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Abstract 

Early leaf development in rice (Oryza sativa L.):  

structure, physiology, and gene expression 

 

Rice (Oryza sativa L.) is a key staple crop, but novel approaches are needed to address the 

growing gap between supply and demand. Increasing the efficiency of photosynthesis is currently 

a major target for rice improvement, however the onset of this process during rice leaf 

development is poorly characterised. In addition, the spatial and temporal coordination of 

photosynthesis with the development of structural elements important to photosynthetic 

performance is not well understood. In this thesis I describe a series of experiments designed to 

address this gap in our knowledge of rice leaf development. Firstly, I used chlorophyll 

fluorescence microscopy to investigate the physiology of developing rice leaf primordia. I also 

carried out a histological analysis to probe the patterning and differentiation of the vasculature at 

the same stages of early leaf development. In parallel, the acclimation of rice leaves to light was 

used to probe the developmental limits of plasticity of these traits. Using this combined study of 

structure and physiology, I identified the P3/P4 transition as a key stage in the onset of 

photosynthesis as well as the development of physiologically relevant structural parameters. 

Moreover, by performing an RNA-Seq analysis of the P3, P4 and P5 stages of rice leaf 

development, I uncovered a number of gene expression changes correlated with these specific 

developmental processes. These data were then compared to published gene expression data 

from maize leaf primordia, allowing the identification of genes putatively underpinning 

differences between leaf development in C3 and C4 grasses. My results identify the P3/P4 

transition as a pivotal stage in rice leaf development where several processes for the initiation of 

photosynthetic competence are co-ordinated. As well as identifying gene targets for future 

manipulation of rice leaf structure/function, my data highlight a developmental window during 

which such manipulations are likely to be most effective. 
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1. Introduction 

1.1. Food security and rice crop improvement 

1.1.1. Rice and Food security: current situation and future prospects 

Ensuring global food security is one of the most pressing issues of the 21st century. The global 

population is set to increase from approximately 7 billion currently to 9.7 billion people in 2050 

(United Nations, 2015). In addition to requiring a greater amount of food, rising demand for 

meat and dairy mean that an 85% increase in primary foodstuffs is required between 2013 and 

2050 (Ray et al., 2013). One of the world’s key crops is rice. Rice is the second most important 

crop plant after maize in terms of production (around 746 Mt per year, FAOSTAT 2013), and 

the single most important in terms of direct supply of calories through food rather than feed 

(IRRI Rice Almanac, 2003). In addition, it is the staple food for some of the world’s poorest and 

most rapidly growing populations, predominantly in Asia and Africa. Indeed, rice can form up to 

70% of caloric uptake in some Asian countries, including Myanmar and Bangladesh (Dawe, 

2000). However, in recent years rice has hit a yield plateau, as have many other major staple 

crops. Although there was a 36% yield increase of rice in 1970-1980, only a 7% increase was seen 

in 2000-2010 (Long, 2014; Long et al., 2015). Yield trends in China clearly show this recent 

plateau (Figure 1.1). Thus, novel approaches are needed to address the growing gap between rice 

supply and demand.  

 

Figure 1.1. Average annual yield of rice per unit land area in China. Each data point is the average of all harvested 
areas in China. The line is a third-order polynomial best fit to the trend of yield against time. Source: FAOSTAT 
2007/ Zhu et al., 2010. 
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1.1.2. Improvement and stasis in rice yields 

Rice yields have improved rapidly over the last century to keep pace with the growing world 

population. In particular, the Green Revolution was a phase of unprecedented yield increases of 

major food crops including rice. It started in the 1960s with the introduction of dwarf rice 

varieties such as IR8, which allowed increased fertilizer use without lodging (Leung et al., 2015). 

In the 1980s, the key Green Revolution variety IR64 was released. IR64 was adaptable to a 

relatively wide range of environments, had good disease resistance and eating quality, and good 

genetic yield potential (the maximal theoretical yield a variety can produce under optimal 

conditions). This combination of traits made it the most popular rice variety ever, and at its peak 

it was grown on an astonishing 9 million hectares (Leung et al., 2015). However, despite many 

improvements in biotic and abiotic stress tolerance since then, genetic yield potential has 

remained almost completely static (Long and Ort, 2010). There are several potential reasons for 

this stasis. Breeding for a good harvest index and for strong early vigour have pushed partitioning 

efficiency and the efficiency of light capture during the growing season to their biological limits 

(Evans, 2013; Evans, 1997; Long, 2014; Long et al., 2015; Long and Ort, 2010; Long et al., 2006). 

This leaves only the efficiency of radiation energy conversion to biomass as a target for 

improvements in genetic yield potential. Losses of energy occur at every stage of energy 

conversion from radiation energy to biomass (Figure 1.2). Photosynthetic conversion efficiency is 

currently around 0.02 for major cereal crops, which is a fifth of the theoretical efficiency of 0.1 

for C3 crops/ 0.13 for C4 crops (Long and Ort, 2010). In fact, rice has particularly poor 

conversion efficiency (2.2 grams of biomass per mega joule light energy) compared to other 

crops, including the C3 crop wheat (2.8 g/MJ) and the C4 crops maize (3.5 g/MJ) and sorghum 

(2.8 g/MJ) (Kiniry et al., 1989; Smillie, 2011). However, the biochemical processes underlying 

conversion efficiency show very little variation between rice varieties and breeding markers are 

often lacking, making it near impossible to improve most of them by breeding (Long et al., 2015; 

Sinclair et al., 2004). The anatomical parameters underlying conversion efficiency show slightly 

more variation, but the links and trade-offs between them are poorly understood, potentially 

limiting their use in breeding programmes (Long et al., 2006). This is exemplified by the strong 

apparent links between vein density and leaf width in rice, and the strong conservation of the 

small lobed nature of the mesophyll cells in rice (Feldman et al., 2014; Smillie et al., 2012). Thus, 

although breeding for improved photosynthetic conversion efficiency has been suggested, 

innovations in other methods of crop improvement may ultimately prove more successful. This 

includes the use of genetic engineering. In addition, the conserved nature of the photosynthetic 

process may actually be favourable for genetically engineering improved crops, as success in one 

plant may be relatively easy to translate to another.  
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Figure 1.2. Minimum energy losses showing the percentage remaining (inside arrows) and percentage losses (at right) 
from an original 100% calculated for a stage of photosynthetic energy transduction from sunlight incident on a leaf 
to plant biomass. From Zhu et al., 2010. 

There are several reasons to believe improving photosynthetic conversion efficiency would 

improve yields. The first is the observation that C4 plants, which have increased photosynthetic 

rates because they concentrate CO2 around the key photosynthetic enzyme Rubisco, convert 

radiation energy to biomass more efficiently than C3 plants do (Evans, 2013; Hibberd et al., 

2008). The second observation is that enriching atmospheric CO2, which increases 

photosynthetic rates, can lead to increased biomass accumulation and grain yield (Ainsworth and 

Long, 2005; Ainsworth et al., 2004; Mitchell et al., 1999). The third is that, compared to modelled 

optima, many juvenile spikelets of high yielding varieties are not converted to filled grains even 

under well fertilized conditions (Sheehy et al., 2001; Smillie, 2011). Thus, there is evidence to 

suggest yield is limited by the supply of photosynthate resource, rather than a lack of sink 

capacity (Sheehy et al., 2001; Smillie, 2011). Therefore, if high partitioning efficiency can be 

maintained, increasing photosynthesis should increase biomass and thus crop genetic yield 

potential.  
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1.2. Photosynthesis 

1.2.1. Key reactions of photosynthesis 

Rice plants undertake C3 photosynthesis (Figure 1.3). In this process, light is captured by the 

pigment chlorophyll and used to fix carbon dioxide and produce sugars, thus converting light 

energy from the sun into the chemical energy of organic molecules (Raven et al., 2005). The key 

processes of photosynthesis take place in chloroplasts, which are present in all green parts of 

plants. In the chloroplast thylakoid membrane, chlorophyll molecules in antenna complexes trap 

light energy, which is transferred to the P680 chlorophyll molecules of the photosystem II (PSII) 

reaction centre (Horton et al., 1996; Rochaix, 2014). This results in excitation of an electron in a 

reaction centre chlorophyll molecule, which is transferred to an electron acceptor. Low energy 

electrons from water molecules replace the electrons lost from P680, and oxygen is produced as a 

by-product of this photolysis (Messinger and Renger, 2007; Renger, 1987). The protons released 

in this water splitting reaction contribute to the establishment of a proton gradient across the 

thylakoid membrane. The energized electrons from PSII move along an electron transport chain 

to photosystem I (PSI), losing energy at every transfer step (Allen, 2003). This transfer generates 

a proton gradient across the thylakoid membrane via the cytochrome b6/f complex (Kurisu et al., 

2003). The flow of protons from the thylakoid lumen back into the stroma through ATP 

synthase drives the synthesis of ATP. The energized electrons are accepted by the P700 

chlorophyll molecules of the PSI reaction centre, and ultimately passed on from here to the 

coenzyme NADP+, generating NADPH. Alternatively, cyclic electron flow around PSI occurs to 

generate only ATP (Munekaga et al., 2004).  

Subsequently, this ATP and NADPH are used to fix CO2 that has entered the leaf through 

stomata and airspaces, and to reduce it to organic carbon through the reactions of the Calvin-

Benson cycle in the stroma of chloroplasts (Benson et al., 1950; Flexas et al., 2008; Michelet et al., 

2013). The enzyme Rubisco carboxylates ribulose 1,5- bisphosphate to form 3-phosphoglycerate. 

Through a series of enzymatic reactions in which electrons are provided by NADPH and energy 

by ATP, glyceraldehyde 3-phosphate is generated, most of which is eventually converted to 

sucrose (for transport) or starch (for storage) (Goldschmidt and Huber, 1992; Shinano et al., 

2006). Ribulose 1,5-bisphosphate is regenerated to be used in another turn of the Calvin-Benson 

cycle.  
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Figure 1.3. Overview of C3 photosynthetic metabolism. A. Location of photosynthetic electron transport chain on 
thylakoid membrane of chloroplast. B. Photosynthetic electron transport chain; adapted from Rochaix 2014.  C. 
Calvin-Benson cycle; adapted from Michelet et al., 2013. Enzymes: Rubisco, ribulose-1,5-bisphosphate 
Carboxylase/Oxygenase; PGK, phosphoglycerate kinase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; TPI, 
triose phosphate isomerase; FBA, fructose-1,6-bisphosphate aldolase; FBPase, fructose-1,6-bisphosphatase; TK, 
transketolase; SBPase, sedoheptulose-1,7-bisphosphatase; RPE, ribulose-5-phosphate 3-epimerase; RPI, ribose-5-
phosphate isomerase; PRK, phosphoribulokinase. Metabolites, RuBP, ribulose-1,5-bisphosphate; 3-PGA, 3-
phosphoglycerate; 1,3-PGA, 1,3-bisphosphoglycerate; G3P, glyceraldehyde-3-phosphate; DHAP, dihydroxyacetone 
phosphate; F1,6P, fructose-1,6-bisphosphate; F6P, fructose-6-phosphate; X5P, xylulose-5-phosphate; E4P, 
erythrose-4-phosphate; S1,7P, sedoheptulose-1,7-bisphosphate; S7P, sedoheptulose-7-phosphate; R5P, ribulose-5-
phosphate; RuP, ribulose-5-phosphate.  
 

1.2.2. Options for improving photosynthesis 

In the light of the need to increase crop yields, work is currently in progress to improve the 

efficiency of these photosynthetic processes in plants. A wide range of options for improving 

photosynthesis exists (Figure 1.4). Several of these are aimed at optimising light interception. 

These include improving canopy architecture, reducing antenna size in the upper leaves of the 

crop canopy, or altering the pigment distribution in the canopy (Ort et al., 2011; Reynolds et al., 

2011; Zhu et al., 2010). Optimising light penetration to lower leaves in this way has been shown 

to be beneficial to crops grown in monocultures, and may be far from optimal due to 
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evolutionary selection pressure for shading out competing plants (Song et al., 2013). 

Incorporating algal pigments into plants to extend the range of wavelengths that can be used in 

photosynthesis has also been suggested, and could possibly be used in conjunction with the 

above options (Chen and Blankenship, 2011).  

 

Figure 1.4. Options for improving photosynthesis. 1. Modifications to the crop canopy. Canopy architecture, 

pigment distribution and antenna length distribution in the canopy have been considered. 2. Modifications to leaf 

structure. Mesophyll and stomatal CO2 conductance as well as leaf thickness and vascular patterning have been 

considered. 3. Modifications to cell organization. Optimization of chloroplast distribution and movement as well as 

mitochondrial location within the cell may be targeted. 4. Modifications to the electron transport chain. Increasing 

the range of wavelengths that can be used in photosynthesis may be useful, as may an increase abundance of 

cytochrome f (accompanied by ATP synthase upregulation) and faster mechanisms of relaxation of photoprotection. 

5. Modifications to carbon fixation. Upregulation of sedoheptulose bisphosphatase; an improved Rubisco; more 

efficient phosphoglycolate metabolism; or carbon concentrating mechanisms (including bicarbonate transporters, 

algal structures such as pyrenoids or carboxysomes, as well as C4 photosynthesis) may lead to increased efficiency of 

photosynthesis. 
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However, as discussed above, improving the efficiency of photosynthetic energy conversion may 

harbour more opportunity than targeting light interception. One of the processes that may be 

targeted is that of photosynthetic electron transport. For example, increasing cytochrome f 

content may increase electron transport capacity, although a concurrent increase in ATP synthase 

content may also be necessary (Chida et al., 2007; Peterhansel et al., 2008; von Caemmerer and 

Evans, 2010). Alternatively, faster relaxation of photoprotection through the use of algal systems 

or the modification of xanthophyll cycle dynamics may allow faster recovery of photosystem II 

efficiency after light stress (Murchie and Niyogi, 2011).  

Other options for optimising photosynthesis are aimed at carbon fixation. Leaf conductance to 

CO2 may not yet be optimal for CO2 provision to the enzymes involved in its fixation. 

Optimising stomatal patterning, mesophyll airspace structure and chloroplast arrangement within 

cells have been considered, though trade-offs with drought, heat and light stress tolerance may 

exist (Araus et al., 2002; Bartoskova et al., 1999; Evans, 1997; Gounaris et al., 1984; Taylor et al., 

2012). Another option is the upregulation of enzymes involved in the regeneration of RuBP, 

which share metabolic control of CO2 fixation with Rubisco (Raven et al., 2005). In particular, 

upregulating sedoheptulose bisphosphatase has been pinpointed as an option by models, and 

increases grain yield under high CO2 conditions (Raines, 2011; Rosenthal et al., 2011).  

Several efforts aim to reduce losses through photorespiration. This process is an unavoidable 

consequence of the oxygenase activity of the key carbon fixation enzyme Rubisco (Farquhar et 

al., 1980). As Rubisco is also an oxygenase, phosphoglycolate can be produced as a result of its 

activity. The process of recycling this phosphoglycolate to the Calvin-Benson cycle intermediate 

phosphoglycerate is known as photorespiration and is considered wasteful, as energy is used and 

carbon is lost in these metabolic reactions (but see (Peterhansel et al., 2010). Rice has particularly 

high levels of photorespiration, since it is a C3 plant and is largely grown under tropical, high 

temperature conditions which increase Rubisco oxygenase activity (Brooks and Farquhar, 1985). 

It is estimated that approximately 33% of the total level of Rubisco in a rice plant may be 

functioning as an oxygenase under current atmospheric CO2 concentrations at 30°C (Evans and 

von Caemmerer, 2000). In general, photorespiration reduces the productivity of C3 crops by over 

30% (Ogren, 1984; Zhu et al., 2004). 

Engineering a Rubisco with a higher rate of catalysis or higher CO2 specificity may adapt this 

enzyme to our increasingly warm, relatively high oxygen world (compared to the conditions 

under which Rubisco evolved) (Parry et al., 2013; Spreitzer and Salvucci, 2002). The use of a less 

wasteful bacterial pathway of phosphoglycolate metabolism has already been shown to result in 

increased net photosynthetic efficiency in Arabidopsis (Kebeish et al., 2007). Alternatively, building 
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up an entirely new CO2 fixation pathway in plants from bacterial components has been one of 

the more radical proposals (Bar-Even et al., 2010; Fuchs, 2011; Mattozzi et al., 2013). However, 

given the many roles of Calvin cycle intermediates in other aspects of plant metabolism, 

signalling and development, this would likely require extensive rewiring of a multitude of plant 

systems.  

Recently, efforts have focused on saturating Rubisco with carbon dioxide in order to suppress its 

oxygenase activity and thus reduce photorespiration. Carbon dioxide may be concentrated 

around Rubisco through the use of cyanobacterial bicarbonate transporters (Price et al., 2008). 

Even greater gains may be possible if algal carbon concentrating mechanisms such as 

carboxysomes and pyrenoids can be put to use in higher plant cells (Meyer and Griffiths, 2013; 

Zarzycki et al., 2013). However, plants have evolved carbon concentrating mechanisms of their 

own, and these promise the largest gains. C4 photosynthesis and crassulacean acid metabolism 

(CAM) are two complex traits plants have evolved to reduce losses through photorespiration 

(Hibberd et al., 2008; Meyer and Griffiths, 2013). Both are thought to have evolved on many 

separate occasions in response to past decreases in atmospheric CO2, which are known to 

increase the oxygenase activity of Rubisco (Christin and Osborne, 2014; Sage et al., 2011). C4 

photosynthesis involves a spatial separation of photosynthetic processes, whereas CAM involves 

temporal separation of activities. Current efforts are focused on C4 photosynthesis as a means of 

improving the yield of C3 crops, particularly rice (extensively reviewed in (Evans and von 

Caemmerer, 2000; Hibberd et al., 2008; Kajala et al., 2011; Langdale, 2011; Leegood, 2013).  

The predicted contribution of each of these suggested improvements to increased conversion 

efficiency ranges from 13-15% for the use of photorespiratory bypasses or optimised relaxation 

of photoprotection to 30-60% for the introduction of C4 photosynthesis or algal carbon 

concentrating mechanisms, or the dramatic reduction of Rubisco oxygenase activity through 

engineering of the enzyme itself (Long et al., 2015; Long et al., 2006). The timescale to 

implementation varies from around 1-10 years for alterations which have already led to improved 

seed yield in model species, to an unknown number of years (10-30) for the most complex 

alterations (reviewed in (Long et al., 2015; Long et al., 2006)).  

Several recent developments make this a good time to attempt these ambitious projects in crop 

improvement. Firstly, developments in computing power and crop modelling make in silico 

exploration of synergistic effects, trade-offs and their consequences for using combinations of 

traits possible at the level of cells, whole plants and canopies (Boote et al., 2013; Song et al., 2013; 

Zhu et al., 2013). In addition, developments in genetic engineering such as the use of zinc finger 

nucleases, TAL-effector nucleases (TALENs) and particularly CRISPR make it possible to place 
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exogenous sequences into particular places in the genome (Jiang et al., 2013b; Long et al., 2006). 

Such directed insertions make positional effects on the expression of transgenes less of an issue, 

enabling more accurate comparisons between transformation events. These enhanced tools may 

also make it easier to use combinations of gene alterations. As many of the traits (such as leaf 

thickness, airspace volume, chloroplast surface area and C4 photosynthesis) affecting 

photosynthetic efficiency are controlled by complex networks, modifying multiple genes in the 

same plant is likely to be essential (Tholen et al., 2012). Understanding leaf development in rice 

and the genetic mechanisms underlying it are thus crucial to engineering a more efficient 

photosynthetic process in this crop.  

1.3. Structure and development of leaves 

1.3.1. Rice leaf structure and anatomy  
Leaves are the primary site of photosynthesis in plants. As such, their anatomy has been 

extensively studied, and is a key target for efforts to improve photosynthetic efficiency. Leaf 

shape and structure vary greatly between species. In monocots, leaves often lack a petiole and 

consist of a sessile blade, a ligule and a sheath that surrounds the plant stem (Raven et al., 2005). 

In grasses such as rice, leaves are strap-shaped, and contain several different tissues (Figure 1.5). 

The epidermis is the outermost layer of the leaf, which in rice provides protection of internal 

tissues from drought through its cuticle and relatively thick cell walls, and from pests through 

trichomes and silica knobs (Luo et al., 2012). Bulliform cells arranged above veins in the rice 

epidermis provide another drought protection mechanism, facilitating leaf rolling (Price et al., 

1997; Zhang et al., 2009). The rice epidermis is patterned with stomata on both the ad- and 

abaxial side (Luo et al., 2012). As is typical for monocots, the structures of the rice epidermis are 

arranged in parallel, in contrast to the random arrangement of structures on most dicot leaves 

(Luo et al., 2012; Raven et al., 2005).  

Below the epidermis, the rice mesophyll or ‘middle tissue layer’ is specialized for photosynthesis. 

Rice mesophyll cells are small and heavily lobed (Sage and Sage, 2009). This increases the 

mesophyll cell surface area available for CO2 diffusion. In addition, organelle distribution within 

cells is such that CO2 recapture from photorespiration is maximised, with mitochondria in the 

middle of cells and chloroplasts around the outside and spaces between chloroplasts along the 

cell membrane filled with stroma-filled protrusions (stromules) (Sage and Sage, 2009). Thus, 

despite having a relatively thin layer of mesophyll, rice leaves still have a relatively high 

photosynthetic capacity compared to other cereal crops. For example, despite having only 50% 

of the mesophyll thickness of wheat, rice has 80% of its photosynthetic capacity (Tholen et al., 

2012).  
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Figure 1.5. A. Mature rice plant (post green revolution stature). B. Structure of a tiller, leaf and the boundary between 
leaf sheath and blade. C. Cross section of a mature rice leaf showing large veins (LV) and small veins (SV). D. Cell 
types in and around the large vein- ME- mesophyll; BS, bundle sheath, XY, xylem, PL, phloem, BC, bulliform cells, 
SC, sclerenchyma cells (fibres). Asterisk indicates mestome sheath E. epidermis of the rice leaf. F. SEM image 
showing a trichome (T), stoma (S), and silica knob (SP) on the rice epidermis. G. Lobed rice mesophyll cell with 
chloroplasts around the edges. N, nucleus, C, chloroplast, m, mitochondrion, p, peroxisome. Asterisk indicates 
putative autophagic vacuolar inclusion. Arrows indicate plasmodesmata. Sources and scale bars: A, B: IRRI 
knowledgebank; C, D: Itoh et al., 2005; E: Luo et al., 2012, scale bar 20µm; F: Yoo et al., 2011, scale bar 20µm; G: 
Sage and Sage, 2009, scale bar 1µm. 

 

Veins run parallel through the rice mesophyll, with small (secondary) veins being defined as those 

that are more or less completely embedded in the mesophyll and large (primary) veins defined as 

larger veins that are associated with protruding ribs on the leaf surface (Raven et al., 2005). Much 

smaller tertiary veins connect minor and major veins, often running perpendicular to them. Veins 

contain xylem tissues, involved in the provision of water to the mesophyll, and phloem tissues, 

which export photosynthate from the mesophyll to sink tissues. These tissues are surrounded by 

a mestome sheath and bundle sheath, neither of which contain many chloroplasts in rice, in 

contrast with the large green bundle sheath cells seen in C4 Kranz anatomy (Dengler et al., 1994; 

Leegood, 2008).  

1.3.2. Development of leaves 

Considering the development of leaves may provide insight into how they can be manipulated to 

enable more efficient photosynthesis. In leaf development, as in other aspects of plant 

development, cells communicate with each other continuously, and position plays a major role 

(Braybrook and Kuhlemeier, 2010). Thus, a myriad of mobile signals have been implicated in leaf 

* 
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development, including hormones, small RNA gradients and mechanical forces (Barkoulas et al., 

2007; Benkovics and Timmermans, 2014; Besnard et al., 2011; Boudaoud, 2010; Dumais, 2007; 

Hay et al., 2004). This network results in a complex but robust growth process involving both 

cell division and cell expansion (Figure 1.6). 

Initial recruitment of cells from which leaves are to be formed occurs from the shoot apical 

meristem (SAM), a dynamic layered and zoned body of cells. The transcription factor (TF) 

WUSCHEL (WUS) interacts with the ligand CLAVATA3 and its heterodimeric receptor encoded 

by CLAVATA1 and CLAVATA2 to maintain a pool of stem cells (Clark, 2001). From these 

cells, the site of formation of a leaf primordium is selected by the presence of an auxin signalling 

maximum. A family of dynamic auxin efflux carriers, the PIN-proteins, plays an important role in 

this process (Kuhlemeier, 2007). The growing leaf then acts as an auxin sink, an auxin depletion 

zone is formed, and the next leaf is initiated at the point furthest away from this leaf, giving rise 

to spiral phyllotaxis in many plants including the model plant Arabidopsis thaliana L. (Deb et al., 

2015; Kuhlemeier, 2007). However, modelling has shown that this process is also capable of 

giving rise to other phyllotactic patterns (Smith et al., 2006). Rice, for example, displays distichous 

phyllotaxis (Itoh et al., 1998; Itoh et al., 2000). In addition to auxin, cytokinin signalling has also 

been implicated in this process (Itoh et al., 2012). As leaf primordia are formed expansins are up 

regulated, loosening the cell wall and promoting leaf outgrowth (Fleming et al., 1997; Pien et al., 

2001; Reinhardt et al., 1998). Thus, it is clear that leaf formation requires changes in mechanical 

forces as well as phytohormone concentrations and transcription factor expression.   

 

 

 

 

Figure 1.6: Initiation of leaf formation and leaf axis formation by hormones, transcription factors and small RNAs. 
‘ad’, adaxial side of leaf, ‘ab’, abaxial side of leaf, KAN, KANADI TF, YAB, YABBY TF, GA, Gibberellin, SAM, 
shoot apical meristem. Modified from (Barkoulas et al., 2007). 
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The early stages of leaf formation are characterised by the transition from cell proliferation, 

indeterminacy and inhibition of differentiation to cell differentiation and determinacy. A range of 

transcription factors are involved in this process (Veit, 2004). Key amongst these are the KNOX 

genes, which are implicated in inhibition of gibberellin synthesis, are repressed in simple leaves by 

ASYMMETRIC LEAVES1/ROUGHSHEATH2/PHANTASTICA (ARP) MYB-transcription 

factors (Hay and Tsiantis, 2009) (Figure 1.6). This leads to a switch from inhibition of 

differentiation to determinacy and leaf formation.  

Axis formation is another key process determining leaf shape. The interaction between 

abaxializing transcription factors (such as KANADI and YABBY-family TFs) and adaxializing 

transcription factors (such as REVOLUTA, PHABULOSA and PHAVOLUTA- class III HD-

ZIP TFs) results in leaf blade outgrowth (Emery et al., 2003; Eshed et al., 2004; Prigge et al., 

2005) (see Figure 1.6). In turn, the polarised expression of these transcription factors is regulated 

by several small RNAs (e.g. miR165), which are themselves regulated by AGO10 (Liu et al., 2009) 

(Figure 1.6).   

Later steps in leaf primordium development involve the differentiation of various leaf structures. 

This includes the development of veins, in which auxin canalization plays an important role 

(Berleth et al., 2000; Nelson and Dengler, 1997). In many dicots, the mesophyll differentiates into 

palisade mesophyll on the adaxial side of the leaf, whereas spongy mesophyll is the fate of abaxial 

cells (Fleming, 2005). Epidermal cell fate is determined by numerous well studied transcription 

factors. These include the positive (GL1, TTG and GL3) and mobile negative (TRY and CPC) 

agents of the reaction-diffusion process that regulates trichome development, and various 

regulators of stomatal guard cell specification (MUTE and FAMA) and patterning (TMM) 

(MacAlister et al., 2007; Nadeau and Sack, 2002; Schellmann et al., 2002; Yang and Sack, 1995).  

1.3.3. Monocot leaf development 

Although most of the developmental processes described above have been best studied in the 

model dicotyledonous plant A. thaliana, monocots including maize (Zea mays L.) and rice have 

also been studied (Itoh et al., 2005; Ohtsu et al., 2007). One major difference between monocots 

and dicots is the location of the SAM within the plant. In monocots, the SAM is found near the 

base of the plant, whereas the dicot SAM is found at the apex. In addition, a monocot leaf 

primordium is formed from a ring of cells around the SAM, rather than from a clump of cells on 

one side (Freeling, 1992). However, the underlying principles of monocot and dicot leaf 

development are largely conserved. For instance, the ARP/KNOX module that controls 

determinacy and the interaction between abaxializing YABBY/ KANADI TFs and adaxializing 

class III HD-ZIP TFs are both also found in maize (Juarez et al., 2004; Timmermans et al., 1999). 
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However, monocot development also has several unique features. One example is the 

CLAVATA/WUSCHEL module (Nardmann and Werr, 2006). Although this is conserved in 

monocots, the expression patterns of maize and rice orthologues of these genes suggest they are 

not directly involved in meristem maintenance. This seems to be carried out by an entirely 

different mechanism, possibly involving FLORAL ORGAN NUMBER1 (FON1) and FON2 in 

roles played by CLAVATA1 and CLAVATA3 (respectively) in dicots (Suzaki et al., 2006).  

Maize is the best studied monocot in terms of leaf development. The maize KNOX-family TF 

KNOTTED1 maintains indeterminacy in the SAM (Jackson et al., 1994). In certain domains of 

the SAM it is repressed by the ARP TF ROUGH SHEATH2, resulting in recruitment of the cells 

here into leaf primordia (Schneeberger et al., 1998). In addition, the NARROW SHEATH1 and 

NARROW SHEATH2 TFs recruit cells from two domains to either side of the ROUGH 

SHEATH2 domain (Nardmann et al., 2004; Scanlon et al., 1996), giving rise to the leaf margins 

of a ring shaped leaf primordium. The location of the blade/sheath boundary is later established 

by LIGULELESS2, whereas LIGULELESS1 plays a more specific role in formation of the ligule 

tissue at this boundary (Walsh et al., 1998).  

1.3.4. Leaf development in rice 

Rice leaf development is less well studied than that of maize. However, the rice genome has been 

sequenced and several large scale studies of gene expression during rice development are available 

(Goff et al., 2002; Jiao et al., 2005; Wang et al., 2010). Itoh et al. (2005) describe six stages of leaf 

development, of which the first four show the most morphological change. Initial recruitment of 

leaf founder cells is coordinated by repression of OSH1 (a KNOX-gene) and OsPNH1 

upregulation (Itoh et al., 2005). The additional upregulation of OsSCR and the YABBY-family 

TF DROOPING LEAF (DL) results in a cascade of events (Itoh et al., 2005). The leaf 

primordium protrudes from the SAM and takes on a hood-like shape as the leaf margin elongates 

around the SAM. Subsequently, differentiation of the vascular bundle and formation of unique 

monocot structures such as the ligule and the leaf blade/ sheath boundary takes place. Finally, 

leaf cells differentiate into sclerenchymatous, bulliform, silica, cork and epidermal cells as the 

blade elongates. Following downregulation of OsPNH1, OsSCR and DL, the sheath elongates 

rapidly, leading to the emergence of the leaf blade from the sheath of the previous leaf and 

eventual bending of the leaf at the blade/sheath boundary, such that the adaxial surface of the 

leaf blade, the main site of photosynthesis, receives more sunlight.  

Rice improvement has until recently mainly taken place through breeding. Thus, many rice genes 

that affect leaf developmental traits important to yield have been identified through QTL 

analysis. Many of these loci are auxin-related, which is consistent with the known importance of 
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auxin in many aspects of Arabidopsis development (Baylis et al., 2013; Hay and Tsiantis, 2009; 

Hobbie et al., 2000; Sabatini et al., 1999). For instance, the rice NARROWLEAF1 (NAL1) QTL 

is known to be involved in the regulation of leaf thickness and width, and is a classical rice 

dwarfing locus (Qi et al., 2008; Takai et al., 2013). The NAL1 protein was found to encode a 

plant specific protein possibly involved in polar auxin transport (Qi et al., 2008). More recently, it 

has been found that NAL1 modulates mesophyll cell divisions between vascular bundles to 

change vascular patterning, and certain naturally occurring protein variants increase leaf 

thickness, which pleiotropically increases leaf Rubisco and chlorophyll content and thus 

photosynthetic rate per unit leaf area (Taguchi-Shiobara et al., 2015; Takai et al., 2013).  

The rice NARROWLEAF2 and NARROWLEAF3 loci were also initially identified through 

QTL analysis. In rice, mutations in WUSCHEL-RELATED HOMEOBOX 3A (OsWOX3A) 

underlie the defects in leaf polarity, margin development and vasculature seen in both nal2 and 

nal3 mutants (Cho et al., 2013; Ishiwata et al., 2013). As with NAL1, auxin transport plays a role, 

with OsWOX3A thought to interact with PIN protein expression to affect lateral cell 

proliferation (Cho et al., 2008). A third narrow leaf mutant (nal7) is allelic to the constitutively 

wilted cow1 mutant, with both having narrow leaves due to a defective flavin-containing 

monooxygenase of the YUCCA family, which is known to be involved in auxin biosynthesis in 

Arabidopsis thaliana (Fujino et al., 2008; Woo et al., 2007). Phytohormones other than auxin have 

been implicated in other aspects of rice plant development, including through studies of the 

DWARF1 (gibberellin signal transduction), DWARF61 (brassinolide receptor kinase) and 

DWARF53 (strigolactone signalling repressor) genes (Ashikari et al., 1999; Jiang et al., 2013a; 

Yamamuro et al., 2000; Zhou et al., 2013). However, mutants in these genes often display 

dwarfing and pleiotropic developmental defects rather than those specific to leaf shape. 

1.3.5. Links between photosynthetic development and leaf morphogenesis 

Leaves are the primary site of photosynthesis, but the links between the development of leaf 

morphology and the development of photosynthesis are poorly understood. Few studies have 

been done in A. thaliana, rice or any other species to study the onset of photosynthesis in leaf 

primordia. Thus, it is unknown when a leaf first becomes photosynthetically active, and 

particularly how photosynthetic development and leaf development are linked (Jarvis and Lopez-

Juez, 2013).  

Photosynthesis takes place in chloroplasts, and as such their biogenesis and differentiation is 

crucial to the development of photosynthetic activity in leaves. Plastids replicate through binary 

fission, betraying their prokaryotic endosymbiont origins (Pyke, 2013; Yoshida et al., 2012). 

Meristematic cells have fewer than ten proplastids, whereas leaf mesophyll cells can have up to 
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100, and the number of plastid DNA copies increases from around ten to around 50 per plastid 

concurrently (Jarvis and Lopez-Juez, 2013; Lopez-Juez and Pyke, 2005). The chloroplast 

compartment size per cell is tightly regulated and cell type specific, and the proteins regulating 

chloroplast compartment size are starting to be understood (Jarvis and Lopez-Juez, 2013; Larkin 

et al., 2016). There is some evidence that plastid DNA copy number may act as a checkpoint for 

plastid development. Leaves with defects in plastid DNA proliferation have abnormal plastid 

division and show growth defects, which may also point to a link between plastid proliferation 

and leaf cell differentiation (Garton et al., 2007).  

Indeed, several other mutants also point to links between leaf development and plastid 

biogenesis. The white sections of variegated leaves often have defective palisade mesophyll 

development (Aluru et al., 2001; Lopez-Juez and Pyke, 2005; Yu et al., 2007). In addition, the 

plastid division mutant crumpled leaf has cells lacking chloroplasts accompanied by abnormal leaf 

lamina expansion (Chen et al., 2009). However, given the many roles of chloroplasts in central 

metabolism, it has been suggested that these defects are simply due to a lack of synthesis of 

essential building blocks such as lipids needed by growing cells, or possibly a perturbation of lipid 

hormone biosynthesis in cells lacking plastids (Babiychuk et al., 2011; Kode et al., 2006).  

1.3.6. Development of photosynthesis: recent advances 

In recent studies, the development of photosynthesis in very early leaf primordia has received 

more attention. For instance, a maize microarray study on laser capture micro dissected shoot 

apices showed that there is no significant difference in the number of photosynthesis-related 

genes upregulated between the SAM proper and leaves at the P0 and P1 stages (Brooks et al., 

2009). Two photosynthesis related genes were found to be upregulated in the SAM proper 

compared to the P0 and P1 stage leaves, namely a magnesium chelatase subunit H family protein 

and a ferredoxin-dependent glutamate synthase, and two other photosynthesis related genes were 

upregulated in the P1 and P0 stage leaves compared to the SAM, namely protoporphyrinogen 

oxidase and a chloroplast channel forming outer membrane protein (Brooks et al., 2009). 

However, only a limited number of photosynthesis-related genes could be detected by the 

microarray chip used in this study, as it was enriched in SAM-derived cDNAs.  

A second useful recent study characterized the entire transcriptome of developing maize foliar 

and husk leaf primordia using RNA-Seq in the context of international efforts to optimise 

photosynthesis in rice by engineering C4 photosynthesis (Wang et al., 2013). Substantial changes 

in photosynthetic gene expression were seen even in very young maize leaf primordia, with maize 

foliar leaves showing a greater complexity of photosynthetic gene expression during development 

compared to maize husk leaves (Wang et al., 2013). Other studies of maize leaf photosynthetic 
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development have been carried out on leaf gradients of older developing leaves (Li et al., 2010; 

Majeran et al., 2010). These have revealed much about the relationship between the sink-source 

transition and chloroplast differentiation, and identified roles for known light-associated 

transcription factors and novel cell-type specific proteases involved in shaping chloroplast 

protein complements (Li et al., 2010; Majeran et al., 2010). More recently, the rice leaf 

developmental gradient has also been similarly transcriptomically profiled and compared to that 

of maize (Wang et al., 2014).  

However, to date, no study has been carried out of photosynthetic development in leaf primordia 

of rice. Many of the leaf developmental processes described above, including the shift from 

indeterminate to determinate growth, the establishment of polarity, and the most fundamental 

aspects of tissue patterning occur in developing leaf primordia rather than the older developing 

leaves profiled in gradient studies. In addition, the functional physiology of photosynthesis during 

leaf development has been given little attention, and is likely to change rapidly as primordia 

develop. Thus, although there is likely to be a link between this photosynthetic development and 

fundamental aspects of leaf morphological differentiation, the developmental stages at which an 

interaction between these developmental processes is likely to occur are relatively poorly studied. 

This is particularly true for monocots such as rice, in which a better understanding of these 

developmental processes could open up opportunities for engineering a more efficient 

photosynthetic process.  
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1.4. Thesis aims 

- To characterise morphological changes during rice leaf development 

- To identify the point at which developing rice leaves gain the ability to carry out electron 

transport 

- To identify the gene expression changes underlying specific events in rice leaf 

morphological and physiological development 

- To identify conserved and diverged gene expression patterns during leaf development in 

the C3 grass rice and the C4 grass maize 

1.5. Thesis objectives 

- To perform histological analyses of rice leaves at different stages of development 

- To perform light environment transfer experiments to identify the developmental 

window within which rice leaf morphology displays developmental plasticity 

- To image the chlorophyll fluorescence dynamics of developing rice leaves 

- To carry out a targeted RNA-Seq analysis on developing rice leaves 

- To compare RNA-Seq data on developing rice leaf gene expression to equivalent data 

from maize 

1.6. Thesis hypotheses 

- The development of structures such as vasculature and stomata occurs at early 

developmental stages  

- Structural parameters affecting photosynthetic performance acclimate to the external 

environment, but only within a defined developmental window 

- The development of photosynthesis occurs later in development than the laying down of 

morphological parameters 

- Biochemical aspects of photosynthesis acclimate within a different developmental 

window to structural aspects  
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2. Methods 

2.1. General chemicals 

Analytical and molecular grade chemicals were ordered from Sigma-Aldrich, Fluka, BDH, Fisher 

Scientific or Melford. Enzymes and reagents were supplied by Roche, Bioline, Promega, 

Invitrogen or New England BioLabs. All primers were synthesized by Sigma Life Science; 

plasmid miniprep kits, PCR purification kits and gel extraction kits were from Qiagen and RNA 

extraction kits were from Sigma. Water used for preparing reagents was deionised ultra-high 

purity (UHP) water from an ELGA ion exchange system. Nuclease free water was from Ambion; 

RNAse free water for use in in situ hybridisation was generated using diethylpyrocarbonate 

treatment (Sigma).   

2.2. Plant material and growth conditions 

Rice seeds (Oryza sativa var. IR64) were sown on moist tissue paper in petri dishes and incubated 

at 28 °C at an irradiance of 700µmol m-2 s-1 for 7 days before being transferred to growth in 

hydroponics (Makino et al., 1997; Narawatthana 2013 (Thesis)). The hydroponic system, which 

was maintained in a CONVIRON BDR16 growth chamber (Controlled Environments Ltd., 

Manitoba, Canada), consisted of 1.5ml microcentrifuge tubes with an opening in the bottom 

floating on hydroponic growth medium in a polystyrene rack, which was covered with black 

plastic to prevent algal growth (Figure 2.1). The hydroponic growth medium contained 1.4 mM 

NH4NO3, 0.6 mM NaH2PO4∙2H2O, 0.5 mM K2SO4, 0.8 mM MgSO4, 0.009 mM MnCl2∙4H2O, 

0.001 mM (NH4)6Mo7O24∙4H2O, 0.037 mM H3BO3, 0.003 mM CuSO4∙5H2O, 0.00075 mM 

ZnSO4∙7H2O, 0.2 mM CaCl2.2H2O, 0.07 mM Fe-EDTA, and the pH was adjusted to 5.5 using 

KOH (Murchie et al., 2005). Plants were grown at an irradiance of 700 µmol m-2 s-1 (except for 

light acclimation experiments, where low light grown plants were grown at an irradiance of 250 

µmol m-2 s-1) with a 12h/12h light/dark cycle. Light was supplied from a combination of metal 

halide and tungsten halogen bulbs. Humidity was 50%, CO2 was ambient and temperature 28 °C. 

For experiments in which plants were transferred between light conditions at different 

developmental stages of leaf five, the protruding length of the third leaf was used as a proxy for 

the developmental stage of the younger leaf five inside it (van Campen et al., 2016). For bulking 

of rice seeds, seedlings germinated in petri dishes as described above were transferred at 7 days 

after sowing to 900ml square pots containing a 4:1 (v/v) mixture of Levington M3 compost and 

vermiculite. These rice plants were grown under the same irradiance and atmospheric conditions 

as seedlings grown in hydroponics.  
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Figure 2.1. Hydroponic system for growing rice seedlings. Note that black plastic covering to prevent algal growth is 

not shown. Figure taken from Narawatthana 2013 (Thesis). 

2.3. Histology 

2.3.1. Leaf thickness measurements and vascular development series 

1cm segments were cut from mature 5th leaf blades (grown as described before) and incubated in 

Carnoy’s solution (4:1 (v/v) ethanol (Fisher Scientific): acetic acid (Sigma)) for 24 hours, 

dehydrated in 100% ethanol for 24 hours, pre-infiltrated with 1:1 (v/v) Technovit Liquid 1 

(TAAB): ethanol for 24 hours, and twice with 100% Technovit 1 for 24 hours. Leaves were 

vacuum infiltrated with each new solution for 20 minutes. Samples were then embedded in 

Technovit 7100, dried at 37 °C overnight and sectioned (2µm thickness) using a microtome 

(Leica RM2145). Images were taken at a 10x magnification using a light microscope (Olympus 

DP71). Thickness was measured at the bulliform cells using Adobe Photoshop version 12.0. The 

average of three measurements was taken per leaf. All measurements were taken in the same 

region along the width of the leaf (Figures 2.2, 2.3 and 2.4), in between the first and second major 

veins away from the midvein, avoiding bulliform cells directly adjacent to major veins. 

Figure 2.2. Diagram of region of leaf section used for thickness measurements (hatched area). Blue: midrib; 
light green: tissue in between major veins; dark green: major vein. Not to scale. 
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Figure 2.4. Location of sections used for vascular development series and TEM. Not to scale. 

2.3.2. TEM 

For transmission electron microscopy, primordia at different developmental stages were dissected 

into primary fixative (3% (v/v) glutaraldehyde (Sigma) in 0.1 M phosphate buffer (pH 7.4)). 

Further fixation and processing were carried out by Chris Hill (Sheffield Electron Microscopy 

Unit). Samples were fixed for 2-3 days in primary fixative before two fifteen minute washes with 

0.1M phosphate buffer at 4°C. Samples were then incubated in secondary fixative (2% (w/v) 

aqueous osmium tetroxide) at room temperature for one hour before another two fifteen minute 

washes with 0.1M phosphate buffer (pH7.4) at 4°C. Samples were dehydrated using a graded 

ethanol series (15 minutes each in 75%, 95%, 100%, 100% ethanol, 1 x 100% ethanol dried over 

anhydrous copper sulphate). Following this, samples were transferred to glass vials to which 2-3 

ml propylene oxide was added and incubated for 15 minutes at room temperature. This step was 

HL 

P3 P4 P5 Mature 

Figure 2.3. Representative images used for thickness measurements. HL: plant grown in high light; LL: plant 
grown in low light. BC, example of thickness measurement performed at bulliform cells. Scale bar 1mm. 

LL 

HL 
BC 



23 
 

then repeated. Samples were then infiltrated with 50:50 Araldite resin/propylene oxide overnight, 

followed by transfer to 100% Araldite, in which samples were incubated for 6-8 hours at room 

temperature. Samples were then transferred to moulds containing fresh 100% araldite resin 

supplemented with BDMA accelerator and baked in an oven at 60°C for 48-72 hours. A diamond 

knife on a Leica UC 6 microtome was used to cut 85-90 nm sections, which were mounted on 

copper TEM grids and stained with uranyl acetate for 5-10 minutes in the dark and then with 

Reynold’s lead citrate for a further five minutes, before being imaged using a FEI Tecnai G2 

Spirit TEM (Hillsboro, OR, USA).   

2.3.3. Confocal imaging 

P3 and P4 stage leaf primordia were dissected as above, mounted in water in a 2mm-depth 

coverwell (Grace Biolabs), and imaged using an inverted Zeiss LSM510 Meta confocal 

microscope under a Plan-Neofluar 10x objective with a numerical aperture of 0.3. Excitation was 

with a 488nm argon laser (50.5% transmission). Emitted light was detected at 650-710nm as a 

result of a 650-710nm bandpass filter; the pinhole diameter was 96 µm, and a line average of four 

images was taken. Noise in the image background only was removed using Adobe Photoshop 

(version 12). 

2.4. Gas exchange analysis 

Light response curves were recorded on mature 5th leaves. Leaves were deemed mature as soon 

as blade elongation was no longer occurring (measured on individual leaves; this usually occurred 

around 20 days after sowing in high light grown leaves and slightly later in leaves grown in or 

transferred to low light). The probed leaf area of around 0.75cm2 was positioned 1/3 of the total 

length of the leaf blade away from the leaf tip. Absorbance of this area was recorded using an 

Imaging PAM (Heinz Walz GmbH). Plants were dark adapted for 5 minutes prior to an initial 

F0/Fm and respiration rate measurement in the dark. Subsequently, plants were allowed to 

acclimate to the initial irradiance of 200µmol m-2 s-1 for ten minutes. Gas exchange and 

simultaneous fluorescence measurements were then recorded using a LICOR LI-6400 portable 

photosynthesis system (LICOR GmbH) at irradiances of 50, 100, 150, 200, 250, 300, 400, 500, 

600, 800, 1000, 1250, 1500 and 2000µmol m-2 s-1 using a constant flow rate of 200µmol m-2 s-1, a 

sample CO2 concentration of 400µmol m-2 s-1, and a block temperature of 28 °C with a relative 

humidity of at least 50% at all times. Plants were allowed to acclimate to each subsequent 

irradiance level for 3 minutes. The average of four fluorescence measurements was then recorded 

at 30 second intervals and the average of up to 54 photosynthetic assimilation rate measurements 

recorded at 5 second intervals were taken at each irradiance level (see Appendix 1 for details of 

data handling and of the LICOR autoprogram written). The LICOR IRGAs were matched 

LL 
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immediately prior to each measurement. All measurements were performed within the growth 

chamber plants were grown in. 

2.5. Chlorophyll fluorescence imaging 

Mature fifth leaves were imaged whilst attached to the plant and surrounded by ambient CO2 and 

100% relative humidity. P3 and P4-1 stage rice leaf primordia were dissected under a 

stereomicroscope (Leica MZ12) and mounted on cooled set 5% (w/v) agarose (Sigma) in a 

35mm (2 mL volume) imaging dish (Ibidi). Imaging was carried out using a custom built 

chlorophyll fluorescence imaging system using a modified Olympus BX50WI microscope (Rolfe 

& Scholes, 2002). After exposing samples to an initial dark period of five minutes, the zero level 

of fluorescence was recorded (Fo) and a saturating pulse was applied (3000μmol m-2 s-1) to 

measure the initial maximum fluorescence (Fm). Subsequently, an actinic light was switched on 

(50μmol m-2 s-1 for primordia, 200μmol m-2 s-1 for P5 stage and mature leaves). These optimal 

induction irradiances to avoid photodamage of 50 μmol m-2 s-1 for P3 and P4 stage leaves and 200 

µmol m-2 s-1 for P5 stage and mature leaves were determined through pilot experiments. During 

induction, Fs (steady state fluorescence) and Fm' (fluorescence during a saturating pulse of 

3000μmol m-2 s-1) were recorded after 2s and 10s, then every 30s (in the first two minutes) and 

every 60s (in the remaining induction period) over a total period of 10min12s (primordia) or 

15min12s (mature leaves). For light response curves, samples were then exposed to irradiances of 

30, 50, 100, 150, 200, 300, 400 and 600 (and 800, 1500 for mature leaves) μmol m-2 s-1. After 

acclimation to each subsequent irradiance level (four minutes for leaf primordia, five minutes for 

mature leaves), four Fs/Fm’ measurements were taken at 30 second intervals. Captured Fo, Fm, Fs 

and Fm’ images were processed to calculate photosynthetic parameters using custom-built Image 

J-based software (Rolfe & Scholes, 2002). Absorbance was imaged by measuring the relative 

reflection of red and near-infrared light as described in Rolfe and Scholes (2010).  

2.6. RNA-Seq 

2.6.1. RNA extraction and Sequencing 

For P3 stage leaves, 240 primordia were used per RNA sample; for P4 stage leaves, five 

primordia per sample (P4 stage leaves around 1 cm in length were used); and for P5 stage leaves, 

three leaves per sample (blade tissue down to the collar only). Samples were all harvested 

between three to five hours into the photoperiod to minimise the potential influence of circadian 

factors and the analysis was performed with three biological replicates. Samples were snap frozen 

in liquid nitrogen upon dissection/ harvesting, before being ground with an ice cold micropestle 

in a 1.5 mL Eppendorf tube. RNA was extracted using 500µl TriZol (Invitrogen) and cleaned up 

and DNAse1 treated using the second column of the Sigma Plant Total RNA kit (Sigma Aldrich). 
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For P3 stage primordia, a batch of 20-40 primordia dissected during the same session were 

harvested into a single 1.5 mL tube kept cold in liquid nitrogen, and these batches were 

combined at the TriZol addition step. Samples were stored for up to three months at -80°C 

between harvesting and extraction. The quality of the resulting RNA was assessed using the 

Agilent 2100 BioAnalyzer (www.genomics.agilent.com), and all RIN values were found to be 

above 8. RNA-Seq was carried out at the Liverpool Centre for Genomic Research 

(www.liv.ac.uk/genomic-research) using RiboZero treated RNA with library construction 

following the Illumina TruSeq stranded mRNA protocol (www.illumina.com). 1 µg of input RNA 

was submitted for sequencing per sample. Sequencing (Illumina HiSeq 2000) produced paired 

end reads with a read length of 100 basepairs.  

2.6.2. Transcript quantification and differential gene expression analysis 

Bioinformatics analysis was carried out by Steve Kelly (University of Oxford). Paired end reads 

were subject to quality trimming and adaptor filtering using Trimmomatic (Bolger et al., 2014) 

using the settings “LEADING:10 TRAILING:10 SLIDINGWINDOW:5:15 MINLEN:50”. The 

quality filtered paired-end reads were then mapped to the complete set of CDS from version 7.0 

of the Oryza sativa L. var. japonica MSU Release 7 using bowtie2 (Langmead and Salzberg, 2012) 

and transcript abundances were estimated using RSEM (Li and Dewey, 2011). All pairwise 

comparisons between developmental stages were made using DESeq (Anders and Huber, 2010), 

using the default normalization method and identifying differentially expressed genes as those 

with a Benjamini-Hochberg corrected p-value ≤ 0.05 (Benjamini and Hochberg, 1995).  A PCA 

plot of all count data by replicate was generated using Simca-P+, version 12 and found to show 

clear clustering by developmental stage. 

2.6.3. Validation of RNA-Seq data by quantitative RT-PCR 

After RNA analysis by Illumina sequencing both in silico quality control and RT-PCR validation 

of the expression patterns of selected genes were used to assess the quality of the data. Validation 

of RNA-Seq data was carried out using RNA retained from the original samples submitted for 

RNA-Seq. M-MLV reverse transcriptase (Invitrogen, www.lifetechnologies.com) was used for 

cDNA synthesis following the manufacturer’s protocol, with 1µg of input RNA used and 500ng 

oligo (dT)18 primer (Sigma).  

Subsequently, RT-PCR amplification was carried out in an ABI StepOne Plus RT-PCR system 

using SYBR Green Master Mix (Invitrogen). Each 20 µL RT-PCR reaction contained 10 µL 

SYBR Green Master Mix, 0.4 µL 10 µM forward primer (Sigma), 0.4 µL 10 µM reverse primer 

(Sigma), 1 µL cDNA and 8.2 µL nuclease free water (Ambion). RT-PCR was performed in 96-

well plates sealed with optical adhesive covers (Applied Biosystems, USA). Primers for RT-PCR 



26 
 

were designed using QuantPrime (Arvidsson et al., 2008) (details in Table 2.1). After an initial 20 

second denaturation at 95 °C, RT-PCR reactions were run for 40 cycles, which consisted of 15 

seconds of denaturation at 95 °C followed by 60 seconds of annealing/ extension at 60 °C, with 

all ramp speeds standard. This was followed by melt curve analysis, which consisted of 15 

seconds at 95 °C followed by 1 minute at 60 °C, with ramping from 60 °C to 95 °C occurring in 

0.3 °C increments. Data were collected at the end of each amplification cycle and during melt 

curve analysis. 

In order to ensure primers were suitable for highly accurate RT-PCR, a standard curve using four 

two-fold serial cDNA dilutions was plotted for each primer pair, and the primer pair efficiency 

and standard curve r2 value were calculated (Table 2.1). In addition, melt curves for each primer 

pair were examined and found not to show multiple peaks. For standard curves, three technical 

replicates were used at each cDNA dilution; P5 stage derived cDNA was used in all cases except 

for testing MONOPTEROS primers, for which P3 stage derived cDNA was used, as 

MONOPTEROS had insufficient expression at P5 stage.  

Having ensured primers had high efficiency and produced a linear standard curve, a comparative 

CT experiment was carried out. In this experiment, cDNA from each of three biological replicates 

for each developmental stage was used, except for P3 stage, were two biological replicates were 

used. Two technical replicates from two separate cDNA synthesis reactions were averaged for 

each biological replicate, and relative fold changes in expression between developmental stages 

were calculated using the ΔΔCT method using StepOne software, version 2.2 (Applied Biosystems, 

U.S.A.) (Schmittgen and Livak, 2008), with P4 designated the control stage, and PROFILIN used 

as an internal control gene. Alternatively, DnaJ, which also shows a neutral expression pattern, 

gave similar results when used as an internal control gene.  
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Gene name 

Primer 
pair 
efficiency 

r2 
value F primer (5’-3’) R primer (5’-3’) 

Amplicon 
length 
(bp) 

MONOPTEROS 
(LOC_Os04g56850) 101.24% 0.971 

TGTGTTCCCTTCG
TCGACCTTG 

TCCATCCCAGGC
ACTGAAACTC 75 

DROOPING LEAF 
(LOC_Os03g11600) 110.99% 0.982 

AAGAGCACCCTTC
GTTGTGAAGCC 

TGGCTTGGCAGC
TTTGATACGC 106 

THYLAKOID 
FORMATION 1 
(LOC_Os07g37250) 84.95% 0.958 

CAGAGCCAACCAT
ACTAGACAAGC 

TCGAGATCCCTG
TCGACACTTC 73 

IMMUNOPHILIN 
(LOC_Os07g30800) 98.91% 0.988 

CGGGACATGAAA
CCAGGTGGTAAG 

AGAATGTTGACG
GCCCAACAGG 79 

NARA5 
(LOC_Os10g42240) 112.17% 0.921 

GCCAGGCCATGG
TTGATTTCTC 

TGCCCAATCTGT
GAAGGAACTCG 60 

DNAJ 
(LOC_Os03g57340) 93.49% 0.986 

TTCTACGAGCACA
CCCTGAACC 

CGTTGACAGCCT
TGAATGAATCAG 139 

PROFILIN 
(LOC_Os06g05880) 91.84% 0.982 

GGTTGTCATCCG
AGGAAAGAAGGG 

ACGACAGGCCA
GTCTTCTTGAC 62 

 

Table 2.1. RT-PCR primer details. Primer pair efficiency and R2 value are derived from standard curves calculated for 
each primer pair using three technical replicates at four input cDNA dilutions. 

 

2.7. In situ hybridisation 

2.7.1. Cloning techniques 

cDNA synthesized as described above from RNA extracted from the stage at which the gene was 

highest expressed was used as a template for PCR. The PCR amplifications were carried out 

using Q5 polymerase (NEB) in 50µL containing 10µL 5x Q5 reaction buffer (NEB), 1µL 10mM 

dNTPS (NEB), 2.5µL 10µM forward primer (Sigma), 2.5µL 10µM reverse primer (Sigma), 2µL 

cDNA and 0.5µL Q5 polymerase (NEB). Primers with Kpn1 and Sac1 restriction sites added 

were designed using NCBI PrimerBlast and are listed in table 2.2. PCR conditions were as 

follows: 30 seconds of initial denaturation at 98°C followed by 30 cycles of denaturation for 10 

seconds at 98°C, annealing for 20 seconds at the appropriate annealing temperature and 

extension for 20 seconds per kb at 72°C, with a final extension at 72°C for two minutes. PCR 
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products were then double-digested with Sac1 and Kpn1 (both NEB) and purified using a 

QIAGEN PCR purification kit. The pBluescript SK- plasmid (Figure 2.5) was also double 

digested with Sac1 and Kpn1 and mixed with 6x loading dye (containing 0.2% w/v bromophenol 

blue and 50% v/v glycerol; both Sigma) before being run on a 1% (w/v) agarose gel in 1x TAE 

buffer (1L 50x TAE buffer contained 242g Tris base (Sigma), 57.1mL glacial acetic acid (Sigma), 

100mL of 0.5M EDTA (pH8; Sigma) and 750mL deionized water) alongside 5µL Hyperladder I 

(Bioline) for 30 minutes at 70V before gel purification using a QIAGEN Gel purification kit. 

Treatment with recombinant Shrimp Alkaline Phosphatase (rSAP; NEB) was carried out 

following the manufacturer’s protocol, including heat inactivation. The purified PCR products 

were ligated to the digested plasmid (2:1 ratio of insert: vector) using T4 DNA ligase (NEB) for 

two hours at room temperature.  

 

Figure 2.5. Vector map of pBluescript SK-, showing Multiple Cloning Site and T7 and T3 promoters. 
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5µL of this ligation product was used to transform α-Select Bronze competent cells (Bioline) 

following the manufacturers protocol. Colonies formed after overnight incubation at 37°C of 

transformants on LB medium (1% (w/v) tryptone, 0.5% (w/v) yeast extract, 10% (w/v) NaCl 

and 1% (w/v) agar; all Sigma) containing 100mg/mL ampicillin (Sigma) were analysed using 

colony PCR. The colony PCR amplifications were carried out using Standard Taq polymerase 

(NEB) in 25µL containing 2.5µL 10x Standard Taq reaction buffer (NEB), 0.5µL 10mM dNTPs 

(NEB), 0.5µL 10µM forward primer (Sigma), 0.5µL 10µM reverse primer (Sigma), and 0.125µL 

Standard Taq polymerase (NEB). Colony PCR conditions were as follows: denaturation for 5 

minutes at 95°C, followed by 30 cycles of denaturation for 30 seconds at 95°C, 30 seconds of 

annealing at the appropriate annealing temperature (see Table 2.2) and extension for 1 minute per 

kb at 68°C, with a final extension at 68°C for five minutes. 10µL PCR product mixed with 2µL 

6x loading dye were run on a 1% agarose gel in 1x TAE buffer for 30 minutes at 70V alongside 

5µL Hyperladder I to check for the correct sized insert. Selected transformants were used to 

inoculate 5ml LB liquid medium cultures (1% tryptone, 0.5% yeast extract, 10% NaCl) containing 

100mg/mL ampicillin, which were incubated at 37°C overnight with shaking at 200rpm 

(Orbisafe, SANYO, Japan). A QIAprep Spin Miniprep kit was used to extract the recombinant 

plasmid and the insert sequence was verified by DNA sequencing performed by the Core 

Genomic Facility at the University of Sheffield (http://genetics.group.shef.ac.uk/). 
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Probe Cloned 
insert 
length (bp) 

F primer R primer 

His H1 
(LOC_Os04g18090) 

161 ATAGGTACCCACGGT
GCTTAAGGAGAGGA 

ATAGAGCTCAGGAGGC
CTTAACCTTGACG 

His H3 
(LOC_Os06g06510) 

177 ATAGGTACCCCGCAA
GTACCAGAAGAGCA 

ATAGAGCTCCACAGGTT
GGTGTCCTCGAA 

His H4 
(LOC_Os10g39410) 

301 ATAGGTACCGTCGG
GCCGTGGCAAG 

ATAGAGCTCGAAGCCG
TAGAGGGTGCG 

CDCb2 
(LOC_Os08g40170) 

650 ATAGGTACCCGTGAC
CTCAAGCCGCATAA 

ATAGAGCTCAAGCACAC
TAAGCAGCATCCA 

MON2 
(LOC_Os04g56850) 

455 ATAGGTACCCAATTT
GCCAAGCACGTCCA 

ATAGAGCTCACTCTGAA
CTGCCAGGATGC 

MON4 
(LOC_Os04g56850) 

343 ATAGGTACCTGCCGC
ATCAAGTGGTAGTT 

ATAGAGCTCCAAGGTC
GACGAAGGGAACA 

DL 
(LOC_Os03g11600) 

436 ATAGGTACCGGTTG
GAGTCCCATGCAAGA 

ATAGAGCTCAGCAGCT
ACTACTCTGGGCT 

CAB 
(LOC_Os01g41710) 

378 ATACTCGAGCAAGAA
CCGGGAGCTGGAG 

ATATCTAGACGGCCGTT
CTTGATCTCCTT 

THF1 
(LOC_Os07g37250) 

343 ATAGGTACCGGCTCG
TTCCCAGAATGGTA 

ATAGAGCTCTGGGGTC
TCTGATCTTTCCTCT 

PsbP 
(LOC_Os07g04840) 

270 ATAGGTACCGAACAC
GGAGTTCATCGCCT 

ATAGAGCTCTCAAACCC
ACCCTCGGAATC  

eEF1a 
(LOC_Os03g08010) 

118 ATAGGTACCGTCATT
GGCCACGTC 

ATAGAGCTCTGTTCATC
TCAGCGG 

CUL1 
(LOC_Os05g05700) 

458 ATAGGTACCGCGTTG
CTGCTATTCAA 

ATAGAGCTCCTGGAAC
GCGAGAAGGACAA 

DWF7 
(LOC_Os01g04260) 

452 ATAGGTACCCACGCC
TACATCCCCAAAGA 

ATAGAGCTCTTAGTTGT
CCACACGGCCTC 

 

Table 2.2. Details of primers used for cloning of in situ hybridisation riboprobes. Note that all probes over 300bp 
were hydrolysed.  

2.7.2. Riboprobe synthesis 

5µg of the miniprep kit product described above was digested (using Kpn1 for antisense probes 

and Sac1 for sense probes) and cleaned up using QIAGEN PCR purification kits. 1µg of these 

linearised template plasmids were then used in 20µl in vitro transcription reactions also containing 

2µL DIG RNA labelling mix (containing Digoxigenin-labelled UTP; Roche), 1µL RNAse 

inhibitor, 2µL T3 (for Kpn1 cut plasmids to generate antisense probes) or T7 (for Sac1 cut 
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plasmids to generate sense probes) RNA polymerase (both 20 units/µL; Roche), and nuclease 

free water (Ambion). Reactions were incubated at 37°C for two hours in a thermocycler before 

addition of 1µL RNAse-free DNAse I (Roche) and incubation at 37°C for a further 15 minutes. 

To precipitate riboprobes, 2µL 0.2M EDTA, 2.5µL 4M LiCl and 75µL 100% ethanol (all Sigma) 

were added sequentially before overnight incubation at -20°C. Centrifugation at 12000g for 25 

minutes at 4°C resulted in the formation of a pellet, which was washed with cold 70% ethanol 

and air dried before resuspension in 100µL nuclease free water (if hydrolysis was required) or 

50µL 50% (v/v) formamide (Sigma) (if no hydrolysis was required). If necessary, 100µL probes in 

nuclease free water were hydrolysed by incubation at 60°C with 100µL 2x carbonate buffer 

(80mM NaHCO3 (Sigma) and 120mM Na2CO3 (Fluka)) for the appropriate length of time to 

generate 200-300bp fragments using the following approximation: Time (t) = (Li-Lf)/kLiLf, where 

Li = initial probe (cloned insert) length, Lf = desired final length, k = 0.11kb/min. After 

neutralising with 10µL 10% acetic acid (Sigma), probes were precipitated with 1/10th volume 3M 

NaAc pH 5.2 (Sigma) and 2 volumes ethanol at -20°C for 2 hours. Samples were spun down for 

20 minutes at 4°C and 13000RPM, washed with 750µL 70% ethanol, and spun down again for 10 

minutes at 4µC and 13000RPM. Pellets were then air dried and resuspended in 50µL 50% 

formamide (Sigma). 2-4µL of these riboprobes were run on a 1% agarose gel for 15 minutes at 

60V in 1X TAE buffer made up using DEPC (diethylpyrocarbonate; Sigma) treated water in a 

clean gel tank. Probes were then stored at -20°C until use. 

2.7.3. Tissue fixation 

For all in situ hybridisation processes, the highest grade chemicals available were used. IR64 rice 

seedlings grown as described above were harvested at 13 days old. The base 5mm of the plant 

with the outermost leaf removed was cut from the plant using a clean scalpel and immediately 

immersed in fixative in 10ml vials (50% ethanol, 5% glacial acetic acid, 4% formaldehyde (Sigma) 

in DEPC treated water). After vacuum infiltration with two washes of cold fixative samples were 

incubated at 4°C overnight. The next day, samples were incubated at 4°C for 30 minutes in 50, 

60, 70, 80, 90, and 100% ethanol sequentially. The 100% ethanol step was then repeated for 3x1 

hour before samples were incubated at room temperature for 1 hour in 25% histoclear (National 

Diagnostics) /75% ethanol, 50% histoclear/50% ethanol, 75% histoclear/25% ethanol, and 

100% histoclear (final step repeated twice). 10-15 chips per 10ml vial of Paraplast Xtra (Sigma) 

were added and samples were incubated overnight at room temperature. The vial was then 

incubated at 40°C for five hours with 10-15 chips of Paraplast Xtra added after every 2 hours. 

The vial was then moved to 58°C and incubated for one hour before the histoclear/Paraplast 

Xtra mix was replaced with pure molten Paraplast Xtra and incubated overnight at 58°C. A 

further two changes/day of liquid Paraplast Xtra were carried out over three days. After the final 
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change, samples were poured into pre-heated aluminium cake moulds at 58°C to give a Paraplast 

Xtra depth of 5-8mm. The position of samples within the blocks was adjusted using a heated 

needle before samples were left to set at room temperature for at least two hours before 

mounting onto sample holders. Samples were stored at 4°C before being sectioned on a 

microtome (Leica RM2145) at 8µm and mounted on 750µL of degassed DEPC-treated water on 

Polysine slides (VWR) on an RNAseZAP (Invitrogen) wiped hotplate (Leica) at 42°C and dried 

overnight. Slides were stored at 4°C. 

2.7.4. Tissue pre-treatment  

Selected slides were mounted in a sterile (baked) glass holder and brought through the following 

series of solutions at room temperature (200mL per sterile glass dish): histoclear (10 minutes), 

histoclear (10 minutes), 100, 90, 80, 60, 30% ethanol (1 minute each), DEPC-H2O (5 minutes), 

2xSSC (20 minutes; 1xSSC contains 150mM NaCl and 15mM NaHCO3, pH 7.0). The slide rack 

was then placed in a pre-warmed dish at 37°C containing 100mM Tris pH 7.5, 50mM EDTA and 

1µg/mL proteinase K (Sigma) for 30 minutes before being brought through the following 

solutions: 1xPBS (Sigma) containing 2mg/mL glycine (Sigma) (2 minutes); 1xPBS (2x2 minutes); 

1xPBS containing 4% formaldehyde (10 minutes); 1xPBS (2x5 minutes); 0.1M triethanolamine 

(Sigma), pH8 (with stirring for 10 minutes, then another 10 minutes with the addition of 1mL 

acetic anhydride (Fluka)); 1xPBS (2x5 minutes); 30, 60, 80, 90, 100, and 100% ethanol (1 minute 

each). Slides in their slide rack were then incubated at 4°C for 120 minutes in a glass dish 

containing a small amount of 100% ethanol at the bottom.  

2.7.5. Hybridisation and visualization 

Probes were denatured at 80°C for two minutes before being cooled on ice and diluted 

appropriately in 50% formamide before mixing 30µL diluted probes with 120µL hybridisation 

buffer (for 18 slides, hybridisation buffer was made up of 300µL 10x salts (100mM Tris pH7.5, 

10mM EDTA, 3M NaCl), 1200µL formamide, 600µL 50% dextran sulphate (Sigma), 30µL 100x 

Denhardts solution (ThermoFisher Scientific), 30µL RNAse free tRNA (Roche) and 240µL 

nuclease free water). 150µL of the hybridisation buffer/probe mix was added to each slide and a 

cover slip put on. Slides were incubated in a sealed slide box above DEPC treated water-soaked 

tissue paper in a hybridisation oven (Hybrigene) at 50°C overnight. The next day, slides were 

transferred back to a slide rack and taken through the following solutions: 0.2x SSC (30 minutes 

at 55°C; coverslips should fall off), 0.2x SSC (2x 30 minutes at 55°C), 1xNTE (0.5M NaCl, 

10mM Tris pH 7.5, 1mM EDTA; 2x 5 minutes at 37°C), 1xNTE containing 20µg/mL RNAse A 

(30 minutes at 37°C), 1xNTE (2x5 minutes at 37°C), 0.2x SSC (2x 1 hour at 55°C), 0.2x SSC (5 

minutes at room temperature), and 1xPBS (5 minutes at room temperature).  Slides were then 

incubated in Roche Blocking buffer (for 18 slides, 200mL contained 20mL Roche blocking 
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reagent (Roche), 20mL 1M Tris pH 7.5, 12mL 2.5M NaCl and 148mL DEPC-treated water) 

followed by BSA blocking buffer (1L for 18 slides contained 10g BSA (Sigma), 100mL 1M Tris 

pH7.5, 60mL 2.5M NaCl, 3mL 100% Triton X (Sigma), 837mL DEPC treated water), both in a 

slide box at room temperature on a rocking table for 40 minutes. Slides were then drained on 

tissue paper, a PAP (hydrophobic) pen (Sigma) was used to draw around sections and antibody 

solution (for 18 slides, 2850µL antibody solution was made up of BSA blocking buffer containing 

2.28µL Anti-DIG antibody (Roche)) was applied to each slide, before incubation in a sealed slide 

box above soaked tissue paper at room temperature for 90 minutes (without coverslips). Slides 

were then placed in fresh BSA blocking buffer (4x15 minutes at room temperature in a slide box 

on a rocking table as before). Slides were drained on tissue paper before incubation in a slide rack 

in a dish containing 200mL developing buffer (made up of 20mL 1M Tris pH7.5, 8mL 2.5M 

NaCl, 10mL 1M MgCl2 (Sigma) and 162mL DEPC treated water; 2x 10 minutes at room 

temperature). Slides were again drained on tissue paper before being placed above soaked tissue 

paper in a slide box as before. A PAP (hydrophobic) pen was used to draw around slides again 

where necessary, and 150µL developing reagent (made using a NBT/BCIP tablet; Sigma) was 

pipetted to each slide. Slides were incubated in the dark at room temperature at least overnight, 

with colour development judged at regular intervals over the next three days using a 

stereomicroscope (Leica). The reaction was stopped by dipping in stopping buffer (200mL 

contained 2mL 1M Tris pH7, 0.4mL 0.5M EDTA and 197.6mL DEPC treated water) for 2x 10 

minutes at room temperature in a slide rack. Slides were mounted using DPX mountant (Sigma) 

and allowed to harden for at least 2 hours before viewing.   
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 /* AutoProgram 

  Generated Thr Feb 28 2013 18:39:12 

 by AutoProg Builder 1.0b 

 Sequence = "GaaGbaGcaBdaCcDaFkABdaCcDaFnCcFnCcFnCcFn" */ 

:FLOAT  

  ctlVal1 200 

  ctlVal2 400 

  ctlVal3 28 

  wait1 5 

  logEvery1 5 

  wait2 10 

  logEvery2 5 

  wait3 .5 

  logEvery3 5 

  wait4 .5 

  logEvery4 5 

  wait5 .5 

  logEvery5 5 

  wait6 3 

  logEvery6 5 

  wait7 .5 

  logEvery7 5 

  wait8 .5 

  logEvery8 5 

  wait9 .5 

  logEvery9 5 

  wait: 60 

  values1[50] { 0 } 

  values2[50] { 200 } 

  values3[50] { 50 100 150 200 250 300 400 500 600 800 1000 1250 1500 2000 } 

  values4[50] { 0 } 

:PTR user[] 

{ 

 :PTR { ctlVal1 "Flow rate (æmol/s):" } 

  

 

:PTR { ctlVal2 "Ref CO2 value (æmol/mol):" } 

 :PTR { ctlVal3 "Block temp (C)" } 

2.8  Appendix 1  
 

2.8.1  LPL script ‘Flexible LightCurve (Julia)’ 
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 :PTR { values1 "Light values (æmol/m2/s):\n" } 

 :PTR { wait1 "Wait time (min)" } 

 :PTR { logEvery1 "Log every _ (secs)" } 

 :PTR { values2 "Light values (æmol/m2/s):\n" } 

 :PTR { wait2 "Wait time (min)" } 

 :PTR { logEvery2 "Log every _ (secs)" } 

 :PTR { wait3 "Wait time (min)" } 

 :PTR { logEvery3 "Log every _ (secs)" } 

 :PTR { wait4 "Wait time (min)" } 

 :PTR { logEvery4 "Log every _ (secs)" } 

 :PTR { wait5 "Wait time (min)" } 

 :PTR { logEvery5 "Log every _ (secs)" } 

 :PTR { values3 "Light values (æmol/m2/s):\n" } 

 :PTR { wait6 "Wait time (min)" } 

 :PTR { logEvery6 "Log every _ (secs)" } 

 :PTR { wait7 "Wait time (min)" } 

 :PTR { logEvery7 "Log every _ (secs)" } 

 :PTR { wait8 "Wait time (min)" } 

 :PTR { logEvery8 "Log every _ (secs)" } 

 :PTR { wait9 "Wait time (min)" } 

 :PTR { logEvery9 "Log every _ (secs)" } 

 :PTR { values4 "Light values (æmol/m2/s):\n" } 

 :PTR { wait: "Wait time (minutes):" } 

} 

 

:FCT main 

{ 

 CLEAR 

 

 user LPPrompts IF RETURN THEN 

 LPPrep 

  ctlVal1 2 FlowSetNewTarget 

  ctlVal2 2 MixerSetNewTarget 

  ctlVal3 2 CoolSetNewTarget 

  1 :INT i1 

  values1 READY LPRegLoop NLOOP LPLoopStat 

   values1 i1 PICK VAL 2 LampSetNewTarget 

   logEvery1 wait1 WaitWithLog lpAbort BREAKIF 

   LPMatch 

   DoFoFm 

   &i1 1 + DROP 
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  ENDLOOP LPDeregLoop 

  1 :INT i2 

  values2 READY LPRegLoop NLOOP LPLoopStat 

   values2 i2 PICK VAL 2 LampSetNewTarget 

   logEvery2 wait2 WaitWithLog lpAbort BREAKIF 

   LPMatch 

   DoFsFmp 

   logEvery3 wait3 WaitWithLog lpAbort BREAKIF 

   DoFsFmp 

   logEvery4 wait4 WaitWithLog lpAbort BREAKIF 

   DoFsFmp 

   logEvery5 wait5 WaitWithLog lpAbort BREAKIF 

   DoFsFmp 

   &i2 1 + DROP 

  ENDLOOP LPDeregLoop 

  1 :INT i3 

  values3 READY LPRegLoop NLOOP LPLoopStat 

   values3 i3 PICK VAL 2 LampSetNewTarget 

   logEvery6 wait6 WaitWithLog lpAbort BREAKIF 

   DoFsFmp 

   logEvery7 wait7 WaitWithLog lpAbort BREAKIF 

   DoFsFmp 

   logEvery8 wait8 WaitWithLog lpAbort BREAKIF 

   DoFsFmp 

   logEvery9 wait9 WaitWithLog lpAbort BREAKIF 

   DoFsFmp 

   &i3 1 + DROP 

  ENDLOOP LPDeregLoop 

  1 :INT i4 

  values4 READY LPRegLoop NLOOP LPLoopStat 

   values4 i4 PICK VAL 2 LampSetNewTarget 

   wait: 60 * LPMeasure lpAbort BREAKIF 

   &i4 1 + DROP 

  ENDLOOP LPDeregLoop 

 LPCleanup 

} 

:FCT WaitWithLog 

{ 

  60 * :FLOAT totalSecs 

  :FLOAT logEvery 

  GETMS totalSecs 1000 * + :LONG stopTimeMs 
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  LOOP 

    stopTimeMs GETMS - :LONG remainingMs 

    remainingMs 1000 <= BREAKIF 

    remainingMs 1000 / logEvery MIN LPMeasure lpAbort BREAKIF 

    LPLog 

  ENDLOOP 

} 
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2.8.2.  Description of data handling for light response curves 

 

Raw data collected using the 'Flexible LightCurve (Julia)' autoprogram was imported into Excel. 

The average of four fluorescence measurements recorded at 30 second intervals and the average 

of up to 54 photosynthetic assimilation rate measurements recorded at 5 second intervals were 

taken at each irradiance level. Since photosynthetic assimilation rate was logged every 5 seconds, 

the phase of initial acclimation to a new irradiance level could be identified and any data points 

collected during this phase were excluded. In addition, since the reference and sample CO2 

concentrations were also recorded every 5 seconds, any photosynthetic assimilation rate 

measurements taken at a time when input CO2 was found to have been unstable could also be 

excluded. The photosynthetic assimilation rate at the end of acclimation at 200µmol m-2 s-1 was 

not found to be significantly lower to that reached at the same irradiance during the light 

response curve in any samples, indicating that the acclimation period was long enough. All 

samples analysed had an initial Fv/Fm over 0.75. A representative analysis is illustrated in Figure 

S1.  

 

 

 

Figure S1.: A. Representative raw assimilation rate data collected during a light response curve at an irradiance of 

100µmol m-2 s-1. B. Processed data with five data points removed; three were removed during the initial acclimation 

to the new irradiance and two were removed during a period of unstable input CO2. 
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3. Early leaf development in rice 

3.1. Introduction 

Rice is a C3 grass whose seeds are the single most important staple food, providing a fifth of 

the world’s dietary energy supply (Elert, 2014). The source of all carbon in these seeds is 

photosynthesis and there is significant interest in improving this fundamental process 

through alteration of several morphological, biochemical and physiological traits in leaves 

(Hibberd et al., 2008; Long et al., 2006). However, there are still large gaps in our knowledge 

of leaf development in rice.  

 

Historically, more work has been carried out to understand the morphological development 

of the fellow monocot maize (Zea mays). This includes work characterizing vascular 

development, the development of leaf margins and the ligule, and work identifying the genes 

regulating the transition between indeterminate and determinate growth (Freeling, 1992; 

Jackson et al., 1994; Jankovsky et al., 2001; Scanlon et al., 1996; Schneeberger et al., 1998; 

Walsh et al., 1998). Recently, maize leaf development has been studied in more detail to 

elucidate the developmental signals required for Kranz anatomy which enables the specific 

compartmentalisation of metabolic processes required for C4 photosynthesis (Li et al., 2010; 

Majeran et al., 2010; Wang et al., 2013). International efforts are currently in progress to use 

this knowledge to improve crops that currently use C3 photosynthesis by engineering their 

anatomy and biochemistry to allow the more water- and energy-efficient C4 photosynthesis 

(Hibberd et al., 2008; Kajala et al., 2011). One of these C3 crops is rice. However, basic 

knowledge of rice leaf development is limited. This is an issue that needs to be addressed if 

successful modifications of rice leaf anatomy for improved yield are to occur. 

 

Kusumi et al. (2010) and Itoh et al. (2005) broadly characterise the different stages observed 

during rice leaf development. Rice leaves are initiated by a co-ordinated process of cell 

growth and division which leads to the formation of a protrusion on the shoot apical 

meristem (Itoh et al., 2005). This leaf primordium (which is enclosed within the encircling 

sheaths of older leaves) then undergoes further development to form a mature leaf which 

consists of a flattened blade and a sheath encompassing the younger leaves, which develop 

sequentially from the shoot apical meristem. The young plant thus consists of a series of 

concentric leaves all of which originate from the meristem and are produced in a series 

separated by a time period, termed the plastochron (P). The definition of leaves by their 

sequential order of formation (L1, L2, L3…) and plastochron age (P1, P2, P3…) allows the 

comparison of leaves from different plants at equivalent developmental stages.  
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P1 stage is characterised by a small protrusion forming on the flank of the shoot apical 

meristem. This protrusion then forms a hood shaped structure around the shoot apical 

meristem (P2 stage) before completely enclosing the shoot apical meristem and taking on an 

elongated conical shape (P3 stage) (Itoh et al., 2005). The subsequent P4 stage is 

characterised by a phase of rapid elongation of the leaf blade and visible greening of the 

tissue. Due to the degree of elongation that occurs during P4, the stage can be sub-divided 

into stages (1-12) defined by particular blade lengths (Kusumi et al., 2010). At P5 stage the 

distal tip of the leaf starts to protrude from the sheaths of older leaves, being pushed up by 

rapid elongation of the more proximal sheath, before growth stops as the leaf reaches 

maturity (P6 stage).   

 

Despite the fact that the gross morphology of rice leaf developmental stages has been 

previously studied, there is a gap in our knowledge when it comes to a precise analysis of the 

development of specific structures. The development of stomata and vasculature in particular 

are not as well studied in rice as they have been in maize, let alone Arabidopsis thaliana. The 

vasculature shows distinct modifications in C4 plants compared to C3 plants, and it has been 

argued that an in-depth understanding of C3 vascular anatomy and C4 ‘Kranz anatomy’ is 

crucial for the successful engineering of C4 photosynthesis into C3 crops (Hibberd et al., 

2008; Kajala et al., 2011). Stomatal development in rice is also of key importance, particularly 

with regard to improving heat and drought tolerance in the light of global climate change, but 

this has recently been given more attention by others (Luo et al., 2012) (van Campen et al., 

2016; Yaapar 2016, Thesis).  Thus, I have focused here on the precise characterization of 

vascular development in early rice leaf primordia (P2 stage to mature leaves). 

 

The development of vasculature, stomata and other morphological traits in plants is broadly 

governed by patterns of gene expression (Barkoulas et al., 2007; Braybrook and Kuhlemeier, 

2010; Fleming, 2005). Indeed, the fact that many traits are found to be highly repeatable (have 

high heritability) within plants of the same genetic background under the same growth 

conditions has long been used in breeding programs (Dudley and Moll, 1969; Hallauer, 2007; 

Reeves and Cassaday, 2002). However, even within plants of a similar genetic background, 

phenotypic plasticity can be observed when plants are exposed to different environments 

(Sultan, 2000). In rice, a crop plant, many studies of the yield performance of a single variety 

in different environments demonstrate this (Braun et al., 2010; Muralidharan et al., 2002). 

However, the precise morphological and developmental aspects of this phenotypic plasticity 

are not often studied in crop plants. Thus, in addition to characterizing morphological 
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changes during leaf development, I aim to define the developmental window within which 

phenotypic plasticity is possible in rice.  

 

Plants show developmental plasticity in response to a variety of environmental stimuli. In 

particular, a significant body of work has shown that many plants have the ability to acclimate 

their leaves to the light environment, leading to the formation of sun or shade leaves (Kim et 

al., 2005; Kubinova, 1991; Murchie and Horton, 1997; Oguchi et al., 2003; Terashima et al., 

2006). The ambient environment is sensed by mature leaves, leading to the formation of an as 

yet uncharacterised signal that influences the morphogenesis of developing leaves at a 

distance from the mature leaves and facilitates their morphological and physiological 

acclimation. Although it is well established that leaves in many species (including rice) can 

undergo this acclimation (Hikosaka and Terashima, 1995; Murchie and Horton, 1997; Oguchi 

et al., 2003) and it is known that the cellular processes underpinning this acclimation occur 

during relatively early stages of leaf development (Jurik et al., 1979; Murchie et al., 2005; Sims 

and Pearcy, 1992), the point when developmental plasticity is lost has not been defined 

precisely. Thus, I have used transfers of plants at different developmental stages between 

different light environments to induce developmental changes. Since the transfer of plants 

from high irradiance (700 µmol m-2 s-1) to low irradiance (200 µmol m-2 s-1) showed a similar 

but stronger response than vice versa (both in thickness and in photosynthetic capacity) in 

previous experiments performed in the Fleming group, this experimental setup was chosen 

(Narawatthana 2013, Thesis). 

3.2. Aims 

- To characterize the early stages of rice leaf development 

- To characterize vascular development in rice leaves  

- To define the developmental window within which morphological and physiological 

acclimation to light can take place. 
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3.3. Brief methodology 

General methods are described in Chapter 2; details are shown below of the specific methods 

used in this chapter. 

3.3.1. Plant material and histology 

IR64 rice was grown as described in chapter 2. For experiments in which plants were transferred 

between light conditions at different developmental stages of leaf five, the protruding length of 

the third leaf was used as a proxy for the developmental stage of the younger leaf five inside it 

(van Campen et al., 2016). For plants grown in high light (at an irradiance of 700µmol m-2 s-1) a 

clear filter (cellophane) was positioned approx. 10cm above the canopy; for plants grown in low 

light (at an irradiance of 250µmol m-2 s-1), a neutral density filter was positioned approx. 10cm 

above the canopy. For leaf thickness measurements and studies of vascular development, 1cm 

segments were cut from mature 5th leaf blades and embedded in Technovit 7100 as described in 

chapter 2. Thickness was measured at the bulliform cells using Adobe Photoshop as described in 

chapter 2. 

3.3.2. Physiology- light response curves 

Light response curves were recorded on mature 5th leaves. Leaves were deemed mature as soon 

as blade elongation was no longer occurring (measured on individual leaves; this usually occurred 

around 20 days after sowing in high light grown leaves and slightly later in leaves grown in or 

transferred to low light). The probed leaf area of around 0.75cm2 was positioned 1/3 of the total 

length of the leaf blade away from the leaf tip. Absorbance of this area was recorded using an 

Imaging PAM (Heinz Walz GmbH). Plants were dark adapted for 5 minutes prior to an initial 

F0/Fm and respiration rate measurement in the dark. Subsequently, plants were allowed to 

acclimate to the initial irradiance of 200µmol m-2 s-1 for ten minutes. Gas exchange and 

simultaneous fluorescence measurements were then recorded using a LICOR LI-6400 portable 

photosynthesis system (LICOR GmbH) at irradiances of 50, 100, 150, 200, 250, 300, 400, 500, 

600, 800, 1000, 1250, 1500 and 2000µmol m-2 s-1 using a constant flow rate of 200µmol m-2 s-1, a 

sample CO2 concentration of 400µmol m-2 s-1, and a block temperature of 28 °C with a relative 

humidity of at least 50%. Plants were allowed to acclimate to each subsequent irradiance level for 

3 minutes. The average of four fluorescence measurements was then recorded at 30 second 

intervals and the average of up to 54 photosynthetic assimilation rate measurements recorded at 5 

second intervals were taken at each irradiance level (see also Supplementary Material S1 of 

Chapter 2). The LICOR IRGAs were matched immediately prior to each measurement. All 

measurements were performed within the growth chamber plants were grown in. 
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3.4. Results 

3.4.1. Gross morphology of early rice leaf development 

In order to define the biological system used in this thesis, an initial characterization of early leaf 

development in rice was undertaken, with a focus on the development of those structural features 

important to photosynthetic performance. Figure 3.1A and B show the developmental 

plastochron stages P1 (youngest primordium) to P6 (mature leaf) of leaf 5, and Figure 3.2 

provides an overview of the histology of the different plastochron stages of rice leaf 

development. Several observations of relevance to photosynthetic development and performance 

can be made without using a microscope. For example, primordia at the P1- P3 stages are not 

visibly green, whereas visible greening occurs at P4 stage. In addition, the gross morphology of 

veins is already visible to the naked eye at the P3 and P4 stages. As well as showing greening and 

vascular development, P4 stage is also a stage of rapid leaf blade elongation, which continues in 

P5 stage, and is then also accompanied by rapid elongation of the sheath. P6 stage, which is the 

mature leaf, shows little gross morphological change compared to P5 stage, except bending of the 

leaf at the lamina joint and a full greening of the leaf blade.  

As choosing an appropriate leaf to study is key to repeatable measurements of development, I 

proceeded to compare the development of the first five leaves of a rice seedling. The first three 

leaves of a rice plant (P1 – P3) are already initiated in the embryo prior to seed germination (Itoh 

et al., 2005). Following germination additional leaves are produced at regular intervals by the 

shoot apical meristem (Itoh et al., 2005). Thus, leaf five is produced from the shoot apical 

meristem rather than being present in the embryo. In addition, I found that leaf five showed a 

typical and reproducible growth pattern (Figure 3.1D). Therefore, leaf five was chosen for use in 

all subsequent analyses.  

Observing developing leaves in rice is complicated by the fact that leaves at the P1-P4 stages are 

hidden from view by the sheaths of older leaves, as can be clearly observed in both longitudinal 

and transverse sections (Figure 3.2). Thus, a method of non-invasively determining the 

plastochron stage of leaf five was required. The development of new leaves (plastochron) in rice 

is correlated in time with leaf protrusion from the leaf sheaths of older leaves (phyllochron). This 

phenomenon was used to develop a plastochron index by which the length of the third leaf could 

be used to estimate the plastochron stage (P1-P4) of the younger fifth leaf developing inside it, 

facilitating transfer of plants at particular leaf 5 plastochron stages (Narawatthana 2013, Thesis; 

van Campen et al., 2016) (Figure 3.1C).  
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A B 

C D 

Figure 3.1. Analysis of leaf growth. (A) Dissected apices reveal leaf primordia at P1, P2, P3 and P4-1 (<1 cm) stages. 

(B) Leaf primordia at stages P3, P4-2 (<2 cm), P4-12 (<12 cm), P5 and P6 stages. (C) Plastochron index showing 

the relationship between the length of leaf 3 and developmental stage (P1, P2, P3, P4) of leaf 5. (n=7).  (D) Leaf 

blade elongation over time for the first 5 leaves of IR64 rice. Error bars show standard deviation (n=10). Scale bars 

in A= 0.25 mm (P1, P2, P3) or 1 mm (P4-1); B = 1 cm. 
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Figure 3.2. Anatomy of the rice shoot apical meristem and developing leaves. (A) Longitudinal section through 

rice shoot apical meristem (SAM) and P1, P2 , P3, and P4 stage leaves, scale bar 300µm. (B) SAM and P1 and P2 

stage leaves, scale bar 100µm. (C) Cross section through the base of a rice plant, showing SAM, P2, P3, P4 and P5 

stage leaves. Scale bar 100μm. (D) Diagram showing leaf primordia and P5 and mature leaf blades. Black bands 

indicate location of vascular development sections (Figure 3). P2 vascular development sections were taken from 

the middle of the primordium. 
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3.4.2. Vascular development in rice   

Since veins are one of the most important determinants of leaf structure and function, I studied 

vascular patterning changes during the early leaf development of wild type IR64 rice plants in 

detail. Data presented here are the combined results of work by a masters’ student, Rona 

Costello, and myself. During small vascular bundle development (Figure 3.3 A-D) at P3 stage, a 

small patch of procambium (circled) can be seen as a darkly stained area in the cells of the ground 

tissue (A). This area grows larger in P4 (B), and by P5 (C) individual xylem and phloem cells of 

the vascular bundle are visible and bundle sheath formation has begun. Figure 3.3D shows the 

mature small vascular bundle. During large vascular bundle development (Figure 3.3 E-H), 

procambium formation can be seen at P3 stage (circled), with cells in the outer layer of 

procambium forming a ring around the developing bundle. At P4 stage (F), the area of 

procambial cells has grown and the formation of a protoxylem (arrow) can be seen on the adaxial 

side of the bundle. At P5 stage (G), two large metaxylem elements and a few phloem cells have 

formed, and the bundle and mestome sheath now surround the vascular tissue. The mature large 

vascular bundle (H) has slightly larger metaxylem and a few more phloem cells (circled) and the 

protoxylem has been replaced with the primary lacuna. During the formation of the midvein 

vascular bundle (Figure 3.3I-L), the procambium (circled) of the midvein at P3 stage is the largest 

of the three vein types and protoxylem formation (arrow) on the adaxial side can be seen (I). This 

becomes larger in P4 stage (J) and cells of the phloem begin to differentiate (circled). The P5 stage 

midvein much resembles the large vascular bundles at this stage (J). The P6 stage midrib is 

composed of one large vascular bundle and three small vascular bundles whose final structure is 

the same as that of other bundles in the leaf.  
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3.4.3. Acclimation of leaf morphology to altered irradiance 

In order to define the developmental stage at which morphological features such as veins are set, 

I subjected rice leaves at different developmental stages to a change in their light environment. I 

hypothesized that at developmental stages at which leaf morphology was developing and still 

plastic, this would lead to acclimation to the new conditions, whereas at later developmental 

stages, acclimation would be limited because development of the structures involved had already 

been completed. Figure 3.4 A shows a schematic of the experiment, in which plants were moved 

from high light (700µmol m-2 s-1) to low light (250µmol m-2 s-1) at different plastochron stages of 

leaf five.   

Figure 3.3. (sections by Rona Costello). Development of the small, large and midvein vascular bundles. Transverse 
sections of Lf5 showing development across plastochron stages P3 (A, E, I), P4 (B, F, J), P5 (C, G, K) and P6 (D, 
H, L) for the three types of longitudinal veins in rice. VBS, vascular bundle sheath; Ph, phloem; Xy, xylem; MX, 
metaxylem; MS, mestome sheath; SV, small vascular bundle; LV, large vascular bundle. Scale bars: 10μm. 
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Under my experimental conditions, entirely low light grown leaves were significantly thinner than 

those grown under high light (Figure 3.4B). I tested whether there is a developmental window 

within which transfer from high to low light leads to the development of a thinner leaf. Plants 

transferred from high to low light when leaf five was at early plastochron stages (P1 and P3) 

developed a mature leaf five that was fully acclimated to the low light environment it had been 

transferred to, being as thin as leaves grown in low light throughout  (Figure 3.4B). However, 

leaves transferred to low light at the late P5 stage, when they had already protruded from the leaf 

sheath but were not fully expanded, displayed an intermediate thickness in between the thickness 

of leaves developed under high or low light (Figure 3.4B). 

Having established that leaf morphology acclimates to light in rice, the acclimation of other 

structural features was studied. In addition to being thicker, high light grown leaves were also 

found to be wider than those grown in low light (Figure 3.5A). Leaves transferred from high to 

low light at P1 or P3 stage were significantly narrower than those grown under high light and the 

same width as those grown constantly under low light. In a similar pattern to our leaf thickness 

observations, leaves transferred from high to low light at P5 stage reached an intermediate width, 

and were not significantly different to fully high light grown or fully low light grown leaves.  

Another structural feature of relevance to leaf performance is the vasculature. High light grown 

leaves had a slightly larger number of veins across the whole width of the leaf than low light 

grown leaves, but this difference was not significant (Figure 3.5B). Leaves transferred from high 

to low light at P1 or P5 stage contained a number of veins not significantly different to a high 

light grown leaf, whereas leaves transferred at P3 stage had a significantly smaller number of 

veins than fully high light grown leaves. 

A B 

Figure 3.4. A. Schematic representation of light transfer experiment. HL, high light, LL, low light, das, days after 
sowing. B. Leaf thickness in mature leaf 5 after growth in continuous high light (HL), continuous low light (LL) or 
transfer from high to low light at P1, P3 or P5 stage. Error bars indicate standard error of the mean. Letters indicate 
statistically significantly different means (p<0.05; Tukey test, n≥6). 
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Similarly, no significant difference in vein density (number of veins per millimetre) is seen 

between high light grown leaves or low light grown leaves, or those transferred from high to low 

light at P3 or P5 stage (Figure 3.5C). Curiously, leaves transferred from high to low light at P1 

stage have significantly higher vein density than any of the other categories considered. 

Finally, vein spacing was studied, as the differences between C3 and C4 plants in this parameter 

are thought to be key to performance differences between these photosynthetic types. Interveinal 

distance was found to acclimate to the light environment, with high light grown leaves having 

significantly larger interveinal distances between small veins than low light grown leaves (Figure 

3.5D). In a pattern reminiscent of that seen in leaf thickness and leaf width, leaves transferred 

from high to low light at P1 stage have interveinal distances that were the same size as those seen 

in fully low light grown leaves, whereas leaves transferred at the later P3 stage had interveinal 

gaps that are intermediate in size between high and low light grown leaves. Indeed, leaves 

transferred at P5 stage had significantly greater interveinal distances than leaves grown constantly 

under low light, with interveinal distances being the same as those seen in fully high light grown 

leaves. 

Figure 3.5. Morphological acclimation to light in rice leaves. A. Leaf width, B. Number of veins, C. Veins per 
mm, and D. Interveinal distance between small veins. Parameters were measured in mature leaf 5 after growth 
in continuous high light (HL), continuous low light (LL) or transfer from high to low light at P1, P3 or P5 
stage. Error bars show standard error of the mean. Different letters indicate statistically significantly different 
means (p<0.05), Tukey test (n≥6).   
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3.4.4. Acclimation of leaf physiology to altered irradiance  

In addition to investigating the acclimation of leaf morphology to light, I investigated the 

photosynthetic acclimation to light of the rice leaf. Gas exchange analysis and chlorophyll 

fluorescence were used to probe the physiology of leaves grown at high light (700µmol m-2 s-1) 

and low light (250µmol m-2 s-1). As with my study of the acclimation of morphological 

parameters, transfers from high to low light were used to investigate whether acclimation ability 

was affected by the developmental stage at which a new environment was experienced.  

Acclimation of photosynthetic capacity to the light environment was found to occur, with the 

maximum photosynthetic capacity achieved by plants grown under high light conditions found to 

be markedly higher than that of those grown under low light conditions (Figure 3.6A). However, 

no increased efficiency at lower irradiances was observed in low light grown plants compared to 

high light grown plants (Figure 3.6B). In contrast to our observations with regard to the 

acclimation of morphological parameters, no effect of transfer of plants at different 

developmental stages was observed. Indeed, photosynthetic performance in leaves transferred 

from high to low light at any plastochron stage was found to be indistinguishable from that of 

leaves developed under constant low light, both in terms of the dynamics of the assimilation rate 

under different irradiances and the maximum assimilation rate under light saturation. Although 

attempts were also made to study the acclimation of the dark respiration rate, due to the small 

leaf area used and the error associated with measurements, no statements about the dark 

respiration rates of any plants can be made. 

In addition to these studies of photosynthetic gas exchange, the efficiency of the photosynthetic 

electron transport chain of leaves acclimated to different light environments was studied using 

chlorophyll fluorescence. Several parameters were calculated from chlorophyll fluorescence 

measurements, including ΦPSII (the quantum efficiency of photosystem II), non-photochemical 

quenching (NPQ) and the electron transport rate (ΦPSII*leaf absorbance*irradiance). ΦPSII and 

thus electron transport rate were found to be higher in high light grown leaves than in low light 

grown leaves at irradiances above around 300µmol m-2 s-1, below which there was no difference 

between high light and low light grown leaves (Figure 3.6A and B). As with photosynthetic gas 

exchange results, no effect of the plastochron age at which plants were transferred was seen, with 

leaves transferred from high to low light at different plastochron stages all acclimating to low 

light in terms of their ΦPSII and electron transport rate. Electron transport rate seems to drop off 

above an irradiance of 1000µmol m-2 s-1 for all samples, but this is likely to be an artefact of 

increased measurement error when values of ΦPSII are small, combined with the possibility that 

overheating of the fluorescence sensor influences measurements at high irradiances.  
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Next, the light acclimation of non-photosynthetic quenching (NPQ) in rice was assessed. NPQ 

reflects the dissipation of excess light energy. In all samples, NPQ was very low up to an 

irradiance of 300µmol m-2 s-1, after which it increased more rapidly for all samples (Figure 3.6C), 

indicating that leaves were increasingly needing to dissipate excess light energy above this 

irradiance. However, little acclimation of this dissipation was observed, with high light grown 

leaves having only slightly lower NPQ at all irradiances tested than low light grown leaves or 

leaves transferred to low light at different developmental stages. This difference in NPQ 

response between leaves acclimated to different environments was not found to be statistically 

significant. Following on from this, the relationship between ΦPSII and NPQ was assessed at a 

range of irradiances. NPQ increased almost linearly with decreasing ΦPSII from a ΦPSII of around 

0.5 (Figure 3.6D). In addition, the shape of the light response curve displayed by NPQ was 

similar for all samples, as was the relationship between NPQ and ΦPSII. This indicates that leaves 

acclimated to high light and low light did not dissipate the light energy received at different 

irradiances in markedly different ways. 
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Figure 3.6. Physiological acclimation to light in rice leaves. A. Photosynthetic assimilation rate in response to changes 
in irradiance in high light and low light grown plants and plants transferred from high to low light at different 
developmental stages. B. Leaf absorbance of plants grown under different light treatments. C. ΦPSII D. Electron 
transport rate E. Non-photochemical quenching F. non-photochemical quenching vs. ΦPSII. HL, high light all along; 
LL, low light all along; P1>LL, P3>LL, P5>LL: transferred from high to low light at developmental stage P1; P3 
and P5 respectively. Error bars represent standard deviation. 
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3.5. Discussion 

3.5.1. Characterization of rice developmental stages 

In this chapter, I set out to characterize the early development of the rice leaf in order to choose 

an appropriate study system and to guide further experiments. The overall anatomy of developing 

rice leaves has been previously characterized (Itoh et al., 2005; Kusumi et al., 2010). I found that 

the rice variety studied here (IR64, an ‘indica’ variety) showed a similar pattern of development to 

the variety used in these studies (Nipponbare, a ‘japonica’ variety). For further in depth study of 

leaf development in rice, it was also important to choose a particular leaf to work on. The fifth 

leaf of rice has previously been used in several studies that have looked in depth at rice leaf 

development (Murchie et al., 2005; Kusumi et al., 2010). Combined with the fact that the fifth 

leaf is not present in the embryo prior to germination and the robust growth pattern displayed by 

this leaf, this previous use in the literature makes it an ideal model for the development of other 

shoot apical meristem-derived rice leaves. 

In rice, early leaf development largely occurs in an environment that is to some extent ‘sheltered’ 

from the outside environment by the sheaths of older leaves. The same can be said for leaf 

development in other grasses. Use of a plastochron index was found to be helpful for non-

invasively sampling specific developmental stages that are obscured from view by the sheaths of 

older leaves. However, interestingly, the plastochron (time interval in between the initiation of 

successive primordia) in rice is longer than in maize (Xiaojia Yin and Peng Wang, personal 

communications). A different way of seeing this would be that there is one additional 

primordium developing inside the concentric whorls of developing leaves in maize compared to 

rice. Thus, plastochron indexes must be specific to the grass species studied. In addition, 

previous work in the Fleming lab has shown that the rice leaf plastochron index differs for high 

light and low light grown rice leaves (Narawatthana 2013, Thesis), so careful attention must be 

paid to the environment leaves develop in.  

In addition to broadly characterising the different plastochron stages observed in rice, I studied 

the development of the vasculature in more detail, as vasculature is known to be key to many 

aspects of mature leaf function, including photosynthetic efficiency and drought and heat 

tolerance (Sack et al., 2013). Changes in vein number and size were found to occur at specific 

moments during rice leaf development. As in maize, the midvein is initiated early (by rice P2 

stage, maize P1/2 stage), with development of lateral veins occurring at the next developmental 

stage (rice P3, maize P3/4 stages) (Wang et al., 2013). However, in maize, foliar leaves develop 

the spacing (by P4 stage) and characteristic Kranz anatomy (by P5 stage) of C4 plants, which does 

not occur in our C3 rice leaves. The venation pattern that develops in rice is instead broadly 
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similar to that of many other C3 grasses (Nelson and Dengler, 1997; Sage and Sage, 2009; 

Sakaguchi and Fukuda, 2008).  

3.5.2. Plasticity in leaf structure is limited to early developmental stages   

In order to investigate at which developmental stages of the rice leaf certain morphological 

parameters were plastic, rice plants of which leaf five was at different developmental stages were 

exposed to a change in the light environment to see to what extent acclimation would occur. 

Though little studied in rice, acclimation to high or low light conditions has been studied in 

species as diverse as A. thaliana, Chenopodium album, cotton and barley (Kim et al., 2005; 

Kubinova, 1991; Oguchi et al., 2003; Pushnik et al., 1987; Yano and Terashima, 2001). Across 

these species, acclimation often results in plants allocating their resources to different growth 

strategies. In general, thick high light acclimated leaves have large internal mesophyll cell surface 

areas occupied by chloroplasts for CO2 uptake, whereas thinner low light acclimated leaves use 

fewer resources to build leaf thickness and more to attempt shade avoidance and elongation 

growth (Terashima et al., 2006). Features of high light leaf anatomy are generally thought to be 

established at an early stage of leaf expansion, though the specific developmental stages involved 

in rice are unknown (Jurik et al., 1979; Sims and Pearcy, 1992). 

From my observations, I conclude that rice leaves transferred from high to low light at different 

plastochron stages (P1, P3 and P5) fully acclimate to their new low light environment in terms of 

their photosynthetic capacity (maximum assimilation rate and electron transport under saturating 

light). No developmental ‘setting’ of the biochemical aspects of photosynthetic capacity thus 

occurs. Instead, leaf physiology is highly plastic even at later developmental stages. However, 

morphological parameters showed much more developmentally restricted acclimation. For 

example, although leaves transferred from high to low light at early developmental stages (P1 and 

P3) fully acclimate in terms of their thickness, leaves transferred to low light at the later P5 stage 

may become thinner than those that stay at high light, but not as thin as leaves grown at low light 

all along. A similar pattern of acclimation potential is seen in leaf width, and the interveinal 

distance in between small veins, but not in the number of veins or in the number of veins per 

millimetre. These latter structural parameters appear not to show much acclimation, though this 

may be confounded by the effect of counting large veins in this measure, which may themselves 

change in width and thus affect total leaf width.  These results suggest that although 

morphological parameters such as thickness, interveinal distance and leaf width may be partly set 

by the time a leaf has protruded from the sheaths of older leaves, biochemical parameters that 

affect the maximum assimilation rate are still plastic, and these acclimate under low light 
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conditions to give a leaf with a low maximum assimilation rate despite having intermediate 

morphological parameters. 

Previous work in rice has also considered the developmental dynamics of leaf acclimation to 

light, though to a lesser developmental resolution. Murchie et al. (2005) showed that rice plants 

grown in high light developed thicker leaves with a higher maximum rate of photosynthesis 

(Pmax), more Rubisco per unit leaf area, and a higher chlorophyll a:b ratio than those grown in 

low light. This response is similar to the previous results from other species mentioned above 

and to my results. Interestingly, differences were also seen between leaves transferred from low 

to high light at different developmental stages in this study, although leaves at early primordia 

stages were not probed (Murchie et al., 2005). Leaves transferred before expansion displayed full 

photosynthetic acclimation, whereas leaves transferred later showed a reduction in the 

chlorophyll a:b ratio and and increase in Rubisco content but no change in leaf thickness. Thus, 

thickness was set at a stage of development prior to leaf expansion. Despite thickness being set, 

leaves were still able to acclimate fully in terms of their photosynthetic capacity, with leaves 

transferred from low to high light displaying high photosynthetic capacity after two days in their 

new high light environment.  Thus, it can be inferred that other factors, primarily the chlorophyll 

a/b ratio and the Rubisco content, are more important than leaf thickness in allowing acclimation 

to new irradiances (Murchie 2005).   

Despite the fact that thickness is not as important for photosynthetic capacity as Rubisco content 

and the chlorophyll a/b ratio, my results on leaf thickness acclimation raise a number of 

interesting questions. The first of these concerns the nature of the signalling from mature to 

developing leaves in response to a change in light. Although some light undoubtedly reaches the 

developing primordia, the developing leaf is still very much shielded from the environment by 

the sheaths of older leaves. As leaves were found to be more able to acclimate in terms of 

thickness prior to protrusion from the leaf sheath, do they receive signals from older leaves that 

inform them on the light environment around the plant?  

 

Secondly, the mechanisms by which this signal results in a response in leaf thickness and 

biochemical adaptation require further study. Since these responses trigger a long term 

physiological change that is maintained as the leaf grows, some form of memory is also likely to 

play a role. Long distance signalling within plants in response to light has previously been 

described (Coupe et al., 2006). Previous research has indicated that other environmental 

information can also be relayed from one part of the plant to another (Lake et al., 2001; Lake et 
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al., 2002). Thus, long distance signalling between plant organs is a growing field of study, to 

which light response-related studies in grasses could make important contributions.  

Applications of this work could also lie in crop improvement. There is significant interest in 

modifying rice leaf structure for increased photosynthesis and ultimately yield (Hibberd et al., 

2008; Long et al., 2006). The exploration of the limits of phenotypic plasticity in the normal 

process of leaf differentiation can inform on the boundaries of the system and identify whether 

particular stages of development should be targeted for modification. In particular, my data show 

that transfer of a rice leaf from a HL to LL environment at a very early stage of development (P1) 

leads to narrower leaves with an increased number of (but smaller) interveinal gaps. Vein density 

is one on the key properties that will need to be modified in order to introduce C4 photosynthesis 

into rice (Feldman et al., 2014; Kajala et al., 2011; Smillie et al., 2012). Previous research has 

shown that variation in vein density can be created in rice through the use of a deletion mutant 

population (Smillie et al., 2012). I show that varying vein densities can also be observed in plants 

which have been grown at different irradiances, but that there is a specific developmental window 

within which acclimation can take place. Thus, modification of leaf structure may be facilitated by 

targeting alterations to particular developmental stages.  

As well as being informative for engineering Kranz anatomy, this work is also informative for 

other aspects of monocot leaf development. In particular, vein density in monocots affects leaf 

water and CO2 relations at a fundamental level through its influence on stomatal patterning. Due 

to the anatomy of rice leaves, the width of a stomatal complex will be influenced by the width of 

the epidermal cell file within which it arises. Coupled to the number of cell files within an 

interveinal gap and the number of interveinal gaps in a leaf (which will be set by the number of 

veins and the overall width of a leaf), a complex interaction of cellular and leaf-scale patterning 

and differentiation events will influence the final number and size of stomata. Recent work has 

successfully manipulated rice stomatal aperture to improve drought tolerance (Hu et al., 2006; 

Huang et al., 2009). Future work could employ modifications to stomatal density for similar 

purposes, or to enhance evaporative cooling in order to enhance heat tolerance. Pinpointing the 

developmental stages at which developmental plasticity is greatest could make any such 

modifications easier to implement, since altering properties throughout a plant or at all 

developmental stages may lead to unintended and complicated outcomes. 
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4. The transition to photosynthetic competence 

4.1. Introduction 

Of primary importance to the yield of cereal crops is the amount of carbon fixation they can 

carry out through photosynthesis (Furbank et al., 2015). Until recently however, cereal breeding 

programs have not focused on increasing yield through improving photosynthesis, instead often 

focusing on more easily measurable traits such as harvest index (Evans, 1997; Reynolds et al., 

2011). It is now becoming clear that improving the photosynthetic performance of crops such as 

wheat and rice must be the focus of future work, since the limits of progress through breeding 

for improved harvest index are being reached (Mitchell and Sheehy, 2006; Parry et al., 2011). 

However, our understanding of the developmental aspects of photosynthesis in young leaf 

primordia of grasses is limited. Thus, the main aim of this chapter is to investigate the 

physiological aspects of early leaf development in rice (Figure 4.1), a grass that is vital to global 

food security. 

 

Figure 4.1. Leaf development in rice. Dissected apices reveal rice leaf primordia at P1, P2, P3 and P4-1 (<1 cm) 
stages. (B) Leaf primordia at stages P4-2 (<2 cm), P4-12 (<12 cm), P5 and P6. Scale bars in A= 0.25 mm (P1, P2, 
P3) or 1 mm (P4-1); B = 1 cm. 
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Photosynthesis in mature rice leaves of rice has been studied for decades. For example, 

photosynthetic capacity and the activity of key photosynthetic enzymes are known to increase 

rapidly from leaf emergence (from the sheath of the previous leaf) until the onset of leaf 

senescence 20 days later (Makino et al., 1983). More recently, it was found that the 

photosynthetic rate per unit area is very low in the mature blade of the 2nd leaf produced, and 

increases gradually in subsequently produced leaves (Itoh et al., 2005). However, neither of these 

studies considers early developmental stages before the leaf emerges from the sheath of the 

previous leaf. Thus, although the process of photosynthesis is very well studied, the development 

of this process in rice and its integration with leaf development are much less well understood.  

In other plants, including Arabidopsis thaliana and the C3 grass barley (Hordeum vulgare L.), the 

photomorphogenic process by which a functional chloroplast develops from a proplastid is well 

characterised (Jarvis and Lopez-Juez, 2013; Figure 4.2). To fulfil their photosynthetic function, 

chloroplasts need the tetrapyrrole chlorophyll, which is synthesized from Glu-tRNA in plastids 

(Mochizuki et al., 2010). This chlorophyll must be combined with various nuclear encoded 

proteins to form photosynthetic reaction centres and antenna complexes (Chi et al., 2012; Tanaka 

et al., 2011). Thylakoid membranes, which are the site of the energy transduction reactions of 

photosynthesis, must also be laid down in developing chloroplasts (Vothknecht et al., 2012). 

Finally, the organisation of the thylakoid membranes containing the photosynthetic complexes 

into stacked and unstacked grana occurs (Anderson et al., 2008; Armbruster et al., 2013; Chow et 

al., 2005). 

  

Figure 4.2. Plastid development. A. 
Thylakoids in chloroplasts (photo-
synthetic plastids) develop from vesicles 
in proplastids (undifferentiated plastids). 
B. Sequential proplastid-to-chloroplast 
development in wheat mesophyll cells. 
Along the length of the leaf, a dramatic 
increase in plastid number and size 
accompanies chloroplast differentiation. 
C. Sequential proplastid-to-chloroplast 
development visualized by transmission 
electron microscopy in an Arabidopsis 
thaliana virescent mutant (in which this 
process is delayed). Small proplastids in 
leaf primordia (for a size comparison, 
see the mitochondrion indicated with a 
black arrow) possess very few internal 
thylakoid membranes. As leaf cells 
differentiate (from the leaf tip to basal 
margins), chloroplasts develop and the 
thylakoids form granal stacks. A fully 
developed A. thaliana mesophyll cell 
(viewed using Nomarski optics) is also 
shown (bottom right). Adapted from 
Jarvis and Lopez-Juez, 2013. 
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As plastids differentiate, extensive signalling between these organelles and the nucleus must 

occur. Although plastids do have their own plastome, most of the 2000-3000 plastid proteins are 

encoded by nuclear genes (Sakamoto et al., 2008). This includes key photosynthetic components, 

Calvin cycle enzymes and transporters. Thus, careful coordination between a plant cell’s nuclear 

and plastid genomes is needed. Several molecular mechanisms underlying signalling during plastid 

development have been identified. These are thought to be distinct from the plastid-nuclear 

signalling that occurs in mature tissues to cope with fluctuating environmental conditions (Jarvis 

and Lopez-Juez, 2013). The genomes uncoupled1 (gun1) mutant has defects in retrograde signalling 

from plastid to nucleus, which affect plastid differentiation (Cottage et al., 2007). The 

pentatricopeptide repeat-containing protein encoded by GUN1 was long thought to be an 

integrator of multiple retrograde signals (Koussevitzky et al., 2007). However, more recently it 

has been proposed that GUN1 might instead act mainly through directly regulating tetrapyrrole 

synthesis and signalling (Jarvis and Lopez-Juez, 2013; Terry and Smith, 2013). One key 

tetrapyrrole synthesized in plastids by ferrochelatase 1 is haem (Tanaka et al., 2011; Terry and 

Smith, 2013). Haem is thought to act as a signal of chloroplast readiness to receive nuclear 

encoded photosynthetic proteins, indirectly inducing their transcription through the 

GOLDENLIKE1 transcription factor (Pesaresi et al., 2006; Waters et al., 2009; Woodson and 

Chory, 2008). Countering this induction, the chloroplast envelope associated PLANT 

HOMEODOMAIN WITH TRANSMEMBRANE DOMAINS (PTM) transcription factor is 

activated upon photooxidative exposure, which may occur during failures in the final steps of 

chlorophyll biosynthesis (Sun et al., 2011). Through ABSCISIC ACID INSENSITIVE4 (ABI4), 

PTM blocks the transcription of key photosynthetic genes by competing with the light-induced 

transcription factor HY5 (Kakizaki et al., 2009).  These regulatory networks point to careful 

integration of plastid tetrapyrrole biosynthesis, light signalling and the nuclear production of the 

protein components of photosynthetic complexes. Since many intermediates of the chlorophyll 

biosynthetic pathway are highly phototoxic and their accumulation must be prevented, it comes 

as no surprise that these processes are finely adjusted to each other (Jarvis and Lopez-Juez, 2013).   

Although some or all of these mechanisms are likely to occur in rice, the onset of photosynthesis 

during rice leaf development is little studied. Recently, Kusumi et al. (2010) used chlorophyll 

fluorescence imaging to show that in rice, leaves at the P4-2 stage (around 2cm long; before 

emergence) have measureable electron transport rates. These leaves also express several genes 

involved in chloroplast development. However, whether this is the earliest stage at which these 

aspects of photosynthetic development occur is not clear.  

Most recent work on photosynthesis at early stages of leaf development (both in monocots and 

dicots) has focussed on changes in the transcriptome (see chapter 1, section 1.3.6). However, 
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although gene expression changes can inform on the developmental timing of the onset of 

photosynthetic metabolism to a certain extent, changes in transcript level do not necessarily infer 

biochemical or physiological function (Amiour et al., 2012; Fernie and Stitt, 2012; Lan et al., 

2012). This is a particularly important consideration in photosynthetic metabolism, where post-

translational enzyme regulation is common (Geigenberger et al., 2005; Smith and Stitt, 2007; Stitt 

et al., 2010). Therefore, relating transcript data to the physiological function of the leaf is often 

problematic. A functional analysis of developmental changes in physiology during early leaf 

development can thus yield insights that cannot be provided by gene expression data alone.  

In the case of photosynthesis, the quantitative analysis of chlorophyll fluorescence quenching has 

developed as a routine technique for the measurement of photosynthetic function (Krause and 

Weis, 1991; Maxwell and Johnson, 2000; Meng et al., 2001; Baker, 2008), however most 

equipment is designed for measurements in leaves which can be clamped within a chamber, 

greatly restricting the minimum size of the material that can be analysed. Microfluorescence 

techniques have been developed which provide the appropriate resolution for the analysis of 

small leaf primordia, however these have generally been applied to the analysis of plant/microbe 

interactions (reviewed in (Berger et al., 2007) and plant stress response (reviewed in (Baker and 

Rosenqvist, 2004) rather than used in the context of leaf development. Therefore, I decided to 

use chlorophyll fluorescence imaging microscopy to look at electron transport chain function in 

early developmental stages of rice leaves, namely the P3, early P4 (also known as P4-1; up to 1cm 

long) and P5 stages. Figure 4.1 shows leaf primordia in rice at various developmental stages. P3, 

P4-1 and P5 stage primordia were studied using chlorophyll fluorescence imaging in a time series, 

as these allowed me to measure dynamic functional parameters. Parameters calculated were: 

  

  
 = 

     

  
   The initial maximum quantum efficiency of PSII in the dark.  

ΦPSII = 
      

   
   The effective quantum efficiency of PSII in the light.  

NPQ = 
      

   
  Non-photochemical quenching. 

Where Fv is the variable fluorescence, Fm is the maximum fluorescence, Fo is the minimum 

fluorescence, Fm’ is the maximum fluorescence in the light, and Fs is the steady state fluorescence. 
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4.2. Aims 

- To develop a protocol for imaging the efficiency of electron transport in rice leaf 

primordia using chlorophyll fluorescence microscopy 

- To determine when functional electron transport starts to occur 

- To characterize the light response of electron transport efficiency in developing leaf 

primordia 

  



64 
 

4.3. Brief methodology 

General methods are described in Chapter 2; details are shown below of the specific methods 

used in this chapter. 

4.3.1. Microscopy  

For confocal microscopy, P4 stage leaf primordia were dissected, mounted in water, and imaged 

using an inverted LSM510 Meta confocal microscope (Zeiss, www.zeiss.co.uk). Excitation was 

with a 488 nm argon laser; detection of emitted light was at 650-710 nm. For transmission 

electron microscopy, primordia at different developmental stages were dissected into 3% (v/v) 

glutaraldehyde (Sigma-Aldrich) in 0.1 M phosphate buffer (pH 7.4). Further fixation and 

processing were as described (Wallace et al., 2015).  

4.3.2. Chlorophyll fluorescence imaging 

Mature fifth leaves and dissected P3 and P4-1 stage rice leaf primordia were imaged using a 

custom built chlorophyll fluorescence imaging system using a modified Olympus BX50WI 

microscope (Rolfe & Scholes, 2002). Leaves and leaf primordia were exposed to an initial dark 

period of five minutes, after which Fo and Fm measurements were recorded. Leaves and leaf 

primordia then went through photosynthetic induction over a total period of 10min12s (P3 and 

P4 stage primordia) or 15min12s (P5 stage and mature leaves) at an irradiance of 50 µmol m-2 s-1 

(P3 and P4 stage primordia) or 200 µmol m-2 s-1 (P5 stage and mature leaves). For light response 

curves, samples were then exposed to irradiances of 30, 50, 100, 150, 200, 300, 400 and 600 (and 

800, 1500 for mature leaves) μmol m-2 s-1. After acclimation to each subsequent irradiance level 

(four minutes for leaf primordia, five minutes for mature leaves), four Fs/Fm’ measurements were 

taken at 30 second intervals. Captured Fo, Fm, Fs and Fm’ images were processed to calculate 

photosynthetic parameters (Rolfe & Scholes, 2002). Absorbance was imaged by measuring the 

relative reflection of red and near-infrared light as described in Rolfe and Scholes (2010). For the 

‘induced photomorphogenesis’ experiment, primordia were exposed to a constant irradiance of 

30 μmol m-2 s-1 for three hours. In order to prevent desiccation in all these experiments, a 

polyethylene controlled environment shroud was used to keep samples at 100% humidity, with 

ambient CO2.   
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Figure 4.3. Distribution of chlorophyll in rice leaf primordia at A. late P3 stage (tip only) and B. P4 stage (tip 
only) imaged using confocal microscopy with excitation at 488 nm. Chlorophyll autofluorescence is depicted in 
red. Scale bars 100µm. Arrows indicate locations at which a spectrum was recorded. C. Emission spectrum of 
three regions of interest indicated in B, recorded using confocal microscope. Blue: low chlorophyll region; red, 
green: high chlorophyll regions. 

4.4. Results 

4.4.1. Chlorophyll distribution and plastid development in rice leaf primordia 

In order to investigate the distribution of chlorophyll in leaf primordia during development, 

confocal microscopy was carried out. Confocal microscopy is complicated by the fact that the 

chlorophyll autofluorescence signal is weak in developing leaves, and the chloroplasts are small. 

However, chlorophyll autofluorescence can be detected in the tip of late P3 stage leaves (Figure 

4.3 A). In P4 stage primordia a clear maximum of signal intensity was observed near the tip of 

the leaf, with more proximal regions displaying a striated pattern of chlorophyll fluorescence 

(Figure 4.3 B). Figure C shows spectra recorded in three different locations on the leaf 

primordium. A clear chlorophyll a emission peak was detected in bands of high fluorescence, and 

was absent in bands of low fluorescence.  

P3 P4 
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Mature 

Figure 4.4. Plastid differentiation during early rice leaf development. (A-D) Transmission 
electron micrographs of plastids in leaves at (A) P3 stage; (B) P4 stage; (C) P5 stage; (D) mature 
leaves. (E) Locations sections were taken from (not to scale). Scale bars in A-C= 0.5 µm, D=1 
µm. G: stacked grana, *: starch grain. Arrows indicate plastids. 

Since chlorophyll autofluorescence was detected in P3 and P4 stage leaf primordia, suggesting 

chlorophyll accumulated even at these early developmental stages, a structural analysis of plastids 

at these developmental stages was carried out to determine when plastids became mature at a 

structural level. Plastids in P3 primordia lacked any obvious granal structure (Figure 4.4 A) 

whereas by P4 stage plastids with occasional grana were observed (Figure 4.4 B). In contrast, P5 

plastids had distinct grana (Figure 4.4 C) which looked very similar to those in mature leaves 

(Figure 4.4 D). It was noticeable that even in the P3 stage plastids distinct starch grains were 

observed (Figure 4.4 A). 

 

  

E 
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Having determined when and where chlorophyll accumulation and plastid differentiation 

occur, I proceeded to examine to what extent leaf primordium tissues could absorb light 

energy. In order to determine how much light primordia at different stages could absorb to 

use in photosynthesis, absorbance was imaged in P3, P4, P5 stage and mature leaves using the 

red/far-red method (Rolfe and Scholes, 2010). Absorbance was found to be low and fairly 

uniform for P3 and P4 stage leaves, reaching maxima of around 0.3 in most of these primordia 

(Figure 4.5). Some regions did not absorb light, particularly along the longitudinal axis of these 

primordia. P5 stage and mature leaves showed much higher and very uniform absorbance, 

with values of around 0.8-0.85, with P5 stage leaves occasionally showing higher absorbance 

than mature leaves. These differences in absorbance must be taken into account when 

comparing photosynthetic efficiency in leaves at different developmental stages.  

 

Figure 4.5. Absorbance of P3, P4, P5 and mature leaves. Colour scale indicates absorbance, with hotter colours 
indicating higher absorbance, on a scale from 0 (no light absorbed) to 1 (all light absorbed). Scale bars 0.25 mm. 
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4.4.2. The development of electron transport chain function 

As well as looking at the distribution of chlorophyll and the morphology of developing plastids, I 

considered whether functional electron transport could occur within the regions in which 

chlorophyll autofluorescence could be detected. ΦPSII, which is defined as 
      

   
 , represents the 

quantum efficiency of photosystem II (Maxwell and Johnson, 2000). As photosystem II is the 

most sensitive part of the electron transport chain, this parameter can be used as a measure of the 

efficiency of photosynthetic electron transport. Thus, values of ΦPSII at steady state were imaged 

using chlorophyll fluorescence microscopy at an irradiance of 50µmol m-2 s-1 in P3, P4, P5 stage 

and mature leaves.  

Figure 4.6 shows a series of example images from leaves at P3, P4 and P5 stages, as well as 

mature leaf blades. Due to their relative size, only portions of the P5 and mature leaf blades are 

shown. For each sample the raw fluorescence output is shown adjacent to the calculated values 

and distribution of ΦPSII. Although rice leaf primordia are encased by the sheaths of older leaves, 

chlorophyll autofluorescence could be detected in the tips of three out of eight P3 stage leaf 

primordia (Figure 4.6 A). The highest autofluorescence values observed in these primordia were 

around 0.1 (where 1 represents the maximum level of fluorescence detected in mature leaves). 

The other five P3 stage primordia tested showed a very low level of chlorophyll autofluorescence. 

In contrast, all eight P4 stage leaf primordia showed detectable chlorophyll fluorescence, with 

regions nearer the tip showing the highest levels of autofluorescence, which were up to around 

0.17 (Figure 4.6 B- three representative primordia are shown). These values are still much lower 

than those observed in P5 stage and mature leaves (autofluorescence values up to 1), where 

chlorophyll autofluorescence is more uniformly distributed (Figure 4.6 C, D).  
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Figure 4.6. Chlorophyll fluorescence and photosynthetic efficiency during early rice leaf development. Raw 
chlorophyll fluorescence (left image) and ΦPSII (right image) at 50 µmol m-2 s-1 in (A) P3, (B) P4, (C) P5 and (D) 
mature leaves. Images are shown for 3 biological replicates for each leaf stage. Scale bars 0.25 mm. φPSII value is 
indicated by the scale adjacent to D.  
 

 

ΦPSII 

ΦPSII ΦPSII 

ΦPSII ΦPSII 



70 
 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0 200 400 600 800 

Φ
P

SI
I 

Time (s) 

0.0 

1.0 

2.0 

3.0 

4.0 

0 250 500 750 1000 1250 1500 

N
P

Q
 

PAR (µmol m-2 s-1) 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0 250 500 750 1000 1250 1500 

Φ
P

SI
I 

PAR (µmol m-2 s-1) 

In order to verify that reasonable measurements could be made on time series of chlorophyll 

fluorescence images taken using our approach, I recorded ΦPSII measurements during induction 

and ΦPSII and NPQ measurements during light response curves on mature high light grown 

(700µmol m-2 s-1) fifth leaves of rice. The resulting induction and light response curves showed 

that robust measurements which display patterns that match those seen in previous studies can 

be taken using my approach (Figure 4.7) (Makino et al., 2002). As expected, ΦPSII rose rapidly in 

the initial three minutes of exposure to actinic light (after a five minute dark adaptation), before 

climbing steadily until around 10-15 minutes after exposure to light, when a steady electron 

transport rate was reached (Figure 4.7 A). During light response curves, ΦPSII fell with increasing 

irradiance and NPQ rose rapidly from an irradiance of around 400µmol m-2 s-1 (Figures 4.7 B and 

C, respectively). These findings are consistent with measurements made in my light acclimation 

experiment (see Chapter 3).  

  

Figure 4.7. Dynamics of chlorophyll fluorescence quenching derived parameters in mature leaves. Induction kinetics 
of ΦPSII (A), light response of ΦPSII (B) and light response of NPQ (C) of three high light grown mature fifth leaves. 
Colours represent different leaves; three regions of interest were used per leaf.  
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After concluding above that photosynthetic electron transport could occur in three out of the 

eight P3 stage primordia tested, we recorded dynamic chlorophyll fluorescence imaging 

measurements to further investigate the nature of the biochemical and physiological events 

underpinning the very early stages of the acquisition of photosynthetic potential. These included 

images of ΦPSII during induction at an irradiance of 50µmol m2 s1 in P3 and P4 stage leaf 

primordia and at an irradiance of 200 µmol m2 s1 in P5 stage and mature leaves. Induction curves 

from regions along the length of all three P3 stage primordia and three representative P4 stage 

primordia, P5 stage leaves and mature leaves are shown in Figure 4.8.  

The results indicated a high degree of variation both along individual primordia (from base to tip) 

and between primordia, both at the P3 and P4 stage, consistent with the idea that rapid changes 

were occurring in the capacity for electron transport around this transition. 

In P3 stage primordia, only the tip regions of the three primordia that showed detectable electron 

transport showed induction kinetics. The highest ΦPSII attained during induction in a P3 stage 

sample was around 0.31. Induction kinetics and the highest ΦPSII attained were highly variable 

along the length of primordia and between primordia, although rapid induction kinetics were a 

shared feature of several P3 stage leaf regions examined.  

All P4 stage primordia studied showed induction of photosynthetic electron transport. In 

addition, induction was observed in more basal regions in P4 stage primordia than in P3 stage 

primordia. The highest ΦPSII attained during induction in P4 stage samples ranged from 0.41 to 

0.73, and was again very variable along and between primordia. Slower induction kinetics were 

observed in some tip regions of P4 stage primordia than seen in P3 primordia (Figure 4.8 B). 

These data can be compared with those observed in P5 stage and mature leaves which showed 

slower induction kinetics but much higher values of ΦPSII and overall more robust patterns of 

induction despite the higher irradiance used (Figure 4.8 C,D).  
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Figure 4.8. Induction kinetics of ΦPSII during early rice leaf development. Induction of ΦPSII at 50 µmol m-2 s-1 in 

different regions of (A) P3 stage and (B) P4 stage leaves and at 200 µmol m-2 s-1 in (C) P5 stage and (D) mature 
leaves. Images are shown for 3 biological replicates for each leaf stage. Regions of measurement, from tip to base, 
are indicated by the colour legend. 
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In addition to ΦPSII, NPQ (
      

   
 ) was also measured during induction (Figure 4.9 A-D). 

However, as initial Fm values were low when compared to mature leaves, the absolute NPQ 

values recorded may not be entirely accurate. As with ΦPSII, NPQ was found to be very variable 

in P3 and P4 stage leaves, with P5 and mature leaves showing more repeatable kinetics. P3 stage 

primordia often showed higher NPQ than P4 stage primordia, but no clear pattern was observed 

in the spatial differences along individual primordia. There was a clear early peak of NPQ during 

induction in P5 stage and mature leaves (around 60-120 seconds after the actinic light was 

switched on), which was not observed in P3 stage or P4 stage leaves.  In all primordia, NPQ 

reached a consistent level after a period of illumination, usually after 480-960 seconds.  
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Figure 4.9. Induction of NPQ during early rice leaf development. Induction of NPQ in different 
regions of (A) P3 stage primordia at 50 µmol m-2 s-1 and (B) P4 stage primordia at 50 µmol m-2 s-1 and 
in (C) P5 stage leaves at 200µmol m-2 s-1 and (D) mature leaves at 200µmol m-2 s-1. 
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After leaf primordia at different developmental stages had undergone induction and reached a 

steady state of electron transport, they were exposed to a series of increasing irradiances (Figure 

4.10 A-D). At each irradiance, steady state ΦPSII images were collected and data was extracted 

from regions along the length of leaf primordia.  

In P3 stage leaf primordia a light response of ΦPSII was only measurable in the regions nearest the 

distal tip, and ΦPSII rapidly dropped to very low levels as the irradiance increased, with similar 

kinetics in different regions within primordia (Figure 4.10 A). In P4 stage primordia, a light 

response of ΦPSII was measurable in regions further away from the tip than in P3 primordia. ΦPSII 

was generally highest at all irradiances in regions near the tip and all 10 primordia analysed still 

showed a ΦPSII of 0.2-0.1 in regions nearest the tip at the highest irradiance used (Figure 4.10 B). 

Generally, the heterogeneity seen in steady state ΦPSII values after induction was also seen in the 

light response of ΦPSII in P3 and P4 stage leaves.  

This can be compared with the pattern of ΦPSII during light induction seen in P5 and mature leaf 

samples (Figure 4.8 C, D) which showed relatively consistent induction kinetics along the length 

of the leaves analysed and higher consistency between different samples than the light response 

of ΦPSII. 
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Figure 4.10. Light response kinetics of ΦPSII during early rice leaf development. Light response of ΦPSII in 
different regions of (A) P3 stage, (B) P4 stage, (C) P5 stage and (D) mature leaves. Images are shown for 3 
biological replicates for each leaf stage. Regions of measurement, from tip to base, are indicated by the colour 
legend adjacent to A. 
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Figure 4.11. Light response of NPQ in different regions of (A) P3 stage, (B) P4 stage, (C) P5 stage and (D) 
mature leaves. 

In addition, these ΦPSII data can be compared to NPQ values also recorded during light response 

curves (Figure 4.11 A-D). Again, as with the induction kinetics of NPQ, initial Fm values were 

low when compared to mature leaves, so the absolute NPQ values recorded may not be entirely 

accurate. NPQ was measurable further towards the base in P3 stage leaves than ΦPSII. In seven 

out of eight primordia, the two regions nearest the tip had the highest NPQ values throughout 

the light response curve (data not shown). The increase in NPQ followed similar dynamics in 

regions within the same primordium.  
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Next, I decided to investigate changes in ΦPSII during photomorphogenesis. In order to 

determine the timescale over which photomorphogenesis can occur in rice leaf primordia, I 

imaged ΦPSII in P3 and P4 stage leaf primordia exposed to an actinic irradiance of 50µmol m-2 s-1 

at 45 minute intervals over a period of three hours (Figure 4.12). Of three P3 stage primordia 

examined, none showed a measurable level of ΦPSII, and of ten P4 stage primordia examined, data 

could be interpreted for two primordia, as growth of primordia resulted in them moving out of 

focus during imaging. In these two P4 stage primordia, little change in ΦPSII was observed in 

regions already displaying a measurable level of ΦPSII, but a slight increase in ΦPSII was observed 

in regions that displayed no measurable ΦPSII at the start of the experiment. 

 

 

 

 

Figure 4.12. Changes in ΦPSII over three hours in two P4 stage primordia exposed to actinic light at 50µmol m-2 s-1. 

Scale bar 100µm. Arrowheads indicate regions in which a slight increase in ΦPSII was observed. ΦPSII is indicated by 

colour scale (0-1). 
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4.5. Discussion 

4.5.1. The development of a functional electron transport chain in rice 

The main structural and anatomical changes that occur during rice leaf development have been 

previously characterised (Itoh et al., 2005; Chapter 3 in this thesis). The results presented in this 

chapter provide an analysis of how this structure relates to function, i.e., when a leaf actually 

gains the capacity to perform an essential element of photosynthesis (absorption of light energy 

to generate an electron flow). The findings presented here show that a steep developmental 

gradient exists along the P3 stage leaf, with the tip being the first to develop a measurable ΦPSII. 

In addition, P4 stage leaves show a marked increase in the maximum ΦPSII reached at an 

irradiance of 50µmol m2 s1 compared to P3 stage leaves. This indicates that the development of a 

photosynthetic electron transport chain initiates at the tip of the P3 stage primordium. The 

transition to photosynthetic competence then happens rapidly during early P4 stage. Electron 

transport efficiency does not reach the level of that of a mature leaf until the P5 stage, while little 

additional photosynthetic electron transport efficiency is gained between P5 stage and the mature 

leaf.  

The developmental timing indicated by my findings matches other work done on rice chloroplast 

development. Mullet (1993) identifies three stages of chloroplast development: stage 1, in which 

chloroplast replication and DNA synthesis occur; stage 2, in which the transcriptional and 

translational machinery is established; and stage 3, in which genes that encode parts of the 

photosynthetic apparatus are expressed and ‘photosynthetic competence’ is activated. More 

recently, Kusumi et al. (2010) found that genes necessary for stage 1 (OsPOLP1, FtsZ) were 

expressed maximally in tissue taken from the base of the plant containing P0 to P3 stage leaves, 

but that genes necessary for stage 2 (OsRpoTp, V2) were not expressed very highly until the P4-2 

stage (P4 leaves smaller than 2cm; using this naming scheme, the early P4 leaves used in this 

chapter- up to 1cm long- are ‘P4-1’ stage). Genes encoding components of the light harvesting 

and electron transport machinery (Lhcb, rbcS) could not be detected in P0-P3 stage leaves, and 

were not expressed highly until the much later P5 stage (when leaves had protruded from older 

leaf sheaths). When combined with basic chlorophyll fluorescence imaging and TEM images of 

chloroplasts developing in P4-1 to P5 stage leaves, these findings led Kusumi et al. to propose 

that the majority of chloroplast development happens during the P4 stage. I show that this is 

indeed the case, but I also show that the first detectable electron transport occurs before this in 

the tip of P3 stage leaves, and that development of photosynthetic function occurs basipetally 

thereafter. This finding highlights the need to consider the tip-to-base developmental gradients 

within grass leaf primordia.  
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My interpretation that photosynthetic competence develops around the P3-P4 stage transition 

was supported by a structural analysis of plastid differentiation. Plastids prior to P3 stage lacked 

obvious grana whereas by P4 stage plastids had internal structure consistent with capacity for 

photosynthetic activity. Perhaps surprisingly, even P3 plastids frequently contained starch 

granules, suggesting that the plastids were importing carbon from source leaves and that starch 

grains were being used as a temporary carbon store, potentially enabling rapid growth during the 

fundamental biochemical switch from sink to source metabolism.  

The micro-fluorescence technique used for this analysis places some constraints on data 

interpretation (for example, no absolute measures of electron transport rate or photosynthetic 

capacity were calculated since absorbance was found to be variable and other assumptions made 

in the comparison of these very different tissues may not be met). However, I am confident that 

true quenching of chlorophyll fluorescence was occurring in these primordia and the ΦPSII 

measurements presented here are valid. I cannot rule out the presence of some cyclic electron 

flow, reduction of the plastoquinone pool in the dark (Corneille et al., 1998), or the presence of a 

small proportion of light harvesting complexes not connected to reaction centres. However, I did 

not observe the very high raw fluorescence signal that might be observed if a large proportion of 

light harvesting complexes were uncoupled, and the reasonable Fv/Fm values observed indicate 

non-zero amounts of quenching. Furthermore, the light response of ΦPSII observed in primordia 

shows the expected pattern of decreasing ΦPSII at increasing irradiances, consistent with a 

functioning electron transport chain.   

4.5.2. Induction kinetics and plastoquinone pool size 

After establishing that electron transport can occur in P3 and P4 stage leaf primordia, I imaged 

chlorophyll fluorescence quenching upon exposure to light after a dark adaptation period. One 

key feature of the kinetics of the photosynthetic induction observed was that it was very rapid 

compared to induction in mature leaves, although slower rates of induction were observed in 

some tip regions of P4 stage primordia. There are two possible explanations for this observation. 

The first is to do with the establishment of the electron transport chain.  

 Although the development of photosynthesis in rice leaf primordia is not very well studied, 

much work has been done on the formation of a functional electron transport chain after 

exposure to light of etiolated tissues in other plants. In barley, (Ohashi et al., 1989) used various 

electron donors and acceptors on isolated chloroplasts to show that photosystem I is the first to 

display activity, as early as one hour after exposure to light, followed by photosystem II, and the 

entire photosynthetic electron transport chain is established after around four hours. Although a 

crucial light-dependent enzyme in chlorophyll biosynthesis, protochlorophyllide reductase, is 

activated by light in milliseconds (Heyes et al., 2002), Ohashi et al. found that significant 
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chlorophyll accumulation is not seen until after both photosystems are established. 

Photosynthetic induction could first be measured after four hours, and was initially rapid. The 

authors suggest that this is a result of a small plastoquinone pool that is all rapidly reduced. As 

this pool grows and takes longer to fully reduce during development/ greening, the induction rate 

slows. Thus, our fast induction rates could be a result of a small plastoquinone pool present in P3 

and P4 stage primordia. The slightly slower induction seen in the tips of some P4 stage primordia 

could be a result of the increased plastoquinone pool size in these developmentally more 

advanced tissues.  

However, a second result of an incomplete or not yet fully established electron transport chain 

would be a low maximum ΦPSII. Across all primordia observed, the maximum ΦPSII was very 

variable. In one of the P3 stage samples, ΦPSII reached 0.36 during a light response curve, whereas 

in one of the P4 stage samples, a high of 0.71 was seen (data not shown). Neither of these 

samples with relatively high ΦPSII (compared to the other primordia) displayed the slowest 

induction kinetics observed. In addition, despite being surrounded by the leaf sheaths of older 

leaves, these primordia are likely to have experienced more than four hours of light, albeit at a 

very low irradiance. Although de-etiolation kinetics are species specific and experiments on 

isolated chloroplasts may not translate directly to those in entire leaf primordia, parts of our 

samples may thus be at a more advanced state of electron transport chain development than the 

samples of Ohashi et al. Thus, an incompletely developed plastoquinone pool may not be the 

explanation for the rapid induction kinetics observed.  

4.5.3. Induction kinetics in sink and source leaves 

Another explanation for rapid induction may come from the metabolism of the tissues studied. 

P3 and P4 stage primordia are sink tissues, net importers of carbon from more mature leaves. In 

a source tissue such as a mature leaf, the rate of induction may be slower due to a lag time 

associated with the buildup of Calvin cycle intermediates, the activation of Calvin cycle enzymes 

and the opening of stomata. Our developing primordia have no stomata; stomatal development is 

first seen in later P4 stage leaf primordia (Itoh et al., 2005). Since these primordia are sink tissues, 

they are also likely to have high levels of reduced metabolites (Turgeon, 1989). The notion that 

fast induction can be a result of the accumulation of these reduced metabolite pools is supported 

by evidence that inducing the oxidative pentose phosphate pathway through stimulating the cell 

cycle with exogenous cytokinin or by local pathogen infection results in fast induction kinetics in 

mature leaves (Esfeld et al., 1995; Prokopova et al., 2010). Meng et al. (2001) found that even 

sink regions at the base of young tobacco leaves (the youngest used was 3.9 cm long) have a 

measurable rate of electron transport, and induction in these tissues is more rapid than in mature 

leaves. However, in this system ‘fast’ induction kinetics take place over 3-4 minutes, which is a lot 
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slower than seen in P3 and P4 stage rice leaves. One limitation of our experiments, however, is 

that we cannot measure exactly how fast induction is, as this exceeds our speed of measurement.  

Other than studies of isolated chloroplasts and the work by Meng et al. (2001) and Kusumi et al. 

(2010), there are few studies reporting photosynthetic measurements on very young leaves. 

Peterson et al. (2014) reported changes in the relative abundance of PSI and PSII along maize 

leaves (the third leaf of 12-day old seedlings was used), and conclude that redox mediation of 

chlorophyll biosynthesis may regulate PS assembly and thus ensure the development of a suitable 

PSI/PSII excitation balance. In the most immature (basal) leaf segment studied, Peterson et al. 

(2014) also report a larger non-variable component of fluorescence, which they attribute to a 

moderate accumulation of incompletely assembled, non-functional PSII complexes. However, no 

detailed measurements of ΦPSII induction kinetics in at different developmental stages of the leaf 

are reported in these studies.     

4.5.4. Light response of ΦPSII and NPQ 

One feature of the photochemical and non-photochemical quenching of light energy by plants is 

that both show a response to changing irradiance. Generally in mature leaves, ΦPSII decreases 

with increasing irradiance as the electron transport chain becomes saturated, and NPQ increases 

with increasing irradiance as more light energy needs to be dissipated as heat because it is in 

excess of what can be used to drive electron transport. The shapes of the light response curves of 

ΦPSII and NPQ differ depending on the plant species, the light environment the plant is 

acclimated to and the developmental stage of the leaf (Terashima and Takenaka, 1990; Murchie 

and Horton, 1997; Murchie et al., 1999; Terashima et al., 2006).  

Here, I have shown that the regions of P3 and P4 stage leaves that show a measureable ΦPSII also 

show a light response of this parameter. An electron transport rate cannot be calculated from 

this, as we do not know the differences in light absorbance at different irradiances and in 

different leaf regions. We can conclude, however, that the rate of decrease of ΦPSII with 

increasing irradiance is highly variable between samples and between regions within P4 stage 

leaves. This indicates once again that these primordia are undergoing rapid development, and our 

samples thus include leaves with widely differing abilities to use increasing amounts of light to 

drive electron transport. Further analysis needs to be carried out to determine whether these 

differences in kinetics are related to the maximum ΦPSII achieved and how this is related to the 

developmental gradient along the primordium. 

Similarly, the variability of the light response of NPQ points to developmental differences 

between and within P3 and P4 stage primordia in the proportion of light energy that cannot be 
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used for electron transport at increasing irradiances. A general pattern that can be observed here 

is that NPQ rises faster in leaf regions near the tip of P3 stage leaves, and is higher throughout in 

regions near the tip of many P4 stage leaves. This might indicate that these developmentally more 

advanced regions are not, as might be expected, so much better able to use light energy that they 

do not need to dissipate it through NPQ. Instead, perhaps their increased chlorophyll content 

means that they absorb more light energy and thus need to dissipate more.  

4.5.5. Changes in ΦPSII during photomorphogenesis 

In order to delimit the amount of time taken for leaves to develop photosynthetic competence 

upon illumination, I dissected out leaf primordia at P3/P4 stage and exposed them to a low level 

of actinic irradiance. Photomorphogenesis in planta happens rapidly at the P3 to early P4 stages of 

leaf development in rice, despite the fact that these developmental stages are surrounded by the 

sheaths of older leaves throughout their development. As the development of the photosynthetic 

machinery and the accumulation of chlorophyll are both known to be tightly correlated to the 

light environment, it would be interesting to know what the light environment around these leaf 

primordia in planta is. Although one limitation of this study is that leaf primordia were dissected 

under dim green light for around five to seven minutes, which may have led to limited additional 

chlorophyll biosynthesis during dissection, there is no doubt that some light is getting to these 

primordia in planta as they have a measurable electron transport rate, which is not usually seen 

until four hours after illumination of chloroplasts from etiolated tissues (Ohashi et al., 1989).  

The irradiance level used in my experiment was carefully chosen so as not to induce any light 

stress responses, but was high enough to trigger photomorphogenesis- the photon flux required 

for this is known to be minimal (Bukhov et al., 1999; Chen et al., 2004). However, I encountered 

difficulties in measuring the change in ΦPSII during photomorphogenesis as leaf primordia that 

were successfully dissected often moved out of focus under the microscope due to elongation 

growth. No signal was detected from any of the three P3 stage primordia imaged, which is 

consistent with the small number of P3 stage primordia that showed a detectable ΦPSII in our 

initial experiments (three out of eight). However, the two P4 stage primordia that were 

successfully imaged showed slight basipetal development of photosynthetic capability within the 

small amount of time (three hours) over which they were imaged.  
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4.5.6. Photosynthesis in the context of other leaf developmental processes 

My results in Chapter 3 and those presented here show that the development of vascular and 

photosynthetic competence occur during the same stages of rice leaf development. As such, the 

question arises of how the onset of photosynthetic competence is coordinated with vascular 

development and other processes occurring during the ontogeny of the rice leaf.  

Much has been written about the role of chloroplast retrograde signaling during early leaf 

development (Larkin et al., 2003; Nott et al., 2006; Woodson and Chory, 2008). Most of this 

work has been done in Arabidopsis thaliana, and some has been done in the monocot maize (Zea 

mays). From studies of the development of light signaling mutant plants in the dark, it can be 

concluded that although plastid development is necessary for normal leaf development, plastid 

greening and the development of functional photosynthesis is not (Chory et al., 1989).  

How differentiation of vascular and surrounding photosynthetic tissue is organised has been 

much debated (Berleth et al., 2000; Scarpella et al., 2003). The differentiation of photosynthetic 

tissue may be organised in reference to the network of developing vascular tissue, which provides 

a ‘scaffold’ from which positional signals inform the differentiation of the mesophyll. Conversely, 

Andriankaja et al. (2012) found that the transition from cell proliferation to cell expansion in 

Arabidopsis leaves happens rapidly and coincides with leaf greening, and suggest that chloroplast 

function and development may influence cell cycle gene down regulation upon the transition to 

cell expansion.  In addition, Scarpella et al. (2004) demonstrate in Arabidopsis that mesophyll 

differentiation terminates the iterative process of vascular initiation. Which of these processes are 

at play in monocots, and rice specifically, is unclear. However, we provide evidence that vascular 

development and the initiation of photosynthetic differentation are temporally and spatially 

coordinated in rice, with both occurring around the P3/P4 stages. In addition, the striated pattern 

of chlorophyll autofluorescence observed in P4 stage primordia is reminiscent of vascular 

patterning. Direct evidence for positional signals from the vasculature informing photosynthetic 

development in rice is not available, however in plants with very clear compartmentalisation of 

photosynthetic and non-photosynthetic function, such as the C4 plant maize, such positional 

information is known to be key (Nelson and Langdale, 1989). The molecular nature of positional 

information derived from the vasculature has begun to be pinned down in root development 

(Sabatini et al., 1999; Nakajima et al., 2001; Wu et al., 2014), suggesting this is a tractable problem. 

Thus, further research into the links between photosynthetic development and other leaf 

developmental processes is necessary, and the developmental gradients seen in rice and other 

grass leaves offer a good system to study these. 
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5. Gene expression during rice leaf development 

5.1. Introduction  

The development of plant leaves has been well studied in model species such as Arabidopsis 

thaliana and maize (Braybrook and Kuhlemeier, 2010; Fleming, 2005; Freeling, 1992; Hay and 

Tsiantis, 2009; Leyser and Day, 2003; Tsukaya, 2002). Many aspects of leaf structure and function 

are regulated by changes at a transcriptional level during development. With respect to the 

analysis of these changes during the very earliest stages of grass leaf development, previous work 

has successfully used laser micro-dissected portions of maize shoot apical meristem domains to 

identify transcripts associated with leaf initiation (Ohtsu et al., 2007). This work was restricted to 

the extremely early processes of leaf determination and initiation (up to P1) and did not 

encompass subsequent stages of leaf development. This was achieved by Wang et al. (2013a) who 

recently provided a detailed transcriptomic analysis of early leaf development in maize using 

dissected primordia. These data provided the first analysis of a monocot leaf at this 

developmental resolution. To date a similar analysis has not been reported for rice.  

As the second plant species to have its entire genome sequenced and one of the world’s most 

important crop plants, rice has gained interest as an alternative model species for the study of leaf 

development (Goff et al., 2002). Rice grain yield ultimately depends on how much carbon 

fixation mature leaves can carry out. Therefore, it is important to understand how the rice leaf 

develops its shape and metabolic capabilities if we are to engineer future crops to have improved 

yield. Several studies have yielded new insights into rice stomatal development (Kamiya et al., 

2003; Kaplan-Levy et al., 2012; Luo et al., 2012), vascular development (Chu et al., 2013; 

Matsukura et al., 2000; Qi et al., 2008; Scarpella et al., 2002; Scarpella et al., 2003), and shoot 

architecture (Arite et al., 2007; Komatsu et al., 2003). Traits directly related to yield such as 

inflorescence development (important for panicle architecture) and endosperm development 

(important for grain filling) have also been studied (Ashikari et al., 2005; Gao et al., 2013; Jeon et 

al., 2000).  

However, the gene expression patterns underlying several other processes are still not well 

understood in rice. In particular, vascular development and patterning in rice are not yet well 

described. In the dicot model species Arabidopsis thaliana, vascular development is thought to be 

regulated by polar auxin transport, positional information from polarity regulators such as 

PHABULOSA and REVOLUTA, and peptide signaling (Bonke et al., 2003; Fukuda et al., 2007; 

Ohashi-Ito et al., 2013). It is unclear how exactly these processes act during vascular development 

in rice. Several vascular development mutants in rice have been described of which the molecular 

nature is unclear. Most of these have abnormal leaf shape, with high vein density often resulting 
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in a narrow leaf phenotype (Feldman et al., 2014; Qi et al., 2008; Scarpella et al., 2003; Smillie et 

al., 2012). The only well-described rice vein patterning mutant is in the HD-Zip transcription 

factor OsHOX1, which affects polar auxin transport (Scarpella et al., 2002). In addition, beta-

glucuronidase expression driven by the auxin-responsive promoter DR5 is localized to 

provascular tissue in developing rice leaves, again lending credibility to the involvement of auxin 

in rice vascular patterning (Scarpella et al., 2002). Chapter 3 of this thesis described the 

morphological changes in rice leaves during vascular development, as well as the timing and 

limits of developmental plasticity in vascular patterning at different developmental stages. This 

chapter aims to identify novel regulators of rice vascular development, as well as characterizing 

the expression of rice orthologs of genes known to be involved in vascular development in other 

plants.  As stomatal development also occurs during these developmental stages in rice (Yaapar 

2016, Thesis), a brief investigation into genes potentially regulating this process was also carried 

out.  

A second poorly understood process during rice leaf development is the onset of photosynthesis. 

In Arabidopsis thaliana, maize, spinach (Spinacia oleracea), and barley (Hordeum vulgare), studies into 

the genes underlying the development of photosynthetic capacity have been carried out since the 

1980s (Babani et al., 1996; Kobayashi et al., 1980; Monte et al., 2004; Ohashi et al., 1989; Potter et 

al., 1996; Wollman et al., 1999). More recent studies have revealed details of the assembly of the 

photosynthetic apparatus (Cai et al., 2010; Minagawa and Takahashi, 2004; Peng et al., 2006) and 

the key plastid development genes GOLDEN2-LIKE1 and GOLDEN2-LIKE2 (GLK1 and 

GLK2; Waters et al., 2009). Many of these studies were carried out on isolated chloroplasts or on 

etioplasts, which rarely occur in natural leaf development in the light. Intact leaf primordia 

developing naturally have also been studied, with a recent focus on retrograde signalling from the 

chloroplast to the nucleus during development (Fey et al., 2005; Mochizuki et al., 2001; Nott et 

al., 2006; Vinti et al., 2005) and on the links between the shift to photosynthetic metabolism and 

the transition from cell division to cell elongation (Andriankaja et al., 2012). Chapter 4 of this 

thesis described the onset of photosynthesis in developing rice leaves. Understanding the 

transcriptional changes governing this process is a major aim of this chapter. 

A renewed interest in rice vascular and photosynthetic development has arisen from work to 

engineer C4 photosynthesis into rice plants, which normally have C3 photosynthesis (Hibberd et 

al., 2008). Increasing the efficiency of photosynthesis in rice in this way promises higher yields, 

higher water use efficiency and higher nitrogen use efficiency (Hibberd et al., 2008). For this 

project to succeed, an understanding of the exact timing and regulation of expression of vascular 

and photosynthetic genes in rice will be necessary such that these can be accurately manipulated. 

In addition, the differences between C3 rice and C4 maize leaf photosynthetic development may 
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point to novel ways of engineering a C4 rice. To this end, several recent studies have used next 

generation sequencing to investigate gene expression changes during the development of 

photosynthesis in rice and maize. The natural gradient in photosynthetic development occurring 

in C4 maize leaves from base to tip was explored by Li et al. (2010). These data from maize have 

also been compared to similar data from rice (Wang et al., 2014a), where the equivalent segments 

along the rice leaf developmental gradient were used. In contrast, Wang et al. (2013) used intact 

maize leaf primordia at different developmental stages, looking at biochemical and structural 

changes associated with C4 photosynthetic development in the foliar leaf and C3 photosynthetic 

development in the husk leaf.  

Here, I set out to study the gene expression patterns underlying the processes of vascular and 

photosynthetic development in young rice leaf primordia. The rice developmental stages used in 

this work have been chosen to match those studied by Wang et al. (2013) in maize to facilitate the 

comparison of C3 and C4 leaf development. In addition, my analysis of both physiology and 

structure identified the P3/P4 transition as an important stage in rice leaf development with 

respect to the acquisition of photosynthetic capability. This tissue also has the ability to respond 

to environmental signals by altering aspects of cellular differentiation (chapters 3 and 4, this 

thesis). To investigate the gene expression changes underpinning the P3/P4 transition I 

performed RNA-Seq on leaf primordia at P3, P4-1 and P5 stage (blade only) (see Figure 3.1 in 

Chapter 3). The advantage of this type of material over segments of a mature leaf is that even in 

the youngest segments of a mature leaf, the patterning of many structures may already be laid 

down. Therefore, the genetic changes underlying the initial formation of these structures 

(including veins and stomata) may be absent from young segments of a mature leaf. In addition, 

the naturally occurring gradient in photosynthetic capacity in mature monocot leaves may not be 

the same as a naturally occurring gradient in photosynthetic development- after all, the base of a 

rice or maize leaf is arrested in the ‘immature’ photosynthetic state, rather than being on a 

trajectory to a higher photosynthetic capacity. 

Broadly, the developmental stages used here (P3, P4, P5) capture the transition of the leaf from a 

sink to a source tissue, and the transition from growth through rapid cell division (P3 stage) to 

growth through cell elongation (P4 stage) and finally the end of major leaf growth (P5 stage). The 

most dramatic changes in photosynthetic capacity seen during rice leaf development occur during 

these stages. The leaf develops chloroplasts from proplastids, and goes from no ability to carry 

out any electron transport (P3 stage) to a quantum efficiency of electron transport (ΦPSII) in P5 

stage almost matching that of a mature leaf (Figure 5.1; chapter 4; Kusumi et al. 2010). It is also 

during these developmental stages that formation occurs of other structures important for 

photosynthetic capacity, such as veins and stomata (Figure 5.2; chapter 3). Importantly, the leaf 
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also goes from developing entirely inside the sheaths of older leaves (P3 stage) to protruding 

above these leaf sheaths such that it is exposed to light (P5 stage). This means that there is a 

gradient in irradiance experienced by the developing leaf, with younger leaf primordia exposed to 

less light than older ones.  

Figure 5.1. Photosynthetic development in stages studied using RNA-Seq (see also chapter 4). Top row: Transmission electron 
micrographs of plastids in A. P3, B. P4, C. P5 stage and D. mature leaves. Scale bars in A-C= 0.5 µm, D=1 µm, E= 100 µm. G: 
stacked grana, *: starch grain. Arrows indicate plastids. Bottom row: Quantum efficiency of electron transport in E. P3, F. P4, G. 
P5 stage and H. mature leaves at an irradiance of 30 μmol m-2s-1 as visualized using chlorophyll fluorescence imaging. Scale bars 
0.25 mm. ΦPSII value is indicated by the scale adjacent to E. 
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Figure 5.2. Development of veins and stomata in stages studied using RNA-Seq (see also chapter 3). A. 

Vascular development in A. P3, B. P4, C. P5 stage and D. mature leaves. Bottom row:  stomatal development in 

E. a P3 stage leaf, F. a close-up of the P3 stage primordium surface, G. P4 stage surface, H. mature leaf surface 

(E, F and G are taken from Amin Yaapar, 2016 (thesis); H is taken from Woodward and Hetherington (2003)). 

Scale bars in E and F = 30 µm. Scale bar in G = 10 µm. 
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To investigate the gene expression changes underpinning these anatomical and physiological 

changes I performed RNA-Seq on dissected leaf primordia at three defined stages of 

development. RNA-Seq has become the tool of choice for investigating genome wide gene 

expression changes during plant development. Datasets are publicly available that describe the 

maize leaf developmental gradient (Li et al., 2010), the rice leaf developmental gradient (Wang et 

al., 2014a), maize leaf primordia (Wang et al., 2013), rice endosperm development (Gao et al., 

2013), maize endosperm development (Li et al., 2014), and several other rice tissues (Fujita et al., 

2010; Wang et al., 2010). Previously, microarrays were used for the study of gene expression, but 

RNA-Seq has several important advantages over this (Wang et al., 2009). Less input RNA is 

required, which is a distinct advantage when working with small tissues such as leaf primordia. 

Background noise is also lower, and the dynamic range much higher in RNA-Seq than in 

microarrays, both of which are useful when looking at the low expression level transcriptional 

regulators that are important in leaf development. In addition, RNA-Seq can be used to detect 

the expression of any RNA, regardless of its splice isoform, whether the gene it originates from is 

known, and whether it is mRNA or a (regulatory) non-coding RNA, whereas not all genes are on 

the available rice microarray chip. The use of next generation sequencing can thus provide a 

wealth of information about the gene expression changes underlying leaf development. 
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5.2. Aims 

- To identify rice genes important for the formation of structural features established at the 

P3-P4 stage transition, such as stomata and veins 

- To identify patterns of gene expression which can be associated with the development of 

photosynthetic capacity, in order to pinpoint key genes involved in this process 

- To contribute to the identification of novel potential regulators of Kranz anatomy and C4 

photosynthetic development by comparing these data to similar data from a maize leaf 

primordium dataset (Wang et al., 2013). 
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5.3. Brief methodology 

General methods are described in Chapter 2; details are shown below of the specific methods 

used in this chapter. 

5.3.1. RNA-Seq 

RNA-Seq was carried out as described in detail in chapter 2. Briefly, high quality (RIN≥8) RNA 

was extracted from 240 P3, five P4 and three P5 stage leaves per replicate (three biological 

replicates were used per stage) using TriZol and cleaned up and DNAse 1 treated using the Sigma 

Plant Total RNA kit. RNA-Seq was carried out at the Liverpool Genomics Centre using 

RiboZero treated RNA with library construction following the Illumina TruSeq stranded mRNA 

protocol. Paired end reads with a read length of 100bp were trimmed and low-quality reads 

filtered out. RSEM was used to align the resulting reads to the Oryza sativa L. var. japonica MSU 

Release 7.0 genome. All pairwise comparisons between developmental stages were made using 

DESeq, using the default normalization method and identifying differentially expressed genes as 

those with a Benjamini-Hochberg corrected p-value ≤ 0.05. Genes were grouped into expression 

clusters (as described in Chapter 2), on which MapMan enrichment analysis was carried out 

(version 3.5.1R2; Usadel et al. 2005).  

5.3.2. RT-PCR 

RT-PCR was carried out as described in chapter 2 in an ABI StepOne Plus RT-PCR system using 

SYBR® Green reagents. The comparative CT method was used to quantify gene expression 

changes, with dnaJ (LOC_Os03g57340) and Profilin (LOC_Os06g05880) used as endogenous 

control genes and P4 stage as the reference stage to which other stages were compared to 

calculate relative fold change. A Tukey test was used to assess significance of the fold change 

found. 

5.3.3. In situ hybridisation 

Detailed methods are provided in Chapter 2. Briefly, fragments of genes of interest were cloned 

into pBluescript, and DIG-labelled (Roche) riboprobes were transcribed from this plasmid using 

T3 (antisense probes) or T7 (sense probes) RNA polymerase. The base 5mm of 13 day old rice 

seedlings was embedded in Paraplast Xtra and sectioned at a thickness of 8µm. After tissue pre-

treatment, probes were hybridised to the sections at 50°C overnight. Washing, RNase treatment 

and blocking steps were then used to limit background noise. An alkaline-phosphatase 

conjugated anti-DIG antibody (Roche) was then bound to the DIG-labelled probes, and the 

alkaline phosphatase substrate NBT/BCIP was used to visualise the presence of this antibody. 
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5.4. Results  

5.4.1. Overview of gene expression changes 

I generated an initial overview of gene expression changes during early rice leaf development. 

Out of 25768 protein coding genes of which expression was detected (including 89 plastidially 

encoded genes and 51 mitochondrially encoded genes; there are a total of around 39,045 

annotated non-TE loci in rice; Ouyang et al., 2007), 14502 were significantly differentially 

expressed in at least one comparison between different developmental stages. 4596 were 

significantly up regulated between P3 and P4 stage, 3576 were significantly down regulated 

between P3 and P4 stage, 4310 were significantly up regulated between P4 and P5 stage, and 

3671 were significantly down regulated between P4 and P5 stage (Figure 5.3). 

 

  

 

 

5.4.2. Clustering and validation 
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Figure 5.3. A. Overview of developmental stages used for RNA-Seq. B. Overview of gene 
expression changes between developmental stages. Numbers indicate number of genes showing 
significant increase or decrease between two subsequent stages. 
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Genes were clustered into expression profiles defined by rules to which the direction of log2(Fold 

change) (positive or negative) and its significance (Benjamini-Hochberg adjusted p≤0.05) had to 

conform (see also methods in Chapter 2). Eleven clusters were formed in this way (Figure 5.4).  

Of the 25768 protein coding genes of which expression was detected, 11266 showed no 

significant change in expression in any comparison of developmental stages (‘neutral’ cluster). 

2274 genes had unchanged expression from P3 to P4 stage but were then up regulated to P5 

stage (‘up 1’ cluster); 2560 genes were up regulated from P3 to P4 stage and then maintained the 

same level of expression to P5 stage (‘up 2’ cluster); 2036 genes were up regulated from both P3 

to P4 and P4 to P5; and 686 genes were not significantly up regulated from P3 to P4 or P4 to P5, 

but did show a significant up regulation from P3 to P5 (‘up 4’ cluster).   

Conversely, 1726 genes were stably expressed from P3 to P4 stage but down regulated from P4 

to P5 (‘down 1’ cluster); 1631 genes were down regulated from P3 to P4 stage and then 

maintained the same level of expression to P5 stage (‘down 2’ cluster); 1945 genes were 

significantly down regulated from both P3 to P4 and P4 to P5 stage (‘down 3’ cluster), and 655 

genes were not significantly differentially expressed between P3 and P4 or P4 and P5, but did 

show a significant down regulation from P3 to P5 stage (‘down 4’ cluster).  

Finally, smaller numbers of genes with contrasting changes between P3 and P4 and P4 and P5 

were found. 945 genes were up regulated from P3 to P4 but down regulated from P4 to P5 

(‘peak’ cluster), and 145 genes were down regulated from P3 to P4 and up regulated from P4 to 

P5 (‘trough’ cluster).  
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Figure 5.4. Patterns of gene expression in different clusters. All protein coding genes of which expression was 
detected in my dataset were assigned to one of the above clusters based on the significance (Benjamini Hochberg 
adjusted p≤0.05) and direction of the log2(Fold Change) in their expression. 
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5.4.3. Validation of RNA-Seq data using RT-PCR 

In order to determine the accuracy of the RNA-Seq results, the expression levels of six genes at 

the three developmental stages used were evaluated using RT-PCR. These genes were chosen 

because their expression patterns either placed them in a cluster important for vascular 

development (e.g. cluster ‘down 2’- DROOPING LEAF and cluster ‘down 3’- MONOPTEROS) 

or in a cluster important for photosynthetic development (e.g. ‘peak’ cluster- IMMUNOPHILIN; 

‘up 2’ cluster- NARA5; ‘up 3’ cluster- THF1), and because they or their Arabidopsis thaliana 

orthologues are known to play a role in one of these processes. The ‘neutral’ cluster gene dnaJ 

was selected because it has both one of the highest expression levels of ‘neutral’ cluster genes and 

a small fold change between P3 and P4 and between P4 and P5 stages. The selected genes were 

found to show similar patterns of expression in the RT-PCR and in the RNA-Seq results, with a 

relatively high R2 value of 0.942 observed for the correlation between log2(RNA-Seq Fold 

Change) and log2(RT-PCR Fold Change) (Figure 5.5A). In addition, the expression patterns of 

individual genes studied by RT-PCR mimic those observed in the RNA-Seq data clusters they 

represent (Figure 5.5B).  

 

 

 

 

 

 

 

 

 

 

Figure 5.5. Validation of RNA-Seq data using RT-PCR. A. Correlation of log2(fold change) in gene expression 
between developmental stages as calculated from RT-PCR data and RNA-Seq data for selected genes (see text).  B. 
Expression patterns of selected genes evaluated by RT-PCR match those seen in the RNA-Seq results. Y-axis shows 
log2 (Fold Change) relative to P4 stage; data were normalized to the expression of the control gene Profilin in each 
sample. P3: n=2, P4: n=3, P5: n=3. Error bars show standard error of the mean. Different letters indicate a 
significant difference in mean level of expression between developmental stages for the same gene (p<0.05; Tukey 
test). Floating graphs indicate expression clusters in RNA-Seq data (see Figure 5.4).   
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5.4.4. Enrichment analysis and expression of TF families 

Following on from this, I used these clusters to identify functional categories of genes that were 

significantly overrepresented in each group of genes with a similar expression profile (using 

MapMan; Usadel et al., 2005). As expected, functions related to photosynthesis were 

overrepresented in clusters showing increasing expression during development, including the 

‘peak’ cluster (Figure 5.6). Functions related to mitochondrial respiration, DNA synthesis, the cell 

cycle and regulation of transcription were overrepresented in clusters with a downward trend 

(Figure 5.7). The ‘neutral’, ‘trough’ and ‘up 4’ clusters were not significantly enriched in any 

functions. 
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Figure 5.6. Functional enrichment analysis of genes in clusters showing upward trends. In green are terms related to 
photosynthesis; in purple are categories containing transcription factors. Rib. prot., ribosomal protein; Euk., eukaryote; 
Mt., mitochondrial; Cp., plastid, SU, subunit. The ‘neutral’, ‘trough’ and ‘up 4’ clusters were not significantly enriched in 
any functions. 
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Figure 5.7. Functional enrichment analysis of genes in clusters showing downward trends. In red are terms related to 
respiration; in purple are categories containing transcription factors. Rib. prot., ribosomal protein; Euk., eukaryote; 
Mt., mitochondrial; Cp., plastid, SU, subunit.  The ‘neutral’, ‘trough’ and ‘up 4’ clusters were not significantly 
enriched in any functions.  
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Figure 5.8. Distribution of rice transcription factors 
families (differentially expressed genes only) in up, 
down and peak expression patterns. Number in 
brackets indicates total number of expressed genes in 
each family. 

The expression patterns of all annotated rice transcription factors were examined and sorted into 

those with broadly up regulated expression patterns (transcription factors in clusters ‘up 1’, ‘up 2’, 

‘up 3’ and ‘up 4’), those with broadly down regulated expression patterns (transcription factors in 

clusters ‘down 1’, ‘down 2’, ‘down 3’ and 

‘down 4’) and those with ‘peak’ expression 

patterns (transcription factors in the ‘peak’ 

cluster). The distribution of differentially 

expressed transcription factors across these 

expression patterns is shown in Figure 5.8. 

Transcription factor families of which many 

members are down regulated (highest in P3) 

during rice leaf development include the 

GRF, C3H and ZF-HD families. 

Transcription factor families of which many 

members are up regulated (highest in P5) 

during rice leaf development include the 

NAC, C2C2/CONSTANS-like and WRKY 

families. Transcription factor families of 

which relatively many members show a 

‘peak’ expression pattern (highest in P4) 

during rice leaf development include the 

TCP, SBP, GATA and Trihelix families. 

5.4.5. Identification of genes underlying morphological differentiation 

In addition to looking at enriched functional categories of genes and transcription factor families 

in each cluster, the expression of individual genes underlying specific developmental processes 

can be investigated in more detail using these data. In particular, I was interested in the 

development of photosynthetic function, vascular development, and stomatal development. A 

two-pronged approach was taken to find individual genes that may be involved in these 

processes. Firstly, rice orthologs of Arabidopsis thaliana genes know to be involved in 

developmental processes occurring at these stages were examined. Secondly, I used the gene 

expression clusters above (Figure 5.4) to identify novel developmental regulators expected to be 

expressed at times when differentiation was visible. Together, these approaches yielded several 

lists of genes which may merit further investigation.  
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As the development and patterning of veins is key to the functioning of leaves, but our 

understanding of these processes in grasses is limited, I started by investigating gene expression 

changes potentially underlying vein development. Vascular development regulators identified by 

Scarpella and Meijer (2004) in Arabidopsis thaliana, Zea mays and Petunia hybrida and the expression 

clusters of their putative rice orthologs are listed in Supplementary Table S 1. The expression 

clusters of an additional list of 15 genes identified through a literature search as being involved in 

vascular development in rice are shown in Supplementary Table S 2. In addition, the genetic 

mechanisms regulating stomatal development in rice are poorly understood. Thus, transcription 

factors thought to be involved in stomatal development in rice and orthologs of transcription 

    
Up 1 cluster 

VAS 

AGO1 

WOL 

COV1 

Oshox1 
 

Up 2 cluster 

PIN1 
APL 
VH1 
VEP1 
CPD  
ISR 

FAMA 
ZmROP2 
 

  
 

 

Up 4 cluster 

CPD 
 

Peak cluster 

HYD1 
BDL  
CVP1 
 

EPFL9 

MUTE  

EPF1 

SCREAM1 

ZmROP2 
 

   
 

 

Down 1 cluster 

PHV  
PHB 
DWF7  
SMT1  
ZLL 

SPEECHLESS  

EPF2  

YODA  

ZmPAN1  

ZmROP2 
 

Down 2 cluster 

PIN1   EPFL7 

AS1 

AXR6 

ZLL 

DL 

 
 

Down 3 cluster  

EMB30  
MP 
PHV 
PHB 
VCS  
FK  
TAN1 
OsPNH 

SPEECHLESS  

TMM  

ERECTA  

ERL1  

SCARECROW 

 

 Neutral cluster 

EMB30  
AXR6 

KNAT1 
FZY 

APL Athb8 

VCS REV 

FK  
AMP1  
 
 

KN1  
YODA 

   
 

SCARECROW1
SCARECROW2
SHORTROOT1

SHORTROOT2

Figure 5.9. Expression patterns of rice orthologs of known vascular development regulators from Scarpella and 
Meijer 2004 (purple) and stomatal development regulators (red). Genes can be found in several clusters if several 
rice orthologs exist. Clusters ‘Trough’, ‘Up 3’ and ‘Down 4’ did not contain any rice orthologs of known vascular 
or stomatal development regulators, except SCREAM2, which is in the ‘Trough’ cluster. 
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factors involved in stomatal development in Arabidopsis and maize were also identified from the 

literature. The expression patterns of these genes across the rice developmental stages P3, P4 and 

P5 were also evaluated (Figure 5.9).  

In addition, novel potential regulators of vascular development in rice were identified according 

to their expression patterns. These genes were most highly expressed at P3 stage; not expressed 

in mature leaves or endosperm (data taken from the MSU Rice Genome Annotation Project 

Resource; Ouyang et al., 2007); rapidly down regulated from P3 to P4 stage (log2 (Fold Change) 

≥2 ); and annotated as being transcription factors. This yielded a list of 39 genes (Supplementary 

Table S3). These include LOC_Os04g35660.1, which is the rice ortholog of Arabidopsis thaliana 

‘XYLEM NAC DOMAIN 1’, a gene involved in vascular cell differentiation in Arabidopsis 

thaliana and Populus trichocarpa (Grant et al., 2010); and LOC_Os09g36160.1, of which the 

Arabidopsis thaliana ortholog is implicated in auxin homeostasis as well as xylem and phloem 

pattern formation (Baylis et al., 2013).  In addition, the list includes the known rice vascular 

development regulator DROOPING LEAF (LOC_Os03g11600.1; Itoh et al., 2005). None of the 

other genes are known to be involved in vascular patterning. 

5.4.6. Genetic changes underlying the acquisition of photosynthetic function 

As well as being important for the development of many morphological features (chapter 3, this 

thesis), the developmental stages studied here are crucial for the development of photosynthesis 

in rice (chapter 4, this thesis). Thus, this material is useful for studying the gene expression 

changes underlying the acquisition of photosynthetic function. Several genes involved in 

photosynthesis (of a total of 351 annotated with ‘PS’ (photosynthesis) in rice using MapMan) 

(Usadel et al., 2005) are already expressed to 50% of their maximal expression level at the earliest 

developmental stage studied (P3 stage). These 34 genes, which include several involved in the 

light reactions of photosynthesis, photorespiration, and the Calvin-Benson cycle (Supplementary 

Table S4), may be important for the onset of photosynthesis. However, the most change in the 

expression of photosynthesis-related genes occur after P3 stage, as can be seen when looking at 

functional enrichment analysis of clusters showing upward trends, which contain many terms to 

do with photosynthesis (Figure 5.6), but also when genes coding for electron transport chain 

components and Calvin cycle enzymes are focused on (Figure 5.10).  

This knowledge of the global expression patterns of photosynthesis-related genes in early leaf 

development combined with my finding that photosynthetic capacity increases throughout early 

rice leaf development (chapter 4, this thesis) was used to formulate expectations of the 

expression patterns in these data of novel photosynthesis-related genes. These genes were 

expected to be most highly expressed at P5 stage; relatively highly expressed in mature leaves 
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P3 

P4 

P5 

(over 25 counts; Ouyang et al., 2007); rapidly up regulated from P3 to P4 stage (log2 (Fold 

Change) ≥1); and annotated with the GO-term GO:0015979 (Photosynthesis) (Carbon et al., 

2009) but not known to be ‘core photosynthetic machinery’ (i.e. not Calvin cycle enzymes or 

known electron transport chain components). These criteria yielded a list of 17 genes 

(Supplementary Table S 5), of which seven are annotated only as ‘expressed protein’ in rice.  Four 

of these seven had putative orthologs in Arabidopsis thaliana that are known to be involved in 

assembly of the photosynthetic apparatus. In order to find genes more likely to have a regulatory 

function in the establishment of photosynthesis, transcription factors were investigated. If the 

same expression criteria are applied to all known rice transcription factors (none of which are 

annotated with GO:0015979), 51 genes show the same expression pattern (Supplementary Table 

S6). These include known chloroplast development regulators GLK1 and GLK2 (Waters et al., 

2009) and several members of the MYB related, CONSTANS-like and GATA families. 

 

  Figure 5.10. Expression of genes involved in photosynthesis during early leaf development in rice. 
Expression level (normalized counts) of genes involved in photosynthetic electron transport (left) and 
the Calvin-Benson cycle (right) at the P3, P4 and P5 stages of rice leaf development. Each small square 
represents the expression level of one gene. Visualized using MapMan (Usadel et al., 2005).  
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5.4.7. Comparison to gene expression during the development of C4 

photosynthesis 

The results generated here represent the first RNA-Seq data to be available of the P3, P4 and P5 

stages of early rice leaf development. Maximum benefit can be gained from these data by 

comparing them to other available transcriptomic datasets, particularly a recent experiment 

describing early maize leaf development (Wang et al., 2013). Here, I use this publicly available 

data to (1) find the expression patterns during early rice leaf development of genes identified as 

putative positive regulators of Kranz anatomy; (2) find the expression patterns at these stages of 

genes present in rice that may be co-opted for C4 photosynthetic metabolism; and (3) broadly 

compare the transcriptome of the developing C4 maize foliar leaf and the developing C3 rice leaf.  

One of the key requirements for engineering a C4 rice is thought to be a C4-like Kranz anatomy 

(Kajala et al., 2011; Leegood, 2013). Wang et al. (2013) identified a number of transcription 

factors as putative positive regulators of the development of Kranz anatomy in maize. Here, I 

have identified 21 rice orthologs of these genes. Of the 21 genes studied here (Supplementary 

Table S 7), one was not expressed during early leaf development in rice (FPKM≤1), and of the 

rest, only 11 were significantly differently expressed between at least two stages. Most of these 

significantly differently expressed genes were down regulated during rice leaf development. 

In addition to the requirement for anatomical modifications, successful implementation of C4 

photosynthesis in C3 grasses also requires changes to metabolism. However, despite the 

differences between C3 and C4 metabolism, C3 rice has several genes that code for enzymes or 

transporters known to be required for C4 photosynthesis. Here, I consider 16 genes which 

encode components which may be co-opted for C4 photosynthetic metabolism in rice. All of 

these genes were expressed during at least one of the developmental stages considered 

(FPKM≥1), and 13 were significantly differently expressed between at least two developmental 

stages (Supplementary Table S8; Figure 5.11).  
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Figure 5.11. Expression during early rice leaf development of genes that may be co-opted for C4 metabolism. 
Summary of NADP-ME subtype C4 biochemistry (as seen in maize). Numbers indicate enzymes (green) and 
transporters (blue) encoded by rice genes that may be co-opted for C4 metabolism (see Supplementary Table S8). 
Graphs indicate expression patterns during early leaf development. Modified from Kajala et al. 2011.  

 

Finally, in light of the recent interest in manipulating C3 leaf anatomy to facilitate C4 

photosynthesis, I sought to identify genes whose expression level correlates with the differences 

in development between C3 and C4 leaves. In order to identify genes that may have conserved 

roles in maize and rice, I was interested in finding genes that showed similar expression patterns 

during early leaf development in rice and maize. In particular, genes that enable photosynthetic 

development in both rice and maize can be expected to show broadly the same expression 

pattern, since leaves of both plants need to develop a functional photosynthetic apparatus during 

the same developmental stages. In contrast, vascular development and tissue patterning are 

different in maize and rice: rice plants develop a ‘standard’ C3 monocot venation, whereas maize 

plants develop the denser venation and Kranz anatomy necessary for C4 photosynthesis 

(Leegood 2011). Therefore, I was interested in potential regulators of vascular patterning and 

Kranz anatomy that showed contrasting expression patterns in rice and maize, as these might 

enable the development of the denser venation and Kranz anatomy seen in maize. 
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Wang et al. (2013a) studied the development of the C4 maize foliar and husk leaf at comparable 

stages to the rice developmental stages studied here. However, identifying exactly which 

developmental stages of rice and maize correspond is not trivial, since the length of the 

plastochron of maize and rice is slightly different, and as such the number of plastochron stages 

between leaf initiation and the mature leaf stage is also different. However, consideration of the 

morphology of the primordia in these two investigations suggested that the maize FP3/FP4 

stages were most similar to rice P3 stage, that maize FP5 was comparable to rice P4 stage, and 

that the maize FI stage was similar to rice P5 stage (Figure 5.12).  

 

 

Figure 5.12. Comparison between maize and rice developmental stages (maize images taken from Wang et al. 2014). 
FP3, FP4, FP5 and FI are maize developmental stages, whereas P3, P4 and P5 are rice developmental stages. 

 

Rice and maize developmental stages can also be tested for similarity on the basis of gene 

expression data. Thus, the expression of 7613 rice genes for which one-to-one orthologs could 

be found in maize was correlated with the expression of the rice ortholog. This correlation was 

carried out for every comparison of developmental stages using either a Spearman or a Pearson 

correlation analysis (Figure 5.13). Figure 5.13 shows that in terms of gene expression, C3 rice 

foliar leaf samples (P3, P4, P5) are more similar to maize foliar leaf samples (FP, FP34, FP5, FI, 

FE) than to maize husk leaf samples (HP, HP34, HP5, HI and HE). There is little difference 

among maize stages FP, FP3/4 and FP5 in their similarity to rice P3 stage, whether assessed by 

Spearman or by Pearson correlation. Rice P4 stage shows most similarity to maize FI according 

to Spearman correlation, but is almost equally similar to maize FP5 and FI according to Pearson 

correlation results. Rice P5 stage is almost equally similar to maize FI and FE according to 

Spearman Correlation, and most similar to FI according to Pearson correlation.  
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Thus, the leaf staging suggested by morphology was generally substantiated by the correlation of 

gene expression data, although it was clear that the delineations were somewhat fuzzy based 

purely on molecular data. However, the gene expression correlation results were not inconsistent 

with comparing rice P3 to maize FP3/4, rice P4 to maize FP5 and rice P5 to maize FI stage. 

Taking these stagings as best estimates, I compared the early leaf primordia datasets from rice 

and maize. 

In order to compare gene expression during early rice and maize leaf development, maize 

expression clusters across FP3/4, FP5 and FI stages were formed in the same way as rice clusters 

across P3, P4 and P5 stages. Broader expression clusters were then designed in both maize and 

rice, which contained all genes that were up regulated from any one stage to the next or down 

regulated from one stage to the next (rice/maize ‘up’ and ‘down’ clusters). To identify genes that 

might be conserved across maize and rice, clusters showing the same general pattern were 

compared across maize and rice and the overlap lists tested for overrepresented MapMan terms 

(Figure 5.14). In order to identify genes that might contribute to the differences between maize 

and rice in later leaf development, the comparison between maize ‘general up’ and rice ‘general 

down’ clusters is of particular interest. I observed two enriched functional terms associated with 

the set of genes that were downregulated during rice development but upregulated during maize 

development. These were ‘protein import to the chloroplast’ and ‘amino acid biosynthesis’. The 

former comprised TIC21, TIC22, TOC64, an outer membrane protein in the OMP85 family, a 

signal recognition particle protein and a secA family translocase. The latter comprised several 

enzymes associated with aspartate metabolism and may reflect differences in the accumulation of 

C4 cycle metabolites between rice and maize.  
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Figure 5.13. Correlation between gene expression in rice and maize leaf development. A. Spearman correlation and 
B. Pearson correlation between expression of 7613 one-to-one orthologs in maize and rice. Numbers are 
correlation coefficients (r); orange indicates high correlation, whereas green indicates low correlation. Black outlines 
indicate comparisons discussed in the text. FP, FP34, FP5, FI, FE indicate progressively older maize foliar leaf 
samples; HP, HP34, HP5, HI and HE indicate progressively older maize husk leaf samples; P3, P4 and P5 indicate 

progressively older rice leaf samples.  
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Figure 5.14. Enriched functional categories in lists of genes found to be A. up regulated in both maize and rice;  
B. down regulated in both maize and rice; C. up regulated in rice but down regulated in maize; or D. down regulated 
in rice but up regulated in maize. Blue: maize patterns of expression included in comparison. Purple: rice patterns of 
expression included in comparison. In green are terms related to photosynthesis; in purple are categories containing 
transcription factors. 

 

Transcription factors that are down regulated during early rice leaf development but up regulated 

in maize may also be of particular interest, as they may contribute to the higher vein density seen 

in maize. I found eight rice transcription factors that decreased in expression during rice leaf 

development (down regulation between at least two of three developmental stages; no up 

regulation between any stages) and for which the maize orthologs increased in expression during 

maize foliar leaf development (up regulation between at least two of three developmental stages; 

no down regulation between any stages) (Figure 5.15). Of these eight genes four have very low 

expression in the mature leaf mesophyll and bundle sheath but the other four have been reported 

to be differentially expressed between mature maize mesophyll and bundle sheath cells, the key 

cell types of C4 maize Kranz anatomy (Li et al., 2010).  

A. Maize up 
          Rice up 

B. Maize down 
          Rice down 

Lipid metabolism- lipid transfer proteins  
 
Protein synthesis 
- prokaryotic ribosomal protein, chloroplast, 
30S and 50S subunits 
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RNA- Regulation of transcription: 
C2C2(Zn) CONSTANS-like zinc finger family 

 

Cell cycle, Cell division 
DNA, DNA repair, DNA synthesis/ chromatin 
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Pentatricopeptide (PPR) repeat-containing 
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eukaryotic and prokaryotic; Ribosome 
biogenesis; Pre-rRNA processing and 
modifications 
 
Protein targeting to the nucleus 
 
Regulation of transcription: Chromatin 
Remodeling Factors; General Transcription; 
Putative transcription regulator; zf-HD TFs 
RNA binding 
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             Rice up 

D. Maize up  
            Rice down 

None Protein targeting to the chloroplast 
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Figure 5.15. Transcription factors which may be putative regulators of Kranz anatomy. Transcription factors 
that increase in expression during maize leaf development (data from Wang et al. 2013a) but decrease in 
expression during rice leaf development and their expression pattern in maize bundle sheath and mesophyll 
cells (data from Li et al. 2010). 
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5.4.8. Visualisation of gene expression patterns using in situ hybridisation 

In order to determine the spatial distribution of genes deemed of interest from their temporal 

expression patterns, I carried out in situ hybridisation. In particular, I was interested in using this 

technique to examine whether any of the potential vascular development regulators identified are 

expressed specifically in the vasculature (or excluded from this domain). Using cross sections 

from the base of young seedlings allowed me to image several leaves at different developmental 

stages at the same time. I used HISTONE H4, a gene highly expressed in dividing cells, as a 

positive control. This gene is known to show a ‘dotty’ expression pattern, which was clearly 

observed in my samples (Figure 5.16A), and no signal was seen in the negative control (a sense 

probe for HISTONE H4, which does not hybridise to the HISTONE H4 mRNA as it has the 

same sequence; Figure 5.16B), validating the functionality of my in situ method. 

 

 

 

Having validated my in situ hybridisation technique, I proceeded to investigate the expression 

patterns of three genes shown in my RNA-Seq data to be expressed at times coinciding with the 

development of the vasculature in rice. These genes included DROOPING LEAF (DL), 

MONOPTEROS (MP) and FACKEL (FK), which have all been previously shown to affect 

vascular development in rice (DL) or Arabidopsis (MP, FK), and are expressed early in leaf 

development (highest at P3 stage; see Figure 5.9, this chapter), making them likely candidates for 

vascular development regulators. However, no vascular-specific expression pattern of these genes 

was observed (Figure 5.17). In addition, I investigated the expression pattern of two other known 

regulators of vascular development in Arabidopsis, namely CONTINUOUS VASCULAR RING1 

(COV1) and DWARF7 (DWF7). Again, neither of these genes showed vascular specific 

expression patterns (Figure 5.18; images by Rona Costello).  

HIS H4 a HIS H4 s 

A B 

Figure 5.16. A. Expression pattern of HISTONE H4, as revealed using an antisense probe (a). B. No signal is 
observed in tissues hybridised using a control HISTONE H4 sense probe (s). Scale bars 500µm. 
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Figure 5.17. A-C, antisense probes, D-F, sense control probes for DL (A,D), MP (B,E) and FK (C,F). Scale bars 
500µm.   
 

Figure 5.18. A-B, antisense probes, C-D, sense control probes for COV1 (A,C) and 
DWF7 (B,D). Scale bars 250µm. Images by Rona Costello.  

COV1 a 

COV1 s DWF7 s 

DWF7 a 

A B 

C D 
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In addition to examining the expression patterns of genes potentially involved in rice vascular 

development, I was also interested in the patterns of expression of genes necessary for 

photosynthesis. Thus, I examined the pattern of expression of THYLAKOID FORMATION1 

(THF1), which is necessary for appropriate plastid development, as well as the photosystem II 

subunit (and putative oxygen evolving complex) PsbP and a CHLOROPHYLL A/B BINDING 

PROTEIN (CAB), which are both known to be central components of the higher plant 

photosynthetic machinery. Both THF1 and PsbP were found to be highly and ubiquitously 

expressed even in early developmental stages (Figure 5.19). However, the probe I used for CAB 

unfortunately did not hybridise (Figure 5.19 C, F).  

 

 

 

 

 

 

  

Figure 5.19. A-C, antisense probes, D-F, sense control probes for THF1 (A,D), PsbP (B,E) and CAB (C,F). 
Scale bars 250µm.  
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5.5.  Discussion 

Here, I have described the changes in gene expression underlying early leaf development in rice. 

The stages studied encompass the formation of several key structures in the leaf, such as stomata, 

veins and functional chloroplasts. As well as considering the changes in gene expression between 

each developmental stage, I have grouped genes into clusters based on the direction of the 

expression change and its significance, and identified enriched functional categories of genes in 

each cluster. In addition, I investigated the expression changes of specific genes thought to 

underpin morphological and physiological differentiation. Finally, a comparison between gene 

expression during C3 rice leaf development and C4 maize leaf development was carried out.  

5.5.1. Functional enrichment in gene expression clusters 

First, after sorting all genes for which expression was detected into clusters, I identified 

functional categories of genes which were overrepresented in each cluster. The general metabolic 

trends expected in this developmental series are easily identified in different expression clusters. 

Genes involved in mitochondrial electron transport (particularly those related to ATP synthesis, 

and coding for the F1-ATPase, NADH-DH and carbonic anhydrase) are found in the ‘down 1’ 

cluster, whereas three of the four clusters containing genes with an upward trend in their 

expression patterns (‘up 1’, ‘up 2’ and ‘up 3’) contain an overrepresentation of genes involved in 

photosynthesis (see Figures 5.6 and 5.7). These include genes coding for Calvin cycle enzymes 

and for chloroplast electron transport chain components such as ATP synthase, the cytochrome 

b6/f complex, NADH DH, PSI, PSII and LHC-II. Interestingly, ascorbate and glutathione as 

well as carotenoid metabolism-related genes are also upregulated in this way, suggesting that 

plants develop protective mechanisms to prevent oxidative photodamage as they develop the 

photosynthetic machinery, rather than up regulating the required genes only when in stressful 

environments (Foyer, 2011; Demmig-Adams 1996; Ruban et al 2007). Interestingly, three out of 

four downward clusters are enriched in pentatricopeptide repeat (PPR) containing proteins. This 

large family of relatively poorly understood genes was first discovered in 2000 and is thought to 

be involved in RNA editing in mitochondria and chloroplasts in plants (Lurin et al., 2004; Small 

and Peeters, 2000). One of the best studied members of this family is the plastid-nucleus 

retrograde signalling gene GUN1 (Cottage et al., 2007). Some members of this family are thought 

to promote RNA cleavage, whereas others may stabilise RNAs (Barkan and Small, 2014). It is 

possible that the down regulation of these genes during rice leaf development allows for greater 

stability of chloroplast transcripts and thus facilitates photosynthetic development. 

In addition to the presence of categories reflecting metabolic processes and their development, 

the expected trends reflecting the changing growth mechanisms in a developing leaf are also 
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present. Cell division and DNA replication are important in earlier developmental stages, and the 

downward expression patterns of the genes associated with this (e.g. cell cycle genes in the ‘down 

3’ cluster and DNA synthesis genes in the ‘down 1’ and ‘down 3’ clusters) reflect the decrease in 

cell division in older developmental stages. In contrast, genes required to make more cell 

membrane and cell wall material are up regulated in later stages as growth continues through cell 

elongation. This can be seen in the overrepresentation of cell wall proteins, phospholipid 

synthesis, and Lipid Transfer Protein (LTP) family proteins in the ‘up 2’ cluster. The latter have 

been shown to play a role in facilitating cell wall extension in tobacco (Nieuwland et al., 2005). 

The presence of many phosphatidylcholinesterol O-acyltransferases in the ‘up 3’ cluster, which 

are known to be involved in the hydrolysis of galactolipids, the major constituent of chloroplast 

membranes, may reflect the need for chloroplast membrane remodelling during photosynthetic 

development (Yoon et al., 2012). In the same cluster, lignin biosynthesis genes are found, which 

fit with the expected cell wall deposition occurring during later developmental stages.  

Of the three clusters not showing a general downward or upward trend (’peak’, ‘trough’, or 

‘neutral’), perhaps the most interesting clusters is the ‘peak’ cluster, which contains genes that are 

up regulated from P3 to P4 stage, and immediately down regulated again to P5 stage. P4 stage has 

previously been identified as the stage at which photosynthetic capacity changes the most 

(Kusumi et al., 2010). In addition, this is a stage of rapid growth through cell elongation (Itoh et 

al., 2005). As such, P4 stage is a pivotal point at which the leaf transitions from a sink tissue in 

which rapid cell division occurs driven by energy from mitochondrial respiration, to a source 

tissue that is growing almost exclusively through cell elongation and starting to derive most of its 

energy from photosynthesis in its own chloroplasts. This cluster contains relatively few genes 

compared to the other main clusters (945 genes compared to 1600-2500 genes in ‘up 1-3’ and 

‘down 1-3’), but these genes are enriched in several interesting functions. For example, P4 stage is 

when tetrapyrrole synthesis is at a peak, which likely reflects the need for chlorophyll precursors. 

Also in preparation for photosynthesis, a relatively large proportion of genes up regulated 

specifically in P4 stage but then down regulated are involved in chloroplast protein synthesis but 

also protein folding and targeting of proteins to the chloroplast. At the same time, several 

functional categories to do with rapid cell expansion and cell wall synthesis and remodelling are 

found in the ‘peak’ cluster. These include the proline rich cell wall proteins, which in the ‘peak’ 

cluster are all annotated as extensin family protein precursors. The overrepresentation of genes 

involved in lipid metabolism may also point to a need for the biosynthesis of cell wall and cell 

membrane components in rapidly elongating cells.  

There are no significantly enriched functional categories in the ‘up 4’ cluster, the ‘trough’ cluster, 

or the ‘neutral’ cluster. Only the category ‘pentatricopeptide repeat containing protein’ is enriched 



114 
 

in the ‘down 4’ cluster. This lack of enriched functions likely reflects the fact that these clusters 

do not reflect any particular developmental processes happening at these times. For example, no 

known developmental process in rice happens at P3 stage and P5 stage but not P4 stage, and as 

such, the ‘trough’ gene expression cluster may be expected not to contain any enriched functions. 

However, this cluster may contain diverse individual negative regulators of processes happening 

only during P4 stage, which might be missed if only the MapMan analysis is considered. As such, 

these clusters may contain individual genes of interest, but are not of primary interest for 

functional enrichment analysis. 

5.5.2. Identification of genes underlying specific developmental events 

Although studying enriched functional categories can inform on general processes, I was also 

interested in pinpointing genes involved in more specific processes, such as the development of 

veins, stomata and functional chloroplasts. In combination with my detailed studies of 

morphological and physiological changes in rice leaf primordia (Chapters 3 and 4; see also Itoh et 

al., 2005; Kusumi et al., 2010), the clustering described above can facilitate the identification of 

transcriptional regulators with expression patterns consistent with a role in regulating such 

specific developmental processes. In addition, information gathered through studies of 

Arabidopsis thaliana can be translated into rice by identifying rice orthologs of genes of interest in 

this model plant that show relevant expression patterns in this dataset. 

I was most interested in photosynthetic development, as this is well captured by the 

developmental series studied here and is a major target for improving rice yield (Evans, 1997; 

Horton, 2000). The earliest signs of photosynthetic electron transport capacity in developing rice 

leaves are seen at P3 stage (Chapter 4). Out of 351 genes in rice that are annotated with the 

MapMan term ‘Photosynthesis’, only 34 are already at over half their maximal expression level at 

this stage. This indicates that although photosynthesis is initiated at the tip of P3 stage primordia, 

most genes involved in this process do not reach a high level of expression until later in leaf 

development. Among those genes that are expressed early are several core enzymes of the 

Calvin-Benson cycle, as well as several components of the photosynthetic electron transport 

chain. A small number of genes involved in photorespiration also show a relative high level of 

expression during early rice leaf development.  

However, several other genes which are not core elements of photosynthesis are also expressed 

at these early developmental stages, and may be key regulators of early photosynthetic 

development. Foremost among these is the pentatricopeptide repeat (PPR) containing protein 

LOC_Os02g49830. PPR proteins (477 in rice, which show remarkably little redundancy) are 

thought to be involved in RNA editing in chloroplasts and mitochondria (Barkan and Small, 
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2014). A mutant in the maize ortholog of LOC_Os02g49830 has an ‘ivory leaves’ phenotype but 

has not been described further (Photosynthetic Mutant Library; Alice Barkan lab; 

http://pml.uoregon.edu/pml_table.php). It is unclear which (if any) of the 21 edited sites in the 

chloroplast transcriptome (Corneille et al., 2000) is edited by this PPR protein, and whether the 

editing stabilises the RNA or makes it more prone to degradation. However, this protein may 

play a regulatory role in photosynthetic development. Phytochrome B is also already highly 

expressed in P3 stage and has been found to regulate the development of chloroplasts and 

expression of photosynthetic enzymes in rice (Zhao et al., 2012). Other genes in this list may not 

have regulatory functions but could nevertheless be necessary for early photosynthetic 

development. These include two copper transporters (LOC_Os08g37950 and 

LOC_Os07g43040), which may be required for the assembly of the copper-containing thylakoid 

membrane electron transfer agent plastocyanin. The hydrolase present is a putative ortholog of 

Arabidopsis thaliana AT1G68890, an essential gene for the biosynthesis of the PSI-associated 

electron transfer agent phylloquinone (Gross et al., 2006). Digalactodiacylglycerol synthase is 

involved in synthesis of chloroplast membrane lipids, further indicating that chloroplast assembly 

is already occurring at P3 stage (Wang et al., 2014b). At the same time as building photosynthetic 

capacity, a capacity for redox regulation may need to be developed, a core component of which is 

glutathione (Foyer and Noctor, 2011). The precursor for this molecule is cysteine, which could 

explain the high expression of a cysteine synthase early in development. Of the other genes in 

this list, several have very low levels of expression (e.g. ferritin-1, oxygen evolving enhancer 

protein 3), have diverse possible functions in metabolism (e.g. 4-hydroxy-2-oxovalerate aldolase) 

or are members of very large families (e.g. protein phosphatase 2C- part of a family of 73 genes), 

complicating further interpretation.   

Genes important for further photosynthetic development were expected to be most highly 

expressed in P5 stage, as this stage shows the highest photosynthetic capacity. Thus, I next 

focused on the ‘up 1’, ‘up 2’ and ‘up 3’ clusters. Within these clusters, a further 17 genes were 

identified as key to photosynthetic development. Several of these are annotated in rice and have 

already been described in rice or other species to have functions in photosynthetic development. 

These include PROTON GRADIENT REGULATION5 (Nishikawa et al., 2012) and 

THYLAKOID FORMATION1 (Yamatani et al., 2013). The serine/threonine-protein kinase stt7 

was previously described in Chlamydomonas reinhardtii to be involved in state transitions and LHCII 

phosphorylation (Depege et al., 2003). The Arabidopsis thaliana  orthologs of the pfkB family 

kinase identified are known to be crucial to leaf development (Gilkerson et al., 2012) and one 

putative ortholog has been found to regulate the bulking up of photosynthetic enzyme essentials 

such as Rubisco subunits (Ogawa et al., 2009). Four further genes are annotated only as 
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‘expressed protein’ in rice, but have putative orthologs in Arabidopsis thaliana that are known to be 

involved in assembly of the photosynthetic apparatus. These orthologs are LOW QUANTUM 

YIELD OF PSII1 (Lu et al., 2011); CHLOROPLAST PROTEIN ENHANCING STRESS 

TOLERANCE (Yokotani et al., 2011); LOW PSII ACCUMULATION3 (Cai et al., 2010); and 

THYLAKOID RHODANESE-LIKE (Juric et al., 2009). Of the remaining nine genes, six have 

unknown functions and no known orthologs, but are annotated with various subcellular 

localisation descriptors, namely ‘membrane protein’ (one gene), or ‘thylakoid lumen(-al) protein’ 

(five genes). Three others are annotated only as ‘expressed protein’ in rice. These nine genes have 

all been associated with the GO term ‘photosynthesis’, but their exact biological function remains 

to be elucidated. 

No transcription factors in rice are annotated with the GO term ‘Photosynthesis’, but 33 were 

found to show the same expression pattern as the genes above and might thus be regulating this 

process. The fact that these clusters contain the known chloroplast development regulators 

GLK1 and GLK2, which are part of the G2-like family of transcription factors, validates our 

approach (Waters et al., 2009). One additional G2-like transcription factor (LOC_Os03g55590) 

may be involved, since it shows a similar expression pattern to GLK1 and GLK2. Six MYB-

related transcription factors are also present in this list of putative photosynthetic development 

regulators, as are five TALE-family and four CONSTANS-like transcription factors. The latter 

have been found to regulate photomorphogenesis in Arabidopsis thaliana, and may play a similar 

role in rice (reviewed by Gangappa and Botto, 2014). Further investigation of these genes 

through in situ hybridization to determine their spatial expression patterns may provide insight 

into their function, although the study of the expression patterns of THYLAKOID 

FORMATION1, a CHLOROPHYLL A/B-BINDING gene and PsbP here did not show any 

spatially restricted expression patterns. As it is little known what expression patterns to expect 

from genes involved in photosynthetic development (in contrast to genes involved in the 

development of specific structures such as veins or stomata), perhaps other approaches are more 

promising. This may include the protoplast isolation and transformation system recently used to 

study the function of GLK1 in rice (Zhang et al., 2011).  

In addition to the development of photosynthesis, the development of the vasculature is 

important to leaf performance and occurs during the rice leaf developmental stages studied here. 

Thus, gene expression changes possibly relating to the development of veins were also studied. 

The youngest rice developmental stage studied here (P3) already contains a midvein, but no 

histologically distinguishable other (pro-)vascular tissue. Large veins are formed during P4 stage. 

In P5 stage, most large and small veins are fully formed, and their phloem and xylem are fully 

differentiated. The distribution in the leaf primordium of pre-provascular tissue that cannot be 
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distinguished histologically is the first determinant of vein spacing in the mature leaf (Scarpella et 

al., 2004). Thus, transcription factors expressed in P3 stage but rapidly down regulated to P4 

stage are prime candidates for markers of early vascular differentiation. 

39 transcription factors that are potential regulators of vascular development were identified. 

These come from diverse families. None are well studied in rice, but several have putative 

Arabidopsis thaliana orthologs. Thus, these genes are obvious targets to be followed up. However, 

there are 23 genes out of my list of 39 potential vascular development regulators that have not 

been studied in rice and for which an ortholog in another species can also not be identified. 

Clarifying whether they play a role in vascular development in rice remains a formidable 

challenge, particularly due to the fact that these previously unstudied transcription factors are 

often members of larger families of genes with high sequence similarity and possibly high 

redundancy.  

Scarpella and Meijer (2004) comprehensively reviewed vascular development in dicots and 

monocots, and offer detailed lists of some of the best studied vascular development regulators in 

Arabidopsis thaliana, maize and rice. The expression patterns of the rice orthologs of these genes 

during early leaf development gives insight into their likely roles in rice. For example, cluster 

‘down 2’, which likely contains genes important for early events in vascular development, 

contains the well-studied rice gene DROOPING LEAF (Yamaguchi et al., 2004), the rice 

orthologs of the auxin efflux carrier PIN1 (Xu et al., 2005), the known vascular development 

regulator AXR6 (Hobbie et al., 2000), and the auxin responsive gene ZLL (Tucker et al., 2008). 

The ‘down 3’ cluster, in which genes are further down regulated from P4 to P5 after having been 

down regulated from P3 to P4 stage, may also contain genes important for early events in the 

formation of veins. This cluster contains the auxin responsive rice gene OsPNH, as well as rice 

orthologs of EMB30, weak mutant alleles of which show vascular patterning effects attributed to 

polar auxin transport issues; the known vascular development regulators MP, VCS and FK; and 

genes involved in cell or organ polarity such as TAN1, PHV and PHB (reviewed by Scarpella and 

Meijer, 2004).  

In contrast, some rice orthologs of Arabidopsis thaliana genes involved in vascular development 

have expression patterns in rice that do not reflect the patterns of vein development observed in 

this thesis (Chapter 3). This may make them less likely candidates for early vascular development 

regulators in rice. These include genes that are up regulated in developmental stages (P4, P5) in 

which the basic vascular pattern is already established, such as those in clusters ‘up 1’ (VAS, 

AGO1, WOL, COV1, and Oshox1), ‘up 2’ (PIN1, APL, VH1, VEP1, CPD and ISR) and ‘up 3’, 

as well as those that are down regulated in later developmental stages, but not until the P4 to P5 
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stage transition (‘down 1’ cluster, which contains orthologs of Arabidopsis thaliana PHV, PHB, 

DWF7, SMT1, and ZLL). Those that show no change in their level of expression across the 

developmental stages studied (i.e. those in the ‘neutral’ expression cluster, namely rice orthologs 

of EMB30, AXR6, KNAT1, FZY, APL, Athb8, VCS, REV, AMP1 and KN1) may also be of 

less interest as likely regulators of early vascular development in rice. However, it is also possible 

that these upregulated or neutral genes are active in vascular patterning in stages prior to those in 

which gene expression was measured in this work(P1, P2). Alternatively, their increasing or 

constant expression during leaf development may be to do with functions other than vein 

development, in addition to which their absolute level of expression in early stages is still high 

enough to regulate vein development.. 

The study of potential regulators of vascular development through in situ hybridization has the 

potential to reveal both whether they are expressed in patterns of relevance to vascular 

development, and at what developmental stage their expression is highest. The cross sections 

used here capture several developmental stages of the rice leaf, enabling the comparison of 

tissues with different levels of vein differentiation. However, none of the genes I studied showed 

expression patterns restricted to or excluded from the vasculature. This may indicate that they do 

not play a role in vascular differentiation, or that they interact with other factors that do have 

specific expression patterns, or that their spatial regulation is not at the transcriptional level.   

5.5.3. Comparisons with maize leaf development  

A major theme in efforts to improve rice photosynthesis has been to identify the genetic 

differences which might account for the differentiation of C3 or C4 leaf anatomies. Leaves of C4 

plants develop a high vein density and the specialized arrangement of mesophyll and bundle 

sheath cells known as Kranz anatomy. In contrast, C3 rice leaves develop lower vein density and 

lack Kranz anatomy. With the advent of next generation sequencing and gene expression 

technologies, comparison of genome-scale data has become practical and a series of insightful 

analyses of C4 leaf development has ensued (Li et al., 2010; Braeutigam et al., 2011; Wang et al., 

2013a; Wang et al., 2014). My data indicate that the key steps in the establishment of fundamental 

aspects of rice leaf photosynthesis occur early in development (P3/P4), thus comparison of the 

relevant gene expression patterns at this specific stage may provide novel leads as to which of the 

myriad genes expressed in C3 and C4 leaves might be appropriate targets for manipulation.  

One initial finding from my correlation of gene expression in developing maize and rice leaves is 

that rice primordia show a more similar pattern of gene expression to maize foliar primordia than 

to maize husk primordia, despite the fact that maize husk leaves also have C3 photosynthesis 

whereas maize foliar leaves carry out C4 photosynthesis. This may indicate that the primary 
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function of the rice leaves studied, namely to carry out photosynthesis, is shared with the maize 

foliar leaf and is the most important determinant of gene expression pattern, whereas maize husk 

leaves may be more distinct due to their role in the floral transition and in protecting the 

reproductive organs from biotic and abiotic stress (Wang et al., 2014a).  

Functional enrichment testing on the overlap between clusters reveals that some genes may have 

conserved roles in maize and rice during early leaf development. These genes are up regulated 

early in leaf development and down regulated in older leaf primordia in both maize and rice. Not 

only do they include genes with functions in the cell cycle, cell division, DNA and protein 

synthesis, as might be expected in young rapidly dividing cells, several other interesting functions 

are also enriched in early leaf development in both maize and rice. These include categories with 

regulatory functions such as pre-rRNA processing and modification, protein targeting to the 

nucleus, chromatin remodeling factors, zinc finger-HD transcription factors, RNA binding 

proteins and pentatricopeptide (PPR) repeat-containing proteins.  

Among the genes showing an increase in expression from younger to older leaves in both maize 

and rice, many are part of the core photosynthetic machinery, as might be expected. In addition, 

the CONSTANS-like family of C2C2 transcription factors are up regulated during development 

in both rice and maize. These genes are known to have a role in photomorphogenesis, and 

several are light inducible (Gangappa and Botto, 2014). As such, it is likely that they are a central 

part of the regulatory network that forms a photosynthetic mature leaf in both maize and rice. A 

second enriched category of genes that is up regulated in both maize and rice is that of the lipid 

transfer proteins. The biological relevance of the presence of lipid transfer proteins in both the 

maize and the rice up regulated transcriptomes is unclear.  

Genes that are down regulated during rice leaf development but up regulated during maize leaf 

development may enable the development of ‘C4’ structure and function in maize (Wang et al., 

2013). Thus, I identified all rice genes that show a general downward trend in expression during 

development of which the maize orthologs show an upward trend in expression. Within the 

resulting list of genes, only two functions are enriched, namely protein targeting to the 

chloroplast and amino acid synthesis. The finding that one enriched functional term was ‘protein 

targeting to the chloroplast’ is consistent with the fact that appropriate spatial separation of 

different enzymatic functions is a key aspect of C4 photosynthesis (Sheen, 1999; Majeran et al., 

2005; Hibberd and Covshoff, 2010). Thus, my data support the idea that a chloroplast protein 

import based mechanism for the compartmentation of photosynthesis between mesophyll and 

bundle sheath cells active during the later stages of maize leaf development may be lacking in rice 

leaf development (Langdale, 2011). The significance of the enrichment in genes involved in 
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amino acid synthesis in the list of genes that are up regulated in maize but down regulated in rice 

is less obvious.  

The comparison of the data set reported here with that of Wang et al. (2013a) also allowed me to 

identify eight rice transcription factors that decrease in expression during rice leaf development 

of which the maize orthologs increased in expression during maize foliar leaf development. Four 

of these genes have been reported to have very low expression in the mature leaf mesophyll and 

bundle sheath in maize but the other four have been reported to be differentially expressed 

between mature maize mesophyll and bundle sheath cells, the key cell types of C4 maize Kranz 

anatomy (Li et al., 2010). These eight transcription factors represent novel targets for the 

manipulation of the rice leaf to produce a more C4-like architecture.  

5.5.4. Conclusions and future work 

This dataset provides an overview of gene expression changes in early leaf development in rice 

plants. It can guide efforts to identify novel regulators of vascular, stomatal and photosynthetic 

development in rice, and thus help translate the work done in model species such as Arabidopsis 

thaliana into this vital crop plant. In addition, it can be compared to recent datasets on early maize 

leaf development and the maize and rice leaf gradients (Wang et al., 2014a; Wang et al., 2013). 

Such comparisons can be used to identify both conserved patterns of gene expression in 

monocots and patterns that may have diverged to facilitate the development of C4 structures.  

In studying this dataset, I have focused partly on the development of photosynthesis in rice leaf 

primordia. The P3, P4 and P5 stages of rice leaf development show a rapid increase in 

photosynthetic capacity (Chapter 3, this thesis). In this chapter, I have demonstrated that the 

genes coding for the core photosynthetic machinery in rice (which are largely known) show a 

concurrent increase in expression. I have identified a list of 51 transcription factors that are 

poorly studied in rice that may play a role in the acquisition of photosynthetic capacity. In 

addition, the comparison of this dataset with an earlier equivalent maize dataset revealed that 

members of the CONSTANS-like transcription factor family in particular are overrepresented in 

the expression clusters that contain many photosynthetic components in both maize and rice. 

The expression patterns of these potential regulators of photosynthetic development can be 

further investigated, and mutants may elucidate their exact biological function. Identifying 

whether any of these genes share downstream targets with known regulators of plastid 

development such as GLK1 and GLK2 may confirm their role as regulators of photosynthetic 

differentiation. 

In addition, the genetic mechanisms underlying vascular patterning in rice were investigated. 

Several novel potential regulators of early vascular development identified here merit further 
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study. A small number can be pinpointed as being of particular interest from orthology with 

Arabidopsis thaliana genes known to regulate vascular development or due to their auxin 

responsiveness. Studying the expression patterns of the unknown rice transcription factors 

identified here as possible regulators of rice vascular development in the developing vasculature 

further may also provide more specific insight. In addition, several of the orthologs of the 

Arabidopsis thaliana vascular development regulators described by Scarpella and Meijer (2004) have 

never been described in rice before, and these data could help translate findings from this model 

species into a vital crop plant. 

Another morphological parameter of interest for crop improvement is stomatal patterning, and 

thus, the expression of genes putatively involved in stomatal development was investigated. 

Stomatal differentiation occurs during P4 stage (Amin Yaapar, thesis, 2016) and the analysis 

presented in this chapter revealed the expression during this phase of a number of genes 

associated in other systems with processes of stomatal patterning and differentiation. Previous 

attempts to detect the expression of some of these genes in rice (e.g., OsSPCH1 and OsSPCH2) 

have failed (Liu et al., 2009), suggesting that the highly targeted and staged RNA-Seq approach 

taken here was essential for the detection of these transcripts. The overall pattern of stomatal 

associated gene expression was consistent with the observed limitation of stomatal differentiation 

to the P3/P4 stage. Expression of most of these genes was minimal in P5 stage leaves and the 

others tended to show a gradual decline in expression from P3 to P5 or some showed a peak in 

expression at P4 (e.g., OsFAMA, OsEPFL9). In light of the role of these genes in controlling 

stomatal patterning and differentiation in other systems, these rice genes likely play a vital role in 

setting parameters of stomatal pattern and number. Studying whether these genes are expressed 

in developing stomata is technically challenging, but may be feasible in the future if whole mount 

in situ hybridization techniques in rice are further developed (Amin Yaapar, thesis, 2016).  

Finally, I was interested in the differences in gene expression during C3 and C4 leaf development. 

Many comparisons of C3 and C4 leaf gene expression are now available, and the timing and 

location of expression of many of the core elements of C4 photosynthetic metabolism are known 

(Langdale et al., 1988; Li et al., 2010; Wang et al., 2014a). However, the transcription factors 

regulating the development of Kranz anatomy and cell-specific expression in C4 leaves remain 

elusive (Hibberd and Covshoff, 2010). Here, I suggest a list of eight transcription factors which 

are upregulated during maize leaf development but down regulated during rice leaf development. 

Overexpression of these maize transcription factors in rice may help elucidate their exact 

function, particularly if promoters can be identified that enable targeted expression during the 

later stages of rice leaf development. However, it is likely that Kranz anatomy, higher vein 

density, and other morphological differences between C3 and C4 plants are regulated by a suite of 
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genes (Brown and Bouton, 1993; Leegood, 2013). Therefore, the overexpression of informed 

combinations of these transcription factors and others may be the way forward (Wang et al., 

2014a).  

5.5.5. Final remarks 

The work presented here describes the expression patterns of genes involved in the key processes 

occurring during the early development of the rice leaf. As such, it provides insight into the 

genetic networks underlying vascular, stomatal and photosynthetic development in rice. As well 

as identifying key processes occurring at each developmental stage, the work pinpoints several 

individual genes that may merit future work. In addition, the overwhelming majority of data 

generated in this study has not yet been analyzed. These data include immature mRNA 

transcripts, which may give insight into which genes are actively being transcribed at a particular 

developmental stage and which have been up regulated since earlier in development. They 

include all alternatively spliced transcripts of each known gene, provided that they are expressed 

at some point during early leaf development, as well as transcripts originating from previously 

completely unknown genes. Transcripts originating from the mitochondrion or from the plastid 

are also available. The stranded nature of the library generated has created a dataset that is ideal 

for the analysis of genes that may be coded for on opposite strands but in overlapping reading 

frames. Finally, even long non-coding RNAs can be detected in these data, and the stranded 

library preparation can reveal their expression pattern at the same time as that of any protein-

coding genes on the opposite strand that may or may not be regulated by them. Thus, the 

publicly available data generated here has the potential to reveal much more about early rice leaf 

development in future work.  
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5.6. Supplementary material 

Gene ID Gene Description  Rice orthologs(s)  Cluster 

AT1G02120.1 VAS Weak similarity to non-
specific lipid transfer 
proteins 

LOC_Os07g30940 up 1 

AT1G04550.1 BDL/ IAA12 Member of the Aux/IAA 
family of short-lived 
nuclear proteins 

LOC_Os02g57250 peak 

AT1G13980.1 EMB30/ 
GN/VAN7 

Guanine exchange factor LOC_Os03g46330 down 3 

LOC_Os02g22090 neutral 

AT1G19850.1 MP/ ARF5 Transcription factor of the 
ARF family 

LOC_Os04g56850 down 3 

AT1G20050.1 HYD1 Sterol Δ8-Δ7 isomerase LOC_Os01g01369 peak 

AT1G20330.1 CVP1/ SMT2 Sterol Methyltransferase2 LOC_Os03g04340 peak 

AT1G30490.1 PHV/ Athb9 Transcription factor of the 
HD-Zip III family 

LOC_Os12g41860 down 3 

LOC_Os03g43930 down 1 

AT1G48410.1 AGO1 Piwi/PAZ-domain protein LOC_Os02g45070 up 1 

AT1G73590.1 (At)PIN1 Putative auxin efflux 
carrier 

LOC_Os02g50960 up 2 

LOC_Os06g12610 down 2 

AT1G79430.1 APL MYB-related transcription 
factor 

LOC_Os02g07770 neutral 

LOC_Os06g45410 up 2 

AT2G01830.1 WOL/ CRE1/ 
AHK4 

Cytokinin receptor two-
component histidine 
kinase 

LOC_Os10g21810 up 1 

AT2G01950.1 VH1 LRR receptor kinase LOC_Os10g02500 up 2 

AT2G20120.1 COV1 Putative integral 
membrane protein 

LOC_Os05g45280 up 1 

LOC_Os02g16880 down 1 

AT2G34710.1 PHB/ Athb14  Transcription factor of the 
HD-Zip III family 

LOC_Os12g41860 down 3 

LOC_Os03g43930 down 1 

AT2G37630.1 AS1 Transcription factor of the 
MYB class 

LOC_Os12g38400 down 2 

AT2G45190.1 FIL/ YAB1/ 
YAB3 

Transcription factor of the 
YABBY class 

none found  

AT3G02580.1 DWF7/ STE1/ 
BUL1 

Δ7 sterol C-5 desaturase LOC_Os01g04260 down 1 

AT3G13300.1 VCS WD-domain protein LOC_Os02g49090 down 3 

LOC_Os06g19660 neutral 

AT3G52940.1 FK/ HYD2/ 
ELL1 

Sterol C-14 reductase LOC_Os01g25189 neutral 

LOC_Os09g39220 down 3 

AT3G54720.1 AMP1/ COP2/ 
HPT/PT 

Glutamate 
carboxypeptidase 

LOC_Os03g57660 neutral 

AT4G02570.1 AXR6/ AtCUL1 Member of the 
cullin/CDC53 family of 
proteins 

LOC_Os05g05700 down 2 

LOC_Os01g27150 neutral 

AT4G08150.1 KNAT1/BP Transcription factor of the 
KNOX class 

LOC_Os03g47036 neutral 

AT4G24220.1 VEP1/ AWI31 Polypeptide similar to 
animal proteins involved 
in apoptosis  
 

LOC_Os07g41050 up 2 

LOC_Os03g32170 up 2 
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AT4G32880.1 Athb8 Transcription factor of the 
HD-Zip III family 

LOC_Os01g10320 neutral 

AT5G05690.1 CPD/ DWF3/ 
CBB3 

Cytochrome P450 LOC_Os12g04480 up 4 

LOC_Os11g04710 up 2 

AT5G13710.1 SMT1/ CPH/ 
ORC 

Sterol Methyltransferase1 LOC_Os07g10600 down 1 

LOC_Os03g59290 not ex. 

AT5G16560.1 KAN1, 2 and 3 Transcription factors of 
the GARP class 

none found  

AT5G43810.1 ZLL/ PNH Piwi/PAZ-domain 
proteins 

LOC_Os06g51310 down 2 

LOC_Os02g58490 down 1 

AT5G60690.1 REV/ IFL1 Transcription factor of the 
HD-Zip III family 

LOC_Os10g33960 neutral 

LOC_Os03g01890 neutral 

GRMZM5G803874 ISR Chloroplast protein similar 
to bacterial phosphatases 

LOC_Os04g47020 up 2 

GRMZM2G039113 TAN1 Microtubule binding 
protein 

LOC_Os02g26140 down 3 

GRMZM2G017087 KN1 Transcription factor of the 
KNOX class 

LOC_Os03g51690 neutral 

Ph* AT5G11320.1 FZY Flavin mono-oxygenase-
like protein YUCCA4 

LOC_Os01g45760 neutral 

LOC_Os06g39640 OsPNH Piwi/PAZ-domain protein LOC_Os06g39640 down 3 

LOC_Os10g41230 Oshox1 Transcription factor of the 
HD-Zip II family 

LOC_Os10g41230 up 1 

LOC_Os03g11600 DL Transcription factor of the 
YABBY class 

LOC_Os03g11600 down 2 

LOC_Os11g03110 SCARECROW1 Transcription factor of the 
GRAS family 

N/A down 3 

LOC_Os12g02870 SCARECROW2 Transcription factor of the 
GRAS family 

N/A down 3 

LOC_Os07g39820 SHORTROOT1 Transcription factor of the 
GRAS family 

N/A down 3 

LOC_Os03g31750 SHORTROOT2 Transcription factor of the 
GRAS family 

N/A neutral 

 

Supplementary Table S 1. Arabidopsis thaliana and Zea mays genes known to regulate vascular development (Scarpella and Meijer 
2004), their putative rice orthologs, and expression clusters of these orthologs. not ex., not expressed. N/A, not applicable. 
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Locus Gene name Cluster 

LOC_Os06g12610 OsPIN1a down 2 

LOC_Os06g02180 NARROW AND ROLLED LEAF 1; CSLD2  down 2 

LOC_Os07g03770 Oskn3 down 2 

LOC_Os08g34380 COE1 receptor-like kinase down 3 

LOC_Os03g33650 OsAGO7 down 3 

LOC_Os04g52479 NAL1; peptidase, trypsin-like serine and cysteine proteases neutral 

LOC_Os08g41720 OsPIN5b neutral 

LOC_Os11g01130 nal2 neutral 

LOC_Os12g01120 nal3 neutral 

LOC_Os06g44970 OsPIN2 not ex. 

LOC_Os01g45550 OsPIN10a peak 

LOC_Os01g69070 OsPIN5a up 1 

LOC_Os05g11130 cytochrome P450 (CYP90D3) up 2 

LOC_Os01g10040 cytochrome P450 (CYP90D2) up 2 

LOC_Os02g50960 OsPIN1b up 2 

 

Supplementary Table S 2. Oryza sativa genes known to be involved in vascular development and their expression during early leaf 
development. 
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Supplementary Table S 3. Oryza sativa genes identified as potential novel regulators of vascular development in rice. 

 

  

Locus O. sativa annotation Clust

er LOC_Os12g05680 transcription factor down 

2 LOC_Os03g11600 YABBY domain containing protein down 

2 LOC_Os03g07940 AP2 domain containing protein down 

2 LOC_Os01g45570 homeobox associated leucine zipper down 

2 LOC_Os09g25040 joka8 down 

2 LOC_Os04g46060 WRKY36 down 

2 LOC_Os10g36420 YABBY domain containing protein down 

2 LOC_Os01g74020 MYB family transcription factor down 

2 LOC_Os05g49280 GATA zinc finger domain containing protein down 

2 LOC_Os09g36160 LRP1 down 

2 LOC_Os02g42870 MYB family transcription factor down 

2 LOC_Os05g50270 GATA zinc finger domain containing protein down 

2 LOC_Os03g56050 AP2-like ethylene-responsive transcription factor 

AINTEGUMENTA 

down 

2 LOC_Os09g23200 KANADI1 down 

2 LOC_Os02g55380 AP2 domain containing protein down 

2 LOC_Os03g55610 dof zinc finger domain containing protein down 

2 LOC_Os04g51000 transcription factor FL down 

2 LOC_Os04g35660 no apical meristem protein down 

2 LOC_Os07g03250 AP2-like ethylene-responsive transcription factor PLETHORA 2 down 

2 LOC_Os09g01470 expressed protein down 

2 LOC_Os08g36700 HSF-type DNA-binding domain containing protein down 

2 LOC_Os10g39550 MYB family transcription factor down 

2 LOC_Os08g43410 LRP1 down 

2 LOC_Os06g42630 B3 DNA binding domain containing protein down 

2 LOC_Os01g67830 B3 DNA binding domain containing protein down 

2 LOC_Os03g42370 B3 DNA binding domain containing protein down 

2 LOC_Os08g37290 basic helix-loop-helix down 

2 LOC_Os09g24490 basic helix-loop-helix family protein down 

2 LOC_Os07g48660 bZIP transcription factor domain containing protein down 

2 LOC_Os06g15480 transcription factor down 

2 LOC_Os12g39990 dof zinc finger domain containing protein down 

2 LOC_Os02g42950 YABBY domain containing protein down 

2 LOC_Os11g47900 SCARECROW down 

2 LOC_Os06g02560 growth-regulating factor down 

2 LOC_Os01g52680 OsMADS32 - MADS-box family gene with MIKCc type-box down 

2 LOC_Os12g07640 MYB family transcription factor down 

2 LOC_Os02g45080 MYB family transcription factor down 

2 LOC_Os03g03760 MYB family transcription factor down 

2 LOC_Os03g50920 ZF-HD protein dimerization region containing protein down 

2 
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Identifier O. sativa annotation MapMan Bin Name 

LOC_Os01g64960 chlorophyll A-B binding 
protein 'PS.lightreaction.photosystem II.PSII 

polypeptide subunits' 
 

LOC_Os07g01480 oxygen evolving enhancer 
protein 3 domain containing 
protein 

LOC_Os04g53612 APO 'PS.lightreaction.photosystem I' 

LOC_Os09g08880 ATP synthase like protein 'PS.lightreaction.ATP synthase.alpha 
subunit' 

LOC_Os07g38000 cytochrome c 'PS.lightreaction.other electron carrier 
(ox/red)' 

LOC_Os05g37140 2Fe-2S iron-sulfur cluster 
binding domain containing 
protein 

'PS.lightreaction.other electron carrier 
(ox/red).ferredoxin' 

 

LOC_Os02g58740 expressed protein 

LOC_Os03g61960 2Fe-2S iron-sulfur cluster 
binding domain containing 
protein 

LOC_Os05g37140 2Fe-2S iron-sulfur cluster 
binding domain containing 
protein 

LOC_Os04g57780 tetratricopeptide repeat 
domain containing protein 

LOC_Os03g11450 expressed protein 

LOC_Os03g61960 2Fe-2S iron-sulfur cluster 
binding domain containing 
protein 

LOC_Os02g17700 pyridine nucleotide-
disulphide oxidoreductase 
domain containing protein 

'PS.lightreaction.other electron carrier 
(ox/red).ferredoxin reductase' 

LOC_Os01g03050 fruit protein PKIWI502 'PS.lightreaction.other electron carrier 
(ox/red).ferredoxin oxireductase' 

LOC_Os06g22010 ubiquinone oxidoreductase 'PS.lightreaction.NADH DH' 
 LOC_Os02g18940 expressed protein 

LOC_Os03g63010 plastid terminal oxidase 'PS.lightreaction.cyclic electron flow-
chlororespiration' 

 
LOC_Os04g57320 immutans protein 

LOC_Os08g09860 hydroxyacid oxidase 1 'PS.photorespiration.glycolate oxydase' 

LOC_Os06g45670 glycine cleavage system H 
protein 'PS.photorespiration.glycine cleavage.H 

protein' LOC_Os02g07410 glycine cleavage system H 
protein 

LOC_Os04g01650 erythronate-4-phosphate 
dehydrogenase domain 
containing protein 

'PS.photorespiration.hydroxypyruvate 
reductase' 

LOC_Os02g05830 ribulose bisphosphate 
carboxylase small chain, 
chloroplast precursor 

'PS.calvin cycle.Rubisco small subunit' 

LOC_Os02g07260 phosphoglycerate kinase 
protein 

'PS.calvin cycle.phosphoglycerate 
kinase' 

 
LOC_Os06g45710 phosphoglycerate kinase 

protein 
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LOC_Os01g58610 phosphoglycerate kinase 
protein 'PS.calvin cycle.phosphoglycerate 

kinase' (cont.) 
 

LOC_Os10g30550 tRNA methyltransferase 

LOC_Os02g07260 phosphoglycerate kinase 
protein 

LOC_Os01g05490 triosephosphate isomerase, 
cytosolic 

'PS.calvin cycle.TPI' 

LOC_Os01g67860 fructose-bisphospate aldolase 
isozyme 

'PS.calvin cycle.aldolase' 
 
 

'PS.calvin cycle.aldolase' 
 

LOC_Os01g02880 fructose-bisphospate aldolase 
isozyme 

LOC_Os05g33380 fructose-bisphospate aldolase 
isozyme 

LOC_Os04g19740 transketolase, chloroplast 
precursor 

'PS.calvin cycle.transketolase' 

LOC_Os09g32810 ribulose-phosphate 3-
epimerase 

'PS.calvin cycle.RPE' 

 

Supplementary Table S 4. Photosynthetic genes that are among the first to be expressed to at least 50% of their maximal 
expression level at the earliest developmental stage studied (P3 stage). 
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Locus O. sativa annotation Cluster 

LOC_Os07g28610 expressed protein up 3 

LOC_Os02g51020 expressed protein up 2 

LOC_Os05g28090 expressed protein up 3 

LOC_Os03g14040 expressed protein; putative ortholog of Arabidopsis LOW 
QUANTUM YIELD OF PSII1  

up 3 

LOC_Os01g58470 expressed protein; putative ortholog of Arabidopsis 
CHLOROPLAST PROTEIN ENHANCING STRESS 
TOLERANCE 

up 2 

LOC_Os02g02520 expressed protein; putative ortholog of Arabidopsis LOW PSII 
ACCUMULATION 3  

up 2 

LOC_Os02g15750 expressed protein; putative ortholog of Arabidopsis 
THYLAKOID RHODANESE-LIKE 

up 3 

LOC_Os10g42240 kinase, pfkB family; putative ortholog of Arabidopsis 
NECESSARY FOR THE ACHIEVEMENT OF RUBISCO 
ACCUMULATION 5 (NARA5) 

up 2 

LOC_Os04g33830 membrane protein up 3 

LOC_Os08g45190 PROTON GRADIENT REGULATION 5 up 3 

LOC_Os05g40180 serine/threonine-protein kinase stt7, chloroplast precursor up 3 

LOC_Os07g37250 THYLAKOID FORMATION1, chloroplast precursor up 3 

LOC_Os08g40160 thylakoid lumen protein, chloroplast precursor up 3 

LOC_Os05g33280 thylakoid lumen protein up 3 

LOC_Os08g39430 thylakoid lumenal 19 kDa protein, chloroplast precursor up 3 

LOC_Os01g59090 thylakoid lumenal 20 kDa protein up 3 

LOC_Os12g08830 thylakoid lumenal 29.8 kDa protein up 3 

 

Supplementary Table S 5. Non- transcription factor genes identified as important to photosynthetic development in rice. 
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Locus O. sativa annotation Cluster 

LOC_Os02g29550 AP2 domain containing protein up 1 

LOC_Os02g39360 B-box zinc finger family protein up 3 

LOC_Os06g15330 CCT/B-box zinc finger protein up 3 

LOC_Os03g50310 CCT/B-box zinc finger protein up 3 

LOC_Os02g39710 CCT/B-box zinc finger protein up 3 

LOC_Os04g42020 CCT/B-box zinc finger protein up 3 

LOC_Os09g13570 CPuORF2 - conserved peptide uORF-containing transcript up 3 

LOC_Os02g49440 dof zinc finger domain containing protein up 3 

LOC_Os03g07360 expressed protein;  up 3 

LOC_Os05g02420 expressed protein up 3 

LOC_Os06g24070 GLK1; myb-like DNA-binding domain containing protein up 3 

LOC_Os01g13740 GLK2; myb-like DNA-binding domain containing protein up 3 

LOC_Os10g40740 helix-loop-helix DNA-binding domain containing protein up 3 

LOC_Os03g29970 histone-like transcription factor and archaeal histone up 3 

LOC_Os02g49700 homeobox associated leucine zipper up 2 

LOC_Os12g43950 homeobox domain containing protein up 2 

LOC_Os03g52239 homeobox domain containing protein up 4 

LOC_Os11g06020 homeobox domain containing protein up 3 

LOC_Os06g43860 homeobox protein knotted-1 up 3 

LOC_Os03g06930 homeodomain protein up 3 

LOC_Os01g34060 MYB family transcription factor up 3 

LOC_Os10g41260 MYB family transcription factor up 3 

LOC_Os01g44390 MYB family transcription factor up 1 

LOC_Os01g09640 Myb transcription factor up 2 

LOC_Os08g42400 no apical meristem protein up 1 

LOC_Os10g39130 OsMADS56 - MADS-box family gene with MIKCc type-box up 1 

LOC_Os03g56950 phytochrome-interacting factor 4 up 3 

LOC_Os05g27730 WRKY53 up 3 

LOC_Os01g68860 zinc finger C-x8-C-x5-C-x3-H type family protein up 3 

LOC_Os05g03760 zinc finger family protein up 3 

LOC_Os02g10760 AP2 domain containing protein peak 

LOC_Os06g40150 AP2 domain containing protein peak 

LOC_Os02g51320 helix-loop-helix DNA-binding domain containing protein peak 

LOC_Os02g49480 helix-loop-helix DNA-binding domain containing protein peak 

LOC_Os01g11350 bZIP transcription factor domain containing protein peak 

LOC_Os01g55150 bZIP transcription factor domain containing protein peak 

LOC_Os02g14910 bZIP transcription factor family protein peak 

LOC_Os01g54210 GATA zinc finger domain containing protein peak 

LOC_Os05g44400 GATA zinc finger domain containing protein peak 

LOC_Os06g37450 GATA zinc finger domain containing protein peak 
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Supplementary Table S 6. Transcription factors identified as potential novel regulators of photosynthetic development in rice. 

  

LOC_Os10g40660 ZOS10-07 - C2H2 zinc finger protein peak 

LOC_Os06g04850 homeobox associated leucine zipper peak 

LOC_Os09g36730 MYB family transcription factor peak 

LOC_Os03g25550 myb-like DNA-binding domain containing protein peak 

LOC_Os08g33660 MYB family transcription factor peak 

LOC_Os04g38740 MYB family transcription factor peak 

LOC_Os02g36890 MYB family transcription factor peak 

LOC_Os03g02240 AT-GTL1 peak 

LOC_Os03g55164 WRKY4 peak 

LOC_Os01g74140 WRKY17 peak 

LOC_Os01g68900 zinc finger, C3HC4 type family protein peak 
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Locus Transcription factor type Cluster 

LOC_Os06g33450 HLH DNA-binding   down 1 

LOC_Os12g38200 dof zinc finger   down 1 

LOC_Os02g06910  ARF6 down 2 

LOC_Os07g48660 bZIP TF   down 2 

LOC_Os04g49450  MYB family TF down 2 

LOC_Os02g55380 AP2   down 2 

LOC_Os02g15760 HLH DNA-binding   down 3 

LOC_Os04g55970  AINTEGUMENTA neutral 

LOC_Os02g04680  OsSPL3  neutral 

LOC_Os09g29830 HLH DNA-binding   neutral 

LOC_Os05g37170 TF neutral 

LOC_Os08g06140  no apical meristem  neutral 

LOC_Os01g69910 calmodulin-binding activator neutral 

LOC_Os02g47810 dof zinc finger   neutral 

LOC_Os02g42820  OsPLIM2a neutral 

LOC_Os04g52410  OsMADS31 neutral 

LOC_Os12g31748  OsMADS20  neutral 

LOC_Os07g39320 homeobox   not expressed 

LOC_Os02g14910 bZIP TF family  peak 

LOC_Os03g08960 homeobox leucine zipper up 2 

LOC_Os01g68700 bHLH TF up 2 

LOC_Os01g32770 DUF260   up 2 

 

Supplementary Table S 7. Expression profiles of rice orthologs of putative regulators of Kranz anatomy in maize (gene list from 
Wang et al., 2013). NS, not significantly differently expressed between any two stages; NE, not expressed. 
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Locus 
Location 

in Figure 5.11 O. sativa annotation Profile 

LOC_Os02g14110 1 aminotransferase, classes I and II down 1 

LOC_Os09g12600 2 phosphate/phosphate translocator down 2 

LOC_Os07g42600 3 aminotransferase, classes I and II down 3 

LOC_Os08g33720 4 lactate/malate dehydrogenase neutral 

LOC_Os01g09320 5 NADP-dependent malic enzyme neutral 

LOC_Os09g02214 6 Sodium-proton antiporter (putative)  neutral 

LOC_Os08g37600 7 2-oxoglutarate/malate transporter (putative) peak 

LOC_Os01g45750 8 bile acid sodium symporter family protein peak 

LOC_Os02g55420 9 aminotransferase, classes I and II peak 

LOC_Os10g35960 10 NAD-dependent malic enzyme up 1 

LOC_Os01g02050 11 phosphoenolpyruvate carboxylase up 1 

LOC_Os02g32930 12 bile acid sodium symporter up 2 

LOC_Os12g33080 13 2-oxoglutarate/malate translocator up 2 

LOC_Os07g31380 14 NAD-dependent malic enzyme up 2 

LOC_Os05g33570 15 pyruvate, phosphate dikinase up 3 

LOC_Os09g28910 16 carbonic anhydrase up 3 

    
Supplementary Table S 8. Expression profiles of rice genes encoding orthologs of enzymes and transporters involved in C4 
photosynthesis in maize across three developmental stages of the rice leaf (gene list from Wang et al., 2013).  
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6. Discussion 

6.1. When does a rice leaf gain capacity for photosynthesis? 

A key aim of this thesis was to identify the point at which developing rice leaves gain the ability 

to carry out photosynthetic electron transport. In order to do this, I developed a protocol to 

image the chlorophyll fluorescence dynamics of rice leaf primordia. My results show that 

photosynthetic electron transport first occurs in the tip of P3 stage primordia. A steep 

developmental gradient exists along the leaf at this developmental stage, with only regions nearest 

the tip showing photosynthetic function. In P4 stage leaves, the region in which photosynthetic 

electron transport can occur is much larger, and the absolute level of ΦPSII is also much higher in 

these regions. These results, along with my finding that the complexity of chloroplast structure 

increases from P3 to P4 stage, indicate that rice leaves gain photosynthetic competence around 

the P3-P4 stage transition. They also emphasise the need to study developmental processes in 

grass leaves at a high resolution to adequately capture the spatial heterogeneity from tip to base. 

The chlorophyll fluorescence imaging technique developed here may also prove useful for the 

high spatial resolution study of physiological processes in other developing systems. Specifically, 

two possibilities could include studying the relationship between the onset of photosynthetic 

function and cell cycle arrest front formation in dicot leaves (Andriankaja et al., 2012), or 

studying the timing and effect on photosynthetic function of differentiation of the bundle sheath 

in C4 plants to have an altered photosystem II: photosystem I ratio compared to the surrounding 

mesophyll (Pfuendel and Neubohn, 1999; Peterson et al., 2014).  

A second finding was that at these early stages of leaf development the dynamics of 

photosynthetic electron transport in response to light are different to those seen in mature leaves. 

For instance, induction of electron transport upon exposure to light is much faster in P3 and P4 

stage primordia than in P5 stage and mature leaves, and primordia lose photosynthetic efficiency 

rapidly at increasing irradiances. These results inform on both the developmental status of the 

plastid electron transport chain and the metabolic status of the primordial tissues in which 

photosynthetic electron transport efficiency is being measured. In particular, the plastoquinone 

pool in these primordia is likely to be small and rapidly reduced, leading to fast induction kinetics 

(Ohashi et al., 1989). This small plastoquinone pool may be one of the factors limiting the 

capacity of the developing electron transport chain. A rapid decrease in photosynthetic efficiency 

is seen at higher irradiances in P3/P4 stage leaves, again confirming the hypothesis that the 

capacity of the electron transport chain is low at early developmental stages. However, the rapid 

induction observed may also reflect the presence of high levels of reduced metabolites in these 
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tissues (Turgeon, 1989; Meng et al., 2001). The low absorbance and low electron transport 

efficiency seen in these primordia confirms their status as sink tissues that are incapable of 

surviving on autotrophic metabolism, instead being reliant on photosynthate imported from 

mature leaves. 

A question that remains is why these developing leaf primordia carry out photosynthetic electron 

transport. Little light is available to them, absorbance is low as little chlorophyll is present, and as 

a result the reducing power generated by photosynthetic electron transport at these stages is likely 

to be negligible compared to that generated in a mature leaf. This early onset of photosynthesis 

has also been observed in other systems at the level of gene expression and structural 

differentiation of plastids. In maize, genes encoding Calvin cycle enzymes and photosystem II 

subunits are already expressed in the L1 layer of the shoot apical meristem (SAM); in tomato 

(Solanum lycopersicon), Rubisco is upregulated from the SAM to the P1 stage primordium; and in 

Arabidopsis, fairly developed chloroplasts are seen in the L1 and L3 layers of the SAM (Fleming et 

al., 1993; Ohtsu et al., 2007; Charuvi et al., 2012). One hypothesis is that the establishment of 

high photosynthetic capacity requires a certain amount of time, and an early onset of 

photosynthetic differentiation is necessary to allow the synthesis of sufficient amounts of 

pigments, electron carriers and enzymatic machinery. However, chlorophyll biosynthesis is a very 

rapid process, with protochlorophyllide reductase (POR) known to be one of the fastest enzymes 

on earth (Masuda and Takamiya, 2004). In addition, biosynthesis of the required protein 

complexes is also relatively fast, since the genes involved in this can be upregulated rapidly and to 

a very high level when necessary, as is observed in our gene expression data comparing stages P3, 

P4 and P5. Although gene expression does not always translate directly to an increase in 

functional protein complex abundance, previous work has shown that in the case of 

photosynthetic protein complexes such as photosystem II, full function can be acquired as little 

as four hours after the illumination signal necessary for chlorophyll biosynthesis, which is 

coordinated with the expression of chlorophyll binding proteins (Ohashi et al., 1989). Therefore, 

why doesn’t a rice leaf initiate photosynthetic development four hours before it is first outside 

the developing sheaths of older leaves, where sufficient light is available for a meaningful amount 

of photosynthesis?  

One possibility is that although the small amount of photosynthesis carried out by developing 

leaves may not be meaningful in terms of leaf energy provision, it may be very meaningful in 

terms of the developmental signals it provides. Photosynthetic metabolism at early developmental 

stages may be necessary to produce specific metabolites that cannot be synthesized from 
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imported sugars and are necessary signals for appropriate development. This may happen at a 

cellular level, with the onset of photosynthetic metabolism required to allow an individual cells to 

end their proliferative state or to enter the appropriate differentiation pathway. Alternatively, the 

developing photosynthetic electron chain may amplify signals received from the environment 

through generating reactive oxygen species upon photo-oxidative stress induced by the small 

amount of light it receives. This could play a role in acclimation to the environment at early 

developmental stages, as reactive oxygen species generated during photosynthetic electron 

transport are quantitatively affected by many environmental stressors, such as desiccation, cold 

stress and nutrient limitation (Wise, 1995; Fey et al., 2005; Takahashi and Murata, 2008; Lawlor 

and Tezara, 2009; Pfannschmidt et al., 2009). In this scenario, the limited capacity of the 

developing electron transport chain may allow for increased responsiveness to the dampened 

environmental signals primordia receive as a result of being surrounded by the sheaths of older 

leaves: small changes in efficiency induced by environmental inputs may rapidly affect the 

reduction state of the entire plastoquinone pool as there is little excess capacity to buffer these 

changes. Experiments investigating whether etiolated (non-photosynthesising) leaves fully 

acclimate structurally to different non-light related environments (for example temperature or 

CO2 changes) may inform on this further. However, studies in other systems have implicated 

long distance signalling from mature to developing leaves in the acclimation of ‘sheltered’ leaves 

to their environment, which may negate the need for this function of the early electron transport 

chain (see below).  

An alternative explanation for the early onset of photosynthetic electron transport may be that it 

is not adaptive, instead being an evolutionary ‘spandrel’: an unavoidable by-product of the 

evolution of photosynthesis (Gould and Lewontin, 1979; Pigliucci and Kaplan, 2000). 

Intriguingly, although the key chlorophyll biosynthesis enzyme protochlorophyllide reductase 

(POR) requires light in angiosperms, chlorophyll biosynthesis can occur in the dark in 

photosynthetic bacteria, algae and gymnosperms, as the protochlorophyllide reductase in these 

systems (DPOR) is light independent (Adamson et al., 1997; Schoefs and Franck, 2003). A 

possibility is that the loss during angiosperm evolution of DPOR (likely because it is moderately 

oxygen sensitive; (Schoefs and Franck, 2003)) left in place the mechanisms inducing the onset of 

other components of photosynthesis very early in development. Thus, it would be interesting to 

see whether expression of this light independent DPOR at very early stages of grass leaf 

development would promote the biosynthesis of chlorophyll at stages where little light is present 

(pre-P3). It would remain to be seen whether this would ultimately contribute to leaf 

photosynthetic efficiency, since DPOR is moderately oxygen-sensitive and requires NADPH for 
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catalysis, and the synthesized chlorophyll may cause photooxidative stress due to the absorption 

of more light energy than the underdeveloped electron transport chain could dissipate (Schoefs 

and Franck, 2003). However, if the photosynthetic machinery is all ‘set’ to go upon sufficient 

light for chlorophyll biosynthesis being available, as in etiolated tissues, one might expect that 

rapid differentiation of the photosynthetic machinery might also occur if the light-dependent step 

of chlorophyll biosynthesis is bypassed.  

6.2. How well does the onset of photosynthesis correlate with 

morphological aspects of leaf differentiation? 

In addition to the onset of photosynthetic electron transport, the developmental stages studied 

here also encompass the development of key morphological features such as vasculature and 

stomata. In chapter 3, I characterised morphological changes during rice leaf development in 

detail by performing histological analyses of rice leaves at different stages of development. Using 

the highly predictable plastochron intervals observed in rice allowed me to stage the fifth leaf 

produced by measuring the length of leaf three (van Campen et al., 2016). This was key to 

studying the development of the vasculature in rice, as the early primordial stages important to 

this process are obscured from view by the sheaths of older leaves. I found that the midvein in 

rice is initiated before P2 stage, and the patterning of lateral veins develops by P3 stage. Although 

further differentiation of xylem and phloem occur from P3 stage up until leaf maturity, the 

spacing of veins is established early and no new veins are initiated after P4 stage. This spacing of 

veins is a key difference between C3 and C4 plants, and its development is thus of interest for 

improving rice photosynthetic performance (Smillie et al., 2012; Leegood, 2013; Wang et al., 

2013; Feldman et al., 2014). 

Vascular patterning in plant leaves is known to involve a range of molecular signalling pathways 

(Nelson and Dengler, 1997; Scarpella and Meijer, 2004). In particular, the involvement of auxin in 

both the initiation of primordia and the formation of the first vascular trace (the midrib) is well 

documented in both dicots such as Arabidopsis thaliana and monocots including maize and rice 

(Nelson and Dengler, 1997; Qi et al., 2008; Baylis et al., 2013). The auxin canalization hypothesis 

suggests that auxin then continues this role in the further patterning of veins; polar flow of auxin 

from the tip of the leaf to the shoot apical meristem via PIN proteins is thought to be a key 

process leading to the formation of continuous vascular strands (Berleth et al., 2000; Scarpella et 

al., 2006; Qi et al., 2008). The resulting auxin drainage from primordia to the shoot apical 

meristem is also thought to be important for establishing polarity in the leaf, which in turn is 

necessary for the planar structure of leaves: polarity defects lead to radialized leaves with an 
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almost tubular structure (Eshed et al., 2001; Eshed et al., 2004; Smith et al., 2006; Kuhlemeier, 

2007; Zhang et al., 2009; Moon and Hake, 2011; Deb et al., 2015). Given that leaf width (a result 

of planar growth) and vascular spacing are closely linked in monocot leaves (mutant screens for 

narrow vein spacing in both rice and maize have revealed many narrow leaf mutants; (Smillie et 

al., 2012; Feldman et al., 2014; Rizal et al., 2015); Marja Timmermans, personal communication), 

it is possible that polarity signals facilitating the wide, planar structure of leaves are also involved 

in vascular spacing. Indeed, many of the described polarity mutants in Arabidopsis have defects in 

both vascular patterning and vascular differentiation, as well as having planar growth defects 

(Emery et al., 2003; Juarez et al., 2004). However, further study of polarity networks and their 

relation to early vascular development in monocots is necessary, since monocot and dicot 

vascular patterning are very different and the failure to identify high vein density monocot 

mutants with no leaf width phenotype is intriguing.   

My data show that vascular patterning is established at developmental stages physically close to 

the meristem (P1-P3). Development at these stages is strongly affected by signals from the 

meristem and auxin drainage to this tissue (Juarez et al., 2004; Smith et al., 2006). However, I 

found that the end of initiation of new vasculature occurs later, at around the P4 stage. At this 

stage, my results show that the differentiation of key photosynthetic tissues occurs, and may thus 

take over from the meristem as a key source of developmental information. It is unknown 

whether mesophyll tissues are arranged around the ‘scaffolding’ of the developing vasculature, or 

whether the photosynthetic differentiation of the mesophyll shapes vascular patterning by ending 

vascular initiation (Langdale et al., 1988; Berleth et al., 2000; Scarpella et al., 2004; Andriankaja et 

al., 2012). This has been much debated, but it is possible that both processes are involved, with 

the second process reinforcing the tissue arrangements initiated by the first. The coordination of 

vascular and photosynthetic tissue development is of importance to the performance differences 

between C3 and C4 plants, since the primary photosynthetic tissue in C3 plants is the mesophyll, 

whereas in C4 plants it is often the bundle sheath of the vasculature (Leegood, 2008; Sage and 

Sage, 2009; Wang et al., 2013). However, how this coordination differs between C3 and C4 plants 

is an unsolved question.  

Debate also still exists around how plastid development and other aspects of leaf development 

are coordinated (Aluru et al., 2001; Tsukaya, 2002; Andriankaja et al., 2012; Lin et al., 2015). 

Fundamentally, plant cells need plastids to replicate if they are to replicate. Plastid DNA 

replication happens before nuclear DNA replication, and defects in plastid biogenesis or plastid 

DNA replication can inhibit nuclear DNA replication, hampering cell cycle progression and 
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leading to severe growth defects (Blamire et al., 1974; Rose et al., 1975; Garton et al., 2007; 

Hudik et al., 2014). Kobayashi et al. (2009) showed that in both photosynthetic unicellular algae 

and non-photosynthetic tobacco BY-2 cells (which may be analogous to root cells; Kobayashi et 

al., 2009), the chlorophyll precursor Mg-ProtoIX (which requires no light for synthesis) induces 

nuclear DNA replication after plastid DNA replication in the absence of light. This would 

provide a mechanism to ensure coordination of plastid and cell proliferation in both leaf and root 

cells, and could potentially contribute to maintaining appropriate plastid volume in cells. In 

addition to this, mutants in the nuclear and chloroplast DNA pre-replication factor AtCDT1 

have severe developmental phenotypes combined with inhibited plastid division (Raynaud et al., 

2005). Thus, AtCDT1 has been implicated in the coordination of plastid division and nuclear 

DNA replication (Raynaud et al., 2005). This gene may act through the well-studied plastid 

division protein ARC6, mutation of which leads to chloroplast replication, but interestingly has 

no obvious effect on cell division (Pyke and Leech, 1992). Thus, plastid replication and cell 

division (and thus development) are intimately related but also governed by at least partly 

independent pathways. 

In addition to this coordination of organellar DNA replication with nuclear DNA replication 

(and thus the cell cycle), several authors have also linked the later onset of cell cycle arrest in 

plants with the switch from division to differentiation of chloroplasts, although work has been 

largely restricted to the dicot Arabidopsis thaliana (White, 2006; Kazama et al., 2010; Andriankaja et 

al., 2012). An abrupt ‘cell cycle arrest front’ has been shown to exist in developing Arabidopsis 

leaves, which coincides with leaf greening and thus potentially with signals from chloroplast 

differentiation (Andriankaja et al., 2012). Some authors have described the presence of two arrest 

fronts- a primary arrest front ending the general proliferation of cells, and a secondary arrest 

front slightly later which ends the proliferation of stomatal and vascular precursors (White, 2006).  

However, the transition between cell proliferation and differentiation is much less well studied in 

monocots. I found no evidence of an abrupt onset of photosynthetic differentiation or an abrupt 

cell cycle arrest front spatially limiting vascular patterning along rice leaf primordia. Instead, a 

gradient of photosynthetic differentiation is seen, with leaves rapidly acquiring photosynthetic 

function from tip to base at the P3/P4 stage transition. Although I did not study in detail the 

development of the vasculature at different locations along these leaf developmental stages using 

histology, instead focusing on snapshots along leaf primordia, I observed a striated pattern of 

chlorophyll fluorescence (likely in between vascular strands) throughout the leaf at P4 stage, 

when photosynthetic function is present in a gradient from tip to base. In addition, stomatal 
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differentiation does not display a sudden onset at a particular ‘front’ in rice leaves (van Campen et 

al., 2016). These findings argue against an abrupt secondary cell cycle arrest front of vascular and 

stomatal precursor cells in rice leaves. In addition, I did not observe a sudden shift in overall cell 

size at any particular point along the rice leaf. If this were observed, it may indicate that there are 

indeed two cell cycle arrest fronts in monocot leaves, with a primary arrest front limiting the 

proliferation of most cells in a local coordinated manner and a secondary arrest front leading to 

the limitation of vascular and stomatal precursor proliferation in a more diffuse gradient along 

the leaf. However, inferences about the primary cell cycle arrest front of non-vascular/stomatal 

precursors would require more in-depth study of cell size along developing rice leaves, possibly 

alongside an analysis of cell proliferative state along the leaf using S-phase fluorescent markers 

such as EdU, or marking dividing cells using histone H4 mRNA in situ hybridisation (Itoh et al., 

1998; Kazda et al., 2016).  

Despite the lack of an obvious localised cell cycle arrest front, I found that the timing of the 

onset of photosynthetic function does correlate very much with the timing of the end of 

initiation of new vascular strands and with the rapid stomatal differentiation (P3/P4 stage 

transition). Thus, I suggest there is not a locally coordinated secondary cell cycle arrest front in 

rice (and perhaps other monocot leaves), with the developmental switch from proliferation to 

differentiation instead happening in a more diffuse way at a cellular level. This could result in the 

gradient of development observed along the monocot leaf, perhaps with separate signalling 

pathways involved for vascular precursors, stomatal precursors and other cells. Inputs into these 

pathways from the onset of photosynthetic function (P3/P4 stage) may come in the form of 

light-dependent tetrapyrroles or signals directly derived from electron transport chain function 

(e.g. reactive oxygen species) rather than from earlier aspects of plastid differentiation such as 

plastid division or the development of the plastid genetic machinery, since these are already 

established at a time when cell proliferation is still very much driving leaf development (pre-P3 

stage). 

6.3. How flexible are rice leaf developmental processes, and when is 

developmental plasticity lost? 

Despite the fact that canopy crop plants such as rice are known to show a relatively weak 

acclimation response to light, morphological and physiological traits in rice have been previously 

shown to acclimate to the environment (Murchie et al., 2005). Thus, in order to determine the 

limits of flexibility of the normal process of leaf development, I performed light environment 

transfer experiments at different stages of rice leaf development. This allowed me to identify 
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whether there is a developmental window within developmental plasticity can occur. Such 

developmentally restricted acclimation ability has been previously observed in other species in 

root/shoot partitioning and in reproductive strategy choice (Gedroc et al., 1996; Vogler et al., 

1998). In rice, I found that leaf structural parameters acclimate to the external light environment, 

but only within a defined developmental window. Leaf width and the distance between small 

veins showed acclimation which was limited to pre-P5 stages, supporting the idea that leaf width 

and vascular patterning are closely linked in monocots, although little acclimation in the number 

of veins or the number of veins per millimetre was observed. Biochemical aspects of 

photosynthesis also acclimated, but this was not limited to particular developmental stages. Thus, 

the different timescales of development of leaf morphology and physiology are reflected in 

different potential to acclimate to novel environments. In addition, the ability of photosynthetic 

capacity and electron transport rate to acclimate even at late developmental stages (both in terms 

of decreasing, as shown here, and increasing performance; (Murchie et al., 2005; van Campen et 

al., 2016) confirms the suggestion above that physiological function may not require a long time 

to establish or change (Ohashi et al., 1989; Murchie et al., 2005). 

The differential morphological acclimation potential of leaves at particular developmental stages 

may indicate that their amenability to manipulation may also differ. In particular, stages at which 

vascular patterning is still flexible may need to be targeted if higher vascular density is to be 

achieved, for example for the establishment of a C4-like Kranz anatomy in rice (Hibberd et al., 

2008; Sage et al., 2014). In addition, targeting transgene overexpression to specific developmental 

stages may help avoid unintentional effects on other developmental processes and thus other 

aspects of leaf structure and function, and may make it easier to gain regulatory approval for 

transgenic varieties (Bajaj and Mohanty, 2005). However, a challenge in this area is that 

developmental-stage specific promoters are poorly characterized in rice (Jeong and Jung, 2015).  

Developmental plasticity itself has been shown to be genetically determined in rice and other 

systems, and may thus represent a useful target for breeding (Eiguchi et al., 1993; Shimizu et al., 

2010; Niones et al., 2015; Pieper et al., 2016). However, if morphological acclimation can be 

limited by the developmental stage of the leaf, this may have implications for the relationship 

between leaf growth and the ability of plants to respond appropriately to environmental stimuli. 

It is possible, for example, that rice varieties with rapid early leaf growth (and thus a short time 

spent by the leaf at each developmental stage) are more robust to rapidly fluctuating 

environmental conditions because they do not acclimate unnecessarily, or conversely that the 

short time they have for acclimation limits their ability to acclimate sufficiently to short term 
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environmental perturbation. Implications of this may lie in breeding trade-offs between growth 

rate, resilience to short term environmental perturbation, and adaptability to multiple growing 

environments.  

Since the developmental stages at which morphological parameters are plastic are shielded from 

the external environment by sheaths of older leaves, long distance signalling may play a part in 

morphological acclimation to the environment (Long et al., 2015; Notaguchi, 2015; Okamoto et 

al., 2015). Rather than detecting limited environmental signals themselves and amplifying them 

through electron transport chain function as suggested above, developing leaves may respond to 

mobile signals indicating the environment perceived by older leaves. Indeed, this has been shown 

to occur in Arabidopsis acclimation to a changed ambient carbon dioxide concentration (Lake et 

al., 2001; Lake et al., 2002; Coupe et al., 2006). A wealth of plant mobile signals informing 

development are known. Small RNAs, carbohydrates, phytohormones, peptides and mobile 

transcription factors are all possible candidates (Lough and Lucas, 2006; Chuck et al., 2009; 

Benkovics and Timmermans, 2014; Okamoto et al., 2015). Most of these long distance signals 

have been shown to move through the phloem (Lough and Lucas, 2006; Ruiz-Medrano et al., 

2012). Therefore, experiments combining grafting (in non-grass species) and transfer between 

different environments may provide further insight (Jaeger and Wigge, 2007; Pant et al., 2008; Bai 

et al., 2011). Alternatively, in the case of acclimation to light, the sugar status of the entire plant 

may be affected by the environment it is grown in, allowing acclimation of developing leaves 

upon detection of a systemic shift in carbon status (Paul and Pellny, 2003; Geigenberger et al., 

2005). However, given that there are large circadian changes in the carbon status of the plant, 

which are not a suitably specific signal for developing leaves to acclimate morphologically, a more 

specific signal is likely to be involved (Blasing et al., 2005). Recently, the transcription factor HY5 

was found to move from the shoot to the root in Arabidopsis to coordinate carbon and nitrogen 

metabolism systemically in response to fluctuating light conditions (Chen et al., 2016). This 

transcription factor may also play a role in the structural alterations observed here in response to 

light. 

6.4. Can genes regulating rice leaf developmental processes be identified 

from their expression patterns during early leaf development? 

Having defined the timing and nature of the development of vasculature, leaf architecture and 

leaf physiology in rice, I proceeded to identify the gene expression changes underlying specific 

events in rice leaf morphological and physiological development. In order to do this, I carried out 

a targeted RNA-Seq analysis on developing rice leaves. In addition, I compared this RNA-Seq 
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data on developing rice leaf gene expression to equivalent data from maize to identify conserved 

and diverged gene expression patterns during leaf development in the C3 grass rice and the C4 

grass maize (Wang et al., 2013). 

Gene expression changes associated with metabolic shifts occurring during early leaf 

development were clearly observed. Notably, PRR proteins were heavily implicated in playing a 

role in this through modifying organellar transcription/translation dynamics (Barkan and 

Goldschmidt-Clermont, 2000; Barkan and Small, 2014). During stages of rice leaf development 

studied here, changes in many growth and development related genes were also observed, 

including those involved in cell division, the laying down of cell and chloroplast membranes, and 

cell wall modifications. In addition to confirming that the developmental stages observed here 

capture a key metabolic and developmental switch in rice leaf development, these data thus have 

the potential to contribute to the development of a systems model of this switch and to reveal the 

temporal interactions between key genetic players.  

The dataset presented here are also of use for translating knowledge from Arabidopsis thaliana into 

the crop plant rice. Particularly for the study of transcription factors and other regulatory genes 

involved in the development of specific structures such as vasculature and stomata, Arabidopsis 

knowledge is far ahead of our understanding of rice. However, knowledge on when during leaf 

development certain transcription factors are expressed must be combined with spatial 

expression pattern investigation using in situ hybridisation and with studies of mutants to pinpoint 

the exact function of genes of interest. Notably, the lists of genes identified here as potentially 

involved vascular and photosynthetic development include multiple genes of likely small effect, 

rather than a small number of master regulators. Although such ‘master regulators’ are perhaps 

more common in, e.g., stomatal development, where genes such as FAMA, MUTE and 

SCREAM1/SCREAM2 are necessary and sufficient to induce specific cell state changes in the 

stomatal differentiation pathway, there are indications that there are unlikely to be master 

regulators for other aspects of plants development, such as vascular patterning (Kanaoka et al., 

2008; Liu et al., 2009). One such argument against the existence of a vascular patterning ‘master 

regulator’ is the previously mentioned absence of monocot mutants with perturbed vascular 

patterning but no severe leaf shape defect, despite extensive searches (Smillie et al., 2012; 

Feldman et al., 2014; Rizal et al., 2015). Another is the long list of transcription factors identified 

here whose expression coincides with vascular patterning combined with the absence of vascular-

specific expression in any of the genes studied through in situ hybridisation. Thus, the robust 

relationship between vascular patterning and leaf shape in monocots seems likely to be an 
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emergent property of a network of genes products, some of which may show high redundancy. 

Although master regulators able to induce chloroplast development have been identified (e.g., 

GLK1 and GLK2), these are not a master regulator of the spatial regulation of photosynthetic tissue 

differentiation (Fitter et al., 2002; Waters et al., 2009). This apparent lack of master regulators 

makes it even more remarkable that the evolution of C4 photosynthesis, of which one of the first 

steps is thought to have been a modified leaf layout with high vein density and enlarged, 

photosynthetic bundle sheath cells, has occurred on as many as 22-24 occasions in grasses (Grass 

Phylogeny Working, 2012; Sage et al., 2014).  

6.5. Concluding remarks and future perspectives 

The formation of a planar structure in which light energy can be efficiently harvested and 

appropriate transport of water, carbon dioxide, oxygen and sugars can occur to enable capture of 

and export of this energy requires a high degree of coordination. Despite being key to the crop 

plants on which we most rely, monocot leaf development is understudied compared to dicot leaf 

development. Several key questions arise from the work in this thesis. In particular, the factors 

affecting the coordination of the onset of photosynthetic metabolism with the transition from 

proliferation and patterning to differentiation of morphological features requires further 

exploration. In addition, the properties of electron transport chain dynamics in developing and 

mature leaves could be further investigated to yield insights into what makes an efficient electron 

transport chain, and what factors are required to establish this at an appropriate time during 

development. The gene expression data in this thesis provide a wealth of information, particularly 

on the expression of transcription factors correlated with the timing of developmental events. 

However, improved mutant resources for rice are required for further characterisation of these 

genes. In the long term, this knowledge may be utilised to improve rice photosynthetic efficiency, 

either through, for example, the C4 rice project or through other crop breeding approaches. In 

either case, an improved understanding of early leaf development is indispensable. 

 

 

  



146 
 
 

7. Bibliography 
 
Adamson, H. Y., R. G. Hiller, and J. Walmsley, 1997, Protochlorophyllide reduction and greening 

in angiosperms: an evolutionary perspective: Journal of Photochemistry and 
Photobiology B-Biology, v. 41, p. 201-221. 

Ainsworth, E. A., and S. P. Long, 2005, What have we learned from 15 years of free-air CO2 
enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy: 
New Phytologist, v. 165, p. 351-371. 

Ainsworth, E. A., A. Rogers, R. Nelson, and S. P. Long, 2004, Testing the "source-sink" 
hypothesis of down-regulation of photosynthesis in elevated CO2 in the field with single 
gene substitutions in Glycine max: Agricultural and Forest Meteorology, v. 122, p. 85-94. 

Allen, J. F., 2003, Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the 
chain: Trends in Plant Science, v. 8, p. 15-19. 

Aluru, M. R., H. Bae, D. Y. Wu, and S. R. Rodermel, 2001, The Arabidopsis immutans mutation 
affects plastid differentiation and the morphogenesis of white and green sectors in 
variegated plants: Plant Physiology, v. 127. 

Amiour, N., S. Imbaud, G. Clement, N. Agier, M. Zivy, B. Valot, T. Balliau, P. Armengaud, I. 
Quillere, R. Canas, T. Tercet-Laforgue, and B. Hirel, 2012, The use of metabolomics 
integrated with transcriptomic and proteomic studies for identifying key steps involved in 
the control of nitrogen metabolism in crops such as maize: Journal of Experimental 
Botany, v. 63, p. 5017-5033. 

Anderson, J. M., W. S. Chow, and J. De Las Rivas, 2008, Dynamic flexibility in the structure and 
function of photosystem II in higher plant thylakoid membranes: the grana enigma: 
Photosynthesis Research, v. 98, p. 575-587. 

Anderson, S. L., G. R. Teakle, S. J. Martinocatt, and S. A. Kay, 1994, CIRCADIAN CLOCK-
REGULATED AND PHYTOCHROME-REGULATED TRANSCRIPTION IS 
CONFERRED BY A 78 BP CIS-ACTING DOMAIN OF THE ARABIDOPSIS CAB2 
PROMOTER: Plant Journal, v. 6, p. 457-470. 

Andriankaja, M., S. Dhondt, S. De Bodt, H. Vanhaeren, F. Coppens, L. De Milde, P. 
Muehlenbock, A. Skirycz, N. Gonzalez, G. T. S. Beemster, and D. Inze, 2012, Exit from 
Proliferation during Leaf Development in Arabidopsis thaliana: A Not-So-Gradual 
Process: Developmental Cell, v. 22, p. 64-78. 

Anterola, A. M., and N. G. Lewis, 2002, Trends in lignin modification: a comprehensive analysis 
of the effects of genetic manipulations/mutations on lignification and vascular integrity: 
Phytochemistry, v. 61, p. 221-294. 

Araus, J. L., G. A. Slafer, M. P. Reynolds, and C. Royo, 2002, Plant breeding and drought in C-3 
cereals: What should we breed for?: Annals of Botany, v. 89, p. 925-940. 

Arite, T., H. Iwata, K. Ohshima, M. Maekawa, M. Nakajima, M. Kojima, H. Sakakibara, and J. 
Kyozuka, 2007, DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud 
outgrowth in rice: Plant Journal, v. 51, p. 1019-1029. 

Armbruster, U., M. Labs, M. Pribil, S. Viola, W. Xu, M. Scharfenberg, A. P. Hertle, U. Rojahn, P. 
E. Jensen, F. Rappaport, P. Joliot, P. Doermann, G. Wanner, and D. Leister, 2013, 
Arabidopsis CURVATURE THYLAKOID1 Proteins Modify Thylakoid Architecture by 
Inducing Membrane Curvature: Plant Cell, v. 25, p. 2661-2678. 

Ashikari, M., H. Sakakibara, S. Y. Lin, T. Yamamoto, T. Takashi, A. Nishimura, E. R. Angeles, Q. 
Qian, H. Kitano, and M. Matsuoka, 2005, Cytokinin oxidase regulates rice grain 
production: Science, v. 309, p. 741-745. 

Ashikari, M., J. Z. Wu, M. Yano, T. Sasaki, and A. Yoshimura, 1999, Rice gibberellin-insensitive 
dwarf mutant gene Dwarf 1 encodes the alpha-subunit of GTP-binding protein: 
Proceedings of the National Academy of Sciences of the United States of America, v. 96, 
p. 10284-10289. 



147 
 
 

Babani, F., H. K. Lichtenthaler, and P. Richter, 1996, Changes of chlorophyl fluorescence 
signatures during greening of etiolated barley seedlings as measured with the CCD-OMA 
fluorometer: Journal of Plant Physiology, v. 148, p. 471-477. 

Babiychuk, E., K. Vandepoele, J. Wissing, M. Garcia-Diaz, R. De Rycke, H. Akbari, J. Joubes, T. 
Beeckman, L. Jaensch, M. Frentzen, M. C. E. Van Montagu, and S. Kushnir, 2011, Plastid 
gene expression and plant development require a plastidic protein of the mitochondrial 
transcription termination factor family: Proceedings of the National Academy of Sciences 
of the United States of America, v. 108, p. 6674-6679. 

Bai, S., A. Kasai, K. Yamada, T. Li, and T. Harada, 2011, A mobile signal transported over a long 
distance induces systemic transcriptional gene silencing in a grafted partner: Journal of 
Experimental Botany, v. 62, p. 4561-4570. 

Bajaj, S., and A. Mohanty, 2005, Recent advances in rice biotechnology-towards genetically 
superior transgenic rice: Plant Biotechnology Journal, v. 3, p. 275-307. 

Baker, N. R., 2008, Chlorophyll fluorescence: A probe of photosynthesis in vivo: Annual Review 
of Plant Biology, v. 59. 

Baker, N. R., and E. Rosenqvist, 2004, Applications of chlorophyll fluorescence can improve 
crop production strategies: an examination of future possibilities: Journal of Experimental 
Botany, v. 55, p. 1607-1621. 

Bar-Even, A., E. Noor, N. E. Lewis, and R. Milo, 2010, Design and analysis of synthetic carbon 
fixation pathways: Proceedings of the National Academy of Sciences of the United States 
of America, v. 107, p. 8889-8894. 

Barkan, A., and M. Goldschmidt-Clermont, 2000, Participation of nuclear genes in chloroplast 
gene expression: Biochimie, v. 82, p. 559-572. 

Barkan, A., and I. Small, 2014, Pentatricopeptide Repeat Proteins in Plants: Annual Review of 
Plant Biology, Vol 65, v. 65, p. 415-+. 

Barkoulas, M., C. Galinha, S. P. Grigg, and M. Tsiantis, 2007, From genes to shape: regulatory 
interactions in leaf development: Current Opinion in Plant Biology, v. 10. 

Bartoskova, H., J. Naus, and M. Vykruta, 1999, The arrangement of chloroplasts in cells 
influences the reabsorption of chlorophyll fluorescence emission. The effect of 
desiccation on the chlorophyll fluorescence spectra of Rhizomnium punctatum leaves: 
Photosynthesis Research, v. 62, p. 251-260. 

Baylis, T., I. Cierlik, E. Sundberg, and J. Mattsson, 2013, SHORT INTERNODES/STYLISH 
genes, regulators of auxin biosynthesis, are involved in leaf vein development in 
Arabidopsis thaliana: New Phytologist, v. 197, p. 737-750. 

Benkovics, A. H., and M. C. P. Timmermans, 2014, Developmental patterning by gradients of 
mobile small RNAs: Current Opinion in Genetics & Development, v. 27, p. 83-91. 

Benson, A. A., J. A. Bassham, M. Calvin, T. C. Goodale, V. A. Haas, and W. Stepka, 1950, THE 
PATH OF CARBON IN PHOTOSYNTHESIS .5. PAPER CHROMATOGRAPHY 
AND RADIOAUTOGRAPHY OF THE PRODUCTS: Journal of the American 
Chemical Society, v. 72, p. 1710-1718. 

Berger, S., A. K. Sinha, and T. Roitsch, 2007, Plant physiology meets phytopathology: plant 
primary metabolism and plant-pathogen interactions: Journal of Experimental Botany, v. 
58, p. 4019-4026. 

Berleth, T., J. Mattsson, and C. S. Hardtke, 2000, Vascular continuity and auxin signals: Trends in 
Plant Science, v. 5, p. 387-393. 

Besnard, F., T. Vernoux, and O. Hamant, 2011, Organogenesis from stem cells in planta: 
multiple feedback loops integrating molecular and mechanical signals: Cellular and 
Molecular Life Sciences, v. 68, p. 2885-2906. 

Blamire, J., Flechtne.Vr, and R. Sager, 1974, REGULATION OF NUCLEAR-DNA 
REPLICATION BY CHLOROPLAST IN CHLAMYDOMONAS: Proceedings of the 
National Academy of Sciences of the United States of America, v. 71, p. 2867-2871. 



148 
 
 

Blasing, O. E., Y. Gibon, M. Gunther, M. Hohne, R. Morcuende, D. Osuna, O. Thimm, B. 
Usadel, W. R. Scheible, and M. Stitt, 2005, Sugars and circadian regulation make major 
contributions to the global regulation of diurnal gene expression in Arabidopsis: Plant 
Cell, v. 17, p. 3257-3281. 

Bonke, M., S. Thitamadee, A. P. Mahonen, M. T. Hauser, and Y. Helariutta, 2003, APL regulates 
vascular tissue identity in Arabidopsis: Nature, v. 426. 

Boote, K. J., J. W. Jones, J. W. White, S. Asseng, and J. I. Lizaso, 2013, Putting mechanisms into 
crop production models: Plant Cell and Environment, v. 36, p. 1658-1672. 

Boudaoud, A., 2010, An introduction to the mechanics of morphogenesis for plant biologists: 
Trends in Plant Science, v. 15, p. 353-360. 

Braun, H.-J., G. Atlin, and T. Payne, 2010, Multi-location Testing as a Tool to Identify Plant 
Response to Global Climate Change: Climate Change and Crop Production, v. 1, p. 115-
138. 

Braybrook, S. A., and C. Kuhlemeier, 2010, How a Plant Builds Leaves: Plant Cell, v. 22. 
Brooks, A., and G. D. Farquhar, 1985, EFFECT OF TEMPERATURE ON THE CO2/O2 

SPECIFICITY OF RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE 
OXYGENASE AND THE RATE OF RESPIRATION IN THE LIGHT - 
ESTIMATES FROM GAS-EXCHANGE MEASUREMENTS ON SPINACH: Planta, 
v. 165, p. 397-406. 

Brooks, L., III, J. Strable, X. Zhang, K. Ohtsu, R. Zhou, A. Sarkar, S. Hargreaves, R. J. Elshire, 
D. Eudy, T. Pawlowska, D. Ware, D. Janick-Buckner, B. Buckner, M. C. P. Timmermans, 
P. S. Schnable, D. Nettleton, and M. J. Scanlon, 2009, Microdissection of Shoot Meristem 
Functional Domains: Plos Genetics, v. 5. 

Brown, R. H., and J. H. Bouton, 1993, PHYSIOLOGY AND GENETICS OF 
INTERSPECIFIC HYBRIDS BETWEEN PHOTOSYNTHETIC TYPES: Annual 
Review of Plant Physiology and Plant Molecular Biology, v. 44, p. 435-456. 

Bukhov, N., V. Makarova, V. Bondar, I. Drozdova, E. Egorova, L. Kotova, A. Kotov, and T. 
Krendeleva, 1999, Photosynthetic apparatus in primary leaves of barley seedlings grown 
under blue or red light of very low photon flux densities: Photosynthesis Research, v. 60, 
p. 179-189. 

Burlat, V., M. Kwon, L. B. Davin, and N. G. Lewis, 2001, Dirigent proteins and dirigent sites in 
lignifying tissues: Phytochemistry, v. 57, p. 883-897. 

Cai, W., J. Ma, W. Chi, M. Zou, J. Guo, C. Lu, and L. Zhang, 2010, Cooperation of LPA3 and 
LPA2 Is Essential for Photosystem II Assembly in Arabidopsis: Plant Physiology, v. 154, 
p. 109-120. 

Carbon, S., A. Ireland, C. J. Mungall, S. Shu, B. Marshall, S. Lewis, G. O. H. Ami, and G. Web 
Presence Working, 2009, AmiGO: online access to ontology and annotation data: 
Bioinformatics, v. 25, p. 288-289. 

Chang, C.-S. J., Y.-H. Li, L.-T. Chen, W.-C. Chen, W.-P. Hsieh, J. Shin, W.-N. Jane, S.-J. Chou, 
G. Choi, J.-M. Hu, S. Somerville, and S.-H. Wu, 2008, LZF1, a HY5-regulated 
transcriptional factor, functions in Arabidopsis de-etiolation: Plant Journal, v. 54, p. 205-
219. 

Charuvi, D., V. Kiss, R. Nevo, E. Shimoni, Z. Adam, and Z. Reich, 2012, Gain and Loss of 
Photosynthetic Membranes during Plastid Differentiation in the Shoot Apex of 
Arabidopsis: Plant Cell, v. 24, p. 1143-1157. 

Chen, M., and R. E. Blankenship, 2011, Expanding the solar spectrum used by photosynthesis: 
Trends in Plant Science, v. 16, p. 427-431. 

Chen, M., J. Chory, and C. Fankhauser, 2004, Light signal transduction in higher plants: Annual 
Review of Genetics, v. 38. 



149 
 
 

Chen, X., Q. Yao, X. Gao, C. Jiang, N. P. Harberd, and X. Fu, 2016, Shoot-to-Root Mobile 
Transcription Factor HY5 Coordinates Plant Carbon and Nitrogen Acquisition: Current 
Biology, v. 26, p. 640-646. 

Chen, Y., T. Asano, M. T. Fujiwara, S. Yoshida, Y. Machida, and Y. Yoshioka, 2009, Plant Cells 
Without Detectable Plastids are Generated in the crumpled leaf Mutant of Arabidopsis 
thaliana: Plant and Cell Physiology, v. 50, p. 956-969. 

Chi, W., J. Ma, and L. Zhang, 2012, Regulatory factors for the assembly of thylakoid membrane 
protein complexes: Philosophical Transactions of the Royal Society B-Biological Sciences, 
v. 367, p. 3420-3429. 

Chida, H., A. Nakazawa, H. Akazaki, T. Hirano, K. Suruga, M. Ogawa, T. Satoh, K. Kadokura, S. 
Yamada, W. Hakamata, K. Isobe, T.-i. Ito, R. Ishii, T. Nishio, K. Sonoike, and T. Oku, 
2007, Expression of the algal cytochrome c(6) gene in Arabidopsis enhances 
photosynthesis and growth: Plant and Cell Physiology, v. 48, p. 948-957. 

Cho, K., J. Shibato, G. K. Agrawal, Y.-H. Jung, A. Kubo, N.-S. Jwa, S. Tamogami, K. Satoh, S. 
Kikuchi, T. Higashi, S. Kimura, H. Saji, Y. Tanaka, H. Iwahashi, Y. Masuo, and R. 
Rakwal, 2008, Integrated transcriptomics, proteomics, and metabolomics analyses to 
survey ozone responses in the leaves of rice seedling: Journal of Proteome Research, v. 7, 
p. 2980-2998. 

Cho, S.-H., S.-C. Yoo, H. Zhang, D. Pandeya, H.-J. Koh, J.-Y. Hwang, G.-T. Kim, and N.-C. 
Paek, 2013, The rice narrow leaf2 and narrow leaf3 loci encode WUSCHEL-related 
homeobox 3A (OsWOX3A) and function in leaf, spikelet, tiller and lateral root 
development: New Phytologist, v. 198, p. 1071-1084. 

Chory, J., C. Peto, R. Feinbaum, L. Pratt, and F. Ausubel, 1989, ARABIDOPSIS THALIANA 
MUTANT THAT DEVELOPS AS A LIGHT-GROWN PLANT IN THE ABSENCE 
OF LIGHT: Cell, v. 58, p. 991-999. 

Chow, W. S., E. H. Kim, P. Horton, and J. M. Anderson, 2005, Granal stacking of thylakoid 
membranes in higher plant chloroplasts: the physicochemical forces at work and the 
functional consequences that ensue: Photochemical & Photobiological Sciences, v. 4, p. 
1081-1090. 

Christin, P.-A., and C. P. Osborne, 2014, The evolutionary ecology of C-4 plants: New 
Phytologist, v. 204, p. 765-781. 

Chu, H., W. Liang, J. Li, F. Hong, Y. Wu, L. Wang, J. Wang, P. Wu, C. Liu, Q. Zhang, J. Xu, and 
D. Zhang, 2013, A CLE-WOX signalling module regulates root meristem maintenance 
and vascular tissue development in rice: Journal of Experimental Botany, v. 64, p. 5359-
5369. 

Chuck, G., H. Candela, and S. Hake, 2009, Big impacts by small RNAs in plant development: 
Current Opinion in Plant Biology, v. 12. 

Clark, S. E., 2001, Cell signalling at the shoot meristem: Nature Reviews Molecular Cell Biology, 
v. 2. 

Corneille, S., L. Cournac, G. Guedeney, M. Havaux, and G. Peltier, 1998, Reduction of the 
plastoquinone pool by exogenous NADH and NADPH in higher plant chloroplasts - 
Characterization of a NAD(P)H-plastoquinone oxidoreductase activity: Biochimica Et 
Biophysica Acta-Bioenergetics, v. 1363, p. 59-69. 

Corneille, S., K. Lutz, and P. Maliga, 2000, Conservation of RNA editing between rice and maize 
plastids: are most editing events dispensable?: Molecular and General Genetics, v. 264, p. 
419-424. 

Cottage, A. J., E. K. Mott, J. H. Wang, J. A. Sullivan, D. MacLean, L. Tran, M. K. Choy, C. A. 
Newell, T. A. Kavanagh, S. Aspinall, and J. C. Gray, 2007, GUN1 (GENOMES 
UNCOUPLED1) encodes a pentatricopeptide repeat (PPR) protein involved in plastid 
protein synthesis-responsive retrograde signaling to the nucleus: Photosynthesis Research, 
v. 91, p. 276-276. 



150 
 
 

Coupe, S. A., B. G. Palmer, J. A. Lake, S. A. Overy, K. Oxborough, F. I. Woodward, J. E. Gray, 
and W. P. Quick, 2006, Systemic signalling of environmental cues in Arabidopsis leaves: 
Journal of Experimental Botany, v. 57. 

Datta, S., G. Hettiarachchi, X. W. Deng, and M. Holm, 2006, Arabidopsis CONSTANS-LIKE3 
is a positive regulator of red light signaling and root growth: Plant Cell, v. 18, p. 70-84. 

Davin, L. B., and N. G. Lewis, 2000, Dirigent proteins and dirigent sites explain the mystery of 
specificity of radical precursor coupling in lignan and lignin biosynthesis: Plant 
Physiology, v. 123, p. 453-461. 

Dawe, D., 2000, Redesigning Rice Photosynthesis to Increase Yield: Amsterdam, Elsevier Science 
Publishing. 

Deb, Y., D. Marti, M. Frenz, C. Kuhlemeier, and D. Reinhardt, 2015, Phyllotaxis involves auxin 
drainage through leaf primordia: Development, v. 142, p. 1992-2001. 

Dengler, N. G., R. E. Dengler, P. M. Donnelly, and P. W. Hattersley, 1994, QUANTITATIVE 
LEAF ANATOMY OF C3 AND C4 GRASSES (POACEAE) - BUNDLE-SHEATH 
AND MESOPHYLL SURFACE-AREA RELATIONSHIPS: Annals of Botany, v. 73, p. 
241-255. 

Depege, N., S. Bellafiore, and J. D. Rochaix, 2003, Role of chloroplast protein kinase Stt7 in 
LHCII phosphorylation and state transition in Chlamydomonas: Science, v. 299, p. 1572-
1575. 

Dudley, J. W., and R. H. Moll, 1969, INTERPRETATION AND USE OF ESTIMATES OF 
HERITABILITY AND GENETIC VARIANCES IN PLANT BREEDING: Crop 
Science, v. 9, p. 257-&. 

Dumais, J., 2007, Can mechanics control pattern formation in plants?: Current Opinion in Plant 
Biology, v. 10, p. 58-62. 

Eiguchi, M., R. Sano, H. Y. Hirano, and Y. Sano, 1993, GENETIC AND DEVELOPMENTAL 
BASES FOR PHENOTYPIC PLASTICITY IN DEEP-WATER RICE: Journal of 
Heredity, v. 84, p. 201-205. 

Elert, E., 2014, A GOOD GRAIN: Nature, v. 514, p. S50-S51. 
Emery, J. F., S. K. Floyd, J. Alvarez, Y. Eshed, N. P. Hawker, A. Izhaki, S. F. Baum, and J. L. 

Bowman, 2003, Radial patterning of Arabidopsis shoots by class IIIHD-ZIP and 
KANADI genes: Current Biology, v. 13. 

Erickson, R. O., and F. J. Michelini, 1957, THE PLASTOCHRON INDEX: American Journal 
of Botany, v. 44, p. 297-305. 

Esfeld, P., K. Siebke, I. Wacker, and E. Weis, 1995, Local defense-related shift in the carbon 
metabolism in chickpea leaves induced by a fungal pathogen: Photosynthesis: from Light 
to Biosphere, Vol 5, p. 663-666. 

Eshed, Y., S. F. Baum, J. V. Perea, and J. L. Bowman, 2001, Establishment of polarity in lateral 
organs of plants: Current Biology, v. 11. 

Eshed, Y., A. Izhaki, S. F. Baum, S. K. Floyd, and J. L. Bowman, 2004, Asymmetric leaf 
development and blade expansion in Arabidopsis are mediated by KANADI and 
YABBY activities: Development, v. 131. 

Evans, J. R., 2013, Improving Photosynthesis: Plant Physiology, v. 162, p. 1780-1793. 
Evans, J. R., and S. von Caemmerer, 2000, Would C-4 rice produce more biomass than C-3 rice?: 

Redesigning Rice Photosynthesis to Increase Yield, v. 7, p. 53-71. 
Evans, L. T., 1997, Adapting and improving crops: The endless task: Philosophical Transactions 

of the Royal Society of London Series B-Biological Sciences, v. 352, p. 901-906. 
Farquhar, G. D., S. V. Caemmerer, and J. A. Berry, 1980, A BIOCHEMICAL-MODEL OF 

PHOTOSYNTHETIC CO2 ASSIMILATION IN LEAVES OF C-3 SPECIES: Planta, 
v. 149, p. 78-90. 



151 
 
 

Feldman, A. B., E. H. Murchie, H. Leung, M. Baraoidan, R. Coe, S.-M. Yu, S.-F. Lo, and W. P. 
Quick, 2014, Increasing Leaf Vein Density by Mutagenesis: Laying the Foundations for 
C-4 Rice: Plos One, v. 9. 

Fernie, A. R., and M. Stitt, 2012, On the Discordance of Metabolomics with Proteomics and 
Transcriptomics: Coping with Increasing Complexity in Logic, Chemistry, and Network 
Interactions: Plant Physiology, v. 158, p. 1139-1145. 

Fey, V., R. Wagner, K. Brautigam, and T. Pfannschmidt, 2005, Photosynthetic redox control of 
nuclear gene expression: Journal of Experimental Botany, v. 56. 

Fitter, D. W., D. J. Martin, M. J. Copley, R. W. Scotland, and J. A. Langdale, 2002, GLK gene 
pairs regulate chloroplast development in diverse plant species: Plant Journal, v. 31, p. 
713-727. 

Fleming, A. J., 2005, The control of leaf development: New Phytologist, v. 166. 
Fleming, A. J., T. Mandel, I. Roth, and C. Kuhlemier, 1993, THE PATTERNS OF GENE-

EXPRESSION IN THE TOMATO SHOOT APICAL MERISTEM: Plant Cell, v. 5, p. 
297-309. 

Fleming, A. J., S. McQueenMason, T. Mandel, and C. Kuhlemeier, 1997, Induction of leaf 
primordia by the cell wall protein expansion: Science, v. 276. 

Flexas, J., M. Ribas-Carbo, A. Diaz-Espejo, J. Galmes, and H. Medrano, 2008, Mesophyll 
conductance to CO2: current knowledge and future prospects: Plant Cell and 
Environment, v. 31, p. 602-621. 

Fournier, C., J. L. Durand, S. Ljutovac, R. Schaufele, F. Gastal, and B. Andrieu, 2005, A 
functional-structural model of elongation of the grass leaf and its relationships with the 
phyllochron: New Phytologist, v. 166, p. 881-894. 

Foyer, C. H., and G. Noctor, 2011, Ascorbate and Glutathione: The Heart of the Redox Hub: 
Plant Physiology, v. 155, p. 2-18. 

Freeling, M., 1992, A CONCEPTUAL-FRAMEWORK FOR MAIZE LEAF 
DEVELOPMENT: Developmental Biology, v. 153. 

Fuchs, G., 2011, Alternative Pathways of Carbon Dioxide Fixation: Insights into the Early 
Evolution of Life?: Annual Review of Microbiology, Vol 65, v. 65, p. 631-+. 

Fujino, K., Y. Matsuda, K. Ozawa, T. Nishimura, T. Koshiba, M. W. Fraaije, and H. Sekiguchi, 
2008, NARROW LEAF 7 controls leaf shape mediated by auxin in rice: Molecular 
Genetics and Genomics, v. 279, p. 499-507. 

Fujita, M., Y. Horiuchi, Y. Ueda, Y. Mizuta, T. Kubo, K. Yano, S. Yamaki, K. Tsuda, T. Nagata, 
M. Niihama, H. Kato, S. Kikuchi, K. Hamada, T. Mochizuki, T. Ishimizu, H. Iwai, N. 
Tsutsumi, and N. Kurata, 2010, Rice Expression Atlas In Reproductive Development: 
Plant and Cell Physiology, v. 51, p. 2060-2081. 

Fukuda, H., Y. Hirakawa, and S. Sawa, 2007, Peptide signaling in vascular development: Current 
Opinion in Plant Biology, v. 10, p. 477-482. 

Furbank, R. T., W. P. Quick, and X. R. R. Sirault, 2015, Improving photosynthesis and yield 
potential in cereal crops by targeted genetic manipulation: Prospects, progress and 
challenges: Field Crops Research, v. 182, p. 19-29. 

Gangappa, S. N., and J. F. Botto, 2014, The BBX family of plant transcription factors: Trends in 
Plant Science, v. 19, p. 460-470. 

Gao, Y., H. Xu, Y. Shen, and J. Wang, 2013, Transcriptomic analysis of rice (Oryza sativa) 
endosperm using the RNA-Seq technique: Plant Molecular Biology, v. 81, p. 363-378. 

Garton, S., H. Knight, G. J. Warren, M. R. Knight, and G. J. Thorlby, 2007, crinkled leaves 8 - A 
mutation in the large subunit of ribonucleotide reductase - leads to defects in leaf 
development and chloroplast division in Arabidopsis thaliana: Plant Journal, v. 50, p. 118-
127. 

Gedroc, J. J., K. D. M. McConnaughay, and J. S. Coleman, 1996, Plasticity in root shoot 
partitioning: Optimal, ontogenetic, or both?: Functional Ecology, v. 10, p. 44-50. 



152 
 
 

Geigenberger, P., A. Kolbe, and A. Tiessen, 2005, Redox regulation of carbon storage and 
partitioning in response to light and sugars: Journal of Experimental Botany, v. 56, p. 
1469-1479. 

Gilkerson, J., J. M. Perez-Ruiz, J. Chory, and J. Callis, 2012, The plastid-localized pfkB-type 
carbohydrate kinases FRUCTOKINASE-LIKE 1 and 2 are essential for growth and 
development of Arabidopsis thaliana: Bmc Plant Biology, v. 12. 

Goff, S. A., D. Ricke, T. H. Lan, G. Presting, R. L. Wang, M. Dunn, J. Glazebrook, A. Sessions, 
P. Oeller, H. Varma, D. Hadley, D. Hutchinson, C. Martin, F. Katagiri, B. M. Lange, T. 
Moughamer, Y. Xia, P. Budworth, J. P. Zhong, T. Miguel, U. Paszkowski, S. P. Zhang, 
M. Colbert, W. L. Sun, L. L. Chen, B. Cooper, S. Park, T. C. Wood, L. Mao, P. Quail, R. 
Wing, R. Dean, Y. S. Yu, A. Zharkikh, R. Shen, S. Sahasrabudhe, A. Thomas, R. 
Cannings, A. Gutin, D. Pruss, J. Reid, S. Tavtigian, J. Mitchell, G. Eldredge, T. Scholl, R. 
M. Miller, S. Bhatnagar, N. Adey, T. Rubano, N. Tusneem, R. Robinson, J. Feldhaus, T. 
Macalma, A. Oliphant, and S. Briggs, 2002, A draft sequence of the rice genome (Oryza 
sativa L. ssp japonica): Science, v. 296. 

Goldschmidt, E. E., and S. C. Huber, 1992, REGULATION OF PHOTOSYNTHESIS BY 
END-PRODUCT ACCUMULATION IN LEAVES OF PLANTS STORING 
STARCH, SUCROSE, AND HEXOSE SUGARS: Plant Physiology, v. 99, p. 1443-1448. 

Gould, S. J., and R. C. Lewontin, 1979, SPANDRELS OF SAN-MARCO AND THE 
PANGLOSSIAN PARADIGM - A CRITIQUE OF THE ADAPTATIONIST 
PROGRAM: Proceedings of the Royal Society Series B-Biological Sciences, v. 205, p. 
581-598. 

Gounaris, K., A. R. R. Brain, P. J. Quinn, and W. P. Williams, 1984, STRUCTURAL 
REORGANIZATION OF CHLOROPLAST THYLAKOID MEMBRANES IN 
RESPONSE TO HEAT-STRESS: Biochimica Et Biophysica Acta, v. 766, p. 198-208. 

Grant, E. H., T. Fujino, E. P. Beers, and A. M. Brunner, 2010, Characterization of NAC domain 
transcription factors implicated in control of vascular cell differentiation in Arabidopsis 
and Populus: Planta, v. 232, p. 337-352. 

Grass Phylogeny Working, G., II, 2012, New grass phylogeny resolves deep evolutionary 
relationships and discovers C4 origins: The New phytologist, v. 193, p. 304-12. 

Gross, J., W. K. Cho, L. Lezhneva, J. Falk, K. Krupinska, K. Shinozaki, M. Seki, R. G. 
Herrmann, and J. Meurer, 2006, A plant locus essential for phylloquinone (vitamin K-1) 
biosynthesis originated from a fusion of four eubacterial genes: Journal of Biological 
Chemistry, v. 281, p. 17189-17196. 

Hallauer, A. R., 2007, History, contribution, and future of quantitative genetics in plant breeding: 
Lessons from maize: Crop Science, v. 47, p. S4-S19. 

Hay, A., M. Barkoulas, and M. Tsiantis, 2004, PINning down the connections: transcription 
factors and hormones in leaf morphogenesis: Current Opinion in Plant Biology, v. 7, p. 
575-581. 

Hay, A., and M. Tsiantis, 2009, A KNOX family TALE: Current Opinion in Plant Biology, v. 12, 
p. 593-598. 

Heyes, D. J., A. V. Ruban, H. M. Wilks, and C. N. Hunter, 2002, Enzymology below 200 K: The 
kinetics and thermodynamics of the photochemistry catalyzed by protochlorophyllide 
oxidoreductase: Proceedings of the National Academy of Sciences of the United States of 
America, v. 99, p. 11145-11150. 

Hibberd, J. M., and S. Covshoff, 2010, The Regulation of Gene Expression Required for C-4 
Photosynthesis: Annual Review of Plant Biology, Vol 61, v. 61, p. 181-207. 

Hibberd, J. M., J. E. Sheehy, and J. A. Langdale, 2008, Using C-4 photosynthesis to increase the 
yield of rice - rationale and feasibility: Current Opinion in Plant Biology, v. 11. 



153 
 
 

Hikosaka, K., and I. Terashima, 1995, A MODEL OF THE ACCLIMATION OF 
PHOTOSYNTHESIS IN THE LEAVES OF C-3 PLANTS TO SUN AND SHADE 
WITH RESPECT TO NITROGEN USE: Plant Cell and Environment, v. 18. 

Hill, J. P., and E. M. Lord, 1990, A METHOD FOR DETERMINING PLASTOCHRON 
INDEXES DURING HETEROBLASTIC SHOOT GROWTH: American Journal of 
Botany, v. 77, p. 1491-1497. 

Hobbie, L., M. McGovern, L. R. Hurwitz, A. Pierro, N. Y. Liu, A. Bandyopadhyay, and M. 
Estelle, 2000, The axr6 mutants of Arabidopsis thaliana define a gene involved in auxin 
response and early development: Development, v. 127, p. 23-32. 

Horton, P., 2000, Prospects for crop improvement through the genetic manipulation of 
photosynthesis: morphological and biochemical aspects of light capture: Journal of 
Experimental Botany, v. 51, p. 475-485. 

Horton, P., A. V. Ruban, and R. G. Walters, 1996, Regulation of light harvesting in green plants: 
Annual Review of Plant Physiology and Plant Molecular Biology, v. 47, p. 655-684. 

Hu, H., M. Dai, J. Yao, B. Xiao, X. Li, Q. Zhang, and L. Xiong, 2006, Overexpressing a NAM, 
ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt 
tolerance in rice: Proceedings of the National Academy of Sciences of the United States 
of America, v. 103, p. 12987-12992. 

Huang, J., X. Zhao, X. Weng, L. Wang, and W. Xie, 2012, The Rice B-Box Zinc Finger Gene 
Family: Genomic Identification, Characterization, Expression Profiling and Diurnal 
Analysis: Plos One, v. 7. 

Huang, X.-Y., D.-Y. Chao, J.-P. Gao, M.-Z. Zhu, M. Shi, and H.-X. Lin, 2009, A previously 
unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via 
stomatal aperture control: Genes & Development, v. 23, p. 1805-1817. 

Hudik, E., Y. Yoshioka, S. Domenichini, M. Bourge, L. Soubigout-Taconnat, C. Mazubert, D. Yi, 
S. Bujaldon, H. Hayashi, L. De Veylder, C. Bergounioux, M. Benhamed, and C. Raynaud, 
2014, Chloroplast Dysfunction Causes Multiple Defects in Cell Cycle Progression in the 
Arabidopsis crumpled leaf Mutant: Plant Physiology, v. 166, p. 152-167. 

Ishiwata, A., M. Ozawa, H. Nagasaki, M. Kato, Y. Noda, T. Yamaguchi, M. Nosaka, S. Shimizu-
Sato, A. Nagasaki, M. Maekawa, H.-Y. Hirano, and Y. Sato, 2013, Two WUSCHEL-
related homeobox Genes, narrow leaf2 and narrow leaf3, Control Leaf Width in Rice: 
Plant and Cell Physiology, v. 54, p. 779-792. 

Itoh, J., K. Nonomura, K. Ikeda, S. Yamaki, Y. Inukai, H. Yamagishi, H. Kitano, and Y. Nagato, 
2005, Rice plant development: from zygote to spikelet: Plant and Cell Physiology, v. 46. 

Itoh, J. I., A. Hasegawa, H. Kitano, and Y. Nagato, 1998, A recessive heterochronic mutation, 
plastochron1, shortens the plastochron and elongates the vegetative phase in rice: Plant 
Cell, v. 10, p. 1511-1521. 

Itoh, J. I., Hibara KI, Kojima M, Sakakibara H, and N. Y., 2012, Rice DECUSSATE controls 
phyllotaxy by affecting the cytokinin signalling pathway: Plant Journal. 

Itoh, J. I., H. Kitano, M. Matsuoka, and Y. Nagato, 2000, SHOOT ORGANIZATION genes 
regulate shoot apical meristem organization and the pattern of leaf primordium initiation 
in rice: Plant Cell, v. 12, p. 2161-2174. 

Jackson, D., B. Veit, and S. Hake, 1994, EXPRESSION OF MAIZE KNOTTED1 RELATED 
HOMEOBOX GENES IN THE SHOOT APICAL MERISTEM PREDICTS 
PATTERNS OF MORPHOGENESIS IN THE VEGETATIVE SHOOT: 
Development, v. 120. 

Jaeger, K. E., and P. A. Wigge, 2007, FT protein acts as a long-range signal in Arabidopsis: 
Current Biology, v. 17, p. 1050-1054. 

Jankovsky, J. P., L. G. Smith, and T. Nelson, 2001, Specification of bundle sheath cell fates 
during maize leaf development: roles of lineage and positional information evaluated 
through analysis of the tangled1 mutant: Development, v. 128, p. 2747-2753. 



154 
 
 

Jarvis, P., and E. Lopez-Juez, 2013, Biogenesis and homeostasis of chloroplasts and other 
plastids: Nature Reviews Molecular Cell Biology, v. 14, p. 787-802. 

Jeon, J. S., S. Jang, S. Lee, J. Nam, C. Kim, S. H. Lee, Y. Y. Chung, S. R. Kim, Y. H. Lee, Y. G. 
Cho, and G. An, 2000, leafy hull sterile1 is a homeotic mutation in a rice MADS box gene 
affecting rice flower development: Plant Cell, v. 12, p. 871-884. 

Jeong, H.-J., and K.-H. Jung, 2015, Rice tissue-specific promoters and condition-dependent 
promoters for effective translational application: Journal of Integrative Plant Biology, v. 
57, p. 913-924. 

Jiang, L., X. Liu, G. Xiong, H. Liu, F. Chen, L. Wang, X. Meng, G. Liu, H. Yu, Y. Yuan, W. Yi, 
L. Zhao, H. Ma, Y. He, Z. Wu, K. Melcher, Q. Qian, H. E. Xu, Y. Wang, and J. Li, 
2013a, DWARF 53 acts as a repressor of strigolactone signalling in rice: Nature, v. 504, p. 
401-+. 

Jiang, W., H. Zhou, H. Bi, M. Fromm, B. Yang, and D. P. Weeks, 2013b, Demonstration of 
CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, 
sorghum and rice: Nucleic Acids Research, v. 41. 

Jiao, Y. L., L. G. Ma, E. Strickland, and X. W. Deng, 2005, Conservation and divergence of light-
regulated genome expression patterns during seedling development in rice and 
Arabidopsis: Plant Cell, v. 17. 

Johansson, I., M. Karlsson, U. Johanson, C. Larsson, and P. Kjellbom, 2000, The role of 
aquaporins in cellular and whole plant water balance: Biochimica Et Biophysica Acta-
Biomembranes, v. 1465, p. 324-342. 

Juarez, M. T., J. S. Kui, J. Thomas, B. A. Heller, and M. C. P. Timmermans, 2004, microRNA-
mediated repression of rolled leaf1 specifies maize leaf polarity: Nature, v. 428, p. 84-88. 

Juric, S., K. Hazler-Pilepic, A. Tomasic, H. Lepedus, B. Jelicic, S. Puthiyaveetil, T. Bionda, L. 
Vojta, J. F. Allen, E. Schleiff, and H. Fulgosi, 2009, Tethering of ferredoxin:NADP plus 
oxidoreductase to thylakoid membranes is mediated by novel chloroplast protein TROL: 
Plant Journal, v. 60, p. 783-794. 

Jurik, T. W., J. F. Chabot, and B. F. Chabot, 1979, ONTOGENY OF PHOTOSYNTHETIC 
PERFORMANCE IN FRAGARIA-VIRGINIANA UNDER CHANGING LIGHT 
REGIMES: Plant Physiology, v. 63. 

Kajala, K., S. Covshoff, S. Karki, H. Woodfield, B. J. Tolley, M. J. A. Dionora, R. T. Mogul, A. E. 
Mabilangan, F. R. Danila, J. M. Hibberd, and W. P. Quick, 2011, Strategies for 
engineering a two-celled C-4 photosynthetic pathway into rice: Journal of Experimental 
Botany, v. 62, p. 3001-3010. 

Kakizaki, T., H. Matsumura, K. Nakayama, F.-S. Che, R. Terauchi, and T. Inaba, 2009, 
Coordination of Plastid Protein Import and Nuclear Gene Expression by Plastid-to-
Nucleus Retrograde Signaling: Plant Physiology, v. 151, p. 1339-1353. 

Kamiya, N., J. I. Itoh, A. Morikami, Y. Nagato, and M. Matsuoka, 2003, The SCARECROW 
gene's role in asymmetric cell divisions in rice plants: Plant Journal, v. 36, p. 45-54. 

Kanaoka, M. M., L. J. Pillitteri, H. Fujii, Y. Yoshida, N. L. Bogenschutz, J. Takabayashi, J.-K. 
Zhu, and K. U. Torii, 2008, SCREAM/ICE1 and SCREAM2 specify three cell-state 
transitional steps leading to Arabidopsis stomatal differentiation: Plant Cell, v. 20, p. 
1775-1785. 

Kaplan-Levy, R. N., P. B. Brewer, T. Quon, and D. R. Smyth, 2012, The trihelix family of 
transcription factors - light, stress and development: Trends in Plant Science, v. 17, p. 
163-171. 

Kazama, T., Y. Ichihashi, S. Murata, and H. Tsukaya, 2010, The Mechanism of Cell Cycle Arrest 
Front Progression Explained by a KLUH/CYP78A5-dependent Mobile Growth Factor 
in Developing Leaves of Arabidopsis thaliana: Plant and Cell Physiology, v. 51, p. 1046-
1054. 



155 
 
 

Kazda, A., S. Akimcheva, J. M. Watson, and K. Riha, 2016, Cell Proliferation Analysis Using 
EdU Labeling in Whole Plant and Histological Samples of Arabidopsis: Plant Cell 
Division: Methods and Protocols, v. 1370, p. 169-182. 

Kebeish, R., M. Niessen, K. Thiruveedhi, R. Bari, H.-J. Hirsch, R. Rosenkranz, N. Staebler, B. 
Schoenfeld, F. Kreuzaler, and C. Peterhaensel, 2007, Chloroplastic photorespiratory 
bypass increases photosynthesis and biomass production in Arabidopsis thaliana: Nature 
Biotechnology, v. 25, p. 593-599. 

Kim, G. T., S. Yano, T. Kozuka, and H. Tsukaya, 2005, Photomorphogenesis of leaves: shade-
avoidance and differentiation of sun and shade leaves: Photochemical & Photobiological 
Sciences, v. 4. 

Kiniry, J. R., C. A. Jones, J. C. Otoole, R. Blanchet, M. Cabelguenne, and D. A. Spanel, 1989, 
RADIATION-USE EFFICIENCY IN BIOMASS ACCUMULATION PRIOR TO 
GRAIN-FILLING FOR 5 GRAIN-CROP SPECIES: Field Crops Research, v. 20, p. 51-
64. 

Kobayashi, H., S. Asami, and T. Akazawa, 1980, STRUCTURE AND FUNCTION OF 
CHLOROPLAST PROTEINS .51. DEVELOPMENT OF ENZYMES INVOLVED 
IN PHOTOSYNTHETIC CARBON ASSIMILATION IN GREENING SEEDLINGS 
OF MAIZE (ZEA-MAYS): Plant Physiology, v. 65. 

Kobayashi, Y., Y. Kanesaki, A. Tanaka, H. Kuroiwa, T. Kuroiwa, and K. Tanaka, 2009, 
Tetrapyrrole signal as a cell-cycle coordinator from organelle to nuclear DNA replication 
in plant cells: Proceedings of the National Academy of Sciences of the United States of 
America, v. 106, p. 803-807. 

Kode, V., E. A. Mudd, S. Iamtham, and A. Day, 2006, Isolation of precise plastid deletion 
mutants by homology-based excision: a resource for site-directed mutagenesis, multi-gene 
changes and high-throughput plastid transformation: Plant Journal, v. 46, p. 901-909. 

Komatsu, K., M. Maekawa, S. Ujiie, Y. Satake, I. Furutani, H. Okamoto, K. Shimamoto, and J. 
Kyozuka, 2003, LAX and SPA: Major regulators of shoot branching in rice: Proceedings 
of the National Academy of Sciences of the United States of America, v. 100, p. 11765-
11770. 

Koussevitzky, S., A. Nott, T. C. Mockler, F. Hong, G. Sachetto-Martins, M. Surpin, I. J. Lim, R. 
Mittler, and J. Chory, 2007, Signals from chloroplasts converge to regulate nuclear gene 
expression: Science, v. 316, p. 715-719. 

Krause, G. H., and E. Weis, 1991, CHLOROPHYLL FLUORESCENCE AND 
PHOTOSYNTHESIS - THE BASICS: Annual Review of Plant Physiology and Plant 
Molecular Biology, v. 42, p. 313-349. 

Kubinova, L., 1991, STOMATA AND MESOPHYLL CHARACTERISTICS OF BARLEY 
LEAF AS AFFECTED BY LIGHT - STEREOLOGICAL ANALYSIS: Journal of 
Experimental Botany, v. 42. 

Kuhlemeier, C., 2007, Phyllotaxis: Trends in Plant Science, v. 12, p. 143-150. 
Kurisu, G., H. M. Zhang, J. L. Smith, and W. A. Cramer, 2003, Structure of the cytochrome b(6)f 

complex of oxygenic photosynthesis: Tuning the cavity: Science, v. 302, p. 1009-1014. 
Kusumi, K., Y. Chono, H. Shimada, E. Gotoh, M. Tsuyama, and K. Iba, 2010, Chloroplast 

biogenesis during the early stage of leaf development in rice: Plant Biotechnology, v. 27, 
p. 85-90. 

Lake, J. A., W. P. Quick, D. J. Beerling, and F. I. Woodward, 2001, Plant development - Signals 
from mature to new leaves: Nature, v. 411. 

Lake, J. A., F. I. Woodward, and W. P. Quick, 2002, Long-distance CO2 signalling in plants: 
Journal of Experimental Botany, v. 53. 

Lan, P., W. Li, and W. Schmidt, 2012, Complementary Proteome and Transcriptome Profiling in 
Phosphate-deficient Arabidopsis Roots Reveals Multiple Levels of Gene Regulation: 
Molecular & Cellular Proteomics, v. 11, p. 1156-1166. 



156 
 
 

Langdale, J. A., 2011, C-4 Cycles: Past, Present, and Future Research on C-4 Photosynthesis: 
Plant Cell, v. 23, p. 3879-3892. 

Langdale, J. A., B. A. Rothermel, and T. Nelson, 1988, CELLULAR-PATTERN OF 
PHOTOSYNTHETIC GENE-EXPRESSION IN DEVELOPING MAIZE LEAVES: 
Genes & Development, v. 2, p. 106-115. 

Larkin, R. M., J. M. Alonso, J. R. Ecker, and J. Chory, 2003, GUN4, a regulator of chlorophyll 
synthesis and intracellular signaling: Science, v. 299, p. 902-906. 

Larkin, R. M., G. Stefano, M. E. Ruckle, A. K. Stavoe, C. A. Sinkler, F. Brandizzi, C. M. 
Malmstrom, and K. W. Osteryoung, 2016, REDUCED CHLOROPLAST COVERAGE 
genes from Arabidopsis thaliana help to establish the size of the chloroplast 
compartment: Proceedings of the National Academy of Sciences of the United States of 
America, v. 113, p. E1116-E1125. 

Lawlor, D. W., and W. Tezara, 2009, Causes of decreased photosynthetic rate and metabolic 
capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of 
processes: Annals of Botany, v. 103, p. 561-579. 

Leegood, R. C., 2008, Roles of the bundle sheath cells in leaves of C(3) plants: Journal of 
Experimental Botany, v. 59, p. 1663-1673. 

Leegood, R. C., 2013, Strategies for engineering C-4 photosynthesis: Journal of Plant Physiology, 
v. 170, p. 378-388. 

Leung, H., C. Raghavan, B. Zhou, R. Oliva, I. R. Choi, V. Lacorte, M. Liza Jubay, C. Vera Cruz, 
G. Gregorio, R. K. Singh, V. Jun Ulat, F. Nikki Borja, R. Mauleon, N. N. Alexandrov, K. 
L. McNally, and R. Sackville Hamilton, 2015, Allele mining and enhanced genetic 
recombination for rice breeding: Rice, v. 8, p. 1-11. 

Leyser, O., and S. Day, 2003, Mechanisms in plant development: Mechanisms in plant 
development. 

Li, G., D. Wang, R. Yang, K. Logan, H. Chen, S. Zhang, M. I. Skaggs, A. Lloyd, W. J. Burnett, J. 
D. Laurie, B. G. Hunter, J. M. Dannenhoffer, B. A. Larkins, G. N. Drews, X. Wang, and 
R. Yadegari, 2014, Temporal patterns of gene expression in developing maize endosperm 
identified through transcriptome sequencing: Proceedings of the National Academy of 
Sciences of the United States of America, v. 111, p. 7582-7587. 

Li, P., L. Ponnala, N. Gandotra, L. Wang, Y. Si, S. L. Tausta, T. H. Kebrom, N. Provart, R. Patel, 
C. R. Myers, E. J. Reidel, R. Turgeon, P. Liu, Q. Sun, T. Nelson, and T. P. Brutnell, 2010, 
The developmental dynamics of the maize leaf transcriptome: Nature Genetics, v. 42, p. 
1060-U51. 

Lin, D. Z., X. D. Gong, Q. Jiang, K. L. Zheng, H. Zhou, J. L. Xu, S. Teng, and Y. J. Dong, 2015, 
The rice ALS3 encoding a novel pentatricopeptide repeat protein is required for 
chloroplast development and seedling growth: Rice, v. 8. 

Liu, Q., X. Yao, L. Pi, H. Wang, X. Cui, and H. Huang, 2009a, The ARGONAUTE10 gene 
modulates shoot apical meristem maintenance and establishment of leaf polarity by 
repressing miR165/166 in Arabidopsis: Plant Journal, v. 58. 

Liu, T., K. Ohashi-Ito, and D. C. Bergmann, 2009b, Orthologs of Arabidopsis thaliana stomatal 
bHLH genes and regulation of stomatal development in grasses: Development, v. 136, p. 
2265-2276. 

Long, S. P., 2014, We need winners in the race to increase photosynthesis in rice, whether from 
conventional breeding, biotechnology or both: Plant Cell and Environment, v. 37, p. 19-
21. 

Long, S. P., A. Marshall-Colon, and X.-G. Zhu, 2015a, Meeting the Global Food Demand of the 
Future by Engineering Crop Photosynthesis and Yield Potential: Cell, v. 161, p. 56-66. 

Long, S. P., and D. R. Ort, 2010, More than taking the heat: crops and global change: Current 
Opinion in Plant Biology, v. 13. 



157 
 
 

Long, S. P., X. G. Zhu, S. L. Naidu, and D. R. Ort, 2006a, Can improvement in photosynthesis 
increase crop yields?: Plant Cell and Environment, v. 29. 

Long, S. P., X. G. Zhu, S. L. Naidu, and D. R. Ort, 2006b, Can improvement in photosynthesis 
increase crop yields?: Plant Cell and Environment, v. 29, p. 315-330. 

Long, Y., B. Scheres, and I. Blilou, 2015b, The logic of communication: roles for mobile 
transcription factors in plants: Journal of Experimental Botany, v. 66, p. 1133-1144. 

Lopez-Juez, E., and K. A. Pyke, 2005, Plastids unleashed: their development and their integration 
in plant development: International Journal of Developmental Biology, v. 49. 

Lough, T. J., and W. J. Lucas, 2006, Integrative plant biology: Role of phloem long-distance 
macromolecular trafficking: Annual Review of Plant Biology, v. 57. 

Lu, Y., D. A. Hall, and R. L. Last, 2011, A Small Zinc Finger Thylakoid Protein Plays a Role in 
Maintenance of Photosystem II in Arabidopsis thaliana: Plant Cell, v. 23, p. 1861-1875. 

Luo, L., W. Q. Zhou, P. Liu, C. X. Li, and S. W. Hou, 2012, The development of stomata and 
other epidermal cells on the rice leaves: Biologia Plantarum, v. 56, p. 521-527. 

Luo, X.-M., W.-H. Lin, S. Zhu, J.-Y. Zhu, Y. Sun, X.-Y. Fan, M. Cheng, Y. Hao, E. Oh, M. Tian, 
L. Liu, M. Zhang, Q. Xie, K. Chong, and Z.-Y. Wang, 2010, Integration of Light- and 
Brassinosteroid-Signaling Pathways by a GATA Transcription Factor in Arabidopsis: 
Developmental Cell, v. 19, p. 872-883. 

Lurin, C., C. Andres, S. Aubourg, M. Bellaoui, F. Bitton, C. Bruyere, M. Caboche, C. Debast, J. 
Gualberto, B. Hoffmann, A. Lecharny, M. Le Ret, M. L. Martin-Magniette, H. Mireau, N. 
Peeters, J. P. Renou, B. Szurek, L. Taconnat, and I. Small, 2004, Genome-wide analysis of 
Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle 
biogenesis: Plant Cell, v. 16, p. 2089-2103. 

MacAlister, C. A., K. Ohashi-Ito, and D. C. Bergmann, 2007, Transcription factor control of 
asymmetric cell divisions that establish the stomatal lineage: Nature, v. 445. 

Majeran, W., G. Friso, L. Ponnala, B. Connolly, M. Huang, E. Reidel, C. Zhang, Y. Asakura, N. 
H. Bhuiyan, Q. Sun, R. Turgeon, and K. J. van Wijk, 2010, Structural and Metabolic 
Transitions of C-4 Leaf Development and Differentiation Defined by Microscopy and 
Quantitative Proteomics in Maize: Plant Cell, v. 22, p. 3509-3542. 

Makino, A., C. Miyake, and A. Yokota, 2002, Physiological functions of the water-water cycle 
(Mehler reaction) and the cyclic electron flow around PSI in rice leaves: Plant and Cell 
Physiology, v. 43, p. 1017-1026. 

Makino, A., T. Sato, H. Nakano, and T. Mae, 1997, Leaf photosynthesis, plant growth and 
nitrogen allocation in rice under different irradiances: Planta, v. 203, p. 390-398. 

Masuda, T., and K. Takamiya, 2004, Novel insights into the enzymology, regulation and 
physiological functions of light-dependent protochlorophyllide oxidoreductase in 
angiosperms: Photosynthesis Research, v. 81, p. 1-29. 

Matsukura, C., M. Kawai, K. Toyofuku, R. A. Barrero, H. Uchimiya, and J. Yamaguchi, 2000, 
Transverse vein differentiation associated with gas space formation - Fate of the middle 
cell layer in leaf sheath development of rice: Annals of Botany, v. 85, p. 19-27. 

Mattozzi, M. D., M. Ziesack, M. J. Voges, P. A. Silver, and J. C. Way, 2013, Expression of the 
sub-pathways of the Chloroflexus aurantiacus 3-hydroxypropionate carbon fixation 
bicycle in E. coli: Toward horizontal transfer of autotrophic growth: Metabolic 
Engineering, v. 16, p. 130-139. 

Maurel, C., L. Verdoucq, D.-T. Luu, and V. Santoni, 2008, Plant aquaporins: Membrane channels 
with multiple integrated functions: Annual Review of Plant Biology, v. 59, p. 595-624. 

Maxwell, K., and G. N. Johnson, 2000, Chlorophyll fluorescence - a practical guide: Journal of 
Experimental Botany, v. 51. 

Meng, Q. W., K. Siebke, P. Lippert, B. Baur, U. Mukherjee, and E. Weis, 2001, Sink-source 
transition in tobacco leaves visualized using chlorophyll fluorescence imaging: New 
Phytologist, v. 151, p. 585-595. 



158 
 
 

Messinger, J., and G. Renger, 2007, Photosynthetic Water Splitting: Primary Processes of 
Photosynthesis, Pt 2: Principles and Apparatus, v. 9, p. 291-349. 

Meyer, M., and H. Griffiths, 2013, Origins and diversity of eukaryotic CO2-concentrating 
mechanisms: lessons for the future: Journal of Experimental Botany, v. 64, p. 769-786. 

Michelet, L., M. Zaffagnini, S. Morisse, F. Sparla, M. E. Perez-Perez, F. Francia, A. Danon, C. H. 
Marchand, S. Fermani, P. Trost, and S. D. Lemaire, 2013, Redox regulation of the Calvin-
Benson cycle: something old, something new: Frontiers in Plant Science, v. 4. 

Minagawa, J., and Y. Takahashi, 2004, Structure, function and assembly of Photosystem II and its 
light-harvesting proteins: Photosynthesis Research, v. 82, p. 241-263. 

Mitchell, P. L., and J. E. Sheehy, 2006, Supercharging rice photosynthesis to increase yield: New 
Phytologist, v. 171, p. 688-693. 

Mitchell, R. A. C., C. R. Black, S. Burkart, J. I. Burke, A. Donnelly, L. de Temmmerman, A. 
Fangmeier, B. J. Mulholland, J. C. Theobald, and M. van Oijen, 1999, Photosynthetic 
responses in spring wheat grown under elevated CO2 concentrations and stress 
conditions in the European, multiple-site experiment 'ESPACE-wheat': European Journal 
of Agronomy, v. 10, p. 205-214. 

Mochizuki, N., J. A. Brusslan, R. Larkin, A. Nagatani, and J. Chory, 2001, Arabidopsis genomes 
uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in 
plastid-to-nucleus signal transduction: Proceedings of the National Academy of Sciences 
of the United States of America, v. 98, p. 2053-2058. 

Mochizuki, N., R. Tanaka, B. Grimm, T. Masuda, M. Moulin, A. G. Smith, A. Tanaka, and M. J. 
Terry, 2010, The cell biology of tetrapyrroles: a life and death struggle: Trends in Plant 
Science, v. 15, p. 488-498. 

Monte, E., J. M. Tepperman, B. Al-Sady, K. A. Kaczorowski, J. M. Alonso, J. R. Ecker, X. Li, Y. 
L. Zhang, and P. H. Quail, 2004, The phytochrome-interacting transcription factor, PIF3, 
acts early, selectively, and positively in light-induced chloroplast development: 
Proceedings of the National Academy of Sciences of the United States of America, v. 
101, p. 16091-16098. 

Moon, J., and S. Hake, 2011, How a leaf gets its shape: Current Opinion in Plant Biology, v. 14. 
Mullet, J. E., 1993, DYNAMIC REGULATION OF CHLOROPLAST TRANSCRIPTION: 

Plant Physiology, v. 103, p. 309-313. 
Munekaga, Y., M. Hashimoto, C. Miyaka, K. I. Tomizawa, T. Endo, M. Tasaka, and T. Shikanai, 

2004, Cyclic electron flow around photosystem I is essential for photosynthesis: Nature, 
v. 429, p. 579-582. 

Muralidharan, K., G. S. V. Prasad, and C. S. Roa, 2002, Yield performance of rice genotypes in 
international multi-environment trials during 1976-97: Current Science, v. 83, p. 610-619. 

Murchie, E. H., Y. Z. Chen, S. Hubbart, S. B. Peng, and P. Horton, 1999, Interactions between 
senescence and leaf orientation determine in situ patterns of photosynthesis and 
photoinhibition in field-grown rice: Plant Physiology, v. 119, p. 553-563. 

Murchie, E. H., and P. Horton, 1997, Acclimation of photosynthesis to irradiance and spectral 
quality in British plant species: Chlorophyll content, photosynthetic capacity and habitat 
preference: Plant Cell and Environment, v. 20, p. 438-448. 

Murchie, E. H., S. Hubbart, S. Peng, and P. Horton, 2005, Acclimation of photosynthesis to high 
irradiance in rice: gene expression and interactions with leaf development: Journal of 
Experimental Botany, v. 56. 

Murchie, E. H., and K. K. Niyogi, 2011, Manipulation of Photoprotection to Improve Plant 
Photosynthesis: Plant Physiology, v. 155, p. 86-92. 

Nadeau, J. A., and F. D. Sack, 2002, Control of stomatal distribution on the Arabidopsis leaf 
surface: Science, v. 296. 

Narawatthana, S., 2013, The regulation of leaf thickness in rice (Oryza sativa), Thesis, University 
of Sheffield. 



159 
 
 

Nardmann, J., J. B. Ji, W. Werr, and M. J. Scanlon, 2004, The maize duplicate genes narrow 
sheath1 and narrow sheath2 encode a conserved homeobox gene function in a lateral 
domain of shoot apical meristems: Development, v. 131. 

Nardmann, J., and W. Werr, 2006, The shoot stem cell niche in angiosperms: Expression patterns 
of WUS orthologues in rice and maize imply major modifications in the course of mono- 
and dicot evolution: Molecular Biology and Evolution, v. 23. 

Nelson, T., and N. Dengler, 1997, Leaf vascular pattern formation: Plant Cell, v. 9, p. 1121-1135. 
Nieuwland, J., R. Feron, B. A. H. Huisman, A. Fasolino, C. W. Hilbers, J. Derksen, and C. 

Mariani, 2005, Lipid transfer proteins enhance cell wall extension in tobacco: Plant Cell, 
v. 17, p. 2009-2019. 

Niones, J. M., Y. Inukai, R. R. Suralta, and A. Yamauchi, 2015, QTL associated with lateral root 
plasticity in response to soil moisture fluctuation stress in rice: Plant and Soil, v. 391, p. 
63-75. 

Nishikawa, Y., H. Yamamoto, Y. Okegawa, S. Wada, N. Sato, Y. Taira, K. Sugimoto, A. Makino, 
and T. Shikanai, 2012, PGR5-Dependent Cyclic Electron Transport Around PSI 
Contributes to the Redox Homeostasis in Chloroplasts Rather Than CO2 Fixation and 
Biomass Production in Rice: Plant and Cell Physiology, v. 53, p. 2117-2126. 

Notaguchi, M., 2015, Identification of phloem-mobile mRNA: Journal of Plant Research, v. 128, 
p. 27-35. 

Nott, A., H.-S. Jung, S. Koussevitzky, and J. Chory, 2006, Plastid-to-nucleus retrograde signaling: 
Annual Review of Plant Biology, v. 57, p. 739-759. 

Ogawa, T., K. Nishimura, T. Aoki, H. Takase, K.-I. Tomizawa, H. Ashida, and A. Yokota, 2009, 
A Phosphofructokinase B-Type Carbohydrate Kinase Family Protein, NARA5, for 
Massive Expressions of Plastid-Encoded Photosynthetic Genes in Arabidopsis: Plant 
Physiology, v. 151, p. 114-128. 

Ogren, W. L., 1984, PHOTORESPIRATION - PATHWAYS, REGULATION, AND 
MODIFICATION: Annual Review of Plant Physiology and Plant Molecular Biology, v. 
35, p. 415-442. 

Oguchi, R., K. Hikosaka, and T. Hirose, 2003, Does the photosynthetic light-acclimation need 
change in leaf anatomy?: Plant Cell and Environment, v. 26. 

Ohashi, K., A. Tanaka, and H. Tsuji, 1989, FORMATION OF THE PHOTOSYNTHETIC 
ELECTRON-TRANSPORT SYSTEM DURING THE EARLY PHASE OF 
GREENING IN BARLEY LEAVES: Plant Physiology, v. 91, p. 409-414. 

Ohashi-Ito, K., M. Oguchi, M. Kojima, H. Sakakibara, and H. Fukuda, 2013, Auxin-associated 
initiation of vascular cell differentiation by LONESOME HIGHWAY: Development, v. 
140, p. 765-769. 

Ohtsu, K., M. B. Smith, S. J. Emrich, L. A. Borsuk, R. Zhou, T. Chen, X. Zhang, M. C. P. 
Timmermans, J. Beck, B. Buckner, D. Janick-Buckner, D. Nettleton, M. J. Scanlon, and 
P. S. Schnable, 2007, Global gene expression analysis of the shoot apical meristem of 
maize (Zea mays L.): Plant Journal, v. 52. 

Okamoto, S., T. Suzuki, M. Kawaguchi, T. Higashiyama, and Y. Matsubayashi, 2015, A 
comprehensive strategy for identifying long-distance mobile peptides in xylem sap: Plant 
Journal, v. 84, p. 611-620. 

Ort, D. R., X. Zhu, and A. Melis, 2011, Optimizing Antenna Size to Maximize Photosynthetic 
Efficiency: Plant Physiology, v. 155, p. 79-85. 

Ortiz-Lopez, A., H. C. Chang, and D. R. Bush, 2000, Amino acid transporters in plants: 
Biochimica Et Biophysica Acta-Biomembranes, v. 1465, p. 275-280. 

Ouyang, S., W. Zhu, J. Hamilton, H. Lin, M. Campbell, K. Childs, F. Thibaud-Nissen, R. L. 
Malek, Y. Lee, L. Zheng, J. Orvis, B. Haas, J. Wortman, and C. R. Buell, 2007, The TIGR 
Rice Genome Annotation Resource: Improvements and new features: Nucleic Acids 
Research, v. 35, p. D883-D887. 



160 
 
 

Pant, B. D., A. Buhtz, J. Kehr, and W.-R. Scheible, 2008, MicroRNA399 is a long-distance signal 
for the regulation of plant phosphate homeostasis: Plant Journal, v. 53, p. 731-738. 

Parry, M. A. J., P. J. Andralojc, J. C. Scales, M. E. Salvucci, A. E. Carmo-Silva, H. Alonso, and S. 
M. Whitney, 2013, Rubisco activity and regulation as targets for crop improvement: 
Journal of Experimental Botany, v. 64, p. 717-730. 

Parry, M. A. J., M. Reynolds, M. E. Salvucci, C. Raines, P. J. Andralojc, X.-G. Zhu, G. D. Price, 
A. G. Condon, and R. T. Furbank, 2011, Raising yield potential of wheat. II. Increasing 
photosynthetic capacity and efficiency: Journal of Experimental Botany, v. 62, p. 453-467. 

Paul, M. J., and T. K. Pellny, 2003, Carbon metabolite feedback regulation of leaf photosynthesis 
and development: Journal of Experimental Botany, v. 54. 

Peng, L. W., J. F. Ma, W. Chi, J. K. Guo, S. Y. Zhu, Q. T. Lu, C. M. Lu, and L. X. Zhang, 2006, 
LOW PSII ACCUMULATION1 is involved in efficient assembly of photosystem II in 
Arabidopsis thaliana: Plant Cell, v. 18, p. 955-969. 

Pesaresi, P., S. Masiero, H. Eubel, H. P. Braun, S. Bhushan, E. Glaser, F. Salamini, and D. 
Leister, 2006, Nuclear photosynthetic gene expression is synergistically modulated by 
rates of protein synthesis in chloroplasts and mitochondria: Plant Cell, v. 18. 

Peterhansel, C., I. Horst, M. Niessen, C. Blume, R. Kebeish, S. Kurkcuoglu, and F. Kreuzaler, 
2010, Photorespiration: The Arabidopsis book / American Society of Plant Biologists, v. 
8, p. e0130-e0130. 

Peterhansel, C., M. Niessen, and R. M. Kebeish, 2008, Metabolic Engineering Towards the 
Enhancement of Photosynthesis: Photochemistry and Photobiology, v. 84, p. 1317-1323. 

Peterson, R. B., V. Oja, H. Eichelmann, I. Bichele, L. Dall'Osto, and A. Laisk, 2014, 
Fluorescence F-0 of photosystems II and I in developing C-3 and C-4 leaves, and 
implications on regulation of excitation balance: Photosynthesis Research, v. 122, p. 41-
56. 

Pfannschmidt, T., K. Braeutigam, R. Wagner, L. Dietzel, Y. Schroeter, S. Steiner, and A. 
Nykytenko, 2009, Potential regulation of gene expression in photosynthetic cells by redox 
and energy state: approaches towards better understanding: Annals of Botany, v. 103, p. 
599-607. 

Pfuendel, E., and B. Neubohn, 1999, Assessing photosystem I and II distribution in leaves from 
C4 plants using confocal laser scanning microscopy: Plant Cell and Environment, v. 22, 
p. 1569-1577. 

Pien, S., J. Wyrzykowska, S. McQueen-Mason, C. Smart, and A. Fleming, 2001, Local expression 
of expansin induces the entire process of leaf development and modifies leaf shape: 
Proceedings of the National Academy of Sciences of the United States of America, v. 98. 

Pieper, B., M. Monniaux, and A. Hay, 2016, The genetic architecture of petal number in 
Cardamine hirsuta: New Phytologist, v. 209, p. 395-406. 

Pigliucci, M., and J. Kaplan, 2000, The fall and rise of Dr Pangloss: adaptationism and the 
Spandrels paper 20 years later: Trends in Ecology & Evolution, v. 15, p. 66-70. 

Potter, E., J. Beator, and K. Kloppstech, 1996, The expression of mRNAs for light-stress 
proteins in barley: Inverse relationship of mRNA levels of individual genes within the leaf 
gradient: Planta, v. 199, p. 314-320. 

Price, A. H., E. M. Young, and A. D. Tomos, 1997, Quantitative trait loci associated with 
stomatal conductance, leaf rolling and heading date mapped in upland rice (Oryza sativa): 
New Phytologist, v. 137, p. 83-91. 

Price, G. D., M. R. Badger, F. J. Woodger, and B. M. Long, 2008, Advances in understanding the 
cyanobacterial CO(2)-concentrating-mechanism (CCM): functional components, Ci 
transporters, diversity, genetic regulation and prospects for engineering into plants: 
Journal of Experimental Botany, v. 59, p. 1441-1461. 



161 
 
 

Prigge, M. J., D. Otsuga, J. M. Alonso, J. R. Ecker, G. N. Drews, and S. E. Clark, 2005, Class III 
homeodomain-leucine zipper gene family members have overlapping, antagonistic, and 
distinct roles in Arabidopsis development: Plant Cell, v. 17. 

Prokopova, J., M. Spundova, M. Sedlarova, A. Husickova, R. Novotny, K. Dolezal, J. Naus, and 
A. Lebeda, 2010, Photosynthetic responses of lettuce to downy mildew infection and 
cytokinin treatment: Plant Physiology and Biochemistry, v. 48, p. 716-723. 

Pushnik, J. C., G. W. Miller, V. D. Jolley, J. C. Brown, T. D. Davis, and A. M. Barnes, 1987, 
INFLUENCES OF ULTRA-VIOLET (UV)-BLUE LIGHT RADIATION ON THE 
GROWTH OF COTTON .2. PHOTOSYNTHESIS, LEAF ANATOMY, AND IRON 
REDUCTION: Journal of Plant Nutrition, v. 10. 

Pyke, K. A., 2013, Divide and shape: an endosymbiont in action: Planta, v. 237, p. 381-387. 
Pyke, K. A., and R. M. Leech, 1992, CHLOROPLAST DIVISION AND EXPANSION IS 

RADICALLY ALTERED BY NUCLEAR MUTATIONS IN ARABIDOPSIS-
THALIANA: Plant Physiology, v. 99, p. 1005-1008. 

Qi, J., Q. Qian, Q. Bu, S. Li, Q. Chen, J. Sun, W. Liang, Y. Zhou, C. Chu, X. Li, F. Ren, K. 
Palme, B. Zhao, J. Chen, M. Chen, and C. Li, 2008, Mutation of the rice narrow leaf1 
gene, which encodes a novel protein, affects vein patterning and polar auxin transport: 
Plant Physiology, v. 147, p. 1947-1959. 

Raines, C. A., 2011, Increasing Photosynthetic Carbon Assimilation in C-3 Plants to Improve 
Crop Yield: Current and Future Strategies: Plant Physiology, v. 155, p. 36-42. 

Raven, P. H., R. F. Evert, and S. E. Eichhorn, 2005, Biology of Plants, Freeman. 
Ray, D. K., N. D. Mueller, P. C. West, and J. A. Foley, 2013, Yield Trends Are Insufficient to 

Double Global Crop Production by 2050: Plos One, v. 8. 
Raynaud, C., C. Perennes, C. Reuzeau, O. Catrice, S. Brown, and C. Bergounioux, 2005, Cell and 

plastid division are coordinated through the prereplication factor AtCDT1: Proceedings 
of the National Academy of Sciences of the United States of America, v. 102, p. 8216-
8221. 

Reeves, T. G., and K. Cassaday, 2002, History and past achievements of plant breeding: 
Australian Journal of Agricultural Research, v. 53, p. 851-863. 

Reinhardt, D., F. Wittwer, T. Mandel, and C. Kuhlemeier, 1998, Localized upregulation of a new 
expansin gene predicts the site of leaf formation in the tomato meristem: Plant Cell, v. 10. 

Renger, G., 1987, BIOLOGICAL EXPLOITATION OF SOLAR-ENERGY BY 
PHOTOSYNTHETIC WATER SPLITTING: Angewandte Chemie-International 
Edition in English, v. 26, p. 643-660. 

Reyes, J. C., M. I. Muro-Pastor, and F. J. Florencio, 2004, The GATA family of transcription 
factors in Arabidopsis and rice: Plant Physiology, v. 134, p. 1718-1732. 

Reynolds, M., D. Bonnett, S. C. Chapman, R. T. Furbank, Y. Manes, D. E. Mather, and M. A. J. 
Parry, 2011, Raising yield potential of wheat. I. Overview of a consortium approach and 
breeding strategies: Journal of Experimental Botany, v. 62, p. 439-452. 

Rizal, G., V. Thakur, J. Dionora, S. Karki, S. Wanchana, K. Acebron, N. Larazo, R. Garcia, A. 
Mabilangan, F. Montecillo, F. Danila, R. Mogul, P. Pablico, H. Leung, J. A. Langdale, J. 
Sheehy, S. Kelly, and W. P. Quick, 2015, Two forward genetic screens for vein density 
mutants in sorghum converge on a cytochrome P450 gene in the brassinosteroid 
pathway: Plant Journal, v. 84, p. 257-266. 

Rochaix, J.-D., 2014, Regulation and Dynamics of the Light-Harvesting System: Annual Review 
of Plant Biology, Vol 65, v. 65, p. 287-309. 

Rolfe, S. A., and J. D. Scholes, 2002, Extended depth-of-focus imaging of chlorophyll 
fluorescence from intact leaves: Photosynthesis Research, v. 72, p. 107-115. 

Rolfe, S. A., and J. D. Scholes, 2010, Chlorophyll fluorescence imaging of plant-pathogen 
interactions: Protoplasma, v. 247, p. 163-175. 



162 
 
 

Rose, R. J., D. G. Cran, and J. V. Possingham, 1975, CHANGES IN DNA-SYNTHESIS 
DURING CELL-GROWTH AND CHLOROPLAST REPLICATION IN 
GREENING SPINACH LEAF DISKS: Journal of Cell Science, v. 17, p. 27-41. 

Rosenthal, D. M., A. M. Locke, M. Khozaei, C. A. Raines, S. P. Long, and D. R. Ort, 2011, Over-
expressing the C-3 photosynthesis cycle enzyme Sedoheptulose-1-7 Bisphosphatase 
improves photosynthetic carbon gain and yield under fully open air CO2 fumigation 
(FACE): Bmc Plant Biology, v. 11. 

Ruiz-Medrano, R., F. Kragler, and S. Wolf, 2012, Signaling and Phloem-Mobile Transcripts: 
Short and Long Distance Signaling, v. 3, 151-177 p. 

Sabatini, S., D. Beis, H. Wolkenfelt, J. Murfett, T. Guilfoyle, J. Malamy, P. Benfey, O. Leyser, N. 
Bechtold, P. Weisbeek, and B. Scheres, 1999, An auxin-dependent distal organizer of 
pattern and polarity in the Arabidopsis root: Cell, v. 99, p. 463-472. 

Sage, R. F., P.-A. Christin, and E. J. Edwards, 2011, The C-4 plant lineages of planet Earth: 
Journal of Experimental Botany, v. 62, p. 3155-3169. 

Sage, R. F., R. Khoshravesh, and T. L. Sage, 2014, From proto-Kranz to C-4 Kranz: building the 
bridge to C-4 photosynthesis: Journal of Experimental Botany, v. 65, p. 3341-3356. 

Sage, T. L., and R. F. Sage, 2009, The Functional Anatomy of Rice Leaves: Implications for 
Refixation of Photorespiratory CO2 and Efforts to Engineer C-4 Photosynthesis into 
Rice: Plant and Cell Physiology, v. 50. 

Sakaguchi, J., and H. Fukuda, 2008, Cell differentiation in the longitudinal veins and formation of 
commissural veins in rice (Oryza sativa) and maize (Zea mays): Journal of Plant Research, 
v. 121, p. 593-602. 

Sakamoto, W., S.-Y. Miyagishima, and P. Jarvis, 2008, Chloroplast biogenesis: control of plastid 
development, protein import, division and inheritance: The Arabidopsis book / 
American Society of Plant Biologists, v. 6, p. e0110-e0110. 

Scanlon, M. J., R. G. Schneeberger, and M. Freeling, 1996, The maize mutant narrow sheath fails 
to establish leaf margin identity in a merostematic domain: Development, v. 122. 

Scarpella, E., K. J. M. Boot, S. Rueb, and A. H. Meijer, 2002, The procambium specification gene 
Oshox1 promotes polar auxin transport capacity and reduces its sensitivity toward 
inhibition: Plant Physiology, v. 130, p. 1349-1360. 

Scarpella, E., P. Francis, and T. Berleth, 2004, Stage-specific markers define early steps of 
procambium development in Arabidopsis leaves and correlate termination of vein 
formation with mesophyll differentiation: Development, v. 131, p. 3445-3455. 

Scarpella, E., D. Marcos, J. Friml, and T. Berleth, 2006, Control of leaf vascular patterning by 
polar auxin transport: Genes & Development, v. 20, p. 1015-1027. 

Scarpella, E., and A. H. Meijer, 2004, Pattern formation in the vascular system of monocot and 
dicot plant species: New Phytologist, v. 164, p. 209-242. 

Scarpella, E., S. Rueb, and A. H. Meijer, 2003, The RADICLELESS1 gene is required for 
vascular pattern formation in rice: Development, v. 130, p. 645-658. 

Schellmann, S., A. Schnittger, V. Kirik, T. Wada, K. Okada, A. Beermann, J. Thumfahrt, G. 
Jurgens, and M. Hulskamp, 2002, TRIPTYCHON and CAPRICE mediate lateral 
inhibition during trichome and root hair patterning in Arabidopsis: Embo Journal, v. 21. 

Schneeberger, R., M. Tsiantis, M. Freeling, and J. A. Langdale, 1998, The rough sheath2 gene 
negatively regulates homeobox gene expression during maize leaf development: 
Development, v. 125. 

Schoefs, B., and F. Franck, 2003, Protochlorophyllide reduction: Mechanisms and evolution: 
Photochemistry and Photobiology, v. 78, p. 543-557. 

Sheehy, J. E., M. J. A. Dionora, and P. L. Mitchell, 2001, Spikelet numbers, sink size and potential 
yield in rice: Field Crops Research, v. 71, p. 77-85. 



163 
 
 

Shimizu, H., M. Maruoka, N. Ichikawa, A. R. Baruah, N. Uwatoko, Y. Sano, and K. Onishi, 2010, 
Genetic control of phenotypic plasticity in Asian cultivated and wild rice in response to 
nutrient and density changes: Genome, v. 53, p. 211-223. 

Shinano, T., K. Nakajima, J. Wasaki, H. Mori, T. Zheng, and M. Osaki, 2006, Developmental 
regulation of photosynthate distribution in leaves of rice: Photosynthetica, v. 44, p. 1-10. 

Sims, D. A., and R. W. Pearcy, 1992, RESPONSE OF LEAF ANATOMY AND 
PHOTOSYNTHETIC CAPACITY IN ALOCASIA-MACRORRHIZA (ARACEAE) 
TO A TRANSFER FROM LOW TO HIGH LIGHT: American Journal of Botany, v. 
79. 

Sinclair, T. R., L. C. Purcell, and C. H. Sneller, 2004, Crop transformation and the challenge to 
increase yield potential: Trends in Plant Science, v. 9, p. 70-75. 

Small, I. D., and N. Peeters, 2000, The PPR motif - a TPR-related motif prevalent in plant 
organellar proteins: Trends in Biochemical Sciences, v. 25, p. 46-47. 

Smillie, I. R. A., 2011, Variation in vein density in a rice deletion mutant population., University 
of Nottingham. 

Smillie, I. R. A., K. A. Pyke, and E. H. Murchie, 2012, Variation in vein density and mesophyll 
cell architecture in a rice deletion mutant population: Journal of Experimental Botany, v. 
63, p. 4563-4570. 

Smith, A. M., and M. Stitt, 2007, Coordination of carbon supply and plant growth: Plant Cell and 
Environment, v. 30. 

Smith, R. S., S. Guyomarc'h, T. Mandel, D. Reinhardt, C. Kuhlemeier, and P. Prusinkiewicz, 
2006, A plausible model of phyllotaxis: Proceedings of the National Academy of Sciences 
of the United States of America, v. 103. 

Song, Q., G. Zhang, and X.-G. Zhu, 2013, Optimal crop canopy architecture to maximise canopy 
photosynthetic CO2 uptake under elevated CO2 - a theoretical study using a mechanistic 
model of canopy photosynthesis: Functional Plant Biology, v. 40, p. 109-124. 

Spreitzer, R. J., and M. E. Salvucci, 2002, Rubisco: Structure, regulatory interactions, and 
possibilities for a better enzyme: Annual Review of Plant Biology, v. 53, p. 449-475. 

Stitt, M., J. Lunn, and B. Usadel, 2010, Arabidopsis and primary photosynthetic metabolism - 
more than the icing on the cake: Plant Journal, v. 61, p. 1067-1091. 

Sultan, S. E., 2000, Phenotypic plasticity for plant development, function and life history: Trends 
in Plant Science, v. 5, p. 537-542. 

Sun, X., P. Feng, X. Xu, H. Guo, J. Ma, W. Chi, R. Lin, C. Lu, and L. Zhang, 2011, A chloroplast 
envelope-bound PHD transcription factor mediates chloroplast signals to the nucleus: 
Nature Communications, v. 2. 

Suzaki, T., T. Toriba, M. Fujimoto, N. Tsutsumi, H. Kitano, and H.-Y. Hirano, 2006, 
Conservation and diversification of meristem maintenance mechanism in Oryza sativa: 
Function of the FLORAL ORGAN NUMBER2 gene: Plant and Cell Physiology, v. 47. 

Taguchi-Shiobara, F., T. Ota, K. Ebana, T. Ookawa, M. Yamasaki, T. Tanabata, U. Yamanouchi, 
J. Wu, N. Ono, Y. Nonoue, K. Nagata, S. Fukuoka, H. Hirabayashi, T. Yamamoto, and 
M. Yano, 2015, Natural Variation in the Flag Leaf Morphology of Rice Due to a 
Mutation of the NARROW LEAF 1 Gene in Oryza sativa L: Genetics, v. 201, p. 795-+. 

Takahashi, S., and N. Murata, 2008, How do environmental stresses accelerate photoinhibition?: 
Trends in Plant Science, v. 13, p. 178-182. 

Takai, T., S. Adachi, F. Taguchi-Shiobara, Y. Sanoh-Arai, N. Iwasawa, S. Yoshinaga, S. Hirose, Y. 
Taniguchi, U. Yamanouchi, J. Wu, T. Matsumoto, K. Sugimoto, K. Kondo, T. Ikka, T. 
Ando, I. Kono, S. Ito, A. Shomura, T. Ookawa, T. Hirasawa, M. Yano, M. Kondo, and T. 
Yamamoto, 2013, A natural variant of NAL1, selected in high-yield rice breeding 
programs, pleiotropically increases photosynthesis rate: Scientific Reports, v. 3. 



164 
 
 

Tanaka, R., K. Kobayashi, and T. Masuda, 2011, Tetrapyrrole Metabolism in Arabidopsis 
thaliana: The Arabidopsis book / American Society of Plant Biologists, v. 9, p. e0145-
e0145. 

Taylor, S. H., P. J. Franks, S. P. Hulme, E. Spriggs, P. A. Christin, E. J. Edwards, F. I. 
Woodward, and C. P. Osborne, 2012, Photosynthetic pathway and ecological adaptation 
explain stomatal trait diversity amongst grasses: New Phytologist, v. 193, p. 387-396. 

Terashima, I., Y. T. Hanba, Y. Tazoe, P. Vyas, and S. Yano, 2006, Irradiance and phenotype: 
comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 
diffusion: Journal of Experimental Botany, v. 57. 

Terashima, I., and A. Takenaka, 1990, FACTORS DETERMINING LIGHT RESPONSE 
CHARACTERISTICS OF LEAF PHOTOSYNTHESIS: Current Research in 
Photosynthesis, Vols 1-4. 

Terry, M. J., and A. G. Smith, 2013, A model for tetrapyrrole synthesis as the primary mechanism 
for plastid-to-nucleus signaling during chloroplast biogenesis: Frontiers in plant science, 
v. 4, p. 14-14. 

Tholen, D., C. Boom, and X.-G. Zhu, 2012, Opinion: Prospects for improving photosynthesis by 
altering leaf anatomy: Plant Science, v. 197, p. 92-101. 

Timmermans, M. C. P., A. Hudson, P. W. Becraft, and T. Nelson, 1999, ROUGH SHEATH2: A 
Myb protein that represses knox homeobox genes in maize lateral organ primordia: 
Science, v. 284. 

Tsukaya, H., 2002, Leaf development: The Arabidopsis book / American Society of Plant 
Biologists, v. 1. 

Tucker, M. R., A. Hinze, E. J. Tucker, S. Takada, G. Juergens, and T. Laux, 2008, Vascular 
signalling mediated by ZWILLE potentiates WUSCHEL function during shoot meristem 
stem cell development in the Arabidopsis embryo: Development, v. 135, p. 2839-2843. 

Turgeon, R., 1989, THE SINK-SOURCE TRANSITION IN LEAVES: Annual Review of Plant 
Physiology and Plant Molecular Biology, v. 40, p. 119-138. 

United Nations, D. o. E. a. S. A., Population Division, 2015, World Population Prospects: The 
2015 Revision, Methodology of the United Nations Population Estimates and 
Projections. . 

Usadel, B., A. Nagel, O. Thimm, H. Redestig, O. E. Blaesing, N. Palacios-Rojas, J. Selbig, J. 
Hannemann, M. C. Piques, D. Steinhauser, W. R. Scheible, Y. Gibon, R. Morcuende, D. 
Weicht, S. Meyer, and M. Stitt, 2005, Extension of the visualization tool MapMan to 
allow statistical analysis of arrays, display of coresponding genes, and comparison with 
known responses: Plant Physiology, v. 138, p. 1195-1204. 

van Campen, J. C., M. N. Yaapar, S. Narawatthana, C. Lehmeier, S. Wanchana, V. Thakur, C. 
Chater, S. Kelly, S. A. Rolfe, W. P. Quick, and A. J. Fleming, 2016, Combined 
Chlorophyll Fluorescence and Transcriptomic Analysis Identifies the P3/P4 Transition as 
a Key Stage in Rice Leaf Photosynthetic Development: Plant physiology, v. 170, p. 1655-
74. 

Veit, B., 2004, Determination of cell fate in apical meristems: Current Opinion in Plant Biology, 
v. 7. 

Vinti, G., N. Fourrier, J. R. Bowyer, and E. Lopez-Juez, 2005, Arabidopsis cue mutants with 
defective plastids are impaired primarily in the photocontrol of expression of 
photosynthesis-associated nuclear genes: Plant Molecular Biology, v. 57. 

Vogler, D. W., C. Das, and A. G. Stephenson, 1998, Phenotypic plasticity in the expression of 
self-incompatibility in Campanula rapunculoides: Heredity, v. 81, p. 546-555. 

von Caemmerer, S., and J. R. Evans, 2010, Enhancing C-3 Photosynthesis: Plant Physiology, v. 
154, p. 589-592. 

Vothknecht, U. C., S. Otters, R. Hennig, and D. Schneider, 2012, Vipp1: a very important protein 
in plastids?!: Journal of Experimental Botany, v. 63, p. 1699-1712. 



165 
 
 

Wallace, S., C. C. Chater, Y. Kamisugi, A. C. Cuming, C. H. Wellman, D. J. Beerling, and A. J. 
Fleming, 2015, Conservation of Male Sterility 2 function during spore and pollen wall 
development supports an evolutionarily early recruitment of a core component in the 
sporopollenin biosynthetic pathway: New Phytologist, v. 205, p. 390-401. 

Walsh, J., C. A. Waters, and M. Freeling, 1998, The maize gene liguleless2 encodes a basic leucine 
zipper protein involved in the establishment of the leaf blade-sheath boundary: Genes & 
Development, v. 12. 

Wang, L., A. Czedik-Eysenberg, R. A. Mertz, Y. Si, T. Tohge, A. Nunes-Nesi, S. Arrivault, L. K. 
Dedow, D. W. Bryant, W. Zhou, J. Xu, S. Weissmann, A. Studer, P. Li, C. Zhang, T. 
LaRue, Y. Shao, Z. Ding, Q. Sun, R. V. Patel, R. Turgeon, X. Zhu, N. J. Provart, T. C. 
Mockler, A. R. Fernie, M. Stitt, P. Liu, and T. P. Brutnell, 2014a, Comparative analyses of 
C-4 and C-3 photosynthesis in developing leaves of maize and rice: Nature 
Biotechnology, v. 32, p. 1158-1165. 

Wang, L., W. Xie, Y. Chen, W. Tang, J. Yang, R. Ye, L. Liu, Y. Lin, C. Xu, J. Xiao, and Q. Zhang, 
2010, A dynamic gene expression atlas covering the entire life cycle of rice: Plant Journal, 
v. 61. 

Wang, P., S. Kelly, J. P. Fouracre, and J. A. Langdale, 2013, Genome-wide transcript analysis of 
early maize leaf development reveals gene cohorts associated with the differentiation of 
C-4 Kranz anatomy: Plant Journal, v. 75, p. 656-670. 

Wang, S., M. I. Uddin, K. Tanaka, L. Yin, Z. Shi, Y. Qi, J. i. Mano, K. Matsui, N. Shimomura, T. 
Sakaki, X. Deng, and S. Zhang, 2014b, Maintenance of Chloroplast Structure and 
Function by Overexpression of the Rice MONOGALACTOSYLDIACYLGLYCEROL 
SYNTHASE Gene Leads to Enhanced Salt Tolerance in Tobacco: Plant Physiology, v. 
165, p. 1144-1155. 

Wang, Z., M. Gerstein, and M. Snyder, 2009, RNA-Seq: a revolutionary tool for transcriptomics: 
Nature Reviews Genetics, v. 10, p. 57-63. 

Waters, M. T., P. Wang, M. Korkaric, R. G. Capper, N. J. Saunders, and J. A. Langdale, 2009, 
GLK Transcription Factors Coordinate Expression of the Photosynthetic Apparatus in 
Arabidopsis: Plant Cell, v. 21. 

White, D. W. R., 2006, PEAPOD regulates lamina size and curvature in Arabidopsis: 
Proceedings of the National Academy of Sciences of the United States of America, v. 
103, p. 13238-13243. 

Wise, R. R., 1995, CHILLING-ENHANCED PHOTOOXIDATION - THE PRODUCTION, 
ACTION AND STUDY OF REACTIVE OXYGEN SPECIES PRODUCED 
DURING CHILLING IN THE LIGHT: Photosynthesis Research, v. 45, p. 79-97. 

Wollman, F. A., L. Minai, and R. Nechushtai, 1999, The biogenesis and assembly of 
photosynthetic proteins in thylakoid membranes: Biochimica Et Biophysica Acta-
Bioenergetics, v. 1411, p. 21-85. 

Woo, Y.-M., H.-J. Park, M. Su'udi, J.-I. Yang, J.-J. Park, K. Back, Y.-M. Park, and G. An, 2007, 
Constitutively wilted 1, a member of the rice YUCCA gene family, is required for 
maintaining water homeostasis and an appropriate root to shoot ratio: Plant Molecular 
Biology, v. 65, p. 125-136. 

Woodson, J. D., and J. Chory, 2008, Coordination of gene expression between organellar and 
nuclear genomes: Nature Reviews Genetics, v. 9. 

Xu, M., L. Zhu, H. X. Shou, and P. Wu, 2005, A PIN1 family gene, OsPIN1, involved in auxin-
dependent adventitious root emergence and tillering in rice: Plant and Cell Physiology, v. 
46, p. 1674-1681. 

Yaapar, M., 2016, The control of stomatal properties in rice (Oryza sativa L.) and their influence 
on photosynthetic performance. Thesis, University of Sheffield. 

Yamamuro, C., Y. Ihara, X. Wu, T. Noguchi, S. Fujioka, S. Takatsuto, M. Ashikari, H. Kitano, 
and M. Matsuoka, 2000, Loss of function of a rice brassinosteroid insensitive1 homolog 



166 
 
 

prevents internode elongation and bending of the lamina joint: Plant Cell, v. 12, p. 1591-
1605. 

Yamatani, H., Y. Sato, Y. Masuda, Y. Kato, R. Morita, K. Fukunaga, Y. Nagamura, M. 
Nishimura, W. Sakamoto, A. Tanaka, and M. Kusaba, 2013, NYC4, the rice ortholog of 
Arabidopsis THF1, is involved in the degradation of chlorophyll protein complexes 
during leaf senescence: Plant Journal, v. 74, p. 652-662. 

Yang, M., and F. D. Sack, 1995, The too many mouths and four lips mutations affect stomatal 
production in arabidopsis: Plant Cell, v. 7. 

Yano, S., and I. Terashima, 2001, Separate localization of light signal perception for sun or shade 
type chloroplast and palisade tissue differentiation in Chenopodium album: Plant and Cell 
Physiology, v. 42. 

Yokotani, N., M. Higuchi, Y. Kondou, T. Ichikawa, M. Iwabuchi, H. Hirochika, M. Matsui, and 
K. Oda, 2011, A novel chloroplast protein, CEST induces tolerance to multiple 
environmental stresses and reduces photooxidative damage in transgenic Arabidopsis: 
Journal of Experimental Botany, v. 62, p. 557-569. 

Yoon, K., D. Han, Y. Li, M. Sommerfeld, and Q. Hu, 2012, Phospholipid:Diacylglycerol 
Acyltransferase Is a Multifunctional Enzyme Involved in Membrane Lipid Turnover and 
Degradation While Synthesizing Triacylglycerol in the Unicellular Green Microalga 
Chlamydomonas reinhardtii: Plant Cell, v. 24, p. 3708-3724. 

Yoshida, Y., S.-y. Miyagishima, H. Kuroiwa, and T. Kuroiwa, 2012, The plastid-dividing 
machinery: formation, constriction and fission: Current Opinion in Plant Biology, v. 15, 
p. 714-721. 

Yu, F., A. Fu, M. Aluru, S. Park, Y. Xu, H. Liu, X. Liu, A. Foudree, M. Nambogga, and S. 
Rodermel, 2007, Variegation mutants and mechanisms of chloroplast biogenesis: Plant 
Cell and Environment, v. 30, p. 350-365. 

Zarzycki, J., S. D. Axen, J. N. Kinney, and C. A. Kerfeld, 2013, Cyanobacterial-based approaches 
to improving photosynthesis in plants: Journal of Experimental Botany, v. 64, p. 787-798. 

Zhang, G.-H., Q. Xu, X.-D. Zhu, Q. Qian, and H.-W. Xue, 2009, SHALLOT-LIKE1 Is a 
KANADI Transcription Factor That Modulates Rice Leaf Rolling by Regulating Leaf 
Abaxial Cell Development: Plant Cell, v. 21, p. 719-735. 

Zhao, J., J.-j. Zhou, J.-w. Gu, F.-q. Qian, and X.-z. Xie, 2012, Phytochrome B Positively 
Regulates Chlorophyll Biosynthesis and Chloroplast Development in Rice: Zhongguo 
Shuidao Kexue, v. 26, p. 637-642. 

Zhou, D. X., 1999, Regulatory mechanism of plant gene transcription by GT-elements and GT-
factors: Trends in Plant Science, v. 4, p. 210-214. 

Zhou, F., Q. Lin, L. Zhu, Y. Ren, K. Zhou, N. Shabek, F. Wu, H. Mao, W. Dong, L. Gan, W. 
Ma, H. Gao, J. Chen, C. Yang, D. Wang, J. Tan, X. Zhang, X. Guo, J. Wang, L. Jiang, X. 
Liu, W. Chen, J. Chu, C. Yan, K. Ueno, S. Ito, T. Asami, Z. Cheng, J. Wang, C. Lei, H. 
Zhai, C. Wu, H. Wang, N. Zheng, and J. Wan, 2013, D14-SCFD3-dependent degradation 
of D53 regulates strigolactone signalling: Nature, v. 504, p. 406-+. 

Zhu, X.-G., S. P. Long, and D. R. Ort, 2010, Improving Photosynthetic Efficiency for Greater 
Yield: Annual Review of Plant Biology, Vol 61, v. 61, p. 235-261. 

Zhu, X.-G., Y. Wang, D. R. Ort, and S. P. Long, 2013, e-photosynthesis: a comprehensive 
dynamic mechanistic model of C3 photosynthesis: from light capture to sucrose 
synthesis: Plant Cell and Environment, v. 36, p. 1711-1727. 

Zhu, X. G., A. R. Portis, and S. P. Long, 2004, Would transformation of C-3 crop plants with 
foreign Rubisco increase productivity? A computational analysis extrapolating from 
kinetic properties to canopy photosynthesis: Plant Cell and Environment, v. 27, p. 155-
165. 

 



167 
 
 

 

 


