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Abstract 

This Thesis describes the reversible addition-fragmentation chain transfer (RAFT) 

dispersion polymerisation of benzyl methacrylate (BzMA) in non-polar solvents. 

Firstly, oil-soluble poly(lauryl methacrylate) (PLMA), poly(stearyl methacrylate) 

(PSMA) and poly(behenyl methacrylate) (PBhMA) macromolecular chain transfer 

agents (macro-CTAs) are synthesised via RAFT solution polymerisation in toluene. 

These macro-CTAs are then chain-extended in turn with varying amounts of BzMA 

in industrially-sourced mineral oil or a poly(α-olefin). Polymerisation-induced self-

assembly (PISA) occurs under these conditions, where the soluble BzMA monomer 

polymerises to form an insoluble poly(benzyl methacrylate) (PBzMA) block, thus 

driving the in situ formation of spheres, worms or vesicles. Subtle differences in the 

phase diagrams constructed for PLMA-PBzMA diblock copolymer nano-objects are 

observed in different solvents. In such PISA formulations, the stabiliser block DP is 

an important parameter, because only kinetically-trapped spheres are accessible when 

sufficiently long stabilisers (e.g. PLMA39, PSMA18 or PBhMA37) are used. PLMA47-

PBzMA100 spheres could be prepared at copolymer concentrations up to 50% w/w 

solids. Importantly, a highly convenient ‘one-pot’ synthetic protocol was developed, 

whereby 39 nm PLMA50-PBzMA100 spheres were prepared at 30% w/w solids within 

9 h starting from LMA monomer. The phase diagram for PSMA13-PBzMAx diblock 

copolymer nanoparticles in mineral oil indicates that the final copolymer 

morphologies are only weakly dependent on copolymer concentration, which enables 

the synthesis of pure spheres, worms or vesicles at just 5.0% w/w solids. This 

facilitated in situ small-angle X-ray scattering (SAXS) studies during the PISA 

synthesis. When targeting PSMA31-PBzMA2000 spheres, the PBzMA core diameter 

and aggregation number per sphere (Ns) increased monotonically during the 

polymerisation. When targeting PSMA13-PBzMA150 vesicles, the full range of 

morphologies is observed, from soluble copolymer chains to the final vesicles via 

intermediate spheres and worms. Transmission electron microscopy (TEM) studies 

indicated that vesicles are formed from worms via transient octopi and jellyfish 

morphologies, which is consistent with observations previously reported for aqueous 

PISA formulations. A combination of dynamic light scattering (DLS), TEM and both 

in situ and post mortem SAXS analyses confirmed that the overall vesicle dimensions 

are conserved as the membrane thickens, which indicates an ‘inward growth’ 

mechanism. This is consistent with observations recently reported for an aqueous 

PISA formulation and hence suggests a universal vesicle growth mechanism for all 

PISA formulations. PSMA13-PBzMA96 vesicles undergo a vesicle-to-worm transition, 

which is attributed to surface plasticisation of the core-forming PBzMA block via 

solvent ingress. This morphological transition was analysed using DLS, TEM, SAXS, 
1H NMR spectroscopy and rheology. Dispersions of PSMA13-PBzMA65 worms form 

free-standing gels at 20 °C due to multiple inter-worm contacts, but heating leads to 

surface plasticisation. This induces a worm-to-sphere transition and concomitant 

degelation, since isotropic spheres cannot form inter-particle contacts at this 

copolymer concentration. The worm-to-sphere transition was characterised using 

TEM, DLS and rheology. In addition, shear-induced polarised light imaging (SIPLI) 

indicated that the highly anisotropic worms become aligned under shear, with 

birefringence giving rise to a Maltese cross pattern. Conversely, isotropic spheres do 

not display birefringence. 
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η  - Viscosity 

ηsp  - Specific viscosity 

φBzMA  - Volume fraction of BzMA monomer within the core domain 

ω  - Angular frequency 

AGO  - Automotive gear oil 

AIBN  - 2,2’-azobisisobutyronitrile 

ATRP  - Atom transfer radical polymerisation 

BzMA  - Benzyl methacrylate 

CDB  - Cumyl dithiobenzoate 

CGC  - Critical gelation concentration 

CGT  - Critical gelation temperature 

CTA  - Chain transfer agent 

Din  - Inner vesicle core diameter 

dint  - Distance between adjacent copolymer chains at the core-shell  

interface 

Dout  - Outer vesicle core diameter 

Ds  - Spherical core diameter 

DLS  - Dynamic light scattering 

DP  - Degree of polymerisation 

EGDMA - Ethylene glycol dimethacrylate 

FRP  - Free-radical polymerisation 

G’  - storage modulus 

G’’  - Loss modulus 

GMA  - Glycerol monomethacrylate 

GMO  - Glyceryl monooleate 

GPC  - Gel permeation chromatography 

HPMA  - 2-Hydroxypropyl methacrylate 

Lw  - Worm contour length 

LAP  - Living anionic polymerisation 

LMA  - Lauryl methacrylate 
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Mn  - Number-average molecular weight 

Mw  - Weight-average molecular weight 

MAA  - Methacrylic acid 

Macro-CTA - Macromolecular chain transfer agent 

MMA  - Methyl methacrylate 

MWD  - Molecular weight distribution 

Ns  - Number of copolymer chains per sphere 

Nv  - Number of copolymer chains per vesicle 

NMP  - Nitroxide-mediated polymerisation 

NMR  - Nuclear magnetic resonance 

PAO  - Poly(α-olefin) 

PETTC - 4-Cyano-4-(2-phenylethane 

sulfanylthiocarbonyl)sulfanylpentanoic acid 

PISA  - Polymerisation-induced self-assembly 

PMA  - Poly(methacrylate) 

PPD  - Pour point depressant 

PRE  - Persistent radical effect 

q  - Scattering vector 

Rg  - Radius of gyration 

Rin  - Vesicle inner core radius 

Rout  - Vesicle outer core radius 

Rs  - Spherical core radius 

RAFT  - Reversible addition-fragmentation chain transfer 

RDRP  - Reversible deactivation radical polymerisation 

RI  - Refractive index 

Sagg  - Number of copolymer chains per unit surface area 

SAXS  - Small-angle X-ray scattering 

SIPLI  - Shear-induced polarised light imaging 

SMA  - Stearyl methacrylate 

SRR  - Slide-to-roll ratio 

T21s  - Tert-butyl peroxy-2-ethylhexanoate 

Tm  - Vesicle membrane thickness 
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Tw  - Worm thickness 

TEM  - Transmission electron microscopy 

THF  - Tetrahydrofuran 

UCST  - Upper critical solution temperature 

Vm  - Molecular volume of a single PBzMA core-forming block  

within the vesicle membrane 

Vs  - Molecular volume of a single PBzMA core-forming block  

within the spherical core 

VM  - Viscosity modifier 

xsol  - Volume fraction of solvent within the core domain 
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1.1. Polymers 

A polymer is a long-chain molecule formed from many smaller repeat units, or 

monomers. The simplest polymer is a homopolymer, which is synthesised from a 

single monomer. The general nomenclature of the resulting homopolymer is usually 

poly(monomer), for example methyl methacrylate (MMA) is polymerised to form 

poly(methyl methacrylate) (PMMA).  

 

Unlike small molecules, polymers do not have a single unique molecular weight. 

Instead, polymers possess a molecular weight distribution (MWD). The MWD can be 

represented by polydispersity index (PDI), or simply dispersity (Ð) as recommended 

by the International Union of Pure and Applied Chemistry (IUPAC) in 2009,1 which 

is defined as the weight-average molecular weight (Mw) divided by the number-

average molecular weight (Mn). 

 

PDI or Ð =  
𝑀w

𝑀n
 1.1 

        

A polymer chain comprises an average number of repeat units, known as the mean 

degree of polymerisation (DP). Two common terms used to describe the molecular 

weight of a polymer are Mn and Mw. The Mn is defined as: 

 

𝑀n =  
∑ 𝑛i𝑀i

∑ 𝑛i
 1.2 

   

where ni is the number of chains containing i repeat units, and Mi is the molecular 

weight of these chains. Statistically, the Mn value tells us the average molecular weight 

of a polymer chain if we were to select a single chain at random. The Mw is defined 

as: 

𝑀w =  
∑ 𝑤i𝑀i

∑ 𝑤i
=  

∑ 𝑛i𝑀i
2

∑ 𝑛i𝑀i
 1.3 

     

where wi is the weight fraction of chains with i repeat units, which is equal to the 

product of niMi. Mw differs from Mn since it represents the average molecular weight 

of an individual chain upon randomly selecting one monomer unit. Considering both 

the Mw and Mn values provides information on the MWDs (see Equation 1.1). 
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If every polymer chain within a sample has the same DP and therefore the same Mn 

and Mw values, then Mw/Mn is equal to unity and such samples are said to be 

monodisperse (e.g. proteins).2 Typically, a MWD is considered to be narrow if Mw/Mn 

is less than 1.5, whereas it is regarded as broad if the PDI exceeds 2.0, as suggested 

by Hiemenz and Lodge.3 

 

1.2. Polymer Characterisation 

1.2.1. Gel Permeation Chromatography (GPC) 

Various characterisation techniques have been developed to measure the molecular 

weight of polymers including end-group analysis, osmometry, light scattering, mass 

spectroscopy and viscometry.3 However, by far the most commonly utilised technique 

is size exclusion chromatography (SEC), otherwise known as GPC. GPC differentiates 

between polymer chains of varying molecular weight based on their hydrodynamic 

volume (Vh). This is achieved using columns packed with porous beads, through which 

polymer chains with a smaller Vh flow more slowly, so the characteristic elution time 

for smaller chains is longer than those of larger chains. GPC is a comparative 

technique that requires the use of calibration standards such as PMMA or polystyrene 

(PS). Such standards are polymers of known molecular weight and narrow MWD, 

which elute at various retention times based on their Vh. Upon elution, the polymer 

chains are detected using a refractive index (RI), ultraviolet (UV) spectroscopy, 

viscosity or light scattering detector.3 Cross-referencing the specific elution time with 

the calibration curve yields the molecular weight of the polymer chains relative to the 

specific calibration standards used. Since the unknown sample is rarely the same 

polymer type as that used for the calibration curve, the molecular weights obtained by 

this method are merely relative to that of the calibrant polymer. In order to determine 

absolute molecular weights, a ‘universal’ calibration method can be employed, where 

the Mark-Houwink equation is used to obtain the intrinsic viscosity ([η]): 

 

[𝜂] =  𝐾𝑀𝛼 1.4 

 

where K and α are known values for a particular solvent-polymer pair at a given 

temperature. If the K and α values are known for the calibrant, the measured [η] for 
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the unknown polymer can be used to determine its molecular weight. This is because 

the Vh can be represented as log([η]M), and: 

 

log ([𝜂]c𝑀c) =  log ([𝜂]s𝑀s) 1.5 

 

where the subscripts ‘c’ and ‘s’ are used to represent the calibrant and sample, 

respectively.4 This allows the absolute molecular weight of the polymer to be 

calculated when a concentration detector (e.g. RI) and a viscosity detector are 

connected in parallel. If the K and α values are known for both the selected calibrant 

and sample of unknown molecular weight in a particular solvent, then the absolute 

molecular weight of the unknown polymer can be determined using: 

 

𝑀s = (
(𝐾c𝑀c

1+𝛼c)

𝐾s
)

1
1+𝛼s

 1.6 

 

Since this latter method requires knowledge of the K and α parameters for both the 

calibrant and the unknown polymer in the eluent, the absolute molecular weight must 

be determined by an independent method such as light scattering.3, 4  

 

1.2.2. Dynamic Light Scattering (DLS) 

DLS is a technique commonly used to determine the hydrodynamic diameter (Dh) of 

particles. DLS must be measured for highly dilute dispersions, since inter-particle 

interactions should be negligible. The translational diffusion coefficient (D) of the 

particles is measured by monitoring the decay of a correlation function over time by 

following fluctuations in the scattered light intensity due to particles undergoing 

Brownian motion. Dh is then calculated according to the Stokes-Einstein equation: 

 

𝐷h =  
𝑘B𝑇

3𝜋𝜂𝐷
 1.7 

 

where kB is Boltzmann’s constant, T is the absolute temperature and η is the solution 

viscosity.5 Smaller particles diffuse faster than larger particles, so display a larger D 

value in a given solvent. Equation 1.7 assumes that the particles are spherical, so the 
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Dh reported by DLS is a sphere-equivalent diameter. DLS is highly biased towards 

larger particles, since the scattered light intensity scales as the sixth power of the 

particle diameter. This makes DLS highly sensitive to the onset of particle 

aggregation, but rather insensitive to particle dissociation. 

 

1.2.3. Rheology of viscoelastic materials 

Rheology is the study of the flow and/or deformation of a material upon the application 

of an external force.6, 7 The force per unit area is known as the stress (σ). Shear 

deformation is the application of stress in one direction, and can be simply illustrated 

by considering the response of a cuboid to such an external force (see Figure 1.1). On 

the application of a shear stress (σ) to a solid or liquid, a flow or deformation is 

produced, defined as the displacement per unit length or strain (γ). 

 

 

Figure 1.1. Shear deformation of a cuboid on the application of stress (σ) to one face with an 

area (A). F is the force applied, V is the velocity, h is the height and δ is the displacement. 

Equations for the stress (σ), strain (γ) and strain rate (γ̇  ) are also given. 

 

For a Newtonian liquid, which is defined as a liquid that exhibits shear rate-

independent viscosity,6-8 the stress (σ) can be defined as the viscosity (η) of the fluid 

multiplied by the strain rate (γ̇  ), i.e. σ = η γ̇  , hence σ is dependent on γ̇  . For a Hookean 

(elastic) solid, σ can be defined as the elastic modulus (G) multiplied by the strain (γ), 

σ = Gγ, and so σ is dependent on the magnitude of G. These definitions indicate that a 

Newtonian liquid immediately deforms upon the application of stress, and continues 

to deform until the strain rate (γ̇  ) is zero. Conversely, a Hookean solid deforms to a 

discrete extent and returns to its original state upon removal of the applied stress. 

However, for the purpose of this Thesis, it is appropriate to consider a combination of 
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these responses rather than a purely viscous or elastic response. Therefore, the 

viscoelastic and, more specifically, linear viscoelastic behaviour of a material is 

considered. In the linear viscoelastic region, a linear dependence of stress and strain is 

observed (i.e. on doubling the applied stress, the resulting strain is doubled). For the 

following discussion, it is useful to consider a Newtonian fluid as a dashpot (a cup 

filled with a viscous, Newtonian fluid with a plunger moving through it) and a 

Hookean solid as a spring (see Figure 1.2). The Maxwell model is the simplest model 

of a viscoelastic liquid, where a spring and dashpot are arranged in series. The Kelvin-

Voigt model considers the spring and dashpot arranged in parallel and is the simplest 

model for a viscoelastic solid (Figure 1.2).8  

 

 

Figure 1.2. Illustrated examples for the mechanical analogues of a Hookean solid or spring, 

Newtonian fluid or liquid and the Maxwell and Kelvin-Voigt models for viscoelastic 

materials.7, 8 

 

The response of viscoelastic materials to an applied stress is determined by the relative 

amounts of viscous and elastic behaviour exhibited by the material. The relaxation 

time (τ) is the time taken for the material to return to its original state, and is 

represented by:8 

𝜏 =
𝜂

𝐺
 1.8 

    

Thus the characteristic relaxation time for a viscoelastic solid is shorter than that for a 

viscoelastic liquid. There are various experimental methods to evaluate the 

viscoelastic properties of a material, including creep, stress relaxation, start-up and 

oscillatory measurements. In creep measurements, a constant stress is applied and the 

resulting strain is monitored as a function of time. In some cases, the deformation 
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under constant stress can be very slow (months to years, e.g. glass) and such behaviour 

is termed creep. Stress-relaxation measurements involve the sudden application of 

strain and the monitoring of the resulting stress, whereas start-up experiments involves 

the application of a constant strain rate and measurement of the resulting stress. 

Oscillatory measurements will be used in this Thesis, where a typical cone-and-plate 

geometry (see Figure 1.3) is utilised. 

 

 

Figure 1.3. Cone-and-plate geometry used for oscillatory measurements of viscoelastic 

materials. 

 

For oscillatory rheology, the input strain is applied in a sinusoidal fashion and the 

resulting sinusoidal stress is resolved. When a fixed strain is applied the amplitude of 

the wave represents the maximum strain and the frequency of the wave indicates the 

oscillation rate (Ω). The phase difference (δ) between the input strain and output stress 

indicates the physical properties of the material. For a material with a solely elastic 

response, the input stress and output strain will be in phase with one another (δ = 0°). 

Conversely, a material with a solely viscous response will display an output stress 

which is out of phase with the input strain (δ = 90°).6 In reality, the phase difference 

for a viscoelastic material lies between that for an ideal solid and an ideal liquid. A 

more useful measure of this ratio between viscous and elastic behaviour at a given 

angular frequency is tan δ, which is equal to the loss modulus (G”) divided by the 

storage modulus (G’), i.e. tan δ = G”/G’.8 Thus, if a Hookean solid is oscillated, G’ = 

σ/γ and G” = 0, whereas for a Newtonian fluid, G’ = 0 and G” = ηω. Importantly, in 
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the linear viscoelastic region, the values of G’ and G” for a viscoelastic material 

depend only on the angular frequency (ω) and are independent of the strain (i.e. the 

amplitude of oscillation). This linear region is often quite narrow, so it must be 

determined experimentally before performing additional measurements. A 

viscoelastic material exhibits varying behaviour over a wide range of angular 

frequencies (see Figure 1.4). 

 

 

Figure 1.4. Typical dependence of the storage modulus (G’) and loss modulus (G”) with 

angular frequency (ω) of a viscoelastic material during oscillatory measurements using a cone-

and-plate geometry.8 

 

Five distinct regions are shown in the frequency sweep (see Figure 1.4). The viscous 

or terminal region is observed at low frequencies, where viscous (G”) behaviour 

prevails. Crossover in the G’ and G” curves occurs in the transition to flow region, 

where elastic behaviour begins to dominate (when G’ > G”). The crossover point 

corresponds to the relaxation time (τ) of the material, where τ = 1/ω. Elastic behaviour 

dominates throughout the rubbery or plateau region. Ideal viscoelastic materials 

possess a frequency-independent G’ in this regime, with G” being much (often more 

than an order of magnitude) smaller than G’. G” becomes more significant in the 

leathery or transition region and another crossover point is observed. Again, the ω 
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value at which G’ = G” indicates τ. At very high frequencies, the glassy region is 

reached. Here, G” again exceeds G’ and increases at a faster rate than G’ at higher ω.8 

For most commercial rheometers, typically only one or two of the five regions shown 

in Figure 1.4 are experimentally accessible, depending on the properties of the 

material. Varying the temperature at which such measurements are performed enables 

a broader viscoelastic range to be monitored.8 Other geometries such as parallel plates 

are also commonly utilised for various measurements, which will be discussed in 

Chapter 5. 

 

For the purpose of this Thesis, it is important to consider the viscoelastic properties of 

gels. It is generally accepted that a gel should exhibit a pronounced G’ plateau over an 

appreciable frequency range with G” being considerably smaller than G’.6 Although 

there are many classes of gels, including well-ordered structures, highly disordered 

covalent networks and physical networks, all gels arise from the formation of an 

extended 3D structure. Gels can also be formed when polymer particles are dispersed 

in a continuous phase. In particular, worm-like nanoparticles formed by block 

copolymers can form free-standing gels at relatively low copolymer concentrations.9 

This phenomenon will be discussed in detail in this Chapters 2 and 5. 

 

1.3. Chain Polymerisation 

Two major classes of polymerisation are step-growth (or condensation) and chain-

growth (or addition) polymerisation.3 For the purpose of this Thesis, only chain-

growth polymerisation will be discussed in detail. Chain polymerisation usually 

involves the reaction of vinyl monomers to yield single σ bonds, which is triggered by 

a reactive initiating species such as a radical, cation or anion.10 

 

1.3.1. Free Radical Polymerisation (FRP) 

FRP is an example of a chain polymerisation that provides an effective and convenient 

method of polymerising a wide range of vinyl monomers with various functionalities 

and under many different reaction conditions.10 In the case of FRP, radicals (I•) are 

usually produced via homolytic cleavage of an initiator (I2) at a characteristic rate 

described by the rate constant for initiator decomposition, kd. 
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These reactive radicals immediately react with monomer (M), at a rate constant for 

initiation, ki (where kd << ki). This forms a new active radical centre (I-M• or P1
•). 

 

Further addition of monomer to this active radical centre is termed propagation, which 

proceeds at a rate constant kp. Since kd << kp, the decomposition of initiator is the rate-

limiting step determined by the initiator half-life, t1/2 = ln(2)/kd. Also, the initiator 

efficiency (f) can be reduced due to the cage effect, where primary recombination (I• 

+ I• → I2) can occur within the solvent cage. Successive monomer addition occurs at 

essentially the same rate of propagation (kp) since kp is independent of the length of 

the polymer chain. These propagation events can be generalised as the addition of a 

single monomer unit to a polymer radical with a mean DP of n (Pn
•) to form a new 

polymer radical that is larger by one monomer residue (Pn+1
•). 

 

Propagation of monomers occurs mostly via a head-to-tail mechanism, whereby X 

groups of the initial vinyl monomers (H2C=CHX) are found on alternate carbon atoms 

within the polymer backbone. This scenario is generally favoured on both steric and 

electronic grounds. Such propagation proceeds until termination occurs, where one 

active species (Pn
•) reacts with another (Pm

•) to form an inactive or ‘dead’ polymer 

chain. This can occur via combination (with a rate constant ktc) or via 

disproportionation (with a rate constant ktd). Termination by combination is simply the 

coupling of two radical species to form a ‘dead’ polymer chain with a DP equal to the 

sum of the two initial reactive species (Pn+m). 

 

In contrast, termination by disproportionation involves abstraction of a hydrogen atom 

from one polymer radical by another to produce a polymer with an unsaturated 

terminus (Pn=) and another ‘dead’ polymer with a saturated terminus (Pm-H). 

 

The overall rate constant for termination (kt) can therefore be described as the sum of 

ktc and ktd. 
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Although initiation, propagation and termination are the three most important steps 

during FRP, a number of side reactions may also occur. The first side reaction to 

consider is transfer to initiator, whereby an active polymer chain reacts with an 

initiator molecule that has not yet undergone homolytic cleavage (I2) to form an 

initiator-capped ‘dead’ polymer chain (Pn-I) and an active initiator species (I•) with a 

rate constant ktrI. 

 

Similarly, transfer to monomer or solvent can occur, where Pn
• abstracts a hydrogen 

atom from a monomer (M) or solvent (S) molecule with a characteristic rate constant 

ktrM or ktrS, respectively. 

 

 

Also, transfer to another polymer chain (with rate constant ktrPol) may also occur via 

hydrogen abstraction, resulting in one ‘dead’ polymer chain and one active polymer 

chain with the radical being located at some point along the main chain, which can 

lead to chain branching. 

 

Since these four chain transfer side reactions do not consume radical species, they 

should not adversely affect the overall polymerisation kinetics. In fact, the radical 

species formed from each chain transfer step (I•, M•, S• or Px
•) is capable of reinitiation, 

thus forming new Pn
• species. 

 

Each of the polymerisation steps described above have an associated rate equation, as 

summarised in Table 1.1. 
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Table 1.1. Rate equations for the main steps and chain transfer side reactions during free radical 

polymerisation. 

Rate of decomposition 𝑅d = −
d[I2]

dt
= 𝑘d[I2] 

Rate of initiation 𝑅i =
d[𝑃1

•]

dt
= 2𝑓𝑅d = 2𝑓𝑘d[I2] 

Rate of propagation 𝑅p = −
d[M]

dt
= 𝑘p[M][Pn

•] 

Rate of termination by combination 𝑅tc = −𝑘tc[Pn
•]2 

Rate of termination by disproportionation 𝑅td = −𝑘td[Pn
•]2 

Rate of termination 𝑅t = 2(𝑘tc + 𝑘td)[Pn
•]2 = 2𝑘t[Pn

•]2 

Rate of chain transfer to initiator 𝑅trI = 𝑘trI[Pn
•][I2] 

Rate of chain transfer to monomer 𝑅trM = 𝑘trM[Pn
•][M] 

Rate of chain transfer to solvent 𝑅trS = 𝑘trS[Pn
•][S] 

Rate of chain transfer to polymer 𝑅trPol = 𝑘trPol[Pn
•][Px] 

 

Assuming that the chain transfer side reactions do not affect the polymerisation 

kinetics, the overall rate of polymerisation (Rpolym) can be described using the 

following equation: 

𝑅polym = 𝑘p[M]√
𝑓𝑘d[I2]

𝑘t
 1.9 

 

The derivation of this equation involves invoking the ‘steady-state’ approximation, 

which assumes that the rates of initiation and termination are equivalent (Ri = Rt). Also, 

it is assumed that the number of monomer molecules consumed during initiation is 

negligible compared to those consumed during propagation. Thus, it is shown that 

increasing both the monomer ([M]) and initiator ([I2]) concentrations would result in 

a faster rate of polymerisation. Since initiators with relatively long t1/2 values are used, 

the rate of initiation is much slower than that for propagation (Ri << Rp).
11 This, along 

with chain termination, results in the characteristically broad MWDs associated with 

FRP. The rate of any polymerisation can be monitored as a function of time by 

comparing the instantaneous monomer concentration ([M]) with the initial monomer 

concentration ([M0]). Specifically, a plot of ln([M]/[M0]) vs. time should be linear if 

the rate of polymerisation is first-order with respect to monomer.3 The kinetic chain 
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length (Dk), which is defined as the mean number of monomer molecules consumed 

per radical active centre, can be calculated using the relative rates of propagation and 

termination as shown below, given that Ri = Rt (and hence [Pn
•] = (f.kd.[I2]/kt)

0.5): 

 

𝐷k =
𝑅p

𝑅t
=

𝑘p[M][Pn
•]

2𝑘t[Pn
•]2

=
𝑘p[M]

2√𝑓𝑘d𝑘t[I2]
 1.10 

     

Thus Dk (and hence the polymer molecular weight) is dictated by [M] and [I2]
-0.5, with 

higher molecular weights being achieved when the monomer concentration is 

increased or the initiator concentration is reduced. Given that the rate of 

polymerisation is proportional to [M] and [I2]
0.5, it is self-evident that it is difficult to 

efficiently synthesise high molecular weight polymers. The mean DP for polymers 

synthesised by FRP is influenced by the termination mechanism. For example, if 

termination occurs purely by combination, DP = 2Dk, whereas if only termination by 

disproportionation occurs, DP = Dk. Since termination of polymer chains to form 

‘dead’ species is prevalent in FRP, the production of sophisticated, well-defined block 

copolymer architectures via sequential monomer addition is not possible by this 

technique.11 

 

1.3.2. Living Anionic Polymerisation (LAP) 

LAP is an example of chain polymerisation developed by Szwarc in the 1950s where 

the reactive species is an anion.12 Thus there is a mutual electrostatic repulsion 

between the growing polymer chain-ends and hence no intrinsic termination is 

possible. This results in a so-called ‘living’ polymerisation under ideal conditions (ki 

>> kp) when conducted using a suitable monomer in a dry, inert solvent. For such 

polymerisations, the molecular weight increases linearly with monomer conversion 

(see Figure 1.5) and polymers with very narrow MWDs can be achieved (Mw/Mn ≲ 

1.10). 

 



Chapter 1: Introduction 

 

14 

 

 

Figure 1.5. Variation of number-average molecular weight (Mn) or mean degree of 

polymerisation (DP) with monomer conversion for conventional free radical polymerisation 

(FRP, black data) and living anionic polymerisation (LAP, red data). 

 

Suitable monomers for LAP include vinyl monomers (H2C=CHX) with suitable 

electron-withdrawing X groups (e.g. phenyl, cyano or ester functionalities). The 

choice of solvent is also important, since protic solvents such as water react rapidly 

with the active anion species via proton transfer. For the same reason, any protic 

impurities in the monomer must be completely removed prior to polymerisation. The 

rate of propagation (and therefore the rate of the overall polymerisation if ki >> kp) is 

related to the concentration of propagating anionic polymer chains ([Pn
-]) and 

unreacted monomer molecules ([M]):10 

 

𝑅p = 𝑘p[Pn
−][M] 1.11 

 

A general reaction scheme for LAP is shown in Scheme 1.1, where n-butyl lithium is 

used as a typical initiator. 
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Scheme 1.1. General reaction scheme for the living anionic polymerisation (LAP) of a 

functional vinyl monomer such as styrene with an electron-withdrawing X group, where n-

butyl lithium is used as an initiator.10 

 

If it is assumed that each initiator molecule produces a propagating polymer chain, the 

DP of a polymer synthesised via LAP can be varied simply by adjusting the 

monomer/initiator molar ratio.10 Moreover, well-defined block copolymers can be 

synthesised via sequential monomer addition due to the ‘living’ character of LAP. 

However, given the extreme sensitivity of LAP to protic solvents and impurities, there 

are only a few examples of polymers prepared via LAP on an industrial scale. 

 

1.3.3. Reversible Deactivation Radical Polymerisation (RDRP) 

RDRP is the IUPAC approved term for techniques commonly referred to as controlled 

radical polymerisation (CRP) or living radical polymerisation (LRP).13 Generally, 

RDRP techniques involve the equilibrium between active and dormant polymer chains 

(after radical species are generated via the homolytic cleavage of an initiator as for 

conventional FRP), allowing control over the targeted molecular weight and polymers 

with a narrow MWD to be synthesised.14 RDRP is particularly attractive since it 

combines the advantages of FRP and LAP whilst also eliminating some of their 

respective disadvantages. For example, FRP can be utilised to polymerise a wide range 

of monomers in a range of solvents with high tolerance to the functionality of each 

component, whereas LAP is limited to aprotic environments and monomers with 

electron withdrawing groups. However, FRP does not allow polymers with a targeted 

molecular weight and with a narrow MWD to be synthesised. Thus, RDRP enables a 

wide range of functional vinyl monomers to be polymerised in various solvents via a 

less synthetically demanding protocol whilst producing well-defined polymers with 

control over the molecular weight. As with LAP, sequential monomer addition enables 

the synthesis of sophisticated copolymer architectures (see Figure 1.6). 
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Figure 1.6. Examples of copolymer architectures accessible via reversible deactivation radical 

polymerisation (RDRP) techniques.3, 15 

 

There are various examples of RDRP,11, 14 but the most commonly used techniques 

are nitroxide-mediated polymerisation (NMP),16 atom transfer radical polymerisation 

(ATRP)17, 18 and reversible addition-fragmentation chain transfer (RAFT)19 

polymerisation. The key mechanistic step which links these RDRP techniques 

involves the rapid, dynamic equilibrium between active propagating polymer chains 

and deactivated or ‘dormant’ species.20, 21 This serves to reduce the instantaneous 

polymer radical concentration and thus suppress the rate of termination (Rt) relative to 

that of propagation (Rp). This is because Rt ∝ [Pn
•]2, whereas Rp ∝ [Pn

•], as shown in 

Table 1.1. This results in a more controlled polymerisation and produces polymers 

with relatively narrow MWDs. There are two main ways by which such an equilibrium 

can be achieved. Firstly, propagating radicals can interact with a capping species, X, 

and form a deactivation/activation equilibrium as shown in Scheme 1.2, where kdeact 

and kact are the rate constants for deactivation and activation, respectively. 

 

 

Scheme 1.2. Reversible deactivation/activation of a propagating polymer chain with a capping 

species, X.11 
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This approach is based on the persistent radical effect (PRE).21, 22 Typically, the 

capping species, X, is a stable radical such as a nitroxide (as in NMP)16 or a halide (as 

in ATRP).18 X preferentially deactivates the propagating Pn
• radicals (kdeact >> kact), 

thus favouring the dormant Pn-X species. The dormant Pn-X is then activated thermally 

(as in NMP) or catalytically (as in ATRP) to reform the propagating Pn
• radicals, which 

can either propagate (kp) or terminate (kt). However, X is a persistent radical and 

cannot terminate, but instead reversibly caps Pn
• (kdeact), meaning that the radical-

radical (Pn
• + Pn

•) termination is accompanied by the irreversible accumulation of X.11 

Ultimately, this results in a reduction in the concentration of the Pn
• radicals and thus 

the probability of termination during the polymerisation. An alternative mechanistic 

pathway to achieve a dynamic equilibrium between active propagating radicals and 

dormant species involves degenerative transfer, as shown in Scheme 1.3, where kex is 

the rate constant for exchange. 

 

 

Scheme 1.3. Reversible capping of a propagating polymer chain via degenerative transfer.11 

 

RDRP techniques that employ degenerative transfer do not rely on the PRE and are 

more closely related to the typical kinetics observed for FRP, where the steady-state 

concentration of Pn
• is determined by initiation and termination. Here the concentration 

of X (in the form of a chain transfer agent, CTA) is higher than that of the radical 

initiator. In order to achieve good control over the target molecular weight and MWD 

during the polymerisation, the rate of exchange of the CTA with Pn
• must be faster 

than the rate of propagation (kex > kp).
11, 14, 23 This degenerative transfer mechanism is 

utilised in RAFT polymerisation, where X is a RAFT CTA such as a dithioester, 

trithiocarbonate, dithiocarbamate or xanthate. The specific nature of the RAFT CTA 

is selected for a given monomer class.23 
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1.3.3.1. Nitroxide-Mediated Polymerisation (NMP) 

NMP is an example of a RDRP technique which utilises a PRE mechanism whether 

initiated using a conventional FRP initiator in the presence of a persistent radical or 

simply by using an alkoxyamine.11 This technique is particularly attractive since it 

produces odourless polymers which do not require post-polymerisation purification.24 

Control is achieved via a dynamic equilibration between propagating radicals and 

dormant alkoxyamine species such as 2,2,6,6-tetramethylpiperidinyloxy (TEMPO, see 

Scheme 1.4), which is a sufficiently stable free radical that does not react with either 

monomer or itself.16 

 

 

Scheme 1.4. Reversible deactivation/activation equilibrium for TEMPO-mediated NMP.11 

 

Although TEMPO was successfully used for the controlled polymerisation of styrene 

at 120 °C (where kdeact >> kact),
21 early attempts to perform TEMPO-mediated 

polymerisations for other monomers were unsuccessful. High temperatures are often 

required to activate the dormant nitroxide-capped polymer species, since the dynamic 

equilibrium is very strongly shifted towards the dormant species. This means that 

polymerisations in solvents with low (< 100 °C) boiling points are problematic. Such 

problems have been overcome via careful design of alternative nitroxides, where bulky 

substituents at the α-position can provide a more labile C-O bond and subsequently 

increase the steady-state concentration of polymer radicals during the polymerisation, 

so reducing the polymerisation temperature.25, 26 Additionally, Benoit et al. developed 

so-called ‘universal’ alkoxyamines, which enabled the efficient polymerisation of a 

wide range of functional monomers (e.g. styrene, acrylates, acrylamides and 

acrylonitrile).27 Although the introduction of sterically-hindered nitroxides enables 

NMP to be conducted at lower temperatures, this actually prevents the controlled 

homopolymerisation of methacrylates. This is because less reactive nitroxide species 

cannot cap propagating poly(methacrylate) radicals rapidly enough.11 However, it has 
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been demonstrated that the bulk NMP copolymerisation of MMA with just 10 mol% 

styrene comonomer provides control the NMP at temperatures as low as 78 °C.28, 29 

 

1.3.3.2. Atom Transfer Radical Polymerisation (ATRP) 

ATRP is another example of RDRP developed by Sawamoto and co-workers30 and 

Wang and Matyjaszewski31 in 1995, which utilises the PRE to achieve good control 

over the target molecular weight and MWD.11, 18, 32 In ATRP, the dormant species in 

the deactivation/activation dynamic equilibrium is usually a halide-capped polymer 

chain (Pn-X, see Scheme 1.5).32 This dormant species is activated via reaction with a 

transition metal complex in their lower oxidation state (e.g. CuI/L), resulting in the 

formation of active propagating polymer radicals (Pn
•) and a transition metal complex 

of a higher oxidation state (e.g. X-CuII/L).33 

 

 

Scheme 1.5. The reversible deactivation/activation equilibrium for Cu-mediated ATRP 

together with recent advances for Cu(I) regeneration including activator (re)generated by 

electron transfer (ARGET), initiators for continuous activator regeneration (ICAR) or 

electrochemically-mediated ATRP (eATRP).32  

 

ATRP control requires selection of an appropriate alkyl halide and metal catalyst for 

a particular monomer class. This may be problematic when attempting to synthesise 

block copolymers from two or more differing monomers with varying reactivities. 

Also, the cost of the transition metal catalyst, as well as subsequent removal of spent 

catalyst is a problem for many potential applications. However, there have been 

numerous recent advances in this area.32 The development of new formulations where 

the metal catalyst is regenerated in situ enables lower catalyst concentrations (typically 

5-50 ppm) to be used. Generally, this involves the presence of a reducing agent capable 

of returning the Cu(II) complex to its original Cu(I) state. ‘Activator (re)generated by 

electron transfer’ (ARGET)34, 35 and ‘initiators for continuous activator regeneration’ 
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(ICAR)36 ATRP are examples of this approach. ARGET ATRP involves addition of 

excess reducing agent which does not form a radical species (e.g. tin(2-

ethylhexanoate) or ascorbic acid), whereas ICAR ATRP utilises a conventional free 

radical initiator (e.g. 2,2’-azobisisobutyronitrile, AIBN). Since the oxidised species 

produced in ARGET ATRP (e.g. tin(IV) species or dehydroascorbic acid) and ICAR 

(new propagating polymer chains) may not be as benign as the original reducing 

agents, electrochemically-mediated ATRP (eATRP) was developed.37 In eATRP, 

electrons, rather and chemicals, are used to reduce the Cu(II) complex to the original 

Cu(I) state and the rate of polymerisation can be controlled by changing the applied 

potential.37 Although these advances allow for a significantly lower catalyst 

concentration, it remains a technical challenge to remove the residual copper in an 

efficient and economical way.32 

 

1.3.3.3. Reversible Addition-Fragmentation chain Transfer (RAFT) 

polymerisation 

In 1998 Chiefari et al.19 first reported RAFT polymerisation, which is a type of RDRP 

that utilises the degenerative transfer mechanism of reversibly capping active 

propagating polymer radicals, as shown in Scheme 1.3. Since this polymerisation 

technique is employed throughout this Thesis, the detailed RAFT polymerisation 

mechanism is shown in Figure 1.7. As with conventional FRP, RAFT polymerisation 

comprises initiation, propagation, transfer and termination steps. The introduction of 

the RAFT CTA (1) leads to the rapid and reversible capping of the active propagating 

polymer radical (Pn
•) to form a dormant radical species (2). The Z group of the RAFT 

CTA is important, because it must be capable of stabilising this intermediate radical 

species and thus reducing the instantaneous concentration of Pn
• in order to gain 

control over the polymerisation. The R group of the RAFT CTA must be a good radical 

leaving group to produce the stable CTA-capped polymer (3). In addition, its radical 

(R•) must be capable of re-initiating polymerisation to form other propagating species 

(Pm
•). The ‘living’ character of RAFT polymerisations is achieved via rapid exchange 

between the propagating species Pn
• and Pm

• and their dormant CTA-capped species 

(4), as shown in the chain equilibrium and propagation step in Figure 1.7. Again, the 

importance of the Z group is highlighted here, since it must be capable of stabilising 

the dormant radical species (5). 
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Figure 1.7. The mechanism of RAFT polymerisation.14, 38, 39 

 

Efficient RAFT polymerisations should have high kadd and kβ where kβ ≥ kadd, thus 

favouring the dormant species (2) and (3) while generating the R• radicals to re-initiate 

the polymerisation.14 This re-initiation must be efficient (ki > kp) and the ratio of kaddR 

and k-addR should also be considered, as shown in Scheme 1.6 below. 

 

 

Scheme 1.6. Reversible chain transfer during RAFT polymerisation.38-40 

 

It is often assumed that fragmentation is fast and that the lifetime of species (7) is 

negligible (if k-addR>>kaddR). However, if fragmentation is slow, potential side reactions 

involving species (7) cannot be ignored.39 Coote et al.41 reported that the equilibrium 
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constant between active radical species such as I•, I-M• and Pn
• and their corresponding 

dormant species depended on the polymer (or oligomer) chain length and the chemical 

nature of the groups adjacent to the radical center. 

 

 

Figure 1.8. Schematic representation of the various types of polymer chain-ends present 

during the RAFT polymerisation process. The relative proportions of active, dormant and dead 

chains is not representative of a well-controlled RAFT polymerisation, but merely serves as a 

useful representation for discussions. In reality, the proportion of dormant chains is much 

greater than that shown in this schematic. On average, all chains should grow simultaneously 

provided that the equilibration between dormant and active chains is much faster than the rate 

of propagation.14 

 

In 2008, a review by Moad et al.14 included a useful schematic representation of the 

RAFT polymerisation process (see Figure 1.8). Since the equilibrium lies towards 

dormant polymer species, only a small proportion of active chains propagate at any 

given time. Additionally, due to the rapid reversible chain transfer between active and 

dormant species, each of the polymer chains are offered an approximately equal 

opportunity to propagate and thus polymers with narrow MWDs are achieved. 

 

As previously mentioned, the precise nature of the Z and R groups on the CTA plays 

a vital role in controlling RAFT polymerisations. Moad et al.40 reported an extensive 

set of guidelines for selection of an appropriate RAFT CTA for a particular monomer 

class (see Figure 1.9). 
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Figure 1.9. Guidelines for the selection of the RAFT CTA for various monomer types. Solid 

lines indicate that good control can be achieved, whereas dashed lines indicate that only partial 

control (e.g. broad MWD or substantial retardation) can be achieved. For Z groups, addition 

rates decrease and fragmentation rates increase from left to right. For R groups, fragmentation 

rates decrease from left to right.40 

 

RAFT polymerisations of so-called ‘more activated monomers’ (MAMs) [e.g. methyl 

methacrylate (MMA), styrene (St), methyl acrylate (MA), acrylamide (AM) or 

acrylonitrile (AN)] are well-controlled by dithioesters (Z = aryl or alkyl) or 

trithiocarbonates (Z = alkylthio), but less well-controlled by dithiocarbamates and 

xanthates. Conversely, ‘less activated monomers’ (LAMs) such as vinyl acetate 

(VAc), N-vinylcarbazole (NVC) or N-vinylpyrrolidone (NVP) are well-controlled by 

dithiocarbamates and xanthates but poorly controlled by dithioesters and 

trithiocarbonates. However, other reaction conditions such as the choice of solvent, 

polymerisation temperature, initiator and the CTA/initiator molar ratio must also be 

carefully selected in order to ensure good control. Nevertheless, RAFT offers an 

attractive metal-free route to polymers with narrow MWDs and thus opens the door 

for their use in applications where trace amounts of metal catalyst are problematic. 

However, it must be noted that the CTA-capped polymers exhibit inherent colour, 

odour and potential cytotoxicity, which may prevent their use for certain 

applications.42 Although it has been suggested that the potential cytotoxicity might not 

be an issue for some applications,43 there has been a significant amount of work 

devoted to the post-polymerisation removal of RAFT chain-ends.44, 45 Willcock and 

O’Reilly45 summarised the main methods of RAFT end group removal, which include 

thermolysis, aminolysis and radical-induced reduction (see Figure 1.10).  
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Figure 1.10. Methods for RAFT end group modification/removal. Thermolysis produces a 

vinyl-capped polymer chain and a suitable nucleophile (e.g. amines or borohydrides) yields a 

terminal thiol, whereas a free radical initiator (R’•) alone or in the together with a hydrogen 

atom donor ([H], e.g. tributylsilane) will replace the RAFT end group with R’ or H, 

respectively.44-46 

 

A 2009 review by Moad et al.40 highlighted the growth of RAFT polymerisation in the 

first ten years after its invention, with over 2,100 publications (including over 100 

patents) published in this period. In fact, the total number of publications that mention 

RAFT polymerisation more than doubled from 2006 to 2009. The industrial relevance 

of RAFT polymerisation is also becoming increasingly apparent. In particular, 

Lubrizol Corporation Ltd have successfully commercialised a RAFT-synthesised star 

copolymer which acts as a viscosity modifier for base oil. Also, the Commonwealth 

Scientific and Industrial Research Organisation (CSIRO) state that large organisations 

such as DuPont, Unilever, L’Oréal and Procter & Gamble have filed patents that 

depend either entirely or partly on the RAFT process. 

 

1.4. Non-Aqueous Dispersion Polymerisation 

Although there has been much academic and industrial interest in aqueous emulsion 

polymerisation,47 only dispersion polymerisation will be discussed in this Thesis. The 

general requirement for a dispersion polymerisation is that an initially soluble 

monomer is polymerised to form an insoluble polymer.48, 49 A typical FRP-based 

dispersion polymerisation formulation consists of monomer(s), solvent, initiator and 

stabiliser and the mechanism of particle formation is shown in Figure 1.11.48, 50 
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Figure 1.11. Schematic representation of FRP-based dispersion polymerisation displaying (1) 

initial homogeneous phase, (2) initiation and formation of soluble oligomers, (3) precipitation 

and coagulation into particles, (4) particle stabilisation by polymer adsorption and (5) particle 

growth.50 

 

Initially, all components are dissolved in the continuous phase at the beginning of the 

polymerisation. On heating, free radicals are formed that react with the monomer in 

solution to form linear oligomers/polymers and/or graft copolymers.48 Precipitation 

occurs when a certain critical molecular weight is reached, above which the chains are 

no longer soluble in the continuous phase. The nascent particles aggregate and grow 

in size, whilst the soluble polymeric stabiliser either physically adsorbs or chemically 

grafts onto the colloidally unstable particles, thus conferring steric stabilisation.47 At 

the point where all precipitating particles have acquired sufficient stabilisation, no new 

particles are formed and the particles continue to grow until all monomer is 

consumed.48 The soluble polymeric stabiliser plays an important role, since 

precipitation polymerisation would occur in its absence.48, 49 The particle size 

distribution obtained by dispersion polymerisation is dictated by the coalescence of 

growing particles.51 The mean particle size is primarily dictated by the concentrations 

of the polymeric stabiliser and monomer respectively, as well as the solvent 

composition.48, 50 Higher stabiliser concentrations enable the formation of smaller 
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particles. Conversely, increasing the monomer concentration results in the formation 

of larger particles.48 

 

Typically, spherical particles of 0.1-15 μm in diameter with very narrow size 

distributions can be prepared in organic solvents. Osmond and co-workers at Imperial 

Chemical Industries (ICI)52 first developed non-aqueous dispersion polymerisation for 

acrylic and other vinyl monomers in hydrocarbon solvents in the presence of oil-

soluble polymeric stabilisers. Since then, a wide range of formulations have been 

reported, including examples in lower alcohols, water and other organic solvents such 

as acetonitrile.48 PMMA and polystyrene latexes are examples of particles produced 

by non-aqueous dispersion polymerisation, and poly(12-hydroxystearic acid) (PHSA) 

and polydimethylsiloxane (PDMS) are commonly used as polymeric stabilisers.50, 53, 

54 However, there are many other examples of non-aqueous dispersion polymerisation 

formulations which utilise different monomers and stabilisers in a wide range of 

solvents, as reviewed by Richez et al.50 

 

1.5. Self-Assembly 

Self-assembly is commonly observed in Nature. Perhaps the most important example 

is the formation of membranes in living cells by the self-assembly of phospholipids, 

which are amphiphilic molecules consisting of hydrophilic and hydrophobic 

components. Another example of amphiphile self-assembly in everyday life is soap or 

detergent, where hydrophobic dirt or soil is removed from the aqueous continuous 

phase due to micelle formation. 

 

1.5.1. Surfactant self-assembly 

Surfactants, or surface-active agents, are small molecule amphiphiles which are 

capable of reducing the interfacial tension between two liquids or a liquid and a solid 

by interfacial adsorption. The thermodynamics of surfactant self-assembly in solution 

is described as the difference in chemical potential between a unimeric species (μ0
1) 

and aggregates composed of N molecules (μ0
N).55, 56 Aggregates are formed in solution 

only when the energy required for unimeric species to remain in their free state is 

larger than the entropic penalty associated with forming the self-assembled structures. 
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An equilibrium exists between such unimeric and aggregated species, as shown in 

Figure 1.12. 

 

 

Figure 1.12. Schematic representation of the equilibrium between unimeric surfactant 

molecules and their aggregated assemblies.56 

 

At equilibrium, the following equation can be used to describe the interchange of 

unimers from solution to an aggregate: 

 

𝐾 =
𝑘1

𝑘N
= exp [−

𝑁(𝜇0
N

− 𝜇0
1

)

𝑘B𝑇
] 1.12 

 

where K is the equilibrium constant, k1 is the rate constant for association, kN is the 

rate constant for dissociation, kB is Boltzmann’s constant and T is the absolute 

temperature. This equilibrium can also be considered in terms of XN, which is the 

concentration or activity of molecules within an aggregate with aggregation number 

N: 

𝑋N = 𝑁 (𝑋1 exp [
𝜇0

1
− 𝜇0

N

𝑘B𝑇
])

𝑁

 1.13 

 

Here, X1 is the concentration or activity of the unimers, which is related to the overall 

solute concentration, C: 
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𝐶 = 𝑋1 + 𝑋2 + 𝑋3 + ⋯ = ∑ 𝑋N

∞

N=1

 1.14 

 

Importantly, C and XN cannot exceed unity. Moreover, the above equations assume 

ideal mixing and are restricted to dilute conditions where inter-aggregate interactions 

are negligible. At equilibrium, if all surfactant molecules experience the same 

interaction with their surroundings, the value of μ0
N will remain constant in aggregates 

with differing aggregation numbers and hence Equation 1.13 becomes: 

 

𝑋N = 𝑁𝑋1
𝑁  for  𝜇0

1
= 𝜇0

2
= 𝜇0

3
= ⋯ = 𝜇0

N
 1.15 

 

When X1 < 1, XN << X1 if most of the surfactant molecules remain as unimers (N=1). 

Considering Equation 1.13, it is clear that, if the value of μ0
N increases with increasing 

N, the formation of large aggregates becomes less probable. Thus the condition for the 

formation of large aggregates is that μ0
N < μ0

1 (i.e. μ0
N decreases as N increases). 

Considering the unimer-unimer ‘bond’ energy between identical amphiphiles arranged 

in a linear chain (αkBT), the total interaction free energy (N μ0
N) of an aggregate 

composed of N unimers can be defined as shown below. 

 

𝑁𝜇0
N

= −(𝑁 − 1)𝛼𝑘B𝑇 1.16 

 

Considering the overall shape of the aggregates, μ0
N can be defined as: 

 

𝜇0
N

= 𝜇0
∞

+
𝛼𝑘B𝑇

𝑁𝑝
 1.17 

 

where μ0
∞ is the bulk energy per surfactant molecule of an infinite aggregate, α is a 

positive constant that depends on the strength of the intermolecular interactions and p 

is a number that depends on the shape or dimensionality of the aggregates.56 Clearly, 

as N increases, μ0
N tends towards μ0

∞. Combining the above equations gives: 
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𝑋N = 𝑁 {𝑋1 exp [𝛼 (
1 − 1

𝑁𝑝
)]}

𝑁

≈ 𝑁[𝑋1𝑒𝛼]𝑁 1.18 

 

Thus most of the surfactant molecules will be in their unimeric state at low 

concentrations (i.e. X1 is small and approximately equal to C). However, since XN 

cannot exceed unity, X1 can increase only up to exp[-(μ0
1 - μ0

N)/kBT]N or e-α. The 

surfactant concentration at which this limit is reached is termed the critical micelle 

concentration (CMC). In general, this means that: 

 

CMC ≈ exp [−
(𝜇0

1
− 𝜇0

N
)

𝑘B𝑇
] 1.19 

 

Using Equation 1.17, it follows that: 

 

CMC ≈ 𝑒−𝛼  for all 𝑝 1.20 

 

Equations 1.19 and 1.20 define the concentration at which further addition of 

surfactant molecules results in the formation of more aggregates (an increase in XN), 

while the concentration of unimers (X1) remains relatively constant, as shown in Figure 

1.13. One of the advantages of block copolymer vs. surfactant assemblies is that the 

CMC is much reduced in the former case. In fact, a typical CMC for polystyrene-

poly(acrylic acid) diblock copolymer micelles in water is approximately six orders of 

magnitude lower than that for a well-known anionic surfactant, sodium 

dodecylsulfate.57 Also, the large thermodynamic barrier associated with the solvation 

of free copolymer chains means that block copolymer micelles are often kinetically-

frozen, whereas surfactant micelles are invariably in thermodynamic equilibrium with 

free surfactant.57 
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Figure 1.13. Schematic representation of the unimer and aggregate concentrations as a 

function of the total concentration of surfactant molecules to illustrate the critical micelle 

concentration (CMC).56 

 

Thus far the equations given above do not consider intra- and inter-surfactant 

interactions. For amphiphiles in water, the major forces for self-assembly arise from 

the hydrophobic attraction of the amphiphile to the hydrocarbon-water interface and 

also the electrostatic repulsion between the charged hydrophilic headgroups.56 This 

headgroup repulsion dictates the interfacial area per molecule that is exposed to the 

aqueous phase (a). The interfacial tension that arises from such aggregation can be 

represented by a positive interfacial free energy per unit area, γ, which is typically 

between 20 and 50 mJ m-2.56 Thus the attractive interfacial energy contribution to μ0
N 

can be described using the equation: 

 

𝜇0
N

= 𝛾𝑎 +
𝐾

𝑎
 1.21 

 

where K is a constant. The minimum energy for inter-aggregate interactions is given 

by δμ0
N/δa = 0, which leads to: 
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𝜇0
N

(min) = 2𝛾𝑎0, and  𝑎0 = √
𝐾

𝛾
 1.22 

 

where a0 is the optimal interfacial surface area per surfactant molecule, as shown in 

Figure 1.14. 

 

 

Figure 1.14. Schematic representation of the packing of surfactant molecules within an 

aggregate. The equation for the packing parameter, P, and typical values of P predicted for 

various surfactant morphologies are also given.56 

 

The interfacial energy per surfactant molecule can now be described as: 

 

𝜇0
N

= 2𝛾𝑎0 +
𝛾

𝑎
(𝑎 − 𝑎0)2 1.23 

 

This gives rise to the situation where the total interaction area per amphiphile is at a 

minimum since the attractive and repulsive forces are balanced, as indicated in Figure 

1.15. 
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Figure 1.15. Schematic representation of the optimal headgroup area, a0, where the headgroup 

repulsion and interfacial hydrophobic attraction forces are balanced within a surfactant 

aggregate.56 

 

Figure 1.14 introduces the dimensionless packing parameter, P, which depends on the 

hydrophobic volume, V, optimal headgroup area, a0, and the maximum effective 

length to which the hydrophobic chains can extend (or the critical chain length), lc. 

Israelachvili and co-workers55, 56 showed that the value of P can be used to predict the 

morphology adopted by particular amphiphiles, as shown in Figure 1.14.  

 

Relating surfactant self-assembly to the Gibbs equation (ΔGmix = ΔHmix - TΔSmix), 

micelle formation is characterised by a small positive enthalpy change, and a large 

positive change in entropy.58 High ΔSmix values are somewhat surprising, since the 

formation of ordered aggregates from free surfactant molecules should result in a 

reduction in entropy. Also, large values of ΔHmix would be expected due to the very 

low solubility of the hydrocarbon tail in water. Instead of considering only the 

arrangement of amphiphiles into ordered aggregates, it is important to consider the 

water molecules. If free amphiphiles exist in solution, the water molecules form 

clathrate cavities (or cage structures), thus increasing the strength or number of 

effective hydrogen bonds.59 This means that introducing surfactant molecules leads to 

local ordering of the surrounding water molecules and therefore a reduction in the 
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solvent entropy. This phenomenon is known as the hydrophobic effect and was 

explored in detail by Tanford.60 The reverse process occurs on formation of ordered 

aggregates, since the water molecules revert to the structure of bulk water. This 

accounts for the apparent large overall positive change in entropy. However, some 

doubts remain over the validity of such an interpretation at high temperatures where 

hydrogen bonding is less significant.58 

 

1.5.2. Block copolymer self-assembly 

As previously discussed, well-defined block copolymers can be prepared via living 

polymerisation techniques such as LAP, ATRP and RAFT polymerisation (see Figure 

1.6). Like small molecule surfactants (see Section 1.5.1), block copolymers can 

undergo self-assembly in the bulk61, 62 as well as in solution.63, 64 Since block 

copolymer aggregates exhibit higher stability and durability compared to surfactant 

micelles, they have received considerable interest from both academia and industry 

for a wide range of applications.65, 66 In the bulk, microphase separation is observed 

due to the enthalpic incompatibility of the blocks. Importantly, macroscopic phase 

separation cannot occur because the blocks are linked by covalent bonds. For AB 

diblock copolymers, the three parameters that dictate this microphase separation are: 

(i) the relative volume fractions of the two blocks (fA and fB), (ii) the total degree of 

polymerisation (N = NA + NB), and (iii) the Flory-Huggins interaction parameter (χ).66 

This χ parameter represents the incompatibility of the A and B blocks and varies with 

temperature according to the following equation: 

 

𝜒 = (
𝑧

𝑘B𝑇
) [𝜀AB −

1

2
(𝜀AA + 𝜀BB)] 1.24 

 

where z is the coordination number (or number of nearest neighbours per repeat unit), 

kB is Boltzmann’s constant, T is the absolute temperature (and thus kBT is the thermal 

energy), εAB, εAA and εBB are the mean interaction energies per repeat unit for A-B, A-

A and B-B, respectively. The Flory-Huggins lattice model67, 68 can be used to 

determine the free energy of mixing (ΔGmix) for two incompatible polymers, or a 

polymer in solution.69, 70 This model assumes that the lattice is filled with either 

component A or component B and that the size of each component is the same. Also, 

random mixing in the lattice is assumed. Thus, 
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∆𝐺mix

𝑘B𝑇
= (

𝜑A𝑙𝑛𝜑A

𝑁A
) + (

𝜑B𝑙𝑛𝜑B

𝑁B
) + 𝜑A𝜑B𝜒 1.25 

 

where φA and φB are the volume fractions of components A and B, respectively, and 

NA and NB are the mean number of monomer units per polymer chain (for polymers).69, 

70 In the case of diblock copolymers in the bulk, A and B represent the two chemically 

distinct blocks, whereas for the case of a homopolymer in a solvent, A represents a 

repeat unit for the polymer chain and B represents a solvent molecule. Equation 1.25 

demonstrates that a negative value of χ is required for spontaneous mixing of 

components A and B (i.e. ΔGmix < 0), whereas a positive χ value results in de-mixing.71 

It is also clear that χ varies inversely with temperature. Thus higher temperatures are 

often required for mixing, so an order-disorder transition (ODT) is observed at a 

specific temperature (TODT). As N (the total degree of polymerisation) tends to infinity, 

the number of moles of polymer tends to zero and therefore so does the entropy term. 

This is because, for larger values of N, an additional reduction in the diffusional and 

configurational entropy of the polymer chains (also reducing the number of A-B 

contacts) results in local ordering.61, 71 Therefore, the degree of microphase separation 

is determined by the segregation product χN.66, 71 Self-consistent mean-field (SCMF) 

theory has been used to predict the phase behaviour of diblock copolymers in the bulk, 

as shown in Figure 1.16.70, 72 On increasing the volume fraction of block A (fA) at a 

fixed χN above the ODT (χN > 10.5), order-order transitions (OOTs) are observed: 

from closely packed spheres (CPS), through spheres (S), cylinders (C) and gyroids (G) 

to lamellae (L). Further increasing fA (so that fA > fB) results in the formation of inverse 

morphologies. Such phases have been predicted by SCMF theory (Figure 1.16a) and 

observed experimentally for polyisoprene-polystyrene block copolymers (Figure 

1.16b).66, 70  

 



Chapter 1: Introduction 

 

35 

 

 

Figure 1.16. (a) AB diblock copolymer morphologies in the bulk: S and S’ represent body-

centred cubic spheres, C and C’ represent hexagonally-packed cylinders, G and G’ represent 

bicontinuous gyroids and L represents lamellae. (b) Phase diagram predicted by self-consistent 

mean-field theory, depending on the volume fraction (f) of the blocks and the segregation 

product, χN. CPS and CPS’ represent closely packed spheres. (c) Experimentally-determined 

phase diagram for polyisoprene-polystyrene block copolymers, where fA represents the 

volume fraction of polyisoprene. PL represents perforated lamellae.66, 70 

 

Multiple regimes for the microphase separation of block copolymers can be 

considered for fA = 0.5: the weak segregation limit (WSL, where χN < 10) and the 

strong segregation limit (SSL, where χN >> 10), with an intermediate segregation 

regime (ISR).61, 66 These segregation regimes relate to the conformation (stretching) 

of the individual polymer chains as well as the microdomain periods (d), which in turn 

can be related to the radius of gyration (Rg) of the polymer chains.61 As defined by 

Flory,73 the Rg is defined as a ‘measure of the root-mean-square distance of the 

elements of a chain from its centre of gravity’. In the WSL where the A-B interactions 

are sufficiently weak, individual polymer chains are unperturbed (or Gaussian) and 

can adopt a random walk, with an Rg defined as: 

 

𝑅g =
√𝑁 𝑙

√6
 1.26 
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where l is the characteristic segment length. Thus in the WSL regime, d scales as ~N1/2. 

However, d scales to ~N2/3 in the SSL regime, since the driving force for segregation 

overcomes the entropically-favoured random coil conformation in order to adopt 

stretched polymer chains.61, 71 

 

Introducing a solvent increases the complexity of block copolymer self-assembly in 

solution. Considering an AB diblock copolymer in a single solvent that is specific for 

one block (S), there are now three χ parameters to consider: χAB, χAS, χBS. The 

complexity is further increased when a mixed solvent system is used, since now six χ-

parameters must be considered.66 However, it is important to realise that AB diblock 

copolymers self-assemble in a solvent that is a good solvent for just one of the 

blocks.74 

 

1.6. Polymerisation-Induced Self-Assembly of Block Copolymer 

Nanoparticles via RAFT Non-Aqueous Dispersion Polymerisation 

As previously discussed, amphiphilic AB diblock copolymers undergo self-assembly 

in a selective solvent for one of the two blocks.74 In principle, the morphology of the 

resulting diblock copolymer nanoparticles63, 64, 75, 76 is dictated by the relative block 

volume fractions, as defined by the so-called packing parameter, P (Figure 1.17).55, 77-

79 In practice, the copolymer concentration can also influence the morphology in some 

cases.80-83 Similar concentration-dependent behaviour is well-known for small 

molecule surfactants in water. 
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Figure 1.17. (Left) Schematic representation of RAFT dispersion polymerisation, whereby a 

soluble macromolecular chain transfer agent (macro-CTA, red) is chain-extended by an 

initially miscible monomer to yield an insoluble polymer block (depicted in blue). (Right) 

This leads to block copolymer self-assembly, where the packing parameter, P, for the resulting 

individual block copolymer chains in a selective solvent is defined in terms of the volume of 

the core-forming blue chain, V, the optimal head-group area occupied by the stabilising red 

chain, a0, and the length of the core-forming blue chain, lc. The corresponding nanoparticle 

morphology is normally dictated by the value of P.79 

 

Recently, many academic groups have examined the use of controlled radical 

polymerisation techniques, particularly RAFT polymerisation,19, 38 for the synthesis of 

amphiphilic diblock copolymer nanoparticles via polymerisation-induced self-

assembly (PISA).78 PISA offers many advantages over traditional self-assembly 

routes,78 which often involve post-polymerisation techniques such as solvent64 or pH-

switching84 and thin film rehydration,85 and are invariably conducted in dilute (< 1% 

w/w) solution. Initial research by Hawkett and co-workers focused on RAFT aqueous 

emulsion polymerisation using water-immiscible monomers such as methyl 

methacrylate, n-butyl acrylate or styrene.86, 87 Such formulations can be very efficient, 

but in many cases this approach leads to the formation of kinetically-trapped spheres, 

rather than the full range of copolymer morphologies.86-94 Early examples of RAFT 

dispersion polymerisation syntheses also suffered from this problem.93, 94 In contrast, 

there are now many examples of RAFT dispersion polymerisation formulations that 

yield spheres, worms and vesicles.78, 88, 95-99 In this approach, a soluble 
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macromolecular chain transfer agent (macro-CTA) is utilised to polymerise a soluble 

monomer to form an insoluble polymer block, thus forming amphiphilic diblock 

copolymers that undergo spontaneous in situ self-assembly during chain growth (see 

Figure 1.17). Considerable research has been devoted to PISA syntheses via RAFT 

aqueous dispersion polymerisation using water-miscible monomers such as 2-

hydroxypropyl methacrylate (HPMA), N-isopropylacrylamide (NIPAM), N,N-

diethylacrylamide or 2-methyoxyethyl acrylate.78, 83, 88, 100-105 The construction of 

phase diagrams enables the reproducible targeting of each copolymer morphology for 

a stabiliser block of a given mean degree of polymerisation (DP), with the only two 

synthesis variables being the target DP of the core-forming block and the overall 

copolymer concentration (or total solids concentration).78, 83 In particular, there have 

been many studies focused on the use of PHPMA as the water-insoluble core-forming 

block, with various water-soluble polymers such as poly(glycerol monomethacrylate) 

(PGMA), poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC) or 

poly(ethylene glycol) (PEG) being utilised as the stabiliser block.78 Such sterically-

stabilised nanoparticles have several potential applications, including coatings,106 drug 

delivery,107 sterilisable gels108 and novel Pickering emulsifiers.109 More complex 

morphologies have also been reported for certain RAFT aqueous dispersion 

polymerisation formulations, including so-called ‘lumpy rods’, ‘framboidal’ vesicles, 

and oligolamellar vesicles.78 

 

The literature based on RAFT aqueous dispersion polymerisation is now quite 

extensive.78, 83, 88, 100, 105 Similarly, there are various examples of RAFT dispersion 

polymerisation formulations being conducted in either water/(m)ethanol or water/1,4-

dioxane mixtures.110-119 However, we will focus primarily on examples of RAFT 

dispersion polymerisation in the absence of water as a co-solvent, for which there are 

relatively few literature reports describing high (> 90%) monomer conversions. In 

most cases, the continuous phase comprises either lower alcohols or various n-alkanes, 

although a few other solvents and solvent mixtures will also be considered. The 

various RAFT chain transfer agents (CTAs), stabiliser blocks and core-forming blocks 

that have been deployed in such syntheses are summarised in Figure 1.18. 
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Figure 1.18. (a) Chemical structures of the chain transfer agents (CTAs), (b) stabiliser blocks 

and (c) core-forming blocks used in various RAFT non-aqueous dispersion formulations 

reported in the literature. 
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1.6.1. RAFT alcoholic dispersion polymerisation 

1.6.1.1. Dispersion polymerisation of styrene 

One of the first RAFT-mediated non-aqueous PISA formulations was the dispersion 

polymerisation of styrene in lower alcohols. Pan and co-workers98, 120-125 utilised a 

trithiocarbonate-based chain transfer agent (DDMAT, see Figure 1.18a) to prepare a 

range of poly(4-vinylpyridine) (P4VP) macro-CTAs for the subsequent dispersion 

polymerisation of styrene in methanol. The resulting poly(4-vinylpyridine)-

polystyrene (P4VP-PS) nanoparticles formed a wide range of copolymer 

morphologies (see Figure 1.19 and Figure 1.20).98, 120-125 Like the analogous RAFT 

aqueous dispersion formulations,78, 88, 126 purely spherical, worm-like or vesicular 

morphologies could be targeted by tuning the block composition, which is consistent 

with the geometric packing argument for surfactant self-assembly introduced by 

Israelachvili and co-workers,55 and subsequently extended to block copolymer self-

assembly by Antonietti and Förster.77 This provides a conceptual framework that 

offers useful qualitative insights when considering mechanisms for morphological 

transitions, as well as some aspects of phase diagrams. However, as yet this approach 

cannot be used to gain even a semi-quantitative understanding of the multiple 

morphological transformations that can occur during an in situ PISA synthesis. This 

is because the core-forming blocks within the block copolymer nano-objects are 

almost certainly solvated by both monomer and solvent, but the local concentrations 

of these two species are not known. Since this degree of solvation necessarily dictates 

the effective volume fraction of the core-forming block, calculation of the variation in 

the packing parameter, P, during a PISA synthesis is currently an intractable problem. 

In principle, theoretical advances in this area should enable phase diagrams to be 

calculated for a given PISA formulation, which would in turn minimise the intensive 

synthetic effort currently required to identify the phase space for each copolymer 

morphology. Nevertheless, such empirical experimental studies can be very 

instructive.  

 

Pan and co-workers have used TEM to investigate in situ morphological 

transformations that occur during the PISA syntheses of P4VP-PS nanoparticles, with 

spheres and worms being observed as both intermediate and final morphologies.98, 120, 

122, 123 Huang et al.127 statistically copolymerised a small amount (5 mmol eq.) of the 

photochromatic spiropyran analogue 1’-(2-methacryloxyethyl)-3’,3’-dimethyl-6-
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nitro-spiro(2H-1-benzo-pyran-2,2’-indolin) (SPMA, Figure 1.18c) with 4VP to 

produce a light-responsive stabiliser macro-CTA. This enabled enhanced fluorescence 

properties of the resulting vesicles upon exposure to UV radiation as a result of 

photoisomerisation of the SPMA repeat units. 

 

 

Figure 1.19. Formation of various poly(4-vinylpyridine)-polystyrene (P4VP-PS) diblock 

copolymer nanoparticles from initially soluble poly(4-vinylpyridine) chains via RAFT 

dispersion polymerisation of styrene in methanol. Copolymer morphologies that can be 

obtained using this PISA formulation include (a) soluble chains, (b) spheres, (c) worms, (d) 

vesicles, (e) nanotubes and (f) large compound vesicles.122 

 

In addition to spheres, worms and vesicles, P4VP-PS block copolymer nanoparticles 

have been used to access more complex structures such as the so-called ‘yolk/shell’ 

morphology (Figure 1.20d).121 In this case, PS homopolymer chains were present 

during the PISA synthesis of P4VP-PS vesicles. The former component was 

subsequently stabilised by the P4VP-PS diblock copolymer chains, resulting in the 

formation of PS spherical nanoparticles within the vesicle lumen and hence the 

‘yolk/shell’ morphology. More recently, Zhang et al.125 reported the formation of 

‘multi-shelled’ vesicles when targeting highly asymmetric (e.g. P4VP73-PS9400) 

diblock copolymers in methanol (Figure 1.20e). These formulations indicate the 

complexity of block copolymer morphologies that can be achieved when utilising 

PISA formulations in methanol. However, it should be emphasised that the RAFT 
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dispersion polymerisation of styrene invariably suffers from substantially incomplete 

conversions (e.g. 30-70% after 48 h at 80 °C), despite such syntheses being conducted 

at relatively high solids. Moreover, the relatively large volume of unreacted monomer 

solvates the insoluble core-forming PS block and hence most likely influences the 

nanoparticle morphology. This problem of incomplete monomer conversion has been 

recently resolved by Zhang and co-workers:113, 115, 128 addition of 5-20% w/w water as 

a co-solvent enabled styrene conversions of more than 90% to be obtained within 24 

h. This is a pragmatic solution for PISA syntheses involving water-miscible polar 

solvents, but is unlikely to be useful for water-immiscible non-polar solvents such as 

n-alkanes. Dong et al.129 extended the initial work by Pan and co-workers by 

conducting the RAFT dispersion polymerisation of styrene using a P4VP macro-CTA 

synthesised using a dithiobenzoate-based CTA (cyanoisopropyl dithiobenzoate or 

CPDB, Figure 1.18a). Dispersion polymerisations were conducted in isopropanol, in 

the presence and absence of CO2. On addition of ≤ 8.0 MPa of CO2, lower packing 

parameters were obtained for similar P4VP-PS compositions that led to the formation 

of worms rather than vesicles. 

 

 

Figure 1.20. Transmission electron micrographs obtained for various diblock copolymer 

morphologies reported by Pan and co-workers via RAFT dispersion polymerisation of styrene 

in methanol using various P4VP macro-CTAs: (a) spheres, (b) worms, (c) vesicles, (d) 

‘yolk/shell’ and (e) multi-shelled vesicles.121, 122, 125 



Chapter 1: Introduction 

 

43 

 

Pan and co-workers also examined the RAFT dispersion polymerisation of styrene in 

methanol. A trithiocarbonate-based DDMAT CTA (Figure 1.18a) was used to prepare 

poly(ethylene oxide)-polystyrene (PEO-PS)130 and poly(acrylic acid)-polystyrene 

(PAA-PS)96 block copolymer nano-objects in methanol, with access to the full range 

of morphologies (spheres, worms or vesicles) being observed in both cases. Similarly, 

CPDB was utilised for the synthesis of poly(2-(dimethylamino)ethyl methacrylate)-

polystyrene (PDMA-PS) diblock copolymer spheres, worms or vesicles,97 and even 

hexagonally-packed hollow hoops131 in addition to the P4VP-PS formulations 

previously discussed.125 Yang et al.132 reported that high comonomer conversions (> 

90%) could be achieved when conducting the RAFT dispersion alternating 

copolymerisation of styrene with N-phenylmaleimide (NMI) using a poly(methacrylic 

acid) (PMAA) macro-CTA in a solvent mixture. More specifically, PMAA-(PS-alt-

PNMI) block copolymers formed spheres, worms or lamellae in 50:50 w/w 

ethanol/1,4-dioxane at ≥ 15% w/w solids.132 Unusually, the latter morphology was 

obtained instead of vesicles, which was attributed to the relatively stiff, inflexible 

nature of the core-forming alternating copolymer chains (Tg > 200 °C). 

 

1.6.2. Dispersion polymerisation of benzyl methacrylate 

Although styrene is a relatively cheap monomer, it suffers from a relatively slow rate 

of polymerisation when utilised in non-aqueous PISA formulations.98, 120-125 In 

contrast, Charleux et al. reported that RAFT aqueous emulsion polymerisation of 

styrene led to almost complete conversion within 5 h.133, 134 There are also various 

examples of alcohol/water mixtures that enable relatively high styrene conversions to 

be achieved via RAFT dispersion polymerisation.110, 112-115, 128, 135 However, for RAFT 

alcoholic dispersion polymerisation formulations conducted in the absence of water 

as a co-solvent, benzyl methacrylate (BzMA) provides a pragmatic alternative to 

styrene for the core-forming block. For example, Armes and co-workers136-140 reported 

that the RAFT dispersion polymerisation of BzMA conducted in lower alcohols (i.e. 

methanol, ethanol or isopropanol) usually leads to monomer conversions exceeding 

95% within 24 h at 70 °C. The versatility of such a protocol was highlighted by 

Semsarilar et al.136 who synthesised PDMA, PMAA, PGMA and PMPC macro-CTAs 

using 4-cyano-4-(2-phenylethane sulfanylthiocarbonyl)sulfanylpentanoic acid 

(PETTC, Figure 1.18a), followed by chain extension of each macro-CTA in turn with 
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BzMA to produce a range of pure spheres, worms or vesicles in ethanol (Figure 1.21a, 

b and c respectively). 

 

 

Figure 1.21. Transmission electron micrographs of (a) PMAA67-PBzMA50 spheres, (b) 

PMAA67-PBzMA100 worms and (c) PMAA67-PBzMA200 vesicles prepared by RAFT 

dispersion polymerisation of benzyl methacrylate in ethanol at 70 °C. In each case relatively 

high monomer conversions were obtained (> 95%).136 

 

Construction of a suitable phase diagram allowed reproducible targeting of a desired 

morphology for a given PMAA71-PBzMAx block copolymer composition (Figure 

1.22). Generally, only a relatively weak concentration dependence on copolymer 

morphology was observed. However, only spherical nanoparticles could be obtained 

at 5% w/w solids regardless of the target DP for the PBzMA core-forming block, 

which suggests that a kinetically-trapped morphology under these conditions.78 

Presumably, this simply reflects the reduced probability of efficient inter-sphere 

fusion occurring on the time scale of the BzMA polymerisation for PISA syntheses 

conducted under more dilute conditions. 
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Figure 1.22. Phase diagram constructed for PMAA71-PBzMAx diblock copolymer 

nanoparticles prepared by RAFT dispersion polymerisation of BzMA in ethanol at 70 °C, 

where S, W and V represent spheres, worms and vesicles respectively.136 

 

The PDMA, PMAA, PGMA and PMPC stabiliser blocks are soluble in both ethanol 

and water, hence facile transfer of diblock copolymer nano-objects into aqueous 

solution was conveniently achieved by dialysis of the as-synthesised ethanolic 

dispersion against water.136, 137 This transfer allowed nanoparticle characterisation by 

aqueous electrophoresis, which confirmed the expected cationic character of PDMA31-

PBzMA37 spheres below pH 9 as a result of protonation of the stabiliser chains. 

Similarly, the anionic character of PMAA67-PBzMA50 spheres over a wide pH range 

was verified, whereas PGMA60-PBzMA50 and PMPC30-PBzMA380 spheres exhibited 

almost neutral (slightly anionic) character from pH 3 to pH 10.136 Thus these alcoholic 

PISA formulations offer a reasonably efficient route for the preparation of highly 

charged block copolymer nano-objects. Previously, Semsarilar et al. demonstrated that 

the direct preparation of highly charged nanoparticles via aqueous PISA formulations 

is problematic in the absence of added salt. This is because strong lateral electrostatic 

repulsion between neighbouring polyelectrolytic chains impedes in situ self-

assembly.141 In collaboration with Meldrum and co-workers, we have recently shown 
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that anionic PMAAx-PBzMAy nano-objects can be efficiently occluded within single 

crystals of calcite, leading to a series of novel organic-inorganic nanocomposites that 

exhibit superior mechanical properties to that of calcite alone.142, 143 Additionally, 

anionic PMAA71-PBzMA200 vesicles were successfully coated with cationic 12 nm 

alumina-coated silica particles (Ludox CL) to form ‘armoured’ vesicles.136 

 

Zehm et al.138 reported the preparation of poly(2-hydroxypropyl methacrylate)-

poly(benzyl methacrylate) (PHPMA-PBzMA) block copolymer spheres, worms and 

vesicles in either ethanol or isopropanol. This study highlighted the importance of the 

choice of solvent and the DP of the stabiliser macro-CTA (in addition to the target 

PBzMA DP and copolymer concentration) in dictating the final morphology of 

diblock copolymer nanoparticles in alcoholic media. These findings are also consistent 

with earlier reports of block copolymer nanoparticles prepared via RAFT aqueous 

dispersion polymerisation.78, 83 Zehm et al. also provided the first evidence that the 

worm-to-vesicle transition in non-aqueous PISA formulations proceeds via a transient 

‘jellyfish’ morphology (Figure 1.23). This observation is in good agreement with TEM 

studies conducted by Blanazs et al., who examined the evolution in copolymer 

morphology during the synthesis of PGMA-PHPMA vesicles via RAFT aqueous 

dispersion polymerisation.103 

 

 

Figure 1.23. Transmission electron micrograph of the ‘jellyfish’ morphology observed during 

the formation of PHPMA63-PBzMA200 diblock copolymer nanoparticles prepared via RAFT 

dispersion polymerisation of BzMA in ethanol.138 Similar transient copolymer morphologies 

have been observed for RAFT aqueous dispersion polymerisation formulations,103 and also 

during post-polymerisation processing of block copolymers.78 This strongly suggests that the 

‘jellyfish’ is a generic intermediate for block copolymer self-assembly, rather than a PISA-

specific species. 
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More recently, Gonzato et al.140 reported the synthesis of low-polydispersity PMAA-

PBzMA vesicles via RAFT dispersion polymerisation of BzMA in ethanol. This was 

achieved by selecting an appropriate binary mixture of a PMAA171 and a PMAA62 

stabiliser macro-CTA, which preferentially occupy the outer and inner leaflets of the 

vesicle membrane respectively (Scheme 1.7). Control experiments confirmed that, if 

just the shorter PMAA62 stabiliser macro-CTA was utilised for the PISA synthesis, 

then only relatively large vesicles with broad size distribution could be obtained. 

Systematic variation of the relative proportions of the two PMAA stabiliser blocks 

allowed construction of a phase diagram that enabled optimisation of the vesicle size 

distribution, as judged by TEM, dynamic light scattering (DLS) and small-angle X-

ray scattering (SAXS) studies. Given their high efficiency, such rational syntheses of 

well-defined vesicles are expected to be useful in the context of drug delivery vehicles, 

for in vivo imaging, the design of artificial organelles, for encapsulation and also for 

potential use as nanoreactors.144-147 

 

 

Scheme 1.7. Synthesis of low polydispersity diblock copolymer vesicles in ethanol via RAFT 

dispersion polymerisation of BzMA using a binary mixture of two PMAA macro-CTAs (with 

DPs of 62 and 171).140 

 

1.6.3. Alternative core-forming blocks for RAFT alcoholic dispersion 

polymerisation 

Following the elegant studies of crystallisation-driven block copolymer self-assembly 

reported by Manners and Winnik,148-153 PISA syntheses of diblock copolymer nano-

objects with semi-crystalline cores have been recently reported in the literature. For 

example, Charleux and co-workers conducted the RAFT dispersion polymerisation of 

a bespoke cholestryl-based (meth)acrylic core-forming monomer in an ethanol/water 

mixture to produce well-defined diblock copolymer nanorods and nanofibers.112 

Similarly, Armes and co-workers conducted the RAFT dispersion polymerisation of 

stearyl methacrylate (SMA) in pure ethanol using a PDMA macro-CTA (Figure 

1.18c).154 The latter approach yielded PDMA-PSMA spheres, worms or vesicles with 

semi-crystalline stearyl side-chains in the PSMA core-forming block.154 Potential 
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advantages for such nano-objects could be the preparation of relatively stiff worms of 

tunable flexibility and perhaps also vesicles with less permeable membranes, thus 

offering enhanced encapsulation efficiency. 

 

Recently, Lowe and co-workers99, 155-157 extended the RAFT dispersion 

polymerisation formulation originally pioneered by Armes et al.136-140  and Charleux 

and co-workers.88, 89, 101, 110, 134 A series of PDMA macro-CTAs were chain-extended 

via RAFT dispersion polymerisation of either 2-phenylethyl methacrylate (PEMA), 3-

phenylpropyl methacrylate (PPMA), 2-(naphthalene-2-yloxy)ethyl methacrylate 

(NOEMA) or 2-phenoxyethyl methacrylate (POEMA) in ethanol at 70 °C to produce 

spheres, worms or vesicles.99, 155, 157 Moreover, a 21% w/w dispersion of PDMA20-

PPPMA47 worms formed a free-standing gel at room temperature, but heating this 

dispersion to 70 °C for 1 min resulted in the formation of a free-flowing fluid. 

According to TEM studies, degelation is the result of a reversible worm-to-sphere 

order-order transition (Figure 1.24). Variable temperature 1H NMR studies revealed 

that this change in copolymer morphology coincided with greater solvation of the 

PPPMA core block at elevated temperatures. This alters the relative volume fraction 

of the two blocks and hence the effective packing parameter for the diblock copolymer 

chains.155 Such thermo-reversible degelation has been previously reported for diblock 

copolymer worms prepared by RAFT aqueous dispersion polymerisation, where a 

worm-to-sphere transition was observed upon cooling.108 This is related to the well-

known inverse temperature solubility (LCST-type) behavior exhibited by many non-

ionic water-soluble polymers,158 whereas conventional solvent-soluble polymers 

typically exhibit UCST-type behaviour in common organic solvents.159 
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Figure 1.24. Digital photographs of a 21% w/w dispersion of PDMA20-PPPMA47 diblock 

copolymer nano-objects in ethanol at room temperature (left) and 70 °C (right), and the 

corresponding transmission electron micrographs obtained after dilution showing worm-like 

nanoparticles at room temperature (left) and spherical nanoparticles at 70 °C (right).155  

 

1.6.4. RAFT non-polar dispersion polymerisation 

Compared to RAFT alcoholic dispersion polymerisation, there are relatively few 

reports of RAFT dispersion polymerisation being conducted in non-polar solvents.160-

167 Charleux and co-workers160-162 reported an all-acrylic RAFT non-polar dispersion 

polymerisation formulation that produced poly(2-ethylhexyl acrylate)-poly(methyl 

acrylate) (PEHA-PMA) diblock copolymer nanoparticles in iso-dodecane. However, 

it is emphasised that only spherical nanoparticles could be accessed in this study. 

Moreover, using a dithiobenzoate-based CTA led to strong rate retardation and 

extremely poor RAFT control (Mw/Mn > 6.00) at ≥ 85% conversion for the chain 

extension of a PEHA macro-CTA using methyl acrylate (MA) compared to a 

trithiocarbonate-based maco-CTA.160 Thus it is perhaps debatable whether this 

constitutes a genuinely successful RAFT formulation. In 2013, Fielding et al.163 

reported the well-controlled RAFT dispersion polymerisation to be conducted in non-

polar media. This all-methacrylic formulation utilised cumyl dithiobenzoate (CDB, 

Figure 1.18a) to prepare poly(lauryl methacrylate)-poly(benzyl methacrylate) 

(PLMA-PBzMA) diblock copolymer spheres, worms or vesicles in n-heptane. A phase 

diagram containing all three copolymer morphologies was constructed for a series of 
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PLMA17-PBzMAx (L17-Bx) diblock copolymers. In contrast, using a relatively long 

PLMA37 stabiliser block restricted the morphology to kinetically-trapped spheres 

(Figure 1.25b). In this case, the mean sphere diameter could be tuned by simply 

adjusting the target DP of the PBzMA core-forming block, with longer PBzMA blocks 

resulting in the formation of larger spheres, as previously reported for spherical 

nanoparticles prepared via RAFT aqueous dispersion polymerisation.102 This suggests 

some potential for using such spherical methacrylic nanoparticles as lubricity 

modifiers for automotive engine base oils, as reported by Zheng et al. for all-acrylic 

nanoparticles prepared via ATRP.168 One important advantage of the former 

nanoparticles is that they are likely to be more resistant to in situ hydrolysis at elevated 

temperatures. Moreover, several other disadvantages such as possible copper catalyst 

contamination, oil discoloration during photo-crosslinking and the undesirable use of 

protecting chemistry are also avoided by utilising RAFT-mediated PISA syntheses. 

 

 

Figure 1.25. Transmission electron micrographs recorded for (a) PLMA17-PBzMAx (L17-Bx) 

diblock copolymer nanoparticles, where spherical, worm-like and vesicular morphologies are 

accessible in n-heptane, and (b) PLMA37-PBzMAx (L37-Bx) diblock copolymer spheres in the 

same solvent.163 

 



Chapter 1: Introduction 

 

51 

 

This PLMA-PBzMA formulation was subsequently extended from n-heptane to n-

dodecane.164 This may seem like a trivial advance, but the high boiling point of the 

latter solvent facilitates high temperature studies of PLMA-PBzMA nanoparticles and 

in particular, characterisation of the thermo-responsive behaviour of a PLMA16-

PBzMA37 worm gel via rheology.  TEM studies confirm that a worm-to-sphere 

transition is responsible for the degelation of a 20% w/w PLMA16-PBzMA37 worm gel 

that is observed upon heating to 90 °C. Variable temperature DLS, rheology and SAXS 

studies provided important insights into this morphological transformation, while 1H 

NMR studies similar to those described by Lowe and co-workers were also 

undertaken.155 In particular, it was determined that the worm-to-sphere transition was 

essentially irreversible when performed at copolymer concentrations below 5% w/w 

(Figure 1.26). Presumably, this is because the formation of worm-like nanoparticles 

from the fusion of multiple spheres is highly inefficient for dilute dispersions. 

 

 

Figure 1.26. Transmission electron micrographs showing the irreversible worm-to-sphere 

transition of a 1.0% w/w dispersion of PLMA16-PBzMA37 diblock copolymer nanoparticles in 

n-dodecane.164 

 

Moreover, it was not necessary to convert all of the worms into spheres in order to 

induce degelation of the PLMA16-PBzMA37 worm gel. Rheological studies indicated 

that the onset of degelation occurred at approximately 47 °C. In contrast, SAXS 

studies confirmed that pure spheres (which have a zero gradient at low q) were only 

obtained when the original worms (which have a gradient close to -1 at low q) were 

heated up to 160 °C (Figure 1.27).164 This suggests that degelation is a consequence 

of the reduction in the mean worm length, since this leads to fewer inter-worm contacts 

per worm. Two possible mechanisms were considered for the worm-to-sphere 

transition: (i) sequential budding of spheres from worm ends or (ii) random worm 
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cleavage to produce gradually shorter worms (see Figure 1.27c). Variable temperature 

SAXS studies suggested that the former process was more likely to be the dominant 

mechanism. Finally, it is perhaps worth emphasising that solvation of the core-forming 

PBzMA block is a necessary but not sufficient condition to account for the worm-to-

sphere transition. If uniform plasticisation of the core-forming block occurred on 

heating, this would simply lead to an increase in its effective volume fraction, which 

would be expected to induce a worm-to-vesicle transition. The worm-to-sphere 

transition that is actually observed can only be rationalised in terms of a subtle change 

in packing parameter if surface plasticisation of the core-forming block occurs. This 

is physically reasonable for partial solvent ingress and leads to the BzMA repeat units 

nearest to the PLMA stabiliser becoming solvated. This increases the effective volume 

fraction of the stabiliser block, which lowers the packing parameter and hence 

accounts for the observed worm-to-sphere transition. 

 

 

Figure 1.27. (a) Representative SAXS patterns for 5.0 and 1.0% w/w PLMA16-PBzMA37 

diblock copolymer nanoparticles in n-dodecane before a 20-160-20 °C thermal cycle (black 

data), at 160 °C (blue data) and after the thermal cycle (red data). (b) Representative SAXS 

patterns for the same 1.0% w/w PLMA16-PBzMA37 diblock copolymer dispersion in n-

dodecane recorded at 20 °C (black data), 90 °C (red data) and 160 °C (blue data). Data were 

fitted to a worm-like micelle model, where the scattering pattern at 160 °C indicated the 

presence of isotropic (spherical) particles. (c) Two possible mechanisms for the thermally-

induced worm-to-sphere transition: (i) sequential budding and (ii) random worm cleavage.164 
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In the patent literature, RAFT dispersion polymerisation formulations are described 

that utilise methyl methacrylate (MMA), 2-hydroxypropyl methacrylate (HPMA) or 

glycidyl methacrylate (GlyMA) as core-forming monomers for the chain extension of 

PLMA macro-CTAs.169 However, it is not yet clear whether such PISA formulations 

are as well-behaved as those based on BzMA. Lowe and co-workers recently reported 

using SMA instead of LMA to prepare PSMA stabiliser macro-CTAs (Figure 1.18b) 

for the synthesis of PSMA-PPPMA diblock copolymer nanoparticles in n-

tetradecane165 and n-octane.166 Pure phases of spheres, worms or vesicles were 

accessible and a thermo-reversible worm-to-sphere transition was characterised by 

variable temperature TEM, DLS and 1H NMR studies. Like the PLMA16-PBzMA37 

worms in n-dodecane,164 this worm-to-sphere transition is most likely triggered by the 

surface plasticisation of the PPPMA core block at elevated temperatures. These 

formulations were later extended by Pei et al. by introducing pentafluorophenyl 

methacrylate (PFPMA) residues into the PSMA macro-CTA to enable post-

polymerisation modification of this stabiliser block via nucleophilic acyl 

substitution.167 A further RAFT dispersion polymerisation formulation in non-polar 

media was recently reported by Lopez-Oliva et al.170 A near-monodisperse 

monocarbinol-functionalised polydimethylsiloxane (PDMS) was esterified using 

PETTC, with the resulting macro-CTA being subsequently used for the RAFT 

dispersion polymerisation of BzMA in n-heptane at 70 °C (Figure 1.28a). In principle, 

preparing non-vinyl macro-CTAs such as PDMS-PETTC via end-group modification 

of an existing commercial precursor should provide reproducible access to the same 

mean stabiliser DP. This is expected to be useful for the construction of phase 

diagrams, for which remarkably narrow region was observed for the pure worm phase 

(Figure 1.28c).170 
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Figure 1.28. (a) Chain-end modification of monocarbinol-functionalised PDMS66 and its 

subsequent chain-extension via RAFT dispersion polymerisation of benzyl methacrylate in n-

heptane at 70 °C. (b) Representative TEM images of PDMS66-PBzMA25 spheres, PDMA66-

PBzMA80 worms and PDMS66-PBzMA250 vesicles in n-heptane. (c) Phase diagram 

constructed for PDMS66-PBzMAx diblock copolymer nanoparticles prepared by RAFT 

dispersion polymerisation of BzMA in n-heptane at 70 °C.170 

 

1.6.5. Alternative solvents for RAFT non-aqueous dispersion polymerisation 

RAFT non-aqueous dispersion polymerisation is not confined to the conventional 

organic solvents discussed in earlier sections. Notably, Howdle and co-workers have 

conducted various syntheses in supercritical carbon dioxide (scCO2). For example, 

either a scCO2-soluble methacrylate-functionalised PDMS macromonomer171-173 or a 

poly(1H,1H,2H,2H-perfluorooctyl methacrylate) (PFOMA)174 macro-CTA was 

employed to stabilise PMMA particles produced via RAFT dispersion polymerisation. 

In the former case, a graft copolymer was generated in situ, whereas in the latter case 

a conventional diblock copolymer was obtained. Four CTAs were evaluated for such 

RAFT dispersion polymerisations: CPDB, α-cyanobenzyl dithionaphthalate (CBDN), 

α-cyanobenzyl dithiobenzoate (CBDB) and 4-cyano-1-hydroxypent-4-yl 

dithiobenzoate (HPDB).172 Later, various poly(vinyl alkynate)-based steric stabilisers 

such as the highly scCO2-soluble poly(vinyl acetate-stat-vinyl pivalate) (PVAc-stat-

PVPi)175, 176 were utilised for the RAFT dispersion polymerisation of N-vinyl 

pyrrolidone (NVP). In principle, this approach eliminates the potential disadvantages 

of toxicity and high cost associated with PFOMA.177 In this case a xanthate-based 
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CTA S-(1-ethylpropionate) O-ethyl xanthate (EPEX) was employed, but somewhat 

incomplete (63-90%) NVP conversions were observed.176 The universal nature of such 

scCO2 formulations was demonstrated by Jennings et al.,178, 179 who used PDMS to 

stabilise PMMA precursor particles, which were then chain-extended with styrene, 

4VP, BzMA, DMA and N,N-dimethylacrylamide (DMAc) via RAFT dispersion 

polymerisation in scCO2 to produce a series of microphase-separated diblock 

copolymer particles. TEM and SAXS studies revealed spherical, cylindrical and multi-

layered domains within these PDMS-stabilised particles, with the specific target block 

composition dictating the observed internal morphology (see Figure 1.29). 

 

 

Figure 1.29. Transmission electron micrographs showing the microphase separation within 

PDMS-stabilised block copolymers of (a) PMMA45-P4VP15, (b) PMMA15-P4VP45, (b) 

PMMA30-P4VP30, (d) PMMA45-PDMA15, (e) PMMA30-PDMA30, (f) PMMA50-PBzMA50 and 

(f) PMMA30-PS30 synthesised via RAFT dispersion polymerisation in supercritical CO2.178 

 

Since no additional solvents are required when conducting RAFT dispersion 

polymerisations in scCO2, such formulations are deemed environmentally 

acceptable.171, 172, 175, 176, 178 Moreover, good control over the molecular weight 

distribution can be achieved, with Mw/Mn remaining below 1.25 at high (≥ 94%) 
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monomer conversions.172, 174 High blocking efficiencies have also been reported for 

some of these formulations.179 One other advantage is the relatively easy processing 

of the final spherical particles, which are isolated as a free-flowing powder. However, 

such polymerisations require high-pressure autoclave reactors capable of withstanding 

up to 276 bar for such scCO2 syntheses.171-179 

 

1.7. Thesis Outline 

The synthesis of well-defined PLMA-PBzMA diblock copolymer spheres, worms or 

vesicles in industrially-sourced mineral oil and poly(α-olefin) oil is described in 

Chapter 2. Chapter 3 describes the synthesis of poly(stearyl methacrylate)-poly(benzyl 

methacrylate) (PSMA-PBzMA) diblock copolymer spheres, worms or vesicles in 

mineral oil. Specifically, the synthesis of PSMA31-PBzMA2000 spheres and PSMA13-

PBzMA150 vesicles is studied using in situ SAXS, which provides important 

mechanistic insights into the evolution of the nanoparticle morphology during PISA. 

The thermo-responsive nature of PSMA13-PBzMA96 vesicles in mineral oil, which 

form worms on heating to 150 °C, is discussed in Chapter 4. This thermally-triggered 

vesicle-to-worm transition offers a potential route to high temperature oil thickening. 

Chapter 5 describes the physical properties of PSMA-PBzMA worm gels prepared 

over a range of copolymer concentrations. Maltese cross birefringence patterns 

confirms worm alignment under applied shear during shear-induced polarised light 

imaging (SIPLI) studies. A thermally-triggered worm-to-sphere transition leads to 

immediate loss of this characteristic motif. Various PISA-synthesised block 

copolymer nanoparticles are evaluated as additives for engine base oils (e.g. 

lubrication and viscosity modification) and for crude oil (e.g. wax inhibition and 

asphaltene dispersion) in Chapter 6. Concluding remarks and suggestions for further 

work are presented in Chapter 7. 
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2.1. Introduction 

Traditionally, block copolymer self-assembly in solution to form various types of 

nanoparticles is conducted at high dilution (< 1% w/w) and often involves post-

polymerisation processing via solvent1 or pH switching,2 or thin film rehydration.3 

Over the last two decades or so, controlled radical techniques such as reversible 

addition-fragmentation chain transfer (RAFT) polymerisation4-6 have enabled the 

convenient synthesis of a wide range of functional diblock copolymers.7-20 Currently, 

there is considerable academic interest in performing polymerisation-induced self-

assembly (PISA) syntheses, where self-assembly of block copolymers is achieved in 

situ.21-24 Moreover, PISA provides a convenient route to direct block copolymer self-

assembly at relatively high solids contents. The final diblock copolymer nanoparticle 

morphology typically depends on the relative volume fractions of the two blocks, 

which is often considered in terms of the so-called packing parameter,25-27 and also the 

copolymer concentration.28 Purely spherical, worm-like or vesicular morphologies 

have been reported for aqueous,28-37 alcoholic38-50 and non-polar51-56 formulations. The 

subsequent construction of detailed phase diagrams enables the reproducible targeting 

of each of these morphologies. Moreover, there appears to be some scope for 

developing ‘one-pot’ syntheses,57-60 which should provide a highly convenient and 

potentially industrially-relevant protocol for generating organic nanoparticles at high 

solids contents. 

 

A wide range of potential applications have been explored for RAFT-mediated PISA 

formulations, including in coatings,61 drug delivery,15, 47, 62 contact lenses,63 

sterilisable gels,64 or as novel Pickering emulsifiers.65 In principle, block copolymer 

nanoparticles comprising an oil-soluble stabilising block such as poly(lauryl 

methacrylate) (PLMA) also have potential applications, including use in drag 

reduction,66 as oil absorbency agents,67, 68 and for viscosity modification in engine 

oils.69-71 Of particular relevance to the present work, Zheng et al.72 recently reported 

that spherical block copolymer nanoparticles dispersed in non-polar solvents 

significantly reduced the friction coefficient of lubricant base oils in the boundary 

lubrication regime. In this case, copper-catalysed atom transfer radical polymerisation 

(ATRP) was utilised to synthesise all-acrylic block copolymer spheres in 2-butanone, 

which were subsequently dispersed in base oil after various post-polymerisation 
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modification and purification steps.73 Such modification and purification steps may 

hinder the industrial potential of these particular nanoparticles, and the use of copper 

during the polymerisation may also cause failure in industry standard engine tests. 

Considering the recent development of commercial products synthesised using RAFT 

polymerisation by The Lubrizol Corporation Ltd.,74 the development of diblock 

copolymer nanoparticles using RAFT polymerisation is a particularly attractive 

alternative. 

 

RAFT-mediated PISA in non-polar solvents was first reported by Charleux and co-

workers,51-53 where all-acrylic diblock copolymer spheres were synthesised in iso-

dodecane. Later, Fielding et al. reported the synthesis of poly(lauryl methacrylate)-

poly(benzyl methacrylate) (PLMA-PBzMA) nanoparticles in n-heptane54 and n-

dodecane.55 These formulations provided access to pure spherical, worm-like and 

vesicular morphologies and enabled the construction of predictive phase diagrams, 

enabling the reproducible synthesis of each morphology. 

 

Herein, an extension to the previously reported PLMA-PBzMA formulations is 

described. Specifically, PISA syntheses have been conducted in both mineral oil and 

a poly(α-olefin) (PAO) oil (see Scheme 2.1). Predictive phase diagrams have been 

constructed for both these industrially-sourced oils which indicate subtle differences 

compared to those constructed for pure n-alkane formulations, particularly with 

respect to the phase space occupied by each copolymer morphology. Moreover, a 

‘one-pot’ synthesis of spherical PLMA-PBzMA nanoparticles was devised, further 

highlighting the industrial potential of this PISA formulation. 

 

 

Scheme 2.1. Synthesis of a poly(lauryl methacrylate) (PLMA) macro-CTA via RAFT solution 

polymerisation in toluene at 70 °C, followed by RAFT dispersion polymerisation of benzyl 

methacrylate (BzMA) in mineral or poly(α-olefin) (PAO) oil at 90 °C. 
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2.2. Experimental 

2.2.1. Materials 

Monomers were purchased from Sigma-Aldrich (UK) and passed through basic 

alumina prior to use to remove inhibitor. Tert-butyl peroxy-2-ethylhexanoate (T21s) 

initiator was purchased from AkzoNobel (The Netherlands). Cumyl dithiobenzoate 

(CDB), CDCl3 and all other reagents were purchased from Sigma-Aldrich (UK) and 

were used as received, unless otherwise noted. THF and toluene were purchased from 

Fisher Scientific (UK), CD2Cl2 was purchased from Goss Scientific (UK). Industrial-

grade mineral (viscosity at 20 °C = 2.5 mPa s) and poly(α-olefin) (PAO; viscosity at 

20 °C = 3.0 mPa s) oils were provided by Lubrizol Corporation Ltd. 

 

2.2.2. Synthesis of poly(lauryl methacrylate) (PLMA) macromolecular chain 

transfer agent (macro-CTA) 

The synthesis of PLMA macro-CTAs has been previously reported.54 A typical 

synthesis of a PLMA47 macro-CTA was conducted as follows. A 250 mL round-

bottomed flask was charged with lauryl methacrylate (LMA; 20.0 g; 78.6 mmol), 

cumyl dithiobenzoate (CDB; 0.43 g; 1.57 mmol; target degree of polymerisation, DP 

= 50), 2,2'-azobisisobutyronitrile (AIBN; 51.6 mg, 314 μmol; [CDB]/[AIBN] molar 

ratio = 5.0) and toluene (30.7 g). The sealed reaction vessel was purged with nitrogen 

and placed in a pre-heated oil bath at 70 °C for 11 h. The resulting PLMA (LMA 

conversion = 81 % (see Figure 2.1 and Equations 2.1-2.3); Mn = 11,600 g mol-1, Mw/Mn 

= 1.24) was purified by twice precipitating into excess methanol.  
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Figure 2.1. Assigned 1H NMR spectrum obtained for the reaction mixture directly after the 

synthesis of a PLMA macro-CTA (before purification). 

 

𝐼m =  [𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 (a′ + 𝑏′)] = 2H 2.1 

 

𝐼p = [𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 (𝑚 + 𝑓′)] − 𝐼m 2.2 

 

% 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = (1 −  
𝐼m

𝐼m + 𝐼p
) × 100 2.3 

 

The mean degree of polymerisation (DP) of this macro-CTA was calculated to be 47 

using 1H NMR spectroscopy by comparing the integrated signals corresponding to the 

CDB aromatic protons at 7.1-8.1 ppm with that assigned to the two oxymethylene 

protons of PLMA at 3.7-4.2 ppm (see Figure 2.2 and Equations 2.4 and 2.5). Thus the 

CTA efficiency of the CDB was estimated to be 86% (see Equation 2.6). 
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Figure 2.2. Assigned 1H NMR spectrum obtained for a purified PLMA macro-CTA (in 

CD2Cl2). 

 

[𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 (𝑎 − 𝑓)] = 10H 2.4 

 

𝑃𝐿𝑀𝐴 𝐷𝑃 =  
[𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 (𝑚)]

2
 2.5 

 

% 𝐶𝑇𝐴 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝑇𝑎𝑟𝑔𝑒𝑡 𝐷𝑃 x 𝑁𝑀𝑅 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛

𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝐿𝑀𝐴 𝐷𝑃
 x 100  2.6 

        

 

2.2.3. Synthesis of poly(lauryl methacrylate)-poly(benzyl methacrylate) (PLMA-

PBzMA) diblock copolymer nanoparticles 

A typical RAFT dispersion polymerisation synthesis of PLMA18-PBzMA45 diblock 

copolymer nanoparticles at 25% w/w solids was carried out as follows. Benzyl 
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methacrylate (BzMA; 0.415 g; 2.36 mmol), T21s initiator (2.26 mg; 10.5 μmol; 

dissolved at 10.0% v/v in mineral oil) and PLMA18 macro-CTA (0.27 g; 52.3 μmol; 

[PLMA18]/[T21s] molar ratio = 5.0; target PBzMA DP = 45) were dissolved in mineral 

oil (2.06 g). The reaction mixture was sealed in a 10 mL round-bottomed flask and 

purged with nitrogen gas for 30 min. The deoxygenated solution was then placed in a 

pre-heated oil bath at 90 °C for 5 h (final BzMA conversion = 99%; Mn = 9,700 g mol-

1, Mw/Mn = 1.24).  

 

 

Figure 2.3. Assigned 1H NMR spectrum obtained for the reaction mixture directly after the 

synthesis of a PLMA-PBzMA diblock copolymer. 

 

Similarly to the solution polymerisation of LMA, BzMA conversions for RAFT 

dispersion polymerisations are determined via 1H NMR using Equations 2.7 to 2.9 

below. 

𝐼m =  [𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 (a′ + 𝑏′)] = 2H 2.7 
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𝐼p = [𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 (𝑝 + 𝑑′)] − 𝐼m 2.8 

 

% 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = (1 −  
𝐼m

𝐼m + 𝐼p
) × 100 2.9 

     

 

2.2.4. ‘One-pot’ synthesis of poly(lauryl methacrylate)-poly(benzyl methacrylate) 

(PLMA-PBzMA) diblock copolymer spheres 

A typical ‘one-pot’ synthesis of PLMA50-PBzMA100 diblock copolymer spheres was 

conducted as follows. Lauryl methacrylate (LMA; 0.700 g; 2.75 mmol), cumyl 

dithiobenzoate (CDB; 15.0 mg; 55.0 μmol; target DP = 50; dissolved at 10% w/w in 

mineral oil) and T21s initiator (2.14 mg; 9.90 μmol; dissolved at 10% v/v in mineral 

oil) were dissolved in mineral oil (0.150 g) to obtain a total solids content of 70% w/w. 

The reaction mixture was sealed in a 25 mL round-bottomed flask and purged with 

nitrogen gas for 30 min. The deoxygenated solution was then placed in a pre-heated 

oil bath at 90 °C for 5 h (final LMA conversion = 95%; Mn = 12,500 g mol-1; Mw/Mn 

= 1.18). Benzyl methacrylate (BzMA; 0.970 g; 5.50 mmol; target DP = 100) and T21s 

initiator (2.14 mg; 9.90 μmol; dissolved at 10 % v/v in mineral oil) were dissolved in 

mineral oil (3.65 g) and purged with nitrogen gas for 30 min before being added to the 

original reaction vessel (total solids content now 30% w/w) and stirred for 4 h at 90 

°C (final BzMA conversion = 98%; Mn = 24,500 g mol-1; Mw/Mn = 1.15). 

 

2.2.5. Gel Permeation Chromatography (GPC) 

Molecular weight distributions (MWDs) were assessed by GPC using THF eluent at 

30 °C. The THF GPC system was equipped with two 5 µm (30 cm) Mixed C columns 

and a WellChrom K-2301 refractive index detector operating at 950  30 nm. The 

mobile phase contained 2.0 % v/v triethylamine and 0.05 % w/v butylhydroxytoluene 

(BHT) with a toluene flow rate marker and the flow rate was fixed at 1.0 mL min-1. A 

series of ten near-monodisperse poly(methyl methacrylate) standards (Mp values 

ranging from 645 to 2,480,000 g mol-1) were used for calibration. 
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2.2.6. 1H Nuclear Magnetic Resonance (NMR) spectroscopy 

1H NMR spectra were recorded in either CD2Cl2 or CDCl3 using a Bruker AV1-400 or 

AV1-250 MHz spectrometer. Typically 64 scans were averaged per spectrum. 

 

2.2.7. Dynamic light scattering (DLS) 

DLS studies were performed at 25 °C using a Zetasizer Nano-ZS instrument (Malvern 

Instruments, UK) at a fixed back scattering angle of 173°. Copolymer dispersions were 

diluted to 0.10% w/w using n-dodecane prior to light scattering studies. Temperature-

dependent DLS studies were performed on 0.10% w/w dispersions in n-dodecane and 

heated from 20 °C to 90 °C at 5 °C intervals, allowing 5 min for thermal equilibration 

between measurements. In both sets of experiments, the intensity-average diameter 

and polydispersity of the diblock copolymer particles were calculated by cumulants 

analysis of the experimental correlation function using Dispersion Technology 

Software version 6.20. Data were averaged over thirteen runs each of thirty seconds 

duration. 

 

2.2.8. Transmission Electron Microscopy (TEM) 

TEM studies were conducted using a Philips CM 100 instrument operating at 100 kV 

and equipped with a Gatan 1 k CCD camera. Diluted block copolymer solutions 

(0.10% w/w) were placed on carbon-coated copper grids and exposed to 

ruthenium(VIII) oxide vapour for 7 min at 20 °C prior to analysis.75 This heavy metal 

compound acted as a positive stain for the core-forming PBzMA block to improve 

contrast. The ruthenium(VIII) oxide was prepared as follows: ruthenium(IV) oxide 

(0.30 g) was added to water (50 g) to form a black slurry; subsequent addition of 

sodium periodate (2.0 g) with stirring produced a yellow solution of ruthenium(VIII) 

oxide within 1 min.  

 

2.2.9. Oscillatory rheology measurements 

A TA Instruments AR-G2 rheometer equipped with a variable temperature Peltier 

plate and a 40 mm 2° aluminium cone was used for all experiments. The storage (G’) 

and loss (G”) moduli were measured as a function of temperature at a fixed strain of 

1.0% and an angular frequency of 10 rad s-1 so as to assess the gel stiffness and critical 

gelation temperature (CGT). During temperature sweeps, the temperature was varied 
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at 5 °C intervals, with an equilibration time of five minutes being allowed prior to each 

measurement. In all cases the gap between the cone and plate was 58 µm. 

 

2.3. Results and Discussion 

2.3.1. Synthesis of PLMA macro-CTAs 

Low-polydispersity PLMA macro-CTAs with mean DPs of 16, 18, or 47 (see Table 

2.1) were synthesised via RAFT solution polymerisation in toluene at 70 °C using 

cumyl dithiobenzoate (CDB) as a CTA. In all macro-CTA syntheses, the 

polymerisation was quenched at 71-81% conversion in order to avoid monomer-

starved conditions and therefore ensure retention of the RAFT end-groups.76, 77 This 

is usually considered to be desirable for high blocking efficiencies and hence well-

defined PLMA-PBzMA diblock copolymers. All PLMA macro-CTAs had a 

polydispersity (Mw/Mn) of less than 1.25, suggesting well controlled RAFT 

polymerisations. 

 

Table 2.1. Summary of monomer conversions, mean degrees of polymerisation and GPC molecular 

weights for three PLMA macro-CTAs prepared by RAFT solution polymerisation of LMA in toluene 

at 70 °C using AIBN and CDB. Conditions: total solids concentration = 40% w/w, [CDB]/[AIBN] 

molar ratio = 5.0. 

Target DP Conv.a Actual DPa Mn
b / g mol-1 Mw

b / g mol-1 Mw/Mn
b 

PLMA10 79% 16 4,900 5,800 1.19 

PLMA10 71% 18 4,800 5,800 1.20 

PLMA50 81% 47 11,600 14,400 1.24 

aDetermined by 1H NMR spectroscopy. bDetermined by THF GPC against poly(methyl 

methacrylate) standards. 

 

A representative kinetic study of the RAFT solution polymerisation of LMA to prepare 

a PLMA18 macro-CTA indicated a near-linear evolution of molecular weight with 

conversion (see Figure 2.4b). After an initial induction period of ~100 min, this 

reaction obeyed first-order kinetics (see Figure 2.4a) and was quenched after 11 h 

(71% conversion). 
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Figure 2.4. (a) LMA conversion vs. polymerisation time and (b) Mn and Mw/Mn vs. conversion 

for the RAFT solution polymerisation of LMA in toluene at 70 °C using AIBN and CDB, for a 

target DP of 10. Conditions: total solids concentration = 40% w/w, [CDB]/[AIBN] molar ratio 

= 5.0. Conversions were determined using 1H NMR spectroscopy. 

 

2.3.2. PLMA-PBzMA block copolymer syntheses and phase diagrams 

One important trend in the commercial engine oil sector is a general shift from mineral 

oil towards wholly synthetic oils such as poly(α-olefins). Preliminary experiments 

confirmed that both these industrially-sourced oils were good solvents for PLMA and 

bad solvents for PBzMA. Hence phase diagrams for PLMA-PBzMA block copolymer 

nanoparticles prepared in these two oils were constructed in order to assess the effect 

of the nature of the solvent on the positions of the phase boundaries. Firstly, a low-

polydispersity PLMA macro-CTA with a sufficiently low mean DP to enable the 

synthesis of higher-order morphologies (e.g. PLMA18)
54, 55 was selected. Varying 

amounts of BzMA monomer were polymerised using the same PLMA macro-CTA 

via RAFT dispersion polymerisation in mineral oil to produce a series of well-defined 

PLMA-PBzMA diblock copolymer nanoparticles at various copolymer 

concentrations. More than 95% BzMA monomer conversion was achieved in all 

dispersion polymerisations within 5 h at 90 °C, as judged by 1H NMR spectroscopy. 

Pure spherical, worm-like, or vesicular morphologies were confirmed by TEM studies 

(see Figure 2.5a, b and c, respectively) and a predictive phase diagram was constructed 

for PLMA18-PBzMAx diblock copolymers in mineral oil (Figure 2.5).  
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Figure 2.5. Phase diagram constructed for PLMA18-PBzMAx diblock copolymer nanoparticles 

prepared by RAFT dispersion polymerisation of BzMA in mineral oil using T21s at 90 °C 

([PLMA]/[T21s] molar ratio = 5.0). The post mortem diblock copolymer morphologies were 

assigned from TEM images obtained from 0.10% w/w copolymer dispersions at 20 °C. TEM 

images (a), (b) and (c) represent examples of purely vesicular, worm-like or spherical 

morphologies, respectively. 

 

Previously reported phase diagrams for PLMA-PBzMA diblock copolymer 

formulations in n-heptane54 and n-dodecane55 exhibited purely spherical and vesicular 

phases at copolymer concentrations ranging from 12.5 to 25% w/w, whereas solely 

worm-like micelles could only be obtained at copolymer concentrations at or above 

18% w/w. Although the phase diagram for PLMA-PBzMA nanoparticles in mineral 

oil (Figure 2.5) is similar to that reported for n-heptane, the precise block copolymer 

compositions required to access each individual morphology are subtly different. This 

shift in phase boundaries is best highlighted when comparing the pure worm phase in 

each oil. In n-heptane, the worm phase for PLMA17-PBzMAx diblock copolymers 

corresponds to x ≈ 50-70, whereas worms are obtained at x ≈ 37-47 for a PLMA18-

PBzMAx formulation in  mineral oil (see Figure 2.5), which is close to that observed 

for n-dodecane (for PLMA17-PBzMAx, where x = 36-44).55 

 

Using an industrially-sourced PAO as the continuous phase for the synthesis of 

PLMA-PBzMA diblock copolymer nano-objects enables the role of the solvent in 

such PISA syntheses to be examined. Accordingly, a PLMA16 macro-CTA was chain-
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extended with varying amounts of BzMA at various solids contents in order to 

construct a phase diagram (Figure 2.6). 

 

 

Figure 2.6. Phase diagram constructed for PLMA16-PBzMAx diblock copolymer nanoparticles 

prepared by RAFT dispersion polymerisation of BzMA in poly(α-olefin) oil using T21s at 90 

°C ([PLMA]/[T21s] molar ratio = 5.0). The post mortem diblock copolymer morphologies 

were assigned from TEM images obtained from 0.10% w/w copolymer dispersions at 20 °C. 

TEM images (a), (b) and (c) represent examples of pure vesicular, worm-like or spherical 

morphologies, respectively. 

 

Although this phase diagram exhibits obvious similarities to that obtained for 

PLMA18-PBzMAx in mineral oil (Figure 2.5), some subtle differences are observed. 

In particular, for PLMA16-PBzMAx syntheses conducted at ≥ 20% w/w solids, the 

worm phase in PAO is observed for x ≈ 28-35. In contrast, the worm phase obtained 

for PLMA18-PBzMAx when using mineral oil occurs for x ≈ 37-47. Even allowing for 

the small differences between the mean DPs of the PLMA stabiliser blocks, it is clear 

that a somewhat longer PBzMA block is required to access the worm phase in mineral 

oil. This suggests that PAO is a slightly poorer solvent for the growing PBzMA chains 

than the mineral oil. In order to further illustrate this point, PLMA18-PBzMA45 nano-

objects were prepared at 20% w/w solids in both PAO and mineral oil (see Figure 2.7). 
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Figure 2.7. Synthesis of PLMA18-PBzMA45 diblock copolymer nanoparticles in either mineral 

or PAO oil at 20% w/w solids. In the former case a pure worm phase is obtained, whereas in 

the latter case a mixed phase of spheres, worms and vesicles is obtained as judged by TEM. 

 

Inspecting Figure 2.5, PLMA18-PBzMA45 diblock copolymers at 20% w/w occupy a 

pure worm morphology in mineral oil. However, precisely the same diblock 

copolymer composition forms a mixed phase of spheres, worms and vesicles in PAO 

at the same concentration (Figure 2.7). Thus, it can be deduced that the phase space 

occupied by the pure worm morphology in the mineral and PAO oils is different. 

 

2.3.3. Evaluation of the effect of the solvent on PLMA-PBzMA worm gels 

In view of these subtle solvent effects, the physical properties of free-standing worm 

gels prepared in n-dodecane,55 mineral oil and PAO oil were compared using rheology 

(see Figure 2.8 and Table 2.1). A series of temperature jumps were conducted at a 

constant strain of 1.0% and angular frequency of 10 rad s-1. These parameters were 

previously reported to represent the linear viscoelastic region, where the storage (G’) 

and loss (G”) moduli were found to be frequency-independent at a fixed strain of 

1.0%.55 Thus the same parameters were used to monitor the temperature-dependent 

physical properties of the PLMA-PBzMA worm gels in mineral and PAO oils. 
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Figure 2.8. Storage moduli (G’, filled symbols) and loss moduli (G”, open symbols) vs. 

temperature for (a) 20% w/w PLMA18-PBzMA37 worms in n-dodecane,55 (b) 20% w/w 

PLMA18-PBzMA45 worms in mineral oil and (c) PLMA16-PBzMA32 worms in poly(α-olefin) 

oil. Data were recorded at 1.0% strain using an angular frequency of 10 rad s -1 with an 

equilibration time of 5 min at 5 °C intervals from 20 °C to 80 °C. 

 

The initial G’ values recorded at 20 °C for PLMA-PBzMA worm gels in mineral and 

PAO oils were approximately an order of magnitude greater than for the gel in n-

dodecane. This could be due to the worms being either significantly longer and/or that 

there are stronger inter-worm interactions in these gels. The G’ for the 20% w/w 

PLMA16-PBzMA32 worm gel in PAO oil is approximately twice the value of that for 

the PLMA18-PBzMA45 worm gel in mineral oil, which may also be due to the presence 

of longer worms in PAO oil compared to mineral oil. 

 

Table 2.2. Summary of physical properties of 20% w/w PLMA-PBzMA worm gels in various non-

polar solvents. Initial storage modulus (G’, Pa) at 20 °C, critical gelation temperature (CGT, °C) and 

critical gelation concentration (CGC, % w/w). Measurements were obtained at a fixed strain of 1.0 % 

and an angular frequency of 10 rad s-1 and the temperature was varied at 5 °C intervals from 20 °C to 

80 °C, with a 5 min equilibration time at each temperature. 

Solvent Block Composition 
Initial G’ at 20 °C 

/ Pa 

CGT 

/ °C 

CGCa / 

% w/w 

n-Dodecane55 PLMA18-PBzMA37 2,300 47 ~11 

Mineral oil PLMA18-PBzMA45 21,000 49 9 

PAO oil PLMA16-PBzMA32 41,000 44 9 
aCGC determined upon systematically diluting dispersions until the worm gel formed a 

viscous, free-flowing fluid as determined by tube inversion. 

 

The critical gelation temperature (CGT) of these worm gels is defined as the 

temperature at which the dispersion no longer forms a gel (i.e. when G” > G’).78 

Previous studies55 indicated that a worm-to-sphere transition was responsible for the 

degelation of such worm gels at elevated temperatures due to the decreased amount of 

efficient inter-particle contacts required for gel formation in these dispersed systems. 
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In order to determine whether this morphological transformation is responsible for the 

temperature-dependent degelation observed for PLMA-PBzMA worm gels in mineral 

oil, variable-temperature TEM and DLS studies were carried out (see Figure 2.9). A 

0.10% w/w dispersion of PLMA18-PBzMA40 worms was heated from 20 °C to 90 °C 

and DLS data were collected at 5 °C intervals. At 20 °C, the sphere-equivalent DLS 

diameter was reported to be 163 nm (PDI = 0.39), indicating the presence of worm-

like nanoparticles. This observation was subsequently confirmed by TEM analysis 

(see Figure 2.9a).  

 

 

Figure 2.9. Variable-temperature dynamic light scattering (DLS) studies showing the 

variation of intensity-average diameter (blue triangles) and polydispersity (red squares) for a 

0.10% w/w dispersion of PLMA18-PBzMA40 nanoparticles on heating from 20 °C to 90 °C, 

with data recorded at 5 °C intervals with 5 min equilibration. Representative transmission 

electron microscopy (TEM) images obtained for 0.10% w/w dispersions indicate (a) worm-

like nanoparticles at 20 °C, and (b) spherical nanoparticles at 90 °C.  

 

The intensity-average diameter decreases dramatically upon increasing the 

temperature to 50 °C and remains relatively constant upon further heating to 90 °C 

(DLS diameter = 28 nm, PDI = 0.10). Such small nanoparticles with a relatively 

narrow size distribution are characteristic of spherical particles, which was also 

confirmed by TEM studies (see Figure 2.9b). Therefore, the observed degelation of 
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PLMA-PBzMA worm gels in mineral oil is due to the same worm-to-sphere order-

order transition. It must be noted that at such dilute conditions (0.10% w/w), the hot 

dispersion of spheres cannot re-form worms upon cooling due to the inefficient sphere-

sphere fusion that must occur. Thus, the same spherical nanoparticles are persistent 

after the temperature ramp described in Figure 2.9. This irreversible worm-to-sphere 

transition is also observed when diluting the hot, concentrated (20% w/w) dispersion 

with mineral oil at the same temperature. This technique was utilised to obtain 

representative TEM images of the kinetically ‘trapped’ spheres which are present at 

90 °C. 

 

For PLMA-PBzMA worm gels prepared in the three oils, the CGT ranged from 44 to 

49 °C. Interestingly, the PLMA16-PBzMA32 worm gel produced in PAO oil, which 

provided the highest G’, possessed the lowest CGT. The DP of the PBzMA core-

forming block may influence this parameter, since higher CGTs are observed for 

longer core-forming PBzMA blocks for the three worm gels characterised in this 

study. It is known that the thermally-triggered worm-to-sphere transition occurs due 

to the surface plasticisation of the core-forming block, which alters the relative volume 

fractions of the solvophilic and solvophobic blocks.55 Therefore, it is logical that a 

smaller PBzMA block would require a lesser extent of surface plasticisation to induce 

a significant change in the molecular curvature and therefore the preferred morphology 

occupied by the diblock copolymer nanoparticles. The dispersion is a free-flowing 

fluid below the critical gelation concentration (CGC) due to inefficient inter-worm 

contacts which are now unable to form a network sufficient to form a free-standing 

gel. The value for the CGC is slightly lower for the industrially-sourced oils than for 

n-dodecane. However, all of the non-polar worm gels investigated in the present work 

exhibit much higher CGCs than previously reported aqueous worm gels.78 This might 

perhaps reflect the lack of inter-worm hydrogen bonding in the non-aqueous 

formulations. 

 

2.3.4. Synthesis of PLMA-PBzMA diblock copolymer spheres at high total solids 

contents 

In many RAFT dispersion polymerisation formulations, it has been reported that only 

spherical nanoparticles are obtained when chain-extending a sufficiently long macro-
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CTA.42, 54, 55 This is presumably because the initial process in which so-called higher 

order morphologies (e.g. worms) are formed is multiple sphere-sphere fusion events. 

Using a longer stabiliser block confers more effective steric stabilisation, which 

inevitably leads to a higher proportion of elastic inter-particle collisions, thus 

preventing the formation of higher order morphologies. A PLMA47 macro-CTA is 

sufficiently long to ensure an exclusively spherical morphology when preparing 

PLMA47-PBzMAx block copolymer nanoparticles by RAFT dispersion 

polymerisation in mineral oil, regardless of the targeted PBzMA DP. Thus, well-

defined spherical nanoparticles are obtained for both PLMA47-PBzMA99 and 

PLMA47-PBzMA495 diblock copolymers when synthesised at 20% w/w solids. 

Conversely, this copolymer concentration allows access to pure worm-like and 

vesicular morphologies when using shorter PLMA macro-CTAs (PLMA DP ≤ 18).54, 

55 As expected, PLMA47-PBzMA495 (intensity-average diameter = 149 nm, PDI = 

0.01) diblock copolymer spheres are significantly larger than PLMA47-PBzMA99 

(intensity-average diameter = 54 nm, PDI = 0.01). TEM studies also confirm this 

difference in sphere size (see Figure 2.10). 

 

 

Figure 2.10. Transmission electron micrographs of 0.10% w/w dispersions of (a) PLMA47-

PBzMA99 and (b) PLMA47-PBzMA495 diblock copolymer spheres prepared via RAFT 

dispersion polymerisation in mineral oil at 90 °C conducted at 30, 40 or 50% w/w solids. Inset 

digital photos depict the physical appearance of each concentrated dispersion. 
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Given the asymmetry for PLMA47-PBzMA495 diblock copolymers, the spherical 

nanoparticles most likely represent a kinetically-trapped morphology, since such 

relative volume fractions of the solvophilic and solvophobic blocks would generally 

provide a vesicular morphology.35, 79 Interestingly, such spherical nanoparticles can be 

synthesised at copolymer concentrations up to 50% w/w, with the smaller PLMA47-

PBzMA99 spheres producing a viscous free-flowing dispersion (see Figure 2.10a, inset 

digital images). In contrast, the larger PLMA47-PBzMA495 spheres lead to stirring 

problems at concentrations as low as 30% w/w solids, with a gel-like paste being 

obtained (see Figure 2.10b, inset digital images). Nevertheless, the synthesis of 

relatively small spherical nanoparticles at high solids bodes well for the industrial 

relevance of such PISA formulations. 

 

2.3.5. ‘One-pot’ synthesis of PLMA-PBzMA spheres at high total solids contents 

To further examine the robust nature (and hence potential industrial relevance) of this 

particular PISA formulation, a series of ‘one-pot’ polymerisations were conducted in 

mineral oil. Firstly, a kinetic study of the RAFT solution polymerisation of LMA in 

mineral oil was conducted (Figure 2.11). 

 

 

Figure 2.11. Kinetic data obtained for the RAFT solution polymerisation of a PLMA50 macro-

CTA in mineral oil at 90 °C conducted at 50 (green diamonds), 60 (red triangles), 70 (black 

circles) and 80% w/w (blue squares) total solids using CDB as a RAFT chain transfer agent 

and T21s initiator ([CDB]/[T21s] molar ratio = 5.0). Filled symbols represent conversion data 

and open symbols represent ln([M]0/[M]). All conversions were assessed by 1H NMR 

spectroscopy. 



Chapter 2: Industrially-Relevant Polymerisation-Induced Self-Assembly Formulations in 

Non-Polar Solvents: RAFT Dispersion Polymerisation of Benzyl Methacrylate 

 

83 

 

Efficient stirring was maintained for the solution polymerisations of LMA conducted 

at up to 70% w/w solids when targeting a PLMA50 macro-CTA with a linear semi-

logarithmic plot indicating first-order kinetics up to 90% LMA conversion. At 80% 

w/w solids, the solution viscosity became too high for efficient stirring above 90% 

LMA conversion, but similar first-order polymerisation kinetics were observed up to 

this point. As expected, polymerisations conducted at higher LMA concentrations 

exhibited faster rates of polymerisation, with conversions reaching 90% within 180 

min at 80% w/w, 220 min at 70% w/w, 300 min at 60% w/w, and more than 320 min 

at 50% w/w. Since the homopolymerisation of LMA conducted at 70% w/w reached 

> 95% conversion within 320 min and remained sufficiently fluid for efficient stirring, 

these conditions were selected for the first stage of a ‘one-pot’ synthesis of targeted 

PLMA50-PBzMA100 diblock copolymer nanoparticles. It was previously observed that 

similar PLMA47-PBzMA99 block copolymer spheres prepared via a traditional two-

step synthesis exhibited relatively high viscosities above 30% w/w solids, see Figure 

2.10. Thus, the subsequent RAFT dispersion polymerisation of BzMA was conducted 

at 30% w/w solids in order to enable the reaction mixture to be efficiently stirred 

throughout the polymerisation. Kinetic data were obtained for both the RAFT solution 

polymerisation of LMA at 70% w/w solids and the RAFT dispersion polymerisation 

of BzMA at 30% w/w solids in mineral oil (Figure 2.12). 
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Figure 2.12. Conversion and ln([M]0/[M]) vs. polymerisation time for the ‘one-pot’ synthesis 

of targeted PLMA50-PBzMA100 diblock copolymer spheres in mineral oil. The RAFT solution 

polymerisation of LMA at 70% w/w solids (squares) was followed by the RAFT dispersion 

polymerisation of BzMA at 30% w/w solids (triangles). Filled symbols represent conversion 

data and open symbols represent ln([M]0/[M]) data. All conversions were assessed by 1H 

NMR spectroscopy. TEM images (a), (b), (c) and (d) represent various points in the kinetic 

data for the dispersion polymerisation step and indicate the onset of micellisation at (b). 

Throughout both polymerisation steps, the temperature was constant at 90 °C and the 

[CDB]/[T21s] and [PLMA macro-CTA]/[T21s] molar ratio was 5.0. 
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A degassed solution of BzMA in mineral oil containing additional T21s initiator was 

added to the reaction mixture once the LMA conversion had reached 95%. For the first 

40 min, a relatively slow rate of BzMA polymerisation was observed until a critical 

DP of the growing PBzMA chains was reached, at which point micellar nucleation 

occurred (see in Figure 2.12b). This PBzMA DP is estimated to be 30 by considering 

the intersect of the two linear polymerisation time vs. ln([M]0/[M]) regions. This 

observation is in line with that seen for the phase diagram for PLMA18-PBzMAx 

diblock copolymer nanoparticles in mineral oil (see Figure 2.5), where the critical 

PBzMA DP for self-assembly was judged to be ~28. After this initial period, the 

polymerisation proceeds much faster, presumably because the unreacted BzMA 

migrates into the PBzMA micelle cores, thus producing a higher local monomer 

concentration as previously described by Blanazs et al.33 Nonetheless, first-order 

kinetics were observed for BzMA conversions up to 90% (see Figure 2.12). A 

relatively monodisperse spherical morphology was obtained from the final diblock 

copolymer dispersion with an intensity-average diameter of 39 nm and PDI of 0.03, 

as judged by DLS (see Figure 2.13). 

 

 

Figure 2.13. Intensity-average particle diameter distribution obtained by DLS for a 0.10% 

w/w dispersion of PLMA50-PBzMA100 diblock copolymer spheres targeted via a ‘one-pot’ 

protocol at 30% w/w solids. 
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Molecular weight distributions (MWDs) for each of the aliquots taken during the ‘one-

pot’ PISA synthesis shown in Figure 2.12 were assessed via GPC (Figure 2.14). A 

linear evolution in Mn with monomer conversion was observed for both the solution 

and dispersion polymerisations (Figure 2.14a), and relatively narrow MWDs (Mw/Mn 

< 1.20) were maintained throughout (Figure 2.14b). Thus excellent RAFT control was 

achieved for this ‘one-pot’ synthesis. 

 

 

Figure 2.14. (a) THF gel permeation chromatograms obtained for the ‘one-pot’ synthesis of 

targeted PLMA50-PBzMA100 diblock copolymer spheres via solution and dispersion RAFT 

polymerisation steps in mineral oil. Red GPC traces indicate MWDs obtained during the 

solution polymerisation of LMA and blue GPC traces represent those obtained during the 

dispersion polymerisation of BzMA. (b) Mn (red data) and Mw/Mn (blue data) vs. monomer 

conversion for the RAFT solution polymerisation of LMA at 70% w/w solids (circles) and the 

RAFT dispersion polymerisation of BzMA at 30% w/w solids in mineral oil (triangles).  Filled 

symbols represent Mn and open symbols represent Mw/Mn. Throughout both polymerisation 

steps, the temperature was constant at 90 °C and the [CDB]/[T21s] and [PLMA macro-

CTA]/[T21s] molar ratio was 5.0. 
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2.4. Conclusions 

In summary, well-defined PLMA-PBzMA block copolymer spheres, worms or 

vesicles can be reproducibly prepared via polymerisation-induced self-assembly in 

industrially-sourced mineral and poly(α-olefin) (PAO) oils at 90 °C, provided that the 

mean degree of polymerisation of the PLMA stabiliser block is sufficiently low (e.g., 

DP 18 or 16). The phase diagram constructed for PLMA18-PBzMAx diblock 

copolymers in mineral oil is very similar to that previously reported for n-dodecane.55 

However, subtle variation in the precise location of phase boundaries is observed for 

PLMA16-PBzMAx diblock copolymers in PAO oil. PLMA-PBzMA worm gels 

produced in n-dodecane, mineral oil and PAO oil displayed similar rheological 

properties, although the worm gels in the mineral and PAO oils exhibited storage 

moduli (G’) an order of magnitude higher than the gel prepared in n-dodecane. In all 

cases, the critical gelation temperature (CGT) was found to be between 44 °C and 49 

°C, with the stiffest worm gel (in PAO oil) having the lowest CGT, and the critical 

gelation concentrations (CGCs) were found to be between 9 and 11% w/w. Purely 

spherical nanoparticles are obtained when using a PLMA stabiliser with a relatively 

high DP (e.g. 47). When targeting PLMA50-PBzMA100, PISA syntheses can be 

conducted at up to 50% w/w solids with efficient stirring being maintained throughout 

the polymerisation. A convenient ‘one-pot’ synthetic protocol has also been achieved. 

A PLMA macro-CTA was first synthesised at 70% w/w solids in mineral oil via RAFT 

solution polymerisation, before subsequent chain extension with BzMA via RAFT 

dispersion polymerisation at 30% w/w solids. The final PLMA-PBzMA spherical 

nanoparticles displayed a relatively narrow size distribution, as judged by TEM and 

DLS studies. TEM and DLS were also utilised to monitor the evolution of the spherical 

nanoparticles during the RAFT dispersion polymerisation step, with a clear onset of 

micellisation being observed. Moreover, GPC studies confirmed that relatively high 

blocking efficiencies and narrow molecular weight distributions (Mw/Mn < 1.20) were 

achieved throughout the ‘one-pot’ process. 
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3.1. Introduction 

Small-angle X-ray scattering (SAXS) is a powerful in situ technique for determining 

the average size and shape of millions of particles within a colloidal dispersion.1, 2 This 

highlights the advantage of SAXS over other techniques such as transmission electron 

microscopy (TEM), where particles are imaged in their ‘dry’ state and typically only 

hundreds of particles are counted to give a number-average size, or dynamic light 

scattering (DLS), where only spherical particles can be accurately analysed and 

intensity-averaged sizes are highly biased towards larger particles. The incident X-

rays interact with electrons within a sample and emit coherent secondary waves which 

are capable of interfering with each other.1 Thus, one requirement for SAXS is that 

the constituents of the particles must have a different electron density compared to that 

of the continuous phase, which is described by the difference in scattering length 

density (ξ) between the particles and the solvent.1 

 

𝜉 =
𝑏e𝜌m𝑁A

𝑀𝑤
∑ 𝑛𝑖𝑧𝑖

𝑖

 3.1 

 

Here be is the scattering length of an electron, ρm is the density of the molecule, NA is 

Avogadro’s constant, Mw is the weight-average molecular weight of the molecule 

(constituents of the particle or solvent), ni is the number of atoms within the molecule 

with atomic number zi.  

 

 

Figure 3.1. Schematic diagram of the interaction of an electron with incident X-rays. The 

vector ki represents the incoming X-rays, k0 represents the non-scattered X-rays, ks represents 

the scattered X-rays, q represents the scattering vector and θ is one-half of the scattering angle. 
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Figure 3.1 shows a schematic diagram for scattering from a one point scatterer, an 

electron. The momentum transfer or scattering vector (q) is a measure of the 

magnitude and direction of the scattering. 

 

𝑞 =
4𝜋

𝜆
𝑠𝑖𝑛𝜃 3.2 

 

Here λ is the wavelength of the incident X-rays and θ is one-half of the scattering 

angle. Bragg’s law relates q and length d such that d = 2π/q. Thus there is an inverse 

relationship between particle size and scattering angle (2θ), so larger q-vectors 

describe scattering from smaller objects.1 The scattering intensity at a given q, I(q), is 

given by: 

𝐼(𝑞) = 𝑁𝑉2∆𝜉2𝑃(𝑞)𝑆(𝑞) 3.3 

 

where N is the number density, V is the volume of particles, Δξ is the contrast in 

scattering length density between the particles and the continuous phase, P(q) is the 

form factor and S(q) is the structure factor. P(q) describes the shape of the particles, 

whereas S(q) represents the spatial arrangement of the scattering objects. For dilute 

dispersions, S(q) = 1, thus eliminating the contribution of S(q) and simplifying SAXS 

analysis.1, 2 The X-ray scattering of a sample is detected at varying sample-to-detector 

distances (depending on the limitations of the instrument or the length scale of 

interest), with a 2D scattering pattern being generated. This 2D pattern is converted to 

a 1D scattering pattern by radial integration to provide an I(q) vs. q plot. There are two 

important regions to consider: the Guinier region (at low q) and the Porod region (at 

high q). The Guinier approximation can be applied at very low q (i.e. when qRg << 1, 

where Rg is the radius of gyration) where any P(q) can be approximated as a Gaussian 

curve due to the overall size (or Rg) of the scattering object: 

 

𝑃(𝑞) ≈ 𝑎0𝑒𝑥𝑝 (−
𝑅g

2𝑞2

3
) 3.4 
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Here a0 is the extrapolated intensity at zero angle. A Guinier plot of ln[I(q)] vs. q2 

gives a straight line with a slope equal to –Rg
2/3 and an intercept equal to ln[a0].

2 At 

low q, the slope of the I(q) vs. q plot indicates the particle morphology. In this region, 

I(q) ~ q0 for spherical particles, I(q) ~ q-1 for rods (or to a first approximation worm-

like nanoparticles) and I(q) ~ q-2 for disks (or vesicles/lamellae).1, 2 The Porod 

approximation can be used at high q, which provides information on the surface or 

interface of the scattering object. For smooth surfaces, I(q) ~ q-4 in this region, whereas 

I(q) ~ q-2 for polymer-stabilised particles (such as diblock copolymer nanoparticles) 

due to the Gaussian chains at the interface. 1D scattering patterns also exhibit 

characteristic features (i.e. local minima) due to specific dimensions of the particle. 

Typical SAXS patterns for diblock copolymer spheres (red data), worms (green data) 

and vesicles (blue data) are shown in Figure 3.2. 

 

 

Figure 3.2. Typical SAXS patterns obtained for diblock copolymer spheres (red data), worms 

(green data) and vesicles (blue data). Features of the relevant scattering patterns that provide 

information on the radius of the sphere (Rs), mean worm thickness (Tw), outer vesicle diameter 

(Dout) and vesicle membrane thickness (Tm) are shown. The feature indicating the worm length 

(Lw) appears at a lower q range than that shown here. Slopes of 0, -1 and -2 are shown for 

reference. Also shown are schematic representations of a sphere, worm and vesicle, together 

with their dimensions as represented by features in the corresponding SAXS pattern. 

 

SAXS techniques have been employed to characterise nanoparticle morphologies 

obtained by various RAFT-mediated PISA formulations.3-15 Of particular relevance to 
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this Chapter is the work described by Warren et al.,10 where post mortem SAXS 

analysis was utilised to examine the growth of poly(glycerol monomethacrylate)-

poly(2-hydroxypropyl methacrylate) (PGMA-PHPMA) diblock copolymer vesicles 

dispersed in water. It was found that PGMA55-PHPMAx vesicles with increasing x 

values were of very similar overall size, but had thicker membranes. This mechanism 

of vesicle growth was shown to be the only means by which the growing vesicles can 

reduce their interfacial area, which is favourable since it minimises their free energy. 

Interestingly, increasing the PHPMA DP ultimately induces ‘vesicle death’, whereby 

the original well-defined vesicle morphology is eventually lost (see Figure 3.3). 

 

 

Figure 3.3. ‘Birth’ and ‘death’ of poly(glycerol monomethacrylate)-poly(2-hydroxypropyl 

methacrylate) (PGMA-PHPMA) diblock copolymer vesicles in water.10 

 

Also of some relevance to this Chapter are the in situ morphology transformations 

observed during the RAFT-mediated PISA synthesis of PGMA-PHPMA vesicles 

described by Blanazs and co-workers.16 Although SAXS was not employed in this 

work, detailed TEM studies indicated that worms form vesicles via various 

intermediate morphologies when targeting PGMA47-PHPMA200 vesicles, including 

octopi and jellyfish structures (see Figure 3.4). Initial small spheres formed short 

worms, which continued to grow in length. A significant degree of worm branching 

became evident as the polymerisation proceeded, and these branched worms then 

began to cluster and underwent partial coalescence to form nascent bilayers with 

protruding worms (termed ‘octopi’). These octopi then began to wrap up and form 

‘jellyfish’. These jellyfish structures appeared to be the final intermediate stage in the 

morphology evolution, since well-defined vesicles were observed soon after, 

presumably due to the fusion of the pendent worms protruding from the jellyfish.16 
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Figure 3.4. Transmission electron micrographs displaying the morphology transformation 

from (branched) worms to vesicles via intermediate octopi and jellyfish structures during the 

PISA synthesis of PGMA47-PHPMA200 vesicles in water.16 

 

There have been various examples of in situ SAXS monitoring of particle formation 

and evolution.17-19 One literature example is of particular relevance to the current 

work. Howdle and co-workers20-28 developed several RAFT dispersion polymerisation 

formulations in supercritical CO2, as discussed in Chapter 1 (see Section 1.6.5). In 

collaboration with beamline scientists on BM26 at the European Synchrotron 

Research Facility (ESRF), a high-pressure cell was developed which enabled 

monitoring of such RAFT dispersion polymerisations via in situ SAXS.18 The 

evolution in particle morphology with concomitant internal microphase separation 

was monitored during the synthesis of polydimethylsiloxane (PDMS)-stabilised 

poly(methyl methacrylate)-poly(benzyl methacrylate) (PMMA-PBzMA) diblock 

copolymer microparticles (see Figure 3.5). 
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Figure 3.5. Time-resolved SAXS patterns obtained during the RAFT dispersion 

polymerisation of PDMS-stabilised PMMA-PBzMA block copolymer nanoparticles in 

supercritical CO2 at 200 bar and 65 °C, with SAXS patterns being collected every 60 s.18 

 

In this Chapter, the PISA synthesis of poly(stearyl methacrylate)-poly(benzyl 

methacrylate) (PSMA-PBzMA) diblock copolymer nanoparticles in mineral oil is 

reported (see Scheme 3.1). A predictive phase diagram has been constructed for 

PSMA13-PBzMAx diblock copolymers and two series of spherical nanoparticles have 

been synthesised for PSMA18-PBzMAx and PSMA31-PBzMAx diblock copolymers. 

TEM, DLS and SAXS are used to characterise such nanoparticles after their PISA 

synthesis. In particular, a synchrotron source is utilised to conduct SAXS studies of 

the in situ evolution of the copolymer morphology during PISA. This approach 

provides remarkably detailed insights regarding the sphere-to-worm and worm-to 

vesicle transitions that occur during this non-aqueous PISA formulation and also sheds 

light on the mechanism of in situ vesicle growth. 
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Scheme 3.1. Synthesis of a poly(stearyl methacrylate) (PSMA) macro-CTA via RAFT 

solution polymerisation of SMA in toluene at 70 °C, followed by RAFT dispersion 

polymerisation of benzyl methacrylate (BzMA) in mineral oil at 90 °C. 

 

3.2. Experimental 

3.2.1. Materials 

Monomers were purchased from Sigma-Aldrich (UK) and passed through a basic 

alumina column prior to use to remove inhibitor. Tert-butyl peroxy-2-ethylhexanoate 

(T21s) initiator was purchased from AkzoNobel (The Netherlands). Cumyl 

dithiobenzoate (CDB), CDCl3, and all other reagents were purchased from Sigma-

Aldrich (UK) and were used as received, unless otherwise noted. THF and toluene 

were purchased from Fisher Scientific (UK), CD2Cl2 was purchased from Goss 

Scientific (UK) and industrial-grade mineral oil was provided by Lubrizol Corporation 

Ltd. 

 

3.2.2. Synthesis of poly(stearyl methacrylate) (PSMA) macromolecular-chain 

transfer agent (macro-CTA) 

A typical synthesis of PSMA31 macro-CTA was conducted as follows. A 250 mL 

round-bottomed flask was charged with stearyl methacrylate (SMA; 37.3 g; 110 

mmol), cumyl dithiobenzoate (CDB; 1.00 g; 3.67 mmol; target degree of 

polymerisation (DP) = 30), 2,2'-azobisisobutyronitrile (AIBN; 121 mg, 0.74 mmol; 

CDB/AIBN molar ratio = 5.0) and toluene (57.5 g). The sealed reaction vessel was 

purged with nitrogen and placed in a pre-heated oil bath at 70 °C for 10 h. The resulting 

PSMA (SMA conversion = 72 %; Mn = 9,200 g mol-1, Mw = 11,100 g mol-1, Mw/Mn = 

1.21) was purified by precipitation into excess ethanol. The mean DP of this macro-

CTA was calculated to be 31 using 1H NMR spectroscopy by comparing the integrated 

signals corresponding to the CDB aromatic protons at 7.0-7.5 ppm with that assigned 

to the two oxymethylene protons of PSMA at 3.4-4.2 ppm. Thus the CTA efficiency 

was calculated to be 70%. 
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3.2.3. Synthesis of poly(stearyl methacrylate)-poly(benzyl methacrylate) (PSMA-

PBzMA) diblock copolymer nanoparticles 

A typical RAFT dispersion polymerisation synthesis of PSMA31-PBzMA196 diblock 

copolymer nanoparticles at 20% w/w solids was conducted as follows. Benzyl 

methacrylate (BzMA; 0.393 g; 2.23 mmol), T21s initiator (4.82 mg; 2.23 μmol; 

dissolved at 10.0 % v/v in mineral oil) and PSMA31 macro-CTA (0.12 g; 11.1 μmol; 

macro-CTA/initiator molar ratio = 5.0; target PBzMA DP = 200) were dissolved in 

mineral oil (2.05 g). The reaction mixture was sealed in a 10 mL round-bottomed flask 

and purged with nitrogen gas for 30 min. The deoxygenated solution was then placed 

in a pre-heated oil bath at 90 °C for 5 h (final BzMA conversion = 98 %; Mn = 30,100 

g mol-1, Mw/Mn = 1.19). 

 

3.2.4. Gel permeation chromatography (GPC) 

Molecular weight distributions (MWDs) were assessed by GPC using THF eluent at 

30 °C. The THF GPC system was equipped with two 5 μm (30 cm) Mixed C columns 

and a WellChrom K-2301 refractive index detector operating at 950  30 nm. The 

mobile phase contained 2.0% v/v triethylamine and 0.05% w/v butylhydroxytoluene 

(BHT) with a toluene flow rate marker and the flow rate was fixed at 1.0 mL min-1. A 

series of ten near-monodisperse poly(methyl methacrylate) standards (Mp values 

ranging from 645 to 2,480,000 g mol-1) were used for calibration. 

 

3.2.5. 1H Nuclear Magnetic Resonance (NMR) spectroscopy 

1H NMR spectra were recorded in either CD2Cl2 or CDCl3 using a Bruker AV1-400 

or AV1-250 MHz spectrometer. Typically 64 scans were averaged per spectrum. 

 

3.2.6. Dynamic light scattering (DLS) 

DLS studies were performed at 25 °C using a Zetasizer NanoZS instrument (Malvern 

Instruments, UK) at a fixed scattering angle of 173°. Copolymer dispersions were 

diluted to 0.10% w/w using n-dodecane prior to light scattering studies. The intensity-

average diameter and polydispersity of the diblock copolymer nanoparticles were 
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calculated by cumulants analysis of the experimental correlation function using 

Dispersion Technology Software version 6.20. Data were averaged over thirteen runs 

each of thirty seconds duration. 

 

3.2.7. Transmission electron microscopy (TEM) 

TEM studies were conducted using a Philips CM 100 instrument operating at 100 kV 

and equipped with a Gatan 1 k CCD camera. Diluted diblock copolymer solutions 

(0.10% w/w) were placed on carbon-coated copper grids and exposed to 

ruthenium(VIII) oxide vapour for 7 min at 20 °C prior to analysis.29 This heavy metal 

compound acted as a positive stain for the core-forming PBzMA block to improve 

contrast. The ruthenium(VIII) oxide was prepared as follows: ruthenium(IV) oxide 

(0.30 g) was added to water (50 g) to form a black slurry; subsequent addition of 

sodium periodate (2.0 g) with stirring produced a yellow solution of ruthenium(VIII) 

oxide within 1 min. 

 

3.2.8. Small-angle X-ray scattering (SAXS) 

SAXS patterns were collected at a synchrotron source (Diamond Light Source, station 

I22, Didcot, UK) using monochromatic X-ray radiation (wavelength, λ = 0.124 nm, 

with q ranging from 0.015 to 1.3 nm-1, where q = 4π sin θ/λ is the length of the 

scattering vector and θ is one-half of the scattering angle) and a 2D Pilatus 2M pixel 

detector (Dectris, Switzerland). Glass capillaries of 2.0 mm diameter were used as a 

sample holder. For in situ SAXS studies, all reagents were first purged with nitrogen 

gas for 30 min, as described earlier, before a portion of the deoxygenated solution was 

transferred into a glass capillary. The capillary was then sealed in order to prevent 

exposure to oxygen before being placed into the brass holding stage, which was pre-

heated to 90 °C using a water circulating bath. SAXS patterns were collected every 2 

min for 3 h, or until no further evolution in the pattern was observed. SAXS data were 

reduced (integration and normalisation) using Dawn software supplied by Diamond 

Light Source.30 
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Selected static SAXS patterns were obtained for 1.0% w/w copolymer dispersions 

using a Bruker AXS Nanostar instrument modified with microfocus X-ray tube 

(GeniX3D, Xenocs) and motorised scatterless slits for the beam collimation (sample 

to detector distance 1.46 m, Cu Kα radiation and 2D HiSTAR multiwire gas detector). 

SAXS patterns were recorded over a q range of 0.08 nm-1 < q < 1.6 nm-1. Glass 

capillaries of 2.0 mm diameter were used as a sample holder, and an exposure time of 

1.0 h was utilised for each sample. SAXS data were reduced using Nika macros for 

Igor Pro by J. Ilavsky. All SAXS data collected at different locations were analysed 

(background subtraction, data modelling and fitting) using Irena SAS macros for Igor 

Pro.31 

 

3.2.9. Renormalisation of kinetic data for the RAFT dispersion polymerisation of 

BzMA 

Polymerisation kinetic data were obtained for normal 10 mL laboratory-scale PISA 

syntheses (targeting PSMA31-PBzMA2000 spheres and PSMA13-PBzMA150 vesicles, 

respectively) by withdrawing multiple aliquots of the reaction solution prior to 1H 

NMR analysis (see Figure 3.12a and Figure 3.17a; blue data sets in each case). In each 

case these data were fitted to a sigmoid function using Igor Pro software using the 

equation shown below: 

𝑦 =  𝑎 + 
𝑏

(1 + exp (
𝑐 − 𝑥

𝑑
))

 3.5 

 

Here, y is the BzMA conversion (%), x is the relative polymerisation time and a, b, c 

and d are arbitrary fitting parameters. This function was then utilised to calculate the 

polymerisation kinetics for the two PISA syntheses conducted in a 2.0 mm glass 

capillary for the in situ SAXS experiments described above (see Figure 3.12a and 

Figure 3.17a; red data sets in each case). 
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3.2.10. Determination of BzMA volume fraction in PSMA31-PBzMAx spherical 

nanoparticle cores 

PSMA31-PBzMAx spheres prepared at 20% w/w solids in mineral oil with x values of 

396, 582, 784 or 1470 were diluted to 10% w/w in the same solvent. Then the relevant 

amounts of BzMA (4-170 μL) were added to 2.0 mL aliquots of the above dispersion 

in order to replicate various time points during the RAFT dispersion polymerisation 

of PSMA31-PBzMA2000 spheres that correspond to BzMA conversions of 19.8%, 

29.1%, 39.2% or 73.5%, respectively. Each BzMA-doped dispersion was then heated 

to 90 °C for 1 h before being sedimented using a Heraeus Biofuge Pico centrifuge at 

13,000 rpm (16,060 g) until the spheres were fully sedimented. 

 

 

Figure 3.6. Schematic representation of the centrifugation studies to determine the volume 

fraction of BzMA within the core domain (φBzMA) of spherical nanoparticles. 

 

The resulting clear supernatant, which contains any BzMA monomer not located 

within the nanoparticle cores, was removed and analysed via 1H NMR spectroscopy 

in CD2Cl2 using triethoxymethylsilane (TEMS) as an internal standard (present at the 

same concentration as the BzMA monomer prior to centrifugation). The integrated 

oxymethylene signal due to the TEMS (~ 3.8 ppm) was set to six protons and the NMR 

signals corresponding to the aromatic protons ([Ar]) of the BzMA monomer were then 

integrated. The mole fraction of BzMA monomer present within the nanoparticle cores 

is therefore equal to 1-([Ar]/5). The BzMA volume fraction within the core domain 

(φBzMA) was subsequently calculated by considering the relative volumes of the 

monomer (as calculated using 1H NMR spectroscopy; see Figure 3.7 below for the 

calibration plot) and the PBzMA core-forming chains within the nanoparticle cores. 
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Given that 100% BzMA conversion corresponds to φBzMA = 0, these data can be used 

to calculate φBzMA at any time point during the PISA synthesis of PSMA31-PBzMA2000 

spheres. A plot of BzMA conversion (x) vs. φBzMA (y) gave a satisfactory fit (R2 > 

0.95) to a logarithmic function of the form y = -0.234*ln(x) + 1.0656. 

 

 

Figure 3.7. Conversion vs. volume fraction of BzMA monomer within growing spherical 

cores (φBzMA) calculated for the PISA synthesis of PSMA31-PBzMA2000 spheres at 10% w/w. 

 

3.2.11. Determination of the standard deviation in the molecular weight distribution 

(MWD) 

The standard deviation in the MWD is required in order to determine the maximum 

error that should be attributed to the number of copolymer chains per self-assembled 

sphere or vesicle (Ns or Nv, respectively). This is because the dominant error in this 

calculation comes from the uncertainty in the mean volume occupied by one PBzMA 

core-forming block (VPBzMA), which is in turn determined by the MWD. Therefore the 

unimodal MWD determined by THF GPC analysis was fitted to a Gaussian model to 

determine its standard deviation using the equation below: 

 

𝑦 = 𝑎 exp (−
(𝑥 − 𝑏)2

2𝜎2
) 3.6 
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Here, y is the retention time (min), x is the detector response, a and b are constants and 

σ is the standard deviation. This σ value corresponded to either 9.5% or 3.4% of the 

peak retention time for PSMA13-PBzMA2000 and PSMA13-PBzMA150 diblock 

copolymers respectively. This parameter was subsequently used as the maximum 

percentage error for the relevant Ns and Nv calculations, respectively. 

 

3.3. Results and Discussion 

3.3.1. Synthesis of PSMA macro-CTAs 

RAFT solution polymerisation of stearyl methacrylate (SMA) was conducted in 

toluene at 70 °C using cumyl dithiobenzoate (CDB) as a CTA. Three PSMA macro-

CTAs were characterised using 1H NMR spectroscopy and the mean degree of 

polymerisation (DP) was calculated to be 13, 18 or 31 (see Table 3.1).  

 

Table 3.1. Summary of monomer conversions, mean degrees of polymerisation and GPC molecular 

weights for three PSMA macro-CTAs prepared by RAFT solution polymerisation of LMA in toluene 

at 70 °C using AIBN and CDB. Conditions: total solids concentration = 40% w/w, [CDB]/[AIBN] 

molar ratio = 5.0. 

Target DP Conv.a Actual DPa Mn
b / g mol-1 Mw

b / g mol-1 Mw/Mn
b 

PSMA30 72% 31 9,200 11,100 1.21 

PSMA10 75% 18 5,500 6,900 1.24 

PSMA5 76% 13 4,900 5,700 1.17 

aDetermined by 1H NMR spectroscopy. bDetermined by THF GPC against poly(methyl 

methacrylate) standards. 

 

Each homopolymerisation was quenched at 72%-76% conversion in order to avoid 

monomer-starved conditions, thus ensuring the retention of RAFT end-groups.32, 33 

This is usually required for high blocking efficiencies and hence well-defined PSMA-

PBzMA diblock copolymers. Each PSMA macro-CTA had a polydispersity (Mw/Mn) 

of ≤ 1.24, which is consistent with previous studies reporting well-controlled RAFT 

syntheses under these conditions.34 A typical kinetic study of the synthesis of a 

PSMA31 macro-CTA via RAFT solution polymerisation was conducted (Figure 3.8). 

After an initial induction period, first-order kinetics were observed prior to quenching 
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at 72% conversion after 10 h. GPC analysis indicated a linear evolution of molecular 

weight with conversion (Figure 3.8b). 

 

 

Figure 3.8. (a) SMA conversion vs. polymerisation time and (b) Mn and Mw/Mn vs. conversion 

for the RAFT solution polymerisation of SMA in toluene using AIBN and CDB, for a target 

DP of 30. Conditions: total solids concentration = 40% w/w, [CDB]/[AIBN] molar ratio = 5.0. 

Conversions were determined by 1H NMR spectroscopy. 

 

3.3.2. PSMA31-PBzMAx and PSMA18-PBzMAx diblock copolymer spheres 

BzMA monomer was polymerised using two of the low polydispersity PSMA macro-

CTAs (DP = 18, or 31) in turn via RAFT dispersion polymerisation (see Table 3.2). 

In all cases, ≥ 97% BzMA conversion was achieved within 5 h at 90 °C, as judged by 

1H NMR spectroscopy. Only spherical morphologies were obtained when using a 

longer PSMA stabiliser block (DP = 31 or 18). This indicates that the upper limit 

PSMA DP for access to higher order morphologies (i.e. worms or vesicles) is relatively 

low for this PISA formulation in mineral oil. Longer PSMA stabiliser blocks confer 

enhanced steric stabilisation, which prevents the efficient 1D fusion of multiple 

spheres and therefore the formation of anisotropic worms. Similar observations were 

reported for PLMA-PBzMA diblock copolymers prepared via RAFT dispersion 

polymerisation of BzMA in n-heptane,34 n-dodecane5 and mineral oil (see Chapter 2). 

In these earlier studies, the upper limit PLMA stabiliser DP which allowed access to 

higher order morphologies was 16-18. Given the relative molecular volumes of the 

LMA (C12 side-chain) and SMA (C18 side-chain) repeat units, it is reasonable that 

using PSMA18 only allows access to spheres. Clearly, PSMA13 has a comparable 



Chapter 3: In Situ Small-Angle X-Ray Scattering Studies of Sterically-Stabilised Diblock 

Copolymer Nanoparticles Formed During Polymerisation-Induced Self-Assembly in Non-

Polar Media 

 

106 

 

molecular volume to that of PLMA18, which is why using the former macro-CTA 

allows access to worms and vesicles, as well as spheres. 

 

Table 3.2. Summary of targeted copolymer composition, BzMA conversion, GPC molecular weights, 

DLS diameter (D) and PDI for two series of PSMA31-PBzMAx and PSMA18-PBzMAx diblock 

copolymer spheres prepared by RAFT dispersion polymerisation of BzMA in mineral oil at 90 °C and 

20% w/w, using T21s initiator ([macro-CTA]/[T21s] molar ratio = 5.0). 

Target 

Composition 
Conv.a Mn

b / g mol-1 Mw/Mn
b Dc / nm PDIc 

PSMA31-PBzMA50 99 14,300 1.20 25 0.04 

PSMA31-PBzMA100 98 18,300 1.23 34 0.02 

PSMA31-PBzMA200 98 30,100 1.19 44 0.01 

PSMA31-PBzMA300 99 38,000 1.25 54 0.01 

PSMA31-PBzMA400 99 51,400 1.22 62 0.01 

PSMA31-PBzMA500 99 55,700 1.30 67 0.07 

PSMA31-PBzMA600 97 66,800 1.36 82 0.16 

PSMA31-PBzMA800 98 86,300 1.40 101 0.18 

PSMA31-PBzMA1000 99 113,400 1.42 114 0.17 

PSMA31-PBzMA1500 98 132,200 1.56 125 0.07 

PSMA31-PBzMA2000 98 140,200 1.91 154 0.01 

PSMA18-PBzMA50 99 9,000 1.26 23 0.02 

PSMA18-PBzMA75 99 11,600 1.25 39 0.08 

PSMA18-PBzMA100 98 15,800 1.25 41 0.01 

PSMA18-PBzMA150 98 18,600 1.24 48 0.02 

PSMA18-PBzMA200 98 23,300 1.24 58 0.03 

PSMA18-PBzMA400 98 42,700 1.26 93 0.02 

PSMA18-PBzMA500 98 48,800 1.34 114 0.04 

PSMA18-PBzMA800 98 69,200 1.41 135 0.01 

aDetermined by 1H NMR spectroscopy. bDetermined by THF GPC against poly(methyl 

methacrylate) standards. cDetermined by DLS of a 0.10% w/w dispersion of spheres in n-

dodecane at 20 °C. 
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Figure 3.9. THF gel permeation chromatograms (vs. poly(methyl methacrylate) standards) 

obtained for three PSMA31-PBzMAx diblock copolymers prepared via RAFT dispersion 

polymerisation of BzMA in mineral oil at 90 °C and 20% w/w solids. The precursor PSMA31 

macro-CTA (prepared in toluene at 70 °C and 40% w/w solids; black dashed curve) is also 

shown for reference. 

 

Compared to related RAFT dispersion polymerisation syntheses conducted in non-

polar media,5, 34-37 the present PSMA-PBzMA formulation enables relatively narrow 

MWDs to be obtained even when targeting PBzMA DPs as high as 500, which 

corresponds to an experimentally determined Mn of ~56 kg mol-1 (Figure 3.9). GPC 

analysis of PSMA31-PBzMAx (x ≤ 500) diblock copolymers in THF eluent indicates 

Mw/Mn values ranging between 1.20 and 1.30, which suggests good RAFT control. 

Also, the unimodal nature of these curves and the clear shift from the original PSMA31 

macro-CTA indicates relatively high blocking efficiencies. In contrast, relatively 

broad MWDs (Mw/Mn > 1.50) were reported by Fielding et al.34 when targeting x 

values above 300 for PLMA37-PBzMAx diblock copolymers via closely-related PISA 

syntheses conducted in n-heptane. However, it is not yet understood why merely using 
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a PSMA macro-CTA instead of a PLMA macro-CTA leads to significantly better 

pseudo-living character during the dispersion polymerisation of BzMA. 

 

A series of spherical nanoparticles with tunable diameters was conveniently prepared 

in mineral oil at 20% w/w solids simply by varying the target DP of the core-forming 

PBzMA block when using a PSMA macro-CTA with a sufficiently high DP. For 

example, PSMA18-PBzMAx spheres ranging from 23 to 135 nm diameter (as judged 

by DLS) were obtained when targeting x values of 50 to 800. Similarly, well-defined 

PSMA31-PBzMAx spheres of 25 to 154 nm diameter were produced for x = 50 to 2000. 

The mean sphere diameter (D) is related to the mean DP of the core-forming block (x) 

by a scaling exponent (α) as indicated by the equation D ~ k.xα, where k is a constant.38, 

39 Figure 3.10 shows double-logarithmic plots of D, as judged by DLS, against x for 

each series of PSMA18-PBzMAx and PSMA31-PBzMAx spheres. A clear relationship 

is observed in each case, which enables the corresponding α value to be determined. 

This parameter provides important information regarding the behaviour of the PBzMA 

core-forming chains. For the PSMA31-PBzMAx series we find that α = 0.50, which 

corresponds to fully collapsed PBzMA chains.38-40 According to the literature, such 

low α values suggest weak segregation (and minimal solvation).38-40 On the other hand, 

we find that α = 0.61 for the PSMA18-PBzMAx series, indicating that the PBzMA 

chains are more stretched and may have a finite degree of solvation. This means that, 

for a given PBzMAx block (where x > 50), larger spheres are always obtained when 

using the shorter PSMA18 stabiliser block. 
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Figure 3.10. Intensity-average sphere diameter (DS) vs. target DP of the PBzMA block (x) for 

series of PSMA18-PBzMAx (red circles) and PSMA31-PBzMAx (black squares) diblock 

copolymer spheres prepared via RAFT dispersion polymerisation of BzMA in mineral oil at 

90 °C and 20% w/w solids. The error bars represent the standard deviation of the diameter and 

α is the scaling factor. 

 

3.3.3. In situ SAXS studies of the PISA synthesis of PSMA31-PBzMA2000 spheres 

A synchrotron X-ray source was used to acquire SAXS patterns in situ during the PISA 

synthesis of PSMA31-PBzMA2000 diblock copolymer spheres at 90 °C in mineral oil 

at 10% w/w solids. The sample cell was a 2 mm glass capillary and scattering patterns 

were recorded every 2 min for 120 min (see Figure 3.11). The onset of micellisation 

occurs when the growing PBzMA chains become sufficiently long to induce 

nucleation.41 This occurred within around 2 min of the polymerisation, as indicated by 

the presence of a local minimum at q~0.23 nm-1. The characteristic length scale 

corresponding to this feature is the mean core radius of the spherical nanoparticles 

(Rs), which was observed to be 15 nm. Since the PISA synthesis was conducted at 

10% w/w solids, it was necessary to incorporate an appropriate structure factor42 into 



Chapter 3: In Situ Small-Angle X-Ray Scattering Studies of Sterically-Stabilised Diblock 

Copolymer Nanoparticles Formed During Polymerisation-Induced Self-Assembly in Non-

Polar Media 

 

110 

 

a well-known spherical micelle model43-45 in order to obtain satisfactory fits to the 

SAXS patterns. 

 

 

Figure 3.11. SAXS patterns obtained in situ during the PISA synthesis of PSMA31-

PBzMA2000 diblock copolymer spheres at 90 °C in mineral oil at 10% w/w solids. Red dashes 

indicate the data fit to the final SAXS pattern recorded after 120 min using a spherical micelle 

model.43-46 

 

Monitoring this minimum as it shifts to lower q (larger radii) as the BzMA 

polymerisation proceeded provides useful information regarding the kinetics of 

nanoparticle growth. However, in order to fit the SAXS data shown in Figure 3.11 to 

a spherical micelle model,43-46 the instantaneous BzMA conversion is required, since 

this in turn determines the mean DP and hence the molecular volume occupied by a 

single growing core-forming PBzMA block [Vs = (DPPBzMA.Mn,BzMA)/(NA.ρ)], where 

Mn,BzMA corresponds to the molecular weight of the one BzMA unit within the PBzMA 

block and ρ is the density of PBzMA. No further change in the SAXS patterns shown 

in Figure 3.11 was taken to signify the end of the polymerisation. Unfortunately, the 
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BzMA polymerisation was complete within 120 min during the in situ SAXS studies, 

whereas around 500 min was required for the same formulation in a typical laboratory-

scale synthesis (~20 mL reaction volume) conducted using an oil bath and stirrer hot 

plate. A possible reason for this significant increase in polymerisation rate could be 

additional radical species generated by the intense X-ray photon flux provided by the 

synchrotron source.47, 48 The ~125 µL reaction volume of the capillary used for the 

SAXS studies precludes sampling of the polymerising reaction mixture. Instead, 

intermediate BzMA conversions were calculated by renormalising the kinetic data set 

obtained for the laboratory-scale synthesis. More specifically, a sigmoid function (see 

Section 3.2.9) was used to calculate intermediate BzMA conversions (see Figure 

3.12a) since this best described the conversion vs. time curve.49 The resulting BzMA 

conversions were subsequently used to calculate the instantaneous PBzMA DP during 

the PISA synthesis (see Figure 3.12b, red data). It must be noted that due to the nature 

of the renormalisation using the sigmoid function, the predicted kinetic data for the in 

situ SAXS measurements are a smooth representation of the somewhat scattered 

experimental data obtained under standard laboratory conditions. 

 

 

Figure 3.12. (a) Conversion vs. time curve (blue squares) for the RAFT dispersion 

polymerisation of BzMA in mineral oil at 90 °C when targeting PSMA31-PBzMA2000 block 

copolymer spheres at 10% w/w solids using T21s initiator under normal laboratory conditions 

and the renormalised conversion vs. time curve (red circles) calculated for the same PISA 

synthesis during in situ SAXS studies. (b) Change in the PBzMA DP (red circles) and the 

concentration of BzMA monomer ([BzMA], blue squares) during the in situ SAXS studies 

when targeting PSMA31-PBzMA2000 spheres. 

 

As expected, the spherical core diameter of the growing nanoparticles (Ds) increases 

monotonically with polymerisation time (see Figure 3.13a and Table 3.3). At the end 

of the BzMA polymerisation, at least six minima are visible in the final scattering 
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pattern (120 min, Figure 3.11), indicating a relatively narrow size distribution for the 

resulting PSMA31-PBzMA2000 spheres. Data fitting for various SAXS patterns during 

the RAFT dispersion polymerisation of PSMA31-PBzMA2000 spheres indicated 

essentially no solvent associated with the core-forming PBzMA block, which is 

consistent with the PSMA31 data set shown in Figure 3.10. Moreover, 1H NMR studies 

of the latter laboratory-scale syntheses confirmed that the volume fraction of solvent 

within the core domain (φsol) is essentially zero. Thus, when fitting SAXS patterns 

recorded during the polymerisation, the mean number of copolymer chains per sphere 

(Ns) was calculated based solely on the volume fraction of BzMA monomer within the 

core domain (φBzMA), Rs and Vs as shown below. 

 

𝑁s =  (1 −  𝜑BzMA) ×  

4
3 𝜋𝑅s

3

𝑉s
 3.7 

 

Values for φBzMA were estimated via centrifugation of selected dispersions of PSMA31-

PBzMAx spheres (obtained at full BzMA conversion via laboratory-scale syntheses). 

Varying amounts of BzMA monomer were added in order to replicate specific 

intermediate BzMA conversions during the synthesis of PSMA31-PBzMA2000 spheres 

in the in situ SAXS studies. Firstly, the BzMA-swollen PSMA31-PBzMAx spheres 

were heated at 90 °C for 1 h and then centrifuged at 13,000 rpm for 1 to 10 h at 20 °C 

to ensure complete sedimentation of the spheres. Since centrifugation was not possible 

at 90 °C, it is assumed that the amount of BzMA monomer within the PBzMA cores 

is the same at 20 °C and 90 °C. Each supernatant was then analysed for its BzMA 

content against an internal standard (triethoxymethylsilane, TEMS) via 1H NMR 

spectroscopy (see Section 3.2.10 for details). The experimentally-determined values 

of φBzMA at particular BzMA conversions were then fitted to a logarithmic decay 

function (R2 > 0.95, see Figure 3.7), which was subsequently utilised to calculate 

φBzMA values for all entries in Table 3.3 via interpolation. Equation 3.7 was then used 

to calculate the corresponding Ns values. According to the SAXS fittings, the 

uncertainty in Rs is small (see Table 3.3), hence the error in Ns is dominated by that 

associated with Vs, which is in turn dictated by the MWD of the growing core-forming 

PBzMA block. Given that the PSMA31 stabiliser block is relatively short, this MWD 

is approximately the same as that of the diblock copolymer. However, since the in situ 
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SAXS experiments were conducted on such a small scale, it was not feasible to 

determine the copolymer MWD at intermediate times during the polymerisation. 

Therefore, the maximum error in Vs at any given time during the polymerisation was 

estimated from the final MWD obtained for the laboratory-scale synthesis of the 

equivalent PSMA31-PBzMA2000 spheres. The unimodal MWD determined by THF 

GPC was fitted to a Gaussian model to determine its standard deviation (see Section 

3.2.11 for details), which was found to be approximately 9.5%. 

 

Ns gradually increased with polymerisation time, as indicated in Figure 3.13b (black 

data). This is not unexpected in view of recent observations made by both Jones et 

al.14 and Zhang and co-workers50 for non-aqueous PISA formulations. Nevertheless, 

it provides the first direct experimental evidence that the mean number of copolymer 

chains per nanoparticle increases during PISA syntheses. Likely mechanisms are 

either efficient fusion between monomer-swollen spheres and/or continuous 

aggregation of molecularly-dissolved copolymer chains.14 The latter seems more 

likely to occur during the early stages of the polymerisation (just after nucleation), 

rather than in the latter stages. The average number of copolymer chains per unit 

surface area (Sagg) during the polymerisation was calculated using Equation 3.8 below: 

 

𝑆agg =  
𝑁s

4𝜋𝑅s
2 3.8 

 

Interestingly, Sagg values (Figure 3.13b, red data) decrease from 0.075 nm-2 to a 

limiting value of about 0.04 nm-2 after around 40 min, suggesting an optimum surface 

packing density of copolymer chains within the sterically-stabilised PSMA31-

PBzMA2000 spherical nanoparticles.14 

 

The average distance between neighbouring chains at the core-shell interface (dint) was 

calculated using Equation 3.9 below:39 

 

𝑑int =  √
4𝜋𝑅s

2

𝑁s
= √

1

𝑆agg
 3.9 
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For small spheres (i.e., Ds = 35.4 nm), dint was calculated to be 3.67 nm after 8 min (or 

5.0% BzMA conversion, which corresponds to PSMA31-PBzMA99). This is 

comparable to that reported by Förster et al.39 for similar-sized polystyrene-poly(4-

vinyl pyridine) block copolymer micelles, for which dint was found to be 3.20 nm. 

Subsequently, dint increased up to 5.04 nm at full conversion (i.e. PSMA31-PBzMA2000; 

Ds = 116.9 nm), indicating that copolymer chains with longer core-forming PBzMA 

blocks occupy a larger surface area at the core-shell interface. 

 

 

Figure 3.13. (a) Evolution of the mean core diameter (Ds) and (b) mean aggregation number 

per sphere (Ns, black data) and number of aggregated chains per unit surface area (Sagg, red 

data) during the PISA synthesis of PSMA31-PBzMA2000 diblock copolymer spheres, as judged 

by in situ SAXS studies. 
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3.3.4. PSMA13-PBzMAx block copolymer syntheses and corresponding phase 

diagram 

Utilising a shorter PSMA13 macro-CTA to target PBzMA core-forming block DPs of 

20 to 150 at various copolymer concentrations enabled access to spherical, worm-like 

or vesicular morphologies at relatively low copolymer concentrations (≥ 5% w/w 

solids). In contrast, well-defined vesicular morphologies were only obtained at 

copolymer concentrations of at least 12.5% w/w solids for the PISA synthesis of 

PLMA-PBzMA diblock copolymer nanoparticles, whereas somewhat higher 

copolymer concentrations (≥ 17.5% w/w solids) were required to access a pure worm 

phase.5, 34 A detailed phase diagram was constructed for the present PSMA13-PBzMAx 

formulation, with diblock copolymer morphologies assigned via post mortem TEM 

studies, see Figure 3.14.  

 

 

Figure 3.14. Phase diagram constructed for PSMA13-PBzMAx diblock copolymer 

nanoparticles prepared by RAFT dispersion polymerisation of BzMA in mineral oil using a 

PSMA13 macro-CTA and T21s initiator at 90 °C ([PSMA13]/[T21s] molar ratio = 5.0). The 

post mortem diblock copolymer morphologies obtained at full conversion were assigned on 

the basis of TEM studies. TEM images (a), (b) and (c) correspond to typical examples of the 

three pure copolymer morphologies (spheres, worms and vesicles) respectively.  

 

Such phase diagrams are essential to ensure reproducible targeting of the desired 

copolymer morphology. Spheres were obtained at all copolymer concentrations 
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investigated (5-20% w/w) when targeting PBzMA block DPs of 30 to 50. As reported 

for related PISA formulations,5, 11, 34, 41, 51-53 the worm phase space is relatively narrow 

and is bounded by mixed phase regions. As expected, pure vesicles were obtained by 

targeting asymmetric PSMA13-PBzMAx diblock copolymers (i.e. x > 80). However, 

for PBzMA DPs of up to 150 this phase appears to be confined to copolymer 

concentrations of 5-15% w/w solids, with mixed phases being obtained at 20% w/w 

solids. It is perhaps worth emphasising that the ability to prepare vesicles at copolymer 

concentrations as low as 5% w/w solids is an important advantage for in situ SAXS 

studies. This is because lower copolymer concentrations minimise structural effects 

arising from inter-particle interactions. 

 

Post mortem SAXS patterns recorded for 1.0% w/w dispersions of eight PSMA13-

PBzMAx diblock copolymer nano-objects (originally prepared at 10% w/w solids; see 

phase diagram in Figure 3.14) are depicted in Figure 3.15. Each of the three examples 

of spherical nanoparticles exhibit an approximate zero gradient at low q, as expected.1, 

2 Some deviations from zero gradient observed at low q values could be associated 

with an aggregation of the spherical micelles. The local minimum observed for each 

scattering curve at q ≈ 0.5-0.7 nm-1 gradually shifted to lower q on increasing the mean 

PBzMA DP from 40 to 50, indicating a progressive increase in the sphere dimensions. 

This is consistent with previously reported PISA syntheses conducted using a fixed 

stabiliser block DP, where increasing the DP of the core-forming block led to larger 

spherical nanoparticles.34, 54 According to theory, rigid rods should exhibit a limiting 

gradient of -1 at low q.1, 2 However, TEM studies (see Figure 3.14b) suggest that these 

particular worms exhibit appreciable flexibility. Nevertheless, the SAXS patterns 

recorded for PSMA13-PBzMA65 and PSMA13-PBzMA70 worms in Figure 3.15 do 

indeed exhibit gradients of approximately -1 at low q. For these two copolymer 

dispersions, the local minimum observed at q ≈ 0.5-0.6 nm-1 is associated with the 

mean worm width or thickness (Tw). Vesicular morphologies were also confirmed for 

PSMA13-PBzMA100-150, since SAXS patterns indicated a slope of approximately -2 at 

low q for these three dispersions. For such hollow spheres, there are two characteristic 

local minima. Firstly, the minimum observed at q ≈ 0.4-0.6 nm-1 is associated with the 

vesicle membrane thickness (Tm), which increases monotonically as higher PBzMA 
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DPs are targeted. Secondly, the local minimum observed at q ≈ 0.04-0.05 nm-1 is 

characteristic of the overall vesicle dimensions. Interestingly, this parameter remains 

relatively constant (109 ± 5 nm) for the series of three PSMA13-PBzMA100-150 vesicles 

prepared at 10% w/w solids shown in Figure 3.14. 

 

 

Figure 3.15. SAXS patterns and data fits (dashed lines) for 1.0% w/w dispersions of PSMA13-

PBzMAx (denoted as S13-Bx for brevity) diblock copolymer nanoparticles synthesised via 

RAFT dispersion polymerisation of BzMA at 10% w/w solids in mineral oil. Purple dashed 

lines indicate zero, -1 and -2 gradients for guidance. 

 

3.3.5. In situ SAXS studies of the PISA synthesis of PSMA13-PBzMA150 vesicles 

A series of in situ SAXS patterns were also recorded when targeting PSMA13-

PBzMA150 vesicles at 10% w/w solids in mineral oil. This core-forming block DP was 

chosen to guarantee access to vesicle phase space (see Figure 3.14) while maximising 

the time scales for the existence of the intermediate sphere and worm phases. 

Inspecting Figure 3.16, this strategy was clearly successful since the full range of 

copolymer morphologies is observed, from initially soluble copolymer chains through 
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to the final vesicular morphology via intermediate spherical and worm-like 

nanoparticles.16 

 

 

Figure 3.16. In situ SAXS patterns recorded for the PISA synthesis of PSMA13-PBzMA150 

diblock copolymer vesicles prepared at 90 °C in mineral oil at 10% w/w solids. The onset of 

micellar nucleation is indicated by the red arrow. 

 

Again, the polymerisation kinetics required renormalisation prior to detailed data 

analyses (see Figure 3.17). In this case, a significantly longer polymerisation time (and 

hence a somewhat higher BzMA conversion) is required for the onset of micellisation. 

Inspecting Figure 3.14, it is clear that the critical DP for the core-forming PBzMA 

block required to induce nucleation is around 30. This is because PSMA13-PBzMA20 

diblock copolymers do not self-assemble in mineral oil at 90 °C, whereas PSMA13-

PBzMA30 diblock copolymer spheres are observed under these conditions. Thus 

approximately 20% BzMA conversion is required to trigger in situ self-assembly for 

this particular PSMA13-PBzMA150 PISA formulation. In contrast, when targeting 

PSMA31-PBzMA2000 diblock copolymer spheres (see Figure 3.11), a BzMA 
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conversion of only ~1.5% is required to achieve the same critical PBzMA DP for 

micellar nucleation. 

 

 

Figure 3.17. (a) Conversion vs. time curve for the RAFT dispersion polymerisation of BzMA 

in mineral oil at 90 °C when targeting PSMA13-PBzMA150 block copolymer vesicles at 10% 

w/w solids using T21s initiator under normal laboratory conditions (blue squares) and the 

renormalised conversion vs. time curve (red circles) calculated for the same PISA synthesis 

during in situ SAXS studies. (b) Change in the PBzMA DP (red circles) and the concentration 

of BzMA monomer ([BzMA], blue squares) during the in situ SAXS studies when targeting 

PSMA13-PBzMA150 vesicles. 

 

 

Spherical nanoparticles are formed just after the onset of micellisation, as confirmed 

by the approximately zero gradient at low q.1, 2 However, just 10 min after nucleation 

this low q gradient tends towards -1, indicating that the nascent spherical nanoparticles 

undergo multiple 1D fusion events leading to the formation of highly anisotropic 

worms. This second morphology is relatively short-lived (~6 min), which is consistent 

with the narrow worm phase space observed in the phase diagram (see Figure 3.14). 

A mixed phase of worms and vesicles is apparent from 46 to 56 min. This corresponds 

to a PBzMA DP of 76 to 104 and is consistent with the mixed phase region observed 

in Figure 3.14. Finally, well-defined vesicles are present as a pure phase in the latter 

stages of the polymerisation (~58-120 min), as indicated by the slope of -2 at low q. 

 

For this particular in situ SAXS study (see Figure 3.16), the experimental protocol 

used to renormalise the polymerisation kinetics can be validated by comparing the 

PBzMA DP ranges within which pure spheres, worms and vesicles are observed to 

those indicated within the phase diagram shown in Figure 3.14 (see Table 3.4). The 

generally good agreement between the upper and lower DPs at which each pure 
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morphology provides strong evidence that the analytical approach employed to 

renormalise the kinetic data is indeed valid. It is also worth emphasising that the 

relatively well-defined phase boundaries shown in Figure 3.14 enable a particularly 

robust comparison. 

 

Table 3.4. Comparison of the lower and upper limit PBzMA DPs for the three pure copolymer 

morphologies (spheres, worms and vesicles) determined by (i) inspecting the phase diagram 

constructed for PSMA13-PBzMAx diblock copolymer nanoparticles (Figure 3.14) and (ii) in situ 

SAXS analysis of the synthesis of PSMA13-PBzMA150 vesicles (Figure 3.16). 

Pure copolymer morphology 

PBzMA DP 

indicated by 

phase diagram 

PBzMA DP 

indicated by in 

situ SAXS studies 

Spheres 
Lower limit boundary 25 ± 5 29 ± 3 

Upper limit boundary 51 ± 1 48 ± 4 

Worms 
Lower limit boundary 60 ± 1 59 ± 5 

Upper limit boundary 70 ± 1 70 ± 6 

Vesicles Lower limit boundary 93 ± 2 108 ± 4 

 

SAXS patterns assigned to pure vesicles exhibit two local minima: one is a rather 

subtle feature at q ≈ 0.04-0.07 nm-1 representing the overall vesicle dimensions and 

the other is a more pronounced feature at q ≈ 0.3-0.7 nm-1 that is associated with the 

vesicle membrane thickness (Tm).10 Figure 3.18a shows selected SAXS patterns taken 

from Figure 3.16 over a much narrower q range in order to better illustrate the 

evolution in Tm at q ≈ 0.3-0.7 nm-1. A pure vesicle phase is observed after 58 min, with 

subsequent data fits indicating that Tm increases monotonically from 10 nm to 14 nm 

for PBzMA DPs ranging from 108 to 150 (see Figure 3.18b and Table 3.5). There is 

also an apparent increase in the outer core radius (Rout) with increasing PBzMA DP 

(see Table 3.5), but this rather modest increase appears to be within the relatively large 

error associated with these data. 

 

Precise knowledge of the dimensions of the growing vesicles is important, because in 

principle this enables the vesicle growth mechanism to be deduced. For example, 

Warren et al.10 reported that the overall diameter of PGMA-PHPMA vesicles prepared 

via aqueous RAFT dispersion polymerisation remained constant while Tm increased 
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when targeting higher PHPMA DPs. This indicates that the constrained vesicles grow 

inwards, with the thickening membrane leading to a reduction in the vesicle lumen 

volume (see Figure 3.3). 

 

 

Figure 3.18. (a) In situ SAXS patterns showing the evolution of the vesicular membrane 

thickness (Tm) and the proposed mechanism for the in situ evolution of the vesicular 

morphology. (b) The relationship between Tm and PBzMA DP for the PISA synthesis of 

PSMA13-PBzMA150 vesicles at 90 °C in mineral oil at 10% w/w solids. 
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Table 3.5. Evolution of the BzMA conversion, mean degree of polymerization (DP) for the core-

forming PBzMA block, molecular volume of a single PBzMA core-forming block (Vm), outer core 

radius (Rout), membrane thickness (Tm) and inner core radius (Rin = Rout - Tm) during the PISA 

synthesis of PSMA13-PBzMA150 diblock copolymer vesicles. The standard deviation (± σ) of each 

value is shown where relevant. 

Time 

/ min 

% 

BzMA 

PBzMA 

DP 
Vm / nm3 Rout / nm Tm / nm Rin / nm 

58 72.3 108 27 ± 1.0 53 ± 18 10 ± 1.6 43 ± 18 

60 75.4 113 28 ± 1.0 56 ± 19 11 ± 1.6 45 ± 19 

62 78.2 117 29 ± 1.0 56 ± 19 11 ± 1.6 45 ± 19 

64 80.7 122 30 ± 1.0 56 ± 19 12 ± 1.6 44 ± 19 

68 85.2 128 32 ± 1.1 57 ± 20 12 ± 1.8 45 ± 20 

72 88.9 134 33 ± 1.1 57 ± 20 13 ± 1.8 44 ± 20 

76 91.8 138 34 ± 1.2 57 ± 19 13 ± 1.9 44 ± 19 

88 97.1 146 36 ± 1.2 57 ± 20 14 ± 2.0 44 ± 20 

120 100 150 37 ± 1.3 59 ± 20 14 ± 2.2 45 ± 21 

 

 

3.3.6. Intermediate morphologies during the in situ worm-to-vesicle morphology 

transformation 

Informed by these in situ studies, multiple aliquots were taken from the same 

polymerisation (targeting PSMA13-PBzMA150) conducted under standard laboratory 

conditions, with particular attention being paid to the DP range identified between the 

pure worm and vesicle phases. TEM analyses confirmed that vesicles are formed from 

worms via octopi (see Figure 3.19b) and jellyfish (see Figure 3.19c and d) 

intermediates. Such transient structures were also reported by Blanazs and co-

workers16 for an aqueous PISA formulation when targeting vesicles as the final 

copolymer morphology (see Figure 3.4). This provides the first evidence of octopi and 

jellyfish intermediates for a non-polar PISA formulation and suggests that the worm-

to-vesicle morphology transition via such structures is likely to be universal for all 

vesicles prepared via PISA syntheses. 
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Figure 3.19. Transmission electron micrographs obtained for 0.1% w/w dispersions of 

PSMA13-PBzMAx nanoparticles obtained at various time points during the PISA synthesis of 

PSMA13-PBzMA150 vesicles under standard laboratory conditions at 10% w/w in mineral oil. 

(a) A pure worm morphology is observed after 91 min, (b) worms and octopi structures are 

observed after 97 min and worms, vesicles, octopi and jellyfish structures are observed after 

(c) 100 min and (d) 103 min. 

 

3.3.7. Verification of the universal ‘inward growth’ mechanism for vesicles 

synthesised by PISA 

In order to elucidate the growth mechanism for the PSMA13-PBzMAx vesicles 

described in this work, much higher PBzMA DPs must be targeted. Consequently, 

PSMA13-PBzMAx vesicles with PBzMA DPs up to 2000 (prepared at 10% w/w solids 

on a 5.0 mL scale) were subjected to post mortem analysis using DLS, TEM and 

SAXS. DLS studies indicated that the overall vesicle diameter remained essentially 
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constant (140-145 nm) for PBzMA DPs of between 100 and 400 (see Figure 3.20a, 

blue data). The overall vesicle diameter systematically increased for PBzMA DPs 

between 500 and 2000, while the size distributions significantly broadened for 

PBzMA DPs above 400. These data suggest that the vesicles become unstable for 

PBzMA DPs greater than 400, as previously described by Warren et al. for PGMA-

PHPMA vesicles.10 TEM studies (see Figure 3.20b) support these DLS data: vesicles 

with narrow size distributions and approximately constant diameters were observed 

for PBzMA DPs up to 400. This indicates that the apparent increase in overall vesicle 

dimensions observed in the in situ SAXS studies (see Table 3.5) is actually an artefact. 

Moreover, Tm increases with PBzMA DP over this range, which suggests a similar 

‘inward growth’ mechanism. Furthermore, large, ill-defined species are observed for 

PBzMA DPs above 500 (see vertical dashed line in Figure 3.20a). This is consistent 

with observations made by Warren et al.,10 who reported loss of the vesicular 

morphology for PHPMA DPs above 1000. In view of these observations, further post 

mortem SAXS studies were undertaken to monitor the evolution of the PSMA13-

PBzMAx morphology (see Figure 3.20c). It should be noted that these additional 

SAXS measurements were performed using an in-house NanoStar instrument, rather 

than a synchrotron X-ray source. Thus the accessible q range was only sufficient to 

allow the evolution in Tm to be monitored – no information regarding the overall 

vesicle dimensions could be obtained. Tm increased monotonically from 9 nm to 30 

nm on increasing the target PBzMA DP from 100 to 400. The data were fitted to the 

power law Tm = k.xα where k is a constant and x is the PBzMA DP. The α exponent 

was calculated to be 0.86, which is consistent with that reported by Warren et al.10 via 

post mortem SAXS analysis of PGMA-PHPMA vesicles (α = 0.79). For PBzMA DPs 

above 400, the Tm feature at q ≈ 0.2-0.6 nm-1 becomes increasingly indistinct. This 

indicates the gradual loss of the vesicular morphology, which is consistent with the 

corresponding TEM studies. Since the DLS data indicate the same overall vesicle 

dimensions for PBzMA DPs of 100-400, this indicates that the ‘inward growth’ 

mechanism is valid for both aqueous and non-polar media. This is important, because 

it implies a generic vesicle growth mechanism for all PISA formulations. This is 

perfectly reasonable, because Warren et al. showed that this hitherto unrecognised 

mechanism is the only means by which the vesicles can lower their total surface area, 

and hence reduce their overall free energy.10 
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Figure 3.20. (a) Tm as judged by post mortem SAXS (red data) and DLS diameter (blue data), 

(b) transmission electron micrographs obtained for 0.1% w/w dispersions, and (c) SAXS 

patterns obtained for 1.0% w/w dispersions for selected PSMA13-PBzMAx (denoted S13Bx) 

nanoparticles synthesised at 10% w/w solids. 
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3.3.8. Arrangement of copolymer chains within PSMA13-PBzMA150 vesicles 

In the case of vesicles, different equations are required for the calculation of the 

number of copolymer chains per vesicle (Nv), Sagg and dint, as indicated below (see 

Equations 3.10, 3.11 and 3.12). By definition, the volume fraction of BzMA monomer 

within the core domain (φBzMA) at full conversion must be zero. Moreover, the SAXS 

data fits suggest that the volume fraction of solvent within the PBzMA chains forming 

the vesicle membrane (xsol) is close to zero. In this case, Nv for the final PSMA13-

PBzMA150 vesicles can be calculated using Equation 3.10 below: 

 

𝑁v =

4
3 𝜋(𝑅out

3 −  𝑅in
3)

𝑉m
 3.10 

 

As for the earlier in situ SAXS studies conducted when targeting PSMA31-PBzMA2000 

spheres, the leading error in the calculation of Nv is the MWD of the core-forming 

PBzMA block, which dictates the error in Vm. From the GPC data obtained for 

PSMA13-PBzMA150 vesicles prepared on a laboratory scale, the standard deviation in 

Vm was estimated to be 3.4% using the same method used for the spheres (see Section 

3.2.11). Sagg and dint are subsequently calculated using Equations 3.11 and 3.12, 

respectively: 

𝑆agg =  
𝑁v

4𝜋(𝑅out
2 + 𝑅in

2)
 3.11 

 

𝑑int = √
4𝜋(𝑅out

2 +  𝑅in
2)

𝑁v
= √

1

𝑆agg
 3.12 

 

The Nv value calculated for PSMA13-PBzMA150 vesicles at full conversion was 12,709 

± 432, with the corresponding Sagg determined to be 0.187 ± 0.006 nm-2 and dint was 

2.31 ± 0.08 nm. These data are somewhat different to those calculated for related 

aqueous10 and alcoholic7 PISA formulations, where dint was (retrospectively) 

calculated to be 3.1-3.4 nm. However, the volume fraction of solvent within the vesicle 

membrane (xsol) was found to be more than 0.35 in these earlier literature examples 

compared to zero in the present work. This suggests that the copolymer chains are 
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more densely packed in the current non-polar PISA formulation. Notably, the value of 

dint calculated for these PSMA13-PBzMA150 vesicles is comparable to that determined 

for densely-packed polybutadiene-poly(L-lysine) block copolymer chains within 

vesicle membranes formed in saline solution (dint = 2.4 nm at pH 10.3).55 The Sagg and 

dint values calculated for PSMA13-PBzMA150 vesicles can also be compared to those 

for PSMA31-PBzMA2000 spheres (Sagg = 0.039 ± 0.004 nm-2, dint = 5.04 ± 0.48 nm). It 

is evident that the copolymer chains are packed more densely within the PSMA13-

PBzMA150 vesicles compared to the PSMA31-PBzMA2000 spheres. This is likely to be 

the result of the differing interfacial curvatures associated with each copolymer 

morphology, but the significant difference in target DP for the core-forming PBzMA 

blocks may also be a factor. 

 

3.4. Conclusions 

In summary, a range of sterically-stabilised PSMA-PBzMA diblock copolymer 

nanoparticles have been prepared via RAFT dispersion polymerisation in mineral oil. 

Improved control over the copolymer MWD is achieved compared to previously 

reported PISA syntheses conducted in non-polar media, with relatively narrow MWDs 

(Mw/Mn ≤ 1.30) being achieved even when targeting PBzMA DPs of up to 500. As 

expected, only spherical nanoparticles were obtained when using relatively long 

PSMA18 or PSMA31 macro-CTAs. In both cases, a clear correlation was observed 

between the mean sphere diameter (as judged by DLS) and the core-forming PBzMA 

DP. PSMA31–PBzMAx spheres indicated a scaling exponent of 0.50, suggesting 

essentially non-solvated PBzMA chains within the core-forming PBzMA block, 

whereas a scaling exponent of 0.61 was obtained for PSMA18–PBzMAx spheres, 

suggesting a finite degree of solvation for the PBzMA chains in this case. In contrast, 

using a relatively short PSMA13 macro-CTA allows the synthesis of spherical, worm-

like or vesicular morphologies. Construction of a detailed phase diagram for PSMA13-

PBzMAx diblock copolymers confirmed that pure spheres, worms or vesicles could be 

obtained at relatively low solids concentrations. This is important, because in principle 

it facilitates in situ SAXS studies of the formation of PSMA31-PBzMA2000 spheres and 

PSMA13-PBzMA150 nano-objects at 10% w/w solids. However, the rate of BzMA 

polymerisation during such scattering experiments is significantly faster than that 
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observed under normal laboratory conditions. Thus the latter kinetic data sets require 

renormalisation to enable detailed analysis of the in situ SAXS data. When targeting 

PSMA31-PBzMA2000 spheres, a systematic increase in core diameter (Ds) and mean 

aggregation number per sphere (Ns) are clearly discernible during the BzMA 

polymerisation, with the final scattering pattern indicating the formation of near-

monodisperse PSMA31-PBzMA2000 spheres. Interestingly, the number of copolymer 

chains per unit surface area (Sagg) decreased rapidly during the initial stages of the 

polymerisation until a limiting value of ~0.038 nm-2 is attained. This indicated that the 

mean distance between copolymer chains at the core-shell interface (dint) at full 

conversion was approximately 5.0 nm. When targeting PSMA13-PBzMA150 vesicles, 

characteristic scattering patterns for the dissolved copolymer chains, intermediate 

spheres and worms, and the final vesicle morphology were obtained. Importantly, 

revisiting the phase diagram constructed for this formulation enabled validation of the 

renormalisation protocol adopted for the kinetic data. More specifically, the mean 

PBzMA DPs corresponding to the various phase boundaries were in relatively good 

agreement with those DPs assigned to the corresponding pure phases indicated by 

analysis of the in situ SAXS patterns. Within the mixed phase space, it was shown that 

vesicles are formed from worms via octopi and jellyfish intermediates as first reported 

for an aqueous PISA formulation. Combined DLS, TEM and SAXS studies indicate 

that the overall vesicle dimensions remain relatively constant as the vesicle membrane 

gradually thickens with increasing PBzMA DP. These observations indicate an 

‘inward growth’ mechanism, as recently reported for an aqueous PISA formulation. 

This suggests a generic vesicle growth mechanism is most likely applicable for all 

PISA syntheses. 

 

3.5. References 

1. O. Glatter and O. Kratky, Small-angle X-ray Scattering, Academic Press: 

London, 1982. 

2. H. Schnablegger and Y. Singh, The SAXS Guide: Getting Acquainted with the 

Principles, 2nd Edition, Anton Paar GmbH, Graz, 2011. 

3. A. Blanazs, R. Verber, O. O. Mykhaylyk, A. J. Ryan, J. Z. Heath, C. W. I. 

Douglas and S. P. Armes, Journal of the American Chemical Society, 2012, 

134, 9741-9748. 

4. V. J. Cunningham, L. P. D. Ratcliffe, A. Blanazs, N. J. Warren, A. J. Smith, 

O. O. Mykhaylyk and S. P. Armes, Polymer Chemistry, 2014, 5, 6307-6317. 



Chapter 3: In situ Small-Angle X-Ray Scattering Studies of Sterically-Stabilised Diblock 

Copolymer Nanoparticles Formed During Polymerisation-Induced Self-Assembly in Non-

Polar Media 

 

130 

 

5. L. A. Fielding, J. A. Lane, M. J. Derry, O. O. Mykhaylyk and S. P. Armes, 

Journal of the American Chemical Society, 2014, 136, 5790-5798. 

6. M. K. Kocik, O. O. Mykhaylyk and S. P. Armes, Soft Matter, 2014, 10, 3984-

3992. 

7. C. Gonzato, M. Semsarilar, E. R. Jones, F. Li, G. J. P. Krooshof, P. Wyman, 

O. O. Mykhaylyk, R. Tuinier and S. P. Armes, Journal of the American 

Chemical Society, 2014, 136, 11100-11106. 

8. N. J. Warren, O. O. Mykhaylyk, D. Mahmood, A. J. Ryan and S. P. Armes, 

Journal of the American Chemical Society, 2014, 136, 1023-1033. 

9. C. J. Mable, N. J. Warren, K. L. Thompson, O. O. Mykhaylyk and S. P. Armes, 

Chemical Science, 2015, 6, 6179-6188. 

10. N. J. Warren, O. O. Mykhaylyk, A. J. Ryan, M. Williams, T. Doussineau, P. 

Dugourd, R. Antoine, G. Portale and S. P. Armes, Journal of the American 

Chemical Society, 2015, 137, 1929-1937. 

11. A. P. Lopez-Oliva, N. J. Warren, A. Rajkumar, O. O. Mykhaylyk, M. J. Derry, 

K. E. B. Doncom, M. J. Rymaruk and S. P. Armes, Macromolecules, 2015, 48, 

3547-3555. 

12. Y. Kang, A. Pitto-Barry, H. Willcock, W. D. Quan, N. Kirby, A. M. Sanchez 

and R. K. O'Reilly, Polymer Chemistry, 2015, 6, 106-117. 

13. X. W. Zhang, S. Boisse, C. Bui, P. A. Albouy, A. Brulet, M. H. Li, J. Rieger 

and B. Charleux, Soft Matter, 2012, 8, 1130-1141. 

14. E. R. Jones, O. O. Mykhaylyk, M. Semsarilar, M. Boerakker, P. Wyman and 

S. P. Armes, Macromolecules, 2016, 49, 172-181. 

15. C. J. Mable, R. R. Gibson, S. Prevost, B. E. McKenzie, O. O. Mykhaylyk and 

S. P. Armes, Journal of the American Chemical Society, 2015, 137, 16098-

16108. 

16. A. Blanazs, J. Madsen, G. Battaglia, A. J. Ryan and S. P. Armes, Journal of 

the American Chemical Society, 2011, 133, 16581-16587. 

17. D. J. Tobler and L. G. Benning, Geochimica Et Cosmochimica Acta, 2013, 

114, 156-168. 

18. D. Hermida-Merino, G. Portale, P. Fields, R. Wilson, S. P. Bassett, J. Jennings, 

M. Dellar, C. Gommes, S. M. Howdle, B. C. M. Vrolijk and W. Bras, Review 

of Scientific Instruments, 2014, 85, 093905. 

19. R. H. Utama, M. Dulle, S. Foerster, M. H. Stenzel and P. B. Zetterlund, 

Macromol. Rapid Commun., 2015, DOI: 10.1002/marc.201500096, Ahead of 

Print. 

20. T. Hasell, K. J. Thurecht, R. D. W. Jones, P. D. Brown and S. M. Howdle, 

Chemical Communications, 2007, 3933-3935. 

21. K. J. Thurecht, A. M. Gregory, W. Wang and S. M. Howdle, Macromolecules, 

2007, 40, 2965-2967. 

22. M. Zong, K. J. Thurecht and S. M. Howdle, Chemical Communications, 2008, 

5942-5944. 

23. A. M. Gregory, K. J. Thurecht and S. M. Howdle, Macromolecules, 2008, 41, 

1215-1222. 

24. H. Lee, E. Terry, M. Zong, N. Arrowsmith, S. Perrier, K. J. Thurecht and S. 

M. Howdle, Journal of the American Chemical Society, 2008, 130, 12242-

12243. 

25. N. A. Birkin, N. J. Arrowsmith, E. J. Park, A. P. Richez and S. M. Howdle, 

Polymer Chemistry, 2011, 2, 1293-1299. 



Chapter 3: In situ Small-Angle X-Ray Scattering Studies of Sterically-Stabilised Diblock 

Copolymer Nanoparticles Formed During Polymerisation-Induced Self-Assembly in Non-

Polar Media 

 

131 

 

26. J. Jennings, M. Beija, A. P. Richez, S. D. Cooper, P. E. Mignot, K. J. Thurecht, 

K. S. Jack and S. M. Howdle, Journal of the American Chemical Society, 2012, 

134, 4772-4781. 

27. N. A. Birkin, O. J. Wildig and S. M. Howdle, Polymer Chemistry, 2013, 4, 

3791-3799. 

28. J. Jennings, M. Beija, J. T. Kennon, H. Willcock, R. K. O'Reilly, S. Rimmer 

and S. M. Howdle, Macromolecules, 2013, 46, 6843-6851. 

29. J. S. Trent, Macromolecules, 1984, 17, 2930-2931. 

30. M. Basham, J. Filik, M. T. Wharmby, P. C. Y. Chang, B. El Kassaby, M. 

Gerring, J. Aishima, K. Levik, B. C. A. Pulford, I. Sikharulidze, D. Sneddon, 

M. Webber, S. S. Dhesi, F. Maccherozzi, O. Svensson, S. Brockhauser, G. 

Naray and A. W. Ashton, Journal of Synchrotron Radiation, 2015, 22, 853-

858. 

31. J. Ilavsky and P. R. Jemian, Journal of Applied Crystallography, 2009, 42, 

347-353. 

32. P. Cacioli, D. G. Hawthorne, R. L. Laslett, E. Rizzardo and D. H. Solomon, 

Journal of Macromolecular Science-Chemistry, 1986, 23, 839-852. 

33. M. Rodlert, E. Harth, I. Rees and C. J. Hawker, Journal of Polymer Science 

Part A-Polymer Chemistry, 2000, 38, 4749-4763. 

34. L. A. Fielding, M. J. Derry, V. Ladmiral, J. Rosselgong, A. M. Rodrigues, L. 

P. D. Ratcliffe, S. Sugihara and S. P. Armes, Chemical Science, 2013, 4, 2081-

2087. 

35. L. Houillot, C. Bui, C. Farcet, C. Moire, J.-A. Raust, H. Pasch, M. Save and B. 

Charleux, ACS Applied Materials & Interfaces, 2010, 2, 434-442. 

36. L. Houillot, C. Bui, M. Save, B. Charleux, C. Farcet, C. Moire, J.-A. Raust and 

I. Rodriguez, Macromolecules, 2007, 40, 6500-6509. 

37. J. A. Raust, L. Houillot, M. Save, B. Charleux, C. Moire, C. Farcet and H. 

Pasch, Macromolecules, 2010, 43, 8755-8765. 

38. F. S. Bates and G. H. Fredrickson, Annual Review of Physical Chemistry, 1990, 

41, 525-557. 

39. S. Forster, M. Zisenis, E. Wenz and M. Antonietti, Journal of Chemical 

Physics, 1996, 104, 9956-9970. 

40. G. Battaglia and A. J. Ryan, Journal of the American Chemical Society, 2005, 

127, 8757-8764. 

41. N. J. Warren and S. P. Armes, Journal of the American Chemical Society, 

2014, 136, 10174-10185. 

42. J. S. Pedersen, Journal of Chemical Physics, 2001, 114, 2839-2846. 

43. J. S. Pedersen and M. C. Gerstenberg, Macromolecules, 1996, 29, 1363-1365. 

44. J. S. Pedersen and P. Schurtenberger, Macromolecules, 1996, 29, 7602-7612. 

45. J. S. Pedersen, Journal of Applied Crystallography, 2000, 33, 637-640. 

46. S. Förster and C. Burger, Macromolecules, 1998, 31, 879-891. 

47. S. J. Tseng, C.-C. Chien, Z.-X. Liao, H.-H. Chen, Y.-D. Kang, C.-L. Wang, Y. 

Hwu and G. Margaritondo, Soft Matter, 2012, 8, 1420-1427. 

48. M. H. Qiao, F. Q. Yan, W. S. Sim, J. F. Deng and G. Q. Xu, Surface Science, 

2000, 460, 67-73. 

49. M. A. Winnik, R. Lukas, W. F. Chen, P. Furlong and M. D. Croucher, 

Makromolekulare Chemie-Macromolecular Symposia, 1987, 10, 483-501. 

50. Y. Su, X. Xiao, S. Li, M. Dan, X. Wang and W. Zhang, Polymer Chemistry, 

2014, 5, 578-587. 



Chapter 3: In situ Small-Angle X-Ray Scattering Studies of Sterically-Stabilised Diblock 

Copolymer Nanoparticles Formed During Polymerisation-Induced Self-Assembly in Non-

Polar Media 

 

132 

 

51. S. Sugihara, A. Blanazs, S. P. Armes, A. J. Ryan and A. L. Lewis, Journal of 

the American Chemical Society, 2011, 133, 15707-15713. 

52. E. R. Jones, M. Semsarilar, A. Blanazs and S. P. Armes, Macromolecules, 

2012, 45, 5091-5098. 

53. M. Semsarilar, E. R. Jones, A. Blanazs and S. P. Armes, Advanced Materials, 

2012, 24, 3378-3382. 

54. Y. Li and S. P. Armes, Angewandte Chemie-International Edition, 2010, 49, 

4042-4046. 

55. R. Sigel, M. Łosik and H. Schlaad, Langmuir, 2007, 23, 7196-7199. 



Chapter 4: A Vesicle-to-Worm Transition for Block Copolymer Vesicles Prepared by RAFT 

Dispersion Polymerisation Enables High-Temperature Thickening of Automotive Engine 

Oils 

 

133 

 

 

 

 

 

 

 

 

4. A Vesicle-to-Worm Transition for 

Block Copolymer Vesicles Prepared 

by RAFT Dispersion Polymerisation 

Enables High-Temperature 

Thickening of Automotive Engine 

Oils 

 

 

 

 

 

  



Chapter 4: A Vesicle-to-Worm Transition for Block Copolymer Vesicles Prepared by RAFT 

Dispersion Polymerisation Enables High-Temperature Thickening of Automotive Engine 

Oils 

 

134 

 

4.1. Introduction 

Small molecule amphiphiles such as surfactants are well-known to self-assemble into 

spherical micelles,1 worm-like micelles,2, 3 lamellae or vesicles.4, 5 In 1976, 

Israelachvili and co-workers introduced the concept of a geometric packing parameter 

for surfactants,6 thus allowing the morphology to be predicted based on the relative 

volume fractions of the hydrophilic and hydrophobic components. In 1995, Eisenberg 

and co-workers7 reported the first examples of block copolymer vesicles using highly 

asymmetric polystyrene-poly(acrylic acid) (PS-PAA) block copolymers. Here, self-

assembly was achieved via the addition of water, a non-solvent for PS, to a dilute 

copolymer solution in DMF. Bates and co-workers reported the formation of well-

defined block copolymer worms in aqueous solution using poly(ethylene oxide)-

polybutadiene diblock copolymers.8 Antonietti and Förster subsequently extended the 

packing parameter concept to include block copolymer spheres, cylinders and 

vesicles.9 

 

More recently, polymerisation-induced self-assembly (PISA) has provided a versatile 

and convenient route for the synthesis of block copolymer spheres, worms or vesicles 

at relatively high copolymer concentrations in aqueous,10-12 alcoholic13-15 and non-

polar16-18 media. TEM studies have shed new light on the nature of the worm-to-

vesicle transition that can occur during PISA syntheses, which proceeds via ‘octopi’ 

and ‘jellyfish’ intermediates.19, 20 These studies were conducted on aqueous19 and 

alcoholic20 PISA formulations, and the work discussed in Chapter 3 highlights that 

such intermediates are also observed in a non-polar PISA formulation. This therefore 

suggests that the mechanism for the transformation from worms to vesicles may be 

universal. Specific PISA formulations have also enabled the rational synthesis of low-

polydispersity vesicles, where a binary mixture of relatively long and relatively short 

stabilising poly(methacrylic acid) (PMAA) macro-CTAs was used during the 

alcoholic RAFT dispersion polymerisation of benzyl methacrylate (BzMA).21 Under 

these conditions, the shorter stabilising chains preferentially occupy the inner 

membrane surface and hence vesicles with narrow size distributions were produced. 

Additionally, Warren et al.22 studied the mechanism of vesicle growth upon targeting 

poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) (PGMA-
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PHPMA) vesicles with varying core-forming PHPMA DPs. SAXS studies indicated 

that the overall vesicle diameter remained relatively constant with increasing PHPMA 

DPs, whereas there was a monotonic increase in vesicle membrane thickness (Tm) over 

the same DP range. This ‘inward growth’ mechanism was hypothesised and 

experimentally shown for the PSMA13-PBzMAx diblock copolymer vesicles discussed 

in Chapter 3. Thus it seems that this mechanism is observed for all PISA formulations. 

 

For PGMA-PHPMA worms formed during aqueous PISA, a post-polymerisation 

worm-to-sphere transition is observed for PGMA-PHPMA diblock copolymer 

nanoparticles upon cooling, since the core-forming PHPMA block becomes more 

hydrated at lower temperatures.23 This phenomenon has previously been observed for 

alternative diblock copolymers with PHPMA cores.24 In contrast, worm-to-sphere 

transitions are observed on heating certain alcoholic and non-polar PISA 

formulations.18, 25, 26 In both cases, the ingress of solvent into the cores causes surface 

plasticisation, which increases the effective volume fraction of the stabiliser block 

relative to the core-forming block and hence triggers the morphological transition. At 

copolymer concentrations above the critical gelation concentration (CGC), such 

worm-to-sphere transitions lead to degelation, because the multiple inter-particle 

contacts formed by the anisotropic worms cannot be maintained by the isotropic 

spherical nanoparticles.18, 23, 25, 26 

 

In the present study, a thermally-triggered vesicle-to-worm transition for poly(stearyl 

methacrylate)-poly(benzyl methacrylate) (PSMA-PBzMA) diblock copolymer 

nanoparticles in mineral oil is identified. SAXS, rheology and 1H NMR studies 

indicate that this morphological transition occurs at elevated temperatures, similar to 

that previously described for the temperature-dependent worm-to-sphere transition for 

poly(lauryl methacrylate)-poly(benzyl methacrylate) (PLMA-PBzMA) diblock 

copolymer nanoparticles.26 Since worms are known to form free-standing gels at 

sufficiently high concentrations (i.e. above the CGC),23, 26 this vesicle-to-worm 

transition in mineral oil offers a unique high-temperature oil-thickening mechanism. 

Such behaviour is widely perceived as a ‘holy grail’ for the automotive engine oil 
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sector, since it should widen the operating temperature range of oils, offering 

improved lubrication and fuel economy.27 

 

4.2. Experimental 

4.2.1. Materials 

Monomers were purchased from Sigma-Aldrich (UK) and passed through basic 

alumina prior to use to remove inhibitor. Tert-butyl peroxy-2-ethylhexanoate (T21s) 

initiator was purchased from AkzoNobel (The Netherlands). Cumyl dithiobenzoate 

(CDB), CDCl3 and all other reagents were purchased from Sigma-Aldrich (UK) and 

were used as received, unless otherwise noted. THF and toluene were purchased from 

Fisher Scientific (UK), CD2Cl2 and d26-dodecane were purchased from Goss Scientific 

(UK) and industrial mineral oil was provided by Lubrizol Corporation Ltd. 

 

4.2.2. Synthesis of poly(stearyl methacrylate) (PSMA) macromolecular chain 

transfer agent (macro-CTA) 

The PSMA13 macro-CTA used in the present work was synthesised as follows: A 250 

mL round-bottomed flask was charged with stearyl methacrylate (SMA; 30.6 g; 90.4 

mmol), cumyl dithiobenzoate (CDB; 4.93 g, 18.1 mmol), 2,2’-azobisisobutyronitrile 

(AIBN; 594 mg, 3.62 mmol; [CDB]/[AIBN] molar ratio = 5.0) and toluene (54.2 g). 

The sealed reaction vessel was purged with nitrogen and placed in a pre-heated oil 

bath at 70 °C for 10 h. The resulting PSMA (SMA conversion = 76%; Mn = 4,900 g 

mol-1, Mw = 5,700 g mol-1, Mw/Mn = 1.17) was purified by twice precipitating into 

excess ethanol. The mean degree of polymerisation (DP) of this macro-CTA was 

calculated to be 13 using 1H NMR spectroscopy by comparing the integrated signals 

corresponding to the CDB aromatic protons at 7.0-7.5 ppm with that assigned to the 

two oxymethylene protons of PSMA at 3.4-4.2 ppm. 

 

4.2.3. Synthesis of poly(stearyl methacrylate)-poly(benzyl methacrylate) (PSMA-

PBzMA) diblock copolymer vesicles 

A typical RAFT non-polar dispersion polymerisation synthesis of PSMA13-PBzMA96 

diblock copolymer vesicles at 10% w/w solids was carried out as follows: A 50 mL 

round-bottomed flask was charged with benzyl methacrylate (BzMA; 1.89 g; 10.7 
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mmol), T21s initiator (4.62 mg; 21.4 μmol; dissolved at 10.0% v/v in mineral oil), 

PSMA13 macro-CTA (0.5 g; 107 μmol; [PSMA13]/[T21s] molar ratio = 5.0) and 

mineral oil (21.5 g). The reaction mixture purged with nitrogen gas for 30 min and the 

deoxygenated solution was then placed in a pre-heated oil bath at 90 °C for 5 h (final 

BzMA conversion = 97 %; Mn = 16,600 g mol-1, Mw/Mn = 1.16). 

 

4.2.4. Gel permeation chromatography (GPC) 

Molecular weight distributions (MWDs) were assessed by GPC using THF eluent at 

30 °C. The THF GPC system was equipped with two 5 μm (30 cm) Mixed C columns 

and a WellChrom K-2301 refractive index detector operating at 950 ± 30 nm. The 

mobile phase contained 2.0% v/v triethylamine and 0.05% w/v butylhydroxytoluene 

(BHT) with a toluene flow rate marker and the flow rate was fixed at 1.0 mL min-1. A 

series of ten near-monodisperse poly(methyl methacrylate) standards (Mp values 

ranging from 645 to 2,480,000 g mol-1) were used for calibration. 

 

4.2.5. 1H Nuclear Magnetic Resonance (NMR) spectroscopy 

1H NMR spectra were recorded in either CD2Cl2 or CDCl3 using a Bruker AV1-400 

or AV1-250 MHz spectrometer. Typically 64 scans were averaged per spectrum. For 

variable temperature 1H NMR studies, the 10% w/w dispersion of PSMA13-PBzMA96 

vesicles in mineral oil was centrifuged for at 13,000 rpm (16,060 g) for 1 h. The 

sedimented vesicles were then redispersed and the centrifugation step was repeated 

until 3 cycles were completed. Finally, the sedimented vesicles were redispersed using 

d26-dodecane to produce a 5.0% w/w dispersion. 1H NMR spectra were recorded at 

various temperatures ranging from 25 to 150 °C (64 scans per spectrum) using a 

Bruker Avance III 400 (NanoBay) spectrometer fitted with a 1H-X broadband observe 

probe. These variable temperature 1H NMR studies were conducted by Dr. Geoff 

Akien (Lancaster University), for which he is thanked. 

 

4.2.6. Dynamic light scattering (DLS) 

DLS studies were performed at 25 °C using a Zetasizer Nano-ZS instrument (Malvern 

Instruments, UK) at a fixed scattering angle of 173°. Copolymer dispersions were 

diluted to 0.10% w/w solids in n-dodecane prior to light scattering studies. The 



Chapter 4: A Vesicle-to-Worm Transition for Block Copolymer Vesicles Prepared by RAFT 

Dispersion Polymerisation Enables High-Temperature Thickening of Automotive Engine 

Oils 

 

138 

 

intensity-average diameter and polydispersity of the diblock copolymer particles were 

calculated by cumulants analysis of the experimental correlation function using 

Dispersion Technology Software version 6.20.  Data were averaged over three sets of 

thirteen runs each of thirty seconds duration. 

 

4.2.7. Transmission electron microscopy (TEM) 

TEM studies were conducted using a Philips CM 100 instrument operating at 100 kV 

and equipped with a Gatan 1 k CCD camera. Diluted block copolymer solutions 

(0.10% w/w) were placed on carbon-coated copper grids and exposed to 

ruthenium(VIII) oxide vapour for 7 min at 20 °C prior to analysis.28 This heavy metal 

compound acted as a positive stain for the core-forming PBzMA block to improve 

contrast. The ruthenium(VIII) oxide was prepared as follows: ruthenium(IV) oxide 

(0.30 g) was added to water (50 g) to form a black slurry; subsequent addition of 

sodium periodate (2.0 g) with stirring produced a yellow solution of ruthenium(VIII) 

oxide within 1 min. 

 

4.2.8. Oscillatory rheology measurements 

An Anton Paar MCR502 rheometer equipped with a variable temperature Peltier plate 

and hood and a 50 mm 2° aluminium cone was used for all experiments. The storage 

(G’) and loss (G”) moduli were measured as a function of temperature at a fixed strain 

of 1.0% and an angular frequency of 10 rad s-1. During temperature ramps, the 

temperature was varied at 2 °C min-1, with data recorded every 2.5 min, corresponding 

to 5 °C intervals. During time sweeps, the temperature was set at 20 °C and data were 

recorded every 10 min using 1.0% strain and an angular frequency of 10 rad s-1. For 

all measurements, the distance between the cone and plate was 207 µm. 

 

4.2.9. Small-angle X-ray scattering (SAXS) 

SAXS patterns were collected at a synchrotron source (ESRF, station ID02, Grenoble, 

France) using monochromatic X-ray radiation (wavelength λ = 0.0995 nm, with q 

ranging from 0.004 to 2.5 nm-1, where q = 4π sin θ/λ is the length of the scattering 

vector and θ is one-half of the scattering angle) and a FReLoN Kodak CCD detector. 

Glass capillaries of 2 mm diameter were used as a sample holder and the sample 
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temperature was controlled using a heating/cooling capillary holding stage (Linkam 

Scientific Instruments Ltd., Tadworth, UK), with 2 min equilibration before data 

collection. X-ray scattering data were reduced using standard routines from the 

beamline and were further analysed using Irena SAS macros for Igor Pro.29 

Measurements were conducted on a 5.0% w/w dispersion of PSMA13-PBzMA96 

particles in mineral oil. 

 

4.3. Results and Discussion 

4.3.1. Synthesis of PSMA13-PBzMA96 diblock copolymer vesicles 

A low-polydispersity poly(stearyl methacrylate) (PSMA; mean degree of 

polymerisation, DP = 13) macro-CTA was chain-extended using BzMA monomer via 

RAFT dispersion polymerisation in mineral oil to generate well-defined PSMA13-

PBzMA96 diblock copolymer vesicles at 10% w/w solids (see Scheme 4.1). 

 

 

Scheme 4.1. Synthesis of poly(stearyl methacrylate)13-poly(benzyl methacrylate)96 (PSMA13-

PBzMA96) vesicles via RAFT dispersion polymerisation in mineral oil at 90 °C and 10% w/w 

solids. 

 

For this PISA formulation, 96% BzMA conversion was achieved within 5 h at 90 °C, 

as judged by 1H NMR spectroscopy. THF GPC analysis confirmed that the resulting 

PSMA13-PBzMA96 diblock copolymer chains exhibited a relatively narrow unimodal 

molecular weight distribution (MWD, Mw/Mn = 1.17). Moreover, the clear shift in the 

MWD curve relative to that of the PSMA13 macro-CTA indicated a high blocking 

efficiency (see Figure 4.1). 
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Figure 4.1. Gel permeation chromatograms (vs. poly(methyl methacrylate) standards) 

obtained for the vesicle-forming PSMA13-PBzMA96 diblock copolymers synthesised via 

RAFT dispersion polymerisation in mineral oil at 90 °C and 10% w/w solids (blue data). The 

PSMA13 macro-CTA (prepared in toluene at 70 °C at 40% w/w solids) is also shown as a 

reference (red data). 

 

4.3.2. Thermo-responsive PSMA13-PBzMA96 vesicles 

Fielding et al. reported that PLMA-PBzMA worms prepared in n-dodecane undergo a 

worm-to-sphere transition upon heating as a result of surface plasticisation of the 

PBzMA core-forming block.26 Similarly, the PSMA13-PBzMA96 vesicles described in 

this study exhibit a vesicle-to-worm morphological transition upon heating to 150 °C, 

as confirmed by TEM studies (see Figure 4.2). Firstly, a well-defined vesicular 

morphology at 20 °C was confirmed (see Figure 4.2a). DLS studies for these PSMA13-

PBzMA96 vesicles indicated an intensity-average diameter of 140 nm. In order to 

observe the true nanoparticle morphology at 150 °C by TEM, a 10% w/w dispersion 

of PSMA13-PBzMA96 vesicles was equilibrated at 150 °C for 10 min and diluted with 

n-dodecane at the same temperature to produce a 0.10% w/w dispersion. This ensured 
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that the worms are retained as a kinetically-trapped morphology on cooling to 20 °C 

(see Figure 4.2b). 

 

 

Figure 4.2. Transmission electron micrographs of 0.1% w/w dispersions of (a) PSMA13-

PBzMA96 vesicles at 20 °C and (b) the highly anisotropic worms formed by the same 

concentrated vesicle dispersion after heating up to 150 °C. 

 

The vesicle-to-worm transition was then studied by variable-temperature SAXS 

(Figure 4.3). Representative SAXS patterns for 5.0% w/w PSMA13-PBzMA96 

nanoparticles in mineral oil at 20 °C (red data), 90 °C (blue data) and 130 °C (green 

data) are very similar, with an approximate -2 gradient at low q and two distinct local 

minima in the scattering pattern. The local minimum at q~0.05 nm-1 represents the 

overall vesicle dimensions, whereas that at q~0.5 nm-1 represents the vesicle 

membrane thickness (Tm). This indicated that the vesicular morphology is retained 

throughout this temperature range. Notably, the local minimum at high q~0.5 nm-1 

gradually shifts to higher q, suggesting that that Tm decreases over this temperature 

range. These observations support the surface plasticisation mechanism, whereby 

PBzMA residues nearest the block junction become solvated on heating, which 

reduces the effective volume fraction of the PBzMA core-forming block relative to 

the PSMA stabilising block (hence reducing Tm). Upon heating to 135 °C (orange 

data), a shallower gradient is observed at low q and the local minimum at high q is 

shifted to lower q. This indicates the onset of the vesicle-to-worm transition. SAXS 

patterns continued to evolve on heating further, with a pure worm phase being 

observed at 145 °C (pink data) and 150 °C (black data). This assignment of pure 
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worms was based on a gradient of approximately -1 at low q, as well as the loss of the 

feature representing the overall vesicle diameter at q~0.05 nm-1. 

 

 

Figure 4.3. Small-angle X-ray scattering (SAXS) patterns recorded for a 5.0% w/w dispersion 

of PSMA13-PBzMA96 nanoparticles in mineral oil at various temperatures (2 min equilibration 

time). Gradients of -2 and -1 are also shown as a guide. 

 

In order to confirm that the observed vesicle-to-worm transition is caused by the 

surface plasticisation of the core-forming PBzMA block, as reported by Fielding et 

al.26 for PLMA-PBzMA nanoparticles, a variable-temperature 1H NMR study was 

conducted. Firstly, the initial PSMA13-PBzMA96 vesicles were carefully transferred 

from mineral oil into d26-dodecane via three centrifugation-redispersion cycles (see 

Experimental section). Importantly, TEM studies confirmed that the PSMA13-

PBzMA96 vesicles survived this centrifugation-redispersion process (see Figure 4.4). 
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Figure 4.4. Transmission electron micrograph of PSMA13-PBzMA96 vesicles in n-dodecane 

after three centrifugation-redispersion cycles (centrifugation at 13,000 rpm for 60 min). 

 

1H NMR studies of a 5.0% w/w dispersion of PSMA13-PBzMA96 nano-objects in d26-

dodecane were conducted from 25 °C to 150 °C (see Figure 4.5). This aliphatic solvent 

was chosen because it is very similar to the mean chemical composition of the mineral 

oil. The benzylic proton signal at ~4.9 ppm became progressively more intense relative 

to the oxymethylene proton signal of the PSMA block at ~4.0 ppm, which indicates 

greater solvation of the PBzMA block at increasing temperatures. However, these 

variable-temperature 1H NMR studies merely serve to confirm that the solvation of 

the core-forming PBzMA block increases with increasing temperature. Thus two 

potential mechanisms for solvation must be considered: (i) uniform solvation of the 

core-forming PBzMA block and (ii) surface plasticisation of the BzMA repeat units 

closest to the PSMA-PBzMA block junction. In order to deduce the nature of the 

PBzMA solvation, it is important to consider the critical packing parameter (P): 

 

𝑃 =  
𝑉

𝑎0𝑙c
 4.1 
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where V is the volume occupied by the core-forming block, ao is the optimal head-

group area occupied by the stabilising chains and lc is the length of the core-forming 

block. 

 

 

Figure 4.5. Variable-temperature 1H NMR spectra recorded for 5.0% w/w PSMA13-PBzMA96 

nanoparticles in d26-dodecane. No obvious PBzMA solvation is evident at 25 °C (dotted data), 

whereas an increasing degree of solvation is seen upon heating from 130 °C (green data) to 

150 °C (black solid data).  

 

Since vesicles are formed when ½ ≤ P ≤ 1 and worms are favoured when ⅓ ≤ P ≤ ½,6, 

9 the observed vesicle-to-worm transition must correspond to a decrease in the value 

of P. For this reduction in P to occur, it is apparent that V (i.e. the volume of the core-

forming block) must decrease. If uniform solvation of the core-forming PBzMA block 

were to occur at elevated temperatures, the volume of the PBzMA core-forming block 

would increase. Conversely, if surface plasticisation occurs and the BzMA residues 

closest to the PSMA-PBzMA block junction become solvated, V would decrease as 

shown in Figure 4.6. It can therefore be deduced that surface plasticisation caused by 
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the ingress of hot solvent is responsible for the observed vesicle-to-worm transition 

confirmed by TEM and SAXS studies. 

 

 

Figure 4.6. Surface plasticisation of the core-forming PBzMA block (depicted in blue) upon 

heating the vesicle dispersion above 135 °C results in the observed vesicle-to-worm transition 

for PSMA13-PBzMA96 nanoparticles in mineral oil. 

 

4.3.3. Geometric considerations of the vesicle-to-worm transition 

Upon fitting the SAXS patterns for PSMA13-PBzMA96 vesicles at 20 °C (red data, 

Figure 4.7) and PSMA13-PBzMA96 worms at 150 °C (black data, Figure 4.7), 

important information regarding the dimensions of each nanoparticle morphology can 

be determined. The local minimum at q~0.5 nm-1 for PSMA13-PBzMA96 worms at 150 

°C represents a mean worm thickness (Tw) of 14.5 nm, which is larger than the Tm (8.8 

nm) of the PSMA13-PBzMA96 vesicles observed at 20 °C. 



Chapter 4: A Vesicle-to-Worm Transition for Block Copolymer Vesicles Prepared by RAFT 

Dispersion Polymerisation Enables High-Temperature Thickening of Automotive Engine 

Oils 

 

146 

 

 

Figure 4.7. Representative SAXS patterns and fittings for a 5.0% w/w dispersion of PSMA13-

PBzMA96 vesicles in mineral oil at 20 °C (top, red data) and PSMA13-PBzMA96 worms at 150 

°C (bottom, black data). Cartoons illustrate the outer core diameter of the vesicle (Dout), 

vesicle membrane thickness (Tm), worm length (Lw) and worm thickness (Tw). Gradients of -2 

and -1 are also shown as a guide. 

 

Similar differences were also observed by Rank et al.30 for poly(2-vinyl pyridine)66-

poly(ethylene oxide)46 (P2VP66-PEO46) block copolymer vesicles, which undergo and 

vesicle-to-worm transition on cooling from 25 °C to 4 °C. The P2VP66-PEO46 vesicles 

at 25 °C exhibited a Tm of 12 nm compared to a Tw of 16 nm for worms formed from 

the same diblock copolymers at 4 °C. This observation was attributed to the 

interdigitation of core-forming chains within the near-planar membrane. Since the 

copolymer chains are arranged with a higher degree of interfacial curvature within 

worm-like nanoparticles, they are less likely to interdigitate and the value of Tw will 

be larger than that of Tm (see Figure 4.8). Interdigitation has also been observed by 

Battaglia and Ryan31 for poly(ethylene oxide)-poly(1,2-butylene oxide) (PEO-PBO) 

diblock copolymer and PEO-PBO-PEO and PBO-PEO-PBO triblock copolymer 

vesicles. In this work, SAXS and TEM studies were used to show that copolymer 

chains within the membrane do in fact interdigitate. These observations were 

supported by self-consistent mean field theory (SCFT) calculations described by 
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Matsen and Bates.32 Here, it was demonstrated that a significant fraction of copolymer 

chains are able to penetrate beyond the mid-plane of the membrane (as shown in 

Figure 4.8a), much more than predicted by the traditional strong segregation theory. 

 

 

Figure 4.8. Cross-sectional representation of the probable arrangement of copolymer chains 

within PSMA13-PBzMA96 diblock copolymer (a) vesicles and (b) worms. Interdigitation is 

suggested within the vesicle membrane with copolymer chains penetrating beyond the mid-

plane, whereas such interdigitation is less likely within the worm core. Thus, for PSMA 13-

PBzMA96 nanoparticles, the worm core thickness (Tw) is larger than the vesicle membrane 

thickness (Tm). 

 

In addition to these insights into the relative thicknesses of the vesicle membrane and 

worm core, the average number of worms formed from one vesicle during the 

thermally-triggered vesicle-to-worm transition can be calculated. Firstly, the volume 

occupied by the vesicle membrane (Vvm) was calculated using the outer (Dout) and 

inner (Din) core diameters of the vesicle and the membrane thickness (Tm) as follows. 
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𝐷in =  𝐷out − 2𝑇m 4.2 

 

𝐷in = 101.6 nm − (2 × 8.8 nm) = 84.0 nm 4.3 

 

𝑉vm =  𝑉out − 𝑉in =  
4

3
𝜋 [(

𝐷out

2
)

3

−  (
𝐷in

2
)

3

] 4.4 

 

𝑉vm =  
4

3
𝜋 [(

101.6 nm

2
)

3

−  (
84.0 nm

2
)

3

] = 2.39 ×  105 nm3 4.5 

 

Then, the volume of the worm core (Vwc) was calculated using the worm contour 

length (Lw) and the worm thickness (Tw) as follows: 

 

𝑉wc =  [𝜋 (
𝑇w

2
)

2

𝐿w] +  [
4

3
𝜋 (

𝑇w

2
)

3

]  4.6 

 

𝑉wc =  [𝜋 (
14.5 nm

2
)

2

 × 471 nm] + [
4

3
𝜋 (

14.5 nm

2
)

3

]

= 7.94 ×  104 nm3 

4.7 

 

Upon calculating the average volume occupied by the core domain for both PSMA13-

PBzMA96 vesicles at 20 °C and PSMA13-PBzMA96 worms at 150 °C, the average 

number of worms formed from one vesicle was calculated using the ratio of Vvm and 

Vwc as shown below. 

 

𝑉vm

𝑉wc
=  

2.39 ×  105 nm3

7.94 ×  104 nm3
= 3.01  4.8 

 

Therefore, the average number of worms formed from one vesicle during the 

thermally-triggered vesicle-to-worm transition for PSMA13-PBzMA96 nanoparticles 
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dispersed in mineral oil is approximately three. This value was verified by considering 

the mean number of copolymer chains per nanoparticle, or the aggregation number. 

For PSMA13-PBzMA96 vesicles at 20 °C, the mean number of copolymer chains per 

vesicle (Nv) was calculated using Vvm and the volume occupied by one core-forming 

PBzMA block within the membrane (Vm = (DPPBzMA.Mn,BzMA)/(NA.ρ), where DPPBzMA 

is the mean degree of polymerisation of the PBzMA block, Mn,BzMA corresponds to the 

molecular weight of one BzMA unit within the PBzMA block, NA is Avagadro’s 

number and ρ is the density of PBzMA) as follows: 

 

𝑁v =
𝑉vm

𝑉m
=

2.39 × 105nm3

24.426 nm3
= 9,784 4.9 

 

Similarly, for PSMA13-PBzMA96 worms at 150 °C, the mean number of copolymer 

chains per worm-like nanoparticle (Nw) was calculated using Vwc and the volume 

occupied by one core-forming PBzMA block within the worm core (Vs) as follows: 

 

𝑁w =
𝑉wc

𝑉s
=

7.94 × 104nm3

24.426 nm3
= 3,130 4.10 

 

The average number of worms formed from one vesicle can therefore be determined 

by considering the mean number of copolymer chains per nanoparticle in each case. 

 

𝑁v

𝑁w
=

9,784

3,130
= 3.13 4.11 

 

Considering Nv and Nw for each morphology comprised of the same diblock 

copolymers, the average number of worms formed from vesicles is confirmed to be 

approximately three, thus supporting the value determined by geometry. These 

findings could offer important mechanistic insights into morphological transitions 

involving diblock copolymer nanoparticles. 
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4.3.4. High-temperature thickening of oils 

It is well known that (i) dispersions of diblock copolymer worms form free-standing 

gels at sufficiently high copolymer concentrations,8 and (ii) a thermally-triggered 

worm-to-sphere transition results in rapid in situ degelation.18, 23, 25, 26 A 10% w/w 

dispersion of PSMA13-PBzMA96 vesicles in mineral oil was studied to assess the effect 

of the vesicle-to-worm transition on its rheological behaviour (see Figure 4.9). 

 

 

Figure 4.9. Dependence of the storage modulus (G’, blue data) and loss modulus (G’’, red 

data) of a 10% w/w dispersion of PSMA13-PBzMA96 nanoparticles in mineral oil upon heating 

from 20 °C to 150 °C. Data were recorded at 1.0% strain using an angular frequency of 10 rad 

s-1, with a heating rate of 2 °C min-1. 

 

Initially, the dispersion of vesicles exhibits typical rheology of a free-flowing fluid, 

with the loss modulus (G’’) much greater than the storage modulus (G’). On heating 

from 20 °C to 130 °C, the G’ and G’’ are both systematically reduced, with the value 

of G’ always remaining much smaller than that for G’’. Over this temperature range, 

the dynamic viscosity (η’ = G’’/ω, where ω is the angular frequency) varies with 
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temperature as expected for Newtonian fluids, which can be approximated using the 

Andrade equation shown below.33, 34  

 

𝑙𝑜𝑔10 𝜂′ = 𝐴 +
𝐵

𝑇
 4.12 

 

Here, T is the temperature in K and A and B are constants. However, on further heating 

from 130 °C to 135 °C, G’ increases by over five orders of magnitude from 3.89 μPa 

to 0.438 Pa. This dramatic increase in G’ at 135 °C coincides with the critical gelation 

temperature (CGT), defined as the temperature above which the dispersion behaves as 

a viscoelastic gel (since G’ now exceeds G’’). These observations are supported by 

the SAXS data shown in Figure 4.3, where PSMA13-PBzMA96 vesicles are observed 

at temperatures between 20 °C and 130 °C, with the onset of the vesicle-to-worm 

transition identified to be at ~135 °C. The first appearance of anisotropic worm-like 

particles as judged by SAXS is in close agreement with the CGT determined by 

rheology, which strongly suggests that multiple inter-worm contacts are responsible 

for the observed gelation. The change in G’’ over the same temperature range 

corresponds to an increase in η’ from 7.77 mPa s at 130 °C to 14.4 mPa s at 135 °C 

and eventually 32.3 mPa s at 150 °C, an approximate four-fold increase. As far as we 

are aware, there are very few, if any, literature examples of significantly higher 

viscosities being achieved at elevated temperatures for soft matter formulations. One 

example is the reversible worm-to-sphere transition for PGMA-PHPMA worms in 

aqueous media, where spheres re-form worms upon heating from 4 °C to 25 °C.23 

Also, Pluronic F-127, a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene 

oxide) (PEO-PPO-PEO) ABA triblock copolymer, has also been shown to increase 

the viscosity of water via the formation of pseudo cross-links at elevated 

temperatures.35 However, these transitions in aqueous media occur at relatively low 

temperatures (4 °C to 30 °C). Similar to the present work, it has been shown that ionic 

surfactant vesicles can form elongated micelles at increased temperatures, which also 

corresponds to an increase in viscosity.36, 37 However, the viscosity was shown to go 

through a maximum at ~50-60 °C. The present work thus offers significant potential 
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for high-temperature thickening in non-aqueous media; an ongoing technical 

challenge in the automotive industry. 

 

4.3.5. Reversibility of the vesicle-to-worm transition 

One drawback for the vesicle-to-worm transition described in this Chapter is the fact 

that it is not fully reversible. On cooling to 20 °C after the thermal ramp shown in 

Figure 4.9, a mixed phase of vesicles and worms is observed by TEM studies (see 

Figure 4.10). 

 

 

Figure 4.10. Transmission electron micrographs and particle size distributions obtained by 

dynamic light scattering (DLS) for a 0.10% w/w dispersion of PSMA13-PBzMA96 

nanoparticles at 20 °C before (red data) and after (blue data) at 20-150-20 °C thermal cycle. 

Inset digital images show the 10% w/w dispersions of the nanoparticles at 20 °C before (red 

data) and after (blue data) a 20-150-20 °C thermal cycle. 

 

This partially reversible transition also corresponded to a broadening in the particle 

size distribution and a shift to larger average size, presumably due to the presence of 

long anisotropic worms as observed by TEM studies (blue data, Figure 4.10). The 

physical appearance of the 10% w/w dispersions also indicated the presence of worms 
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after the thermal cycle, since a turbid, free-standing gel is formed compared to the 

free-flowing dispersion observed before the 20-150-20 °C thermal cycle (see inset 

digital image in Figure 4.10). 

 

Rheological studies of the 10% w/w dispersion directly after the 20-150-20 °C thermal 

cycle indicated that the dispersion remained a gel (G’ > G’’) for 90 min (see Figure 

4.11). 

 

 

Figure 4.11. Dependence of the storage modulus (G’, blue data) and loss modulus (G’’, red 

data) of a 10% w/w dispersion of PSMA13-PBzMA96 nanoparticles in mineral oil at 20 °C 

immediately after a 20-150-20 °C thermal cycle. Data were recorded every 10 min at 1.0% 

strain using an angular frequency of 10 rad s-1. 

 

After this initial time period, the dispersion remained a viscous liquid for the duration 

of the study. Although the dispersion returned to this state, the values of G’ and G’’ 

were much higher (G’ = 1.10 Pa, G’’ = 5.25 Pa) than those for the original dispersion 

of PSMA13-PBzMA96 vesicles at 20 °C (G’ = 19.2 μPa, G’’ = 0.384 Pa). This 
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corresponds to an increase in η’ from 38.4 mPa s to 525 mPa s, which is evidently due 

to the remaining PSMA13-PBzMA96 worms. The formation of this high-viscosity 

dispersion after the thermal cycle would render this particular formulation as an 

unviable option for high temperature viscosity modification. 

 

4.4. Conclusions 

In summary, PSMA13-PBzMA96 vesicles prepared directly in mineral oil via PISA 

undergo a vesicle-to-worm transition on heating from 20 °C to 150 °C. This order-

order morphological transition was characterised using TEM, SAXS, variable 

temperature 1H NMR spectroscopy, DLS and rheology. It is attributed to surface 

plasticisation of the PBzMA core-forming block, with the onset of worm formation 

identified to be ~135 °C by SAXS and rheology. The morphological transition is 

complete at 145-150 °C as confirmed by the similarity in the SAXS patterns obtained 

on a 5.0% w/w dispersion of PSMA13-PBzMA96 nanoparticles in mineral oil, where a 

-1 gradient at low q confirmed the presence of worms. This vesicle-to-worm transition 

offers a potential route to high-temperature thickening of engine oils, which is one of 

the ‘holy grails’ of the automotive industry. Upon heating from 20 °C to 150 °C, a 

sharp increase in the viscosity of a 10% w/w dispersion of PSMA13-PBzMA96 

nanoparticles in mineral oil was observed. Interestingly, this increase in viscosity 

occurred at ~130-135 °C, which aligns with the onset of the vesicle-to-worm transition 

observed by SAXS studies. Unfortunately, this morphological transition is only 

partially reversible; a mixed phase of vesicles and worms was observed by TEM 

studies after the 20-150-20 °C thermal cycle. This directly affects the rheological 

properties of the 10% w/w dispersion, with a viscous fluid obtained compared to the 

initial low-viscosity free flowing dispersion of vesicles. Due to this partial 

irreversibility, the current formulation does not offer a viable route to high temperature 

thickening of automotive engine oils. However, there is obvious potential for such a 

vesicle-to-worm transition to provide significant viscosity modification over a useful 

temperature range for the automotive industry. Therefore, more research is warranted 

in order to determine whether a closely related formulation would offer full 

reversibility for the morphological transition and thus provide a more reliable method 

of reversible thickening. 
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5.1. Introduction 

The synthesis of diblock copolymer worm gels has been reported for RAFT-mediated 

PISA formulations conducted in water,1-6 lower alcohols7, 8 and n-alkanes9-13. Chapter 

3 described the synthesis of PSMA13-PBzMAx diblock copolymer spheres, worms or 

vesicles in mineral oil and the construction of a phase diagram for this PISA 

formulation indicated a very narrow worm phase. Nevertheless, a pure worm 

morphology could be accessed at copolymer concentrations ranging from 5.0 to 20% 

w/w when targeting PSMA13-PBzMA65 diblock copolymer nanoparticles. Closely 

related PLMA-PBzMA worms synthesised in n-dodecane,10 mineral oil or a poly(α-

olefin) (see Chapter 2) exhibit a thermo-reversible worm-to-sphere transition on 

heating. This is caused by the surface plasticisation of the core-forming PBzMA block 

by ingress of hot solvent, which alters the relative volume fractions of the solvophobic 

and solvophilic blocks and thus changes the preferred diblock copolymer 

morphology.10 In addition to the interesting rheological properties of diblock 

copolymer worms dispersed in non-polar solvents, it is well-known that anisotropic 

particles can be aligned when such structured gels are subjected to an applied shear.14 

In particular, shear-induced alignment of worm-like micelles has been reported for 

both surfactant14-18 and block copolymer18, 19 formulations. This shear alignment is 

most commonly monitored using a combination of rheology (using a Couette shear 

cell) with techniques such as small-angle neutron scattering (SANS)14-17 or small-

angle X-ray scattering (SAXS).18, 19 In both cases, evidence for alignment is provided 

by the 2D scattering pattern. Non-aligned objects produce symmetric 2D scattering 

patterns due to their random orientation.20 This is also true for isotropic spherical 

objects under shear, since such species cannot be aligned.20 Conversely, shear-aligned 

anisotropic objects such as fibres or worm-like nanoparticles display asymmetric 2D 

scattering patterns (see Figure 5.1).15, 18, 20 The long axis of the scattering pattern 

indicates the direction perpendicular to the alignment (q⊥), whereas the shorter axis is 

parallel to the direction of alignment (q||).
18 The degree of alignment can be quantified 

using the anisotropy factor (Δ) of the 2D scattering pattern. Δ is defined as the ratio of 

the long axis (a) to the short axis (b), i.e. Δ = a/b.18 Thus, Δ = 1 for a symmetric 2D 

scattering pattern and represents random orientation of the sample. Δ exceeds unity 

for anisotropic 2D scattering patterns, with larger values of Δ indicating a greater 

degree of alignment. However, this apparent degree of alignment may be artificially 
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reduced when polydisperse worms are studied, because a broader ellipsoidal 2D 

scattering pattern would be observed.18 

 

 

Figure 5.1. 2D scattering patterns obtained for a 4.5% w/w dispersion of erucyl 

bis(hydroxyethyl) methylammonium chloride worm-like surfactant micelles in the presence of 

6.0% w/w KCl at shear rates of 0, 5, 10 and 50 s-1. Symmetrical scattering is observed in the 

absence of shear, but higher shear rates result in a greater degree of anisotropy in the 2D 

scattering pattern.15 

 

Above a certain critical shear rate, worm dispersions display shear-thinning behaviour 

due to alignment of these anisotropic particles in the direction of the flow.21, 22 This 

relationship between viscosity and shear alignment can be assessed using the shear-

induced polarised light imaging (SIPLI) technique.23-26 SIPLI utilises a modified 

parallel plate geometry, where the lower plate is made of transparent fused quartz and 

the upper plate is a polished steel mirror. Linearly-polarised white light is directed 
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through the fused quartz plate and sample towards the polished steel plate (see Figure 

5.2a). The reflected light is analysed at 90° to the plane of polarisation and detected 

using a CCD camera. The presence of a Maltese cross pattern indicates birefringence 

as a result of particle alignment (see Figure 5.2b). Birefringence arises due to the 

difference in refractive index (Δn’) in two principal axes of optical indicatrix of the 

nano-object (n1 and n2), Δn’ = n1 – n2.
27 Thus birefringence does not occur if no 

specific orientation is observed. For SIPLI measurements, there must also be net 

orientation within the sample and the wave vector of the incident light must be normal 

to the sample surface (see Figure 5.2b). Plane-polarised light interacts differently with 

shear-aligned objects of differing orientations. This is because the aligned species 

rotates the plane of light polarisation if the optical axes of the material are not in the 

same plane as the incident polarised light. Since the reflected light is analysed at 90° 

to the plane of polarisation, light will only be detected where the optical axes of the 

aligned species are not in the same plane as the incident polarised light, giving rise to 

the characteristic Maltese cross pattern (see Figure 5.2b). 

 

Figure 5.2. Schematic diagram for (a) the modified parallel plate geometry including the 

arrangement of the light source, polariser, analyser and CCD camera in relation to the 

rheometer, and (b) the formation of shear-induced polarised light imaging (SIPLI), simplified 

to show a linear arrangement. Double-sided arrows show the perpendicular planes of 

polarisation for the polariser (P) and the analyser (A). Lines within the white ellipsoids 

represent the optical axes of the sheared object, with the long axis corresponding to n1 (red 

lines) being parallel to the direction of shear-alignment (dashed circles). The angular speed 

(Ω) indicates the direction of rotation for the polished steel plate.23 
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Since a parallel plate geometry is used for the SIPLI measurements, a gradient of shear 

rates is obtained across the plate (see Figure 5.3). This enables the simultaneous 

investigation of the effect of a range of shear rates on alignment. For example, if there 

is a critical shear rate below which no alignment occurs, a dark circular area should be 

observed at the centre of the image, which can be used to determine this critical shear 

rate. Conversely, if there is a critical shear rate above which no alignment is observed, 

there should be a dark outer ring on the generated image, where the outer edge of the 

Maltese cross indicates the limiting shear rate. 

 

 

Figure 5.3. Schematic representation of the parallel plate geometry, demonstrating the linear 

dependence of shear rate (γ̇  ) across the plate from the centre (0 s-1) to the edge (Ωr/h s-1). 

 

Mykhaylyk et al.23, 24 first developed this technique in combination with detailed 

SAXS studies to monitor the shear-induced crystallisation of thermoplastic polymers. 

Here birefringence was observed as a result of the alignment of stretched polymer 

chains at the onset of shear flow, followed by nucleation of oriented fibril species 

formed by the interaction of the individual polymer chains. SIPLI has since been used 

to observe shear alignment of native silk proteins,25 as well as polystyrene-

polyisoprene diblock copolymer lamellae.26 

 

In this study, the rheological properties of PSMA13-PBzMAx diblock copolymer worm 

gels synthesised at various copolymer concentrations in mineral oil are assessed. This 

enables important physical properties such as the critical gelation temperature (CGT) 

and the critical gelation concentration (CGC) to be determined. Such worms undergo 
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a thermo-reversible worm-to-sphere transition on heating as a result of surface 

plasticisation of the core-forming PBzMA block.10 The shear-induced alignment of 

these worm gels is monitored using the SIPLI technique as a function of temperature, 

shear rate and copolymer concentration.  

 

5.2. Experimental 

5.2.1. Materials 

Monomers were purchased from Sigma-Aldrich (UK) and passed through basic 

alumina prior to use to remove inhibitor. Tert-butyl peroxy-2-ethylhexanoate (T21s) 

initiator was purchased from AkzoNobel (The Netherlands). Cumyl dithiobenzoate 

(CDB), CDCl3, and all other reagents were purchased from Sigma-Aldrich (UK) and 

were used as received, unless otherwise noted. THF and toluene were purchased from 

Fisher Scientific (UK), CD2Cl2 was purchased from Goss Scientific (UK) and 

industrial-grade mineral oil was provided by Lubrizol Corporation Ltd. 

 

5.2.2. Synthesis of poly(stearyl methacrylate) (PSMA) macromolecular-chain 

transfer agent (macro-CTA) 

The synthesis of the PSMA13 macro-CTA was described earlier in this Thesis (Section 

3.2.2.). The PSMA13 macro-CTA was analysed using THF GPC (Mn = 5,700 g mol-1; 

Mw/Mn = 1.17) and 1H NMR spectroscopy as described earlier in this Thesis (mean 

DP = 13). 

 

5.2.3. Synthesis of poly(stearyl methacrylate)-poly(benzyl methacrylate) (PSMA-

PBzMA) diblock copolymer worms 

A typical RAFT dispersion polymerisation synthesis of PSMA13-PBzMA65 diblock 

copolymer worms at 20% w/w solids in mineral oil was conducted as follows: A 10 

mL round-bottomed flask was charged with benzyl methacrylate (BzMA; 0.368 g; 

2.09 mmol), T21s initiator (1.39 mg; 6.42 μmol; dissolved at 10.0% v/v in mineral 

oil), PSMA13 macro-CTA (0.15 g; 32.1 μmol; macro-CTA/initiator molar ratio = 5.0) 

and mineral oil (2.07 g). The reaction mixture was purged with nitrogen gas for 30 

min and the deoxygenated solution was then placed in a pre-heated oil bath at 90 °C 

for 5 h (final BzMA conversion = 98 %; Mn = 12,700 g mol-1, Mw/Mn = 1.15). 
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5.2.4. Gel permeation chromatography (GPC) 

Molecular weight distributions (MWDs) were assessed by GPC using THF eluent at 

30 °C. The THF GPC system was equipped with two 5 μm (30 cm) Mixed C columns 

and a WellChrom K-2301 refractive index detector operating at 950 ± 30 nm. The 

mobile phase contained 2.0% v/v triethylamine and 0.05% w/v butylhydroxytoluene 

(BHT) with a toluene flow rate marker and the flow rate was fixed at 1.0 mL min-1. A 

series of ten near-monodisperse poly(methyl methacrylate) standards (Mp values 

ranging from 645 to 2,480,000 g mol-1) were used for calibration. 

 

5.2.5. 1H Nuclear Magnetic Resonance (NMR) spectroscopy 

1H NMR spectra were recorded in either CD2Cl2 or CDCl3 using a Bruker AV1-400 

or AV1-250 MHz spectrometer. Typically 64 scans were averaged per spectrum. 

 

5.2.6. Transmission electron microscopy (TEM) 

TEM studies were conducted using a Philips CM 100 instrument operating at 100 kV 

and equipped with a Gatan 1 k CCD camera. Diluted block copolymer solutions 

(0.10% w/w) were placed on carbon-coated copper grids and exposed to 

ruthenium(VIII) oxide vapour for 7 min at 20 °C prior to analysis.28 This heavy metal 

compound acted as a positive stain for the core-forming PBzMA block to improve 

contrast. The ruthenium(VIII) oxide was prepared as follows: ruthenium(IV) oxide 

(0.30 g) was added to water (50 g) to form a black slurry; subsequent addition of 

sodium periodate (2.0 g) with stirring produced a yellow solution of ruthenium(VIII) 

oxide within 1 min. 

 

5.2.7. Small-angle X-ray scattering (SAXS) 

SAXS patterns were recorded using a synchrotron source (Diamond Light Source, 

station I22, Didcot, UK). A monochromatic X-ray radiation (wavelength λ = 0.1001 

nm) and a 2D Pilatus 2M detector (Dectris, Switzerland) were used for the 

experiments. The SAXS camera length set-up covered the q range from 0.02 nm-1 to 

1.9 nm-1, where q = 4π sin θ / λ is the modulus of the scattering vector and θ is one 

half of the scattering angle. A 2.0 mm round glass capillary was used as a sample 

holder. X-ray scattering data were reduced using Dawn software version 1.7.1 
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(integration, normalisation)29 and were further analysed using Irena SAS macros for 

Igor Pro (background subtraction, data modelling).30 SAXS measurements were 

conducted on targeted PSMA13-PBzMA65 nanoparticles dispersed in mineral oil. The 

copolymer concentration was diluted to 1.0% w/w for all data collection. 

 

5.2.8. Oscillatory rheology measurements 

A TA Instruments AR-G2 rheometer equipped with a variable temperature Peltier 

plate and a 40 mm 2° aluminium cone was used for all experiments. The storage (G’) 

and loss (G”) moduli were measured as a function of temperature at a fixed strain of 

1.0% and an angular frequency of 10 rad s-1 so as to assess the gel stiffness and critical 

gelation temperature (CGT). During temperature sweeps, the temperature was varied 

at 5 °C intervals, with an equilibration time of 5 min being allowed prior to each 

measurement. In all cases the gap between the cone and plate was 58 µm. 

 

5.2.9. Shear-induced polarised light imaging (SIPLI) 

A mechano-optical rheometer (Anton Paar Physica MCR301 with SIPLI attachment) 

was used for the shear-alignment experiments. The measurements were performed 

using a plate-plate geometry composed of a 25 mm polished steel plate and a fused 

quartz plate connected to a variable temperature Peltier system. The gap between 

plates was set at 1 mm for all experiments. An additional Peltier hood was used to 

achieve better control of the sample temperature. The viscosity was measured as a 

function of temperature at a cooling/heating rate of 2 °C min-1 at a constant angular 

speed. An Edmund Optics 150 W MI-150 high intensity fiber optic white light source 

was used for sample illumination. The polariser and analyser axes were crossed at 90° 

in order to obtain polarised light images (PLIs), which were recorded on a colour CCD 

camera (Lumenera Lu165c).  

 

5.3. Results and Discussion 

5.3.1. Synthesis of PSMA-PBzMA diblock copolymer worms 

The PSMA13 macro-CTA was chain-extended with BzMA monomer targeting 

PSMA13-PBzMA65 diblock copolymer worms via RAFT dispersion polymerisation 

(see Scheme 5.1). PSMA13-PBzMAx worms were obtained over a range of copolymer 
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concentrations from 5.0 to 20% w/w solids and analysed using 1H NMR spectroscopy, 

THF GPC and TEM (see Table 5.1). 

 

 

Scheme 5.1. Synthesis of targeted poly(stearyl methacrylate)13-poly(benzyl methacrylate)65 

(PSMA13-PBzMA65) worms via RAFT dispersion polymerisation of BzMA in mineral oil at 

90 °C and copolymer concentrations ranging from 5.0 to 20% w/w solids. 

 

Table 5.1. Summary of total solids concentration, monomer conversion, GPC molecular weight data 

and assigned nanoparticle morphology for targeted PSMA13-PBzMA65 diblock copolymer worms 

prepared by RAFT dispersion polymerisation of BzMA in mineral oil at 90 °C using T21s and a 

PSMA13 macro-CTA. [PSMA13]/[T21s] molar ratio = 5.0. Relevant data for the PSMA13 macro-CTA 

is displayed for reference. 

% w/w 
% 

BzMAa 

Actual 

Compositiona 

Mn
b 

/ g mol-1 
Mw/Mn

b Morphologyc 

- - PSMA13 4,900 1.17 - 

5.0 98 PSMA13-PBzMA64 13,300 1.19 Worms 

7.5 96 PSMA13-PBzMA62 12,200 1.19 Worms 

10 97 PSMA13-PBzMA63 13,100 1.17 Worms 

15 98 PSMA13-PBzMA64 12,800 1.16 Worms 

20 98 PSMA13-PBzMA64 12,700 1.15 Worms 

aDetermined by 1H NMR spectroscopy. bDetermined by THF GPC against poly(methyl 

methacrylate) standards. cMorphologies were assigned using TEM. 

 

Comparison of the molecular weight distributions (MWDs) for the targeted PSMA13-

PBzMA65 diblock copolymers at each copolymer concentration (Figure 5.4) confirms 

the successful synthesis of PSMA-PBzMA diblock copolymers with comparable 

molecular weights. Moreover, a clear shift in the MWD from the initial PSMA13 

macro-CTA to the various PSMA13-PBzMAx diblock copolymers indicates relatively 

high blocking efficiencies with minimal macro-CTA contamination. 
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Figure 5.4. THF gel permeation chromatograms (vs. poly(methyl methacrylate) standards) 

obtained for targeted PSMA13-PBzMAx diblock copolymer worms synthesised via RAFT 

dispersion polymerisation in mineral oil at various copolymer concentrations. The black 

dashed chromatogram represents the PSMA13 macro-CTA and is displayed for reference. 

 

TEM studies provide evidence that the targeted PSMA13-PBzMA65 diblock 

copolymers form worm-like nanoparticles, as stated in Table 5.1. The appearance of 

worms is confirmed by the representative TEM image shown in Figure 5.5, which was 

obtained for a 0.10% w/w dispersion of PSMA13-PBzMA63 nanoparticles synthesised 

at 10% w/w solids in mineral oil. The mean worm width (Tw) is estimated to be ~13 

nm. 
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Figure 5.5. Transmission electron micrograph of a 0.10% w/w dispersion of PSMA13-

PBzMA63 worms synthesised at 10% w/w in mineral oil. 

 

SAXS analyses were also conducted in order to confirm the assigned worm 

morphology. This is because TEM only enables the dry morphology to be assessed for 

a few hundred nanoparticles, whereas SAXS is averaged over millions of 

nanoparticles and therefore is statistically more robust. Figure 5.6 shows 

representative SAXS patterns recorded for 1.0% w/w dispersions of PSMA13-PBzMAx 

nanoparticles prepared at copolymer concentrations ranging from 5.0 to 20% w/w 

solids. All SAXS patterns confirmed a worm morphology as judged by the 

approximate -1 gradient at low q, which indicates highly anisotropic particles.2, 10, 31 

By fitting the data around the local minimum at high q (~0.5 nm-1), mean worm 

thicknesses (Tw) were determined to be between 11.87 and 13.16 nm (see Table 5.2). 

It is evident that the SAXS patterns obtained for worms synthesised at 15% w/w (green 

data, Figure 5.6) and 20% w/w (orange data, Figure 5.6) deviate from the worm-like 

micelle model at low q. This may indicate the presence of branched worms, which is 

an important consideration later in this Chapter. 
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Figure 5.6. Representative small-angle X-ray scattering (SAXS) patterns recorded for 1.0% 

w/w dispersions of PSMA13-PBzMAx worms synthesised in mineral oil at 5.0% w/w (black 

data), 7.5% w/w (red data), 10% w/w (blue data), 15% w/w (green data) and 20% w/w (orange 

data). White lines on each SAXS pattern indicates the data fit to a worm-like micelle model.10, 

32, 33 

 

These SAXS data were collected where the q range was limited to ~0.02-1.9 nm-1. 

Thus it was not possible to determine the mean worm contour length (Lw), which is 

indicated by a subtle feature at q < 0.01 nm-1. However, if sufficient branching exists 

this Lw feature may not be observed, as suggested by the SAXS patterns in Figure 5.6. 

For PLMA16-PBzMA37 worms synthesised via RAFT dispersion polymerisation in n-

dodecane,10 Lw was found to be 591 ± 9 nm when obtaining SAXS patterns over a 

wider q range (0.005 nm-1 < q < 1.6 nm-1), which was achieved by combining data 

collected at short (for 0.08 nm-1 < q < 1.6 nm-1) and long (for 0.005 nm-1 < q < 0.12 

nm-1) sample-to-detector lengths.34 Similarly, the presence of potential branch points 

in the worms prepared at 5.0% w/w (black data, Figure 5.6), 7.5% w/w (red data, 

Figure 5.6) and 10% w/w solids (blue data, Figure 5.6) may not be observed due to 

the limited accessible q range for these SAXS experiments. 
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Table 5.2. Summary of the worm thickness (Tw) and corresponding standard deviation (σ) for 

PSMA13-PBzMAx worms synthesised via RAFT dispersion polymerisation in mineral oil at various 

copolymer concentrations. SAXS data were recorded on 1.0% w/w dispersions in mineral oil. 

Synthesised at / 

% w/w 

Actual 

compositiona 

Tw
b / 

nm 

𝝈𝑻𝐰
b / 

nm 

5.0 PSMA13-PBzMA64 13.0 1.4 

7.5 PSMA13-PBzMA62 13.1 1.4 

10 PSMA13-PBzMA63 12.0 1.2 

15 PSMA13-PBzMA64 12.6 1.4 

20 PSMA13-PBzMA64 11.9 1.3 

aDetermined by 1H NMR spectroscopy. bDetermined by fitting representative SAXS patterns 

to an established worm-like micelle model.10, 32, 33 

 

5.3.2. Rheological properties of PSMA13-PBzMAx worm gels 

Recent reports for closely-related PLMA-PBzMA diblock copolymers showed that 

pure diblock copolymer worms could be prepared only at copolymer concentrations 

of ≥ 17.5% w/w.9, 10, 35 However, the current PSMA-PBzMA PISA formulation 

enables a pure worm phase to be accessed lower copolymer concentrations as low as 

5.0% w/w as indicated in the phase diagram for PSMA13-PBzMAx nanoparticles 

synthesised in mineral oil (see Chapter 3, Figure 3.14). Fielding and co-workers10 

found that a 20% w/w PLMA16-PBzMA37 diblock copolymer worm gel in n-dodecane 

exhibited thermo-responsive behaviour, transforming into a free-flowing fluid via a 

worm-to-sphere transition on heating to ~70 °C. Both SAXS and rheological studies 

indicated good thermo-reversibility for worm dispersions at (or above) 5.0% w/w 

solids. As previously discussed, this thermally-triggered worm-to-sphere transition 

arises as a result of surface plasticisation of the core-forming PBzMA block by ingress 

of hot solvent.10 Similarly, PSMA13-PBzMAx worm gels also display thermo-

responsive behaviour: degelation occurs on heating up to 90 °C as judged by 

oscillatory rheology studies using a cone-and-plate geometry (see Figure 5.7). By 

definition, the worm dispersions are no longer a gel when the value of the storage 

modulus, G’, is less than that for the loss modulus, G”.2, 3 Thus, the critical gelation 

temperature (CGT) can be defined as the temperature above which G’ is less than G”. 
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Figure 5.7. Variation of storage modulus (G’) with temperature for PSMA13-PBzMAx worm 

gels during a 20-90 °C thermal step. Conditions: 1.0% strain at an angular frequency of 10 rad 

s-1. Data were recorded at 5 °C intervals, with an equilibration time of 5 min being allowed 

before each measurement. The critical gelation temperature (CGT) for each worm gel is 

indicated by a star symbol for each data set. 

 

On lowering the copolymer concentration from 20 to 5.0% w/w, the CGT is reduced 

from 65 to 60 °C. Moreover, a systematic reduction in G’ from ~104 to ~102 Pa is 

observed at 20 °C for worm gels on lowering the copolymer concentration from 20 to 

5.0% w/w. This is because gelation is a macroscopic manifestation of multiple 

microscopic inter-worm contacts, which leads to restricted local diffusion and hence 

formation of a 3D network.2-4, 6, 10, 35 Reducing the copolymer concentration from 20 

to 5.0% w/w leads to significantly fewer inter-worm contacts and hence markedly 

weaker gels. This explanation also accounts for the subtle reduction in CGT observed 

when lowering the copolymer concentration. With fewer inter-worm contacts at lower 

copolymer concentrations, degelation may in fact occur earlier during the worm-to-

sphere transformation (i.e. at lower temperatures). However, other parameters such as 

the Lw also affect the physical properties of worm gels.36, 37 
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It is evident that the worm-to-sphere transition is not complete at 90 °C, particularly 

at higher copolymer concentrations. This is because the G’ at 90 °C is much greater 

than that expected for a free-flowing dispersion of purely spherical nanoparticles. In 

fact, a dispersion of spheres is expected to have a comparable viscosity to that of the 

solvent alone.2, 3 This observation was confirmed for the closely-related PLMA16-

PBzMA37 worms in n-dodecane, where SAXS studies indicated that the worm-to-

sphere transition was only complete on heating to 160 °C.10 In this case, Lw was 

reduced from ~600 nm at 20 °C to ~350 nm at 90 °C, hence the anisotropy (Lw/Tw) 

was approximately halved. For a 20% w/w dispersion of such PLMA16-PBzMA37 

worms, the CGT was determined to be ~47 °C. Thus Lw at the CGT must lie between 

600 nm and 350 nm, since a ‘sequential budding of spheres’ mechanism was 

identified.10 The CGTs observed for PSMA13-PBzMAx worm gels (see Figure 5.7) are 

higher than those reported for the PLMA16-PBzMA37 worm gel. One possible 

explanation is that the PSMA13-PBzMAx worms are longer than the PLMA16-

PBzMA37 worms, which suggests that a greater reduction in Lw would be required to 

reduce the number of inter-worm contacts sufficiently to cause degelation. However, 

this hypothesis was not examined due to the limited q range available when analysing 

these worms by SAXS. Alternatively, surface plasticisation of the core-forming 

PBzMA block may occur at higher temperatures for PSMA-PBzMA nanoparticles in 

mineral oil compared to PLMA-PBzMA nanoparticles in n-dodecane. 

 

The critical gelation concentration (CGC) of the 20% w/w PSMA13-PBzMA64 worm 

gel was determined via systematic dilution. The CGC is defined as the lowest 

concentration at which the worm dispersion forms a free-standing gel at room 

temperature.3 For PSMA13-PBzMA64 worms prepared at 20% w/w, the CGC was 

approximately 4.0% w/w (see Figure 5.8), which is significantly lower than that 

reported for various PLMA-PBzMA worms in n-dodecane,10 mineral oil or a poly(α-

olefin) (PAO) oil. The likely explanation for this observation is that the PSMA13-

PBzMA64 worms are longer than the PLMA-PBzMA worms. This would lead to more 

efficient inter-worm interactions and thus afford free-standing gels at lower copolymer 

concentrations. Although these studies were only conducted on the 20% w/w 

dispersion of PSMA13-PBzMA64 worms, similar CGC values are expected for the 

PSMA13-PBzMAx worms prepares at different copolymer concentrations in mineral 
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oil because the diblock copolymer chains are of similar molecular weight by GPC 

analysis (see Figure 5.4). Moreover, the PSMA13-PBzMA64 worms prepared at 5.0% 

w/w formed a free-standing gel, which is consistent with the observation of a CGC 

below this copolymer concentration. 

 

 

Figure 5.8. Digital images of PSMA13-PBzMA64 worm dispersions in mineral oil to determine 

the critical gelation concentration (CGC) via systematic dilution. The PSMA13-PBzMA64 

worms used in this study were prepared at 20% w/w solids. 

 

5.3.3. Shear-induced alignment of PSMA13-PBzMAx diblock copolymer worms 

5.3.3.1. Temperature-dependent shear-induced alignment 

First, the PSMA13-PBzMA64 diblock copolymer worm gel synthesised at 20% w/w 

was analysed using the SIPLI technique. For all variable temperature measurements, 

the sample was loaded onto the fused quartz plate pre-heated to 150 °C in order to 

remove the thermal history of the gel (this is because the anisotropic worms form 

isotropic spheres at this temperature which are unable to form a gel network).10 The 

apparent viscosity (η) was measured as a function of temperature at a maximum shear 

rate of 1, 10 or 100 s-1 and a cooling/heating rate of 2 °C min-1 from 150 °C to 20°C 

and from 20 °C to 150 °C. At a maximum shear rate of 1 s-1 (Figure 5.9), no 

birefringence was detected at 150 °C because only isotropic spherical nanoparticles 

exist at this temperature. This interpretation is consistent with η values of ~0.01 Pa s, 

which are characteristic of a free-flowing fluid. On cooling, the dispersion became 

progressively more viscous, indicating the formation of anisotropic worms from the 

fusion of multiple spheres.10 The solution viscosity rapidly increased on cooling from 

120 °C to 90 °C, suggesting that progressively longer worms are formed. The first 
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Maltese cross pattern is observed at 100 °C, suggesting that the worms present at this 

temperature are sufficiently aligned to cause birefringence at a shear rate at or below 

1 s-1. Interestingly, birefringence was observed throughout the dispersion, indicating 

a very low critical shear rate for alignment. Such alignment is observed on cooling 

from 100 °C to 60 °C. Between 90 °C and 65 °C, the dispersion viscosity continues to 

increase, albeit at a slower rate than between 120 °C and 90 °C. This again suggests 

that progressively longer worms are formed over this temperature range. Between 65 

°C and 35 °C, the viscosity further increased and at a faster rate than between 90 °C 

and 65 °C. This implies further changes in the copolymer morphology and/or inter-

worm interactions, which eventually cause gelation. For example, the presence of 

branched worms should increase the probability of inter-worm contacts, leading to 

more viscous dispersions. Greater worm clustering or entanglements could also 

increase the dispersion viscosity. Interestingly, the Maltese cross pattern is almost 

completely lost on cooling to 55 °C, which could also be attributed to the formation 

of branched worms or a worm network. Although alignment is not favoured over this 

temperature range, a modest degree of residual alignment is still visible in the optical 

images from 55 °C to 20 °C (see Figure 5.9). Given the high viscosity of the 20% w/w 

dispersion observed over this temperature range, it is feasible that a certain degree of 

alignment could become ‘trapped’, suggesting that the worms cannot relax to a 

completely disordered state. 

 

Immediately after the temperature sweep from 150 °C to 20 °C shown in Figure 5.9, 

the same 20% w/w dispersion was heated from 20 °C to 150 °C at the same rate of 2 

°C min-1 using the same constant maximum shear rate of 1 s-1 (see Figure 5.10).  
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Figure 5.9. Viscosity-temperature profile and shear-induced polarised light imaging (SIPLI) 

of a 20% w/w dispersion of PSMA13-PBzMA64 diblock copolymer nanoparticles on cooling 

from 150 °C to 20 °C at a rate of 2 °C min-1 and a constant shear rate of 1 s-1. Selected SIPLI 

images represent the birefringence observed at various temperatures. A Maltese cross pattern 

indicates shear-induced alignment, whereas the absence of such a pattern indicates no 

alignment. 
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Figure 5.10. Viscosity-temperature profile and shear-induced polarised light imaging (SIPLI) 

of a 20% w/w dispersion of PSMA13-PBzMA64 diblock copolymer nanoparticles on heating 

from 20 °C to 150 °C at a rate of 2 °C min-1 and a constant shear rate of 1 s-1. Selected SIPLI 

images represent the birefringence observed at various temperatures. A Maltese cross pattern 

indicates shear-induced alignment, whereas the absence of such a pattern indicates no 

alignment. 

 

On initial inspection, the viscosity-temperature profile appears to mirror that for the 

cooling ramp, with the initial high-viscosity dispersion becoming less viscous at 

intermediate temperatures before a substantial reduction in viscosity at higher 

temperatures. However, the temperature ranges at which these changes in viscosity 
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occur are subtly different for the cooling and heating ramps. The first major difference 

to consider is the viscosity maximum at ~45 °C. This feature occurs before any 

evidence for shear alignment at 55 °C, indicating that it may correspond to the 

transition from branched/clustered worms to linear worms. The SIPLI images shown 

in Figure 5.10 indicate that shear alignment occurs between 55 °C and 90 °C, which 

differs from the temperature range for which shear alignment is observed on cooling 

from 100 °C to 60 °C. Similar hysteresis has been previously reported for PLMA16-

PBzMA37 worms in n-dodecane.10 On the other hand, the ‘shoulder’ in viscosity 

occurs at around 100 °C in both cases. This is presumably because the number of 

spherical nanoparticles increases relative to the number of worms to the point where 

they dictate the dispersion viscosity. The final viscosity of the 20% w/w dispersion at 

150 °C was the same as that observed at the beginning of the variable-temperature 

SIPLI experiment (η ~ 0.01 Pa s). This indicates good thermo-reversibility for the 

sphere-to-worm-to-sphere transition on the experimental time scale. Figure 5.11 

provides a more direct comparison between the data sets shown in Figure 5.9 and 

Figure 5.10. 

 

 

Figure 5.11. Combination of the viscosity-temperature profiles for the cooling (blue data) and 

heating (red data) ramps for a 20% w/w dispersion of PSMA13-PBzMA64 diblock copolymer 

nanoparticles on heating from 20 °C to 150 °C at a rate of 2 °C min -1 and a constant angular 

speed of 0.08 rad s-1 (maximum shear rate = 1 s-1). Orange shaded regions represent the 

temperature ranges where shear-induced alignment (or birefringence) was observed. 
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5.3.3.2. Shear-rate dependence of shear-induced alignment and viscosity of 

PSMA13-PBzMAx dispersions 

Further investigation of the shear alignment and solution viscosity of PSMA13-

PBzMAx nanoparticles dispersed in mineral oil involved varying the shear rate. The 

same 20% w/w dispersion of PSMA13-PBzMA64 nanoparticles was used to conduct 

these variable-temperature SIPLI experiments at 10 and 100 s-1 and the data were 

compared to that obtained at 1 s-1 (see Figure 5.12). As expected, higher shear rates 

yielded lower-viscosity dispersions at 20 °C owing to their shear-thinning nature.21, 22 

This is particularly evident in Figure 5.12, where η ~ 345 Pa s at 20 °C for a maximum 

shear rate of 1 s-1, while η ~ 40 Pa s at 10 s-1 and η ~ 4 Pa s at 100 s-1 at the same 

temperature. However, when free-flowing dispersions of spherical nanoparticles are 

formed at 150 °C, the dispersion viscosity is relatively independent of shear rate, 

indicating Newtonian behaviour.38, 39 Interestingly, there are subtle differences for the 

temperature ranges over which shear alignment is observed for the same dispersion at 

maximum shear rates of 1, 10 and 100 s-1. Nevertheless, birefringence is consistently 

observed between 95 °C and 75 °C during cooling and between 65 °C and 90 °C during 

heating . In principle, repeating these experiments using slower cooling/heating rates 

might provide more consistent temperature ranges over which shear alignment is 

observed. 

 

 

Figure 5.12. Combination of the viscosity-temperature profiles for the cooling (blue data) and 

heating (red data) ramps of a 20% w/w dispersion of PSMA13-PBzMA64 diblock copolymer 

nanoparticles on heating from 20 °C to 150 °C at a rate of 2 °C min-1 and constant angular 

speed of 0.08 rad s-1(squares), 0.8 rad s-1 (triangles) and 8.0 rad s-1 (circles) (maximum shear 

rates of 1 s-1, 10 s-1 and 100 s-1, respectively). Orange shaded regions represent temperature 

ranges where birefringence is observed. 
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5.3.3.3. Concentration dependence on the shear-induced alignment and viscosity 

of PSMA13-PBzMAx dispersions 

Thus far, only PSMA13-PBzMA64 worms synthesised at 20% w/w have been analysed 

using the SIPLI technique. Hence PSMA13-PBzMAx worm gels synthesised at 10 and 

15% w/w were compared to that synthesised at 20% w/w. For this comparison, the 

same thermal cycle was used and the maximum shear rate was 100 s-1 for all 

measurements (see Figure 5.13). Clearly, the apparent viscosity at 20 °C is higher for 

more concentrated dispersions, as expected. The same features are observed in the 

viscosity-temperature profiles obtained for the 15 and 10% w/w dispersions as for 

those found for the 20% w/w dispersion. An initial low-viscosity fluid (η ~ 0.01 Pa s) 

at 150 °C became more viscous at lower temperature, indicating the formation of 

anisotropic worms. This higher viscosity is consistent with the observation of 

birefringence, as indicated by the characteristic Maltese cross pattern. A further 

increase in viscosity (η ~ 1-3 Pa s) suggests the formation of branched/clustered 

worms, which is supported by the loss of birefringence. There is significant overlap in 

the temperature ranges for which birefringence is observed for these dispersions, but 

there are subtle differences in the onset temperatures. In particular on cooling from 

150 °C to 20 °C birefringence is observed sooner for the 20% w/w dispersion.  

 

 

Figure 5.13. Combination of the viscosity-temperature profile for the cooling (blue data) and 

heating (red data) ramps of a 20% w/w (squares), 15% w/w (triangles) and 10% w/w (circles) 

dispersion of PSMA13-PBzMAx diblock copolymer nanoparticles on heating from 20 °C to 

150 °C at a rate of 2 °C min-1 and maximum shear rate of 100 s-1. Orange shaded regions 

represent temperature ranges where birefringence is observed. 
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This may indicate more efficient sphere-sphere fusion at this higher copolymer 

concentration, as previously reported for the reformation of worms from their 

constituent spheres in related PISA formulations.10 

 

5.4. Conclusions 

In summary, PSMA13-PBzMA65 worms prepared at copolymer concentrations of 5.0 

to 20% w/w in mineral oil form free-standing gels at 20 °C. All PSMA13-PBzMAx 

block copolymers were of comparable molecular weight, as judged by THF GPC, and 

the worm morphology assignment was based on a combination of TEM studies and 

SAXS analyses performed on dilute dispersions. SAXS studies indicated that the mean 

worm thickness (Tw) of worms prepared at each copolymer concentration was 

approximately the same (Tw = 12.0-13.2 nm). Interestingly, some evidence for worm 

branching was obtained, but the degree of branching could not be determined using 

these experimental techniques. Each dispersion displayed thermo-reversible 

behaviour, with the initial free-standing worm gel at 20 °C forming a free-flowing 

fluid comprising spheres at 150 °C. The critical gelation temperature (CGT) only 

varied between 60 °C and 65 °C for PSMA13-PBzMAx worm gels for various 

copolymer concentrations and the critical gelation concentration (CGC) was 

determined to be around 4.0% w/w as judged by the tube inversion test after serial 

dilution of a 20% w/w PSMA13-PBzMA64 worm gel. Shear-induced alignment of these 

worm gels could be observed within specific temperature ranges using the SIPLI 

technique. On cooling from 150 °C, isotropic spherical nanoparticles formed shear-

aligned anisotropic worms. Further cooling resulted in the loss of birefringence. This 

suggests either the development of branched worms or worm clusters. Lower 

dispersion viscosities were observed at 20 °C for higher shear rates and lower 

copolymer concentrations. However, the dispersion viscosity at 150 °C, where 

spherical nanoparticles are present, exhibited little or no dependence on shear rate, 

indicating that such free-flowing dispersions act as Newtonian fluids. 

 

Further work is clearly warranted in this area. In particular, the relaxation behaviour 

of various PSMA13-PBzMAx worm gels for various applied shear rates should be 

studied over a range of copolymer concentrations and temperatures. However, this 
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constitutes many experimental variables and would require the synthesis of a large 

batch of PSMA13-PBzMAx worms in order to analyse the effect of various parameters 

on the same dispersion. In addition, shear-alignment of worm gels should be 

monitored using a combination of rheology and in situ SAXS (so-called Rheo-SAXS). 

This can be achieved by applying shear to the worm gels within a Couette shear cell, 

while simultaneously collects SAXS data. Shear alignment should result in 

asymmetric 2D scattering patterns, which can be used to gain structural information 

and perhaps distinguish between the formation of branched worms and worm clusters.  
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6.1. Introduction 

In 2010 Zheng et al.1 reported that block copolymer micelles exhibit friction reduction 

properties in lubricant base oil. Specifically, all-acrylic poly[(2-ethylhexyl acrylate)-

stat-(tert-butyl acrylate)]-poly(2-hydroxyethyl acrylate) (P[EHA-tBA]-PHEA) block 

copolymer spheres were synthesised via atom transfer radical polymerisation (ATRP) 

in cyclohexane prior to transfer to base oil. Crosslinking of such spheres was achieved 

via the addition of cinnamoyl chloride, which reacts with the 2-hydroxyethyl acrylate 

(EHA) residues to form pendant vinyl groups that enable crosslinking on exposure to 

UV light. In addition to crosslinking groups, acid functionality was added to the block 

copolymer spheres in varying amounts via the statistical copolymerisation of acrylic 

acid (AA) with EHA and tert-butyl acrylate (tBA), before chain-extending with 2-

hydroxyethyl acrylate (HEA) to yield poly[(2-ethylhexyl acrylate)-stat-(tert-butyl 

acrylate)-stat-(acrylic acid)]-poly(2-hydroxyethyl acrylate) (P[EHA-tBA-AA]-

PHEA, see Figure 6.1a). 

 

 
Figure 6.1. (a) Chemical structure of poly[(2-ethylhexyl acrylate)-stat-(tert-butyl acrylate)-

stat-(acrylic acid)]-poly(2-hydroxyethyl acrylate) (P[EHA-tBA-AA]-PHEA) block 

copolymers synthesised via ATRP for use as lubricity improvement additives in lubricant base 

oil. (b) Chemical structures of glyceryl monooleate (GMO), an industry-standard friction 

modifier. 

 

A series of block copolymer spherical micelles with the general structure shown in 

Figure 6.1a were assessed for their lubricity improvement of a lubricant oil comprising 

95% saturated hydrocarbon content, high viscosity (36.3 cSt at 22 °C) and low 

volatility, provided by Exxon Mobil.1 Addition of 0.5% w/w crosslinked P[EHA-tBA-

AA]-PHEA spheres of 35 nm diameter reduced the friction coefficient of the base oil 

more than the addition of 1.0% w/w of an industry standard friction modifier, glyceryl 

monooleate (GMO, Figure 6.1b), in the boundary lubrication regime. This regime is 

particularly important considering the current trend towards lower-viscosity oils.  
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Figure 6.2. Friction coefficient vs. entrainment speed for a lubricating base oil alone (black 

squares), with 1.0% w/w glyceryl monooleate (open circles) and with 0.5% w/w 35 nm 

crosslinked P[EHA-tBA-AA]-PHEA spheres (filled circles).1 

 

Similar observations were made when varying the extent of crosslinking and amount 

of acid functionality, suggesting that such block copolymer micelles offer great 

promise for friction reduction in lubricating base oils. However, there are a number of 

problems with the synthetic protocol utilised by Zheng et al. for preparing the spherical 

micelles.2 Most notably, the use of ATRP invariably leads to copper contamination. 

Although the presence of copper in the lubricant base oil may not actually adversely 

affect the lubricity performance, it could potentially lead to the failure of industry tests, 

which must be passed prior to commercialisation. Also, the use of photo-induced 

crosslinking led to discolouration of the lubricating base oil. This is unlikely to be 

commercially attractive, because customers would be unlikely to welcome an ‘off-

colour’ oil. 

 

Clearly, the methacrylic spherical nanoparticles discussed in this Thesis offer a much 

more attractive route to the acrylic block copolymer micelles studied by Zheng et al.1 

Perhaps the most notable advantage of the synthesis protocol reported in this Thesis is 

the use of RAFT chemistry, which has been successfully scaled up for the production 

of commercial star polymers for viscosity modification by Lubrizol Corporation Ltd. 

Unlike ATRP, RAFT polymerisation requires no copper catalyst, so the problem of 
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residual copper in lubricating base oils is eliminated. Also, chemical crosslinking can 

be achieved simply by the addition of ethylene glycol dimethacrylate (EGDMA) to a 

RAFT dispersion formulation, which does not discolour the base oil. Therefore, this 

Chapter discusses the potential advantages for diblock copolymer nanoparticles 

synthesised by RAFT dispersion polymerisation directly in an industrially-relevant 4 

cSt API Group III mineral oil. The lubricity improvement of spherical nanoparticles, 

as observed by Zhang et al.,1 is examined, along with the viscosity modification 

performance of spherical and worm-like nanoparticles and the wax inhibition 

properties of spherical nanoparticles. 

 

Polymeric additives are also commonly used as viscosity modifiers (VMs) for 

lubricating base oils.3-10 Examples of VMs include crosslinked high molecular weight 

polyethylene,3 hydrogenated polystyrene-polyisoprene-polybutadiene statistical block 

copolymers,4 poly(alkyl acrylates)5-7 and poly(alkyl methacrylates).7-10 Although such 

additives are typically utilised at low copolymer concentrations (~1% w/w), the effect 

on the viscosity modification of the lubricating oil can significantly broaden the 

operational temperature range oil the oil.3-5 Ideally, a VM should provide a 

temperature-independent oil viscosity. Such perfect behaviour cannot be achieved in 

practice, but VMs can modify the rate at which the oil viscosity is reduced at higher 

temperatures.6 Additionally, VMs exhibiting high shear stability are deemed 

particularly desirable when high shear stresses are applied.3, 4 This is a significant 

technical challenge, since high molecular weight polymers often provide better 

thickening performance but are usually more susceptible to shear degradation. This 

problem can be addressed by using complex architectures such as star-shaped or 

hyperbranched copolymers.3 

 

Similarly, it is well-known that polymers with pendant alkyl groups can be used to 

improve the flow properties of crude oil by inhibiting wax crystal formation.11-15 Such 

additives are known as pour point depressants (PPDs): the temperature at which the 

crude oil becomes too viscous to pour is reduced because the polymer interacts with 

growing wax crystals due to their similar chemical strucures.14 The mechanism of wax 

inhibition is an example of co-crystallisation, whereby the PPD interacts with the 

growing wax crystal surface, thus retarding growth and also providing steric 
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stabilisation, hence reducing the extent of aggregation between precipitating wax 

crystals.14 PPDs are important in the oil industry since wax deposits on the walls of 

crude oil pipelines can lead to blocked lines,13 which lead to high maintenance costs. 

 

Another important technical problem for the oil industry involves the dispersion of 

asphaltenes,16 because deposition of such material can also contribute to the blockage 

of crude oil pipelines. Asphaltenes are the most polar fraction of crude oil, being 

soluble in aromatic solvents but insoluble in n-alkanes.16 They comprise polyaromatic 

and polycyclic rings, with short alkyl chains and heteroatoms (most commonly 

nitrogen, oxygen and sulfur), as shown in Figure 6.3a.17, 18 A range of additives have 

been used as asphaltene dispersants, including alkyl benzene-derived amphiphiles (see 

Figure 6.3b).19 

 

 

Figure 6.3. Typical chemical structures of (a) an asphaltene and (b) asphaltene dispersants.17-

19 

 

Lubricity improvers, viscosity modifiers, wax inhibitors and asphaltene dispersants 

are just a few of many classes of additives used within the oil industry. The broad 

range of applications for such species and the industry-wide trend towards thinner oils, 

as well as oils with a higher bio-derived fatty acid methyl ester (FAME) content, 

suggests new opportunities for the development of a new generation of additives. 
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6.2. Experimental 

6.2.1. Materials 

A 4 cSt API Group III mineral oil, a fully-formulated automotive gear oil (AGO) and 

behenyl methacrylate (BhMA) monomer were provided by Lubrizol Corporation Ltd. 

4-Cyano-4-(2-phenylethane sulfanylthiocarbonyl)sulfanylpentanoic acid (PETTC) 

was synthesised according to the literature20 by Nicholas Penfold, for which he is 

thanked. 

 

6.2.2. Synthesis of diblock copolymer nanoparticles 

The synthesis of various methacrylic diblock copolymer nanoparticles has been 

described in earlier sections in this Thesis (Sections 2.2.3 and 3.2.3), other than those 

described in Section 6.2.3 below. 

 

6.2.3. Synthesis of poly(behenyl methacrylate)-poly(benzyl methacrylate) 

(PBhMA-PBzMA) diblock copolymer spheres 

Firstly, a PBhMA37 macro-CTA was synthesised as follows: A 250 mL round-

bottomed flask was charged with behenyl methacrylate (BhMA; 23.8 g, 60.3 mmol), 

4-cyano-4-(2-phenylethane sulfanylthiocarbonyl)sulfanylpentanoic acid (PETTC; 

410 mg, 1.21 mmol), 2,2’-azobisisobutyronitrile (AIBN; 39.6 mg, 241 μmol; 

[PETTC]/[AIBN] molar ratio = 5.0) and toluene (28.0 g). The reaction vessel was 

purged with nitrogen and place in a pre-heated oil bath at 70 °C for 3 h. The resulting 

PBhMA (BhMA conversion = 57 %; Mn = 12,400 g mol-1, Mw/Mn = 1.18) was purified 

by precipitation into excess 2-propanol. The mean degree of polymerisation (DP) of 

this macro-CTA was calculated to be 37 using 1H NMR spectroscopy by comparing 

the integrated signals corresponding to the PETTC aromatic protons at 7.0-7.5 ppm 

with that assigned to the two oxymethylene protons of PBhMA at 3.4-4.2 ppm. 

Secondly, this macro-CTA was utilised during the RAFT non-polar dispersion 

polymerisation of benzyl methacrylate (BzMA) at 20% w/w solids in mineral oil. A 

typical synthesis protocol is described: Benzyl methacrylate (BzMA; 2.34 g, 13.3 

mmol), T21s initiatior (5.8 mg; 26.8 μmol; dissolved at 10% v/v in mineral oil) and 

PBhMA37 macro-CTA (2 g; 134 μmol; [macro-CTA]/[initiator] molar ratio = 5.0) 

were dissolve in mineral oil (6.54 g). The reaction mixture was purged with nitrogen 
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for 30 min and the deoxygenated solution was then place in a pre-heated oil bath at 90 

°C for 5 h (final BzMA conversion = 99 %; Mn = 22,700 g mol-1; Mw/Mn = 1.15). 

 

6.2.4. Gel permeation chromatography (GPC) 

Molecular weight distributions (MWDs) were assessed by GPC using THF eluent at 

30 °C. The THF GPC system was equipped with two 5 μm (30 cm) Mixed C columns 

and a WellChrom K-2301 refractive index detector operating at 950  30 nm. The 

mobile phase contained 2.0% v/v triethylamine and 0.05% w/v butylhydroxytoluene 

(BHT) with a toluene flow rate marker and the flow rate was fixed at 1.0 mL min-1. A 

series of ten near-monodisperse poly(methyl methacrylate) standards (Mp values 

ranging from 645 to 2,480,000 g mol-1) were used for calibration. 

 

6.2.5. Dynamic light scattering (DLS) 

DLS studies were performed at 50 °C using a Zetasizer Nano-ZS instrument (Malvern 

Instruments, UK) at a fixed scattering angle of 173°. Copolymer dispersions were 

diluted in n-dodecane (0.1% w/w) prior to DLS studies. The intensity-average 

diameter and polydispersity of the diblock copolymer particles were calculated by 

cumulants analysis of the experimental correlation function using Dispersion 

Technology Software version 6.20. Data were averaged over three sets of thirteen runs 

with each run of thirty seconds duration. 

 

6.2.6. Transmission electron microscopy (TEM) 

TEM studies were conducted using a Philips CM 100 instrument operating at 100 kV 

and equipped with a Gatan 1 k CCD camera. Diluted block copolymer solutions 

(0.10% w/w) were placed on carbon-coated copper grids and exposed to 

ruthenium(VIII) oxide vapour for 7 min at 20 °C prior to analysis.21 This heavy metal 

compound acted as a positive stain for the core-forming PBzMA block to improve 

contrast. The ruthenium(VIII) oxide was prepared as follows: ruthenium(IV) oxide 

(0.30 g) was added to water (50 g) to form a black slurry; subsequent addition of 

sodium periodate (2.0 g) with stirring produced a yellow solution of ruthenium(VIII) 

oxide within 1 min. 
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6.2.7. Turbidimetry 

Turbimetry measurements were performed using a Shimadzu UV-1800 

spectrophotometer equipped with a DBS instruments twin Peltier temperature 

controller. A 1.0% w/w solution of PBhMA37 in mineral oil was first heated to 50 °C 

and equilibrated for 5 min. Data were recorded at 650 nm during cooling (50 °C to 20 

°C) and heating (20 °C to 50 °C) steps, with 5 min equilibration at each temperature. 

 

6.2.8. Evaluation of lubricity performance 

Stribeck curves were obtained using a PCS Instruments mini-traction machine (MTM) 

consisting of a 19.05 mm diameter steel ball and a 46 mm diameter steel disc. The 

steel ball and disc are driven independently to create a rolling/sliding contact ratio, or 

slide-to-roll ratio (SRR), of 50% or 20% with a constant load of 35 N. Tribology 

measurements were conducted using on either a 4 cSt API Group III mineral oil or 

fully-formulated automotive gear oil (AGO) with and without 0.5% w/w additive at 

100 °C, at entrainment speeds ranging from 10 to 3000 mm s-1. These studies were 

conducted by Zahra Hussain (Lubrizol Corporation Ltd.), for which she is thanked. 

 

6.2.9. Evaluation of viscosity modification  

A TA Instruments AR 2000 rheometer equipped with a variable temperature Peltier 

plate and a 40 mm 2° steel cone was used for all experiments. Viscosity-temperature 

profiles were obtained during a 25-100-25 °C heating/cooling ramp at a 

heating/cooling rate of 1 °C min-1 and a constant shear rate of 100 s-1. Viscosity-shear 

rate profiles were obtained during a linear 10-1000 s-1 shear rate ramp over 20 min at 

25 °C, before a linear 1000-10 s-1 shear rate ramp over 10 min at 25 °C. Prior to each 

rheological measurement, samples were pre-sheared at a shear stress of 3 Pa for 30 s 

and then equilibrated at 25 °C for 2 min. These studies were conducted by Dr. Kieran 

Trickett (Lubrizol Corporation Ltd.), for which he is thanked. 

 

6.2.10. Evaluation of wax inhibition 

A TA Instruments AR 2000 rheometer equipped with a variable temperature Peltier 

plate and a 40 mm 2° steel cone was used for all experiments. Viscosity-temperature 

profiles were obtained during a 60 °C to 10 °C cooling ramp at a cooling rate of 1 °C 
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min-1 and a constant shear rate of 30 s-1. Prior to each rheological measurement, 

samples were pre-sheared at a shear stress of 3 Pa for 30 s and then equilibrated at 60 

°C for 2 min. These studies were conducted by Dr. David Growney (Lubrizol 

Corporation Ltd.), for which he is thanked. 

 

6.2.11. Evaluation of asphaltene dispersion 

Asphaltene dispersion efficiency was analysed via dynamic turbidimetry. 150 μL of 

crude oil was added to 10 mL of n-heptane precipitant and stirred using a vortex mixer 

at 2,000 rpm for 30 seconds. A Formulaction Turbiscan MA2000 instrument was used 

to monitor the transmittance of the solution, which was measured at 1 min intervals 

for 15 min at 25 °C. Data were recorded in duplicate and the mean transmittance (%) 

was reported for each of the time intervals. These studies were conducted by Dr. David 

Growney (Lubrizol Corporation Ltd.), for which he is thanked. 

 

6.3. Results and Discussion 

6.3.1. Diblock copolymer spheres as lubricity improvers 

Informed by the studies of Zheng et al.,1 various block copolymer spheres synthesised 

via RAFT-mediated PISA were assessed for their friction modification performance. 

Specifically, PLMA-PBzMA and PSMA-PBzMA spheres synthesised directly in an 

industrially-relevant 4 cSt API Group III mineral oil were assessed, see Table 6.1. The 

fact that such spheres can be synthesised directly in an industrially-relevant oil offers 

a more attractive synthetic protocol compared to that described by Zheng et al.2 

Moreover, using RAFT polymerisation, a technology which has been successfully 

commercialised by Lubrizol Corporation Ltd., rather than ATRP offers a 

commercially viable route to block copolymer spheres. 

 

The performance of each sample of block copolymer spheres was assessed by 

measuring the friction coefficient (μf) using the mini-traction machine (MTM). 

Friction generated between the rotating steel ball and disk in the MTM set-up is 

manifested as the amount of force which can be applied before the system slips. The 

friction coefficient (μf) relates the friction force (Ff) to the force exerted on the system 

(or the normal force, Fn), as shown in below: 
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𝐹f =  𝜇f  ×  𝐹n 6.1 

 

       

Table 6.1. Summary of block copolymer spheres for assessment as lubricity improvers. All spheres 

were synthesised via RAFT dispersion polymerisation in mineral oil (see Sections 2.2.3 and 3.2.3). 

Sample ID Block Composition 

DLS 

diameter 

(PDI) 

THF GPC (vs. PMMA) 

Mn / g mol-1 Mw/Mn 

L47-B46 PLMA47-PBzMA46 
42 nm 

(0.06)a 
15,800 1.55 

[L49-M1]-B47 
P[LMA49-stat-MAA1]-

PBzMA47 

41 nm 

(0.03)a 
15,500 1.44 

L47-B297 PLMA47-PBzMA297 
116 nm 

(0.03)a 
53,400 1.68 

S31-[B200-E20] 
PSMA31-P[BzMA200-

EGDMA20] 

46 nm 

(0.04)a 
28,000c 1.22c 

73 nm 

(0.06)b 

aDLS data obtained on 0.1% w/w dispersions in n-dodecane. bDLS data obtained on a 0.1% 

w/w dispersion in THF in order to demonstrate successful crosslinking. cMolecular weight 

data obtained on a small sample of linear PSMA-PBzMA withdrawn from the reaction vessel 

prior to the addition of EGDMA (E) crosslinker. 

 

6.3.1.1. Lubricity improvement in base oil 

Firstly, the lubricity performance of various PLMA-PBzMA spheres shown in Table 

6.1 (L47-B46, [L49-M1]-B47 and L47-B297) was assessed in base oil alone (see Figure 

6.4). At slide-to-roll ratios (SRRs) of 20% or 50%, the base oil had a friction 

coefficient of ~0.015-0.020 at high entrainment speeds (1000-3000 mm s-1), rising up 

to ~0.15 at low entrainment speeds (10 mm s-1). Figure 6.4 clearly shows that the 

addition of 0.5% w/w 116 nm L47-B297 spheres (red data) had an adverse effect on the 

lubrication performance of the oil, since higher friction coefficients are observed at 

intermediate entrainment speeds (~25-100 mm s-1) at a 20% SRR and throughout the 

whole range of speeds at 50% SRR. In contrast, addition of 0.5% w/w 42 nm L47-B46 

spheres (purple data, Figure 6.4) reduced the friction coefficient of the base oil at 
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entrainment speeds of ~200 mm s-1 and below at both 20% and 50% SRR, suggesting 

that these smaller spheres offer a lubricity benefit in the mixed/boundary lubrication 

regime. However, using the same amount of similar-sized spheres containing acid 

functionality in the stabiliser block (41 nm [L49-M1]-B47 spheres, blue data, Figure 6.4) 

produced much lower friction coefficients over all entrainment speeds, with values of 

~0.075 being observed at 10 mm s-1 at both 20% and 50% SRR. Comparing these data 

to those obtained for 0.5% w/w glyceryl monooleate (GMO, green data, Figure 6.4), 

it is clear that the 41 nm [L49-M1]-B47 spheres offered slightly better performance in 

the mixed lubrication regime at both 20% and 50% SRR, but GMO produced lower 

friction coefficients at 10 mm s-1. Ultimately, Figure 6.4 suggests that smaller, acid-

functional spheres offer enhanced lubricity, with comparable performance to the 

industry-standard GMO additive in the mixed lubrication regime.  

 

Zheng et al.1 also reported that the addition of core-crosslinked spheres could enhance 

the lubricant performance of a base oil. However, the method of crosslinking in this 

example involved the use of UV light, which has the unwanted side effect of oil 

discolouration. In the present work, chemical crosslinking of the PBzMA core-

forming chains should not discolour the base oil. Thus, 10 mol% (vs. BzMA 

monomer) of ethylene glycol dimethacrylate (EGDMA) was added to the RAFT 

dispersion polymerisation formulation at relatively high (> 90%) BzMA conversion. 

This is an important experimental detail, since adding the EGDMA crosslinker too 

early during the BzMA polymerisation can lead to ill-defined nanoparticles and 

possibly inter-nanoparticle crosslinking.22 
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Figure 6.4. Friction coefficient vs. entrainment speed for a lubricating base oil alone (black 

data), with L47-B297 116 nm spheres (red data), L47-B46 42 nm spheres (purple data), [L49-M1]-

B47 41 nm spheres (blue data) and glyceryl monooleate (GMO, green data) for experiments 

conducted at (a) 20% and (b) 50% slide-to-roll ratio (SRR). Data were collected at 0.5% w/w 

additive concentration and under a load of 35 N at 100 °C. 

 

Considering the data shown in Figure 6.4, crosslinked spheres of similar diameter to 

the 41 nm [L49-M1]-B47 spheres (blue data, Figure 6.4) were assessed for their lubricity 

performance. Successful crosslinking was confirmed by DLS studies. The intensity-

average diameter of the S31-[B200-E20] spheres was determined to be 46 nm in n-

dodecane. On diluting this dispersion in THF, a good solvent for the PSMA and 

PBzMA blocks, the spheres swelled to 73 nm diameter, but remained intact. The 

crosslinked 46 nm S31-[B200-E20] spheres were evaluated for their lubricity 

performance under the same conditions employed for Figure 6.4a (see Figure 6.5a). 

Data from Figure 6.4a for the base oil (black data), 0.5% w/w 41 nm [L49-M1]-B47 

spheres (blue data) and 0.5% w/w GMO (green data) are shown for reference. Core-

crosslinking using EGDMA clearly lowers the friction coefficient at low entrainment 

speeds (< 50 mm s-1) compared to 41 nm [L49-M1]-B47 spheres. Moreover, the 46 nm 

S31-[B200-E20] spheres reduce the friction coefficient of the base oil significantly more 

than GMO at low entrainment speeds (< 40 mm s-1). In fact, the Stribeck curve is rather 

similar to that obtained by Zheng et al.1 when using 0.5% w/w 35 nm crosslinked 

P[EHA-tBA-AA]-PHEA spheres under the same conditions. The friction coefficient 

observed for 0.5% w/w 46 nm S31-[B200-E20] spheres is approximately 0.02, which is 

lower than that reported for 0.5% w/w 35 nm crosslinked P[EHA-tBA-AA]-PHEA 

spheres. This suggests that there may be a performance benefit for the block 

copolymer spheres synthesised via RAFT-mediated PISA in addition to the various 
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synthetic advantages. However, it is difficult to directly compare the degree of 

crosslinking within spherical cores for each type of spheres. 

 

 

Figure 6.5. Friction coefficient vs. entrainment speed for a lubricating base oil alone (black 

data), with 41 nm [L49-M1]-B47 spheres (blue data), 46 nm S31-[B200-E20] spheres (red data) 

and glyceryl monooleate (GMO, green data) for experiments conducted at (a) 20% and (b) 

50% slide-to-roll ratio (SRR). Data were collected at 0.5% w/w additive concentration under a 

load of 35 N at 100 °C. 

 

Despite the promising lubricant performance of crosslinked 46 nm S31-[B200-E20] 

spheres in base oil at 20% SRR (Figure 6.5a, red data), rather different behaviour is 

observed when conducting the same experiment at 50% SRR (see Figure 6.5b). Under 

these conditions, the acid-functional, non-crosslinked 41 nm [L49-M1]-B47 spheres 

(Figure 6.5b, blue data) produced lower friction coefficients throughout the entire 

range of entrainment speeds compared to the crosslinked 41 nm S31-[B200-E20] spheres 

(Figure 6.5b, red data). Interestingly, the acid-functional 41 nm [L49-M1]-B47 spheres 

offer comparable lubricity improvement to that conferred by GMO (Figure 6.5b, green 

data) under these conditions, with slightly enhanced performance in the mixed 

lubrication regime. 

 

6.3.1.2. Lubricity improvement in automotive gear oil 

Although the data shown in the previous Section suggest that various block copolymer 

spheres in base oil alone are promising lubricant additives, their performance must 

also be assessed in a fully-formulated automotive gear oil (AGO). In this Section, the 

41 nm [L49-M1]-B47 and 46 nm S31-[B200-E20] spheres (see Table 6.1) were assessed in 

a fully-formulated automotive gear oil (AGO) at 50% SRR (see Figure 6.6). 
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Figure 6.6. Friction coefficient vs. entrainment speed for an automotive gear oil (AGO, black 

data), with 41 nm [L49-M1]-B47 spheres (blue data) and 46 nm S31-[B200-E20] spheres (red data) 

for experiments conducted at 50% slide-to-roll ratio (SRR). Data were collected at 0.5% w/w 

additive concentration under a load of 35 N at 100 °C. 

 

On the addition of 0.5% w/w 41 nm [L49-M1]-B47 and 46 nm S31-[B200-E20] spheres, 

the friction coefficients observed for the AGO were reduced from ~0.11 to ~0.095 at 

low entrainment speeds (10 mm s-1), see Figure 6.6. Although this friction reduction 

is not as significant as that observed for base oil alone (see Figure 6.5), these data 

provide the first indication that these diblock copolymer spheres offer genuine 

potential for lubricity improvement in fully formulated oils. The competing 

chemistries and additives within the AGO may explain the less pronounced reduction 

in friction coefficient compared to base oil alone. The similarity between the Stribeck 

curves for AGO compared to either set of spheres suggests that, for similar-sized 

spheres, the nature of the stabiliser block (with or without acid functionality, whether 

C12 or C18 side chains) and the core-forming block (with or without crosslinking) has 

relatively little effect on lubricity performance in AGO. This suggests that, in a fully 

formulated oil, the presence of suitably-sized spherical nanoparticles, regardless of 

their surface and core chemistries, may provide sufficient friction modification. This 

hypothesis warrants further research, since similar or even better lubricity 

performance using spheres synthesised using cheaper starting materials (e.g. MMA 
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instead of BzMA) has the potential for significant impact within the automotive 

additive industry. 

 

6.3.2. Viscosity modification of base oil 

6.3.2.1. Diblock copolymer spheres as viscosity modifiers 

PLMA-PBzMA spheres of similar size to those identified as useful lubricant additives 

in the previous Section were assessed for their viscosity modification properties. 

Specifically, 40 nm PLMA39-PBzMA99 (L39-B99; Mn = 20,100 g mol-1; Mw/Mn = 1.15) 

block copolymer spheres were used in this study. These linear spheres were 

synthesised via RAFT dispersion polymerisation in mineral oil at 50% w/w and were 

subsequently diluted to various desired concentrations prior to analysis.  

 

Firstly, a suitable industrially-relevant reference material was required in order to 

compare the viscosity modification properties of the 40 nm L39-B99 spheres. A 

commercial linear oil-soluble alkyl-rich poly(methacrylate) (PMA) viscosity modifier 

(VM) was selected in view of its functionality to these spheres. In order to compare 

the linear PMA control, which does not self-assemble in base oil, to the L39-B99 

spheres, both additives were blended to produce the same oil viscosity at 100 °C. A 

10% w/w dispersion of 40 nm L39-B99 spheres and a 12% w/w solution of the linear 

PMA reference additive each gave viscosities of ~0.005 Pa s at 100 °C. The fact that 

a lower concentration of 40 nm L39-B99 spheres than the linear PMA reference additive 

is required to deliver the same viscosity at 100 °C suggests the potential benefit of 

using the former additive rather than the latter. Comparison of the viscosity-

temperature profiles of these two additives (see Figure 6.7) highlights another 

advantage of the block copolymer spheres. Both the 12% w/w solution of the linear 

PMA reference material (blue data, Figure 6.7) and the 10% w/w dispersion of L39-

B99 40 nm spheres (red data, Figure 6.7) produced higher viscosities compared to the 

base oil alone (black data, Figure 6.7) throughout the temperature range studied. The 

benefit of using the spheres over the linear PMA becomes evident when considering 

the viscosity at 25 °C. A base oil should provide higher viscosity at elevated (e.g. 100 

°C) temperature, but not increase the base oil viscosity at ambient (e.g. 25 °C) 

temperatures. In this context, the 10% w/w dispersion of 40 nm L39-B99 spheres 
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exhibits viscosities of ~0.030-0.033 Pa s at 25 °C compared to ~0.041 Pa s for the 12% 

w/w solution of the linear PMA reference additive. It was highlighted in Chapter 2 

(Figure 2.10a) that RAFT-mediated PISA offers a convenient route for the synthesis 

of block copolymer spheres at high solids content (≤ 50% w/w), whereas soluble 

polymers synthesised at such high concentrations suffer from inherently high 

viscosities. This explains why the 10% w/w dispersion of 40 nm L39-B99 spheres 

exhibited a much lower viscosity at 25 °C than the 12% w/w solution of the linear 

PMA reference. 

 

 

Figure 6.7. Viscosity-temperature profiles of base oil alone (black data), 10% w/w 40 nm L39-

B99 spheres (red data) and 12% w/w linear PMA reference (blue data) during heating (filled 

symbols) and cooling (open symbols) ramps. Data were collected during a 25-100-25 °C 

thermal cycle at a heating/cooling rate of 1 °C min -1. 

 

The specific viscosity (ηsp) is a useful parameter when considering the contribution of 

polymeric additives to the overall viscosity of the oil, and is calculated using: 

 

𝜂sp =  
𝜂 − 𝜂0

𝜂0
 6.2 

 

where η is the viscosity of the solution and η0 is the viscosity of the base oil. Figure 

6.8 shows the variation of the specific viscosity with temperature for both the 10% 
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w/w dispersion of L39-B99 spheres (red data) and the 12% w/w solution of the linear 

PMA reference (blue data). The linear PMA contributed less towards the overall 

viscosity of the base oil, as indicated by the lowering specific viscosity upon heating 

from 25 °C to 100 °C. Conversely, the 40 nm L39-B99 spheres enhance the overall oil 

viscosity over the same temperature range. This is a desirable property of a VM, since 

this indicates that the oil viscosity is effectively modified at high temperatures, 

whereas the oil is not too viscous at lower temperatures. 

 

 

Figure 6.8. Specific viscosity vs. temperature for 10% w/w 40 nm L39-B99 spheres (red data) 

and 12% w/w linear PMA reference additive (blue data) in base oil. Data were collected 

during a 25-100 °C heating ramp (filled symbols) and a 100-25 °C cooling ramp (empty 

symbols) at a heating/cooling rate of 1 °C min-1. 

 

The shear stability of various dispersions of 40 nm L39-B99 spheres was also studied 

(see Figure 6.9). These are important experiments, since the data displayed in Figure 

6.7 and Figure 6.8 were collected at a constant shear rate of 100 s-1. However, this 

nominal shear rate does not represent the relatively harsh conditions within an 

automotive engine. Therefore, the viscosity of dispersions at various copolymer 

concentrations over shear rates ranging from 10 to 1000 s-1 were measured at 25 °C 

(see Figure 6.9). It was observed that dispersions of 40 nm L39-B99 spheres in base oil 

exhibited Newtonian-type behaviour, since the viscosity of each dispersion remained 
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independent of shear rate within this range. This indicates that the spheres are in fact 

stable up to shear rates of 1000 s-1 and at copolymer concentrations of up to 40% w/w 

solids, suggesting that such spheres may offer genuine potential for viscosity 

modification in base oil. As expected, the higher dispersion viscosities were obtained 

on increasing the copolymer concentration. At 25 °C, a 5% w/w copolymer dispersion 

(Figure 6.9, purple data) had a viscosity of ~0.025 Pa s, a 10% w/w dispersion (Figure 

6.9, red data) had a viscosity of ~0.030 Pa s and a 20% w/w dispersion (Figure 6.9, 

green data) had a viscosity of ~0.050 Pa s. It is noteworthy that copolymer dispersions 

up to 20% w/w solids exhibited viscosities lower than the 12% w/w linear PMA 

reference shown in Figure 6.7. In fact, only on increasing the dispersion concentration 

up to 40% w/w (Figure 6.9, orange data) were higher viscosities (~0.40 Pa s) observed. 

This 40% w/w dispersion also showed Newtonian-type behaviour. 

 

 

Figure 6.9. Shear rate vs. viscosity for base oil alone (black data), 5% w/w (purple data), 10% 

w/w (red data), 20% w/w (green data) and 40% w/w (orange data) 40 nm L39-B99 spheres in 

base oil. Data were collected at 25 °C during a linear 10-1000-10 s-1 shear rate ramp over a 30 

min time period. 

 

6.3.2.2. Diblock copolymer worms as viscosity modifiers 

Considering the promising viscosity modification properties exhibited by the 40 nm 

L39-B99 spheres discussed in the previous Section, diblock copolymer worms were also 

assessed. It has been shown that block copolymer worms synthesised by RAFT-
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mediated PISA form free-standing gels at sufficiently high copolymer 

concentrations.23-32 Clearly, it would not be beneficial to add diblock copolymer 

worms at concentrations greater than the critical gelation concentration (CGC), but the 

potential for enhanced viscosities at lower concentrations was assessed. More 

specifically, PLMA18-PBzMA40 (L18-B40; Mn = 8,000 g mol-1; Mw/Mn = 1.28) diblock 

copolymer worms were added to base oil and analysed for their viscosity modification 

using the same experimental protocol as described in the previous Section. In order to 

directly compare their viscosity modification performance, the L18-B40 worms and the 

linear (PMA) reference polymer were added in turn to a base oil at concentrations 

corresponding to equal viscosity at 100 °C (4.0% w/w and 1.25% w/w, respectively). 

Figure 6.10 shows the viscosity-temperature profiles for these potential VM additives.  

 

 

Figure 6.10. Viscosity-temperature profiles of base oil alone (black data), 1.25% w/w linear 

PMA reference additive (blue data) and 4.0% w/w L18-B40 worms (red data) during heating 

(filled symbols) and cooling (open symbols) ramps. Data were collected during a 25-100-25 

°C thermal cycle at a heating/cooling rate of 1 °C min -1. 

 

Clearly, the L18-B40 worms (red data) provide much higher viscosities at lower 

temperatures than the PMA reference (blue data). This is not unexpected, since 

anisotropic worm-like nanoparticles are known to form free-standing gels via multiple 

inter-worm contacts at concentrations above the CGC, with viscous free-flowing 
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dispersions being observed below the CGC.24 However, given that the optimal 

performance for a VM additive is high-temperature thickening with minimal 

thickening at ambient temperature, such worm-like nanoparticles do not offer 

appropriate VM performance. Nevertheless, the specific viscosity (as defined in 

Equation 6.2) of the base oil plus 4.0% w/w L18-B40 worms or 1.25% w/w linear PMA 

over the same temperature range was calculated (see Figure 6.11). 

 

 

Figure 6.11. Specific viscosity vs. temperature for 4.0% w/w L18-B40 worms (red data) and 

1.25% w/w linear PMA reference additive (blue data) in base oil. Data were collected during a 

25-100 °C heating ramp at a rate of 1 °C min-1. 

 

The specific viscosity of the base oil containing 1.25% w/w linear PMA (blue data) 

remains relatively constant between 25 °C and 100 °C. In contrast, the specific 

viscosity for the base oil containing 4.0% w/w L18-B40 worms increases on heating 

from 25 °C to ~55 °C, before decreasing from 55 °C to 100 °C. This behaviour can be 

explained by considering the worm-to-sphere transition observed for PLMA-PBzMA 

diblock copolymer worms in various oils, which leads to a characteristic critical 

gelation temperature (CGT) of ~45-50 °C (see Section 2.3.3). This suggests that, 

above the CGT, the mixture of short worms and spheres present in the dispersion do 

not provide sufficient inter-particle interactions so a gel is no longer formed. This 
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explains the maximum in specific viscosity observed at a temperature that is 

comparable to the CGT observed for similar PLMA-PBzMA worms. This unusual 

behaviour, coupled with the undesirably high viscosity at ambient temperature 

suggests that such worm-like nanoparticles are not viable VMs for engine oils. In 

addition, the worm phase identified for the PISA formulations described in this Thesis 

is very narrow (~10 BzMA units), which is likely to make reproducible syntheses 

difficult to achieve on an industrial scale. 

 

Considering the problems associated with the use of worm-like nanoparticles as VMs, 

an alternative solution to high-temperature thickening could be provided by exploiting 

the vesicle-to-worm transition described in Chapter 4. For example, a low-viscosity 

10% w/w dispersion of PSMA13-PBzMA96 vesicles in mineral oil formed a very weak 

gel (G’ ≈ 1 Pa; G” ≈ 0.5 Pa) upon heating above 135 °C due to the in situ formation 

of worms. However, this vesicle-to-worm transition suffers from two significant 

disadvantages as a potential route to high-temperature thickening. Firstly, the initial 

PSMA13-PBzMA96 vesicles scatter light, which makes the oil turbid. Although this 

optical property is not necessarily a disadvantage in terms of performance, it is highly 

unlikely that the formulated oil consumers would accept such a turbid oil compared to 

the current transparent oils on the market. More importantly, the vesicle-to-worm 

transition is not fully reversible, meaning that thicker oils are likely to be formed at 

ambient temperature after just one thermal cycle. Nevertheless, this new mechanism 

for viscosity modification warrants further research to see whether such problems can 

be overcome. For example, in principle the turbidity could be addressed by utilising a 

copolymer that is contrast-matched to the engine oil. There are examples of such an 

approach in the PISA literature.33 

 

6.3.3. Diblock copolymer spheres as wax inhibitors 

6.3.3.1. Synthesis of poly(behenyl methacrylate)-poly(benzyl methacrylate) diblock 

copolymer spheres 

Thus far, the potential applications of PLMA-PBzMA and PSMA-PBzMA diblock 

copolymer spheres and worms have been discussed. Extending the alkyl side chains 

of the stabiliser block from C12H25 or C18H37 to C22H45 by using a poly(behenyl 
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methacrylate) (PBhMA) macro-CTA for the RAFT dispersion polymerisation of 

BzMA suggests the possibility of wax inhibition applications. Firstly, a PBhMA37 

macro-CTA was synthesised via RAFT solution polymerisation in toluene as 

previously described for PLMA and PSMA macro-CTAs (see Chapters 2 and 3). 

However, in this case, the PETTC trithiocarbonate CTA (see Figure 1.18a) was 

utilised for the preparation of the PBhMA37 macro-CTA (see Scheme 6.1) rather than 

the dithiobenzoate-based CTA (CDB) previously used for the preparation of PLMA 

and PSMA macro-CTAs. 

 

  
Scheme 6.1. Synthesis of a poly(behenyl methacrylate)37 (PBhMA37) macro-CTA via RAFT 

solution polymerisation in toluene, followed by the RAFT dispersion polymerisation of benzyl 

methacrylate (BzMA) in mineral oil. 

 

Subsequent chain extension using BzMA yielded a series of PBhMA37-PBzMAx (x = 

50-1000) spheres whose size increased systematically with x (see Table 6.2) as 

described in the PISA literature upon when other relatively long stabiliser blocks.20, 25, 

34  
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Table 6.2. Summary of particle diameters and molecular weight data for poly(behenyl methacrylate) 

(PBhMA) homopolymer and poly(behenyl methacrylate)-poly(benzyl methacrylate) (PBhMA-

PBzMA) block copolymer spheres synthesised via RAFT dispersion polymerisation in mineral oil at 

90 °C. 

Composition 
DLS diametera 

/ nm (PDI) 

THF GPC (vs. PMMA) 

Mn / g mol-1 Mw/Mn 

PBhMA37 - 12,400 1.18 

PBhMA37-PBzMA50 21 nm (0.08) 16,200 1.15 

PBhMA37-PBzMA100 32 nm (0.01) 22,700 1.15 

PBhMA37-PBzMA150 37 nm (0.02) 28,100 1.18 

PBhMA37-PBzMA200 55 nm (0.01) 33,800 1.24 

PBhMA37-PBzMA300 67 nm (0.01) 43,900 1.38 

PBhMA37-PBzMA400 103 nm (0.07) 56,100 1.68 

PBhMA37-PBzMA500 115 nm (0.08) 61,000 1.88 

PBhMA37-PBzMA1000 167 nm (0.09) 105,800 2.87 

a As determined for a 0.10% w/w dispersion in n-dodecane at 50 °C. 

 

DLS studies indicated that the PBhMA37-PBzMAx diblock copolymer spheres shown 

in Table 6.2 displayed narrow size distributions for spheres ranging from 21 nm (x = 

50) to 167 nm (x = 1000) in diameter (see Figure 6.12), which is similar to the PSMA-

PBzMA spheres discussed in Chapter 3. GPC analysis (Figure 6.13a) confirmed 

relatively good control over the MWD when targeting PBzMA DPs up to 200, since 

Mw/Mn < 1.30. However, gradual loss of control is observed when targeting DPs of 

300 to 1000, with Mw/Mn increasing from 1.38 up to 2.87. Despite this problem, the 

Mn values for all PBhMA37-PBzMAx diblock copolymers in Table 6.2 increased 

linearly when targeting higher PBzMA DPs as expected (see Figure 6.13b). Blocking 

efficiencies are estimated to be around 90% for this formulation, with unreacted 

macro-CTA being evident when targeting PBhMA37-PBzMA1000. 
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Figure 6.12. (a) Transmission electron micrographs and dynamic light scattering (DLS) size 

distributions for 0.10% w/w dispersions of PBhMA37-PBzMAx (x = 50-1000) diblock 

copolymer spheres. Samples were prepared at 50 °C. (b) DLS diameter at 50 °C (D) vs. 

PBzMA DP (x) plot indicates an α scaling exponent of 0.74. 
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Figure 6.13. (a) THF gel permeation chromatograms (vs. poly(methyl methacrylate) 

standards) obtained for the series of PBhMA39-PBzMAx diblock copolymer spheres 

synthesised via RAFT dispersion polymerisation of BzMA in mineral oil at 90 °C and 20% 

w/w solids. The precursor PBhMA39 macro-CTA (prepared in toluene at 70 °C and 40% w/w 

solids; black dashed curve) is also shown as a reference. (b) Mn vs. PBzMA DP plot for the 

same PBhMA39-PBzMAx series, where x = 0 represents the PBhMA37 macro-CTA. 
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Interestingly, the PBhMA37 stabiliser block exhibits UCST-type behaviour in mineral 

oil (see Figure 6.14), with ~100% transmittance at 50 °C and ~0% transmittance at 

20 °C. On cooling, the UCST appears to be ~31.5 °C, however this critical temperature 

increases to ~44.5 °C on heating, which could be due to C22 side chain crystallisation. 

 

 

Figure 6.14. % Transmittance vs. temperature plot for a 1.0% w/w solution of PBhMA37 in 

mineral oil during cooling (blue squares) and heating (red circles) steps. Data were collected at 

650 nm after 5 min equilibration at each temperature. 

 

This thermal transition causes the dispersions of PBhMA37-PBzMAx spheres to form 

turbid free-standing gels on cooling to room temperature, which is fully reversible; 

heating the flocculated dispersions up to 50 °C produces a range of free-flowing 

dispersions of increasing turbidity (see Figure 6.15.), as expected for dispersions 

containing larger nanoparticles. Thus, the DLS data reported in Table 6.2 were 

obtained at 50 °C in order to ensure that the spherical nanoparticles were well 

dispersed, rather than flocculated. 
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Figure 6.15. Digital images recorded for 20% w/w dispersions of PBhMA37-PBzMAx diblock 

copolymer spheres in mineral oil at (a) 20 °C and (b) 50 °C. Turbid free-standing gels are 

obtained at 20 °C due to the UCST behaviour of the PBhMA37 stabiliser block, whereas free-

flowing dispersions of varying turbidity are obtained on heating to 50 °C, which is above the 

UCST of 31.5 °C or 44.5 °C. This thermal transition is fully reversible. 

 

6.3.3.2. Wax inhibition testing 

It has already been shown that ~40 nm diameter spheres offer better lubricity 

performance, and that spheres of a similar size also show promising viscosity 

modification behaviour. Therefore, the 37 nm spheres PBhMA37-PBzMA150 (see 

Table 6.2) were selected in order to assess for their wax inhibition performance in 

crude oil. Retarding the growth of wax crystals in crude oil is important in the oil 

industry, since this helps prevent the blockage of crude oil pipelines in many parts of 

the world.15 If the crude oil solidifies, the pipelines may even be rendered useless.12  

Prior research suggests that polymeric additives, particularly poly(alkyl 

methacrylates) with pendant alkyl chains comprising 20-30 carbon atoms,12 offer 

significant potential for wax inhibition. The mechanism of wax inhibition is believed 

to involve such polymers adsorbing onto the growing wax crystals, leading to retarded 

crystal growth and such additives are known as pour point depressants (PPDs). Thus, 

the performance of both PBhMA homopolymer and PBhMA-stabilised spheres as wax 
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inhibitors in crude oil was assessed and compared to an industry-leading commercial 

PPD (see Figure 6.16). 

 

 

Figure 6.16. Viscosity-temperature profiles obtained on cooling at 1 °C min -1 for crude oil 

alone (black data), 0.1% w/w PBhMA37 homopolymer (blue data), 0.1% w/w PBhMA37-

PBzMA150 spheres (red data) and 0.1% w/w commercial pour point depressant (PPD, green 

data) at a constant applied shear rate of 30 s-1. 

 

The crude oil used in this study showed an onset in viscosity increase of ~40 °C (black 

data, Figure 6.16). On addition of 0.1% w/w PBhMA37 homopolymer, this onset in 

viscosity increase remained unchanged (blue data, Figure 6.16), which indicates that 

PBhMA37 alone does not act as an efficient PPD. Conversely, 0.1% w/w 37 nm 

PBhMA37-PBzMA150 spheres reduced thin onset by ~1.5 °C (red data, Figure 6.16). 

This suggests that the pendant alkyl chains on the PBhMA37 chains can more 

effectively interact with the growing wax crystals when present in the form of 

nanoparticles. However, this performance was clearly inferior compared to the same 

concentration of the commercial PPD used in this study (green data, Figure 6.16), 

which reduced the onset of viscosity increase by ~5 °C. It is therefore evident that, at 

least for this particular crude oil, 0.1% w/w 37 nm PBhMA37-PBzMA150 spheres are 
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not effective PPDs. In order to further investigate the potential wax inhibition 

performance of PBhMA-stabilised nanoparticles, a range of spheres of varying mean 

diameter should be assessed for a range of crude oils. This is particularly important 

since the solubility of a given PPD will vary in different crude oils, and this PPD 

solubility is known to play a major role in the performance of a PPD.15 

 

6.3.4. Diblock copolymer spheres as asphaltene dispersants 

The dispersion of asphaltenes in crude oil is another method employed to prevent the 

blockage of crude oil pipelines.16 Dynamic turbidimetry is a laboratory technique 

which is commonly employed to analyse the performance of asphaltene dispersants, 

whereby the mean transmittance of a solution of crude oil containing an asphaltene 

dispersant in n-heptane is measured over time. The role of the n-heptane is to 

precipitate the asphaltene component of the crude oil, since asphaltenes are insoluble 

in n-alkanes.16 Thus the ability of the additive to disperse the asphaltenes under such 

conditions can be assessed. At the beginning of the experiment, the mean 

transmittance is 0% since the asphaltenes are well dispersed. As the precipitating 

asphaltenes gradually sediment over time, the mean transmittance of the dispersion 

increases. Thus, the ideal performance for an asphaltene dispersant corresponds to a 

mean transmittance of 0% regardless of the ageing time. In practice, such performance 

is unlikely, but the challenge for the oil industry is to prolong the stability of the crude 

oil for as long as possible. A range of diblock copolymer spheres, prepared by RAFT 

dispersion polymerisation in mineral oil, and a PBhMA37 homopolymer, prepared by 

RAFT solution polymerisation in toluene, were assessed as putative asphaltene 

dispersants (Figure 6.17).  
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Figure 6.17. (a) Mean transmittance vs. time curves obtained for a mixture of crude oil and n-

heptane (added as an asphaltene precipitant) containing no polymeric additive (black data) 

with 0.005% w/w 24 nm PSMA31-PBzMA50 spheres (red data), 42 nm PSMA31-PBzMA200 

spheres (blue data), 59 nm PSMA31-PBzMA400 spheres (green data), PBhMA37 homopolymer 

(orange data) and 37 nm PBhMA37-PBzMA150 spheres (purple data). (b) The same experiment 

repeated using 0.02% w/w (co)polymer additive. 

 

Firstly, solutions where the total polymer concentration was 0.005% w/w were 

analysed (Figure 6.17a). After 15 minutes, the mean transmittance of the solutions 

were reduced relative to the crude oil in n-heptane alone (black data). However, this 
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reduction in transmittance was modest compared to that provided by commercial 

asphaltene dispersants. The performance of these potential dispersants was compared 

using the following equation: 

 

% 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 =
𝑇crude − 𝑇disp

𝑇crude
× 100 6.3 

 

where Tcrude is the final mean transmittance of the crude oil in n-heptane alone and 

Tdisp is the final mean transmittance of the same solution containing the potential 

asphaltene dispersant. Comparing % dispersion values allows direct comparison of 

each of the potential asphaltene dispersants (see Table 6.3). According to this data set, 

42 nm PSMA31-PBzMA200 spheres (Figure 6.17a, blue data) was the best performing 

dispersant at 0.005% w/w. 

 

Table 6.3. % Dispersion (as calculated using Equation 6.3) for asphaltenes in a crude oil in the 

presence of a range of polymeric additives at 0.005% w/w and 0.02% w/w. 

Polymeric additive 
% Dispersion 

0.005% w/w 0.02% w/w 

24 nm PSMA31-PBzMA50 spheres 5.4 10.2 

42 nm PSMA31-PBzMA200 spheres 8.5 5.3 

59 nm PSMA31-PBzMA400 spheres 4.9 10.0 

PBhMA37 homopolymer 5.7 12.7 

37 nm PBhMA37-PBzMA150 spheres 5.7 14.3 

 

The same asphaltene dispersants were assessed at a total polymer concentration of 

0.02% w/w (Figure 6.17b). As expected, a higher dispersant concentration generally 

provided better performance. However, the best performing dispersant at 0.005% w/w 

(42 nm PSMA31-PBzMA200 spheres) actually provided a lower % dispersion value at 

0.02% w/w, and was the worst performing dispersant at this concentration (Figure 

6.17b, blue data). In fact, the 37 nm PBhMA37-PBzMA150 spheres provided the best 

performance here. Ultimately, at least for this data set, it is not possible to determine 

an optimum sphere size or even stabiliser block type for effective asphaltene 
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dispersion. Furthermore, the performance of sterically-stabilised diblock copolymer 

spheres cannot be distinguished from that of the stabiliser block alone. 

 

6.4. Conclusions 

Poly(lauryl methacrylate)-poly(benzyl methacrylate) (PLMA-PBzMA) diblock 

copolymer spheres are promising lubricant additives for base oil. Specifically, 42 nm 

PLMA47-PBzMA46 spheres reduced the friction coefficient of a base oil and provided 

significantly better performance than 116 nm PLMA47-PBzMA297 spheres. The 

presence of just one methacrylic acid (MAA) residue per stabilising chain further 

reduced the friction coefficient of the base oil, with 41 nm P[LMA49-MAA1]-

PBzMA47 spheres offering comparable performance to glyceryl monooleate (GMO). 

The use of 46 nm poly(stearyl methacrylate)31-poly[(benzyl methacrylate)200-stat-

(ethylene glycol dimethacrylate)20] (PSMA31-P[BzMA200-EGDMA20]) spheres 

highlights the potential for obtaining significantly lower friction coefficients in the 

boundary lubrication regime. However, only moderate performance was observed on 

adding the same diblock copolymer spheres to a fully-formulated automotive gear oil 

(AGO), although some lubricity improvement was observed under these conditions. 

 

Similar 40 nm PLMA39-PBzMA100 spheres exhibited very promising viscosity 

modification properties in a base oil. The oil viscosity was higher at 100 °C with less 

thickening at 25 °C than when using a linear poly(methacrylate) (PMA) reference 

additive. In fact, the specific viscosity (ηsp) of the base oil plus 40 nm PLMA39-

PBzMA100 spheres increased at higher temperature, indicating a greater contribution 

to the oil viscosity from these nanoparticles. Although providing high-temperature 

thickening, PLMA18-PBzMA40 worms are not viable VMs because the oil viscosity at 

25 °C was too high. Also, the narrow phase space occupied by worm-like 

nanoparticles would most likely make reproducible PISA syntheses difficult to 

achieve on an industrial scale. 

 

Introducing longer alkyl side chains in the stabiliser block enabled the potential wax 

inhibition properties of poly(behenyl methacrylate)-poly(benzyl methacrylate) 

(PBhMA-PBzMA) spheres to be evaluated. Specifically, 37 nm PBhMA37-PBzMA150 

spheres reduced the onset of viscosity increase of a crude oil as a result of retarded 
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wax crystal growth, but not as effectively as an industry-leading pour point depressant 

(PPD). Additionally, PSMA31-PBzMAx and PBhMA37-PBzMAx spheres, as well as 

the PBhMA37 homopolymer, do not appear to offer significant benefit as asphaltene 

dispersants. 
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Conclusions and Future Work 

Various non-polar PISA formulations were explored in this Thesis. The RAFT 

dispersion polymerisation of BzMA at 90 °C was examined in industrially relevant 

mineral and poly(α-olefin) oils using PLMA, PSMA or PBhMA stabiliser macro-

CTAs comprising varying n-alkyl side chain lengths (C12, C18 and C22, respectively). 

Good control over the RAFT polymerisation (final diblock copolymers with Mw/Mn ≤ 

1.30) was achieved when targeting PBzMA DPs up to 500 using a PSMA31 macro-

CTA. However, similar control was only achieved when targeting PBzMA DPs up to 

around 200-300 using PLMA47 and PBhMA37 macro-CTAs. This significant 

difference is not yet understood and further work is required to rationalise these 

unexpected results. Empirically, it is clear that PSMA macro-CTAs are preferred for 

academic studies. 

 

In all PISA formulations, stabiliser block DP is an important parameter when targeting 

a specific copolymer morphology. When using sufficiently long stabilisers (e.g. 

PLMA39, PSMA18 or PBhMA37), only kinetically-trapped spherical nanoparticles are 

accessible due to inefficient sphere-sphere fusions which are a prerequisite for the 

formation of so-called higher order morphologies (i.e. worms or vesicles). This 

constraint is actually useful when spherical nanoparticles are required (e.g. for 

lubricity applications) and the mean sphere diameter can be readily tuned by 

systematically varying the core-forming PBzMA DP. Additionally, it was found that 

spheres synthesised using macro-CTAs with different DPs (e.g. PSMA31 and PSMA18) 

exhibited different scaling relationships between spherical diameter (D) and PBzMA 

DP (x), where D = k.xα. An α scaling factor of 0.50 was obtained for PSMA31-PBzMAx 

spheres, which indicates unperturbed PBzMA chains, whereas α = 0.61 for PSMA18-

PBzMAx spheres, indicating more stretched/solvated PBzMA chains. Importantly, a 

highly convenient ‘one-pot’ synthetic protocol has been developed, whereby targeted 

39 nm PLMA50-PBzMA100 spheres can be synthesised from their monomer building 

blocks via successive RAFT solution and dispersion polymerisations conducted in 

mineral oil at 70% w/w and 30% w/w solids respectively within 9 h. It was also 

demonstrated that PLMA47-PBzMA100 spheres can be synthesised at copolymer 

concentrations up to 50% w/w solids. Evaluating various diblock copolymer spheres 

for their lubricity performance highlighted that the optimum diameter is approximately 
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40 nm. More specifically, 41 nm P[LMA49-MAA1]-PBzMA47 spheres offer 

comparable lubricity performance compared to the industry standard, GMO. Similar 

40 nm PLMA39-PBzMA100 spheres also provide promising viscosity modification 

properties compared to a linear soluble PMA reference. Additionally, 37 nm 

PBhMA37-PBzMA150 spheres offered modest wax inhibition and asphaltene 

dispersion properties. 

 

Using shorter stabiliser macro-CTAs (e.g. PLMA18 or PSMA13) allows access to the 

full range of copolymer morphologies: spheres, worms and vesicles. Phase diagrams 

for PLMA-PBzMA diblock copolymer nanoparticles in mineral oil and a poly(α-

olefin) indicated that changing the solvent leads to subtle differences in the phase 

space occupied by pure spheres, worms and vesicles. Interestingly, PSMA13-PBzMAx 

nanoparticles synthesised in mineral oil exhibited little dependence on the copolymer 

concentration, with pure sphere, worm and vesicle phases all being accessible at 5% 

w/w solids. Conversely, various PLMA-PBzMA phase diagrams in n-heptane, n-

dodecane, as well mineral and the poly(α-olefin) reported in this Thesis show that 

copolymer concentrations of at least 12.5% w/w are required to access such pure phase 

spaces. This is not yet understood and again warrants further research. 

 

The evolution of nanoparticle morphology when targeting PSMA31-PBzMA2000 

spheres and PSMA13-PBzMA150 vesicles was monitored using in situ synchrotron 

SAXS. When targeting PSMA31-PBzMA2000 spheres, the PBzMA core diameter 

increases monotonically during the polymerisation, with increasing aggregation 

numbers (Ns) also being observed (final PBzMA core diameter: Dco = 117 nm; Ns = 

1688). The volume fraction of BzMA monomer within these cores is relatively high 

just after nucleation occurs, with this local monomer concentration leading to the 

observed increase in polymerisation rate. The average distance between adjacent 

copolymer chains at the core-shell interface increases during the polymerisation until 

a limiting value of 5.0 nm is reached. When targeting PSMA13-PBzMA150 vesicles, 

the full range of copolymer morphologies is observed, from soluble copolymer chains 

to the final vesicular morphology via intermediate spheres and worms. Detailed TEM 

studies of a laboratory-scale synthesis of such vesicles confirmed that the final vesicles 

are formed from worms via transient octopi and jellyfish morphologies, as first 

reported by Blanazs et al. for an aqueous PISA formulation. This suggests that the 
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mechanism of vesicle formation is universal for all PISA formulations. Within vesicle 

phase space, the membrane thickness (Tm) increases monotonically with increasing 

PBzMA DP. Subsequent post mortem SAXS analyses for PSMA13-PBzMAx vesicles 

(when x = 150-400) shows that Tm varies with PBzMA DP (x) according to Tm = k.x0.86. 

Importantly, the overall vesicle dimensions remain relatively constant within this DP 

range, which supports the ‘inward growth’ mechanism previously reported by Warren 

et al. for an aqueous PISA formulation. Thus, such an ‘inward growth’ mechanism for 

diblock copolymer vesicles synthesised by PISA is likely to be universal. The 

development of such robust in situ SAXS protocols provides the opportunity to 

investigate morphological transformations for a wide range of PISA formulations (i.e. 

aqueous or alcoholic, plus more exotic solvents such as supercritical CO2 or ionic 

liquids). 

 

In addition to in situ observations, post-polymerisation morphological transitions are 

observed for various poly(n-alkyl methacrylate)-PBzMA diblock copolymer 

nanoparticles. As suggested for closely related formulations, such transformations are 

the result of surface plasticisation of the PBzMA core-forming block at elevated 

temperatures, which is caused by the ingress of hot solvent. Such surface plasticisation 

was invoked to explain the observed morphology transformations in relation to the 

packing parameter (P) and are supported by SAXS and NMR observations. On heating 

certain diblock copolymer nano-objects, either worm-to-sphere and vesicle-to-worm 

transitions can be observed. In both cases, a reduction in the packing parameter must 

occur, thus suggesting that the volume of the core-forming block (V) is also reduced. 

If uniform plasticisation of the core-forming PBzMA block occurred, V would actually 

increase and lead to a larger value of P. Only surface plasticisation, where the BzMA 

residues closest to the block junction become solvated by the hot solvent, results in a 

reduction in V and therefore a reduction in P. 

 

The worm-to-sphere transition results in degelation of initial free-standing worm gels 

to form free-flowing dispersions of spheres. These structural and physical 

transformations have been characterised using TEM, DLS and both oscillatory and 

rotational rheology. Birefringence was observed for PSMA13-PBzMA65 worms in 

mineral oil using shear-induced polarised light imaging (SIPLI). For spheres at 150 

°C, no birefringence was observed because such nanoparticles are isotropic. On 
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cooling, a classic Maltese cross pattern is observed when anisotropic worms are 

present, but loss of this birefringence occurred on cooling further to 20 °C, which is 

attributed to the formation of branched/clustered worms. Such SIPLI studies should 

be supplemented by in situ SAXS studies in future work, since this should provide 

additional structural insights. 

 

Similarly, PSMA13-PBzMA96 vesicles form worms on heating to 150 °C as judged by 

TEM and SAXS studies. Interestingly, this morphological transition results in a 

dramatic increase in viscosity for a 10% w/w dispersion of PSMA13-PBzMA96 

nanoparticles in mineral oil when heating above 130 °C due to the formation of inter-

worm contacts. This provides a potential route to high temperature thickening of 

engine oils, which could in principle have a significant impact within the automotive 

industry. However, the vesicle-to-worm transition reported in this Thesis is not fully 

reversible and the initial turbidity of the PSMA13-PBzMA96 vesicles is likely to be 

problematic for the consumer market. Therefore, further research is required to obtain 

a formulation which offers such high temperature thickening without the associated 

disadvantages. One possibility in this regard may be to design transparent PISA 

formulations using contrast-matched vesicles. 

 

Clearly, there is much promise for the use of diblock copolymer nanoparticles, 

particularly spheres, over a range of applications in the automotive industry. Ideally, 

new protocols for the synthesis of such diblock copolymer spheres using cheaper 

starting materials should also be developed. For example, MMA is a cheap oil-soluble 

monomer which could be used to chain extend an oil-soluble macro-CTA to form an 

oil-insoluble PMMA block. Moreover, cheap monomer stocks containing mixtures of 

C12-C15 methacrylates are widely used in industry and are likely to stabilise such 

PMMA nanoparticles. Ultimately, a comprehensive matrix of diblock copolymer 

nanoparticles with various sizes, chemical compositions and functionalities should be 

prepared and examined for their performance in a wide range of applications. Initial 

studies by the industrial sponsor of this PhD Thesis (Lubrizol Corporation Ltd.) have 

confirmed that the ‘one-pot’ PISA syntheses described herein can be performed on an 

18 kg scale. 
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8.1. Structural Models for Small-Angle X-ray Scattering (SAXS) 

Analysis 

The following SAXS models were used and modified from various literature sources 

where indicated. The models described herein were initially applied by Dr. Oleksandr 

Mykhaylyk, for which he is thanked.  

 

In general, the X-ray intensity scattered by a dispersion of nano-objects [usually 

represented by the scattering cross section per unit sample volume, 
𝑑𝛴

𝑑𝛺
(𝑞)] can be 

expressed as: 

 

𝑑𝛴

𝑑𝛺
(𝑞) = 𝑁. 𝑆(𝑞) ∫ …

∞

0

∫ 𝐹(𝑞, 𝑟1, … , 𝑟k)
2

𝛹(𝑟1, … , 𝑟k)𝑑𝑟1 … 𝑑𝑟k

∞

0

 A1 

 

where 𝐹(𝑞, 𝑟1, … , 𝑟k) is their form factor, 𝑟1, … , 𝑟k is a set of k parameters describing 

the structural morphology, 𝛹(𝑟1, … , 𝑟k) is the distribution function, S(q) is the 

structure factor and N is the nano-object number density per unit volume expressed as: 

 

𝑁 =
𝜑

∫ …
∞

0
∫ 𝑉(𝑟1, … , 𝑟k)

∞

0
𝛹(𝑟1, … , 𝑟k)𝑑𝑟1 … 𝑑𝑟k

 
A2 

 

where 𝑉(𝑟1, … , 𝑟k) is volume of the nano-object and φ is their volume fraction in the 

dispersion. 

 

8.1.1. Spherical micelle model 

The spherical micelle form factor for Equation A1 is given by:1 

 

𝐹s_mic(𝑞) = 𝑁s
2𝛽s

2𝐴s
2(𝑞, 𝑅s) + 𝑁s𝛽c

2𝐹c(𝑞, 𝑅g) + 𝑁s(𝑁s − 1)𝛽c
2𝐴c

2(𝑞)

+ 2𝑁s
2𝛽s𝛽c𝐴s(𝑞, 𝑅s)𝐴c(𝑞) 

A3 
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where Rs is the radius of the spherical micelle core, Rg is the radius of gyration of the 

PSMA coronal block, the core block and the corona block X-ray scattering length 

contrast is given by 𝛽s = 𝑉s(𝜉s − 𝜉sol) and 𝛽c = 𝑉c(𝜉c − 𝜉sol), respectively. Here ξs, 

ξc and ξsol are the X-ray scattering length densities of the core block (ξPBzMA = 10.38  

1010 cm-2), the corona block (ξPSMA = 9.24  1010 cm-2) and the solvent (ξsol = 7.63  

1010 cm-2), respectively. Vs and Vc are volumes of the core block (VPBzMA) and the 

corona block (VPSMA31), respectively. The volumes were obtained from 𝑉 =
𝑀n,pol

𝑁A𝜌
 

using the density of PBzMA (ρPBzMA = 1.15 g cm-3)2 and the solid-state homopolymer 

density of PSMA determined by helium pycnometry (ρPSMA = 0.97 g cm-3), where 

Mn,pol corresponds to the number-average molecular weight of the block determined 

by 1H NMR spectroscopy. The sphere form factor amplitude is used for the amplitude 

of the core self-term: 

𝐴c(𝑞, 𝑅s) = Φ(𝑞𝑅s)exp (−
𝑞2𝜎2

2
) A4 

 

where Φ(𝑞𝑅s) =
3[sin(𝑞𝑅s)−𝑞𝑅scos(𝑞𝑅s)]

(𝑞𝑅s)3 . A sigmoidal interface between the two blocks 

was assumed for the spherical micelle form factor [Equation A]. This is described by 

the exponent term with a width σ accounting for a decaying scattering length density 

at the membrane surface. This σ value was fixed at 2.5 during fitting. 

 

The form factor amplitude of the spherical micelle corona is: 

 

𝐴c(𝑞) =
∫ 𝜇c(𝑟)

𝑅s+2𝑠

𝑅s

sin (𝑞𝑟)
𝑞𝑟 𝑟2𝑑𝑟

∫ 𝜇c(𝑟)𝑟2𝑑𝑟
𝑅s+2𝑠

𝑅s

exp (−
𝑞2𝜎2

2
) A5 

 

The radial profile, μc(r), can be expressed by a linear combination of two cubic b 

splines, with two fitting parameters s and a corresponding to the width of the profile 

and the weight coefficient, respectively. This information can be found elsewhere,3, 4 

as can the approximate integrated form of Equation A5. The self-correlation term for 

the corona block is given by the Debye function: 
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𝐹c(𝑞, 𝑅g) =
2[exp(−𝑞2𝑅g

2) − 1 + 𝑞2𝑅g
2]

𝑞4𝑅g
4  A6 

 

where Rg is the radius of gyration of the PSMA coronal block. The aggregation number 

of the spherical micelle is: 

𝑁s = (1 − 𝑥sol)

4
3 𝜋𝑅s

3

𝑉s
 A7 

 

where xsol is the volume fraction of solvent in the PBzMA micelle core. An effective 

structure factor expression proposed for interacting spherical micelles5 has been used 

in Equation A1: 

 

𝑆s(𝑞) = 1 +
𝐴s_mic

av (𝑞)2[𝑆PY(𝑞, 𝑅PY, 𝑓PY) − 1]

𝐹s_mic(𝑞)
 A8 

 

Herein the form factor of the average radial scattering length density distribution of 

micelles is used as 𝐴s_mic
av (𝑞) = 𝑁s[𝛽s𝐴s(𝑞, 𝑅s) + 𝛽c𝐴c(𝑞)] and 𝑆PY(𝑞, 𝑅PY, 𝑓PY) is a 

hard-sphere interaction structure factor based on the Percus-Yevick approximation,6 

where RPY is the interaction radius and fPY is the hard-sphere volume fraction. A 

polydispersity for one parameter (Rs) is assumed for the micelle model which is 

described by a Gaussian distribution. Thus, the polydispersity function in Equation A 

can be represented as: 

 

𝛹(𝑟1) =
1

√2𝜋𝜎𝑅s
2

exp (−
(𝑟1 − 𝑅s)2

2𝜎𝑅s
2

) A9 

 

 

where σRs is the standard deviation for Rs. In accordance with Equation A2 the number 

density per unit volume for the micelle model is expressed as: 

 

𝑁 =
𝜑

∫ 𝑉(𝑟1)𝛹(𝑟1)𝑑𝑟1
∞

0

 
A10 
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where φ is the total volume fraction of copolymer in the spherical micelles and 
1
( )V r  

is the total volume of copolymer in a spherical micelle [𝑉(𝑟1) = (𝑉s + 𝑉c)𝑁s(𝑟1)]. 

 

The model fitting to the final SAXS pattern of PSMA31-PBzMA2000 spheres indicated 

φ = 0.063, RPY = 62.8 nm and fPY = 0.073, which is consistent with the expected 

volume fraction of polymer (0.075) in this system after synthesis at full conversion. 

The experimental Rg obtained from this fitting for the corona PSMA block (1.5 nm) is 

also physically reasonable, since it is close to the estimated parameter. Assuming that 

the projected contour length of a PSMA monomer is 0.255 nm (two C-C bonds in all-

trans conformation), the total contour length of a PSMA31 block, LPSMA31 = 31  0.255 

nm = 7.905 nm. Given a mean Kuhn length of 1.53 nm [based on the known literature 

value for PMMA7] an estimated unperturbed radius of gyration, Rg = (7.905 

1.53/6)0.5, or 1.42 nm is determined.  

 

8.1.2. Worm-like micelle model 

The worm-like micelle form factor for Equation A1 is given by:1 

 

𝐹w_mic(𝑞) = 𝑁w
2𝛽s

2𝐹sw(𝑞) + 𝑁w𝛽c
2𝐹c(𝑞, 𝑅g) + 𝑁w(𝑁w − 1)𝛽c

2𝑆cc(𝑞)

+ 2𝑁w
2𝛽s𝛽c𝑆sc(𝑞) 

A11 

 

where the core block and the corona block X-ray scattering length contrast is given by 

𝛽s = 𝑉s(𝜉s − 𝜉sol) and 𝛽c = 𝑉c(𝜉c − 𝜉sol), respectively. Here ξs, ξc and ξsol are the X-

ray scattering length densities of the core block (ξPBzMA = 10.38  1010 cm-2), the 

corona block (ξPSMA = 9.24  1010 cm-2) and the solvent (ξsol = 7.63  1010 cm-2), 

respectively. Vs and Vc are volumes of the core block (VPBzMA) and the corona block 

(VPSMA), respectively. The volumes were obtained from 𝑉 =
𝑀n,pol

𝑁A𝜌
 using the density 

of PBzMA (ρPBzMA = 1.15 g cm-3)2 and the solid-state homopolymer density of PSMA 

determined by helium pycnometry (ρPSMA = 0.97 g cm-3), where Mn,pol corresponds to 

the number-average molecular weight of the block determined by 1H NMR 

spectroscopy. The self-correlation term for the worm-like micelle core or radius Rsw 

is: 
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𝐹sw(𝑞) = 𝐹worm(𝑞, 𝐿w, 𝑏w)𝐴csworm

2(𝑞, 𝑅sw) A12 

 

which is a product of a core cross-section term: 

 

𝐹csworm
(𝑞, 𝑅g) = 𝐴csworm

2(𝑞, 𝑅sw) = [2
𝐽1(𝑞𝑅sw)

𝑞𝑅sw
]

2

 A13 

 

where J1 is the first-order Bessel function of the first kind, and a form factor 

𝐹worm(𝑞, 𝐿w, 𝑏w) for self-avoiding semi-flexible chains represents the worm-like 

micelle, where bw is the worm Kuhn length and Lw is the mean worm contour length. 

A complete expression for the chain form factor can be found elsewhere.8 The self- 

correlation term for the corona block is given by the Debye function shown in 

Equation A6. The interference cross-term between the worm micelle core and the 

corona chain is given by: 

 

 

𝑆sc(𝑞) = 𝛹2(𝑞𝑅g)𝐽0
2[𝑞(𝑅sw + 𝑅g)]𝐹worm(𝑞, 𝐿w, 𝑏w) A14 

 

where 𝛹(𝑞𝑅g) =
1−exp(−𝑞2𝑅g

2)

(𝑞𝑅g)
2  is the form factor amplitude of the corona chain, Rg is 

the radius of gyration of the PSMA corona block and J0 is the zero-order Bessel 

function of the first kind. The interference term between the worm corona chains is: 

 

𝑆cc(𝑞) = 𝛹(𝑞𝑅g)𝐴cs_worm𝐽0[𝑞(𝑅sw + 𝑅g)]𝐹worm(𝑞, 𝐿w, 𝑏w) A15 

 

The mean aggregation number of the worm-like micelle is given by: 

 

𝑁w = (1 − 𝑥sol)
𝜋𝑅sw

2𝐿w

𝑉s
 A16 
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where xsol is the volume fraction of solvent within the worm-like micelle core. Possible 

semi-spherical caps at the ends of each worm are not considered in this form factor. It 

is also assumed that S(q) = 1 at sufficiently low copolymer concentrations (e.g. 1.0% 

w/w). 

 

8.1.3. Vesicle model 

The vesicle form factor in Equation A1 is expressed as:9  

 

𝐹ves(𝑞) = 𝑁v
2𝛽m

2𝐴m
2(𝑞) + 𝑁v𝛽vc

2𝐹c(𝑞, 𝑅g) + 𝑁v(𝑁v − 1)𝛽vc
2𝐴vc

2(𝑞)

+ 2𝑁v
2𝛽m𝛽vc𝐴m(𝑞)𝐴vc(𝑞) 

A17 

 

The X-ray scattering length contrast for the membrane-forming block (PBzMA) and 

the coronal stabiliser block (PSMA) is given by 𝛽m = 𝑉m(𝜉m − 𝜉sol) and 𝛽vc =

𝑉vc(𝜉vc − 𝜉sol), respectively, where ξm, ξvc and ξsol are the X-ray scattering length 

densities of the membrane-forming block (ξPBzMA = 10.38  1010 cm-2), the coronal 

stabiliser block (ξPSMA = 9.24  1010 cm-2) and the solvent (ξsol = 7.63  1010 cm-2). Vm 

and Vvc are the volumes of the membrane-forming block and the coronal stabiliser 

block, respectively. Using the molecular weights of the PBzMA and PSMA blocks 

and their respective mass densities: ρPBzMA = 1.15 g cm-3 and ρPSMA = 0.97 g cm-3, the 

individual block volumes can be calculated from 𝑉 =
𝑀n,pol

𝑁A𝜌
, where Mn,pol corresponds 

to the number-average molecular weight of the block determined by 1H NMR 

spectroscopy. The amplitude of the membrane self-term is: 

 

𝐴m(𝑞) =
𝑉out𝜑(𝑞𝑅out) − 𝑉in𝜑(𝑞𝑅in)

𝑉out − 𝑉in
exp (−

𝑞2𝜎in
2

2
) A18 

 

where 𝑅in = 𝑅m −
1

2
𝑇m is the inner radius of the membrane, 𝑅out = 𝑅m +

1

2
𝑇m is the 

outer radius of the membrane, 𝑉in =
4

3
𝜋𝑅in

3, 𝑉out =
4

3
𝜋𝑅out

3. It should be noted that 

Equation A17 differs from the original work in which they were first described.9 The 

exponent term in Equation A18 represents a sigmoidal interface between the blocks, 
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with a width σin accounting for a decaying scattering length density at the membrane 

surface. The value of σin was fixed at 2.5. The mean vesicle aggregation number, Nv, 

is given by: 

𝑁v = (1 − 𝑥sol)
𝑉out − 𝑉in

𝑉m
 A19 

 

where xsol is the solvent (i.e. mineral oil) volume fraction within the vesicle membrane.  

 

A simpler expression for the corona self-term of the vesicle model than for the 

spherical micelle corona self-term was used due to the fact that the contribution to the 

scattering intensity from the corona block in this case was much less than the 

contribution from the membrane block. Assuming that there is no penetration of the 

solvophilic coronal blocks into the solvophobic membrane, the amplitude of the 

vesicle corona self-term is expressed as: 

 

 

𝐴vc(𝑞) = 𝛹(𝑞𝑅g)
1

2
[
sin[𝑞(𝑅out + 𝑅g)]

𝑞(𝑅out + 𝑅g)
+

sin[𝑞(𝑅in − 𝑅g)]

𝑞(𝑅in − 𝑅g)
] A20 

 

where the term outside the square brackets is the factor amplitude of the corona block 

polymer chain such that: 

 

𝛹(𝑞𝑅g) =
1 − exp(−𝑞𝑅g)

(𝑞𝑅g)
2  A21 

 

Again, the obtained Rg of the PSMA13 coronal block of ~1.21 nm is comparable to the 

estimated value. The latter can be calculated from the total contour length of the 

PSMA13 block, LPSMA13 = 13  0.255 nm = 3.315 nm (since the projected contour 

length per SMA monomer repeat unit is defined by two carbon bonds in an all-trans 

conformation, or 0.255 nm) and the Kuhn length of 1.53 nm [based on the known 

literature value for PMMA7] result in an approximate Rg of (3.315 1.53/6)1/2 = 0.92 

nm. 
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It was assumed for the vesicle model that two parameters are polydisperse: the overall 

radius of the vesicles and the membrane thickness (Rm and Tm, respectively). They are 

considered to have a Gaussian distribution and, therefore, the polydispersity function 

in Equation A1 can be expressed as:  

 

𝛹(𝑟1, 𝑟2) =
1

√2𝜋𝜎𝑅m
2

exp (−
(𝑟1 − 𝑅m)2

2𝜎𝑅m
2

)
1

√2𝜋𝜎𝑇m
2

exp (−
(𝑟1 − 𝑇m)2

2𝜎𝑇m
2

) A22 

 

where σRm and σTm are the standard deviations for Rm and Tm, respectively. Following 

Equation A2 the number density per unit volume for the vesicle model is expressed 

as: 

𝑁 =
𝜑

∫ ∫ 𝑉(𝑟1, 𝑟2)𝛹(𝑟1, 𝑟2)𝑑𝑟1𝑑𝑟2
∞

0

∞

0

 
A0.1 

 

where φ is the total volume fraction of copolymer in the vesicles and 𝑉(𝑟1, 𝑟2) is the 

total volume of copolymers in a vesicle [𝑉(𝑟1, 𝑟2) = (𝑉m + 𝑉vc)𝑁v(𝑟1, 𝑟2)]. The region 

of the SAXS patterns which would be affected by the structure factor of concentrated 

vesicle dispersions were not well resolved in the performed SAXS measurements and, 

therefore, were excluded from the fitted pattern [i.e. only SAXS data for q >               

0.06 nm-1 were used for the fitting and the structure factor in Equation A1 was set to 

unity, S(q) = 1]. Programming tools within the Irena SAS Igor Pro macros10 were used 

to implement the scattering models. 

 

8.2. References 

1. J. S. Pedersen, Journal of Applied Crystallography, 2000, 33, 637-640. 

2. L. A. Fielding, J. A. Lane, M. J. Derry, O. O. Mykhaylyk and S. P. Armes, 

Journal of the American Chemical Society, 2014, 136, 5790-5798. 

3. J. S. Pedersen and M. C. Gerstenberg, Colloids and Surfaces a-

Physicochemical and Engineering Aspects, 2003, 213, 175-187. 

4. J. S. Pedersen, C. Svaneborg, K. Almdal, I. W. Hamley and R. N. Young, 

Macromolecules, 2003, 36, 416-433. 

5. J. S. Pedersen, Journal of Chemical Physics, 2001, 114, 2839-2846. 

6. D. J. Kinning and E. L. Thomas, Macromolecules, 1984, 17, 1712-1718. 

7. L. J. Fetters, D. J. Lohsey and R. H. Colby, in Physical Properties of Polymers 

Handbook, ed. J. E. Mark, Springer, New York, 2nd edn., 2007, ch. 25, pp. 

447-454. 

8. J. S. Pedersen and P. Schurtenberger, Macromolecules, 1996, 29, 7602-7612. 



Chapter 8: Appendix 

 

230 

 

9. J. Bang, S. M. Jain, Z. B. Li, T. P. Lodge, J. S. Pedersen, E. Kesselman and Y. 

Talmon, Macromolecules, 2006, 39, 1199-1208. 

10. J. Ilavsky and P. R. Jemian, Journal of Applied Crystallography, 2009, 42, 

347-353. 

 

 


