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Abstract

This thesis describes experiments using optically detected nuclear magnetic reso-
nance (NMR) techniques to probe and control the nuclear spin bath evolution in
single self-assembled InGaAs quantum dots at large external magnetic fields. Strong
non-resonant optical pumping is used to create spin bath polarisations & 60% in
dynamic nuclear polarisation. Changes of the nuclear magnetisation under resonant
radio frequency (rf) excitation of nuclear Zeeman transitions are detected in low-
power photoluminescence spectroscopy measurements of the hyperfine shifts of the
exciton transition lines.

Continuous wave rf excitation shows strong inhomogeneous broadening of the
NMR spectra in a quantum dot owing to strain-induced quadrupolar interactions.
Hahn echo measurements reveal comparatively long nuclear spin phase memory
times THE

M,n ∼ 1 − 4 ms which are attributed to strong suppression of nuclear spin
fluctuations due to the inhomogeneous broadening.

Further progress towards full control of the spin bath evolution is made using a set
of new multiple pulse NMR sequences combining features of Hahn and solid echoes.
Measurements demonstrate that spin bath coherence times of up to ∼ 20 ms can
be achieved within the experimental limitations of this work. Use of these NMR
sequences in combination with electron/hole spin control techniques is expected to
increase central spin coherence times significantly.

The equilibrium spin bath coherence properties are probed using a novel, weakly-
invasive rf frequency comb NMR method. Frequency combs with varying tooth
spacing are used to determine the homogeneous NMR lineshapes. The sensitivity
of the homogeneous linewidths to fluctuations in the spin bath is used to probe
the bath dynamics. Few-second-long spin flip-flop correlation times are revealed,
demonstrating the potential of self-assembled InGaAs quantum dots to serve as a
highly stable host system for spin qubits.
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Cambridge - in particular Ed Laird, Fei Pei and Maja Cassidy who were happy
to share their vast experience with spin resonance techniques and Ben Pingault,
Helena Knowles and Dhiren Kara who introduced me to their work on defect
centres in diamond. Concerning funding I also wish to acknowledge the EPSRC
which has provided the financial backbone for this project via the Programme Grant
EP/J007544/1.

Last but not least, I thank my family for their support and patience throughout
the entire 21 years which I have now accumulated studying in some way or other. In
particular, I wish to thank my parents Brunhilde Waeber and Lorenz Waeber,
and my sister Daniela Waeber.

vi



Publications

Articles

A. M. Waeber, M. Hopkinson, I. Farrer, D. A. Ritchie, J. Nilsson, R. M. Steven-
son, A. J. Bennett, A. J. Shields, G. Burkard, A. I. Tartakovskii, M. S. Skolnick,
and E. A. Chekhovich. “Few-second-long correlation times in a quantum dot nuclear
spin bath probed by frequency-comb NMR spectroscopy”, Nature Physics, 12:688
(2016). doi:10.1038/nphys3686

P.-L. Ardelt, K. Gawarecki, K. Müller, A. M. Waeber, A. Bechtold, K. Ober-
hofer, J. M. Daniels, F. Klotz, M. Bichler, T. Kuhn, H. J. Krenner, P. Mach-
nikowski, G. Abstreiter and J. J. Finley. “Coulomb Mediated Hybridization of
Excitons in Coupled Quantum Dots”, Physical Review Letters, 116:077401 (2016).
doi:10.1103/PhysRevLett.116.077401

Conference Contributions

A. M. Waeber, I. Farrer, D. A. Ritchie, J. Nilsson, R. M. Stevenson, A. J. Ben-
nett, A. J. Shields, A. I. Tartakovskii, M. S. Skolnick, and E. A. Chekhovich. “In-
creased Nuclear Spin Coherence in Strained Quantum Dots under π-pulse trains”,
IOP Quantum Dot Day, 12th January 2015, Cambridge (talk)

A. M. Waeber, M. Hopkinson, I. Farrer, D. A. Ritchie, J. Nilsson, R. M. Steven-
son, A. J. Bennett, A. J. Shields, A. I. Tartakovskii, M. S. Skolnick, and E. A.
Chekhovich. “Increased Nuclear Spin Coherence in InGaAs Quantum Dots under
multiple pulse NMR”, UK Semiconductors, 1st-2nd July 2015, Sheffield (talk)

A. M. Waeber, M. Hopkinson, I. Farrer, D. A. Ritchie, J. Nilsson, R. M. Steven-
son, A. J. Bennett, A. J. Shields, A. I. Tartakovskii, M. S. Skolnick, and E. A.
Chekhovich. “Increased Nuclear Spin Coherence in InGaAs Quantum Dots under
multiple pulse NMR”, EP2DS-21/MSS-17, 26th-31st July 2015, Sendai, Japan (talk)

vii

http://dx.doi.org/10.1038/nphys3686
http://dx.doi.org/10.1103/PhysRevLett.116.077401


viii



Contents

List of Figures xiii

1 Introduction 1

2 Self-Assembled Quantum Dots 7
2.1 Growth of InGaAs Quantum Dots . . . . . . . . . . . . . . . . . . . . 8
2.2 Discrete Energy States in a Quantum Dot . . . . . . . . . . . . . . . 10

2.2.1 Three-Dimensional Confinement . . . . . . . . . . . . . . . . . 10
2.2.2 Excitons and Optical Transitions . . . . . . . . . . . . . . . . 14
2.2.3 Exchange Interactions and Fine Structure . . . . . . . . . . . 16

2.3 Exciton States in Electric and Magnetic Fields . . . . . . . . . . . . . 18
2.3.1 Electric Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Magnetic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 The Quantum Dot Spin System 27
3.1 Hyperfine Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Overhauser and Knight Fields . . . . . . . . . . . . . . . . . . 31
3.1.2 Spin Flips and Dynamic Nuclear Polarisation . . . . . . . . . 33

3.2 Spin Relaxation in a Quantum Dot . . . . . . . . . . . . . . . . . . . 37
3.2.1 Electron and Hole Spin Relaxation and Decoherence . . . . . . 39
3.2.2 Nuclear Spin Decoherence . . . . . . . . . . . . . . . . . . . . 41

3.3 Nuclear Spin Manipulation . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.1 Spin Resonance in the Rabi Model . . . . . . . . . . . . . . . 43
3.3.2 The Bloch Equations of Motion . . . . . . . . . . . . . . . . . 47

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Experimental Methods and Samples 53
4.1 Cryogenic System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Photoluminescence Spectroscopy . . . . . . . . . . . . . . . . . . . . . 56
4.3 Nuclear Magnetic Resonance . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.1 NMR Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.2 Optical Detection of NMR . . . . . . . . . . . . . . . . . . . . 63

4.4 Quantum Dot Samples . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.1 Ungated Sample A . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.2 PIN Diode Sample B . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Strain-Induced Nuclear Spin Freezing in InGaAs Quantum Dots 71
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

ix



5.2 Nuclear Spin Bath Dynamics in a Quantum Dot . . . . . . . . . . . . 74
5.2.1 Nuclear Dipolar Interactions . . . . . . . . . . . . . . . . . . . 74
5.2.2 Quadrupolar Coupling in a Strained System . . . . . . . . . . 77
5.2.3 Quadrupolar Suppression of Dipolar Flip-Flops . . . . . . . . 80

5.3 Optical and Spin Bath Properties of Sample B . . . . . . . . . . . . . 81
5.3.1 Bias Dependence of Quantum Dot Properties . . . . . . . . . 81
5.3.2 Pump and Probe Pulse Calibration . . . . . . . . . . . . . . . 84

5.4 Calibration of the Pulsed NMR Experimental Parameters . . . . . . . 86
5.4.1 Resonance Frequency Calibration with Inverse NMR . . . . . 87
5.4.2 Adiabatic Population Transfer . . . . . . . . . . . . . . . . . . 89
5.4.3 Hard Pulse Calibration . . . . . . . . . . . . . . . . . . . . . . 91

5.5 Long Nuclear Spin Phase Memory Times in Hahn Echo Experiments 93
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Suppression of Spin Bath Decoherence under Multiple Pulse NMR 99
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2 Theory of Multiple Pulse NMR . . . . . . . . . . . . . . . . . . . . . 102

6.2.1 Dynamical Decoupling . . . . . . . . . . . . . . . . . . . . . . 103
6.2.2 Review of Average Hamiltonian Theory . . . . . . . . . . . . . 105
6.2.3 Design of NMR Sequences for Increased Spin Bath Coherence 109

6.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.3.1 Rotation Angle Calibration . . . . . . . . . . . . . . . . . . . 114
6.3.2 Phase Calibration . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.4 Long-Lived Spin Echoes under Carr-Purcell Sequences . . . . . . . . 117
6.4.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 118
6.4.2 Spin-Locking under π Pulses of Finite Duration . . . . . . . . 121
6.4.3 Effect of Resonance Offsets on Carr-Purcell Sequences . . . . . 126

6.5 Nuclear Spin Bath Control under Combined Echo Sequences . . . . . 129
6.5.1 Performance Comparison of Combined Echo Sequences . . . . 130
6.5.2 Suppressed Homonuclear Dipolar Interactions under CPMG-

MREV Combined Echo Sequences . . . . . . . . . . . . . . . . 132
6.5.3 Offset Sensitivity of Combined Echo Amplitudes . . . . . . . . 136

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7 Spin Bath Correlation Times in Self-Assembled Quantum Dots 141
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.2.1 Experimental Implementation of RF Frequency Combs . . . . 144
7.2.2 Optical Pump-Probe Measurement . . . . . . . . . . . . . . . 145
7.2.3 Parameter Calibration . . . . . . . . . . . . . . . . . . . . . . 147

7.3 Probing Homogeneous NMR Lineshapes with Frequency Combs . . . 150
7.3.1 Working Principle of the Frequency Comb Technique . . . . . 151
7.3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 154
7.3.3 Extracting the Homogeneous NMR Lineshape . . . . . . . . . 155
7.3.4 Applicability of the Frequency Comb Technique . . . . . . . . 161

7.4 Detecting Nuclear Spin Flip-Flop Freezing by Frequency Comb NMR 164

x



7.5 Extracting Spin Bath Correlation Times . . . . . . . . . . . . . . . . 167
7.5.1 Calibration for Three-Comb Experiments . . . . . . . . . . . . 167
7.5.2 Few-Second-Long Spin Flip-Flop Correlation Times . . . . . . 171

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

8 Conclusions and Outlook 179

9 Appendix 183
9.1 Dipolar Alphabet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
9.2 Average Hamiltonian Theory Analysis of APCP . . . . . . . . . . . . 185

9.2.1 Average Hamiltonian of APCP with Finite Pulse Durations . 185
9.2.2 Second Averaging . . . . . . . . . . . . . . . . . . . . . . . . . 186

10 Symbols and Constants 189

Bibliography xvii

xi



xii



List of Figures

2.1 Growth of InGaAs quantum dots . . . . . . . . . . . . . . . . . . . . 8
2.2 Discrete energy states of a quantum dot . . . . . . . . . . . . . . . . 11
2.3 Neutral and charged excitons . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Fine structure of the neutral exciton . . . . . . . . . . . . . . . . . . 17
2.5 Electric field tuning of optical transitions . . . . . . . . . . . . . . . . 20
2.6 Neutral exciton states in Faraday and Voigt geometry magnetic fields 23
2.7 Magnetic field dependence of optical transitions . . . . . . . . . . . . 24

3.1 Energy levels of coupled electron-nuclear spin system . . . . . . . . . 34
3.2 Bistability in the Overhauser shift . . . . . . . . . . . . . . . . . . . . 35
3.3 Spin relaxation and dephasing times . . . . . . . . . . . . . . . . . . 38
3.4 Two-level system interacting with static and rf magnetic field . . . . 43
3.5 RF field in the rotating frame . . . . . . . . . . . . . . . . . . . . . . 44
3.6 Relaxation of the nuclear magnetisation in strong and weak rf fields . 50

4.1 Bath cryostat system and insert . . . . . . . . . . . . . . . . . . . . . 55
4.2 Schematic of optical pump-probe setup . . . . . . . . . . . . . . . . . 57
4.3 Circuit diagram of the NMR setup . . . . . . . . . . . . . . . . . . . 59
4.4 Schematic of the coil-sample configuration . . . . . . . . . . . . . . . 60
4.5 Reflection and transmission spectra of the matched NMR circuit . . . 62
4.6 Optically detected NMR . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.7 Overhauser shift induced under circularly polarised optical excitation 64
4.8 TEM image and PL spectrum of sample A . . . . . . . . . . . . . . . 66
4.9 PIN diode sample structure . . . . . . . . . . . . . . . . . . . . . . . 67
4.10 Band diagram and I-V curve of PIN diode sample . . . . . . . . . . . 68

5.1 Quadrupolar shift of NMR transitions and full NMR spectrum . . . . 78
5.2 Compositional disorder in InGaAs alloy crystal structure . . . . . . . 79
5.3 Bias dependence of the nuclear spin depolarisation time . . . . . . . . 82
5.4 Pump and probe pulse calibration . . . . . . . . . . . . . . . . . . . . 84
5.5 Experiment cycle and NMR setup for pulsed experiments . . . . . . . 86
5.6 Schematic of the inverse NMR technique . . . . . . . . . . . . . . . . 87
5.7 Inverse NMR spectra of 75As and 71Ga . . . . . . . . . . . . . . . . . 88
5.8 Sweep rate and range calibration for adiabatic preparation of 75As . . 90
5.9 Coherent Rabi oscillations of the 75As and 71Ga magnetisation . . . . 92
5.10 Schematic of the Hahn echo sequence . . . . . . . . . . . . . . . . . . 94
5.11 Hahn echo decay of 75As and 71Ga . . . . . . . . . . . . . . . . . . . . 95
5.12 Comparison of 75As Hahn echo decay in samples A and B . . . . . . . 96

6.1 Illustration of Carr-Purcell sequences . . . . . . . . . . . . . . . . . . 103

xiii



6.2 Schematic of combined echo sequences I . . . . . . . . . . . . . . . . 109
6.3 Schematic of combined echo sequences II . . . . . . . . . . . . . . . . 110
6.4 Multiple pulse angle calibration . . . . . . . . . . . . . . . . . . . . . 115
6.5 Multiple pulse phase calibration . . . . . . . . . . . . . . . . . . . . . 117
6.6 APCP and APCPMG decay curves for 75As and 71Ga . . . . . . . . . 118
6.7 Decay time of 75As and 71Ga under APCP sequence . . . . . . . . . . 119
6.8 Decay of 71Ga under APCP for fixed pulse spacing . . . . . . . . . . 123
6.9 Effect of offset errors under APCP and APCPMG . . . . . . . . . . . 127
6.10 Comparison of combined echo sequence performance . . . . . . . . . . 130
6.11 Decay curves of 75As and 71Ga under CP(MG)-MREV16 . . . . . . . 132
6.12 Decay time of 75As and 71Ga under CP(MG)-MREV16 . . . . . . . . 133
6.13 Spin locking influence on (CP-MREV16)6 . . . . . . . . . . . . . . . . 135
6.14 Effect of offset errors under CP(MG)-MREV16 . . . . . . . . . . . . . 137

7.1 Electron spin decoherence by nuclear spin flip-flops . . . . . . . . . . 142
7.2 Diagram of the frequency comb rf circuit . . . . . . . . . . . . . . . . 144
7.3 Experiment cycle for frequency comb measurements . . . . . . . . . . 146
7.4 Schematic of frequency combs used in experiments . . . . . . . . . . . 147
7.5 Nuclear spin relaxation time in sample A . . . . . . . . . . . . . . . . 149
7.6 Comparison of rf excitation profiles . . . . . . . . . . . . . . . . . . . 151
7.7 Frequency comb NMR technique . . . . . . . . . . . . . . . . . . . . . 153
7.8 Frequency comb NMR decay curves for 75As and 71Ga . . . . . . . . . 154
7.9 Frequency comb NMR measurements on 75As and 71Ga . . . . . . . . 155
7.10 Fitted 75As and 71Ga homogeneous lineshape . . . . . . . . . . . . . . 159
7.11 Modelling of 71Ga homogeneous lineshape . . . . . . . . . . . . . . . 160
7.12 Frequency comb NMR on 71Ga at different rf powers . . . . . . . . . 161
7.13 Fast depolarisation of 71Ga at different frequency comb rf powers . . 163
7.14 Frequency comb NMR on 75As under heating of 71Ga . . . . . . . . . 165
7.15 Calibration of the 71Ga ST frequency comb width . . . . . . . . . . . 168
7.16 Frequency comb sensitivity to 71Ga heating . . . . . . . . . . . . . . . 170
7.17 Derivation of 75As depolarisation time . . . . . . . . . . . . . . . . . 171
7.18 71Ga and 75As comb amplitude dependent 75As depolarisation . . . . 172
7.19 Quality of the correlation time model . . . . . . . . . . . . . . . . . . 174

9.1 Dipolar coupling in spherical coordinates . . . . . . . . . . . . . . . . 183
9.2 Time-dependent rf Hamiltonian for the APCP sequence . . . . . . . . 185

xiv



χαλεπα τα καλα
Plato - The Republic (Book IV, 435c)

xv



xvi



1 Introduction

The work discussed in this thesis concerns the study and control of the nuclear spin

bath dynamics in individual self-assembled InGaAs quantum dots. What might at

first glance appear to be a rather specialised and niche topic is in fact part of a

concerted effort by research groups in solid state and atomic physics worldwide to

find a physical system suitable for building a quantum computer.

In the early 1980s, Y. Manin[1, 2] and R. Feynman[3] noted independently that

the simulation of quantum physics with classical computers is an exponentially com-

plex problem and can quickly become infeasible irrespective of the processing power

available. The solution Feynman proposed to overcome this limitation was to use a

quantum computer instead, i.e. a computer relying on quantum mechanical effects

for information processing[3, 4]. Such a system would also be well-suited to solve

several other complex problems which exceed the capabilities of classical computers

such as the factorisation of large numbers (Shor’s algorithm, [5]) and accelerated

database search (Grover’s algorithm, [6]).

The basic building blocks of a quantum computer are called qubits in analogy

to the digital bits in classical computing. Potential qubit candidates have been

identified in many systems including trapped ions[7, 8], superconducting circuits[9],

dopants in silicon[10–12] and diamond[13], as well as electrostatically defined and

self-assembled quantum dots[14–16]. This list is by no means exhaustive and many

other materials are also under consideration.

A comprehensive discussion of specific requirements for a practical quantum com-
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puter was first given by D. DiVincenzo in 2000[17]. A more recent review of quantum

computers by T. Ladd et al. states 3(+1) general criteria for a fault-tolerant quan-

tum computer[18]:

(i) The addition of further qubits to the system does not increase the demands on

resources exponentially (scalability). These “resources” can include e.g. fabrication

aspects or the technology required for qubit control (electronic gates, lasers, low-

temperature environment,...).

(ii) All possible quantum computer operations can be realised using a finite set of

quantum gates (universal logic).

(iii) The state of the quantum system can be initialised and measured efficiently

(correctability).

(iv) The qubit coherence times are long enough to achieve (i)-(iii).

Self-assembled quantum dots in III-V semiconductors are of particular interest

for quantum information applications due to their strong interaction with light.

Their large optical dipole moment allows ultrafast coherent optical control of charge

spins[19, 20] and makes the system ideally suited for spin-photon interfacing. This

opens additional pathways for scalability as quantum communication via photons

acting as “flying” qubits can be used to connect spatially distant qubit ensembles[17].

One of the most active research areas involving self-assembled quantum dots is the

development of optical circuits for all-optical quantum computing[21–23], where the

quantum dots can be used as efficient on-demand single photon sources[24, 25].

On the other hand, self-assembled quantum dots are facing two major challenges

in their suitability for quantum information processing. Firstly, their formation

in molecular beam epitaxy is a stochastic process resulting in a random spatial

distribution of dots with varying optical properties. Although progress has been

made in the deterministic site-controlled growth of quantum dots in recent years, the

optical characteristics of such samples are still noticeably inferior[26, 27]. The optical

transition energies can be tuned to a significant extent by electric and magnetic

2



fields, making entanglement between spins in distant quantum dots feasible[28].

However, despite these encouraging developments further progress will be required

to make spin qubits in self-assembled quantum dot scalable.

The second drawback which self-assembled quantum dots share with their elec-

trostatically defined counterparts is the presence of a large number (∼ 104 − 106)

of non-zero nuclear spins. The mutual electromagnetic interaction with the nuclear

spin bath severely limits the coherence time of a central electron or hole spin[29, 30].

Several ways have been explored to increase the central spin coherence. One intu-

itive approach is to abandon III-V semiconductors altogether and to chose a nuclear-

spin-free host material instead. Recent results in electrostatically defined quantum

dots in isotopically purified Si[31, 32] and Si/SiGe heterostructures[33] have shown

that electron spin coherence times can indeed be extended in this way. Other ap-

proaches have included the suppression of coupling to the bath by nuclear spin state

narrowing[34–36] and dynamic nuclear polarisation[37, 38].

In order to create a stable, predictable environment for the central spin, a full

understanding of the nuclear spin bath dynamics is needed. Recent progress with

optically detected nuclear magnetic resonance (ODNMR) techniques has made it

possible to probe the inhomogeneously broadened NMR spectra in InGaAs quantum

dots[39, 40], and nuclear spin Hahn echo experiments[41, 42] have provided a first

direct measurement of the spin bath coherence.

Here, we present our most recent advances in the control and study of nuclear

spin bath coherence in self-assembled InGaAs quantum dots using novel pulsed and

continuous wave NMR techniques. The work is structured as follows:

In chapter 2, we introduce self-assembled quantum dots and their optical prop-

erties. After a brief discussion of the epitaxial growth techniques used in the fabrica-

tion of quantum dot samples, we study the three-dimensional confinement potential

analytically and show how discrete bound energy states emerge for electrons and

holes in a quantum dot. A look at optical interband transitions and correction

3



terms to the energy states concludes this short review. The influence of electric and

magnetic fields on the system is treated in the second part of this chapter, where

we show that the optical transition energies can be altered significantly by external

fields.

In chapter 3, we study the quantum dot spin system in greater detail. A discus-

sion of the electron- and hole-nuclear hyperfine interaction is followed by a review of

the dominant relaxation and decoherence mechanisms for carrier and nuclear spins

in a quantum dot. We then look at how resonant interaction with a radio frequency

(rf) field allows the control and manipulation of a spin system in nuclear magnetic

resonance (NMR).

In chapter 4, we present the low temperature magneto-photoluminescence setup

used for the measurements discussed in this work. The implementation of optically

detected NMR is explored and further details of the two studied sample structures

are given.

In chapter 5, we measure the nuclear Hahn echo decay for 75As and 71Ga in

individual InGaAs quantum dots. The quenching of nuclear spin bath fluctuations

due to strain-induced quadrupolar interactions is studied experimentally in a gated

p-i-n diode sample which allows control over the charge population in the studied

dot. Hahn echo experiments confirm recent findings of extended nuclear spin phase

memory times in a charge-free quantum dot.

In chapter 6, we look at advanced pulsed NMR protocols aimed at further sup-

pression of the nuclear spin bath decoherence. Carr-Purcell pulse sequences are

used to refocus the spin bath dephasing due to interactions with a fluctuating envi-

ronment. We discuss the spin-locking origin of unexpectedly large increases in the

observed nuclear spin phase memory time and design a set of new combined Hahn

and solid echo sequences using average Hamiltonian theory. We show that these

new sequences allow noticeably increased control over the spin bath evolution and

discuss experimental limitations to the performance of the sequences.
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In chapter 7, we introduce the novel concept of frequency comb NMR which

allows us to weakly probe the dynamics of the spin bath without many of the

limitations associated with pulsed NMR. The homogeneous lineshape of 75As and

71Ga is probed and the few-second-long homonuclear spin flip-flop correlation times

of the 71Ga central and satellite NMR transitions are measured experimentally using

this technique.

In chapter 8, we give a brief summary of the findings presented in this work and

discuss possible future directions that could be explored based on our results.
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2 Self-Assembled Quantum Dots

The behaviour of a charge carrier strongly bound in a three-dimensional potential is

governed by quantum mechanics and often contradicts classical expectations. The

best-known example of such a system is an individual atom with its discrete electron

binding energies and optical transitions. However, similar quantised states and

transition energies can also be observed in larger systems. In recent decades, the

semiconductor community has identified various nanocrystal structures with such

properties which are collectively referred to as quantum dots or artificial atoms.

Since the first report on size-dependent absorption energies in CuCl nanocrys-

tals by Ekimov[43], quantum dots have been realised in systems including colloidal

crystals[44], two-dimensional electron gases with electrostatic confinement[45], thick-

ness fluctuations in a quantum well[46] and self-assembled nanoscale islands formed

with heteroepitaxial growth[47]. Depending on the design and compound materials,

a dot can confine electrons, holes or excitons (bound electron-hole pairs).

All the work presented in this thesis was done on self-assembled InGaAs quantum

dots embedded in a GaAs matrix. In this chapter, an overview of the basic prop-

erties of such a system is given. Section 2.1 discusses the growth of quantum dots

in molecular beam epitaxy (MBE). The discrete energy structure of the trapped

electrons and holes in a quantum dot is derived in section 2.2.1 and the optical

properties of the system are explored in 2.2.2. In the final section 2.3, the influence

of electric and magnetic fields on the energy spectrum is discussed.
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2.1 Growth of InGaAs Quantum Dots

The experimental work of this project was done on individual InGaAs quantum

dots grown on a GaAs substrate using molecular beam epitaxy (MBE). Epitaxial

growth of heterostructures can occur in three distinct modes depending on the sur-

face energies of substrate γS and film γF as well as the interface energy γSF[48]. If

γS > γF + γSF, the total surface energy is minimised when the deposited material

forms a uniform layer, covering the substrate. This is commonly referred to as the

Franck-van der Merve growth mode. In the opposite case, the Volmer-Weber mode,

γS < γF + γSF and instead of a uniform film small islands of the deposited material

form at the substrate surface. The third mode is a combination of the first two:

in many cases a slight mismatch in the lattice constants of substrate and overlayer

material allows for the formation of one or two epitaxial monolayers (ML) before

strain increases the interface energy to a point where nucleation is favourable. In

this way, the deposited material can form uniform nanoscale islands with defect-free

substrate interfaces.

(a) (b)

Figure 2.1: (a) The lattice mismatch between GaAs (blue) and InGaAs (red) causes
strain which leads to the formation of quantum dot islands after the ini-
tial deposition of 1− 2 monolayers of InGaAs. This mechanism is com-
monly known as the Stranski-Krastanov growth mode. (b) Transmis-
sion electron microscope (TEM) image of an MBE grown self-assembled
InGaAs/GaAs quantum dot. The lens-shaped dot is clearly contrasted
against the GaAs/AlGaAs short-period superlattice in which it is embed-
ded to prevent charge tunnelling (more details on the sample structure
will be given in chapter 4.4.1).
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This Stranski-Krastanov mode is used for the epitaxial growth of self-assembled

quantum dots. The lattice constant of the ternary InxGa1-xAs compound depends

on the indium concentration and can have values of up to a = 6.06 Å for pure InAs

compared to a = 5.65 Å for the GaAs substrate[49]. After an initial wetting layer

deposition of 1 − 2 ML, strain relaxation along the growth direction results in the

formation of stochastically distributed three-dimensional InGaAs islands across the

sample surface[50, 51] (see figure 2.1a). In principle these few-nanometre islands

already constitute quantum dots. However, for practical applications an additional

capping layer of GaAs is added to prevent non-radiative charge recombination via

surface states and to provide full three-dimensional confinement within the GaAs

host material. The size, shape, density and compound content of quantum dots can

be controlled via several growth parameters including temperatures, pressures and

flux rates.

In the samples used in this project the basic structure outlined above was mod-

ified by adding GaAs/AlGaAs short-period superlattices as charge tunnel barriers

above and below the dot layer (see figure 2.1b). This system was embedded in a

planar microcavity consisting of several GaAs/AlGaAs bilayers to enhance the light

extraction efficiency. A more detailed description of the sample structures will be

given in chapter 4.4.

A major obstacle for the use of self-assembled quantum dots in quantum informa-

tion applications is the lack of control over nucleation sites. The Stranski-Krastanov

process is fundamentally stochastic and does not lend itself easily to the growth of

ordered structures. Pre-patterned substrates[52, 53] are a promising route towards

scalable systems although due to defect-rich dot-substrate interfaces the optical

properties of quantum dots grown in this fashion are still inferior[26, 27]. Alter-

natively, site control can be achieved in conventionally grown samples with dot

registration techniques: using the position of a suitable quantum dot relative to a

set of registration markers, the fabrication of the desired structure can be centred
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around the dot, allowing e.g. for optimised coupling in photonic structures[54, 55].

For the experiments presented here, site control was not a necessary prerequisite

as we studied single dots that were not embedded in a lateral structure. However,

we relied on a set of micrometre sized Ti/Au surface markers for the purpose of

relocating individual quantum dots relative to the marker positions.

2.2 Discrete Energy States in a Quantum Dot

The conduction band (CB) and valence band (VB) offset between the InGaAs dot

and the surrounding GaAs matrix results in a three-dimensional confinement po-

tential inside the quantum dot. Here, we show how this gives rise to discrete bound

energy states for confined charges before we discuss inter- and intraband optical

transition rules. Finally, we look at the influence of fine structure corrections aris-

ing from exchange interaction.

2.2.1 Three-Dimensional Confinement

A quantitative theoretical description of the electronic structure inside a quantum

dot is difficult to obtain since the dot-matrix interface is diffuse. However, the

calculation of bound energy states in the presence of internal strain is not trivial

even if clear interfaces and symmetric dot shapes are assumed. Theoretical models

based on effective mass and eight-band k·p theory have been developed for various

dot geometries including lens-[56, 57], disc-[58] and pyramid-like[59, 60] shapes. Here

we will only discuss a basic model which describes the main features of the electronic

structure qualitatively.

The confining potential of a self-assembled quantum dot is strongly anisotropic.

The epitaxial growth technique results in flat islands with lateral dimensions ex-

ceeding the height by a factor of five to ten (see e.g. the TEM image in figure 2.1b).

Therefore, electron confinement is significantly stronger along the growth direction

10



E
≈
1

.5
2

e
V

G
a

A
s

E
g
a

p E ≈1.0eVInGaAsE
gap

E1,e

E1,hh

z

z x,y

se

pe

shh

phh

V(z) V(x,y)

ω0,e

ω0,hh

Figure 2.2: The strong confinement along the growth direction êz in a quantum dot
can be treated as a finite well problem, giving only one discrete bound
ground state each for electron and heavy hole. The weaker in-plane
confinement is modelled as a two-dimensional harmonic potential with
an atom-like shell structure in conduction and valence band.

êz than it is in the x-y plane and the vertical motion can be treated separately[56].

Assuming a finite square well, the time-independent Schrödinger equation is

(
− ~2

2m∗
∂2

∂z2
+ V (z)

)
Φj(z) = EjΦj(z) , (2.1)

where m∗ is the effective mass of the charge carrier and the potential V (z) is

zero inside the well and V0 otherwise. In the well, we find two sets of symmetric

(∝ cos(kjz)) and antisymmetric (∝ sin(kjz)) solutions for the wavefunction Φj(z)

with kj =
√

2m∗dotEj/~2. The energy of a confined electron in state j is given by

√
m∗bulk(V0 − Ej)

m∗dotEj
= tan

(
d

2

√
2m∗dotEj

~2
+ mod(j + 1, 2) · π

2

)
, (2.2)

where d denotes the dot height or well width, and odd j = 1, 3, . . . and even

j = 2, 4, . . . are associated with symmetric and antisymmetric wavefunctions, re-

spectively. This transcendental equation can only be solved numerically or graphi-
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cally for a given set of parameters. It should be noted that the lowest bound state

j = 1 in a quantum well is symmetric and always exists.

Using realistic values for d, V0 and m∗, we can derive approximate energy levels Ej

for charges in the conduction (CB) and valence band (VB) of an InGaAs quantum

dot. From the TEM image in figure 2.1b we derive a dot height of d ≈ 5 nm.

Previous continuous wave (cw) NMR experiments on quantum dots from one of

the samples studied in this project (sample A) have revealed an average indium

content of ∼ 20% in the dot volume overlapping with the electron wavefunction[39].

While the full stoichiometry of the quantum dot is unknown, we shall assume an

In0.2Ga0.8As dot in the following. The exact band gap in In0.2Ga0.8As is difficult to

determine as it also depends on temperature and internal strain composition[61, 62].

However, a rough estimate taking into account all three parameters gives a band gap

in the region of Egap
InGaAs ≈ 1.0 eV at liquid helium temperatures. This is markedly

smaller than the substrate band gap Egap
GaAs ≈ 1.52 eV[63]. The band alignment in

InGaAs/GaAs heterostructures is of type I; the potential energy within the quantum

dot is lowered in the CB and raised in the VB. Measurements of the relative CB

offset ratio have found ∆ECB/∆Egap ≈ 0.6 independent of the indium content[64].

Based on these findings, the CB energy offset is V0 ≈ 0.30 eV .

The electron effective mass in bulk GaAs m∗bulk,e = 0.067m0,e is well-established

from cyclotron resonance and Shubnikov-de Haas experiments[49]. For the effective

mass inside the In0.2Ga0.8As dot we use a bulk value m∗dot,e = 0.054m0,e, neglecting

small corrections arising from the confinement[65]. With these parameters we obtain

a single bound solution for the ground state j = 1 at E1,e ≈ 110 meV above the CB

edge inside the dot (see figure 2.2).

The treatment of the bound energy states for holes (unoccupied electron states)

in the VB is more complex as the underlying band structure must be considered.

The CB is formed of s-shell Bloch functions (L = 0) and is only spin degenerate

(Sz = ±1
2
). By contrast, the VB is formed by hybridised p-shell electrons with
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orbital angular momentum L = 1. Therefore, the total angular momentum is given

by Jh = L + S, resulting in three distinct hole sub-bands: heavy hole (hh, Jhh =

3
2
, Jhh,z = ±3

2
), light hole (lh, Jlh = 3

2
, Jlh,z = ±1

2
) and split-off band (s-o, Jso =

1
2
, Jso,z = ±1

2
). The s-o band can be neglected in our discussion as it is separated

from the hh and lh bands by a spin-orbit splitting of ∆so ≈ 350 meV[66].

For heavy and light holes, we can assume a confinement energy of V0 ≈ 0.20 eV .

The effective masses in bulk GaAs are m∗bulk,hh = 0.51m0,e and m∗bulk,lh = 0.082m0,e

and linear interpolation gives m∗dot,hh = 0.49m0,e and m∗dot,lh = 0.071m0,e for the

In0.2Ga0.8As alloy[67]. From the resulting ground state energy levels E1,hh ≈ 25 meV

and E1,lh ≈ 80 meV determined with equation (2.2), we can already conclude that

the lowest VB energy state inside the dot will have hh character. This has been

confirmed experimentally[68] and is in notable contrast to bulk (In)GaAs where the

hh and lh band maxima are degenerate at the Γ point[67].

So far we have not considered the motion in the x-y plane. A good description

of the in-plane confinement is given by the rotationally symmetric two-dimensional

parabolic potential V (x, y) = 1
2
m∗ω2

0(x2 + y2)[56, 69] with solutions

Ek,l = ~ω0(k + l + 1) , (2.3)

where k, l = 0, 1, 2 . . . and ω0 is a constant level spacing. By introducing the quan-

tum number n = k+ l and treating the z confinement as a fixed energy offset, we can

describe the quantum dot energy levels as a two-dimensional shell structure with

(2n+1)-degenerate levels s, p, d . . . for n = 0, 1, 2 . . . in analogy to the subshell

labels of an atom. Experiments have shown that this simple model is surprisingly

accurate for the lower energy levels in both CB and VB as long as electron-electron

interactions can be neglected, and typical intershell spacings of ω0,e = 15− 60 meV

and ω0,hh = 10− 40 meV have been reported by several groups[56, 70–72].
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2.2.2 Excitons and Optical Transitions

GaAs and the ternary InGaAs compound are both direct bandgap semiconductors as

their CB energy minimum and VB energy maximum are both located at the Γ point.

This makes the quantum dot system well suited for optical experiments because

the crystal momentum is trivially conserved under radiative interband transitions

without the need for additional phonon absorption or emission. In both materials

the bandgap is sufficiently large to ensure a negligible thermal population of the CB

at low temperatures. Under optical excitation at ~ω ≥ Egap (+E1,e + E1,hh) single

VB electrons in the bulk (dot) can be promoted into the CB by absorbing a photon,

leaving behind a hole in the VB. Analogously, an electron in the CB can recombine

with a VB hole emitting a photon.

The Coulomb interaction between the oppositely charged and spatially separated

electron and hole can lead to the formation of a bound quasi-particle called an exci-

ton. Although the localisation of charge carriers inside a quantum dot is dominated

by the confinement potential and not by the Coulomb interaction, this term has

also been adopted in the quantum dot literature and will be used here to refer to

a confined electron-hole pair. However, the confinement in the quantum dot does

also increase the Coulomb interaction and lowers the optical transition energy by an

excitonic binding energy EB ≈ 10 − 20 meV depending on the dot size[69, 73]. By

comparison, excitons in bulk GaAs possess a considerably smaller binding energy of

Ebulk
B = 4.2 meV[74].

Not every excitonic state inside a quantum dot can be created optically. A sin-

gle photon carries a net angular momentum of Jγ,z = ±1 and has intrinsic parity

πγ = −1. In the previous section, we briefly mentioned that the envelope wavefunc-

tions of bound states in a square well have alternating symmetry. This is likewise the

case for the solutions of the two-dimensional harmonic oscillator. We also saw that

the Bloch functions of CB and VB have opposite parity. Therefore only interband

transitions between states with the same symmetry are dipole-allowed (e.g. sh ↔ se,

14



ph ↔ pe,...). For intraband transitions, the Bloch functions of both states are iden-

tical and only excitation and relaxation between states with ∆L = ±1 is allowed

(e.g. se ↔ pe)[75]. However, in real InGaAs quantum dots these selection rules can

be weakened by an asymmetric dot geometry and parity-forbidden transitions are

often observed[76].
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Figure 2.3: Positive (left, X+) and negative trions (right, X-) have two possible spin
configurations which are both optically accessible. For the neutral ex-
citon (centre), only the two bright states X0

b can be created whereas
formation of the dark X0

d states is optically forbidden.

In addition to conservation of parity we have to consider the angular momentum:

in principle, a neutral ground state exciton (X0) consisting of a single electron-hole

pair can have four different spin configurations. However, since the photon carries

unity angular momentum, only two of these states, |↑◦↓•〉 with Jex = +1 and |↓◦↑•〉

with Jex = −1 are optically active (here ↑◦ and ↑• denote the hole and electron spin).

Accordingly, these states are called bright whereas the two states with parallel spin

alignment |↑◦↑•〉 , |↓◦↓•〉 (Jex = ±2) are referred to as dark excitons.

The excitonic binding energies and selection rules discussed in this section strongly

depend on the population of the quantum dot. For example, a singly charged exciton

or trion can be formed when the dot already contains a charge prior to the optical

generation of an electron-hole pair. Such a resident charge can be introduced in

a controlled fashion by embedding the dot layer in a diode structure[71, 77] or by

doping the sample[78].
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As illustrated in figure 2.3, the single positive (|↓◦↑◦↓•〉, |↑◦↓◦↑•〉) and negative trion

states (|↓◦↑•↓•〉, |↑◦↓•↑•〉) can all be formed optically. Due to different Coulomb interaction

strengths, X- transition energies are red shifted by 3 − 8 meV compared to X0,

whereas X+ transitions are generally blue shifted[71, 79, 80]. While “forbidden”

excitation paths also exist for trions, these cannot be distinguished in the absence

of a magnetic field since the initial and final spin states are degenerate.

However, forbidden trion transitions have been observed optically in magnetic

fields[81]. Similarly, dark neutral excitons can be observed at low optical excitation

powers[82, 83]. In both cases, mixing of heavy and light hole states due to reduced

dot symmetry or a tilted dot quantisation axis can lead to a finite coupling strength

for the forbidden ∆J = ±2 transitions[84, 85].

2.2.3 Exchange Interactions and Fine Structure

Although we have introduced the electron and hole spin in the discussion above, we

have neglected the energy corrections associated with spin exchange interaction so

far. We have seen that the attractive Coulomb interaction between electron and hole

lowers the X0 transition energy by up to 20 meV and that the addition of a second

electron (hole) decreases (increases) the binding energy by a few meV. Crucially,

this interaction does not depend on the charge spin configuration and the initial

and final states of the excitonic transitions shown in figure 2.3 are fully degenerate

if the Pauli exclusion principle is not taken into account.

In this section we will look at the effect of spin exchange on the energy spectrum.

For a neutral exciton with electron spin Se and hole spin Jh, the spin-spin coupling

can be described as[86, 87]

Hexch = azJh,zSe,z +
∑
i=x,y,z

biJ
3
h,iSe,i , (2.4)

where ai, bi are the spin-spin coupling constants. The exchange Hamiltonian can also
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be expressed in the basis of bright (|+1〉, |−1〉) and dark exciton states (|+2〉, |−2〉).

This basis is particularly insightful as it contains the exchange coupling terms be-

tween the “pure” ∆j = ±1,±2 transitions in an explicit form[88]:

Hexch =
1

2



δ0 δb 0 0

δb δ0 0 0

0 0 −δ0 δd

0 0 δd −δ0


. (2.5)

Here, δ0 = 1.5(az + 2.25bz) is the splitting between bright and dark excitons with

typical values δ0 ≈ 100− 400 µeV[83, 88] depending on the dot size. The two dark

exciton states are split by δd = 0.75(bx + by) . 50 meV, which is generally too small

μ

μ

μ

Figure 2.4: Spin-independent Coulomb interaction between electron and hole re-
duces the transition energy of a neutral exciton by up to 20meV (blue).
The spin degeneracy between bright and dark states is lifted by isotropic
exchange interactions (δ0 and δd, green). The bright exciton transitions
are circularly polarised (σ+/σ−), whereas the dark exciton transitions
are optically forbidden. A further anisotropic exchange term results in
a fine structure splitting δb between the two bright exciton states (red).
Due to the changed spin eigenstates, the fine structure split exciton tran-
sitions are linearly polarised (πy/πx).
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to be resolved in photoluminescence spectroscopy[83]. Both δ0 and δd are present in

every quantum dot and can be summarised as the isotropic electron-hole exchange

splitting, indicated in green in figure 2.4.

In addition, anisotropic exchange interaction (red in figure 2.4) can split the

two degenerate bright states by δb = 0.75(bx − by) if the dot does not possess

full rotational symmetry in the x-y plane and bx 6= by. This fine structure split-

ting (FSS) depends strongly on the individual dot and is usually within a range

δb ≈ 0− 100 µeV[83, 88]. Based on these literature values and our own experimen-

tal findings (see section 2.3.2) we can therefore also conclude that |bx|, |by| . 70 µeV.

The anisotropic exchange also affects the optical transition rules: as it mixes the

bright states, the total angular momentum Jex = ±1 is no longer a good quantum

number. Therefore the two fine structure split states cannot be addressed selectively

with circularly polarised light. Instead, linear polarisation is observed for the two

bright exciton transitions in the absence of a magnetic field[88].

By contrast, negative and positive trions show no FSS. In both cases the initial

state is formed by a single trapped charge which naturally is not affected by ex-

change interaction. The final state is formed by a hole (electron) interacting with

an electron pair (hole pair) in the spin-singlet state and in accordance with the

Kramers degeneracy theorem for fermions has no exchange energy either[89, 90].

Hence the presence of FSS is a useful indicator for the identification of an unknown

optical transition.

2.3 Exciton States in Electric and Magnetic Fields

The excitonic transitions introduced in the previous sections are sensitive to both

electric and magnetic fields. An external electric field can couple to the dipole mo-

ment of the exciton and lead to a linear and quadratic Stark shift of the transition

energies. Magnetic fields affect the excitonic spectrum in two ways: the diamag-
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netism of the exciton gives rise to a quadratic shift that allows conclusions on the

lateral size of the quantum dot. In addition, the Zeeman interaction lifts level de-

generacies and influences the selection rules for optical transitions. Depending on

the alignment of optical axis and magnetic field, the “pure” bright and dark states

can either be fully restored or fully mixed.

2.3.1 Electric Fields

The electron and hole of a neutral exciton X0 are not only energetically but also

spatially separated. While the hole wave function is located towards the indium-rich

apex of the dot, the electron is localised in the base region[91]. This separation of

the two charge carriers within the dot leads to a finite permanent electric dipole

moment pd,0 = e · r for the exciton. Here, e is the elementary charge and r is the

displacement vector for the hole wavefunction relative to the centre of the electron

wavefunction. In an external electric field F the two wavefunctions get shifted and

an additional dipole moment is induced. The magnitude of this field-induced term

depends on the polarisability α of the exciton.

pd = e · r + α · F . (2.6)

Coupling of the dipole moment pd to the applied electric field leads to a shift of the

excitonic transition energy which has terms linear and quadratic in F . This is the

first and second order Stark effect [92]. If we denote the transition energy at zero

field as E0 we can write

∆EStark = E0 − pd · F = E0 − pd,0 · F − α · F 2 (2.7)

It should be noted at this point that all excitonic states possess an intrinsic dipole

moment. Observation of the Stark effect is therefore not limited to X0.

Because of the strong confinement in a quantum dot even shifts exceeding the
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Coulomb binding energy will not ionise the exciton. This specific behaviour is

referred to as the quantum confined Stark effect (QCSE)[93]. Further distinction is

made between the DC Stark effect typically observed in gated structures and the

AC Stark effect which can have much larger field amplitudes and is often induced

by applying high-power optical excitation[94].

The intrinsic dipole of an exciton confined in a single quantum dot is small com-

pared to the induced dipole and the Stark shift observed in embedded diode struc-

tures is typically dominated by the quadratic component. However, strong linear

Stark shifts have been observed in coupled vertically stacked quantum dots where

electron and hole can be located in separate dots[95].
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Figure 2.5: Bias-dependent photoluminescence (PL) map of a quantum dot in one
of the samples used in this project (sample B) at B0,z = 8 T and low
optical excitation power. The charge population of the dot is controlled
by the applied electric field and X+, X0 and X- can be observed within
distinct voltage ranges. Al0.75Ga0.25As barriers on either side of the dot
layer suppress electron and hole tunnelling and permit tuning of the PL
emission energy over a range of up to 25 meV (see chapter 4.4.2 and [96]
for a description of the sample structure).

The DC quantum confined Stark effect is present in all electrically gated quantum

dot structures and has found widespread application as a tool for tuning optical

20



transitions into resonance e.g. with a cavity[97, 98], a photon from another quantum

dot for interference[99] and entanglement experiments[28] or a laser for resonant

excitation[100]. The tuning range of the Stark shift in a quantum dot mainly depends

on the design of the diode structure and is limited by charge tunnelling at large

biases. By placing the dot layer between two large bandgap barriers, Stark shifts of

up to 25 meV have been achieved[96, 101].

Figure 2.5 shows a bias dependent photoluminescence (PL) map for a dot in such

a “giant Stark shift” sample which was used in the present work (sample B). The

electric field values stated were calculated from the bias voltage using F = −Vbi−Vbias
d

where Vbi = 1.8 V is the built-in bias of the diode and d = 140 nm is the thickness of

the intrinsic layer. From fitting of the neutral exciton transition with equation (2.7),

we obtained pd,0 = −8.1 µeV kV−1 cm and α = −0.010 µeV kV−2 cm2 for the

intrinsic dipole and polarisability, in good agreement with previous values reported

for this structure[96]. A more detailed description of the sample will be given in

chapter 4.4.2.

2.3.2 Magnetic Fields

In the presence of an external magnetic field B0, level splittings between otherwise

degenerate excitonic states appear as the constituent electron and hole spins couple

to B0 via the Zeeman interaction. In addition, the field induces a diamagnetic

response in the form of a quadratic transition energy shift.

Two types of magnetic field configurations are of particular interest in the study

of quantum dots. The Faraday geometry describes a system in which the optical

excitation axis and quantum dot growth axis are aligned parallel to the external field

vector B0 ‖ êz. By contrast, a configuration where the optical axis is perpendicular

to the magnetic field B0⊥êz is referred to as a Voigt geometry.

The orientation of B0 has a strong influence on the observed Zeeman splitting

of the excitonic states and affects the optical selection rules as we will see for the
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example of X0. Here, the general Zeeman Hamiltonian describing the interaction

between a magnetic field B0 and the electron (Se) and hole spin (Jh) is given by

HZ = µB(BT
0 · ge · Se +BT

0 · gh · Jh) , (2.8)

where ge/h denotes the electron and hole g factor tensors. Their principal axes coin-

cide with the main crystal axes[102] and we choose the laboratory frame accordingly

without loss of generality. We find that in Faraday geometry (B0 = B0,zêz) the pure

exciton states |±1〉, |±2〉 are eigenstates of the Zeeman Hamiltonian. Taking into

account the FSS contributions discussed in section 2.2.3 and the quadratic diamag-

netic shift, we obtain the energy shifts listed in table 2.1a[88] and illustrated on the

left side of figure 2.6. We note that at low magnetic fields, the fine structure splitting

δb (δd) dominates and the energy levels remain mixed, i.e. the optical transitions

of the bright excitons remain linearly polarised as shown in figure 2.4. However,

circular polarisation of the optical transitions is restored at higher magnetic fields

when µB|(gh,z − ge,z)|B0,z � δb.

(a) Faraday geometry

∆Eb,F(Bz) = γ2B
2
z + δ0

2
± 1

2

√
δ2

b + µ2
B(gh,z − ge,z)2B2

z

∆Ed,F(Bz) = γ2B
2
z − δ0

2
± 1

2

√
δ2

d + µ2
B(gh,z + ge,z)2B2

z

(b) Voigt geometry

∆Eb,V(Bx) = γ2B
2
x + 1

4

(
±(δb + δd) +

√
(2δ0 ± δb ∓ δd)2 + 4µ2

B(gh,x ∓ ge,x)2B2
x

)
∆Ed,V(Bx) = γ2B

2
x + 1

4

(
±(δb + δd)−

√
(2δ0 ± δb ∓ δd)2 + 4µ2

B(gh,x ∓ ge,x)2B2
x

)
Table 2.1: Energy shifts ∆E for a neutral exciton in an external magnetic field

(after [88]). The first term describes the diamagnetic shift while the
subsequent terms summarise the exchange and Zeeman interactions that
lift the spin degeneracy of the excitonic transitions. In Voigt geometry,
B0||êx is assumed. Analogous expressions for B0||êy are given in [88].

Application of an in-plane field B0 = B0,xêx mixes the bright and dark exciton

states strongly, giving the dark states non-zero oscillator strength. Therefore, four

optically active and linearly polarised transitions are observed in Voigt geometry.
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Here, the energy splittings scale with the in-plane g factors ge/h,x. A recent compre-

hensive study by Schwan et al. has shown the electron g tensor in a quantum dot to

be approximately isotropic[102]. By contrast, the in-plane hole g factor is typically

an order of magnitude smaller than gh,z[102, 103]. This anisotropy arises from the

splitting of heavy and light hole band in the three-dimensional confinement of the

quantum dot (see section 2.2.1) and is influenced by the dot geometry and strain

composition[104].

B=0Faraday Voigt

σ
+

π
y

π
x

π
y

π
x

π
x

π
y

σ
-

EE

BxBz

|

|

|

|

Figure 2.6: Scheme of the B-field dependent splitting of the neutral exciton states.
In Faraday geometry the circularly polarised eigenstates along êz are
restored at large magnetic fields. In Voigt geometry the bright and dark
exciton states are mixed and the optical transitions are linearly polarised.

The full Hamiltonian describing the interaction of the exciton with a magnetic

field also contains two terms proportional to B2
0 , which are responsible for the

excitonic diamagnetic shift[105]. The first term arises from the altered canonical

momentum p→ p+ q
c
A (with momentum operator p and vector potential A). As

Walck et al. showed[106], it is possible to remove the second quadratic contribution

(a second-order Zeeman term) using a gauge transformation and to link the diamag-
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netic coefficient γ2 directly to the lateral dimensions of the electron and hole wave

function. In a quantum dot this gives[107]

γ2 =
e2

8

[
〈r2

e〉
m∗e

+
〈r2

h〉
m∗h

]
, (2.9)

where m∗e and m∗h denote the effective electron and hole mass, respectively, and

〈r2
e/h〉 is the mean lateral extension of the wavefunction.
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Figure 2.7: B-field dependent measurement in Faraday geometry at low optical ex-
citation power (P ≈ 0.001PSat,X0). (a) PL spectra and fitted splittings
for dark (blue) and bright (red) X0 transitions. The bright-dark exciton
splitting is δ0 = 391± 4 µeV. (b) and (c) show the energy splittings and
diamagnetic shifts of the bright and dark excitons separately for clarity.
A fine structure splitting of δb = 30 ± 4 µeV is measured whereas δd is
not resolved. The electron and hole g factors are ge,z = −0.41±0.03 and
gh,z = 1.79±0.03. These results agree well with literature values, as does
the observed diamagnetic shift of γ2 = 8.0± 0.2 µeV/T2[83, 102, 103].

An example of the Faraday magnetic field dependence of the bright and dark

X0 transition energies in sample A (see chapter 4.4) is shown in figure 2.7. The left

panel shows the low-power PL spectra of all four transitions. The bright and dark ex-
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citon splittings and diamagnetic shifts are extracted separately for clarity and shown

in b and c. Using the expressions for ∆Eb,F and ∆Ed,F given in table 2.1a for fitting,

we get a diamagnetic coefficient of γ2 = 8.0±0.2 µeV/T2, which is in good agreement

with values reported for comparable samples[83]. Under the assumption of equal lat-

eral dimensions for the electron and hole wavefunctions, we obtain
√
〈r2

e/h〉 ≈ 3.7 nm.

This agrees well with results from similar structures[108]. The electron and hole g

factors along the growth axis can be extracted from the different Zeeman splittings

of the bright and dark states. We obtain ge,z = −0.41± 0.03 and gh,z = 1.79± 0.03,

again in good agreement with typical values from literature[83, 102, 103].

2.4 Summary

Epitaxially grown self-assembled quantum dots provide a three-dimensional confine-

ment potential for electrons and holes. The strong confinement results in discrete

energy levels inside the dot in the valence and conduction band similar to the elec-

tron shell structure found in atoms. Excitons can be formed in the quantum dot

under optical excitation and the charge state can be controlled passively by doping

or actively by gating the structure. The electric field in a diode sample also allows

tuning of the exciton transition energies via the quantum confined Stark effect. Us-

ing external magnetic fields B0, one can fully restore the pure optical transitions of

a neutral exciton which are generally mixed due to exchange interaction arising from

imperfections in the physical geometry of the quantum dot. At large B0, exciton

states can be addressed spin-selectively with circularly polarised light.
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3 The Quantum Dot Spin System

In the previous chapter we have seen that the optical properties of a quantum

dot make it possible to create electron-hole pairs spin-selectively. This has been

used to initialise individual electron and hole spins with high fidelity by ionising

a polarised exciton in a gated structure, making use of differences in the electron

and hole tunnelling times at a given bias[77, 109]. Alternative initialisation schemes

have employed the finite mixing of states to shelve an electron or hole spin in a

long-lived trion ground state that is not addressed by the state-selective optical

excitation[81, 110]. Based on these and similar techniques, coherent optical control

schemes for single charge spins have been implemented[19, 111], demonstrating the

potential of single quantum dots for quantum information technologies.

Isotope
Natural

abundance
Nuclear
spin I

Electron hyperfine
coupling constant
Ae (µeV / GHz)

Gyromagnetic
ratio γ∗ = γ/2π

(MHz/T)

69Ga 60.1% 3/2 42† / 64† 10.248
71Ga 39.9% 3/2 42† / 64† 13.021
75As 100% 3/2 46 / 70 7.315
113In 4.3% 9/2 56† / 85† 9.365
115In 95.7% 9/2 56† / 85† 9.386

Table 3.1: Properties of all stable nuclear isotopes in an InGaAs quantum dot. Hy-
perfine constants Ae are taken from [112], with † marking average values
for elements with two stable isotopes. All other parameters are adapted
from [113].

In a perfect qubit, the charge carrier spin would be completely isolated from its

environment and only interact with given neighbouring spins under controlled con-
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ditions. However, this picture is strongly idealised compared to a real self-assembled

InGaAs quantum dot where all constituent atoms carry a non-zero nuclear spin (see

table 3.1). In this chapter we discuss the general properties of the spin system in

a quantum dot. In section 3.1, we look at the various effects of the hyperfine in-

teraction between a confined electron or hole spin and the nuclear spin bath. In

section 3.2, we discuss the spin relaxation timescales T1 and T2 before studying the

relevant mechanisms for charge and nuclear spin relaxation in a quantum dot. Fi-

nally, the theoretical framework of nuclear magnetic resonance (NMR) is introduced

in section 3.3.

3.1 Hyperfine Interaction

Following the initial proposal for the use of confined charge carrier spins in quantum

dots as qubits[14], it was quickly realised that the electromagnetic interaction of the

carrier spin with an ensemble of ∼ 105 nuclear spins would be the dominant source of

spin qubit decoherence at low temperatures[29, 30]. On the other hand, the nuclear

spin system itself is strongly decoupled from the environment and typically possesses

extremely long spin relaxation times T1,n > 1 h[85, 114, 115].

The electromagnetic or hyperfine interaction between a central charge carrier

spin S and the nuclear spin bath In is commonly treated analytically in terms

of three separate contributions. The isotropic Fermi contact interaction arises from

the overlap of the charge carrier and nuclear Bloch wave functions. By contrast,

the dipolar coupling between nuclear and charge spins is an anisotropic long-range

interaction. A third mechanism is the coupling of the charge carrier orbital angu-

lar momentum Ln to the n-th nuclear spin In. As we will now show, all three of

these contributions to the hyperfine interaction can be derived directly from the

Pauli equation for a charged spin-1
2

particle in the presence of a nuclear magnetic
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dipole µn[116]

H =
1

2m

(
p+

q

c
An

)2

+ 2µBS · (∇n ×An) , An =∇n ×
µn
rn

, (3.1)

where rn denotes the location of the n-th nucleus relative to the position of the

charge carrier, An is the vector potential of the nuclear magnetic moment µn and

p is the momentum operator of the central particle. For a localised charge carrier

interacting with the ∼ 104 − 105 nuclei of a quantum dot, the interaction terms in

equation (3.1) can be expressed as[29, 117]

Hhf =
v0

2

16π

3
µBγ

∑
n

|u(rn)|2|Ψ(rn)|2S · In

+ 2µBγ

(
3(In · rn)(S · rn)

r5
n

− S · In
r3
n

)
+ 2µBγ

Ln · In
r3
n

.

(3.2)

Here, the first term describes the contact interaction with unit cell volume v0, nuclear

gyromagnetic ratio γ (assuming only one isotope for now), charge carrier Bloch

function u(rn) at the n-th nucleus and envelope wave function Ψ(rn) at the n-th

lattice site. The second term accounts for the dipolar hyperfine interaction and the

final term describes the spin-orbit coupling with Ln = rn × p.

From equation (3.2) it is clear that the relative coupling strengths of electron

and hole spins to the nuclear spin bath will differ considerably. The electron Bloch

function in the CB has s-symmetry. Hence, no spin-orbit coupling occurs and the hy-

perfine interaction strength is determined by the isotropic Fermi contact term[118].

By contrast, the p-symmetry of the VB results in a vanishing heavy hole Bloch func-

tion at the lattice sites. This initially led to the assumption that the hole hyperfine

interaction would be Ising-like and potentially allow for drastically increased de-

phasing times compared to the hyperfine induced electron spin dephasing[117, 119].

However, recent experiments have revealed a considerable d-orbital contribution to
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the heavy hole Bloch function which results in a non-vanishing transverse term for

the hole-nuclear spin coupling[120].

Because of the strong Fermi contact interaction, the long-range dipolar contri-

bution can be neglected in the description of electron hyperfine coupling. One can

define an isotope-specific electron hyperfine constant Ae = 16π
3
µBγ|u(0)|2 which is

independent of rn as the Bloch amplitude is maximum at all lattice sites in the

crystal[118]. We are now taking into account j different isotopes with Nj nuclear

spins, and obtain[112, 121]

He
hf =

v0

2

∑
j

Ae
j

Nj∑
n

|Ψ(rj)|2
(
2In,zSe,z +

[
I+
n S
−
e + I−n S

+
e

])
. (3.3)

Experimental values for the hyperfine constants of all stable isotopes present in

InGaAs quantum dots are listed in table 3.1. The first term (∝ 2In,zSe,z) causes a

shift in the electron and nuclear spin transition energies whereas the second term

(∝ [I+
n S
−
e + I−n S

+
e ]) is responsible for the flip-flops between two spins Se and In.

As discussed above, the Fermi contact term in equation (3.2) vanishes for the

hole hyperfine interaction. The spin-orbit term can be incorporated into the dipolar

coupling, and in analogy to Ae we can define a heavy hole hyperfine constant

Ah =
16

5
µBγ

〈
1

r3
n

〉
u.c.

, (3.4)

where 〈. . .〉u.c. is the Bloch amplitude expectation value over one unit cell[117, 119].

This definition of Ah implies another approximation as it neglects long-range interac-

tions beyond the unit cell which give only minor corrections. Experimentally, values

of Ah ≈ 0.1 · Ae have been reported[122–124]. For a pure heavy hole, theoretical

analysis predicts an Ising-like hyperfine interaction[119]

Hhh
hf = v0

∑
j

Ah
j

Nj∑
n

|Ψ(rn)|2 In,zSh,z, (3.5)
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with hole pseudo-spin Sh = ±1/2. In this case, the hole hyperfine coupling could

be suppressed effectively by applying an in-plane magnetic field[117, 125] or by nar-

rowing the nuclear spin state distribution[126]. Initial theoretical and experimental

work attributed non-vanishing flip-flop terms in the hole hyperfine Hamiltonian to

mixing of heavy and light hole states[117, 122]. This led to the proposition of an

altered heavy hole hyperfine Hamiltonian[119]

Hh
hf = v0

2

∑
j

Ah
j√

1+|βVB|2
∑Nj

n |Ψ(rn)|2
(

2In,zSh,z + 2|βVB|√
3

[
I+
n S
−
h + I−n S

+
h

])
, (3.6)

with the valence band mixing parameter βVB. More recent experiments have revealed

that this picture is still incomplete: NMR data shows that the sign of the hole

hyperfine constant depends on the lattice sites, with Ah > 0 for anionic sites and

Ah < 0 for cations. This feature cannot be explained by pure p-shell VB mixing.

Instead, a more extensive model including d-orbital contributions to the VB can

account for the sign changes[120]. These contributions reduce the Ising nature of

the hole hyperfine interaction further, setting an intrinsic limit to the extent to

which hole decoherence can be suppressed by preparing the nuclear spin bath.

3.1.1 Overhauser and Knight Fields

The hyperfine interaction manifests itself experimentally in the form of reciprocal

effective magnetic fields that act on the charge carrier (Overhauser field, [127])

and on the nuclear spins (Knight field, [128]). In the following discussion, we will

focus only on the effective fields arising from electron-nuclear interaction. Similar

expressions can be derived for the hole-nuclear interaction. However, since Ah ≈

0.1 · Ae the associated fields are considerably smaller and hence usually neglected.

In a mean field approach, the flip-flop term in equation (3.3) averages to zero

and the Overhauser field can be approximated as arising from a mean nuclear spin
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polarisation 〈Iz〉[112, 121]

Bhf =
2

µBge

∑
j

cjA
e
j 〈Ijz 〉 . (3.7)

Here, cj denotes the relative concentration of the j-th isotope in the quantum dot.

For a typical In0.2Ga0.8As dot with ge ≈ 0.4, the maximum Overhauser field induced

by a fully polarised nuclear spin bath would be ∼ 7.3 T, corresponding to a change

in the measured exciton Zeeman splitting Ehf = µBgeBhf ≈ 170 µeV.

In the next section, we will see how the nuclear spin bath can be polarised ef-

fectively. In thermal equilibrium, the bath polarisation ρ is negligibly small even

at liquid helium temperatures and external magnetic fields of several tesla. For the

In0.2Ga0.8As system at T = 4 K and B0,z = 8 T, we can estimate ρ < 0.1% corre-

sponding to an Overhauser field Bhf ≈ 5− 10 mT from the Boltzmann distribution

pm,j = exp

[
mI~γjB0,z

kBT

] / I∑
mI=−I

exp

[
mI~γjB0,z

kBT

]
, (3.8)

with Boltzmann constant kB and describing the population probabilities pm,j of the

mI = −I,−I+1, . . . I states for the j-th isotope. This weak equilibrium polarisation

can be understood when taking into account that the nuclear magneton is very small

(µn ≈ µB/2000), resulting in correspondingly small Zeeman splittings ∆EZ,n �

kBT [129]. However, the hyperfine interaction still leads to a fluctuating Overhauser

field with magnitude and direction described by a Gaussian distribution[29, 130]

f(Bhf) =
1

(2π)3/2σ3
hf

exp

(
−|Bhf |2

2σ2
hf

)
,

σ2
hf =

2

3µ2
Bg

2
e

∑
j c

2
j(A

e
j)

2Ij(Ij + 1)

N
,

(3.9)

where the standard deviation σhf is found to be on the order of 10− 30 mT for an

In0.2Ga0.8As dot with N ≈ 104 − 105 nuclear spins. Once again the index j denotes

the summation over all nuclear species present in the quantum dot. From equation
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(3.9) we see that the width of the distribution scales with 1/
√
N , indicating that

the fluctuations become smaller for larger systems such as electrostatically defined

quantum dots[131, 132] or dots in nanowires[133].

The corresponding Knight field which an individual nuclear spin in the quantum

dot is exposed to is generally weaker than the Overhauser field. Introducing a filling

factor fe ∈ [0, 1] for the electron occupation of the dot, we have[112]

BK,n =
fev0

γn
Ae
n |Ψ(rn)|2 〈Se

z〉 , (3.10)

for a nucleus n at relative position rn. We can roughly estimate the relative field

amplitudes as BK,k/Bhf ≈ (µBge)/(Nµngn). The magneton ratio µe/µn ≈ 2000

only partially compensates for the fact that the small probability of locating the

electron at a specific lattice site (∝ N−1) reduces the effective field acting on a given

nucleus n[112]. This is in agreement with experimental results: reported Knight

field values in InGaAs quantum dots are in the range of 1− 3 mT[134, 135].

3.1.2 Spin Flips and Dynamic Nuclear Polarisation

So far we have only analysed the effect of the diagonal or secular hyperfine interac-

tion term ∝ 2Ik,zSe,z in equation (3.3). However, the off-diagonal or spin-flip term

also plays a significant role in the interaction between the electron spin (and to a

lesser extent the hole spin) and the nuclear spin bath. As mentioned before, the

equilibrium nuclear spin polarisation at T = 4 K is very small (ρ < 0.1%) even at

large magnetic fields[129]. On the other hand, the nuclear spins in InGaAs are only

very weakly coupled to the lattice at low temperatures T . 10 K[136]. In quantum

dot systems nuclear spin relaxation times of several minutes and even hours have

been reported[85, 114, 115]. By comparison, electron spin relaxation times are found

to be on the order of tens of milliseconds[77].

The concept of dynamic nuclear polarisation (DNP) is based on an effective trans-
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fer of spin polarisation from the electron to the nuclear bath: first a non-equilibrium

electron spin polarisation is created optically[137, 138] or electrically[139, 140]. The

electron spin then transfers its polarisation to the nuclei via the flip-flop term of the

hyperfine interaction. If this two-step process is repeated at a sufficiently high rate

a considerable nuclear spin polarisation degree can be reached[127, 141, 142]. In

self-assembled quantum dots, DNP is commonly created by optical spin pumping.

In the following discussion we only look at electron-nuclear spin flips and neglect

the weaker coupling of the hole spin to the nuclear bath.

The established scheme for producing large nuclear polarisation in a quantum

dot is based on optical excitation with high powers and circular polarisation. Us-

ing this approach, polarisation degrees of up to ρ ≈ 65% were first observed in

GaAs quantum dots[121, 137]. Similar nuclear polarisation degrees have since been

achieved in InGaAs[138, 143–145] and InP dots[82, 146, 147] under both resonant

and non-resonant (wetting layer) optical excitation.

~ 40 neV/T

~ 40 neV/T

~ 20 eV/Tμ

Electron spin

Nuclear spin 1/2

Figure 3.1: Schematic energy level structure of a coupled electron-nuclear spin sys-
tem. For illustration purposes we assume that In = 1

2
. The nuclear

Zeeman splitting (red) is three orders of magnitude smaller than the
splitting of the electron spin states in a magnetic field (green).

In general, electron-nuclear spin-flips are suppressed in a magnetic field as the

nuclear Zeeman splitting ∆EZ,n is ∼ 103 times smaller than that of the electron[148]

(see figure 3.1). However, there are several ways of achieving significant nuclear

polarisation degrees despite this limitation. In quantum dots, two primary DNP
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Figure 3.2: Dependence of the Overhauser splitting ∆Ehf between the bright
X0 transitions on the non-resonant σ+ (circles) or σ− (squares) circularly
polarised optical excitation power P at different external magnetic fields
B0,z. The right axis shows ∆Ehf in terms of the spin bath polarisation
degree ρ. Black arrows indicate increasing/ decreasing excitation power.
Pronounced non-linearities are observed under σ− polarised excitation
for B0,z ≥ 1 T.
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paths have been identified: hyperfine spin-flips in combination with the radiative

recombination of dark neutral exciton states, and nuclear polarisation via an electron

spin-flip in the initial (final) state of a positive (negative) trion. We note that the

first process requires either off-resonant excitation followed by a hole spin-flip during

relaxation into the dot or a finite mixing of bright and dark states. Furthermore,

the bright and dark states are split by the exchange interaction δ0, requiring an

external magnetic field to tune them into resonance for a commensurable build-up

of DNP[149]. Under non-resonant excitation it appears that spin flips of delocalised

electrons are responsible for the observed nuclear polarisation as large Overhauser

fields are only measured at optical pumping powers beyond the saturation values of

X0 and 2X0[82, 83].

The efficiency of the spin-flip process is mainly limited by three factors: a large en-

ergy splitting of the electron spin states ∆Ee reduces the spin-flip rate as wff ∝ |Ae|2
∆E2

e

(the nuclear Zeeman splitting is negligible as it is several orders of magnitude smaller,

see figure 3.1)[121, 145, 150]. In addition, low electron spin pumping or extraction

efficiencies limit the degree of spin bath polarisation that can be achieved. These

two parameters depend strongly on the experimental technique used for spin pump-

ing, with the extraction rate generally limited by the radiative exciton lifetime[148].

By contrast, the splitting of the electron spin levels changes dynamically during the

DNP build-up. If an external magnetic field B0,z is applied, the Overhauser field

can be oriented either parallel or anti-parallel to B0,z, thus increasing or decreasing

∆Ee and resulting in a negative or positive feedback on the polarisation rate. This

in turn can lead to strong non-linearities in the optical power and magnetic field

dependence of the energy shift induced by the Overhauser field. Several groups have

reported on such non-linear behaviour characterised by bistabilities and hysteresis

effects occurring for anti-parallel orientation of Bhf and B0,z[143–145].

An example of such a bistability in X0 under non-resonant (∼ 850 nm) optical

excitation in sample A is shown in figure 3.2. The Overhauser shift is measured
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as a function of the excitation power at different external magnetic fields B0,z. For

B0,z ≥ 1 T, a pronounced hysteresis loop starts to appear under σ−-excitation

(red) as an efficient positive feedback facilitates the DNP build-up. This mechanism

remains efficient either until the external field is fully compensated (Bhf = −B0,z)

or an equilibrium with competing depolarisation processes is reached[121, 148].

However, even under optimal conditions the highest polarisation degrees reported

to date are limited to values of ρ ≈ 65%[121, 145, 147, 151], seemingly independent

of the type of quantum dot and chosen DNP technique. It has been concluded that,

in addition to limitations due to the finite radiative exciton lifetime and electron

Zeeman energy, a nuclear hyperfine dark state fundamentally limits the extent to

which the spin bath can be polarised[147, 152].

3.2 Spin Relaxation in a Quantum Dot

The spin of a single confined electron or hole is the centrepiece of the prevalent

scheme for the implementation of qubits in quantum dots[14]. The most impor-

tant requirement for quantum computation is the isolation of the qubit from its

environment[18]. It is intuitive that information encoded in a single electron or hole

spin can get lost if this spin is exposed to a fluctuating spin or charge environment.

Here we will first discuss how this “loss” of information can be quantified before

looking at the relevant spin-environment interactions in a quantum dot in more

detail.

The lifetime of a given spin state is characterised by two timescales. The longitudi-

nal or spin-lattice relaxation time T1 is a time constant characterising the likelihood

of a spin-flip along the quantisation axis (in our case the optical excitation axis êz).

For a spin ensemble or for the average over many single-spin measurements it de-

scribes the timescale over which the initial polarisation along êz decays back to its

equilibrium value (see figure 3.3a). The transverse relaxation or decoherence time
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Figure 3.3: Spin relaxation is characterised by the longitudinal and transverse decay
times. (a) The longitudinal relaxation time T1 describes the decay of the
spin polarisation along the quantisation axis êz. (b) The decoherence
time T2 is a measure of the transverse decay and does not change the
polarisation along êz.

T2 is illustrated in figure 3.3b. It describes how quickly a spin loses its phase coher-

ence, i.e. the timescale over which spin-environment interactions change the phase

of the spin precession about êz. In an ensemble measurement, we have to take into

account additional contributions: even if the spins are not interacting with each

other, variations in the local precession frequency of each spin can lead to a much

faster ensemble dephasing, described by the dephasing time T ∗2 [18, 153]. The phase

information is not necessarily irretrievably lost in T ∗2 processes and can be recov-

ered under certain circumstances. All three relaxation timescales are linked by the

expression

1

T2

=
1

2T1

+
1

T ∗2
, (3.11)

where we see that T2 ≤ 2T1. In the course of this work we will also use a fourth

decay time constant, the phase memory time TM. In nuclear magnetic resonance, we

probe and manipulate ensembles of up to ∼ 105 nuclear spins. In this context, we

refer to TM as the bath decoherence timescale for a spin ensemble decoupled from

its environment and T2 as the single spin decoherence time obtained when intrinsic

couplings of the ensemble are also suppressed.
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3.2.1 Electron and Hole Spin Relaxation and Decoherence

In this section, we will only review the mechanisms and timescales of charge spin

relaxation and decoherence in self-assembled quantum dots. The experimental meth-

ods for obtaining these quantities are similar to the techniques used for measuring

the corresponding nuclear spin lifetimes which will be discussed in greater detail in

chapters 5.3 and 5.5.

In bulk semiconductors and quantum wells, the electron spin relaxation time T1,e

is usually limited by various spin-orbit mediated relaxation mechanisms. Most of

these couplings are suppressed in a quantum dot due to the strong confinement of

the electron wavefunction[154]. Instead, the electron-nuclear hyperfine flip-flop dis-

cussed in the previous section dominates spin relaxation in the absence of magnetic

fields[131]. This mechanism can be quenched effectively by applying a small external

field B0,z as the nuclear Zeeman splitting is much smaller than that of the electron

(µn ≈ µB/2000).

At larger magnetic fields a phonon-assisted relaxation process becomes dominant.

This mechanism is not very efficient and experiments have found T1,e ≥ 20 ms at

B0,z ≤ 4 T in self-assembled quantum dots[77] as well as T1,e ≥ 1 s at B0,z ≤ 1 T

in electrostatically defined dots[155]. In both cases a proportionality T1,e ∝ ω4
0B
−5
0,z

was observed, with ω0 denoting the shell spacing introduced in chapter 2.2.1[156].

This behaviour can be understood when taking into account a finite spin-orbit cou-

pling between s- and p-shell states of opposite spin which depends on the level

spacing[154, 157]. The discrepancy between the findings in self-assembled and elec-

trostatically defined quantum dots can be explained to some extent by an additional

temperature dependence T1,e ∝ T−1[109, 158] as the results of [155] were obtained

at T ∼ 120 mK compared to T = 1 K in the experiments on self-assembled quantum

dots[77].

For holes in semiconductors, spin-orbit mixing of heavy and light hole bands

typically results in spin relaxation over sub-picosecond timescales[159]. Experiments

39



in self-assembled quantum dots have shown that this mechanism is quenched by the

strong confinement. Instead, T1,h is limited by the same phonon-mediated relaxation

process as T1,e with the longest reported values of up to T1,h = 1 ms at small

B0,z ≈ 20 mT (T = 4.2 K) being slightly shorter than the corresponding electron

values[110]. With increasing B0,z and T , a strong decrease of the relaxation time

down to T1,h . 10 µs is observed[109].

While longitudinal relaxation does ultimately restrict the decoherence time of

a charge carrier spin in a quantum dot (see equation (3.11)), T2,e/h is normally

limited by pure dephasing mechanisms unrelated to spin-orbit coupling[29, 160].

For electron spins, time- or ensemble-averaged dephasing times T ∗2,e in the range

of a few nanoseconds have been reported by several groups[161–165]. As we saw in

section 3.1.1, the nuclear spin bath polarisation of a quantum dot typically fluctuates

on a scale of σhf ∼ 10− 30 mT in excellent agreement with these timescales (T ∗2,e ≈
~

µBgeσhf
∼ 1 − 3 ns). Although the spin bath is frozen at T ∗2,e timescales, it still

induces a randomly oriented static Overhauser field about which the electron spin

precesses[29, 30, 166]. In this respect, the strong confinement of the quantum dot

is disadvantageous as the fluctuation amplitude scales as ∝ 1/
√
N (see equation

(3.9)). However, using electron Hahn echo techniques, this ensemble dephasing can

be refocused and T2,e values of ∼ 1 µs have been reported[164, 167, 168].

A second source of decoherence particular to self-assembled quantum dots has

been identified recently: the intrinsic strain in the system induces an electric field

gradient to which the nuclear quadrupole moment couples (see chapter 5, [39, 41,

169]). This causes a coherent evolution of the spin bath which in turn affects the

electron spin coherence on a timescale of ∼ 750 ns[170, 171]. Along with dephasing

arising from equally coherent nuclear Larmor precession, this can also be refocused

by a Hahn echo sequence. However, a Hahn echo can by its nature only refocus

dephasing processes occurring on sufficiently long timescales. Longer T2,e/h times can

be achieved using dynamical decoupling sequences [172, 173] which will be discussed
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in more detail in the context of nuclear spin dephasing in chapter 6. Using one

such sequence, values of up T2,e ≈ 0.87 ms have been demonstrated recently in

electrostatically defined quantum dots[174].

Several alternative approaches have been put forward for suppressing the inho-

mogeneous hyperfine dephasing[15]. The most straight-forward of these is based

on applying magnetic fields and polarising the nuclear spin bath[148, 175]. Al-

though hitherto unachievable polarisation degrees of ρ > 99% would be required

for a substantial increase of T2,e[15, 37], extended electron spin dephasing times T ∗2,e

have already been observed experimentally for much smaller nuclear polarisation

degrees[38, 135, 176].

Generally, the single spin decoherence time is limited by spectral diffusion due to

nuclear-nuclear dipolar flip-flops[29, 30, 177]. For GaAs quantum dots, this timescale

agrees well with the sub-millisecond decoherence times measured in dynamical de-

coupling experiments[174, 178]. As we will see in chapter 5, the strain in an InGaAs

quantum dot leads to a slow-down of the nuclear spin flip-flop rate. Therefore,

the potential limit for central spin decoherence times is considerably longer in this

system[41].

Although the hole-nuclear hyperfine coupling is approximately ten times weaker

than that with the electron, reported dephasing times are only marginally longer.

Several groups have found ensemble dephasing times of T ∗2,h ≈ 10 − 20 ns[20, 122,

179], with Hahn echo decay times of T2,h = 1.1 µs similar to those found for elec-

tron spins[78]. In stark contrast, a coherent population trapping experiment yielded

T ∗2,h > 100 µs[125]. This discrepancy has been attributed largely to the high sensi-

tivity of hole spins to electric field fluctuations[180, 181].

3.2.2 Nuclear Spin Decoherence

We have seen in the previous section that the coherence of the central spin in a

quantum dot is usually limited by hyperfine-induced dephasing[29]. A full under-
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standing of the nuclear spin coherence properties is therefore desirable to identify

the timescales on which the intrinsic bath dynamics will limit the electron and hole

T2 times. In this section we will only introduce the nuclear spin relaxation mecha-

nisms in a general fashion. A more detailed discussion will be given in chapters 5-7

where these mechanisms and the associated timescales are probed experimentally.

The nuclear spin bath in an empty self-assembled quantum dot is very stable at

cryogenic temperatures. Longitudinal spin relaxation times T1,n of several hours have

been measured, indicating extremely weak coupling to the environment[85, 114, 115].

This is because the main relaxation mechanism of spin diffusion out of the dot is

quenched by the intrinsic strain in the dot. Furthermore, quadrupolar relaxation

is strongly suppressed due to the lack of phonons at temperatures T . 10 K[136].

In chapter 5, we will see that T1,n depends strongly on the charge occupancy in the

dot as cotunnelling and electron-mediated nuclear spin diffusion result in hyperfine-

mediated fast relaxation[115, 182].

Nuclear spin dephasing in InGaAs quantum dots is dominated by is isotope-

dependent quadrupolar interactions which limit T ∗2,n to 5−20 µs (for the central spin

transition −1
2
↔ +1

2
)[39]. This dephasing can be refocused by nuclear Hahn echo

sequences and in chapter 5 we will show that the nuclear spin phase memory times

THE
M,n are within a range of 1 − 4 ms, confirming earlier results reported in [41]. In

the absence of confined charges, nuclear TM,n times are limited by dipolar dephasing

which is partially suppressed by the quadrupolar interaction in our system. For

comparison, decoherence times in unstrained GaAs/AlGaAs quantum dots and wells

were found to be about five times shorter[183, 184].

Recent results by Munsch et al.[42] indicate that RKKY-type interactions[185]

similar to those limiting T1,n might reduce the nuclear decoherence time in the

presence of an electron down to 20− 40 µs. The implications of this and strategies

towards decoupling the central spin from the bath will be discussed in chapters 6

and 8.
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3.3 Nuclear Spin Manipulation

A range of experimental techniques have been developed that allow the manipulation

of nuclear spin states using radio frequency (rf) excitation in a constant magnetic

field. These are collectively referred to as nuclear magnetic resonance (NMR) and

based on identical theoretical principles. The first experimental demonstration of

NMR was reported by I. Rabi in 1939. He showed in a modified version of the

Stern-Gerlach experiment that rf excitation at the nuclear transition frequencies of

atoms caused additional deflections[186, 187]. Major early contributions that opened

the field of NMR to experiments in solids and liquids were made independently by

F. Bloch[188, 189] and E. Purcell et al.[190] in 1946. Bloch’s technique was based on

the realisation that the nuclear spin rotation under rf excitation causes a macroscopic

change of the sample magnetisation away from an external magnetic field vector B0.

As the tilted nuclear spins precess about B0, they induce a small but measurable

current signal at their resonance frequency in a suitably placed copper coil. Purcell

et al. detected the NMR signal directly via the rf energy absorbed at resonance.

3.3.1 Spin Resonance in the Rabi Model

|

|

B0
ħωL B cos( t)x rfω

Figure 3.4: NMR is the resonant interaction of a Zeeman split nuclear spin level
system with an oscillating magnetic field Bx ⊥ B0.

For a theoretical description of NMR we have to consider a nuclear spin system

coupled to a static external magnetic field B0,z and interacting with a weak magnetic

field Bx oscillating at radio frequency ωrf in a plane perpendicular to B0,z as illus-
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trated in figure 3.4. For simplicity, we shall limit the following discussion to a nuclear

spin-1
2

system, although all of the concepts introduced here can be generalised to

systems with I > 1
2
[116, 191].

Without loss of generality, we assume that B0 = B0,zêz. Interaction with a

given nuclear spin is described by the Zeeman Hamiltonian H0 = −γI · B0 =

−γIzB0,z where Iz = ~
2
σz and σz denotes the Pauli matrix with eigenspinors |↑〉 and

|↓〉. In the absence of further interactions, this system has the well-known Zeeman

eigenenergies E0 = ±~
2
γB0,z = ∓~

2
ωL with ωL = −γB0,z describing the Larmor

precession frequency of the nuclear spin about B0.

B
x B

-

1

B
+

1

+ω
rf

-ω
rf

t=0 t=T /4
rf

t=T /2
rf

Figure 3.5: The linearly polarised rf field Bx can be split into two counter-rotating
circularly polarised fields of amplitude B1 = Bx

2
.

We now consider the effect of a second magnetic field Bx linearly polarised along

êx and oscillating at frequency ωrf . For convenience, we split the oscillating field

into two counter-rotating fields of equal amplitude as illustrated in figure 3.5.

Bx = Bx cos (ωrft)êx =
Bx

2

(
eiωrf t + e−iωrf t

)
. (3.12)

As we will see shortly, this approach becomes advantageous when ωrf ≈ ωL. We label

the effective field amplitudes of the two counter-rotating components as B1 = Bx

2

with corresponding Larmor frequencies ω1 = −γB1. Unless stated otherwise, these

will be the quantities used to characterise the NMR field amplitude throughout this

thesis. The full time-dependent Schrödinger equation for the interacting system is
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given by

i~
∂

∂t
|Ψ〉 = (H0 +H1) |Ψ〉 =

(
IzωL + Ixω1

(
eiωrf t + e−iωrf t

))
|Ψ〉 . (3.13)

In order to remove the time dependence of the Hamiltonian, we switch to an interac-

tion frame of reference rotating about êz at frequency ωrf . We splitH = H0+H1 into

an interaction HamiltonianHI = Izωrf and a perturbation Hamiltonian V = H−HI.

The benefits of this choice of reference frame and of the counter-rotating field de-

scription of Bx become clear when we look at V in the interaction frame. After

transformation under the time evolution operator U = e−iHIt/~ we obtain

VI = U †VU =
~
2

 −∆ ω1

(
1 + e2iωrf t

)
ω1

(
1 + e−2iωrf t

)
∆

 , (3.14)

where ∆ = ωrf − ωL is the detuning between the rf excitation and the Zeeman

splitting. In the rotating wave approximation, we can drop the fast-oscillating time-

dependent terms ∝ 2ωrf . If the rf excitation is resonant (∆ = 0) this leaves us with

an effective static in-plane field B1 ‖ êx′ acting on the spin in the rotating frame

{êx′ , êy′ , êz}. The approximate Schrödinger equation in the rotating frame (including

detuning ∆) is

i~
∂

∂t
|Ψ〉I = (Iz∆− Ixω1) |Ψ〉I . (3.15)

Using the ansatz |Ψ〉I = c1(t) |↑〉z + c2(t) |↓〉z with |c1|2 + |c2|2 = 1, we obtain two

coupled linear differential equations with solutions

 c1(t)

c2(t)

 =

 cos
(

Ωt
2

)
− i∆

Ω
sin
(

Ωt
2

)
iω1

Ω
sin
(

Ωt
2

)
 , (3.16)

where we introduced the Rabi frequency Ω =
√

∆2 + ω2
1 and assumed that the

spin was initially in state |↑〉z, i.e. c1(0) = 1 and c2(0) = 0. The time dependent
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populations of the two states are described by

p↑ = |c1(t)|2 =
∆2

Ω2
+
ω2

1

Ω2
cos2

(
Ωt

2

)
(3.17)

p↓ = |c2(t)|2 =
ω2

1

Ω2
sin2

(
Ωt

2

)
, (3.18)

Experimentally, we measure the population difference between the two spin states.

Our NMR signal is therefore proportional to p↑ − p↓ = ∆2

Ω2 +
ω2
1

Ω2 cos(Ωt).

We note that the population oscillates between the two spin states, although a full

spin rotation is only possible in resonance (∆ = 0). In this case the Rabi frequency

corresponds to the Larmor frequency about the static field B1 in the rotating frame.

By applying a resonant rf pulse of duration tp, we can rotate the nuclear spin about

a given in-plane axis. In addition, we can introduce a phase ϕ in equation (3.12).

This does not affect the populations of the states |↑〉z and |↓〉z. However, it alters

the in-plane rotation axis, allowing for rotations over the surface of the entire Bloch

sphere:

i~
∂

∂t
|Ψ〉I = (−Iz∆ + [Ix cos(ϕ) + Iy sin(ϕ)]ω1) |Ψ〉I . (3.19)

As we will see in the next section and in chapters 5 and 6 in more detail, this allows

us to probe and control the decay dynamics of the nuclear spin bath coherently.

Finally, we look at nuclear spins with I > 1
2
. From table 3.1 we see that the stable

isotopes in an InGaAs quantum dot have either nuclear spin I = 3
2

(gallium, arsenic)

or I = 9
2

(indium). Neglecting higher quantum transitions (e.g. −1
2
↔ +3

2
), we can

use the same theoretical treatment as above to describe the resonant interaction of

a spin transition with an rf field. However, we have to take into account that the
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spin operators σi change.

σx(1
2
) =

 0 1

1 0

 σx(3
2
) =



0
√

3 0 0
√

3 0 2 0

0 2 0
√

3

0 0
√

3 0


, (3.20)

This is important for the coupling to the rf field: the Rabi oscillations observed

for the central transition (CT) of a spin-3
2

nucleus are twice as fast as those for a

spin-1
2

system at identical rf field B1 = −ω1

γ
. If one of the satellite transitions (ST,

±3
2
↔ ±1

2
) is driven, the oscillation frequency is still increased by a factor

√
3.

3.3.2 The Bloch Equations of Motion

The results of the previous section can also be derived from purely classical consid-

erations. As we will see, this allows us to introduce the phenomenological relaxation

constants from section 3.2. Instead of the spin I, we now use the nuclear magnetic

moment µ = γI which we can generalise further as a macroscopic magnetisation

M =
∑

j µj arising from j nuclear spins. As before, we consider a static external

magnetic field B0 and an orthogonal linearly polarised field Bx

B0 = B0,zêz ,

Bx = 2B1 cos(ωrft)êx .

(3.21)

The precession of the magnetisation vector about the magnetic field B0 + Bx is

described by the torque formula[192]

dM

dt
= −γ(B0 +Bx)×M = Tω ·M , (3.22)
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where we replaced the cross product by a matrix multiplication for convenience and

introduced the skew-symmetric transformation matrix

Tω =


0 −ωL 0

ωL 0 −2ω1 cos(ωrft)

0 2ω1 cos(ωrft) 0

 , (3.23)

with −Tω = T T
ω . Next, we transform the equation of motion (3.22) into the rotating

frame of ωrf . We define a second transformation matrix

R =


cos(ωrft) sin(ωrft) 0

− sin(ωrft) cos(ωrft) 0

0 0 1

 , (3.24)

and translate the coordinate system as êi 7→ R · êi = êi′ . From the left side of

equation (3.22) we get

dM ′

dt
=

d(R ·M)

dt
= R · dM

dt
+

dR

dt
·M . (3.25)

Now we can substitute for dM
dt

from the inertial equation of motion (3.22):

dM ′

dt
= R · Tω ·M +

dR

dt
·M =

(
R · Tω +

dR

dt

)
·M =

=

(
R · Tω ·RT +

dR

dt
·RT

)
·M ′ ,

(3.26)

where we used M = RT ·M ′. Evaluation of the bracketed term gives another

skew-symmetric matrix (i.e. a matrix T ′ω with −T ′ω = T ′Tω ) which we can readily
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reconvert to obtain the equation of motion in the rotating frame:

dM ′

dt
= T ′ω ·M ′ =


ω1(1 + cos(2ωrft))

−ω1 sin(2ωrft)

−∆

×M ′ ≈


ω1

0

−∆

×M ′ . (3.27)

The fast-oscillating terms can be neglected once more as they only add a small

correction to the resonance frequency, the Bloch-Siegert shift. We are left with an

angular velocity vector Ω = (ω1, 0,−∆)T, the length of which is the Rabi frequency

Ω =
√

∆2 + ω2
1 as defined in the previous chapter. Equation (3.27) therefore de-

scribes the rotation of the magnetisation about a static axis êΩ at frequency Ω. As

all further theoretical analysis will be based in the rotating frame, we will drop the

apostrophe from here onwards.

In section 3.2 we introduced the longitudinal and transverse relaxation times T1

and T2. These phenomenological decay constants do not appear in the theoretical

treatment so far as the physical mechanisms causing the relaxation are not included.

Instead, they were introduced by Bloch under the assumption of a general exponen-

tial relaxation behaviour at different rates along êz and in the x-y plane. Over time

Mz will relax back to its equilibrium value M0 whereas Mx and My will decay to

zero. Including the relaxation, we obtain the Bloch equations of motion[189]

dM

dt
= Ω×M − Γ · (M −M0) , (3.28)

where M0 = M0êz and Γ is a diagonal matrix with generally non-zero entries Γxx =

Γyy = T−1
2 and Γzz = T−1

1 . Note that the length of the magnetisation vector is no

longer constant over time if Γ 6= 0. This is in contrast to the single spin relaxation

illustrated in figure 3.3. Unlike an individual nuclear magnetic moment µ, the

magnetisation is a vector sum and can have any magnitude between zero and Nµ.

As before, we can introduce a phase ϕ to the rf excitation in the Bloch picture.
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In this case the oscillating in-plane field becomes

Bx = 2B1 cos(ωrft)(cos(ϕ)êx + sin(ϕ)êy) , (3.29)

and the angular velocity vector in equation (3.28) is altered to the expression

Ω = (ω1 cosϕ, ω1 sinϕ,−∆)T. We see that the Rabi frequency Ω remains unaffected

by the phase. However, it allows us to rotate the magnetisation vector about an

arbitrary in-plane axis under resonant driving (∆ = 0).

In a real system the resonance frequency of an ensemble of nuclei is generally

broadened by inhomogeneous effects such as local variations in B0,z or strain gradi-

ents. This means that even for “resonant” rf excitation the angular velocity vector

Ω acting on any individual spin typically has a finite detuning |∆| . ∆ωinh

2
, where

∆ωinh denotes the linewidth of the inhomogeneously broadened resonance frequency.

Experimentally, this can be overcome by using sufficiently large rf amplitudes. If

ω1 � ∆ωinh

2
, the detuning becomes negligible and Ω ≈ ω1. This is referred to as the

hard pulse condition under which the spin system is driven coherently.
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Figure 3.6: Simulations of the magnetisation decay along êz as a function of the
resonant rf excitation time trf as described by the Bloch equations of
motion. We choose parameters M0,z = −0.3 and T1,n = 100 ·T2,n. Under
weak resonant driving Mz decays exponentially to M0 (T−1

Rabi ≈ 0.03 ·
|T−1

1 − T−1
2 |, red). By contrast, the magnetisation shows an oscillatory

decay to zero under strong rf excitation (T−1
Rabi ≈ 30 · |T−1

1 − T−1
2 |, blue).
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A second aspect deserving consideration in NMR experiments are the relative time

scales of the Rabi period TRabi = 2π
Ω

and the nuclear spin relaxation times T1,n and

T2,n. Under continuous resonant driving, the magnetisation will always eventually

decay to a steady-state value. Figure 3.6 shows simulations of the magnetisation

decay along Mz as described by equation (3.28) for an equilibrium magnetisation

M0,z = −0.3 and T1,n = 100 · T2,n. These values are chosen for illustration pur-

poses only. In a real quantum dot nuclear spin bath, the equilibrium polarisation is

typically close to zero and T1,n can be more than 106 times larger than T2,n[41, 114].

If T−1
Rabi � |T

−1
1,n − T−1

2,n |, a (bi)exponential decay of the magnetisation along the

quantisation axis Mz to its equilibrium value M0 is observed, similar to an over-

damped classical oscillator (red line in figure 3.6). By contrast, the magnetisation

shows an exponentially damped oscillating behaviour if T−1
Rabi � |T

−1
1,n − T−1

2,n | (blue

line). In this case, the steady state value is Mz(trf → ∞) = 0[193]. This is, irre-

spective of the magnitude of the driving field, the furthest the magnetisation can be

driven from its equilibrium under continuous wave (cw) NMR.

3.4 Summary

In an InGaAs quantum dot, the hyperfine interaction between the nuclear spin bath

and a central electron or hole spin is the main source of relaxation and decoherence

for the central spin at low temperatures. While the relaxation mechanism can

be suppressed easily by a small magnetic field, the dephasing can only be partly

refocused using electron spin echo techniques. The hyperfine interaction can also be

used to polarise the nuclear spin bath very efficiently, with polarisation degrees up to

ρ = 70% reported. Nuclear spins in an InGaAs quantum dot dephase rapidly due to

strong inhomogeneous quadrupolar interactions. However, the nuclear spin phase

memory time TM,n is on the order of milliseconds and limited by nuclear dipolar

interactions.
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In a strong external magnetic field, the nuclear spin bath can be manipulated

by applying an oscillating in-plane magnetic field that is resonant with the nuclear

Larmor frequency. This NMR technique allows the resonant driving of a nuclear

two-level system. As we will show in the following chapters, NMR can be used to

probe the longitudinal and transverse decay timescales of the nuclear spin bath.
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4 Experimental Methods and

Samples

We saw in chapter 2.1 that a typical epitaxially grown quantum dot sample contains

a large number of randomly distributed nanoscale dots (∼ 1− 3 dots
µm2 in the samples

used in this work) embedded in a GaAs matrix. Thus it is beyond the capabilities

of conventional NMR techniques to isolate the NMR signature of an individual dot

from that of its vicinity. However, we also saw in chapter 3.1 that the nuclear

spin bath of a quantum dot interacts strongly with a localised charge spin. The

hyperfine interaction allows us to both polarise nuclear spins efficiently and probe

any existing nuclear polarisation indirectly via the Overhauser field acting on the

confined charge. By combining optical techniques that utilise these properties with

NMR driving fields we are able to overcome the limitations of conventional spin

resonance methods and probe the NMR signal of an individual quantum dot.

In this chapter, we look at the experimental implementation of optically detected

nuclear magnetic resonance (ODNMR). Section 4.1 describes the bath cryostat sys-

tem used to keep the sample at cryogenic temperatures and to provide an external

magnetic field B0 of up to 8 T. In section 4.2, the optical setup used for confocal

photoluminescence spectroscopy (PL) is introduced. Section 4.3 discusses in greater

detail how rf excitation fields are coupled to the sample and detected optically in

our setup. Finally, the two samples on which the experimental work of this project

was performed are described in section 4.4.
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4.1 Cryogenic System

The shell splittings ω0,e/h & 10 meV[70, 72] of the electron and hole energy states in

a quantum dot are of the same order as the thermal energy at room temperature.

Therefore, experiments are commonly performed at cryogenic temperatures T <

50 K. In our experiments this was achieved by using an Attocube LTSys-He liquid

helium bath cryostat.

The system is shown in the schematic of figure 4.1. The sample itself is not in

direct contact with the liquid helium but is contained inside a stainless steel tube.

Thermal exchange with the cryogen is facilitated by a low-pressure (< 1 mbar)

helium atmosphere inside the insert tube. This has a number of benefits over alter-

native methods of cryogenic cooling. In immersion cryostats, the helium bath needs

to be cooled below the λ-point for optical measurements due to the strong scattering

in the boiling He I phase. By contrast, the optical beam path (red in figure 4.1)

does not pass through the helium bath in our system, making optical excitation and

detection feasible without additional pumping. Unlike flow cryostat systems, the

bath cryostat also does not require continuous pumping for a constant temperature

of T = 4.2 K, which increases the mechanical stability of the system and enables us

to run day-long experiments with only minor sample drift corrections. In addition,

exchange gas cooling prevents condensation of residual contaminants on the sample

surface as the insert tube itself is cooled down at a faster rate than the sample.

The cryostat also contains a superconducting magnet (orange in figure 4.1) which

provides static magnetic fields of up to B0,max = 8 T along the optical axis êz. Unless

stated otherwise, all experimental results presented in chapters 5-7 were obtained

at a persistent field of B0,max = 8 T.

The sample is mounted on a non-magnetic aluminium holder with conductive sil-

ver paint to ensure good thermal contact and the holder is glued onto a stack of

Attocube piezo-actuators. These piezoelectrically driven stages allow movement of

the sample with sub-µm accuracy over a range of ∼ 5 mm in all three spatial dimen-
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Figure 4.1: Schematic of the bath cryostat (not to scale): The sample is mounted
on an aluminium pedestal and can be moved in all three spatial dimen-
sions by a set of piezoelectrically driven stages. A multi-layer copper
coil soldered to a coaxial cable is placed close to the sample to provide
the rf excitation in NMR experiments (insets). The setup is contained
within an insert and cooled by the liquid helium bath via a low-pressure
helium atmosphere that serves as an exchange gas. The cryostat also
hosts a superconducting magnet providing static fields along the optical
axis. A breadboard containing optical components for PL experiments
is mounted on top of the insert.
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sions, allowing the precise focusing of an optical excitation beam to any position on

the sample surface. The stages are attached to an optical cage system formed by

four stainless steel rods and a series of cage plates that are inserted at regular in-

tervals for stability. An aspheric lens mounted in the cage system above the sample

surface acts as an objective, focusing the incoming laser light and the emitted PL

signal along the confocal beam path.

The cage system is fixed to the neck of the insert which contains a number of plug

sockets. Two of these are used for the control of the piezo-actuators and for the read-

out of a resistive temperature sensor mounted below the sample. Additional twisted

wire pairs are used to provide bias voltages in experiments involving diode structures

such as sample B (see section 4.4.2). Finally, two semirigid low-loss coaxial cables

are interfaced at the insert neck. The first of these is terminated by a multi-layer

multi-winding copper coil which is located close to the sample edge and provides the

rf driving fields required in NMR experiments (see insets in figure 4.1). The second

coaxial cable ends in a single copper loop which is placed sufficiently far from the

rf coil to avoid inductive feedback. This loop serves as a pickup antenna and allows

us to monitor the rf magnetic field in both time and frequency domain using an

oscilloscope and a signal analyser.

4.2 Photoluminescence Spectroscopy

The NMR experiments discussed in this work are conducted employing a pump-

rf-probe scheme for the optical preparation and detection of the nuclear spin bath

polarisation[39, 41]. This is implemented using the confocal spectroscopy setup

shown schematically in figure 4.2: two diode lasers emitting at ∼850 nm are used

as high power pump and low power probe sources (1a, 1b). Each laser beam passes

through a mechanical shutter and a neutral density filter (2) before it is coupled into

a single mode fibre (3) and guided to a breadboard (4) mounted on top of the insert
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(see figure 4.1). The pump laser light subsequently passes a half-wave plate and a

polariser (5a) which are set up such that the excitation beam becomes fully linearly

polarised parallel to the breadboard plane. Here, the half-wave plate ensures that

the major polarisation axis of the laser light coupled out of the fibre coincides with

the axis of the polariser, ensuring a maximum intensity throughput.

1a

5a
6

7

8

9

10

13

1b

5b

Laser excitation
PL signal

2
3

4

11

12
14

Figure 4.2: Schematic of the optical setup: light from the pump (1a) and probe
laser (1b) passes a mechanical shutter and a variable ND filter (2) and
is coupled into a single mode fibre (3). Both laser beams are guided to
a breadboard (4) on top of the insert tube. After passing polarisation
optics (5a, 5b) the beam paths are combined using a pellicle beamsplit-
ter (6). A second beamsplitter (7) deflects the pump and probe beam
towards the sample inside the insert and a quarter-wave plate (8) is used
to convert the pump beam polarisation from linear to circular. Pump
and probe excitation powers are monitored via a power meter (9). The
PL signal (red) can either be directed towards a camera (10) for visual
alignment on the sample surface with a flip-mirror (11) or coupled into
a multi-mode fibre (12) and sent to a Raman spectrometer (13) with an
attached LN2 cooled CCD (14) for PL measurements.

A nominally non-polarising beamsplitter (7) is used to deflect the excitation beam

towards the insert. The horizontal polarisation of the incoming pump beam is re-

quired because the beamsplitter still introduces a slight ellipticity if the polarisa-

tion axis does not coincide with the axis of the beamsplitter. Finally, a calibrated

quarter-wave plate (8) mounted on a motorised stage converts the excitation beam

to circular polarisation before it is sent into the insert. Inside the insert, the beam
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passes along the optical axis marked in figure 4.1 in free space before reaching an as-

pheric lens with focal length f = 2.75 mm, which serves as an objective and focuses

the beam onto a spot of ∼ 1 µm2 on the sample surface.

The probe beam follows a similar path and is coupled into the pump beam path

by an additional pellicle beamsplitter (6). However, the polarisation optics for the

probe laser (5b) set its polarisation axis to coincide approximately with one of the

two optical axes of the quarter-wave plate instead. In this way, the probe beam

remains linearly polarised until it reaches the sample.

Both laser wavelengths have been selected to coincide with the optical transi-

tion energy in the InAs wetting layer. The excited electron-hole pairs relax into

the energetically lower bound states of the quantum dot before recombining under

emission of a photon at the intershell transition energy. This process is known as

non-resonant photoluminescence (PL).

Using the mechanical shutters, we can switch the two laser excitation paths on or

off separately. The circularly polarised pump laser beam is only used for preparation

of the nuclear spin bath and the emitted PL signal is omitted from the spectral

analysis by keeping the shutter in the detection path (red) closed. By contrast, the

probe laser induced PL emission is collected by the objective lens and sent back

towards the beamsplitter. From there it is coupled into a multi-mode fibre (12)

and directed to a Ramanor U1000 double spectrometer (13) with nitrogen-cooled

charged coupled device (CCD) camera (14) for spectral analysis. As the probe laser

excitation is linearly polarised, both of the circularly polarised Zeeman split optical

transitions (see chapter 2.2.2) are visible in the PL spectrum. The emission spectra

obtained from the CCD are typically integrated over ∼ 1 s. For this reason the

optical detection technique we employ is commonly referred to as time-averaged PL

spectroscopy, reflecting the ensemble-broadened nature of the excitonic transition

lines measured by these means.

The breadboard contains two additional elements that allow us to monitor the
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experimental conditions: firstly, a power meter (9) is used to record the laser ex-

citation powers continuously. In addition, the alignment of the laser beam on the

sample surface is checked via a camera (10) which can be switched into the detec-

tion path via a flip-mirror (11) and which is connected to a TV screen. Our sample

surfaces contain gold markers or shadow masks which scatter the incident laser light

stronger than the GaAs surface. The scattered light is detected by the camera and,

in combination with the piezostages, can be used to image the sample surface in

order to locate quantum dots relative to the marker positions. In addition, we can

use the image to optimise the focusing of the excitation beam on the sample surface.

4.3 Nuclear Magnetic Resonance

We already studied the theoretical concepts of NMR in chapter 3.3. Here, we discuss

the experimental implementation of NMR excitation in our setup in more detail and

look at the optical detection of the NMR signal within an experiment cycle.

4.3.1 NMR Setup

signal
analyser

D

S

generator
power

amplifier
directional

coupler

sample

stubcoaxial
cable

rf coil

pickup
coil

Figure 4.3: Circuit diagram of the NMR setup. The rf signal is amplified and fed to
the rf coil via coaxial cables. A shunt stub of length S at a distance D
from the coil provides impedance matching for strong rf transmission to
the sample (red). The reflection (transmission) characteristics of the coil
are probed with a directional coupler (pickup coil) and measured with a
signal analyser.
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The basic NMR setup is shown in figure 4.3. An rf input signal from the generator

is amplified and sent to the rf coil inside the insert via coaxial cables. The rf coil

is placed at a fixed distance d ≈ 300 µm from the focal point of the objective

(see figure 4.4 below). It consists of three layers of two windings each with a wire

diameter ∅w = 0.3 mm and an inner coil diameter ∅c ≈ 0.8 mm (∅c ≈ 0.4 mm

for the measurements in chapter 7.5). The quantum dots studied in this work are

all located within 100 µm of the sample edge, allowing simultaneous optical and rf

access.

d

○c

○w

rf coilpickup coil

sample

Au markers
laser

Figure 4.4: Schematic of the relative placement of rf coil and sample (not to scale).
The rf coil is placed at a distance d ≈ 300 µm from the optical focal
point on the sample. A second pickup coil is placed ∼ 1 cm from the rf
coil to monitor the rf transmission amplitude.

The rf amplitude at the dot location depends on several parameters including

the coil geometry and the distance d between coil and dot. The most important

parameter, however, is the transmission coefficient Trf , characterising the ratio of the

rf input power which is transmitted by the rf coil. The transmission and reflection

(Γrf) coefficients are linked by the formula T 2
rf + Γ2

rf = 1 and both depend strongly

on the load impedance ZL ≈ iωLc of the coil (with inductance Lc). We see that

ZL is frequency-dependent and almost purely reactive. It is therefore generally not

equal to the characteristic impedance Z0 = 50 Ω of the coaxial cables, amplifier and

generator. In this case, the coil is mismatched and a proportion Γrf = ZL−Z0

ZL+Z0
of the

rf signal is reflected back to the source. This strongly reduces the rf magnetic field
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amplitude transmitted to the sample and can damage the source.

In order to match the coil and reduce reflections for a given frequency ω, we added

a shunt stub to the rf circuit. This is a coaxial cable of length S in parallel to the

effective load consisting of the coil and a cable length D (see figure 4.3). The input

impedance of the effective load at the connection point is given by the transmission

line impedance equation[194]

Zi(D) = Z0
ZL + iZ0 tan(βpD)

Z0 + iZL tan(βpD)
, (4.1)

where βp =
ω
√
εr
c

is the phase constant and εr is the relative permittivity of the cable

dielectric. The same expression can also be used to obtain the input impedance of

the stub ZS. As there is no load connected, we have an open circuit corresponding to

ZL →∞, which gives ZS(S) = −iZ0 cot(βpS). The load is matched if the equivalent

resistance of the parallel stub-coil circuit is equal to Z0, i.e.

1

Z0

=
1

ZS(S)
+

1

Zi(D)
. (4.2)

Since the stub impedance ZS(S) is always imaginary, this corresponds to matching

criteria Re(Zi(D)−1) = Z−1
0 = (50 Ω)−1 and Im(Zi(D)−1) = −ZS(S)−1. In this case

the system forms a resonant parallel RLC circuit with ω = 1√
L′cC

and quality factor

Q = Z0

√
C/L′c.

While periodic solutions for the lengths S and D can be derived analytically for

a given set of parameters, we obtained good matching conditions using a purely

empirical approach: If the stub-coil circuit is fed with broadband rf noise (100 MHz

bandwidth), it will only absorb at the resonance frequency ω and reflect all other

excitation frequencies. We can measure the reflected spectrum using a directional

coupler and a signal analyser (see figure 4.3). Figure 4.5a shows the reflected rf

spectrum for a matched circuit at ν = ω
2π

= 58.8 MHz. Under fully impedance

matched conditions we achieve rf field amplitudes of up to B1 ≈ 7 mT in the rotating
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frame at an rf input power of Prf ≈ 200 W for the NMR resonance frequencies of

75As (νL ≈ 58.8 MHz) and 71Ga (νL ≈ 104.8 MHz) at B0,z = 8 T. Although the

amplifier can in principle provide pulse powers of up to 1kW we find that excitation

levels > 200 W inevitably lead to strong heating of the sample.
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Figure 4.5: Reflection and transmission spectra of the impedance matched NMR
circuit. (a) Reflected power spectrum for good matching at the 75As res-
onance frequency of νL(75As) = 58.8 MHz at B0,z = 8 T. (b) Transmitted
signal amplitude under broadband matching conditions. The rf excita-
tion amplitude is flat over a bandwidth νL(75As)± 12.5 MHz.

The single stub technique can only provide impedance matching for one resonance

frequency. This is sufficient for hard pulse excitation where we coherently drive a

single NMR transition. However, matching the coil to a broad band of excitation

frequencies generally requires a more complex circuit design. Instead, we tune the

circuit to a position where the transmission spectrum measured by the pickup coil is

approximately flat over the desired bandwidth (figure 4.5b). Since this still causes

non-negligible reflections we use a 30W class A amplifier capable of handling full

signal reflection in experiments requiring broadband rf excitation.
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4.3.2 Optical Detection of NMR

(a)
Preparation

B=B + +0 BOH,1 BOH,2

ωγ B

(b)
Manipulation

B=B + +0 BOH,1 B (t)OH,2

ωrf
B

(c)
Read-Out

B=B +0 BOH,1

ωγ B

t
tprobetpump trf

Figure 4.6: The ODNMR pump-probe scheme for a depolarisation experiment.
(a) The nuclear spin bath is polarised under high-power circularly po-
larised optical pumping. (b) Isotopes are depolarised selectively by the
rf excitation. (c) Changes in the nuclear polarisation are probed in low-
power PL.

The experiment cycle of an ODNMR measurement is illustrated in figures 4.6a-c

and consists of three distinct steps: optical preparation of the nuclear spin bath,

rf manipulation and optical read-out. This scheme was used in all of our NMR

experiments and makes use of the strong hyperfine interaction in a quantum dot.

In the first step, the spin bath is prepared using dynamic nuclear polarisation (see

chapter 3.1.2): under circularly polarised optical excitation at ∼ 850 nm, polarised

electron-hole pairs are created in the wetting layer and relax into the quantum dot.

As we saw before, the flip-flop term of the electron-nuclear hyperfine interaction

(equation (3.3)) can lead to an efficient polarisation transfer to the nuclear spin

bath under certain conditions. Using optical excitation powers at least an order

of magnitude above the saturation level of a single neutral exciton PSat(X
0), we

can reach nuclear polarisation degrees of up to ρ ≈ 70% in the dot[82, 120]. The

strongly polarised spin bath creates a net Overhauser magnetic field Bhf which

is aligned either parallel or anti-parallel to an applied external field B0,z. This

additional magnetic field manifests itself in PL as a change of the Zeeman splitting

between optical transitions as shown in figure 4.7 for a dot in sample A: under σ+/σ−

polarised excitation the splitting shifts by ±125 µeV compared to the pure Zeeman
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splitting ∆EZ,0 ≈ 1.125 meV at B0,z = 8 T, corresponding to an Overhauser field

Bhf ≈ 5 T.
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Figure 4.7: Pump-probe PL spectra of the Zeeman split X0 transitions of a quantum
dot at B0,z = 8 T. After the dot has been optically pumped for several
seconds with high-power σ+ (σ−) circularly polarised light, the splitting
is increased (reduced) by an Overhauser shift Ehf ≈ ±125 µeV, corre-
sponding to an Overhauser field of Bhf ≈ 5 T and a nuclear polarisation
degree of ρ ≈ 70% for an In0.2Ga0.8As quantum dot.

Next, one or more rf excitation pulses are applied to the system via the rf coil.

Depending on the experimental requirements these rf pulses can be designed to drive

a given spin transition coherently, to swap the populations of two spin energy levels

adiabatically or to depolarise all spins of a selected isotope. Any changes induced in

the polarisation of the nuclear spin bath are reflected in a change of the Overhauser

field Bhf .

Finally, the probe laser pulse is applied to the sample. The probe beam is linearly

polarised to obtain a strong PL signal from both Zeeman split transition lines. Ex-

citation power and pulse length are kept at a level that is low enough to prevent the

probe pulse from affecting the Overhauser splitting noticeably while providing suffi-

cient PL intensity for short data acquisition times. The experiment cycle is repeated

10 − 20 times for each data point to obtain a PL signal strength of ∼ 1000 counts

64



and the signal-to-noise ratio is further improved by averaging over 2 − 3 spectral

frames.

In addition to measurements with varying rf parameters we perform control mea-

surements under fixed conditions, e.g. without the rf field or under hard pulse ex-

citation at a fixed pulse length. These serve both as a reference to extract the

induced change of the nuclear spin bath polarisation and as a baseline to filter out

small time-dependent drifts induced by changing environmental parameters during

a day-long experiment (e.g. laboratory temperature).

4.4 Quantum Dot Samples

The experimental results obtained in this project are measured on two samples.

The first, subsequently referred to as sample A, is an undoped and ungated InGaAs

quantum dot sample with a GaAs/AlGaAs cavity. Sample B is a p-i-n diode with

an InGaAs quantum dot layer embedded in its intrinsic region.

4.4.1 Ungated Sample A

Sample A was grown in MBE at the National Centre for III-V Technologies in

Sheffield and consists of a single InGaAs quantum dot layer in a microcavity. The

InAs layer thickness of 1.85 ML was chosen just above the nucleation threshold,

giving a very low, homogeneous dot density of 1−3 dots
µm2 . Previous ODNMR studies

on samples from the same wafer have shown a relatively low indium content of

∼ 20% within the dot volume probed by the electron wavefunction of a confined

neutral exciton[39].

The microcavity is formed by several pairs of distributed Bragg reflectors (DBRs)

embracing a λ/n GaAs cavity. The TEM image in figure 4.8a shows the 17 bottom

and 6 top DBR pairs formed by alternating GaAs (dark) and Al0.8Ga0.2As (light)

layers of thickness λ/(4n). The quantum dot layer (red arrow) is centred in the
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Figure 4.8: (a) TEM image of sample A. The dot layer (red arrow) is embedded in
a cavity formed by GaAs/Al0.8Ga0.2As DBR pairs. (b) PL spectrum of
a quantum dot in sample A at B0 = 0 T and at optical excitation power
1 µW. Apart from the dominant neutral exciton line X0 we can distin-
guish a weak biexciton 2X0 at lower energy and a blue-shifted transition
line associated with the positive trion X+.

cavity and has a large inhomogeneous distribution of optical transition energies. The

resonant wavelength of the cavity at T = 4.2 K lies at λ = 920 nm with a Q factor

of ∼ 250[120]. The light extraction efficiency is further enhanced by a short-period

GaAs/AlGaAs superlattice in which the quantum dot layer is embedded (see figure

2.1b). In saturation, we obtain PL intensities of up to 100, 000 cts
s

using the setup

introduced in section 4.2.

A representative PL spectrum of a single dot in Sample A is shown in figure 4.8b.

Although the sample is nominally undoped, a weak positive trion transition is ob-

served for most dots. However, long nuclear spin relaxation times T1,n have been

found for several dots in sample A, indicating the absence of free charge carriers.

Therefore, the appearance of X+ might be caused mainly by the non-resonant opti-

cal excitation. Spectral transition linewidths vary from dot to dot, but are typically

close to or below the resolution limit of the spectrometer (∼ 15 µeV).
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4.4.2 PIN Diode Sample B

The p-i-n diode sample was provided by the Toshiba Cambridge Research Labo-

ratory and grown in MBE at the University of Cambridge. A detailed description

of the sample structure is given in [96, 101, 195]. As illustrated in figure 4.9, the

quantum dot layer is centred in a thin 10 nm GaAs quantum well which is bracketed

by Al0.75Ga0.25As tunnel barriers of 71.8 nm thickness. The structure is embedded

in a planar microcavity consisting of 14 GaAs/Al0.98Ga0.02As bilayers below and 4

bilayers above the dot layer. The intrinsic region is 140 nm thick and centred on

the dot layer with n- and p-doped regions extending into the tunnel barriers. The

cavity resonance at 4.2 K is found at ∼ 940 nm where excitonic PL intensities in

our setup reach up to 50, 000 cts
s

in saturation. Electric gates above and below the

dot layer allow control of the exciton charge state.

n-contact

p-contact
Al-mask

Al Ga As0.75 0.25

quantum dot layer and
GaAs quantum well

bottom
DBR

top DBR

GaAs
substrate

Figure 4.9: Structure of the p-i-n diode sample (after [195]). The quantum dot
layer is embedded in a thin GaAs quantum well. Two Al0.75Ga0.25As
tunnel barriers ensure optical recombination over a large bias range.
GaAs/Al0.98Ga0.02As DBRs above and below the dot layer form a planar
cavity and increase the PL collection efficiency.

A schematic band diagram of the p-i-n structure is depicted in figure 4.10a. The

energy bands are tilted in the intrinsic region even without an applied voltage as

the Fermi level EF (dashed line) is pinned close to the valence (conduction) band

edge in the p- (n-)doped region. As indicated by the arrows, the intrinsic region
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becomes fully depleted of charge carriers under large reverse biases. The I-V curve

in figure 4.10b shows the characteristic diode behaviour with a sudden increase of

the current under large forward biases.

(a)

(b)

p i n

EF

EVB

ECB

Al Ga As0.75 0.25

GaAs

InGaAs

Figure 4.10: (a) Schematic band diagram of the p-i-n diode structure. The InGaAs
quantum dot layer (red) is embedded in the intrinsic region. Under a
large reverse bias the intrinsic region becomes fully depleted of charge
carriers (indicated by arrows). (b) Dark I-V characteristics of the p-i-n
diode sample at T = 4 K. A strong increase of the measured cur-
rent is observed under forward biases exceeding the built-in voltage
Vbi = 1.8 V.

As shown in figure 2.5, PL emission can be observed over a wide bias range of

& 6 V with large transition energy Stark shifts of up to 25 meV. This is due to the

Al0.75Ga0.25As barriers which prevent charge carrier escape and increase the charge

tunnelling times. PL linewidths vary depending on the bias region but are found

to be narrowest (& 20 µeV) at small reverse biases in the transition region between

X0 and X+. We will examine the bias dependent characteristics of sample B in detail

in chapter 5.3 where we will see that the gated structure allows us to empty dots

reliably of all charges under large reverse biases.
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4.5 Summary

We can perform optically detected NMR experiments by making use of the hyper-

fine interaction between the nuclear spin bath and a confined charge in a quantum

dot. Using a confocal spectroscopy setup in combination with a cryostat system, we

can strongly polarise the nuclear spins using optical dynamic nuclear polarisation.

Nuclear spin level splittings are on the order of 10− 100 MHz in an external mag-

netic field of several tesla and can be driven resonantly via a copper rf coil in close

proximity to the quantum dot sample. NMR induced changes of the nuclear spin

polarisation are reflected in PL as changes in the Overhauser shift of the Zeeman

splitting between the bright neutral exciton transitions.

Experiments are performed on two InGaAs quantum dot samples with similar

optical properties. In both structures a planar microcavity is used to enhance the

PL intensity of individual dots. While sample A is ungated and undoped, the p-i-n

diode structure of sample B allows us to tune over a large bias range and to empty

the studied dot controllably of all charges.
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5 Strain-Induced Nuclear Spin

Freezing in InGaAs Quantum Dots

5.1 Introduction

The decoherence of an electron spin confined in a self-assembled quantum dot is

dominated by the influence of the nuclear spin bath. Since all constituent nuclei

have non-zero spin, hyperfine interaction leads to dephasing within nanoseconds

(see chapter 3.2.1 and e.g. [29, 30]). The hyperfine induced electron spin dephasing

can be suppressed to a considerable extent by applying an external magnetic field

and using electron spin echo techniques[167, 168, 178]. However, spectral diffusion

arising from nuclear-nuclear dipolar interactions still ultimately limits the electron

spin decoherence time T2,e[196, 197]: since the electron wave function overlaps with a

finite number of nuclei, nuclear spin flip-flops eventually lead to irreversible changes

in the effective Overhauser field that acts on the electron spin. Therefore, the

timescale of such flip-flop processes is of great interest as it presents an upper limit

to the theoretically achievable electron spin coherence time in the presence of the

nuclear spin bath environment.

The nuclear dipolar coupling strengths are reflected by the homogeneous NMR

linewidths of the constituent isotopes[116, 198]. However, these values are not easily

obtained experimentally due to the particular properties of our system. The strong

lattice mismatch driving the self-assembled formation of InGaAs quantum dots on a
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GaAs substrate gives rise to considerable strain gradients within each dot[169]. This

strain in turn causes electric field gradients that nuclei with spin I ≥ 1 couple to via

their quadrupolar moment[116]. Previous work has shown that the NMR spectra

in InGaAs quantum dots are strongly inhomogeneously broadened as a result of

the quadrupolar interaction: linewidths of 10 − 50 kHz were found for the central

spin transitions (CTs, −1/2 ↔ +1/2) of all isotopes at B0,z = 5.3 T and even

stronger broadening of 2 − 10 MHz was measured for satellite transitions (STs,

e.g. +1/2↔ +3/2)[39].

While it is not possible to measure homogeneous linewidths in this system us-

ing conventional cw NMR techniques, the inhomogeneous broadening can be refo-

cused under coherent pulsed NMR schemes such as the π
2
− τ − π − τ Hahn echo

sequence[192, 199]. Recently, such experiments were performed in our group on a

sample from the same wafer as sample A, revealing unexpectedly long nuclear phase

memory times THE
M,n ≈ 1.2 − 4.5 ms[41]. This was attributed to quenching of the

nuclear dipolar flip-flops due to the strong inhomogeneous quadrupolar interactions

in the quantum dot, a mechanism which had previously been described by Dzhioev

et al.[200]

However, it was not clear how universal the findings of [41] were. The wafer of

sample A was not designed for the fabrication of electrically gated devices. Hence

the studied sample did not possess any degree of charge control beyond the intrinsic

(nominally neutral) dopant levels. It was therefore difficult to determine the charge

occupancy of the studied quantum dots accurately. While it was surmised that

the dots were empty of trapped charge carriers during rf excitation, the presence

of a weak positive trion transition in PL spectra (see figure 4.8b) indicated that

this might not necessarily be the case. Consequently, charge fluctuations may have

contributed to the nuclear spin bath decoherence via electron- or hole-mediated

nuclear spin interactions[182, 201] and could affect multiple pulse NMR sequences

beyond the Hahn echo.
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In this chapter, we perform pulsed NMR experiments on sample B, a gated p-i-n

structure with very long nuclear spin relaxation times T1,n and with bias control over

the charge occupancy of an individual quantum dot. Most importantly, this device

allows us to empty a dot of charges under large reverse biases. We discuss in detail

how key parameters for pulsed ODNMR in a quantum dot are calibrated and present

the results of Hahn echo experiments in an empty InGaAs dot. Our findings strongly

support the interpretation given in [41]: we find the measured phase memory times

in sample B to be in very good agreement with the reported values, confirming that

direct dipolar interactions in the nuclear spin bath are limiting THE
M,n at millisecond

timescales.

The chapter is structured as follows: after a brief general overview of nuclear

dipolar interactions in a quantum dot in section 5.2.1, we discuss the origin of

inhomogeneous quadrupolar interactions in strained InGaAs dots and their impact

on the nuclear spin bath dynamics in sections 5.2.2 and 5.2.3. The nuclear spin

relaxation timescales and optical pump and probe parameters for stable preparation

and readout of the spin bath magnetisation in sample B are measured in section 5.3.

The experiment cycle of a pulsed ODNMR measurement is discussed in detail in

section 5.4, where we also show how experimental parameters are calibrated to

obtain maximised spin echo signal amplitudes. Finally, we present the results of our

Hahn echo experiments in sample B and compare them to the findings from sample

A in section 5.5, proving conclusively that the reported THE
M,n times are limited by

dipolar interactions within the spin bath.
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5.2 Nuclear Spin Bath Dynamics in a Quantum Dot

In this section, we first discuss the various forms in which nuclear-nuclear dipo-

lar interactions can result in nuclear spin decoherence. The self-assembled InGaAs

quantum dots are subject to considerable intrinsic strain fields, which give rise to ad-

ditional quadrupolar couplings[39, 169]. In the second and third part of this section

we look at how quadrupolar interactions broaden the NMR spectra inhomogeneously

and suppress nuclear dipolar interactions in the quantum dot[41, 200].

5.2.1 Nuclear Dipolar Interactions

The magnetic interaction between two nuclear spins I and J is described in the

same way as the dipolar term of the hyperfine coupling between a nuclear spin I

and a charge spin S discussed in chapter 3.1. With nuclear gyromagnetic ratios

γI , γJ and introducing a vector rij denoting the spatial separation between the two

spins, we can write[116]

Hdd =
µ0

4π
γIγJ

~
r3
ij

(
I · J − 3

(I · rij)(J · rij)
r2
ij

)
. (5.1)

This equation can be rewritten in terms of the dipolar alphabet (see appendix 9.1).

The terms C-F in equation (9.4) are responsible for one or two quantum transitions,

i.e. induce spin flips (↑↓↔↑↑), (↑↓↔↓↓) and (↑↑↔↓↓). As they do not commute

with the Zeeman Hamiltonian HZ = −~B0,z

∑N
n γnIn,z for N spins In, we can drop

them if B0,z is sufficiently large and are left with the secular dipolar Hamiltonian

HD = ωD

(
IzJz −

1

2
[IxJx + IyJy]

)
,

ωD =
~µ0

4π
γIγJ

1− 3 cos2 θ

r3
ij

,

(5.2)

where θ is the angle between rij and B0 = B0,zêz. Analogous to the discussion of

the hyperfine interaction in chapter 3.1, we look at the static term (∝ IzJz) and the
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flip-flop term ∝ [IxJx + IyJy] separately. The dipolar coupling strength ωD depends

strongly on the spatial separation and decays as ∝ r−3
ij . Hence the unmediated

coupling between distant nuclear spins is extremely weak.

While equation (5.2) describes the mutual interaction between any two nuclear

spins, we generally distinguish the homonuclear interaction between spins In and

Im of the same isotope from the heteronuclear interaction between unlike spins In

and Jm.

Heteronuclear Dipolar Dephasing of Nuclear Spin Magnetisation

The effect of heteronuclear interactions between I and J spins on the coherence

time of I spins is similar to that of an additional, time-dependent external magnetic

field. The heteronuclear flip-flop term can be ignored at large magnetic fields B0,z

as the different nuclear Zeeman splittings for I and J spins strongly suppress this

process[202]. We can view this in the lab frame as the in-plane components of the

I and J spins precessing about B0 = B0,zêz at their respective Larmor frequencies

ω
I/J
L . In the rotating frame of I, the in-plane magnetisation vector of J appears

to rotate at ωJL − ωIL and we can safely discard its influence on I in analogy to the

treatment of the counter-rotating rf field in chapter 3.3.1.

For this reason, the heteronuclear dipolar interaction is commonly treated as a

pure Ising Hamiltonian HIJ
D (t) = ωIJD IzJz(t) with the time-dependence of Jz arising

from homonuclear spin flip-flops among the J spins. This fluctuating offset to

the Larmor frequency of I is responsible for the spin dephasing process of spectral

diffusion. Similar to static resonance offsets, it can be refocused partially by π

pulses. This approach requires the refocusing to take place on a timescale at which

the effective field of J appears static, which can be achieved by using a series of π

pulses and is the basis of dynamic decoupling [203, 204]. We will discuss this concept

in greater detail in chapter 6.
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Homonuclear Dipolar Dephasing of Nuclear Spins Magnetisation

The dipolar interaction between like spins In and Im is the source of two more

echo decay mechanisms. Once again, we can consider the Ising term ∝ In,zIm,z as

an additional external field which shifts the NMR resonance frequency of spin In

by δωL,m ∝ µ0γ
2
I Im,z. When a coherent rf pulse is applied to the spin ensemble,

both In and Im are rotated by the same angle. Consequently, for a π pulse the

resonance frequency of In is instantaneously shifted by 2δωL,m. Not only are we

unable to decouple the two spins with a π pulse sequence, but the application of the rf

pulse strongly accelerates the decoherence arising from homonuclear coupling. This

parasitic effect is referred to as instantaneous diffusion[196, 205, 206]. Unfortunately,

it can only be suppressed partially by reducing the rotation angle of the rf pulses,

which in turn reduces the echo signal amplitude[207–209]. However, it is actively

used in a separate class of solid echo sequences which partially refocus homonuclear

dipolar dephasing (see chapter 6 and e.g. [210–212]).

Unlike their heteronuclear counterparts, homonuclear spin flip-flops are generally

not suppressed by a magnetic field and can limit the Hahn echo decay time. Since

all spins I have approximately the same Larmor precession frequency, the in-plane

component of Im in the rotating frame produces a quasi-static in-plane magnetic

field at the site of In. In this way, it corresponds to a resonant weak rf field and due

to the mutual nature of the interaction, can lead to effective flip-flops between the

two spins. This mechanism is commonly labelled direct flip-flop.

We can therefore conclude that the nuclear spin dynamics in solids in a strong

magnetic field are commonly governed either directly or indirectly by the respective

homonuclear flip-flops amongst spin ensembles I,J , . . . for an otherwise unper-

turbed system. By contrast, instantaneous diffusion as an additional decoherence

mechanism only arises under rf excitation.
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5.2.2 Quadrupolar Coupling in a Strained System

As mentioned in the introduction, self-assembled InGaAs quantum dots are subject

to considerable intrinsic strain gradients due to their strain-driven formation process.

The elastic strain tensor εij is in turn linked to an electric field gradient Vij by the

gradient-elastic tensor Sijkl[39, 169]:

Vij =
∑

k,l=x,y,z

Sijklεkl . (5.3)

Both GaAs and InGaAs are zincblende structures with cubic symmetry. For this

case, the gradient-elastic tensor in Voigt notation has only three non-zero compo-

nents S11, S12 and S44, two of which are further linked by the symmetry property

S12 = −S11/2[213, 214]. Any anisotropic strain will result in a finite electric field gra-

dient in these structures and Vij only vanishes for hydrostatic strain (εxx = εyy = εzz

and εij = 0 for i 6= j)[39].

All stable nuclei in InGaAs quantum dots have magnetic moments I > 1
2

and

therefore possess a non-vanishing quadrupolar moment Q which will couple to the

electric field gradient as[116, 192]

HQ =
~ωQ

6

(
3I2

z′ − I2 + η(I2
x′ − I2

y′)
)
,

ωQ =
3eQVz′z′

~2I(2I − 1)
, η =

Vx′x′ − Vy′y′

Vz′z′
,

(5.4)

where ωQ denotes the quadrupolar coupling strength, η is the asymmetry parameter,

and {êx′ , êy′ , êz′} are the principal axes of Vij.

The intrinsic strain in self-assembled quantum dots gives rise to strong quadrupo-

lar interactions. Here, we assume cylindrical symmetry of the electric field (η = 0)

and an angle θ between the principal axis êz′ and the magnetic field axis êz (a more

general discussion is given in [39, 116]). At high magnetic fields B0,z, the quadrupo-

lar Hamiltonian of equation (5.4) can be treated as a perturbation and causes first
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and second order energy shifts[116]

ω
(1)
Q (Iz → Iz + 1) =1

2
ωQ

(
3 cos2 θ − 1

) (
Iz + 1

2

)
, (5.5)

ω
(2)
Q (Iz → Iz + 1) =

ω2
Q

32ωL

sin2 θ(6Iz(Iz + 1)(1− 17 cos2 θ)−

− 2I(I + 1)(1− 9 cos2 θ + 3(1− 13 cos2 θ)) .

(5.6)

We see that the first order term is zero for the central transition (CT). The

second order contribution vanishes if the electric field gradient is parallel to the

magnetic field (θ = 0) and can generally be neglected for the STs as ω
(2)
Q � ω

(1)
Q . A

schematic level diagram for the 75As and 71Ga spin-3
2

system is shown in figure 5.1a.

B =00,z B 00,z Q 0

I=3/2

I =-3/2z

I =-1/2z

I =+1/2z

I =+3/2z
L Q-

(1)

L Q+
(1)

L Q+
(2)

L

L

L

ST

ST

CT

(a)

(b)

Figure 5.1: (a) Energy levels of an I = 3
2

nuclear spin. NMR transitions in a mag-
netic field B0,z are given by the Larmor frequency ωL (centre). Addi-
tional quadrupolar shifts lift the degeneracy (right). While the CT is

only shifted by a leading second order term ω
(2)
Q , the STs are also af-

fected by the larger first order term ω
(1)
Q . (b) Full NMR spectrum of an

InGaAs quantum dot at B0,z = 8 T under σ+ (blue) and σ− (red) circu-
larly polarised excitation. The stronger broadening of the STs is clearly
distinguishable. Experimental data courtesy of Evgeny Chekhovich. Full
experimental details are given in section 5.4.1 and in [39].
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Representative experimental data for all stable isotopes in an InGaAs quantum

dot is plotted in figure 5.1b and is in excellent agreement with this theoretical

description. The weak second order shift ω
(2)
Q of the CT is found to be much smaller

(10 − 30 kHz at B0,z = 8 T, also see figure 5.7 in section 5.4.1) than the first

order shift ±ω(1)
Q of several MHz observed for the satellite transitions (STs). As

the strain gradually changes throughout the dot, the resulting quadrupolar shifts

are highly inhomogeneous, leading to strong inhomogeneous broadening in cw NMR

measurements.

Figure 5.2: InGaAs unit cell with zincblende crystal structure. The three examples
illustrate different tetrahedrally closest neighbour configurations for the
arsenic sites (blue). Each of the four neighbouring sites can be occupied
by an indium (red) or gallium (green) atom.

Experiments have shown that the quadrupolar broadening observed for 75As is

considerably stronger than that for 71Ga[39]. This is due to a second source of nu-

clear displacement on the atomic scale. The quantum dot is formed by an InGaAs

alloy with zincblende crystal structure. This means that every indium and gal-

lium atom has four anionic nearest neighbours of arsenic in a tetrahedral configura-

tion. By contrast the tetrahedral nearest neighbours of arsenic consists of a random

combination of indium and gallium atoms (see figure 5.2). Consequently, the ar-

senic atoms are subject to an additional local strain and show stronger quadrupolar

shifts[41, 215].
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5.2.3 Quadrupolar Suppression of Dipolar Flip-Flops

We have seen in section 5.2.1 that the nuclear Hahn echo decay time in solids is

commonly limited by spectral diffusion mediated by homonuclear spin flip-flops as

well as instantaneous diffusion due to incomplete reversal of the local field under

the π refocusing pulse. Strong inhomogeneous quadrupolar interactions directly

affect the spectral diffusion mechanism. Even a second order quadrupolar shift ω
(2)
Q

changes the resonance frequencies of adjacent spins of the same isotope sufficiently to

exceed the dipolar coupling strength ωD. Consequently, the spins become “unlike”

and the direct flip-flop term becomes suppressed analogously to the suppression of

heteronuclear spin flip-flops in a magnetic field. In this case, the effect of spectral

diffusion is also quenched as the heteronuclear static term can only introduce a fixed

frequency shift in the absence of flip-flops and is refocused by the Hahn echo. The

remaining dephasing is dominated by instantaneous diffusion.

In self-assembled InGaAs quantum dots, considerable biaxial strain of up to |εb| .

7% has been measured in x-ray[216, 217] and NMR studies[39]. As we discussed in

section 5.2.2, this results in strong inhomogeneous broadening of the NMR transition

lines, with additional local strain acting on 75As due to compositional disorder. As

a consequence, the homonuclear dipolar flip-flop term is suppressed and the nuclear

spin bath dynamics are slowed down noticeably compared to similar lattice matched

structures[183, 184].

This quadrupole-induced nuclear spin freezing in self-assembled quantum dots has

been observed indirectly via its effect on the electron spin lifetime[200] and nuclear

spin relaxation times[114, 115]. A direct demonstration of the effect of strain on

nuclear phase memory times in a GaAs quantum well structure was made by Ono et

al.[218] Most recently, Hahn echo measurements in InGaAs quantum dots revealed

long nuclear phase memory times of up to ∼ 4 ms in excellent agreement with these

previous findings, confirming that the spin bath dynamics in the system are indeed

strongly suppressed[41].
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5.3 Optical and Spin Bath Properties of Sample B

As mentioned in the introduction, the sample used in the work of [41] was not gated

and the absence of charges in the studied dots throughout the duration of the rf

pulse sequence could not be fully ascertained. In this chapter, we study the nuclear

Hahn echo decay in InGaAs quantum dots embedded in the intrinsic region of the

p-i-n diode sample B. Here, we show how the charge occupancy of a dot is reflected

in its bias dependent characteristics and discuss how the parameters for the optical

preparation and detection of the nuclear spin bath polarisation are calibrated.

5.3.1 Bias Dependence of Quantum Dot Properties

As described in chapter 4.3.2, our experiments consist of three distinct stages: optical

preparation of the nuclear spin bath, rf manipulation, and weak optical probing of

the final bath polarisation. In principle, this does not impose major limitations on

the properties required of the studied quantum dot. However, a number of dot and

bias specific characteristics influence the quality and accuracy of the measurement:

a high PL count rate is desirable to minimise the necessary measurement time.

In addition, narrow optical transition linewidths and large hyperfine fields increase

the fitting accuracy and amplitude of the NMR signal derived from changes of the

Overhauser splitting. Finally, a long nuclear spin relaxation time T1,n is favourable

as it is indicative of the absence of charges in the dot and saves us from having to

correct for the T1 decay of the Overhauser splitting.

In order to identify suitable quantum dot candidates for NMR experiments, we

perform bias dependent PL measurements as illustrated in figure 2.5 on a large

number of dots in sample B. Since all of our NMR experiments are done at B0,z =

8 T, we use the same field in our characterisation and calibration measurements. The

combined PL intensity profile of these ∼ 50 measurements is shown as a dashed grey

curve in figure 5.3a together with representative PL curves for the neutral (blue) and
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Figure 5.3: Bias dependence of quantum dot parameters in sample B at B0,z =
8 T. (a) Normalised combined PL intensity of ∼ 50 quantum dots as a
function of the applied diode bias (dashed grey line). Individual intensity
profiles for the X+ (red), X0 (blue) and X- (green) transitions in dot
B2 are shown as an example. (b) Nuclear spin relaxation time T1,n at
different bias voltages. Blue data points were obtained from dot B2 and
red data points from several other dots.

singly charged (red and green) exciton transitions in an individual dot (B2). The

PL intensities vary from dot to dot due to the narrow cavity resonance of sample

B. Highest intensities are typically found for the negative trion X-, although the

optical transition lines in this bias region are slightly broader than in the X0 region

(& 30 µeV compared to & 20 µeV). Since a similar tendency is observed for the

positive trion, we focus on identifying dots with a particularly strong X0 PL signal

for our experiments.

As we saw in chapter 3.1.2, there are several effective DNP channels under high

power circularly polarised optical excitation. Both charged and neutral exciton

states can be used for nuclear spin pumping. While we detect Overhauser shifts of
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Ehf & 50 µeV throughout the bias range of the diode, the highest spin bath polari-

sations (Ehf ∼ 90 µeV) are measured under forward biases where charge extraction

is fastest.

Due to the p-i-n diode structure of our sample, we can empty the intrinsic region

in which the dot layer is located of all charges under large reverse biases. In order

to verify that this is indeed the case, we study the nuclear spin polarisation decay at

various diode biases. As we saw in chapter 3.2.2, nuclear spin relaxation dynamics

are largely governed by hyperfine-induced processes. Therefore, the presence of

charge carriers in a quantum dot strongly reduces T1,n.

Experimentally, we measure the spin bath polarisation decay by adopting the

pump-probe scheme introduced in chapter 4.3.2. However, instead of applying an rf

field to the sample we use a variable delay between pump and probe pulse during

which the bath polarisation evolves in the dark without rf excitation. Our results,

shown in figure 5.3b, are in good agreement with the bias dependent behaviour

reported by other groups. We observe fast decay on the order of T1,n ≈ 100− 200 s

in the X+ to X0 transition region where fast charge cotunnelling can depolarise the

spin bath quickly via the hyperfine flip-flop process[115, 182]. Extremely long spin

relaxation times of T1,n ≥ 1 h under large reverse biases Vbias ≤ −3 V confirm our

expectation that the dot is free of charges.

To summarise, we find that different bias regions offer favourable properties for

each of the three stages in the experiment cycle. Accordingly, we switch the diode

bias during the experiment cycle in the NMR measurements presented in this chap-

ter. We choose a forward bias Vpump = 1.5 V for strong nuclear polarisation build-

up during the pump stage. Rf excitation is performed at a large reverse bias

Vrf = −4.5 V where no measurable T1 decay is detected and the dot is free of

charge carriers. Finally, a probe bias in the region Vprobe = −1.5 . . . 0 V is selected

dot-specifically for optimal signal intensity and PL transition linewidth.
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5.3.2 Pump and Probe Pulse Calibration

In addition to the applied voltage bias, several other pump and probe parameters

need to be considered. In chapter 3.1.2, we discussed how the feedback of nuclear

spin alignment on the polarisation rate can lead to bistable regions in the Overhauser

splitting[143–145]. Under non-resonant optical pumping, this behaviour is observed

for the σ− excitation branch in InGaAs quantum dots (see figure 3.2). While this

bistability leads to large Overhauser splittings at comparatively low optical pumping

powers, it can equally cause a sudden large-scale depolarisation of the spin bath

under optical excitation with the linearly polarised probe pulse if the negative DNP

feedback is triggered. Therefore, we avoid the bistability in the NMR measurements

by preparing the spin bath under σ+ excitation.
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Figure 5.4: Dependence of the Overhauser field induced exciton transition energy
splitting Ehf at B0,z = 8 T on the optical excitation pulse time. (a)
Increase of Ehf under strong σ+ polarised excitation for an initially
unpolarised spin bath (Ehf(0) = 0). (b) Decrease of Ehf under weak,
linearly polarised optical excitation for an initially polarised spin bath
(Ehf(0) ≈ Ehf,max). Red lines mark the chosen pump and probe times
for NMR experiments.

The build-up of DNP is not an instantaneous process. To characterise the rise time

under σ+ excitation at B0,z = 8 T, we perform a series of pump-probe experiments

as described in chapter 4.3.2 with varying pump pulse duration and without rf ex-
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citation. Figure 5.4a shows the result of a typical nuclear spin polarisation build-up

measurement. The X0 hyperfine splitting Ehf is depicted as a function of the pump

pulse excitation time. Using non-resonant optical excitation powers far beyond the

saturation level PSat ≈ 20 µW of a neutral exciton (P ≈ 50 · PSat), we observe an

increase of the Overhauser splitting with increasing pump time from Ehf(0) = 0 up

to a saturation value Ehf,max ∼ 90 µeV (polarisation degree ρ ∼ 53%). For NMR

experiments we choose a pump pulse time tpump = 6.5 s just beyond the onset of

saturation. Longer pump times would slightly increase the stability of the measure-

ment against alignment drifts. However, we have to take into account that tpump

dominates the measurement time: doubling the pump time would nearly double the

experiment cycle time tcycle as well.

The probe pulse duration is calibrated in a similar fashion, again using the familiar

pump-probe scheme without rf excitation. The low power, linearly polarised optical

probe pulse depolarises the spin bath over time. Therefore, we have to find a probe

pulse power and duration which does not influence the NMR signal, i.e. the rf

induced change in the Overhauser splitting ∆Ehf , noticeably. Figure 5.4b shows

the probe time dependent decay of the Overhauser splitting for probe pulses at

X0 saturation power PSat (open circles) and at P = PSat/10 (triangles). As expected,

faster decay occurs at the higher probe pulse power. On the other hand, the stronger

PL signal also reduces the required CCD exposure time for intensities comparable

to those obtained at lower probe power. From a more detailed study we conclude

that the lower probe power provides a slightly stronger signal for pulse durations

where no measurable decay was observed. We therefore choose Pprobe = PSat/10 and

tprobe = 2 ms for the experiments.
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5.4 Calibration of the Pulsed NMR Experimental

Parameters

Figure 5.5a shows the full experiment cycle for pulsed ODNMR measurements. As

described in chapter 4.3.2, it follows a pump-rf-probe scheme. In the previous section

we discussed the calibration of the optical pump and probe parameters. Here, we

focus on the additional calibration steps required for the rf excitation stage.

CarrierSweep

100W
Amp

30W
Amp

tpump

tsweep

trf

tprobe

Pump laser

Adiabatic rf sweeps

Coherent rf pulses

Probe laser

(a) (b)

tcycle

Generator

Mixer

Relay

StubStub

rf coil

Figure 5.5: (a) The experiment cycle tcycle for pulsed NMR experiments: The spin
bath is polarised by a pump laser for a time tpump before the CT popu-
lation difference is enhanced by adiabatic rf sweeps during tsweep. After
coherent rf excitation of the CT for a time trf , a probe laser pulse is ap-
plied for tprobe. (b) Setup for the two-stage rf excitation. The adiabatic
sweep is formed by mixing the carrier frequency νrf with a sweep sig-
nal. The coherent pulse at νrf is sent directly to a high power amplifier.
Both excitation paths are stub matched and a mechanical relay is used
to select which signal is sent to the rf coil.

All coherent NMR experiments are done on CTs as the inhomogeneous NMR

linewidths of the STs are far too broad for resonant driving(see figure 5.1b and

[39]). However, after the pump pulse, the spin bath is strongly polarised and the

populations of the Iz = ±1
2

levels are quite small. This can easily be seen when

considering a fully polarised spin bath. In this case, all spins of the 75As and

71Ga isotopes studied in this work would be in the Iz = +3
2

state and the population

of the Iz = ±1
2

states would be zero. Consequently, no change in the respective
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populations would be induced under resonant rf excitation of the CT.

In order to increase the CT population difference and NMR signal amplitude,

we use an adiabatic population transfer technique prior to application of the res-

onant hard pulse sequence[41, 219]. In this section we will first discuss how we

determine the NMR resonance frequency and inhomogeneous linewidth of a given

isotope before introducing the adiabatic inversion technique. We will conclude with

the demonstration of Rabi oscillations of the Overhauser splitting which are used to

calibrate the rf pulse durations for coherent spin rotations.

5.4.1 Resonance Frequency Calibration with Inverse NMR

I =+3/2
z

I =+1/2
z

I =-1/2
z

I =-3/2
z

ν ν ν

Figure 5.6: Schematic of the inverse NMR technique for a spin-3
2

system. Optical
excitation creates a strong spin bath polarisation ρ ∼ 65% (left panel).
Next, a broad rf excitation spectrum with gap δν is applied (blue). If
the gap does not overlap with any nuclear spin transition, all spin state
populations are equalised in saturation (ρ = 0%, centre panel). If the gap
overlaps with a transition, two decoupled systems are saturated instead,
resulting in a non-zero final nuclear polarisation ρ > 0% (right panel).

The gyromagnetic ratios γ∗ of the nuclear isotopes in InGaAs quantum dots are

well-known (see table 3.1) and it is easy to determine the Larmor frequency νL =

γ∗B0,z for a given magnetic field. However, as the sample position is generally

slightly offset from the centre of the superconducting magnet (see setup in figure

4.1), the exact magnetic field at the dot location is unknown. In addition, we want

to measure the inhomogeneous linewidth ∆νinh of the nuclear transition that we
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intend to drive resonantly to ensure that the coherent rf excitation pulse will have

sufficient bandwidth to fulfil the hard pulse condition ω1 � ∆νinh
2

(see section 3.3.2).

We determine the nuclear resonance frequencies νL using a broadband cw NMR

technique dubbed inverse NMR which was recently introduced by Chekhovich et

al.[39] The technique is illustrated in figure 5.6. In contrast to the conventional

saturation NMR approach of depolarisation at a fixed frequency or within a narrow

frequency band[116, 220], we depolarise all spins within a broad band covering the

entire inhomogeneous NMR resonance of a given isotope except for a narrow gap

of width δν = 8 kHz (for 71Ga) or δν = 24 kHz (for 75As). Under this excitation

scheme, the isotope is fully depolarised if none of the NMR transitions overlap

with the gap. By contrast, whenever the gap is in resonance with a transition

mI ↔ mI + 1, the populations of states Iz = −I . . .mI and Iz = mI + 1 . . . I are
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Figure 5.7: Measured hyperfine shift ∆Ehf as a function of the inverse NMR gap
central frequency ν at B0,z = 8 T. ∆Ehf is given relative to full depolar-
isation of the respective isotope. Data for the CTs of 75As (circles) and
71Ga (squares) is fitted with Gaussian functions (red lines) to obtain the
inhomogeneous NMR linewidths ∆νinh.
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equalised independently, leading to an enhancement of the NMR signal by up to

(I + 1/2)3 compared to standard saturation techniques[39].

Figure 5.7 shows the change in the measured hyperfine shift ∆Ehf in an inverse

NMR experiment as a function of the rf gap central frequency ν for the 75As (cir-

cles) and 71Ga (squares) CTs at B0,z = 8 T. Fitting with a Gaussian function (red

lines) gives an NMR resonance frequency νL(75As) = 58.81 MHz and an inhomo-

geneously broadened linewidth ∆νinh(75As) ≈ 24 kHz for 75As. The correspond-

ing 71Ga resonance linewidth at νL(71Ga) = 104.80 MHz is resolution limited with

∆νinh(71Ga) ≈ 8 kHz. We can calculate the respective ensemble dephasing times

from T ∗2,n = (2π∆νinh)−1, obtaining T ∗2,n(75As) & 6.5 µs and T ∗2,n(71Ga) & 19.0 µs in

good agreement with previous findings[39, 41]. For both isotopes the inhomogeneous

broadening is caused by inhomogeneous second order quadrupolar interactions. The

broader 75As NMR linewidth ∆νinh can be explained by the influence of additional

compositional disorder as discussed in section 5.2.2[41].

5.4.2 Adiabatic Population Transfer

Since we perform all pulsed experiments on the CT, we are interested in a large

population difference between the Iz = ±1
2

states. Unfortunately, this population

difference is small for a strongly polarised spin bath with I ≥ 3
2

and would be zero

for a fully polarised spin bath where neither state would be populated. Instead,

the largest and smallest populations are generally those of the outermost states

(Iz = ±3
2

for 75As and 71Ga, see left panel of figure 5.6). However, we can transfer

these populations to the Iz = ±1
2

states by adiabatic inversion.

Following the optical pumping, the nuclear spin bath is polarised along êz. We

saw in chapter 3.3.2 that the time evolution of the magnetisation in the rotating

frame in the presence of an rf field with amplitude ω1 is described by a precession

about the vector Ω = (ω1, 0,−∆)T. At large detuning ∆ = ωrf − ωL from the

resonance frequency, the Bloch equation (3.28) approximately describes a rotation
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about êz. If we keep the rf field amplitude constant and vary the detuning slowly

at a rate ν̇, the magnetisation vector will follow the motion of Ω adiabatically. In

this way, we can invert the population of a two-level system by scanning across the

resonance from −∆ to +∆[192]. The probability that the population remains in its

initial state after the sweep is described by the Landau-Zener tunnelling formula

pdiab = e−ω
2
1/ν̇ . (5.7)

If pdiab � 1, adiabatic inversion occurs and the populations are swapped. We see

that this is the case for large rf amplitudes ω1 and slow sweep rates ν̇[221]. This

technique has recently been used on its own for the detection of NMR in InGaAs

quantum dots by fully inverting the nuclear bath polarisation[40].
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Figure 5.8: Adiabatic sweep calibration for 75As at B0,z = 8 T. (a) Dependence of
the Iz = ±1

2
population contrast ∆Ehf on the rf pulse sweep rate ν̇

for a fixed sweep range ∆ν ≈ 8.5 MHz. (b) Population contrast ∆Ehf

as a function of the sweep range ∆ν = νf − νi for a fixed sweep rate
ν̇ = 5 MHz/s.

Figure 5.5b illustrates how the chirped rf pulses for adiabatic inversion of the

ST transitions are formed in our NMR setup: a sweep envelope (blue) with initial

frequency νi, final frequency νf and sweep rate ν̇ is mixed with a carrier frequency
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νrf (red)[41]. We use broadband matching (see chapter 4.3.1) for the amplified sweep

signal as it covers a range of several MHz. The rf amplitudes of the swept pulses in

the rotating frame are on the order of B1 ≈ 0.1 mT.

For calibration of the sweep rate we performed pump-rf-probe experiments using

adiabatic sweeps with fixed sweep range ∆ν = νf − νi and with and without a

subsequent coherent π pulse applied to the CT. The difference between the two

curves is depicted in figure 5.8a for 75As and corresponds to the full NMR signal

amplitude ∆Ehf for a given sweep rate. We can clearly see the decreasing signal

contrast at higher sweep rates where the adiabatic condition is no longer fulfilled.

For adiabatic preparation in pulsed NMR experiments we choose ν̇(75As) = 5 MHz/s

and ν̇(71Ga) = 6 MHz/s. From analogous measurements with fixed sweep rate and

varying range, we determine the maximum width of the STs (see figure 5.8b for

75As). Based on such calibration measurements, we choose ∆ν(75As) = 14 MHz and

∆ν(71Ga) = 3.5 MHz for sample B. We note that the coherent π pulse had already

been calibrated prior to the experiments shown in figure 5.8. However, qualitative

results can also be obtained with a hard pulse that is not exactly a π pulse, albeit

with smaller signal contrast.

5.4.3 Hard Pulse Calibration

Once the populations of Iz = ±1
2

have been maximised and minimised respectively,

the isotope is fully prepared for coherent rf experiments. In chapter 3.3.2, we

saw that the magnetisation along the magnetic field axis êz shows an exponen-

tially damped oscillating behaviour under resonant driving if the rf amplitude is

sufficiently large. For InGaAs quantum dots with extremely long nuclear spin relax-

ation times T1,n (see section 5.3.1), this condition is met when the oscillation period

is much shorter than the nuclear spin phase memory time TRabi � TM,n.

We are able to observe these Rabi oscillations by using the full experiment cycle

of figure 5.5a with varying hard pulse times trf . The resonant rf excitation and the
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chirped pulse are provided by the same generator (see figure 5.5b). However, we use

a 100 W class AB amplifier for hard pulse excitation and the circuit is stub matched

for the rf driving frequency νrf as described in chapter 4.3.1. A mechanical relay

selects the rf path connected to the feeding coil.
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Figure 5.9: Hard pulse rf calibration measurements. The hyperfine shift ∆Ehf is
shown as a function of the duration trf of a coherent rf pulse applied to the
CT of (a) 75As (blue circles) and (b) 71Ga (green squares) at B0,z = 8 T.
Rabi periods TRabi and corresponding rf fields B1 are extracted from
fitting with an exponentially decaying cosine function (solid red lines).

The results of the Rabi oscillation experiments for 75As and 71Ga are shown in

figures 5.9a and b, respectively. From the fitting with an exponentially decaying

cosine function (solid red lines), we obtain Rabi periods TRabi(
75As) = 17.0 µs

and TRabi(
71Ga) = 11.5 µs, which correspond to rf fields B1(75As) = 4.0 mT and

B1(71Ga) = 3.3 mT in the rotating frame with B1 = 1
2γ∗TRabi

. Here we take into

account that the Rabi oscillation frequency of the CT for a spin-3
2

is twice the

frequency ω1 due to the dipolar transition matrix element (see equation (3.20)).
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We note that the fits used to extract the Rabi period (red lines) are slightly

phase shifted, corresponding to a 2 µs delay. This is because the fitting implicitly

assumes that the pulse area is linearly proportional to the pulse time trf . While

this assumption is justified for long pulses, it fails at short timescales where the

rise time of the amplifier gating circuit (trise ≈ 440 ns) dominates the pulse profile.

We extract the required pulse duration for a π pulse tπ from the location of the

first Rabi oscillation minimum and set tπ/2 = tπ/2. This calibration proves to

be sufficiently accurate for Hahn echo experiments where small pulse errors affect

the echo signal amplitude only marginally. In chapter 6, we will introduce a more

accurate calibration method which is required for longer NMR pulse sequences.

5.5 Long Nuclear Spin Phase Memory Times in Hahn

Echo Experiments

We saw in the inverse NMR calibration measurements that the inhomogeneously

broadened CT linewidths of the nuclear spins in InGaAs quantum dots are on

the order of ∆νinh ≈ 10 − 30 kHz, corresponding to ensemble dephasing times of

T ∗2,n ≈ 5− 20 µs. A widespread NMR technique used to remove inhomogeneous

broadening and recover the homogeneous linewidth is the Hahn echo sequence

π
2
− τ − π − τ

(
−π

2

)
consisting of a coherent initialisation pulse π

2
and a refocus-

ing π pulse separated by a delay time τ , with detection of the NMR signal after

another time interval τ [199]. The final π
2

pulse is not strictly part of the sequence

but is required in the optically detected NMR scheme as our measurement is only

sensitive to changes in the magnetisation along the magnetic field axis êz.

Figure 5.10 illustrates the effect of the Hahn echo pulse sequence on a nuclear

spin ensemble in the rotating frame. Starting with a strongly polarised ensemble

with magnetisation oriented along the axis êz of the external magnetic field, a π
2

pulse rotates the magnetisation vector into the x-y plane. During the first delay τ ,
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Figure 5.10: The Hahn echo sequence in an ODNMR measurement consists of three
coherent pulses separated by delays τ : (a) An initial π

2
pulse rotates

the êz polarised nuclear spins into the x-y plane. (b) After a delay τ
during which the spin ensemble has been subject to homogeneous and
inhomogeneous dephasing, a π pulse is applied. (c) The inhomogeneous
dephasing is refocused over another time period τ . (d) A final π

2
pulse

realigns the refocused magnetisation vector with the êz axis for optical
read-out.

the spin ensemble dephases with a time constant T ∗2,n due to magnetic field inho-

mogeneities. Neglecting homogeneous decoherence sources, a spin with resonance

frequency ωL = ωrf will remain static in the rotating frame. By contrast, any spin

with resonance frequency ωrf±∆ω will begin to precess about the êz axis in a clock-

wise or anticlockwise fashion. If we were to probe the ensemble polarisation at this

point by applying a −π
2

pulse we would measure the free induction decay described

by T ∗2,n. Instead, we apply a π pulse which flips the dephased spin ensemble about

the rotation axis. Crucially, spins with a resonance offset will continue to precess

in the same direction as before. Therefore, after another delay τ , the ensemble

has refocused itself and upon application of the second π
2

pulse we can detect the

remaining magnetisation optically. With varying delay τ , a magnetisation decay

over the timescale THE
M,n > T ∗2,n is observed, arising from homogeneous decoherence

sources that affect the entire ensemble in the same way.

We apply the Hahn echo sequence to the CTs of the 75As and 71Ga spin ensembles

in an InGaAs quantum dot on sample B. As before, we use a static external magnetic

field B0,z = 8 T and employ the pump-rf-probe scheme introduced in figure 5.5a

with the experimental parameters determined in the previous sections. For each

data point with fixed delay τ , we also take a reference measurement with a single
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π
2

rf pulse, corresponding to full depolarisation of the probed ensemble. As this

measurement is independent of τ , it allows us to correct for small drifts of the

Zeeman splitting during the measurement time of up to 24 h.
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Figure 5.11: Nuclear Hahn echo amplitude ∆Ehf at B0,z = 8 T for 75As (blue circles)
and 71Ga (green squares) as a function of the total free evolution time
2τ before and after the π refocusing pulse. Phase memory times THE

M,n

are obtained from compressed exponential fits ∝ e−(2τ/THE
M,n)β (solid red

lines).

Figure 5.11 shows representative results from 75As (circles) and 71Ga (squares)

Hahn echo measurements at B0,z = 8 T with varying pulse delays τ . The echo

amplitude ∆Ehf is given as the difference between the X0 optical transition energy

splittings in the Hahn echo and reference measurements. Solid red lines show the

fitting with a compressed exponential function (CEF)[222, 223]

∆Ehf(2τ) = ∆Ehf(0)e−(2τ/THE
M,n)β , (5.8)

with nuclear phase memory time THE
M,n and compression factor β. We extract the

respective phase memory times THE
M,n(75As) = 3.97±0.25 ms and THE

M,n(71Ga) = 1.37±
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0.23 ms. These values exceed the ensemble dephasing times T ∗2,n derived from the

inhomogeneous linewidth by more than two orders of magnitude. The errors stated

correspond to 90% confidence intervals and the compression factors for the best fits

are β(75As) = 1.57 ± 0.19 and β(71Ga) = 1.33 ± 0.28. The compression factors

indicate that the underlying spin bath dynamics limiting THE
M,n contain contributions

with both quadratic (β = 2, Gaussian) and single (β = 1, Lorentzian) exponential

decay behaviours[209, 222]. However, we refrain from a more detailed discussion

of β as the error margins for this parameter are too large to justify a physical

interpretation and similar THE
M,n can be obtained for a fixed β = 1 or β = 2. We

note that the weaker NMR signal amplitude ∆Ehf(0) of 71Ga is expected as the

stoichiometric ratio of 71Ga in the dot is considerably lower than that of 75As.
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The results of additional 75As Hahn echo decay measurements on different quan-

tum dots in sample B are shown in figure 5.12a. The phase memory times THE
M,n

extracted from fitting with equation (5.8) are shown in the left half of figure 5.12c.

We find that the results presented in figure 5.11 (dot B3) are well reproducible

within the error margins.

For comparison, we also perform Hahn echo measurements on the 75As CT of

quantum dots in the gate-free sample A. This sample originates from the same

wafer as the sample from which the results reported in [41] were obtained. Figure

5.12b shows the nuclear echo decay curves for five dots A1-A5, with fitted phase

memory times THE
M,n displayed in the right half of figure 5.12c. We note that thanks

to the larger amplitude ∆Ehf(0) in sample A, we can obtain more accurate fits for

the decay times. The phase memory times in sample A are in very good agreement

with the reported values from [41] and only marginally longer than those in the

p-i-n diode sample. The small difference between the two samples can be attributed

to different indium to gallium ratios, which will affect the dynamics of the system-

environment coupling between the probed 75As ensemble and the other isotopes in

the dot as the relative sizes of the 115In, 69Ga and 71Ga ensembles are different.

To summarise, Hahn echo experiments on 75As and 71Ga in empty quantum dots

on sample B reveal nuclear phase memory times THE
M,n which are in very good agree-

ment with the values presented in [41] for a gate-free sample. We can therefore

confirm the previous assumption that the quantum dots in these experiments were

indeed free of charge carriers and the observed millisecond THE
M,n timescales were not

limited by charge-mediated nuclear spin interactions.

For both isotopes, THE
M,n is noticeably longer than in similar strain-free structures

such as GaAs/AlGaAs interface quantum dots, where CT Hahn echo experiments

on 71Ga gave decay times of THE
M,n(71Ga) = 360 ± 40 µs at B0,z = 3.55 T[184], or

GaAs/AlGaAs quantum wells, where 75As CT phase memory times of THE
M,n(75As) .

800 µs were found at B0,z ≤ 2 T[183]. As discussed in section 5.2.3, this is due
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to the presence of strong inhomogeneous quadrupolar shifts which suppress the

homonuclear dipolar flip-flop mechanism[41, 169, 200].

5.6 Conclusions

Self-assembled InGaAs quantum dots are strongly strained systems and are therefore

subject to significant electric field gradients. As all isotopes in the dot have magnetic

moments I > 1
2
, their cw NMR spectra are strongly inhomogeneously broadened by

quadrupolar interactions. For the CTs of 75As and 71Ga we measured ∆νinh(75As) ≈

24 kHz and ∆νinh(71Ga) ≈ 8 kHz in charge-free quantum dots at B0,z = 8 T.

Using pulsed NMR and applying Hahn echo sequences we were able to refocus the

inhomogeneous quadrupolar broadening and measure nuclear spin phase memory

times THE
M,n(75As) = 3.97± 0.23 ms and THE

M,n(71Ga) = 1.37± 0.25 ms.

These results are in very good agreement with the previous findings reported

in [41] for measurements in a gate-free sample. We can therefore conclude that

the latter results were also obtained under charge-free conditions and not affected

by charge-mediated nuclear spin interactions. The measured decay times are ∼ 5

times longer than comparable THE
M,n obtained in strain-free structures, which can be

explained by a partial suppression of the dominant nuclear decoherence mechanism

of spectral diffusion. This process is governed by homonuclear spin flip-flops within

the spin environment, which in an unstrained structure occur between neighbouring

spins with identical Zeeman splitting. In an InGaAs quantum dot, the process

is quenched as the different quadrupolar shifts of neighbouring spins make spin

flip-flops energetically forbidden. The measured phase memory times are therefore

limited by a combination of instantaneous diffusion and possibly spectral diffusion

due to residual direct nuclear spin flip-flops.
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6 Suppression of Spin Bath

Decoherence under Multiple Pulse

NMR

6.1 Introduction

We saw in the previous chapter that the nuclear spin phase memory times THE
M,n &

1 ms in self-assembled InGaAs quantum dots under Hahn echo pulse sequences are

∼ 5 times longer than in comparable lattice-matched nanostructures[183, 184]. This

is due to strongly inhomogeneous strain-induced quadrupolar interactions which

quench the homonuclear dipolar flip-flop term[41, 200]. Consequently, spectral dif-

fusion as a source of electron spin decoherence is suppressed[171] - a notable potential

advantage over strain-free systems. However, the remaining interactions with the nu-

clear spin bath are still expected to limit the central spin coherence on much shorter

timescales than those observed for qubit systems in a nuclear-spin-free environment,

such as defect centres in isotopically pure diamond[13] or donors in 28Si[11, 224].

Our approach towards increasing the T2,e in InGaAs quantum dots directly targets

the nuclear spin bath as a source of decoherence. In this chapter, we are exploring

multiple pulse NMR techniques which allow us to control and suppress the nuclear

spin bath decoherence and thus to create a predictably evolving environment for a

confined electron spin. We consider the spin bath as consisting of two “sub-baths”.
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The spin ensemble of the probed isotope is denoted as In whereas the remaining

nuclear spins of the other isotopes in the dot are considered as Jm. The Hahn echo

decay of In is limited by a combination of several contributions including the nuclear

spin relaxation time T1,n, dipolar coupling to the Jm sub-bath and nearby charge

spins, instantaneous diffusion introduced by the rf pulses Hrf(t) and arising from

the diagonal homonuclear interaction term, and the remaining homonuclear dipolar

flip-flops. In a strong external magnetic field B0,z we can summarise the dynamics

of a nuclear spin sub-ensemble In in the rotating frame with a Hamiltonian

Htotal = HQ +Hhom
dd +HIJ(t) +HI−env(t) +Hrf(t) , (6.1)

whereHQ denotes the Larmor resonance offsets due to the inhomogeneous quadrupo-

lar interaction, Hhom
dd is the homonuclear dipolar coupling Hamiltonian, HIJ(t) de-

scribes the time-dependent heteronuclear dipolar interaction and HI−env(t) contains

additional terms including T1,n processes and coupling to charge spins.

Different experimental techniques exist to selectively remove each of the contri-

butions to the spin bath decoherence of In. Because of the strong suppression of

the nuclear spin diffusion in a strained quantum dot, the nuclear spin relaxation

time T1,n & 1 h is much slower than the pure dephasing processes[85, 115]. Its

contribution on the few-millisecond timescales of the Hahn echo decay is therefore

negligible (see chapter 5.3.1). Similarly, we saw in the previous chapter that we

have a stable, charge-free environment in both of the samples studied in this work.

While the dephasing due to the static resonance offset of the quadrupolar Hamil-

tonian HQ is eliminated by a Hahn echo, the presence of the second nuclear spin

sub-bath Jm gives rise to an additional, fluctuating resonance offset. We note that

the time-dependence of HIJ(t) can be removed if we describe the evolution of the

sub-bath Jm in equation (6.1) explicitly by a Hamiltonian HJ [225].
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The problem of refocusing spin dephasing arising from interaction of a central spin

with its “noisy” environment has attracted a lot of attention in recent years and has

been addressed successfully with the design of robust dynamical decoupling (DD)

sequences[203, 204]. DD is based on the principle that a π pulse can refocus any

dephasing due to interactions which couple linearly to the spin operator I as long

as the dephasing is slow compared to time intervals τ before and after the pulse.

Purely static resonance offsets are refocused fully by a Hahn echo. By contrast,

the suppression of decay due to coupling to the slowly evolving environment can be

improved by applying a series of π pulses with shorter pulse spacings 2τ . Here, we

are adopting this approach using Carr-Purcell (-Meiboom-Gill) sequences[226, 227]

with constant pulse separation to eliminate the decoherence of nuclear spins due to

HIJ(t) in equation (6.1) and to “decouple” the nuclear spin sub-ensemble In from

the remaining nuclear spins Jm in the dot.

Nuclear spin dephasing due to instantaneous diffusion is an artefact of the pulsed

NMR measurement technique used to obtain TM,n: the static term ∝ In,zIm,z of

the homonuclear dipolar interaction Hhom
dd contributes to TM,n as the magnitude of

the local field of each spin In in the rotating frame is altered when the ensemble

is resonantly driven (described by the rf Hamiltonian Hrf(t) in equation (6.1)).

Together with the direct (homonuclear) dipolar flip-flop term, this contribution can

be suppressed by reducing the pulse rotation angles, which unfortunately comes at

the cost of a reduced echo amplitude[209, 228].

A different class of so-called solid echo sequences consisting of a series of π
2

pulses

with phase shifted carriers is very effective at refocusing dephasing due to the

homonuclear dipolar Hamiltonian Hhom
dd [210, 229]. Generally, these sequences sup-

press the homonuclear dipolar broadening selectively and only rescale the coupling

strength of terms that are linear in I, such as HQ and HIJ(t). This is a desir-

able property for NMR spectroscopy in systems where dominant dipolar broadening

masks a weak inhomogeneous contribution (e.g. chemical shifts)[230, 231].
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In this chapter, we aim to bring together the respective advantages of dynamical

decoupling sequences and solid echoes in a new class of NMR pulse sequences under

which the nuclear spin bath evolves in a predictable way. Although addition of π

pulses to solid echo sequences has been used before to refocus both dipolar and

inhomogeneous dephasing in Si:P[232] and NV centres[13], no systematic analysis of

such combined sequences has been reported to date. Based on established solid echo

sequences such as WAHUHA[210], MREV8[211, 212] and BR24[233], we use average

Hamiltonian theory (AHT)[210, 230] calculations to design a set of combined echo

sequences incorporating π pulses. Under these new sequences we observe an increase

of the measured nuclear spin coherence time by a factor of & 2.5 − 3 compared to

the Hahn echo decay for 75As and 71Ga nuclear spins.

After an introduction to the concepts of dynamical decoupling and average Hamil-

tonian theory in sections 6.2.1 and 6.2.2, we develop several new combined echo

sequences in section 6.2.3. Although the measurements in this chapter are concep-

tually similar to the previous Hahn echo experiments, the multiple pulse sequences

require a far more accurate calibration of pulse durations and carrier phases. This

is discussed in section 6.3. The results of our decoupling experiments and a theoret-

ical interpretation of the observed significantly extended phase memory times are

presented in section 6.4. Finally, we demonstrate the capability of combined echo

sequences to increase the nuclear spin bath coherence experimentally and discuss

possible origins of performance limitations for these sequences in section 6.5.

6.2 Theory of Multiple Pulse NMR

In this section we first briefly review the principle of dynamical decoupling (DD) and

illustrate how multiple pulse sequences can decouple a spin or spin ensemble from

its environment by refocusing the dephasing introduced by the system-environment

interaction. We then review average Hamiltonian theory (AHT), a powerful analysis
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tool which allows the expected system evolution under an rf pulse cycle to be exam-

ined. In the last part, we use AHT to design and characterise a novel set of multiple

pulse NMR sequences which eliminate both dipolar and inhomogeneous dephasing

in the nuclear spin bath.

6.2.1 Dynamical Decoupling
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Figure 6.1: Illustration of the Hahn echo (HE) sequence (a) and the multiple pulse
Carr-Purcell(-Meiboom-Gill) CP(MG) decoupling sequences (b) and (c).
In the experiments presented in section 6.4, we use sequences with alter-
nating π pulse carrier phases. Two-pulse versions of these alternating-
phase sequences APCP(MG) are shown in (d) and (e), respectively. Ini-
tial and final π

2
pulses are marked in blue and π pulses are shown in

green. X, Y, X̄ and Ȳ indicate the in-plane rotation axes corresponding
to a carrier phase ϕ(X) = 0°, ϕ(Y) = 90°, ϕ(X̄) = 180° or ϕ(Ȳ) = 270.0°

of the respective pulse.

In chapter 5, we demonstrated how the dephasing of a nuclear spin ensemble

In due to a static inhomogeneous strain field can be refocused by a Hahn echo

sequence (figure 6.1a). Interactions such as the heteronuclear coupling with different

spin species Jm or coupling to charge spins in the dot environment can give rise

to additional time-dependent local fields Bloc(t) acting on the spins In. In such

cases, the efficiency of a Hahn echo in recovering the phase memory depends on
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the correlation time τc associated with the dephasing process. If τc exceeds the free

evolution time during the sequence τevol = 2τ , the local field appears quasistatic and

its effect on the spin bath dephasing is refocused. For shorter τc < τevol, the local

field is dynamic and the refocusing becomes incomplete[203, 204].

Consequently, the timescale on which we can eliminate the effects of Bloc(t) with

a Hahn echo sequence is limited by the time intervals τ before and after the π pulse.

However, it is possible to increase the refocusing efficiency by adding more control

pulse cycles τ − π − τ to the sequence. Even with just two pulses, the control

period 2τ is already halved compared to a Hahn echo sequence and we can eliminate

dephasing over timescales τc > τevol/2. With increasing control pulse number nπ, the

sequence is capable of decoupling noise with shorter correlation time τc & τevol/nπ.

This approach towards increasing the phase memory time is referred to as dynamical

decoupling (DD). Its efficiency depends strongly on the spectral profiles of the time-

dependent sources of dephasing.

The oldest and best-known DD sequence was originally developed to reduce the

acquisition time of Hahn echo experiments and is formed by a series of equally spaced

π pulses. Rotations of the nuclear magnetisation about the in-plane axes êx and êy

in the rotating frame are implemented experimentally by relative phase shifts of the

rf pulse carriers. If the carriers of the initial and final π
2

pulses are in phase with

those of the π pulses, we refer to the pulse series as a Carr-Purcell (CP) sequence

(figure 6.1b)[226]. By contrast, if the π pulse carrier phases are orthogonal to those

of the π
2

pulses, it is labelled as a Carr-Purcell-Meiboom-Gill (CPMG) sequence

(figure 6.1c)[227].

In recent years, several tailored DD sequences with varied pulse separations have

been developed to increase the decoupling efficiency for specific noise spectra[204,

234]. Seminal contributions were made by Khodjasteh and Lidar, who described

the recursively defined concatenated dynamical decoupling sequence (CDD)[235] and

by Uhrig, whose optimised dynamical decoupling (UDD) sequence modulates the
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pulse separation sinusoidally[236, 237]. The latter in particular has been shown to

be optimal for suppressing low-frequency noise and is highly robust against pulse

errors[238, 239].

While other DD sequences are more effective if the initial spin state is not known

and more suitable for noise spectroscopy purposes, theoretical and experimental

work has shown that CP-type sequences are best-suited for increasing the phase

memory time TM[204, 225]. CPMG in particular has been applied in various sys-

tems including diamond NV centres and Si:P donors with great success[224, 240].

In electrostatically defined GaAs/AlGaAs quantum dots, Malinowski et al.[174] re-

cently demonstrated electron spin coherence times of TCPMG
2,e ∼ 0.87 ms compared to

Hahn echo results of THE
2,e & 1 µs[164, 167] by using a CPMG sequence with optimal

pulse spacing 2τ .

In the decoupling experiments of this chapter we will use CP(MG) sequences with

alternating phase (AP), i.e. the carrier phases of consecutive π pulses are shifted by

180°, corresponding to rotations about anti-parallel axes. We denote the phase ϕ as a

capital letter subscript where ϕ(X) = 0°, ϕ(Y) = 90°, ϕ(X̄) = 180° and ϕ(Ȳ) = 270°.

Using this notation, the APCP-2 and APCPMG-2 sequences of figures 6.1d and 6.1e

are described as

(
π
2

)
X
− τ − πX − 2τ − πX̄ − τ −

(
π
2

)
X̄

(APCP-2)(
π
2

)
X
− τ − πY − 2τ − πȲ − τ −

(
π
2

)
X̄

(APCPMG-2).

6.2.2 Review of Average Hamiltonian Theory

Average Hamiltonian theory (AHT) is a powerful theoretical tool used in the design

and analysis of multiple pulse sequences and was first introduced by Haeberlen

and Waugh[230], extending a similar method proposed earlier by Evans[241]. The

AHT approach is based on a transformation of the spin system Hamiltonian into

an interaction representation in which the time-dependent rf excitation Hrf(t) no
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longer appears explicitly.

We begin by considering a spin Hamiltonian

Htotal(t) = H0 +Hzz
D +Hrf(t) , (6.2)

describing a nuclear sub-bath of N spins In interacting with a time-dependent rf

field in the rotating frame of an external magnetic field B0,z. Here, the resonance

offset Hamiltonian is denoted by H0 = HQ +HIJ =
∑N

n=1 Ωz,nIn,z. The frequency

shift Ωz,n = ωQ,n+
∑

m ωmnJm,z of the n-th nucleus is dominated by the quadrupolar

shift. For the purpose of this discussion, we assume that the heteronuclear coupling

HIJ is static, i.e. that the Jm sub-bath does not evolve over time. The homonuclear

dipolar interactions between the n-th and m-th spin are described by the secular

term Hzz
D =

∑N
m=1

∑N
n>m ωmn (3Iz,nIz,m − In · Im) with dipolar coupling ωmn. We

can drop all other dipolar interaction terms since we are working at large magnetic

fields where these terms average to zero[116, 242]. The rf field is described by a

time-dependent step function Hamiltonian with Hrf(t) = −~ω1Iφ during each pulse

and Hrf(t) = 0 otherwise. Iφ denotes the rotation axis of the pulse in the rotating

frame.

Three conditions (i)-(iii) must be fulfilled for AHT to be applicable[230, 242]:

(i) All individual Hamiltonians must be periodic over a cycle time tc. This is

primarily a constraint on the pulse sequence Hrf(t). In principle, this condition

also applies to H0 and Hzz
D , e.g. in magic angle spinning (MAS) experiments where

explicit time dependences are introduced by sample rotation[230, 243]. However, in

the context of this work, the resonance offset and truncated heteronuclear dipolar

terms have been assumed static. For the analysis of DD sequences decoupling a

noisy environmentHI−env(t), this condition is also fulfilled as the time dependence of

HI−env only arises in the interaction representation of the environment Hamiltonian

Henv and can be removed by including Henv explicitly in Htotal[225].
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(ii) The net rotation after a full rf cycle is zero or a multiple of 2π. Again, this is

a condition on the pulse cycle design. It implies that the spin states at the start and

end of a cycle are identical. However, we note that the latter is not equivalent to

the initial statement as there are infinitely many paths over the Bloch sphere that

start and end in the same point with a finite net rotation.

(iii) The cycle time tc is short enough that the spin state is not strongly altered

under free evolution within each cycle. This is the case if |H0|tc � 1 and |Hzz
D |tc � 1.

As AHT is a perturbation method in terms of tc/T2, this condition must be fulfilled

for the average Hamiltonian to converge quickly.

In order to use AHT, we first have to switch to the interaction picture with respect

to the rf Hamiltonian, the so-called toggling frame. For this, we split Htotal(t) into a

static (or tc-periodic) internal Hamiltonian Hint = H0 +Hzz
D and a time-dependent

external term Hext(t) = Hrf(t). In this case, the propagator (time evolution opera-

tor) for the total Hamiltonian is given by

U(t) = T exp

[
− i

~

∫ t

0

dt′Htotal(t
′)

]
= Urf(t)Uint(t) , (6.3)

with the Dyson time-ordering operator T and

Urf(t) = T exp

[
− i

~

∫ t

0

dt′Hrf(t
′)

]
, (6.4)

Uint(t) = T exp

[
− i

~

∫ t

0

dt′H̃int(t
′)

]
, (6.5)

where the toggling frame Hamiltonian H̃int(t) is given by[230, 244]

H̃int(t) = U−1
rf (t)HintUrf(t) . (6.6)

While equation (6.5) formally describes the time evolution in the toggling frame, the

problem of calculating the propagator remains a challenging task. However, under

the three conditions mentioned above, we can find an approximate description of
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the spin bath system at times t = nc · tc (with cycle number nc ∈ N).

The cycle condition (ii) corresponds to Urf(nctc) = 1 and together with the period-

icity condition (i) ensures that the toggling frame Hamiltonian is also periodic over

tc, i.e. H̃int(t + nctc) = H̃int(t). As a consequence, it is sufficient to determine the

propagator of the system over a single cycle. The time evolution after nc cycles is

then given by Uint(nctc) = (Uint(tc))
nc [242]. Next, we apply a Magnus expansion[245]

to the toggling frame propagator: instead of trying to solve equation (6.5) for the

time-dependent Hamiltonian H̃int(t), we introduce an effective average Hamiltonian

such that

Uint(tc) = exp

[
− i

~
tcH̄
]

= exp

[
− i

~
tc
(
H̄(0) + H̄(1) + . . .

)]
, (6.7)

where the leading terms H̄(i) are given by

H̄(0) =
1

tc

∫ tc

0

H̃(t)dt , (6.8)

H̄(1) =
−i

2tc

∫ tc

0

dt2

∫ t2

0

dt1

[
H̃(t2), H̃(t1)

]
, (6.9)

H̄(2) =
1

6tc

∫ tc

0

dt3

∫ t3

0

dt2

∫ t2

0

dt1

( [
H̃(t1),

[
H̃(t2), H̃(t3)

]]
+

+
[
H̃(t3),

[
H̃(t2), H̃(t1)

]] )
.

(6.10)

The expansion converges quickly only if condition (iii) is satisfied and H̃inttc � 1.

For any tc, the decay of the nuclear magnetisation due to the m-th order average

Hamiltonian is expected to be of the order of T2(T2/tc)
m, where T−1

2 ∼ |Hint|. Hence

higher order terms become negligible for small ratios tc/T2[230].

We can use this technique to predict the evolution of the nuclear spin bath Hint

under any given cyclic pulse series. As an example, AHT correctly describes the

refocusing of the static inhomogeneous broadening term H0 under a Carr-Purcell

sequence and gives H̄CP = Hzz
D , i.e. the decay is governed by homonuclear dipolar

interaction. For DD experiments where a dynamic environment Henv is taken into
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account, only the zeroth order offset term H̄(0)
0 vanishes and the refocusing of higher

order terms depends on the structure of the DD sequence[204, 239, 246]. In the

context of this work, we aim towards full suppression of the spin bath decoherence.

To this end, we will have to design a multiple pulse sequence under which H̄ = 0

and Uint(tc) = 1. In this case the nuclear spin bath evolution would be fully coherent

and predictable, making longer electron spin qubit coherence times feasible using

electron spin manipulation schemes.

6.2.3 Design of NMR Sequences for Increased Spin Bath

Coherence

In the NMR experiments of this project, we are studying the coherence properties

of a sub-ensemble In of the nuclear spin bath in an InGaAs quantum dot. DD

sequences such as CP(MG) are well-suited for decoupling this sub-ensemble from

the remaining nuclear spins Jm. However, a sequence consisting only of π pulses

does not affect the intrinsic evolution of the sub-bath under homonuclear dipolar

coupling.

WAHUHAτ
X X YY X X

τ τ τ τ τ

(a)

CP-WAHUHAXX Y Y X
τ τ τ τ τ τ

(b)

X XY YX XX Y X Y XX CP-MREV8

t=0

(c)

t=tct=t /2c

Moiseev-SkrebnevX Y X
τ τ τ τ τ τ

(d)
X XYY XX

X X

Figure 6.2: Illustration of the WAHUHA sequence (a) and the two modified com-
bined multiple pulse sequences CP-WAHUHA (b) and CP-MREV8 (c).
The Moiseev-Skrebnev sequence[247] (d) is shown for comparison. Ini-
tial and final π

2
pulses are marked in blue, refocusing π

2
pulses in red and

π pulses in green. The dashed line marks the half-cycle t = tc/2.
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NMR pulse sequences for the selective suppression of homonuclear dipolar inter-

actions, so-called solid echo sequences, have been known for a long time. Based

on the four pulse WAHUHA sequence[210] (see figure 6.2a), longer sequences such

as MREV8 and BR24 were designed using AHT to eliminate higher order terms of

the average dipolar Hamiltonian H̄D and to increase robustness against finite pulse

durations tp[233, 248]. However, just as DD sequences are designed specifically to

decouple the spin (bath) from its environment, solid echo sequences aim to preserve

these couplings selectively. In many systems probed by solid echo NMR, dominant

dipolar interactions mask small resonance offsets arising from e.g. chemical shifts

which are of interest in the analysis of molecular structures and which can only be

detected if the dipolar coupling term is suppressed[230, 231].

CP-BR24

CP-MREV16

XY YX X Y X Y XX X Y XX Y Y XYX X

XY YX X Y X Y XX

XY YX X Y X Y XX

(a)

(b)

t=0 t=tc

t=0 t=tc

XY YX X Y X Y XX

Figure 6.3: Schematic of the robust CP-MREV16 sequence (a) and the CP-BR24
sequence (b) which is formed by repeated nesting of CP-MREV8 as
illustrated. π

2
pulses are marked in red and π pulses in green.

Here, we will combine the features of both types of NMR sequences and design

a set of new multiple pulse sequences (figures 6.2b and c as well as 6.3a and b)

which are capable of suppressing the full spin bath Hamiltonian Hint = H0 +Hzz
D in

leading orders of AHT. Similar sequences have been used in spin resonance experi-

ments on Si:P[232] and NV centres[13] where MREV8 cycles were interspersed with

π pulses. However, neither paper offers a theoretical analysis of the combined se-

quences. An alternative 7-pulse sequence has recently been proposed by Moiseev and
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Skrebnev[247] (figure 6.2d). However, it requires composite pulses (two contiguous

pulses with different phases) which are difficult to implement experimentally (see

discussion in section 6.3.2). Furthermore, AHT shows its performance to be identi-

cal with that of the 5-pulse sequence of equal cycle time tc proposed by us which is

shown in figure 6.2b and discussed below.

Starting from the WAHUHA sequence shown in figure 6.2a it is an intuitive ap-

proach to add a π pulse after 3τ to the cycle as illustrated in figure 6.2b. If the pulse

carrier phases are adjusted correctly, this does indeed fully remove the zeroth order

AHT term H̄(0)
int = 0 under the assumption of infinitely strong pulses (pulse dura-

tion tp → 0). However, the dipolar refocusing efficiency in higher order AHT terms

is reduced compared to the original WAHUHA sequence. A fundamental property

of AHT is the symmetry criterion: if the toggling frame Hamiltonian is symmet-

ric under time reversal (H̃int(t) = H̃int(tc − t)), all odd-order terms of the average

Hamiltonian vanish[242]: H̄(1) = H̄(3) = . . . = 0. For the pulse sequences illustrated

in figure 6.2, this corresponds to antisymmetry with respect to tc/2 (dashed line).

Clearly, this is the case for WAHUHA (figure 6.2a), where for example the (π
2
)Ȳ

pulse at tc/2− τ is “reversed” by a (π
2
)Y pulse at tc/2 + τ . The addition of the πX

pulse after 3τ makes it impossible to preserve this symmetry for a CP-WAHUHA

sequence (figure 6.2b). Consequently, the first non-vanishing average Hamiltonian

term is a first-order cross term H̄(1)
D0 between H0 and HD:

H̄CP−WAHUHA =
iτ

3
[Hzz

D −Hxx
D ,H

y
0] +O(t−2

c ) , (6.11)

where Hxx
D , Hyy

D and Hzz
D are the transformed secular dipolar Hamiltonians along

êx, êy and êz, respectively, and Hx
0, Hy

0, Hz
0 are the corresponding frequency offset

Hamiltonians. A full list of the non-vanishing terms of H̄CP−WAHUHA up to second

order AHT including zeroth order contributions for finite pulse duration tp is given

in table 6.1. We note that an AHT analysis of the Moiseev-Skrebnev sequence[247]
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gives identical non-vanishing average Hamiltonian terms in the tp → 0 limit. Its

zeroth order AHT contributions for finite tp are in fact larger than those under

CP-WAHUHA.

A major improvement of the MREV8 sequence over WAHUHA is its robustness

against finite pulse durations[249]. Likewise, we find that for a modified sequence

CP-MREV8 as illustrated in figure 6.2c the zeroth order average Hamiltonian van-

ishes even for pulses of finite duration tp. The limiting term in the δ-pulse ap-

proximation H̄(1)
D0 is identical to that of the CP-WAHUHA sequence. However, the

additional robustness is an important improvement as our experimental rf pulse

times are on the order of microseconds and generally not negligible in multiple pulse

experiments.

We can eliminate the first order AHT term by symmetrising the sequence: we

combine CP-MREV8 with a mirror flipped cycle with reversed phases (X → X̄,

etc.) to obtain a sequence CP-MREV16 (see figure 6.3a) which meets the symmetry

criterion H̃int(t) = H̃int(tc − t). The first non-zero contributions to the average

Hamiltonian of this sequence are given by H̄(2)
D and H̄(2)

D0 (see table 6.1).

Finally, we design a sequence analogous to BR24[233], which refocuses both dipo-

lar and inhomogeneous broadening up to second order and is only limited by the first

and second order cross terms listed in table 6.1. This CP-BR24 sequence, shown

in figure 6.3b, can also be symmetrised, resulting in a 60-pulse series with average

Hamiltonian

H̄CP−BR48 = H̄(2)
D0 +O(t−4

c ) . (6.12)

As we will see in section 6.5.1, the CP-BR24 sequence suffers from a small spin

echo amplitude in our experiments. This is at least in part owing to its sensitivity

to frequency offsets, which we will examine in more detail in section 6.5.3. Similar

issues are known for solid echo sequences where the less complex MREV8 cycle

remains far more widespread than BR24 and the related 52-pulse cycle BR52 in

practice[13, 232].
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6.3 Methodology

The multiple pulse NMR experiments presented in the following sections are an

extension of the Hahn echo measurements discussed in the previous chapter. Hence

most of the experimental techniques and calibration methods are identical to those

introduced in chapter 5.4. Having established the consistency between the Hahn

echo results of sample A and sample B under charge-free conditions, we perform

most of the measurements in this chapter on sample A. This choice is solely based

on the larger NMR signal amplitudes (see figure 5.12) and stronger PL signals found

in sample A. While our results on sample B are in qualitative agreement with those

in sample A, the experimental accuracy is noticeably lower. This is particularly

the case in the combined echo experiments where the echo amplitudes are further

reduced compared to the Hahn echo due to the finite resonance offset tolerance of

these sequences.

As before, we adopt the pump-rf-probe measurement cycle which was introduced

in chapter 4.3.2 with a two-step NMR scheme consisting of adiabatic state prepa-

ration and coherent pulsed driving of the CT of the studied isotope. The external

magnetic field is kept at B0,z = 8 T for all experiments and the sample temperature

is T ≈ 4.2 K. Two measurement parameters require particular attention for multiple

pulse experiments: the pulse durations and the relative phases of the pulses.

6.3.1 Rotation Angle Calibration

As we apply sequences of up to 120 pulses to the sample, it is no longer suffi-

cient to extract the required pulse durations for π
2

and π rotations from a Rabi

oscillation measurement. To prevent the accumulation of pulse errors we use a[(
π
2

)
X
−
(
π
2

)
X
−
(
π
2

)
X
−
(
π
2

)
X

]
nc

tune up cycle as illustrated in figure 6.4a for ro-

tation angle calibration[248, 250]. In this measurement, we apply 4nc pulses with

fixed separation τ and identical varying pulse time tp. The magnetisation along the
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π/2 π

tp

xnc

X X X X
τ τ τ τ

tp tp tp

(a)

(b)

Figure 6.4: Calibration of the rotation angles for multiple pulse NMR. (a) The 4-
pulse tune up cycle consisting of four pulses of equal duration tp, carrier
phase ϕ = 0° and spacing τ . (b) Measurement on 71Ga with nc = 6. The
hyperfine shift ∆Ehf as a function of rf pulse duration tp shows periodic
revivals. From parabolic fits (red) to the 6th and 12th maxima of the
NMR signal we extract pulse durations tπ/2 = 1.42 µs and tπ = 2.77 µs
at an rf input power of Prf = 200 W.

polarisation axis êz is restored whenever the net rotation of the 4nc rf pulses adds

up to a multiple of 2π. As a consequence, the measured Overhauser splitting shows

oscillatory behaviour as the polarisation of the driven spin ensemble is periodically

inverted and restored with increasing tp. The nc-th oscillation maximum corre-

sponds to a set of 4nc
π
2

rotations and the 2nc-th maximum analogously gives the

required duration for a π pulse. The accuracy of this calibration method increases

with nc as the oscillation period becomes shorter, although the signal amplitude is

reduced due to dephasing over the increasing evolution time (4nc − 1)τ .

A representative rotation angle calibration measurement for 71Ga with nc = 6

repetitions of the tune up cycle and pulse separation τ = 6 µs is shown in figure

6.4b. We obtain pulse durations tπ/2 = 1.42 µs and tπ = 2.77 µs from parabolic

fits to the 6th and 12th oscillation maximum. The deviation from the ideal case of
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tπ/2 = tπ/2 is due to the finite pulse rise time in the rf circuit which distorts the

ideal square pulse shape.

In the experiments presented in this chapter, we use a 1 kW class AB amplifier

for hard pulse excitation. Due to the long rise time of the in-built amplifier gating

circuit, the pulse rise time in the rf circuit trise ≈ 580 ns becomes comparable to tπ/2.

We reduce the distortion of the pulse shape by pre-gating the amplifier and gating

the rf pulses externally with an absorptive switch. As the rise time of the switch is

on the order of 5 − 10 ns, the resulting pulse rise time trise ≈ 180 ns is limited by

the Q factor of the matching circuit.

6.3.2 Phase Calibration

In the Hahn echo sequence used in chapter 5 the carriers of all three rf pulses are in

phase. As we saw in section 6.2.3, this is generally not the case for multiple pulse

NMR sequences where the carriers of consecutive rf pulses often have alternating

or orthogonal phases. We implement rotations of the nuclear magnetisation about

the in-plane axes êx and êy in the rotating frame by a relative carrier phase shift

of ∆ϕ = 90°. Here, we note that the choice of êx is arbitrary and defined as

ϕ = 0° in our measurements. Following the notation introduced in the previous

section, we continue to denote the rotation axes in pulse sequences as capital letters,

i.e. ϕ(X) = 0° (êx), ϕ(Y) = 90° (êy), ϕ(X̄) = 180° (−êx) and ϕ(Ȳ) = 270.0° (−êy).

Experimentally, the phase is controlled by gating the modulation input of the

rf generator. We calibrate the relative phase shifts between consecutive pulses by

applying a test rf sequence of six pulses with duration tp = 15 µs, pulse spacing

τ = 1.2 µs and phase relation X− Ȳ− X̄−Y−X− Ȳ, and detecting the transmitted

rf signal with a weakly inductively coupled pickup coil connected to an oscilloscope.

The recorded rf pulse trace of such a calibration measurement is shown in green

in figure 6.5. By fitting a set of local cosine functions with linked phase relations

to the oscillogram we extract the relative calibration error for all four phases. By
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Figure 6.5: Oscillogram of the pulse phase calibration. The pulse and phase gating
voltages as a function of time are marked in blue and red, respectively.
The rf pulse amplitude over time (green) was detected in transmission
with a pickup coil. Fitting of the pulses with phase shifted cosine func-
tions gives the required phases for orthogonal rotation axes: ϕX = −0.5°,
ϕY = 89.8°, ϕX̄ = 181.1° and ϕȲ = −91.0°.

adjusting the phase gating voltages and repeating the calibration cycle, we are able

to reduce the phase error to δϕ ≤ 0.4°.

The class AB amplifier is very sensitive to phase shifted reflected signals. In order

to avoid damage to the amplifier as well as to ensure a stable phase during each

individual rf pulse, we always use a minimum delay ≥ 1 µs between consecutive

pulses. The rf phase is changed during the interpulse delay time. Further protection

against damage by reflected signals is added in the form of a 6 dB attenuator after

the amplifier output.

6.4 Long-Lived Spin Echoes under Carr-Purcell

Sequences

In this section we study the nuclear spin dephasing of the 75As and 71Ga CTs in

a single neutral quantum dot under π pulse trains. We expect only a moderate

increase of the measured nuclear phase memory time TM,n since the bath coher-

ence of the probed isotope is limited by homonuclear dipolar interactions which are
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not refocused under such sequences. However, dephasing due to time-dependent

heteronuclear dipolar coupling to the remaining slowly-evolving nuclear spin bath

should be removed by a small number of π pulses.

Due to their robustness against pulse errors, we use sequences with alternating

carrier phase: an APCP sequence with cycles τ − πX− 2τ − πX̄− τ (see figure 6.1d)

and an APCPMG sequence with τ −πY− 2τ −πȲ− τ (figure 6.1e). Both sequences

have an initialisation pulse
(
π
2

)
X

and a final readout pulse
(
π
2

)
X̄

.

6.4.1 Experimental Results
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Figure 6.6: Dependence of the 75As (a,b) and 71Ga (c,d) nuclear spin echo ampli-
tude ∆Ehf on the total evolution time 2nπτ under APCP and APCPMG.
Square symbols show Hahn echo data with only one π pulse. Represen-
tative data for pulse numbers nπ > 1 is marked with different symbols.
Solid lines show compressed exponential fits ∝ exp[−(2nπτ/TM,n)β] from
which nuclear spin decay times TM,n are extracted.

Figures 6.6 show representative results of the APCP and APCPMG experiments

on 75As (6.6a and 6.6b, respectively) and on 71Ga (6.6c and 6.6d) for different π pulse
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numbers nπ. We note that each APCP(MG) cycle actually consists of two pulses,

i.e. the corresponding number of cycles is given by nc = nπ/2. Each dataset shows

the nuclear spin echo signal ∆Ehf as a function of the total free evolution 2nπτ during

the pulse sequence for a fixed nπ. For comparison, all four panels also include Hahn

echo decay data with only one refocusing pulse (squares). Nuclear phase memory

decay times TM,n are extracted using a fit with a compressed exponential function

(solid lines)

∆Ehf(2nπτ) = ∆Ehf(0)e−(2nπτ/TM,n)β , (6.13)

where ∆Ehf(0) is the initial hyperfine shift for a maximally polarised nuclear spin

ensemble and β ∈ [1, 2] is a compression factor as introduced in chapter 5.5.
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Figure 6.7: Fitted nuclear spin echo decay time TM,n as a function of pulse number
nπ for (a) 75As and (b) 71Ga. Solid squares show the APCP decay times
obtained from compressed exponential fits to the experimental data and
open circles mark the corresponding APCPMG decay times. The error
bars correspond to 90% confidence intervals. Dashed red lines show
power law fits ∝ nκπ to the APCP data.

The nuclear spin echo decay under APCP shows a pronounced slow-down with

increasing refocusing pulse number nπ for both isotopes. By contrast, no noticeable
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increase of the echo decay time is observed under APCPMG. Instead, the echo

amplitude ∆Ehf(0) drops significantly even for small nπ and vanishes entirely for

nπ ≥ 8.

Nuclear phase memory times extracted from fits to the experimental data are

shown in figures 6.7a and b as a function of the π pulse number nπ. For the APCP

sequence, the 75As decay time reaches a maximum value of TAPCP
M,n (75As) = 19.3 ±

2.0 ms for nπ = 48 before decreasing again at higher pulse numbers. The dependence

up to the maximum value can be described by a power law TM,n(nπ) ∝ nκπ (dashed

red line) where κ(75As) = 0.43±0.06 is a scaling exponent. Analogously, we observe

a maximum TAPCP
M,n (71Ga) = 5.04±0.67 ms with a fitted scaling exponent κ(71Ga) =

0.41 ± 0.06 for 71Ga (dashed red line in figure 6.7). At pulse numbers nπ > 64

the error bars of TAPCP
M,n (71Ga) are very large. This is due to a reduced spin echo

amplitude ∆Ehf(0), which we attribute to the accumulation of pulse imperfections

and of frequency offset errors arising from the broad inhomogeneous NMR linewidths

∆νinh ∼ 10−40 kHz. A decrease of the echo amplitude is also observed in the APCP

measurements on 75As with nπ = 64 and nπ = 80. The shorter decay times for these

pulse numbers are therefore also attributed to these effects.

Even under a single cycle (nπ = 2) of APCPMG (open circles in figure 6.7a)

the nuclear spin decay time for 75As is reduced compared to THE
M,n(75As). While

an increase of TM,n(nπ) is observed for 71Ga under APCPMG, the associated error

bars are larger than for the corresponding APCP values. As we saw in figures 6.6b

and 6.6d, the echo amplitude ∆Ehf(0) drops quickly with increasing nπ for both

isotopes. This indicates that APCPMG is extremely sensitive to pulse errors and

resonance offsets, a conclusion which we will see confirmed in section 6.4.3, where we

will analyse the offset-dependent performance of both sequences and show that the

inhomogeneous broadening of the 75As and 71Ga CTs is too large for the respective

full spin ensembles to be driven resonantly under APCPMG.

The power law scaling of the phase memory time under the APCP decoupling se-
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quence up to large nπ would ordinarily imply that we have decoupled the In sub-bath

from a strongly fluctuating environment. The scaling exponents κ for both isotopes

are comparatively small, although the values κ ≈ 0.5− 0.75 reported for similar DD

experiments on electrons in InAs nanowires[251], NV centres[252] and electrostat-

ically defined GaAs quantum dot systems[253] are close to our experimental error

margins. The associated noise spectrum of the system-environment coupling would

be expected to scale as S(ω) ∝ ω−ζ with ζ = κ/(1− κ) ≈ 2/3[224, 253, 254] in our

system. The presence of such a strong, broadband noise source is in stark contrast

to our understanding of the spin bath dynamics in a quantum dot. The static in-

homogeneous dephasing due to quadrupolar interactions is already fully refocused

in Hahn echo and hence cannot be suppressed any further. While we expect APCP

sequences to suppress decoherence arising from heteronuclear coupling, the associ-

ated local field fluctuates on the timescale of homonuclear dipolar flip-flops among

the environment nuclear spins, which are strongly suppressed by the inhomogeneous

quadrupolar interaction (see chapter 5 and [41]). Since previous measurements on

sample A gave no indications for strong charge fluctuations in the dot environment

either, we conclude that the increased nuclear spin decay times under APCP are in

fact not linked to the decoupling of the fluctuating sub-bath environment.

6.4.2 Spin-Locking under π Pulses of Finite Duration

We find that similar unexpectedly long-lived spin echo decay times under π pulse

trains have been reported for other solid state systems in the past. Experiments

on 29Si in Si:P revealed a slow decay tail in CPMG which exceeded the Hahn echo

phase memory time THE
M,n(29Si) ≈ 5.6 ms by more than an order of magnitude[255,

256]. Subsequent work showed similar behaviour in a wide range of materials from

fullerenes and yttria[257, 258] to adamantene and ferrocene[259]. Three competing

theoretical models have been put forward to explain this deviation from the expected

behaviour.
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Franzoni et al. argue that the extended decay times arise due to stimulated

echoes[257]. In a system with strong field inhomogeneities, imperfect π pulses can

lead to partial storage of the coherence along the êz axis where it decays with the

spin relaxation time T1. As the authors demonstrate, a subsequent second imperfect

π pulse can lead to a stimulated echo which coincides with the normal spin echo

and interferes either constructively or destructively depending on the phase relation

between the two pulse carriers. Consequently, long-lived spin echoes are observed

under APCP and CPMG pulse trains while the echo decays with THE
M under CP

and APCPMG as the authors verify experimentally in NMR measurements on 13C

in fullerenes.

A second explanation provided by Li et al. is based on an AHT analysis of π pulse

trains[260]. The authors show that spin locking effects can arise under a series of π

pulses depending on the phase relation between consecutive pulses when finite pulse

durations tp are taken into account. The theoretically derived and experimentally

observed behaviour of the spin echo is identical to that predicted by Franzoni et al.,

i.e. extended phase memory times only occur under APCP and CPMG sequences.

However, as Ridge et al. point out[259], long-lived echoes are observed by all groups

even for conditions where the evolution time between pulses 2τ strongly exceeds the

pulse time tp.

The most recent proposal was made by Ridge et al.[259] Like Franzoni and col-

laborators, they attribute the extended decay time to π pulse imperfections. Using

AHT, they demonstrate that a combination of resonance offsets and rotation angle

errors can lead to pulsed spin locking, i.e. an effective static in-plane magnetic field

that can preserve the magnetisation along either êx or êy. In agreement with the

other two models, persistent echoes are only predicted for APCP and CPMG pulse

sequences.

In order to determine which theory describes our experimental results best, we

must identify features that are unique to each model. The Franzoni and Ridge pro-
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posals could be distinguished easily by a separate stimulated echo experiment[199,

261]. The presence or absence of a stimulated echo would provide strong evidence in

favour of the respective model. The theoretical frameworks of both proposals share

the assumption that a δ-pulse approach is justified, i.e. that the pulse spacing 2τ is

much larger than the pulse duration tp. This is in contrast to the Li proposal, where

we would expect a dependence of the spin locking effect on the relative timescales

of 2τ and tp.
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Figure 6.8: Dependence of the normalised 71Ga nuclear spin echo amplitude on the
total evolution time 2nπτ under APCP. Each trace shows values with
fixed filling factor F = 2tp/tc and varying pulse number nπ. Values are
extracted from exponential fits to the experimental data shown in figure
6.6c. The Hahn echo decay fit is shown as a solid red line.

We can examine this dependence using the results of the previous section. To this

end, we quantify the time 2tp during which rf pulses are applied in an APCP cycle

tc = 4τ + 2tp by a filling factor F, which we define as

F =
2tp
tc

=
2tp

4τ + 2tp
, F ∈ [0, 1] . (6.14)

Figure 6.8 shows the normalised 71Ga nuclear spin echo amplitude as a function of

the total evolution time 2nπτ for fixed F and varying pulse number nπ, i.e. the first
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data point of each trace corresponds to a Hahn echo, the second point to a single

APCP cycle, etc. with fixed π pulse spacing 2τ . Since different pulse spacings were

used in each of the measured data sets with fixed pulse number nπ (as shown in

figure 6.6), the values shown in figure 6.8 are obtained using equation (6.13) with

fixed τ and with parameters TM,n and β determined from fitting to the experimental

data for each nπ.

We observe a strong dependence of the nuclear spin echo decay on the filling

factor F. While a pronounced slow-down of the decay dynamics occurs at large F,

the spin echo amplitude for F < 1% follows the Hahn echo decay curve (solid red

line in figure 6.8). This is in strong contrast to the observations of long-lived echoes

in other systems where the Hahn echo amplitude for a given τ is recovered under

subsequent pulses even for timescales τ > THE
M,n � tp. Therefore, we conclude that

the models of Franzoni et al.[257] and Ridge et al.[259], which both predict such a

decay tail behaviour, do not describe the mechanism responsible for the extended

spin echo decay times in our system.

Instead, we find that our results are in good agreement with the model presented

by Li et al.[260] As we mentioned in section 6.2.2, an AHT analysis of the ideal

Carr-Purcell sequence without pulse errors and under the assumption of δ-pulses

shows that inhomogeneous broadening is fully refocused whereas the homonuclear

dipolar term remains unaltered, i.e. H̄CP = Hzz
D . This is a general result for all

CP- and CPMG-type sequences. By contrast, the average Hamiltonians of the four

(AP)CP(MG) sequences are no longer identical if finite pulse durations tp are taken

into account. In particular, we obtain[260]

H̄(0)
APCP =

1

tc

(
−4tpΩz

π
Iy + 4τHzz

D − tpHxx
D

)
, (6.15)

for the zeroth order average Hamiltonian under an APCP cycle. The first order term

H̄(1)
APCP vanishes due to the symmetry properties of the sequence. A full derivation of
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equation (6.15) is given in [260] and in appendix 9.2.1. The term ∝ Iy corresponds

to an effective static in-plane magnetic field. By transforming H̄(0)
APCP into a second

toggling frame with respect to the transverse field (derivation given in appendix

9.2.2) and time-averaging over one Rabi cycle in the effective field, we obtain a

twice averaged Hamiltonian

¯̄H(0)
APCP = − 1

tc

(
2τ − tp

2

)
Hyy

D . (6.16)

This expression is very similar to the average Hamiltonian under the Mansfield-

Waugh pulsed spin locking sequence (MW4). This sequence consists of four
(
π
2

)
Y

pulses with equal pulse spacing τ and has a zeroth order average Hamiltonian

H̄(0)
MW4 = −1

2
Hyy

D , leading to spin echo decay times orders of magnitude longer than

THE
M [262, 263]. We can understand this behaviour when taking into account that

the initial rf pulse
(
π
2

)
X

applied before either sequence prepares the nuclear spin I

in a state −Iy. In both the APCP and MW4 sequences the average Hamiltonian

is proportional to the secular dipolar Hamiltonian Hyy
D along êy which commutes

with the observable. Consequently, the magnetisation along this axis is preserved or

“locked” under both sequences and no echo decay is predicted in zeroth order AHT.

While an expression similar to equation (6.16) can be derived for CPMG, AHT does

not predict any spin locking effects for CP and APCPMG[260].

We note that the spin locking mechanism under π pulse trains relies fundamentally

on the dipolar evolution during tp and is not expected to persist for small filling

factors F . This can be seen when we look at the Rabi frequency of the transverse

field in equation (6.15), Ω′ = 4tpΩz

πtc
∝ F. As the second averaging is based on a

perturbation approach which assumes slow evolution of the spin bath under the

dipolar terms in equation (6.15) over a timescale T ′Rabi = 2π
Ω′
∝ F−1, ¯̄HAPCP is no

longer expected to converge for small F [259]. In this limit, the δ-pulse approximation

is justified and equation (6.15) is reduced to H̄(0)
APCP = Hzz

D . This is in agreement
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with our experimental observation that the spin locking effect vanishes and the decay

time is reduced to THE
M,n for F < 1% (red line in figure 6.8).

In conclusion, we can attribute the long-lived nuclear spin echoes of 75As and

71Ga under APCP to a form of pulsed spin locking arising from homonuclear dipolar

evolution during the finite pulse duration tp. Such effects are not expected under

APCPMG, although we were not able to verify this experimentally for pulse numbers

nπ & 8 due to the rapid drop of the echo amplitude with increasing pulse number

under this sequence.

6.4.3 Effect of Resonance Offsets on Carr-Purcell Sequences

As we will now show, this behaviour of the APCPMG sequence can be explained

by its high sensitivity to resonance offsets. The CTs of 75As and 71Ga are both

inhomogeneously broadened to ∼ 10− 40 kHz by the second order contributions of

quadrupolar interactions in the quantum dot. In chapter 3.3.2, we introduced a hard

pulse condition ω1 � ∆νinh
2

for coherent pulse rotations. We assumed that under

this condition the full CT is driven by an rf pulse of field amplitude B1 = −ω1

γ
. This

can become infeasible for strongly inhomogeneously broadened transitions such as

the 75As STs (∆νinh ∼ 10 MHz), where a Hahn echo experiment would require rf

field amplitudes of B1 > 0.5 T.

While we can easily meet the hard pulse condition for nuclear Hahn echo experi-

ments on the 75As and 71Ga CTs, this can become insufficient for coherent manip-

ulation under longer pulse sequences. Depending on the robustness of a sequence

against resonance offsets, errors due to incomplete refocusing can rapidly add up

with increasing cycle number and reduce the echo amplitude ∆Ehf(0).

In order to quantify the effect of resonance offsets on the relative performance

of the APCP and APCPMG sequences, we simulate the evolution of a magneti-

sation vector M = Mzêz under a given pulse sequence as described by the Bloch

equations of motion. The rotation axis for each pulse with carrier phase ϕ is set to
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êΩ = (1 + δ2)−1/2(cosϕ, sinϕ,−δ)T, where δ denotes the resonance offset in terms of

the inverse resonant Rabi period T−1
Rabi. We then study the offset dependence of the

magnetisation along the polarisation axis êz after a full sequence including initiali-

sation and readout pulse. In these simulations no spin relaxation or spin dephasing

mechanisms are considered, i.e. we set T1 = T2 = ∞. We further assume that all

pulses have the same frequency offsets δ and do not take into account carrier phase

errors.
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Figure 6.9: (a,b) Normalised magnetisation along êz after evolution under a series of
non-resonant rf pulses as a function of the resonance frequency offset δ
for (a) APCP and (b) APCPMG. Solid curves show simulated data for
different π pulse numbers nπ. Dashed lines show normalised 75As (blue)
and 71Ga (green) CT NMR spectra with frequency axes rescaled by TRabi

at Prf = 200 W. (c) Weighted average of the normalised magnetisation
over the 75As (circles) and 71Ga (squares) CT resonance after an APCP
(solid symbols) or APCPMG (empty symbols) sequence as a function of
refocusing pulse number nπ.

The results of our simulations for the two decoupling sequences are shown in fig-

ures 6.9a (APCP) and 6.9b (APCPMG). The recovered normalised magnetisation

after evolution under a Hahn echo sequence (red) and sequences with nπ = 16 (or-

ange) and nπ = 64 (black) refocusing pulses is shown as a function of the normalised
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resonance offset δ. Normalised NMR spectra of the 75As and 71Ga CTs are shown

as blue and green dashed lines with the frequency axis rescaled for the respective

Rabi period derived at Prf = 200 W in our experiments.

Several features of the simulated curves are distinguishable. Firstly, we notice

offset-dependent oscillations in the normalised magnetisation. These periodic mag-

netisation revivals arise from the effect of the offset δ in the rotating frame: the

pulse rotation axis êΩ is tilted towards ±êz with increasing δ, while the pulse dura-

tion tp stays constant. As a consequence, depending on the initial conditions, the

magnetisation vector can precess about êΩ multiple times within tp, an effect which

is amplified for large nπ. At very large offsets |δ| � T−1
Rabi the initial magnetisation

Mz(0) remains entirely unaltered as the pulse rotation axis êΩ is parallel to êz in

this limit (not shown). Secondly, we note that the curve for nπ = 1 in figure 6.9b

is asymmetric. This is a recurring effect which we only observe for sequences which

contain pulses with rotation axes along both êx and êy, and which lack antisymme-

try with respect to tc/2 (i.e. a pulse at tc/2 − t is not compensated by a pulse in

antiphase at tc/2 + t).

Most importantly, however, our simulations show that the APCP sequence is

remarkably robust against frequency offsets. By contrast, the offset interval within

which APCPMG can fully restore the initial magnetisation narrows rapidly with

increasing cycle number. This is shown more clearly in figure 6.9c: here, we show

the weighted average of the normalised magnetisation over the CT resonances of

75As and 71Ga after nπ pulses for both sequences. The simulations are in excellent

agreement with our experimental observations: while the initial magnetisation is

fully recovered under APCP even for large pulse numbers nπ > 50 (solid symbols),

it is strongly reduced even for 2− 4 pulses under APCPMG.

We can therefore conclude that the APCPMG sequence is extremely sensitive to

offset errors and hence unsuitable for application to the inhomogeneously broadened

transitions in self-assembled quantum dots even for the moderate broadening of the

128



CTs. Although the sequence should be able to decouple our nuclear spin sub-bath

from its environment without spin locking, we would require significantly stronger rf

fields to drive the full transition coherently for several cycles nc. This is in contrast

to the APCP sequence, which is very robust against frequency offsets but is affected

by pronounced spin locking effects.

6.5 Nuclear Spin Bath Control under Combined Echo

Sequences

In section 6.2.3, we introduced a set of multiple pulse sequences based on well-known

solid echo cycles with additional π refocusing pulses. We showed that it is possible

to find sequences which suppress dephasing due to both inhomogeneous broadening

and homonuclear dipolar interactions in leading orders of AHT (see table 6.1). Here,

we apply these sequences to the CTs of the 75As and 71Ga spin ensembles in a neutral

InGaAs quantum dot.

Although none of the zeroth and first order AHT terms we obtained for the com-

bine echo sequences are expected to lead to spin locking, previous experiments in

Si:P by Ladd et al. have reportedly shown such effects under similar sequences[232].

Taking into account the findings from the CP(MG) experiments of the previous

section, we aim to avoid this by testing the sequences not only in the CP-like config-

uration where the carriers of the initial and final
(
π
2

)
X/X̄

pulses are in (anti-)phase

with those of the π pulses (see e.g. figures 6.2b and c), but also in a CPMG-like con-

figuration with initial and final pulse carrier phases
(
π
2

)
Y/Ȳ

orthogonal to those of

the π refocusing pulses. In order to test how sensitive the combined echo sequences

are to the initial in-plane spin state, we also perform several measurements with ini-

tial and final pulses
(
π
2

)
D/D̄

about diagonal axes ϕD = 45° and ϕD̄ = 225°, which we

will denote as dCP-like. As we will show, spin locking effects do indeed appear under

CP-like sequences and distort the measured decay time. This effect is reduced under
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the diagonal initialisation pulse conditions and vanishes for CPMG-like sequences.

In contrast to the nuclear phase memory times TM,n which we obtained from Hahn

echo and CP(MG) experiments, we will label the measured decay times under com-

bined echo sequences in this section as decoherence times T2,n. This is to illustrate

that full suppression of the intrinsic homonuclear dipolar coupling will give us the

decoherence time of a non-interacting nuclear spin sub-ensemble.

6.5.1 Performance Comparison of Combined Echo Sequences
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Figure 6.10: Experimental performance comparison for the combined echo sequences
at B0,z = 8 T. The 75As nuclear spin echo amplitude ∆Ehf is shown as
a function of the total free spin evolution time τevol during the duration
of the pulse sequence. Solid lines show compressed exponential fits
∝ exp[−(τevol/T2,n)β] to the data for different pulse sequences.

In a first set of experiments, we compare the performance of the combined echo

sequences introduced in section 6.2.3. As in all previous experiments, we study the

nuclear spin dynamics of a neutral, i.e. charge-free quantum dot in a large external

magnetic field B0,z = 8 T. Here, we probe the 75As spin dynamics in a dot in the

gated diode sample B. Figure 6.10 shows the decay of the 75As nuclear spin echo

amplitude over the total free evolution time τevol during a cycle of CPMG-WAHUHA
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(circles), CPMG-MREV8 (triangles) and CPMG-BR24 (diamonds). A Hahn echo

decay curve with THE
M,n(75As) = 3.8±0.4 ms is also depicted for comparison (squares).

Fits with a compressed exponential

∆Ehf(τevol) = ∆Ehf(0)e−(τevol/T2,n)β , (6.17)

are shown as solid lines.

We note that the initial echo amplitude ∆Ehf(0) for all three combined echo

sequences is reduced compared to the Hahn echo amplitude. In section 6.5.3, we

will show that this is not unexpected and can be partly attributed to the limited

robustness of these sequences against resonance offsets, similar to the behaviour

observed for the APCPMG sequence in the previous section. Due to the strong

inhomogeneous broadening of the 75As CT (∆νinh(75As) ≈ 24 kHz, see chapter

5.4.1), we are unable to drive the full spin ensemble resonantly. The amplitude

reduction is particularly pronounced for CPMG-BR24. For this reason, we focus on

the shorter CPMG-MREV-type sequences in subsequent measurements despite the

strongly enhanced decoherence time TBR24
2,n = 22.4 ± 4.5 ms obtained for CPMG-

BR24 from the exponential fit.

The initial echo amplitudes of the CPMG-WAHUHA and CPMG-MREV8 se-

quences are both reduced by ∼ 30% compared to the Hahn echo signal. Fitting

with equation (6.17) gives decay times of TWHH
2,n = 7.0 ± 1.1 ms and TMREV8

2,n =

10.1 ± 1.3 ms, respectively. Taking into account these results as well as the addi-

tional robustness of CPMG-MREV8 against finite pulse widths which we derived in

section 6.2.3 using AHT, we conclude that CPMG-MREV8 (and by extension the

symmetrised CPMG-MREV16 version) is the most suitable sequence for suppressing

the nuclear spin bath decoherence in the InGaAs quantum dot system.
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6.5.2 Suppressed Homonuclear Dipolar Interactions under

CPMG-MREV Combined Echo Sequences

Having established the capability of combined echo sequences to extend the nuclear

spin bath coherence beyond the Hahn echo dephasing time THE
M,n, we investigate how

far T2,n can be increased under repeated cycles of CP(MG)-MREV16. Figures 6.11

show the results of such measurements on 75As (a and b) and 71Ga (c and d) in a

neutral quantum dot on sample A. The spin echo amplitude ∆Ehf under a Hahn

echo (squares), CP(MG)-MREV8 (circles) and (CP(MG)-MREV16)nc sequence (tri-

angles) is shown as a function of the total free evolution time during the respective

sequence.
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Figure 6.11: Dependence of the 75As (a,b) and 71Ga (c,d) spin echo amplitude ∆Ehf

on the total free evolution time τevol under CP-MREV8/16 (a,c) and
CPMG-MREV8/16 (b,d). Hahn echo data is shown for comparison
(squares). Exponential fits are used to extract decay times (solid lines).

We note that the initial 75As echo amplitude under CP(MG)-MREV8 is reduced

by ∼ 15 − 20% compared to the Hahn echo amplitude. A further decrease in
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amplitude is observed under the symmetrised CP(MG)-MREV16 sequence, which

in the case of CPMG-MREV16 makes cycle numbers nc > 3 infeasible for 75As. By

contrast, in the 71Ga measurements we only see a small change in ∆Ehf(0) after

nc = 6 cycles of CP(MG)-MREV16 (corresponding to 120 individual pulses). This

is in agreement with our interpretation that the reduced echo amplitudes are due

to the sensitivity of the sequence to resonance offsets, as the 71Ga CT is narrower

than that of 75As (∆νinh(71Ga) ≈ 8 kHz).

Nuclear spin decoherence times T2,n for different cycle numbers nc are extracted

from compressed exponential fits to the data with equation (6.17) (shown as solid

lines in figures 6.11).

1 2 3 4 5 6

5

10

15

20

25
30

 CP-MREV16
 CPMG-MREV16

CPMG-BR24

HE

CPMG-MREV8

(a)
 

 

D
ec

ay
 T

im
e 

T 2,
n (m

s)

Number of Cycles nc

75As, B0,z=8T

(b)

1 2 3 4 5 6

1

2

3

4

5

 CP-MREV16
 CPMG-MREV16
 dCPMG-MREV16

HE

CPMG-MREV8

71Ga, B0,z=8T
 

 
D

ec
ay

 T
im

e 
T 2,

n (m
s)

Number of Cycles nc

Figure 6.12: Dependence of the fitted exponential decay time T2,n on the cycle num-
ber nc for 75As (a) and 71Ga (b) under CP-MREV16 (solid squares)
and CPMG-MREV16 (open circles). Additional results for 71Ga under
dCP-MREV16 are marked by triangles in (b). Horizontal lines show
decay times under Hahn echo (solid), CPMG-MREV8 (dashed) and
CPMG-BR24 (dash-dotted) for comparison. Error bars and shaded
areas indicate 90% confidence intervals.

Figures 6.12a and b show the respective extracted 75As and 71Ga decoherence

times T2,n as a function of the CP(MG)-MREV16 cycle number nc. Solid and dashed
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lines show the respective Hahn echo and CPMG-MREV8 decoherence times for both

isotopes for comparison, with shaded areas marking the associated 90% confidence

intervals. Figure 6.12a also shows the 75As decoherence time under CPMG-BR24

(dash-dotted line). An analogous experiment on 71Ga was inconclusive due to the

strong reduction of the echo amplitude.

As discussed for 75As in the previous section, we observe a continuous increase of

the measured decoherence time T2,n as the combined echo sequences become longer

and more complex. By contrast, multiple repetitions of the CP(MG)-MREV16 cycle

do not have a noticeable effect on the measured T2,n. However, we note that for both

isotopes the echo decay times under CP-MREV16 (squares) are consistently longer

than those under CPMG-MREV16 (circles). Additional results for 71Ga under dCP-

MREV16 (triangles) are found to lie between these two values for all studied cycle

numbers nc, indicating that the magnitude of the êx component of the initial pulse

rotation axis is linked to this inconsistency.

We find that this is indeed the case as the CP-MREV16 decay time is increased

beyond the real T2,n value by a spin-locking effect. This is demonstrated experimen-

tally by conducting additional (CP-MREV16)6 measurements on 71Ga at different

rf input powers. All experiments presented so far were obtained at an rf power

Prf = 200 W corresponding to a 71Ga CT NMR Rabi period TRabi = 5.54 µs (see

section 6.3.1). We saw in the APCP experiments of the previous section that the

pulsed spin locking mechanism leading to prolonged nuclear spin decay times de-

pends on the relative timescales of pulse duration tp and pulse spacing τ . Therefore,

we expect the spin locking effect to become stronger for longer tp and low power Prf .

Figure 6.13 shows 71Ga nuclear spin echo decay curves under (CP-MREV16)6

for three different rf powers. In addition to the measurements at Prf = 200 W

(TRabi = 5.54 µs, squares) which were already shown in figure 6.11c, we measure

decay times at Prf = 80 W (TRabi = 8.66 µs, circles) and Prf = 50 W (TRabi = 9.56 µs,

triangles) where the pulse durations tp are almost twice as long. A pronounced slow-
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Figure 6.13: Decay of the 71Ga spin echo amplitude under (CP-MREV16)6 as a func-
tion of the free evolution time τevol. Data sets correspond to different
fixed rf input powers. Solid lines show exponential fits to the data.

down of the decay from T 200W
2,n (71Ga) = 3.34±0.39 ms to T 50W

2,n (71Ga) = 7.20±0.71 ms

revealed by fitting confirms our earlier interpretation of spin locking due to finite

pulse durations.

We therefore focus on the CPMG-MREV16 results for which no such power depen-

dence is observed. The 75As decoherence time under a single cycle of this sequence

is TMREV16
2,n (75As) = 11.85 ± 1.04 ms, which is a factor of three longer than the

Hahn echo phase memory time. Similarly, we observe an increase of the 71Ga deco-

herence time TMREV16
2,n (71Ga) = 2.79 ± 0.20 ms by a factor of 2.5 compared to the

corresponding Hahn echo decay time.

We can summarise our experimental results as follows: application of CPMG-

MREV16 does lead to a noticeable increase in the measured nuclear spin echo decay

time for both of the isotopes studied. However, no further increase of T2,n is observed

upon repetition of the cycle. In addition, although the CPMG-BR24 cycle has a

strongly reduced initial spin echo amplitude, it gives 75As spin decoherence times

which are twice as along as those observed under CPMG-MREV16.
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This leads us to several conclusions. Firstly, the combined echo sequences can

indeed suppress the homonuclear dipolar interactions in the quantum dot nuclear

spin bath in addition to refocusing the dephasing due to inhomogeneous quadrupolar

broadening. Secondly, the absence of further increase of T2,n at larger cycle numbers

nc implies that the spin bath dynamics do not contain fast-fluctuating components

and are fully refocused by CPMG-MREV16 within the cycle times tc . TMREV16
2,n . As

discussed in section 6.4.1, the only relevant source of fluctuations in a charge-free

quantum dot is heteronuclear coupling, which is quasistatic due to the quenched

homonuclear dipolar flip-flop term (see chapter 5 and [41]). Therefore, excluding

other unidentified noise sources, we can assume the studied spin sub-ensemble to be

effectively decoupled from its environment by the combined echo sequences.

Finally, the continuous increase of the measured T2,n from CPMG-WAHUHA to

CPMG-BR24 shows that the nuclear spin bath decoherence is suppressed further

by more complex sequences. This is in agreement with the results of our AHT

calculations as the longer sequences eliminate more higher-order terms of the average

Hamiltonian (see discussion in section 6.2.3). Unfortunately, this comes at the cost

of reduced echo amplitudes due to the higher sensitivity of complex sequences to

pulse errors, an effect we will discuss in more detail in the next section.

6.5.3 Offset Sensitivity of Combined Echo Amplitudes

In the combined echo experiments presented in the preceding sections, we noticed

repeatedly that the 75As initial echo amplitudes ∆Ehf(0) were reduced compared

to the Hahn echo amplitude. By contrast, these effects were far less pronounced in

experiments on 71Ga. To understand this behaviour, we simulate the resonance offset

dependent evolution of a magnetisation vector M = Mzêz under the combined echo

sequences using the same model as in section 6.4.3. We assume once more that the

evolution is well described by the Bloch equations of motion and set T1 = T2 =∞.

Figures 6.14a and b show the normalised magnetisation Mz/Mz(0) after one, three
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Figure 6.14: (a,b) Dependence of the normalised magnetisation along êz on the reso-
nance frequency offset δ under CP-MREV16 (a) and CPMG-MREV16
(b). Solid curves show simulations for different pulse cycles nc. Dashed
lines show normalised 75As and 71Ga CT spectra with rescaled fre-
quency axes for Prf = 200 W. (c) Weighted average of the normalised
magnetisation over the 75As (circles) and 71Ga (squares) CT resonance
as a function of the CP(MG)-MREV16 cycle number nc. (d) Simula-
tion of the offset-dependent normalised magnetisation under a single
cycle of different combined echo sequences.

and six cycles of CP(MG)-MREV16 as a function of the resonance frequency offset δ.

As before, the offset is normalised by the inverse resonant Rabi period T−1
Rabi. For

comparison, normalised 75As and 71Ga CT NMR spectra are included. Here the

resonance offset is rescaled by T−1
Rabi at the rf power Prf = 200 W used in our ex-

periments (with exception of the spin locking experiments shown in figure 6.13).

The simulations show that the offset tolerance under both sequences decreases with

increasing cycle number nc. For a fixed nc, CPMG-MREV16 is less robust against

frequency offsets than CP-MREV16, although the difference is small. Figure 6.14c

shows weighted averages of Mz/Mz(0) over the CT resonances of 75As and 71Ga as a

function of nc for both pulse sequences. The simulations are in qualitative agreement
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with our experimental observations in figures 6.11: the 71Ga initial echo amplitude

is fully restored (Mz/Mz(0) ≈ 1) even after nc = 6 cycles of either sequence. For

75As, the offset sensitivity of CP(MG)-MREV16 results in a reduced echo amplitude

even after a single cycle, with further decrease observed at larger nc.

In addition, we simulate the offset-dependence of the normalised magnetisation

under the CPMG-WAHUHA, CPMG-MREV8 and CPMG-BR24 sequences which

we had tested experimentally on 75As (see section 6.5.1). The results of these simula-

tions are shown in figure 6.14d. We note that all sequences except CPMG-MREV16

(black) show an asymmetric offset-dependence. As we remarked in section 6.4.3, this

is a feature which we observe for all sequences that are containing pulses with or-

thogonal carrier phases and without time reversal symmetry. From comparison with

the simulated curves for CP(MG)-MREV16, it is not clear why the CPMG-BR24

echo amplitude in section 6.5.1 is strongly reduced compared to those of CPMG-

WAHUHA and CPMG-MREV8. In fact, weighted averages of the magnetisation

over the 75As CT resonance predict amplitudes Mz/Mz(0) ≈ 0.75− 0.9 for all of the

sequences displayed in figure 6.10. We therefore conclude that additional factors

such as pulse duration and phase errors must have a non-negligible influence on the

echo amplitude under CPMG-BR24.

6.6 Conclusions

In conclusion, we have explored two routes towards increasing the nuclear spin bath

coherence in an InGaAs quantum dot by using multiple pulse NMR techniques.

We used CP and CPMG sequences (π pulse trains) with alternating phases (AP)

to decouple a spin sub-ensemble of ∼ 104 − 105 nuclei In from its environment.

Instead of the expected suppression of time-dependent heteronuclear dipolar inter-

actions with the remaining nuclear spin sub-bath Jm, we observed a surprisingly

strong increase of the measured nuclear spin phase memory time under APCP up
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to TAPCP
M,n (75As) = 19.3± 2.0 ms and TAPCP

M,n (71Ga) = 5.04± 0.67 ms for large pulse

numbers. We were able to attribute this fourfold to fivefold increase compared to

the corresponding Hahn echo decay times to a form of spin locking arising from

evolution of the spin bath during the finite rf pulse duration[260]. Such spin lock-

ing effects masking the suppression of heteronuclear dynamics are neither predicted

nor observed for APCPMG. However, the sensitivity of this sequence to resonance

frequency offsets makes further studies of heteronuclear decoupling infeasible within

our experimental limits. A promising direction for future experiments could be the

use of Uhrig dynamical decoupling sequences[236] which do not share the strict pe-

riodicity of the CP and CPMG sequences and which are very robust against pulse

errors[238].

A second set of experiments was aimed towards full suppression of the decoherence

in a nuclear spin ensemble In due to both intrinsic homonuclear interactions and in-

homogeneous broadening with a single multiple pulse sequence. We designed several

combined Hahn and solid echo sequences which can eliminate both inhomogeneous

and homonuclear dipolar dephasing. Experimentally, we observed an increase of the

spin bath coherence under all tested combined echo sequences, reaching coherence

time values of up to TBR24
2,n (75As) = 22.4 ± 4.5 ms for 75As. We saw that T2,n in-

creases continuously with increasing sequence complexity, which indicates that the

real spin bath coherence times are even longer and the observed values are limited

by non-vanishing higher-order AHT terms. In principle, it would be possible to

design longer and more complex combined echo sequences which will increase the

control over the nuclear spin bath evolution even further. However, as we saw for

the CPMG-BR24 sequence, longer sequences become increasingly sensitive to pulse

and frequency offset errors, making them impractical for realistic experimental con-

ditions.

The CPMG-MREV16 sequence with decoherence times TMREV16
2,n (75As) = 11.85±

1.04 ms and TMREV16
2,n (71Ga) = 2.79±0.20 ms offers a good compromise by increasing
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the spin bath coherence considerably without reducing the echo amplitude notice-

ably. Further improvements may be feasible if the coupling between the spin bath

and the rf field can be increased, e.g. with an on-chip antenna. In this case, stronger

field amplitudes would lead to shorter Rabi periods, increasing the robustness of the

combined echo sequences against frequency offsets due to the inhomogeneous NMR

spectral linewidths of ∼ 10− 40 kHz.

In experiments using multiple cycles of CPMG-MREV16 we observed no signif-

icant change of the measured T2,n. This indicates that the environment sub-bath

Jm evolves slowly and the time-dependent heteronuclear dipolar dephasing of the

In spins is fully refocused within the probed free evolution times.

Summarising, the combined Hahn and solid echo sequences introduced in this

chapter can increase the coherence of the nuclear spin bath beyond the Hahn echo

limit. We expect that further improvements can be made by optimising the coupling

to the rf magnetic field. Furthermore, the use of composite pulses, while difficult

to implement in our experimental framework due to the requirement of phase shifts

during the pulse duration tp, could improve the robustness against pulse calibration

errors[264–266] and make the use of longer sequences such as BR-24 feasible. This

opens the way for spin qubits in quantum dots with a coherent, predictably evolving

nuclear spin environment which can be decoupled using electron (hole) spin echo

techniques[174, 178, 204, 225].

140



7 Spin Bath Correlation Times in

Self-Assembled Quantum Dots

7.1 Introduction

An InGaAs quantum dot system consists of an ensemble of ∼ 105 nuclei with spin

I ≥ 3
2
. As we saw in chapter 5, strong quadrupolar interactions give rise to inho-

mogeneous broadening on the order of 10 − 100 kHz for the nuclear spin CTs in

inverse NMR (see figure 5.7). Even broader spectra with inhomogeneous broaden-

ing ∆νinh ≈ 1− 10 MHz have been measured for STs using the same technique (see

figure 5.1b and [39]). This severely limits the amount of information that can be

gained from conventional cw NMR experiments as the homogeneous lineshapes and

coherence properties of the system are masked by fast dephasing.

The most common method for removing inhomogeneous NMR lineshape broad-

ening is the use of nuclear spin echo techniques. We have shown in chapter 5 that

it is possible to refocus the quadrupolar dephasing of the CT under a Hahn echo

sequence[41]. However, we also saw in chapter 6 that pulsed NMR techniques have

their own drawbacks: spin locking effects caused by calibration errors[257, 259]

or by dipolar evolution during the finite pulse duration[260] can result in long-

lived spin echoes unrelated to spin decoherence. Furthermore, the pulse powers

required for coherent driving of a full transition can quickly become unattainable

for inhomogeneously broadened spin ensembles. We saw in the previous chapter

141



that the performance of most multiple pulse sequences is limited by their tolerance

against frequency offsets even for the 75As and 71Ga CTs at rf input powers of

Prf ≈ 200 W (B1 ≈ 7 mT). For the pulsed manipulation of an 75As ST, we would

require magnetic field amplitudes B1 & 0.5 T, corresponding to infeasible pulse

powers of & 1 MW. This can be handled to some extent by employing alterna-

tive methods of coherent manipulation such as adiabatic plane rotation pulses[267].

However, these techniques require complex composite pulses involving simultaneous

amplitude, frequency and phase modulation. In addition, the adiabatic pulses can

modify the intrinsic spin-bath interactions in non-trivial ways and directly affect the

measured coherence times (see e.g. [268]).

electron spin

nuclear spin

Figure 7.1: The electron spin coherence is only affected by spin bath fluctuations due
to the nuclear spin flip-flop term. It is not influenced by the diagonal
nuclear-nuclear dipolar term ∝ In,zIm,z.

In a similar way, the influence of the instantaneous diffusion due to the diagonal

term of the homonuclear dipolar interaction (∝ In,zIm,z) makes it very difficult to

obtain the spin bath correlation times τc which limit the central spin coherence from

a pulsed echo measurement[41, 209]. This is a conceptual drawback of spin echoes:

the initial π
2

pulse prepares the nuclear spin ensemble in a state with large transverse

magnetisation which is a superposition of eigenstates with a broad spread of energies.

The spin dynamics in this state are characterised by TM,n, with a strong contribution

from the instantaneous diffusion term. By contrast, the coherence of a central spin

interacting with the nuclear spin bath is only affected by the off-diagonal nuclear spin

flip-flop term[29, 177, 197] (see figure 7.1), which is characterised by τc and which

is much longer than TM,n. In short, pulsed NMR is a powerful tool for controlling
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the nuclear spin bath and creating a predictable environment for a confined charge

spin qubit. However, it is not well suited for non-invasive measurements aimed at

characterising the bath fluctuation timescales which limit the central spin coherence.

In this chapter, we introduce a novel cw NMR technique which allows us to probe

the coherent dynamics of an inhomogeneously broadened nuclear spin ensemble in

a weakly-invasive measurement. We adopt a frequency comb rf excitation profile as

used in optical metrology[269, 270] to measure the homogeneous NMR lineshapes of

75As and 71Ga. This technique is highly sensitive to intrinsic and artificially induced

fluctuations in the spin environment of the probed ensemble, allowing us to measure

extremely long nuclear spin correlation times τc > 1 s in an empty InGaAs quantum

dot[271].

We discuss the experimental implementation of the frequency comb technique in

section 7.2. The capability of this technique to extract the homogeneous spectral

linewidth and lineshape of an isotope is demonstrated in section 7.3. We then ex-

plore the potential of frequency comb NMR by artificially restoring the spin flip-flop

mechanism for 71Ga and detecting its influence on the 75As lineshape in section 7.4.

This concept is taken further in section 7.5, where we adopt a three-comb NMR

scheme to extract the spin bath correlation times τc determined by the intrinsic

homonuclear dipolar flip-flop timescales.

7.2 Methodology

For the ODNMR experiments presented in this chapter we use the optical pump-

rf-probe scheme introduced in chapter 4.3.2. Measurements are performed on in-

dividual empty quantum dots in samples A and B in an external magnetic field

B0,z = 8 T. In this section, we only address those experimental aspects which are

unique to the frequency comb experiments. The experimental implementation of rf

frequency combs is discussed in section 7.2.1 before we briefly look at the pump-
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probe measurement cycle in section 7.2.2. Finally, the calibration of the central

frequency comb parameters is discussed in section 7.2.3.

7.2.1 Experimental Implementation of RF Frequency Combs

30W
Amp

CarrierComb

RF Main

CarrierComb

RF Depol

CarrierComb

RF Heat

Stub

rf coil

Mixer

Mixer
Coupler

Switch Switch

Figure 7.2: Diagram of the frequency comb rf circuit: the primary rf excitation comb
(blue) is formed by mixing a carrier with the comb waveform and sent
to the broadband matched coil via a 30 W class A amplifier. Additional
frequency combs (red and green) are added in later experiments for the
rf excitation of more than one isotope.

Each rf frequency comb is characterised by a spectral comb width ∆νcomb and

a fixed spectral separation fMS between neighbouring modes. The total number

of modes in a frequency comb is therefore given by Nm = ∆νcomb/fMS + 1. In the

experiments presented in this chapter, mode spacings in the range of 30 Hz to 21 kHz

are used, corresponding to Nm ∼ 330−600000. Each individual mode j is described

by its frequency νj and phase ϕj and all Nm modes have the same amplitude B1. The

phases ϕj are chosen such that the peak-to-average amplitude ratio (crest factor) of

the frequency comb waveform is minimised. This is the case for

Brf(t) = B1

Nm∑
j=1

cos

(
2π(ν1 + (j − 1)fMS)t+ π

j(j + 1)

Nm

)
, (7.1)
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where ν1 is the frequency of the first comb mode and Brf is the rf amplitude of

the full comb. The frequency comb waveforms are created in Mathematica and

stored in the memory of an arbitrary waveform generator. Full combs are formed

analogous to the implementation of adiabatic sweeps in chapter 5.4: the waveform

signal of bandwidth ∆νcomb/2 is mixed with a carrier νcomb,0 centred on the CT

of the probed isotope, creating a full frequency comb profile overlapping with the

inhomogeneously broadened NMR resonance. The rf signal is amplified by a 30 W

class A power amplifier and sent to the rf coil. Our rf circuit cannot be matched

for the broad frequency bands of the combs used here. However, we can tune the

rf circuit such that the (mismatched) transmission over the full comb width is flat

within ∼ 2 dB (see figure 4.5b).

Figure 7.2 depicts the full rf circuit for application of up to three separate fre-

quency combs. The RF Main comb (blue) is used for depolarisation of the probed

isotope in all subsequent measurements. For experiments requiring the depolarisa-

tion of a second isotope (see section 7.4), the RF Depol comb (red) is added. Further

experiments involve the additional “heating” of a single NMR transition of the de-

polarised second isotope (section 7.5). This is achieved by switching between the

RF Depol and RF Heat combs. Details of all waveforms are given in table 7.1 and in

the respective experimental sections. The outputs of all three generators and both

switches are gated by a master generator which clocks the full experiment cycle.

7.2.2 Optical Pump-Probe Measurement

The pump-rf-probe scheme of chapter 4.3.2 is adopted once more for the frequency

comb measurements. A full experiment cycle is depicted in figure 7.3: a high power,

σ− circularly polarised optical pump pulse is applied in resonance with the quantum

dot wetting layer (∼ 850 nm) to polarise the nuclear spin bath via DNP at the

beginning of each experiment cycle (green trace). As we are studying the same

quantum dots as in the previous sections, we use the pump pulse time tpump = 6.5 s
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obtained in the calibration measurements of chapter 5.3.2.

In the single comb experiments, rf excitation with the RF Main comb follows

next (blue trace). The comb is applied continuously for an rf excitation time trf

which is varied over several orders of magnitude (∼ 10−4 − 102 s) for each set of

measurements. In the two- and three-comb experiments, the RF Depol comb is

applied to a second isotope. This comb is gated in antiphase to RF Main and

fully depolarises the second isotope during a time tdepol before the RF Main comb

is switched active (red trace). The RF Heat comb is tailored to selectively drive

a single transition of the depolarised second isotope during trf and accordingly is

gated synchronously with the primary comb.

Main frequency comb
(+ heating comb)

 

 

Experiment Cycle

tprobe
Probe laser and PL detection

trf
tdepol

Depolarisation comb
Pump laser

tpump

Figure 7.3: The experiment cycle for frequency comb measurements follows the
pump-rf-probe scheme of the previous chapters. In two- and three-comb
measurements, a second isotope is depolarised using the RF Depol for
tdepol before the main comb and an optional third heating comb are ap-
plied.

The remaining magnetisation after rf excitation is probed non-resonantly in PL

with a low power, linearly polarised laser for a dot-dependent time tprobe (purple

trace). As we are interested in the change of the nuclear spin polarisation in the

quantum dot induced by the rf frequency comb (change in the Overhauser shift

∆Ehf), we perform a second measurement in which the RF Main comb (as well as
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the RF Heat comb in three-comb measurements) is switched off. Then the change

in Ehf is given by the difference between the respective measured exciton Zeeman

splittings where ∆Ehf = 0 corresponds to no rf-induced nuclear spin depolarisation.

7.2.3 Parameter Calibration
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Figure 7.4: Schematic of the frequency combs used in the experiments of sections
7.3-7.5. (a) Sketch of the full NMR spectrum in a self-assembled In-
GaAs quantum dot at B0,z = 8 T (see figure 5.1b for experimental
data). (b)-(d) Frequency combs used in the experiments: the 75As-full
and 71Ga-full combs excite the respective full inhomogeneously broad-
ened lineshapes. By contrast, the 71Ga-ST comb selectively excites
the +1/2 ↔ +3/2 71Ga ST and the 71Ga-CT comb overlaps with the
−1/2 ↔ +1/2 71Ga CT. The respective comb parameters are listed in
table 7.1 below.

Each frequency comb is tailored to excite either a single CT/ST or the full in-

homogeneously broadened NMR spectrum of a given isotope as illustrated in figure

7.4. Hence we have to choose the comb width ∆νcomb and central frequency νcomb,0
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accordingly. We already measured the resonance frequencies for the CTs of 75As and

71Ga at B0,z = 8 T in chapter 5.4.1 using inverse NMR. In principle, this technique

can also be used to measure the full inhomogeneous NMR spectra including the STs

as has been shown in [39] (see figure 5.1b).

(a) Homogeneous NMR lineshape experiments (section 7.3, sample B):

Isotope 75As 71Ga

Frequency comb 75As-full 71Ga-full

Central frequency νcomb,0 (MHz) 58.81 104.80

Comb width ∆νcomb (MHz) 18 9

Mode spacing fMS (Hz) varied varied

Rf field density β1 (nT/
√

Hz) 65.5 39.1

(b) Line broadening experiments (section 7.4, sample A):

Isotope 75As 71Ga

Frequency comb 75As-full 71Ga-full

Central frequency νcomb,0 (MHz) 58.81 104.80

Comb width ∆νcomb (MHz) 18 8

Mode spacing fMS (Hz) varied 159

Rf field density β1 (nT/
√

Hz) 30.5 27.6

(c) Extracting spin bath correlation times (section 7.5, sample A):

Isotope 75As 71Ga 71Ga 71Ga

Frequency comb 75As-full 71Ga-full 71Ga-ST 71Ga-CT

Central frequency νcomb,0 (MHz) 58.81 104.80 106.40 104.80

Comb width ∆νcomb (MHz) 18 8 1.3 0.05

Mode spacing fMS (Hz) 1466 159 150 150

Rf field density β1 (nT/
√

Hz) varied 27.6 varied varied

Table 7.1: Frequency comb parameters used in the experiments of sections 7.3-7.5.

Here, we use the results of our sweep range calibration measurements instead (see

chapter 5.4.2). For sample A, we measure inhomogeneously broadened spectra with

∆νinh(75As) ≈ 15 MHz and ∆νinh(71Ga) ≈ 5 MHz in good quantitative agreement

with the findings of inverse NMR studies shown in figure 5.1b and reported in [39] for

148



another sample from the same wafer. The inhomogeneous NMR spectra in sample B

are found to be broader with ∆νinh(75As) ≈ 18 MHz and ∆νinh(71Ga) ≈ 7 MHz. The

comb widths ∆νcomb are chosen to cover the 75As and 71Ga spectra fully and are listed

in table 7.1. For the three-comb experiments of section 7.5, we also have to choose

comb widths and positions for the excitation of individual 71Ga transitions. We

choose ∆νinh(CT) = 50 kHz based on inverse NMR spectra to ensure overlap with

the full CT. The ST comb width ∆νinh(ST) = 1.3 MHz and ST central frequency

νcomb,0 = νL(71Ga) + 1.6 MHz are chosen to avoid residual indirect heating of the

CT (see detailed discussion in section 7.5.1).

The magnetic field per mode B1 and corresponding rf field density β1 = B1√
fMS

are calibrated using a Rabi oscillation measurement on the CT of 71Ga. As we

saw in chapter 5.4.3, we can obtain the rf field amplitude from the Rabi period via

B1 = 1
2γ∗TRabi

. Using a pick-up coil in close proximity to the sample and connected
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Figure 7.5: Hyperfine shift ∆Ehf after maximum negative (circles) or positive
(squares) polarisation of the nuclear spin bath as a function of the time
delay t. Solid lines show fitting with an exponential decay function with
characteristic decay time T1,n.
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to a spectrum analyser, we can monitor the transmitted rf fields in all NMR experi-

ments (see chapter 4.3.1). By comparing the voltages induced by the frequency comb

modes with the the voltage induced by the coherent rf pulse in the Rabi experiment,

we can obtain the corresponding magnetic field amplitude B1 of each mode.

Finally, we have to take into account that the decay of the hyperfine splitting

∆Ehf in our experiments is due to a combination of rf induced depolarisation and

intrinsic nuclear spin relaxation. The influence of intrinsic relaxation can be safely

ignored for sample B where we have found T1,n > 1 h under large reverse biases (see

chapter 5.3.1). While the polarisation in sample A also decays slowly, it becomes

non-negligible for long depolarisation times trf & 1 min. Figure 7.5 shows the

results of nuclear spin relaxation measurements in sample A at B0,z = 8 T: the

nuclear spin bath is maximally polarised with σ− (circles) and σ+ (squares) polarised

light, respectively, and left to evolve in the dark without rf excitation for a varying

time t before a weak optical probe pulse is applied to measure the remaining bath

polarisation. From exponential fitting of the hyperfine shift dependence on the

time delay t (solid), we obtain nuclear spin relaxation times T1,n(σ−) ≈ 1730 s and

T1,n(σ+) ≈ 1540 s.

7.3 Probing Homogeneous NMR Lineshapes with

Frequency Combs

As we will show in this section, the nuclear spin depolarisation times under excitation

with rf frequency combs are very sensitive to the mode spacing fMS. In part 7.3.1,

we introduce the working principle of frequency comb NMR and illustrate how this

technique can extract the narrow homogeneous linewidth ∆νhom from the strongly

inhomogeneously broadened spectrum. We then look at the experimental results

of mode spacing and depolarisation time dependent frequency comb measurements

(section 7.3.2) before showing how an accurate model of the homogeneous NMR
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lineshape can be obtained from these results in section 7.3.3. In the last part 7.3.4

we will discuss the validity of the assumptions made in this model and look at the

applicability of the frequency comb technique.

7.3.1 Working Principle of the Frequency Comb Technique

An inhomogeneously broadened NMR spectrum is formed by the sum of a large

number of homogeneous spectra with varying frequency offsets from the central

resonance frequency νL (see figure 7.6a). This can be either the sum over long

acquisition times in the NMR measurement of a single spin transition or an ensem-

ble spectrum for the simultaneous probing of a large number of nuclei. In the first

case, the homogeneous spectrum can be measured e.g. by reducing the measurement

time towards the single-shot limit[272, 273]. The analogous approach to counter-
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Figure 7.6: (a) The inhomogeneously broadened NMR spectrum (green line, ∆νinh)
is formed by a large number of individual nuclear spin transitions with
linewidths ∆νhom (red lines). (b)-(c) RF excitation profiles used for
cw NMR techniques: conventional saturation spectroscopy (violet line)
with rf excitation window δν (b), inverse NMR spectroscopy (orange
line) with broadband excitation except for a gap δν (c) and frequency
comb NMR (blue line) with comb width ∆νcomb and mode spacing fMS

(d).
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ing ensemble broadening would be a reduction of the sample volume, which would

come at great cost to the detection sensitivity. A more common way for remov-

ing inhomogeneous broadening in NMR spectroscopy are spin echoes[41, 199, 226].

However, as mentioned in the introduction and observed in the previous chapters,

pulsed NMR techniques are hampered by artefacts which can obscure the intrinsic

lineshape[260, 274].

Instead, we use the frequency comb technique which allows us to probe the full

homogeneous lineshape of an arbitrarily broadened spin ensemble under weak, non-

coherent rf excitation. In conventional saturation cw NMR, the spin sub-ensemble

within a finite frequency window δν (figure 7.6b) or, in the case of inverse NMR[39],

a broad frequency band except for an isochrome δν (figure 7.6c) is depolarised under

high power rf excitation. By contrast, we now employ rf excitation in the shape of a

frequency comb of width ∆νcomb consisting of Nm equidistant modes with amplitudes

B1 and mode spacing fMS (see figure 7.6d).

The working principle of frequency comb spectroscopy is illustrated in figure 7.7.

The full inhomogeneous NMR spectrum is excited by a comb (blue line) with comb

width ∆νcomb > ∆νinh. This broad excitation bandwidth is only possible due to

the low rf power carried in each mode. The mode amplitudes B1 ≈ 0.1 − 10 µT

are several orders of magnitude smaller that the rf amplitudes used in pulsed NMR

experiments (B1,pulse ≈ 3−8 mT) and are kept constant over the comb width ∆νcomb

within the experimental limitations for rf circuit matching (±20%, see figure 4.5b

for comparison).

In a typical frequency comb NMR experiment the nuclear spin ensemble is first

polarised optically as described in section 7.2.2. Subsequently, we apply an rf comb

with mode spacing fMS to the inhomogeneously broadened NMR spectrum of the

studied isotope and depolarise the nuclear spins for a time trf . The observed depo-

larisation dynamics induced by the comb depend on the relation between the mode

spacing fMS and the nuclear homogeneous linewidth ∆νhom. If the mode spacing
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Figure 7.7: Schematic of the frequency comb NMR technique for measuring the
homogeneous NMR lineshape (red lines). The rf excitation spectrum
(blue) overlaps with the full NMR spectrum as illustrated in figure 7.6,
i.e. ∆νcomb > ∆νinh. (a) If the mode spacing fMS is smaller than the
homogeneous linewidth ∆νhom, all nuclear transitions get depolarised
quickly. (b) For larger mode spacings fMS > ∆νhom, depolarisation slows
down as some transitions (dashed line) no longer get excited by the fre-
quency comb. The rf amplitude per mode is rescaled to keep the power
density constant for varying fMS.

is small (fMS < ∆νhom), each spin transition within ∆νcomb is excited resonantly

by several modes as shown in figure 7.7a. As B1 is small, the induced nuclear spin

precession is slower than the phase memory time TM,n and we expect to observe

non-coherent exponential depolarisation with a characteristic decay time τ instead

of the Rabi oscillations we observed e.g. in chapter 5.4.3 under strong, coherent rf

driving[193].

For the opposite case of large mode spacing fMS > ∆νhom, we no longer excite

every nuclear spin transition resonantly (dashed line in figure 7.7b). As a conse-

quence, the overall depolarisation slows down and becomes non-exponential. Ex-

perimentally, we can vary the mode spacing over a wide range (∼ 30 Hz− 20 kHz)

in order to determine the value of fMS at which this slow-down begins. This gives

us an estimate of the homogeneous linewidth ∆νhom. The rf field density β1 = B1√
fMS
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is kept constant for different fMS by rescaling the rf amplitude per mode B1 to keep

the depolarisation time τ of resonantly excited spin transitions fixed. As we will

show in section 7.3.3, a more detailed analysis of such a dataset allows us to obtain

not only ∆νhom but also to quantify the full homogeneous NMR lineshape.

7.3.2 Experimental Results
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Figure 7.8: Change of the nuclear spin bath polarisation ∆Ehf as a function of the
duration trf of an rf frequency comb applied to (a) 75As and (b) 71Ga at
B0,z = 8 T and for different mode spacings fMS. Solid lines show fitting
with the model discussed in the following section 7.3.3.

Figures 7.8a and b show respective experimental results from frequency comb

measurements on 75As and 71Ga in an empty quantum dot on sample B. The polar-

isation of the nuclear spin ensembles is shown as a function of the frequency comb

excitation time trf at B0,z = 8 T. Each figure shows data obtained with fixed rf

field density (β1(75As) = 65.5 nT/
√

Hz and β1(71Ga) = 39.1 nT/
√

Hz) and different

mode spacings fMS. While the trf dependence at small mode spacing is well described

by an exponential decay with respective characteristic decay time τ(75As) ≈ 240 ms

and τ(71Ga) ≈ 105 ms, we observe a pronounced slow-down of the depolarisation

dynamics for large fMS. Solid lines show fits with the homogeneous lineshape model

derived in the next section.
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Figure 7.9: Two-dimensional colour plots showing the dependence of the Overhauser
shift ∆Ehf in (a) 75As and (b) 71Ga on the frequency comb mode spacing
fMS and on the depolarisation time trf . White arrows mark the mode
spacings where the depolarisation is beginning to slow down, giving an
estimate for the homogeneous linewidths ∆νhom(75As) ≈ 250 Hz and
∆νhom(71Ga) ≈ 450 Hz.

We performed depolarisation time dependent frequency comb NMR experiments

on both isotopes for a large range of mode spacings fMS. The combined results of

these measurements are shown in figures 7.9a and b as two-dimensional colour plots.

Here, the transition from the fast exponential nuclear spin bath depolarisation to

the slowed-down depolarisation regime with increasing mode spacing fMS is clearly

discernible for both isotopes. The onset of this slow-down is marked by white arrows

and gives an estimate for the homogeneous NMR linewidths ∆νhom(75As) ≈ 250 Hz

and ∆νhom(71Ga) ≈ 450 Hz. As we will show in the next section, a rate equation

model allows us to improve on this estimate and to determine the full homogeneous

spectral lineshapes of the 75As and 71Ga resonances from this data.

7.3.3 Extracting the Homogeneous NMR Lineshape

While the spectral linewidth ∆νhom is linked to the ensemble phase memory time via

TM,n ≈ 1/(π∆νhom), the full homogeneous lineshape contains additional information

on the nature of the nuclear spin decoherence processes limiting TM,n[275, 276]. Here
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we discuss how the homogeneous NMR lineshape of an isotope can be obtained

from a set of mode spacing and depolarisation time dependent frequency comb

measurements as shown in figures 7.9.

We begin with an initial assumption that the lineshape is symmetric and can be

described by a phenomenological model

L(ν) ∝
(

1 + 4(
k
√

2− 1)
ν2

∆ν2
hom

)−k
, (7.2)

with a roll-off parameter k describing the behaviour of L(ν) far from the centre of the

line ν0 = 0. Equation (7.2) describes a Lorentzian lineshape if k = 1 and becomes

Gaussian for k → ∞. We can therefore describe the full lineshape by determining

the free parameters νhom and k.

In order to model the depolarisation under a frequency comb, we consider an

ensemble of N nuclear spins I = 3
2

with identical gyromagnetic ratio γ. The depo-

larisation is isotope-selective, i.e. we can neglect the polarisation of other isotopes.

In an external magnetic field B0,z, we get four Zeeman split nuclear spin states

mI = −3
2
,−1

2
, 1

2
, 3

2
with population probabilities pm, satisfying

∑
m pm(t) = 1. After

optical preparation of the spin bath at t = 0, we can describe the initial spin bath

polarisation by a Boltzmann distribution

pm(t = 0) = pm,0 ∝ exp

(
mI~γB0,z

kBTnuc

)
, (7.3)

with Boltzmann constant kB and nuclear spin temperature Tnuc. Using the known

hyperfine constants Ae (see table 3.1) and the experimentally measured hyperfine

shift at maximum nuclear polarisation, we can determine the spin temperature

to be Tnuc,A(75As) ≈ 3.9 mK and Tnuc,A(71Ga) ≈ 5.2 mK in sample A as well as

Tnuc,B(75As) ≈ 5.6 mK and Tnuc,B(71Ga) ≈ 7.1 mK in sample B.

Under rf excitation the population probabilities change. Assuming weak rf fields

far below the saturation level, i.e. where no Rabi oscillations are occurring, and
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taking into account only dipole-allowed transitions (∆mI = ±1), we can describe

the evolution of the spin ensemble by a set of rate equations:

dp3⁄2

dt
= W1⁄2,3⁄2(−p3⁄2(t) + p1⁄2(t))

dp1⁄2

dt
= −(W−1⁄2,1⁄2 +W1⁄2,3⁄2)p1⁄2(t) +W−1⁄2,1⁄2p−1⁄2(t) +W1⁄2,3⁄2p3⁄2(t)

dp−1⁄2

dt
= −(W−3⁄2,−1⁄2 +W−1⁄2,1⁄2)p−1⁄2(t) +W−3⁄2,−1⁄2p−3⁄2(t) +W−1⁄2,1⁄2p1⁄2(t)

dp−3⁄2

dt
= W−3⁄2,−1⁄2(−p−3⁄2(t) + p−1⁄2(t)) ,

(7.4)

with symmetric transition rates Wm,m+1 = Wm+1,m. Therefore we have a set of four

differential equations for three independent variables (the pm(t) are also linked by

the normalisation condition). The depolarisation dynamics of the spin ensemble are

fully determined by the rf induced transition rates Wm,m+1.

Each rate Wm,m+1 is given by the sum of transition rates for the Nm individual

modes in the frequency comb with mode spacing fMS and field amplitudes B1. We

assume that all nuclear transitions are described by the same unknown homogeneous

lineshape function L(ν) given in equation (7.2) with normalisation
∫∞
−∞ L(ν)dν = 1.

Using Fermi’s golden rule with the dipole transition matrix element (I − mI)(I +

mI + 1), the rate for any given NMR transition frequency νm,m+1 is

Wm,m+1(νm,m+1) =
(I −mI)(I +mI + 1)γ∗2B2

1

2fMS

+∞∑
j=−∞

L(νm,m+1 − ν1 − jfMS)fMS ,

(7.5)

where we sum over all modes with frequencies νj = ν1 + (j − 1)fMS. As the comb

width ∆νcomb is much larger than the mode spacing fMS and the homogeneous

linewidth ∆νhom, we can extend the sum to ±∞. We note here that in the limit of

small fMS → 0, the infinite sum in equation (7.5) tends towards the integral expres-

sion
∫∞
−∞ L(ν)dν = 1 and the polarisation of a given spin transition mI ↔ mI + 1
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decays exponentially with characteristic time

τm,m+1 =
2fMS

(I −mI)(I +mI + 1)γ∗2B2
1

. (7.6)

The general solution to the set of differential equations in (7.4) is of the form

pm(t) =
1

4
+

3∑
j=1

am,j exp(−λjt) , (7.7)

describing the multi-exponential spin relaxation towards a depolarised state with

pm = 1
4
. The eigenvalues λj only depend on the transition rates Wm,m+1, whereas

the coefficients am,j also depend on the initial probabilities pm,0 from equation (7.3).

Experimentally, we measure the hyperfine shift of a Zeeman split doublet of exci-

ton transitions. We can express the time-dependent Overhauser shift for a fixed set

of nuclear transition frequencies {νm,m+1} = {ν−3⁄2,−1⁄2, ν−1⁄2,−1⁄2, ν1⁄2,3⁄2} as

Ehf,1(trf , fMS, B1, Tnuc, L(ν), {νm,m+1}) = Ae

+3⁄2∑
m=−3⁄2

mIpm(t) , (7.8)

where Ae is the hyperfine constant of the isotope and trf is the depolarisation time.

The dependence on the lineshape L(ν) originates from the transition rates (equation

(7.5)) and is effectively a dependence on ∆νhom and the roll-off parameter k for

equation (7.8). Since the quantum dot consists of several thousand nuclear spins

with highly inhomogeneous quadrupolar shifts we need to average over all νm,m+1.

This can be done over a single period fMS as the rf spectrum is periodic. The full

Overhauser shift is given by

Ehf(trf , fMS, B1, Tnuc, L(ν)) =

f−3
MS

∫ fMS

0

dν−3⁄2,−1⁄2dν−1⁄2,1⁄2dν1⁄2,3⁄2Ehf,1(trf , fMS, B1, Tnuc, L(ν), {νm,m+1})
(7.9)
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The rf induced change in the Overhauser shift measured in the experiment is

∆Ehf(trf , fMS, B1, Tnuc, L(ν)) = Ehf(trf , fMS, B1, Tnuc, L(ν))− Ehf(trf = 0) (7.10)

The mode spacing fMS, the rf amplitude B1 and the rf excitation time trf are deter-

mined by experimental parameters. Since the nuclear spin temperature Tnuc is also

known from the total hyperfine shift ∆Ehf(trf →∞), we are left with only two free

parameters: the homogeneous linewidth ∆νhom and the roll-off parameter k, which

fully determine the model lineshape L(ν) in equation (7.2).
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Figure 7.10: Homogeneous NMR lineshape L(ν) for (a) 75As and (b) 71Ga obtained
from fitting of the experimental data shown in figures 7.9 with equation
(7.10) (solid lines). Dashed and dash-dotted lines show Lorentzian and
Gaussian lineshapes with the same linewidth ∆νhom for comparison.

Using least-square fitting of the experimental data ∆Ehf(trf , fMS) shown in figures

7.9 with equation (7.10), we obtain best-fit parameters ∆νhom(75As) ≈ 118 Hz and

k(75As) ≈ 1.68 for 75As, as well as ∆νhom(71Ga) ≈ 221 Hz and k(71Ga) ≈ 1.67 for

71Ga. The solid lines in figures 7.10a and b show the best-fit lineshapes together with

Lorentzian (dashed lines) and Gaussian lineshapes (dash-dotted lines) with the same

homogeneous linewidth ∆νhom. We see a pronounced difference in the tail behaviour

at large frequency offsets, indicating a noticeable deviation from the “top-hat”-like
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Gaussian lineshape typically expected for a dipolar broadened spin ensemble[275].

The homogeneous linewidths are in good agreement with the Hahn echo results

presented in chapter 5: from TM,n ≈ 1/(π∆νhom), we obtain TMS
M,n(75As) ≈ 2.7 ms

and TMS
M,n(71Ga) ≈ 1.4 ms compared to THE

M,n(75As) = 4.3 ms and THE
M,n(71Ga) = 1.2 ms

in the Hahn echo measurements.
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Figure 7.11: Two-dimensional colour plots showing the model dependence of the
Overhauser shift ∆Ehf on the 71Ga depolarisation time trf and on
the frequency comb mode spacing fMS. The plots show the calcu-
lated ∆Ehf(trf , fMS) for (a) Lorentzian, (b) best-fit, and (c) Gaussian
lineshape using equation (7.10) with identical parameters (B1, Tnuc,
∆νhom).

The sensitivity of the frequency comb technique to the lineshape can be shown by

modelling the full dependence of the hyperfine shift ∆Ehf(trf , fMS) on the depolari-

sation time trf and on the mode spacing fMS under the assumption of a Lorentzian

or Gaussian lineshape with all other parameters (B1, Tnuc, ∆νhom) kept identical to

the best fit. Figures 7.11a, b and c show two-dimensional colour plots of the mod-

elled ∆Ehf(trf , fMS) for 71Ga assuming a Lorentzian, best fit and Gaussian lineshape,

respectively. We note that the best fit model is in excellent agreement with the ex-

perimental results shown in figure 7.9b whereas the behaviour of the Lorentzian

and Gaussian models strongly deviates from the experimental observations at large

mode spacings fMS. This demonstrates the high sensitivity of the frequency comb

technique to the homogeneous NMR lineshape.
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7.3.4 Applicability of the Frequency Comb Technique

Before we further explore the origin of the non-Gaussian homogeneous NMR line-

shapes observed for 75As and 71Ga, we consider possible limitations of the applicabil-

ity of frequency comb NMR by studying the rf amplitude dependent depolarisation

behaviour. We saw in chapter 3.3.2 that the evolution of a nuclear spin ensemble

under rf excitation can be described by the Bloch equations of motion[189]. If the

rf field is resonant with the Larmor frequency of the driven spin ensemble, the solu-

tions to the Bloch equations are fully determined by the rf field amplitude B1, the

spin relaxation time T1,n and the phase memory time TM,n. Since T1,n is on the order

of hours in empty self-assembled quantum dots (see chapter 5.3.1 and [85, 115]), the

nuclear spin dynamics in this system are characterised by B1 and TM,n only.
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Figure 7.12: Frequency comb NMR on 71Ga at different rf powers. Dependence of
the 71Ga Overhauser shift ∆Ehf at B0,z = 8 T on the frequency comb
excitation time trf and on the mode spacing fMS at (a) low, (b) medium,
and (c) high rf field density β1.

In the case of strong driving fields (γB1TM,n � 1), the Bloch equations predict

Rabi oscillations for the magnetisation along the êz axis as derived in chapter 3.3.

The coherent pulsed NMR experiments discussed in the previous chapters were done

in this regime. In the weak rf limit (γB1TM,n � 1), the magnetisation along êz decays

exponentially to its steady state value instead[193]. This regime is much easier to

treat theoretically and we assumed its validity implicitly when we described the

time evolution of the nuclear spin bath magnetisation by the rate equation model
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(7.4). Hence the applicability of the frequency comb technique based on the model

introduced in the previous section is limited by the weak rf field assumption.

Figures 7.12a-c show the results of full ∆Ehf(trf , fMS) dependence measurements

on 71Ga at three different rf field densities. We find that model fitting yields almost

identical lineshape parameters for the low (β1 = 24.2 nT/
√

Hz) and high rf field

density (β1 = 86.0 nT/
√

Hz) measurements, in very good agreement with the values

obtained for the medium field density β1 = 39.1 nT/
√

Hz shown in figure 7.9b of

the previous section and in figure 7.12b (see table 7.2 below).

Figure 7.12 (a) (b) (c)

RF field density β1 (nT/
√

Hz) 24.2 39.1 86.0

Exponential decay time τ (ms) 290 105 23

Homogeneous linewidth ∆νhom (Hz) 223 221 244

Roll-off parameter k 1.68 1.67 1.66

Table 7.2: Fitted lineshape parameters and exponential decay times for the fre-
quency comb measurements at different rf powers shown in figure 7.12.

However, we do notice a pronounced deviation from the single exponential decay

behaviour at small mode spacing fMS in the measurement at high rf amplitude.

Figure 7.13 shows the 71Ga spin depolarisation dynamics for all three amplitudes

at fMS = 31.25 Hz. Solid lines show fitted single exponential decay curves with a

time constant τ . While the decay at medium and low rf power is well described by

the fit, we see a clear deviation at β1 = 86.0 nT/
√

Hz. This onset of an oscillatory

behaviour quickly disappears for larger mode spacings fMS & 80 Hz, which explains

why the fit to the full data set ∆Ehf(trf , fMS) is still in excellent agreement with the

results for lower rf amplitudes.

Taking into account the good agreement of the fitted lineshapes at all three rf

field densities (see table 7.2), we can conclude that even at relatively high rf powers

the deviation of the nuclear depolarisation dynamics from a pure exponential decay

only becomes significant at very small mode spacings. This can be understood if
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we consider that spin depolarisation at high rf powers occurs over a very short

timescale τ . If τ < 1/fMS, we can no longer describe the spectral profile of the rf

excitation field as a frequency comb and the rate equation model discussed in the

previous section is no longer applicable. In order to obtain the lineshape parameters,

we only need mode spacings equal to or larger than the homogeneous linewidth,

fMS ∈ {∆νhom,∞}. Combining these two requirements, we can define the following

condition for the applicability of the frequency comb technique:

∆νhom > 1/τ . (7.11)

Note that this merely sets an upper limit to the rf amplitude as the condition can

always be fulfilled by reducing the rf power sufficiently.

For the weak rf field limit of the Bloch equations (absence of Rabi oscillations)

to hold, we also require that the rf induced decay time τ is longer than the nuclear
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spin phase memory time TM,n. However, since TM,n ∼ 1/(πνhom), this leads to the

same condition as stated in equation (7.11). In general, a third limitation can arise

for short longitudinal relaxation times T1,n. Since the frequency comb technique is

based on a measurement of the longitudinal nuclear magnetisation after a time trf ,

we require that τ < T1,n, so that in summary

∆νhom > 1/τ > 1/T1,n (7.12)

This expression not only limits the range of rf field amplitudes for which we can

perform frequency comb NMR. It also implies a requirement T1,n > TM,n for the

studied nuclear spin system. Based on the results at different amplitudes discussed

in this section, we find that the longitudinal relaxation time T1,n must be at least ∼

10−100 longer than TM,n for reliable frequency comb NMR measurements. However,

this condition is fulfilled for many nuclear spin systems in the solid state with T1,n �

TM,n and does not present a strong limitation to the applicability of the frequency

comb technique.

7.4 Detecting Nuclear Spin Flip-Flop Freezing by

Frequency Comb NMR

The frequency comb experiments presented and discussed in the previous sections

showed that the non-Gaussian homogeneous NMR linewidths ∆νhom of 75As and

71Ga nuclei in a self-assembled quantum dot are noticeably narrower than in com-

parable strain-free systems. We already mentioned in chapter 5.2 that Hahn echo

decay times of THE
M,n(75As) . 800 µs corresponding to ∆νhom(75As) ≈ 400 Hz have

been reported for the CT of 75As in unstrained quantum well structures[183]. NMR

studies of 75As in bulk GaAs revealed even broader linewidths of up to ∼ 1.5 kHz

and a Gaussian homogeneous lineshape[277].
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In chapter 5, we attributed the comparatively long nuclear spin decay times in In-

GaAs quantum dots observed in Hahn echo to the partial suppression of the homonu-

clear dipolar flip-flop mechanism resulting from strong inhomogeneous broadening

of the NMR spectrum[41, 200]. As we will now show, frequency comb NMR al-

lows us to confirm this conclusion in a direct fashion by artificially restoring the

dipolar broadening. As before, we depolarise the 75As spins with frequency combs

of varying mode spacings fMS to measure their homogeneous lineshape. However,

we now apply a second frequency comb (RF Depol in figure 7.2) which excites the

71Ga spins. Using a comb with rf field density β1,Ga = 27.6 nT/
√

Hz correspond-

ing to a decay time of τGa = 172 ms, we depolarise the 71Ga nuclei fully during a

time tdepol = 1.2 s after the spin bath has been polarised optically and before the

75As nuclei are depolarised for a varying time trf (see experiment cycle in figure 7.3).
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Figure 7.14: Two-dimensional plot of ∆Ehf as a function of trf and fMS in frequency
comb NMR measurements on 75As in sample A (a) without and (b)
with simultaneous heating of 71Ga. White arrows mark the onset of
depolarisation slow-down, giving an estimate of ∆νhom.

If the RF Depol comb is switched off during trf , the 71Ga excitation has no ef-

fect on the 75As homogeneous lineshape. This is shown in figure 7.14a for measure-

ments on a dot in sample A. Fitting with equation (7.10) gives lineshape parameters

∆νhom(75As) ≈ 117 Hz and k(75As) ≈ 1.78 in excellent agreement with the results
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of the single-comb experiment on 75As in sample B (see figure 7.9a).

By contrast, figure 7.14b shows the mode spacing and depolarisation time depen-

dence of the 75As hyperfine shift ∆Ehf in a set of experiments where the RF Depol

comb is kept switched on during trf . As the 71Ga nuclei have already been depo-

larised during tdepol, the full depolarisation amplitude ∆Ehf,0 is identical to that in

the previous measurement. However, the continuous “heating” of the 71Ga spins

does have an indirect effect on the 75As depolarisation dynamics: the RF Depol

comb induces additional 71Ga spin-flips and creates a “noisy” spin environment to

which the 75As spins couple by heteronuclear dipolar interaction. The resulting

spectral line broadening is indicated in figure 7.14b by a white arrow. From fitting,

we obtain a two times broader linewidth ∆νhom(75As) ≈ 355 Hz and a noticeable

change of the lineshape towards Gaussian (k(75As) ≈ 2.32).

These findings are a direct confirmation of the spin freezing mechanism discussed

in reference [41] and chapter 5. The strain-induced strongly inhomogeneous broad-

ening of the NMR resonances suppresses homonuclear dipolar flip-flop interactions

in the quantum dot. The homogeneous lineshape we measure in frequency comb

spectroscopy represents the statistical distribution of frequency shifts each probed

nucleus is subject to due to its dipolar interaction with its fluctuating nuclear spin

environment. If these fluctuations occur over a timescale exceeding trf , they are

effectively static during the rf probing time. Consequently, their contribution to the

homogeneous linewidth is removed and we observe a narrowed, non-Gaussian line-

shape. RF heating of the 71Ga spin ensemble reintroduces the suppressed 71Ga spin

flip-flop mechanism by inducing additional 71Ga spin-flips and partially restores the

75As dipolar broadening.

If addition depolarisation combs were applied to the remaining isotopes in the dot,

we would “thaw” the nuclear spin bath dynamics even further and observe a nearly

Gaussian lineshape (k � 1) for the probed isotope. By contrast, we would observe

a non-Lorentzian lineshape k & 1 even if the spin bath was completely “frozen”
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because the frequency comb depolarisation of the studied isotope will always induce

a small amount of homonuclear dipolar broadening.

7.5 Extracting Spin Bath Correlation Times

The two-comb experiments presented in the previous section show that the homo-

geneous NMR lineshape of 75As is very sensitive to changes in the equilibrium spin

bath dynamics of 71Ga. This makes it feasible to determine the correlation time

τc of the intrinsic 71Ga spin flip-flops. The different transition matrix elements of

STs and the CT as well as the different extent of inhomogeneous broadening lead

us to expect that τc is generally not identical for central and satellite transitions.

We therefore extend the measurement scheme of the previous section by adding a

third frequency comb designed to selectively heat a single 71Ga spin transition dur-

ing trf . The resulting depolarisation dynamics observed for 75As depend on three

distinct contributions: the pure 75As depolarisation time τAs(β1,As) determined by

the comb amplitude β1,As, the characteristic spin flip time of the single 71Ga tran-

sition τGa,CT/ST(β1,Ga) and the 71Ga CT/ST flip-flop correlation time τc,CT/ST. By

varying the amplitudes of the 75As and 71Ga-CT/ST frequency combs we can obtain

the unknown spin flip-flop correlation time τc,CT/ST.

7.5.1 Calibration for Three-Comb Experiments

In the dipolar broadening experiments of the previous section we heated all three

NMR transitions of 71Ga during the 75As depolarisation time trf . Accordingly, the

71Ga frequency comb was chosen to exceed the full inhomogeneous spectral width

∆νinh(71Ga) ≈ 5 MHz (in sample A). For selective rf excitation of the CT or of the

(+1/2↔ +3/2) ST in 71Ga, we have to choose the comb width and central frequency

more carefully to avoid spurious excitation of neighbouring transitions. We choose

∆νcomb = 50 kHz for the CT to ensure a good overlap with the inhomogeneously
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in (a) with respect to the full inhomogeneous NMR spectrum of
71Ga (schematic).

broadened NMR spectrum (∆νinh(CT) ≈ 8 kHz, see chapter 5.4.1).

The optimal ST comb width is determined in a series of single comb experiments

measuring the 71Ga ST depolarisation as a function of the rf excitation time trf with

combs of different widths ∆νcomb at a fixed narrow mode spacing fMS = 150 Hz and

rf field density β1,Ga ≈ 30.0 nT/
√

Hz. The results of these experiments are shown in

figure 7.15a. As shown in the right panel (figure 7.15b), we narrow the comb width

by increasing the separation from the 71Ga CT resonance and keeping the upper

frequency limit of the comb fixed.

From exponential fitting of the polarisation decay at ∆νcomb = 2.3 MHz (dashed

line), we obtain a characteristic depolarisation time τGa,ST ≈ 230 ms. Similar values

are obtained for the other comb widths, although the quality of the fit decreases with

the amplitude of the Overhauser shift ∆Ehf,0 for smaller ∆νcomb. We notice that a
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second exponential decay occurs at longer time scales & 10 s for broad frequency

combs. This might be caused e.g. by parasitic rf heating in the CT frequency range

or by second order depolarisation of the remaining two 71Ga transitions via flip-flops

with the heated ST. We see that this secondary decay can be suppressed efficiently by

increasing the separation between the 71Ga CT resonance and the ST comb, although

this comes at the cost of a reduced number of nuclei excited by the frequency comb.

For the subsequent three-comb experiments, we choose ∆νcomb = 1.3 MHz where no

parasitic effects are observed any more.

The depolarisation amplitude for the 71Ga CT is too small to be measured in

ODNMR. Therefore, we cannot calibrate the CT decay time τGa,CT in the same

way. However, we can obtain the CT decay time for a given rf field density β1,Ga

from the ST value by taking into account the different transition matrix elements

(see chapter 3.3.1 and [116]):

τGa,CT =
3

4
τGa,ST . (7.13)

In order to obtain the 71Ga spin flip-flop correlation times τc,CT/ST, we measure the

dependence of the 75As nuclear spin depolarisation time τAs(β1,As, β1,Ga) on the rf

field densities of the 75As comb β1,As and of the 71Ga CT/ST heating comb β1,Ga.

Obtaining a full data set ∆Ehf(fMS, trf) for every pair of rf field densities (β1,As, β1,Ga)

would be extremely time consuming. For this reason, we select a fixed mode spacing

fMS for the 75As frequency comb where the contrast ∆τAs between pure 75As depo-

larisation and depolarisation with maximum 71Ga CT/ST heating is large.

From comparison of the measurements with and without 71Ga heating in figure

7.9 we notice that the frequency comb is most sensitive to the 71Ga spin dynamics

at intermediate mode spacings of fMS ≈ 0.5−2 kHz. As a measure of the sensitivity

of 75As to fluctuations of 71Ga, figure 7.16 shows the ratios ∆τAs of the 75As de-

polarisation time without and with strong 71Ga CT/ST heating within this range
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with maximum heating β1,Ga ≈ 300 nT/

√
Hz of a single 71Ga transition

as a function of the 75As frequency comb mode spacing fMS at a fixed
75As rf field density β1,As ≈ 31 nT/

√
Hz for 71Ga CT (squares) and

ST (circles) heating. Inset: ∆Ehf(trf) for 75As depolarisation at fMS =
903 Hz without 71Ga heating (black line) and with 71Ga CT (blue) and
ST (red) heating, respectively.

of mode spacings for selective heating of the 71Ga CT (squares) and ST (circles).

As before, all 71Ga spins are depolarised for a time tdepol = 1.2 s before a single

71Ga transition is excited during the 75As depolarisation time trf (see experiment

cycle in figure 7.3). The 75As rf field density is kept fixed at β1,As ≈ 31 nT/
√

Hz

and we use β1,Ga ≈ 300 nT/
√

Hz for heating of the 71Ga CT/ST transition.

We observe an increase of the frequency comb sensitivity to 71Ga CT heating with

increasing mode spacing up to fMS = 1151 Hz. Under heating of the ST no sensitivity

maximum is detected within the measured range of fMS. We select a smaller spacing

fMS = 903 Hz for the spin bath correlation measurements as we also have to take

into account the spin relaxation time T1,n ≈ 1730 s in sample A (see figure 7.5). For

larger mode spacings, the pure 75As decay time without 71Ga heating becomes long

enough that the T1,n decay must be taken into account even for high 75As rf field

densities β1,As as we can no longer fully depolarise 75As within times trf � T1,n.
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7.5.2 Few-Second-Long Spin Flip-Flop Correlation Times

Having calibrated the heating comb widths ∆νcomb,CT = 50 kHz and ∆νcomb,ST =

1.3 MHz and the mode spacing fMS = 903 Hz for the 75As frequency comb, we

perform three-comb 75As depolarisation measurements at different 75As excitation

amplitudes β1,As and varying 71Ga CT and ST heating amplitudes β1,Ga.
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Figure 7.17: (a) Dependence of the 75As depolarisation on the rf pulse duration trf
at 75As comb amplitudes β1,As ≈ 11 nT/

√
Hz and β1,As ≈ 67 nT/

√
Hz.

Symbols show experimental data for three different 71Ga CT heating
comb amplitudes β1,Ga. Solid lines show fitting with a stretched expo-
nential function. (b) Respective fitting residuals given by the difference
between the experimental and fitted curves.

Representative data for β1,As ≈ 11 nT/
√

Hz and β1,As ≈ 67 nT/
√

Hz at three

different 71Ga CT heating amplitudes is shown in figure 7.17a. Solid lines show

fitting with a stretched exponential function which takes into account the intrinsic

spin relaxation time T1,n:

∆Ehf(trf) = ∆Ehf,0

(
exp

[
− trf
T1,n

]
− exp

[
−
(

trf
τAs(β1,As, β1,Ga)

)r(β1,As)
])

, (7.14)

where r(β1,As) denotes a dimensionless stretching parameter describing the non-

exponential decay at large mode spacings. We keep the total 75As spin polarisation

∆Ehf,0 the same for all decay curves and vary r only for different 75As comb ampli-
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tudes β1,As. The best fits shown in figure 7.17a are obtained for ∆Ehf,0 ≈ 39 µeV

and r ≈ 0.6− 0.9 depending on β1,As. The fitting accuracy is shown in figure 7.17b

where the residuals for the curves of figure 7.17a are displayed. We see that all

residuals are well within ±2 µeV, confirming that the depolarisation dynamics are

well described by equation (7.14).
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lines show fitting with the model presented in the text.

Figures 7.18a and b show the central result of this chapter. The 75As depolari-

sation time τAs is ploted as a function of the 71Ga CT and ST heating amplitude

β1,Ga, respectively, at four different 75As excitation amplitudes β1,As. We also ex-

press β1,Ga in terms of the characteristic 71Ga spin flip time τGa = 2/(M2
ijγ

2β2
1,Ga)

with the respective CT and ST transition matrix element Mij.

We observe several key features in the τAs(β1,As, β1,Ga) dependence which are linked

to the intrinsic correlation time τc of the 71Ga spin flip-flops. Under weak 71Ga heat-

ing (small β1,Ga), the rf-induced spin-flip time τGa is far longer than τc and the
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75As depolarisation time is unaffected by the heating comb. With increasing am-

plitude β1,Ga, we reach a regime where τGa < τc and the 71Ga spins are “thawed”

as discussed in section 7.4. Consequently, the 75As lineshape broadens and τAs is

reduced. We further notice that the depolarisation ratio ∆τAs between τAs with-

out 71Ga heating and with strong heating decreases as β1,As is reduced. This is

because we probe the 71Ga spin fluctuations over a timescale proportional to the

direct 75As spin depolarisation time ∝ β−2
1,As. If the direct 75As depolarisation under

the 75As comb is on the order of τc or slower, the intrinsic 71Ga spin flip-flops also

broaden the 75As lineshape and the additional broadening due to 71Ga heating is

reduced accordingly.

Taking these considerations into account, we want to find a functional description

of τAs(β1,As, β1,Ga) which allows us to derive the 71Ga spin flip-flop correlation time

τc from the experimental results shown in figures 7.18a and b. We begin by describ-

ing the 71Ga spin dynamics by an effective correlation time (τ−1
Ga + τ−1

c )−1. As dis-

cussed in the previous paragraph, the 75As lineshape broadening is determined by the

71Ga fluctuations during the characteristic 75As depolarisation time which is on the

order of 2/γ2
Asβ

2
1,As (compare equation (7.6)). Although we do not know the exact an-

alytical expression linking τAs(β1,As, β1,Ga) with the ratio (τ−1
Ga +τ−1

c )−1/(2/γ2
Asβ

2
1,As),

we can express it as a Taylor series for which the term linear in (τ−1
Ga + τ−1

c )−1 will

be dominant at low 75As comb amplitudes β1,As. We note that for varying τGa the

effective correlation time will always be within the limits (τ−1
Ga + τ−1

c )−1 ∈ (0, τc).

Furthermore, we see that (τ−1
Ga + τ−1

c )−1 = τc/2 for τc = τGa. Hence, we can obtain

an estimate of the 71Ga spin-flip correlation times from the measurements at small

β1,As ≈ 3.4 nT
√

Hz (squares in figures 7.18) by determining the induced 71Ga spin-

flip time τGa for which τAs is the mean of its minimum and maximum values. We

get estimated values of τc,CT ≈ 0.5 s and τc,ST ≈ 1 s (indicated by black arrows in

figures 7.18a and b).

In order to derive τc more accurately, we have to use an explicit expression which
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describes the functional dependence of τAs on (τ−1
Ga + τ−1

c )−1/(2/γ2
Asβ

2
1,As). We find

that a stretched exponential function of the form

τAs(β1,As, β1,Ga) = τAs,min(β1,As)(
∆τAs + (1−∆τAs) exp

[
−

(
1

θ

(τ−1
Ga + τ−1

c )−1

2/γ2
Asβ

2
1,As

)s])
,

(7.15)

describes the experimentally observed behaviour well. Here, s and θ are dimension-

less parameters characterising the stretched exponential function and ∆τAs is the

ratio of the depolarisation times τAs,max(β1,As) without and τAs,min(β1,As) with strong

71Ga heating. For fitting of the experimental data, we use the same varied s, θ,

∆τAs and τc for all β1,As and β1,Ga. By contrast, τAs,min(β1,As) is fitted separately for

each set of data with fixed β1,As.

The solid lines in figures 7.18a and b show the best fit results for 71Ga CT and ST

heating, respectively. We obtain fitting parameters s ≈ 0.62, θ ≈ 0.32, ∆τAs ≈ 2.55
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Figure 7.19: Minimum fitting residual χ2 for fitting of equation (7.15) to the exper-
imental τAs(β1,As, β1,Ga) values as a function of fixed trial τc values for
71Ga CT (squares) and ST (circles) heating.
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and τc,CT ≈ 1.2 ± 0.2 s for the 71Ga CT measurements and s ≈ 0.51, θ ≈ 0.52,

∆τAs ≈ 1.84 and τc,ST ≈ 6.9 ± 2.7 s for the 71Ga ST. The errors stated for the

spin-flip correlation times τc are 95% confidence intervals.

The τc values obtained from fitting with equation (7.15) are in reasonable agree-

ment with the estimated correlation times derived from the linear approximation at

low 75As comb amplitude. We can examine the quality of the stretched exponential

model further by studying the dependence of the fitting residual χ2 on τc: the cor-

relation time τc is kept fixed and the remaining fitting parameters are adjusted for a

best fit to the experimental data by minimising χ2. This is done over a wide range

of trial τc values, with results shown in figure 7.19. Sharp minima for the fit quality

of both data sets (71Ga CT and ST heating) demonstrate that equation (7.15) gives

a very good description of our experimental results.

The observed homonuclear dipolar spin flip-flop times τc & 1 s in a self-assembled

InGaAs quantum dot are several orders of magnitude longer than the typical values

of τc ∼ 100 µs found in unstrained III-V semiconductor materials[29, 112]. Based

on the findings of [41], chapter 5 and section 7.4 we attribute this to the suppression

of homonuclear flip-flops under strongly inhomogeneous quadrupolar interactions.

The observation of τc,ST > τc,CT further corroborates this interpretation as the ST

is affected by the quadrupolar interaction in first order while the broadening of the

CT is dominated by the much smaller second order term[39].

The 71Ga nuclei probed in these experiments have the largest gyromagnetic ratio γ

and the smallest quadrupolar moment Q of all stable isotopes in the InGaAs quan-

tum dot. Hence, we expect even longer correlation times for all other isotopes,

resulting in τc & 1 s for the entire nuclear spin bath. As a consequence, we can

conclude that electron spin qubit coherence times in the dot will not be limited by

the intrinsic nuclear spin bath dynamics up to sub-second timescales in high exter-

nal magnetic fields[29, 30]. However, additional hyperfine mediated nuclear-nuclear

interactions might reduce τc noticeably in the presence of an electron.
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7.6 Conclusions

Frequency comb NMR allows for the nuclear spin bath dynamics to be probed

without limitations such as spin locking, instantaneous diffusion and sensitivity to

resonance offsets associated with pulsed NMR techniques. Its low-power, broadband

rf excitation profile allows the measurement of the homogeneous lineshape of an iso-

tope with arbitrarily large inhomogeneously broadened NMR spectrum while putting

only minimum requirements on the studied system (T1,n > 10−100 ·TM,n). From ex-

periments on quadrupolar broadened 75As and 71Ga NMR spectra in self-assembled

InGaAs quantum dots we obtained homogeneous linewidths ∆νhom(75As) ≈ 118 Hz

and ∆νhom(71Ga) ≈ 221 Hz in good agreement with the phase memory times mea-

sured in Hahn echo (see chapter 5).

We further observed that the homogeneous lineshapes of both isotopes were non-

Gaussian, a feature which results directly from the strong freezing of homonuclear

dipolar spin flip-flops under inhomogeneous quadrupolar interaction. The dipolar

broadening can be restored partially by “heating” other isotopes with additional fre-

quency combs during the measurement. We demonstrated this in a two-comb exper-

iment where additional 71Ga spin-flips were induced with a second rf frequency comb

while the depolarisation dynamics of 75As were probed. This led to a measurable

change of the 75As homogeneous lineshape towards a broader, more Gaussian-like

profile.

The sensitivity of frequency comb NMR to the induced and intrinsic spin dy-

namics of the environment of a probed isotope was used in a subsequent three-

comb experiment: from a detailed study of the interplay between the 75As comb

amplitude β1,As and the relative effects of rf induced and intrinsic 71Ga CT and

ST spin-flip timescales we deduced the 71Ga nuclear spin flip-flop correlation times

τc,CT ≈ 1.2 ± 0.2 s and τc,ST ≈ 6.9 ± 2.7 s. These values are orders of magnitude

longer than the corresponding phase memory times TM,n presented in the previous

chapters. We conclude that the intrinsic nuclear spin bath dynamics in a strained
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self-assembled quantum dot do not limit the charge spin qubit decoherence times

up to sub-second timescales. Instead, the focus of future work aimed at creating

a quiescent environment for spin qubits in self-assembled quantum dots should be

on the study and control of other sources of charge spin decoherence such as charge

fluctuations or indirect electron (hole) mediated nuclear-nuclear interactions.
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8 Conclusions and Outlook

The coherence of electron and hole spin qubits in III-V semiconductor quantum dots

is ultimately limited by the magnetic interaction with an environment of ∼ 104−106

non-zero nuclear spins[29, 30]. In order to develop strategies for overcoming this

limitation it is essential to gain a comprehensive understanding of the nuclear spin

bath dynamics in a quantum dot. The work presented in this thesis was aimed

at probing and controlling the spin bath coherence in a single charge-free InGaAs

quantum dot. To this end, we developed new multiple pulse NMR protocols and

a novel, weakly-invasive frequency comb NMR technique. Using optically detected

NMR schemes which exploit the fact that the nuclear spin bath polarisation is

reflected in the hyperfine shift of excitonic transition lines, we obtained several key

results:

(i) Recent work by Chekhovich et al. revealed unexpectedly long nuclear Hahn

echo decay times for the central transitions of 75As and 71Ga in self-assembled In-

GaAs quantum dots[41]. This was attributed to the strong suppression of homonu-

clear dipolar flip-flops by strain-induced inhomogeneous quadrupolar interactions.

In chapter 5, we presented the results of Hahn echo measurements on quantum dots

in a p-i-n diode sample where we were able to ensure charge-free conditions under

large reverse bias. The measured phase memory times THE
M,n(75As) = 3.97± 0.23 ms

and THE
M,n(71Ga) = 1.37±0.25 ms are in excellent agreement with the values reported

for a gate-free sample in [41]. We were thus able to establish that these Hahn echo

decay timescales are indeed limited by a combination of instantaneous diffusion and
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homonuclear spin flip-flops and not by electron- or hole-mediated nuclear-nuclear in-

teractions - an aspect which could not be fully ascertained with the ungated sample

structure.

(ii) The central electron/hole spin coherence in a quantum dot is not limited by the

mere presence of the nuclear spin bath but by its fluctuations. If the spin bath was

evolving in a coherent and predictable way, central spin coherence could be extended

noticeably by suitable electron (hole) spin manipulation protocols. In chapter 6, we

used average Hamiltonian theory (AHT) to design a set of new combined Hahn and

solid echo NMR sequences which are able to suppress both inhomogeneous dephasing

and homonuclear dipolar broadening. We measured spin bath decoherence times

of up to TBR24
2,n (75As) = 22.4 ± 4.5 ms for 75As using the CPMG-BR24 sequence.

For practical applications, the shorter and less complex CPMG-MREV16 sequence

proved to be more robust against resonance offsets and pulse calibration errors while

still increasing the spin bath coherence noticeably beyond the Hahn echo limits with

values of TMREV16
2,n (75As) = 11.85 ± 1.04 ms and TMREV16

2,n (71Ga) = 2.79 ± 0.20 ms

obtained experimentally. A general trend of increasing T2,n under longer and more

complex pulse sequences indicates that the decay times are limited by non-vanishing

higher-order average Hamiltonian terms and even longer spin bath coherence could

be achieved with more advanced pulse sequences.

(iii) Multiple repetitions of the CPMG-MREV16 cycle did not lead to an increase

of the measured decoherence times in 75As and 71Ga. This implies that the probed

nuclear spin ensemble is not subject to a fast-fluctuating environment and that the

heteronuclear coupling with other isotopes is quasistatic over the probed cycle times

of up to several milliseconds.

(iv) It is very difficult to measure the characteristic timescales of the nuclear spin

bath fluctuations limiting the central spin coherence directly using pulsed NMR. In

chapter 7, we introduced a novel frequency comb NMR technique which allowed us

to probe the equilibrium spin bath dynamics under low-power rf excitation and to
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measure the spin bath fluctuation correlation times τc directly. By characterising

the relative influence of intrinsic and rf-induced spin-flips within the 71Ga central

and satellite transitions on the 75As homogeneous linewidth we derived nuclear spin

correlation times τc & 1 s, exceeding timescales in comparable strain-free structures

by four orders of magnitude[29, 112].

These findings not only increase our understanding of the nuclear spin bath dy-

namics in self-assembled quantum dots considerably, but also give directions to the

design of even more stable spin bath environments. We saw that the strong inhomo-

geneous quadrupolar broadening in the InGaAs dots is a valuable resource for long

nuclear phase memory times THE
M,n and spin bath correlation times τc. As suggested

in [41], this effect could be enhanced further by introducing a fourth compound par-

tially substituting the anionic arsenic nuclei. This would extend the additional local

strain due to compositional disorder observed for 75As in our system to the cationic

nuclei and increase the suppression of homonuclear spin flip-flops within the gallium

and indium spin ensembles.

We found that the performance of the multiple pulse combined echo sequences

introduced in chapter 6 suffers from some experimental drawbacks. Consequently,

the best results were obtained for the 20-pulse CPMG-MREV16 sequence. Further

optimisation of the rf matching circuit and of the rf coupling to the quantum dot

nuclear spin bath would allow for higher rf magnetic field amplitudes and shorter

pulse times. This would in turn increase the robustness of the multiple pulse se-

quences against frequency offsets arising from the∼ 10−40 kHz wide inhomogeneous

linewidths of the studied nuclear spin transitions and could be realised by using an

on-chip rf antenna as e.g. in [40]. In addition, the use of composite pulses could

increase the pulse quality and reduce the effect of pulse calibration errors[264–266].

In this way, it might become experimentally feasible to control the nuclear spin bath

evolution under CPMG-BR24 and more elaborate sequences which currently exceed

the capability of our setup.
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So far, our work has focused on empty quantum dots, i.e. on the evolution of the

nuclear spin bath in the absence of localised charge carriers. Having established the

outstanding stability of the nuclear spin bath under these conditions, future research

efforts should concentrate on the spin bath dynamics in the presence of a confined

electron or hole. The effect of the Knight field on the nuclear spin bath in an InGaAs

quantum dot has not been studied in much detail yet[134, 135] and electron- or

hole-mediated nuclear-nuclear coupling can strongly affect the spin bath coherence.

Recent Hahn echo experiments by Munsch et al.[42] have revealed that the nuclear

spin phase memory time decreases to tens of microseconds in the presence of a single

electron and recovers when a second electron is added. A more detailed study of the

homogeneous NMR lineshape and spin bath correlation time under these conditions

using frequency comb NMR would be of great interest. Furthermore, the multiple

pulse sequences introduced in chapter 6 might provide a ready solution for restoring

the nuclear spin bath coherence and suppressing the indirect coupling mechanism,

allowing for strongly enhanced electron spin coherence times.

Of course, the applicability of both the combined echo sequences and the frequency

comb NMR technique is not limited to InGaAs quantum dots. CPMG-MREV16

NMR sequences could be used e.g. in combination with existing ESR techniques to

extend the electron spin coherence time in electrostatically defined GaAs/AlGaAs

quantum dots beyond the values of ∼ 870 µs obtained by Malinowski et al.[174] Fre-

quency comb NMR, on the other hand, is a tool which performs best in conditions

of strong inhomogeneous broadening where conventional pulsed NMR methods are

severely handicapped due to their finite resonance offset tolerance. Unlike pulsed

NMR, it is also not hampered by instantaneous diffusion, which can mask the spin

bath correlation times which are most relevant with regards to spin qubit applica-

tions. In conclusion, both techniques could be used in a variety of spin systems and

have unique features that can complement existing NMR methods.
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9 Appendix

9.1 Dipolar Alphabet

The dipolar coupling Hamiltonian for two interacting spins I and J

Hdd =
µ0

4π
γIγJ

~2

r3
ij

(
I · J − 3

(I · rij)(J · rij)
r2
ij

)
, (9.1)

can be decomposed into six terms describing distinct quantum transitions[116, 192].

We start by expressing the connecting vector rij of the relative positions of the two

spins in spherical coordinates as illustrated in figure 9.1.

Hdd =
µ0

4π
γIγJ

~2

r3
ij

(I · J − 3(Iz cos θ + sin θ(Ix cosφ+ Iy sinφ)·

· (Jz cos θ + sin θ(Jx cosφ+ Jy sinφ))) . (9.2)

I

J

rij
θ

ϕ

z||B0

x

y

Figure 9.1: The vector rij describes the relative position of the two dipo-
lar coupled spins I and J and can be expressed as rij =
rij(sin θ cosφ, sin θ sinφ, cos θ) in spherical coordinates.
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We introduce the raising and lowering operators I± = Ix ± iIy and make use of

the identity e±iφ = cosφ± sinφ:

Hdd =
µ0

4π
γIγJ

~2

r3
ij

(I · J − 3(Iz cos θ + 1
2

sin θ(I+e−iφ + I−eiφ)·

· (Jz cos θ + 1
2

sin θ(J+e−iφ + J−eiφ))) (9.3)

=
µ0

4π
γIγJ

~2

r3
ij

(A+B + C +D + E + F ) .

These are the terms of the dipolar alphabet :

A = IzJz(1− 3 cos2 θ)

B = −1
2
(I · J − IzJz)(1− 3 cos2 θ)

C = −3
2
(IzJ+ + I+Jz) sin θ cos θe−iφ

D = −3
2
(IzJ− + I−Jz) sin θ cos θeiφ = C∗

E = −3
4
I+J+ sin2 θe−2iφ

F = −3
4
I−J− sin2 θe2iφ = E∗ .

(9.4)

The first term A describes a static interaction between the two spins. Term B can

induce mutual spin flip-flops of I and J . By contrast, terms C and D induce a single

spin flip and the contributions of E and F raise or lower both spins simultaneously.

These last four terms represent a weak dipolar mixing of one and two quantum

transitions, which can give rise to very weak additional NMR transition lines at

frequencies 0, 2ωL and 3ωL.
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9.2 Average Hamiltonian Theory Analysis of APCP

9.2.1 Average Hamiltonian of APCP with Finite Pulse Durations

We begin by considering the nuclear spin bath Hamiltonian of equation (6.2)

Htotal(t) = H0 +Hzz
D +Hrf(t) , (9.5)

The cyclic time-dependent (external) rf Hamiltonian for the APCP sequence (τ −

πX − 2τ − πX̄ − τ) is illustrated in figure 9.2 below.

H ( I )rf 1  Xħω

+1

-1

τ τ2τ

I II III IV V

tP tP

tc
0

Figure 9.2: Time-dependence of the rf Hamiltonian Hrf(t) for a cycle of the APCP
sequence. Dashed lines mark the intervals I− V, during which Hrf(t) is
constant.

With the rf propagator Urf of equation (6.4) and the internal Hamiltonian Hint =

H0 +Hzz
D we can determine the toggling frame Hamiltonian

H̃int(t) = U−1
rf (I)U−1

rf (II) · · ·Hint · · · Urf(II)Urf(I) , (9.6)

for each of the five time intervals indicated in figure 9.2. We note that the time

order of the rf propagators is reversed due to the Dyson operator, i.e. the latest rf

pulse within [0, t] is applied to Hint first. The resulting toggling frame Hamiltonians

H̃0(t) and H̃D(t) are listed in table 9.1 (after [260]).
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Time Interval H̃0 H̃D

I Hz
0 Hzz

D

II Hz
0 cos(θ(tII))−Hy

0 sin(θ(tII)) −1
2
Hxx

D +Hx,S
D cos(2θ(tII))−Hx,A

D sin(2θ(tII))

III −Hz
0 Hzz

D

IV −Hz
0 cos(θ(tIV))−Hy

0 sin(θ(tIV)) −1
2
Hxx

D +Hx,S
D cos(2θ(tIV)) +Hx,A

D sin(2θ(tIV))

V Hz
0 Hzz

D

Table 9.1: Toggling frame Hamiltonians for the time intervals of an APCP cycle
with finite rf pulse width tp. tII/IV denotes the time within the respective
interval, starting from zero.

Here, we have introduced symmetric and asymmetric Hamiltonians as defined

in[260]:

Hx,A
D =

3

2

N∑
m=1

N∑
n>m

ωmn (Iy,nIz,m + Iz,nIy,m)

Hx,S
D =

3

2

N∑
m=1

N∑
n>m

ωmn (Iz,nIz,m − Iy,nIy,m) .

(9.7)

Using equations (6.8) and (6.9), we can now determine the zeroth and first order

average Hamiltonian by integrating over the full cycle time tc = 4τ + 2tp. While the

first order term H̄(1) vanishes due to the symmetry properties of the APCP cycle,

we obtain

H̄(0) =
1

tc

(
−4tpΩz

π
Iy + 4τHzz

D − tpHxx
D

)
, (9.8)

for the zeroth order contribution.

9.2.2 Second Averaging

We treat the term proportional to Iy in equation (9.8) as a static transverse field[260,

278] and define a Rabi angular frequency

Ω′ =
4tpΩz

πtc
. (9.9)
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Next, we split H̄(0) into an external Hamiltonian H̄ext = ω′Iy and an internal Hamil-

tonian H̄int containing the two dipolar terms. With Uext(t) = exp
(
− i

~H̄extt
)
, the

second toggling frame Hamiltonian is

˜̄H(t) =U−1
ext(t)H̄intUext(t) =

=
4τ

tc

[
−1

2
Hyy

D + cos(2Ω′t)Hy,S
D + sin(2Ω′t)Hy,A

D

]
−

− tp
tc

[
−1

2
Hyy

D − cos(2Ω′t)Hy,S
D − sin(2Ω′t)Hy,A

D

]
.

(9.10)

where we used, in analogy to equations (9.7)[260]:

Hy,A
D =

3

2

N∑
m=1

N∑
n>m

ωmn (Ix,nIz,m + Iz,nIx,m)

Hy,S
D =

3

2

N∑
m=1

N∑
n>m

ωmn (Iz,nIz,m − Ix,nIx,m) .

(9.11)

The zeroth order second average Hamiltonian is given by time-averaging equation

(9.10) over one Rabi cycle t′ = 2π/ω′ in the transverse field. The oscillating terms

average out to zero and we are left with

¯̄H(0) =
1

t′

∫ t′

0

dt ˜̄H(t) =
1

t′

∫ t′

0

dt
1

2tc
(−4τ + tp)Hyy

D = − 1

tc

(
2τ − tp

2

)
Hyy

D . (9.12)
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10 Symbols and Constants

Symbol Description

∂ Partial derivative

∇ Nabla operator

∅c Inner coil diameter

∅w Wire diameter

a Lattice constant

ai Spin-spin coupling constant

A Vector potential

Ae/h Electron/hole hyperfine constant

bi Spin-spin coupling constant

B0, B0,i Magnetic field, with component along direction i

B1 RF magnetic field in the rotating frame

Bhf Overhauser field

BK Knight field

Bloc Local magnetic field at lattice site

Brf Magnetic field amplitude of full frequency comb

cj relative concentration of j-th element

d Height, thickness, separation

D Length
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Symbol Description

êi Unit vector in direction i

E Energy

Egap Band gap energy

EB Exciton binding energy

Ehf Overhauser/hyperfine energy shift

f Focal length

fe Electron filling factor

fMS Frequency comb mode spacing

F Pulse filling factor

F , F Electric field

ge/h/ex,

ge/h/ex,i

Electron/hole/exciton g factor (tensor)

H̃ Toggling frame Hamiltonian

H̄ Average Hamiltonian

H0 Resonance offset Hamiltonian

Hdd Dipolar Hamiltonian

HD Secular dipolar Hamiltonian

HD0 Cross term between HD and H0

Hexch Exchange interaction Hamiltonian

Hhf Hyperfine interaction Hamiltonian

HIJ Heteronuclear dipolar Hamiltonian

HI−env Spin environment coupling Hamiltonian

Hint Internal Hamiltonian

HQ Quadrupolar Hamiltonian

Hrf RF coupling Hamiltonian

HZ Zeeman Hamiltonian
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Symbol Description

I, I, Ii Probed nuclear spin, with quantum number and projection along i

J , J , Ji Non-probed nuclear spin, with quantum number and projection

along i

Jex, Jex,

Jex,i

Exciton total angular momentum, with quantum number and pro-

jection along i

Jh, Jh, Jh,i Hole total angular momentum, with quantum number and projec-

tion along i

k Roll-off parameter

L, L, Li Orbital angular momentum, with quantum number and projection

along i

L(ν) Lineshape

Lc Coil inductance

m Mass

m∗ Effective mass

mI Secondary spin quantum number

M, Mij Transition matrix

M , Mi Magnetisation, with component along i

M0, M0 Equilibrium magnetisation

n Refractive index

nc RF pulse cycle number

nπ Number of π pulses

N Number of spins

Nm Number of modes in a frequency comb

p Momentum operator

pd, pd Dipole moment

pdiab Diabatic transition probability
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Symbol Description

pm Population probability of state mI

P Power

Prf RF input power

PSat Optical saturation power

r Exponential stretching parameter

r, rij, rij Connecting vector, displacement vector

q Charge

Q Quality factor

Q Quadrupolar moment

R Rotation matrix

S Length

S, S, Si Charge spin 1/2, with quantum number and projection along i

Sijkl, Sij Gradient-elastic tensor in matrix and Voigt notation

t Time

tc RF pulse cycle time

tcycle Experiment cycle time

tdepol RF depolarisation comb time

tp RF pulse duration

tprobe Optical probe time

tpump Optical pump time

trise Pulse rise time

trf RF excitation time

tπ,π/2 π, π
2

pulse duration

T Dyson time-ordering operator

T Temperature

T1,n/e/h Longitudinal nuclear/electron/hole spin relaxation time
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Symbol Description

T2,n/e/h Nuclear/electron/hole spin coherence time

T ∗2,n/e/h Nuclear/electron/hole spin dephasing time

TM,n Nuclear phase memory time

Tnuc Nuclear spin temperature

Trf Transmission coefficient

TRabi Rabi period

Tω Transformation matrix for rotation about ω

u Bloch function

U Time evolution operator

v0 Unit cell volume

V Perturbation Hamiltonian

V , V0 Potential

Vbi Built-in bias

Vbias Diode bias voltage

Vij Electric field gradient tensor

Vprobe Diode probe bias voltage

Vpump Diode pump bias voltage

Vrf Diode rf manipulation bias voltage

Wm,m+1 Transition rate between states mI and mI + 1

Z0 Characteristic impedance

Zi Input impedance

ZL Load impedance

ZS Stub impedance
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Symbol Description

α Polarisability

β Exponential compression factor

β1 RF magnetic field density in frequency comb NMR

βp Phase constant

βVB Valence band mixing parameter

γ, γI , γJ Nuclear gyromagnetic ratio

γ∗ Nuclear gyromagnetic ratio divided by 2π

γ2 Diamagnetic coefficient

γF Film surface energy

γS Substrate surface energy

γSF Substrate-film interface energy

Γ,Γij Decay rate matrix

Γrf Transmission coefficient

δ RF resonance offset normalised by T−1
Rabi

δ0 Bright-dark exciton splitting

δb Bright exciton fine structure splitting

δd Dark exciton fine structure splitting

δϕ Phase error

δν RF excitation gap in inverse NMR

∆,∆ω Angular frequency detuning

∆so Spin-orbit splitting

∆Ehf Change of hyperfine shift

∆EStark Stark shift

∆EZ Zeeman splitting

∆ν Sweep range

∆νcomb Frequency comb spectral width
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Symbol Description

∆νhom,

∆ωhom

Homogeneous NMR linewidth, times 2π

∆νinh,

∆ωinh

Inhomogeneous NMR linewidth, times 2π

∆τ Depolarisation time ratio

εb Biaxial strain

εij Elastic strain tensor

εr Relative permittivity

ζ Scaling exponent

η Asymmetry parameter

κ Scaling exponent

λ Wavelength

µ Magnetic moment

ν Frequency

ν̇ Frequency sweep rate

νcomb,0 Central frequency of frequency comb

νi, νf Initial and final sweep frequency

νL Larmor frequency

νrf RF frequency

πγ Photon parity

ρ Nuclear spin bath polarisation

σi Pauli matrices

τ Delay time

τc Correlation time

τevol Free evolution time

τj Depolarisation time of isotope j
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Symbol Description

ϕ Phase

Φ Wavefunction

Ψ Envelope wavefunction

ω Angular frequency

ω0 Energy shell spacing

ω1 Resonant Rabi angular frequency

ωD Dipolar coupling strength

ωff Spin-flip rate

ωL Larmor angular frequency

ωQ Quadrupolar coupling strength

ωrf RF angular frequency

Ω, Ω Rabi angular frequency

Table 10.1: List of symbols used in this thesis.

Quantity Symbol Value

Speed of light in vacuum c 2.998 · 108 m/s
Elementary charge e 1.602 · 10−19 C
Boltzmann constant kB 8.617 · 10−5 eV/K
Free electron mass m0,e 9.109 · 10−31 kg
Reduced Planck constant ~ 6.582 · 10−16 eV s
Vacuum permeability µ0 4π · 10−7 N/A2

Bohr magneton µB 5.78 · 10−5 eV/T
Nuclear magneton µn 3.15 · 10−8 eV/T

Table 10.2: List of physical constants used in this thesis.
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[64] J. P. Reithmaier, R. Höger, H. Riechert, A. Heberle, G. Abstreiter, and

G. Weimann. Band offset in elastically strained InGaAs/GaAs multiple quan-

tum wells determined by optical absorption and electronic Raman scattering.

Applied Physics Letters, 56:536, 1990. doi:10.1063/1.102737.

[65] A. P. Zhou and W. D. Sheng. Electron and hole effective masses in

self-assembled quantum dots. European Physical Journal B, 68:233, 2009.

doi:10.1140/epjb/e2009-00098-2.

[66] S. W. da Silva, Y. A. Pusep, J. C. Galzerani, D. I. Lubyshev, P. P. González-
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