDist = 1
V.psDropEdges = Z.edgeRatio
V.psPickEdges = 1

p4 V → u, Z V.action = “pick-only” Z.count 6= 1
Z.action = “pick”
Z.count = 1
V.pos = Z.pos
V.psDropDist = 1
V.psPickDist = Z.dist
V.psDropEdges = 1
V.psPickEdges = Z.edgeRatio

p5 Z → x, y x.action = Z.action x.au = y.au
y.action = Z.action x.count 6= 1
Z.au = x.au



Chapter 5 82 Case I: The Bicycles Problem

Z.traj = x.traj
Z.pos = y.pos
Z.edgeRatio = y.edgeRatio
Z.fMap = y.fMap
Z.dist = ψdist (x.traj, y.pos)
x.count = 1
y.count = y.count+1

Figure 5.7: The attribute dependency graph for the Bicyclesproblem AMG.

Figure 5.7 presents the attribute dependency graph for the AMG. After presenting the

AMG, Algorithm 3.1 is used to build the Bayesian network given the set of detections.

Figure 5.8 represents this two-layered activity for 3 people and 3 bicycle-clusters. Events

within each activity unit are surrounded with a dotted framefor clarity. The AMG specifi-

cally constrains drop and pick events between people and bicycle-clusters detected within

the same activity unit (x.au= y.au in p5). Moreover, possible drops are only linked to

picks in later activity units (Z1.au< Z2.au in p2).

The Boolean unobserved node ‘u’ is labeled true if an open world assumption is con-

sidered. Alternatively, if ‘u’ is labeled false, all drop and pick events are forced to be

linked and the world is assumed closed. This would be used if the input video starts from

an empty rack area and ends in an empty rack area again, which is an unrealistic assump-

tion in real datasets. Some drops remain unlinked, indicating the bicycle is still within

the racks, and some picks are related to drops that occurred before the observation period.

While introducing this node might be seen as hallucinating connections that do not exist,

it provides a more specific parse tree, and enables switchingbetween open and closed

world assumptions. Connecting a drop event to an unobservedpick indicates that either

the pick did not occur yet, or the relevant detections were not retrieved by the detector.

An alternative approach is to rewrite the activity (represented by the start symbolS) into

drops and picks without introducing the unobserved event. This is left for the designer,

and here the unobserved node was added for an explicit modelling of unobserved connec-
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Figure 5.8: The structure of the Bayesian network for the Bicycle Problem given a set of detections.
Dotted boxes surround activity units (not to be confused with plate diagrams). Detected people
(x) and bicycle-clusters (y) are linked within activity units to explain drops and picks. Events are
linked in a second layer to explain drop-pick events. Explanations at each layer are constrained
by deterministic RVs.

tions. Figure 5.9 shows a parse tree of the AMG along with a labeled Bayesian network.

Figure 5.9: A sample parse tree and the corresponding labelled BN.

Figure 5.10 presents the complete Bayesian Network (BN) showing priors and condi-

tional probabilities. These have been estimated using expert knowledge from the training

sequence and the corresponding hand-generated ground truth. They were kept constant

for all other sequences (Section 5.6).

To realise the size of the search space, one can evaluate the number of hidden random

variables for a given set of people and bicycle-cluster detections. For each activity unit

k = 1,2, ..,n, assumeαk is the number of people detected in this activity unit, andβk

is the number of bicycle-clusters. The number of hidden Random Variables (RV) in the

activity unit equalsαk +βk+αkβk. The productαkβk equals the number of drop and pick

eventsZk within the activity unit. For the next hierarchical level, eachZk can connect to
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Figure 5.10: Priors and conditional probabilities for the Bicycles problem.

all Zl variables wherek < l , plus it has one more connection to the unobserved terminal

u. Accordingly, the number of hidden random variables at thislevel is,

n

∑
k=1

αkβk
( n

∑
j=k+1

(α jβ j)+1
)

(5.1)

To simplify Equation 5.1 further, assumeµ is the average ambiguity within all activity

units whereµ = ∑n
k=1αkβk

n , from 5.1,

n

∑
j=k+1

α jβ j =
n

∑
j=1

α jβ j −
k

∑
j=1

α jβ j = nµ −kµ (5.2)

Substituting 5.2 into 5.1,

n

∑
k=1

αkβk(nµ−kµ +1) = n2µ2−
n

∑
k=1

kαkβk +nµ (5.3)

The second term in Equation 5.3 (∑n
k=1kαkβk) cannot be simplified further usingµ. The

summation would be higher if the ambiguity is higher at earlier activity units. One can

though find the lower bound of Equation 5.3, wheremax(αkβk) = µ to ben2µ2. This re-

veals exponential complexity in the number of hidden RandomVariables in the Bayesian

network of theBicyclesproblem.

The posterior probability can be retrieved from the BN, and rewritten, according to
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Equation 3.8, to be independent of false links.

p(ω |Y) =
1
Q ∏

i
p(xi |oxi )∏

j
p(y j |oyj ) ∏

k:zk 6= f

p(zk|ozk,x,y)
p(zk = f |ozk,x,y)

∏
l :vl 6= f

p(vl |ovl ,z1,z2)
p(vl = f |ovl ,z1,z2)

∏
n

p(cn|pacn)

(5.4)

In Equation 5.4,pacn is the set of parent nodes for the deterministic random variable cn,

and represents a set of interdependent events.

5.3 Feature selection and supervised training

Eight conditional probability density functions (pdf) have been listed in the last column of

the attributes in the AMG (Section 5.2). These specify the likelihood of attribute values

given an occurring event. Recall that the attributes are calculated from features of the

detections. This section explains how these features are obtained and their ability to

distinguish events of different types at the various hierarchical levels of the explanation.

A training set was manually labeled to generate parameterised likelihood distributions.

It should be noted here that the framework is totally independent from the choice of

the features. Other features can be specified in the AMG and used instead. Also, multiple

features can be added. When multiple features are used to distinguish the same event, the

likelihoods are just multiplied in the posterior calculations, assuming independence. The

remainder of this section explains the selected features.

5.3.1 p(x.sizeRatio|x.action)

This conditional pdf uses the change in blob size across the person’s trajectory to distin-

guish people dropping a bicycle, picking one up or passing by. Finding a visual feature

that is able to distinguish this from the person’s detectiononly was not easy. Attempts to

use common pedestrian recognition techniques [33] failed to distinguish between pedes-

trians and cyclists. Other simple features like speed couldnot be used either, as cyclists

slow down or even drag their bicycle as they approach the rackarea.

The attributesizeRatiodescribes the change in the foreground blob size before enter-

ing the rack area and after exiting it. A significant change inthe blob size usually occurs

for a person involved in a drop or a pick event. Figure 5.11 shows three graphs where the

blob size before the rack area and after it are plotted, with abreak that indicates the time

spent within the racks. The blob size within the rack area hasbeen ignored due to two rea-

sons. The first is that the person bends to perform the lockingor unlocking actions which

results in smaller blobs. Secondly, as the person pauses to perform the action, the adaptive
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background tracking procedure dissolves the person’s pixels into the background. These

pixels are later retrieved into the foreground when the person moves again. This makes

the blob size within the rack area ambiguous and noise-prone.
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Figure 5.11: Three examples of blob size changes through time, representing a drop (left), pick
(middle) and pass by (right). The three examples are selected from the training sequence (1st

sequence). The blob sizes have been smoothed (window size = 10).

The change in blob size can be used in any drop/pick scenario where the possessed

object is comparable to the individual’s projected area, asin the case of bicycles. For each

person, the blob sizes from the first appearance up to entering the defined rack area are

calculated and smoothed. A fixed smoothing window of size 10 was chosen throughout

all the experiments. The same is accomplished for the framesbetween the exit from the

rack area and the last appearance. The ratio of the mean blob size before and after the

racks is used to assign a probability to the three possible event types: dropping, picking

and passing by.

A training set is obtained where people are categorised, according to the ground truth,

into the three event types. Maximum likelihood estimation (MLE) is used to estimate

Gaussian class conditional densities5. Figure 5.12 (left) shows the three Gaussians trained

for the Leeds dataset (Section 5.5.1) obtained from the ground truth of the first sequence.

As expected, the Gaussian forx.sizeRatioof dropping people has a mean higher than

one, because the blob size before entering the racks combines that of the pedestrian and

the dragged/drove bicycle, while the blob size after departing the racks represents the

pedestrian only. The picking person tends to have a mean lessthan one, while a passing

by person has a mean as close to 1 as possible. For the Cambridge dataset (Section 5.5.2),

different training was required due to the difference in depth between the two entrance/exit

spots for the rack area. Figure 5.12 (right) shows MLE estimates based on data from

one hour of training. The situation is clearly more ambiguous. Training a mixture of

Gaussians based on the different entrance and exit locations would have resulted in a

more discriminative feature in this case.
5Appendix B explains the usage of Z-score to calculate the area under Gaussians for constrained do-

mains asx.sizeRatio≥ 0.
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Figure 5.12: MLE for sizeRatio. The trained Gaussians are presented for the Leeds dataset (left)
and the Cambridge dataset (right).

5.3.2 p(y.edgeRatio|y.action)

For each bicycle-cluster detection, this feature comparesthe intensity edges in the ‘before’

and ‘after’ reference images. Edges are retrieved by the Sobel detector [132] and are

masked by the changed pixels, then removed and new intensityedges can be identified. A

removed edge is one that appears only in the ‘before’ reference image, while a new edge

is introduced in the ‘after’ reference image. By assuming the background is relatively

free of edge features, the ratio of new to removed edges givesan estimate of whether the

cluster included dropped or picked bicycles. Figures 5.13 and 5.14 show examples of

removed and new edges. By plotting the removed versus new edges for the training set,

two thresholds were defined that split the space into three regions: dropped, picked and

noisy or multiple bicycle-clusters (Figure 5.15). For the first two regions, the cluster is

classified into drop and pick respectively. Alternatively,the bicycle-cluster detection is

duplicated so one can represent a dropped cluster and the other can represent a picked

cluster. The two thresholds are the lines with slopes 0.5 and2.0.

The ratio of new to removed edges was not probabilistically modelled due to the effect

of the viewpoint on how many edge pixels are introduced/removed. Figure 5.6 showed

how bicycles can be added in different ways, which affects the number of new or removed

edges. A higher ratio of new to removed edges does not indicate higher confidence in

the event’s occurrence. Training a single Gaussian would, mistakenly, favor the bicy-

cles parked in common ways. In the experiments, all bicycle-clusters with a significant

edgeRatio(above the threshold), are equally treated as clusters of dropped bicycles.

5.3.3 p(Z.dist|Z.action)

Given the temporal constraint, a person can only drop/pick abicycle to/from a cluster

detected within the same activity unit. Yet, multiple bicycle-clusters can actually be de-
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.13: Two reference images are compared, before (a) and after (b) the activity unit. Edges,
masked by the changed pixels between the before (c) and after(d) images, are compared to decide
on the removed (e) and new edges (f). Notice that dropping a bicycle results in concealing edges
in the background.

Figure 5.14: Another example from the Cambridge dataset. The first column shows the before
and after reference images, the middle column shows the Sobel edges, while the removed and new
edges are shown in the right-most column.

tected within a single activity unit. The featuredist is used to assess the probability of

linking the person to a bicycle-cluster, on the assumption that the person comes close to

the cluster when interacting with it. The plausibility of a link between the person and

a bicycle-cluster is calculated from the maximum degree of overlap between the bound-

ing box of the cluster and the bounding boxes of the foreground regions representing the

person across the whole trajectory. For a personx and a bicycle-clustery, wherex.tra j

represents the bounding boxes of the foreground regions acrossx.n frames andy.posrep-

resents the bounding box of the detected cluster, then the maximum overlap is calculated
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Figure 5.15: Removed versus new edges are plotted for manually labeled bicycle-clusters. All
clusters with ratio< 0.5 are clusters of picked bicycles, while those with ratio> 2 are clusters of
dropped bicycles. The ambiguous area contains heterogeneous clusters.

using functionψdist(x.tra j,y.pos)∈ [0,1] as defined in Equation 5.5.

ψdist(x.tra j,y.pos) = max
i∈{1...x.n}

( A(x.tra j(i)∩y.pos)
min(A(x.tra j(i)),A(y.pos))

)
(5.5)

In Equation 5.5, A(·) gives the area of the given rectangle,x.tra j(i) is the bounding box

at framei, and∩ is the (rectangular) intersection between the two boundingboxes.

A training set was created by computing the overlap for all correct and incorrect dis-

tances between people and bicycle-clusters (within the same activity unit) in the dataset.

Figure 5.16 shows the histograms created from this trainingset, and the estimated cpdf

composed of half Gaussians. The centre of the full Gaussiansis fixed at 0 and 1 for

incorrect and correct half Gaussians respectively.
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Figure 5.16: Non-interaction (left) and interaction (middle) distance histograms show how this
feature can assess the likelihood of the event involving theperson and the bicycle-cluster. The
cpdfs (right) are trained using half Gaussians.

This feature is though not ideally informative since the person can pass close to several

clusters before performing the event. This has clearly beennoticed in the Cambridge

dataset (Section 5.5.2).
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5.3.4 p(V.clustOverlap|V.action)

A feature is needed to connect the drop event to its subsequent pick. Each drop of a bicycle

needs to be connected to the pick of that bicycle regardless of the person performing

the event. A measure is thus needed to compare bicycle-clusters. This match function

accommodates any object type, and assumes objects do not change their shape or position

between being dropped and picked. For two bicycle-clustersy1 andy2, the overlap is

measured as

ψco(y1. f Map,y2. f Map) =
M(y1. f Map&y2. f Map)

min(M(y1. f Map),M(y2. f Map))
(5.6)

In Equation 5.6, the function M(·) returns the number of non-zero pixels in the binary

image, and the operator & is the ‘Boolean and’ of two images resulting in overlapping

pixels between the two bicycle-clusters.

(a)

(d)

(b)

(e)

(c)

(f)

(g)

Figure 5.17: Two consecutive reference images (a) and (b) are compared to reveal changes (c) rep-
resenting a dropped bicycle, and a noise cluster. Later, twoconsecutive reference images (d) and
(e) are also compared to reveal two picked bicycles (f). By comparing the changed blobs (g), the
clusters overlap gives a high likelihood and a pixel match of0.86 (calculated using Equation 5.6).
Yellow pixels represent the dropped clusters while pink pixels represent the picked cluster. White
pixels signify the overlapped pixels.

Figure 5.17 shows an example of a drop and a pick that were correctly connected

by comparing the changed blobs despite the temporal gap between the two events. Fig-

ure 5.18 shows another example from a more challenging dataset. Figure 5.19 presents

the trained Gaussians.
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drop
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pick of a
neighbouring

bicycle

(a) (b) (c)

Figure 5.18: A harder example of bicycle-clusters pixels overlap. ‘Before’ (a) and ‘after’ (b)
reference images are compared for three activity units. Pixel-to-pixel matches (c) are capable of
detecting the correct pick with higher pixel overlap. This example is from the Cambridge dataset
where clutter and ambiguity are significantly high.
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Figure 5.19: Training labelled data is fitted into half-Gaussians with a fixed mean of 1 for correct
values and a fixed mean of 0 for incorrect connections.

5.3.5 Post-segmentation

Assume several people dropped bicycles within the same bicycle-cluster. The distance

between a person and the bicycle-cluster will produce a highlikelihood between all these

people and the combined cluster. When one bicycle amongst the cluster is later picked,

the pixel overlap helps refining the bounding box estimate ofthe bicycle object. This can

be clarified by an example shown in Figure 5.20.

Notice that this assists segmenting the bicycle from a bicycle-cluster composed of

several bicycles for both the drop and the pick events. This is referred to as ‘post-

segmentation’ because the bicycle is segmented after the drop-pick link is established.

The post-segmented positionV.posis the intersection between the dropped and the picked

clusters. After this position is determined, the distance and the ratio of edges can be revis-

ited. The maximum overlap between the person’s trajectorytra j and the post-segmented

positionV.pos is calculated using the functionψdist for both the dropping and picking
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(a) (b) (c) (d) (e) (f)

Figure 5.20: Two bicycle-clusters are identified during oneactivity unit (a). The top clus-
ter combines three bicycles that cannot be individually segmented. Two people’s trajectories
(x1(top),x2(bottom)) are displayed (b) and are linked to the cluster. During a later activity unit,
one bicycle was picked (c) by a person (d). Matching pixels ofthe dropped and picked clusters
enables segmenting the bicycle and provides a better estimate of its location and bounding box
(e). Only one of the people shown in (b) can now be linked to this refined boundary, due to the
post-segmentation information. (f) shows the person x2 cannot be part of this drop-pick event.

trajectories, and is referred to aspsDropDistandpsPickDist. Similarly ψedgeRatiois cal-

culated, so the new and removed edges are limited within the new boundary. The latter

is efficiently performed using integral histograms [4]. Post-segmentation is incorporated

into the grammar as synthetic attributes.

This section has reviewed all the likelihoods required for the Bicyclesproblem BN.

Figure 5.21 labels the example BN with the likelihood functions for completeness.

Figure 5.21: The different likelihoods/features shown on the BN structure.
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5.4 Reversible moves for theBicycles problem

After the BN is built, the MAP solution is sought using the techniques from Chapter 4.

This section explains how the general RJMCMC moves can be applied to theBicycles

problem. The four move types introduced in Section 4.4.2 areduplicated for the two

layers of binary event linkage (Figure 5.22). The subscriptfor the move type indicates the

layer. In the initial explanationω0, all people are passing by the rack area and all bicycle-

clusters are noise. This is a valid explanation, though unlikely to result in the MAP

solution. At each step of the Markov chain, a move is applied to the current explanation.

Figure 5.23 shows a sequence of moves. For each move, the reversible move is shown

to indicate the chain can run both ways. Each applied move creates a new explanation

ω ′, and can change multiple labels in the Bayesian network. Moves of type changev, for

example, change the labels of four hidden RVs of typeV (Figure 5.24).

Figure 5.22: Generalised reversible moves, for both layersof the Bicycles problem.

Next, one needs to define the proposal distribution for the Markov chainQ(ω ′|ω).
RJMCMC uses two proposal distributions to propose a new explanation: one for choosing

the move typejm, and another for choosing a specific movegm. Randomly choosing a

move type does not efficiently search the space of explanations. Section 4.4.2 suggested

estimating the number of distinct moves of each type that canbe applied to the current

explanation. For example, the number of possible ‘disconnectz’ moves equals the total

number of drop and pick events in the current explanation. These counts are used as

weights in choosing the move type.

Next, a specific move of that type is chosen and applied to the current explanation.

This ‘within-move’ choice can also be performed uniformly at random. Alternatively,

Figure 5.23: A sequence of{connectv → connectz→ changev → disconnectz}moves was applied.
The last move affects both layers as disconnecting a pick cancels the drop-pick linked to that pick.
The subscript next to the move type indicates the compound event for which the move is applied.
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Figure 5.24: The effect of the third move in the sequence is shown on the BN. Shadowed hidden
RVs have been affected by the move. This move changes the labels of four hidden RVs in the BN.

one can design a customised proposal distribution for each move type. Section 4.4.2 ex-

plained that these proposal distributions are application-dependent. This section lists a

measurementδt for each move typet that weights the preference for choosing moves

of that type. The proposal distributiongm is then a weighted distribution from which a

move is selected at random. For example, the ‘connectz’ move type prefers connecting

people to bicycle-clusters without existing links. The chosen weights for all move types

are described next. In the coming equations,B(xi) yields the set of clusters that could be

connected to personxi , while T(y j) yields the set of people that could be connected to

clustery j .

Move type (A) connectz/disconnectz
The ambiguity related to each person is calculated from the number of bicycle-clusters

to which the person can be connected, and the ambiguity related to each of these clus-

ters. For personxi , the measurement for weighting moves of typeconnectz is defined in

Equation 5.7.

δconnectz(xi) = ∑
y j∈B(xi)

1
|T(y j)|

(5.7)

The measurement for thedisconnectz move type is the inverse of that forconnectz.

δdisconnectz(x1) =
1

∑
y j∈B(xi)

1
|T(y j )|

(5.8)

Recall thatδconnectz is defined for all passing-by people, whileδdisconnectz is defined for all

dropping and picking people.

Move type (B) changez
This move type is defined for all Z events, and is self-reversible. For each connected
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person and bicycle-cluster,δchangez tests whether the cluster is better connected to another

person, or the person is better connected to another cluster.

δchangez(xi ,y j) = ∑
xk∈T(y j)−{xi}

ψdist(xk.tra j,y j .pos)
ψdist(xi .tra j,y j .pos)

+ ∑
yk∈B(xi)−{y j}

ψdist(xi .tra j,yk.pos)
ψdist(xi .tra j,y j .pos)

(5.9)

δchangez sums the relative weight of all alternative links. A relative weight of 1 is given

to all equally-likely connections,< 1 for less-likely connections, and> 1 for more-likely

connections.

Move type (C) switchz

δswitchz(xi ,y j ,xk,yl ) =
ψdist(xi,yl )ψdist(xk,y j)
ψdist(xi,y j)ψdist(xk,yl )

(5.10)

δswitchz weights switching two drop/pick events based on the ratio ofthe new connection

likelihoods to the current connection likelihoods. Noticethat this weighting does not take

into consideration the changes that can be introduced to anyrelated drop-pick events. This

will be evaluated when the move is actually applied. For example δswitchz can be greater

than 1 for a specific move, yet it would result in a lower posterior. Refer to 4.4.2 for the

explanation of how RJMCMC formulations can preserve the detailed balance condition,

and thus convergence.

Move type (D) connectv/disconnectv
Proposing to connect an unconnected drop to a later pick is weighted by the bicycle-

clusters overlap

δconnectv(Zi ,Z j) = ψco(Zi . f Map,Z j . f Map) (5.11)

The disconnect move measurement is the inverse

δdisconnectv(Zi ,Z j) =
1

ψco(Zi . f Map,Z j . f Map)
(5.12)

Notice that whileδconnectz calculates the number of ambiguous alternative connections,

this does not suit theconnectv move type. Introducing a similar measure would favour

connecting older drops, which cannot be justified.
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Move type (E) changev

δchangev(Zi ,Z j) =
max

(
max

{k:Zk=d}−{i}
ψco(Zk,Z j), max

{k:Zk=p}−{ j}
ψco(Zi ,Zk)

)

ψco(Zi ,Z j)
(5.13)

δchangev gives a weight of 0 when there are no alternative drops or picks,< 1 if the current

connection has the highest likelihood, and> 1 if a better connection is available.

Move type (F) switchv

For two pairs of drop-picks(Zi ,Z j) and(Zk,Zl ), the measurement for switching is depen-

dent on the ratio of the new cluster-overlap likelihoods to the old likelihoods.

δswitchv(Zi ,Z j ,Zk,Zl ) =
ψco(Zi ,Zl )ψco(Zk,Z j)
ψco(Zi ,Z j)ψco(Zk,Zl)

(5.14)

In addition to the within-move proposal distributions, it should be mentioned that,

when a move is applied,π(ω ′)
π(ω) can be simplified based on knowing the move type. Thus,

the full posterior need not be evaluated at each step of the Markov chain. For example,

for the connectz move type, where personxi drops a bicycle into the bicycle-clusteryi

that was initially a noise cluster, the similar terms inπ(ω) andπ(ω ′) cancel each other

resulting in the ratio

π(ω ′)
π(ω)

=
p(xi = d|oxi)p(y j = d|oy j )p(zi j = d|xi ,y j ,ozi j )
p(xi = f |oxi)p(y j = f |oy j )p(zi j = f |xi ,y j ,ozi j )

(5.15)

Only these 6 terms are evaluated when applying a move of this type. The remaining

simplified ratios for all the move types are not listed here toavoid redundancy.

5.5 Datasets

Two locations have been chosen for recording. The first is within the University of Leeds.

It is referred to as the ‘Leeds’ dataset, and consists of 37 hours of recording. Another

dataset was obtained from National Express. This was recorded outside Cambridge train

station. It is referred to as the ‘Cambridge’ dataset, and consists of 30 hours of recorded

video. Table 5.5 contains a summary of statistics for both datasets.
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sequences
Leeds Cambridge

1 2 3 4 5 6 7
Duration 1h 1h 11h 12h 12h 15h 15h
Activity Units 35 17 19 118 96 87 132
|{x}| 58 27 128 126 137 112 197
|{y}| 59 25 72 175 128 206 1847
Drops 24 11 20 20 14 28 39
Picks 20 12 19 20 13 17 41
Drop-Picks 20 11 18 20 13 14 22
Simulated Thefts 7 0 7 1 0 0 0

Table 5.5: Dataset statistics;|{x}|: number of detected people,|{y}|: number of detected bicycle-
clusters.

5.5.1 Leeds dataset

A rack area containing 6 racks was chosen for recording. The camera was mounted in

a third floor window to capture the full rack area and a leadingarea showing people ap-

proaching and departing. Two 1 hour sequences were recordedduring busy periods (1-2).

Three full days (8am to 7/8pm) were also recorded to test longduration (3-5). Table 5.5

details the number of events of each type in the ground truth of these five sequences. It

also lists the number of detected people and bicycle-clusters.

This dataset provided a thorough test, and was recorded on separate days between

Oct 2006 and May 2008. It proves the ability of the prototype to work under severe

weather conditions (rain, hail, shadowed and sunny periodsare all part of the dataset).

No recording was done at night as the tracker fails in dim lighting. All sequences were

recorded in a 360×288 screen size at full frame rate (25fps). This enabled a real-time

performance of the tracker. The location of the rack area wasmanually selected, as shown

in Figure 5.25.

For this dataset, the participants were regular staff and students that would use the

rack, as well as actors to simulate extra complexity like people returning with differ-

ent clothing or simulated thefts. As indicated in Table 5.5,some simulated thefts were

recorded to ensure the system succeeds in linking drops and picks when different individ-

uals perform the events. This is also used to assess the ability of the prototype to detect

thefts as will be explained in Section 5.6.3.

5.5.2 Cambridge dataset

Figure 5.26 shows the viewpoint from the Cambridge dataset along with the manually

defined rack area. The provided videos were recorded from 6amto 9pm on the 17th and
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Figure 5.25: Viewpoint of the Leeds dataset. A manually defined convex polygon delimits the rack
area.

Figure 5.26: The Viewpoint of the Cambridge dataset.

21st of May 2008. A Pan-Tilt-Zoom (PTZ) camera, outside Cambridge train station, was

fixed for collecting this dataset. The resolution of 704×576 was retrieved from the source

at full frame rate (25 fps). After receiving this dataset, itwas noticed that many bicycles

were kept in the racks for long durations. The number of drop and pick events is thus less

than anticipated when viewing the cluttered bicycles in Figure 5.26. This dataset differs

from the one recorded in Leeds in the following aspects:

• The rack area occupies most of the viewpoint, leaving littlespace for the leading

area. This affected the ability to observe the change in the blob size before ap-

proaching the area and after departing (Figure 5.12).

• The recording quality is lower, introducing more noise and aliasing effects.

• No actors were involved, and no thefts were recorded.
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• The racks are not fully visible. Some racks are hidden behindthe tree and others

are not within the camera’s viewpoint. People passing with the bicycle in front of

the camera, but parking the bicycle outside the field of view (or behind the tree),

were labeled as passing-by individuals in the ground truth.

• Due to the cluttered bicycle racks, a higher number of bicycles were shifted from

their position while another bicycle is being dropped or picked. This increased the

size of detected bicycle-clusters.

• Due to the over-cluttered racks as well, a considerable number of individuals tried to

squeeze their bicycles in, and then departed without leaving a bicycle behind. Such

events result in a change within the rack area, through the attempts of squeezing

the bicycle. As the solution detects changes within the rackas bicycle-clusters, and

associates these with people using spatial proximity, thisresulted in a decrease in

the explanation’s accuracy.

Despite the challenge of the Cambridge dataset, the prototype was used without change

following development on the Leeds dataset. The duration and number of events in this

dataset has been presented in Table 5.5 under the 6th and 7th columns. To simplify the

results, the Leeds dataset sequences are numbered 1 to 5, while 6 and 7 denote the two

days of the Cambridge dataset.

5.6 Results

This section shows the results of searching for the MAP solution, which corresponds to

the best explanation, using different search methods for the dataset sequences. Upon

achieving the maximum a posteriori explanationω̂ , the accuracy is calculated by com-

parison to the ground truth. Finally, this section discusses an application of this activity

recognition task to bicycle theft detection. Although thisapplication requires further re-

search related to passive biometrics and risk management, the global explanation forms

the basis for its solution.

5.6.1 MAP explanation results

The search is for the global explanationω̂ that maximises the posterior probability. Thus,

comparing two search algorithms is based on comparing the posterior probabilities of

the explanations found by the algorithms. This is done independently of the accuracy
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attained, which is considered in Section 5.6.2. In what follows, the negative log is min-

imised rather than the probability maximised. This is because small numbers cause over-

flowing.

The MAP is compared across all sequences for greedy, MHT, RJMCMC and IP

searches. The greedy search is performed as explained in Section 4.2. MHT is compared

for k = 50, 100 and 500 branches as explained in Section 4.3. Ten parallel chains (nmc =

5000) are run for each of RJMCMC and RJMCMC-SA recording the MAP amongst all

chains. These are run starting at the greedy solution and offline. Linear cooling is used for

SA. The length of the Markov chain and linear cooling were chosen based on experiments

on the training sequence (1st sequence). It was noticed that the chains converge after 3000

steps or so,nmc was accordingly chosen to be 5000. Similar performance was recorded

for linear and exponential cooling, while sigmoid cooling performed slightly worse. The

RJMCMC search is run 40 times, recording the mean and the standard deviation. IP

is run on both the MATLAB and XPRESS-MP solvers. Table 5.6 shows the complete

MAP results for all the dataset sequences. In all cases, the greedy search could not find

the MAP explanation. RJMCMC achieved better results than MHT in four out of the

seven sequences, and comparable results in the remaining three sequences. RJMCMC-

SA achieved the best results amongst heuristic methods. Integer Programming shows the

MAP solution by exhaustive searching.

Greedy MHT RJMCMC RJMCMC-SA IP
k=50 k=100 k=500 µ σ µ σ MATLAB XPRESS-MP

1 102.25 58.78 58.78 57.86 57.90 0.11 57.86 0.00 57.86 57.86
2 23.54 4.64 4.64 4.64 4.64 0.00 4.64 0.00 4.64 4.64
3 609.66 493.18 468.80 468.80 429.30 3.23 423.98 2.36 416.64 416.64
4 6272.69 6149.95 6144.98 6144.30 6079.88 3.43 6078.40 3.23 6065.0 6065.00
5 5034.46 4998.39 4982.86 4975.82 4943.71 3.59 4939.33 1.87 4937.1 4937.08
6 860.37 812.96 812.96 812.96 814.71 1.69 811.50 2.36 797.29 797.29
7 934.36 608.92 607.39 - 451.92 9.29 433.50 7.76 - 283.51

Table 5.6:− log(p) compared across greedy, MHT (k = 50, 100, 500), 40 runs of RJMCMC, 40
runs of RJMCMC-SA and Integer Programming. The results are not available for MHT (k=500)
or MATLAB linear solver on sequence 7 due to the implementation running out of memory.

The comparison is also presented visually in Figure 5.27. The MAP (presented as

− log(p)) is compared across the sequences, where the posterior found using MHT (k=50)

is vertically aligned for all sequences. For RJMCMC and RJMCMC-SA bars, the height

of the bar represents mean of the different runs, and a vertical line presents the standard

deviation .

To visualize the different explanations during a Markov chain, Figure 5.28 demon-

strates a diagram for the explanation every 250 steps in the Markov chain. These diagrams

are for one run of RJMCMC-SA on the 3rd sequence. Starting from passing-by events for
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Figure 5.27: MAP is compared for the full day sequences (3-7)showing RJMCMC-SA achieves the
best heuristic search results. The vertical line represents the standard deviationσ for RJMCMC
and RJMCMC-SA.

all people detections, drop and pick events are recognised and linked (represented by a

line connecting the pair of events). The visualization shows convergence to the best ex-

planation at the end of the sequence. The diagram shows the complexity of the solution

and the interleaved unordered events.

When comparing the time required for each of the search techniques, it is worth men-

tioning that each run of the RJMCMC chains executes within 3-7 minutes for the se-

quences in theBicyclesproblem. This is an unoptimised code implemented using JavaTM,

and run on a 4GB server. The time needed to run MHT depends on the number of branches

k and was around 20minutes fork = 500. IP using the linear solvers takes between 5 and

30 minutes with the varying complexity in the code, run on a server of 10GB memory.

Note that the code was not optimised for performance comparison.

For the Integer Programming results, Table 5.7 shows the number of partial explana-

tionsz for each of the 7 sequences.

After comparing the different search techniques, results are shown for different ways

of searching using RJMCMC and RJMCMC-SA. Results are also available for the online

search and starting from a completely unconnected explanation. Table 5.8 shows the com-
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Figure 5.28: A visual representation of the explanation along a Markov chain (nmc= 5000), where
dots denote person detections equally spaced between 0700Hand 1700H. Drops (red dots) and
picks (blue dots) are linked by a straight line to form drop-pick events.
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sequence |z |
1 784
2 171
3 1492
4 2381
5 1303
6 1484
7 7963

Table 5.7: The number of partial explanations in the integerprogram for each of the 7 sequences.

plete results for RJMCMC search under different starting points, simulated annealing and

online performance for the 5th sequence. The complete results are shown in Appendix E.1

for the remaining sequences. The coming subsections explain several aspects regarding

the different ways to run Markov chains.

RJMCMC RJMCMC-SA Online From Local Max nmc min µ σ
× 5,000 4937.10 4941.01 4.06

× 5,000 4943.71 4939.37 1.96
× × 5,000 4943.71 4943.71 3.59

× × 5,000 4943.71 4939.33 1.87
× × 1000/au 4927.60 4963.7 22.45

× × 1000/au 4956.55 4968.5 5.16
× × × 1000/au 4924.08 4945.8 12.60

× × × 1000/au 4929.63 4956.3 16.17

Table 5.8: MAP results using different variations of the RJMCMC search for the 5th sequence.
Results for the other sequences are shown in Appendix E.1.

5.6.1.1 RJMCMC proposal distribution choices

To assess the effect of proposal distribution choices on theconvergence of the Markov

chain, this section presents results using different choices of the proposal distributions.

In RJMCMC, first the move-type is to be selectedjm, then a move from the within-move

proposal distributiongm is chosen. These choices can be made uniformly at random

(u.a.r.) or weighted. The choice of the move type is weighed by the estimated count

of possible moves of that type, while the choice of individual moves is weighted by the

designed measurements (Equations 5.7- 5.14). Figure 5.29 shows an example of con-

vergence for both RJMCMC and RJMCMC-SA under various choices of the proposal

distribution. Three choices are presented, the first choiceis when both the move type and

the individual move are chosen u.a.r. The chains are far fromconvergence in both cases

Alternatively, if the move type choices are weighted using estimated move counts, while

the actual move within that type is selected u.a.r., the algorithm converges but requires

a longer Markov chain. Weighted choices in both proposal distributions are capable of
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converging significantly faster.
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Figure 5.29: Two figures presenting convergence under various u.a.r and weighted proposal dis-
tribution Q(ω ′|ω) choices using RJMCMC (left) and RJMCMC-SA (right) for the4th sequence.

Table 5.9 compares the results across the seven sequences for uniform and weighted

gm choices. 100 chains are run with a weightedjm and uniformgm proposal distributions,

and another 100 chains were run with the weightedjm andgm distributions. The results

show lower− log(p) for all the datasets when weightedgm distributions are used. When

testing for significance using the two-sample t-test, 6 out of 7 sequences (except the 2nd

sequence) proved the difference is statistically significant 6.

Uniform gm Weightedgm
µ σ µ σ

1 59.51 1.28 58.57 0.60
2 4.78 0.72 4.74 0.58
3 451.27 10.03 437.19 5.37
4 6165.87 17.21 6130.34 19.47
5 4986.91 10.47 4950.89 6.27
6 862.30 6.09 819.20 3.73
7 486.95 9.41 469.90 12.12

Table 5.9:− log(p) compared for all the sequences, with 100 chains with a uniform gm, and 100
chains with weighted gm.

5.6.1.2 Running multiple Markov chains

Being a Monte Carlo process, which is inherently random, it is believed that running mul-

tiple chains can result in a better chance of finding the global maximum [142]. These

chains can run in parallel and are independent of each other.Figure 5.30 shows the poste-

rior and acceptance rate for three RJMCMC chains tested on the 5th sequence. Similarly,

Figure 5.31 compares three RJMCMC-SA chains.

6at 5% significance level
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Figure 5.30: Three RJMCMC runs for the 5th sequence. In this figure, the chain plotted in black
finds the highest posterior. The figure to the right shows the acceptance rateρaccept for the three
chains in corresponding line styles.
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Figure 5.31: Three RJMCMC-SA runs for the 5th sequence. Though all SA runs converge, they
tend to converge to different peaks (local maxima) of the distribution. The chain plotted in black
finds a higher posterior.ρaccept results are shown to the right.

Table 5.10 compares a single long chain with multiple shorter chains containing the

same total number of sample elements. The experiments are run 10 times to estimate

the mean and the standard deviation7. The table shows a higher posterior mean for

the single chain in three sequences, in comparison with a higher posterior mean for the

multiple chains in two other sequences. The performance is thus comparable for multiple

short chains and a single long chain. As the multiple chains are shorter and were run in

parallel, the potential time it takes is significantly reduced 8. Multiple chains were used

in the results presented in Table 5.8. For all experiments shown next,nmc was set to 5000

for offline search and to 1000 for each activity unit during online search.

7Statistical significance cannot be concluded from this the small sample size
8A 64-dual processor parallel cluster was used. This servicewas provided by the White Rose Grid.
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single chain (nmc=50,000) multiple chains (10×nmc=5000)
µ σ µ σ

3 424.99 5.44 428.68 4.12
4 6077.32 3.98 6080.57 3.88
5 4947.30 5.56 4941.11 3.65
6 814.77 1.72 813.83 2.24
7 429.39 15.03 433.01 8.43

Table 5.10:− log(p) compared for 10 runs of a single long chain versus 10 runs of multiple
parallel shorter chains.

5.6.1.3 Adding simulated annealing

When using simulated annealing, a choice of the temperaturerange (initial and final tem-

peratures) and a cooling schedule is needed. The choices wereT0 = 4.00 andTnmc = 0.01.

Linear cooling was found suitable for the training sequence. In the remaining results,

RJMCMC-SA uses linear cooling (Equation 4.7) when updatingthe temperature.

To test whether adding simulated annealing is a statistically significant improvement,

Table 5.11 shows the results of a two-sample t-test. The testassumes the two samples

are generated from Gaussian distributions. For each case, 400 independent chains were

run from a local maximum9 for each of RJMCMC and RJMCMC-SA. Linear cooling

schedule was used for SA. To test that each sample is generated from a Gaussian distri-

bution, the chi-square goodness-of-fit (χ2gof) is tested for each sample. Theχ2gof test

checks whether the sample is a random sample from a normal distribution with a mean

and standard deviation estimated from the sample. Then, thetailed Welch t-test atα=0.05

is used, as it does not assume the variances of the two samplesare equal. The test returns

1 if RJMCMC-SA generates statistically significant higher MAP than RJMCMC at 5%

significance level. The table demonstrates the statisticalsignificance for the third, fourth,

sixth and seventh sequences. Theχ2gof test failed in the remaining three cases. Though

RJMCMC was used in previous work to find the MAP solution, the experimental results

here support the theoretical concept that adding SA can better search the distribution for

the MAP solution.

5.6.1.4 Initialising the Markov chain

Two methods were used to initialise the Markov chain. The first method is to start from

scratch with all people considered passing-by and all bicycle-clusters labeled as noise.

Another way to initialise the Markov chain is to start from the explanation found by

the greedy search. Choosing the second initialisation is expected to speed convergence.

Nevertheless, the theory of MCMC proves its immunity to initial states. MCMC’s con-

9These are the same as the independent chains used in Table 5.8
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sequence RJMCMC RJMCMC-SA Welch t-test
µ σ χ2 gof µ σ χ2 gof

1 58.71 0.84 1 59.29 2.14 1 0
2 5.19 1.30 1 5.53 1.56 0 0
3 438.66 6.04 0 432.34 5.88 0 1
4 6092.93 9.93 0 6090.40 9.11 0 1
5 4956.36 9.17 1 4947.11 6.08 1 1
6 819.61 3.20 0 817.62 4.12 0 1
7 472.51 13.16 0 457.74 16.67 0 1

Table 5.11: Welch t-test to compare 400 runs of RJMCMC and RJMCMC-SA. In the last column,
1 indicates the right-tailed null hypothesis was rejected at 5% significance level. This means
the− log(p) was higher for RJMCMC when compared with RJMCMC-SA (recall that this means
lower MAP). For theχ2gof columns, 0 indicates the sample is drawn from a normal distribution
when tested withχ2 goodness-of-fit at 5% signifcance level.

vergence to the target distribution is independent of the initial state. Figure 5.32 shows

two different initialisations of the Markov chain. Initialising the chain with the solution in

which all people are passing-by and all bicycle-clusters are noise takes longer to achieve

convergence.
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Figure 5.32: Two runs of RJMCMC from different initial explanations applied to the 5th sequence.

For the complete results of the dataset, 400 chains are run from each of the two initial

explanations. Table 5.12 compares the results. In 6 out of 7 sequences, the means are

within 1 standard deviation (1σ ) of each other. Also, in four out of the seven sequences,

the difference in means of the two samples is not considered statistically significant using

the two-sample t-test, i.e. they originate from the same proposal distribution.

5.6.1.5 Online optimisation

Figure 5.33 shows online RJMCMC-SA, run in two phases at the end of each activity

unit, as explained in Section 4.4.6. For each chain, the bestperformance initialises the

Markov chain for the next activity unit. Some activity unitshave higher ambiguity in the
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From scratch From greedy
µ σ µ σ

1 58.61 0.63 58.71 0.84
2 4.73 0.58 5.19 1.30
3 438.45 6.26 438.66 6.04
4 6127.57 21.70 6092.93 9.92
5 4951.30 6.19 4956.36 9.17
6 819.30 3.33 819.61 3.20
7 469.18 30.15 472.51 13.16

Table 5.12:− log(p) compared for all the sequences, with 400 chains started fromscratch, and
400 chains started from the solution found by greedy search.

detections. The plot in Figure 5.33 is though misleading as the normalising factor in the

posterior changes when new detections are added. Accordingly, the y-axis data cannot be

compared across activity units. Complete results for online optimisation can be found in

Appendix E.1.
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Figure 5.33: Online RJMCMC-SA for the 1st sequence. Vertical dotted lines separate the optimi-
sation at each activity unit. The Markov chain length is 1000steps for each activity unit.

5.6.2 Accuracy results

The ground truth was manually obtained for each sequence, labelling each person with

the event accomplished (dropping, picking or passing-by),then connecting any pick to

its earlier drop. Figure 5.34 shows an example of the recorded ground truth. Notice that

this ground truth is partial, as it does not connect people tobicycle-clusters. This was

avoided due to the complexity of manually deciding on those connections. Recall that a

drop event cannot be connected to its pick event unless the bicycle-clusters are correctly
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connected. Thus, comparing an explanation to this partial ground truth is sufficient to

assess the accuracy of the global explanation.

Upon retrieving the MAP global explanation, it is compared to the ground truth to cal-

track ID track Name event (d/p/s) previous drop diff Person? diff Clothing?
19234 N s
21586 O d
26353 Q d
28402 R d
29978 Z d
30310 OP p O 0 1
30355 OP p O 0 1
31027 Y s
31445 QP p Q 0 0
31623 QP p Q 0 0

Figure 5.34: A sample ground truth from the4th sequence. Each track is assigned an ID by the
tracker. A unique name is given to each person to show broken trajectories, along with the event
performed. For pick events, the track name of the previous drop is recorded. Simulated thefts and
people with different clothing are recorded as Boolean variables.

culate the accuracy. Figure 5.35 presents a partial explanation from the 4th sequence that

corresponds to the ground truth in Figure 5.34. When compared to the ground truth, the

accuracy equals the ratio of the correctly explained records to the total number of records

in the sequence. A record is explained correctly if it matches the ground truth, or is redun-

dant to a correctly-explained record. The latter case explains broken tracks. For example,

the last two records in Figure 5.34 are 2 tracklets of the sametrack. Explaining any of

them correctly, while explaining the other as an unconnected pick (as in Figure 5.35) is

considered a correct explanation for both records. When this is compared to the ground

truth, 9 out of 10 records in Figure 5.35 are correctly explained resulting in 90% accuracy.

track ID bicycle-cluster No event (d/p/s) previous drop
19234 0 s
21586 124 d
26353 126 d
28402 127 d
29978 128 d
30310 130 p 21586
30355 0 s
31027 129 d
31445 131 p -
31623 131 p 26353

Figure 5.35: A sample partial explanation from the4th sequence.

The MAP results from the previous section are compared to theground truth. Sev-

eral explanations evaluate to the same accuracy rate if theycontain the same number of
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correctly explained records. Figure 5.36 plots the posterior probability along with the

accuracy results for one RJMCMC run from the 5th sequence. The figure demonstrates
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Figure 5.36: The posterior results and the corresponding accuracy rates for one RJMCMC run
(5th sequence). The vertical line shows the MAP solution, and itscorresponding accuracy. Higher
accuracy rates are present, yet those have lower posteriors.

a general trend of increase in accuracy with the increase in posterior. Yet, the MAP ex-

planation does not correspond to the highest retrieved accuracy. This could have resulted

from two different causes:

1. Incorrect modeling of the priors and conditional probabilities.

2. Insufficient information in the features selected.

The accuracies for the MAP explanations from table 5.6 are shown in Table 5.13. In

the table, five out of the seven sequences have the highest accuracy corresponding to the

MAP. In all sequences, a higher posterior corresponds at times to a lower accuracy. The

complete tables of accuracies are shown in Appendix E.2.

Local Global
Greedy MHT RJMCMC RJMCMC-SA IP

k=50 k=100 k=500 µ σ µ σ MATLAB XPRESS-MP
1 74.13 72.41 91.38 91.38 91.38 88.36 1.09 87.46 1.79 91.38 91.38
2 85.19 85.19 100.00 100.00 100.00 100.00 0.00 100.00 0.00 100.00 100.00
3 64.06 58.59 84.38 84.38 84.38 87.68 0.89 83.36 1.65 88.28? 87.5?

4 74.60 73.81 74.60 75.40 75.40 83.93 1.09 83.15 1.31 81.75? 83.33?

5 86.13 89.05 82.48 84.67 88.32 91.90 0.79 92.65? 0.90 94.16 94.16
6 65.18 66.07 60.71 60.71 60.71 68.53 1.68 70.98 1.04 73.21 73.21
7 46.18 45.69 44.67 45.69 - 47.28 1.18 47.61 0.88 - 46.70

Table 5.13: The accuracy results (%) for the MAP solutions.? denotes that for the same MAP, two
or more explanations are found, and only the one with the maximum accuracy is recorded.

The table also compares local and global analysis. A local solution is finding the best

event for each person independently then linking drops and picks allowing the same drop
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Figure 5.37: Five examples of connected events. The first four are correctly connected. The fourth
column represents a simulated theft. The fifth example showsan incorrect connection. Recall that
no clothing color comparison is performed. Individuals areconnected by linking the person to a
cluster and correctly linking dropped to picked bicycle-clusters.

to link to several pick events and vice versa. The local solution is thus a complete but pos-

sibly inconsistent set of events, as the inter-activity constraints are not maintained. The

results show higher accuracy for global explanations. Thisindicates that global explana-

tions can resolve ambiguities that cannot be resolved by local analysis.

It is expected that the accuracies for sequences (6-7) are lower due to the increase

in clutter. The 7th sequence suffers from frequent abrupt lighting changes that result in

bicycle clusters being poorly detected. Figure 5.37 gives some examples of recognized

and linked drop and pick events across the dataset.

5.6.3 Theft detection

The explanations for theBicyclesproblem can be used to detect thefts. Atheft is de-

fined as a drop-pick compound event where the person who dropped the bicycle does

not ‘look-like’ the person picking the bicycle. Soft-biometrics can be used to compare

(a) (b) (c) (d) (e)

Figure 5.38: Examples of the best-matched pair of frames when comparing two people. This
technique finds the best match for the same person (a), and a poor match for different individuals
(b). Nevertheless, it tries to find as high match as possible across different people (c) and fails in
cases of poor segmentation (d) and occlusion (e).
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the appearances from the CCTV camera. Clothing colour, height or body build can be

compared. In this section, only clothing colour is used for matching. This is based on

the assumption that people do not change their clothing between the two events. This as-

sumption is of course not always valid. Moreover, colour matching is affected by lighting

changes in outdoor scenes. This section first explains how the colour information can be

retrieved, summarised and compared. Then, the results are presented.

The tracker [100] provides colour information for foreground pixels per frame through-

out the trajectory’s duration. For efficiency, the colour information is summarised across

the whole trajectory. First, data is summarised per frame. An 8×8×8 scale-normalised

equal-bin-size RGB colour histogram was generated from theforeground pixels at each

frame. ‘Scale-by-max’ per channel is used as a simple colourconstancy algorithm [11].

One way to measure the similarity between two peoplex1 andx2 is to compare the his-

tograms for all pairs of frames. AssumeH(x1, j) represents the colour histogram for

personx1 at framej, and thatHi is a certain bin in the histogram of sizem. The similarity

between histograms is produced using the symmetric versionof thehistogram intersec-

tion introduced in [136].

χ(H(x1, l),H(x2,k)) =
m

∑
i=1

min
( Hi(x1, l)

∑ j H j(x1, l)
,

Hi(x2,k)
∑ j H j(x2,k)

)
(5.16)

Sincexi .n measures the number of frames for each person, assumel = 1. . .x1.n and

k = 1. . .x2.n, then the overall similarityδc(x1,x2) between two people is defined in Equa-

tion 5.17

δc(x1,x2) = max
l ,k

(χ(H(x1, l),H(x2,k))) (5.17)

This computation is expensive as it requires maintaining a histogram for each frame,

and calculating the intersection of all pairs. Moreover, itis error-prone to foreground

segmentation problems. Figure 5.38 contains a collection of examples showing the best

matched pair of frames.

Alternatively, all histograms for a person can be combined together. A per-bin median

histogramH̃ was calculated across all frames as explained in [19].

H̃i(x1) = medianj=1...x1.nHi(x1, j) (5.18)

The similarity between two people is then calculated as the intersection between the per-

bin median histograms.

δc(x1,x2) = χ(H̃(x1), H̃(x2)) (5.19)
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After the global explanation is found, the drop-pick eventsare studied further, and the

clothing colour is compared for the dropping and picking people. If the clothing match

δc is below a certain threshold, a theft warning is raised. Figure 5.39 presents the ROC

curve for different thresholds summed over all the sequences. Recall that clothing colour

was not used in the activity recognition.

The ground truth contains information about whether the picking individual is a dif-

ferent person. When compared to ground truth, a True Positive (TP) is a labeled theft case

when different people in the ground truth are recorded. A True Negative (TN) indicates

the same individual, and the explanation not raising a theftwarnings. A False Positive

(FP) is recorded when a warning is raised while the ground truth records the events are

performed by the same person. A FP can be generated from an incorrect explanation,

different clothing, or poor colour matching. Finally, a False Negative (FN) is caused by a

theft case that is not detected.
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Figure 5.39: ROC curve (left) representing theft detectionresults. 0.7 was selected as the threshold
to calculate the confusion matrix (right).

At a threshold of 0.7, 87% (13 out of 15) of the theft cases werecaught for a 10.9%

(RJMCMC-SA) false-positive rate. This section shows how global explanations can be

used for theft detection. The results are a promising start,but further soft biometrics (see

Section 2.3.3) and colour constancy analysis are required before the application can be

tested. Moreover, a theft warning should marginalise over possible explanations rather

than conclude from the MAP. Using the application in practice requires a wider analysis

of the risk and the reward in raising theft warnings (see Section 8.3).
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5.7 Conclusion

This chapter shows how theBicyclesproblem can be solved using the framework pre-

sented in Chapters 3 and 4. This includes the formulation of an AMG and the estimation

of the likelihood functions for different attribute values. The method is evaluated on 67

hours of video from two bicycle racks.

Searching for the best explanation is performed using the techniques from Chapter 4.

Tested on 7 sequences of varying length and complexity, RJMCMC-SA achieved the best

heuristic search results. The results section presents an extensive analysis for finding the

MAP solution. This solution is then compared to the manuallyobtained ground truth to

calculate accuracy rates.

Results presented demonstrate the ability of the frameworkto find the best global

explanation. It makes the case for global explanations overlocal analysis of events, by

proving global analysis achieves better accuracy results.The next chapter applies the

framework to a related but different problem.



Chapter 6

Case II: The Enter-Exit Problem

This chapter presents a different challenging problem thatrequires tracking people, and

any objects they might be carrying, as they enter and exit a building. The number of

interleaved events is substantial, and the combinatorics of the problem can easily prove

intractable. A global explanation links the event of a person entering the building, possibly

with some carried objects, to a later departure of a person, with or without carried objects.

It also can link the departing person to him/her returning later. The linking depends on

comparing the person and the baggage biometrics between both appearances. Matching

the objects these people are carrying could assist in highlighting potential threats from a

security perspective - for example discovering any baggageabandoned within the build-

ing.

In achieving this task, the carried object detector, to be presented in Chapter 7, is used.

Section 6.2 presents a complete attribute multiset grammarfor the task. The grammar

parses all detections into a global explanation. The Bayesian network can then be searched

for the MAP solution. Section 6.3 reviews how the values of the synthetic attributes are

assigned, and assesses the ability of each feature to recognise the occurring event. Next,

the reversible moves used by the RJMCMC search are reviewed (Section 6.4). The pro-

totype was evaluated on 12 hours of recorded video. Results are analysed in Section 6.5.

115
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6.1 TheEnter-Exit problem

TheEnter-Exitproblem discussed in this chapter is the task of recognisingpeople as they

enter and exit a building, using one camera mounted next to a building entrance. Natural

constraints govern the possible sequence of detections, e.g. a person entering the building

can be observed departing only once, and at a later point in time. The explanation is

a consistent set of links between people entering and exiting the building together with

information on any objects they might be carrying.

This problem is similar to the task of tracking people acrossa blind area, or between

non-overlapping cameras. Two essential differences should though be highlighted. The

first is that blind area tracking usually relies on temporally linking the detections. A per-

son is expected to emerge again within a certain amount of time. This limits the number

of interleaved events making the number of possible explanations tractable in most cases.

The second difference is that blind area tracking classifiestrajectories in advance into

those entering and exiting the blind area. This classification cannot be amended.

TheEnter-Exitproblem resembles theBicyclesproblem presented in Chapter 5 in that

two types of detections are available; people and bicycles in the first case, and people and

bags in the second. It also has two types of events to be linked; drops and picks ver-

sus enters and exits. It differs though in that each event canrelate to both an earlier and

a subsequent event of the opposite type. This enables recognising sequences of events:

enter-exit-enter-exit-enter, while theBicyclesproblem only recognises a single drop-pick

instance of the bicycle. This adds extra complexity to the domain and the search space.

The next section presents the complete attribute multiset grammar for theEnter-Exitprob-

lem that tracks people and carried objects around one building entrance.

The person detections were retrieved using the same off-the-shelf tracker [100]. As

before, a separate person detection is derived from each trajectory. The identity of the

person cannot be maintained by the tracker after departing the field of view. Detecting

bags is based on a novel detector presented in the next chapter. For each trajectory, pro-

trusions representing candidate carried objects are retrieved. The location and colour of

the pixels representing the candidate bag are recorded for each frame along the trajectory.

6.2 An AMG for the Enter-Exit problem

For this new problem, the activity is defined using the following AMG.

Terminals (T): t person detection
b baggage detection
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u unobserved enter or exit events

Nonterimanls (N): S Start symbol
X Exit-Enter link - linking an exit event to a subsequent enter event
E Enter-Exit link - linking an enter event to a subsequent exit event
C Linking the person to a collection of carried objects
B Collection of carried objects

Attributes (A):
symbol att. name type domain description pdf
t id A0 Z a unique id differentiating people detections

time A0 Z2 duration in which the person is tracked
n A0 Z number of frames with the person visible
medianColour A0 R512 per-bin median histogram of pixel colours
projectedHeightsA0 Rn list of projected heights across frames
angle A0 R mean walking direction p(t.angle|t)
count A1 {0,1} number of enter or exit events for the detection
action A1 {enter, exit, pass-by}

b id A0 Z id of the trajectory
frequency A0 R ratio of frames in which the protrusion is detected p(b.frequency|b)
colourSimilarity A0 R colour similarity with neighbouring clothing p(b.colourSim|b)
relativeHeight A0 R2 vertical extent of the carried object relative to the

individual
medianColour A0 R512 per-bin median histogram of pixel colours
count A1 {0,1} number of enter or exit events for the bag
action A1 {carried, other}

X bagDiff A0 Z number of bags that do not match
match A0 R likelihood of matching an exit to a later enter p(X.match|X)
action A1 {exit-enter, exit-u, u-enter, f}

E bagDiff A0 Z number of bags that do not match
match A0 R likelihood of matching an enter to a later exit p(E.match|E)
action A1 {enter-exit, enter-u, u-exit, f}

C trajID A0 Z = t.trajID
nb A0 Z = B.nb
time A0 Z2 = t.time
relativeHeights A0 R2×nb = B.relativeHeights
medianColours A0 R512×nb= B.medianColours
medianColour A0 R512 = t.medianColour
projectedHeightsA0 Rn = t.projectedHeights
angle A0 R = t.angle
eCount A1 {0,1} the number of enter-exit events
xCount A1 {0,1} the number of exit-enter events
action A0 {enter, exit, f}

B trajID A0 Z = b.trajID
nb A0 Z number of carried bags
relativeHeights A0 R2×nb list of b.relativeHeight
medianColours A0 R512×nb list of b.medianColour
action A1 {enter, exit, f}

Attribute Functions
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time1 < time2 this operator ensures thetime1 ends beforetime2 starts.

ψM(C1,C2) measures the likelihood of matching two people

Production Rules (P)

Syntactic Rule (r) Attribute Rules (M) Attribute Constraints (C)

p1 S → X?, E?, t?, b? b.action = “other” b.count 6= 1
t.action = “pass-by” t.count 6= 1

p2 X → C1, C2 C1.action = “exit” C1.action 6= “enter”
C2.action = “enter” C2.action 6= “exit”
X.action = “exit-enter” C1.time < C2.time
X.match = ψM (C1, C2) C1.xCount 6= 1
X.bagDiff = |C1.nb - C2.nb| C2.xCount 6= 1
C1.xCount = 1
C2.xCount = 1

p3 X → C, u C.action = “exit” C.action 6= “enter”
X.action = “exit-u” C.xCount 6= 1
C.xCount = 1

p4 X → u, C C.action = “enter” C.action 6= “exit”
X.action = “u-enter” C.xCount 6= 1
C.xCount = 1

p5 E → C1, C2 C1.action = “enter” C1.action 6= “exit”
C2.action = “exit” C2.action 6= “enter”
E.action = “enter-exit” C1.time < C2.time
E.match = ψM (C1, C2) C1.eCount 6= 1
E.bagDiff = |C1.nb - C2.nb| C2.eCount 6= 1
C1.eCount = 1
C2.eCount = 1

p6 E → C, u C.action = “enter” C.action 6= “exit”
E.action = “enter-u” C.eCount 6= 1
C.eCount = 1

p7 E → u, C C.action = “exit” C.action 6= “enter”
E.action = “u-exit” C.eCount 6= 1
C.eCount = 1

p8 C → t, B t.action = C.action t.trajID = B.trajID
B.action = C.action t.count 6= 1
C.nb = B.nb
C.time = t.time
t.count = 1

p9 C → t t.action = C.action t.count 6= 1
C.time = t.time
C.nb = 0
t.count = 1

p10 B → b? b.action = “carried” bi .trajID = bj .trajID
b.count = 1 b.count 6= 1
B.trajID = b.trajID
B.nb = |b?|

Figure 6.1 presents the attribute dependency graph for the AMG. In accordance with

the framework presented in Chapter 3, given a set of detections, a parse tree of this gram-

mar represents a global explanation. The Bayesian network,modelling the probability
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Figure 6.1: The attribute dependency graph for the Enter-Exit problem AMG.

distribution over all possible parse trees, can be built andsearched in a similar way to that

presented in the previous case study.

Given a multiset of detections with some attribute values D ={t1 (trajID=1, time=1),

t2 (trajID=2, time=2),b1 (trajID=1), b2 (trajID=1), b3 (trajID=1), b4 (trajID=2)}, Fig-

ure 6.2 shows a parse tree and the corresponding Bayesian network.

Figure 6.2: A sample parse tree and labelled BN for the Enter-Exit problem.

After building the structure of the Bayesian network for a set of detections based on

the AMG, the Bayesian network’s parameters (i.e. priors andconditional probabilities)

can be defined. Figure 6.3 shows the set of priors and conditional probabilities for the

problem based on expertise knowledge. The next section describes how the observed RV

likelihoods were trained.

6.3 Features selection and supervised training

The detectors are expected to retrieve a multiset of terminals along with specified values

for the synthetic attributes of each terminal. These synthetic attributes are described in

the AMG above. This section describes how these features areretrieved from the video,

and trained for the possible labels. The median colour feature is identical to that used for

theBicyclesproblem (Section 5.6.3). This section describes how the remaining features
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Figure 6.3: Priors and conditional probabilities estimated for the Enter-Exit BN.

are obtained and trained. The training sequence was two hours recorded from the same

viewpoint on a separate day.

6.3.1 t.pro jectedHeights

Previous work tried to estimate the actual height of the individual to be used in matching

people between non-overlapping cameras [99]. Estimating the actual height requires a full

camera calibration. This section presents a way to compare the height distributions for two

person detections viewed within the same camera using the ground-plane homography.

Given the vanishing point and the horizon’s vanishing line,the height of a vertically-

standing object can be computed, up to a constant factor at each frame. As the person is

not standing upright during walking, only the elevation of the top of the head from the

ground plane can be estimated. The top of the head is approximated to be the highest

point of the foreground segmentation blob. The elevation ofthis point above the ground

is referred to as the projected height. The projected heightis expected to vary with the

phase of the gait. The distribution of projected heights canbe estimated from all frames

of the person’s trajectory. Two such distributions representing the projected heights of

two people can then be compared as will be shown in Section 6.3.6.

The projected height of the individual, up to a constant factor, can be calculated from

the cross-ratio illustrated in Figure 6.4.x is the position of the top of the head,x′ is the

vertical projection of that point on the ground plane,v is the vanishing point representing
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Figure 6.4: The cross-ratio is calculated using the points x, x’, v, c.

the vertical projection of the camera’s position onto the ground plane, andc is the inter-

section of the line connecting the headx to the vanishing pointv with the horizon line.

The horizon line can be calculated for a given scene, using sets of parallel lines on the

ground plane. The vanishing point is calculated from the intersection of parallel lines that

are perpendicular to the ground plane.

The vertical projection of the head on the ground planex′ was estimated by projecting

the lowest vertical point in the foreground segmentation onto the linevx. The Euclidean

distanced between two points can then be used to find the cross-ratio in the image plane.

Given the camera’s height above the ground planeZc, the height of the individualZ is

given by [30]:

Z = Zc(1−
d(x,v)d(x′,c)
d(x,c)d(x′,v)

) (6.1)

ThoughZc is unknown, the cross-ratior = d(x,v)d(x′,c)
d(x,c)d(x′,v) can be calculated for each frame.

Figure 6.5 shows an example of the variation in cross-ratior for a single person over

several frames. Assuming a Gaussian distribution, the meanµ and the standard deviation

σ are calculated for the complete trajectory.

6.3.2 b.relativeHeight

The relative height of each carried object is the vertical extent of the baggage’s bounding

box relative to that of the temporal template (Section 7.2).Assume(h1,h2) define the
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Figure 6.5: An example of the cross-ratio r along the trajectory of a walking person. The horizon-
tal line marks the mean of the Gaussian distribution estimated from this data.

top and bottom vertical positions of the temporal template,and(b1,b2) are the top and

bottom vertical positions of the carried object as in Figure6.6, then the relativeHeight is

the tuple:

b.relativeHeight= (
b1−h1

h2−h1
,
b2−h1

h2−h1
) (6.2)

This attribute is used to match carried objects between people as will be seen in Sec-

tion 6.3.6.

Figure 6.6: The relative height of the baggage from the temporal template. Temporal templates
will be explained in Section 7.2.

6.3.3 p(t.angle|t.action)

The angle of the walking direction is calculated from the means of the foreground blobs in

the image plane. Considering the positions of the person, a best fitting vector is found by

linear regression, and the angle of that vector is used to classify people entering, exiting or

passing by. The conditional probability of an angle given one of these classes is estimated

from labelled examples using a wrapped Gaussian. A wrapped Gaussian (also referred

to as the von Mises distribution) is suitable for representing directional statistics as it is

wrapped around the circumference of a unit circle [46]. The wrapped Gaussian probability

density functionpw is defined in terms of the Gaussian functionpg in Equation 6.3.

pw(θ) =
∞

∑
k=−∞

pg(θ +2πk) (6.3)
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The mean of the wrapped Gaussian is defined in terms of the meanof the sine and cosine

values of the angles in the sample. IfS is the mean of the sines andC is the mean of the

cosines, then the mean angleθ is as defined in Equation 6.4 [46].

θ = arctan(S/C) (6.4)

Figure 6.7 illustrates the trained wrapped Gaussians for the three possible event types.

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

π
w

ra
pp

ed
 n

or
m

al
 p

df

 

 

Enter
Exit
Pass−by

Figure 6.7: Angular histogram of walking directions used intraining (left) and wrapped Gaussians
estimated from the angular histograms (right).

6.3.4 p(b. f requency|b.action)

The frequency of a protrusion is the ratio of the number of frames during which the pro-

trusion was detected to the total number of frames. This is one way to classify protrusions

into carried objects and other protrusions, but proved to beonly weakly discriminative.

Figure 6.8 shows the trained Gaussians. It is still includedin the posterior calculations.
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Figure 6.8: Trained Gaussians for the frequency of carried objects and other protrusions.
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6.3.5 p(b.colourSimilarity|b.action)

Another feature to classify protrusions into carried objects and other protrusions is to

compare the colour of the foreground segment representing the protrusion to that of the

neighbouring foreground region. The set of pixels representing the neighbouring fore-

ground region is defined as{p : ∃q∈ bagPixels: (d(p,q) < ε)}. The horizontal distance

is usedd(p,q) = |p.x−q.x|, andε is set to one sixth of the person’s height. Figure 6.9

shows an example of this region.

Figure 6.9: The red-coloured region signifies the
pixels added to the carried object’s colour his-
togram, while the yellow-bounded region signi-
fies the neighbouring region’s pixels.
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Figure 6.10: Trained Gaussians for the
baggage colour similarity.

The per-bin median histogram of all frames is then accumulated for the bag pixels

Hb and the neighbouring pixelsHn. The histogram intersection [136]χ(Hb,Hn) is used

to measure the colour similarity between the bag and the neighbouring foreground pix-

els. The cpdf for these similarity values given carried objects and other protrusions is a

Gaussian with mean and standard deviation estimated from examples. Figure 6.10 shows

the trained Gaussians. The results demonstrate that this feature is not very discrimina-

tive either. This is because colour is illumination variant, and many people carry bags

of matching colours to their clothes. A person wearing a black suit and carrying a black

suitcase is a common detection within the recorded data.

6.3.6 p(X.match|X.action) and p(E.match|E.action)

The functionψM(C1,C2) matches the median colour histograms and projected height dis-

tributions of two person detections. It also considers matching any carried objects these

people are carrying; the colour and relative height of the bags are compared. This section

describes how the matching is performed.
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Section 6.3.1 described how the distribution of projected heights is calculated for a

single person. When matching two people, the Welch t-test compares the two samples of

projected heights and generates a matching score. For two distributionsN1(µ1,σ1,N1),
N2(µ2,σ2,N2), t is evaluated using Equation 6.5

t =

∣∣∣∣∣
µ1−µ2√

σ2
1

N1
+ σ2

2
N2

∣∣∣∣∣ (6.5)

Figure 6.11 shows Gaussians estimated from thet values for examples of projected height

matches for the same person and different people. Correct matches were based on ground

truth pairs within the training data. All the remaining possible pairings, within the training

data, are used to train for incorrect projected height matches.

Next, clothing colour matching is achieved by histogram intersection of per-bin me-

dian histograms (Equation 4.7). By training for the same anddifferent people, Figure 6.12

shows the probability density functions for clothing colour matches.
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Figure 6.11: Gaussian density func-
tions for height match scores given the
same person and different people.
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Figure 6.12: Gaussian density functions
for colour histogram intersection given the
same and different people.

When matching carried objects,ψheightOverlapis the likelihood of matching two bags

based on their relative heights. The relative height of eachbag is calculated as explained

in Section 6.3.2, and is matched using the interval overlap in Equation 6.6 where relative

height tuples are treated as closed intervals. For two bagsb1 andb2,

ψheightOverlap=
|b1.relativeHeight∩b2.relativeHeight|
|b1.relativeHeight∪b2.relativeHeight| (6.6)

ψheightOverlapis trained for correct and incorrect bag matches, as shown inFigure 6.13.

Also the colour of the bags are compared. The pdfs of the median colour histogram

intersection (ψbagColour), modelled as Gaussians, are shown in Figure 6.14

Given two eventsC1 andC2, whereCi .nb signifies the number of objects carried by
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Figure 6.13: Correct and incorrect carried
baggage relative height matchings trained
into Gaussians.
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Figure 6.14: Correct and incorrect baggage
colour matchings trained into Gaussians.

each person, assumeh = ψheightOverlap(i, j) and c = ψbagColour(i, j), then the baggage

match

ψcarried(C1,C2) =





C1.nb= 0&C2.nb= 0 κ

C1.nb= 0|C1.nb= 0 1−κ

otherwise max{κ × max
i=1..C1.nb, j=1..C2.nb

(pd fheightOverlap(h|correct)pd fcolour(c|correct)),

(1−κ)× max
i=1..C1.nb, j=1..C2.nb

(pd fheightOverlap(h|incorrect)pd fcolour(c|incorrect))}
(6.7)

In Equation 6.7κ is the expected prior of baggage matches, and was set to 0.7 inall

experiments.

Thus, p(X.match|X.action) and p(E.match|E.action) match the person’s projected

height and clothing colour along with matching any carried objects usingψcarried.

6.4 Reversible moves for theEnter-Exit problem

The same general set of reversible moves from Section 4.4.2 is used to traverse the space

of explanations. Figure 6.15 shows a three-step Markov chain similar to Section 5.4 for

theBicyclesproblem. Yet, within-move proposal distributions are application-dependent.

This section presents the proposal distribution within each move type.

Figure 6.15: A three-step reversible Markov chain for the Enter-Exit problem.
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Move type (A) connectc/disconnectc
Connecting a person to a bag is achieved by changing the bag from an ‘other’ protrusion

to a ‘carried’ protrusion. For a protrusionbi, the measurement for weighting moves of

typeconnectc is defined in Equation 6.8.

δconnectc(bi) =
p(bi .colourSimilarity|bi.action= carried)
p(bi.colourSimilarity|bi.action= noise)

(6.8)

The measurement for thedisconnectc move is the inverse of that for theconnectc move.

δdisconnectc(b1) =
p(bi.colourSimilarity|bi.action= noise)

p(bi .colourSimilarity|bi.action= carried)
(6.9)

Notice that the moveschangec andswitchc are not defined as the protrusion can only be

related to one trajectory (t.tra jID = b.tra jID in p8).

Move type (B) connecte/disconnecte and connectx/disconnectx
To connect an enter to a subsequent exit, or an exit to a subsequent enter, each possible

move is weighted by:

δconnecte(Ci,Cj) = δconnectx(Ci ,Cj) = ψM(Ci ,Cj) (6.10)

The disconnect move is weighted by the inverse.

δdisconnecte(Ci,Cj) = δdisconnectx(Ci ,Cj) =
1

ψM(Ci,Cj)
(6.11)

Move type (C) changee and changex
Equation 6.12 shows the weight of changing an enter-exit event. The approach tries to find

whether better alternatives are provided. Similar to the weighted measures in Chapter 5,

δchangeE > 1 when better alternatives are available, and< 1 when the current connection

has the highest likelihood.

δchangee(Ci,Cj) =
max

(
max

{k:Ck=exit}−{ j}
ψM(Ci,Ck), max

{k:Ck=enter}−{i}
ψM(Ck,Cj)

)

ψM(Ci,Cj)
(6.12)

δchangex is calculated in the same way.
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Move type (D) switche and switchx

δswitche((Ci,Cj),(Ck,Cl)) =
ψM(Ci,Cl)ψM(Ck,Cj)
ψM(Ci,Cj)ψM(Ck,Cl )

(6.13)

δswitche favours better connections, and similarly forδswitchx.

6.5 Experiments and results

While the Bicyclesproblem was applied to an extended dataset across two sites,this

section only presents results for theEnter-Exit problem applied to one day of people

entering and departing a building. It demonstrates though the power of the framework, and

how it can be applied to analyse a different activity. A full day (12 hours) was recorded

outside a building entrance. Figure 6.16 shows the viewpoint. The vanishing line was

estimated from the image using the paving slabs on the ground. People standing upright

were used in approximating the vanishing point, as the sceneis clear of static vertically

standing objects.

326 instances of someone passing through the entrance area were detected after man-

ually rejecting groups of people walking together. The baggage detector from Chapter 7

resulted in 429 candidate bags. Section 7.3.2 will present aset of results for applying the

baggage detector to this video sequence. It should be mentioned that previous research

had investigated automatically counting the number of peoples in a group of walking

pedestrians [39, 66]. Automatic detection of groups could thus be performed based on

such research.

Figure 6.16: The camera viewpoint.

For 326 person detections and 429 candidate bags, a BN is constructed for the AMG

presented in Section 6.2. The number of hidden RVs in the generated BN is 190849

(|I(B)| = 116, |I(C)| = 435, |I(X)| = |I(E)| = 95149). The MAP solution is obtained
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using greedy search, MHT and RJMCMC. Table 6.5 compares the MAP (represented as

− log(p)) obtained using the heuristic search techniques for the 12 hours video sequence.

Greedy MHT RJMCMC RJMCMC-SA
k=1 k=20 µ σ µ σ

MAP 1143.47 1146.58 1137.70 1143.09 0.40 1123.02 1.12

Table 6.5:− log(p) compared across greedy, MHT (k = 1, 20), 40 runs of 10 parallelchains (nmc

= 5000) of RJMCMC and RJMCMC-SA. The result was not availablefor the MHT search with
larger k due to the implementation running out of memory.

The IP solvers could not exhaustively search the space of explanations in reasonable

time 1 as the constraints in this problem are far more complex than those in theBicycles

problem. Recall that the drop or the pick event in theBicyclesproblem can participate in

only one higher level event. Conflict constraints (refer to Section 4.5) are not required in

that case. In theEnter-Exitproblem, on the other hand, the enter event can be linked to

an earlier exit as well as a later one. Conflict checking is thus required, which increases

the number of constraints to be satisfied by the solver considerably. Both linear solvers

(MATLAB and XPRESS-MP) were not able to reach a solution for the complete problem.

For a smaller-scale problem, Table 6.6 shows the MAP solution for the first 25 people

(out of 326 in the dataset) and their corresponding candidate bags. The table shows that

RJMCMC-SA is once again the best heuristic search technique. It’s the only technique

that was able to find the exact MAP (at some chains).

Greedy MHT RJMCMC RJMCMC-SA IP
k=1 k=50 k=500 µ σ µ σ XPRESS-MP

− log(p) 85.61 85.49 84.47 84.47 85.55 0.13 84.29 0.03 84.27

Table 6.6: For a smaller-scale version, the results are compared for the first 25 people detections
and the corresponding candidate bags.− log(p) compared across greedy, MHT (k = 1, 50, 500),
40 runs of parallel chains RJMCMC and 40 runs of parallel chains RJMCMC-SA and Integer
Programming.

The ground truth was manually obtained, in which 62 pairingsare found, with each

pair connecting a person entering the building to him/her leaving later, or a person leaving

the building and subsequently returning to it. Performing amanual ground truth proved to

be a tedious task. For each observed person, the observer hasto go through the rest of the

recorded video and check whether the person has been seen again. It was noticed that one

cannot keep in the memory more than a few people (2-3) at a timeto correctly perform

1even using 20GB of memory for about 10 hours
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the matches. After several rounds, 62 pairs were found, and set as the ground truth for the

video.

Figure 6.17 presents a precision-recall curve that compares the three search techniques

when varying the priors for connecting enter and exit events. Table 6.7 shows the number

of correctly paired activities using the priors in Figure 6.3. Notice that the best search

technique only found 19 of the 62 ground truth pairs. This is because the selected features

(height and clothing colour) are only weak cues, as they varywith segmentation errors and

illumination changes. Moreover, a high number of false positive connections indicates

that while the priors are favouring connections more than they should, the weak cues

make it hard to distinguish correct from incorrect connections.
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Figure 6.17: Precision-Recall curve for the three heuristic search techniques.

Local Global
Greedy MHT RJMCMC-SA

Paired 13 14 16 19
Unpaired 49 48 46 43
Incorrect 173 133 135 142
Pairs

Table 6.7: The number of correctly paired activities, givenexpertise knowledge priors, compar-
ing the unconstrained local explanation with global explanations found using heuristic search
techniques.

Figure 6.18 shows three sequences that were correctly retrieved only when the global

explanation is found using RJMCMC-SA. The intermediate example failed to be correctly

paired originally because the object carried as the person returns to the building was not

recognised as a carried protrusion. As the search progressed, a higher posterior was found

by labelling the protrusion as a carried object and linking the ‘exit’ to the subsequent

‘enter’. The figure also shows the framework’s ability to correctly discover an ‘exit-enter-

exit-enter’ sequence.
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Figure 6.18: Correctly paired sequences when global explanations are considered.

6.6 Conclusion

This chapter has presented a second case study using the framework presented in Chap-

ters 3 and 4. TheEnter-Exitproblem, introduced in this chapter, is formally defined using

an AMG. All attributes, rules and constraints enable parsing the detections of people and

carried objects into global explanations. The detectors retrieve a multiset of terminals

along with values assigned to the synthetic attributes defined in the grammar. The frame-

work introduced in Chapter 3 is used to transform the AMG, fora multiset of detections,

into a Bayesian network.

Tested on 12 hours of recorded video, the framework enables finding global explana-

tions that relate people tracked around a building entrance. The global explanation tracks

people, along with any objects they might be carrying, in andout of the building. This

problem demonstrates the generality of the framework and further supports the case for

searching the solution space using RJMCMC-SA. Results indicate MHT does not scale

well and IP linear solvers could not cope with the increase inthe number of constraints.

When compared to ground-truth data, theEnter-Exit global explanation achieves a

recall of around 30%, yet a precision of only 12%. This is because the features used to

link events are weakly discriminative. People tracked in and out of the building cannot

be linked by matching their projected height and clothing colour alone. A high number

of false links originate from people of similar clothing colour and height. Decreasing the

priors would increase the precision yet decrease the recall. Other features like gait [63,

110], spatial histograms [151], build and skin tone [141] orclothing description [26] can

be incorporated. When people are not expected to leave theircarried objects behind,

carried objects can assist the matching of individuals as demonstrated in this chapter’s

results.

A different variation of theEnter-Exitproblem is to distinguish groups of people walk-

ing together using a global explanation. An AMG would then parse both individual and

group trajectories as detections. The explanation would try to distinguish group trajec-

tories and link them to subsequent appearances of the group,or separate appearances of
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its individuals. A global explanation can be used to disambiguate the uncertainty in the

number of people within each tracked blob. If two people wereobserved entering a build-

ing together and yet each of them left alone, the global explanation can provide a more

reliable estimate of the number of people in the enter event,and probably segment the

blobs into separate individuals. This application is an interesting one that could benefit

from pursuing global explanations, and is mentioned here tomotivate other scholars.



Chapter 7

Detecting Carried Objects in Short

Video Sequences

The detection of carried objects is a potentially importantobjective for many security

applications of computer vision. However, the task is inherently difficult due to the wide

range of objects that can be carried by a person, and the different ways in which they

can be carried. This makes it hard to build a detector for carried objects based on their

appearance in isolation or jointly with the carrying individual. An alternative approach is

to look for irregularities in the silhouette of a person, suggesting they could be carrying

something. This is the approach that the method presented inthis chapter adopts, and

whilst there are other factors that may give rise to irregularities, such as clothing and

build, experiments on a standard dataset are promising.

The detector assumes a static background and starts by averaging aligned foreground

regions of a walking pedestrian to produce a representationof motion and shape (known

as atemporal template) that has some immunity to noise in foreground segmentations and

phase of the walking cycle. This representation, introduced in [34], was used in [64, 66]

for the same application. The temporal template is then matched against a pre-compiled

exemplar temporal template of an unencumbered pedestrian viewed from the same direc-

tion. Protrusions from the exemplar are detected as candidate pixels for carried objects.

Finally, prior information about the expected locations ofcarried objects is incorporated

together with a spatial continuity assumption in order to improve the segmentation of pix-

els representing the carried objects. Figure 7.1 summarises, along with an example, the

133



Chapter 7 134 Detecting Carried Objects

Figure 7.1: All the frames across the sequence are first aligned. The temporal template represents
the frequency of each aligned pixel being part of the foreground. The exemplar temporal template
from a similar viewing angle is transformed (translation, scaling and rotation) to best match the
generated temporal template. By comparing the temporal template to the best match, protruding
regions are identified. MRF with a trained map of prior locations is used to decide on the exact
pixels representing carried objects.

process of detecting carried objects.

Section 7.1 reviews previous work on the detection of carried objects. Section 7.2

presents the new method, based on matching temporal templates. It studies the pros and

cons of using periodicity analysis to classify protrusions, and then incorporates locational

priors and a spatial continuity assumption for segmenting carried objects. Experiments

comparing the performance with the earlier work from Haritaogluet al. on the PETS2006

dataset [44] are presented in Section 7.3, along with a qualitative discussion on applying

the results to theEnter-Exitproblem dataset. The chapter concludes with an overall dis-

cussion.

7.1 Previous work

Several previous methods have been proposed for detecting whether an individual is car-

rying an object. TheBackpack[64, 66] system detects the presence of carried objects

from short video sequences of pedestrians (typically lasting a few seconds) by assuming

the pedestrian’s silhouette is symmetric, and that people exhibit periodic motion while

moving unencumbered. Foreground segmentations are aligned using edge correlation.

The aligned foreground masks are combined into the temporaltemplate that records the

proportion of frames in the video sequence in which each pixel was segmented within

the foreground. Next, symmetry analysis is performed. The principal axis is computed
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using principal component analysis of two-dimensional locations, and is constrained to

pass through the median coordinate in the vertical and horizontal directions. For each lo-

cationx, relative to the median of the blob, asymmetry is detected byreflecting the point

in the principal axis (Figure 7.2). The proportion of framesin which each location was

classified as asymmetric is calculated. Consistent asymmetric locations are grouped into

connected components representing candidate blobs.

Figure 7.2: For each foreground segmentation, the principal axis is found and is constrained to
pass through the median coordinate of the foreground segmentation. Light grey represents the
asymmetric regions.

Backpackthen distinguishes between blobs representing carried objects and those be-

ing parts of limbs by analysing the periodicity of the horizontal projection histograms.

The periodicity analysis calculates the periodic frequency of the full body, and that of

each asymmetric region.Backpackassumes the frequency of an asymmetric blob that

represents a limb is numerically comparable to that of the full body. Otherwise, it is be-

lieved to be a carried object. Figure 7.3 reviews the processusing an re-implementation

of Backpack based on their published work.

From the re-implementation, errors in theBackpackmethod arise from four sources.

Firstly, the asymmetric assumption is frequently violated. Secondly, the position of the

principal axis is often displaced by the presence of the carried object. It should be men-

Figure 7.3: Light grey represents the two detected asymmetric regions. Asymmetric regions are
projected onto the horizontal projection histogram. Periodicity analysis is performed for the full
histogram [Freq = 21] and for regions 1 [Freq = 11] and 2 [Freq =21]. As region 2 has the same
frequency as the full body, it is not considered a carried object.
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tioned that there are other methods to position the major axis, like forcing it to pass

through the centroid of the head [65] or the ground point of the person walking [70].

Thirdly, accurate periodicity analysis requires a sufficient number of walking cycles to

successfully retrieve the frequency of the gait. Fourthly,the periodicity of the horizontal

projection histogram does not necessarily reflect the gait’s periodicity.

Later work by Benabdelkader and Davis [12] expanded the workof Haritaogluet al.

by dividing the person’s body horizontally into three slices. The periodicity and amplitude

of the time series along each slice are studied to detect deviations from the ‘natural’

walking person and locate the vertical position of the carried object. They verified that

the main limitation in Haritaogluet al.’s method is the sensitivity of the axis of symmetry

to noise, as well as to the location and size of the carried object(s).

The work of Lee and Elgammal also uses silhouettes for predicting the locations of

carried object and segmenting them on per-frame basis [93].The training process finds a

low-dimensional representation of the kinematics manifold given the joint angles in three

dimensional space. For each silhouette, an iterative process finds the best match of the

pose, the viewpoint and the shape. The iterative process fills the holes in the foreground

segmentation to find better matches, as matching relies on aligning the centres of gravity

of the shape and the foreground region. Carried objects are then defined as the unmatched

pixels in the foreground region. The approach does not assume spatially continuous car-

ried object pixels. Similar to the method presented in this chapter, this work only detects

protruding carried objects, yet is sensitive to foregroundsegmentation errors as it does

not use temporal templates [12,66]. The approach was only qualitatively analysed.

Brancaet al.[22] try to identify intruders in archaeological sites. Intruders are defined

as those carrying objects such as a probe or a tin. It assumes aperson is detected and

segmented. Their approach thus tries to detect such carriedobjects within the segmented

foreground region. Detection is based on wavelet decomposition, and the classification

uses a supervised three layer neural network, trained on examples of probes and tins in

foreground segmentations.

Differentiating people carrying objects, without locating the carried object, has also

been studied. One example is the work by Nandaet al. [107]. Supervised learning was

accomplished based on examples of unencumbered pedestrians and outliers. Outliers are

“unusual-looking pedestrians... caused by wearing a hat orcarrying an object”. A three-

layer neural network was used for classification. This work’s performance depends on the

presence of a similar object within the same viewpoint in thetraining data.

Alternatively, the work of Taoet al. [137] tries to detect pedestrians carrying heavy

objects by performing gait analysis. The task was performedusing general tensor dis-
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criminant analysis, and was tested on the USF HumanID gait analysis dataset.

Recent work by Ghanem and Davis [51] detects abandoned baggage by comparing

the person before approaching a region of interest and afterleaving it. Carried objects are

detected by comparing the temporal templates (the term ‘occupancy map’ is used in their

work to reference the same concept) and colour histograms ofthe ‘before’ and ‘after’

sequences. The approach assumes the person is detected twice, and that the trajectory

of the person before approaching the region of interest and after departing are always

correctly connected. It also assumes all observed individuals follow the same path, and

thus uses two static cameras to record similar viewpoints.

Similarly, Chuanget al.’s recent work assumes the person is seen with and without

the bag [27]. The ratio of the colour histograms between consecutive frames is used to

detect the change in colour components and thus the presenceor removal of an object. By

observing people coming in close proximities, the work aimsto detect the exchange of

carried baggage, which signifies suspicious events like thefts. The assumption of observ-

ing the person before and after the change in carrying statusis application-specific and

cannot be used as a general carried object detector.

The novel method, described in Section 7.2, also uses the temporal template but dif-

fers from earlier work [51, 64] in matching the generated temporal template against an

exemplar temporal template generated offline from a 3D modelof a walking person. Sev-

eral exemplars, corresponding to different views of a walking person, are generated from

reusable silhouettes. The temporal templates provide better immunity to noise in fore-

ground segmentations, and enable matching each sequence only once to the exemplar.

The new approach does not require the pedestrian to be detected with and without the car-

ried object, and can handle different viewpoints. It detects any type of carried object (not

merely backpacks), and can be considered a general approachto detecting protrusions

from other deformable tracked objects.

7.2 Description of the method

The method starts by creating the temporal template from a sequence of tracked pedestri-

ans as proposed by Haritaogluet al.[66]. The foreground segmentations at each frame are

often noisy due to shadows and camouflage. The temporal template is created by aligning

and then averaging the foreground segmentations. Figure 7.4 shows a set of foreground

segmentations and their corresponding temporal template.To align the segmentations,

Haritaogluet al. suggested an edge correlation with a 5×3 search window. To avoid

a predefined displacement window, Iterative Closest Point (ICP) is applied, instead of
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Figure 7.4: Foreground segmentations along with the created temporal template.

edge correlation, to align successive boundaries. The ICP algorithm aligns two clouds

of points. It finds the closest match for each point and estimates the least square error

transformation. The calculated transformation (translation, rotation and scaling) is ap-

plied, and the procedure is iterated until the error falls below a threshold or the maximum

number of iterations is reached [15]. ICP is performed on theedge points of the traced

boundary around the foreground segmentation. Experimentally, it gives a more accurate

alignment in the presence of shape variations between consecutive frames (Figure 7.5).

While the original method averages all aligned silhouettes[66], an additional step is intro-

duced to further decrease the noise in the temporal templates. L1 ranks the frames by their

similarity to the generated temporal template. The highestrankedp% of the frames are

used to re-calculate a more stable template.p is set to 80 in the results shown below. The

more expensive Least Median of Squares (LMedS) estimator [122] gave similar results.

Figure 7.5: Edge correlation temporal template within15× 15 (left) and30× 30 (middle) dis-
placement windows. ICP model (right) does not require any parameters.

Having derived a temporal template from a tracked pedestrian, one of eight exem-

plars are used to identify protrusions by matching. These exemplar temporal templates

represent a walking unencumbered pedestrian viewed from different directions. A set of

exemplars for eight viewing directions was created using the dataset of silhouettes gath-

ered at the Swiss Federal Institute of Technology (EPFL) [37]. The dataset is collected

from 8 people (5 men and 3 women) walking at different speeds on a treadmill. Their mo-

tion was captured using eight cameras and mapped onto a 3D Maya model (Figure 7.6).

The dataset is comprised of all the silhouettes of the mappedMaya model, and has previ-

ously been used for pose detection, 3D reconstruction and gait recognition [37, 47]. The

temporal templates of different individuals in this dataset are averaged to create the ex-

emplar for each camera view. The eight exemplars (Figure 7.7) are used for detecting the
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areas representing the pedestrian. The unmatched regions are expected to correspond to

carried object(s).

Figure 7.6: Eight cameras for
capturing the Silhouettes at
EPFL. Diagram from [37]

Figure 7.7: Eight exemplar temporal templates, created to
represent eight viewpoints.

To decide on which exemplar to use, a homography is estimatedfrom the image plane

to a coordinate frame on the ground-plane. This allows estimation of the position and

direction of motion of each pedestrian on the ground. The point on the ground-plane di-

rectly below the camera is estimated from the vertical vanishing point. The angle between

the line connecting this point to the pedestrian and the direction of the pedestrian’s motion

gives the viewing direction, assuming the pedestrian is facing their direction of motion.

This ignores the elevation of the camera above the ground to avoid generating new ex-

emplars for different elevations, although this approximation may be unnecessary since

generating the prototypes is fast and need only be done once.The mean of the computed

viewing directions over the short video sequence is used to select the corresponding ex-

emplar. Diagonal views (2,4,6,8) are used to match a wider range of angles (60◦) in

comparison to frontal views. This is because the silhouettes change more drastically near

frontal views.

The chosen exemplar is first scaled so that its height is the same as that of the generated

temporal template. The median coordinate of the temporal template is aligned with that of

the corresponding exemplar. An exhaustive search is then performed for the best match

over a range of transformations. In the results, the chosen ranges for scales, rotations

and translations are [0.75:0.05:1.25], [-15:5:15] and [-30:3:30] respectively. The cost

of matching two templates is an L1 measure, linearly weighted by the y coordinate of

each pixel (plus a constant offset), giving higher weight tothe head and shoulders region.

Equation 7.1 represents the cost of matching a transformed model (MT) to the person’s

temporal template (P), whereh represents the height of the matched matrices.

d(MT ,P) = ∑
x,y
|MT(x,y)−P(x,y)|(2h−y) (7.1)
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The best matcĥMT is the one that minimises the matching cost

M̂T = argmin
T

d(MT ,P) (7.2)

Figure 7.8 shows an example of such a match and the located global minimum. The

best matcĥMT is then used to identify areas protruding from the temporal template:

protruding(x,y) = max(0,P(x,y)− M̂T(x,y)) (7.3)

Pixels whereP(x,y) < M̂T(x,y) are assumed to have been caused by noise, or poor fore-

ground segmentation. For the initial results in Section 7.3, the protruding values are

thresholded and grouped into connected components representing candidate segmenta-

tions of carried objects. Another threshold limits the minimum area of accepted connected

components to remove very small blobs. An enhanced approach, not constrained by se-

lecting thresholds, is presented in Section 7.2.2 where segmentation is achieved using

binary-labeled MRF formulation, combining prior information and spatial continuity.

(a) (b) (c)
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Figure 7.8: The temporal template of the person (a) is matched to the corresponding exemplar (b),
the global minimum (d) results in a map of protruding pixels (c). In (d), the best translation for
each scale and rotation is only shown.

7.2.1 Periodicity analysis

Periodicity analysis was proposed by Haritaogloet al. to distinguish carried objects from

other asymmetric regions. This section is devoted to explaining periodicity analysis, as

results demonstrate improved performance when periodicity analysis is used classify pro-

trusions. The algorithm for periodicity analysis described here is based on the original

work by Cutler and Davis [31,32]. This is because the method presented in [64] to find the

periodicity from horizontal projection histograms lacks mathematical justification when

compared to the work of Cutler and Davis.
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After aligning foreground segmentations using ICP, L1 is used to compare two fore-

ground segmentations. Figure 7.9 (a) shows the similarity matrix (S) where darker cells

indicate higher similarity. The contrast in the similarityimage is sometimes not so clear.

Thus an adaptive histogram equalisation is used to enhance the contrast within the image.

This contrast-enhancement technique is added to the original Cutler and Davis technique

as it improves performance for noisy foreground segmentations.

Next, the similarity matrix (S) was converted to an autocorrelation matrix (A) using

Equation 7.4 from [32]. The size of the autocorrelation matrix depends on the autocorre-

lation regionRaround each point in the similarity matrix.

A(dx,dy) =
∑

(x,y)∈R
(V(x,y)−V(x+dx,y+dy))

√
∑

(x,y)∈R
V(x,y)2 ∑

(x,y)∈R
V(x+dx,y+dy)2

(7.4)

In Equation 7.4,V(x,y) = S(x,y)−SR(x,y) whereSR is the region of sizeRcentred around

(x,y). The functionV subtracts the mean of the values in regionR centred at(x,y) from

the similarity valueS(x,y).
After obtaining the autocorrelation image, 45◦ square lattices are used to find the

dominant frequency. For a range of possible frequenciesd ∈ [minFreq,maxFreq], square

lattices are compared to the autocorrelation matrix to find the autocorrelation matrix’s

frequency. TheL1 measure between the autocorrelation image and a square lattice of

frequencyd is normalised (i.e. divided by the number of points in the lattice). The

lattice with the minimum normalised L1 measure is selected as the dominant frequency. If

multiple minima are found, the smallest frequency is considered as the image’s frequency.

Figure 7.9 presents an example of how the dominant frequencyis found.

In addition to the periodicity analysis performed for the full body, a similar analysis is

performed for each protruding region. The foreground images are masked by the detected

protrusion region, and the masked foreground images are re-analysed for periodicity. The

periodicity analysis though requires a sufficient number ofcycles to produce accurate

autocorrelation images. The baggage detector presented inthis chapter relies on short

video sequences, as the person is not expected to change the walking direction within the

sequence. Short sequences often fail to show any detectableperiodicity. By implementing

the periodicity analysis, only 35% of the retrieved protrusions showed any detectable

periodic motion.
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(a) (b) (c) (d) (e)

Figure 7.9: The sequence on top shows 12 frames of a sequence representing half a walking
cycle. The frequency (f=12) is found using periodicity analysis. First, the similarity matrix (s) is
calculated (a). When (a) is directly converted to an autocorrelation image (b), the periodicity is
not obvious. Adaptive histogram equalisation is applied to(a) to generate a contrast enhanced
image (c). The resultant autocorrelation image (d) would then show clear periodicity, and the
chosen square lattice (e) represents the correct frequency(f=12).

7.2.2 Using prior information and assuming spatial continuity

The protruding connected components can be at locations where carried objects are not

expected like hats on top of heads. Training for carried object locations relative to the

person’s silhouette can better differentiate carried objects from other protrusions. This

could also be considered a labelling problem that benefits from assuming spatial continu-

ity amongst neighboring locations.

Training is used to generate a map of prior locationsΘd for each viewpointd. Prior

information for each location is calculated by the frequency of its occurrence within a

correctly-detected carried object across the training set. Training values are also used

to estimate the distribution of protrusion values conditioned on their labelling. Finally,

this information is combined into a Markov Random Field (MRF), determining an energy

function which is minimised.

Training for carried object locations is accomplished by mapping the temporal tem-

plate, using the inverse of the best transformation, to align to its corresponding exemplar.

Each locationx within the person’s temporal template has to be labeled as belonging to a

carried object (mx = 1) or not (mx = 0). Using the raw protrusion valuesv= protruding(x)
calculated in Equation 7.3, the class-conditional densities p(v|mx = 1) and p(v|mx = 0)
are modeled based on training data. The energy function to beminimised E(m) over

ImageI is given by Equation 7.5.

E(m) = ∑
x∈I

(
φ(v|mx)+ω(mx|Θ)

)
+ ∑

(x,y)∈C

ψ(mx,my) (7.5)
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φ(v|mx) represents the cost of assigning a label to the locationx based on its protrusion

valuev in the image:

φ(v|mx) =




− log(p(v|mx = 1)) if mx = 1

− log(p(v|mx = 0)) if mx = 0
(7.6)

ω(mx|Θ) is based on the map of prior probabilitiesΘ given a specified walking direction:

ω(mx|Θ) =




− log(p(x|Θ)) if mx = 1

− log(1− p(x|Θ)) if mx = 0
(7.7)

The interaction potentialψ follows the Ising model over the cliques, whereC represents

all the pairs of neighboring locations in the imageI :

ψ(mx,my) =





λ if mx 6= my

0 if mx = my

(7.8)

The interaction potentialψ is fixed regardless of the difference in protrusion valuesv at

locationsx andy. A data-dependent term was not chosen because the protrusion values

represent the temporal continuity, and not the colour or texture information.

7.3 Experiments and results

This section presents results on two datasets. First a thorough evaluation on the publicly

available PETS2006 dataset is presented. The ground truth for carried objects was manu-

ally obtained, thus a quantitative and qualitative analysis is provided for this dataset. Next,

the trained priors from PETS2006 are used to detect carried objects in the video sequence

used for theEnter-Exitproblem. A qualitative discussion of the results is presented.

7.3.1 PETS2006

The third camera of the PETS2006 dataset is selected, as there is a greater number of

people seen from the side. Side-views usually result in the carried objects protruding

from the silhouette. The ground-plane homography was established using the ground truth

measurements provided as part of the dataset. Moving objects were detected and tracked

using the same tracker [100] to retrieve foreground segmentations. The tracker’s shadow

remover worked reasonably well on the dataset. Trajectories shorter than 10 frames in
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length were discarded. As this method cannot deal with groups of people tracked together,

such trajectories were also manually removed. The carried objects in the dataset varied

between boxes, hand bags, briefcases and suitcases. Unusual objects are also present

like a guitar in one example. In some cases, people were carrying more than one object.

The number of individually tracked people was 106. Ground truth for carried objects

was obtained manually for all 106 individuals. 83 carried objects were tracked, and the

bounding box of each was recorded for each frame (Figure 7.10). Bounding boxes were

chosen instead of pixel masks for simplicity.

Figure 7.10: PETS2006 Third camera viewpoint showing ground truth bounding boxes represent-
ing carried objects.

The results compare the re-implementation ofBackpackas specified in their papers [64,

66] with the proposed method (Section 7.2). To ensure fair comparison, the same tem-

poral templates are used as the input for both methods. A detection is labeled as true if

the overlap between the bounding box of the predicted carried object (bp) and that of the

ground truth (bgt) exceeds 15% in more than 50% of the frames in the sequence. The

measure of overlap criterion is defined by Equation 7.9 [41]:

overlap(bp,bgt) =
area(bp∩bgt)
area(bp∪bgt)

(7.9)

A low overlap threshold is chosen because the ground truth bounding boxes enclose the

whole carried object, while both methods only detect the parts of the object that do not

overlap the body. Multiple detections of the same object arecounted as false positives.

The results are first compared without periodicity analysis(Explained in Section 7.2.1).

Each of the two algorithms has two parameters to tune, one forthresholding and one for

the minimum size of the accepted connected component. Precision-Recall (PR) curves

for the two methods are shown in Figure 7.11 (left). These were generated by linearly

interpolating the points representing the maximum precision for each recall. They show
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Figure 7.11: PR curves for the proposed method compared to Haritaoglu et al.’s method without
(left) and with (right) periodicity analysis to classify the retrieved blobs.

a substantial improvement in performance for the proposed method. Maximum precision

on a recall of 0.5, for example, was improved from 0.25 using asymmetry to 0.51 using

matching. Maximum recall was 0.74 for both techniques, as noisy temporal templates and

non-protruding carried objects affect both techniques. Figure 7.12 shows some examples

comparing asymmetry analysis with matching temporal templates.

To further compare the methods, the results after performing periodicity analysis are

compared. To achieve that, all optimal setting points alongthe curves in Figure 7.11 (left)

are used, and the two thresholds for periodicity analysis are varied. These are for the

minimum confidence for periodicity and the threshold for thedifference in periodicity.

Figure 7.11 (right) shows PR curves analogous to those in Figure 7.11 (left) but now

including periodicity analysis, again taking the maximum precision for each recall. The

improved performance of the matching method is still apparent. In addition, comparing

the corresponding curves shows that periodicity analysis helps improving the performance

for both methods.

Next, spatial continuity is assumed along with trained priors. Results are presented

along with a discussion of the advantages of training for prior locations. The pedestri-

ans in the dataset were divided into two sets, the first containing 56 pedestrians (Sets

1-4 in PETS2006) and the second containing 50 pedestrians (Sets 5-7). Two-fold cross

validation was used to detect carried objects.

During training, connected components are obtained using athreshold of 0.5. Correct

detections, by comparing to bounding boxes from the ground truth, are used to train for

locations of carried objects separately for each directionally-specific exemplar. To make

use of the small training set, maps of opposite exemplars arecombined. For example,

the first and the fifth exemplars are separated by 180◦. Θ1 andΘ5 are thus combined by

horizontally flipping one and calculating the weighted averageΘ1,5 (by the number of

blobs). The same applies forΘ2,6, Θ3,7 andΘ4,8. Figure 7.13 showsΘ2,6 using the two
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(a) (b) (c) (d)

Figure 7.12: Three examples (a), along with their temporal templates (b) are assessed using both
techniques. The asymmetric regions (c-top) thresholded (d-top) and the protruding regions (c-
bottom) thresholded (d-bottom) show some examples of how template matching retrieves better
estimate of the carried objects.

disjoint training sets.

Figure 7.13: For the second exemplar (left),Θ2,6(middle) was generated using sets 1-4, and
Θ2,6(right) was generated using sets 5-7. The location modelΘ has high values where stronger
evidence of carried objects had been seen in training. A prior of 0.2 was used when no bags were
seen. By symmetry,Θ6 is a horizontal flip.

Figure 7.14 presents the distribution of protrusion valuesfor carried objects (mx = 1)

and other protrusions (mx = 0). By studying these density distributions,p(v|mx = 1) was

approximated by two Gaussian distributions, one for stablecarried objects, and another

for swinging objects. The parameters of the two Gaussians were manually chosen to
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Figure 7.14: Pixel values distribution for objects (left) and non-objects (right) protruding pixels.
Thresholded pixels (>0.5) that match true detections are compared to ground truth, then are used
to train p(v|mx = 1). The rest are used to train p(v|mx = 0).

approximately fit the training density distributions.

p(v|mx = 1) = γN (v;0.6,0.3)+(1− γ)N (v;1.0,0.05) (7.10)

γ is the relative weight of the first Gaussian in the training set. Its value resulted to be

0.64 for the first training set, and 0.66 for the second disjoint set. The density distribution

p(v|mx = 0) resembles a reciprocal function. It was thus modeled as:

p(v|mx = 0) =
1/(v+β )

log(1+β )− log(β )
(7.11)

β was set to 0.01. The denominator represents the area under the curve for normalisation.

The max-flow algorithm, proposed in [21], and its publicallyavailable implementa-

tion, minimises the energy function (Equation 7.5) retrieving regions representing carried

objects. The smoothness cost termλ was optimised based on the used training set. In

order to compare the MRF formulation with simple thresholding, the parameters are op-

timised on each training dataset and tested on the other. ForMRF, λ was optimised on

the training datasets resulting in 2.2 and 2.5 respectively. Table 7.1 presents the precision

and recall results along with the actual counts combined forthe two test datasets, showing

that MRF produces higher precision and recall results.

Precision Recall TP FP FN
Thresholding 39.8% 49.4% 41 62 42
MRF - Prior 50.5% 55.4% 46 45 37

Table 7.1: Better performance was achieved by introducing the MRF representation.

To evaluate the effect of introducing location models, the term ω(mx|Θ) was re-

moved from the energy function and the results were re-calculated.λ was varied between
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[0.1:0.1:6] to produce the PR curves in Figure 7.15 that demonstrate the advantage of in-

troducing location prior models. Examples in Figure 7.16 show how prior models affect

estimating carried objects.
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Figure 7.15: PR Curves for detecting carried objects using MRF. Introducing location maps to
encode prior information about carried object locations produces better performance.

(a) (b) (c) (d)

Figure 7.16: The yellow rectangles show the choice of carried objects using MRF with location
models. Red rectangles refer to MRF without location models. Prior information drops candidate
blobs at improbable locations (a,b), and better segments the object (a,c). It nevertheless decreases
support for carried objects in unusual locations (d).

Quantitatively, for the 45 false positive, and 37 false negative cases, Figure 7.17 dis-

sects these results according to the reason of their occurrence. Figure 7.18 presents a

collection of results highlighting reasons of success and main sources of failure.

7.3.2 LEEDS 2009

This section details how the baggage detector was run on a different dataset, which has

been used to test the global explanation for theEnter-Exit problem (Chapter 6). The

dataset consists of a full working day (12 hours of recording). The tracker retrieved

only the set of trajectories that passed through the interesting zone (marked with a grey

rectangle in Figure 7.19, to track people around the building entrance. After manually

removing groups of people walking together, 326 trajectories were considered for baggage

detection.

The new dataset differs in that a person is tracked for a longer period, and people

often change their walking direction. The depth of the viewpoint also introduces a change
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Reasons behind FP detections
Protruding parts of clothing 15
Protruding body parts 10
Extreme body proportions 6
Incorrect template matching 5
Noisy temporal template 5
Duplicate matches 4

Total 45

Reasons behind FN detections
Bag with little or no protrusion 9
Dragged bag tracked separately by tracker 6
Carried object between legs 5
Carried object not segmented from background4
Little evidence of prior location in training 3
Swinging small object 3
Noisy template 3
Incorrect template matching 2
Merging two protruding regions into one 2

Total 37

Figure 7.17: Reasons behind False Positive (FP) and False Negative (FN) detections.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 7.18: The proposed method can identify single (a) or multiple (b,c) carried objects. (d)
shows its ability to classify true negative cases. Objects extending over the body are split into two
(e). Failure cases may result from poor temporal templates due to poor foreground segmentation
(f). The map of prior locations could favor some false positive objects (g). This method is not ex-
pected to cope with extreme body proportions (h). The secondrow shows the detections projected
into the temporal templates, and the third row shows detections projected into a single frame of
the sequence.

in scale along the trajectory for people walking toward or away from the camera. Thus,

each trajectory is partitioned into sequences, each of 50 frames maximum. The temporal

template is created separately for each partition. Figure 7.19 shows the dataset’s viewpoint

along with multiple foreground segmentations for the same trajectory. This trajectory

was split into three parts, and Figure 7.20 shows the baggagedetection results for one
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frame from each part. As the baggage detector assumes the bagis protruding from the

normal silhouette, different viewpoints give rise to different detections. While the first

viewpoint did not detect any protrusions, the second diagonal viewpoint enabled detecting

the carried bag, while the third horizontal viewpoint showed both the carried bag and the

held jacket as protrusions.

Figure 7.19: The viewpoint for the second baggage dataset showing the different viewpoints.

Figure 7.20: A trajectory was split into three sequences. Inthe first sequence, carried objects were
not protruding. In the intermediate one, the carried bag wasdetected, while both the bag and the
jacket were detected from the third viewpoint.

The trajectories are partitioned uniformly regardless of whether the viewpoint, the

direction of motion or the scale have changed. Alternatively, a sliding window detector

could be established instead of slicing the trajectory. Theresults presented here did not

use a sliding window approach to speed detection. The ground-plane homography was

manually obtained, along with finding the vanishing point. The baggage detections for

the complete dataset were based on the same location priors trained using the PETS2006
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dataset. The encouraging results prove the ability of location priors to be transformed

between different camera viewpoints and elevations as theyare mapped to the same 3D

exemplars.

Figure 7.21: LEEDS2009 - a collection of correctly detectedbags.

Figure 7.22: LEEDS2009 - a collection of incorrect baggage detections.

This section does not present any quantitative results, as amanual ground truth was

not obtained. A selected collection of success and failure baggage detections are shown

in Figures 7.21 and 7.22. Figure 7.21 shows 8 trajectories with successful detections.

The detections are shown on the temporal template and projected on a single frame in

each case. Figure 7.22 shows 7 incorrect detections. They cover a range of cases in

which the detector fails. The first case results from poor foreground segmentation. The

tracked individual is wearing a jacket which is very similarto the background’s colour.

Camouflaging results in a noisy temporal template and incorrect detections. The second

failure case results from the baggage not being segmented aspart of the foreground. The
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stationary arm holding the bag is detected as the carried object instead. The third, fourth

and fifth examples are false negative cases where the carriedobject is not sufficiently

protruding to be detected. Example six successfully detects two objects but the bounding

box extends to include the stationary arms carrying the objects as well as a protruding

coat. The last case fails in matching the temporal template to the unencumbered model.

By reviewing Equation 7.2, the match gives higher weight to matching the head and the

shoulders of the model. In this example, the head and the shoulders are occluded by the

carried object, which resulted in an incorrect match. This collection of success and failure

cases adds to the reader’s understanding of the strengths and weaknesses of the baggage

detector.

7.4 Conclusion

This chapter proposed a novel method to detect carried objects, aiming at higher robust-

ness than noisy single frame segmentations. Carried objects are assumed to cause pro-

truding regions from the normal silhouette. Like an earliermethod, this method uses a

temporal template but matches against exemplars rather than assuming that unencumbered

pedestrians are symmetric. Evaluated on the PETS2006 dataset, the method achieves a

substantial improvement in performance over the previously published method. Training

for locations of carried objects and using an MRF to encode spatial constraints results in

further improved performance.

The method depends on two assumptions, the first is that a temporal template can

be constructed from foreground segmentations, and the second is that carried objects are

protruding from the body’s silhouettes. Temporal templates sometimes fail to produce

adequate results due to poor foreground segmentation and unsegmented shadows. The

baggage detector does not currently evaluate the quality ofthe calculated temporal tem-

plate prior to matching the template to an unencumbered exemplar. A measure of the

temporal template’s quality is left for future work.

Due to its dependence on protrusion, the method cannot detect non-protruding car-

ried objects. It may not be able to distinguish carried objects from protruding clothing or

non-average build. Future improvements to this method might be achieved using texture

templates to assist segmentation based on color information. In addition, the indepen-

dence assumption in learning prior bag locations could be studied to utilise shapes of

previously seen bags in producing better segmentations. When matured, this technique

can be embedded into surveillance and security systems thataim at tracking carried ob-

jects or detecting abandoned objects in public places.
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Conclusion and Future Work

This thesis proposes a framework for explaining an activitygiven an input video sequence.

The approach uses the natural constraints within the activity to find a consistent set of

events that covers all detections. This complete and consistent set of events is referred to

as a global explanation. Using a Bayesian approach, the Maximum a Posteriori (MAP)

explanation is selected as the best explanation.

In achieving the task, the activity and its constraints are described using Attribute

Multiset Grammars (AMG). AMGs allow specifying attribute rules, as well as constraints

that confine the grammar’s parses to consistent ones. Each production rule in the grammar

rewrites a nonterminal into an un-sequenced collection of simpler events (i.e. a multiset).

The composition thus does not enforce any temporal relationships, and those are defined

as constraints in the grammar only when needed. Using attribute rules, the features re-

trieved for each detection can be propagated up the parse tree to evaluate the interactions

between objects representing compound events. Priors and conditional probabilities are

assigned by expert knowledge. A labeled set of training sequences is used to learn the

likelihoods for the selected features.

For each input video, detectors retrieve the set of detections, which represents terminal

symbols along with the synthetic attribute values. An algorithm then builds a Bayesian

Network (BN) to model the probability distribution over theset of global explanations

for these detections. Each possible event, given the detections, is represented by a node

in the BN. The set of possible labellings of the BN corresponds to the set of all global

explanations. Heuristic search techniques are proposed tofind the MAP, as combinatorial

153
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search becomes intractable when the complexity and duration of the activity increase.

The framework is tested for two problems, and experimental results are compared.

This chapter discusses the ability to generalise the framework to other problems, along

with its limitations. For a comprehensive conclusion, a fewissues are incorporated into

this chapter. Section 8.2 reviews alternative techniques for combining multiple features.

Section 8.3 introduces risk management and utility theory,as the best global explanation

need not be the MAP solution when used for a specific application. The chapter concludes

with suggested future work for interested scholars.

8.1 Generalisation and limitations

Several aspects need to be emphasised to explain the generality as well as the limita-

tions of the proposed framework. First of all, both case studies are defined as binary

AMGs, where each nonterminal is rewritten as a multiset of two symbols. The method in

Chapter 3 can build the BN structure for any production ruleX0 → X1, ...Xnp, and deals

with direct recursion in the production rules. As to the search techniques, greedy, MHT

and IP can deal with any Bayesian network, whether it is binary or not. RJMCMC and

RJMCMC-SA on the other hand require more move types to deal with non-binary struc-

tures, because the proposed set of general moves suit binaryevent hierarchies. The moves

can be extended, yet the same performance cannot be predicted. This is because an in-

crease in the number of move types requires longer chains andmore complex proposal

distributions.

The generality of the framework can be tested by applying it to different activities. In

addition to the two case studies, the thesis proposes other domains where the framework

can be applied like car parks, and train platforms. These domains include multiple inter-

leaved unordered events with natural constraints that define the consistent set of events.

The domains are structured so the types of expected events are known in advance, and

the gathered detections can be explained using the events inthe activity’s hierarchy. For

example, sports games are structured activities that couldbe defined and recognised using

this framework. Some scenarios in public surveillance are also structured like flowing

traffic, metro stations and car parks. Similarly, the eventsone performs at the bank or the

post office are also typically structured.

In scenes where the activity consists of a large independentset of possible events,

the approach would obviously not show a significant improvement over local analysis.

For example, consider the activity in the main hall of a trainstation. It is challenging

to define in advance the possible events, and a person can perform any combination of
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events, like pausing to make a phone call, waiting, passing through, etc. There are no

natural constraints in the relationship between those events which could assist recognition.

Global explanations do not promise recognition improvement in this scenario. Moreover,

unstructured or unpredictable activities, like chaotic scenarios or anomaly detection, are

not suitable for our framework.

Another issue worth discussing is the choice of detectors for recognising the events.

Detectors range from very general ambiguous ones to specificnoisy detectors. For exam-

ple, the bicycle-cluster detector used in Chapter 5 is a general detector of change and its

detections are ambiguous as they include dropped and pickedgroups of bicycles. Alterna-

tively, one can design a specialised detector for single dropped bicycles. Such a detector

would be less ambiguous but subsequently more noisy. General ambiguous detectors in-

crease the complexity of the global explanation, yet strengthen the power of constraints

in disambiguating uncertain detections. Specific noisy detectors, on the other hand, result

in simpler global structures. This trade-off is an interesting issue for future research. In

this thesis, the detectors are general as the focus of the research is on testing the ability of

global explanations to recognise events from ambiguous detections.

To apply the framework to a different activity, the AMG should be defined. Given

a set of detections, the Bayesian network structure is builtfrom the AMG. Then, priors

and conditional probabilities need to be estimated. This issomehow different from the

approach adopted in stochastic grammars. Figure 8.1 shows an example AMG and an

equivalent stochastic grammar with prior probability associated with each rule. The pos-

terior probability in the proposed framework is over all possible parse trees, compared

to the stochastic grammar approach where the posterior probability depends only on the

parsed rules for this parse tree. Both approaches are generative in that explanations can

be sampled from the posterior probability distribution.

Using the proposed framework, the required Bayesian network models the probability

distribution over all explanations, and is built bottom-upinstead of top-down. The advan-

tage of bottom-up is shown when events are shared. The parse of the AMG is not strictly

a tree. Figure 8.2 shows an example where the event B is sharedby two compound events

A1 andA2. When this parse tree is evaluated, the probability of the event B should be

included only once in the posterior. In the bottom-up BN, this is easily achieved as com-

pound events are dependent on their constituent events. In top-down approaches, a list of

already evaluated rules should be maintained by the parser to avoid duplication. It should

though be clarified that a stochastic grammar and top-down approaches can be used in-

stead. It is a mirrored version of the approach. Further research is needed to compare

which probabilities are easier to define or learn.
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Proposed framework Stochastic grammar
S→ A S→ A [ p1]
S→ b S→ b [p2]
S→ c S→ c [1-p1-p2]
A → c, b A → c,b [1.0]

Figure 8.1: Comparison between the proposed framework and stochastic grammar.

Figure 8.2: When an event is shared (B in this example), the tree is represented by a graph (left),
or the sub-tree can be duplicated (right).

Learning the prior and conditional probabilities from training data would certainly

facilitate applying the framework to solve other problems.One needs to be careful when

learning the probabilities. While the probability associated with each rule in SCFG can

be easily estimated from labelled training data, this is notthe case with AMG. In SCFG,

the weight of the ruleX → Y is obtained from the ratio of timesX is rewritten asY to

the total number of timesX has been rewritten in the training data. This is referred to

as the Empirical Relative Frequency (ERF) estimates. Abneyshows that ERF estimates

cannot be used to learn the probabilities for AMG from training data, as ERF estimates

do not take into consideration the dependencies in applyingthe production rules [3]. ERF

estimates do not converge to the correct distribution as thetraining set increases in size.

Abney proposes sampling to learn the correct probabilities[3].
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8.2 Likelihood of synthetic attributes

Chapter 3 assumed the synthetic attributes are independentand the likelihood is obtained

from the product of cpdfs. Some synthetic attributes might be more discriminative than

others, and attributes chosen by an expert might fail to produce significant differences due

to noise in the measurements. For example, colour proved to be a very ambiguous cue

when used in Chapter 6, though it was the obvious attribute tobe chosen by the expert.

Instead of treating the attributes separately, boosting would be an efficient way to

combine the different classifiers obtained from training the synthetic attribute values, and

form a more powerful classifier [16]. Boosting has been successfully applied for com-

bining features for classification [140]. A recent proposedapproach is the HybridBoost

approach for jointly ranking and classifying detections [95]. Ranking would favour the

attribute values that correspond to correct events over thevalues of other events, while

classifying distinguishes the values of correct events from those of incorrect events. The

proposed HybridBoost combines Adaboost with RankBoost to learn the parameters for

both ranking and classifying jointly.

Moreover, it is worth investigating whether dimensionality reduction techniques can

compress the features and generate attribute values that better distinguish the occurrence

of events. Though these attributes would not be conceptually meaningful, there is scope

for unsupervised feature selection to combine features in away that may better distinguish

event types.

8.3 Decision theory and utility management

Throughout the previous chapters, thebest explanationis thought to be the one that cor-

rectly recognises all the events. Given the uncertainty, searching for the MAP solution

tries to decrease the missed or incorrectly recognised events. Often, when such a system

is put to use, the objective is more complex than maximising the correctly recognised

events [16]. This is well-explained in decision theory.

When used in surveillance, for example, recognising certain events would trigger ac-

tions. A reward for the recognition is measured by the clientwho would be using the

system. A utility functionu is a numerical measure of this reward. Thus, if one events1 is

preferred over anothers2 by the client, thenu(s1) > u(s2) [130]. For example, the reward

of catching a theft in theBicyclesproblem is higher than detecting a bicycle was safely

retrieved by its owner. The best explanation, in these terms, is one that maximises the

utility of all recognised events. Some authors refer alternatively to a loss functionl(s),
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which represents the loss resulting in misclassifying the events. The optimal explanation

would then try to minimise the loss function [49].

When events are only probabilistically recognised due to uncertainty, decision anal-

ysis can be carried out in a Bayesian manner. The objective would then be to maximise

the expected utility. Themaximum expected utility principle (MEU)maximises the sum

of the probability of each outcome times the utility of the outcome.

max∑
i

p(si)u(si) (8.1)

The recognition then extends beyond finding the MAP, to finding an optimal recognition

strategy that maximises the expected utility. The utility is rarely a static function. Often

the domain has a ‘finite horizon’, which means the client’s optimal explanation changes

with time [49]. For example, the tolerance for abandoned baggage in surveillance changes

according to the threat level at that time. Future work can study incorporating utility

management in the proposed framework.

Moreover, sensitivity analysis is particularly importantin decision making systems.

Sensitivity analysischecks whether the decision taken is sensitive to small changes in the

probabilities and utilities. In this case, the decision might not be safe to take, and the

output should at least be labeled accordingly. This can be performed by systematically

changing the probability values and evaluating the effect of the change on the decision

taken.

8.4 Future directions

The ideas introduced in this thesis can be further expanded along different paths. First

and most importantly, using the framework to recognise other activities is the best way

to assess its generality or highlight any shortcomings. I intend to compile a toolbox that

would enable researchers to define activities using AMG thenrecognise detections as seen

in the given two case studies.

Second, learning the parameters of the BN from unlabeled data would facilitate the

framework’s applicability. As previously mentioned, the constraints in the grammar make

this learning difficult. This requires further research.

Third, learning the hierarchical structures themselves via mining spatio-temporal re-

lationships is worth investigating. Though Zhu and Mumfordemphasise that learning

a compositional structure depends on the objective of the composition, and cannot be

merely based on statistical data [157], recent advancements in discovering activities us-
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ing unsupervised learning are promising [61].

Fourth, researchers might wish to expand the carried objectdetector presented in

Chapter 7. Although developed for a specific problem, the detector could be applied

to the detection of irregularities in appearance for other categories of object that move in

a periodic fashion.

On a wider scale, activity recognition would undoubtedly require less erroneous mo-

tion detectors (i.e. trackers) and better colour constancyalgorithms. The recognition

progress is hindered by these unsolved problems. Given the current ambiguities in the

detections, a limit is present on how much can be achieved.

8.5 A final word...

This thesis proposes a method to recognise an activity, based on searching for a consistent

set of events that best explains all the detections. It is used in scenarios where the number

of possible events performed by each person is limited and can be defined. By satisfying

natural constraints, global explanations can resolve local ambiguities and avoid inconsis-

tencies. The thesis is thus a small step further to higher-level understanding of low-level

visual detections. In perceiving the visual world, we undoubtedly use our understanding

of possible outcomes to explain the detections.

In pursuing this research, I hoped to expand my understanding as well as highlight

new ideas that can be investigated further to achieve reliable computerised vision, some

time in the foreseeable future.
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Markov Chain Monte Carlo (MCMC)

Monte Carlo simulation was first introduced by Stan Ulam (1946) as a way to compute

the chances that a particular layout of cards would result ina successful solitaire game [8].

Ulam thought of randomly selecting layouts and calculatingthe chances from the random

set. He proved that the chances calculated from a random set approximate the exact

chances for ‘large-enough’ random sets. Monte Carlo simulation became an attractive

way of approximating an intractable search space.

Assumeπ represents a probability distribution,π : Rd →R+∪{0}. Any distributionπ
can be approximated by a sample of sizen where the distribution of the sample elements

π? satisfies Equation A.1.

π = lim
n→∞

π? (A.1)

Monte Carlo simulation assumes independent and identically-distributed (i.i.d.) samples.

For some distributions, selecting an i.i.d. sample from thedistribution is not an easy

job to accomplish. When the distribution can be evaluated atany point up to a con-

stant normalising factor, Monte Carlo processes can be substituted with Markov Chain

Monte Carlo (MCMC) sampling where choosing a sample elementdepends on the choice

of the previous element along the chain. The Markov chain is asequence of variables

x1,x2, ...,xn that represents a sample from the domain. The histogram of those sample

elements approximates the proposal distribution for ‘large-enough’ examples. The prob-

ability for selecting the next variable along the chainxn+1 is solely based on the last vari-

able added to the chain assuming a first-order Markovian property, p(xn+1|x1,x2, ...xn) =
p(xn+1|xn). Despite the dependency, MCMC converges to the invariant distribution that

is independent of the starting point. For largen, the distribution of sample elements re-
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sembles that of the target distribution.

To define a Markov chain, the set of possible statesRd and the transition probabilities

between these states should be specified. The transition probability is referred to as the

proposal distribution Q(y|x). By definition, the integral of the proposal distribution

along the domain equals 1. ∫

Rd
Q(y|x)dy= 1; (A.2)

Designing a Markov Chain Monte Carlo sampler thus focuses onthe choice of the pro-

posal distributionQ. The next subsection explains how to choose a suitableQ that would

converge to the required target distribution.

A.1 Markov chains for finite search space

If the search space is finite, then the proposal distributionQ can be represented by a matrix

where the(x,y)th element is equal toQ(y|x). Q is a right stochastic matrix1 since the sum

of elements along the row∑
y

Q(y|x) equals 1.

The Perron-Frobenius theorem states that for any square right stochastic matrixQ,

there exists a stochastic vectorV (associated with the eigen-value 1), where

lim
k→∞

Qk = Vj (A.3)

Given a Markov chain with a proposal distributionQ, the probability of selecting a state

y afterk steps given the current state isx equalsQk(y|x). Thus, according to the theorem,

the Markov chain converges at the limit to a proposal distribution that is stationary and

independent of the initial state.V defines the stationary distribution (also referred to as

the invariant distribution) of the Markov Chain. If the Markov chain is irreducible and

aperiodic, the stationary distribution is unique.

When using MCMC for sampling a probability distributionπ , one needs to find a

suitable transition matrixQ that converges to the required probability distributionVy =
π(y). If the matrix satisfies thedetailed balancecondition stated in Equation A.4, then

the invariant distribution is guaranteed to be unique and equalsπ .

Q(y|x)π(x) = Q(x|y)π(y) (A.4)

The ‘detailed balance’ condition ensures the number of moves from x to y equals the

1A right stochastic matrixA is a matrix whereA(i, j)≥ 0 and∑
j
A(i, j) = 1
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number of moves fromy to x along the chain. The number of moves fromx to y is the

probability of being atx, π(x), times the probability of proposing the next move to bey,

Q(y|x).
For continuous distributions, the Markov chain converges to the invariant distribution

π if

π?(dy) =
∫

π(y)dy (A.5)

The transition matrixQ is defined so that the(i, j)th element states the probability

of moving from statei to state j. This is defined asQ( j|i) in this appendix. At each

step along the chain, the probability of picking a sample in an intervaldy is defined by

π?(dy) as in Equation A.6. This is defined as the integral of the probability of being at

any other pointx along the domainRd times the transition probability from that pointx to

the intervaldy.

π?(dy) =
∫

Rd
Q(dy|x)π(x)dx (A.6)

For a particular intervalA : dy, assume the transition kernelQ(dy|x) is expressed as:

Q(dy|x) =
∫

A
Q(y|x)dy+ r(x)δx(dy) (A.7)

whereδx(dy) = 1 if x∈ dyand 0 otherwise, andr(x) = 1−∫
Rd Q(y|x)dy is the probability

that the chain remains at x.

If function Q(y|x) satisfies the “detailed balance” condition where

Q(y|x)π(x) = Q(x|y)π(y) (A.8)

thenπ(.) is the invariant stochastic vector ofQ. The following derivation proves conver-

gence of the target distribution when the detailed balance condition is satisfied.

From A.6,

π?(dy) =
∫

Rd
Q(dy|x)π(x)dx (A.9)

=
∫

Rd

[∫

A
Q(y|x)dy

]
π(x)dx+

∫

Rd
r(x)δx(A)π(x)dx (A.10)

=
∫

A

[∫

Rd
Q(y|x)π(x)dx

]
dy+

∫

A
r(x)π(x)dx{δx=1 for x∈ A} (A.11)

=
∫

A

[∫

Rd
Q(x|y)π(y)dx

]
dy+

∫

A
r(x)π(x)dx{detailed balance} (A.12)

=
∫

A

[∫

Rd
Q(x|y)dx

]
π(y)dy+

∫

A
r(x)π(x)dx (A.13)

=
∫

A
(1− r(y))π(y)dy+

∫

A
r(x)π(x)dx (A.14)
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=
∫

A
π(y)dy−

∫

A
r(y)π(y)dy+

∫

A
r(x)π(x)dx (A.15)

=
∫

A
π(y)dy (A.16)

The Markov chain that satisfies the ‘detailed balance’ condition is said to be ‘re-

versible’. To achieve the detailed balance, the simplest choice of a proposal distribution

is one whereQ(y|x) = π(y). This implies the ability to sample directly from the target

distribution. This is not helpful as MCMC was needed in the first place to approximate the

sampling. An alternative solution is the Metropolis-Hastings algorithm described next.

A.2 Metropolis-Hastings algorithm for MCMC

In 1953, Metropolis et. al. placed the foundations of a general algorithm that guarantees

convergence of the MCMC to the target proposal distributionπ . This was later generalised

by Hastings (1970) [67]. For a selected proposal distribution Q(y|x), most likelyQ will

not satisfy the detailed balance for all (x, y) pairs. For somex andy choices,

Q(y|x)π(x) > Q(x|y)π(y) (A.17)

The process would then move fromx to y too often and fromy to x too rarely. A conve-

nient way to correct this is to reduce the number of moves fromx to y by introducing an

acceptance probabilityα(y|x) < 1 that the move is made.

QMH(y|x)≡Q(y|x)α(y|x), x 6= y (A.18)

α(y|x) is to be determined. Notice that ifQ(y|x)π(x) > Q(x|y)π(y) then the move from

y to x is not made enough times soα(x|y) should be made as large as possible. Being a

probability, the largest is to set it to 1 (α(x|y) = 1).

To satisfy the detailed balance

QMH(y|x)π(x) = QMH(x|y)π(y) (A.19)

Q(y|x)α(y|x)π(x) = Q(x|y)α(x|y)π(y) (A.20)

Sinceα(x|y) = 1 then

α(y|x) =
π(y)Q(x|y)
π(x)Q(y|x) (A.21)
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To accommodate for both cases [67],

α(y|x) = min
{

1,
π(y)Q(x|y)
π(x)Q(y|x)

}
(A.22)

As mentioned earlier, MCMC can be used to sample from a distribution that can be eval-

uated at any point up to a constant normalising factor. As theacceptance probabilityα
only contains the ratioπ(y)

π(x) , the normalising factor cancels and is not required for the

calculations.

The Metropolis-Hastings algorithm remains one of the most influential algorithms in

modern science and engineering [8]. Many other common algorithms are special cases of

the general Metropolis-Hastings algorithm, such as Gibbs sampling, hybrid MCMC and

Monte Carlo Expectation-Maximisation [8]. Algorithm A.1 shows the general Metropolis-

Hastings algorithm. The algorithm requires a choice of the sample size which represents

the length of the Markov chain;nmc, as well as an initial elementx0. Recall that the initial

element does not affect the convergence of the algorithm. The distributionU [0,1] is a

uniform distribution in the closed interval from 0 to 1.

initialise x01

for i = 1 to nmc do2

samplex? from Q(x?|xi−1)3

calculateα(x?|xi−1) = min
{

1, π(x?)Q(xi−1|x?)
π(xi−1)Q(x?|xi−1)

}
4

sampleu from U [0,1]5

if u < α(x?|xi−1) then6

xi = x?7

else8

xi = xi−19

Algorithm A.1 : The General Metropolis-Hastings Algorithm

Figure A.1 shows a distribution of sample elements generated using the Metropolis

Hastings algorithm. For this example,π(x) = 0.3N (x,0.3,0.5)+0.7N (x,0.7,0.2), and

Q(y|x) = U [−δ ,δ ](y− x), whereN is the normal (i.e. Gaussian) distribution andU

is a uniform distribution within a closed interval. The figure shows how the distribution

converges as the sample size increases.

Accepting the moves with a probability guarantees convergence, yet the performance

of the algorithm cannot be known in advance. It might take toolong to converge depend-

ing on the choice of the transition matrixQ. A transition matrix where the majority of the

moves are rejected converges slower. Thus theacceptance rateρaccept along the chain

is often used to assess the performance, and thus the convergence. The acceptance rate
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Figure A.1: Histogram of Markov chain sample elements for a given target distributionπ and a
closed interval uniform proposal distribution Q using Metropolis-Hastings Algorithm. The last
plot superimposes the actual functionπ on the histogram.

ρaccept is the ratio of the number of accepted moves to the length of the Markov chain.

The acceptance rate should be around 0.5 for a random walk chain.

Another method to assess the convergence is to take one parameter, for example the

mean of the sample, and run several independent Markov chains. The convergence is as-

sessed by comparing the value of this parameter between chains. Ifπ(x) =N (x,0.7,0.25)
andQ(y|x) = U [−δ ,δ ](y−x) then Figure A.2 plots the mean of the retrieved sample us-

ing the Metropolis-Hastings algorithm for 3 different Markov chains. Convergence is

believed to be reached fornmc > 500.
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Figure A.2: Convergence of the sample mean under different runs of the Markov chain
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Using MLE for Fitting a Gaussian to a

Constrained Domain Training Data

When estimating the conditional probability density function p(x|e) by a Gaussian, the

area under the pdf equals 1 as the area under the Gaussian curve is one. Ifp(x|e) : R →
[0,1] is approximated with the normalN (µ,σ) then

∫

Rd

p(x|e) =
∫

R

N (µ,σ) = 1 (B.1)

Nevertheless, when the domain of the functionx is to a closed interval[a,b] or half-

open interval[a,∞) or (∞,b], the area under the Gaussian would not be 1. For constrained

domains, the conditional pdf needs to be normalized. Ifϕ is the Gaussian function defined

in Equation B.2,

ϕµ,σ (x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (B.2)

then the conditional probability density function for a closed interval domain[a,b] is

defined to be,

p(x|e) =
ϕµ,σ (x)

b∫
a

N (µ,σ)
(B.3)

To be able to calculate the conditional density function as in Equation B.3, one needs

to evaluate the area under the Gaussian for a fixed interval. First, the z-score of each
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boundary limit is calculated to transform it into the standard distributionZ = N (0,1)
Gaussian. Z-score for each value is calculated to be,

ZScore(x) =
x−µ

σ
(B.4)

Tables generated from numerically integrating the standard Gaussian distribution are

available. The tables present the area above and below each point in the standard Gaussian

distributionZ. Figure B.1 presents the standard Gaussian distributionZ and the area under

the curve for the Z-score of 1 (representing 1 standard deviations from the mean). From

the available calculators or tables, the area above the z-score of 1 equals 0.1586, while the

area under the z-score is calculated from 1-0.1586 = 0.8414.

−4 −3 −2 −1 0 1 2 3 4σ σ σ σ σσσσ

Figure B.1: Z-score transforms the GaussianN (µ ,σ) into N (1,0)

If the domain is constrained from both sidesRd = [a,b], and f (z) gives the area above

a point in the distribution then the integral required for normalizing in Equation B.3 is

calculated from:
b∫

a

N (µ,σ) = f (ZScore(a))− f (ZScore(b)) (B.5)
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The Posterior Probability - a derivation

The posterior in Equation C.1 can be rearranged.

p(ω|Y) = 1
G ∏

i
p(oxi |xi)p(xi)∏

j
p(oy j |y j)p(y j)∏

i j
p(ozi j |zi j )p(zi j |xi ,y j)p(c|{zi j}) (C.1)

Using Bayes, the first product can be substituted

p(xi |oxi) =
p(oxi |xi)p(xi)

p(oxi)
(C.2)

The denominator is a constant that can be part of the normalizing factorG . Similarly

p(yi |oyi) can be rewritten. Accordingly Equation C.1 because:

p(ω|Y) = 1
Z ∏

i
p(xi |oxi)∏

j
p(y j |oy j )∏

i j
p(ozi j |zi j )p(zi j |xi ,y j)p(c|{zi j}) (C.3)
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For the third product∏
i j

p(ozi j |zi j )p(zi j |xi,y j), then

p(ozi j |zi j )p(zi j |xi ,y j) =
p(zi j |ozi j )p(ozi j )

p(zi j )
p(zi j |xi ,y j) (C.4)

∝
p(zi j |ozi j )

p(zi j )
p(zi j |xi ,y j) (C.5)

=
p(zi j |ozi j )p(zi j |xi ,y j)

∑
xi ,y j

p(zi j |xi ,yi)
(C.6)

∝ p(zi j |ozi j )p(zi j |xi ,y j) (C.7)

= p(zi j |ozi j ,xi ,y j) (C.8)

As ∑
xi ,y j

p(zi j |xi ,yi) is constant
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MOSEL program for formulating an

Integer Program

model ’example’

uses ’mmetc’,’mmxprs’;

declarations

terminals= 6

constraints= 3

nodesSize= 14

omegaSize= 17

THETAT: array(1..terminals,1..omegaSize) of integer

THETAC: array(1..constraints,1..omegaSize) of integer

THETAK: array(1..nodesSize,1..omegaSize) of integer

cost: array(1..omegaSize) of real

seed: array (1..omegaSize) of mpvar

DELTA: array (1..omegaSize, 1..omegaSize) of mpvar

end-declarations

! read data

diskdata(ETC_IN,’ch4_thetat.dat’,THETAT)

diskdata(ETC_IN,’ch4_thetac.dat’,THETAC)

diskdata(ETC_IN,’ch4_thetak.dat’,THETAK)

diskdata(ETC_IN,’ch4_c.dat’,cost)

!------------------------------------------------------------------

! build ILP model

!------------------------------------------------------------------

! objective is min cost*omega = co

f:= SUM(i in 1..omegaSize) cost(i) * seed (i)
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! every terminal must be explained

forall(i in 1..terminals)

PASSIGN(i):= SUM(k in 1..omegaSize) THETAT(i,k)*seed(k) >= 1

! every constraint must also be satisfied

forall (i in 1..constraints)

BASSIGN(i):= SUM(k in 1..omegaSize) THETAC(i,k)*seed(k) <= 1

! check for conflict

forall (j in 1..omegaSize, k in (j+1)..omegaSize)

CASSIGN(j,k) := DELTA(j,k) <= seed (j)

forall (j in 1..omegaSize, k in (j+1)..omegaSize)

DASSIGN(j,k) := DELTA(j,k) <= seed (k)

forall (j in 1..omegaSize, k in (j+1)..omegaSize)

EASSIGN(j,k) := DELTA(j,k) >= seed (j) + seed (k) - 1

forall (j in 1..omegaSize, k in (j+1)..omegaSize)

FASSIGN (j,k) := SUM(i in 1..nodesSize) (THETAK(i,j) - THETAK (i,k))

* THETAK(i,j) * THETAK (i,k) * DELTA(j,k) = 0

forall (i in 1..omegaSize) seed(i) is_binary

exportprob(EP_MIN,’ch4’,f)

exit(0)

end-model
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Experimental Results for theBicycles

Problem

This appendix presents complete results for the seven sequences in the bicycles dataset

from Chapter 5. For each record in the tables below, the minimum, mean and standard

deviations are recorded from 40 runs. During each run, 10 parallel chains are run and

the MAP is the maximum across the parallel chains. For each sequence, RJMCMC (two

initial states) is compared to RJMCMC-SA (two initial states). Moreover, online perfor-

mance is shown for the same settings. Some of the results printed here have been shown

in various tables in Section 5.6.

E.1 MAP results

RJMCMC RJMCMC-SA Online From Local Max nmc min µ σ
× 5,000 57.86 57.89 0.08

× 5,000 57.86 57.86 0.00
× × 5,000 57.86 57.90 0.11

× × 5,000 57.86 57.86 0.00
× × 1000/au 57.86 59.60 1.13

× × 1000/au 57.86 60.80 1.80
× × × 1000/au 58.83 60.41 0.90

× × × 1000/au 58.23 61.29 2.28

Table E.1: MAP results - 1st sequence
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RJMCMC RJMCMC-SA Online From Local Max nmc min µ σ
× 5,000 4.63 4.63 0.00

× 5,000 4.63 4.63 0.00
× × 5,000 4.63 4.64 0.00

× × 5,000 4.63 4.64 0.00
× × 1000/au 4.63 4.63 0.00

× × 1000/au 4.63 4.63 0.00
× × × 1000/au 4.63 6.97 4.17

× × × 1000/au 4.63 15.32 6.49

Table E.2: MAP results - 2nd sequence

RJMCMC RJMCMC-SA Online From Local Max nmc min µ σ
× 5,000 420.23 428.12 3.87

× 5,000 420.20 424.31 2.19
× × 5,000 421.00 429.30 3.23

× × 5,000 420.50 423.98 2.36
× × 1000/au 426.64 434.42 4.24

× × 1000/au 435.90 442.53 3.71
× × × 1000/au 429.57 432.87 1.86

× × × 1000/au 433.13 444.50 7.38

Table E.3: MAP results - 3rd sequence

RJMCMC RJMCMC-SA Online From Local Max nmc min µ σ
× 5,000 6073.10 6086.67 15.69

× 5,000 6071.30 6080.02 4.62
× × 5,000 6073.60 6079.88 3.43

× × 5,000 6071.10 6078.40 2.36
× × 1000/au 5895.99 5941.1 24.13

× × 1000/au 5950.38 5961.6 7.78
× × × 1000/au 5925.13 5949.1 16.45

× × × 1000/au 5929.47 5943.7 10.96

Table E.4: MAP results - 4th sequence

RJMCMC RJMCMC-SA Online From Local Max nmc min µ σ
× 5,000 4937.10 4941.01 4.06

× 5,000 4943.71 4939.37 1.96
× × 5,000 4943.71 4943.71 3.59

× × 5,000 4943.71 4939.33 1.87
× × 1000/au 4927.60 4963.7 22.45

× × 1000/au 4956.55 4968.5 5.16
× × × 1000/au 4924.08 4945.8 12.60

× × × 1000/au 4929.63 4956.3 16.17

Table E.5: MAP results - 5th sequence

E.2 Accuracy Results
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RJMCMC RJMCMC-SA Online From Local Max nmc min µ σ
× 5,000 805.55 814.22 2.29

× 5,000 806.05 811.62 2.02
× × 5,000 811.70 814.71 1.69

× × 5,000 807.00 811.50 2.36
× × 1000/au 800.35 804.00 2.62

× × 1000/au 787.62 797.96 4.54
× × × 1000/au 797.30 806.61 6.09

× × × 1000/au 796.72 805.08 4.56

Table E.6: MAP results - 6th sequence

RJMCMC RJMCMC-SA Online From Local Max nmc min µ σ
× 5,000 418.14 437.32 8.51

× 5,000 401.29 429.19 12.14
× × 5,000 429.96 451.92 9.29

× × 5,000 411.58 433.50 7.76

Table E.7: MAP results - 7th sequence

RJMCMC RJMCMC-SA Online From Local Max nmc min µ σ
× 5,000 91.38 90.52 0.91

× 5,000 91.38 90.69 1.45
× × 5,000 91.38 88.36 1.09

× × 5,000 91.38 87.46 1.79
× × 1000/au 91.38 90.34 2.18

× × 1000/au 91.38 91.20 2.98
× × × 1000/au 96.55 89.48 3.20

× × × 1000/au 89.66 91.90 2.58

Table E.8: Accuracy results - 1st sequence

RJMCMC RJMCMC-SA Online From Local Max nmc min µ σ
× 5,000 100.00 100.00 0.00

× 5,000 100.00 99.26 1.56
× × 5,000 100.00 100.00 0.00

× × 5,000 100.00 100.00 0.00
× × 1000/au 100.00 100.00 0.00

× × 1000/au 100.00 100.00 0.00
× × × 1000/au 96.30 96.30 0.00

× × × 1000/au 96.30 96.30 0.00

Table E.9: Accuracy results - 2nd sequence

RJMCMC RJMCMC-SA Online From Local Max nmc min µ σ
× 5,000 82.81 82.87 1.27

× 5,000 82.03 82.93 1.29
× × 5,000 85.94 87.68 0.89

× × 5,000 82.03 83.36 1.65
× × 1000/au 90.63 95.98 3.42

× × 1000/au 92.19 96.07 3.54
× × × 1000/au 91.41 96.30 2.99

× × × 1000/au 93.75 97.02 2.23

Table E.10: Accuracy results - 3rd sequence
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RJMCMC RJMCMC-SA Online From Local Max nmc min µ σ
× 5,000 82.54 82.96 1.21

× 5,000 82.54 82.70 1.95
× × 5,000 84.92 83.93 1.09

× × 5,000 82.54 83.15 1.31
× × 1000/au 84.13 82.94 2.52

× × 1000/au 84.13 93.49 2.11
× × × 1000/au 84.82 84.68 3.18

× × × 1000/au 88.89 86.75 1.63

Table E.11: Accuracy results - 4th sequence

RJMCMC RJMCMC-SA Online From Local Max nmc min µ σ
× 5,000 93.43 93.12 0.92

× 5,000 91.24 92.65 0.87
× × 5,000 93.43 91.90 0.79

× × 5,000 94.16 92.65 0.90
× × 1000/au 94.89 90.66 2.92

× × 1000/au 91.97 88.10 2.67
× × × 1000/au 93.43 89.05 3.10

× × × 1000/au 92.70 88.25 2.19

Table E.12: Accuracy results - 5th sequence

RJMCMC RJMCMC-SA Online From Local Max nmc min µ σ
× 5,000 69.64 68.97 1.10

× 5,000 70.53 69.62 1.02
× × 5,000 68.75 68.53 1.68

× × 5,000 71.43 70.98 1.04
× × 1000/au 68.75 64.38 3.02

× × 1000/au 70.54 63.39 2.82
× × × 1000/au 72.32 68.04 1.56

× × × 1000/au 71.42 67.14 2.34

Table E.13: Accuracy results - 6th sequence

RJMCMC RJMCMC-SA Online From Local Max nmc min µ σ
× 5,000 45.18 45.23 1.30

× 5,000 45.69 46.74 0.90
× × 5,000 45.69 47.28 1.18

× × 5,000 47.21 47.61 0.88

Table E.14: Accuracy results - 7th sequence
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