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Abstract

The purpose of this research is to perform automated asatfs#D dynamic contrast
enhanced MRI datasets (DCE-MRI) of the hand and wrist redeth rheumatoid arthritis
(RA) studies. In DCE-MRI, sequences of images are acquied the joints over time,
during which a contrast agent pre-injected into a patiehteges disease affected tissues.
Measurement of this enhancement, which is specific to vasegleesenting particular
tissue types, allows assessment of the patient’s condition

Currently, analysis of DCE-MRI data is performed using saotiomated or manual
techniques, which are time-consuming and subjective. & Bpproaches involve no pre-
processing techniques that can compensate for patienbmantid hardware instability, or
locate the tissue of interest.

In this thesis we present a solution for fully automated ofdje assessment of DCE-
MRI data acquired from RA patients. Analysis begins withlaggpion of a registration
technique that permits compensation for patient motiono8ely, independent automatic
algorithms for accurate segmentation of both bone inteyifmint exteriors, and blood
vessels from data volumes of the metacarpophalangeas jaratintroduced.

Performance of the segmentation algorithms is evaluatéd both state-of-the art
and novel techniques developed as a part of this thesis. Weutdised and enhanced
a supervised approach and developed a family of unsupdrwearics for automated
evaluation of segmentation outputs.

Lastly, the datasets are interpreted using a model-baggdagh, which permits un-
derstanding of the behaviour of tissues undergoing the caégrocedure, and allows for
a robust and accurate extraction of various parametergttattify the extent of inflam-
mation in RA patients.

The algorithms proposed have been demonstrated on dasgasglised with both low
and high field scanners, from different joints, using vasiqulse sequences. They are
user-independent, time efficient, and generate easilyodemible and objective results.
Expert observers found our results promising for possibtyife diagnosis and monitoring
of RA.
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Chapter 1

Introduction

In today’s world, where medicine and technology collides tikse of computer science
is one more tool in the medical professionals’ arsenal [23128]. The involvement of

machine vision in medical image analysis assists doctotisdardata acquisition, recon-
struction, evaluation, and ultimately disease diagnosis.

For years, medical imaging modalities such as X-ray, coemomography (CT), and
magnetic resonance imaging (MRI) have allowed doctors timpa non-invasive human
body examinations. However, the results obtained witheheshniques are limited by
their reliability, reproducibility, and subjective infaetation.

This thesis attempts to solve one of the many problems assdawith the interpreta-
tion of such data. We have chosen to focus our attention oardyndatasets pertaining
to rheumatoid arthritis (RA) acquired with MRI scanners.

The prime objective of this work is to deliver algorithms tleessist medical experts
in the interpretation and evaluation of datasets acqui@d RA patients; specifically, to
overcome problems associated with the methods currendlgt fes the data assessment.
A second objective of this work is to demonstrate the valuprefprocessing techniques
which compensate for a patient’'s movement and allow forakation of tissues of inter-
est. Lastly, we discuss the value of evaluation technigwbg;h are used to assess the
reliability of the results produced by the pre-processeahniques.
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1.1 Monitoring rheumatoid arthritis

Rheumatoid arthritis is an autoimmune condition that cagseelling, pain, stiffness, and
redness in the joints, which often become unstable regpttideformities, for example of
the hand. Any joint may be affected, but it is commonly thedsagmetacarpophalangeal
(MCP) joints), feet, and wrists.

In RA, the synovium, which is the smooth lining of a joint, bewes inflamed and
changes its character causing cartilage destruction armhdary joint damage. The nor-
mally thin synovium becomes thick and makes the joint swo#led puffy to the touch.
Figure 1.1 illustrates normal and arthritic joihts
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Figure 1.1: Left: Normal joint. Right: Arthritic joint. Thaaflammation of synovial tissue
is shown in red.

RA is a progressive illness that can result in joint destacand severe disability.
The cause of RA is unknown and its course varies from pat@patient. When tissues
are inflamed the disease is called active; when symptomseodflifease disappear and
the tissue inflammation subsides, the disease is inactiveefnission). Remission can
occur spontaneously or with treatment, and might last fazkse However, patients often
relapse after a short period.

RA can begin at any age, but most often starts after the agetgfdnd before the age
of sixty [7]. More than two percent of the world-wide adultqdation suffer from RA,
corresponding to several million people in the USA and alBdaimillion in the UK [225].

There is no known cure for RA and the treatment normally imegsela combination
of exercise, medications, and occasionally surgery. Te,dhée goal of the treatment has
been to reduce the inflammation and pain, and prevent jositutgtion. Early medical in-
tervention has been shown to be important in improving au&e®and preventing serious
disability [129].

1Taken with permission from [223].
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Figure 1.2: Left: MR image of wrist acquired by a low-field soar. Middle: MR image
of the MCP joints acquired by a low-field scanner. Right: MRage of the MCP joints
acquired by a high-field scanner. In the images markers arkaddy white rectangles,
bones by blue rectangles, blood vessels by red rectangles.

1.2 Diagnosis of rheumatoid arthritis and the value of
MRI

The diagnosis of RA begins with acquiring information abthé severity of symptoms

such as pain, morning stiffness, fatigue, etc. This infdromais used as a baseline for the
future evaluation of the disease progression. Seconddypd#tient’s joints are examined
for indication of warmth, swelling, and limitation of moto Then, laboratory tests that
include the measuring of a rheumatoid factor (an antibodgpced in response to RA) in

the blood and analysis of the synovial fluid, are performeaktly, the joints are examined
with a conventional X-ray.

The inexperienced clinician may have difficulty in diagmezsRA. The main reasons
are inter-patient variability of the disease patterns dredsimilarity of RA to other dis-
eases such as lupus, osteoarthritis, and gout. Often, skeedee inconclusive; in early
RA, the blood tests and X-ray may be normal.

Recently, MRI has emerged as a promising technique for tbesament and moni-
toring of RA [6], and became an alternative diagnostic taolite conventional clinical
examination and radiography [77]. MRI can identify all kendf tissue, poses minimal
risk to health and has no limit to the number of images thatszdely be taken. Patients
require no preparation (unless the contrast agent is uaad)there is no recovery time.
MRI is non-invasive and does not utilise radiation, and pies$ three-dimensional im-
ages with a high tissue contrast [90]. Figure 1.2 illussd&#R images of the wrist and
MCP joints, where markers are marked white white rectangblanes — by blue, blood
vessels — by red.

Numerous studies have shown that MRI is more sensitive tlbamentional clini-
cal examination and radiography for the detection of earflammatory and destructive
changes [77,83,128, 240]. It allows for the detection of Rderosions, inflammatory
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soft tissue changes such as synovitis, tenosynovitis atieesitis® earlier than conven-

tional radiography [173]. Qstergaard et al. have demotestréhe predictive value of

MRI in the detection of bone oedema and bone erosions wittectgo the subsequent
radiographic progression [173].

The diagnostic value of MRI is still being investigated. Sostudies [232, 234] sug-
gest that the incorporation of MRI assessment of synovittsaiases the accuracy of the
examinations and allows for earlier RA diagnosis.

MRI has been enhanced by the introduction of contrast ageshish allow for even
better distinction between normal and abnormal tissue@, A%0]. In the presence of the
contrast agent, the data is acquired in sequential slioeisaoperiod of time during which
the intensity of the inflamed tissues in MR images changegspanse to the injected
contrast agent. This technique is known as dynamic cor¢rasanced MRI (DCE-MRI).

DCE-MRI is proven to be a valuable tool in the assessment gp&#ents [175]. It ap-
pears to provide a sensitive measure of the disease pragreswever, the widespread
use of DCE-MRI is limited by the need for efficient technigémsdata processing, inter-
pretation, and visualisation.

1.3 Problems associated with DCE-MRI data

Acquisition of a temporal slice takes approximately 4 mgssind a dataset acquired from
a patient suffering from rheumatoid arthritis might contap to 15 temporal slices. An
examination might result in up to 300 images, where somdgirermally located in the
disease affected areas, are enhancing in response to tiast@gent.

To acquire datasets used in this work, patients were exgh¢atbold a hand still for
up to 24 minutes (acquisition of up to 6 temporal slices). Pphaents affected by RA
often cannot hold their hand still, therefore images arerottorrupted by artefacts due to
the patient movement.

Assessment of the patient’s condition is performed via tjtieation of the volume
of inflamed synovium in each rheumatoid joint. However, nameasurement of the
volume is time-consuming and highly subjective. Moreovtee, presence of the noise,
sparse location of the enhancing pixels, and subtle irtienbanges make interpretation
of the DCE-MRI data difficult.

To assess tissue condition, it is normally assumed that\eaaH represents a particu-
lar tissue type. However, problems with patient motion dgimaging might render this

2Enthesitis is an inflammation of the entheses, the locattereva bone is joint to a tendon or a ligament
[260].
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assumption invalid and introduce artefactual enhancemesgme tissues.

The data acquisition settings are particular for the secaphardware — therefore, an
objective comparison of the data acquired with differentipment is not trivial.

Hence, we are dealing with several problems. Firstly, tieeeeneed for efficient pre-
processing techniques that can compensate for patienomadtcate tissue of interest,
and reduce artefactual enhancement. Secondly, an olgepiantitative technique, that
would not be influenced by the noise, scanning equipmenyisitign parameters, and
time-course of arrival of the contrast agent, is requiredltow for the assessment and
interpretation of DCE-MRI datasets.

1.4 DCE-MRI data analysis

In this thesis we present a solution for a fully automatedajdctive evaluation of DCE-
MRI data acquired from RA patients. The data analysis begittsthe application of a
registration technique that compensates for patient'sanoSecondly, we introduce seg-
mentation techniques that allow for the elimination oflekant tissues such as bone inte-
rior, which includes trabecular and cortical bone crosstieas and certain blood vessels,
which can complicate the interpretation of the data.

Performance of the algorithms is assessed with stateeo&thand novel evaluation
techniques, which were developed as a part of this thesisusa and enhanced a super-
vised metric and developed a family of unsupervised mefioicthe automated evaluation
of the segmentation outputs.

Lastly, the datasets are interpreted using a model-baggdagh, which permits the
understanding of the behaviour of tissues undergoing thdicakprocedure, and allows
for a robust and accurate extraction of various paramekatsquantify the extent of in-
flammation in RA patients. Additionally, with this methodstpossible to locate tissues
that did not fully absorbed the contrast agent by the end afjing procedure.

The experiments were performed on datasets acquired frifenadit joints using scan-
ning hardware of both high and low field strengths, confirntimg portability of the ap-
proach. The process takes into account many variable &ittat affect the clarity of these
datasets and their interpretation, such as the physigabtrassociated with rheumatoid
arthritis and the time taken for the diseased tissue to alibercontrast agent.

This combination of techniques permits the automated amalyf DCE-MRI data,
which should reduce the amount of time radiologists cursgr@nd on data assessment
and increase the efficiency and reproducibility of the RAlexBon with MRI.
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1.5 Overview of this thesis

In this chapter we outlined the problems associated withitoong RA and highlighted
the techniques that are going to be introduced in this th@%$is remaining chapters are
organised as follows:

Chapter 2: Background discusses the fundamental aspects and background regearch
various areas of medical image analysis such as data @gsir segmentation,
evaluation, and quantitative analysis.

Chapter 3: MRI data firstly, highlights advantages and drawbacks of the varioe-
ing modalities for the monitoring of rheumatoid arthritiscadiscusses MRI scan-
ning in more detail. Secondly, we introduce the DCE-MRI data involved in this
research, discuss their properties, and acquisition petiens

Chapter 4: Image registration introduces our modification to a publicly available reg-
istration algorithm and its application to DCE-MRI data.

Chapter 5: Image segmentationdiscusses the automatic algorithms for the joints’ en-
velope and bone interiors segmentation from the DCE-MRa.dat

Chapter 6: Evaluation techniques presents supervised and unsupervised evaluation met-
rics and shows how they can be employed to assess the resutiscpd by the
segmentation algorithms.

Chapter 7: Quantitative analysis of DCE-MRI datasets introduces a model-based al-
gorithm that permits the objective analysis of the DCE-MRladand visualisation
of the activation events.

Chapter 8: Blood vessel segmentatiorpresents a technique for the automatic segmen-
tation of the blood vessels from the DCE-MRI datasets.

Finally, the conclusions and possible extensions of thikwaoce presented in Chapter 9.
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Background

2.1 Medical image analysis

Medical image analysis is often perceived as a set of tedesithat allow us to recon-
struct, display, analyse and interpret the data acquimad & human body or parts thereof
for disease detection and diagnostic purposes. Gendrtadlgteps involved in assessment
of medical data include image pre-processing (registnadiod segmentation) and image
interpretation (via perception, understanding, evabrgtand visualisation) [203, 273].

Registration involves finding a transformation that bridgferent images of the same
object into strict congruence. Segmentation approacHes &br accurate recognition
and delineation of important objects in the image. Integdren includes display and
manipulation of the data. Various evaluation approachessed to assess the algorithms’
performance.

In this chapter we aim to provide an overview of these stepsutline the main com-
ponents of image processing algorithms, and to discussettent and most successful
techniques for registration, segmentation and its evanaand visualisation in applica-
tion to DCE-MRI datasets.
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2.2 Registration techniques

Registration is a fundamental task in medical image proegsshich seeks to match
two data sets that were acquired at different time or viewigoor by different image
modalities [71, 152]. It is required when, for example, alasimage is needed to be
aligned to the patient’'s data for automatic identificatidrtissue anatomy and lesion
location, or when pre- and post- treatment images need toabvehd in order to monitor
disease progression [61, 150].

Generally, registration is the determination of a transfation (rigid or non-rigid)
that aligns pixels from one image or volume with pixels fronother [108]. To detect
disease progression or a treatment effect, patients age tdtscanned after a long period
of time. Registration of such 4D datasets is another moreptioated and challenging
problem.

Rigid methods [109, 183] are applied when alignment of twages can be done
via rotation and translation. Today rigid registration fsea extended to include affine
transformations, which incorporates scale factors andrsH&08].

However, deformation of the human body can only be poorly@gmated by rigid
models. Therefore, some contemporary work concentrategweloping non-rigid meth-
ods, which can model complex motions caused by inconsigt®inta patient’s posture or
differences in an organ’s shape and volume [13,57]. ObWotitere is often a trade-off
between the complexity of the transformation model and pgezd of the alignment.

Registration of both intra- and inter-patient images hanlt@e subject of extensive
study in medical imaging literatures. There are variousstegtion algorithms which
have been classified in many different ways, based on imagerdiionality, registration
basis, geometric or intensity transformation, degree tdraction, optimisation proce-
dure, modalities, etc. Detailed descriptions of each @ategnd corresponding theoret-
ical background can be found in [34, 75, 152, 156]. Appendigescribes some of the
algorithms available online [3, 80, 185].

2.2.1 Components of registration algorithms

Each registration algorithm has four components [57]:

e source and target datasets;
e a similarity measure of how well the images match;

¢ a transformation model that defines how one image can berdetbto match an-
other,
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e an optimisation process that delivers an optimal paranssethat maximises the
matching criteria.

Source and target datasets might be represented by the temsiies, curves and
surfaces, landmarks, feature images, or a combinatiorecdliove.

Similarity measures

Principally, registration techniques can be divided irmadmark and intensity based
schemes. The former are based on identification of correBpgriandmarks in two im-
ages or volumes, which could be anatomical features predentboth images, pins or
markers fixed or inserted into the patient and visible in gwarage, or a set of distinctive
and easy detectable objects, such as lines, curves, plometsntersections, boundaries,
etc.

Firstly, landmark based algorithms attempt to extract #eures from images and
then to compute a transformation based on the correspoaddratween these features.
The presence of invasive markers permits an accurate ratist; however, the procedure
might cause discomfort, and there is a small risk of infecbotissue damage.

Therefore, registration is often performed using a set afuees suitable for image
matching [74, 145, 220]. The features extracted from thecsand reference images are
individually compared, aiming to choose the best match [246].

Landmark matching is relatively fast to compute and a largsloer of algorithms
for various applications such as MRI and CT brain studiedJ2&scular and spine im-
ages [10] has been developed. Variations in shape and niyt@h®bjects in DCE-MRI
data complicate extraction of well matched landmarks andGE-MRI registration with
landmark algorithms is not popular.

When images are not rich in well distinguishable detailgnsity or area based regis-
tration methods are applied [110,161,199]. These algosthse all (or a large proportion
of) the data in each image, define a measure of intensityaiyilbetween the images,
iteratively optimise the parameters describing the oaah of the data, generate a so-
lution, align source to target accordingly, and evaluagettansformation using various
similarity measures. The process is repeated until theracguhreshold is reached or the
similarity measure is maximised /minimised [47,93,113]19

The choice of the similarity measure depends on the scarmodgglity as well as
the geometric and intensity differences between the imagégorithms used for inter-
modality registration have to be insensitive to the tissuernisity differences introduced
by different modalities. One of the first algorithms for PEIRI data registration pro-
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posed by Woods et al. [266] was based on the assumption thedich intensity in the
MR image, the range of the corresponding PET intensitiemal|493]. CT-MRI align-
ment was first performed with an algorithm [70], where infgas of MR images were
re-mapped or transformed in such a way that soft tissue in et MR and CT images
appeared bright. Later, more general measures based amithejensity histogram and
mutual information were proposed [93, 205].

Registration of multiple images of the same patient acguireng the same modality
is often performed using a correlation coefficient as a meastisimilarity. One image
is moved with respect to another until the strongest retatiip between the intensities in
one image and the intensities in the corresponding locati@amother image is found (in
this thesis we aim to find a transformation that delivers #éingdst correlation coefficient).

Another measure, similar to the correlation coefficienthessum of squared intensity
differences. Here, alignment is adjusted until the smbBesn of squared differences
is found. Alternatively, we can define the ratio between twages — this alignment
is the basis for a ratio image uniformity algorithm, where thariance of this ratio is
calculated [93].

Performance of all these algorithms is similar, except wthenunderlying assump-
tion about the linear relationship between the intensitelsoth images is violated due
to changes in local image brightness, shading, etc. Fordaison it is sometimes de-
sirable to pre-segment parts of the image prior to regisinadr to exclude those which
change intensity dramatically [75]. An alternative apmto& to account for intensity and
brightness variations explicitly [168].

Transformation model

The process of registration is determined by a transfoonanodel, which characterises
the type and number of possible deformations (degree ofifr@e DOF) and defines how
one image can be deformed to match another [103].

Normally, rigid, affine, piecewise affine, or non-rigid tsfarmation models are con-
sidered. 3D rigid transformation is composed of three rotet and three translations; it
is a linear transformation, normally used for within-sudtjeegistration.

An affine transformation can be thought of as a crude appratian to a fully non-
rigid transformation. It is defined by 12 DOF (3 rotation, 8rtslations, 3 stretches and
3 shears) and is used for within-subject registration whenet is global gross-overall
distortion (e.g. MR to CT registration). It is a linear trémgnation, that allows compen-
sating for a combination rigid motion, scaling, and a skeadl? or 3 axes.

Piecewise or local affine models are used when differenspeEran image require
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individual affine transforms. They are suitable for modg]liof local tissue motion and
can be thought of as a simple extension to fully non-rigid¢farmation.

Non-rigid or elastic registration is defined by a non-lingansformation with a larger
DOF. It can describe various motions and is normally usednf@r-subject registration
and distortion correction. However, too much flexibility time transformation can lead
to undesirable results. Often the degree of non-rigiditgcho be explicitly controlled
by use of smoothness constraints (e.g. bending energyaon gtinergy) or a limited DOF
(e.g. tensor splines).

The transformations could be global (applied to an entirage) or local (applied to
image subsections). Some problems that are intrinsiaadigily rigid (such as registration
of individual vertebrae from the images of a spinal colum@llf) are often solved by
splitting the image into sub-images meeting local rigid ypodnstraints.

Several authors have shown the superiority of locally smmesregistration methods
over global ones [76, 89]. Local transformations are nolynedmbined with a global
smoothness constraint [168, 186] imposed on transformgieyameters. In this case
continuity of the transformations is assumed for an entirage.

Pyramid approaches [2] for supporting scaled image arsabra often applied along
with these transforms. An image pyramid consists of a sexpiehcopies of the original
image in which both sample density and resolution are deerkan regular steps. These
copies are obtained by convolving the original image witlu§xan or Laplacian kernels.
This approach allows isolating critical components of thage so that they can be easily
accessible to analysis [2], thereby recovering a largeyeant distortions.

Optimisation techniques

Optimisation is a process of minimising or maximising a $amiy measure calculated for
source and target images. The majority of registrationrilyms based on an intensity
matching paradigm require an iterative approach to thexapéition problem. The regis-
tration starts from an initial position (that can be manyall automatically defined) and
proceeds by calculating a series of approximate solutiongng to increase the image
similarity.

In each iteration, the current estimate of the transforomats used to re-calculate
the similarity measure. The optimisation technique thelkaesanother estimate of the
transformation until the desired similarity thresholdesiched. There are several popular
approaches that are widely used for MR image registratié@,[194]:

Gradient descent is a straightforward fast optimisation method, however igimh con-
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verge to local minima.

Conjugate gradient descentis an iterative method, that is based on the assumption that
second derivatives of the function to be minimised exist method chooses suc-
cessive descent directions such that it is guaranteedc¢b tea minimum in a finite
number of steps. In theory it is better than Gradient Descéfdwever, second
derivatives can be difficult or impossible to estimate falienages.

Annealing algorithms such as simulated annealing [126] and deterministic amgeal
[208] are widely used for clustering, compression, classifon, and regression,
because they assist in avoiding local optima, are appkdabinany different struc-
tures and architectures, and are relatively fast [126,.208]

Genetic algorithms maintain a pool of solutions rather than just one. New caateid
solutions maybe be generated by ‘mutation’ or ‘combindtadtwo solutions from
the pool. Probabilistic criteria, similar to those used imslated annealing, are
used to select the candidates for mutation or combinatimhf@r discarding excess
solutions from the pool.

The Levenberg - Marquardt algorithm is an iterative technique that finds a local min-
imum of a function that is expressed as the sum of squaresndinear functions.
It has become a standard technique for nonlinear leastassjyaoblems and can
be thought of as a combination of steepest descent and thes®&wton method.
When the current solution is far from the correct one, th@aigm behaves like a
steepest descent method: slow, but guaranteed to conWigen the current solu-
tion is close to the correct solution, it becomes a Gausstdlemethod [138, 153].

The Newton method is a root-finding algorithm that uses the first few terms oftaglor
series of a function in the vicinity of a suspected root [6NMpwton-Raphson and
Quasi-Newton methods are efficient iterative techniquesl s optimise Newton
method based minimisation.

2.2.2 Resampling and interpolation theory

To complete a registration process, we need to warp a sontoeaitarget. However,

application of the estimated registration map is unlikelydsult in a neat alignment of
source and target images. Various interpolation methoelsised to compute the exact
intensity values in the transformed image [124]. Interpolais a mathematical method
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of creating missing data. For images presented as a regataete grid, the interpolation
of point (x,y) is:

N N

gxy) = ZN | ZN FOG, yi)h(x=x)h(y =), (2.1)
i=—Nj=—

where f(x,y) is the image intensity at the positigr,y) andh is the weighting function
applied toN neighbouring current pointx,y) samples. Interpolation of 3D images is a
straightforward extension of the 2D case, assuming thagenpaxels or voxels are equally
spaced along each direction.

Interpolation methods differ in the choice of weighting ¢tion and size of the neigh-
bourhood. The most popular techniques include nearedhbeig, linear, B-spline, cubic,
truncated sinc, and windowed sinc.

The simplest is a nearest neighbour based interpolatiorwhioh the intensity value
closest takis assigned to the transformed pixel. This method is contimun@lly effective;
however, it produces positional errors of at most half alpixee method has been found
unsuitable for interpolation on images acquired by varseenning modalities [114].

Linear or bilinear interpolation assumes that the intgn&inction is linear in the
neighbourhood local to a current point. This approach alogaducing the positioning
error; however, the resulting image is blurred by averagimgneighbouring pixels.

Higher order interpolation methods, such as cubic intexpah, allow improving the
quality of resampling [123, 201]. With cubic interpolatiare overcome problems asso-
ciated with the nearest neighbour and linear interpolatgmhniques [165], but it is still
faster than other more complex interpolators. A number d¢hats confirm that cubic
interpolation is sufficient for MRI data resampling [94, 108

2.2.3 Registration of DCE-MRI data

In DCE-MRI studies acquired from RA patients, pixels cop@sding to the abnormal
tissue change their intensity values over time. It is assutinat aligned images/volumes
within the slice/study are identical except for these lao&nsity changes [95]. This
permits assessment of the tissue vascularity as the ityest®nge reflects disease pro-
gression or response to treatment.

Accurate location of the enhancing tissues is crucial féicieht diagnosis and dis-
ease treatment. However, the patient’s motion might inteedvarious artefacts, causing
erroneous enhancement of some tissues, and thereby preyefiicient data assessment.

Registration is used to compensate for enhancement a#tbleuto the patient’s mo-
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tion. It is a challenging task [36] and the majority of avhimalgorithms (Appendix A),
are not designed to deal with local contrast and intensigngkes, fail to perform on
DCE-MRI data.

Early methods for DCE-MRI data registration [131,279] ddssd motion using rigid
transformations. These algorithms calculate the ratioefimage to the other on a pixel-
by-pixel basis, and then iteratively deform images aimimgninimise variance of this
ratio. This approach is not efficient for motion correctiorthe soft tissues surrounding
rigid structures.

Recently, motion in DCE-MRI data was modelled using optilcat and affine trans-
formation [58, 60, 81, 207]. However, standard optical fl@ghniques rely on the as-
sumption that the intensity of target and source imagesireswwanstant [15,117], while
the position of objects in the source image change. Thisnagsan is inapplicable in
dynamic contrast-enhanced MRI datasets.

Contrast enhancement introduces new information into esay the dynamic series,
So registration cost functions that depend on informatioment are confounded by the
appearance of changes both in contrast and shape of tiésagifg to erroneous results.
Local intensity changes in areas affected by the diseasetalow us to apply standard
registration schemes such as [80, 98]. Therefore, thereneed for a new way to deal
with the contrast and brightness variations.

An algorithm presented in [186] was designed to deal witlipaccluded or lost data
by co-registering it to atlases. It is an intensity baseailgm, where the contrast and
brightness variations are explicitly modelled using a teghe suggested in [168]. Geo-
metric transformations are described with the affine maidhel;minimum square error is
used as a cost function. Both intensity and geometric paesare estimated simulta-
neously for each pixel location, and a global smoothnesstaaint [18, 190] is imposed
on the geometric, contrast and brightness parameters.ithe procedure is built upon a
differential multiscale framework [169] that permits capng both large- and small-scale
transformations.

2.3 Medical image segmentation techniques

Image segmentation is an important pre-processing stegh#sabeen studied by many
researchers [82,115, 229]. The aim of a segmentation #hgoiis to split an image into
non-overlapping constituent regions, which collectivedpresent the entire image, or to
extract regions of interest, each having consistent pt&s96, 179].

In medical applications, image segmentation is used taifjedifferent anatomy fea-
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tures, such as bones, muscle, blood vessels, soft tissudyan the background and
from each other. It is also used for identification of the anatal areas of interest or as
a preprocessing step for data analysis.

In treatment and diagnosis of multiple sclerosis, cancdi@a studies, segmentation
of regions of interest is used for tumours and lesion sizenasion, calculation of thick-
ness of the cartilage, and for visualisation for surgicalnpiing and simulation. Image-
guided surgery is an important application of segmentatitecent advances in technol-
ogy have made it possible to acquire images of a patient vghilgery is taking place.
The goal is then to segment relevant regions of interest aaday them on an image of
the patient to guide the surgeon.

Some registration algorithms, e.g. nonlinear warps, perfdifferently when operat-
ing on segmented / raw data. For instance, even within thes sarject, the brain can
move slightly within the skull over time; registering theutkmay hinder registration of
the brain, so segmentation is used as a pre-processing step.

DCE-MRI datasets are often processed on voxel-by-voxesb&ome tissues (such
as bone marrow and trabecular bone) do not provide valuadennation in MR scans
and therefore need to be excluded from the analysis.

Poor resolution, partial volume effects and intensity imogeneity typical of DCE-
MRI data complicate their segmentation [189]. A signal noeed for each voxel arises
from the entire tissue in a small, three-dimensional cupandl therefore might represent
a mixture of different tissue types. This makes the bourdanf the regions of interest
blurred and ambiguous. Various artefacts which occur beeat intensity inhomogene-
ity significantly degrade performance of segmentation rllgms, as they often assume
that the intensities of a particular tissue are constant ineimage [30, 226]. To address
these problems, many segmentation algorithms employ ‘slof$tering [188, 258] or a
probabilistic model for tissue segmentation [12, 238, 26&iere rather than making a bi-
nary decision on whether or not a pixel belongs to an objethas allow for uncertainty
in the location of the boundaries [56, 265].

Snakes [122], Active Shape Models (ASMs), and Active Apapree Models (AAMS)
[53] are often used to segment organs and tissues with a Igred®f shape variation. In
ASMs, a statistical model of object shape and shape vanmigiderived from a training
set, where each sample is described by a shape vector dagtthe coordinates of land-
mark points that correspond between shapes. The shape mdbeh used to generate
new shapes, similar to those found in the training set, whretfitted to the data. Fitting
the model to an image from the dataset involves finding moaempeters which optimise
some matching criterion between an image and a synthesisddlmxample and requires
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a measure of probability that an image point belongs to thenbary [53]. The AAM is
a generalisation of the ASM approach that contains a statishodel of the shape and
grey level appearance of the object of interest.

It has been demonstrated that these approaches can besultgepplied to segmen-
tation of objects with fairly consistent shape and grey leyppearance [17,206]. In some
applications, however, the statistical shape model mapbedstrictive if the training set
is limited; the grey level appearance model often does rnalteféectively with the highly
varying background seen in DCE-MRI datasets [204].

Approaches for segmentation of the soft tissue, where tgeedeof shape variation is
high, usually rely on evidence in the image such as grey vahaegradient information.
For instance, level set [172] or graph cut [29] approachesodten applied to medical
image segmentation. The level set technique is formulagadfaite-dimensional opti-
misation on a spatially continuous image domain [28], anobised on the idea of front
propagation [68]. Graph cut is defined as minimal cuts of ardie graph representing
the pixels of an image [28].

Some algorithms operate solely on intensity values [75289, 236], others involve
spatial information [228,268] or ground truth (GT) knowigdabout the shape or intensity
of regions of interest [19]. Often these approaches asshatétte tissue intensity and/or
location and shape of regions of interest across the dateoastant. Such assumptions
fail with dynamic data, complicated by the effect of contragent and high inter-patient
variability.

Often techniques incorporate manual estimation of infiedameters or prior knowl-
edge about the anatomy or image properties [182,230]. Tdnssgnificantly improve
segmentation results; however manual tuning of the algorimakes this solutions in-
feasible for analysing large amounts of data [6, 202]. Tlaeesurveys that attempt to
classify segmentation algorithms based on the technidnggsimcorporate [75, 265].

Fully automated segmentation is a challenging task [51]}thec is no general appli-
cation independent solution which does not require suppigary knowledge about the
image class, scanning modality or properties of regionatefest [82,189,230,236,277].
Here we provide a brief overview of two popular techniquebjol are often used for
DCE-MRI data segmentation.

2.3.1 Snakes

The active contour model or snake is defined as an energywsimg spline, where the
snake energy depends on its shape and location within areif22§]. This approach for
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image segmentation was first introduced by Kass et al. [12@]is still widely used for
various image analysis and understanding tasks.

It can be thought of as a technique for matching a deformalol@efto an image by
means of energy minimisation. Local minima of this energgnticorrespond to desired
image properties.

The active contour can be parametrically defined(@s = [x(p),y(p)], wherex(p)
andy(p) arex,y coordinates along the contour apd= [0,1]. The energy function is a
combination of internal and external forces [122]:

;knake = / Esnakés( p) ) d pP=
s(p)

= /s(p) {Eint (s(p)) + Eimage(S( P)) + EcontraintdS(P)) }d p
(2.2)

In Equation 2.2E;; defines the internal forces, which represents the intemeaigy of
the spline due to bending:

2

2
ds|2 2.3)

Eintza(p)\g—zzw(p) a7

wherea (p) andB(p) specify the elasticity and stiffness of the snake. The esle¥nergy
Eimage defines the external forces that come from the image overtwthie snake lies; is
minimsed at the features of interest, such as boundaries |aBh termEcontraints reflects
external constraints imposed, for example, by a user. I6tiake is near some desirable
feature, the rest of the snake can be adjusted to accourit ibthe snake converged to
a local minimum that was defined as incorrect, this term cacefthe snake away to a
different minimum.

From the calculus of variations, a snake that minimsgg, .must satisfy the Euler
equation, wherél is the gradient operator:

as’(p) — B (p) — OEext =0 (2.4)

This can be viewed as the force balance equation:

Fint +Fext =0, (2.5)

where internal forceqn; = as’(p) — Bs”/(p) discourages stretching and bending and



Chapter 2 18 Background

external forceFey = —[Eex: pushes the snake towards the desired edges.

There are various approaches available for minimisatiokaeuation 2.4 [55, 122].
Generally, the snake is made dynamic by treatiag function of time as well asp, i.e.
s(p,t). Then, the partial derivative afis set with respect tbas in Equation 2.6:

St(pat) = as”(p,t) - BS////(pat) - DEext (26)

A numerical solution to Equation 2.6 is achieved by dissiag the equation and solving
the system iteratively. Most snake implementations ugeed parameter which multi-
pliess in order to control the temporal step-size, or a parameterutiiply [Eeqy:, which
permits separate control of the external force strength.

For our experiments we used a publicly available implemenarovided by Xu and
Prince [270], which is based on defining the external energyawgradient vector flow.
Even though this model allows for relatively flexible inltgation of the snake, it still
requires the initial contour to be in the vicinity of a correolution. Clearly, it is not
trivial to find initialisation optimal for pre- and post-cbast DCE-MRI data with high
inter-patient variability, presence of high ambiguousdaries and intensity artefacts.

2.3.2 Region growing

Region growing is a technique that classifies pixels intooreg based on pre-defined
criteria [88] and might be useful for delineation of tumoargl lesions [85, 191]. Region
growing is often used in every day medical practice for segatéeon of various tissues
and semi-automatic identification of regions of intereSgJL

It starts with definition of ‘seed’ points, from which the fegs are grown by append-
ing to each seed those neighbouring pixels that satisfy @efireed criterion. This could
be the grey level or colour value of the pixel.

Location of the seed points and growth threshold (a sintylarieasure between the
seed and neighbouring pixels) are based on the nature opfiieation and image data
under consideration.

Descriptors such as colour, intensity, and texture arel lagd often do not account
for the history of the ‘growth’. Therefore, many authordiggé information about the size,
position, and shape of the object of interest based on prformation.

Region growing tests the statistics inside the region; vewé is sensitive to typi-
cal DCE-MRI data noise and contrast variations, which caasalting regions to have
irregular boundaries and small holes.

Figure 2.1 illustrates regions corresponding to the boteriors taken from four dif-



Chapter 2 19 Background

ferent pre-contrast images. It is clearly visible that tbatcast and intensity of the bone
marrow and surrounding tissues varies significantly fromdgtto study. The ® region in
the figure exhibits oedema, which is causing a part of the bmeeode and appear black.
Region growing with a seed inserted in the middle of the baggon would not deliver

accurate results.

Figure 2.1: Regions corresponding to the bone interiongliter colours) and surround-
ing tissues from different DCE-MRI studies. Contrast anemsity of the bone marrow
and surrounding tissues varies significantly from studyttog

Therefore, in the presence of artefacts, ambiguous boigsdand intensity changes,
snakes and region growing often do not deliver an optimaltsm. Besides, it might be
time-consuming to find an initialisation that allows snakesegion growing to perform
successfully on datasets acquired from various patieritsrefore, we seek an approach
that would be robust to the contrast / intensity changes aed independent of the pa-
rameter selection problem.

2.4 Evaluation techniques

Algorithm evaluation is an important step towards esthlolig its adequacy for a partic-
ular application or its general efficiency [5, 78, 263]. Bi#nt segmentation evaluation
metrics [45,46,66,271,276] have been proposed. They ackfos quality assessment of
segmentation results, as well as algorithm comparisonlutian of different algorithms
on the same dataset allows choosing the most efficient on& particular application.
Evaluation of a single algorithm on different datasets pites information about its ro-
bustness, and ability to handle data acquired under differenditions and by different
modalities.

Evaluation metrics can be divided into two groups: supediand unsupervised. Su-
pervised approaches [46,66] are based on computing a dmssiyimeasure between the
results of machine segmentation and known correct infdomathe Ground Truth (GT).
Unsupervised evaluation [45, 276] assesses the qualitggrhentation by considering
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different statistics derived from the properties of an imamnd segmentation, without
knowledge of GT. Supervised evaluation is useful in metherification; unsupervised —
in actual clinical practice, where volume of data is too higlsupervise.

Existing evaluation metrics are usually demonstrated amth®tic datasets, rarely
agree with each other, and put serious constraints on imagpegies. These constraints
are not generally valid for DCE-MRI imagery, which is congalied by low contrast and
intensity, local blur, patient movement artefacts, andghesence of ambiguous bound-
aries. Therefore, there is a need for new supervised angengsed approaches suitable
for DCE-MRI data.

2.4.1 Supervised evaluation techniques

Earlier performance of the majority of segmentation altjons [104, 105, 224] has been
guantified based on opinions of human observers. This gteslanalysis of large num-
bers of images, as well as meaningful comparison of slighitferent results [115, 271].
Moreover, variation in evaluation results produced byadi#ht experts can be significant.
If image quality is poor, the boundaries of the region of et are ambiguous and ob-
servers’ judgements on the expected segmentation mightdestain.

An example of such a boundary is shown in Figure 2.2; the regigartly ambigu-
ous and overlays outlined by 2 experts independently do @iocile. To deal with this
problem, the most common approach is to involve the opinfomare than one human
observer, and then to ‘average’ their judgements [46, 263].

Two procedures to evaluate an average curve, given two og mwwes, are described
in [46] and [26]. The former is based on establishing onefte-correspondence between
the points in the curves outlined by multiple observersgisimodification of the methods
for shape registration. The later is based on a shape-basggolation method. Details
can be found in the references; for our experiments the fopraecedure was used.

Alternatively, evaluation can be performed using statatsupervised metrics, which
assess the quality of segmentation by using GT informatmutregions. GT is usually
outlined manually by an expert before segmentation reatdtavailable; the performance
of segmentation algorithms can then be assessed accoodimggisured discrepancy. Such
evaluation methods are also known as ‘empirical goodnesisads’ [276].

However, the location of GT is usually dependent on expentiop, and therefore
subjective. Chalana and Kim [5,46] attempted to solve troblem by computing a ‘per-
centage statistic’, which considers whether computer geee boundaries differ from
GT outlined by multiple experts as much as GT boundariegdifbm each other. The
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Figure 2.2: A region from a DCE-MRI study of the MCPJs with atlyaambiguous
boundary (left), and two possible GT overlays, highlighbsddifferent human experts
(middle, right).

authors state that their method outperformed the techrsgggested by Williams [263],
where the opinion of an observer is compared with joint agwe® of other observers.
These results have been analytically and empirically aalyn [5] and found inconsis-
tent.

The problem of GT inconsistency remains open, and is ragigttention in many
areas of imaging and computer vision [64]. The need for apailje metric, which per-
forms evaluation based on GT, but at the same time accourpe$ésible inconsistencies,
has been identified by many researchers. A solution to tlmklem is to allow an error
measure, yielding acceptable differences between the @Tlensegmentation results.
Such a solution can be adjusted for possible observer erpoa image quality.

All supervised evaluation technigues which allow acceletalegmentation error are
based on one of two approaches [16, 276]: misclassified 8&af a measure of bound-
ary displacement [271]. Either can define an appropriateioetr assessing segmenta-
tion quality and efficiency.

2.4.1.1 The mutual overlap area based approach, and its lirtations

The Mutual Overlap (MO) approach, also known as a Dice ev@ainanetric of a spatial
overlap, is based on computing the area of overlap betweén@a/&lay and a segmented
region [27,66,115]. This is illustrated in Figure 2.3.

The area is normalised to the total area of the two defininmpnsgif A; is the area of
the segmented regioAy, is the area of the GT region, amdiO is the area of their mutual



Chapter 2 22 Background

Figure 2.3: Mutual overlap: machine segmented region isvahio white, GT in red.

overlap, then the mutual overlap metric is defined as:

_ 2-MO
o A1—|—A2.

MO (2.7)

It is customary to measure acceptable quality with respethis metric by setting a
percentage threshold fddy o, usually greater than 50% [27], but this will vary to reflect
the strictness of the definition.

Figure 2.4: Four regions corresponding to bone interioggrented in a sample DCE-
MRI image. Machine segmented regions are shown in white G&d.

This approach is popular and seen to work well on, for exanigtery, RGB or some
satellite data, but its performance on DCE-MRI data is nwagk adequate:

e A DCE-MRI image segmented by a region growing algorithm [&/Ehown in
Figure 2.4; machine results are shown in white and corredipgrGT in red. The
Mmo measure of these 4 regions is 81%, 74%, 53%, and 11% resglgctivith
a threshold value of 70%, the first and the second regionscargidered ‘correct’,
whereas in fact the second regions does not reflect the bpngerties, which,
from a clinician’s viewpoint, makes this sort of segmematof little value.

e Often images are corrupted by noise or complicated by patir@vement — then
boundaries become ambiguous and the location of GT is nabobeven for ex-
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perts. Assessment of segmentation results should refleeptable error account-
ing for the extent of the ambiguous sections, or assigneahlexpert. Current uses
of this metric rarely if ever compensate for such factord[27

e Experiments with DCE-MRI datasets show that boundariesafhime segmented
regions may partly overlap GT, be located strictly insideoatside GT overlays,
or include very local significant deviations (for examplee second region in Fig-
ure 2.4).

Mwmo considers the area of regions. Therefore, long thin ‘tattached to the re-
gions will not influence the metric performance. Therefdfigo is of most value
only when the distances from GT to the segmentation outpuamodal with
low variance, and so do not include very local significantiaigons such as in the
boundary of the 2nd region in Figure 2.4 (which will be reéetito as ‘tail’). If the
boundary pixels form a tail the evaluation can be confusihgeause the tail area
is small,Mw o, which considers area inside the regions boundary, ishsgh.

e The metric cannot be applied to non-closed boundaries. 8etion or boundary
detection algorithms applied to regions of varying intgnaind texture often result
in partial boundaries, or they recognise interior areagegfans as boundaries. An
example is shown in Figure 2.5. For such segmentations, G baaxpected to
be a closed boundary, but segmentation may deliver openosedlcurves. For
such imagesMwo is of little use. Even if an open boundary has been closed by
some approach, boundary confidence while passing througbdatrast areas will
be questionable. In this situation the metric will be aféecby the quality of the
image as much as by the quality of segmentation.

Figure 2.5: Left: An image [taken with permission from [2bd4¢gmented by the Canny
edge detector [39]. Middle: Results of a boundary detectigorithm. Right: GT (in
red).
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Despite these drawbacks, this metric is widely used foruatadn of segmentation
algorithms executed on medical imagery [27, 38, 48,192].

2.4.1.2 Hausdorff distance based approach

In 1977 an approach considering deviation of boundarias f@I' was proposed [271].
In these experiments thdy,o metric [66] (known at that time) was shown to be inad-
equate since it often departs from the human judgement aes ot reflect the spatial
information inherent in pixel misclassifications. An altative metric, which was based
on computing the Euclidean distance between all segmente&a pixels inside the re-
gions’ boundaries, was proposed. This is related to the ¢tatfameasure between the
sets [209].

The Hausdorff distanc€HD) between two setd andB is computed by finding the
minimum distance from each element of one to some elemertiebther, and then
finding the maximum such distance [209];

h(A,B) = ry&x{ rkyelgd(a, b)} (2.8)
whered(a, b) is some suitable distance metric, commonly the Euclidestadce between
aandb. The Hausdorff distance is oriented (asymmetric); usua(h, B) # h(B,A). A
general definition of the Hausdorff distance between tws sg209]:

H(A,B) = max{h(A, B), h(B, A)} (2.9)

This defines a measure of the sets’ mutual proximity, inthgatow far (at most) two
sets of points are from each othel(A, B) has been adapted as an evaluation measure for
the quality of the segmentation results, wheie a GT region an@® a machine segmented
region, interpreting the sets B as the interiors of the two regions [46].

A debate persists on which evaluation metric should be pexdd43, 115,217, 276];
few authors evaluate algorithms using both. A comparativdysof the supervised eval-
uation metrics [43] favourdy o and demonstrates that thED based metric [271] does
not provide adequate evaluation of segmentation in the @aseder-segmented regions,
favours over-segmented regions, and produces measurethanare highly dependent on
confidence in GT. Conversely, it has been shown that evalugtiovided byMyo does
not correspond to human observers’ opinions, and a HD basédcrs preferable [217].
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2.4.2 Unsupervised evaluation techniques

Difficulties in acquiring GT such as imprecise definition,upday of information, and
time consumption have motivated research into unsupehésgaluation [41,45, 276], but
most of this work has been demonstrated on binary or sywtlmtges, with limited
experiments on MRI, CT and imagery acquired by other scanmodalities. We are
unaware of unsupervised evaluation metrics being suadéssmployed in domains with
such characteristics.

Generally unsupervised evaluation metrics are based don¢h&on, shape, size, con-
trast, or intensity of segmented regions [187]. Unsuper/isetrics depend on either
global image statistics, which can be derived from the setlgfixels in the image, or on
regional statistics, which characterise the regions segede

Recent research on unsupervised evaluation methods [4¥Havn that among the
best known techniques [276] that require no human intereenthere are several which
produce relatively consistent results from tests run omgeaof imagery.

2.4.2.1 Existing unsupervised approaches
Intra-region uniformity criterion

A criterion proposed by Weszka and Rosenfeld [259] and Leevdnd Nazif [139] as-
sumes that an adequate segmentation algorithm producgesmath high intra-region
uniformity. For untextured images, uniformity can be corgalion the basis of inten-
sity variance evaluated at every pixel of the foreground]13_et A; denote the area
of the segmented imade A; the area of the foreground regidt), and f intensity of a
pixel; thena? represents the intensity variance of the whole image,aﬁ\that of the
foreground [219]:

2
O-izzz z [f(X,y)—% z f(X,y)] (210)

(xy)eR

2
0% = > [f(x,y)—AiI f(x,y)] (2.11)
(

(xy)el xy)el

In [139] the uniformity measure is given as:

2
oﬁzlz(xy;ea [f“’”‘%(x%&;“’”] (2.12)
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Sahoo [211] proposed normalising this measure as in Equatit3, whereC; is a nor-
malising factor.

02=1-0?/C (2.13)

In [219] area of an image and area of a region are taken as tisinggfactors and the
uniformity measure is given as in Equation 2.14:

_ACd?

My = ——L 2.14
1 AI o2 ( )

Inter-region contrast based criterion

Later Levine and Nazif [139, 170, 176] proposed an evalumatieeasure known as the
inter-region uniformity criterion. It is assumed that gagementation produces regions
of uniform intensity with high contrast along borders. If geg scale image contains a
regionR; with average intensity levefy and average intensity of the local backgroupd
the measure is defined as the following:

[ fo— fp]

Mo = 2.15
2 fo+ fb ( )

Zeboudj contrast

The Zeboudj criterion [42, 274] is based on the differencéhim internal and external
contrast of a region segmented. It is assumed that an adesg@itnentation should split
an image into regions of high contrast. This criterion cdess separately pixels on the
region border and within its interior; the contrast of thegds on the border of a correctly
segmented region is expected to be significantly differearhfthe contrast of the pixels
inside the region. The Zeboudj measure is based on the cechpinciples of maximum
inter-region and minimal intra-region disparity measuirethe pixel's neighbourhood.

The disparity between two pixels with grey levdlgs) and f(t), can be defined by
Equation 2.16, wher& is the maximum of the grey levels:

c(st) =[f(s) - f(OI/(G-1) (2.16)

The intra-region disparity of the regidR with areaA; is given by Equation 2.17,
whereW(s) is the neighbourhood of the region’s pixels.

I(R) = Ai. %max{c(s,t), t e W(s) ﬂRi} (2.17)
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External disparity of the region is given by Equation 2.18ereF is the region
boundary of the length.

E(R) = = max{c(s,t), teW(s)t ¢ a} (2.18)
Ii SEH
Then, the disparity of the regidR can be defined by Equation 2.19, where the mea-
suremenCr € [0;1]. A schematic diagram is illustrated in Figure 2.6.

Figure 2.6: A regiorR with boundaryF; a boundary pixei and its neighbourhood;.

1-1li/g ifO0<I(R)<E(R)
Cr =1 E if (R)=0 (2.19)
0 otherwise

Finally, the Zeboudj criterion is given by Equation 2.20,ambA, is the area of the
image, and is the area of thé" region:

1
Mg = - IZA; x Cr (2.20)

Classifier based metrics

Since different evaluation metrics make their judgementslifferent ways, they give
diverse results on the same segmentation output. Thisgee\a number of evaluation
references, which may be combined to produce a single refer@5,275]; schemes such
as support vector machines [45] and Bayesian classifiefq [2ae been used.

An algorithm presented in [45] evaluates segmentationuwigtpy combining results
of several stand-alone unsupervised metrics by means pbsiyector machines (SVM).
A number of segmentations are evaluated by an unsupervisgd supervised (mutual
overlap based) metric. This permits the assignment of ahta@each unsupervised
metric associated with accuracy of its prediction; higiweighted metrics are used to
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train a SVM classifier and the metrics are combined into aeutist will be used for
evaluation of a particular application. The classifier @&rted to make a prediction about
a new segmentation using predictions of individual unsuiped metrics as features. The
authors performed a comparative study of the unsupervisettics, and demonstrated
that for a given application only a small subset of metriexjpices an accurate prediction.
Also, incorporating an inappropriate metric into a classifvorsens performance of the
algorithm. It has been seen to perform well on synthetic iesagut results are poor when
it has been applied to MR and satellite imagery.

Zhang et al. [275] also suggest combining stand-alone osétoutputs using vari-
ous classifiers (simple classifier, weighted majority (WHayesian, and SVM). Using
various strategies the authors try to predict which of thvegisegmentations is better.

No learning stage is required for a Zhang's simple classitiee decision is made
alone with the predictions provided by the majority of thdiindual metrics. A weighted
majority based approach uses an on-line learning approatisdased on combining the
weighted opinions of individual metrics. Initially, eacheiric is given a weight of one;
during the training stage, a number of segmentations adelaea by human observers
and opinions compared with the prediction given by the iitlial metrics. If a prediction
is wrong, then the weight of that metric is decreased. Theherevaluation stage, two
segmentations are compared and the weighted majorityitdgopredicts which one is
better.

A further development was to combine primitive classifielighva naive Bayesian
approach, assuming the scores of each metric are condijiondependent from each
other. Results discussed in the literature [275] are theysseen.

These algorithms have been demonstrated on several intagettfe Berkeley dataset
[154] (108 images were used for the training dataset and ©évialuation). The authors
have shown that combining metrics without the learningestagduces poor results, but
that classifiers trained using supervised learning teclesdpave produced relatively good
results. However, the authors do not discuss the apprepeas of each metric to a par-
ticular application and how results would change with vi#iain the number of metrics,
different imagery or a training dataset of different sizdaeifle were no experiments with
MRI or DCE-MRI data.

Other metrics

There are metrics developed for evaluation of segmentatgurithms executed on colour
images (Lui and Yang evaluation criterion [148], Borsotitarion [24]). The Borsotti
criterion has been modified to be applicable for grey scabgiesegmentation evaluation
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[42], but performed poorly. An overview on this type of evalion can be found in
[5,24,42,148].

Some other evaluation metrics (Cochran’s homogeneity oreagent based metric
[52], Pal's intra-region uniformity based metric [178],/®e shape based measure [211])
require selection of a threshold, which is often done aatiiy, thus limiting the applica-
bility of the methods.

2.4.2.2 Issues with existing metrics

There are several problems affecting performance of theently accepted unsupervised
metrics:

e Noise and local blur may make object boundaries span sepixals [189]; thus
segmentation algorithms will deliver objects with low c@#t and partly ambigu-
ous boundaries. Existing metrics [42,139, 259, 274] ugwbume that an image
is segmented into regions of high contrast with well-defibedndaries.

e Interpretation and comparison of results delivered by pesused metrics are con-
fusing. Some are based on contrast changes, others usegiigsel some are nor-
malised to the image/region size, others not.

e Simple evaluation measures such as [139, 259, 274] operdteutany user inter-
vention, but are seen to be limited, while the more soplastit metrics [45, 275]
require a training stage where an algorithm learns from fsetamually outlined GT
segmentations.

However, a simple combiner of votes does not produce adegastilts [275] and

some supervised learning should be incorporated. The $itteedraining dataset
and the number of metrics included in the classifier influgpedormance of the

algorithm. A study [45] shows that increasing / decreashmg gize of a training

dataset or incorporating an inappropriate metric into asifeer can worsen perfor-
mance of the unsupervised approach. The choice of an opsiehalf stand alone
metrics, appropriate size of the training dataset, to obtiae best match image
domain remain unclear.

2.5 Quantitative analysis of DCE-MRI datasets

DCE-MRI is used extensively in a wide range of application®lving different organs
and pathologies [119,132,177,197,198]. It has evolvechasportant method for eval-
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uating various diseases of the musculoskeletal systen723252]. This technique pro-
vides information about tissue vascularity, perfusion eaylillary permeability [250] and

therefore permits assessment of the degree of inflammatidrpast treatment progress
evaluation.

After performing a dynamic study, a large number of imagesasailable to be eval-
uated qualitatively and quantitatively. Evaluation of aie® of images obtained with
DCE-MRI can be performed in different ways.

A simple, but subjective, qualitative method is the ‘nai@@ew method’, in which an
observer examines the contrast enhancement sequentiadil onages of the dynamic
sequence [202]. With this method detection of small areanb&ncement, or areas with
discrete enhancement (especially in the wrist studiespeattifficult.

Early qualitative analysis methods were based on imageaitlan, in which the
first image (i.e. before contrast injection) is subtractesht all subsequent images of
the dynamic study [72, 250]. The subtraction images are Wmmed one by one. With
such methods it is possible to detect the most highly enlthtissues (for biopsy or
injections). However, estimation of measures such as tigninale of enhancement and
time of onset of enhancement or recognition of the late ecihgrtissues such as fat on
the early subtracted images is difficult.

Quantitative analysis of DCE-MRI data can be performed gisivo fundamentally
different groups of methods: pharmacokinetic [31, 134 |24 heuristic [62,107,121,
130, 195]. Pharmacokinetic methods [31, 134, 245] proviftaraework that can be used
to link the physics of MRI signal acquisition and the undenypatho-physiology that
governs contrast agent kinetics. Comparative analysih@de methods can be found
in [196, 243].

Pharmacokinetic methods [31, 134, 245] rely on a commonfsefsumptions regard-
ing the properties of the principal compartments and timt@ractions, but adopt different
representation for temporal variations of the contrastnagencentration in the blood
plasma. In [134] the contrast agent concentration in thedfdasma is measured in indi-
vidual subjects, which makes implementation of this metinadinical settings difficult,
especially when high spatial resolution and multi-sliceesage are required [196].

In [31, 245] the contrast agent concentration in the blo@s$mla is represented as a
theoretical function in response to a chosen form of thetifymoction (injection), which
is often idealised as a delta function. Such a representét®experimental data well
when the temporal resolution of the DCE-MRI is low and acijois time long. With
higher resolution the characteristic shape of the contrgsiht uptake in the tissue of
interest resembles a sigmoid, which cannot be accuratedgritbed by these methods
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Ton set

Figure 2.7: Top: Pre- and post-contrast images of the wisttom: Signal intensityl(
vs. time () curve approximated by a piecewise linear model. Parambtér, IRE, and
Tonset€Stimated for this curve.

[243]. Furthermore, long acquisition times incur more ea@s a result of movement and
provoke patient discomfort.

In clinical practice, it is impossible to assess the acouvath which pharmacokinetic
variables reflect the true underlying changes in conceatratf the contrast agent [119].
The accuracy of the estimates will depend on the pharmaeb&imodel used and the
signal to noise ratio in any individual case. This is a pattc problem with applications
where noise is the dominant, or only, cause of variation oftt@st agent concentration
[119].

Alternatively, contrast enhancement can be quantifiedrmgef heuristic parameters
such as maximum enhancemelit), initial rate of enhancemenRE), and time of on-
set of enhancementd,se). These heuristic parameters have been seen to correldite wi
pharmacokinetic measurements of inflammation [83, 128].2#0contrast to pharma-
cokinetic parameters, heuristic estimation is relativataightforward (see Figure 2.7).

There is clear terminological confusion over the maximuta cd enhancemeniMRE)
and the initial rate of enhancemenRE). In fact, what we callRE in Figure 2.7 mea-
suresMRE, and will be equal to the initial rate of enhancement only wkiee wash-in
phase (the intensity increase) is linear. However, dueémthise present in the data, a
reliable estimate ofRE is often impossible. Therefore, we proceed with computetiD
MRE, which in all further experiments will be referred to HRE in common with other
literature.
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Most such analysis hitherto has examined individual sigmainsity curves derived
from user defined regions of interest (ROl analysis) or orel«y-voxel basis.

The validity of ROl analysis relies on the position and siZROI, as its misplacement
might result in a 26- 30% difference in measurements [50,162]. This implies pepro-
ducibility of the techniques which describe the shape ofthigancement curves [119].

The first attempt to perform objective voxel-by-voxel arsdywas published in [195],
where the enhancement curves were constructed for thexallspin the dynamic slice.
This freed the analysis from ROI placement, but the apprbashts own drawbacks and
limitations, listed in the next section.

2.5.1 Current analysis of DCE-MRI datasets

There are no standardised methods for heuristic analydiseoflata acquired with low
or high field scanners. Currently, for the metacarpophaahpints (MCPJs) and wrist
studies dynamic curves are calculated from an approxim&é mn? ROI positioned
in the area of maximal visual enhancement [50, 195]. Measents oflRE and ME
contain both spatial and temporal information making treults vulnerable to the size
and position of the ROI [162].

A semi-automated approach proposed for DCE-MRI data of to@s analysis [195]
was the first attempt to perform quantitative analysis dbjely. It uses the commercially
available software ANALYZE [202] for manual segmentatioadentification of tissues
of interest. Signal intensity vs. time curvd$ &re normalised over a mean baseline com-
puted from the first three valuéb), and their geometrical properties such as height and
slope are considered. The normalised signal is:

Q) M)
b_t;?, (=" t=1..T (2.21)

In Equation 2.21T is the number of dynamic frames in the temporal slice; in trgs fi
three no enhancement is expected to be observed and tleetieéyrare often taken as a
baseline.

To assess the extent of RA various parameters, subhEgdRE, andTynsetare com-
puted from the enhancement curves. The parameters areagstitoy passing an averag-
ing window of lengtm =5 (a number empirically found for the MCP data [195]) over the
signal intensity vs. time curve and determining the gradarihe linear best fit in each
window [195]. The maximal such gradient is takenBR&, and the instant at which this
occurs recorded as time of onset of enhancermgnt: ME is found as a maximum of
mean intensity values calculated in each window. Figurel&rates estimation diRE
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with the moving-window algorithrh
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Figure 2.8: Estimation d¥1E, IRE, andTonsetWith the moving-window approach.

At this stage, pixels in which signal intensity vs. time aeg\exhibitTonset > 60s or
ME < 1.2 are regarded as unlikely to be of clinical interest sin¢kegithe take-up has
not been appreciable or the behaviour is outside the exgpéicte interval [195]. This
permits the measurement Nfy4 — the total number of enhancing pixels, which allows
for assessment of a patient’s condition.

Computation of the parameters with the moving-window wépend highly on the
degree of noise present in the data, scanning equipmenthanidne-course of the arrival
of the contrast agent [111, 195]. The size of the moving wmadeeds to be adjusted
to process the data acquired by a particular scanner or at &gquisition settings (as
different scanner generate data of different noise levidl)s implies manual intervention
of the human operator, which makes the results subjective.

To visualise the extent of inflammation, parameters aregortes! in the form of para-
metric maps, which are 2D images depicting these param@ikus, a parametric map is
a 2D representation of a chosen property of interest {@k).IRE) superimposed on the
anatomy image.

The first mention of parametric maps can be dated to the [88sl9 early 1990s.
They were used for DCE-MRI data analysis acquired in pretdil contrast agents trials.
Later in the 1990s, clinical trials were performed on pasdi1, 130, 134, 245]; this is
when the modern definition of the maps originated [180, 233, 244, 246].

The value of the parametric mapping technique lies in spadcease of interpretation
of DCE-MRI datasets and its simple display, suitable fonickl interpretation even by
non-experts. The benefits of parametric mapping are obylumusever, the technique is

1Taken [with permission] from [195].



Chapter 2 34 Background

not widely adopted in medical practice. There are no esthétl standards for assessment
of quality of the parametric maps that might explain whatrdegf noise is acceptable
and how well a parametric map reflects the activation eveéustently, evaluation of the
parametric maps’ quality is performed by experienced olessrand clinical experts.

Therefore, current analysis of DCE-MRI data [50, 195] eralslemi-automated com-
putation of the parameters, but has some drawbacks andfianis. Firstly, as no pre-
processing is employed, voxel-by-voxel analysis might bgleading as it is assumed
that each voxel represents the same area of tissue throutieoacquisition, which is of
course wrong due to the presence of patient’s motion.

Secondly, more accurate estimation of the parameters ilaties For example, es-
timated with the moving window method [19%}set COrresponds to the time at which
intensity is increasing fastest, and is clearly larger ttl@nactual time of onset of en-
hancement. This estimate is, of course, trivial to improwvergthis time and the gradient
IRE.

Furthermore, there is often a proportion of curves in whieh inaximal intensity has
not been reached, indicating constant leakage into loeatijlable extra-cellular space.
Existing methods do not allow identification of tissues atalibsignal intensity did not
peak during the acquisition of DCE-MRI data, which mightdea inaccurate estimation
of the parameters. Such locations should be identified.

Lastly, all issues mentioned prevent accurate estimatfdheototal number of en-
hancing pixelsNiotal), which indicates the extent of RA [180].

2.6 Segmentation of blood vessels

Due to the high vascularity that occurs in disease affecsstdi¢s, values dME andIRE
corresponding to the blood vessels and such tissues willepecgéd in a very similar
manner in the parametric maps. This complicates visualaisabf the data and does not
permit an objective automated assessment of the inflammarioerefore, blood vessels
should be excluded.

Some algorithms attempt to determine the centre of the \/pafies and then employ
various segmentation and tracking algorithms [149] onséiprior knowledge about the
segmentation task [35, 249] to reconstruct the vessels’dteicture. Other applications
[146, 213] achieve sequential contour tracing by incorpogafeatures such as central
vessel point and search direction [146]. A semi-automaply representation approach
for vessel tracking has been introduced in [136]. In [97¢ #uthors present a coronary
artery tracking system that incorporates information witkubsections of an image for
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stable tracking. Features such as vessel width and direatsrequired; also the starting
point should be given by a user. Classification and compawa$earious tracking based
approaches can be found in [125].

Approaches discussed in [125, 159, 269] apply explicit n®de extract the vas-
culature from DCE-MRI datasets. These include deformalbeets, parametric mod-
els, and template matching. Such methods generally requaraual or semi-automatic
initialisation based on prior information about the diaerednd location of the vessels
[127,167,210].

Several techniques have been proposed for automatedigaitian of such algorithms
[164,270,272] and their adaptation to a particular toppldg3,160,221]. They generally
require a pre-processing stage that allows generatingifal icontour, which is further
refined [63,79, 218, 238].

Several authors use template matching approaches thatpatte recognise a struc-
tural model (template) in an image [20,255]. In arteriakagtion applications the arterial
tree is usually represented in the form of a series of nodasexied in segments. For-
mulation of the model often requires user interaction andrgnformation about the
diameter and location of the vessels.

Even though template matching and tracking methods mighduysre good results,
there is still a need for manual initialisation or selectminappropriate starting points.
Alternative methods are based on tissue classification.

Commonly, tissue classification is done based on intenaltyes. The very first meth-
ods [242, 245] assumed that each voxel that enhances maoratbartain threshold is
vascular in origin. However, this approach can lead to esioluof up to 50% of voxels
from the image in enhancing tumours and other very vasculaaecing tissues [119].

In brain studies [49, 264] it is customary to assume thatisdlues presented in an
image belong to one of three groups. The first one, with theektwntensity response is
presented by cerebrospinal fluid, bone, and backgrounthaisecond, with middle inten-
sity corresponds to brain tissues, and the third, with highnsity — to subcutaneous fat
and arteries [100]. Furthermore, it is assumed that intgdiblood vessels is generally
higher than intensities of all other tissues.

Using these assumptions, researchers employ variousdusdb model distribution
of the intensities to automatically or semi-automaticalssify the tissues [49,101,264].
Such methods do not require user interaction, and are bawstek anformation that could
be extracted from the data.

Even though a lot of blood vessel segmentation techniques Ihen proposed [69,
125, 159, 230, 237], the problem of accurate vessel segtmmmtagom DCE-MRI data
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remains a challenging task. In DCE-MRI data, due to the w#dfect, some vessels
appear bright in the pre-and post-contrast images, whderttensity of others increases
with contrast agent inflow, which would lead to low signalrtoise ratio and an intensity
inhomogeneity within the region. The conventional segmagon methods that are based
on the image intensity fail when there is a significant signnsity change within the
vessel area. Furthermore, the intensity and contrast leetwackground and vessels, or
inside the vessel, may vary from region to region and patepatient. Therefore, local
absolute intensity statistics in the vessel and backgreegwns may not be reliable, or
the intensity gradient magnitude on the vessel boundary modybe large enough for
reliable segmentation [237].

2.7 Conclusion

Approaches for analysis of DCE-MRI data assume that relaligp between the contrast
agent concentration and signal change are known and witledie[244], and also that
all intensity changes at each voxel can be attributed to dnérast leakage and that each
voxel represents the same tissue type.

However, intensity changes in an DCE-MRI dataset will depen the data acquisi-
tion parameters, dose of the contrast agent, and scannimgneegnt. Hardware instability,
magnetic field inhomogeneity and subject motion during thaging can introduce arte-
factual enhancement.

At the end of an examination, a radiologist receives a dataisep to 300 2D im-
ages, which can be corrupted by noise and patient motiofaatse A reader semi-
automatically or manually segments images, in order totéotize tissues of interest and
isolate markers and then makes a decision about the patisgmdition by viewing the
images one by one.

Assessment and comparison of the datasets acquired invfajpoexaminations is
performed in a similar manner. Such evaluation is obviougily subjective and results
are not easy to reproduce. There is no technique for congraothe data acquired from
the same patient on two different scanners. Also, the quafithe data can render the
entire analysis invalid [9].

Therefore, we are dealing with several problems. Firstigre is a need for efficient
pre-processing techniques that can compensate for pat@rdn, locate tissue of interest,
and thereby contribute to data fidelity. Secondly, efficignantitative techniques that
allow assessment and interpretation of the results of plaléxaminations are required.

Some standard registration and segmentation technigiiesgarform under assump-
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tions imposed by the dynamic data acquisition settingsidRagion of the images located

at the beginning of temporal slices can be successfullyopaed by, for instance, the

iterative closest point algorithm based on edge featuresteel with Canny edge detec-
tor [39], however, when the local contrast and brightnessigle become prominent, the
algorithm fails. Therefore, in this thesis we will introdzioew segmentation and regis-
tration algorithms that are suitable for DCE-MRI data pregessing.

We have also developed a new quantitative analysis tecaridequate for DCE-MRI
data evaluation and interpretation, including estimatbrarious inflammation-related
parameters, assessment of the pattern of contrast ageMeypind visualisation of the
activation events.

In the following chapters we illustrate how analysis of DRI data involved in
rheumatoid arthritis studies can be performed using ogtchregistration, new segmen-
tation and robust quantitative evaluation techniques.
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Magnetic Resonance Imaging data

3.1 Image modalities for monitoring RA

In recent decades, medical imaging became a very powedyldéiering new possibili-
ties for diagnostic investigations. Development of imagiachniques such as positron
emission tomography (PET), computer tomography (CT),aatinography (US), sin-
gle photon emission computed tomography (SPECT), and niiagiesonance imaging
(MRI) enables physicians to examine various disorders mrainvasive fashion by means
of high-resolution three-dimensional images.

Medical imaging modalities can be divided into two majorecatries: anatomical and
functional. Functional modalities provide information the metabolism of the underly-
ing organs, and anatomical — illustrate the anatomy of bayspand organs. The later
are commonly used for rheumatoid arthritis assessment.

CT permits good definition of bone change. However, a pas@xposure to ionis-
ing radiation might influence changes in RA soft tissues Byaluation of rheumatoid
arthritis with X-ray is relatively inexpensive, widely alable and has standardised meth-
ods for interpretation [106]. However, it also has a numbelinitations, such as its
inability to reliably determine structural change in lelsart 6-12 months and the need for
experienced readers to interpret the images [241].

Musculoskeletal US is a rapidly emerging technique for clede of the soft tissue
lesions in inflammatory rheumatoid diseases [91, 215, 25h¢ main advantages of ul-

38
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trasonography is the absence of radiation, low runningsg@sid good visualisation of the
tendons and joint space [102]. However, the quality of thengxation is highly depen-

dent upon the skill of the operator and the use of optimal@gent. The former leads to
problems with reproducibility based on inter-observerafaitity and the use of different

scanners [241]. The latter implies that without a high-gyaiaging system US exam-
ination might not be accurate. Conventional ultrasoundpygant for musculoskeletal
work is equipped with standard 7.5-10 MHz transducers; ewsystems with even 20
MHz transducers have a limited field of view, poor beam petietn, and do not allow

the evaluation of structures deeper than 1.5 cm. Moreowmmuch data on the prog-
nostic value of US in RA is available [215]. Therefore, itedpterm diagnostic value is
unknown.

MRI is a highly sensitive technique for disclosing earlyuheatoid erosions and has
been shown to be better than other modalities for the deteofiinflammatory changes in
RA joints [11, 215]. Various studies illustrate that MRI ensitive to the follow up anal-
ysis of bone damage, detecting soft tissue lesions, syapaitd early erosive changes.

Performance of MRI scanning has been enhanced by the imtiodwf a dynamic
setup [248]. The acquisition of images in a dynamic mannemfte recording of the
tissue behaviour over time, which delivers more compreivensformation about the
tissue.

3.1.1 Magnetic resonance imaging

In MRI, a patient is placed within a high intensity magnetidi the strength of the
field might vary from 0.2F to 8T [1, 214] depending on the scanning equipment [32].
The induced magnetic field causes the magnetic moments diyd@gen atoms, pre-
sented in the tissues within the patient, to align along tivejpal direction of the super-
conducting magnet. Low-level radio waves are then trartechthrough the patient caus-
ing the magnetic moments of the hydrogen nuclei to resonadere-emit microwaves
after each pulse.

When the energy source is turned off, the protons return talibqum, emitting the
absorbed energy as a time varying radio wave, which is recbas the MRI signal. This
is done by measuring a current which is induced during thexeglon process in a radio-
frequency (RF) coil due to the time-varying magnetic fluxssdiby the relaxing nuclei.
Interpretation of the current as a function yields a sineev@®caying over time [90].

Spatial locations of the scan can be determined by varyiagrhgnetic field about

1The strength of the magnetic field is measured in Tesla [T].
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the patient in different directions at different times. Magic gradients are generated by
three orthogonal coils, oriented in the x, y and z directiohthe scanner. Encoding of
the spatial information into the signal is accomplished ipyesimposing three orthogonal
magnetic field gradients, resulting in a spatially depehdesonance frequency and phase
of hydrogen nuclei. The signal, which likewise is a functafrtime, is converted by the
inverse Fourier transform into the spatial domain to predac image [248].

T1/T2relaxation time

The MRI signal arises from the spin-lattice relaxation ti(f&) and spin-spin relaxation
time (T 2) of hydrogen nuclei [22]T 1 andT 2 are biological tissue dependent parameters
and the basis of the tissue contrast in MR images.

The T1 effect in the relaxation process is due to the return of tigé kenergy state
protons to the low energy state via exchanging their ‘ex¢raergy with the neighbour-
ing protons. The value of 1 indicates how quickly the spinning nuclei will emit their
absorbed RF into the surrounding tissue.

The T2 is a tissue-specific time constant for protons, which ddpem the energy
exchange of the proton and nearby nuclei. Due to the inieragtrotons lose their phase
coherence and, therefore, magnetisatidi2 measures the decay in magnetisation and
allows tissue types to be distinguished.

A subtle variant of theT 2 technique is called; imaging. Formation ofl; imag-
ing allows for additional sensitivity to relaxation proses (however image resolution is
sacrificed). Due to this propertyl,;-weighted sequences are used for functional MRI
(fMRI), evaluation of the baseline vascular perfusioneteal blood volume using in-
jected agents; in these cases, there is an inherent tradetwfeen image quality and
detection sensitivity [151].

TheT2 relaxation is temperature dependent. At a lower tempegatolecular motion
is reduced and the decay times are reduced. Fat has a vergrgfBoergy exchange and
a relatively shorfT 2. Water is less efficient than fat in the exchange of enemy,leas a
long T2 time. On aTl 2-weighted scan, fat-, water- and fluid-containing tissaresbright.
Damaged tissue tends to develop oedema, which mak2s/reighted sequence sensitive
to pathology, and generally enables us to distinguish pagiotissue from normal tissue.

TheT 1 time affects the tissue contrast. Due to the high mobifithe water molecules,
the water nuclei do not give up their energy to the surrougitissue as quickly as fat, and
therefore, on @ 1 contrast MR image, fat will appear bright and water dark][ZPhis
makesT 1 sequences useful for the assessment of the conditioniofigaissues such as
brain, joint, and spine.
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Figure 3.1: MR sequences. Left: Dual echo SE sequence. :HBgktc GRE sequence.

Repetition time / echo time

The pixel intensityl (x,y) in an MR image can be described by the following equation
[248]:

L(x,y) O p(XY) <1—exp[— %Q]) exp[— %}, (3.2)

[\ '\ J/
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wherep(x,y) is proton densityT E is echo time, and Rrepetition time.TRis the time
between the application of an RF pulse and the start of theRiéxyulse,T E is the time
between the application of the RF pulse and the peak of the éetected [22]. An echo
Is the emission of energy in the form of an electromagnesomance signal of a nucleus
after its excitation.

TE and TR influence the level of sensitivity of a particular tissue he differences
in T1/T2-relaxation process and therefore MR image charactesisfidjustment off R
andT E causes the signal to become more sensitive to the relaxatomess and allows
for the enhancing of the contrast between specific typesfotissue.

In practice the contrast of MR images can be altered by vgriie imaging parame-
tersTE andTR which have to be adjusted by the operator to reasonablesatuorder
to discriminate between various tissues [248].

MR sequences

The appearance of tissues in an MR image is influenced byrmpdaosity (i.e. number of
hydrogen nuclei) and the temporal course of THg/ T 2 relaxation process after applying
certain RF-pulse sequences. A pulse sequence is a set oftRjfadient pulses repeated
during a scan [248]. Figure 3.1 illustrates two types of MRspisequences: spin echo
(SE) and gradient echo (GRE). The SE pulse sequence is thecoramonly used pulse
sequence. The pulse sequence timing can be adjusted b ymeighted, proton density,
andT2-weighted images. The two variables of interest in SE secpearel RandTE.
All spin echo sequences include a slice selectivef0se followed by one or more 180
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degree refocusing pulses.

The GRE sequences show a wide range of variations compateéd ®E. The basic
sequence is specified BYR T E and an additional parameter — a flip angle. The flip angle
of the spins is usually at or close to®fdr a spin echo sequence, but commonly varies
over a range of about 10 to 80 degrees with a gradient echaerequ The larger flip
angle gives mord@ 1 weighting to the image, and the smaller moi2

MR sequences can be two-dimensional with a single 2D seatiquired at a time, or
three-dimensional with a volume of multiple sections ofai in a single acquisition.

Other imaging parameters

In MRI, anatomic coverage is determined by the size, locatmd orientation of a user-
defined solid rectangular volume. The possible orientatafrihe volume are axial, sagit-
tal, coronal, or oblique.

Data is usually acquired in slices (a virtual slice througBaobject). Typically,
slices are parallel to one another; they may be contiguoos@tapping. A typical slice
thickness varies from just under 1mm to about 5mm.

Spatial resolution or Field of View (FOV) describes the dimsiens of a slice or a
cross-section of a volume. Small FOV implies high resoluand small voxel size.

Contrast agents

Both T1- andT 2-weighted images are acquired in medical examinationselier often
they do not adequately show the anatomy or pathology. Thesethe contrast between
different types of healthy tissue as well as between healtitypathologically altered tis-
sue is further improved by the administration of a contrgstd, that affects the relaxation
times of the tissues [50, 133,174,215, 253].

A contrast agent may be simply water, taken orally, for imgghe stomach. Super-
paramagnetic contrast agents (e.g. iron oxide nano-ps}ibecame available in the
early 90s [257]. These agents make tissues appear very ddik-weighted images and
may be used for liver imaging — normal liver tissue retairesagent.

The most common paramagnetic contrast agent is a gadolcoompound [133, 256].
Gadolinium diethylene triamine pentacetic acid (Gd-DTRAan extra cellular contrast
agent that selectively alters MRI signal intensity throogtits distribution volume (blood
plasma and extra cellular fluid).

Gd-enhanced tissues and fluids appear extremely brighteohitbtweighted images,
which permits detection of the vascular tissues and asssgsshbrain perfusion or syn-
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ovial tissue.

Initially, only structures immediately containing the GJ-PA contrast agent, like
blood vessels, appear bright in the images. This is a dynanmaderial phase of a DCE-
MRI examination [230]. The timing of the arterial phase deg® on the size of the
contrast injection, location of the arterial bed and patsecardiopulmonary status.

During the second phase, known as an early-delayed or vartmase [230], arter-
ies usually remain opacified, although they may not appelrigist as during the arterial
phase. After the venous phase comes a late-delayed on®quiliphase. Vascular opaci-
fication during this phase depends on the type of contrasit§ga0].

In DCE-MRI, a temporal variation of the MRI signal intensatgcurs following intra-
venous administration of the contrast agent. The time ebafssignal changes corre-
sponds to the underlying changes in local bulk tissue cdaraigon of the agent, which in
turn depends on the degree of inflammatory activity.

Therefore, DCE-MRI is an efficient technique for the assesgnof the extent of
inflammation and monitoring the treatment-induced chamgy&A [83,128, 240, 243].

3.2 DCE-MRI datasets involved in this research

Images involved in this research are acquired from the haddhaist of patients involved
in RA studies. Before the scanning, a patient is pre-ingeatgh the contrast enhancing
agent Gd-DTPA, then sequences of 3D volumes are acquirettfre joints over a period
of time during which some tissues exhibit reaction to thetiast enhancing agent.
Gd-DTPA induces selective enhancement of signal intemsityell perfused tissues
and where capillary walls allow contrast penetration. Assiirated in Figure 3.2, inflamed
synovium and blood vessels enhance significantly, the snding muscle exhibits a low
degree of enhancement, and cortical bone and cartilageierpe no enhancement.

Figure 3.2: Pre- and post-contrast images from a tempaca acquired with the high-

field scanner. In post-contrast image, inflamed synoviuraratdhe second bone region
and blood vessels are enhanced significantly, the surrognduscle exhibits a low de-
gree of enhancement, and cortical bone and cartilage equerino enhancement.
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Schematically the data from a single DCE-MRI experimenhsn in Figure 3.3. A
3D volume is a set of images acquiredSatcans over timd . A temporal slice is a se-
guence of 2D images acquired from the same physical locatidifferent time instances.
A single 2D image in the DCE-MRI study is called a dynamic feam

Scan
3D volume 2D dynamic frame Temporal slice

Figure 3.3: Structure of 4D DCE-MRI experiment: 3D volumémeages are composed
of Sscans and acquired over tiriie

The acquisition parameters that define temporal scope ofitaging are specific for
a given MRI scanner and are chosen by a radiologist to ensax@mim exposure of the
disease affected tissues.

3.2.1 DCE-MRI data acquired by the high field scanner

Datasets from 10 patients with active RA were acquired with=d MRI scanner (Gy-
roscan ACS NT, Phillips Medical Systems, Best, The Netineldh During the scanning
patients were positioned prone, with their arm extendedantfof the head and a linear
circular 11cm diameter surface coil placed on the dorsurh@hand [195].

The positioning of the imaging volume is illustrated in FHiguB.4, where the lines
indicate the positions of transverse slices [195], supgosed on a coronal and sagittal
cross sectiorfs

The imaging volume encompasses fout%(2 5" MCP joints and was positioned
using a set of precise anatomical landmarks (such as MCRBsjaapsules) to ensure
adequate coverage of the joints at the baseline and foljpgeans [195].

A standard dose of 0.1 mmol per kilogram body weight of Gd-BTRlagnevist,
Schering, Berlin, Germany) was used. The injection was athtnated manually with a
constant injection rate over a period of 7.1 seconds. Fi§wRallustrates baseline and
post-contrast MR images of the MCP joints.

2Taken with permission from [195].
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Figure 3.4: Positioning of the imaging volume in the highdieand RA study.

Imaging was performed using a 3L weighted spoiled gradient echo sequericB/
TE/Flip Angle = 14/3.8/40°; FOV = 100mm, 6 slices, 3mm slice thickness, 20 dynamic
scans at 7.1 seconds intervals with a ¥2Z86 image matrix. A single DCE-MRI dataset
consists of 20 sets 0f%6128x 256 volumes. The imaging time after the contrast injection
was approximately 142 seconds (20 time instances).

3.2.2 DCE-MRI data acquired by the low field scanner

23 MRI examinations from patients with active RA, 4 healtbyirols, and 1 patient with
no RA, but suffering from occult wrist pain, were performeging a 02T musculoskeletal
dedicated extremity scanner (E-scan, Esaote Biomediaa&;dtaly). The patients were
examined in the supine position with the hand along the sfd&e body. For signal
collection, a receiver-only cylindrical solenoid wristicevas used.

The slice planes were either axial through the first carpal o coronal through the
middle part of the hand. Figure 3.5 illustrates pre- and jgositrast images of the wrist
in the axial and coronal directions.

Figure 3.5: Left: Pre- and post-contrast images of the veaganned in the coronal direc-
tion with GRE sequence. Right: Pre- and post contrast imides in in axial direction
through the first carpal row, using SE sequence.
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Figure 3.6: Pre- and post-contrast images with the bloodatleenhancing at different
rate. Blood vessels in squares correspond to the artendshlaod vessels in circles to
veins.

The injection of Gd-DTPA (Magnevist, Schering AG, Berlingi&any) was given at
a dose of 0.2 mmol/kg of body weight over 30 seconds throughnan2 butterfly needle
in the cubital vein.

Following the Gd-DTPA injection, the dynamic sequence waguaed making 22-
30 consecutive fast spin-echo or fast gradient-echo imagdsee pre-positioned planes
every 10-15 seconds. Slice thickness in the coronal doeastias 4mm, and in the axial
direction slice thickness is 5mm. Acquisition parameterdfl-weighted SE aré R'TE:
600/18 ms, FOV/ imaging matrix: 180180mm / 192x 192; for and the axial/coronal
turbo 3D T1 gradient echd RTE: 38/16, FOV/matrix: 180 180x 100mm / 192«
160x 72.

3.3 Data analysis

3.3.1 Veins and arteries

In DCE-MRI, the intra venous injection of the contrast agentmaged on the first pass
through the arterial system. The sequential scans eskbgntieord the speed of the Gd-
DTPA penetration, flowing through the veins and arteries.

It was noticed that the blood vessels corresponding to ttezi@s enhance even in
the absence of Gd-DTPA, whereas blood vessels correspptaiihe veins appear bright
only in the images acquired at later time instants. FiguéeilBustrates pre- and post-
contrast images from a temporal DCE-MRI slice with the blasedsels enhancing at
different rates.

This observation can be explained by the fact that the blessels will enhance in
response to the contrast agent and due to the inflow éffédeally, penetration of the
contrast agent into the volume of interest should occuriwill® seconds from the onset

3The inflow effect describes the fact that highly oxygenatedt flowing through the vessels generates
signal even in the absence of the contrast agent.
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of scanning. At this time, enhancement of the synovium aadtbod vessels is expected
to begin. However, even before the contrast agent penstthgetissue of interest, the
highly oxygenated blood flowing through the arteries pregi@ lot of signal due to the
inflow effect. Therefore, blood vessels corresponding teraas appear enhanced even in
the firstimages in a temporal slice.

The inflow effect is not visible in the veins, which are wideah arteries, and therefore
maintain slower blood flow. Thus, blood vessels correspugth the veins appear bright
only in the post-contrast images.

3.3.2 Bones and markers in the DCE-MRI datasets

The boundaries of the bone cross-sections are rigid, eashissurrounded by cartilage,
blood vessels and muscle. The bone cross-sections (whsthde both cortical and tra-
becular bone as well as bone marrow) will hereafter halitued referred to as ‘bones’.

The bones may not be visible in every image in the DCE-MRIsulgk to the poor
inter slice resolution of the image, or the physical locatdthe MR scan. The phalanges
of the joints are organised as shown in Figure 3.7, so a 2Daeahplice may lie between
them, and some bones could be imaged partially or missedrigume 3.7 (right).

A temporal slice captures the same physical location of dih@g. Therefore, it can
be assumed [195] that, in the absence of significant patiesement, if a bone is visible
in one image in the temporal slice, then it should be visibfeughout the slice.

Joints 2 3 4 5

Figure 3.7: Left: A coronal plan of the phalanges. Six scanfor phalanges of the
joints. Right: An axial MR section. With the second scan dhige bones are imaged.

Some images acquired with the low field scanner contain a enankich is located
close to the wrist. The marker is used to normalise imagesgities and in our case was
a garlic pill attached to the patient’s hand with a bandage.



Chapter 3 48 Magnetic Resonance Imaging data

Figure 3.8: Location of thumb in the images acquired withhtyh field scanner. Picture
of the hand is taken from [59]. Top row: The thumb is not degzctMiddle row: Only
a small part of the thumb is visible in the MR image (left siddpttom row: The thumb
was bent during the examination. It is represented by twmregon the left or right side
of the 25" MCP joints in the corresponding MR image.

Images acquired with the high field scanner might depict anthu The thumb is
connected to the trapezium of the joint and is located on dieeosides, parallel to the
arm. The thumb can be easily rotated by 96n a perpendicular level compared to the
palm (see Figure 3.8).

3.3.3 Normalised coordinate system

We manually outlined contours of the bone interiors, jdietsvelope (a boundary that
separates background, markers, and thumb, if present, theninterior of the joints,

which includes the soft tissue, skin, bone, and muscle) &atlvessels in 20 DCE-MRI
slices of the MCP joints acquired with the high field scanriarorder to analyse their
location, we present our results in a normalised coordiggséem.

Let {Xi,Vi}i—1..n denote coordinates of the MCP joints’ envelope in the coarig
axesX andY, whereN is the number of pixels in the boundary. Firstly, we transfed the
data to be zero-mean by subtracti(rgg;lﬁ, z,i\li) from {x;,Vi }i=1..n- Then, principal com-
ponent analysis was performed on the zero-mean datasdi@anddrdinate$x;, y; }i—1..n
were rotated to the principal axes. Therefore, the transétion to the new coordinates
{pi,di}i=1..~ from {x,yi }i=1..n can be described by Equation 3.2, where spatial notation
of the coordinates was dropped for the sake of clarity @nd the angle between the
original and principal axes.
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p| _ 0956 —sin@ x—zNif (3.2)
q sind cosf | [y—
Lastly, the coordinate$§p;, gi}i—1..n are normalised by the standard deviationppind
gi. Figure 3.9 illustrates the location of the joint envelgpesne contours, and blood
vessels outlined in randomly chosen 15 DCE-MRI slices oMI@® data acquired by the

high-field scanner in the normalised coordinate systemsi&lslices from the DCE-MRI
studies were included.

Figure 3.9: Left: The joints’ envelopes and bone contourireed in randomly chosen
15 DCE-MRI slices acquire by the high-field scanner and ptbih the normalised coor-
dinate system. Slices 1 to 6 from various patients were dediu Right: The centers (in
black) and contours (in red) of the blood vessels outlinetiSrDCE-MRI slices of the
MCP joints.op, andgg correspond to the standard deviationppndg;.

The bones appear centrally in the vertical / minor direcifand predictably in the
horizontal / major direction)in respect to the joints’ eloge boundary; the blood vessels
tend to cluster close to the joints’ boundary away from theebimteriors. However, some
vessels might appear within the synovial tissue or near ¢ime linteriors.

To evaluate the location of the vessels within the study, veaunally outlined them
in six dynamic frames acquired from the MCP joints of a pdti¢ingure 3.10 illustrates
their appearance in the images received at the first anddasssDue to the large distance
between the temporal slices, we can observe dramatic elifées in the location and
size of the vessels. Figure 3.11 illustrates the vesselx iresporal slices (shown from
different viewpoints).

This preliminary analysis of the data indicates that theeesame similarities in ap-
pearance of the tissue of interest, such as bone interiargoamt envelopes in the inter-
patient data. Even when all six slices were included in thayasns, we could observe
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Figure 3.10: Blood vessels outlined in the post-contrasadyic frames in theSLand 6"
temporal slices from the dataset acquired from a patiert thi¢ high-field scanner.

clear margins. Slice thickness, structure, and the smadl sf the vessels could be re-
sponsible for dissimilarities in their location. OftenpbH vessels branch, which due to
the large distance between slices, might appear as a blasémeas divided into two or
three vessels.

Figure 3.9 illustrates that bone interiors appear to chistecation and blood vessels
do not. Future analysis of the data will relate to this grotmuth information, which
provides the basis for some segmentation techniques dedadn the next chapters.

3.4 Conclusion

In recent years contrast-enhanced dynamic MR imaging hesniee a commonly used
method for diagnosis and monitoring of inflammatory diseasgepermits acquiring in-
formation about the tissue vascularity and perfusion tglomeasuring the speed of the
contrast agent penetration into the target tissue. Howavidespread use of DCE-MRI
is limited by the need for further technical improvements a@evelopment of software
algorithms for data analysis.

Scan Number

Scan Number

[= S, T S U X}

Figure 3.11: Position of the blood vessels in each slice feosample DCE-MRI study;
3D view from different angles.
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Acquisition parameters and properties of the datasetsiehjin a dynamic manner
by means of the high and low field MRI scanners in the presehteecGd-DTPA con-
trast agent were discussed in this chapter. Ultimatelygerguality is constrained by the
limits imposed by a scanner, such as signal-to-noise ratiaging time, and contrast. In
dynamic imaging, the speed of the data acquisition playsrpoitant role. There is al-
ways a trade off between longer acquisition times, whiclehigher image resolution,
better contrast and larger field of view, and the degree adanoi images due to patient
motion and hardware calibration.

Formation of an MRI image, which reflects clinically relevamatomy and physiol-
ogy, is achieved by manipulating the image contrast withaihygropriate data acquisition
parameters. The parameter choice will depend on the céyaifib scanner, speed of the
acquisition, desirable tissue contrast, and tissue ctearsiics.

Protons in environments corresponding to different matehave different longitudi-
nal and transverse relaxation timé&dg, andT 2. The differences between these parameters
and timing of the data acquisition are used to produce theastrbetween the materials
in an MR image. The flexibility of the MR contrast enhanced tluthe presence of the
contrast agents permits depiction of the anatomical andtimmal information of use in
many clinical applications.

Optimisation of the parameters for a given task can be ahgiltgy [163]. Limited
availability of the quantitative characterisation of MBsle parameters and the variability
of these characterisations restrict selection of the imggarameters such afkandTE.
Efforts in this direction are progressing, however, fogeted applications [25, 140, 267].

Development of faster imaging sequences that produce isnagkigher resolution
and efforts to reduce the system cost by reducing the magfield strength incur a
signal-to-noise penalty. Currently, a great deal of effas been invested in the image
post-processing methods, which allow for data quality eckaent.

The post-processing techniques for data analysis norri@déyinto account the nature
of the data acquisition (MR data parameters) and anatontyeofdgion under investiga-
tion, which often restrict them to be application dependbiarmalisation of the position,
shape and size of a tissue of interest in intra- and intaepiatlata simplifies such analy-
Sis.

Ideally, image processing methods should be fully autodhatéowever, there is a
trade off between the amount of human input and the adajtyabfl the approach to
a wide range of applications. Fully automated algorithms warmally process only a
restricted range of data, but semi-automated set-up or atamitialisation allows for a
wider spectrum of applications.
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In the following chapters we present several algorithmségistration, segmentation
and its evaluation, and quantitative analysis of the DCEHHRa acquired from the hand
and wrist of patients involved in RA studies.



Chapter 4

Image registration

Approaches for quantitative analysis of DCE-MRI data assdnat signal intensity vs.
time changes at each voxel can be attributed to the congakagje. However, patient
movement can introduce artefactual enhancement with aafptins to the extracted mea-
surements. Prior to the quantitative analysis images rekd aligned. In this chapter we
demonstrate the value of registration.

The algorithm presented in Periaswamy et al. [184] exyicitodels geometric, con-
trast, and brightness variations and allows for efficiergrahent of synthetic, PET, MR,
CT, and X-ray images. It was designed to deal with occlusem$ missing data via
an expectation-maximisation (EM) step. However, the astlammit that this step is
time-consuming and not robust, which causes the algorithfaiton dynamic contrast-
enhanced datasets where the effect of the contrast agewonnrznt.

We have modified the algorithm [184] for efficient application DCE-MRI data.
Firstly, the EM step was eliminated to reduce computatitina¢. Secondly, an incre-
mental approach to the registration was introduced. Thpagch has been motivated
by the fact that some tissue significantly changes its inmeasd brightness in the post-
contrast images and therefore, alignment of the post-ashsource to the pre-contrast
target may not be accurate.

Alignment of the images/volumes from the contrast-enhdistedies in the incremen-
tal rather than pair-wise fashion allows us to take into aotthe contrast and brightness
variations that occur locally in the soft tissue and, theref to reduce the registration
error.

53
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In this chapter a 3D extension of the algorithm [184] will kecdmented. The tech-
nique is going to be presented at three stages. At the begjniniis assumed that there
are no temporal contrast and brightness variations in th& alad images/volumes can
be brought into alignment using a purely geometric inforrheil, two extra parameters
that explicitly describe the contrast and brightness vanis are added in the registration
model. Lastly, a global smoothness constraint is imposeth®@geometric, contrast, and
brightness parameters.

The modified 3D version of the algorithm is documented in ®eact.1'. An incre-
mental approach to the registration problem is introduce8iaction 4.2. A need for the
smoothness constraint and performance of 2D/3D algorigmmhanced with various types
of transformations on DCE-MRI data of the hand and wrist &eglby high and low field
scanners is discussed Section 4.4,

4.1 3D registration algorithm

4.1.1 Local affine

Let f(x,y,zt) and f(x,y,zt — 1) be source and target 3D images. It is assumed that
there are no contrast/brightness variations between thenes and transformations can
be modelled using pure geometric parameters:

f(x,y,zt—1) =
f (MuX+ My + Mgz + My, MaX+ MeY + MeZ+ My 1,
M7X+ Mgy + MgZ+ My 2, t) (4.2)

where (my, ...,mg) represent the affine parameters, gnalg, ..., m2) — the translation
parametersi= (my, ..., M) are estimated locally for each small neighbourhood, but for
the sake of clarity their spatial notation is dropped.

A least square measure has been employed to deduce pammeti@r minimising
the cost:

E(m = > [f(xy,zt—1)— f(mX+my+mz+myo,
XY,2€Q
MyX -+ MeY + MeZ+ My 1, MyX+ Mgy + MoZ+ My 2, )] (4.2)

where the sum is over the spatial supparbf f(-) (Q denotes a neighbourhood of the

1Terminology and notation used in Section 4.1 are heavilgtas the description given in [184] [Taken
with permission].
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current pixel; the size of the neighbourhood is discusse8dation 4.1.3). The error
function was approximated by the first order truncated Tagéwies expansion [94]:

E(M) = Z <f(x,y,z,t—1)—[f(x,y,z,t—1)+

X,y,2€Q
+  (MuX+mpy + mgz+ myo — X) fx(X,y, 2t — 1) +

+  (Max+msy+mez+m1—y) fy(x,y, 2zt —1) +
2
+ (m7X+msy+mgHm12—Z)fz(x,y,z,t—1)—ft(x,y,z,t—l)D (4.3)

EM = 5 [f(xy,2t—1) — (MX+mpy+mgz+mio—x) fx(x,y, 2t —1) -

X,y,2€Q
—  (MuX+msy+mez+ M1 —Y) fy(x,y,zt — 1) —
— (MyX+ Mgy + Mgz+ My — 2) fo(x,y, z t — 1)]? (4.4)

In Equation 4.3fx(-), fy(-), f-(), andf;(-) are spatial and temporal derivativesfaf).
Further, the error function may be expressed in vector form:

EMm= 5 k-c'm? (4.5)

X,y,2€Q
where scalak and vectoig are defined as:

k = fi+xf+yfy+zf;
¢ = (xfYhzhoxf, Y, 28, X,y i, 2, fy, fy, f)T (4.6)

The quadratic error function from Equation 4.2 has beensfamed in a linear form
using the Taylor expansion. Therefore, its minimisatiom ba performed analytically by
differentiating the error function with respect to the uokums:

dE(m) _ Sy —2¢k—c'n (4.7)

dm X,y,2€Q

Setting this result to zero, and solving ftryields:

111
m:[ y cc [ s ffk] (4.8)
X,Y,2€Q X,y,2€Q
With this approach a locally affine mapping can be found betw#he source and
target images or volumes. However, the effect of the contrgent has not been taken
into account.
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4.1.2 Intensity variations

The model described above assumes no contrast or brightaessions between the
source and target images/volumes. This assumption faienwhe volumes acquired
in the presence of the contrast agent are aligned to theqeast target. Therefore, to
account for the contrast and brightness variations, two satially varying parameters
My 3 andmy4 are introduced into the initial model. The transformati@tveen the source
and target volumes takes the following form:

Misf (X, y,Zt—1) + Mg =

f (MyX+ Mpy + Mgz 4 My, MyX + MBY 4 MeZ+ My 1, MyX + Mgy + Moz + My 2, 1)

It is here assumed that the contrast and brightness chacajéylm an affine manner.
Obviously, the affine approximation does not describe ately the real processes, how-
ever it reflects the fact that the contrast and brightnessgdsin soft tissues occur locally
and allows us to perform differentiation. As earlier, theoefunction is approximated by
a first order Taylor series expansion and differentiatetstamknownsnthat now consists
of 14 components. The result is set to zero, and the soluiestthe following form:

1
= [XMZGQGCT [X,y;egé k], (4.9)

where vector and scalak are:
k = fi—f4+xf+yfy+zf;
¢ = (xfoyhozhoxfy, vyl xt,yh 26, f fy, B, —f,-)T  (4.10)

These additional terms allow for efficient registrationloé data complicated by the con-
trast and brightness variations. However, at this stage assumed that the geometric,
brightness and contrast parameters are constant withimbiseighbourhoo. To relax
this assumption, the smoothness constraint is imposedeovollime space.

4.1.3 Smoothness constraint

The first term in Equation 4.9 is assumed to be invertible.sTdan be guaranteed by
choosing a neighbourhood of large size [184]. However, gsguimption that the local
affine, brightness and contrast parameters are constamnvatneighbourhood is only
likely to be held when the area of the neighbourhood is small.

To avoid making a decision on the optimal size of the neighthoad, the assumption
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that the parametera do not change within the neighbourhood is replaced with aothio
ness assumption, which implies that physical propertiegekemeighbourhood of a space
or within the time interval do not change abruptly [18, 1447]L

We imposed the smoothness constraint on the model paramtend now the er-
ror function consists of two terms: the smoothness congtigj and the geometric and
intensity transformation constraiBt,:

E(mM) = Ep(M) + Es(M) (4.11)
The geometric and intensity transformation term is defired a
Ep(M) = [k—c m?, (4.12)

whereC and constark are given by Equations 4.10.

The smoothness terias(M) penalises solutions proportional to the local change in
each parameter across a small spatial neighbourhood aefined with the aid of positive
constantg A; }i—1. 14, that control the relative weight given to the smoothnesstaint
on a parametemy:

s = 3 0sl() () (5] (.19

The value ofA, which is set to be the same for all parameters will be disstligs Sec-
tion 4.4.1.

The error function, defined in such a way, allows for a localtyooth, but globally
non-rigid transformation. Minimisation of the error furat was done through differen-
tiating, setting the result to zero and solving:

dE(T) _ dEu() , dE(m

dm ~  dm dm (4.14)
The derivative of,(M) is:
dEs(M) . o7
o 2ck—c'm| (4.15)

To compute the derivative &s(m), the partial derivativedmp/dx, dmy/dy, andomp/0z
are firstly estimated for each pixel location using theircd#$e approximations [65, 73,
116]. Then

dEs(M)

g = 2L(M—m), (4.16)




Chapter 4 58 Image registration

wherem is the component-wise average mfover a small spatial neighbourhood, and
L is a 14x 14 diagonal matrix witlAp on diagonal and zero off the diagonal. Setting
dE(m)/dm= 0, and solving form at each pixel location would yield a solution. Conver-
gence of optical flow registration methods was discussetiGf]| where the problem was
solved analytically.

4.2 Sequential registration

Let UAB denote a transformation obtained with the algorithm désctiin Section 4.1
when registering a sourd® to a targetA. For a given sequence of images/volunhgs
..., In, the following transformations can be derived with the aiipon: U't'l2, Ulals,
U'tN_ This transformation is also known as Lagrangian approdgét. O, denote the
output of this transformation, applied to an imdgek € [1,N], whereN is the number of
images/volumes in the slice:

O = U]l ] ~ 1y (4.17)

Differences in the geometry between the images/volumesimsnt at the first and
last time instances might not be significant, however thdarashand brightness varia-
tions, especially in the datasets acquired from the passterely affected by rheumatoid
arthritis, are dramatic. Therefore, it might be argued #lagnment of the post-contrast
images/volumes to the pre-contrast target might not berateu This approach is also
known as Euclidian.

To minimise the registration error the transformation cbioé performed in an incre-
mental rather than pair-wise fashion: firstly, the transfation is estimated between the
neighbouring pairs of images/volumes, and then the outpthi®sequential transforma-
tion is used as an initial solution for the basic registnatdgorithm. Such transformation
corresponds to a hybrid Euclidian-Lagrangian approach.

This form of approach was first discussed in structure fromi@moestimation [99,
227], where for a given physical object and a set of views wapg this object from
various viewpoints, levels of detail, and lighting conalits, the task is to reconstruct the
structure of a scene from the motion of an observer. Thisligesldby analysing parts of
the object in the photographs aligned in such a way that they shanges of the scene in
an incremental manner. The approach confirms that it can e afficient to deal with
small rather than significant changes.

By analogy, in DCE-MRI datasets, it may be more efficient teedaine a transfor-
mation between images/volumes, where the contrast/Igistvariations are less signif-
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icant.

Thus, firstly, neighbouring images/volumes are aligned: éxample, in a temporal
slice, an image acquired at th892time instant is registered to the image acquired at
the !, then an image acquired at th& 3ime instant is aligned to the image acquired
at the 29 time instant, and the output is registered to tfie dtc. Therefore, the final
transformation is formed as a composition of the transfdiona:

Vik=uhl g  gUulk2ict gyl (4.18)
This transformation applied to thé image yields the imagé:
J =Vl ~ Iy (4.19)

However, if alignment of the first few images/volumes waspw®ftect, registration er-
ror would propagate when registering images/volumes frat@rlin the study, and align-
ment between the first and the last volumes would be erroneous

To compensate for this possible error, a sequence of imagasies registered in the
sequential mannefJ}k—1...n, Was taken as an initial solution for the basic registration
algorithm. Then, the final transform is defined as:

Wl = Utk g vk (4.20)
and being applied to thé" image yields the imagl:
L = U@ (VIK[I]) = WK[1] (4.21)

With this approach a DCE-MRI study is considered as a wholachvpermits re-
duction of the transformation error and allows compensatto contrast and brightness
variations between the images.

Therefore, images / volumes from a DCE-MRI datasets candistezed using one of
the suggested transformations:

e {[k}k=1..N, Obtained with the algorithm discussed in Section #4sic U-trans-
formation

e {J}k=1..N, Obtained with the sequential application of the algoritrsaquential
V -transformation

e {Lk}k=1.n, Obtained with the incremental approagigremental W -transformation
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Performance of 2D and 3D registration algorithms vidgthy, andw transformations will
be compared in Section 4.4.

4.3 System design

The following modifications in the system design were showhbe beneficial for algo-
rithm performance. The effect of these modifications isussed in [184].

e A4 level Gaussian coarse-to-fine pyramid for the source argt images/volumes
was built in a standard way [2]. Each level of the pyramid watamed by con-
volving the previous level using a Gaussian kernel, folldwg down-sampling by
a factor of twd.

The source and target were registered at the coarsest scab#din an initial es-

timation of the registration map. This initial estimate when used to warp the
source image at the next scale. The warped source image aasdfistered with
its corresponding target. This process was repeated atleaehof the pyramid.

A single registration map was maintained by accumulatirggesisful registration
maps estimated at each scale [14].

e Secondly, Taylor expansions used to approximate the ewration were replaced
with the Newton-Raphson style iterative scheme [147, 2Ba{ provides a more
accurate estimate of the actual error function [184]. Afiatial estimation of the
registration parameters, the source is warped with thenastid parameters and reg-
istered again with the target. During each of these itematisuccessful interme-
diate registration maps were accumulated to form a singfstration map. These
iterations were stopped when the average displacement estimated motion was
less than 1 pixel. It was shown in [184] that five iterationpiove the final estimate
significantly.

e Lastly, partial derivativegmy/dx, dmy/dy, anddmy,/dz were estimated with the
aid of the kernels developed by Farid et al. [73]. This seteftive filters was
specifically designed for multi-dimensional differenitoatt [ 73] and used in the orig-
inal version of the algorithm [184].

For 2D-2D registration, the images were first pre-filteredinme using the two-tap
filter [0.5 0.5]. The derivative in thedirection is then estimated by first pre-filtering

2We also tried a Laplacian pyramid [37], which is computed diffarence between the original image
and low-pass filtered image, but it provided slightly lessuaate results.
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the result in they direction (using the 3-tap filtedp=[0.2 0.5 0.2]), followed by dif-
ferentiating inx with the filter d1=[-0.4 0 0.4]. Similarly, the derivative in thg
direction is estimated by first pre-filtering the resultinsingdp, followed by dif-
ferentiating iny with the derivative filterd;. The derivative in time is estimated by
first pre-filtering in spacex(andy) with do, followed by applying two-tap derivative
filter. For 3D-3D examples, the following filters were uselg=[0.09 0.4 0.4 0.09]
andd;=[-0.2 -0.3 0.3 0.2] (see [73] for detalils).

4.4 Experiments and discussion

The described registration model was demonstrated to yhadficient and robust for a
wide range of synthetic, CT, PET, and static MRI data [184]isTsection discusses the
nature of motion in DCE-MRI studies and performance of tlypathm in application to
dynamic contrast-enhanced data.

Evaluation of registration results was performed by meaguhe residual difference
between the corresponding anatomies over the image dofiaere is no gold standard
that can be used to validate the results of the registratgorithm on our data, therefore
we proceed as follows:

¢ In images with a fiducial marker, residuals between the soara target within
the area of the marker are assessed before and after régisiging a variability
measure.

e For studies without a marker, positions of the rigid boneiimr before and after
registration were analysed.

In Section 4.4.4 we provide 2D and 3D images before and aftgistration, so that the
value of the algorithm can be assessed visually.

4.4.1 ParameterA and analysis of the motion

Alignment of the data, acquired in follow-up examinatiopsrformed over a period of
time long enough for the anatomy to change, or the data aaghtur such a way that
physical location of the scans in the source and targetghttji different, will require
non-rigid methods.

Images from a DCE-MRI dataset acquired in a single exananato not exhibit dra-
matic anatomy change. Therefore, in the absence of thenpat@ion the images/volumes
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from a dynamic dataset will be similar to each other excepldcal variations in bright-
ness and contrast, which result from the response of thasksactive tissues to the con-
trast agent. There might be a small change in the anatomyedddft tissue due to the
motion induced by the contrast agent or muscle relaxati@wever, in general, the mo-
tion is expected to be locally rigid.

This was confirmed when considering the value of the paramdtem Equation 4.13.

In our experimentd = 10, however the algorithm’s performance does not changgfsig
icantly with the higher values of (acceptable range for DCE-MRI data used in these
experiments [1; 100]; in [184) = 1 x 10'Y). This indicates that the smoothness term
Es in the error functiorE, + A Eg is very small, and therefore, the smoothness parameters
imposed on the geometric transformations are largelyewvaaht to the error. On average
for 10 studiesgm/dxis 0.007,0m/dy — 0.01, anddm/dz— 0.0015.

The intensity and brightness parameters vary from imagmége in local non-rigid
fashion. Abrupt changes are tolerable on the boundary okessimictures, such as blood
vessels. However, the smoothness constraint controlasityeand brightness changes
in the synovial tissue. This allows generating a solutiowimch the mapping between
images/volumes is described by nearly rigid geometric nretchn with added constraint
on non-rigid changes to the contrast and brightness.

4.4.2 2D and 3D registration examples

The target and source are 1256 or 256x 256 8-bit grey scale images with intensity
values scaled into the range [0, 1]. The joints’ envelope® leeen segmented. In order
to contend with border effects, each image has been paddbadzeros to a size 279
270 before registration. The optimal size of padding wagmeined empirically: the
maximum shift observed in images was 5 pixels. Figure 4dghfjiillustrates a sample
image used for registration.

A 4-level Gaussian pyramid is constructed for the source target images. Each
level of the pyramid is obtained by convolving the previoegdl with a low pass filter,
followed by down-sampling. The transformation maps arénesed at each level as
described above. The final estimate is then up-sampled &wlassan initial estimate in
the next level of the pyramid. Figure 4.2 (middle) illuseatresampled target and source
volumes acquired in six scans.
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Figure 4.1: Left: Pre-contrastimage of the MCP joints. Righsample image padded to
270x 270; the joints’ envelope was segmented using the algoutsaribed in Chapter 5.

4.4.3 Quantitative evaluation

We start by evaluating registration with thetransformation, then compare its perfor-
mance against thé- andW-transformations using 2D and 3D DCE-MRI data.

4.4.3.1 Range of values of registration parameters

Figures 4.3 and 4.4 illustrate a range of values of registmgbarameters (rotation and
translation) obtained for in-slice and in-study motionreation with 2D and 3D regis-
tration algorithms with th&J -transformatioR. The x-axis translations are [-2, 0.5], the
y-axis translation [-0.3, 5], and the rotations [-0.11,4).1With 3D registration trans-
lations around the x, y, and z axis are in the range of [-5, H],2] 1], and [-0.3, 0.2],
respectively; rotations around the x, y, and z axis are indhge of [-0.2, 0.2], [-0.2, 0.2],
and [-0.07, 0.1].

4.4.3.2 Mutual overlap based error

To perform evaluation with the mutual overlap metiié6] the bone interiors in the DCE-

MRI datasets acquired with the high field scanner and the ensirk the datasets acquired
with the low field scanner were segmented using algorithrasritged in Chapter 5. These
regions are rigid and are not expected to enhance duringémngg procedure. Positions

3The box shows the lower quartile, median, and upper quasilees and the whiskers corresponds to
the extent of the rest of the data. Maximum whisker lengthnitsuof inter-quartile range (standard is 1.5
x the inter-quartile range): Upper Inner Fence = 75th Peileeit(1.5 x Inter-quartile Range); Lower
Inner Fence = 25th Percentile - (1:5Inter-quartile Range). Data points that lie outside of thieck, are
considered to be outliers and marked as '+’ [158].

4See Section 2.4.1.1 for metric description.
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Figure 4.2: Resampled volumes of target (left), source @heid and registered source
(right) acquired with high field scanner from MCPJs. Six ireagn each column corre-
spond to the six temporal slices. Registration was perfdrmi¢gh theW-transformation.
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Figure 4.3: Translation (left) and rotation (right) paraere computed from randomly
chosen 20QJ-transformations estimated with the 2D algorithm appliedie data ac-
quired with the high- and low-field scanners.
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Figure 4.4: Translation (left) and rotation (right) paraere computed from randomly
chosen 20QJ -transformations estimated with the 3D algorithm appliedhe data ac-
quired with the high- and low-field scanners.
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Figure 4.5: Images of joints acquired with the low field scamin axial (left) and coronal
(right) directions.

Figure 4.6: Left: A contour of a marker segmented in the selnefore (blue) and after
(red) registration and superimposed on the target imagghtRMagnified marker.

of bone interiors and markers in the source and target imafeisregistration is expected
to be the same.

Images with the marker captured in the axial and coronattdors are shown in Fig-
ure 4.5. The change in the marker’s position before and #dfeeregistration is illustrated
in Figure 4.6.

A magnified target with superimposed contours of the joiatgerior and bone interi-
ors segmented in the source image before (red) and aftex)(ldgistration are shown in
Figure 4.7. The difference in the location of the edges iegpatient hand motion.

The application of the registration algorithm resultedha ticcurate alignment of the
contours of the joints’ envelope and bone interiors in therse and target images. This
has increased the mutual overlap from 0.8 to 0.96 in this @&am

The same experiment was performed on 200 2D images (100radquith the low
field, 100 with the high field scanner) and 100 3D volumes (Sfuaed with the low field
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Figure 4.7: Contours of the joints’ envelope and bone intsroutlined in the source
before (blue) and after (red) registration and superimgpasethe target image.
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Figure 4.8: From the left: The mutual overlap between thes®and target before the
registration, after 2D and 3D registration with-transformation, and after 2D and 3D
registration withW-transformation. The same experiment was performed onorahd
chosen 200 2D images (100 acquired with the low field, 100 thighhigh field scanner)
and 100 randomly chosen 3D volumes (50 acquired with the leld &ind 50 with the
high field scanner).

and 50 with the high field scanner). These images/volumes vegjistered with 2D/3D
schemes with th&, V, andW-transformations. Figure 4.8 illustrates the results.

The mutual overlap between the markers/bones in the somte¢aaget images be-
fore the registration was on average 0.74 with the minimu@.%8 and standard devia-
tion 0.07. After 2D/3D registration with thig -transformation, it became 0.8/0.84 with
standard deviations 0.06 and 0.05; after 2D/3D registnatidh theV-transformation —
0.81/0.86 with the standard deviations 0.04 and 0.04. kinaghen thé//-transformation
was applied, the mutual overlap became on average 0.91WitBZXtandard deviations
0.04 and 0.03.

This experiment illustrates that 2D and 3D registrationesgls permit compensating
for the patient motion. The algorithm enhanced with\Wé¢ransformation outperformed
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the basic and sequential transformations and displayedigfuncrease in mutual over-
lap.

4.4.3.3 Comparison of 2D and 3D registration algorithms wih various types of
transformations

We have chosen a study with apparent in-slice motion andtexgid DCE-MRI images
using 2D and 3D registration algorithms with various transfations. It is of interest to
measure the differences in appearance of images aftetragga has been applied.

Figure 4.9 illustrates the target and source images beforé ¢olumn) and after the
2D and 3D registration with thé/-transformation. This study does not exhibit significant
intensity change due to the injection of the contrast agent.

Using the 2D registration algorithm with theé-transformation we have estimated that
translation in thexdirection is on average 3-4 pixels, in th€irection 2-3 pixels, and the
rotation 0.0762 radians. 3D registration delivers thediwlhg parameters: on average
translations in the, y, z-axis directions are 9, 4, and 2 pixels, the rotations arahed,

y, z-axis are 0.06, 0.02, 0.05 radians.

Figure 4.10 illustrates the target images subtracted fimensburce before the regis-
tration (left), after 2D registration with the badictransformation (middle), and after 3D
registration with théV-transformation (right). It is clear that the registeredames con-
tain less noise and the 3D registration of the volumes wihtransformation allows
for significant improvement in the alignment of the skin, anfled synovial tissues and
blood vessels.

To analyse the effect of the registration, the mean squaoesefVISE) between the
target and source before and after the registration werepated. Ideally, in the ab-
sence of the patient motion and contrast ag¢8E between the registered images should
be zero. However, due to the effect of the contrast agent, M&keen the pre- and
post-contrast DCE-MRI images/volumes is always highen tbero, and measures the
magnitude of the enhancement. Figures 4.11 illustrates MB&puted for images from
the study illustrated in Figure 4.9 before and after thestegtion with various transfor-
mations. The results shown that MSE estimated with 3D negist algorithm enhanced
with theW-transformation is the lowest.

To compare the effect of these different transformatiohs, 4ame experiment was
performed on 15 DCE-MRI studies acquired with the high andfield scanners. Only
15 slices (5 datasets) acquired by the low-field scanner Radchages per slice, that is
why this subset of data is used in this experiment. We haveoraty chosen 15 slices
from the data acquired with the high-field scanner.
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Figure 4.9: From the left: in each column 6 images represgmésampled target volume,
source volume, source after the 2D registration, sour@¥ #fe 3D registration withV-
transformation. Six images in each column correspond tsithiemporal slices. Volumes
were acquired from the MCPJs with the high field scanner.
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Figure 4.10: Resampled source volume subtracted from tigettaolume before regis-
tration (left); the source volume subtracted from the takggume after 2D registration
with W-transformation (middle); the source volume subtracteanfithe target volume
after 3D registration witlw-transformation (right). Intensities are inverted. Sixaiges
in each column correspond to the six temporal slices. Vokimere acquired from the
MCPJs with the high field scanner.
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Figure 4.11: MSE computed between the source and targetamale DCE-MRI slice
(left) and a complete DCE-MRI study (right). MSE before tlegistration is shown in
black, after registration witlJ -transformation in blue, witl-transformation in green,
and withW-transformation in red.

The data acquired with the low-field scanner exhibit greatetion. Figure 4.12 il-
lustrates MSE computed between the source and target affistnation with théJ and
W-transformations. Note that in this experiment MSE can Iebated to both patient
motion and contrast/intensity change. Let us consider tlamges in MSE at each phase
of the contrast enhancement:

Baseline: The first 3-5 images/volumes in a study do not exhibit sigaiftccontrast vari-
ations, and here MSE reflects the patient motion. The resufigure 4.12 and 4.11
demonstrate that after the images/volumes were aligned MSBeen significantly
reduced.

Wash-in, wash-out: The largest variation of the MSE was noticed at tf&-8" time
instants (wash-in) and after the!6or the high-field and after the $0for the low-
field data (wash-out). At approximately 30s. after the itigcof the contrast agent
we observe the most significant intensity variation in thia@ad prominent patient
motion. This results in an increase of artefactual enhaecenm the data. When
images/volumes were aligned and the artefacts due to tlenpatotion eliminated,
MSE was significantly reduced.

Plateau: There is no significant intensity change at the plateau pheb&h starts at
approximately 19 time instant. The intensity differences between the soantk
target should be close to a constant, therefore, errors eaatthibuted to patient
motion. After images were aligned, MSE was significantlyuesd.

Figure 4.11 demonstrates that MSE reflects behaviour ofrtharecement; the shape
of the MSE graphs before and after the registration cornedpao the expected change
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Figure 4.12: MSE computed between the target and sourcenedaligned with registra-
tion with U-(black) anaw-(red) transformations for 15 DCE-MRI studies acquiredhwit
the high (left) and low (right) field scanners. The lengthlo# error bars is equal to two
standard deviations. The baseline normally occurs betWweeamdTs, wash-in between

T3-T7, plateau betweel; — T1g, and wash-out afterg.

in intensity. The effect of the registration can be seen atdiseline and plateau phases,
where no significant intensity changes are expected, and 8iBEes extracted from the
non-registered data reflect the artefactual enhancement.

Figure 4.13 illustrates MSE computed for a randomly choséx oh 10 high and
low-field DCE-MRI studies before and after registrationtw2D/3D schemes witkJ
andW-transformations. As expected 3D registration delivergeraxcurate results than
2D. TheW-transformation outperformed thé-transformation — on average MSE has de-
creased from 0.18 to 0.1 when the 2D algorithm was applied thieW-transformation
and from 0.12 to 0.08 with thé/-transformation. We can conclude that the 3D registra-
tion algorithm with theW-transformation has delivered the most accurate resulth®n
DCE-MRI datasets acquired with the high- and low-field seaxsn

4.4.4 Visual inspection

To visualise in-slice patient hand movement during the sitenprocess, we fixed the
location of the bone interiors, detected in the first image sample DCE-MRI temporal
slice, and then plotted the temporal slice (20 images) viidsé¢ bone interiors superim-
posed before and after registration.

Obviously, if a patient has moved, location of joints in thstfimage in the slice will
not coincide with the location in other images in the slicetiio movement the location
of the joints is the same throughout the slice.
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Figure 4.13: MSE computed for a randomly chosen mix of 10 laigt low-field DCE-
MRI studies before and after registration with 2D/3D schem&rom the left: MSE
computed between the target and source images / volume2@itl8D registration ap-
proaches withJ - andW-transformations.

Magnified images from a DCE-MRI slice are shown in Figure 4tbg). The joints,
detected in the target and superimposed on each image ificegae shown in white.
The location of the joints detected in the target does notade with the location of the
joints in images 3, 4, 5, etc.

Figure 4.14 (bottom) shows the same DCE-MRI temporal sliter 2D registration
with theW-transformation. The location of the joints detected intdrget has been fixed
and superimposed on every image in the slice. The effectgitration is obvious — the
bone interiors in the target and each registered sourceic@maccurately.

To illustrate in-volume motion, we automatically segmehi@ints’ envelopes in the
target and source images before and after registration,gtibtracted the source volume
from the target. Figure 4.15 illustrates the results.
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Figure 4.14: Magnified images from a DCE-MRI slice of the ME€R&quired with the
high field scanner before (top) and after (bottom) regigiratThe joints, detected in the
target and superimposed on each image in the temporal aleshown in white. before
registration, the location of the joints detected in thgéardoes not coincide with the
location of the joints in images 3, 4, 5, etc. After registatwith W-transformation
(bottom), the location of the joints detected in the targehcide with the location of the

joints in images 3, 4, 5, etc.
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Figure 4.15: Automatically segmented joints’ envelopshie target and source volumes
of the MCPJs acquired with the high field scanner. The diffeeebetween the joint
contours from the target and source volumes before (lett)adter (right) registration.

4.5 Conclusion

In this chapter we discussed an intensity based registratgorithm, designed to align
images and volumes acquired by means of MRI in the presertibe ebntrast agent. The
algorithm is applicable to various DCE-MRI datasets andsdus require user interac-
tion. The approach presented here was originated by Pearagwet al. [184,186] and is
based on optical flow techniques enhanced with an explicgtetiog of the contrast and
brightness variations.

The original registration algorithm was analysed in detafl184]: simulations with
various combination of the geometric, contrast, and brighs distortions demonstrate its
robustness to a wide range of data. Here, we illustrate hasedhe algorithm to perform
adequately on DCE-MRI datasets acquired with the low and fidd scanners.

Firstly, the EM step, which permits registration of partlyctuded datasets, was elim-
inated to reduce computational time. Registration of twé 256 images with the
W-transformation can now be performed in less than 1 minutetam 256x 256 x 6
volumes in less than 6 minutes using software implementétatiab and run on a 2.79
GHz Windows machine with 1GB memory. In comparison, regigin of two volumes
with the original approach on the same machine requires 3dit®s.
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Secondly, the algorithm has been augmented with an incredregrproach that allows
us to take into account significant variations in the contaasl brightness that occur in
the post-contrast images/volumes from the dynamic dataset

2D and 3D registration schemes with various transformati@h V, andW) were
applied to a large number of images/volumes. The result& shat the 3D registration
scheme permits better alignment than 2D as it compensatesstudy rather that in-slice
motion. The incremental approach used for image/volunganalent (V-transformation)
allows for further reduction of registration error.

Our results demonstrate that the smoothness constraiedatdthe error function
does not influence significantly the algorithm’s performamden recovering geometric
distortions. However, it permits compensation for the edwe to the local contrast and
brightness variations in the soft tissues.

Registration of the images/volumes allows for significamprovement in the location
of the blood vessels, bone interiors, skin, but most impulgesynovial tissue. The re-
duced artefactual enhancement contributes to the datayjdehich is crucial for further
data analysis with quantitative approaches.
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Image segmentation

The inflamed synovium, which is a tissue of particular ing&res located inside the joints’
envelope and outside the bone cross-sections. Thereforeder to analyse a DCE-
MRI dataset efficiently tissues within the bone interiorsjeh include both cortical and
trabecular bone as well as bone marrow, markers, and thusda$to be segmented out.
In this chapter we introduce two algorithms: the first onedegmentation of the joints’
envelopes in the hand and wrist datasets acquired with theuha high field scanners,
and the second for segmentation of the bone interiors in ME&E-slices of the MCPJs
acquired with the high field scanner.

Section 5.1 discusses an algorithm for segmentation ofihésj envelopes in DCE-
MRI dynamic frames acquired from hand or wrist in the axiatoronal directions with
the high and low field scanners. Section 5.2 introduces aoridtign for automatic seg-
mentation of the rigid boundaries of the bone structures @EEMRI images of the
MCPJs acquired with the high field scanner. The algorithrhbveildescribed as a two-step
procedure. Firstly, the bone interiors are crudely locatgidg a global thresholding tech-
nique and prior information about geometry of the MCP jaif@scondly, the boundaries
of the detected regions are refined with an adaptive segtm@mtachnique.

77
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5.1 Segmentation of joint envelope

Some images acquired with the low field scanner contain a endokated close to the
joints’ envelope; images acquired with the high field scanmigiht depict a thumb (see
Figures 3.5 and 3.8). Based on the prior knowledge about nlaéomy of the joints

and positioning of the patient during the data acquisitsee(Section 3.2), the following
assumptions about the marker and thumb size and locatiobecarade:

e Empirically, it was estimated that the area of a thumb or reark respect to the
area of the joints’ envelope is between 2% and 15%. FigurdlGstrates the dis-
tribution of the size of thumb and marker manually outline®0 dynamic frames.

e The location of the joints’ envelope within the imaging nimais always approxi-
mately central.

e The location of a thumb in images acquired with the high fielahser in respect to
the joints’ envelope varies, but the thumb is always locateither the left or right
corner of the imaging matrix. This is represented by one art@gions and might
osculate with the joints’ envelope. Figure 3.8 illustrates physical positioning of
the thumb and the corresponding MR images.

e The marker is located centrally, and is not attached to timgoenvelope.

Size [%]

0.02 —— +

Thumb Marker

Figure 5.1: Size of the thumb and marker in proportion to tleaaf the joints’ envelope.

Each dynamic frame from a DCE-MRI dataset is composed ofd fageground and
a dark background in such a way that the regions of interasbackground pixels have
intensity levels grouped into two modes. An obvious way tiwaet the regions of interest
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Figure 5.2: The result of the global thresholding on the iesagcquired with the high
field scanner. The joints’ envelope is shown in red.

\

Figure 5.3: The result of the thresholding on the images iaeduvith the low field scan-
ner. The joints’ envelope is shown in red.

from the background is to select a threshold value that s¢psthese modes. This has
been done using a thresholding algorithm [200] with theghadd estimated in an iterative
mannet.

This allows the isolation of the joints’ envelopes and meskehumbs from the back-
ground. We remove the noise obtained as a result of thisitbléisig with morphological
opening (a circle with the diameter of 2 is taken as a stratelement). The result of this
operation on several images is shown in Figures 5.2 and Hfar@ht colours indicate
non-osculating (i.e. non-intersecting) regions, thetgianvelopes are shown in red).

After performing this, we are left with 1, 2 or 3 regions, onkvehich represents
the joint envelope. The marker in the images acquired wighldhv field scanner never
osculates with the joint envelope. Therefore, after thegsholding, we segment out the
region with the smallest area.

Segmentation of a thumb, which might osculate with the gienvelope, is not
straightforward. To segment a thumb, an imaging matrix waslyi divided into four
equal parts. Then the number and location of the region breggin each quatrtile were
analysed.

Thresholding algorithm proceeds as follows. The histogofipixel intensities from pre-contrastimage
is initially segmented into two parts using a starting thiad value such as a half the maximum intensity
range. Then the sample mean of the grey values associatedheitforeground pixels and the sample
mean of the grey values associated with the backgroundspatel computed. A new threshold value is
now computed as the average of these two sample means. Ttespris repeated, based upon the new
threshold, until the threshold value does not change angmor
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(M/2,N)

0 (M/2,0) M

Figure 5.4. Segmentation of a thumb in the imaging matrixddid into four parts.
Boundary of the joints’ envelope with an osculating thumpesimposed on the inten-
sity image. Points of maximum curvature are shown in red.

By considering the coordinates of the region / regions imepa@rtile, it was estimated
whether or not the boundaries of the imaging matrix and regitersect. A quartile of
the imaging matrix might contain:

1. Two non-osculating regions, boundaries of the imagingrimand one of the re-
gions intersect (upper left quartile of the image in Figu#) 5

2. One region and its boundary intersects with the boundatheimaging matrix
(lower left quartile of the image in Figure 5.4).

3. One region and its boundary does not intersect with thextbary of the imaging
matrix (upper right and low right quartiles of the image igtie 5.4).

In the first and last cases, we take a region with the largest as the part of the
joint’s envelope. In the second case, we assume that thebtisimsculating with the
joint’s envelope.

In the second case, to remove the thumb, firstly, two pointsiakimum curvature
are found in the boundary of the region [144]. Such pointdaued as the two maxima,;
smoothing is used to ensure that multiple maxima are notcteteat each pinch point.
The points are shown in red in Figure 5.4. Note that we onlydrteeconsider a part of
the region’s boundary that does not intersect with the banndf the imaging matrix.
Secondly, these points are connected with a straight leedgion is split into two along
the line, and the largest part of the region is selected astapthne joints’ envelope.
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5.2 Segmentation of bone interiors

5.2.1 Preliminary segmentation

Within the joints’ envelope we wish to distinguish bone, mlasblood vessel, and syn-
ovial tissue. In pre-contrast images of the MCP joints, titensity of the bone interiors
and some blood vessels is high, whereas all other tissuesagark. The bright and dark
tissues within the joints’ envelope can be separated wehtérative global thresholding
technique discussed earlier. The results obtained for pleaBCE-MRI pre-contrast
image are shown in Figure 5.5.
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Figure 5.5: Left: Pre-contrast image of the MCP joints acegiiwith the high-field scan-
ner. Middle: The histogram of the intensity values (assipneeshold value is 89). Right:
The results of the global thresholding.

The imaging procedure and affect of the contrast agent daoise interior intensity
to change in images within a temporal slice, therefore, tinesholding might depict dif-
ferent parts of a bone in different images. In order to reeeiwmprehensive information
about a bone, it is beneficial to perform thresholding on swages within a temporal
slice.

In the post-contrast dynamic frames, the synovial tissuesading bones enhances
significantly. Therefore, the thresholding often classitiee synovium as a part of a bone,
which prevents accurate segmentation of the bone intdfigure 5.6 illustrates pre- and
post-contrast dynamic frames with superimposed resultiseofhresholding.

Empirically, it was found that the effect of a contrast agemtot prominent in the first
four images in a temporal slice. In our experiments thesgesavere thresholded. Then,
to distinguish between bone / non-bone regions obtainedaeaesult of the thresholding,
we used prior geometric information about the bones’ positvithin the dynamic frames
of the MCP joints.

For each MCP joint (2-5") in the normalised coordinate system using prior infor-
mation acquired earlier, we have defined a margin where rtasymed to appear. These
margins are shown in the dashed line in Figure 5.7. Then th& @i a rectangular was
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Figure 5.6: Pre- (top) and post- (bottom) contrast imageh siperimposed results of
the thresholding. Boundaries of the detected regions aersin red.

widened by adding 2 pixels to each side to allow some erroralRntervals in the nor-
malised coordinate system for each bone are shown in sokdri Figure 5.7 (left). The
result of the thresholding for a sample DCE-MRI dynamic feaimshown in Figure 5.7

(right).

-1 [} 1

Figure 5.7: Left: Intervals where the MCP joints are presdrweappear (rectangular) in
the normalised coordinate system. Right: Regions obtaasetthe result of the thresh-
olding for a sample image in the normalised coordinate sysi@, and o, are standard

deviation ofp; andq; defined in Section 3.3.3.

Regions that appear within the pre-defined interval arecgsde To eliminate noise,
the area of each selected region is required to be largera@nf the joints’ envelope
(it was empirically found that the size of a joint’s interigrbetween 2% and 5% of the
envelope). For each joint, all regions obtained as a reguhis operation on the pre-
contrast images are superimposed; a convex hull was drasumdrthem and taken as
a ‘segmentation mask’. Figure 5.8 illustrates the resuitisioed for several temporal
slices.

It is, of course, unlikely that the detected boundaries @oihcide precisely with the
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Figure 5.8: Left: Pre-contrast dynamic frames from diffearBCE-MRI studies acquired
by the high-field scanner. Middle: The result of the globakgolding (shown as an
intensity image). Right: The final segmentation mask (intehsuperimposed on the
pre-contrast image.

true boundary of the bones, although, due to the registratie location of the final mask
has been significantly improved. At this stage we will toleridne results to be inaccurate.

5.2.2 Adaptive segmentation

The purpose of adaptive segmentation is to refine boundairibe regions detected with
the preliminary segmentation. The segmentation startbating the centroid of the
segmentation mask, and determining the diagonal lengtts dfaunding box. The nor-
mals equal to half this diagonal are drawn to a boundary pigeh inside and outside the
region’s boundary.

For each boundary pixel, along the normals we consider tlegarpixel intensity
profile. Figure 5.9 (right) illustrates a profile obtained éoboundary pixel.

Two types of the intensity profiles have been noticed. If¢heme no artefacts and a
boundary is one-pixel width, the profile looks like the ond=igure 5.10 (middle). If the
bone is surrounded by the blood vessels or other artifaetptofile might look like the
one in Figure 5.10 (right).

The underlying model here assumes that the boundary pixelldiseparate a bright
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Figure 5.9: Left: A pre-contrast image with the segmentedkbateriors. Middle: Mag-
nified bone interior, its bounding box and two normals. Rigbbrresponding intensity
profile.
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Figure 5.10: Left: Magnified results of the preliminary seggrtations superimposed on
the MR image with the normals drawn to different boundaryejsx Middle: Intensity
profile corresponding to 1. Right: Intensity profile corresgding to 2.

inner area (bone) from a darker outer area. The length of msity profile is assumed
to be long enough to cross the actual boundary of a bone.

By finding an optimal segmentation of the profile, we shrinlegtend the mask ob-
tained as the result of the preliminary segmentation altwvegntormals with the aim of
approaching the true boundary of the region. The problenheflioundary refinement
can therefore be solved by using an efficient 1D signal segatien technique discussed
in the next sectioR

5.2.3 Signal segmentation

The procedure starts by modelling each intensity respoase sequence of segments
formed by pixels of equal intensity. A sharp change betwegghband dark areas in-
dicates the ‘optimum’ boundary pixel. Here we assume th&umity of the intensities
in the vicinity of the region’s boundary. If a current boungl@ixel does not coincide

2This work was done in collaboration with Mike Pyatnizkiy,dphysics, Russian State University,
Moscow, Russia.
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with the optimum boundary pixel, the boundary along the rairis moved towards the
optimum boundary pixel.

A minimisation with the minimum least squares (MLS) alglonit [86], which min-
imises the sum of the squared deviations of the signal setgteas been chosen to anal-
yse the signal.

Let 6 denote a signal, which consists Mfcomponentgxs, X, ...,Xxn}. We use the
notationé = 6(b,e) to define a segment of the sigral whereb < e; b denotes the be-
ginning ande denotes the end of the segment; dnele {x1,x,...,xn}. If &1 = 6(by,€1)
and &, = 0(by,e), whereb, = 1,1, are two segments, thefaé, = 6(b1,e») denotes
their concatenation.

A 1D segmentatiors of 6 into k segments is a sequencé &,...&} of k segments
such thaté;é»...¢k = 0 and eaché; is non-empty. We are interested in obtaining the
segmentations d, where the segments are internally homogeneous.

In order to formalise this goal, we associate a cost fundtiavith the internal hetero-
geneity of individual segments, and aim to minimise the alfeost of the segmentation.

Two assumptions have been made on the overall cost. Fitstiyost of a single seg-
mentF (&) is a function of data point§(F(¢&;)). Secondly, the cost of 1D segmentation
C(F(&1,&2,...,ék)) is a sum of the cost of its segmeidts &, ..., & :

k
C(F(é1,&2,....&)) = _;C(F(Ei)) (5.1)

An optimal 1D segmentation of a signal using cost funcfiors such that the cost
C(F(&1,é2,...,ék)) among all possible 1D segmentations larger than 1 segmepiy
is minimal. The cost of any segment can be defined as follows:

13 2
CF(8) = 3 [y~ hi (5:2)
J=0i
whereb; is the beginning of the segmestis the end of the segment; is mean value of
samples in the segme§t= 0(b;; ). More formally, the mean of the segment is defined
as follows:

1 S
= X 53
H= BT, (5.3)

In order to minimise the overall cost of the segmentation axeetio find such a set &f
segmentgy, &z, ..., & that provides the minimum sum of corresponding costs. Toezge

geen
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Signal intensity

Number of segments

Figure 5.11: Left: DCE-MRI dynamic frame with normals dratawards a boundary
pixel. The point of the segmentation of the profile chosenhsy dlgorithm is marked
red. Middle: Corresponding intensity profile. Right: Capending graph. The minimal
angle is shown in red.

The algorithm describes the best approximation of an inyepsofile with 1, 2, 3, etc.
straightlines. Now we need to determine the point on thasitg profile that corresponds
to the true boundary pixel.

By splitting and merging segments we construct a graph, evther x-axis is the num-
ber of segments and the y-axis is the value of the cost fumctieasuring the error of
performing a segmentation lasegments. At some point, splitting data into a larger num-
ber of segments does not significantly change the value aértioe function. This point
corresponds to the optimal number of segments.

There is a number of approaches to estimate this point. Fagqeriments, we have
adapted the one proposed by Salvador et al. [212]. Two &trliges are fitted in the data
from the left and right sides; each line should include agtiéao pixels and together lines
should cover all pixels. The fit where the angle between theslis minimal is taken as a
desired point. The intensity profile is then segmented apthet of the best fit of the two
segments.

Figure 5.11 illustrates a profile corresponding to one oflibandary pixels and its
segmentation into two segments. Signal profiles along theals drawn to each bound-
ary pixel were analysed and segment break points locatiesviag a suitable shift in the
estimate for the true boundary pixel.

5.2.4 Final steps

The boundary of a region might span over several pixels oub®gnded by a relatively
thick cartilage, which appears dark in the MR images. In tase, a profile crossing
cartilage, artefact or an ambiguous part of the boundarl,bei segmented into more
than two segments and therefore more than one potentiataoypoint will be obtained.
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Figure 5.12: Results of the adaptive segmentation, whewofdecrosses cartilage, arte-
fact or an ambiguous part of the boundary and is segmentednate than two segments
and therefore more than one potential boundary point wilob&ined. Break points
superimposed on the profiles are shown in red and blue.

Figure 5.12 illustrates several profiles, where segmemtadelivers one (top row) and
several (bottom row) points.

In order to restore the boundary of a bone, we employed th@tolg strategy. Firstly,
all profiles segmented into more than two segments were rdisda Empirically, it was
noticed that location of these profiles is sparse, and thebeumof accepted pixels sig-
nificantly exceeds the number of rejected pixels. Figur® Hlastrates two regions with
accepted (in yellow) and rejected (in blue) boundary pixels

Figure 5.13: Boundaries with accepted (yellow) and reg@bdue) results of the adaptive
segmentation. Results of the linear interpolation are shimwred, and the gaps closed
with shortest path in white.

After exclusion of the pixels, a boundary might contain dnthlmissing pixel) and
big (order of 10 pixels) gaps. The location of the isolatedsimg pixels was restored with
an interpolation technique applied to the nearest neigtshand the gaps were eliminated
by connecting pixels with the shortest path (straight line)

Sometimes, the shortest path does not yield the optimatisnlu A bone in Fig-
ure 5.14 contains an erosion (dark line in the bottom lefheox. A gap in the bone’s
boundary was closed with the shortest path, which cut offraqgiahe bone.
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Figure 5.14: From the left: results of the adaptive segntemtdyellow — accepted, blue
— rejected); the boundary after the interpolation; the lataum with a gap closed with the
shortest path; the final boundary after the in-study intkoan.

Figure 5.15: Depiction of the 3D bones in a sample DCE-MRé#gtu he morphology-
based three-dimensional interpolation scheme [137] wpbegpon the six slices to pro-
duce this result.

The shape of such a region can be restored with an interpolegchnique applied on
3D study. The morphology-based three-dimensional intatfpm scheme [137] was ap-
plied on the six slices to produce accurate and smooth irgeiare slices and volumetric
data between the neighboring slices. Figure 5.15 illus$rdtie results for a sample study.
A restored boundary of the bone interior is shown in Figufelgright).

The output of the algorithm on several regions is shown irufégs.16, where the
results of the preliminary segmentation are shown in whitel the adaptive segmentation
in red. Limitations and possible extension of this approaehdiscussed in Chapter 9.
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Figure 5.16: The bone interiors segmented with the prelmisegmentation (in white),
and the adaptive segmentation (in red) in images drawn fmmDCE-MRI studies ac-
quired with the high-field scanner.

5.3 EXxperiments

5.3.1 Segmentation of joint envelope

In DCE-MRI datasets acquired with the high field scanner,oli§’ envelopes osculate
with the thumb, in 26 slices the thumb is depicted, but dogdoah the joints’ enve-
lope, and 22 slices do not contain the thumb. 18 DCE-MRI @#$a%4 temporal slices)
acquired with the low field scanner contain a marker locateakial direction in 6 slices,
and in coronal - in 48 slices; 10 datasets have no marker.

In dynamic frames depicting a thumb osculating with thetigienvelope, an expért
manually outlined the location of the envelope excluding ttumb using software AN-
ALYZE [202]. Mutual overlap between the automatically sested joints and ground
truth (GT) overlay is on average 0.94, with the minimum 0198, maximum 0.97.

The mutual overlap between the manually and automaticaliynented joints’ en-
velopes in images with no thumb / marker is on average 0.9, tive minimum at 0.94
and the maximum at 0.97. The error of course might be ateibta the variability of the
human observer’s opinion on the precise location of thegdlmoundary.

Figures 5.17 and 5.18 illustrate joints’ envelopes segetattomatically (in white)
and manually (in red). We asked three independent obsexversline the GT boundary

3This evaluation was performed by an experienced obserger the Department of Medical Physics,
University of Leeds, Leeds General Infirmary, Leeds, UK.
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for these regions and took an average of these subjectiedilyatl boundaries as the final
GT boundary [46, 263].

Figure 5.17: Post-contrast images from different DCE-MRIdges acquired with the
high-field scanner, with the joints’ envelopes segmentédraatically (white) and man-
ually (red).

Figure 5.18: Post-contrast images from different DCE-MiRtiges acquired with the low-
field scanner, with the joints’ envelopes segmented autcaibt (white) and manually
(red).

5.3.2 Segmentation of bone interiors

Recalling that in some images not all four bones will be obesale, there are two separate
evaluations to be performed. Firstly, it should be deteadiwith what reliability we can
judge whether or not a bone is present. An experienced obskas provided the ground
truth which is in most cases a ‘yes/no’ judgement (that ishex the joints 2-5 is or is not
observable). In a small number of cases, the expert was einge are able to compare
our results with this clinical judgement.

Figure 5.19 (bottom row) illustrates the regions where thgeet was unsure whether a
bone interior is present or not. It is a challenging task stidguish between the cartilage
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and fat and water inside the actual bone, since in some inthget the data acquisition
procedure the difference in intensities is subtle.

The algorithm has been tested on 10 DCE-MRI datasets; anesbhoneach of the
60 slices (6 per dataset) have been detected. 92% of thengxisines have been found.
There were no false positive bones. If due to the objecti@sors mentioned above a bone
is missing, the algorithm is not expected to detect anytimriyis location. Table B.1 in
Appendix B summarises the results.

In just a few cases the algorithm fails to distinguish bormerfrcartilage. Examples
are shown in Figure 5.19. The bones, which have not beentddtace of a small size.
Some of them were removed at the thresholding stage, othieysthe classifier, which
was seeking the regions with a larger area. Table B.1 in Agpd illustrates that in the
slices spatially neighbouring a slice with the missing lsoakkjoints were detected. This
allows reconstruction of the under-segmented regions.

Figure 5.19: Sample images from different DCE-MRI studiegared with the high-field
scanner. Some bones in these regions were not detected &gtnghm. Contours of the
detected bones are shown in white.

Secondly, the quality of the segmented boundaries shoulevbkiated. The best
possible boundaries in more than a hundred images drawmomagdrom the datasets
were manually outlined, and the results of the segmentatene compared to what we
will assume is the ‘correct’ solution.

The mutual overlap between the results delivered by theritg and the manually
outlined contours exceeds 0.90. Detailed quantitativeiati@n of the quality of segmen-
tation outputs located with the adaptive segmentationnigcie will be discussed in the
next chapter.
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5.4 Conclusion

Two segmentation algorithms were presented in this chaptes first one permits accu-
rate segmentation of the joints’ envelopes in the dynanamés acquired with the low
and high field scanners, and the second one — the bone istanidhe MCPJs images
acquired with the high field scanner. The second algoritheriat been tried on data
acquired by the low-field scanner.

Segmentation of the joints’ envelopes was complicated eythsence of the thumb /
marker whose location in respect to the joints’ envelopeédarn cases when the thumb
and joints’ envelop osculated, the thumb was removed bas¢kdeoassumption that the
curvature in the points of osculation is maximal. The mutuadriap between the results
delivered by the algorithm and the manually outlined cord@xceeds 0.93.

Segmentation of the regions of interest such as bones in MREdata is challenging
mainly because the borders of the bones do not have a consrhugh gradient value.
Instead, areas with very high gradient values can appeaintiie joints or the borders
might have gaps with the low gradient values. Moreover, tiaps and size of bones vary
between the studies.

The algorithm discussed here detects the bone interiorsheamdrefines their bound-
aries using the adaptive segmentation approach. 92% direxisones were correctly
identified with the preliminary segmentation.

The adaptive segmentation does not require a boundary tmbeth or of a constant
width. It considers each boundary pixel independently afohes its position using an
intensity profile that reflects the intensity change in thanity of this boundary pixel.
No constraints were imposed on the shape or location of thiemeobtained as a result
of the preliminary segmentation. This is beneficial for segtation of the bones, whose
shape was corrupted by partial erosions and oedema. Them& such bones usually
contains sharp edges which are of clinical interest. Chigptiiscusses performance of
the algorithm in more details and compares it with regiomgng and snakes.



Chapter 6

Evaluation technigques

This chapter pursues two purposes. Firstly, we discussgigpd and unsupervised eval-
uation metrics: show how to enhance an existing supervipptbach, introduce a new
unsupervised metric, and compare new and existing mepa$ormance. Secondly, we
use these new and old metrics to evaluate the adaptive séamerdiscussed in Chap-
ter 5, and to compare its performance with snakes and regawigg [87, 122].

6.1 An enhanced supervised metric

In Chapter 2 we illustrated that a widely used and acceptpdrsised metric, based on
mutual overlap (MO) between ground truth and segmentesnsgiis not fully appro-
priate for DCE-MRI data. The performance of recently depeld algorithms is often
evaluated with a Hausdorff distance (HD) based metric [2AbDwever, this metric does
not afford an application-adaptable threshold for a degie®lerance in segmentation
error, and therefore cannot deal with local blur, partiduwoe effects and ambiguity of
region boundaries, or inconsistency of human expert judgsie

The absence of a notion of ‘tolerance’ is problematic: stdawbo algorithms be eval-
uated as similar by a metric it is possible that their actuafgrmance is significantly
different (in some ways), and this can be revealed by consgl¢hem with respect to,
for example, a tolerance parameter. Often, edge detectaydeliver partial boundaries
whose value, or lack of value, needs measuring. Using reigi@niors as the basis of

93
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Figure 6.1: A segmented DCE-MRI image with GT shown in soA§ignd segmentation
result — in dotted (B). Plots 1 and 2 show the proportion o&fsxvithin threshold from
A to B, and B to A &). The intermediate black line illustrates the percentaigeixels
from both boundaries at which HD is no greater than

closeness, the HD based metric clearly precludes this.

We introduce a tolerance threshdldo describe how separated boundaries may ac-
ceptably become. For instance, due to the high noise lexcelambiguity of regions’
boundaries in DCE-MRI data, a difference between GT and meatation of 2-3 pixels
is not usually a problem.

In Figure 6.1 a region segmented by a region growing algarifB7], and corre-
sponding GT are shown. The graph illustrates the effect lakineg t: we measure the
percentage of pixels within the given threshold distandeafly, this plot will be mono-
tonically increasing and converges to 1. The underlyingrimét Euclidean distance to
nearest point on other perimeter.

For any two boundaries, we can compute the number of pixetmefthat are within
a thresholdt of the other. This number, normalised by the total numberigélp in
both boundaries, provides a metkig(A, B) (the H; metric), which gives the percentage
of pixel-wise ‘closeness’ between two boundaries. Ngtbe the number of pixels in
boundaryA; then letA;(B) be the pixels ofA within a distance of a pixel ofB. If N, is
the cardinality ofA;(B), andNg andNg, are defined similarly, we will write:

NAt + NBt
Na + Np

For a given boundary, this metric will increase monotoricelith t, and converge to
1. As it measures the distance between boundaries of thenegistead of the regions
themselves, it permits evaluation of open boundaries.

The parametet is an interval of tolerance, within which pixels from one boary
are considered as being in the vicinity of the other: thistf the acceptable error of
segmentation. It can be adjusted for the desired segmentatiality; for example, the
width of ambiguous boundary sections, or the opinion of e&gp€erhe tolerance can be

Hi(A,B) = (6.1)
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Figure 6.2: A bone interiors segmented by the region grovalggrithm in the images
from a sample DCE-MRI temporal slice acquired by the higldfszanner; images were
acquired betweem, andT;s time instants. Intensity change in the tissues surrounitiieg
bones is noticeable. Machine segmentations are shown e Wi —in red.

defined using domain knowledge, and therefore reflects alicapipn-dependent accept-
able segmentation error.

This metric produces easy to interpret and comprehensildts. It permits compar-
ison of different algorithms on various datasets or tuningethod’s parameters. Using
it, we can detect the number of pixels which coincide prdgisgth the GT overlay, or
assess the width of ambiguity.

Clearly, the combination of Equation 6.1 might have beemeeffin many ways, in
particular as a simple mea}(NN—i‘ + NN%). We find the qualitative behaviour of these two
definitions to be the same, while in the case t=0, Equatioim&sla correspondence with
the MO definition (see Section 2.4.1) as the ratio of intdrsado total perimeter.

6.1.1 Discussion: supervised evaluation

In registered DCE-MRI datasets the location of bone interi® assumed to be constant
through the temporal slice. A region growing was appliedh&se data; initial parameters,
such as seed point and growing criteria, have been manueilyedi. In the data acquired
with the high field scanner, the most noticeable intensigngje is expected to appear in
the sequence of images acquired between the 28 and 112 sdddnd 5" time instants.
The quality of the segmentation results is expected to dserduring this interval because
contrast enhancement during these times makes edgesdassrifure 6.2 illustrates the
results. It is noticeable that the segmentation qualityaes in the later images.

Figure 6.3 illustrates the segmentation quality measuyeMpo andHs, where GT
has been defined by experienced human input, which sugfests-t 3 represents inter-
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observer difference.

5 7 11 13 15

9
Time instance

Figure 6.3: Evaluation of the segmentation results showsgare 6.2 by two supervised
metricsMy o andHs.

We observe that both metrics detect a decline in segmentgtiality over the 12
images, butMyo provides less then adequate results in evaluation of segiam of
several images.

e Mo suggests that the segmentation quality of tH8 aad 14" regions is the same;
both haveMyo = 0.76. The 14th region clearly has a long tail, but its shape and
size do not impact oMy o significantly.

e The ‘tolerance’ aspect dfiy has been useful: in the $limage the pixels of the
segmentation are mostly within 6-7 of GT, but some pixelsiftbe 14" region are
more than 10 pixels away. Segmentation quality obtainethiese two regions has
been analysed witH; at differentt (see Figure 6.4), clearly illustrating the different
quality of result.

We can conclude that performance of the supervised megicsagreement on regions
segmented so that their boundaries are complete, and dontatic tails. When, as in

this application, tails are in evidendd; might be preferredH; also provides informa-

tion on the extent of these tails, which allows more compnshe segmentation quality
evaluation.
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2 4 6 8 10 12 14

Figure 6.4: Graphs correspond to the analysis of region til1drfrom Figure 6.2 by the
supervised metriél; at differentt. Graph (1) corresponds to the region 11 and graph (2)
to the region 14.

6.1.1.1 Evaluation of segmentation algorithms with the sugrvised metric

In this section we will compare performance of three segatént approaches — snakes
[122], region growing [87], and the algorithm discussed ia@ter 5 using two supervised
metricsMy 0 andH;. Examples of regions segmented by these algorithms asgralied

in Figure 6.5.

Region growing

Region growing techniques generally perform better onamgiof homogeneous struc-
ture. In our application, intensities within regions arglter than outside, but are not
homogeneous; regions detected with a low growing criteai@often located within GT
and do not intersect with the actual boundary (see theegjion, 29 row in Figure 6.5).

When the criterion is high, the segmented region overlaps@hsidering the first
few images in the slice, we have manually selected initiedipeeters, and then these have
been used to segment bones throughout the slice. The mpdicaldure causes intensity
variations to be more pronounced in the last images in tlve,stind therefore growing
parameters for these are not optimal.

Evaluation withH; reflects this (see Figure 6.6): very little of the segmentaahialary
coincides with GT (the mean dfiy is 0.23 and maximum 0.3; the meanldf is 0.3
and maximum 0.41). With a larger the quality of the segmentation results will be
evaluated as higher. Evaluation at different interval®tdrance shows that about 60% of
boundary pixels segmented by region growing are locatedinvé margin acceptable for
our application (the mean ¢i3 is 0.61 and maximum 0.7), but only a small percentage
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Figure 6.5: The regions (row 1,2,3) in images acquired byhigh-field scanner from dif-
ferent DCE-MRI studies. In the top row: regions segmentethbyadaptive segmentation
algorithm; middle row: regions segmented by the region gmgwbottom row: regions
segmented by snakes. Machine segmentations are shownta @fii in red.

are within 1 pixel from GT. Figure 6.6 illustrates the resudbtained for 45 regions.

Boundaries of regions segmented by region growing verynontain tails, which
can partly overlap with the actual contour of the boundary, fartly (normally very
locally) extend toward the neighbouring bones. Resultdpced by the new metric show
that the length of the tails might be 5-10 pixels, and thesmotbe well assessed by the
MO-based metric since the area of the tail does not adequatelespond to the ‘error’
it represents: it does not correspond to human opinion a®dstrated in Figure 2.4.

Snakes

The final regions delivered by snakes are close to actual dsoies, but often do not
preserve original contours. Evaluation witly andH; (Figure 6.7) shows that in many
cases a high percentage of boundary pixels intersect with GT

The initial parameters for snakes have been selected sbabiataries of segmented
regions do not contain tails; this means that evaluatioruadity can be performed ade-
qguately by either of the supervised metrics. Results austiihted in Figure 6.7.

Evaluation results produced by both supervised metricsegions segmented by
snakes are comparable, as Figure 6.7 illustrates. We camnabthat about 50% of de-
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Figure 6.6: Evaluation results obtained with different neston 45 regions segmented by
region growing. Results are sorted with respect to the bebawof Hy.
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Figure 6.7: Evaluation results obtained with different noston 45 regions segmented by
shakes. Regions are been sorted with respect to behaviélg: of
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Figure 6.8: Evaluation results obtained with different neston 45 regions segmented by
adaptive segmentation (Chapter 5).

tected pixels are placed correctly on a boundary (as in nsgfoand 8 in Figure 6.5), but
more than 30% of all pixels detected are located further 8haway from GT.

Adaptive segmentation

The adaptive segmentation based algorithm discussed ipt@hahas been specifically
developed for this application, and is very successful eatiog bone boundaries. In the
majority of cases (Figure 6.8) results of high segmentafuality are producedH; has
mean 0.75, maximum 0.85t3 has mean 0.83, maximum 0.93. Divergence from GT may
be due solely to subjective opinions of human observers. aldgp@ithm performance is
of interest when precise segmentation is required.

In images at the end of the slice, especially when the regoumdlaries are partially
ambiguous, the algorithm might produce regions with tafektent 2-3 pixels). For this
experiment we have chosen images from the beginning andnith@fethe slices taken
from 10 DCE-MRI studies: the first 9 measurements in FiguB darrespond to the
regions from the images acquiredTat We can see that performance of both metrics on
these images is in agreement. The remaining images haverdegomly chosen, some
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Figure 6.9: Left: Evaluation results obtained with diffietenetrics Ho-Hs, Myo) for
shakes (black) and adaptive segmentation (red). Rightlugtran results for region
growing (black) and adaptive segmentation (red).

containing tails or partly ambiguous boundaries; perfarogof the metrics on these
regions is different, because the area of a tail does no&nde significantlMyo.

We learn that thed; metric provides more comprehensive information on al@onit
performance, assigning a threshold for segmentation taterance, allowing assessment
of the width of ambiguous sections, and choosing an apmtgalgorithm for an appli-
cation. Much less information on boundary quality can bengdiusingMyo; for some
regions Myo provides an inadequate evaluation.

6.1.1.2 Evaluation of algorithm performance using supensed metrics

We compare three segmentation algorithms with respecetqiality of their segmenta-
tion results. Figure 6.9 shows box and whisker plots [15&wafluation results for snakes,
region growing, and adaptive segmentation algorithms.

While both supervised metrics suggest that the adaptivasetation based algorithm
outperforms the others, withlyyo we cannot assess which of snakes or region growing
performs better on our data. Figure 6.9 illustrates thabating toMy o the median of
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Figure 6.10: Evaluation of the results produced by snakdsegion growing measured
with H; at different intervals of tolerance.

the evaluation coefficients obtained by snakes is higherfivathe outputs obtained with
region growing, but a large percentage of regions has begmesgted with very similar
quality. Thus, according tMy o the performance of these two algorithms is indistin-
guishable (based on the similarity of medians).

Evaluation withH; permits better analysis; the quality of the segmentaticiputs
produced by region growing and snakes at different intsradltolerance are shown in
Figure 6.10. By looking at the notches for the medians of éseilts produced by region
growing and snakes in Figure 6.10, we can say that the twoanedire significantly
different at the 0.05 confidence level. Thus, the metric sstgthat the performance of
snakes is better.

Ho andH1 suggest that snakes outperform region growing (about 50¥edfoundary
pixels of the regions segmented by snakes and only about 288 pixels segmented by
region growing are located in the vicinity of GT). At a largaterval of tolerance, such
as 2-3 pixelsH, andH3 suggest both algorithms perform similarly.

Based orH;, we can conclude that the number of boundary pixels detdstesthakes
in the vicinity of GT is higher than the number detected byisaggrowing, while the
algorithm discussed in Chapter 5 outperforms both of them.
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6.1.1.3 Evaluation of segmentation quality by human obseers

The purpose of segmentation is often to locate regions wdmelof interest to a particular
group of observers. The quality of algorithms is often judigpy observers subjectively
regardless of evaluation provided by metrics. Our prevexygeriments demonstrated that
Ho — H3 are in agreement, and for certain regidvigio behaves differently. Therefore, it
is of interest to learn how judgments provided by the met@sespond to the opinion of
human observes.

We asked 30 experienced and 50 naive observers to evakg@estation outputs
obtained by the algorithms. Four pairs of images with sedgateam outputs and GT were
given to the observers (see Figure C.1 in Appendix C). Olesemnwere asked to choose
the ‘better’, in their opinion, segmentation output in e@ar. No formal definition of
‘better’ was given. Table 6.1 shows observers’ and metreéfgrences for each pair of
regions.

Pairl Pair2 Pair3 Pair4
1 2 ind | 1 2 ind | 1 2 ind | 1 2 ind
Exper. | 3 23 4 |2 27 1 |13 2 15 | 14 4 12
Naive | 7 41 2 |3 42 5 |16 3 31|20 3 27
Total 10 64 6 | 5 69 6 |29 5 46 | 34 7 39
H, vi vi vi vi
Mwmo v Vv v J

Table 6.1: Experienced (Exper), naive (Naive), and tmtahber (Total) of observers who
preferred region 1, region 2, or decided that regions arsstmgjuishable in quality (ind);
H; andMwo preferences marked wit{y.

We received evaluation results for 80 subjects on 4 pairsnaiges. The results ob-
tained for the first two pairs of outputs are consistent; @atbn of the last two pairs is
less conclusive.

Image pair 1: The boundary of the first region contains long tails; the lataug of the
second region is less fragmented and has no tails. The seegioth was preferred
by H; and 80% of observers.

Image pair 2: The first region is over-segmented and its boundary has laig tThe
boundary of the second region has short tails. The secomairegs preferred by
H: and more than 86% of observers.

Image pair 3: Both regions are over-segmented, but the boundary of thenge@gion
contains shorter tails than the boundary of the first regiarprefers the firstMyo
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the second region. Most observers evaluated these regsonsligtinguishable in
quality (46 observers). However, the first region has beeafepred by 29; the
second region by only 5.

Image pair 4: Both segmentation outputs are over-segmented, the bountilre sec-
ond region contains longer tails than the boundary of thé fagion. H; prefers
the first, My the second region. 33% of the observers evaluated thesmnesegs
indistinguishable in quality, the first region however wasfprred by 34 observers,
where the second one by 7.

Based on the judgments we can conclude that regions with daibver-segmented
regions do not provide accurate contextual informationudltioe region of interest. Re-
gions located within the ideal segmentation and regionis avlarger number of boundary
pixels, which coincide or in the vicinity of the GT overlayggpreferred.

This experiment demonstrates that observers base thgmedts on a distance be-
tween machine segmentation output and GT, shape and snesstbhthe boundary of
segmentation, length of the tails, and amount of contextdafmation provided by the
segmented countour.

Results obtained with this experiment intersect best tith when supervised metrics
disagree, evaluation witH; was preferred by the majority of observers.

This experiment has of course its limitations. Using nopeskobservers is imperfect
because their interpretations are not based on medicallkdge. The observers were not
explicitly told what segmentation is better, therefore &rdgon of a better boundary was
decided by the observers. Obviously, opinion of the nah&eovers is much less reliable
than opinion of the experienced ones.

6.2 Unsupervised evaluation metrics

MetricsM1—M3 discussed in Chapter 2 have not been utilised extensivelyRnmages,
or images complicated by local blur or presence of partly igontus boundaries. The as-
sumptions required by the metrics (i.e. sharp boundary)ad@liow adequate evaluation
of the results from such images. Here we propose a new unsapdrapproach which
can be used to assess the quality of segmentation resudtisetfrom such datasets.
Boundary pixels may be located in areas of high and low cetjtia ambiguous sec-
tions of boundary, and might not represent GT at all. If we canfidently distinguish
between pixels that represent a ‘reliable’ boundary of thiect and pixels that do not, we
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Figure 6.11: Left: Sample DCE-MRI region from an image of MEPJs acquired with
the high field scanner. A bone interior is in white. Two prdfiil and 2) are plotted
perpendicular to the boundary pixels. Right: Intensityuesl plotted along these profiles
(1- corresponds to the profile 1 and 2 - to the profilel®);location of a boundary pixel.

can automatically compare quality of segmentation outfrtgerformance of segmenta-
tion algorithms based on their ability to detect long releaboundaries.

6.2.1 A new unsupervised evaluation metric

Consider a normal to a boundary pixel and an intensity prdfiéevn along it toward and
from the boundary pixel. Lel; denotes the intensity profile within the region aind
the profile without. Let the length of each profile be [1;L], whereL is the length of
the longest profile (at this stage restricted only by image)si The choice oL will be
considered later. Such profiles may or may not corresponigitioeixpected at an ‘edge’ —
see Figure 6.11.

To estimate the strength of a boundary pixel, we measurentkeasity change along
the profiles. We select weights as in Equation 6.2 and builceehted sum on each
of the intensity profiles by assigning heavier weights temsities closer to the putative
boundary pixel. This is illustrated in Figure 6.12.

ap >0 >...>a >0, Zaizl (6.2)
|

The weightso; may be selected in many ways: for simplicity we have chosemtto be
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Figure 6.12: Diagram illustrating the intensity profilég (nside the region anth, outside
the region) and weights drawn for a boundary pixed.

linearly decreasing to 0. The strenddltan be defined as:

S() = ’i:lzailli — ;Zomzi

Acknowledging that the evidence of a boundary pixel is ki extend over more
than a step change, there are many models we might use to fiathe the sigmoid is
popular. In an environment of probable noise, we use inst@adonvenience a piece-
wise linear function as shown in Figure 6.13 (left) — the gmer of accuracy in many
applications will be dominated by noise effects. This cadé&scribed by Equation 6.4 in
which there are two parametengl gives the contrast across the edge adptures how
sharp (or fuzzy) it is. The weight function is given by Eqoati6.5 (and is illustrated in
Figure 6.13 (right)).

(6.3)

f(@) g9(x)

M+m|

Light 2

Dark

b—c/2 1o l

Figure 6.13: Function$ (left) andg (right) defined by Equation 6.4 and 6.5.



Chapter 6 107 Evaluation techniques

m x<b-c/2
f(x) = { Mx/c+M/2+m xe[b—c/2;b+c/2] (6.4)
m+M X>b+c/2
2_ 2 .
f— X Xel0l]
9 { 0 elsewhere (6:9)

Let 11 andl, denote weighted intensity profiles for a boundary pikel These are
defined by the equations below, whénmelates to the image intensity profile:

I — /bl+bf(x)g(x— b)dx (6.6)

U e dmme | <o)

4 42
(1) = (6.7)

M —ME+M+m 1> c/2

b
l, — /b—l f(x)g(b— x)dx 6.8)

—Mc2 | M 2
Sar ta gt T 1<¢/2
(1) = (6.9)

ME L Me 1 m 1> c/2

Therefore, the strength of a boundary piga$ given by Equation 6.10. A§(l) curve
corresponding to a ‘perfect’ profile is shown in Figure 6.14.

Sl = "1 - |2) =
%—% | <c/2
_ (6.10)

M-Ye(1-&) 1>c¢/2

Givenp andg, 1 < p< q<L, we can estimat® andc from this equation. These
estimates for differenp, q will vary depending on noise effects, boundary misplacemen
and proximity of p andq to the asymptote. In order to estimgtd, c) reliably, for a
natural numbed we will take severap, g pairs from an intervall 5,15+ 8] C [1;L] that
makes this set of estimates most robust. We make this judgdnyeseeking the set of
estimates that is most tightly clustered as a result of emfgrithe model of Equation 6.10.
For an intervall,| + &] we can generates estimates fofM, c]:

(6.11)
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Figure 6.14: The strength of a boundary piggl) for the ideal profile.

These form a se{(Mk, Ck)}

0 > 3in order to provide a non-trivial number of estimates.

For each intervall,| + 6] with estimateg (M, Cx) }k—1...n;,» We envelop the estimates
with an ellipse centered at the centroid, and axes oriethtalteng the principal axes of
the data, with aspect ratio determined by the ratio of tha #atiances. For a gived,
we use the ratio between the cardinality of the subset anéltipse perimeter as a set
compactness measure, and select the maximal such.

Performing this for each acceptabde we now aggregate all estimates into one set
{ (M, €) Fk=1...n5,5=3...3mae @Nd determine the meapg, e and variances, 02. There
is no statistical justification in theory for this aggregatbut at the same time, we have no
evidence that using this larger set will reinforce any biBise lower values of will give
better results, being less likely to be corrupted by othfarmation, but we have not used
this observation. An issue remains, however, over the tyualiany estimate o€ when
that parameter is low since most valuesg), particularly for highed, will be near the
asymptote and estimatesoiay be ill conditioned.

In fact, this presents no serious problenx; i§ ‘low’ then we observe a step edge and
can get a (probably) reliable estimateMfirom low values of . Empirically, we discover
that forc > 4, the approach we outline is reasonable, while smalleegiepresent a near
step-change in intensity. In the application we come to iclemswhich is characteristic
of challenging domaing; is commonly in the ranggb, 8.

Now for a given boundary pixe{; we will have

with a centroid a{ uwm, Uc). We will normally expect
Ny

fi = £(xi) = (i, O, ME ) (6.12)

These statistics will form the basis of future decisionsuttibe validity of the pixel; in
most circumstancesgiy is good if high, and. is good if low; oy ando; can provide a
relative confidence in the estimates. These parameters$ eneise only relative in value,
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and have no absolute interpretation (unless the image dopnavides it — for instance,
when there is a clear evidence that pixels with intensitle®s/a a certain threshold are
correctly segmented).

We will define a confidence measuféx;) = &(fi), 0< & < 1. Then, the metric of
segmentation quality can be defined as:

1
Q= Ni:;NE(xi) (6.13)

The choice of (f;) can be determined by the application — in Section 6.2.2 wetiihte
some choices and compare their results with some of thelestath metrics.

6.2.2 Experiments and discussion
6.2.2.1 Evaluation of segmentation quality
Synthetic imagery

Human observers usually cannot gauge the quality of segientn any absolute sense
and will judge one to be ‘better’ or ‘worse’ than another [276Goodness’ is a rel-
ative property. Similarly, segmentation metrics in preatiuse will normally address
themselves to a set of measurements made on an image or inusges a number of
algorithms or algorithm parameter settings.

In order to compare quality of a number of segmentation dste set

M = max i 6.14
max 1 e gHM (6.14)
Mmin = min i 6.15
min 1 N gFM (6.15)

whereB is the number of segmentations aNgis the number of boundary pixels in the
Kt segmentationcmay, Cmin are defined similarly. A simple approach for estimation of
the strength coefficients is to set

Mmax— “liv|

fi) = 1— "X _EM
El( I) |\/lmax_ |\/lmin

(6.16)

The quality of thek!" segmentation output is defined as

Nk
Q) = g 3 &) (6.17)



Chapter 6 110 Evaluation techniques

Here, we assume that the pixel witly = Mmax and the pixel withiy = Mpin are
actually the best (and correctly detected) and the worst (ais-segmented) ones in all
segmentation outputs and therefore it is reasonable tedhadquality of the other pixels
by comparing them to these cases. With the m&iionly the magnitude of the intensity
change defines the strength of the pixel. This metric is ofizvalhen all pixels after
evaluation have very similar values Gf

Synthetic regions used in [45] for metric evaluation and panson are a good exam-
ple of such a boundary. Figure 6.15 illustrates two regiegprented by snakes. Here,
boundary pixels are coloured accordingéto pixels with maximalE{ =1 are plotted in
red, andéi = 0 in yellow, with intermediate colours accordingly

sk

Figure 6.15: Synthetic regions taken from the databaseigedvby [45] segmented by
snakes; colours of the pixels from the machine segmenteddawy correspond té;.

Consider a region segmented by region growing with two ckffé threshold values,
and a seed point located in the centre of the circle. Figuté @niddle) illustrates the
sensitivity of parameter selection: in an approximate sé¢ins segmentation is good, but it
is poor in many issues of detail. Previous authors have ugiédially poor segmentation
to provide comparisons: Figure 6.16 (right) is an exampleis lobvious to a human
observer that the quality of the segmentations shown inrEiguL6 decreases from left to
right.

Our metric illustrates that the first segmentation in FigorEé is preferable and the
hand segmented boundary has the lowest quality. The ngjuidgments correspond to
the opinion of a human observer. Thus, we can conclude tleamgtric here permits
automatic evaluation and comparison of segmentation tsitgatained with different al-
gorithms on synthetic images.

We use this colour scheme throughout this section.
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Figure 6.16: Left: Synthetic region from the database mtediby [45] segmented by
region growingQ; = 0.96. Middle: Synthetic region from the database provided4s} [
segmented by region growing with different threshold vaee= 0.72. Right: Hand
segmented boundary, deliberately p@ar= 0.54. Colours of the boundary pixels corre-

spond toé;.

DCE-MRI data of the MCPJs

Similarly to Equation 6.16 we can derive an approach usimggetimatec. For some
applications, mis-segmented pixels are those that separaas of low contrast and/or
located in the fuzzy/ambiguous parts of the boundary. Siatigpmay have a relatively
low estimate oM and high estimate af. One way to incorporate the influencewis:

Mmax— I~1|iv| Cmax— U(i:
EH(f)=(1-A (1—— FA| ———— 6.18
2(fi) = ) Mmax— Mmin Cmax — Cmin ( )
and define€), in the same manner §%. A determines the relative influence tihtandc
have on the final estimate of the pixel’s strength.
For our application we are able to assume that:

e Pixels that separate areas of high contrast (INgh and are not in the ambigu-
ous/fuzzy parts of the boundary (losy probably represent the actual boundary of
aregion;

e Pixels that separate areas of low contrast (Myvand the intensity change along
their normal is not sharp (largg) probably do not represent good boundary;

e No assumptions can be made about pixels with l&igend lowc or low ¢ and low
M. These pixels can represent a weak edge or an ambiguousrsetd boundary.

If we can assume that estimates\Wbfandc are equally significant, theh = 0.5. Later it
will be illustrated that for our application the optimal inrcelation with human opinion
A isin the rang€0.4; 0.6].
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Figure 6.17 illustrates segmentation results obtainetl sitakes and adaptive seg-
mentation based algorithm, ai@h. A larger percentage of the pixels on the right has
been assigned lower strength coefficients, and accordiQyg tbe quality of the left out-
put is higher.

Figure 6.17: Segmentation results of the algorithm disedigs Chapter 5 (left{), = 0.87
and snakes (rightf)> = 0.41 obtained on a sample image from the database provided
by [45]. GT is shown in white. Colours of machine segmentedhiaries correspond to

&.

Adjusting A emphasises the influence bf or c. Figure 6.18 illustrates behaviour
whenA = 0.1 (middle) andA = 0.5 (right). The image on the left illustrates a boundary
with blue lines indicating direction normals, their lengibrresponding ta.

Figure 6.18: Left: Machine segmentation is shown in red, &hite; blue lines are
plotted in the direction of normals, their length corresgetoc. Middle: Colours of the
boundary pixels correspond & (A = 0.1), Q> = 0.81. Right:é> (A = 0.5), Q, = 0.87.

With low A the influence oM is more significant thae. This might be acceptable
for synthetic images used in [45], where machine segmertaddaries are assumed to
be constant width.



Chapter 6 113 Evaluation techniques

Segmentation outputs obtained on the MCP data are usually than 1 pixel width;
also, correctly detected boundaries might be strong (Mghnd lowc) or weak (low
M and lowc). WhenA is low, the strength of the weak and mis-detected parts of the
boundary will be similar. Therefore, weak, but still corr@arts of the boundary will be
thought of as mis-segmented.

Figure 6.18 (middle) illustrates a segmentation evaluatidéiad A = 0.1. Some pixels
from a weak part of the boundary have been assigned rekatiowl coefficients. When
A = 0.5 (Figure 6.18 right), and the estimateait considered, the strength of the pixels
is defined much more accurately: pixels from a weak part ofabendary have been
assigned higher strength.

This experiment illustrates that estimates of bidtndc should be taken into account
when comparing quality of segmentation outputs obtainedaia such as thes€), is
suitable for quality assessment when information aboutrashbetween background and
foreground, and the fuzziness of the region boundary ivasle

Incorporating confidence estimates in the evaluation meta

Use of the estimate®! and c can be enhanced by incorporating confidence measures
computed along wittM andc. The standard deviatiorm, and o, are most unlikely to
carry any physical meaning, but Equation 6.19 offers a snggproach that allows an
assumption that some estimates are definitely wr@hg Q);

max{ ai,) — o miaxaé —al

g : : = . . 6.19
A max gy, ) —minaoy, Pe maxa, — minay (6.19)
| | | |
Another simple alternative may be;
i 1 i 1
u= - Bi= = 6.20

There are clearly many ways we might incorporate such comfelaneasures; one
IS to attempt to improv&); andQ,. We might use these confidences as the basis of a
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weighted mean filter;

i+h .
_ZhBI\J/I'I'll{/I
s
e = e — (6.21)
i=T-h
i+h )
> B-ud
QIR E 6.22)
Ve = Tio5h (6.
Be

j=T-h

whereh is some suitably chosen boundary window width. Similarliztuations 6.16
and 6.18 the weighted coefficients of the pixels’ strengéh ar

' Mmax— V|i\/|

& = 1—-— MV 6.23
3 Mmax— Mmin _ _ ( )
i Mmax— V|Iv| Cmax— V¢

E = (1-A (1—— +A—— = 6.24
4 ( ) Mmax— Mmin Cmax— Cmin ( )

with Q3 andQ4 defined correspondingly.

We appliedQs to evaluate the quality of segmentation results obtainea mmmber of
real life images [254]. One of the images is shown in Figui®Gsegmentation results are
obtained with region growing with two different thresholalwes and a seed point located

in the centre of the region. Boundary pixels are coloureaating to their strength given
by Equation 6.23.

Figure 6.19: Segmentation results of region growing witffiedent threshold value on a

real world image [254]: From the lefPs = 0.81,0.70,0.49. Colours of the boundary
pixels correspond t4s.

It is obvious to a human observer that the quality of the segat®n results in Fig-



Chapter 6 115 Evaluation techniques

ure 6.19 (left) is the best and the quality of the region orridpet is the worst. The metric
Qs generates corresponding results.

We appliedQ4 to evaluate the results of snakes with different initialgmeters on
a sample DCE-MRI image of the MCP joints. Figure 6.20 illatts the segmentation
outputs, with boundaries coloured accordingéio Q4 prefers the result at the left of
Figure 6.20.

Figure 6.20: Segmentation results of snakes on DCE-MRI @saj the MCPJs. GT is
shown in white. Colours corresponddg; Q4 = 0.98 (left), Q4 = 0.72 (right).

Figure 6.21 illustrates a boundary segmented by regionigigpand evaluated b§;,
Q2 (A =0.5),Q3, andQ4 (A = 0.5). Boundary pixels are coloured accordingéto— &4.
The upper left part of the boundary clearly represents tieshboundary of the region,
while the lower part is mis-segmented, and there are sonatgdixcated in the weak part
of the boundary.

1 has classified pixels from the weak part of the boundary asdetiscted; the colour-
ing of the boundary pixels is inhomogeneous. Wltes incorporated and strength is
estimated using», the majority of the correctly segmented pixels from the kvearts of
the boundary have been assigned higher strength (Figuterégon 2).

When the confidence based filter has been appfeaiidé,), the boundary evalua-
tions look much smoother. However, when the pixel strength& been estimated with
&3 the colours in the boundary are inhomogeneous (Figure 68ign 3). The best eval-
uation is obtained witl§,: there are no outliers in the strong and mis-detected pérts o
the boundary, pixels located in the weak part have highength coefficients than mis-
detected pixels, and the colours in the corresponding inféi§eegion in Figure 6.21)
correspond well to the quality of the segmentation. Our @rpents show that for our ap-
plication evaluation with, generates the best information on segmentation qualigy (se
Table 6.3).
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Figure 6.21: Aregion has been segmented by the region ggoagorithm and the quality
of the segmented boundary was evaluated by the m&®si€3,. The colour in the images
correspond to the coefficienés-¢&4 (left to right).

6.2.2.2 Comparison of metric performance on synthetic andeal world imagery

In a recent survey [45], several metrics [139, 259, 274] Haaen evaluated on a dataset
of synthetic regions usinlylyo as an objective measure. The results of the experiment
conducted in the survey [45] are summarised in Table 6.2revBpearman’s rank corre-
lation coefficient [112] was used to evaluate the strengtihefrelationship between the
variables.

For this experiment the authors used a database of 400 sirithages segmented by
various algorithms; sample images and segmentation augyatshown in Figure 6.22.
The results show that the metrics do not agree with each athé¢have demonstrated
very poor performance on the test imagery.

Metric M1 My M3 Mmo
M1 1 0.02 0.06 0.20
Mo 1 0.18 0.16
M3 1 0.56

Table 6.2: Correlation between various unsupervised ambres andyo: the data are
taken from [45] and [44].

We have conducted experiments on 100 synthetic images {(d@flyut of 400 were
made available) from [43,45], segmented by various algorg (snakes, region growing,
and adaptive segmentation based approach). Segmentatimnt®have been evaluated
by Mmo, Ht and Qq, Q3 and by the established unsupervised methiis— M3. The
evaluation results have been normalised to be in the ramge @ to 1 and then sorted
according to the quality of the results obtained with Figure 6.23 illustrates the results.

Evaluation results produced by the supervised metricetaig highly with results
produced by the new metrics. The behaviour of establishedpervised and supervised
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Figure 6.22: The first two images are sample images from ttesdaused for experiments
in [45], the last two images — segmentation results used enettperiments published
in [45].

metrics does not agree. The new metrics show that there iswdbdecrease in the quality
of the segmentation results, whereas the establishedasiédiled to capture this trend.
Table 6.3 shows the correlation coefficients between ngetric

Metric |[My Mz Mz Q1 Q Q3 Q Mwo Ho Hi

M1 1 0.22 0.12 0.23 0.21 0.23 0.20 0.18 0.09 0(15
M> 1 0.15 0.19 0.18 0.15 0.16 0.05 0.03 0.09
M3 1 0.15 0.1 0.15 0.11 0.33 0.37 0.32
Q1 1 0.80 096 088 0.83 0.88 0.86
Q 1 0.89 097 0.81 0.80 0.81
Q3 1 0.92 0.88 0.89 0.87
Q4 1 0.85 0.88 0.84

Table 6.3: Correlation coefficients between unsupervisidNl3, Q:-Qs) and supervised
approachesMwmo, Ho, andHj) approaches (synthetic data).

The test imagery does not satisfy the established metecgiirements, such as ho-
mogeneity of background and foreground intensity, and laghtrast between region
segmented and the background. The data in Tables 6.2 andd&3isat the established
unsupervised metrics’ performance on synthetic image®as;ghey do not agree with
each other and behaviour does not correspond to that of trenased approaches.

Performance of the metrid®; and Qs is similar to the performance of the super-
vised approach. The correlation between the results is fich indicates that metrics
generate reliable evaluation results.

6.2.2.3 Performance of metric on DCE-MRI data of the MCPJs

Experimental results published in [42] and [45] show thatéltablished metrics’ perfor-
mance is also poor on real world satellite imagery and coetgtamography images of
the brain. To our knowledge none of the established unsigeghmetrics has been used
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Figure 6.23: Evaluation results obtained with differenttnes on 100 synthetic regions
segmented by various algorithms. Segmentation outputs lbeen evaluated Byiyo, Hi
andQ1, Q3 and by the established unsupervised metgs- M3. The evaluation results
have been normalised to be in the range from O to 1 and theadsadcording to the
quality of the results obtained witH;.

for evaluation of segmentation quality obtained on DCE-MRMRI data. It is of inter-
est to assess the metrics’ performance on a large dataetheitich variety of problems
presented by this domain.

The dataset is composed of 140 regions, segmented by vaigasthms (region
growing, snakes, and adaptive segmentation based apprdaebults have been evalu-
ated by the supervisedH{ andMyp) and unsupervised; — M3, Q2 andQ4) metrics.
Three independent observers were asked to outline GT fantyst challenging regions.
The per-pixel difference between these individual judgteeverages 3 pixels, which
suggests an appropriate value faon evaluatingH;.

We have calculated the correlation coefficients betweerrsiged and unsupervised
approaches; these are shown in Table 6.4. Figure 6.24rdlestevaluation results pro-
duced by 5 unsupervised and 2 supervised metrics on 140egio

Those metrics which use intensity or contrast uniformitytef segmented regions as
an evaluation criterion [139, 259] perform poorly on DCE-MRta. They show slightly
better performance on images at the beginning of the terhplicas, where contrast be-
tween the correctly segmented region and the backgroungieh Results on images
from the end of temporal slices often do not agree with exalngerformed by super-
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Metric |[M; M Mz Q1 Q2 Q3 Q4 Mywo Hz

M1 1 0.14 0.12 0.19 0.23 0.21 0.14 033 021
M> 1 0.11 0.17 0.19 0.16 0.11 0.29 0.r6
M3 1 0.15 0.20 0.17 0.14 0.37 0.33
Q1 1 0.79 091 081 0.76 0.78
Q2 1 0.79 096 0.82 0.86
Qs 1 082 083 0.8]
Qa 1 0.84 0.87

Table 6.4: Correlation coefficients between unsupervisidNl3, Q:-Qs) and supervised
approachesMwo, Ho, andHy) applied to DCE-MRI data.

vised metrics.

M3 (Zeboud)) provides evaluations which correspond bettéinéocsupervised metrics
evaluation. This metric operates on the contrast changié®ineighbourhoods of pixels
along the boundaries; it shows good performance when rediave been segmented with
the adaptive segmentation based approach. These areyugeidliclose to GT, which
leads to sharper contrast changes between inner and oegs: ar

The behaviour 00, andQ; is similar on the MCP data. Results produced by the new
unsupervised metrics show the best performance in camglatith H3 andMyo. This
experiment shows that the new metrics generate reliabldtses evaluation of DCE-
MRI data of the MCPJs and can be used when automated compafisggmentation
outputs is required.

6.2.3 Limitations of the approach and application dependanparam-
eters

There are obvious limitations of the proposed approach.igcsudsed in Section 2.4.2 all
unsupervised approaches that provide results of useflitgueguire human intervention

at some stage. Our method does not require a training stagesvier there are two
parametersl(, and for some metricd) that have to be manually chosen before the metric
can be applied.

Optimal length of the profile L

Two factors should be considered when chooginthe likely width of boundaries under
evaluation and the proximity of local artefacts. By the widf the boundary we under-
stand the image distance over which the edge exists. Théhlefghe profileL should
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Figure 6.24: Evaluation results produced by the metricsathrandomly chosen regions
from the DCE-MRI images of the MCPJs. Regions have beendaxteording to the
quality of results obtained witHls.

be large enough to capture the intensity change across baasdbut small enough to
prevent corruption of profiles by the artefacts.

For many applications, it is difficult to define a unique psitfor a boundary. Much
research has been carried out to evaluate true locationswfdaries [46, 263], but the
problem remains unsolved.

Thus, in order to determine the width of a boundary, sevexpkds (at least two)
should be asked to outline outer and inner contours of selerandaries. Figure 6.25
(left) illustrates boundaries outlined by two experts. foget; is the maximum distance
between all outer boundariets, that between all inner boundaries, andhe maximal
separation between closest inner and outer boundariesn ifiherder for a profile to
capture the true intensity chandeshould be longer thaD +t; +to.

Recognising that particularly large valueslo&re probably unnecessary and unde-
sirable, we are not interested inbeing higher than it needs to be. The proximity of
artefacts can be also estimated based on expert opinionir Bpplication, local artefacts
are blood vessels and other bone regions, and experimetfit®wi datasets have shown
thatL € [7;15 is reasonable, and provides sufficient estimatel!@ndc. Figure 6.26
demonstrates different choices lof S(I) captures the ambiguity of the boundary (high
estimate ot implies more ambiguous boundary) and the intensity chalggecrucial to
choosd. large enough for the intensity chang@) to reach its maximum.
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Figure 6.25: Synthetic and MRI regions with inner and outeuridaries outlined by
two experts. Inner boundaries in solid, outer in dashed lihe same colour indicates
results obtained from the same obsengris the maximum distance between all outer
boundariest, that between all inner boundaries, dbdhe maximal separation between
closest inner and outer boundaries.

Figure 6.26: Left: Regions in sample images of the MCP joadquire by the high
field scanner with a segmented boundary shown in white andfdepdrawn through the
boundary pixels shown in red. Righ¥1) graphs corresponding to the profiles.
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Optimal choice of A

Choice ofA and sensitivity of the metrics to it will depend on a partaruhpplication.
For example, when the boundary under evaluation is suppodee of a constant width,
but has estimates afindicating that it is not, then it can be assumed that segatient
delivered erroneous results. Here more weight should beedlan the ternc. Another
example, if after evaluation all estimatesadire similar and correspond to the expected
width of a boundary, then more weight should be put on evedogirovided by parame-
tersM.

To select an optimal for a new application a user can evaluate several regiors wit
one of the supervised metrics, and then chobsa such a way that the unsupervised
evaluation corresponds to the results provided by the sigest metrics. In the absence
of any ground truth information, equal weight on thleandc terms can be placed. For
our experiments we foundl = 0.5 satisfactory.

6.3 Conclusion

Evaluation of segmentation algorithms is an intrinsic gdrimage processing. In this
chapter we discussed several issues associated with ssereand unsupervised evalua-
tion and proposed solutions to the evaluation problem.

We have shown that currently accepted supervised and urvisg@ metrics are not
always adequate in application to MR imagery, which is caooapéd by local blur, partial
volume effects, intensity variations, subtle contrast] patient movement artefacts.

The mutual overlap based metric does not deal well with abjetose boundaries
contain tails, and is not applicable to open and ambiguousdaries. It does not per-
mit assigning an acceptable segmentation error and cassessinconsistencies in GT
information.

Existing stand alone unsupervised approaches usuallyoreiynage characteristics
they measure and require constraints on image propertl@shwften cannot be satisfied
in medical or real life imagery applications. Other unswjmd approaches aggregate
stand alone metrics using classifiers and employ variousilggstrategies in an attempt
to improve accuracy. Performance of such aggregate meinpgsoves with increasing
size of training set, but the issue of choice of primitive nostremains open.

We proposed a new supervised metric as an enhanced demiedteoHausdorff dis-
tance based metric. It allows estimating the acceptabte efrsegmentation, which can
be adjusted for desired quality; for example, the width obayuous boundary sections, or
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the opinion of experts. This metric produces easy-to-pregrand comprehensible results.
It permits comparison of different algorithms on variousagts or tuning a method’s pa-
rameters. Using it, we can detect the number of pixels whathaide precisely with GT,
or assess the width of ambiguity.

We also have considered several unsupervised approaathdsmmonstrated their lim-
itations. We conclude that while it is probably impossildelevelop an application inde-
pendent unsupervised evaluation metric that would notireqany human interference,
we can propose a family of metrics valid for various typeswéges, including synthetic,
real world, and DCE-MRI data. In such a way we can deal withuthfi@avourable proper-
ties of MR imagery and permit involvement of prior knowledg®ut the data.

Experiments have been performed using a large number anegsynthetic and real)
of various shapes, intensities, and contrast level, segrddyy 3 algorithms of different
behaviour and underlying criteria. We conducted experitsiémcompare evaluation re-
sults produced by the old and new supervised metrics aglaiumsan observers opinion
and learned that in most cases observers agree with theggdpoetric. We have also
objectively compared performance of the proposed unsugevmetrics against results
obtained with supervised approaches and demonstrateththabrrelation is high. We
consider the new metrics to be an improvement on those pireyai

Moreover, in this chapter performance of the adaptive segatien part of the algo-
rithm discussed in Chapter 5 was evaluated with MO and HDdagproaches. Both
supervised metrics suggest that the algorithm outperfamnakes and region growing,
which generated disappointing results in most cases.



Chapter 7

Analysis of DCE-MRI data

In this chapter we present an alternative approach to voyxelexel analysis, which over-
comes problems associated with heuristic methods cuyresid for DCE-MRI data as-
sessment and discussed in Section 2.5. We aim to allow futhnaated analysis of signal
intensity vs. time curves and objective estimation of thertstics such aME, IRE, and
Tonset Such analysis should permit quantitative assessmeneafagree of inflammation
and allow for time-efficient and objective evaluation of graient’s condition.

The results will be presented on the datasets acquired fiiveaRA patients and
healthy controls by high and low field scanners. The approedtibe compared to the
moving-window technique [195] discussed in Chapter 2

7.1 Classification of tissue behaviour

Behaviour of the signal intensity vs. time curves may be &xgld by the underlying
phases of the data acquisition. Starting from a baselirepénfused tissues absorb the
contrast agent, and their intensity climbs up (wash-in pjyasusually increases up to a
certain point and then exhibits a plateau (of variable wifttHowed by a wash-out phase
(gradual signal intensity decrease).

Signal intensity vs. time curves are normalised over a bhasas discussed in Sec-
tion 2.5.1. A sample generic normalised signal intensitytimse curve () and the dura-
tions of different phases of contrast enhancement areajisglin Figure 7.1, wherg;

124
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Figure 7.1: Signal intensity vs. time curve normalised avdraseline.T is the number
of dynamic frames in a temporal slicg; t, t3 indicate the beginning of the wash-in,
plateau, and wash-out phases.

is a baselineg, increase or wash-in)y; plateau, and, wash-out periods; anglég and
&2 represent the rates of the wash-in and wash-out. Somectests on the relationship
between these parameters of the signal intensity vs. timesumay be derived:

61>O7 62>O7 63207 54207
§1€(0,11/2), & e (—m/2,1/2) (7.1)

We are implying a piecewise linear approximafiafithel and curves satisfying these
restrictions will be approximated by one of the shapes shiovigure 7.2.

Si — negligible enhancement: pixels at which no enhancemenbt& can be detected
(these will include bone interiors).

S, S, S — baseline/wash-in: signal intensity vs. time curves witielarly enhance but
do not reach a plateau withihrecorded instants.

S — baseline/wash-in/plateau: pixels at which signal intgns. time curves reach the
maximum and an intensity plateau develops.

S, S — baseline/wash-igplateay/wash-out: pixels at which the Gd-DTPA has dissi-
pated and the intensity has detectably started to drop.

LAlternatively, curves can be approximated by more soptdstid models (e.g., a sigmoid), but we have
not performed such experiments.
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Figure 7.2: Possible shapes of theurves:S;, &, S, S . S5, S.

S corresponds to tissues which do not absorb the contrast, sy as fat and water
within the bone interiors, and display a relatively constiawensity within a temporal
slice. S3 describes the situation in which the tissue goes througlbdseline, wash-in,
and plateau phaseS; andSs show the presence of the relaxation phase of the tissue after
the plateauS,, S; andSs illustrate the situation in which the take up time of theuisss
longer than the time of data acquisition, and the plateaunbtbeen achieved.

The casey, is included here only for completeness, and represents thimgewe
would not normally expect to observe. Here, while a changeérate of increase is
plausible, a significant plateau during the increase s&geti Empirically we found that
any observation of this model has a very short plateau (at Sitisme instants) equally
well attributed to noise. We shall henceforward assumeahaignal intensity vs. time
curves can be modelled by one of the shapes proposed in Fiduexcluding this special
case.

We propose to use the knowledge of the underlying tempotspeof the Gd-DTPA
take-up to classify thé signals as an aid to noise reduction. This should permit more
robust estimation of the heuristics, which will be extracfeom the parameters of the
fitted model rather than from the raw signals.
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Figure 7.3. Top: The bone interiors, tissues within the tgirnvelope, and the back-
ground segmented in a sample DCE-MRI temporal slice. Battoonrresponding nor-
malised noise distributions derived from the bone intexidf — T3, and from the back-
ground pixels.

7.2 Noise model estimation

We seek an estimate of the distribution of the noise throubichivmodels will be fitted
to data. It is assumed that there is no Gd-DTPA take-up iniisai¢s identified within
the bone interiors and markers or in pixels outside the goertvelope. Therefore, signals
corresponding to these pixels may be approximated by a@on@he local signal mean),
with variations being explicit noise measurements. lts®@a@ssumed that images acquired
atT, — Tz time instants are unaffected by any enhancement, and tinertiiese values may
also be approximated by a constant, permitting a differesasarement of noise. Note
that it is not claimed at this point that these three noisenagés will necessarily come
from or describe the same distribution.

Normalised noise distributions derived from three différsources are shown in Fig-
ure 7.3. There is clear similarity between these distrdmgiwhich we can evidence using
the Kolmogorov-Smirnov (KS) test [155]. This is a paramételependent test of good-
ness of fit, which has the advantage of making no assumptioatdbe distribution of
data. The KS test is based on a comparison between the eahpirimulative distribution
functions (ECDF) of the datasets.

The KS test statistic is the greatest discrepancy betweeoumulative frequencies
of two distributions. If we have two experimental cumulatifrequency distributions:
Fn(X) containingN events, andhy (X) containingM events, the test statistic is defined by
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Equation 7.2 [155]:

DuN = m):ax\ Fn(X) — Fv(X)| (7.2)

KS=Dwun % v/[MN/(M +N)] (7.3)

Appropriate tables allow suitable conclusions of configetm be drawn from the
observatiorKS In our experiments significance level of 95% was used. It begrgued
that the noise level is expected to be the lower in the firstifeages, where any patient
movement artefacts and the Gd-DTPA influence are insignificdhis would suggest
deviations from thd; — T3 baseline as the best approach. Section 7.4.1 illustraaés/t
are secure in accepting these three distributions to betinduishable. Accordingly, we
model noise as an aggregate of that detected from thesediffiesent sources.

7.3 Determining best model fit

We proceed by attempting to fit each of the models illustrate€igure 7.2, and consid-
ering as likely candidates any for which the implied noiseahas in some sense that
which we expect to see. For each model the piecewise linesrfibés determined in a
least-squares sense (minimising also with respett ta t3); each such ‘fit’ then implies
T noise measurements. We then comggfor each model, rejecting those in which
we would have low confidence. Note that we are interested ittty noise distribu-
tion and not minimising noise observation; the latter woalldays preclude the simpler
models such aS,, Sz in favour ofS;.

In the event of more than one model being acceptable, the@syimstatisticp de-
rived from the test permits discrimination of which is ‘besthis statistic is known as
Kuiper’s coefficient of associations and measures maximosolate difference between
the cumulative functions of the distributions; the errostdbution with lower absolute
difference is preferred. The statisfpaanges from 0 to 1 and is defined as:

p= % (mxax| Fn(X) — Fv(X) |+ m):ax| Fv (X) — Fn(X) |) (7.4)

Experimenting with this approach, most pixels are fitted bgsnodelsS;, $, andSs,
as expected. Figure 7.4 illustrates an example in which paaH in the slice has been
coloured in accordance with its best fit (the colours comesito those of Figure 7.2).

Clearly, some pixels potentially fit more than one model, @nsl of interest to de-
termine how often ambiguity arises. Figure 7.5 plots thithwespect to the data from
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Figure 7.4; the histogram at the bottom of the figure illussahe frequency and depth of
ambiguities at 95% significance level.

We see that the modal observation is 2 models, but many mistssatisfy 3 models,
while some of the signal intensity vs. time curves can satiskily be approximated by
all models. This raises questions about the likely qualitthe second (or third) best fit,
and whether the chosen model best fits the actual data beinaVio this end, we adapt
the approach.

7.3.1 Simplified approximation scheme

Our observations suggest that many ambiguities seen vilibi§ models usually do not
reflect differing underlying physical behaviour, but arsuss of detail probably decided
by local noise. Therefore, we will classify the tissue uneeamination into one of four
broad behaviours, which we will label and define as:

Mo — negligible enhancement. Referring to the linear fits, ihis. Some tissue located
within cortical and trabecular bone, inactive joints, skimd disease unaffected ar-
eas do not absorb Gd-DTPA and are not expected to show itytesrdiancement
in the later frames of temporal slices. Where recognisedyllenot colour such
pixels in future representations.

M; — baseline/wash-in. There is often a proportion of curveshich by the end of the
scanning procedure the maximal intensity has not been eglaahdicating constant
leakage into locally available extra-cellular space. Thk[ I PA absorption and
signal intensity vs. time curves enhancement continue #feescanning has been
completed. These are mod&sandSs, which we will colour red.

Figure 7.4: An illustration of the model ‘best fit': pixels,here signal intensity vs. time
curves assume§; are plotted in white, in red, 3 in green,& in orange & in yellow,
S in cyan, andss in blue.
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Figure 7.5: Left: Pixels plotted in colours correspondiaghie number of approximation
models &, S, S5, S, S5,andSs) that fit: 1 model — cyan; 2 models — green; 3 models
—red; 4 models — orange. Right: The histogram summarisesafaencies: number of
models fit per pixel vs. number of pixels.

M, — baseline/climb/plateau. Full absorption of the Gd-DTRAHe tissues. This iSg,
which we shall colour green.

M3 — baseline/climb/plateau/decline. The wash-out phaséssmwed at the end of the
scanning procedure. These are modlandS which we shall colour blue.

A recolouring of Figure 7.4 with this scheme is given in Figr6. It is still possible
for more than one model to fit at a given pixel, but this is nostidctly unusual. Fig-
ure 7.8 illustrates this. Thus, simplification of the cléisation significantly reduces the
number of ambiguities seen within tisemodels.

7.3.2 Spatial filtering

The behaviour of need not be considered in isolation. It is reasonable tossmfhat
neighbouring tissue will behave in a similar way; but ingp@t of Figure 7.6 suggests
significant local variability. Arguing that the moddi4;, M2, M3 represent ‘ordered’ be-
haviour, we have passed a selective 3 median filter, which is a form of a spatial filter,
over the labels represented by Figure 7.6 (only pixels label, 2 or 3 are computed in
the median).

The size of the filter will depend on the application and regoh of the images.
Empirically, we found that for our data results obtainedhamedian filter sizes from
3x 31to 7x 7 correlate well with human judgements. With the larger saeas with the
most active synovitis are oversmoothed.
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Figure 7.6: Resulting map of the contrast agent uptake btaior a sample DCE-MRI
temporal slice of the MCP joints acquired with the high fieddisner. The colours in the
image correspond to the models each normalised signakityars. time curve assumed:
M; -red, M2-green, andVi3 -blue. Below are three magnified regions: (1) blood vessel,
(2) inflamed tissue, and (3) skin region.

This results in the relabelling of some pixels — of the orde2@% — 30% of those
within the perimeter of the joints’ envelope excluding boneeriors. We now adopt for
these pixels the best fit of the imposed model.

Since these are no longer in our sense ‘best fits’ we will haearred different error
residuals — we find that in the majority of cases the model aglked to the second best
as indicated by the statistic, suggesting that the noise distribution will hetperturbed
radically.

We have considered the aggregate distribution of such amghared it to the adopted
error model; theK S statistic allows us to deduce it is indistinguishable frdrattof the
model to which we are working. Figures 7.6 and 7.7 show an e@kauwf this procedure,
and Table 7.1 summarises the effect.

Label | Before After

M, 705 (6%) 940 (8%)
Mo 4822 (41%) 5762 (49%
M5 6233 (53%) 5058 (43%

Table 7.1: Populations of the different labels of Figurésahd 7.7.

This example illustrates that after the filtering the cotosinow distinguishable clus-
ters. There is a clinical plausibility to these patternsued presence of the wash-out
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Figure 7.7: A median filtering of the preceding image.

Figure 7.8: Referring to Figure 7.6, the number of approstioramodels Mo — M3) a
normalised signal intensity vs. time curve satisfies.
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phase, green — plateau, red — continuing wash-in. In péatict is possible to observe
that the blood vessels and tissues with the most active infl#ion are blue, an expected
behaviour.

Some magnifications are also shown in Figures 7.6 and 7. 7% ddygct blood vessel,
disease affected area and skin. Note that the few greenspin@ble inside the blood
vessel in the ¥ region in Figure 7.6 have been coloured blue; this identifiesvessel.
An affected area has been split into several clusters of &haegreen. This experiment
shows that the enhancement is clearly visible, with pastezmealed by the filtering.

Figure 7.9 shows the results obtained for a slice from a iiffestudy. Here, sig-
nificant areas become visible in which the intensity has eathed its maximum. This
implies significant incompleteness in any conclusions dréem the data; the converse
would be true in the absence of any red pixels.

Figure 7.9: Left: An image coloured according to the estadaapproximation models
M; — Ms. Right: The same image after median filtering.

The median filer in our case is used as a voting mechanismadtisptable if there are
only two labels in the neighborhood, but slightly nonseakitcthere are more than two
labels. For example, it would not produce an adequate sebalhg applied to following
labelling [1112333]. However, empirically it was found timaajority of the pixels within
the tissue of interest are labell&th. That is why, the results of the filtering are plausible.
For more complex data, a more sensitive filters such as Marandom Field or a rank
filter, would be more suitable.

7.3.3 ComputingME, IRE, and Tonset

Given a presumed model, it is straightforward to extractriséias ME, IRE and Tonset
from the linear approximation rather than from the raw d&igure 7.10 illustrates this.

Note thatt; of Figure 7.10 is interpreted as actual time of onset of enbarent, and
there will be differences in these measurements when cardpeith the moving window
technique. These are discussed in Section 7.4.2.
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ME=1
IRE - undefined
Tonser - undefined

S

~>

ME

Figure 7.10: Estimation of the parametM_E, IRE, andTynset fOr each approximation
model.ME has not been reached 85 andSs.

7.4 Discussion

7.4.1 Consideration of the noise model

In Section 7.2 we referred to different sources of noisewetan measure explicitly\;
derived from the first 3 time instants, from the bone interiors over all time instants, and
N3 from the background pixels. We argued that distributionthete different sources of
noise for our purposes are indistinguishable, and that weaggregate them.

If we experiment with the models separately, we fiid (the ‘deviation from the
baseline’ model) to be slightly stricter — more signal irgiéycurves were approximated
by Mg and therefore heuristics such BE andTynset Were not defined for thede This
is illustrated in Figure 7.11 where the labellings deriveahi the noise modeld\g, No,
andNg), are superimposed on the intensity post contrast imadde Ta2 summarises the
data from these figures.

It is not immediately clear that noise characteristics welnain unchanged during
the procedure. We have considered the noise distributiovsa@llT;; the KS test sug-
gests that the distribution of these errors is not distislyable from the model we have
constructed.
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Figure 7.11: Pixels are labelled according to the best finfieigure 7.1. Noise is esti-
mated fromN; model (left),N, model (middle), andN3 model (right). Colour labellings
were derived from the noise modeMN;( N>, andN3) and superimposed on the intensity
post contrast image of the MCPJs acquired with the high fiedahiser. White colour cor-
responds to pixels, whose normalised S| curves were appairid byMy, red - byMy,
green - byMy, and blue — bys.

Model / Noise model N; No N3 N; UN2> UN3
Mo 1194 (12%) 1152 (12%) 1176 (12%) 1186 (13%)
M1 51 (2%) 42 (1%) 43 (2%) 46 (1%)

Mo 5588 (60%) 5584 (60%) 5500 (57%) 5589 (60%)
M5 2459 (26%) 2514 (27%) 2490 (29%) 2515 (26%)

Table 7.2: The relative populations of the different lakel$-igures 7.11. The values
mean the number of pixels.

7.4.2 Visualisation of the heuristicdME and IRE

Parametric maps are generally used to characterise furatmatomy and disease-related
changes [50,180,195]. When the heuristis andIRE are computed, a parametric map
is built to reflect the general behaviour of the tissues. FEgu12 illustrates a parametric
map of ME. The colour coding here considers the value of a parametepknts lower
values in red, moving to yellow then white as the values iasee In the parametric maps,
values of the heuristics are normalised by their maximumaoolur coding is performed
on the data from the range [0,1]. The maximum valued/& andIRE are normally
associated with voxels located within blood vessels, foezghe degree of inflammation
of other tissues will be colour coded in respect to the bloesksel enhancement. This, of
course, prevents objective comparison of the data acqometifferent scanners.

Figure 7.13 illustrates a parametric map\E constructed with different approaches.
The study chosen exhibits significant patient movement,thaceffect of the registra-
tion to compensate for this should be clear. The differemcedurther illustrated in the
magnified images shown in Figures 7.14 and 7.15.

According to the opinion of experienced observes and diregperts, the maps con-
structed with the model-based technique provide sharpapeshof the bone contours,
blood vessels, and reduced skin enhancement. These eswgtlsrare explained in Sec-
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Figure 7.12: Parametric map bfE and a colourbar. The lower values of the parameters
are plotted in red, then yellow and white as the values irrgedhe maximum value of
the parameter corresponds to the blood vessels’ enhantemen

Figure 7.13: A parametric map ®E obtained with the moving-window approach (left
top), with the benefit of a spatial median filter (right top)ttwthe further benefit of the
registration (left bottom), and a parametric map obtaingdgithe model-based method
(right bottom).



Chapter 7 137 Analysis of DCE-MRI data

Figure 7.14: Parametric mapsMiE obtained with the moving-window (left) and model-
based (right) approaches. The blowups show reduced skemeement, changes in be-
haviour inside the blood vessels and bone interiors.

Figure 7.15: Parametric maps BRE with the moving-window (left) and model-based
(right) approaches.
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tion 7.4.5

Besides heuristicME andIRE, clinicians often use a range of parameters derived
from [ signals; examples include ‘time to reach 90%\WE’ [119]. It is clear that with
the approach presented the estimation of such parametgraightforward.

In some studies the difference in the parametric maps adddy different algorithms
is not dramatic, in others it is more significant. Even if wesetve a difference in the
number of pixels contributing to the parametric maps, thkeles of IRE and ME for
the accepted pixels are comparable. However, estimatidheoheuristics from the ap-
proximations fitted through noise allows minimising theswinfluence. Therefore, the
proposed method provides greater confidence in the measuatem

743 Tonset

Another important measure used to characterise tissuevizeinas the time of onset of
enhancement [119]. This time estimated using the movingdaw algorithm Tire in
Figure 7.16) corresponds to the instant where the maximutheofradient occurs. This
estimated can be adjusted to the actual time of onset, givestamate ofRE, its instant
of occurrence, and an assumption of a baseline of 1. A sinppeoach is to determine
the straight line intersection illustrated in Figure 7.16t us define this time ag)set

~>

Tonset T|RE

Figure 7.16: Determinin@onsetgiven Tire andIRE. Intersection of the maximum gradi-
ent line and a baseline defin€g,s+ The pointTire is estimated as an average within a
moving window of size 5.

The model-based method provides an alternative appraadtf Figure 7.1) and we



Chapter 7 139 Analysis of DCE-MRI data

have compared these.

Two histograms of the statistifynset €Stimated for one of the DCE-MRI slices with
the model-based and improved moving-window approacheshanen in Figure 7.17; the
statistic has only been computed at locations deemed éstiag’ in both approaches.
Figure 7.18 shows the distribution of per-pixel differes@e these estimates.
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Figure 7.17: Histograms Ofgnset €Stimated with the model-based (left) and modified
moving-window (right) approaches.

The histogram in Figure 7.18 exhibits bias, obtained asudtreSper-pixel subtraction
of ty from T, e Recalling that the size of the window is 5, the histogram olestrates
that if the duration of the wash-in is less than 5 time ingdhen we might expedt >
Tonser @Nd if the duration is more than five then< T, Figure 7.18 suggests that the
latter case dominates. Examples are shown in Figure 7.19.

In the great majority of cases, when estimates are diffeteese estimates differ in
magnitude by at most 1 and so there is arguably no differdmaethere are still many
cases in which the difference is appreciable (around 20%aitions of interest). On
inspection, it is hard to say which approach generates muoveally plausible interpre-
tation ofi.

An example of this is shown in Figure 7.19 (left); onset of@mtement estimated with
the improved original approadfénset: 7 and with the model-based approack- 6. This
experiment has been performed on 100 randomly selecteeésurv

In some cases the estimates give the same results, howearput 20% of cases
the estimate offynset provided by the model-based approach is preferable to thidueo
moving-window. One such example is shown in Figure 7.1N(¢)ig
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Figure 7.18: Distribution of the differences betweRhpset €Stimates.
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Figure 7.19: Different estimates 0fnset Left: The model-based approach generates a
more reliable result. Right: The choice of which estimatewst be preferred is unclear.

7.4.4 Number of enhancing voxeldoial

The correct estimation of a parameter such as the percentagehancing voxeldqtal

is useful for the evaluation of a patient condition (asses#nof the extent of RA and
tracking disease progression) more accurately, and paligneéstimating the degree of
RA based on quantitative rather than the pain scoring oraviaasessment based [174]
measures.

Subtraction of pre- and post-contrast images is often usexbmpute a number of
enhancing voxels [21, 175, 233,278]. Areas with synovéi®sions, and bone oedema
are manually or semi-automatically pre-segmented, anduinger of enhancing voxels
located within these areas is computed to score the dis@ageepsion or response to
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treatment. With the moving-window approach this judgenters been made via criteria
such as requirin®E > 1.2 andTypset< 60s[195].

Our method permits an improved measure: we label as ‘noaresihg’ any voxel
which assumes the lab®ly. Further, we are able to identify tissues that did not absorb
enough Gd-DTPA to exhibit maximum enhancement.

Table 7.3 shows the number of enhancing pixilg:£) normalised to the total number
of pixels processed in the temporal slice (that is, pixelthivithe joints’ interior) for a
random selection of DCE-MRI studies acquired with the higld sow field scanners.
Due to the minimised artefactual enhancement, there isa glealitative difference in
these numbers. Figure 7.24 illustrates the results oldanmeseveral slices with these
approaches.

Study Model-based approach Moving-window approach
High-field data

1 0.58 (22%) 0.68
2 0.59 (6%) 0.63
3 0.42 (10%) 0.51
4 0.39 (13%) 0.57
5 0.39 (2%) 0.57
Low-field data

1 0.68 (3%) 0.97
2 0.57 (6%) 0.86
3 0.32 (1%) 0.89
4 0.42 (4%) 0.97
5 (healthy control) 0.1 (10%) 0.98

Table 7.3: The number of enhancing voxels estimated withntle@ing-window and
model-based approaches. In the second column, we incledpditentage of pixels
corresponding to locations where we observe continuou®TEA absorption.

7.4.5 Codings of the Gd-DTPA take-up and parametric maps oME
and IRE

We are further able to map the Gd-DTPA take-up by plotting ddeption of models
M; — M3. Blood vessels usually assunvg, indicating (as expected) presence of the
wash-out phase. Most signal intensity vs. time curves spording to the disease-
affected tissues normally assign moddisor M3, indicating a plateau of intensity and full
absorption of the Gd-DTPA. However, some require the mdtiglsuggesting a wash-in
phase continues after the procedure has been completed.
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Figure 7.20 illustrates this for different studies; a predioance of red indicates the
procedure is incomplete. Information of this nature maydiebe of use in tuning the
procedure.

Figure 7.20: Gd-DTPA take-up maps: highly perfused tissueksblood vessels are usu-
ally modelled byMg3 (blue), inflamed tissues hbyl, (green), tissues where procedure is
incomplete byM; (red).

Figures 7.21 and 7.22 show parametric mapsMd, IRE and Gd-DTPA uptake
built for a DCE-MRI study of the MCPJs using the model-based moving-window
approaches.

We note that:

e The model-based technique permits the accurate sepaadtimm-enhancing bone
marrow and fat, muscle, which assumes low-intermediat@amecgment, and syn-
ovitis, which normally assumes high-intermediate fornaeRA patients.

e Before images were aligned, voxels located in the skin are@womposed of a
mixture of the tissues (dermis and epidermis), and extdbiteermediate enhance-
ment. When the skin layers were aligned with the registredigproach, only pixels
within the epidermis remained enhanced. This has redu@ovérall width of the
skin enhancement.

¢ With the moving-window algorithm ‘interesting’ voxels atleose, wherdE > 1.2
and Tonset < 8.5. Often, heuristics estimated for signal intensity vs.etiourves
located within the blood vessels did not satisfy this appinpand the corresponding
pixels were eliminated. With the model-based techniqug pixels whosd curves
assumedMy were excluded. These pixels never appear within the blosdals.
Therefore, blood vessels partially ignored in the mapsiobthwith the moving-
window method are in evidence with the model-based teclniqu

e Parametric maps obtained with the proposed method are tesgpted by noise
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Figure 7.21: A dynamic frame from a temporal slice with a dnaahount of motion
analysed with the moving-window and model-based appr@achep row: Post-contrast
image, parametric maps ®E andIRE obtained with the moving-window approach.
Bottom row: Gd-DTPA take-up map, parametric map$4 andIRE obtained with the
model-based approach.

Figure 7.22: A dynamic frame from a temporal slice with a gfigant motion analysed
with the moving-window and model-based approaches. Top @st-contrast image,
parametric maps dME andIRE obtained with the moving-window approach; Bottom
row: Gd-DTPA take-up map, parametric mapsSwE andIRE obtained with the model-
based approach.
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Figure 7.23: Parametric maps BfE (top) and Gd-DTPA uptake (bottom) for datasets
acquired with the low-field scanner. Left: Patient with aetRA, SE sequence. Middle:
Patient with active RA, GRE sequence. Right: Healthy cdn8&E sequence.

and provide a clearer visualisation of the bone contoumndblessels, and disease-
affected areas.

e We are able to detect areas of subtle and sparse enhancdfigene(7.23) which
are very difficult to locate by viewing images one by one omewéh the subtrac-
tion method. These areas are of particular interest forssegsment of RA in wrist
studies. Figure 7.23 illustrates mapdwE and Gd-DTPA take-up constructed with
the model-based method for DCE-MRI data of the wrist joirguaced by the low
field scanner.

The data obtained from the low-field scanner was also predessth the moving-
window technique. We experimented with windows of différsize — a larger size win-
dow (> 5) smoothes out the details of the signal intensity vs. tionwes and does not
allow for the efficient differentiation of tissues. Figure2Z illustrates the parametric
maps constructed with the moving window (top) and modektdgbottom) techniques.
The joints were segmented automatically before the alymsthave been applied. Fig-
ure 7.25 shows parametric mapsME when no segmentation was applied.

In the parametric map constructed with the moving-windoghteque pixels located
within the marker and bone interiors were colour-coded, lyimg response to the Gd-
DTPA. In the corresponding map obtained with the model-thamgproach no pixels
within the bones or marker were coloured as they assumedInvige
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Figure 7.24. Top: Parametric maps MfE andIRE obtained with the moving-window
technique (window size & 5). Bottom: Corresponding results obtained with the model-
based technique.

Figure 7.25: Parametric maps BIfE obtained with the moving-window technique (left)
and the model-based (right) techniques. The joints’ cant@s not segmented.
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7.5 Results

This section presents the experimental results that corthimreliability of the model-
based approach for RA assessment, and illustrate the Iseofkesiich analysis for evalua-
tion of the disease progressfon

Healthy controls. One of the datasets was acquired from a subject with no RAsudut
fered from occult wrist pain — possibly due to a ganglion ie #rist joint, that was
not found in the post contrast sequences [50]. Pre-, postast images and para-
metric map oME and Gd-DTPA take-up constructed for this subject are shown i
Figure 7.26.

Figure 7.26: Pre-, post-contrastimages and parametris midE and Gd-DTPA uptake
for patient with no diagnosis of RA.

Disease assessment in the healthy controls is probleniaiscchallenging to dif-
ferentiate RA patients from those who suffer from wrist plair are not affected by
the disease.

Currently, this analysis is performed with a ROl based meétHdsually the posi-
tion of the ROI is chosen at the patient’s suggestion or prgsively based on the
anatomical landmarks [50]. The ROI covers the area wherpdtient feels pain the
most. Such evaluation might result in erroneous diagnddm®iROI is misplaced.

The proposed technique eliminated the problem with ROl egfant and allows

objective assessment of such patients. Medical expems Frederiksberg hos-

pital performed a visual inspection of the results illustthin Figure 7.26. They

concluded that the maps clearly show that the patient doeksave inflammatory

arthritis, however exhibits some tissue reaction on thérashagent. Quantitatively
for this patient we found tha¥;q;5 = 0.06,ME is on average 1.3 with the maximum
at 2.4.

2The observers viewed images with prior knowledge of whichihoe was used to generate them (i.e.
not a blind study).



Chapter 7 147 Analysis of DCE-MRI data

The condition of this patient was also evaluated using stad with a Doppler
technique; experiments were performed by specialists frloenParker Institute,
Denmark. The results obtained with the model-based tedenigrrespond to the
US evaluation, which showed mild colour Doppler activitytie wrist leading to
the conclusion that the patient suffered from a mild undpeicritation of the wrist.

Parameters for RA patients and healthy controls. Figure 7.27 illustrateB1E andN;qt4)
estimated for 33 subjects with active RA (129 temporal sli@nd 4 controls (12
temporal slices). The maximum enhancement in healthy olenis always below
20%, with the total number of enhancing pix®&g:y less than 5%. The enhanc-
ing pixels are located sparsely in the skin and blood ves&&tsaverage in slices
corresponding to the patients with active RAE is between 2.5 and 4 with the
maximum reaching 14, ans 4 is between 0.3 and 0.4, depending on the degree
of inflammation. This could provide a good metric for ideyitiig healthy controls
and measuring disease progress of RA patients.
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Figure 7.27: Box-and-whisker plot &1 E (left) andN;q4 (right) for patients with active
RA and healthy controls; N — is a number of patients.

Assessment of data from follow-up examinationsWe have analysed several datasets
acquired in follow-up examinations. The first patient waarseed 2 times in the
axial plane after the injection of the intra-articular gheorticoid. Figure 7.28 il-
lustrates parametric maps.

Parametric maps in Figure 7.28 suggest a diminished periusithe visible pan-
nus’ and clear improvement of the patient’s condition. This iseapected treat-
ment effect. The experts also confirmed that this infornmatsonot available with
the conventional images after Gd-DTPA contrast, where #teept had high and
unchanged synovitis at the follow-up.

3Pannus is a medical term for a hanging flap of tissue. Panmssists of skin and fat. In people

suffering from rheumatoid arthritis, pannus tissue evalyuforms in the joint affected by the disease,
causing loss of bone and cartilage. [260]
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Figure 7.28: Parametric map ME and Gd-uptake constructed for RA patient in the first
(left) and last (right) examinations. The patient has showprovement.

Another patient was re-scanned in the coronal directioeethimes after injection
of a steroid. He had had short clinical relief, but got wordewa days after each
injection with pain and discomfort in the wrist. This infoation is reflected by
the parametric maps shown in Figure 7.29. The first image wgsiged at the
first examination, second — after the injection of a steroid dlustrates minor
improvements. After a short period, this patient got woesa] the image on the
right illustrates this.

7.6 Conclusion

Quantitative analysis of contrast enhanced dynamic MRAs#ds involved in monitoring
and assessment of RA has been discussed. We presentediguechat allows extraction
of various parameters such s, IRE, andTonse; Which are essential for the assessment
of the data acquired from patients with rheumatoid arturiti

These heuristics are derived from linear approximatiotisetathan from raw signal
intensity curves, making their estimation robust to thejsctive opinion of the operator
and noise effects. The choice of the ‘best’ model for eaclvealows for accurate
tissue classification. Voxel-by-voxel analysis elimirthteneed for ROI placement and
a choice of an optimal moving-window size, which makes thsults fully automated,
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Figure 7.29: Parametric maps constructed for a patientaerged 3 times after the in-
jection of a steroid. The first image was acquired at the fixan@nation, second — after
the injection of a steroid and illustrates minor improvenserAfter a short period, this
patient got worse, and the image on the right illustrates thi

easily reproducible and objective.

This approach to the extraction of the heuristics and pat@gnmaps permits eas-
ler visual assessment of the degree of inflammation in RAeptdj which allow for a
more accurate analysis of the extent of the disease andadiffation of various tissues.
Moreover, indications of Gd-DTPA take-up, hitherto undatlie, provide improved iden-
tification of tissue behaviour according to its temporatgat of the contrast agent uptake.

Among the randomly chosen patient cohort in this pilot sfydyametric maps dE
andIRE constructed for healthy and RA patients are noticeablebffit, corresponding
to our expectations and clinical judgments provided by thgeeenced observers and
radiologists. The results demonstrate that the modeleb@atnique is sensitive and may
be useful in the diagnosis and follow-up examinations ofggagents who are receiving
disease-controlling treatment.

The method provides a numeric evaluation upon which clirsind research decisions
can confidently be made. The possibility of the evaluatiothefdata acquired from the
low-field MRI scanners further extends the usability of thethod as such scanners are
more patient friendly [214] and cost efficient compared @ ltiigh-field machines.
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Blood vessel segmentation

The assessment of disease progression or patient resmgoptisatinent can be done via
constructing parametric maps and computing the number lo&rgeing pixels within a
certain threshold of values of the parameteis andIRE. In terms of these parameters
behaviour of the blood vessels corresponding to the veimangssimilar to the behaviour
of the inflamed synovium: normalised signal intensity vsidicurves exhibit significant
intensity change, assume modé} or M3 and high values oME andIRE. This might
complicate objective and visual assessment of the datahigrchapter we will discuss
an algorithm for the detection of the blood vessels in DCEtM&a of the MCP joints
acquired with the high field scanner.

8.1 Segmentation algorithm

The tissues within the joints’ envelope will be classifietbimessel / non-vessel with a
three-stage, coarse-to-fine approach.

e Firstly, the shape of the normalised signal intensity vaeticurves is analysed by
principal components analysis (PCA) applied to temporigaesl The behaviour
of the normalised signal intensity curves extracted frome|s located within the
blood vessels and synovium is similar at the baseline, iastnd plateau phases.
At the wash-out phase, their behaviour starts to divergevéssels are expected to
leak out the contrast agent earlier. However, due to the slupation of this phase,

150
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not all pixels within the blood vessels exhibit a wash-outefefore, classification
of the tissues based on the signal intensity vs. time cure\beur during the
wash-out is imperfect.

e Subsequently, these results were refined using more spearameters such 3E
andIRE.

¢ In the last stage, the spatial relationship between thdgigeated within the ves-
sels were considered through probabilistic modelling.

8.1.1 Principal component analysis

Firstly, to assess a pattern of behaviour in the signal sitgns. time curves, we applied
PCA to 20 temporal slices randomly chosen from 10 DCE-MRhbsets of the MCP
joints. Pixels at which the normalised signal intensity tusie curves assumedg and
M1 were excluded. Figure 8.1 illustrates the mean and prithcipaponents from this
data sample.

Figure 8.1: The mean (in bold), the mean2 standard deviations of the first principal
components (left), and the mear®? standard deviations of the second principal compo-
nent (right). The mean + component is shown in red; the meamponent — in green.

The first two components capture 97% of the information pregethe data. The
shape of the temporal course of the first component correlsptmthe behaviour of the
inflamed tissues, and the second to the blood vessels.

Secondly, we manually outlined synovial tissue and bloabets in these 20 DCE-
MRI slices. Figure 8.2 illustrates the mean and the me&ano first principal components,
estimated for pixels located within the perfused tissuef$)(@nd the blood vessels (right).

Figures 8.2 illustrates that the mean2 principal components(standard deviations)
corresponding to the blood vessels exhibits a clear washaad the meags: 2 principal
components corresponding to the synovial tissues mighb#xn intensity plateau and
slight intensity increase. This behaviour is consistemt iflects presence of the wash-
out phase in the blood vessels.
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Figure 8.2: The mean: 2 standard deviation of the first (in red) and second (in Black
principal components estimated for the inflamed synovssiue (left) and blood vessels
(right). The mean + component is shown in solid line.

Using this result we attempt to discriminate between theelssand synovial tissue.
Let u andv; denote the mean and the first principal component estimateithé blood
vessels, andy andw; the mean and the first principal component estimated foryhe s
ovial tissue outlined in a 10 slice data sample. Thus, theahg two models can be
tried:

¢ = p+av
¢ = n+pw

wherea andf are multipliers for the principal componentggdescribes behaviour typical
for the blood vessels angl for the synovial tissue.

All signal intensity vs. time curves in a sample temporateshvere projected op
and¢ to calculatea and. This reflects the correlation between the model and a curve.
Figure 8.3 illustrates a sampiecurve (in black) derived from a blood vessel (left) and a
synovial tissue (right) projected ap(red) andg (blue).

Using these PCA descriptors eacburve can be assigned a provisional vessel / non-
vessel label: if for d curve a < B, then the corresponding pixel is assigned a label
‘vessel’, otherwise, whefi > a, ‘non-vessel’. Figure 8.4 illustrates the results obtdine
for a sample DCE-MRI slice. Euclidian distance based compaiis valid as eigenvalues
are similar (i.e. two sets have approximately the same neep

At this stage, approximately 50% of pixels were classifiedexily. The algorithm
did not deliver false negative results; all errors weredgiesitive. This result suggests
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Figure 8.3: Samplé curves (in black) derived from a blood vessel (left) and syalo
tissue (right) projected og (red) andg (blue).

Figure 8.4: Left: A post-contrast image from a sample DCE{Mkte with enhancing
pixels shown in red. Right: The same image after classiboatiith PCA: pixels classi-
fied as vessels are shown in red.

that PCA can only crudely classify the tissues; it fails tpagate synovial tissue from the
blood vessels, however isolates tissues with a high vastyuleom the rest of the tissues
present in the joints.

We will proceed by analysing the behaviour of the signalnstg curves correspond-
ing to the pixels labelled as vessels at this stage.

8.1.2 Spatial relationship

Empirically, it was found that distributions of the heurcstME and IRE on the pixels
classified with PCA as vessels are and Gaussifigure 8.5 illustrates distribution of
ME andIRE derived for a sample DCE-MRI slice.

The measur@ynset Was less informative. The wash-in phase in the vessels that e
hance as the result of the inflow effect starts early (less thame instants); the wash-in

1Kolmogorov-Smirnov statistical test of goodness of fit conéd this observation. The GMM was first
fit, then KS done on each Gaussian
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IRE
2

Figure 8.5: Histograms ofE andIRE for a sample DCE-MRI temporal slice of the
MCP joints acquired with the high-field scanner.

of the vessels enhancing in response to the contrast agetst at about 3-5™" time in-
stant. There are no strict constraints on when the washrbeaxpected in the synovial
tissues. Therefore, we used only three parametdviE, IRE, M > to describe behaviour
of signal intensity vs. time curves.

We fit a mixture model of two 3 dimensional Gaussian functitmhe data with the
expectation maximisation algorithm (EM) and label the twonponents as vessel / non-
vessel based on the assumption that the mixture, in whictoatiponents of the mean
are higher represents a vessel. Unsupervised EM algorithsrcivosen over a supervised
approach due to the data variability.

We define the set of parameters for each pixel of a dynamicdriamna temporal slice
asX = {x;,i = 1...N} whereN is the number of pixels. A corresponding field of labels
L = {l;,i = 1...N} is defined, wheré; € {A1,A2} denotes a pixel as vessel/non-vessel.
The task is to find the assignment of labels to each pixel wimakimises the probability
of the observed parameters. Assuming independence bepiesn, we can write this
probability as:

p(X|L) =[] p(xilli, 8)t(li), (8.1)

wheret represents a prior on the proportion of each class withirdtta, and(x;|l;, 8)
the conditional probability distribution of the parameterME, IRE, M > given the label
(and model).

Given the independence assumption made, the assignmeaatied$ Imaximizing the
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probability can be found separately for each pixel:
I7 (%) = argmap(xi(l;, )t (i) (8.2)

The noise present in the data and imprecision in the model sed leave some error
(evaluated in Figure 8.8). Therefore, we exploit the faet the blood vessels have non-
negligible spatial support by assuming that neighbouriagels are likely to have the

same label in the absence of significant differences in tag lgvel between them.

8.1.3 Final steps

Markov random field (MRF) [84] based filtering allows refinemef our initial assign-
ment of labels td.. We define a set of cliqu&swhich represents the connections between
pixels in the image (considered as nodes on a graph). We litnmead an 8-connected
neighbourhood such that the cliques contain all pairs oglgixvhich are neighbouring
on the 8 compass points (north, north-east, etc.). Notehleatliques are unordered, for
example north/south relationships are considered idaintic

The energy function, which is a mechanism for modelling egtttal information, is
described by Equation 8.3, where we omitted dependenceeofixdd parameter§ for
the sake of clarity.

N
E:—leogp(xi\li)Jra Z LIJ(fi,fj,|i,|j) (8.3)
i= <i,]>eC

a > 0 controls the relative importance of the terms. Based omthgirical observations,
o was set to 1, giving equal weight to both terridsis defined as the following, where
is a pixel intensity in the post-contrast imagde| is the number of cliques:

0 =1,
Y = \fiffj|2 (84)

1-e 2 o=, /glfi—fi li#]

For an input set of pixel® and a set of labelk, the goal is to find a labelling or a
mapping fromP to L which minimises the energy function. This assignment ofdbels
to the pixels was found with the mincut-maxflow algorithm,igéis known to give the
global minimum [29, 239].

We can refine region boundaries using the adaptive segnmntadsed algorithm
discussed in Chapter 5. An example of a blood vessel's baymslahown in Figure 8.6,
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Figure 8.6: Left: A boundary of a blood vessel refined with @agtive segmentation
technique; the position of the initial boundary is shownlsdk and the final boundary in
red. Right: Contour of the red boundary shown on the left.

where the initial boundary is shown in black and the final lmamg in red. The method
works, but is not necessary given the MRF output.

Figure 8.7 illustrates results of the algorithm on seveliaks, where blood vessels
are outlined in the parametric map MiE.

Figure 8.7: Top: Parametric maps BFE corresponding to DCE-MRI slices with seg-
mented blood vessels (the contour is shown in blue). Bott@urresponding post-
contrast images.

8.2 Experiments and discussion

PCA classification As the first step of the algorithm, we attempted to analyse#tern
of behaviour in the blood vessels and perfused tissue usi#g Figure 8.4 illus-
trates the results of PCA based classification on a sample-MREslice; pixels
classified as vessels are shown in red.

Our experiments demonstrate that PCA fails to segment euilthod vessels, how-
ever, it separates severely affected tissue and bloodIgdss®@ the rest of the tissue
in the joints.
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We performed PCA-based classification on 60 DCE-MRI slideak@MCP joints.
The results show that approximately 30% of the total numlbgixeels within the
joints’ interior without bones are identified as vessels—580% of these pixels
classified correctly.

Numerical evaluation of the pixel reduction is given in Tald in Appendix D.
Figure 8.12 illustrates the percentage of the pixels thakspond to the vessels in
respect to the total number of pixels.

EM based classificationWe applied the EM algorithm to the pixels classified as vassel
with PCA. Each such pixel was labellég/|> based on the value of the heuristics
{ME,IRE} and a model numbévi. We evaluate performance of the EM algorithm
with a different number and combination of the initial paeters using Receiving
Operating Curves (ROC) space

Five DCE-MRI studies (30 slices) with manually segmenteabtlvessels were
used in this experiment. The true positive rate was compagethe ratio between
the true positive pixels and a total number of pixels wittia blood vessels, and the
false positive rate as the ratio between the false posiik&gand a total number
of true non blood vessel pixels.

The heuristicME andIRE and model numbe&vl computed for a DCE-MRI slice
were normalised to be zero-mean and unit variance. Fig@dl8strates the per-
formance of the best classifiers, where the true positiwe isathe sensitivity and
the false positive rate is equivalent to one minus spegificit

Clearly, the number and combination of the initial parameiaefluence perfor-

mance of the algorithm. In order to choose the best classiiiarea under the
ROC curve [261] was computed. Before we compute the areardineeurve, the

convex hull was formed. Using the convex hull approach migive changed the
results. However, the difference in the classifiers’ perfance is significant, and
therefore influence of the convex hall was not dramatic. Tlasstfier with the

{ME,IRE,M} set of parameters delivered the best results. Figure &iStidites

performance of this classifier on 6 post-contrast images.

Pixels identified as false positive normally appear in tteedse affected areas and
their heuristics are very similar to those of blood vessBigels identified as false

2In a ROC curve the true positive rate (Sensitivity) is pldtie function of the false positive rate (100-
Specificity) for different cut-off points. Each point on tROC plot represents a sensitivity/specificity pair.
A test with perfect discrimination (no overlap in the twotdisutions) has a ROC plot that passes through
the upper left corner (100% sensitivity, 100% specificififierefore the closer the ROC plot is to the upper
left corner, the higher the overall accuracy of the test.
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Figure 8.8: ROC curves for EM classifiers with different conation of the measures.

negative normally surround blood vessels and their exafusinclusion might be
due to observer's mis-detection. Figure 8.10 illustratdsd positive and false neg-
ative pixels for one of the DCE-MRI slices.

8.2.1 Blood vessel detection

In this section we evaluate performance of the segmentatguorithm on 60 DCE-MRI
slices of the MCP joints. Firstly, the ability of the algdmih to detect vessels in tempo-
ral slices will be assessed, then we will compare autonigtisagmented and manually
outlined blood vessels using the mutual overlap based metri

The number of the blood vessels per slice varies from 8 to abler8.1 illustrates a
number of automatically vs. manually detected blood vassel

Table 8.1: Detection of the blood vessels in temporal sljdesnber of blood vessels
delivered by the algorithm / Total number of vessel in a terapslice]; S— scan number;
P — patient number.
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P

P
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P
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9/9
9/9
9/9
8/9
8/8
9/9

14/14
11/11
11/12
13/13
10/11
12/12

16/16
14/15
17/17
16/17
17/17
16/17

14/14
12/13
14/14
12/14
15/15
16/16

9/9
11/13
12/12
9/10
11/11
11/11

12/12
9/10
11/11
12/13
12/12
10/10

12/12
12/13
11/12
10/12
13/13
13/13

12/12
10/10
8/9
6/8
10/10
12/12

10/10
9/9
8/10
12/12
12/13
12/12

17/17
14/16
14/15
15/15
15/15
16/16
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Figure 8.9: Six post-contrast images from different DCEINKces; pixels classified as
vessels are shown in red.

In our experiments, the algorithm did not deliver false pesiresults; thus, no post-
processing to remove over-segmented regions is neededeowsome blood vessels
of small size (area less than 5 pixels) were not detected. |Iddation of these under-
segmented vessels can be recovered when a 3D vessel treeristrected. To illustrate
the approximate location of the vessels we applied an iotetjpn technique [137] on the
vessels’ location. Figure 8.11 illustrates the result.

The quality of the automatically segmented vessels was acedpith manually out-
lined regions on each step of the algorithm (PCA, PCA+EM, PEM+MRF); for the
60 temporal slices we computed a number of pixels within thesels in respect to the
overall number of detected pixels. Figure 8.12 illustrakesresults.

There is an incremental increase in segmentation qualitgr BCA based classifica-
tion about 50% of pixels were classified correctly; EM refities result to 70% of the
detected pixels representing vessels. MRF filtering ireedhis to 90%.

This experiment illustrates that the proposed strategg@geas promising results. On
average the algorithm detects 92% of vessels in dynamic Médssof the MCPJs, with
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Figure 8.10: False negative in red (left) and false positivielue (right) pixels detected
with the EM classifier.
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Figure 8.11: Left: Location of the blood vessels in a sampleEEMRI study. Right:
Depiction of the vessel tree and bone interiors (3D view).

mutual overlap between GT and obtained segmentations @xce20%.

8.3 Conclusion

The algorithm presented in this chapter allows for accusagmentation of the blood
vessels from DCE-MRI datasets of the hand joints acquireéd ngh-field scanner. The
algorithm has not been applied to the data acquired with dhefield scanner, as the
blood vessels are not visible in these images.

We demonstrated how a combination of approaches motivatetieophysiological
properties of the individual tissues, such as speed of abearand concentration of a
contrast agent, can be employed to describe the behavidhe ekssels and synovitis.

MRF-based filtering incorporating prior information abdbe smoothness and the
data term, describing intensities of the pixels in postt@st images, was used to exploit
the fact that the pixels located within the blood vesselsualéely to have significant
differences in the grey level. It allowed us to remove amhigs due to low contrast and
partial volume effects, which significantly improved thgs®ntation quality.

In our application the number and shape of vessels varyfgigntly within the study,
and the vessel segmentation problem was solved on a slisédeybasis, rather than in
3D space. However, for an application where the slice theskris smaller, the extension
of the algorithm would be straightforward. Future work shibfocus on testing of the
method on datasets acquired from different joints, extegtlhe approach to perform on
3D images, and investigation of the algorithm’s performeamten other heuristics are
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Figure 8.12: A number of pixels within the vessels in resgecthe total number of
detected pixels at different steps of the algorithm: PCA APEM / PCA+EM+MRF.

included.



Chapter 9

Conclusions

9.1 Summary of work

Magnetic resonance was first applied in regard to biolodisalie assessment in the late
1970s, however its recognition as a clinical imaging magaiccurred only in the late
1980s. It is still a developing technology, moving from tharmaal qualitative to fully
automated quantitative analysis of tissue conditions.

With constantly evolving hardware and the increasing ugdf in clinical applica-
tions, there is a high demand for efficient and robust imagenstruction and analysis
algorithms. The use of quantitative measurement techsithet can represent informa-
tion about the tissue in numerical rather than subjectisasencreases [181].

The current trend is towards developing fully automatedtsgies that will be in-
dependent of a particular machine, magnetic field strermmilse sequence or operator.
The results obtained with such methods are potentially megeducible because effects
related to particular MR machines and parameters have leeeoved.

MR already plays an important role in diagnostic imagingsas monitoring disease
progression, assessment of the patient’s response tongagtand treatment selection.
DCE-MRI has recently become a promising modality for RA diagjs, with the main
thrust being the detection of the disease at an early stagen wisease-modifying drugs
can be used. Early diagnosis of rheumatoid arthritis anly,eggressive treatment can
help prevent joint damage and deformity, which ultimatelyams for a patient the differ-
ence between a relatively normal life style and a disabildgta acquired in the presence
of the contrast agent, especially by low field MRI scannexsfien corrupted by noise
due to patient motion or hardware instability. The poor guaf the data slows down its
reading, moreover, might influence diagnostic decisions.

Existing DCE-MRI data analysis approaches, as outlinechiap@er 2, include no pre-

162
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processing techniques that can contribute to data fidetidyraay produce highly subjec-
tive results. For example, the nave manual viewing methbeyesthe interpretation of the
data is performed by an experienced radiologist who ansalils® MR intensity images,
obtained as a result of a baseline image subtraction frompdkecontrast data [72, 250],
is time-consuming and highly subjective. The inter-obserrrors associated with this
method can reach 20% [50].

Results produced by semi-automated methods such as tbe+efginterest approach
[50] depend highly on the position and size of ROI. InacaR®I placement may result
in a 20-30% error [162].

Recently, voxel-by-voxel analysis of DCE-MRI data gainértion from both re-
searchers and medical doctors. Pharmacokinetic methdd4 33, 245] and heuristic
approaches [195], which consider the statistics relatetheéantensity change in DCE-
MRI datasets, have been demonstrated to provide suffiaddoitnnation for discerning
different types of tissue. These methods focus on evalydhia temporal component
of DCE-MRI data as given by intensity vs. time course charmgjéle individual voxels,
enabling physicians to analyse tissue condition basedoasponse to the contrast agent.

Currently, in clinical practise it is impossible to assdss accuracy with which phar-
macokinetic variables reflect the true underlying changencentration of the contrast
agent [119]. The accuracy of the estimates will depend orpttemacokinetic model
used and the signal to noise ratio in any individual cases & particular problem with
applications where noise is the dominant, or only, causeaaftion of contrast agent
concentration [119].

Furthermore, both pharmacokinetic and heuristic appresi@lssume that the intensity
change at each voxel can be attributed to the contrast leakbmyvever, patient movement
can introduce artefactual enhancement with implicationthe extracted measurements.
Nevertheless, voxel-by-voxel analysis based methodesept a more reliable alternative
to the contemporary naive data reading, and might becomelyaccepted in the future.

The aim of this thesis was to develop automatic techniqudséoanalysis of dynamic
contrast-enhanced magnetic resonance imaging data evvolvrheumatoid arthritis stud-
ies of the hand and wrist joints. The framework of the aldons presented here permits
the enhancement of data quality as well as its objectiveyaisalThe essential motivation
behind this work has been its acceptance in everyday cliairsaronments.

Unlike previous work, the approach for DCE-MRI data anaysiesented here em-
ploys efficient segmentation and registration algorithinaé tompensate for patient move-
ment and contribute to data fidelity, and a modelling techaithat permits the objective
and robust computation of heuristics describing the shapeecsignal intensity curves.
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In this work we did not seek to duplicate or improve the pharokinetic methods,
but instead presented an efficient approach that allowsthaeement or substitution of
widely used methods such as naive viewing and ROI basedchethcomparison of the
results produced by our approach and the established pbekimetic methods would be
beneficial, and future work should venture in that direction

Our approach to data analysis permits the automated assessfithe disease pro-
gression and patient response to the treatment. Such &@lyargely user independent
and time efficient. The methods are designed to deliver alsgeand reproducible re-
sults. Each algorithm introduced in this work supports oémjists at certain steps in the
DCE-MRI data analysis.

Registration compensates for the problems associated with subject mdtiang the
imaging and, therefore, validates the assumption that eaxatl within DCE-MRI
slices represents a particular tissue type. In the presehcentrast/brightness
changes, the artefacts associated with the motion havesoeeassfully eliminated
with the 3D registration algorithm enhanced with Wetransformation.

Registration algorithm has been applied to datasets aatjwith low- and high-
field scanners and demonstrated promising results.

Segmentation algorithms were designed to locate the tissues of interest within timego
envelope and to exclude the bone interiors and blood veeatsanalysis of DCE-
MRI data of the MCPJs. This permits more efficient data preiogsand objective
evaluation and interpretation of the parametric maps.

Segmentation of joints envelopes was performed on the elatasquired with low-
and high-field scanners. Bone interiors and blood vessels ssgmented in 2D
images acquired by the high-field scanner; these algoritraxs not been tried on
the data acquired with the low-field scanner.

Quantitative analysis has the capability to objectively evaluate a patient’s cooaand
to track the disease progression. Furthermore, we propasetiust scheme for
tissue behaviour classification, which is based on thedssemporal pattern of
contrast agent uptake. Such analysis might be useful faligmidata acquisition
and the contrast agent dose estimation.

This approach has been demonstrated on datasets acquiled-tgnd high-field
scanners.

The outcome of each algorithm was carefully evaluated byntijizdive techniques, de-
veloped as part of this thesis, as well as detailed discnssiis visual presentation with
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experienced observers and radiolodist¥his evaluation has shown to be of particular
importance, because it is often difficult or even impossiblacquire definite reference
labels which perfectly reflect the biological truth.

According to clinical experts the automated analysis atlole depiction of different
disease activity in separate compartments of the jointdglivers more differentiated
and comprehensive information to the reader regarding teasawith the most active
perfusion, and might have a positive impact on RA studiesétines, cost, and success.

9.2 Discussion and algorithm improvements

The work described in this thesis could be extended in a nuoflveays. There are obvi-
ous enhancements that could improve the computationakbsitig of the algorithms, such
as re-implementing the methods using more efficient progrerg languages and opti-
misation techniques. This section discusses assumptiehisnaitations of the presented
algorithms, and possible improvements to them.

Image registration As discussed in Chapter 4 the main component of the motion
DCE-MRI data acquired from RA patients is physical tremaaasated with the
instability of a patient’s hand. The anatomy of the tissuessdnot change signif-
icantly in the images acquired within a short time period.r ©xperiments with
the parameteh, responsible for the regularisation of the geometric /nstty and
smoothness terms in the registration algorithm presemnt€hapter 4, indicate that
the influence of the smoothness term is not significant.

The experiments presented here were only performed witllate acquired from
the same patient, therefore the registration could have beeomplished with a
rigid approach accompanied by a method for the intensityglaqualisation in
pre- and post-contrast images.

The registration algorithm used as the basis for the apprdecussed in Chapter 4
has been shown to perform on inter-patient data [184]. Toereone of the pos-
sible extensions of the registration approach is its tgsiimd possible adjustment
to for performance on datasets acquired in the follow-uprerations, where the
anatomy of the soft tissue such as synovium changes dratiatic

1Results were viewed by medical experts from the Parkertlristi Copenhagen, Denmark and Clin-
ica Reumatologica, Genoa, Italy, and experienced obsémesthe Academic Unit of Medical Physics,
University of Leeds, Leeds General Infirmary, Leeds, UK.

n
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Image segmentationThe algorithms for background, bone, and blood vesselssetgm
tion were specifically designed for this application. Eatthe algorithms was de-
veloped independently. Currently, each image within a t@mlslice is segmented
in 2D space, then a 3D structure of the anatomy is formed ubki@gnterpolation
method [137].

The current trend in medical image segmentation is towdrdggeneralisation of
segmentation approaches. Potentially, the MCPJs tisgieesgation task can be
reformulated in terms of the texture modelling [40] or lesets [172].

These methods do not depend on the geometry or position éisthee of interest,
and allow simultaneous segmentation of the tissues wittendints, which should
shorten the processing time and permit detecting the edgleeodnatomy more
precisely.

Alternatively, given a larger number of samples, the problef bone and blood
vessel segmentation could have been solved using actipe shadels [53]. Recent
publications demonstrate the applicability of the ASM toaeer various topologies
[142] and discuss how initialisation and optimisation peohs can be overcome
[54].

Evaluation In this thesis we often used both supervised metrics: theomanxand mutual-
overlap based. We have compared behaviour of the metrickoand that the pro-
posed approach generates more reliable results. Howewesntly, mutual overlap
metric is widely accepted and therefore, majority of thehats report their results
using this metric. Thus, in order to algorithms developediagf the ones published
in the literature, mutual-overlap based approach was used.

It was demonstrated that unsupervised approaches thaporete a number of
stand alone measures via SVM [45] and Bayesian classifiéEg fftave shown very
promising performance. However, the metrics [45] and [2¥BJe never been tested
on MR data; on the other hand, the family of unsupervisediogeproposed here
performed well on such datasets. Therefore, unificatiome$¢ approaches could
be the next step in unsupervised evaluation.

Quantitative analysis Here we have presented results obtained on a limited pilolyst
of images. The data have been acquired with both high and &Ed FIRI scan-
ners, using different sequences, and acquisition paraséekbis demonstrates the
adaptability of the approach with this domain.

The nature of inflammatory diseases such as cancer and braouts leads us to
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believe that the algorithms will be useful in these appiara. The applicability of
the method to DCE-MRI datasets acquired from other orgamsly Iparts and by
different scanners, of course, needs to be examined.

In order to describe the tissue behaviour, we have emplogedd approximations.
This approach may be further enhanced by incorporating mopaisticated mod-
els. However, complexity of the model might incur a longempuitational time.

Currently, we perform the data analysis using the segmentaind registration
steps as a pre-process to the contrast modelling. Thisnseatconsuming approach,
as eacH curve needs to be approximated by four models. Incorpagateuristic
modelling into the classifier of the registration method miignprove the efficiency
of the approach.

Visualisation Parametric maps of the heuristi®le andIRE are colour coded in such a
way that the highest values of the heuristics and conselyu@etbrightest colours
correspond to the enhancement of the blood vessels. Theyéfi@ magnitude of
the synovial tissue enchantment is coloured relative tdtbed vessels’ enhance-
ment.

This allows the evaluation of intra-patient inflammatiolowever, in the absence
of the vessels or when comparing datasets acquired frorardift patients, this
assumption needs to be replaced.

With the appropriate clinical expertise, it would be possito generate intervals
in the heuristics’ values and assign a colour to each inkeseethat it reflects the
tissue condition. Such colour coding would then allow otwecinter-patient and
inter-sequence comparison.

Currently, parametric maps illustrate the magnitude ofamiination in each tem-
poral slice. Visualisation of the synovial tissue in 3D spamuld permit an even
better visual assessment of a patient’s condition and allimva more accurate
diagnosis.

9.3 Subsequent steps in the analysis of DCE-MRI data

The algorithms presented in this thesis support radioteglsroughout the analysis of
DCE-MRI data. The registration and segmentation conteiliatthe data fidelity; the
quantitative analysis and visualisation of the heurigiigs a visual feedback that enables
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radiologists to localise inflamed synovial tissue and tdys®the magnitude and spread
of the disease. However, the final diagnosis still requinesadiologist’s expertise.

The next step in the assessment of RA by means of DCE-MRI iadk@matic di-
agnosis of a patient’s condition. For this purpose it woutdelssential to derive a new
scoring procedure that would be based on the objective steuparameters rather than
the subjective opinion of an operator [174].

During clinical diagnosis, a tissue is commonly investaghfrom a variety of view-
points [247]. Diagnostic techniques such as DCE-MRI, X-enyd CT provide a broad
range of complementary information exposing tissue festurAs an extension of this
work, it would be interesting to understand how methods psed in this thesis can
be extended to processing the input derived from other sogrmmodalities. It will be
challenging to align, analyse, and correlate the inforaragirovided by data of different
dimensionalities and resolutions.

To develop a new scoring system, it would be essential to eoenipformation pro-
vided by the parametric maps and gold standard techniqusasuultrasound and static
MRI. Moreover, correlation between the current scoringhods, such as ROI based and
OMERACT-RAMRIS methods, and parametric maps needs to lablkested. This work
would not be accomplished without sufficient clinical expsr and a large number of
datasets.

Another direction in which this work can be extended is tadgas more comprehen-
sive understanding of the differences and similaritieshie behaviour of the synovium
and bone marrow oedema, which is essentially an inflammaigide the joint. It has re-
cently been discovered that bone marrow oedema and erdsaveges provide additional
information about RA activity and may be used as very reéabbrkers [157,232].

Using the proposed segmentation algorithm, we outlinetizos of the bone interiors
in the datasets acquired by the high-field MRI scanner ancigseed them with the model-
based approach. The results illustrated in Figure 9.1 curtfie clinical opinion that this
patient has visible inflammation within the joints.

The automatic classification of inflamed synovial tissugyebmarrow oedema, and
erosions, and automatic measurement of the oedema voluithesguire further devel-
opment and optimisation of both segmentation and quangtahalysis approaches.

It is of course crucial to proceed with any further developitredf this work in collab-
oration with medical experts, who ultimately will ratify @irmedical benefit of any such
work.
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Figure 9.1: Top: Pre-and post-contrast images. Botthbia: (left) andIRE (right) com-
puted for pixels within the joints.
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Appendix A

Registration algorithms

Automated Image Registration (AIR) [266] applicable for intra-subject image registra-
tion using a rigid-body model (PET, MRI), inter-modalityP-MRI) registration,
and inter-subject registration;

Automatic Mutual Information-based Registration (AMIR) [ 135] is a method for as-
sessing the accuracy of CT/PET image registration;

FLIRT: FMRIB’s Linear Image Registration Tool [120] performs linear (affine) intra-
and inter-modal PET and MRI brain image registration;

Interactive Point Selection (IPS) [262] is a semi-automated landmark-based method with
least-squares optimisation, applied for neuroreceptdr &fl MRI studies;

Medical Image Processing, Analysis, and Visualisation (MPAV) [8] performs landmark-
based registration on PET, MRI, CT, or microscopy data;

Statistical Parametric Mapping (SPM) [80] incorporates a number of different cost func-
tions related to the mutual information for registrationbytin fMRI, PET, and
SPECT images;

The Visualisation ToolKit (VTK) [98] is an image processing and visualisation tool.
VTK implements affine, grid and thin-plate spline transfatmans with nearest
neighboor, trilinear or tricubic interpolation on meshesgyular sampled, structure
and unstructured grids.
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Appendix B

Segmentation evaluation

Table B.1: Evaluation of the preliminary segmentation dthe algorithm.P — patient
number; Slice — slice number. In each cell: [A number of baretected by the algorithm
/ a number of bones detected by the expert].

Patient 1 Slice 1 Slice 2 Slice3 | Slice4 Slice 5 Slice 6
MCPJ2 1/1 1/1 0/0 0/0 1/1 1/1
MCPJ3 1/1 1/1 1/1 1/1 0/0 0/0
MCPJ4 1/1 1/1 1/1 0/0 1/1 1/1
MCPJ5 1/1 0/0 1/1 1/1 1/1 0/1
Patient 2 Slice 1 Slice 2 Slice 3 | Slice 4 Slice 5 Slice 6
MCPJ2 11 11 11 0/0 11 11
MCPJ3 11 11 11 11 0/0 0/0
MCPJ4 11 11 11 0/0 11 11
MCPJ5 1/1 0/0 1/1 1/1 1/1 0/1
Patient 3 Slicel | Slice2 | Slice3 | Slice4 | Slice5 | Slice 6
MCPJ2 1/1 1/1 1/1 0/0 1/1 1/1
MCPJ3 1/1 1/1 0/0 0/0 0/0 1/1
MCPJ4 1/1 1/1 1/1 1/1 1/1 1/1
MCPJ5 1/1 0/0 1/1 1/1 1/1 1/1
Patient 4 Slice 1 Slice 2 Slice3 | Slice4 Slice 5 Slice 6
MCPJ2 171 11 0/0 0/0 11 11
MCPJ3 1/1 1/1 1/1 0/0 0/0 1/1
MCPJ4 1/1 1/1 0/0 0/1 1/1 1/1
MCPJ5 1/1 1/1 1/1 1/1 0/1 1/1
Patient 5 Slicel | Slice2 | Slice3 | Slice4 | Slice5 | Slice 6
MCPJ2 11 0/1 0/0 0/0 11 11
MCPJ3 11 11 11 11 0/0 11
MCPJ4 11 11 11 11 0/0 11
MCPJ5 1/1 1/1 1/1 1/1 0/1 1/1
Patient 6 Slice 1 Slice 2 Slice3 | Slice4 Slice 5 Slice 6
MCPJ2 1/1 1/1 0/0 0/0 1/1 1/1
MCPJ3 1/1 1/1 1/1 1/1 0/0 1/1
MCPJ4 1/1 1/1 1/1 0/0 1/1 1/1
MCPJ5 1/1 0/0 1/1 1/1 1/1 1/1
Patient 7 Slice 1 Slice 2 Slice 3 | Slice 4 Slice 5 Slice 6
MCPJ2 11 11 11 0/0 0/0 11
MCPJ3 11 11 11 11 0/0 11
MCPJ4 11 11 0/0 0/0 11 11
MCPJ5 1/1 0/0 1/1 1/1 1/1 1/1
Patient 8 Slicel | Slice2 | Slice3 | Slice4 | Slice5 | Slice 6
MCPJ2 0/0 0/0 0/0 0/0 0/1 1/1
MCPJ3 1/1 1/1 1/1 1/1 0/0 0/0
MCPJ4 11 11 0/0 0/0 11 11
MCPJ5 0/0 0/0 1/1 1/1 1/1 1/1
Patient 9 Slice 1 Slice 2 Slice3 | Slice4 Slice 5 Slice 6
MCPJ2 1/1 1/1 0/0 1/1 1/1 1/1
MCPJ3 1/1 1/1 1/1 0/0 0/1 1/1
MCPJ4 1/1 1/1 1/1 0/0 1/1 1/1
MCPJ5 1/1 0/0 1/1 1/1 1/1 1/1
Patient10 | Slicel [ Slice2 | Slice3 | Slice4 [ Slice5 | Slice 6
MCPJ2 11 11 11 0/0 11 11
MCPJ3 11 11 11 11 0/0 11
MCPJ4 11 11 11 0/0 11 11
MCPJ5 1/1 0/0 1/1 1/1 1/1 1/1
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Appendix C

Evaluation by human observers

[ 1 Segmentation 1 is better that segmentation 2
[ 1 Segmentation 2 is better that segmentation 1
[ 1 Segmentations are indistinguishable in quality

[ 1 Segmentation 1 is better that segmentation 2
[ ] Segmentation 2 is better that segmentation 1
[ ] Segmentations are indistinguishable in quality

[ ] Segmentation 1 is better that segmentation 2
[ ] Segmentation 2 is better that segmentation 1
[ 1 Segmentations are indistinguishable in quality

[ 1 Segmentation 1 is better that segmentation 2
[ 1 Segmentation 2 is better that segmentation 1
[ 1 Segmentations are indistinguishable in quality

Figure C.1: Four pairs of segmentation outputs given to the human obsenGT overlay is
shown in red, machine segmentation in yellow.
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Appendix D

Number of pixels under consideration

[Number of pixels within joint interior excluding bone imters / Number of pixels that exhibit

wash-out phaseP — patient number; SlicBl — temporal slice number.

Slice 1 Slice 2 Slice 3 Slice 4 Slice 5 Slice 6
P, | 170536807 180386515 178836694 184236490 164715504 169495908
P, | 11557/4845 116312382 113593801 119933532 105772265 101491921
Ps | 148097455 156975473 155075033 138284271 126813761 115582743
P, | 17256/5241 182835187 188275354 192694642 166134140 127273034
Ps 14882/5174  15397/4241  15893/5118  15599/4522  16100/450@30814150
Ps 12341/3756  13067/3807 12942/3582  12383/3216  11203/277845212706
P, 11617/4515 11600/3513  11385/3368 12076/3224  10586/265%963/2305
Ps 19360/5726  23394/4916  18568/4885  18368/4840 17679/430681213521
Po | 139944003 135333623 139723423 14382818 135163590 120042552
Pio | 140084254 135123578 136563529 144003658 127663926 119332538
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