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Abstract

The purpose of this research is to perform automated analysis of 4D dynamic contrast

enhanced MRI datasets (DCE-MRI) of the hand and wrist relating to rheumatoid arthritis

(RA) studies. In DCE-MRI, sequences of images are acquired from the joints over time,

during which a contrast agent pre-injected into a patient enhances disease affected tissues.

Measurement of this enhancement, which is specific to voxelsrepresenting particular

tissue types, allows assessment of the patient’s condition.

Currently, analysis of DCE-MRI data is performed using semi-automated or manual

techniques, which are time-consuming and subjective. These approaches involve no pre-

processing techniques that can compensate for patient motion and hardware instability, or

locate the tissue of interest.

In this thesis we present a solution for fully automated objective assessment of DCE-

MRI data acquired from RA patients. Analysis begins with application of a registration

technique that permits compensation for patient motion. Secondly, independent automatic

algorithms for accurate segmentation of both bone interiors, joint exteriors, and blood

vessels from data volumes of the metacarpophalangeal joints are introduced.

Performance of the segmentation algorithms is evaluated with both state-of-the art

and novel techniques developed as a part of this thesis. We have utilised and enhanced

a supervised approach and developed a family of unsupervised metrics for automated

evaluation of segmentation outputs.

Lastly, the datasets are interpreted using a model-based approach, which permits un-

derstanding of the behaviour of tissues undergoing the medical procedure, and allows for

a robust and accurate extraction of various parameters thatquantify the extent of inflam-

mation in RA patients.

The algorithms proposed have been demonstrated on datasetsacquired with both low

and high field scanners, from different joints, using various pulse sequences. They are

user-independent, time efficient, and generate easily reproducible and objective results.

Expert observers found our results promising for possibly future diagnosis and monitoring

of RA.
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Chapter 1

Introduction

In today’s world, where medicine and technology collide, the use of computer science

is one more tool in the medical professionals’ arsenal [23, 92, 118]. The involvement of

machine vision in medical image analysis assists doctors inthe data acquisition, recon-

struction, evaluation, and ultimately disease diagnosis.

For years, medical imaging modalities such as X-ray, computer tomography (CT), and

magnetic resonance imaging (MRI) have allowed doctors to perform non-invasive human

body examinations. However, the results obtained with these techniques are limited by

their reliability, reproducibility, and subjective interpretation.

This thesis attempts to solve one of the many problems associated with the interpreta-

tion of such data. We have chosen to focus our attention on dynamic datasets pertaining

to rheumatoid arthritis (RA) acquired with MRI scanners.

The prime objective of this work is to deliver algorithms that assist medical experts

in the interpretation and evaluation of datasets acquired from RA patients; specifically, to

overcome problems associated with the methods currently used for the data assessment.

A second objective of this work is to demonstrate the value ofpre-processing techniques

which compensate for a patient’s movement and allow for the location of tissues of inter-

est. Lastly, we discuss the value of evaluation techniques,which are used to assess the

reliability of the results produced by the pre-processing techniques.

1



Chapter 1 2 Introduction

1.1 Monitoring rheumatoid arthritis

Rheumatoid arthritis is an autoimmune condition that causes swelling, pain, stiffness, and

redness in the joints, which often become unstable resulting in deformities, for example of

the hand. Any joint may be affected, but it is commonly the hands (metacarpophalangeal

(MCP) joints), feet, and wrists.

In RA, the synovium, which is the smooth lining of a joint, becomes inflamed and

changes its character causing cartilage destruction and secondary joint damage. The nor-

mally thin synovium becomes thick and makes the joint swollen and puffy to the touch.

Figure 1.1 illustrates normal and arthritic joints1.

Figure 1.1: Left: Normal joint. Right: Arthritic joint. Theinflammation of synovial tissue
is shown in red.

RA is a progressive illness that can result in joint destruction and severe disability.

The cause of RA is unknown and its course varies from patient to patient. When tissues

are inflamed the disease is called active; when symptoms of the disease disappear and

the tissue inflammation subsides, the disease is inactive (in remission). Remission can

occur spontaneously or with treatment, and might last for weeks. However, patients often

relapse after a short period.

RA can begin at any age, but most often starts after the age of forty and before the age

of sixty [7]. More than two percent of the world-wide adult population suffer from RA,

corresponding to several million people in the USA and about0.5 million in the UK [225].

There is no known cure for RA and the treatment normally involves a combination

of exercise, medications, and occasionally surgery. To date, the goal of the treatment has

been to reduce the inflammation and pain, and prevent joint destruction. Early medical in-

tervention has been shown to be important in improving outcomes and preventing serious

disability [129].

1Taken with permission from [223].
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Figure 1.2: Left: MR image of wrist acquired by a low-field scanner. Middle: MR image
of the MCP joints acquired by a low-field scanner. Right: MR image of the MCP joints
acquired by a high-field scanner. In the images markers are marked by white rectangles,
bones by blue rectangles, blood vessels by red rectangles.

1.2 Diagnosis of rheumatoid arthritis and the value of

MRI

The diagnosis of RA begins with acquiring information aboutthe severity of symptoms

such as pain, morning stiffness, fatigue, etc. This information is used as a baseline for the

future evaluation of the disease progression. Secondly, the patient’s joints are examined

for indication of warmth, swelling, and limitation of motion. Then, laboratory tests that

include the measuring of a rheumatoid factor (an antibody produced in response to RA) in

the blood and analysis of the synovial fluid, are performed. Lastly, the joints are examined

with a conventional X-ray.

The inexperienced clinician may have difficulty in diagnosing RA. The main reasons

are inter-patient variability of the disease patterns and the similarity of RA to other dis-

eases such as lupus, osteoarthritis, and gout. Often, the tests are inconclusive; in early

RA, the blood tests and X-ray may be normal.

Recently, MRI has emerged as a promising technique for the assessment and moni-

toring of RA [6], and became an alternative diagnostic tool to the conventional clinical

examination and radiography [77]. MRI can identify all kinds of tissue, poses minimal

risk to health and has no limit to the number of images that cansafely be taken. Patients

require no preparation (unless the contrast agent is used),and there is no recovery time.

MRI is non-invasive and does not utilise radiation, and produces three-dimensional im-

ages with a high tissue contrast [90]. Figure 1.2 illustrates MR images of the wrist and

MCP joints, where markers are marked white white rectangular, bones – by blue, blood

vessels – by red.

Numerous studies have shown that MRI is more sensitive than conventional clini-

cal examination and radiography for the detection of early inflammatory and destructive

changes [77,83,128,240]. It allows for the detection of RA bone erosions, inflammatory
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soft tissue changes such as synovitis, tenosynovitis and enthesitis2 earlier than conven-

tional radiography [173]. Østergaard et al. have demonstrated the predictive value of

MRI in the detection of bone oedema and bone erosions with respect to the subsequent

radiographic progression [173].

The diagnostic value of MRI is still being investigated. Some studies [232, 234] sug-

gest that the incorporation of MRI assessment of synovitis increases the accuracy of the

examinations and allows for earlier RA diagnosis.

MRI has been enhanced by the introduction of contrast agents, which allow for even

better distinction between normal and abnormal tissues [180,250]. In the presence of the

contrast agent, the data is acquired in sequential slices over a period of time during which

the intensity of the inflamed tissues in MR images changes in response to the injected

contrast agent. This technique is known as dynamic contrast-enhanced MRI (DCE-MRI).

DCE-MRI is proven to be a valuable tool in the assessment of RApatients [175]. It ap-

pears to provide a sensitive measure of the disease progression. However, the widespread

use of DCE-MRI is limited by the need for efficient techniquesfor data processing, inter-

pretation, and visualisation.

1.3 Problems associated with DCE-MRI data

Acquisition of a temporal slice takes approximately 4 minutes and a dataset acquired from

a patient suffering from rheumatoid arthritis might contain up to 15 temporal slices. An

examination might result in up to 300 images, where some pixels, normally located in the

disease affected areas, are enhancing in response to the contrast agent.

To acquire datasets used in this work, patients were expected to hold a hand still for

up to 24 minutes (acquisition of up to 6 temporal slices). Thepatients affected by RA

often cannot hold their hand still, therefore images are often corrupted by artefacts due to

the patient movement.

Assessment of the patient’s condition is performed via quantification of the volume

of inflamed synovium in each rheumatoid joint. However, manual measurement of the

volume is time-consuming and highly subjective. Moreover,the presence of the noise,

sparse location of the enhancing pixels, and subtle intensity changes make interpretation

of the DCE-MRI data difficult.

To assess tissue condition, it is normally assumed that eachvoxel represents a particu-

lar tissue type. However, problems with patient motion during imaging might render this

2Enthesitis is an inflammation of the entheses, the location where a bone is joint to a tendon or a ligament
[260].
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assumption invalid and introduce artefactual enhancementin some tissues.

The data acquisition settings are particular for the scanning hardware – therefore, an

objective comparison of the data acquired with different equipment is not trivial.

Hence, we are dealing with several problems. Firstly, thereis a need for efficient pre-

processing techniques that can compensate for patient motion, locate tissue of interest,

and reduce artefactual enhancement. Secondly, an objective quantitative technique, that

would not be influenced by the noise, scanning equipment, acquisition parameters, and

time-course of arrival of the contrast agent, is required toallow for the assessment and

interpretation of DCE-MRI datasets.

1.4 DCE-MRI data analysis

In this thesis we present a solution for a fully automated andobjective evaluation of DCE-

MRI data acquired from RA patients. The data analysis beginswith the application of a

registration technique that compensates for patient’s motion. Secondly, we introduce seg-

mentation techniques that allow for the elimination of irrelevant tissues such as bone inte-

rior, which includes trabecular and cortical bone cross-sections and certain blood vessels,

which can complicate the interpretation of the data.

Performance of the algorithms is assessed with state-of-the art and novel evaluation

techniques, which were developed as a part of this thesis. Weused and enhanced a super-

vised metric and developed a family of unsupervised metricsfor the automated evaluation

of the segmentation outputs.

Lastly, the datasets are interpreted using a model-based approach, which permits the

understanding of the behaviour of tissues undergoing the medical procedure, and allows

for a robust and accurate extraction of various parameters that quantify the extent of in-

flammation in RA patients. Additionally, with this method itis possible to locate tissues

that did not fully absorbed the contrast agent by the end of imaging procedure.

The experiments were performed on datasets acquired from different joints using scan-

ning hardware of both high and low field strengths, confirmingthe portability of the ap-

proach. The process takes into account many variable factors that affect the clarity of these

datasets and their interpretation, such as the physical tremor associated with rheumatoid

arthritis and the time taken for the diseased tissue to absorb the contrast agent.

This combination of techniques permits the automated analysis of DCE-MRI data,

which should reduce the amount of time radiologists currentspend on data assessment

and increase the efficiency and reproducibility of the RA evaluation with MRI.
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1.5 Overview of this thesis

In this chapter we outlined the problems associated with monitoring RA and highlighted

the techniques that are going to be introduced in this thesis. The remaining chapters are

organised as follows:

Chapter 2: Background discusses the fundamental aspects and background researchin

various areas of medical image analysis such as data registration, segmentation,

evaluation, and quantitative analysis.

Chapter 3: MRI data firstly, highlights advantages and drawbacks of the variousimag-

ing modalities for the monitoring of rheumatoid arthritis and discusses MRI scan-

ning in more detail. Secondly, we introduce the DCE-MRI datasets involved in this

research, discuss their properties, and acquisition parameters.

Chapter 4: Image registration introduces our modification to a publicly available reg-

istration algorithm and its application to DCE-MRI data.

Chapter 5: Image segmentationdiscusses the automatic algorithms for the joints’ en-

velope and bone interiors segmentation from the DCE-MRI data.

Chapter 6: Evaluation techniques presents supervised and unsupervised evaluation met-

rics and shows how they can be employed to assess the results produced by the

segmentation algorithms.

Chapter 7: Quantitative analysis of DCE-MRI datasets introduces a model-based al-

gorithm that permits the objective analysis of the DCE-MRI data and visualisation

of the activation events.

Chapter 8: Blood vessel segmentationpresents a technique for the automatic segmen-

tation of the blood vessels from the DCE-MRI datasets.

Finally, the conclusions and possible extensions of this work are presented in Chapter 9.
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Background

2.1 Medical image analysis

Medical image analysis is often perceived as a set of techniques that allow us to recon-

struct, display, analyse and interpret the data acquired from a human body or parts thereof

for disease detection and diagnostic purposes. Generally,the steps involved in assessment

of medical data include image pre-processing (registration and segmentation) and image

interpretation (via perception, understanding, evaluation, and visualisation) [203,273].

Registration involves finding a transformation that bringsdifferent images of the same

object into strict congruence. Segmentation approaches allow for accurate recognition

and delineation of important objects in the image. Interpretation includes display and

manipulation of the data. Various evaluation approaches are used to assess the algorithms’

performance.

In this chapter we aim to provide an overview of these steps, to outline the main com-

ponents of image processing algorithms, and to discuss the recent and most successful

techniques for registration, segmentation and its evaluation, and visualisation in applica-

tion to DCE-MRI datasets.

7
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2.2 Registration techniques

Registration is a fundamental task in medical image processing which seeks to match

two data sets that were acquired at different time or view points or by different image

modalities [71, 152]. It is required when, for example, an atlas image is needed to be

aligned to the patient’s data for automatic identification of tissue anatomy and lesion

location, or when pre- and post- treatment images need to be matched in order to monitor

disease progression [61,150].

Generally, registration is the determination of a transformation (rigid or non-rigid)

that aligns pixels from one image or volume with pixels from another [108]. To detect

disease progression or a treatment effect, patients are often re-scanned after a long period

of time. Registration of such 4D datasets is another more complicated and challenging

problem.

Rigid methods [109, 183] are applied when alignment of two images can be done

via rotation and translation. Today rigid registration is often extended to include affine

transformations, which incorporates scale factors and shears [108].

However, deformation of the human body can only be poorly approximated by rigid

models. Therefore, some contemporary work concentrates ondeveloping non-rigid meth-

ods, which can model complex motions caused by inconsistencies in a patient’s posture or

differences in an organ’s shape and volume [13, 57]. Obviously, there is often a trade-off

between the complexity of the transformation model and the speed of the alignment.

Registration of both intra- and inter-patient images has been the subject of extensive

study in medical imaging literatures. There are various registration algorithms which

have been classified in many different ways, based on image dimensionality, registration

basis, geometric or intensity transformation, degree of interaction, optimisation proce-

dure, modalities, etc. Detailed descriptions of each category and corresponding theoret-

ical background can be found in [34, 75, 152, 156]. Appendix Adescribes some of the

algorithms available online [3,80,185].

2.2.1 Components of registration algorithms

Each registration algorithm has four components [57]:

• source and target datasets;

• a similarity measure of how well the images match;

• a transformation model that defines how one image can be deformed to match an-

other;
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• an optimisation process that delivers an optimal parameterset that maximises the

matching criteria.

Source and target datasets might be represented by the raw intensities, curves and

surfaces, landmarks, feature images, or a combination of the above.

Similarity measures

Principally, registration techniques can be divided into landmark and intensity based

schemes. The former are based on identification of corresponding landmarks in two im-

ages or volumes, which could be anatomical features presented in both images, pins or

markers fixed or inserted into the patient and visible in every image, or a set of distinctive

and easy detectable objects, such as lines, curves, points,line intersections, boundaries,

etc.

Firstly, landmark based algorithms attempt to extract the features from images and

then to compute a transformation based on the correspondences between these features.

The presence of invasive markers permits an accurate registration; however, the procedure

might cause discomfort, and there is a small risk of infection or tissue damage.

Therefore, registration is often performed using a set of features suitable for image

matching [74,145,220]. The features extracted from the source and reference images are

individually compared, aiming to choose the best match [145,216].

Landmark matching is relatively fast to compute and a large number of algorithms

for various applications such as MRI and CT brain studies [231], vascular and spine im-

ages [10] has been developed. Variations in shape and intensity of objects in DCE-MRI

data complicate extraction of well matched landmarks and soDCE-MRI registration with

landmark algorithms is not popular.

When images are not rich in well distinguishable details, intensity or area based regis-

tration methods are applied [110,161,199]. These algorithms use all (or a large proportion

of) the data in each image, define a measure of intensity similarity between the images,

iteratively optimise the parameters describing the orientation of the data, generate a so-

lution, align source to target accordingly, and evaluate the transformation using various

similarity measures. The process is repeated until the accuracy threshold is reached or the

similarity measure is maximised /minimised [47,93,113,193].

The choice of the similarity measure depends on the scanningmodality as well as

the geometric and intensity differences between the images. Algorithms used for inter-

modality registration have to be insensitive to the tissue intensity differences introduced

by different modalities. One of the first algorithms for PET-MRI data registration pro-
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posed by Woods et al. [266] was based on the assumption that, at each intensity in the

MR image, the range of the corresponding PET intensities is small [93]. CT-MRI align-

ment was first performed with an algorithm [70], where intensities of MR images were

re-mapped or transformed in such a way that soft tissue in both the MR and CT images

appeared bright. Later, more general measures based on the joint intensity histogram and

mutual information were proposed [93,205].

Registration of multiple images of the same patient acquired using the same modality

is often performed using a correlation coefficient as a measure of similarity. One image

is moved with respect to another until the strongest relationship between the intensities in

one image and the intensities in the corresponding locationin another image is found (in

this thesis we aim to find a transformation that delivers the largest correlation coefficient).

Another measure, similar to the correlation coefficient, isthe sum of squared intensity

differences. Here, alignment is adjusted until the smallest sum of squared differences

is found. Alternatively, we can define the ratio between two images – this alignment

is the basis for a ratio image uniformity algorithm, where the variance of this ratio is

calculated [93].

Performance of all these algorithms is similar, except whenthe underlying assump-

tion about the linear relationship between the intensitiesin both images is violated due

to changes in local image brightness, shading, etc. For thisreason it is sometimes de-

sirable to pre-segment parts of the image prior to registration or to exclude those which

change intensity dramatically [75]. An alternative approach is to account for intensity and

brightness variations explicitly [168].

Transformation model

The process of registration is determined by a transformation model, which characterises

the type and number of possible deformations (degree of freedom, DOF) and defines how

one image can be deformed to match another [103].

Normally, rigid, affine, piecewise affine, or non-rigid transformation models are con-

sidered. 3D rigid transformation is composed of three rotations and three translations; it

is a linear transformation, normally used for within-subject registration.

An affine transformation can be thought of as a crude approximation to a fully non-

rigid transformation. It is defined by 12 DOF (3 rotation, 3 translations, 3 stretches and

3 shears) and is used for within-subject registration when there is global gross-overall

distortion (e.g. MR to CT registration). It is a linear transformation, that allows compen-

sating for a combination rigid motion, scaling, and a skew about 2 or 3 axes.

Piecewise or local affine models are used when different parts of an image require
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individual affine transforms. They are suitable for modelling of local tissue motion and

can be thought of as a simple extension to fully non-rigid transformation.

Non-rigid or elastic registration is defined by a non-lineartransformation with a larger

DOF. It can describe various motions and is normally used forinter-subject registration

and distortion correction. However, too much flexibility inthe transformation can lead

to undesirable results. Often the degree of non-rigidity need to be explicitly controlled

by use of smoothness constraints (e.g. bending energy or strain energy) or a limited DOF

(e.g. tensor splines).

The transformations could be global (applied to an entire image) or local (applied to

image subsections). Some problems that are intrinsically locally rigid (such as registration

of individual vertebrae from the images of a spinal column [171]) are often solved by

splitting the image into sub-images meeting local rigid body constraints.

Several authors have shown the superiority of locally sensitive registration methods

over global ones [76, 89]. Local transformations are normally combined with a global

smoothness constraint [168, 186] imposed on transformation parameters. In this case

continuity of the transformations is assumed for an entire image.

Pyramid approaches [2] for supporting scaled image analysis are often applied along

with these transforms. An image pyramid consists of a sequence of copies of the original

image in which both sample density and resolution are decreased in regular steps. These

copies are obtained by convolving the original image with Gaussian or Laplacian kernels.

This approach allows isolating critical components of the image so that they can be easily

accessible to analysis [2], thereby recovering a larger range of distortions.

Optimisation techniques

Optimisation is a process of minimising or maximising a similarity measure calculated for

source and target images. The majority of registration algorithms based on an intensity

matching paradigm require an iterative approach to the optimisation problem. The regis-

tration starts from an initial position (that can be manually or automatically defined) and

proceeds by calculating a series of approximate solutions aiming to increase the image

similarity.

In each iteration, the current estimate of the transformation is used to re-calculate

the similarity measure. The optimisation technique then makes another estimate of the

transformation until the desired similarity threshold is reached. There are several popular

approaches that are widely used for MR image registration [152,194]:

Gradient descent is a straightforward fast optimisation method, however it might con-
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verge to local minima.

Conjugate gradient descentis an iterative method, that is based on the assumption that

second derivatives of the function to be minimised exist. The method chooses suc-

cessive descent directions such that it is guaranteed to reach the minimum in a finite

number of steps. In theory it is better than Gradient Descent. However, second

derivatives can be difficult or impossible to estimate for real images.

Annealing algorithms such as simulated annealing [126] and deterministic annealing

[208] are widely used for clustering, compression, classification, and regression,

because they assist in avoiding local optima, are applicable to many different struc-

tures and architectures, and are relatively fast [126,208].

Genetic algorithms maintain a pool of solutions rather than just one. New candidate

solutions maybe be generated by ‘mutation’ or ‘combination’ of two solutions from

the pool. Probabilistic criteria, similar to those used in simulated annealing, are

used to select the candidates for mutation or combination, and for discarding excess

solutions from the pool.

The Levenberg - Marquardt algorithm is an iterative technique that finds a local min-

imum of a function that is expressed as the sum of squares of nonlinear functions.

It has become a standard technique for nonlinear least-squares problems and can

be thought of as a combination of steepest descent and the Gauss-Newton method.

When the current solution is far from the correct one, the algorithm behaves like a

steepest descent method: slow, but guaranteed to converge.When the current solu-

tion is close to the correct solution, it becomes a Gauss-Newton method [138,153].

The Newton method is a root-finding algorithm that uses the first few terms of theTaylor

series of a function in the vicinity of a suspected root [67].Newton-Raphson and

Quasi-Newton methods are efficient iterative techniques used to optimise Newton

method based minimisation.

2.2.2 Resampling and interpolation theory

To complete a registration process, we need to warp a source into a target. However,

application of the estimated registration map is unlikely to result in a neat alignment of

source and target images. Various interpolation methods are used to compute the exact

intensity values in the transformed image [124]. Interpolation is a mathematical method
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of creating missing data. For images presented as a regular discrete grid, the interpolation

of point (x,y) is:

g(x,y) =
N

∑
i=−N

N

∑
j=−N

f (xi ,y j)h(x−xi)h(y−y j), (2.1)

where f (x,y) is the image intensity at the position(x,y) andh is the weighting function

applied toN neighbouring current point(x,y) samples. Interpolation of 3D images is a

straightforward extension of the 2D case, assuming that image pixels or voxels are equally

spaced along each direction.

Interpolation methods differ in the choice of weighting function and size of the neigh-

bourhood. The most popular techniques include nearest neighbour, linear, B-spline, cubic,

truncated sinc, and windowed sinc.

The simplest is a nearest neighbour based interpolation, inwhich the intensity value

closest tox is assigned to the transformed pixel. This method is computationally effective;

however, it produces positional errors of at most half a pixel. The method has been found

unsuitable for interpolation on images acquired by variousscanning modalities [114].

Linear or bilinear interpolation assumes that the intensity function is linear in the

neighbourhood local to a current point. This approach allows reducing the positioning

error; however, the resulting image is blurred by averagingthe neighbouring pixels.

Higher order interpolation methods, such as cubic interpolation, allow improving the

quality of resampling [123, 201]. With cubic interpolationwe overcome problems asso-

ciated with the nearest neighbour and linear interpolationtechniques [165], but it is still

faster than other more complex interpolators. A number of authors confirm that cubic

interpolation is sufficient for MRI data resampling [94,108].

2.2.3 Registration of DCE-MRI data

In DCE-MRI studies acquired from RA patients, pixels corresponding to the abnormal

tissue change their intensity values over time. It is assumed that aligned images/volumes

within the slice/study are identical except for these localintensity changes [95]. This

permits assessment of the tissue vascularity as the intensity change reflects disease pro-

gression or response to treatment.

Accurate location of the enhancing tissues is crucial for efficient diagnosis and dis-

ease treatment. However, the patient’s motion might introduce various artefacts, causing

erroneous enhancement of some tissues, and thereby preventing efficient data assessment.

Registration is used to compensate for enhancement attributable to the patient’s mo-



Chapter 2 14 Background

tion. It is a challenging task [36] and the majority of available algorithms (Appendix A),

are not designed to deal with local contrast and intensity changes, fail to perform on

DCE-MRI data.

Early methods for DCE-MRI data registration [131,279] described motion using rigid

transformations. These algorithms calculate the ratio of one image to the other on a pixel-

by-pixel basis, and then iteratively deform images aiming to minimise variance of this

ratio. This approach is not efficient for motion correction in the soft tissues surrounding

rigid structures.

Recently, motion in DCE-MRI data was modelled using opticalflow and affine trans-

formation [58, 60, 81, 207]. However, standard optical flow techniques rely on the as-

sumption that the intensity of target and source images remains constant [15, 117], while

the position of objects in the source image change. This assumption is inapplicable in

dynamic contrast-enhanced MRI datasets.

Contrast enhancement introduces new information into images of the dynamic series,

so registration cost functions that depend on information content are confounded by the

appearance of changes both in contrast and shape of tissues,leading to erroneous results.

Local intensity changes in areas affected by the disease do not allow us to apply standard

registration schemes such as [80, 98]. Therefore, there is aneed for a new way to deal

with the contrast and brightness variations.

An algorithm presented in [186] was designed to deal with partly occluded or lost data

by co-registering it to atlases. It is an intensity based algorithm, where the contrast and

brightness variations are explicitly modelled using a technique suggested in [168]. Geo-

metric transformations are described with the affine model;the minimum square error is

used as a cost function. Both intensity and geometric parameters are estimated simulta-

neously for each pixel location, and a global smoothness constraint [18, 190] is imposed

on the geometric, contrast and brightness parameters. The entire procedure is built upon a

differential multiscale framework [169] that permits capturing both large- and small-scale

transformations.

2.3 Medical image segmentation techniques

Image segmentation is an important pre-processing step that has been studied by many

researchers [82, 115, 229]. The aim of a segmentation algorithm is to split an image into

non-overlapping constituent regions, which collectivelyrepresent the entire image, or to

extract regions of interest, each having consistent properties [96,179].

In medical applications, image segmentation is used to classify different anatomy fea-
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tures, such as bones, muscle, blood vessels, soft tissue, etc. from the background and

from each other. It is also used for identification of the anatomical areas of interest or as

a preprocessing step for data analysis.

In treatment and diagnosis of multiple sclerosis, cancer and RA studies, segmentation

of regions of interest is used for tumours and lesion size estimation, calculation of thick-

ness of the cartilage, and for visualisation for surgical planning and simulation. Image-

guided surgery is an important application of segmentation. Recent advances in technol-

ogy have made it possible to acquire images of a patient whilesurgery is taking place.

The goal is then to segment relevant regions of interest and overlay them on an image of

the patient to guide the surgeon.

Some registration algorithms, e.g. nonlinear warps, perform differently when operat-

ing on segmented / raw data. For instance, even within the same subject, the brain can

move slightly within the skull over time; registering the skull may hinder registration of

the brain, so segmentation is used as a pre-processing step.

DCE-MRI datasets are often processed on voxel-by-voxel basis. Some tissues (such

as bone marrow and trabecular bone) do not provide valuable information in MR scans

and therefore need to be excluded from the analysis.

Poor resolution, partial volume effects and intensity inhomogeneity typical of DCE-

MRI data complicate their segmentation [189]. A signal measured for each voxel arises

from the entire tissue in a small, three-dimensional cuboid, and therefore might represent

a mixture of different tissue types. This makes the boundaries of the regions of interest

blurred and ambiguous. Various artefacts which occur because of intensity inhomogene-

ity significantly degrade performance of segmentation algorithms, as they often assume

that the intensities of a particular tissue are constant over the image [30,226]. To address

these problems, many segmentation algorithms employ ‘soft’ clustering [188, 258] or a

probabilistic model for tissue segmentation [12,238,265], where rather than making a bi-

nary decision on whether or not a pixel belongs to an object, authors allow for uncertainty

in the location of the boundaries [56,265].

Snakes [122], Active Shape Models (ASMs), and Active Appearance Models (AAMs)

[53] are often used to segment organs and tissues with a low degree of shape variation. In

ASMs, a statistical model of object shape and shape variation is derived from a training

set, where each sample is described by a shape vector containing the coordinates of land-

mark points that correspond between shapes. The shape modelis then used to generate

new shapes, similar to those found in the training set, whichare fitted to the data. Fitting

the model to an image from the dataset involves finding model parameters which optimise

some matching criterion between an image and a synthesised model example and requires
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a measure of probability that an image point belongs to the boundary [53]. The AAM is

a generalisation of the ASM approach that contains a statistical model of the shape and

grey level appearance of the object of interest.

It has been demonstrated that these approaches can be successfully applied to segmen-

tation of objects with fairly consistent shape and grey level appearance [17,206]. In some

applications, however, the statistical shape model may be too restrictive if the training set

is limited; the grey level appearance model often does not deal effectively with the highly

varying background seen in DCE-MRI datasets [204].

Approaches for segmentation of the soft tissue, where the degree of shape variation is

high, usually rely on evidence in the image such as grey valueand gradient information.

For instance, level set [172] or graph cut [29] approaches are often applied to medical

image segmentation. The level set technique is formulated as infinite-dimensional opti-

misation on a spatially continuous image domain [28], and isbased on the idea of front

propagation [68]. Graph cut is defined as minimal cuts of a discrete graph representing

the pixels of an image [28].

Some algorithms operate solely on intensity values [75, 87,229, 236], others involve

spatial information [228,268] or ground truth (GT) knowledge about the shape or intensity

of regions of interest [19]. Often these approaches assume that the tissue intensity and/or

location and shape of regions of interest across the data areconstant. Such assumptions

fail with dynamic data, complicated by the effect of contrast agent and high inter-patient

variability.

Often techniques incorporate manual estimation of initialparameters or prior knowl-

edge about the anatomy or image properties [182, 230]. This can significantly improve

segmentation results; however manual tuning of the algorithm makes this solutions in-

feasible for analysing large amounts of data [6, 202]. Thereare surveys that attempt to

classify segmentation algorithms based on the techniques they incorporate [75,265].

Fully automated segmentation is a challenging task [51] andthere is no general appli-

cation independent solution which does not require supplementary knowledge about the

image class, scanning modality or properties of regions of interest [82,189,230,236,277].

Here we provide a brief overview of two popular techniques, which are often used for

DCE-MRI data segmentation.

2.3.1 Snakes

The active contour model or snake is defined as an energy-minimising spline, where the

snake energy depends on its shape and location within an image [229]. This approach for
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image segmentation was first introduced by Kass et al. [122] and is still widely used for

various image analysis and understanding tasks.

It can be thought of as a technique for matching a deformable model to an image by

means of energy minimisation. Local minima of this energy then correspond to desired

image properties.

The active contour can be parametrically defined ass(p) = [x(p),y(p)], wherex(p)

andy(p) arex,y coordinates along the contour andp ∈ [0,1]. The energy function is a

combination of internal and external forces [122]:

E∗
snake =

∫

s(p)
Esnake(s(p))dp=

=
∫

s(p)

{

Eint(s(p))+Eimage(s(p))+Econtraints(s(p))
}

dp

(2.2)

In Equation 2.2Eint defines the internal forces, which represents the internal energy of

the spline due to bending:

Eint = α(p)
∣
∣
∣
ds
dp

∣
∣
∣

2
+β (p)

∣
∣
∣
d2s
dp2

∣
∣
∣

2
, (2.3)

whereα(p) andβ (p) specify the elasticity and stiffness of the snake. The external energy

Eimagedefines the external forces that come from the image over which the snake lies; is

minimsed at the features of interest, such as boundaries. The last termEcontraints reflects

external constraints imposed, for example, by a user. If thesnake is near some desirable

feature, the rest of the snake can be adjusted to account for it. If the snake converged to

a local minimum that was defined as incorrect, this term can force the snake away to a

different minimum.

From the calculus of variations, a snake that minimisesE∗
snakemust satisfy the Euler

equation, where∇ is the gradient operator:

αs′′(p)−βs′′′′(p)−∇Eext = 0 (2.4)

This can be viewed as the force balance equation:

Fint +Fext = 0, (2.5)

where internal forceFint = αs′′(p)− βs′′′′(p) discourages stretching and bending and
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external forceFext = −∇Eext pushes the snake towards the desired edges.

There are various approaches available for minimisation ofEquation 2.4 [55, 122].

Generally, the snake is made dynamic by treatings as function of timet as well asp, i.e.

s(p, t). Then, the partial derivative ofs is set with respect tot as in Equation 2.6:

st(p, t) = αs′′(p, t)−βs′′′′(p, t)−∇Eext (2.6)

A numerical solution to Equation 2.6 is achieved by discretising the equation and solving

the system iteratively. Most snake implementations use either a parameter which multi-

pliesst in order to control the temporal step-size, or a parameter tomultiply ∇Eext, which

permits separate control of the external force strength.

For our experiments we used a publicly available implementation provided by Xu and

Prince [270], which is based on defining the external energy via a gradient vector flow.

Even though this model allows for relatively flexible initialisation of the snake, it still

requires the initial contour to be in the vicinity of a correct solution. Clearly, it is not

trivial to find initialisation optimal for pre- and post-contrast DCE-MRI data with high

inter-patient variability, presence of high ambiguous boundaries and intensity artefacts.

2.3.2 Region growing

Region growing is a technique that classifies pixels into regions based on pre-defined

criteria [88] and might be useful for delineation of tumoursand lesions [85,191]. Region

growing is often used in every day medical practice for segmentation of various tissues

and semi-automatic identification of regions of interest [195].

It starts with definition of ‘seed’ points, from which the regions are grown by append-

ing to each seed those neighbouring pixels that satisfy a predefined criterion. This could

be the grey level or colour value of the pixel.

Location of the seed points and growth threshold (a similarity measure between the

seed and neighbouring pixels) are based on the nature of the application and image data

under consideration.

Descriptors such as colour, intensity, and texture are local and often do not account

for the history of the ‘growth’. Therefore, many authors utilise information about the size,

position, and shape of the object of interest based on prior information.

Region growing tests the statistics inside the region; however it is sensitive to typi-

cal DCE-MRI data noise and contrast variations, which causeresulting regions to have

irregular boundaries and small holes.

Figure 2.1 illustrates regions corresponding to the bone interiors taken from four dif-
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ferent pre-contrast images. It is clearly visible that the contrast and intensity of the bone

marrow and surrounding tissues varies significantly from study to study. The 4th region in

the figure exhibits oedema, which is causing a part of the boneto erode and appear black.

Region growing with a seed inserted in the middle of the bone region would not deliver

accurate results.

Figure 2.1: Regions corresponding to the bone interiors (brighter colours) and surround-
ing tissues from different DCE-MRI studies. Contrast and intensity of the bone marrow
and surrounding tissues varies significantly from study to study.

Therefore, in the presence of artefacts, ambiguous boundaries and intensity changes,

snakes and region growing often do not deliver an optimal solution. Besides, it might be

time-consuming to find an initialisation that allows snakesor region growing to perform

successfully on datasets acquired from various patients. Therefore, we seek an approach

that would be robust to the contrast / intensity changes and user independent of the pa-

rameter selection problem.

2.4 Evaluation techniques

Algorithm evaluation is an important step towards establishing its adequacy for a partic-

ular application or its general efficiency [5, 78, 263]. Different segmentation evaluation

metrics [45,46,66,271,276] have been proposed. They are used for quality assessment of

segmentation results, as well as algorithm comparison. Evaluation of different algorithms

on the same dataset allows choosing the most efficient one fora particular application.

Evaluation of a single algorithm on different datasets provides information about its ro-

bustness, and ability to handle data acquired under different conditions and by different

modalities.

Evaluation metrics can be divided into two groups: supervised and unsupervised. Su-

pervised approaches [46,66] are based on computing a dissimilarity measure between the

results of machine segmentation and known correct information: the Ground Truth (GT).

Unsupervised evaluation [45, 276] assesses the quality of segmentation by considering
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different statistics derived from the properties of an image and segmentation, without

knowledge of GT. Supervised evaluation is useful in method verification; unsupervised –

in actual clinical practice, where volume of data is too highto supervise.

Existing evaluation metrics are usually demonstrated on synthetic datasets, rarely

agree with each other, and put serious constraints on image properties. These constraints

are not generally valid for DCE-MRI imagery, which is complicated by low contrast and

intensity, local blur, patient movement artefacts, and thepresence of ambiguous bound-

aries. Therefore, there is a need for new supervised and unsupervised approaches suitable

for DCE-MRI data.

2.4.1 Supervised evaluation techniques

Earlier performance of the majority of segmentation algorithms [104, 105, 224] has been

quantified based on opinions of human observers. This precludes analysis of large num-

bers of images, as well as meaningful comparison of slightlydifferent results [115, 271].

Moreover, variation in evaluation results produced by different experts can be significant.

If image quality is poor, the boundaries of the region of interest are ambiguous and ob-

servers’ judgements on the expected segmentation might be uncertain.

An example of such a boundary is shown in Figure 2.2; the region is partly ambigu-

ous and overlays outlined by 2 experts independently do not coincide. To deal with this

problem, the most common approach is to involve the opinion of more than one human

observer, and then to ‘average’ their judgements [46,263].

Two procedures to evaluate an average curve, given two or more curves, are described

in [46] and [26]. The former is based on establishing one-to-one correspondence between

the points in the curves outlined by multiple observers using a modification of the methods

for shape registration. The later is based on a shape-based interpolation method. Details

can be found in the references; for our experiments the former procedure was used.

Alternatively, evaluation can be performed using statistical supervised metrics, which

assess the quality of segmentation by using GT information about regions. GT is usually

outlined manually by an expert before segmentation resultsare available; the performance

of segmentation algorithms can then be assessed according to measured discrepancy. Such

evaluation methods are also known as ‘empirical goodness methods’ [276].

However, the location of GT is usually dependent on expert opinion, and therefore

subjective. Chalana and Kim [5,46] attempted to solve this problem by computing a ‘per-

centage statistic’, which considers whether computer generated boundaries differ from

GT outlined by multiple experts as much as GT boundaries differ from each other. The
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Figure 2.2: A region from a DCE-MRI study of the MCPJs with a partly ambiguous
boundary (left), and two possible GT overlays, highlightedby different human experts
(middle, right).

authors state that their method outperformed the techniquesuggested by Williams [263],

where the opinion of an observer is compared with joint agreement of other observers.

These results have been analytically and empirically analysed in [5] and found inconsis-

tent.

The problem of GT inconsistency remains open, and is receiving attention in many

areas of imaging and computer vision [64]. The need for an objective metric, which per-

forms evaluation based on GT, but at the same time accounts for possible inconsistencies,

has been identified by many researchers. A solution to this problem is to allow an error

measure, yielding acceptable differences between the GT and the segmentation results.

Such a solution can be adjusted for possible observer error or poor image quality.

All supervised evaluation techniques which allow acceptable segmentation error are

based on one of two approaches [16,276]: misclassified area [66] or a measure of bound-

ary displacement [271]. Either can define an appropriate metric for assessing segmenta-

tion quality and efficiency.

2.4.1.1 The mutual overlap area based approach, and its limitations

The Mutual Overlap (MO) approach, also known as a Dice evaluation metric of a spatial

overlap, is based on computing the area of overlap between a GT overlay and a segmented

region [27,66,115]. This is illustrated in Figure 2.3.

The area is normalised to the total area of the two defining regions; if A1 is the area of

the segmented region,A2 is the area of the GT region, andMO is the area of their mutual
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MO

Figure 2.3: Mutual overlap: machine segmented region is shown in white, GT in red.

overlap, then the mutual overlap metric is defined as:

MMO =
2 ·MO
A1+A2

. (2.7)

It is customary to measure acceptable quality with respect to this metric by setting a

percentage threshold forMMO, usually greater than 50% [27], but this will vary to reflect

the strictness of the definition.

Figure 2.4: Four regions corresponding to bone interiors segmented in a sample DCE-
MRI image. Machine segmented regions are shown in white, GT in red.

This approach is popular and seen to work well on, for example, binary, RGB or some

satellite data, but its performance on DCE-MRI data is not always adequate:

• A DCE-MRI image segmented by a region growing algorithm [87]is shown in

Figure 2.4; machine results are shown in white and corresponding GT in red. The

MMO measure of these 4 regions is 81%, 74%, 53%, and 11% respectively. With

a threshold value of 70%, the first and the second regions are considered ‘correct’,

whereas in fact the second regions does not reflect the bone’sproperties, which,

from a clinician’s viewpoint, makes this sort of segmentation of little value.

• Often images are corrupted by noise or complicated by patient movement – then

boundaries become ambiguous and the location of GT is not obvious even for ex-
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perts. Assessment of segmentation results should reflect acceptable error account-

ing for the extent of the ambiguous sections, or assigned by an expert. Current uses

of this metric rarely if ever compensate for such factors [27].

• Experiments with DCE-MRI datasets show that boundaries of machine segmented

regions may partly overlap GT, be located strictly inside oroutside GT overlays,

or include very local significant deviations (for example, the second region in Fig-

ure 2.4).

MMO considers the area of regions. Therefore, long thin ‘tails’attached to the re-

gions will not influence the metric performance. Therefore,MMO is of most value

only when the distances from GT to the segmentation output are unimodal with

low variance, and so do not include very local significant deviations such as in the

boundary of the 2nd region in Figure 2.4 (which will be referred to as ‘tail’). If the

boundary pixels form a tail the evaluation can be confusing –because the tail area

is small,MMO, which considers area inside the regions boundary, is stillhigh.

• The metric cannot be applied to non-closed boundaries. Segmentation or boundary

detection algorithms applied to regions of varying intensity and texture often result

in partial boundaries, or they recognise interior areas of regions as boundaries. An

example is shown in Figure 2.5. For such segmentations, GT may be expected to

be a closed boundary, but segmentation may deliver open or closed curves. For

such images,MMO is of little use. Even if an open boundary has been closed by

some approach, boundary confidence while passing through low contrast areas will

be questionable. In this situation the metric will be affected by the quality of the

image as much as by the quality of segmentation.

Figure 2.5: Left: An image [taken with permission from [254]] segmented by the Canny
edge detector [39]. Middle: Results of a boundary detectionalgorithm. Right: GT (in
red).
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Despite these drawbacks, this metric is widely used for evaluation of segmentation

algorithms executed on medical imagery [27,38,48,192].

2.4.1.2 Hausdorff distance based approach

In 1977 an approach considering deviation of boundaries from GT was proposed [271].

In these experiments theMMO metric [66] (known at that time) was shown to be inad-

equate since it often departs from the human judgement and does not reflect the spatial

information inherent in pixel misclassifications. An alternative metric, which was based

on computing the Euclidean distance between all segmented and GT pixels inside the re-

gions’ boundaries, was proposed. This is related to the Hausdorff measure between the

sets [209].

The Hausdorff distance(HD) between two setsA andB is computed by finding the

minimum distance from each element of one to some element of the other, and then

finding the maximum such distance [209];

h(A,B) = max
a∈A

{

min
b∈B

d(a,b)
}

(2.8)

whered(a,b) is some suitable distance metric, commonly the Euclidean distance between

a andb. The Hausdorff distance is oriented (asymmetric); usuallyh(A,B) 6= h(B,A). A

general definition of the Hausdorff distance between two sets is [209]:

H(A,B) = max
{

h(A,B),h(B,A)
}

(2.9)

This defines a measure of the sets’ mutual proximity, indicating how far (at most) two

sets of points are from each other.H(A,B) has been adapted as an evaluation measure for

the quality of the segmentation results, whereA is a GT region andB a machine segmented

region, interpreting the setsA,B as the interiors of the two regions [46].

A debate persists on which evaluation metric should be preferred [43, 115, 217, 276];

few authors evaluate algorithms using both. A comparative study of the supervised eval-

uation metrics [43] favoursMMO and demonstrates that theHD based metric [271] does

not provide adequate evaluation of segmentation in the caseof under-segmented regions,

favours over-segmented regions, and produces measurements that are highly dependent on

confidence in GT. Conversely, it has been shown that evaluation provided byMMO does

not correspond to human observers’ opinions, and a HD based metric is preferable [217].
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2.4.2 Unsupervised evaluation techniques

Difficulties in acquiring GT such as imprecise definition, paucity of information, and

time consumption have motivated research into unsupervised evaluation [41,45,276], but

most of this work has been demonstrated on binary or synthetic images, with limited

experiments on MRI, CT and imagery acquired by other scanning modalities. We are

unaware of unsupervised evaluation metrics being successfully employed in domains with

such characteristics.

Generally unsupervised evaluation metrics are based on thelocation, shape, size, con-

trast, or intensity of segmented regions [187]. Unsupervised metrics depend on either

global image statistics, which can be derived from the set ofall pixels in the image, or on

regional statistics, which characterise the regions segmented.

Recent research on unsupervised evaluation methods [42] has shown that among the

best known techniques [276] that require no human intervention, there are several which

produce relatively consistent results from tests run on a range of imagery.

2.4.2.1 Existing unsupervised approaches

Intra-region uniformity criterion

A criterion proposed by Weszka and Rosenfeld [259] and Levine and Nazif [139] as-

sumes that an adequate segmentation algorithm produces images with high intra-region

uniformity. For untextured images, uniformity can be computed on the basis of inten-

sity variance evaluated at every pixel of the foreground [139]. Let AI denote the area

of the segmented imageI , Ai the area of the foreground regionRi, and f intensity of a

pixel; thenσ2 represents the intensity variance of the whole image, andσ2
i that of the

foreground [219]:

σ2
i = ∑

i
∑

(x,y)∈Ri

[

f (x,y)− 1
Ai

∑
(x,y)∈Ri

f (x,y)

]2

(2.10)

σ2 = ∑
(x,y)∈I

[

f (x,y)− 1
AI

∑
(x,y)∈I

f (x,y)

]2

(2.11)

In [139] the uniformity measure is given as:

σ2
i = ∑

i
∑

(x,y)∈Ri

[

f (x,y)− 1
Ai

∑
(x,y)∈Ri

f (x,y)

]2

(2.12)
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Sahoo [211] proposed normalising this measure as in Equation 2.13, whereCi is a nor-

malising factor.

σ2
i = 1−σ2

i /Ci (2.13)

In [219] area of an image and area of a region are taken as normalising factors and the

uniformity measure is given as in Equation 2.14:

M1 =
Ai

AI

σ2
i

σ2 (2.14)

Inter-region contrast based criterion

Later Levine and Nazif [139, 170, 176] proposed an evaluation measure known as the

inter-region uniformity criterion. It is assumed that goodsegmentation produces regions

of uniform intensity with high contrast along borders. If a grey scale image contains a

regionRi with average intensity levelf0 and average intensity of the local backgroundfb,

the measure is defined as the following:

M2 =
| f0− fb|
f0 + fb

(2.15)

Zeboudj contrast

The Zeboudj criterion [42, 274] is based on the difference inthe internal and external

contrast of a region segmented. It is assumed that an adequate segmentation should split

an image into regions of high contrast. This criterion considers separately pixels on the

region border and within its interior; the contrast of the pixels on the border of a correctly

segmented region is expected to be significantly different from the contrast of the pixels

inside the region. The Zeboudj measure is based on the combined principles of maximum

inter-region and minimal intra-region disparity measuredin the pixel’s neighbourhood.

The disparity between two pixels with grey levelsf (s) and f (t), can be defined by

Equation 2.16, whereG is the maximum of the grey levels:

c(s, t) = | f (s)− f (t)|/(G−1) (2.16)

The intra-region disparity of the regionRi with areaAi is given by Equation 2.17,

whereW(s) is the neighbourhood of the region’s pixels.

I(Ri) =
1
Ai

∑
s∈Ri

max
{

c(s, t), t ∈W(s)∩Ri

}

(2.17)
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External disparity of the region is given by Equation 2.18, whereFi is the region

boundary of the lengthl i.

E(Ri) =
1
l i

∑
s∈Fi

max
{

c(s, t), t ∈W(s), t /∈ Ri

}

(2.18)

Then, the disparity of the regionRi can be defined by Equation 2.19, where the mea-

surementCRi ∈ [0;1]. A schematic diagram is illustrated in Figure 2.6.

R
Wi

F

i

Figure 2.6: A regionR with boundaryF; a boundary pixeli and its neighbourhoodWi .

CRi =







1− Ii/Ei if 0 < I(Ri) < E(Ri)

Ei if I(Ri) = 0

0 otherwise

(2.19)

Finally, the Zeboudj criterion is given by Equation 2.20, whereAI is the area of the

image, andAi is the area of theith region:

M3 =
1
AI

∑
i

Ai ×CRi (2.20)

Classifier based metrics

Since different evaluation metrics make their judgements in different ways, they give

diverse results on the same segmentation output. This provides a number of evaluation

references, which may be combined to produce a single reference [45,275]; schemes such

as support vector machines [45] and Bayesian classifiers [275] have been used.

An algorithm presented in [45] evaluates segmentation outputs by combining results

of several stand-alone unsupervised metrics by means of support vector machines (SVM).

A number of segmentations are evaluated by an unsupervised and a supervised (mutual

overlap based) metric. This permits the assignment of a weight to each unsupervised

metric associated with accuracy of its prediction; higher-weighted metrics are used to
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train a SVM classifier and the metrics are combined into a subset that will be used for

evaluation of a particular application. The classifier is trained to make a prediction about

a new segmentation using predictions of individual unsupervised metrics as features. The

authors performed a comparative study of the unsupervised metrics, and demonstrated

that for a given application only a small subset of metrics produces an accurate prediction.

Also, incorporating an inappropriate metric into a classifier worsens performance of the

algorithm. It has been seen to perform well on synthetic images, but results are poor when

it has been applied to MR and satellite imagery.

Zhang et al. [275] also suggest combining stand-alone metrics’ outputs using vari-

ous classifiers (simple classifier, weighted majority (WM),Bayesian, and SVM). Using

various strategies the authors try to predict which of the given segmentations is better.

No learning stage is required for a Zhang’s simple classifier; the decision is made

alone with the predictions provided by the majority of the individual metrics. A weighted

majority based approach uses an on-line learning approach and is based on combining the

weighted opinions of individual metrics. Initially, each metric is given a weight of one;

during the training stage, a number of segmentations are evaluated by human observers

and opinions compared with the prediction given by the individual metrics. If a prediction

is wrong, then the weight of that metric is decreased. Then inthe evaluation stage, two

segmentations are compared and the weighted majority algorithm predicts which one is

better.

A further development was to combine primitive classifiers with a naı̈ve Bayesian

approach, assuming the scores of each metric are conditionally independent from each

other. Results discussed in the literature [275] are the best yet seen.

These algorithms have been demonstrated on several images from the Berkeley dataset

[154] (108 images were used for the training dataset and 91 for evaluation). The authors

have shown that combining metrics without the learning stage produces poor results, but

that classifiers trained using supervised learning techniques have produced relatively good

results. However, the authors do not discuss the appropriateness of each metric to a par-

ticular application and how results would change with variation in the number of metrics,

different imagery or a training dataset of different size. There were no experiments with

MRI or DCE-MRI data.

Other metrics

There are metrics developed for evaluation of segmentationalgorithms executed on colour

images (Lui and Yang evaluation criterion [148], Borsotti criterion [24]). The Borsotti

criterion has been modified to be applicable for grey scale image segmentation evaluation
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[42], but performed poorly. An overview on this type of evaluation can be found in

[5,24,42,148].

Some other evaluation metrics (Cochran’s homogeneity measurement based metric

[52], Pal’s intra-region uniformity based metric [178], Sahoo shape based measure [211])

require selection of a threshold, which is often done arbitrarily, thus limiting the applica-

bility of the methods.

2.4.2.2 Issues with existing metrics

There are several problems affecting performance of the currently accepted unsupervised

metrics:

• Noise and local blur may make object boundaries span severalpixels [189]; thus

segmentation algorithms will deliver objects with low contrast and partly ambigu-

ous boundaries. Existing metrics [42, 139, 259, 274] usually assume that an image

is segmented into regions of high contrast with well-definedboundaries.

• Interpretation and comparison of results delivered by unsupervised metrics are con-

fusing. Some are based on contrast changes, others use pixelratios; some are nor-

malised to the image/region size, others not.

• Simple evaluation measures such as [139, 259, 274] operate without any user inter-

vention, but are seen to be limited, while the more sophisticated metrics [45, 275]

require a training stage where an algorithm learns from set of manually outlined GT

segmentations.

However, a simple combiner of votes does not produce adequate results [275] and

some supervised learning should be incorporated. The size of the training dataset

and the number of metrics included in the classifier influenceperformance of the

algorithm. A study [45] shows that increasing / decreasing the size of a training

dataset or incorporating an inappropriate metric into a classifier can worsen perfor-

mance of the unsupervised approach. The choice of an optimalset of stand alone

metrics, appropriate size of the training dataset, to obtain the best match image

domain remain unclear.

2.5 Quantitative analysis of DCE-MRI datasets

DCE-MRI is used extensively in a wide range of applications involving different organs

and pathologies [119,132,177,197,198]. It has evolved as an important method for eval-
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uating various diseases of the musculoskeletal system [33,72, 252]. This technique pro-

vides information about tissue vascularity, perfusion andcapillary permeability [250] and

therefore permits assessment of the degree of inflammation and post treatment progress

evaluation.

After performing a dynamic study, a large number of images are available to be eval-

uated qualitatively and quantitatively. Evaluation of a series of images obtained with

DCE-MRI can be performed in different ways.

A simple, but subjective, qualitative method is the ‘naı̈vereview method’, in which an

observer examines the contrast enhancement sequentially on all images of the dynamic

sequence [202]. With this method detection of small areas ofenhancement, or areas with

discrete enhancement (especially in the wrist studies) canbe difficult.

Early qualitative analysis methods were based on image subtraction, in which the

first image (i.e. before contrast injection) is subtracted from all subsequent images of

the dynamic study [72, 250]. The subtraction images are thenviewed one by one. With

such methods it is possible to detect the most highly enhanced tissues (for biopsy or

injections). However, estimation of measures such as the magnitude of enhancement and

time of onset of enhancement or recognition of the late enhancing tissues such as fat on

the early subtracted images is difficult.

Quantitative analysis of DCE-MRI data can be performed using two fundamentally

different groups of methods: pharmacokinetic [31, 134, 245] and heuristic [62, 107, 121,

130,195]. Pharmacokinetic methods [31,134,245] provide aframework that can be used

to link the physics of MRI signal acquisition and the underlying patho-physiology that

governs contrast agent kinetics. Comparative analysis of these methods can be found

in [196,243].

Pharmacokinetic methods [31,134,245] rely on a common set of assumptions regard-

ing the properties of the principal compartments and their interactions, but adopt different

representation for temporal variations of the contrast agent concentration in the blood

plasma. In [134] the contrast agent concentration in the blood plasma is measured in indi-

vidual subjects, which makes implementation of this methodin clinical settings difficult,

especially when high spatial resolution and multi-slice coverage are required [196].

In [31, 245] the contrast agent concentration in the blood plasma is represented as a

theoretical function in response to a chosen form of the input function (injection), which

is often idealised as a delta function. Such a representation fits experimental data well

when the temporal resolution of the DCE-MRI is low and acquisition time long. With

higher resolution the characteristic shape of the contrastagent uptake in the tissue of

interest resembles a sigmoid, which cannot be accurately described by these methods
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Figure 2.7: Top: Pre- and post-contrast images of the wrist.Bottom: Signal intensity (I )
vs. time (T) curve approximated by a piecewise linear model. Parameters ME, IRE, and
Tonsetestimated for this curve.

[243]. Furthermore, long acquisition times incur more noise as a result of movement and

provoke patient discomfort.

In clinical practice, it is impossible to assess the accuracy with which pharmacokinetic

variables reflect the true underlying changes in concentration of the contrast agent [119].

The accuracy of the estimates will depend on the pharmacokinetic model used and the

signal to noise ratio in any individual case. This is a particular problem with applications

where noise is the dominant, or only, cause of variation of contrast agent concentration

[119].

Alternatively, contrast enhancement can be quantified in terms of heuristic parameters

such as maximum enhancement (ME), initial rate of enhancement(IRE), and time of on-

set of enhancement (Tonset). These heuristic parameters have been seen to correlate with

pharmacokinetic measurements of inflammation [83, 128, 240]. In contrast to pharma-

cokinetic parameters, heuristic estimation is relativelystraightforward (see Figure 2.7).

There is clear terminological confusion over the maximum rate of enhancement (MRE)

and the initial rate of enhancement (IRE). In fact, what we callIRE in Figure 2.7 mea-

suresMRE, and will be equal to the initial rate of enhancement only when the wash-in

phase (the intensity increase) is linear. However, due to the noise present in the data, a

reliable estimate ofIRE is often impossible. Therefore, we proceed with computation of

MRE, which in all further experiments will be referred to asIRE in common with other

literature.



Chapter 2 32 Background

Most such analysis hitherto has examined individual signalintensity curves derived

from user defined regions of interest (ROI analysis) or on voxel-by-voxel basis.

The validity of ROI analysis relies on the position and size of ROI, as its misplacement

might result in a 20−30% difference in measurements [50,162]. This implies poorrepro-

ducibility of the techniques which describe the shape of theenhancement curves [119].

The first attempt to perform objective voxel-by-voxel analysis was published in [195],

where the enhancement curves were constructed for the all pixels in the dynamic slice.

This freed the analysis from ROI placement, but the approachhas its own drawbacks and

limitations, listed in the next section.

2.5.1 Current analysis of DCE-MRI datasets

There are no standardised methods for heuristic analysis ofthe data acquired with low

or high field scanners. Currently, for the metacarpophalangeal joints (MCPJs) and wrist

studies dynamic curves are calculated from an approximately 2-3 mm2 ROI positioned

in the area of maximal visual enhancement [50, 195]. Measurements ofIRE andME

contain both spatial and temporal information making the results vulnerable to the size

and position of the ROI [162].

A semi-automated approach proposed for DCE-MRI data of the MCPJs analysis [195]

was the first attempt to perform quantitative analysis objectively. It uses the commercially

available software ANALYZE [202] for manual segmentation and identification of tissues

of interest. Signal intensity vs. time curves (I ) are normalised over a mean baseline com-

puted from the first three values(b), and their geometrical properties such as height and

slope are considered. The normalised signal is:

b =
3

∑
t=1

I(t)
3

, Î(t) =
I(t)
b

, t = 1. . .T (2.21)

In Equation 2.21T is the number of dynamic frames in the temporal slice; in the first

three no enhancement is expected to be observed and therefore they are often taken as a

baseline.

To assess the extent of RA various parameters, such asME, IRE, andTonsetare com-

puted from the enhancement curves. The parameters are estimated by passing an averag-

ing window of lengthn= 5 (a number empirically found for the MCP data [195]) over the

signal intensity vs. time curve and determining the gradient of the linear best fit in each

window [195]. The maximal such gradient is taken asIRE, and the instant at which this

occurs recorded as time of onset of enhancementTonset. ME is found as a maximum of

mean intensity values calculated in each window. Figure 2.8illustrates estimation ofIRE
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with the moving-window algorithm1.

Figure 2.8: Estimation ofME, IRE, andTonsetwith the moving-window approach.

At this stage, pixels in which signal intensity vs. time curves exhibitTonset> 60s or

ME < 1.2 are regarded as unlikely to be of clinical interest since either the take-up has

not been appreciable or the behaviour is outside the expected time interval [195]. This

permits the measurement ofNtotal – the total number of enhancing pixels, which allows

for assessment of a patient’s condition.

Computation of the parameters with the moving-window will depend highly on the

degree of noise present in the data, scanning equipment, andthe time-course of the arrival

of the contrast agent [111, 195]. The size of the moving window needs to be adjusted

to process the data acquired by a particular scanner or at fixed acquisition settings (as

different scanner generate data of different noise level).This implies manual intervention

of the human operator, which makes the results subjective.

To visualise the extent of inflammation, parameters are presented in the form of para-

metric maps, which are 2D images depicting these parameters. Thus, a parametric map is

a 2D representation of a chosen property of interest (e.g.ME, IRE) superimposed on the

anatomy image.

The first mention of parametric maps can be dated to the late 1980s – early 1990s.

They were used for DCE-MRI data analysis acquired in pre-clinical contrast agents trials.

Later in the 1990s, clinical trials were performed on patients [31, 130, 134, 245]; this is

when the modern definition of the maps originated [180,235,242,244,246].

The value of the parametric mapping technique lies in speed and ease of interpretation

of DCE-MRI datasets and its simple display, suitable for clinical interpretation even by

non-experts. The benefits of parametric mapping are obvious; however, the technique is

1Taken [with permission] from [195].
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not widely adopted in medical practice. There are no established standards for assessment

of quality of the parametric maps that might explain what degree of noise is acceptable

and how well a parametric map reflects the activation events.Currently, evaluation of the

parametric maps’ quality is performed by experienced observers and clinical experts.

Therefore, current analysis of DCE-MRI data [50,195] enables semi-automated com-

putation of the parameters, but has some drawbacks and limitations. Firstly, as no pre-

processing is employed, voxel-by-voxel analysis might be misleading as it is assumed

that each voxel represents the same area of tissue throughout the acquisition, which is of

course wrong due to the presence of patient’s motion.

Secondly, more accurate estimation of the parameters is desirable. For example, es-

timated with the moving window method [195]Tonset corresponds to the time at which

intensity is increasing fastest, and is clearly larger thanthe actual time of onset of en-

hancement. This estimate is, of course, trivial to improve given this time and the gradient

IRE.

Furthermore, there is often a proportion of curves in which the maximal intensity has

not been reached, indicating constant leakage into locallyavailable extra-cellular space.

Existing methods do not allow identification of tissues at which signal intensity did not

peak during the acquisition of DCE-MRI data, which might lead to inaccurate estimation

of the parameters. Such locations should be identified.

Lastly, all issues mentioned prevent accurate estimation of the total number of en-

hancing pixels (Ntotal), which indicates the extent of RA [180].

2.6 Segmentation of blood vessels

Due to the high vascularity that occurs in disease affected tissues, values ofME andIRE

corresponding to the blood vessels and such tissues will be depicted in a very similar

manner in the parametric maps. This complicates visual analysis of the data and does not

permit an objective automated assessment of the inflammation. Therefore, blood vessels

should be excluded.

Some algorithms attempt to determine the centre of the vessel paths and then employ

various segmentation and tracking algorithms [149] or utilise prior knowledge about the

segmentation task [35, 249] to reconstruct the vessels’ tree structure. Other applications

[146, 213] achieve sequential contour tracing by incorporating features such as central

vessel point and search direction [146]. A semi-automatic graph representation approach

for vessel tracking has been introduced in [136]. In [97], the authors present a coronary

artery tracking system that incorporates information within subsections of an image for
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stable tracking. Features such as vessel width and direction are required; also the starting

point should be given by a user. Classification and comparison of various tracking based

approaches can be found in [125].

Approaches discussed in [125, 159, 269] apply explicit models to extract the vas-

culature from DCE-MRI datasets. These include deformable models, parametric mod-

els, and template matching. Such methods generally requiremanual or semi-automatic

initialisation based on prior information about the diameter and location of the vessels

[127,167,210].

Several techniques have been proposed for automated initialisation of such algorithms

[164,270,272] and their adaptation to a particular topology [143,160,221]. They generally

require a pre-processing stage that allows generating an initial contour, which is further

refined [63,79,218,238].

Several authors use template matching approaches that attempt to recognise a struc-

tural model (template) in an image [20,255]. In arterial extraction applications the arterial

tree is usually represented in the form of a series of nodes connected in segments. For-

mulation of the model often requires user interaction and prior information about the

diameter and location of the vessels.

Even though template matching and tracking methods might produce good results,

there is still a need for manual initialisation or selectionof appropriate starting points.

Alternative methods are based on tissue classification.

Commonly, tissue classification is done based on intensity values. The very first meth-

ods [242, 245] assumed that each voxel that enhances more than a certain threshold is

vascular in origin. However, this approach can lead to exclusion of up to 50% of voxels

from the image in enhancing tumours and other very vascular enhancing tissues [119].

In brain studies [49, 264] it is customary to assume that all tissues presented in an

image belong to one of three groups. The first one, with the lowest intensity response is

presented by cerebrospinal fluid, bone, and background air;the second, with middle inten-

sity corresponds to brain tissues, and the third, with high intensity – to subcutaneous fat

and arteries [100]. Furthermore, it is assumed that intensity of blood vessels is generally

higher than intensities of all other tissues.

Using these assumptions, researchers employ various functions to model distribution

of the intensities to automatically or semi-automaticallyclassify the tissues [49,101,264].

Such methods do not require user interaction, and are based on the information that could

be extracted from the data.

Even though a lot of blood vessel segmentation techniques have been proposed [69,

125, 159, 230, 237], the problem of accurate vessel segmentation from DCE-MRI data



Chapter 2 36 Background

remains a challenging task. In DCE-MRI data, due to the in-flow effect, some vessels

appear bright in the pre-and post-contrast images, while the intensity of others increases

with contrast agent inflow, which would lead to low signal-to-noise ratio and an intensity

inhomogeneity within the region. The conventional segmentation methods that are based

on the image intensity fail when there is a significant signalintensity change within the

vessel area. Furthermore, the intensity and contrast between background and vessels, or

inside the vessel, may vary from region to region and patientto patient. Therefore, local

absolute intensity statistics in the vessel and backgroundregions may not be reliable, or

the intensity gradient magnitude on the vessel boundary maynot be large enough for

reliable segmentation [237].

2.7 Conclusion

Approaches for analysis of DCE-MRI data assume that relationship between the contrast

agent concentration and signal change are known and well-defined [244], and also that

all intensity changes at each voxel can be attributed to the contrast leakage and that each

voxel represents the same tissue type.

However, intensity changes in an DCE-MRI dataset will depend on the data acquisi-

tion parameters, dose of the contrast agent, and scanning equipment. Hardware instability,

magnetic field inhomogeneity and subject motion during the imaging can introduce arte-

factual enhancement.

At the end of an examination, a radiologist receives a dataset of up to 300 2D im-

ages, which can be corrupted by noise and patient motion artefacts. A reader semi-

automatically or manually segments images, in order to locate the tissues of interest and

isolate markers and then makes a decision about the patient’s condition by viewing the

images one by one.

Assessment and comparison of the datasets acquired in follow-up examinations is

performed in a similar manner. Such evaluation is obviouslyhighly subjective and results

are not easy to reproduce. There is no technique for comparison of the data acquired from

the same patient on two different scanners. Also, the quality of the data can render the

entire analysis invalid [9].

Therefore, we are dealing with several problems. Firstly, there is a need for efficient

pre-processing techniques that can compensate for patientmotion, locate tissue of interest,

and thereby contribute to data fidelity. Secondly, efficientquantitative techniques that

allow assessment and interpretation of the results of multiple examinations are required.

Some standard registration and segmentation techniques fail to perform under assump-



Chapter 2 37 Background

tions imposed by the dynamic data acquisition settings. Registration of the images located

at the beginning of temporal slices can be successfully performed by, for instance, the

iterative closest point algorithm based on edge features selected with Canny edge detec-

tor [39], however, when the local contrast and brightness change become prominent, the

algorithm fails. Therefore, in this thesis we will introduce new segmentation and regis-

tration algorithms that are suitable for DCE-MRI data pre-processing.

We have also developed a new quantitative analysis technique adequate for DCE-MRI

data evaluation and interpretation, including estimationof various inflammation-related

parameters, assessment of the pattern of contrast agent uptake, and visualisation of the

activation events.

In the following chapters we illustrate how analysis of DCE-MRI data involved in

rheumatoid arthritis studies can be performed using optimised registration, new segmen-

tation and robust quantitative evaluation techniques.
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Magnetic Resonance Imaging data

3.1 Image modalities for monitoring RA

In recent decades, medical imaging became a very powerful tool, offering new possibili-

ties for diagnostic investigations. Development of imaging techniques such as positron

emission tomography (PET), computer tomography (CT), ultrasonography (US), sin-

gle photon emission computed tomography (SPECT), and magnetic resonance imaging

(MRI) enables physicians to examine various disorders in a non-invasive fashion by means

of high-resolution three-dimensional images.

Medical imaging modalities can be divided into two major categories: anatomical and

functional. Functional modalities provide information onthe metabolism of the underly-

ing organs, and anatomical – illustrate the anatomy of body parts and organs. The later

are commonly used for rheumatoid arthritis assessment.

CT permits good definition of bone change. However, a patient’s exposure to ionis-

ing radiation might influence changes in RA soft tissues [4].Evaluation of rheumatoid

arthritis with X-ray is relatively inexpensive, widely available and has standardised meth-

ods for interpretation [106]. However, it also has a number of limitations, such as its

inability to reliably determine structural change in less than 6-12 months and the need for

experienced readers to interpret the images [241].

Musculoskeletal US is a rapidly emerging technique for detection of the soft tissue

lesions in inflammatory rheumatoid diseases [91, 215, 251].The main advantages of ul-

38
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trasonography is the absence of radiation, low running costs, and good visualisation of the

tendons and joint space [102]. However, the quality of the examination is highly depen-

dent upon the skill of the operator and the use of optimal equipment. The former leads to

problems with reproducibility based on inter-observer variability and the use of different

scanners [241]. The latter implies that without a high-quality imaging system US exam-

ination might not be accurate. Conventional ultrasound equipment for musculoskeletal

work is equipped with standard 7.5–10 MHz transducers; however systems with even 20

MHz transducers have a limited field of view, poor beam penetration, and do not allow

the evaluation of structures deeper than 1.5 cm. Moreover, not much data on the prog-

nostic value of US in RA is available [215]. Therefore, its long term diagnostic value is

unknown.

MRI is a highly sensitive technique for disclosing early rheumatoid erosions and has

been shown to be better than other modalities for the detection of inflammatory changes in

RA joints [11, 215]. Various studies illustrate that MRI is sensitive to the follow up anal-

ysis of bone damage, detecting soft tissue lesions, synovitis, and early erosive changes.

Performance of MRI scanning has been enhanced by the introduction of a dynamic

setup [248]. The acquisition of images in a dynamic manner permits recording of the

tissue behaviour over time, which delivers more comprehensive information about the

tissue.

3.1.1 Magnetic resonance imaging

In MRI, a patient is placed within a high intensity magnetic field; the strength of the

field might vary from 0.2T1 to 8T [1, 214] depending on the scanning equipment [32].

The induced magnetic field causes the magnetic moments of thehydrogen atoms, pre-

sented in the tissues within the patient, to align along the principal direction of the super-

conducting magnet. Low-level radio waves are then transmitted through the patient caus-

ing the magnetic moments of the hydrogen nuclei to resonate and re-emit microwaves

after each pulse.

When the energy source is turned off, the protons return to equilibrium, emitting the

absorbed energy as a time varying radio wave, which is recorded as the MRI signal. This

is done by measuring a current which is induced during the relaxation process in a radio-

frequency (RF) coil due to the time-varying magnetic flux caused by the relaxing nuclei.

Interpretation of the current as a function yields a sine wave decaying over time [90].

Spatial locations of the scan can be determined by varying the magnetic field about

1The strength of the magnetic field is measured in Tesla [T].
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the patient in different directions at different times. Magnetic gradients are generated by

three orthogonal coils, oriented in the x, y and z directionsof the scanner. Encoding of

the spatial information into the signal is accomplished by superimposing three orthogonal

magnetic field gradients, resulting in a spatially dependent resonance frequency and phase

of hydrogen nuclei. The signal, which likewise is a functionof time, is converted by the

inverse Fourier transform into the spatial domain to produce an image [248].

T1 / T2 relaxation time

The MRI signal arises from the spin-lattice relaxation time(T1) and spin-spin relaxation

time (T2) of hydrogen nuclei [22].T1 andT2 are biological tissue dependent parameters

and the basis of the tissue contrast in MR images.

The T1 effect in the relaxation process is due to the return of the high energy state

protons to the low energy state via exchanging their ‘extra’energy with the neighbour-

ing protons. The value ofT1 indicates how quickly the spinning nuclei will emit their

absorbed RF into the surrounding tissue.

The T2 is a tissue-specific time constant for protons, which depends on the energy

exchange of the proton and nearby nuclei. Due to the interaction, protons lose their phase

coherence and, therefore, magnetisation.T2 measures the decay in magnetisation and

allows tissue types to be distinguished.

A subtle variant of theT2 technique is calledT∗
2 imaging. Formation ofT∗

2 imag-

ing allows for additional sensitivity to relaxation processes (however image resolution is

sacrificed). Due to this property,T∗
2 -weighted sequences are used for functional MRI

(fMRI), evaluation of the baseline vascular perfusion, cerebral blood volume using in-

jected agents; in these cases, there is an inherent trade-off between image quality and

detection sensitivity [151].

TheT2 relaxation is temperature dependent. At a lower temperature molecular motion

is reduced and the decay times are reduced. Fat has a very efficient energy exchange and

a relatively shortT2. Water is less efficient than fat in the exchange of energy, and has a

longT2 time. On aT2-weighted scan, fat-, water- and fluid-containing tissuesare bright.

Damaged tissue tends to develop oedema, which makes aT2-weighted sequence sensitive

to pathology, and generally enables us to distinguish pathologic tissue from normal tissue.

TheT1 time affects the tissue contrast. Due to the high mobility of the water molecules,

the water nuclei do not give up their energy to the surrounding tissue as quickly as fat, and

therefore, on aT1 contrast MR image, fat will appear bright and water dark [22]. This

makesT1 sequences useful for the assessment of the condition of various tissues such as

brain, joint, and spine.
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Figure 3.1: MR sequences. Left: Dual echo SE sequence. Right: Basic GRE sequence.

Repetition time / echo time

The pixel intensityI(x,y) in an MR image can be described by the following equation

[248]:

I(x,y) ∝ ρ(x,y)
(

1−exp
[

− TR
T1

])

︸ ︷︷ ︸

T1−weighting

exp
[

− TE
T2

]

︸ ︷︷ ︸

T2−weighting

, (3.1)

whereρ(x,y) is proton density,TE is echo time, andTR repetition time.TR is the time

between the application of an RF pulse and the start of the next RF pulse,TE is the time

between the application of the RF pulse and the peak of the echo detected [22]. An echo

is the emission of energy in the form of an electromagnetic resonance signal of a nucleus

after its excitation.

TE andTR influence the level of sensitivity of a particular tissue to the differences

in T1/T2-relaxation process and therefore MR image characteristics. Adjustment ofTR

andTE causes the signal to become more sensitive to the relaxationprocess and allows

for the enhancing of the contrast between specific types of soft tissue.

In practice the contrast of MR images can be altered by varying the imaging parame-

tersTE andTR, which have to be adjusted by the operator to reasonable values in order

to discriminate between various tissues [248].

MR sequences

The appearance of tissues in an MR image is influenced by proton density (i.e. number of

hydrogen nuclei) and the temporal course of theT1/T2 relaxation process after applying

certain RF-pulse sequences. A pulse sequence is a set of RF and gradient pulses repeated

during a scan [248]. Figure 3.1 illustrates two types of MR pulse sequences: spin echo

(SE) and gradient echo (GRE). The SE pulse sequence is the most commonly used pulse

sequence. The pulse sequence timing can be adjusted to giveT1-weighted, proton density,

andT2-weighted images. The two variables of interest in SE sequences areTRandTE.

All spin echo sequences include a slice selective 900 pulse followed by one or more 1800
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degree refocusing pulses.

The GRE sequences show a wide range of variations compared tothe SE. The basic

sequence is specified byTR, TE and an additional parameter – a flip angle. The flip angle

of the spins is usually at or close to 900 for a spin echo sequence, but commonly varies

over a range of about 10 to 80 degrees with a gradient echo sequence. The larger flip

angle gives moreT1 weighting to the image, and the smaller moreT2.

MR sequences can be two-dimensional with a single 2D sectionacquired at a time, or

three-dimensional with a volume of multiple sections obtained in a single acquisition.

Other imaging parameters

In MRI, anatomic coverage is determined by the size, location, and orientation of a user-

defined solid rectangular volume. The possible orientations of the volume are axial, sagit-

tal, coronal, or oblique.

Data is usually acquired in slices (a virtual slice through a3D object). Typically,

slices are parallel to one another; they may be contiguous oroverlapping. A typical slice

thickness varies from just under 1mm to about 5mm.

Spatial resolution or Field of View (FOV) describes the dimensions of a slice or a

cross-section of a volume. Small FOV implies high resolution and small voxel size.

Contrast agents

Both T1- andT2-weighted images are acquired in medical examinations, however often

they do not adequately show the anatomy or pathology. Therefore, the contrast between

different types of healthy tissue as well as between healthyand pathologically altered tis-

sue is further improved by the administration of a contrast agent, that affects the relaxation

times of the tissues [50,133,174,215,253].

A contrast agent may be simply water, taken orally, for imaging the stomach. Super-

paramagnetic contrast agents (e.g. iron oxide nano-particles) became available in the

early 90s [257]. These agents make tissues appear very dark on T∗
2 -weighted images and

may be used for liver imaging – normal liver tissue retains the agent.

The most common paramagnetic contrast agent is a gadoliniumcompound [133,256].

Gadolinium diethylene triamine pentacetic acid (Gd-DTPA)is an extra cellular contrast

agent that selectively alters MRI signal intensity throughout its distribution volume (blood

plasma and extra cellular fluid).

Gd-enhanced tissues and fluids appear extremely bright on the T1-weighted images,

which permits detection of the vascular tissues and assessment of brain perfusion or syn-
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ovial tissue.

Initially, only structures immediately containing the Gd-DTPA contrast agent, like

blood vessels, appear bright in the images. This is a dynamicor arterial phase of a DCE-

MRI examination [230]. The timing of the arterial phase depends on the size of the

contrast injection, location of the arterial bed and patient’s cardiopulmonary status.

During the second phase, known as an early-delayed or venousphase [230], arter-

ies usually remain opacified, although they may not appear asbright as during the arterial

phase. After the venous phase comes a late-delayed or equilibrium phase. Vascular opaci-

fication during this phase depends on the type of contrast agent [230].

In DCE-MRI, a temporal variation of the MRI signal intensityoccurs following intra-

venous administration of the contrast agent. The time course of signal changes corre-

sponds to the underlying changes in local bulk tissue concentration of the agent, which in

turn depends on the degree of inflammatory activity.

Therefore, DCE-MRI is an efficient technique for the assessment of the extent of

inflammation and monitoring the treatment-induced changesin RA [83,128,240,243].

3.2 DCE-MRI datasets involved in this research

Images involved in this research are acquired from the hand and wrist of patients involved

in RA studies. Before the scanning, a patient is pre-injected with the contrast enhancing

agent Gd-DTPA, then sequences of 3D volumes are acquired from the joints over a period

of time during which some tissues exhibit reaction to the contrast enhancing agent.

Gd-DTPA induces selective enhancement of signal intensityin well perfused tissues

and where capillary walls allow contrast penetration. As illustrated in Figure 3.2, inflamed

synovium and blood vessels enhance significantly, the surrounding muscle exhibits a low

degree of enhancement, and cortical bone and cartilage experience no enhancement.

Figure 3.2: Pre- and post-contrast images from a temporal slice acquired with the high-
field scanner. In post-contrast image, inflamed synovium around the second bone region
and blood vessels are enhanced significantly, the surrounding muscle exhibits a low de-
gree of enhancement, and cortical bone and cartilage experience no enhancement.
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Schematically the data from a single DCE-MRI experiment is shown in Figure 3.3. A

3D volume is a set of images acquired atSscans over timeT. A temporal slice is a se-

quence of 2D images acquired from the same physical locationat different time instances.

A single 2D image in the DCE-MRI study is called a dynamic frame.

Scan

Time

S

1

... ... ......

3D volume 2D dynamic frame Temporal slice

1 T

Figure 3.3: Structure of 4D DCE-MRI experiment: 3D volumes of images are composed
of Sscans and acquired over timeT.

The acquisition parameters that define temporal scope of theimaging are specific for

a given MRI scanner and are chosen by a radiologist to ensure maximum exposure of the

disease affected tissues.

3.2.1 DCE-MRI data acquired by the high field scanner

Datasets from 10 patients with active RA were acquired with a1.5T MRI scanner (Gy-

roscan ACS NT, Phillips Medical Systems, Best, The Netherlands). During the scanning

patients were positioned prone, with their arm extended in front of the head and a linear

circular 11cm diameter surface coil placed on the dorsum of the hand [195].

The positioning of the imaging volume is illustrated in Figure 3.4, where the lines

indicate the positions of transverse slices [195], superimposed on a coronal and sagittal

cross sections2.

The imaging volume encompasses four (2nd – 5th) MCP joints and was positioned

using a set of precise anatomical landmarks (such as MCP joints’ capsules) to ensure

adequate coverage of the joints at the baseline and follow-up scans [195].

A standard dose of 0.1 mmol per kilogram body weight of Gd-DTPA (Magnevist,

Schering, Berlin, Germany) was used. The injection was administrated manually with a

constant injection rate over a period of 7.1 seconds. Figure3.2 illustrates baseline and

post-contrast MR images of the MCP joints.

2Taken with permission from [195].
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Figure 3.4: Positioning of the imaging volume in the high field hand RA study.

Imaging was performed using a 3DT1 weighted spoiled gradient echo sequence:TR/

TE / Flip Angle = 14/3.8/400; FOV = 100mm, 6 slices, 3mm slice thickness, 20 dynamic

scans at 7.1 seconds intervals with a 128×256 image matrix. A single DCE-MRI dataset

consists of 20 sets of 6×128×256 volumes. The imaging time after the contrast injection

was approximately 142 seconds (20 time instances).

3.2.2 DCE-MRI data acquired by the low field scanner

23 MRI examinations from patients with active RA, 4 healthy controls, and 1 patient with

no RA, but suffering from occult wrist pain, were performed using a 0.2T musculoskeletal

dedicated extremity scanner (E-scan, Esaote Biomedica, Genoa, Italy). The patients were

examined in the supine position with the hand along the side of the body. For signal

collection, a receiver-only cylindrical solenoid wrist coil was used.

The slice planes were either axial through the first carpal row or coronal through the

middle part of the hand. Figure 3.5 illustrates pre- and post-contrast images of the wrist

in the axial and coronal directions.

Figure 3.5: Left: Pre- and post-contrast images of the wristscanned in the coronal direc-
tion with GRE sequence. Right: Pre- and post contrast imagestaken in in axial direction
through the first carpal row, using SE sequence.
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Figure 3.6: Pre- and post-contrast images with the blood vessels enhancing at different
rate. Blood vessels in squares correspond to the arteries, and blood vessels in circles to
veins.

The injection of Gd-DTPA (Magnevist, Schering AG, Berlin, Germany) was given at

a dose of 0.2 mmol/kg of body weight over 30 seconds through a 21mm butterfly needle

in the cubital vein.

Following the Gd-DTPA injection, the dynamic sequence was acquired making 22-

30 consecutive fast spin-echo or fast gradient-echo imagesin three pre-positioned planes

every 10-15 seconds. Slice thickness in the coronal direction was 4mm, and in the axial

direction slice thickness is 5mm. Acquisition parameters for T1-weighted SE areTR/TE:

600/18 ms, FOV/ imaging matrix: 180×180mm / 192×192; for and the axial/coronal

turbo 3D T1 gradient echoTR/TE: 38/16, FOV/matrix: 180× 180× 100mm / 192×
160×72.

3.3 Data analysis

3.3.1 Veins and arteries

In DCE-MRI, the intra venous injection of the contrast agentis imaged on the first pass

through the arterial system. The sequential scans essentially record the speed of the Gd-

DTPA penetration, flowing through the veins and arteries.

It was noticed that the blood vessels corresponding to the arteries enhance even in

the absence of Gd-DTPA, whereas blood vessels corresponding to the veins appear bright

only in the images acquired at later time instants. Figure 3.6 illustrates pre- and post-

contrast images from a temporal DCE-MRI slice with the bloodvessels enhancing at

different rates.

This observation can be explained by the fact that the blood vessels will enhance in

response to the contrast agent and due to the inflow effect3. Ideally, penetration of the

contrast agent into the volume of interest should occur within 10 seconds from the onset

3The inflow effect describes the fact that highly oxygenated blood flowing through the vessels generates
signal even in the absence of the contrast agent.
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of scanning. At this time, enhancement of the synovium and the blood vessels is expected

to begin. However, even before the contrast agent penetrates the tissue of interest, the

highly oxygenated blood flowing through the arteries provides a lot of signal due to the

inflow effect. Therefore, blood vessels corresponding to arteries appear enhanced even in

the first images in a temporal slice.

The inflow effect is not visible in the veins, which are wider than arteries, and therefore

maintain slower blood flow. Thus, blood vessels corresponding to the veins appear bright

only in the post-contrast images.

3.3.2 Bones and markers in the DCE-MRI datasets

The boundaries of the bone cross-sections are rigid, each bone is surrounded by cartilage,

blood vessels and muscle. The bone cross-sections (which include both cortical and tra-

becular bone as well as bone marrow) will hereafter habitually be referred to as ‘bones’.

The bones may not be visible in every image in the DCE-MRI study due to the poor

inter slice resolution of the image, or the physical location of the MR scan. The phalanges

of the joints are organised as shown in Figure 3.7, so a 2D temporal slice may lie between

them, and some bones could be imaged partially or missed as inFigure 3.7 (right).

A temporal slice captures the same physical location of the joints. Therefore, it can

be assumed [195] that, in the absence of significant patient movement, if a bone is visible

in one image in the temporal slice, then it should be visible throughout the slice.

Figure 3.7: Left: A coronal plan of the phalanges. Six scans of four phalanges of the
joints. Right: An axial MR section. With the second scan onlythree bones are imaged.

Some images acquired with the low field scanner contain a marker, which is located

close to the wrist. The marker is used to normalise image intensities and in our case was

a garlic pill attached to the patient’s hand with a bandage.
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Figure 3.8: Location of thumb in the images acquired with thehigh field scanner. Picture
of the hand is taken from [59]. Top row: The thumb is not depicted. Middle row: Only
a small part of the thumb is visible in the MR image (left side). Bottom row: The thumb
was bent during the examination. It is represented by two regions on the left or right side
of the 2nd–5th MCP joints in the corresponding MR image.

Images acquired with the high field scanner might depict a thumb. The thumb is

connected to the trapezium of the joint and is located on one of the sides, parallel to the

arm. The thumb can be easily rotated by 900, on a perpendicular level compared to the

palm (see Figure 3.8).

3.3.3 Normalised coordinate system

We manually outlined contours of the bone interiors, joints’ envelope (a boundary that

separates background, markers, and thumb, if present, fromthe interior of the joints,

which includes the soft tissue, skin, bone, and muscle) and blood vessels in 20 DCE-MRI

slices of the MCP joints acquired with the high field scanner.In order to analyse their

location, we present our results in a normalised coordinatesystem.

Let {xi ,yi}i=1...N denote coordinates of the MCP joints’ envelope in the coordinate

axesX andY, whereN is the number of pixels in the boundary. Firstly, we transformed the

data to be zero-mean by subtracting(∑i xi
N , ∑i yi

N ) from {xi ,yi}i=1...N. Then, principal com-

ponent analysis was performed on the zero-mean dataset and the coordinates{xi ,yi}i=1...N

were rotated to the principal axes. Therefore, the transformation to the new coordinates

{pi ,qi}i=1...N from {xi ,yi}i=1...N can be described by Equation 3.2, where spatial notation

of the coordinates was dropped for the sake of clarity andθ is the angle between the

original and principal axes.
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[

p

q

]

=

[

cosθ −sinθ
sinθ cosθ

][

x− ∑xi
N

y− ∑yi
N

]

(3.2)

Lastly, the coordinates{pi ,qi}i=1...N are normalised by the standard deviation ofpi and

qi . Figure 3.9 illustrates the location of the joint envelopes, bone contours, and blood

vessels outlined in randomly chosen 15 DCE-MRI slices of theMCP data acquired by the

high-field scanner in the normalised coordinate system. Allsix slices from the DCE-MRI

studies were included.
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Figure 3.9: Left: The joints’ envelopes and bone contours outlined in randomly chosen
15 DCE-MRI slices acquire by the high-field scanner and plotted in the normalised coor-
dinate system. Slices 1 to 6 from various patients were included. Right: The centers (in
black) and contours (in red) of the blood vessels outlined in15 DCE-MRI slices of the
MCP joints.σp andσq correspond to the standard deviation ofpi andqi .

The bones appear centrally in the vertical / minor direction(and predictably in the

horizontal / major direction)in respect to the joints’ envelope boundary; the blood vessels

tend to cluster close to the joints’ boundary away from the bone interiors. However, some

vessels might appear within the synovial tissue or near the bone interiors.

To evaluate the location of the vessels within the study, we manually outlined them

in six dynamic frames acquired from the MCP joints of a patient. Figure 3.10 illustrates

their appearance in the images received at the first and last scans. Due to the large distance

between the temporal slices, we can observe dramatic differences in the location and

size of the vessels. Figure 3.11 illustrates the vessels in six temporal slices (shown from

different viewpoints).

This preliminary analysis of the data indicates that there are some similarities in ap-

pearance of the tissue of interest, such as bone interiors and joint envelopes in the inter-

patient data. Even when all six slices were included in the analysis, we could observe
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Figure 3.10: Blood vessels outlined in the post-contrast dynamic frames in the 1st and 6th

temporal slices from the dataset acquired from a patient with the high-field scanner.

clear margins. Slice thickness, structure, and the small size of the vessels could be re-

sponsible for dissimilarities in their location. Often, blood vessels branch, which due to

the large distance between slices, might appear as a blood vessel was divided into two or

three vessels.

Figure 3.9 illustrates that bone interiors appear to cluster in location and blood vessels

do not. Future analysis of the data will relate to this groundtruth information, which

provides the basis for some segmentation techniques described in the next chapters.

3.4 Conclusion

In recent years contrast-enhanced dynamic MR imaging has become a commonly used

method for diagnosis and monitoring of inflammatory diseases. It permits acquiring in-

formation about the tissue vascularity and perfusion through measuring the speed of the

contrast agent penetration into the target tissue. However, widespread use of DCE-MRI

is limited by the need for further technical improvements and development of software

algorithms for data analysis.

Figure 3.11: Position of the blood vessels in each slice froma sample DCE-MRI study;
3D view from different angles.
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Acquisition parameters and properties of the datasets acquired in a dynamic manner

by means of the high and low field MRI scanners in the presence of the Gd-DTPA con-

trast agent were discussed in this chapter. Ultimately, image quality is constrained by the

limits imposed by a scanner, such as signal-to-noise ratio,imaging time, and contrast. In

dynamic imaging, the speed of the data acquisition plays an important role. There is al-

ways a trade off between longer acquisition times, which permit higher image resolution,

better contrast and larger field of view, and the degree of noise in images due to patient

motion and hardware calibration.

Formation of an MRI image, which reflects clinically relevant anatomy and physiol-

ogy, is achieved by manipulating the image contrast with theappropriate data acquisition

parameters. The parameter choice will depend on the capability of a scanner, speed of the

acquisition, desirable tissue contrast, and tissue characteristics.

Protons in environments corresponding to different materials have different longitudi-

nal and transverse relaxation times,T1 andT2. The differences between these parameters

and timing of the data acquisition are used to produce the contrast between the materials

in an MR image. The flexibility of the MR contrast enhanced dueto the presence of the

contrast agents permits depiction of the anatomical and functional information of use in

many clinical applications.

Optimisation of the parameters for a given task can be challenging [163]. Limited

availability of the quantitative characterisation of MR tissue parameters and the variability

of these characterisations restrict selection of the imaging parameters such asTRandTE.

Efforts in this direction are progressing, however, for targeted applications [25,140,267].

Development of faster imaging sequences that produce images at higher resolution

and efforts to reduce the system cost by reducing the magnetic field strength incur a

signal-to-noise penalty. Currently, a great deal of efforthas been invested in the image

post-processing methods, which allow for data quality enhancement.

The post-processing techniques for data analysis normallytake into account the nature

of the data acquisition (MR data parameters) and anatomy of the region under investiga-

tion, which often restrict them to be application dependent. Normalisation of the position,

shape and size of a tissue of interest in intra- and inter-patient data simplifies such analy-

sis.

Ideally, image processing methods should be fully automated. However, there is a

trade off between the amount of human input and the adaptability of the approach to

a wide range of applications. Fully automated algorithms can normally process only a

restricted range of data, but semi-automated set-up or manual initialisation allows for a

wider spectrum of applications.
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In the following chapters we present several algorithms forregistration, segmentation

and its evaluation, and quantitative analysis of the DCE-MRI data acquired from the hand

and wrist of patients involved in RA studies.



Chapter 4

Image registration

Approaches for quantitative analysis of DCE-MRI data assume that signal intensity vs.

time changes at each voxel can be attributed to the contrast leakage. However, patient

movement can introduce artefactual enhancement with implications to the extracted mea-

surements. Prior to the quantitative analysis images need to be aligned. In this chapter we

demonstrate the value of registration.

The algorithm presented in Periaswamy et al. [184] explicitly models geometric, con-

trast, and brightness variations and allows for efficient alignment of synthetic, PET, MRI,

CT, and X-ray images. It was designed to deal with occlusionsand missing data via

an expectation-maximisation (EM) step. However, the authors admit that this step is

time-consuming and not robust, which causes the algorithm to fail on dynamic contrast-

enhanced datasets where the effect of the contrast agent is prominent.

We have modified the algorithm [184] for efficient application on DCE-MRI data.

Firstly, the EM step was eliminated to reduce computationaltime. Secondly, an incre-

mental approach to the registration was introduced. This approach has been motivated

by the fact that some tissue significantly changes its intensity and brightness in the post-

contrast images and therefore, alignment of the post-contrast source to the pre-contrast

target may not be accurate.

Alignment of the images/volumes from the contrast-enhanced studies in the incremen-

tal rather than pair-wise fashion allows us to take into account the contrast and brightness

variations that occur locally in the soft tissue and, therefore, to reduce the registration

error.

53



Chapter 4 54 Image registration

In this chapter a 3D extension of the algorithm [184] will be documented. The tech-

nique is going to be presented at three stages. At the beginning, it is assumed that there

are no temporal contrast and brightness variations in the data and images/volumes can

be brought into alignment using a purely geometric inform. Then, two extra parameters

that explicitly describe the contrast and brightness variations are added in the registration

model. Lastly, a global smoothness constraint is imposed onthe geometric, contrast, and

brightness parameters.

The modified 3D version of the algorithm is documented in Section 4.11. An incre-

mental approach to the registration problem is introduced in Section 4.2. A need for the

smoothness constraint and performance of 2D/3D algorithmsenhanced with various types

of transformations on DCE-MRI data of the hand and wrist acquired by high and low field

scanners is discussed Section 4.4.

4.1 3D registration algorithm

4.1.1 Local affine

Let f (x,y,z, t) and f (x,y,z, t − 1) be source and target 3D images. It is assumed that

there are no contrast/brightness variations between the volumes and transformations can

be modelled using pure geometric parameters:

f (x,y,z, t−1) =

f (m1x+m2y+m3z+m10,m4x+m5y+m6z+m11,

m7x+m8y+m9z+m12, t) (4.1)

where (m1, ...,m9) represent the affine parameters, and(m10, ...,m12) – the translation

parameters;~m= (m1, ...,m12) are estimated locally for each small neighbourhood, but for

the sake of clarity their spatial notation is dropped.

A least square measure has been employed to deduce parameters ~m via minimising

the cost:

E(~m) = ∑
x,y,z∈Ω

[ f (x,y,z, t−1)− f (m1x+m2y+m3z+m10,

m4x+m5y+m6z+m11,m7x+m8y+m9z+m12, t)]
2 (4.2)

where the sum is over the spatial supportΩ of f (·) (Ω denotes a neighbourhood of the

1Terminology and notation used in Section 4.1 are heavily based on the description given in [184] [Taken
with permission].
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current pixel; the size of the neighbourhood is discussed inSection 4.1.3). The error

function was approximated by the first order truncated Taylor series expansion [94]:

E(~m) ≈ ∑
x,y,z∈Ω

(

f (x,y,z, t−1)− [ f (x,y,z, t−1)+

+ (m1x+m2y+m3z+m10−x) fx(x,y,z, t−1)+

+ (m4x+m5y+m6z+m11−y) fy(x,y,z, t−1)+

+ (m7x+m8y+m9z+m12−z) fz(x,y,z, t−1)− ft(x,y,z, t−1)]
)2

(4.3)

E(~m) = ∑
x,y,z∈Ω

[ ft(x,y,z, t−1)− (m1x+m2y+m3z+m10−x) fx(x,y,z, t−1)−

− (m4x+m5y+m6z+m11−y) fy(x,y,z, t−1)−
− (m7x+m8y+m9z+m12−z) fz(x,y,z, t−1)]2 (4.4)

In Equation 4.3fx(·), fy(·), fz(·), and ft(·) are spatial and temporal derivatives off (·).
Further, the error function may be expressed in vector form:

E(~m) = ∑
x,y,z∈Ω

[k−~cT~m]2, (4.5)

where scalark and vector~c are defined as:

k = ft +x fx +y fy +z fz

~c = (x fx,y fx,z fx,x fy,y fy,z fy,x fz,y fz,z fz, fx, fy, fz)
T (4.6)

The quadratic error function from Equation 4.2 has been transformed in a linear form

using the Taylor expansion. Therefore, its minimisation can be performed analytically by

differentiating the error function with respect to the unknowns:

dE(~m)

d~m
= ∑

x,y,z∈Ω
−2~c[k−~c T~m] (4.7)

Setting this result to zero, and solving for~m yields:

~m=
[

∑
x,y,z∈Ω

~c~c T
]−1[

∑
x,y,z∈Ω

~c k
]

(4.8)

With this approach a locally affine mapping can be found between the source and

target images or volumes. However, the effect of the contrast agent has not been taken

into account.
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4.1.2 Intensity variations

The model described above assumes no contrast or brightnessvariations between the

source and target images/volumes. This assumption fails when the volumes acquired

in the presence of the contrast agent are aligned to the pre-contrast target. Therefore, to

account for the contrast and brightness variations, two newspatially varying parameters

m13 andm14 are introduced into the initial model. The transformation between the source

and target volumes takes the following form:

m13 f (x,y,z, t−1)+m14 =

f (m1x+m2y+m3z+m10,m4x+m5y+m6z+m11,m7x+m8y+m9z+m12, t)

It is here assumed that the contrast and brightness change locally in an affine manner.

Obviously, the affine approximation does not describe accurately the real processes, how-

ever it reflects the fact that the contrast and brightness changes in soft tissues occur locally

and allows us to perform differentiation. As earlier, the error function is approximated by

a first order Taylor series expansion and differentiated to its unknowns~m that now consists

of 14 components. The result is set to zero, and the solution takes the following form:

~m=
[

∑
x,y,z∈Ω

~c~c T
]−1[

∑
x,y,z∈Ω

~c k
]

, (4.9)

where vector~c and scalark are:

k = ft − f +x fx +y fy +z fz

~c = (x fx,y fx,z fx,x fy,y fy,y fz,x fz,y fz,z fz, fx, fy, fz,− f ,−1)T (4.10)

These additional terms allow for efficient registration of the data complicated by the con-

trast and brightness variations. However, at this stage it is assumed that the geometric,

brightness and contrast parameters are constant within a small neighbourhoodΩ. To relax

this assumption, the smoothness constraint is imposed on the volume space.

4.1.3 Smoothness constraint

The first term in Equation 4.9 is assumed to be invertible. This can be guaranteed by

choosing a neighbourhood of large size [184]. However, the assumption that the local

affine, brightness and contrast parameters are constant within a neighbourhood is only

likely to be held when the area of the neighbourhood is small.

To avoid making a decision on the optimal size of the neighbourhood, the assumption
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that the parameters~mdo not change within the neighbourhood is replaced with a smooth-

ness assumption, which implies that physical properties inthe neighbourhood of a space

or within the time interval do not change abruptly [18,141,147].

We imposed the smoothness constraint on the model parameters ~m and now the er-

ror function consists of two terms: the smoothness constraint Es and the geometric and

intensity transformation constraintEb:

E(~m) = Eb(~m)+Es(~m) (4.11)

The geometric and intensity transformation term is defined as:

Eb(~m) = [k−~c ~m]2, (4.12)

where~c and constantk are given by Equations 4.10.

The smoothness termEs(~m) penalises solutions proportional to the local change in

each parameter across a small spatial neighbourhood and is defined with the aid of positive

constants{λi}i=1...14, that control the relative weight given to the smoothness constraint

on a parametermp:

Es(~m) =
14

∑
p=1

λp

[(∂mp

∂x

)2
+

(∂mp

∂y

)2
+

(∂mp

∂z

)2]

(4.13)

The value ofλ , which is set to be the same for all parameters will be discussed in Sec-

tion 4.4.1.

The error function, defined in such a way, allows for a locallysmooth, but globally

non-rigid transformation. Minimisation of the error function was done through differen-

tiating, setting the result to zero and solving:

dE(~m)

d~m
=

dEb(~m)

d~m
+

dEs(~m)

d~m
(4.14)

The derivative ofEb(~m) is:
dEb(~m)

d~m
= −2~c[k−~cT~m] (4.15)

To compute the derivative ofEs(~m), the partial derivatives∂mp/∂x, ∂mp/∂y, and∂mp/∂z

are firstly estimated for each pixel location using their discrete approximations [65, 73,

116]. Then
dEs(~m)

d~m
= 2L(~m−~m), (4.16)
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where~m is the component-wise average of~m over a small spatial neighbourhood, and

L is a 14× 14 diagonal matrix withλp on diagonal and zero off the diagonal. Setting

dE(~m)/d~m= 0, and solving for~m at each pixel location would yield a solution. Conver-

gence of optical flow registration methods was discussed in [166], where the problem was

solved analytically.

4.2 Sequential registration

Let UAB denote a transformation obtained with the algorithm described in Section 4.1

when registering a sourceB to a targetA. For a given sequence of images/volumesI1,

..., IN, the following transformations can be derived with the algorithm: U I1I2, U I1I3, ...,

U I1IN . This transformation is also known as Lagrangian approach.Let ℑk denote the

output of this transformation, applied to an imageIk, k∈ [1,N], whereN is the number of

images/volumes in the slice:

ℑk = U I1Ik[Ik] ≈ I1 (4.17)

Differences in the geometry between the images/volumes acquired at the first and

last time instances might not be significant, however the contrast and brightness varia-

tions, especially in the datasets acquired from the patients severely affected by rheumatoid

arthritis, are dramatic. Therefore, it might be argued thatalignment of the post-contrast

images/volumes to the pre-contrast target might not be accurate. This approach is also

known as Euclidian.

To minimise the registration error the transformation could be performed in an incre-

mental rather than pair-wise fashion: firstly, the transformation is estimated between the

neighbouring pairs of images/volumes, and then the output of this sequential transforma-

tion is used as an initial solution for the basic registration algorithm. Such transformation

corresponds to a hybrid Euclidian-Lagrangian approach.

This form of approach was first discussed in structure from motion estimation [99,

227], where for a given physical object and a set of views capturing this object from

various viewpoints, levels of detail, and lighting conditions, the task is to reconstruct the

structure of a scene from the motion of an observer. This is solved by analysing parts of

the object in the photographs aligned in such a way that they show changes of the scene in

an incremental manner. The approach confirms that it can be more efficient to deal with

small rather than significant changes.

By analogy, in DCE-MRI datasets, it may be more efficient to determine a transfor-

mation between images/volumes, where the contrast/brightness variations are less signif-
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icant.

Thus, firstly, neighbouring images/volumes are aligned. For example, in a temporal

slice, an image acquired at the 2nd time instant is registered to the image acquired at

the 1st, then an image acquired at the 3rd time instant is aligned to the image acquired

at the 2nd time instant, and the output is registered to the 1st, etc. Therefore, the final

transformation is formed as a composition of the transformations:

V Ik = U I1I2 ⊗ ...⊗U Ik−2Ik−1 ⊗U Ik−1Ik (4.18)

This transformation applied to thekth image yields the imageJk:

Jk = V Ik[Ik] ≈ I1 (4.19)

However, if alignment of the first few images/volumes was notperfect, registration er-

ror would propagate when registering images/volumes from later in the study, and align-

ment between the first and the last volumes would be erroneous.

To compensate for this possible error, a sequence of images/volumes registered in the

sequential manner{Jk}k=1...N, was taken as an initial solution for the basic registration

algorithm. Then, the final transform is defined as:

WIk = U I1Jk ⊗V Ik (4.20)

and being applied to thekth image yields the imageLk:

Lk = U I1Jk ⊗ (V Ik[Ik]) = WIk[Ik] (4.21)

With this approach a DCE-MRI study is considered as a whole, which permits re-

duction of the transformation error and allows compensation for contrast and brightness

variations between the images.

Therefore, images / volumes from a DCE-MRI datasets can be registered using one of

the suggested transformations:

• {ℑk}k=1...N, obtained with the algorithm discussed in Section 4.1;basic U-trans-

formation;

• {Jk}k=1...N, obtained with the sequential application of the algorithm; sequential

V-transformation;

• {Lk}k=1...N, obtained with the incremental approach;incrementalW-transformation.
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Performance of 2D and 3D registration algorithms withU , V, andW transformations will

be compared in Section 4.4.

4.3 System design

The following modifications in the system design were shown to be beneficial for algo-

rithm performance. The effect of these modifications is discussed in [184].

• A 4 level Gaussian coarse-to-fine pyramid for the source and target images/volumes

was built in a standard way [2]. Each level of the pyramid was obtained by con-

volving the previous level using a Gaussian kernel, followed by down-sampling by

a factor of two2.

The source and target were registered at the coarsest scale to obtain an initial es-

timation of the registration map. This initial estimate wasthen used to warp the

source image at the next scale. The warped source image was then registered with

its corresponding target. This process was repeated at eachlevel of the pyramid.

A single registration map was maintained by accumulating successful registration

maps estimated at each scale [14].

• Secondly, Taylor expansions used to approximate the error function were replaced

with the Newton-Raphson style iterative scheme [147, 222] that provides a more

accurate estimate of the actual error function [184]. Afterinitial estimation of the

registration parameters, the source is warped with the estimated parameters and reg-

istered again with the target. During each of these iterations, successful interme-

diate registration maps were accumulated to form a single registration map. These

iterations were stopped when the average displacement of the estimated motion was

less than 1 pixel. It was shown in [184] that five iterations improve the final estimate

significantly.

• Lastly, partial derivatives∂mp/∂x, ∂mp/∂y, and∂mp/∂z were estimated with the

aid of the kernels developed by Farid et al. [73]. This set of derivative filters was

specifically designed for multi-dimensional differentiation [73] and used in the orig-

inal version of the algorithm [184].

For 2D-2D registration, the images were first pre-filtered intime using the two-tap

filter [0.5 0.5]. The derivative in thex direction is then estimated by first pre-filtering

2We also tried a Laplacian pyramid [37], which is computed as adifference between the original image
and low-pass filtered image, but it provided slightly less accurate results.
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the result in they direction (using the 3-tap filterd0=[0.2 0.5 0.2]), followed by dif-

ferentiating inx with the filter d1=[-0.4 0 0.4]. Similarly, the derivative in they

direction is estimated by first pre-filtering the result inx usingd0, followed by dif-

ferentiating iny with the derivative filterd1. The derivative in time is estimated by

first pre-filtering in space (x andy) with d0, followed by applying two-tap derivative

filter. For 3D-3D examples, the following filters were used:d0=[0.09 0.4 0.4 0.09]

andd1=[-0.2 -0.3 0.3 0.2] (see [73] for details).

4.4 Experiments and discussion

The described registration model was demonstrated to be highly efficient and robust for a

wide range of synthetic, CT, PET, and static MRI data [184]. This section discusses the

nature of motion in DCE-MRI studies and performance of the algorithm in application to

dynamic contrast-enhanced data.

Evaluation of registration results was performed by measuring the residual difference

between the corresponding anatomies over the image domain.There is no gold standard

that can be used to validate the results of the registration algorithm on our data, therefore

we proceed as follows:

• In images with a fiducial marker, residuals between the source and target within

the area of the marker are assessed before and after registration using a variability

measure.

• For studies without a marker, positions of the rigid bone interior before and after

registration were analysed.

In Section 4.4.4 we provide 2D and 3D images before and after registration, so that the

value of the algorithm can be assessed visually.

4.4.1 Parameterλ and analysis of the motion

Alignment of the data, acquired in follow-up examinations,performed over a period of

time long enough for the anatomy to change, or the data captured in such a way that

physical location of the scans in the source and target is slightly different, will require

non-rigid methods.

Images from a DCE-MRI dataset acquired in a single examination do not exhibit dra-

matic anatomy change. Therefore, in the absence of the patient motion the images/volumes
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from a dynamic dataset will be similar to each other except for local variations in bright-

ness and contrast, which result from the response of the disease active tissues to the con-

trast agent. There might be a small change in the anatomy of the soft tissue due to the

motion induced by the contrast agent or muscle relaxation. However, in general, the mo-

tion is expected to be locally rigid.

This was confirmed when considering the value of the parameter λ from Equation 4.13.

In our experimentsλ = 10, however the algorithm’s performance does not change signif-

icantly with the higher values ofλ (acceptable range for DCE-MRI data used in these

experiments [1; 100]; in [184]λ = 1× 1011). This indicates that the smoothness term

Es in the error functionEb+λEs is very small, and therefore, the smoothness parameters

imposed on the geometric transformations are largely irrelevant to the error. On average

for 10 studies,∂m/∂x is 0.007,∂m/∂y – 0.01, and∂m/∂z – 0.0015.

The intensity and brightness parameters vary from image to image in local non-rigid

fashion. Abrupt changes are tolerable on the boundary of some structures, such as blood

vessels. However, the smoothness constraint controls intensity and brightness changes

in the synovial tissue. This allows generating a solution inwhich the mapping between

images/volumes is described by nearly rigid geometric modulation with added constraint

on non-rigid changes to the contrast and brightness.

4.4.2 2D and 3D registration examples

The target and source are 128×256 or 256×256 8-bit grey scale images with intensity

values scaled into the range [0, 1]. The joints’ envelopes have been segmented. In order

to contend with border effects, each image has been padded with zeros to a size 270×
270 before registration. The optimal size of padding was determined empirically: the

maximum shift observed in images was 5 pixels. Figure 4.1 (right) illustrates a sample

image used for registration.

A 4-level Gaussian pyramid is constructed for the source andtarget images. Each

level of the pyramid is obtained by convolving the previous level with a low pass filter,

followed by down-sampling. The transformation maps are estimated at each level as

described above. The final estimate is then up-sampled and used as an initial estimate in

the next level of the pyramid. Figure 4.2 (middle) illustrates resampled target and source

volumes acquired in six scans.
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Figure 4.1: Left: Pre-contrast image of the MCP joints. Right: A sample image padded to
270×270; the joints’ envelope was segmented using the algorithmdescribed in Chapter 5.

4.4.3 Quantitative evaluation

We start by evaluating registration with theU -transformation, then compare its perfor-

mance against theV- andW-transformations using 2D and 3D DCE-MRI data.

4.4.3.1 Range of values of registration parameters

Figures 4.3 and 4.4 illustrate a range of values of registration parameters (rotation and

translation) obtained for in-slice and in-study motion correction with 2D and 3D regis-

tration algorithms with theU -transformation3. The x-axis translations are [-2, 0.5], the

y-axis translation [-0.3, 5], and the rotations [-0.11, 0.12]. With 3D registration trans-

lations around the x, y, and z axis are in the range of [-5, 5], [-5.2, 1], and [-0.3, 0.2],

respectively; rotations around the x, y, and z axis are in therange of [-0.2, 0.2], [-0.2, 0.2],

and [-0.07, 0.1].

4.4.3.2 Mutual overlap based error

To perform evaluation with the mutual overlap metric4 [66] the bone interiors in the DCE-

MRI datasets acquired with the high field scanner and the markers in the datasets acquired

with the low field scanner were segmented using algorithms described in Chapter 5. These

regions are rigid and are not expected to enhance during the scanning procedure. Positions

3The box shows the lower quartile, median, and upper quartilevalues and the whiskers corresponds to
the extent of the rest of the data. Maximum whisker length in units of inter-quartile range (standard is 1.5
× the inter-quartile range): Upper Inner Fence = 75th Percentile + (1.5× Inter-quartile Range); Lower
Inner Fence = 25th Percentile - (1.5× Inter-quartile Range). Data points that lie outside of the fence, are
considered to be outliers and marked as ’+’ [158].

4See Section 2.4.1.1 for metric description.
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Figure 4.2: Resampled volumes of target (left), source (middle), and registered source
(right) acquired with high field scanner from MCPJs. Six images in each column corre-
spond to the six temporal slices. Registration was performed with theW-transformation.
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Figure 4.3: Translation (left) and rotation (right) parameters computed from randomly
chosen 200U -transformations estimated with the 2D algorithm applied to the data ac-
quired with the high- and low-field scanners.

Figure 4.4: Translation (left) and rotation (right) parameters computed from randomly
chosen 200U -transformations estimated with the 3D algorithm applied to the data ac-
quired with the high- and low-field scanners.
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Figure 4.5: Images of joints acquired with the low field scanner in axial (left) and coronal
(right) directions.

Figure 4.6: Left: A contour of a marker segmented in the source before (blue) and after
(red) registration and superimposed on the target image. Right: Magnified marker.

of bone interiors and markers in the source and target imagesafter registration is expected

to be the same.

Images with the marker captured in the axial and coronal directions are shown in Fig-

ure 4.5. The change in the marker’s position before and afterthe registration is illustrated

in Figure 4.6.

A magnified target with superimposed contours of the joints’exterior and bone interi-

ors segmented in the source image before (red) and after (blue) registration are shown in

Figure 4.7. The difference in the location of the edges implies patient hand motion.

The application of the registration algorithm resulted in the accurate alignment of the

contours of the joints’ envelope and bone interiors in the source and target images. This

has increased the mutual overlap from 0.8 to 0.96 in this example.

The same experiment was performed on 200 2D images (100 acquired with the low

field, 100 with the high field scanner) and 100 3D volumes (50 acquired with the low field
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Figure 4.7: Contours of the joints’ envelope and bone interiors outlined in the source
before (blue) and after (red) registration and superimposed on the target image.
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Figure 4.8: From the left: The mutual overlap between the source and target before the
registration, after 2D and 3D registration withU -transformation, and after 2D and 3D
registration withW-transformation. The same experiment was performed on randomly
chosen 200 2D images (100 acquired with the low field, 100 withthe high field scanner)
and 100 randomly chosen 3D volumes (50 acquired with the low field and 50 with the
high field scanner).

and 50 with the high field scanner). These images/volumes were registered with 2D/3D

schemes with theU , V, andW-transformations. Figure 4.8 illustrates the results.

The mutual overlap between the markers/bones in the source and target images be-

fore the registration was on average 0.74 with the minimum at0.53 and standard devia-

tion 0.07. After 2D/3D registration with theU -transformation, it became 0.8/0.84 with

standard deviations 0.06 and 0.05; after 2D/3D registration with theV-transformation –

0.81/0.86 with the standard deviations 0.04 and 0.04. Finally, when theW-transformation

was applied, the mutual overlap became on average 0.91/0.92with standard deviations

0.04 and 0.03.

This experiment illustrates that 2D and 3D registration schemes permit compensating

for the patient motion. The algorithm enhanced with theW-transformation outperformed
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the basic and sequential transformations and displayed a further increase in mutual over-

lap.

4.4.3.3 Comparison of 2D and 3D registration algorithms with various types of

transformations

We have chosen a study with apparent in-slice motion and registered DCE-MRI images

using 2D and 3D registration algorithms with various transformations. It is of interest to

measure the differences in appearance of images after registration has been applied.

Figure 4.9 illustrates the target and source images before (2nd column) and after the

2D and 3D registration with theW-transformation. This study does not exhibit significant

intensity change due to the injection of the contrast agent.

Using the 2D registration algorithm with theW-transformation we have estimated that

translation in thex direction is on average 3-4 pixels, in they direction 2-3 pixels, and the

rotation 0.0762 radians. 3D registration delivers the following parameters: on average

translations in thex, y, z-axis directions are 9, 4, and 2 pixels, the rotations aroundthex,

y, z-axis are 0.06, 0.02, 0.05 radians.

Figure 4.10 illustrates the target images subtracted from the source before the regis-

tration (left), after 2D registration with the basicU -transformation (middle), and after 3D

registration with theW-transformation (right). It is clear that the registered images con-

tain less noise and the 3D registration of the volumes with theW-transformation allows

for significant improvement in the alignment of the skin, inflamed synovial tissues and

blood vessels.

To analyse the effect of the registration, the mean square errors (MSE) between the

target and source before and after the registration were computed. Ideally, in the ab-

sence of the patient motion and contrast agentMSEbetween the registered images should

be zero. However, due to the effect of the contrast agent, MSEbetween the pre- and

post-contrast DCE-MRI images/volumes is always higher than zero, and measures the

magnitude of the enhancement. Figures 4.11 illustrates MSEcomputed for images from

the study illustrated in Figure 4.9 before and after the registration with various transfor-

mations. The results shown that MSE estimated with 3D registration algorithm enhanced

with theW-transformation is the lowest.

To compare the effect of these different transformations, the same experiment was

performed on 15 DCE-MRI studies acquired with the high and low field scanners. Only

15 slices (5 datasets) acquired by the low-field scanner had 22 images per slice, that is

why this subset of data is used in this experiment. We have randomly chosen 15 slices

from the data acquired with the high-field scanner.
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Figure 4.9: From the left: in each column 6 images representing resampled target volume,
source volume, source after the 2D registration, source after the 3D registration withW-
transformation. Six images in each column correspond to thesix temporal slices. Volumes
were acquired from the MCPJs with the high field scanner.
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Figure 4.10: Resampled source volume subtracted from the target volume before regis-
tration (left); the source volume subtracted from the target volume after 2D registration
with W-transformation (middle); the source volume subtracted from the target volume
after 3D registration withW-transformation (right). Intensities are inverted. Six images
in each column correspond to the six temporal slices. Volumes were acquired from the
MCPJs with the high field scanner.
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Figure 4.11: MSE computed between the source and target in a sample DCE-MRI slice
(left) and a complete DCE-MRI study (right). MSE before the registration is shown in
black, after registration withU -transformation in blue, withV-transformation in green,
and withW-transformation in red.

The data acquired with the low-field scanner exhibit greatermotion. Figure 4.12 il-

lustrates MSE computed between the source and target after registration with theU and

W-transformations. Note that in this experiment MSE can be attributed to both patient

motion and contrast/intensity change. Let us consider the changes in MSE at each phase

of the contrast enhancement:

Baseline: The first 3-5 images/volumes in a study do not exhibit significant contrast vari-

ations, and here MSE reflects the patient motion. The resultsin Figure 4.12 and 4.11

demonstrate that after the images/volumes were aligned MSEhas been significantly

reduced.

Wash-in, wash-out: The largest variation of the MSE was noticed at the 5th–7th time

instants (wash-in) and after the 16th for the high-field and after the 20th for the low-

field data (wash-out). At approximately 30s. after the injection of the contrast agent

we observe the most significant intensity variation in the data and prominent patient

motion. This results in an increase of artefactual enhancement in the data. When

images/volumes were aligned and the artefacts due to the patient motion eliminated,

MSE was significantly reduced.

Plateau: There is no significant intensity change at the plateau phase, which starts at

approximately 12th time instant. The intensity differences between the sourceand

target should be close to a constant, therefore, errors can be attributed to patient

motion. After images were aligned, MSE was significantly reduced.

Figure 4.11 demonstrates that MSE reflects behaviour of the enhancement; the shape

of the MSE graphs before and after the registration corresponds to the expected change
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Figure 4.12: MSE computed between the target and source volumes aligned with registra-
tion with U -(black) andW-(red) transformations for 15 DCE-MRI studies acquired with
the high (left) and low (right) field scanners. The length of the error bars is equal to two
standard deviations. The baseline normally occurs betweenT1 andT5, wash-in between
T3-T7, plateau betweenT7−T16, and wash-out afterT16.

in intensity. The effect of the registration can be seen at the baseline and plateau phases,

where no significant intensity changes are expected, and MSEcurves extracted from the

non-registered data reflect the artefactual enhancement.

Figure 4.13 illustrates MSE computed for a randomly chosen mix of 10 high and

low-field DCE-MRI studies before and after registration with 2D/3D schemes withU

andW-transformations. As expected 3D registration delivers more accurate results than

2D. TheW-transformation outperformed theU -transformation – on average MSE has de-

creased from 0.18 to 0.1 when the 2D algorithm was applied with theW-transformation

and from 0.12 to 0.08 with theW-transformation. We can conclude that the 3D registra-

tion algorithm with theW-transformation has delivered the most accurate results onthe

DCE-MRI datasets acquired with the high- and low-field scanners.

4.4.4 Visual inspection

To visualise in-slice patient hand movement during the scanning process, we fixed the

location of the bone interiors, detected in the first image ina sample DCE-MRI temporal

slice, and then plotted the temporal slice (20 images) with these bone interiors superim-

posed before and after registration.

Obviously, if a patient has moved, location of joints in the first image in the slice will

not coincide with the location in other images in the slice. With no movement the location

of the joints is the same throughout the slice.
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Figure 4.13: MSE computed for a randomly chosen mix of 10 highand low-field DCE-
MRI studies before and after registration with 2D/3D schemes. From the left: MSE
computed between the target and source images / volumes with2D / 3D registration ap-
proaches withU - andW-transformations.

Magnified images from a DCE-MRI slice are shown in Figure 4.14(top). The joints,

detected in the target and superimposed on each image in the slice, are shown in white.

The location of the joints detected in the target does not coincide with the location of the

joints in images 3, 4, 5, etc.

Figure 4.14 (bottom) shows the same DCE-MRI temporal slice after 2D registration

with theW-transformation. The location of the joints detected in thetarget has been fixed

and superimposed on every image in the slice. The effect of registration is obvious – the

bone interiors in the target and each registered source coincide accurately.

To illustrate in-volume motion, we automatically segmented joints’ envelopes in the

target and source images before and after registration, then subtracted the source volume

from the target. Figure 4.15 illustrates the results.
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Figure 4.14: Magnified images from a DCE-MRI slice of the MCPJs acquired with the
high field scanner before (top) and after (bottom) registration. The joints, detected in the
target and superimposed on each image in the temporal slice,are shown in white. before
registration, the location of the joints detected in the target does not coincide with the
location of the joints in images 3, 4, 5, etc. After registration with W-transformation
(bottom), the location of the joints detected in the target coincide with the location of the
joints in images 3, 4, 5, etc.
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Figure 4.15: Automatically segmented joints’ envelops in the target and source volumes
of the MCPJs acquired with the high field scanner. The difference between the joint
contours from the target and source volumes before (left) and after (right) registration.

4.5 Conclusion

In this chapter we discussed an intensity based registration algorithm, designed to align

images and volumes acquired by means of MRI in the presence ofthe contrast agent. The

algorithm is applicable to various DCE-MRI datasets and does not require user interac-

tion. The approach presented here was originated by Periaswamy et al. [184, 186] and is

based on optical flow techniques enhanced with an explicit modelling of the contrast and

brightness variations.

The original registration algorithm was analysed in detailin [184]: simulations with

various combination of the geometric, contrast, and brightness distortions demonstrate its

robustness to a wide range of data. Here, we illustrate how touse the algorithm to perform

adequately on DCE-MRI datasets acquired with the low and high field scanners.

Firstly, the EM step, which permits registration of partly occluded datasets, was elim-

inated to reduce computational time. Registration of two 256× 256 images with the

W-transformation can now be performed in less than 1 minute and two 256× 256× 6

volumes in less than 6 minutes using software implemented inMatLab and run on a 2.79

GHz Windows machine with 1GB memory. In comparison, registration of two volumes

with the original approach on the same machine requires 30 minutes.
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Secondly, the algorithm has been augmented with an incremental approach that allows

us to take into account significant variations in the contrast and brightness that occur in

the post-contrast images/volumes from the dynamic datasets.

2D and 3D registration schemes with various transformations (U , V, andW) were

applied to a large number of images/volumes. The results show that the 3D registration

scheme permits better alignment than 2D as it compensates for in-study rather that in-slice

motion. The incremental approach used for image/volume alignment (W-transformation)

allows for further reduction of registration error.

Our results demonstrate that the smoothness constraint added to the error function

does not influence significantly the algorithm’s performance when recovering geometric

distortions. However, it permits compensation for the error due to the local contrast and

brightness variations in the soft tissues.

Registration of the images/volumes allows for significant improvement in the location

of the blood vessels, bone interiors, skin, but most importantly synovial tissue. The re-

duced artefactual enhancement contributes to the data fidelity, which is crucial for further

data analysis with quantitative approaches.
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Image segmentation

The inflamed synovium, which is a tissue of particular interest, is located inside the joints’

envelope and outside the bone cross-sections. Therefore, in order to analyse a DCE-

MRI dataset efficiently tissues within the bone interiors, which include both cortical and

trabecular bone as well as bone marrow, markers, and thumbs need to be segmented out.

In this chapter we introduce two algorithms: the first one forsegmentation of the joints’

envelopes in the hand and wrist datasets acquired with the low and high field scanners,

and the second for segmentation of the bone interiors in DCE-MRI slices of the MCPJs

acquired with the high field scanner.

Section 5.1 discusses an algorithm for segmentation of the joints’ envelopes in DCE-

MRI dynamic frames acquired from hand or wrist in the axial orcoronal directions with

the high and low field scanners. Section 5.2 introduces an algorithm for automatic seg-

mentation of the rigid boundaries of the bone structures in DCE-MRI images of the

MCPJs acquired with the high field scanner. The algorithm will be described as a two-step

procedure. Firstly, the bone interiors are crudely locatedusing a global thresholding tech-

nique and prior information about geometry of the MCP joints. Secondly, the boundaries

of the detected regions are refined with an adaptive segmentation technique.

77
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5.1 Segmentation of joint envelope

Some images acquired with the low field scanner contain a marker located close to the

joints’ envelope; images acquired with the high field scanner might depict a thumb (see

Figures 3.5 and 3.8). Based on the prior knowledge about the anatomy of the joints

and positioning of the patient during the data acquisition (see Section 3.2), the following

assumptions about the marker and thumb size and location canbe made:

• Empirically, it was estimated that the area of a thumb or marker in respect to the

area of the joints’ envelope is between 2% and 15%. Figure 5.1illustrates the dis-

tribution of the size of thumb and marker manually outlined in 50 dynamic frames.

• The location of the joints’ envelope within the imaging matrix is always approxi-

mately central.

• The location of a thumb in images acquired with the high field scanner in respect to

the joints’ envelope varies, but the thumb is always locatedin either the left or right

corner of the imaging matrix. This is represented by one or two regions and might

osculate with the joints’ envelope. Figure 3.8 illustratesthe physical positioning of

the thumb and the corresponding MR images.

• The marker is located centrally, and is not attached to the joints’ envelope.
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Thumb Marker

Figure 5.1: Size of the thumb and marker in proportion to the area of the joints’ envelope.

Each dynamic frame from a DCE-MRI dataset is composed of a light foreground and

a dark background in such a way that the regions of interest and background pixels have

intensity levels grouped into two modes. An obvious way to extract the regions of interest
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Figure 5.2: The result of the global thresholding on the images acquired with the high
field scanner. The joints’ envelope is shown in red.

Figure 5.3: The result of the thresholding on the images acquired with the low field scan-
ner. The joints’ envelope is shown in red.

from the background is to select a threshold value that separates these modes. This has

been done using a thresholding algorithm [200] with the threshold estimated in an iterative

manner1.

This allows the isolation of the joints’ envelopes and markers / thumbs from the back-

ground. We remove the noise obtained as a result of this thresholding with morphological

opening (a circle with the diameter of 2 is taken as a structural element). The result of this

operation on several images is shown in Figures 5.2 and 5.3 (different colours indicate

non-osculating (i.e. non-intersecting) regions, the joints’ envelopes are shown in red).

After performing this, we are left with 1, 2 or 3 regions, one of which represents

the joint envelope. The marker in the images acquired with the low field scanner never

osculates with the joint envelope. Therefore, after the thresholding, we segment out the

region with the smallest area.

Segmentation of a thumb, which might osculate with the joints’ envelope, is not

straightforward. To segment a thumb, an imaging matrix was firstly divided into four

equal parts. Then the number and location of the region / regions in each quartile were

analysed.

1Thresholding algorithm proceeds as follows. The histogramof pixel intensities from pre-contrast image
is initially segmented into two parts using a starting threshold value such as a half the maximum intensity
range. Then the sample mean of the grey values associated with the foreground pixels and the sample
mean of the grey values associated with the background pixels are computed. A new threshold value is
now computed as the average of these two sample means. The process is repeated, based upon the new
threshold, until the threshold value does not change any more.
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Figure 5.4: Segmentation of a thumb in the imaging matrix divided into four parts.
Boundary of the joints’ envelope with an osculating thumb superimposed on the inten-
sity image. Points of maximum curvature are shown in red.

By considering the coordinates of the region / regions in each quartile, it was estimated

whether or not the boundaries of the imaging matrix and region intersect. A quartile of

the imaging matrix might contain:

1. Two non-osculating regions, boundaries of the imaging matrix and one of the re-

gions intersect (upper left quartile of the image in Figure 5.4).

2. One region and its boundary intersects with the boundary of the imaging matrix

(lower left quartile of the image in Figure 5.4).

3. One region and its boundary does not intersect with the boundary of the imaging

matrix (upper right and low right quartiles of the image in Figure 5.4).

In the first and last cases, we take a region with the largest area as the part of the

joint’s envelope. In the second case, we assume that the thumb is osculating with the

joint’s envelope.

In the second case, to remove the thumb, firstly, two points ofmaximum curvature

are found in the boundary of the region [144]. Such points arefound as the two maxima;

smoothing is used to ensure that multiple maxima are not detected at each pinch point.

The points are shown in red in Figure 5.4. Note that we only need to consider a part of

the region’s boundary that does not intersect with the boundary of the imaging matrix.

Secondly, these points are connected with a straight line, the region is split into two along

the line, and the largest part of the region is selected as a part of the joints’ envelope.
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5.2 Segmentation of bone interiors

5.2.1 Preliminary segmentation

Within the joints’ envelope we wish to distinguish bone, muscle, blood vessel, and syn-

ovial tissue. In pre-contrast images of the MCP joints, the intensity of the bone interiors

and some blood vessels is high, whereas all other tissues appear dark. The bright and dark

tissues within the joints’ envelope can be separated with the iterative global thresholding

technique discussed earlier. The results obtained for a sample DCE-MRI pre-contrast

image are shown in Figure 5.5.
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Figure 5.5: Left: Pre-contrast image of the MCP joints acquired with the high-field scan-
ner. Middle: The histogram of the intensity values (assigned threshold value is 89). Right:
The results of the global thresholding.

The imaging procedure and affect of the contrast agent causebone interior intensity

to change in images within a temporal slice, therefore, the thresholding might depict dif-

ferent parts of a bone in different images. In order to receive comprehensive information

about a bone, it is beneficial to perform thresholding on several images within a temporal

slice.

In the post-contrast dynamic frames, the synovial tissue surrounding bones enhances

significantly. Therefore, the thresholding often classifies the synovium as a part of a bone,

which prevents accurate segmentation of the bone interior.Figure 5.6 illustrates pre- and

post-contrast dynamic frames with superimposed results ofthe thresholding.

Empirically, it was found that the effect of a contrast agentis not prominent in the first

four images in a temporal slice. In our experiments these images were thresholded. Then,

to distinguish between bone / non-bone regions obtained as the result of the thresholding,

we used prior geometric information about the bones’ position within the dynamic frames

of the MCP joints.

For each MCP joint (2nd–5th) in the normalised coordinate system using prior infor-

mation acquired earlier, we have defined a margin where it is presumed to appear. These

margins are shown in the dashed line in Figure 5.7. Then the area of a rectangular was
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Figure 5.6: Pre- (top) and post- (bottom) contrast images with superimposed results of
the thresholding. Boundaries of the detected regions are shown in red.

widened by adding 2 pixels to each side to allow some error. Final intervals in the nor-

malised coordinate system for each bone are shown in solid line in Figure 5.7 (left). The

result of the thresholding for a sample DCE-MRI dynamic frame is shown in Figure 5.7

(right).

Figure 5.7: Left: Intervals where the MCP joints are presumed to appear (rectangular) in
the normalised coordinate system. Right: Regions obtainedas the result of the thresh-
olding for a sample image in the normalised coordinate system. σp andσq are standard
deviation ofpi andqi defined in Section 3.3.3.

Regions that appear within the pre-defined interval are selected. To eliminate noise,

the area of each selected region is required to be larger than2% of the joints’ envelope

(it was empirically found that the size of a joint’s interioris between 2% and 5% of the

envelope). For each joint, all regions obtained as a result of this operation on the pre-

contrast images are superimposed; a convex hull was drawn around them and taken as

a ‘segmentation mask’. Figure 5.8 illustrates the results obtained for several temporal

slices.

It is, of course, unlikely that the detected boundaries willcoincide precisely with the
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Figure 5.8: Left: Pre-contrast dynamic frames from different DCE-MRI studies acquired
by the high-field scanner. Middle: The result of the global thresholding (shown as an
intensity image). Right: The final segmentation mask (in white) superimposed on the
pre-contrast image.

true boundary of the bones, although, due to the registration, the location of the final mask

has been significantly improved. At this stage we will tolerate the results to be inaccurate.

5.2.2 Adaptive segmentation

The purpose of adaptive segmentation is to refine boundariesof the regions detected with

the preliminary segmentation. The segmentation starts by locating the centroid of the

segmentation mask, and determining the diagonal length of its bounding box. The nor-

mals equal to half this diagonal are drawn to a boundary pixelfrom inside and outside the

region’s boundary.

For each boundary pixel, along the normals we consider the image pixel intensity

profile. Figure 5.9 (right) illustrates a profile obtained for a boundary pixel.

Two types of the intensity profiles have been noticed. If there are no artefacts and a

boundary is one-pixel width, the profile looks like the one inFigure 5.10 (middle). If the

bone is surrounded by the blood vessels or other artifacts the profile might look like the

one in Figure 5.10 (right).

The underlying model here assumes that the boundary pixel should separate a bright
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Figure 5.9: Left: A pre-contrast image with the segmented bone interiors. Middle: Mag-
nified bone interior, its bounding box and two normals. Right: Corresponding intensity
profile.
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Figure 5.10: Left: Magnified results of the preliminary segmentations superimposed on
the MR image with the normals drawn to different boundary pixels. Middle: Intensity
profile corresponding to 1. Right: Intensity profile corresponding to 2.

inner area (bone) from a darker outer area. The length of an intensity profile is assumed

to be long enough to cross the actual boundary of a bone.

By finding an optimal segmentation of the profile, we shrink orextend the mask ob-

tained as the result of the preliminary segmentation along the normals with the aim of

approaching the true boundary of the region. The problem of the boundary refinement

can therefore be solved by using an efficient 1D signal segmentation technique discussed

in the next section2

5.2.3 Signal segmentation

The procedure starts by modelling each intensity response as a sequence of segments

formed by pixels of equal intensity. A sharp change between bright and dark areas in-

dicates the ‘optimum’ boundary pixel. Here we assume the uniformity of the intensities

in the vicinity of the region’s boundary. If a current boundary pixel does not coincide

2This work was done in collaboration with Mike Pyatnizkiy, Biophysics, Russian State University,
Moscow, Russia.
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with the optimum boundary pixel, the boundary along the normal is moved towards the

optimum boundary pixel.

A minimisation with the minimum least squares (MLS) algorithm [86], which min-

imises the sum of the squared deviations of the signal segments, has been chosen to anal-

yse the signal.

Let θ denote a signal, which consists ofN components{x1,x2, ...,xN}. We use the

notationξ = θ(b,e) to define a segment of the signalθ , whereb≤ e; b denotes the be-

ginning andedenotes the end of the segment; andb,e∈ {x1,x2, ...,xN}. If ξ1 = θ(b1,e1)

andξ2 = θ(b2,e2), whereb2 = e1+1, are two segments, thenξ1ξ2 = θ(b1,e2) denotes

their concatenation.

A 1D segmentationS of θ into k segments is a sequence{ξ1ξ2...ξk} of k segments

such thatξ1ξ2...ξk = θ and eachξi is non-empty. We are interested in obtaining the

segmentations ofθ , where the segments are internally homogeneous.

In order to formalise this goal, we associate a cost functionF with the internal hetero-

geneity of individual segments, and aim to minimise the overall cost of the segmentation.

Two assumptions have been made on the overall cost. Firstly,the cost of a single seg-

mentF(ξi) is a function of data pointsC(F(ξi)). Secondly, the cost of 1D segmentation

C(F(ξ1,ξ2, ...,ξk)) is a sum of the cost of its segmentsξ1, ξ2, ..., ξk :

C(F(ξ1,ξ2, ...,ξk)) =
k

∑
i=1

C(F(ξi)) (5.1)

An optimal 1D segmentation of a signal using cost functionF is such that the cost

C(F(ξ1,ξ2, ...,ξk)) among all possible 1D segmentations larger than 1 segment per pixel

is minimal. The cost of any segment can be defined as follows:

C(F(ξi)) =
1
N

ei

∑
j=bi

∣
∣
∣x j −µi

∣
∣
∣

2
, (5.2)

wherebi is the beginning of the segmentei is the end of the segment;µi is mean value of

samples in the segmentξi = θ(bi ;ei). More formally, the mean of the segment is defined

as follows:

µi =
1

ei −bi +1

ei

∑
z=bi

xz (5.3)

In order to minimise the overall cost of the segmentation we have to find such a set ofk

segmentsξ1,ξ2, ...,ξk that provides the minimum sum of corresponding costs. Therefore,

we seek min
e1,e2,...,ek−1

C(F(ξ1,ξ2, ...,ξk)).
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Figure 5.11: Left: DCE-MRI dynamic frame with normals drawntowards a boundary
pixel. The point of the segmentation of the profile chosen by the algorithm is marked
red. Middle: Corresponding intensity profile. Right: Corresponding graph. The minimal
angle is shown in red.

The algorithm describes the best approximation of an intensity profile with 1, 2, 3, etc.

straight lines. Now we need to determine the point on the intensity profile that corresponds

to the true boundary pixel.

By splitting and merging segments we construct a graph, where the x-axis is the num-

ber of segments and the y-axis is the value of the cost function measuring the error of

performing a segmentation atk segments. At some point, splitting data into a larger num-

ber of segments does not significantly change the value of theerror function. This point

corresponds to the optimal number of segments.

There is a number of approaches to estimate this point. For our experiments, we have

adapted the one proposed by Salvador et al. [212]. Two straight lines are fitted in the data

from the left and right sides; each line should include at least two pixels and together lines

should cover all pixels. The fit where the angle between the lines is minimal is taken as a

desired point. The intensity profile is then segmented at thepoint of the best fit of the two

segments.

Figure 5.11 illustrates a profile corresponding to one of theboundary pixels and its

segmentation into two segments. Signal profiles along the normals drawn to each bound-

ary pixel were analysed and segment break points located, allowing a suitable shift in the

estimate for the true boundary pixel.

5.2.4 Final steps

The boundary of a region might span over several pixels or be surrounded by a relatively

thick cartilage, which appears dark in the MR images. In thiscase, a profile crossing

cartilage, artefact or an ambiguous part of the boundary, will be segmented into more

than two segments and therefore more than one potential boundary point will be obtained.
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Figure 5.12: Results of the adaptive segmentation, when a profile crosses cartilage, arte-
fact or an ambiguous part of the boundary and is segmented into more than two segments
and therefore more than one potential boundary point will beobtained. Break points
superimposed on the profiles are shown in red and blue.

Figure 5.12 illustrates several profiles, where segmentation delivers one (top row) and

several (bottom row) points.

In order to restore the boundary of a bone, we employed the following strategy. Firstly,

all profiles segmented into more than two segments were discarded. Empirically, it was

noticed that location of these profiles is sparse, and the number of accepted pixels sig-

nificantly exceeds the number of rejected pixels. Figure 5.13 illustrates two regions with

accepted (in yellow) and rejected (in blue) boundary pixels.

Figure 5.13: Boundaries with accepted (yellow) and rejected (blue) results of the adaptive
segmentation. Results of the linear interpolation are shown in red, and the gaps closed
with shortest path in white.

After exclusion of the pixels, a boundary might contain small (1 missing pixel) and

big (order of 10 pixels) gaps. The location of the isolated missing pixels was restored with

an interpolation technique applied to the nearest neighbours, and the gaps were eliminated

by connecting pixels with the shortest path (straight line).

Sometimes, the shortest path does not yield the optimal solution. A bone in Fig-

ure 5.14 contains an erosion (dark line in the bottom left corner). A gap in the bone’s

boundary was closed with the shortest path, which cut off a part of the bone.
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Figure 5.14: From the left: results of the adaptive segmentation (yellow – accepted, blue
– rejected); the boundary after the interpolation; the boundary with a gap closed with the
shortest path; the final boundary after the in-study interpolation.

Figure 5.15: Depiction of the 3D bones in a sample DCE-MRI study. The morphology-
based three-dimensional interpolation scheme [137] was applied on the six slices to pro-
duce this result.

The shape of such a region can be restored with an interpolation technique applied on

3D study. The morphology-based three-dimensional interpolation scheme [137] was ap-

plied on the six slices to produce accurate and smooth intermediate slices and volumetric

data between the neighboring slices. Figure 5.15 illustrates the results for a sample study.

A restored boundary of the bone interior is shown in Figure 5.14 (right).

The output of the algorithm on several regions is shown in Figure 5.16, where the

results of the preliminary segmentation are shown in white,and the adaptive segmentation

in red. Limitations and possible extension of this approachare discussed in Chapter 9.
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Figure 5.16: The bone interiors segmented with the preliminary segmentation (in white),
and the adaptive segmentation (in red) in images drawn from four DCE-MRI studies ac-
quired with the high-field scanner.

5.3 Experiments

5.3.1 Segmentation of joint envelope

In DCE-MRI datasets acquired with the high field scanner, 12 joints’ envelopes osculate

with the thumb, in 26 slices the thumb is depicted, but does not touch the joints’ enve-

lope, and 22 slices do not contain the thumb. 18 DCE-MRI datasets (54 temporal slices)

acquired with the low field scanner contain a marker located in axial direction in 6 slices,

and in coronal - in 48 slices; 10 datasets have no marker.

In dynamic frames depicting a thumb osculating with the joints’ envelope, an expert3

manually outlined the location of the envelope excluding the thumb using software AN-

ALYZE [202]. Mutual overlap between the automatically segmented joints and ground

truth (GT) overlay is on average 0.94, with the minimum 0.93,the maximum 0.97.

The mutual overlap between the manually and automatically segmented joints’ en-

velopes in images with no thumb / marker is on average 0.96, with the minimum at 0.94

and the maximum at 0.97. The error of course might be attributed to the variability of the

human observer’s opinion on the precise location of the joints’ boundary.

Figures 5.17 and 5.18 illustrate joints’ envelopes segmented automatically (in white)

and manually (in red). We asked three independent observersto outline the GT boundary

3This evaluation was performed by an experienced observer from the Department of Medical Physics,
University of Leeds, Leeds General Infirmary, Leeds, UK.
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for these regions and took an average of these subjectively defined boundaries as the final

GT boundary [46,263].

Figure 5.17: Post-contrast images from different DCE-MRI studies acquired with the
high-field scanner, with the joints’ envelopes segmented automatically (white) and man-
ually (red).

Figure 5.18: Post-contrast images from different DCE-MRI studies acquired with the low-
field scanner, with the joints’ envelopes segmented automatically (white) and manually
(red).

5.3.2 Segmentation of bone interiors

Recalling that in some images not all four bones will be observable, there are two separate

evaluations to be performed. Firstly, it should be determined with what reliability we can

judge whether or not a bone is present. An experienced observer has provided the ground

truth which is in most cases a ‘yes/no’ judgement (that is, each of the joints 2–5 is or is not

observable). In a small number of cases, the expert was unsure. We are able to compare

our results with this clinical judgement.

Figure 5.19 (bottom row) illustrates the regions where the expert was unsure whether a

bone interior is present or not. It is a challenging task to distinguish between the cartilage
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and fat and water inside the actual bone, since in some imagesdue to the data acquisition

procedure the difference in intensities is subtle.

The algorithm has been tested on 10 DCE-MRI datasets; and bones in each of the

60 slices (6 per dataset) have been detected. 92% of the existing bones have been found.

There were no false positive bones. If due to the objective reasons mentioned above a bone

is missing, the algorithm is not expected to detect anythingin this location. Table B.1 in

Appendix B summarises the results.

In just a few cases the algorithm fails to distinguish bone from cartilage. Examples

are shown in Figure 5.19. The bones, which have not been detected are of a small size.

Some of them were removed at the thresholding stage, others –by the classifier, which

was seeking the regions with a larger area. Table B.1 in Appendix B illustrates that in the

slices spatially neighbouring a slice with the missing bones all joints were detected. This

allows reconstruction of the under-segmented regions.

Figure 5.19: Sample images from different DCE-MRI studies acquired with the high-field
scanner. Some bones in these regions were not detected by thealgorithm. Contours of the
detected bones are shown in white.

Secondly, the quality of the segmented boundaries should beevaluated. The best

possible boundaries in more than a hundred images drawn randomly from the datasets

were manually outlined, and the results of the segmentationwere compared to what we

will assume is the ‘correct’ solution.

The mutual overlap between the results delivered by the algorithm and the manually

outlined contours exceeds 0.90. Detailed quantitative evaluation of the quality of segmen-

tation outputs located with the adaptive segmentation technique will be discussed in the

next chapter.
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5.4 Conclusion

Two segmentation algorithms were presented in this chapter. The first one permits accu-

rate segmentation of the joints’ envelopes in the dynamic frames acquired with the low

and high field scanners, and the second one – the bone interiors in the MCPJs images

acquired with the high field scanner. The second algorithm has not been tried on data

acquired by the low-field scanner.

Segmentation of the joints’ envelopes was complicated by the presence of the thumb /

marker whose location in respect to the joints’ envelope varied. In cases when the thumb

and joints’ envelop osculated, the thumb was removed based on the assumption that the

curvature in the points of osculation is maximal. The mutualoverlap between the results

delivered by the algorithm and the manually outlined contours exceeds 0.93.

Segmentation of the regions of interest such as bones in DCE-MRI data is challenging

mainly because the borders of the bones do not have a continuous high gradient value.

Instead, areas with very high gradient values can appear within the joints or the borders

might have gaps with the low gradient values. Moreover, the shape and size of bones vary

between the studies.

The algorithm discussed here detects the bone interiors andthen refines their bound-

aries using the adaptive segmentation approach. 92% of existing bones were correctly

identified with the preliminary segmentation.

The adaptive segmentation does not require a boundary to be smooth or of a constant

width. It considers each boundary pixel independently and refines its position using an

intensity profile that reflects the intensity change in the vicinity of this boundary pixel.

No constraints were imposed on the shape or location of the region obtained as a result

of the preliminary segmentation. This is beneficial for segmentation of the bones, whose

shape was corrupted by partial erosions and oedema. The interior of such bones usually

contains sharp edges which are of clinical interest. Chapter 6 discusses performance of

the algorithm in more details and compares it with region growing and snakes.
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Evaluation techniques

This chapter pursues two purposes. Firstly, we discuss supervised and unsupervised eval-

uation metrics: show how to enhance an existing supervised approach, introduce a new

unsupervised metric, and compare new and existing metrics’performance. Secondly, we

use these new and old metrics to evaluate the adaptive segmentation discussed in Chap-

ter 5, and to compare its performance with snakes and region growing [87,122].

6.1 An enhanced supervised metric

In Chapter 2 we illustrated that a widely used and accepted supervised metric, based on

mutual overlap (MO) between ground truth and segmented regions, is not fully appro-

priate for DCE-MRI data. The performance of recently developed algorithms is often

evaluated with a Hausdorff distance (HD) based metric [271]. However, this metric does

not afford an application-adaptable threshold for a degreeof tolerance in segmentation

error, and therefore cannot deal with local blur, partial volume effects and ambiguity of

region boundaries, or inconsistency of human expert judgments.

The absence of a notion of ‘tolerance’ is problematic: should two algorithms be eval-

uated as similar by a metric it is possible that their actual performance is significantly

different (in some ways), and this can be revealed by considering them with respect to,

for example, a tolerance parameter. Often, edge detectors may deliver partial boundaries

whose value, or lack of value, needs measuring. Using regioninteriors as the basis of

93
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Figure 6.1: A segmented DCE-MRI image with GT shown in solid (A) and segmentation
result – in dotted (B). Plots 1 and 2 show the proportion of pixels within thresholdt from
A to B, and B to A (Pt). The intermediate black line illustrates the percentage of pixels
from both boundaries at which HD is no greater thant.

closeness, the HD based metric clearly precludes this.

We introduce a tolerance thresholdt to describe how separated boundaries may ac-

ceptably become. For instance, due to the high noise level and ambiguity of regions’

boundaries in DCE-MRI data, a difference between GT and a segmentation of 2-3 pixels

is not usually a problem.

In Figure 6.1 a region segmented by a region growing algorithm [87], and corre-

sponding GT are shown. The graph illustrates the effect of relaxing t: we measure the

percentage of pixels within the given threshold distance. Clearly, this plot will be mono-

tonically increasing and converges to 1. The underlying metric is Euclidean distance to

nearest point on other perimeter.

For any two boundaries, we can compute the number of pixels ofone that are within

a thresholdt of the other. This number, normalised by the total number of pixels in

both boundaries, provides a metricHt(A,B) (theHt metric), which gives the percentage

of pixel-wise ‘closeness’ between two boundaries. LetNA be the number of pixels in

boundaryA; then letAt(B) be the pixels ofA within a distancet of a pixel ofB. If NAt is

the cardinality ofAt(B), andNB andNBt are defined similarly, we will write:

Ht(A,B) =
NAt +NBt

NA+NB
(6.1)

For a given boundary, this metric will increase monotonically with t, and converge to

1. As it measures the distance between boundaries of the regions instead of the regions

themselves, it permits evaluation of open boundaries.

The parametert is an interval of tolerance, within which pixels from one boundary

are considered as being in the vicinity of the other: this reflects the acceptable error of

segmentation. It can be adjusted for the desired segmentation quality; for example, the

width of ambiguous boundary sections, or the opinion of experts. The tolerance can be
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Figure 6.2: A bone interiors segmented by the region growingalgorithm in the images
from a sample DCE-MRI temporal slice acquired by the high-field scanner; images were
acquired betweenT4 andT15 time instants. Intensity change in the tissues surroundingthe
bones is noticeable. Machine segmentations are shown in white, GT – in red.

defined using domain knowledge, and therefore reflects an application-dependent accept-

able segmentation error.

This metric produces easy to interpret and comprehensible results. It permits compar-

ison of different algorithms on various datasets or tuning amethod’s parameters. Using

it, we can detect the number of pixels which coincide precisely with the GT overlay, or

assess the width of ambiguity.

Clearly, the combination of Equation 6.1 might have been defined in many ways, in

particular as a simple mean12(
NAt
NA

+
NBt
NB

). We find the qualitative behaviour of these two

definitions to be the same, while in the case t=0, Equation 6.1has a correspondence with

the MO definition (see Section 2.4.1) as the ratio of intersection to total perimeter.

6.1.1 Discussion: supervised evaluation

In registered DCE-MRI datasets the location of bone interiors is assumed to be constant

through the temporal slice. A region growing was applied to these data; initial parameters,

such as seed point and growing criteria, have been manually defined. In the data acquired

with the high field scanner, the most noticeable intensity change is expected to appear in

the sequence of images acquired between the 28 and 112 seconds (4th - 15th time instants.

The quality of the segmentation results is expected to decrease during this interval because

contrast enhancement during these times makes edges less clear. Figure 6.2 illustrates the

results. It is noticeable that the segmentation quality degrades in the later images.

Figure 6.3 illustrates the segmentation quality measured by MMO andH3, where GT

has been defined by experienced human input, which suggests thatt = 3 represents inter-
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observer difference.
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Figure 6.3: Evaluation of the segmentation results shown inFigure 6.2 by two supervised
metricsMMO andH3.

We observe that both metrics detect a decline in segmentation quality over the 12

images, butMMO provides less then adequate results in evaluation of segmentation of

several images.

• MMO suggests that the segmentation quality of the 11th and 14th regions is the same;

both haveMMO = 0.76. The 14th region clearly has a long tail, but its shape and

size do not impact onMMO significantly.

• The ‘tolerance’ aspect ofHt has been useful: in the 11th image the pixels of the

segmentation are mostly within 6-7 of GT, but some pixels from the 14th region are

more than 10 pixels away. Segmentation quality obtained forthese two regions has

been analysed withHt at differentt (see Figure 6.4), clearly illustrating the different

quality of result.

We can conclude that performance of the supervised metrics is in agreement on regions

segmented so that their boundaries are complete, and do not contain tails. When, as in

this application, tails are in evidence,Ht might be preferred.Ht also provides informa-

tion on the extent of these tails, which allows more comprehensive segmentation quality

evaluation.
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Figure 6.4: Graphs correspond to the analysis of region 11 and 14 from Figure 6.2 by the
supervised metricHt at differentt. Graph (1) corresponds to the region 11 and graph (2)
to the region 14.

6.1.1.1 Evaluation of segmentation algorithms with the supervised metric

In this section we will compare performance of three segmentation approaches – snakes

[122], region growing [87], and the algorithm discussed in Chapter 5 using two supervised

metricsMMO andHt . Examples of regions segmented by these algorithms are illustrated

in Figure 6.5.

Region growing

Region growing techniques generally perform better on regions of homogeneous struc-

ture. In our application, intensities within regions are higher than outside, but are not

homogeneous; regions detected with a low growing criterionare often located within GT

and do not intersect with the actual boundary (see the 1st region, 2nd row in Figure 6.5).

When the criterion is high, the segmented region overlaps GT. Considering the first

few images in the slice, we have manually selected initial parameters, and then these have

been used to segment bones throughout the slice. The medicalprocedure causes intensity

variations to be more pronounced in the last images in the slice, and therefore growing

parameters for these are not optimal.

Evaluation withHt reflects this (see Figure 6.6): very little of the segmented boundary

coincides with GT (the mean ofH0 is 0.23 and maximum 0.3; the mean ofH1 is 0.3

and maximum 0.41). With a largert, the quality of the segmentation results will be

evaluated as higher. Evaluation at different intervals of tolerance shows that about 60% of

boundary pixels segmented by region growing are located within a margin acceptable for

our application (the mean ofH3 is 0.61 and maximum 0.7), but only a small percentage
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Figure 6.5: The regions (row 1,2,3) in images acquired by thehigh-field scanner from dif-
ferent DCE-MRI studies. In the top row: regions segmented bythe adaptive segmentation
algorithm; middle row: regions segmented by the region growing; bottom row: regions
segmented by snakes. Machine segmentations are shown in white, GT in red.

are within 1 pixel from GT. Figure 6.6 illustrates the results obtained for 45 regions.

Boundaries of regions segmented by region growing very often contain tails, which

can partly overlap with the actual contour of the boundary, but partly (normally very

locally) extend toward the neighbouring bones. Results produced by the new metric show

that the length of the tails might be 5-10 pixels, and these cannot be well assessed by the

MO-based metric since the area of the tail does not adequately correspond to the ‘error’

it represents: it does not correspond to human opinion as demonstrated in Figure 2.4.

Snakes

The final regions delivered by snakes are close to actual boundaries, but often do not

preserve original contours. Evaluation withH0 andH1 (Figure 6.7) shows that in many

cases a high percentage of boundary pixels intersect with GT.

The initial parameters for snakes have been selected so thatboundaries of segmented

regions do not contain tails; this means that evaluation of quality can be performed ade-

quately by either of the supervised metrics. Results are illustrated in Figure 6.7.

Evaluation results produced by both supervised metrics on regions segmented by

snakes are comparable, as Figure 6.7 illustrates. We can observe that about 50% of de-
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Figure 6.6: Evaluation results obtained with different metrics on 45 regions segmented by
region growing. Results are sorted with respect to the behaviour of H0.
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Figure 6.7: Evaluation results obtained with different metrics on 45 regions segmented by
snakes. Regions are been sorted with respect to behaviour ofH0.
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Figure 6.8: Evaluation results obtained with different metrics on 45 regions segmented by
adaptive segmentation (Chapter 5).

tected pixels are placed correctly on a boundary (as in regions 7 and 8 in Figure 6.5), but

more than 30% of all pixels detected are located further than3 away from GT.

Adaptive segmentation

The adaptive segmentation based algorithm discussed in Chapter 5 has been specifically

developed for this application, and is very successful at locating bone boundaries. In the

majority of cases (Figure 6.8) results of high segmentationquality are produced:H1 has

mean 0.75, maximum 0.85;H3 has mean 0.83, maximum 0.93. Divergence from GT may

be due solely to subjective opinions of human observers. Thealgorithm performance is

of interest when precise segmentation is required.

In images at the end of the slice, especially when the region boundaries are partially

ambiguous, the algorithm might produce regions with tails (of extent 2-3 pixels). For this

experiment we have chosen images from the beginning and the end of the slices taken

from 10 DCE-MRI studies: the first 9 measurements in Figure 6.8 correspond to the

regions from the images acquired atT1. We can see that performance of both metrics on

these images is in agreement. The remaining images have beenrandomly chosen, some
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Figure 6.9: Left: Evaluation results obtained with different metrics (H0-H3, MMO) for
snakes (black) and adaptive segmentation (red). Right: Evaluation results for region
growing (black) and adaptive segmentation (red).

containing tails or partly ambiguous boundaries; performance of the metrics on these

regions is different, because the area of a tail does not influence significantlyMMO.

We learn that theHt metric provides more comprehensive information on algorithm

performance, assigning a threshold for segmentation errortolerance, allowing assessment

of the width of ambiguous sections, and choosing an appropriate algorithm for an appli-

cation. Much less information on boundary quality can be gained usingMMO; for some

regions,MMO provides an inadequate evaluation.

6.1.1.2 Evaluation of algorithm performance using supervised metrics

We compare three segmentation algorithms with respect to the quality of their segmenta-

tion results. Figure 6.9 shows box and whisker plots [158] ofevaluation results for snakes,

region growing, and adaptive segmentation algorithms.

While both supervised metrics suggest that the adaptive segmentation based algorithm

outperforms the others, withMMO we cannot assess which of snakes or region growing

performs better on our data. Figure 6.9 illustrates that according toMMO the median of
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Figure 6.10: Evaluation of the results produced by snakes and region growing measured
with Ht at different intervals of tolerance.

the evaluation coefficients obtained by snakes is higher than for the outputs obtained with

region growing, but a large percentage of regions has been segmented with very similar

quality. Thus, according toMMO the performance of these two algorithms is indistin-

guishable (based on the similarity of medians).

Evaluation withHt permits better analysis; the quality of the segmentation outputs

produced by region growing and snakes at different intervals of tolerance are shown in

Figure 6.10. By looking at the notches for the medians of the results produced by region

growing and snakes in Figure 6.10, we can say that the two medians are significantly

different at the 0.05 confidence level. Thus, the metric suggests that the performance of

snakes is better.

H0 andH1 suggest that snakes outperform region growing (about 50% ofthe boundary

pixels of the regions segmented by snakes and only about 25% of the pixels segmented by

region growing are located in the vicinity of GT). At a largerinterval of tolerance, such

as 2-3 pixels,H2 andH3 suggest both algorithms perform similarly.

Based onHt , we can conclude that the number of boundary pixels detectedby snakes

in the vicinity of GT is higher than the number detected by region growing, while the

algorithm discussed in Chapter 5 outperforms both of them.
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6.1.1.3 Evaluation of segmentation quality by human observers

The purpose of segmentation is often to locate regions whichare of interest to a particular

group of observers. The quality of algorithms is often judged by observers subjectively

regardless of evaluation provided by metrics. Our previousexperiments demonstrated that

H0 – H3 are in agreement, and for certain regionsMMO behaves differently. Therefore, it

is of interest to learn how judgments provided by the metricscorrespond to the opinion of

human observes.

We asked 30 experienced and 50 naı̈ve observers to evaluate segmentation outputs

obtained by the algorithms. Four pairs of images with segmentation outputs and GT were

given to the observers (see Figure C.1 in Appendix C). Observers were asked to choose

the ‘better’, in their opinion, segmentation output in eachpair. No formal definition of

‘better’ was given. Table 6.1 shows observers’ and metric preferences for each pair of

regions.

Pair1 Pair2 Pair3 Pair4
1 2 ind 1 2 ind 1 2 ind 1 2 ind

Exper. 3 23 4 2 27 1 13 2 15 14 4 12
Naı̈ve 7 41 2 3 42 5 16 3 31 20 3 27
Total 10 64 6 5 69 6 29 5 46 34 7 39
Ht

√ √ √ √

MMO
√ √ √ √

Table 6.1: Experienced (Exper), naı̈ve (Naı̈ve), and totalnumber (Total) of observers who
preferred region 1, region 2, or decided that regions are indistinguishable in quality (ind);
Ht andMMO preferences marked with

√
.

We received evaluation results for 80 subjects on 4 pairs of images. The results ob-

tained for the first two pairs of outputs are consistent; evaluation of the last two pairs is

less conclusive.

Image pair 1: The boundary of the first region contains long tails; the boundary of the

second region is less fragmented and has no tails. The secondregion was preferred

by Ht and 80% of observers.

Image pair 2: The first region is over-segmented and its boundary has long tails. The

boundary of the second region has short tails. The second region was preferred by

Ht and more than 86% of observers.

Image pair 3: Both regions are over-segmented, but the boundary of the second region

contains shorter tails than the boundary of the first region.Ht prefers the first,MMO
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the second region. Most observers evaluated these regions as indistinguishable in

quality (46 observers). However, the first region has been preferred by 29; the

second region by only 5.

Image pair 4: Both segmentation outputs are over-segmented, the boundary of the sec-

ond region contains longer tails than the boundary of the first region. Ht prefers

the first,MMO the second region. 33% of the observers evaluated these regions as

indistinguishable in quality, the first region however was preferred by 34 observers,

where the second one by 7.

Based on the judgments we can conclude that regions with tails or over-segmented

regions do not provide accurate contextual information about the region of interest. Re-

gions located within the ideal segmentation and regions with a larger number of boundary

pixels, which coincide or in the vicinity of the GT overlay, are preferred.

This experiment demonstrates that observers base their judgments on a distance be-

tween machine segmentation output and GT, shape and smoothness of the boundary of

segmentation, length of the tails, and amount of contextualinformation provided by the

segmented countour.

Results obtained with this experiment intersect best withHt – when supervised metrics

disagree, evaluation withHt was preferred by the majority of observers.

This experiment has of course its limitations. Using non-expert observers is imperfect

because their interpretations are not based on medical knowledge. The observers were not

explicitly told what segmentation is better, therefore a definition of a better boundary was

decided by the observers. Obviously, opinion of the naı̈ve observers is much less reliable

than opinion of the experienced ones.

6.2 Unsupervised evaluation metrics

MetricsM1–M3 discussed in Chapter 2 have not been utilised extensively onMRI images,

or images complicated by local blur or presence of partly ambiguous boundaries. The as-

sumptions required by the metrics (i.e. sharp boundary) do not allow adequate evaluation

of the results from such images. Here we propose a new unsupervised approach which

can be used to assess the quality of segmentation results obtained from such datasets.

Boundary pixels may be located in areas of high and low contrast, in ambiguous sec-

tions of boundary, and might not represent GT at all. If we canconfidently distinguish

between pixels that represent a ‘reliable’ boundary of the object and pixels that do not, we
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Figure 6.11: Left: Sample DCE-MRI region from an image of theMCPJs acquired with
the high field scanner. A bone interior is in white. Two profiles (1 and 2) are plotted
perpendicular to the boundary pixels. Right: Intensity values plotted along these profiles
(1- corresponds to the profile 1 and 2 - to the profile 2);b – location of a boundary pixel.

can automatically compare quality of segmentation outputs, or performance of segmenta-

tion algorithms based on their ability to detect long reliable boundaries.

6.2.1 A new unsupervised evaluation metric

Consider a normal to a boundary pixel and an intensity profiledrawn along it toward and

from the boundary pixel. LetI1 denotes the intensity profile within the region andI2

the profile without. Let the length of each profile bel ∈ [1;L], whereL is the length of

the longest profile (at this stage restricted only by image size). The choice ofL will be

considered later. Such profiles may or may not correspond to that expected at an ‘edge’ –

see Figure 6.11.

To estimate the strength of a boundary pixel, we measure the intensity change along

the profiles. We select weights as in Equation 6.2 and build a weighted sum on each

of the intensity profiles by assigning heavier weights to intensities closer to the putative

boundary pixel. This is illustrated in Figure 6.12.

α1 > α2 > ... > αl > 0, ∑
i

αi = 1 (6.2)

The weightsαi may be selected in many ways: for simplicity we have chosen them to be
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Figure 6.12: Diagram illustrating the intensity profiles (I1i inside the region andI2i outside
the region) and weightsα drawn for a boundary pixelb.

linearly decreasing to 0. The strengthScan be defined as:

S(l) =

∣
∣
∣
∣
∣

l

∑
i=1

αi I1i −
l

∑
i=1

αi I2i

∣
∣
∣
∣
∣

(6.3)

Acknowledging that the evidence of a boundary pixel is likely to extend over more

than a step change, there are many models we might use to fit thedata: the sigmoid is

popular. In an environment of probable noise, we use insteadfor convenience a piece-

wise linear function as shown in Figure 6.13 (left) – the sacrifice of accuracy in many

applications will be dominated by noise effects. This can bedescribed by Equation 6.4 in

which there are two parameters:M gives the contrast across the edge andc captures how

sharp (or fuzzy) it is. The weight function is given by Equation 6.5 (and is illustrated in

Figure 6.13 (right)).

m

M + m

b

x

f (x)

b − c/2 b + c/2

Dark

Light
2

l

l

g(x)

x

Figure 6.13: Functionsf (left) andg (right) defined by Equation 6.4 and 6.5.
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f (x) =







m x≤ b−c/2

Mx/c+M/2+m x∈ [b−c/2;b+c/2]

m+M x≥ b+c/2

(6.4)

g(x) =

{
2
l − 2

l2x x∈ [0;l ]

0 elsewhere
(6.5)

Let I1 and I2 denote weighted intensity profiles for a boundary pixelb. These are

defined by the equations below, wheref relates to the image intensity profile:

I1 =
∫ l+b

b
f(x)g(x−b)dx (6.6)

I1(l) =







−5Mc2

24l2
+ 3Mc

4l − c2m
4l2

+ mc
l l ≤ c/2

Mc2

24l2
− Mc

4l +M +m l ≥ c/2

(6.7)

I2 =

∫ b

b−l
f(x)g(b−x)dx (6.8)

I2(l) =







−Mc2

24l2 + Mc
4l − c2m

4l2 + mc
l l ≤ c/2

−Mc2

24l2
+ Mc

4l +m l ≥ c/2

(6.9)

Therefore, the strength of a boundary pixelSis given by Equation 6.10. AnS(l) curve

corresponding to a ‘perfect’ profile is shown in Figure 6.14.

S(l) =
∣
∣
∣I1 − I2

∣
∣
∣ =

=







Mc
2l − Mc2

6l2
l ≤ c/2

M− Mc
2l

(
1− c

6l

)
l ≥ c/2

(6.10)

Given p andq, 1≤ p < q ≤ L, we can estimateM andc from this equation. These

estimates for differentp,q will vary depending on noise effects, boundary misplacement

and proximity of p andq to the asymptote. In order to estimate(M,c) reliably, for a

natural numberδ we will take severalp,q pairs from an interval[lδ , lδ +δ ] ⊂ [1;L] that

makes this set of estimates most robust. We make this judgement by seeking the set of

estimates that is most tightly clustered as a result of enforcing the model of Equation 6.10.

For an interval[l , l +δ ] we can generatenδ estimates for[M,c]:

nδ =
δ (δ +1)

2
(6.11)
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Figure 6.14: The strength of a boundary pixelS(l) for the ideal profile.

These form a set
{

(Mk,ck)
}

k=1..nδ
with a centroid at(µM,µc). We will normally expect

δ ≥ 3 in order to provide a non-trivial number of estimates.

For each interval[l , l +δ ] with estimates{(Mk,ck)}k=1...nδ , we envelop the estimates

with an ellipse centered at the centroid, and axes orientated along the principal axes of

the data, with aspect ratio determined by the ratio of the data variances. For a givenδ ,

we use the ratio between the cardinality of the subset and theellipse perimeter as a set

compactness measure, and select the maximal such.

Performing this for each acceptableδ , we now aggregate all estimates into one set

{(Mk,ck)}k=1...nδ ,δ=3...δmax
, and determine the meansµM,µc and variancesσ2

M,σ2
c . There

is no statistical justification in theory for this aggregation but at the same time, we have no

evidence that using this larger set will reinforce any bias.The lower values ofl will give

better results, being less likely to be corrupted by other information, but we have not used

this observation. An issue remains, however, over the quality of any estimate ofc when

that parameter is low since most values ofS(l), particularly for higherl , will be near the

asymptote and estimates ofc may be ill conditioned.

In fact, this presents no serious problem; ifc is ‘low’ then we observe a step edge and

can get a (probably) reliable estimate ofM from low values ofl . Empirically, we discover

that forc> 4, the approach we outline is reasonable, while smaller values represent a near

step-change in intensity. In the application we come to consider, which is characteristic

of challenging domains,c is commonly in the range[5,8].

Now for a given boundary pixelxi we will have

fi = f (xi) = (µ i
M,σ i

M,µ i
c,σ

i
c) (6.12)

These statistics will form the basis of future decisions about the validity of the pixel; in

most circumstances,µM is good if high, andµc is good if low;σM andσc can provide a

relative confidence in the estimates. These parameters are of course only relative in value,
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and have no absolute interpretation (unless the image domain provides it – for instance,

when there is a clear evidence that pixels with intensities above a certain threshold are

correctly segmented).

We will define a confidence measureξ (xi) = ξ ( fi), 0≤ ξ ≤ 1. Then, the metric of

segmentation quality can be defined as:

Q =
1
N ∑

i=1...N

ξ (xi) (6.13)

The choice ofξ ( fi) can be determined by the application – in Section 6.2.2 we illustrate

some choices and compare their results with some of the established metrics.

6.2.2 Experiments and discussion

6.2.2.1 Evaluation of segmentation quality

Synthetic imagery

Human observers usually cannot gauge the quality of segmentation in any absolute sense

and will judge one to be ‘better’ or ‘worse’ than another [276]. ‘Goodness’ is a rel-

ative property. Similarly, segmentation metrics in practical use will normally address

themselves to a set of measurements made on an image or images, using a number of

algorithms or algorithm parameter settings.

In order to compare quality of a number of segmentation outputs we set

Mmax = max
i=1...Nk,k=1...B

µ i
M (6.14)

Mmin = min
i=1...Nk,k=1...B

µ i
M, (6.15)

whereB is the number of segmentations andNk is the number of boundary pixels in the

kth segmentation.cmax, cmin are defined similarly. A simple approach for estimation of

the strength coefficients is to set

ξ1( fi) = 1− Mmax−µ i
M

Mmax−Mmin
(6.16)

The quality of thekth segmentation output is defined as

Q1(k) =
1
Nk

Nk

∑
i=1

ξ1( fi) (6.17)
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Here, we assume that the pixel withµM = Mmax and the pixel withµM = Mmin are

actually the best (and correctly detected) and the worst (and mis-segmented) ones in all

segmentation outputs and therefore it is reasonable to grade the quality of the other pixels

by comparing them to these cases. With the metricQ1 only the magnitude of the intensity

change defines the strength of the pixel. This metric is of value when all pixels after

evaluation have very similar values ofci .

Synthetic regions used in [45] for metric evaluation and comparison are a good exam-

ple of such a boundary. Figure 6.15 illustrates two regions segmented by snakes. Here,

boundary pixels are coloured according toξ1: pixels with maximalξ i
1 = 1 are plotted in

red, andξ i
1 = 0 in yellow, with intermediate colours accordingly1.

Figure 6.15: Synthetic regions taken from the database provided by [45] segmented by
snakes; colours of the pixels from the machine segmented boundary correspond toξ1.

Consider a region segmented by region growing with two different threshold values,

and a seed point located in the centre of the circle. Figure 6.16 (middle) illustrates the

sensitivity of parameter selection: in an approximate sense the segmentation is good, but it

is poor in many issues of detail. Previous authors have used artificially poor segmentation

to provide comparisons: Figure 6.16 (right) is an example. It is obvious to a human

observer that the quality of the segmentations shown in Figure 6.16 decreases from left to

right.

Our metric illustrates that the first segmentation in Figure6.16 is preferable and the

hand segmented boundary has the lowest quality. The metric’s judgments correspond to

the opinion of a human observer. Thus, we can conclude that the metric here permits

automatic evaluation and comparison of segmentation outputs obtained with different al-

gorithms on synthetic images.

1We use this colour scheme throughout this section.
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Figure 6.16: Left: Synthetic region from the database provided by [45] segmented by
region growingQ1 = 0.96. Middle: Synthetic region from the database provided by [45]
segmented by region growing with different threshold valueQ1 = 0.72. Right: Hand
segmented boundary, deliberately poorQ1 = 0.54. Colours of the boundary pixels corre-
spond toξ1.

DCE-MRI data of the MCPJs

Similarly to Equation 6.16 we can derive an approach using the estimatec. For some

applications, mis-segmented pixels are those that separate areas of low contrast and/or

located in the fuzzy/ambiguous parts of the boundary. Such pixels may have a relatively

low estimate ofM and high estimate ofc. One way to incorporate the influence ofc is:

ξ2( fi) = (1−λ )

(

1− Mmax−µ i
M

Mmax−Mmin

)

+λ
(

cmax−µ i
c

cmax−cmin

)

(6.18)

and defineQ2 in the same manner asQ1. λ determines the relative influence thatM andc

have on the final estimate of the pixel’s strength.

For our application we are able to assume that:

• Pixels that separate areas of high contrast (highM), and are not in the ambigu-

ous/fuzzy parts of the boundary (lowc) probably represent the actual boundary of

a region;

• Pixels that separate areas of low contrast (lowM) and the intensity change along

their normal is not sharp (largec) probably do not represent good boundary;

• No assumptions can be made about pixels with largeM and lowc or low c and low

M. These pixels can represent a weak edge or an ambiguous section of a boundary.

If we can assume that estimates ofM andc are equally significant, thenλ = 0.5. Later it

will be illustrated that for our application the optimal in correlation with human opinion

λ is in the range[0.4;0.6].
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Figure 6.17 illustrates segmentation results obtained with snakes and adaptive seg-

mentation based algorithm, andQ2. A larger percentage of the pixels on the right has

been assigned lower strength coefficients, and according toQ2 the quality of the left out-

put is higher.

Figure 6.17: Segmentation results of the algorithm discussed in Chapter 5 (left)Q2 = 0.87
and snakes (right)Q2 = 0.41 obtained on a sample image from the database provided
by [45]. GT is shown in white. Colours of machine segmented boundaries correspond to
ξ2.

Adjusting λ emphasises the influence ofM or c. Figure 6.18 illustrates behaviour

whenλ = 0.1 (middle) andλ = 0.5 (right). The image on the left illustrates a boundary

with blue lines indicating direction normals, their lengthcorresponding toc.

Figure 6.18: Left: Machine segmentation is shown in red, GT in white; blue lines are
plotted in the direction of normals, their length corresponds toc. Middle: Colours of the
boundary pixels correspond toξ2 (λ = 0.1), Q2 = 0.81. Right:ξ2 (λ = 0.5), Q2 = 0.87.

With low λ the influence ofM is more significant thanc. This might be acceptable

for synthetic images used in [45], where machine segmented boundaries are assumed to

be constant width.
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Segmentation outputs obtained on the MCP data are usually more than 1 pixel width;

also, correctly detected boundaries might be strong (highM and lowc) or weak (low

M and lowc). Whenλ is low, the strength of the weak and mis-detected parts of the

boundary will be similar. Therefore, weak, but still correct parts of the boundary will be

thought of as mis-segmented.

Figure 6.18 (middle) illustrates a segmentation evaluatedwith λ = 0.1. Some pixels

from a weak part of the boundary have been assigned relatively low coefficients. When

λ = 0.5 (Figure 6.18 right), and the estimate ofc is considered, the strength of the pixels

is defined much more accurately: pixels from a weak part of theboundary have been

assigned higher strength.

This experiment illustrates that estimates of bothM andc should be taken into account

when comparing quality of segmentation outputs obtained ondata such as these.Q2 is

suitable for quality assessment when information about contrast between background and

foreground, and the fuzziness of the region boundary is relevant.

Incorporating confidence estimates in the evaluation metric

Use of the estimatesM and c can be enhanced by incorporating confidence measures

computed along withM andc. The standard deviationsσM andσc are most unlikely to

carry any physical meaning, but Equation 6.19 offers a simple approach that allows an

assumption that some estimates are definitely wrong (β = 0);

β i
M =

max
i

(σ i
M)−σ i

M

max
i

(σ i
M)−min

i
σ i

M

β i
c =

max
i

σ i
c−σ i

c

max
i

σ i
c−min

i
σ i

c

(6.19)

Another simple alternative may be;

β i
M =

1

σ i
M

β i
c =

1
σ i

c
(6.20)

There are clearly many ways we might incorporate such confidence measures; one

is to attempt to improveQ1 andQ2. We might use these confidences as the basis of a
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weighted mean filter;

ν i
M =

i+h

∑
j=i−h

β j
M ·µ j

M

j=i+h

∑
j=1−h

β i
M

(6.21)

ν i
c =

i+h

∑
j=i−h

β j
c ·µ j

c

j=i+h

∑
j=1−h

β i
c

(6.22)

whereh is some suitably chosen boundary window width. Similarly toEquations 6.16

and 6.18 the weighted coefficients of the pixels’ strength are:

ξ i
3 = 1− Mmax−ν i

M

Mmax−Mmin
(6.23)

ξ i
4 = (1−λ )

(

1− Mmax−ν i
M

Mmax−Mmin

)

+λ
cmax−ν i

c

cmax−cmin
(6.24)

with Q3 andQ4 defined correspondingly.

We appliedQ3 to evaluate the quality of segmentation results obtained ona number of

real life images [254]. One of the images is shown in Figure 6.19; segmentation results are

obtained with region growing with two different threshold values and a seed point located

in the centre of the region. Boundary pixels are coloured according to their strength given

by Equation 6.23.

Figure 6.19: Segmentation results of region growing with different threshold value on a
real world image [254]: From the leftQ3 = 0.81,0.70,0.49. Colours of the boundary
pixels correspond toξ3.

It is obvious to a human observer that the quality of the segmentation results in Fig-
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ure 6.19 (left) is the best and the quality of the region on theright is the worst. The metric

Q3 generates corresponding results.

We appliedQ4 to evaluate the results of snakes with different initial parameters on

a sample DCE-MRI image of the MCP joints. Figure 6.20 illustrates the segmentation

outputs, with boundaries coloured according toξ4: Q4 prefers the result at the left of

Figure 6.20.

Figure 6.20: Segmentation results of snakes on DCE-MRI images of the MCPJs. GT is
shown in white. Colours correspond toξ4; Q4 = 0.98 (left),Q4 = 0.72 (right).

Figure 6.21 illustrates a boundary segmented by region growing and evaluated byQ1,

Q2 (λ = 0.5), Q3, andQ4 (λ = 0.5). Boundary pixels are coloured according toξ1 – ξ4.

The upper left part of the boundary clearly represents the actual boundary of the region,

while the lower part is mis-segmented, and there are some pixels located in the weak part

of the boundary.

ξ1 has classified pixels from the weak part of the boundary as mis-detected; the colour-

ing of the boundary pixels is inhomogeneous. Whenc is incorporated and strength is

estimated usingξ2, the majority of the correctly segmented pixels from the weak parts of

the boundary have been assigned higher strength (Figure 6.21, region 2).

When the confidence based filter has been applied (ξ3 andξ4), the boundary evalua-

tions look much smoother. However, when the pixel strengthshave been estimated with

ξ3 the colours in the boundary are inhomogeneous (Figure 6.21,region 3). The best eval-

uation is obtained withξ4: there are no outliers in the strong and mis-detected parts of

the boundary, pixels located in the weak part have higher strength coefficients than mis-

detected pixels, and the colours in the corresponding image(4th region in Figure 6.21)

correspond well to the quality of the segmentation. Our experiments show that for our ap-

plication evaluation withξ4 generates the best information on segmentation quality (see

Table 6.3).
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Figure 6.21: A region has been segmented by the region growing algorithm and the quality
of the segmented boundary was evaluated by the metricsQ1-Q4. The colour in the images
correspond to the coefficientsξ1-ξ4 (left to right).

6.2.2.2 Comparison of metric performance on synthetic and real world imagery

In a recent survey [45], several metrics [139, 259, 274] havebeen evaluated on a dataset

of synthetic regions usingMMO as an objective measure. The results of the experiment

conducted in the survey [45] are summarised in Table 6.2, where Spearman’s rank corre-

lation coefficient [112] was used to evaluate the strength ofthe relationship between the

variables.

For this experiment the authors used a database of 400 synthetic images segmented by

various algorithms; sample images and segmentation outputs are shown in Figure 6.22.

The results show that the metrics do not agree with each otherand have demonstrated

very poor performance on the test imagery.

Metric M1 M2 M3 MMO

M1 1 0.02 0.06 0.20
M2 1 0.18 0.16
M3 1 0.56

Table 6.2: Correlation between various unsupervised approaches andMMO: the data are
taken from [45] and [44].

We have conducted experiments on 100 synthetic images (only100 out of 400 were

made available) from [43,45], segmented by various algorithms (snakes, region growing,

and adaptive segmentation based approach). Segmentation outputs have been evaluated

by MMO, Ht and Q1, Q3 and by the established unsupervised metricsM1 − M3. The

evaluation results have been normalised to be in the range from 0 to 1 and then sorted

according to the quality of the results obtained withH1. Figure 6.23 illustrates the results.

Evaluation results produced by the supervised metrics correlate highly with results

produced by the new metrics. The behaviour of established unsupervised and supervised
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Figure 6.22: The first two images are sample images from the dataset used for experiments
in [45], the last two images – segmentation results used in the experiments published
in [45].

metrics does not agree. The new metrics show that there is obvious decrease in the quality

of the segmentation results, whereas the established metrics failed to capture this trend.

Table 6.3 shows the correlation coefficients between metrics.

Metric M1 M2 M3 Q1 Q2 Q3 Q4 MMO H0 H1

M1 1 0.22 0.12 0.23 0.21 0.23 0.20 0.18 0.09 0.15
M2 1 0.15 0.19 0.18 0.15 0.16 0.05 0.03 0.09
M3 1 0.15 0.1 0.15 0.11 0.33 0.37 0.32
Q1 1 0.80 0.96 0.88 0.83 0.88 0.86
Q2 1 0.89 0.97 0.81 0.80 0.81
Q3 1 0.92 0.88 0.89 0.87
Q4 1 0.85 0.88 0.84

Table 6.3: Correlation coefficients between unsupervised (M1-M3, Q1-Q3) and supervised
approaches (MMO, H0, andH1) approaches (synthetic data).

The test imagery does not satisfy the established metrics’ requirements, such as ho-

mogeneity of background and foreground intensity, and highcontrast between region

segmented and the background. The data in Tables 6.2 and 6.3 show that the established

unsupervised metrics’ performance on synthetic images is poor; they do not agree with

each other and behaviour does not correspond to that of the supervised approaches.

Performance of the metricsQ1 and Q3 is similar to the performance of the super-

vised approach. The correlation between the results is high, which indicates that metrics

generate reliable evaluation results.

6.2.2.3 Performance of metric on DCE-MRI data of the MCPJs

Experimental results published in [42] and [45] show that the established metrics’ perfor-

mance is also poor on real world satellite imagery and computed tomography images of

the brain. To our knowledge none of the established unsupervised metrics has been used
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Figure 6.23: Evaluation results obtained with different metrics on 100 synthetic regions
segmented by various algorithms. Segmentation outputs have been evaluated byMMO, Ht

andQ1, Q3 and by the established unsupervised metricsM1−M3. The evaluation results
have been normalised to be in the range from 0 to 1 and then sorted according to the
quality of the results obtained withH1.

for evaluation of segmentation quality obtained on DCE-MRIor MRI data. It is of inter-

est to assess the metrics’ performance on a large dataset with the rich variety of problems

presented by this domain.

The dataset is composed of 140 regions, segmented by variousalgorithms (region

growing, snakes, and adaptive segmentation based approach). Results have been evalu-

ated by the supervised (Ht andMMO) and unsupervised (M1−M3, Q2 andQ4) metrics.

Three independent observers were asked to outline GT for themost challenging regions.

The per-pixel difference between these individual judgments averages 3 pixels, which

suggests an appropriate value fort in evaluatingHt.

We have calculated the correlation coefficients between supervised and unsupervised

approaches; these are shown in Table 6.4. Figure 6.24 illustrates evaluation results pro-

duced by 5 unsupervised and 2 supervised metrics on 140 regions.

Those metrics which use intensity or contrast uniformity ofthe segmented regions as

an evaluation criterion [139, 259] perform poorly on DCE-MRI data. They show slightly

better performance on images at the beginning of the temporal slices, where contrast be-

tween the correctly segmented region and the background is higher. Results on images

from the end of temporal slices often do not agree with evaluation performed by super-
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Metric M1 M2 M3 Q1 Q2 Q3 Q4 MMO H3

M1 1 0.14 0.12 0.19 0.23 0.21 0.14 0.33 0.21
M2 1 0.11 0.17 0.19 0.16 0.11 0.29 0.26
M3 1 0.15 0.20 0.17 0.14 0.37 0.33
Q1 1 0.79 0.91 0.81 0.76 0.78
Q2 1 0.79 0.96 0.82 0.86
Q3 1 0.82 0.83 0.81
Q4 1 0.84 0.87

Table 6.4: Correlation coefficients between unsupervised (M1-M3, Q1-Q3) and supervised
approaches (MMO, H0, andH1) applied to DCE-MRI data.

vised metrics.

M3 (Zeboudj) provides evaluations which correspond better tothe supervised metrics

evaluation. This metric operates on the contrast changes inthe neighbourhoods of pixels

along the boundaries; it shows good performance when regions have been segmented with

the adaptive segmentation based approach. These are usually very close to GT, which

leads to sharper contrast changes between inner and outer areas.

The behaviour ofQ2 andQ4 is similar on the MCP data. Results produced by the new

unsupervised metrics show the best performance in correlating with H3 andMMO. This

experiment shows that the new metrics generate reliable results in evaluation of DCE-

MRI data of the MCPJs and can be used when automated comparison of segmentation

outputs is required.

6.2.3 Limitations of the approach and application dependant param-

eters

There are obvious limitations of the proposed approach. As discussed in Section 2.4.2 all

unsupervised approaches that provide results of useful quality require human intervention

at some stage. Our method does not require a training stage, however there are two

parameters (L, and for some metricsλ ) that have to be manually chosen before the metric

can be applied.

Optimal length of the profile L

Two factors should be considered when choosingL: the likely width of boundaries under

evaluation and the proximity of local artefacts. By the width of the boundary we under-

stand the image distance over which the edge exists. The length of the profileL should
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Figure 6.24: Evaluation results produced by the metrics on 140 randomly chosen regions
from the DCE-MRI images of the MCPJs. Regions have been sorted according to the
quality of results obtained withH3.

be large enough to capture the intensity change across boundaries, but small enough to

prevent corruption of profiles by the artefacts.

For many applications, it is difficult to define a unique position for a boundary. Much

research has been carried out to evaluate true locations of boundaries [46, 263], but the

problem remains unsolved.

Thus, in order to determine the width of a boundary, several experts (at least two)

should be asked to outline outer and inner contours of several boundaries. Figure 6.25

(left) illustrates boundaries outlined by two experts. Supposet1 is the maximum distance

between all outer boundaries,t2 that between all inner boundaries, andD the maximal

separation between closest inner and outer boundaries. Then in order for a profile to

capture the true intensity change,L should be longer thanD+ t1+ t2.

Recognising that particularly large values ofl are probably unnecessary and unde-

sirable, we are not interested inL being higher than it needs to be. The proximity of

artefacts can be also estimated based on expert opinion. In our application, local artefacts

are blood vessels and other bone regions, and experiments with our datasets have shown

thatL ∈ [7;15] is reasonable, and provides sufficient estimates ofM andc. Figure 6.26

demonstrates different choices ofL. S(l) captures the ambiguity of the boundary (high

estimate ofc implies more ambiguous boundary) and the intensity change.It is crucial to

chooseL large enough for the intensity changeS(l) to reach its maximum.
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Figure 6.25: Synthetic and MRI regions with inner and outer boundaries outlined by
two experts. Inner boundaries in solid, outer in dashed line; the same colour indicates
results obtained from the same observer.t1 is the maximum distance between all outer
boundaries,t2 that between all inner boundaries, andD the maximal separation between
closest inner and outer boundaries.
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Figure 6.26: Left: Regions in sample images of the MCP jointsacquire by the high
field scanner with a segmented boundary shown in white and a profile drawn through the
boundary pixels shown in red. Right:S(l) graphs corresponding to the profiles.
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Optimal choice ofλ

Choice ofλ and sensitivity of the metrics to it will depend on a particular application.

For example, when the boundary under evaluation is supposedto be of a constant width,

but has estimates ofc indicating that it is not, then it can be assumed that segmentation

delivered erroneous results. Here more weight should be placed on the termc. Another

example, if after evaluation all estimates ofc are similar and correspond to the expected

width of a boundary, then more weight should be put on evaluation provided by parame-

tersM.

To select an optimalλ for a new application a user can evaluate several regions with

one of the supervised metrics, and then chooseλ in such a way that the unsupervised

evaluation corresponds to the results provided by the supervised metrics. In the absence

of any ground truth information, equal weight on theM andc terms can be placed. For

our experiments we foundλ = 0.5 satisfactory.

6.3 Conclusion

Evaluation of segmentation algorithms is an intrinsic partof image processing. In this

chapter we discussed several issues associated with supervised and unsupervised evalua-

tion and proposed solutions to the evaluation problem.

We have shown that currently accepted supervised and unsupervised metrics are not

always adequate in application to MR imagery, which is complicated by local blur, partial

volume effects, intensity variations, subtle contrast, and patient movement artefacts.

The mutual overlap based metric does not deal well with objects whose boundaries

contain tails, and is not applicable to open and ambiguous boundaries. It does not per-

mit assigning an acceptable segmentation error and cannot assess inconsistencies in GT

information.

Existing stand alone unsupervised approaches usually relyon image characteristics

they measure and require constraints on image properties, which often cannot be satisfied

in medical or real life imagery applications. Other unsupervised approaches aggregate

stand alone metrics using classifiers and employ various learning strategies in an attempt

to improve accuracy. Performance of such aggregate metricsimproves with increasing

size of training set, but the issue of choice of primitive metrics remains open.

We proposed a new supervised metric as an enhanced derivation of a Hausdorff dis-

tance based metric. It allows estimating the acceptable error of segmentation, which can

be adjusted for desired quality; for example, the width of ambiguous boundary sections, or
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the opinion of experts. This metric produces easy-to-interpret and comprehensible results.

It permits comparison of different algorithms on various datasets or tuning a method’s pa-

rameters. Using it, we can detect the number of pixels which coincide precisely with GT,

or assess the width of ambiguity.

We also have considered several unsupervised approaches and demonstrated their lim-

itations. We conclude that while it is probably impossible to develop an application inde-

pendent unsupervised evaluation metric that would not require any human interference,

we can propose a family of metrics valid for various types of images, including synthetic,

real world, and DCE-MRI data. In such a way we can deal with theunfavourable proper-

ties of MR imagery and permit involvement of prior knowledgeabout the data.

Experiments have been performed using a large number of regions (synthetic and real)

of various shapes, intensities, and contrast level, segmented by 3 algorithms of different

behaviour and underlying criteria. We conducted experiments to compare evaluation re-

sults produced by the old and new supervised metrics againsthuman observers opinion

and learned that in most cases observers agree with the proposed metric. We have also

objectively compared performance of the proposed unsupervised metrics against results

obtained with supervised approaches and demonstrated thatthe correlation is high. We

consider the new metrics to be an improvement on those prevailing.

Moreover, in this chapter performance of the adaptive segmentation part of the algo-

rithm discussed in Chapter 5 was evaluated with MO and HD based approaches. Both

supervised metrics suggest that the algorithm outperformssnakes and region growing,

which generated disappointing results in most cases.
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Analysis of DCE-MRI data

In this chapter we present an alternative approach to voxel-by-voxel analysis, which over-

comes problems associated with heuristic methods currently used for DCE-MRI data as-

sessment and discussed in Section 2.5. We aim to allow fully automated analysis of signal

intensity vs. time curves and objective estimation of the heuristics such asME, IRE, and

Tonset. Such analysis should permit quantitative assessment of the degree of inflammation

and allow for time-efficient and objective evaluation of thepatient’s condition.

The results will be presented on the datasets acquired from active RA patients and

healthy controls by high and low field scanners. The approachwill be compared to the

moving-window technique [195] discussed in Chapter 2

7.1 Classification of tissue behaviour

Behaviour of the signal intensity vs. time curves may be explained by the underlying

phases of the data acquisition. Starting from a baseline, the perfused tissues absorb the

contrast agent, and their intensity climbs up (wash-in phase); it usually increases up to a

certain point and then exhibits a plateau (of variable width) followed by a wash-out phase

(gradual signal intensity decrease).

Signal intensity vs. time curves are normalised over a baseline as discussed in Sec-

tion 2.5.1. A sample generic normalised signal intensity vs. time curve (̂I ) and the dura-

tions of different phases of contrast enhancement are displayed in Figure 7.1, whereδ1

124



Chapter 7 125 Analysis of DCE-MRI data

Î

T
t1 t2 t3

ξ1

ξ2

δ1 δ2 δ3 δ4

1

Figure 7.1: Signal intensity vs. time curve normalised overa baseline.T is the number
of dynamic frames in a temporal slice;t1, t2, t3 indicate the beginning of the wash-in,
plateau, and wash-out phases.

is a baseline,δ2 increase or wash-in,δ3 plateau, andδ4 wash-out periods; anglesξ1 and

ξ2 represent the rates of the wash-in and wash-out. Some restrictions on the relationship

between these parameters of the signal intensity vs. time curves may be derived:

δ1 > 0, δ2 > 0, δ3 ≥ 0, δ4 ≥ 0,

ξ1 ∈ (0,π/2), ξ2 ∈ (−π/2,π/2) (7.1)

We are implying a piecewise linear approximation1 of theÎ and curves satisfying these

restrictions will be approximated by one of the shapes shownin Figure 7.2.

S1 – negligible enhancement: pixels at which no enhancement ofnote can be detected

(these will include bone interiors).

S2, S4, S5 – baseline/wash-in: signal intensity vs. time curves whichclearly enhance but

do not reach a plateau withinT recorded instants.

S3 – baseline/wash-in/plateau: pixels at which signal intensity vs. time curves reach the

maximum and an intensity plateau develops.

S4, S5 – baseline/wash-in/{plateau}/wash-out: pixels at which the Gd-DTPA has dissi-

pated and the intensity has detectably started to drop.

1Alternatively, curves can be approximated by more sophisticated models (e.g., a sigmoid), but we have
not performed such experiments.
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Figure 7.2: Possible shapes of theÎ curves:S1, S2, S3, S4, S4, S5, S5.

S1 corresponds to tissues which do not absorb the contrast agent, such as fat and water

within the bone interiors, and display a relatively constant intensity within a temporal

slice. S3 describes the situation in which the tissue goes through thebaseline, wash-in,

and plateau phases.S4 andS5 show the presence of the relaxation phase of the tissue after

the plateau.S2, S4 andS5 illustrate the situation in which the take up time of the tissue is

longer than the time of data acquisition, and the plateau hasnot been achieved.

The caseS4 is included here only for completeness, and represents something we

would not normally expect to observe. Here, while a change inthe rate of increase is

plausible, a significant plateau during the increase stage is not. Empirically we found that

any observation of this model has a very short plateau (at most 3 time instants) equally

well attributed to noise. We shall henceforward assume thatall signal intensity vs. time

curves can be modelled by one of the shapes proposed in Figure7.2 excluding this special

case.

We propose to use the knowledge of the underlying temporal pattern of the Gd-DTPA

take-up to classify thêI signals as an aid to noise reduction. This should permit more

robust estimation of the heuristics, which will be extracted from the parameters of the

fitted model rather than from the raw signals.
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Figure 7.3: Top: The bone interiors, tissues within the joints’ envelope, and the back-
ground segmented in a sample DCE-MRI temporal slice. Bottom: corresponding nor-
malised noise distributions derived from the bone interiors, T1−T3, and from the back-
ground pixels.

7.2 Noise model estimation

We seek an estimate of the distribution of the noise through which models will be fitted

to data. It is assumed that there is no Gd-DTPA take-up in the tissues identified within

the bone interiors and markers or in pixels outside the joints’ envelope. Therefore, signals

corresponding to these pixels may be approximated by a constant (the local signal mean),

with variations being explicit noise measurements. It is also assumed that images acquired

atT1−T3 time instants are unaffected by any enhancement, and therefore these values may

also be approximated by a constant, permitting a different measurement of noise. Note

that it is not claimed at this point that these three noise estimates will necessarily come

from or describe the same distribution.

Normalised noise distributions derived from three different sources are shown in Fig-

ure 7.3. There is clear similarity between these distributions which we can evidence using

the Kolmogorov-Smirnov (KS) test [155]. This is a parameterindependent test of good-

ness of fit, which has the advantage of making no assumption about the distribution of

data. The KS test is based on a comparison between the empirical cumulative distribution

functions (ECDF) of the datasets.

The KS test statistic is the greatest discrepancy between the cumulative frequencies

of two distributions. If we have two experimental cumulative frequency distributions:

FN(x) containingN events, andFM(x) containingM events, the test statistic is defined by
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Equation 7.2 [155]:

DMN = max
x

|FN(x)−FM(x)| (7.2)

KS= DMN ×
√

[MN/(M +N)] (7.3)

Appropriate tables allow suitable conclusions of confidence to be drawn from the

observationKS. In our experiments significance level of 95% was used. It maybe argued

that the noise level is expected to be the lower in the first fewimages, where any patient

movement artefacts and the Gd-DTPA influence are insignificant. This would suggest

deviations from theT1−T3 baseline as the best approach. Section 7.4.1 illustrates that we

are secure in accepting these three distributions to be indistinguishable. Accordingly, we

model noise as an aggregate of that detected from these threedifferent sources.

7.3 Determining best model fit

We proceed by attempting to fit each of the models illustratedin Figure 7.2, and consid-

ering as likely candidates any for which the implied noise matches in some sense that

which we expect to see. For each model the piecewise linear best fit is determined in a

least-squares sense (minimising also with respect tot1, t2, t3); each such ‘fit’ then implies

T noise measurements. We then computeKS for each model, rejecting those in which

we would have low confidence. Note that we are interested in matching noise distribu-

tion and not minimising noise observation; the latter wouldalways preclude the simpler

models such asS2,S3 in favour ofS4.

In the event of more than one model being acceptable, the asymptotic statisticp de-

rived from the test permits discrimination of which is ‘best’. This statistic is known as

Kuiper’s coefficient of associations and measures maximum absolute difference between

the cumulative functions of the distributions; the error distribution with lower absolute

difference is preferred. The statisticp ranges from 0 to 1 and is defined as:

p =
1
2

(

max
x

|FN(x)−FM(x)|+max
x

|FM(x)−FN(x)|
)

(7.4)

Experimenting with this approach, most pixels are fitted best by modelsS3, S4 andS5,

as expected. Figure 7.4 illustrates an example in which eachpixel in the slice has been

coloured in accordance with its best fit (the colours correspond to those of Figure 7.2).

Clearly, some pixels potentially fit more than one model, andit is of interest to de-

termine how often ambiguity arises. Figure 7.5 plots this with respect to the data from
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Figure 7.4; the histogram at the bottom of the figure illustrates the frequency and depth of

ambiguities at 95% significance level.

We see that the modal observation is 2 models, but many pixelsalso satisfy 3 models,

while some of the signal intensity vs. time curves can satisfactorily be approximated by

all models. This raises questions about the likely quality of the second (or third) best fit,

and whether the chosen model best fits the actual data behaviour. To this end, we adapt

the approach.

7.3.1 Simplified approximation scheme

Our observations suggest that many ambiguities seen withintheSi models usually do not

reflect differing underlying physical behaviour, but are issues of detail probably decided

by local noise. Therefore, we will classify the tissue underexamination into one of four

broad behaviours, which we will label and define as:

M0 – negligible enhancement. Referring to the linear fits, thisis S1. Some tissue located

within cortical and trabecular bone, inactive joints, skinand disease unaffected ar-

eas do not absorb Gd-DTPA and are not expected to show intensity enhancement

in the later frames of temporal slices. Where recognised, wewill not colour such

pixels in future representations.

M1 – baseline/wash-in. There is often a proportion of curves inwhich by the end of the

scanning procedure the maximal intensity has not been reached, indicating constant

leakage into locally available extra-cellular space. The Gd-DTPA absorption and

signal intensity vs. time curves enhancement continue after the scanning has been

completed. These are modelsS2 andS5, which we will colour red.

Figure 7.4: An illustration of the model ‘best fit’: pixels, where signal intensity vs. time
curves assumedS1 are plotted in white,S2 in red,S3 in green,S4 in orange,S4 in yellow,
S5 in cyan, andS5 in blue.
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Figure 7.5: Left: Pixels plotted in colours corresponding to the number of approximation
models (S1, S2, S3, S4, S5,andS5) that fit: 1 model – cyan; 2 models – green; 3 models
– red; 4 models – orange. Right: The histogram summarises thefrequencies: number of
models fit per pixel vs. number of pixels.

M2 – baseline/climb/plateau. Full absorption of the Gd-DTPA by the tissues. This isS3,

which we shall colour green.

M3 – baseline/climb/plateau/decline. The wash-out phase is observed at the end of the

scanning procedure. These are modelsS4 andS5 which we shall colour blue.

A recolouring of Figure 7.4 with this scheme is given in Figure 7.6. It is still possible

for more than one model to fit at a given pixel, but this is now distinctly unusual. Fig-

ure 7.8 illustrates this. Thus, simplification of the classification significantly reduces the

number of ambiguities seen within theSi models.

7.3.2 Spatial filtering

The behaviour of̂I need not be considered in isolation. It is reasonable to suppose that

neighbouring tissue will behave in a similar way; but inspection of Figure 7.6 suggests

significant local variability. Arguing that the modelsM1,M2,M3 represent ‘ordered’ be-

haviour, we have passed a selective 3×3 median filter, which is a form of a spatial filter,

over the labels represented by Figure 7.6 (only pixels labelled 1, 2 or 3 are computed in

the median).

The size of the filter will depend on the application and resolution of the images.

Empirically, we found that for our data results obtained with median filter sizes from

3×3 to 7×7 correlate well with human judgements. With the larger size, areas with the

most active synovitis are oversmoothed.
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Figure 7.6: Resulting map of the contrast agent uptake obtained for a sample DCE-MRI
temporal slice of the MCP joints acquired with the high field scanner. The colours in the
image correspond to the models each normalised signal intensity vs. time curve assumed:
M1 -red,M2-green, andM3 -blue. Below are three magnified regions: (1) blood vessel,
(2) inflamed tissue, and (3) skin region.

This results in the relabelling of some pixels – of the order of 20%−30% of those

within the perimeter of the joints’ envelope excluding boneinteriors. We now adopt for

these pixels the best fit of the imposed model.

Since these are no longer in our sense ‘best fits’ we will have incurred different error

residuals – we find that in the majority of cases the model is changed to the second best

as indicated by thep statistic, suggesting that the noise distribution will notbe perturbed

radically.

We have considered the aggregate distribution of such and compared it to the adopted

error model; theKSstatistic allows us to deduce it is indistinguishable from that of the

model to which we are working. Figures 7.6 and 7.7 show an example of this procedure,

and Table 7.1 summarises the effect.

Label Before After
M1 705 (6%) 940 (8%)
M2 4822 (41%) 5762 (49%)
M3 6233 (53%) 5058 (43%)

Table 7.1: Populations of the different labels of Figures 7.6 and 7.7.

This example illustrates that after the filtering the colours show distinguishable clus-

ters. There is a clinical plausibility to these patterns: blue – presence of the wash-out
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Figure 7.7: A median filtering of the preceding image.
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Figure 7.8: Referring to Figure 7.6, the number of approximation models (M0−M3) a
normalised signal intensity vs. time curve satisfies.
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phase, green – plateau, red – continuing wash-in. In particular, it is possible to observe

that the blood vessels and tissues with the most active inflammation are blue, an expected

behaviour.

Some magnifications are also shown in Figures 7.6 and 7.7. They depict blood vessel,

disease affected area and skin. Note that the few green pixels visible inside the blood

vessel in the 1st region in Figure 7.6 have been coloured blue; this identifiesthe vessel.

An affected area has been split into several clusters of blueand green. This experiment

shows that the enhancement is clearly visible, with patterns revealed by the filtering.

Figure 7.9 shows the results obtained for a slice from a different study. Here, sig-

nificant areas become visible in which the intensity has not reached its maximum. This

implies significant incompleteness in any conclusions drawn from the data; the converse

would be true in the absence of any red pixels.

Figure 7.9: Left: An image coloured according to the estimated approximation models
M1−M3. Right: The same image after median filtering.

The median filer in our case is used as a voting mechanism. It isacceptable if there are

only two labels in the neighborhood, but slightly nonsensical if there are more than two

labels. For example, it would not produce an adequate results being applied to following

labelling [1112333]. However, empirically it was found that majority of the pixels within

the tissue of interest are labelledM2. That is why, the results of the filtering are plausible.

For more complex data, a more sensitive filters such as MarkovRandom Field or a rank

filter, would be more suitable.

7.3.3 ComputingME, IRE, and Tonset

Given a presumed model, it is straightforward to extract heuristics ME, IRE andTonset

from the linear approximation rather than from the raw data;Figure 7.10 illustrates this.

Note thatt1 of Figure 7.10 is interpreted as actual time of onset of enhancement, and

there will be differences in these measurements when compared with the moving window

technique. These are discussed in Section 7.4.2.
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Figure 7.10: Estimation of the parametersME, IRE, andTonset for each approximation
model.ME has not been reached forS2 andS5.

7.4 Discussion

7.4.1 Consideration of the noise model

In Section 7.2 we referred to different sources of noise thatwe can measure explicitly:N1

derived from the first 3 time instants,N2 from the bone interiors over all time instants, and

N3 from the background pixels. We argued that distributions ofthese different sources of

noise for our purposes are indistinguishable, and that we can aggregate them.

If we experiment with the models separately, we findN1 (the ‘deviation from the

baseline’ model) to be slightly stricter – more signal intensity curves were approximated

by M0 and therefore heuristics such asIRE andTonset were not defined for thesêI . This

is illustrated in Figure 7.11 where the labellings derived from the noise models (N1, N2,

andN3), are superimposed on the intensity post contrast image. Table 7.2 summarises the

data from these figures.

It is not immediately clear that noise characteristics willremain unchanged during

the procedure. We have considered the noise distribution across allTi ; the KS test sug-

gests that the distribution of these errors is not distinguishable from the model we have

constructed.
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Figure 7.11: Pixels are labelled according to the best fit from Figure 7.1. Noise is esti-
mated fromN1 model (left),N2 model (middle), andN3 model (right). Colour labellings
were derived from the noise models (N1, N2, andN3) and superimposed on the intensity
post contrast image of the MCPJs acquired with the high field scanner. White colour cor-
responds to pixels, whose normalised SI curves were approximated byM0, red - byM1,
green - byM2, and blue – byM3.

Model / Noise model N1 N2 N3 N1∪N2∪N3

M0 1194 (12%) 1152 (12%) 1176 (12%) 1186 (13%)
M1 51 (2%) 42 (1%) 43 (2%) 46 (1%)
M2 5588 (60%) 5584 (60%) 5500 (57%) 5589 (60%)
M3 2459 (26%) 2514 (27%) 2490 (29%) 2515 (26%)

Table 7.2: The relative populations of the different labelsin Figures 7.11. The values
mean the number of pixels.

7.4.2 Visualisation of the heuristicsME and IRE

Parametric maps are generally used to characterise functional anatomy and disease-related

changes [50,180,195]. When the heuristicsME andIRE are computed, a parametric map

is built to reflect the general behaviour of the tissues. Figure 7.12 illustrates a parametric

map ofME. The colour coding here considers the value of a parameter and plots lower

values in red, moving to yellow then white as the values increase. In the parametric maps,

values of the heuristics are normalised by their maximum andcolour coding is performed

on the data from the range [0,1]. The maximum values ofME and IRE are normally

associated with voxels located within blood vessels, therefore the degree of inflammation

of other tissues will be colour coded in respect to the blood vessel enhancement. This, of

course, prevents objective comparison of the data acquiredon different scanners.

Figure 7.13 illustrates a parametric map ofME constructed with different approaches.

The study chosen exhibits significant patient movement, andthe effect of the registra-

tion to compensate for this should be clear. The differencesare further illustrated in the

magnified images shown in Figures 7.14 and 7.15.

According to the opinion of experienced observes and clinical experts, the maps con-

structed with the model-based technique provide sharper shapes of the bone contours,

blood vessels, and reduced skin enhancement. These visual results are explained in Sec-
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Figure 7.12: Parametric map ofME and a colourbar. The lower values of the parameters
are plotted in red, then yellow and white as the values increase. The maximum value of
the parameter corresponds to the blood vessels’ enhancement.

Figure 7.13: A parametric map ofME obtained with the moving-window approach (left
top), with the benefit of a spatial median filter (right top), with the further benefit of the
registration (left bottom), and a parametric map obtained using the model-based method
(right bottom).
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Figure 7.14: Parametric maps ofME obtained with the moving-window (left) and model-
based (right) approaches. The blowups show reduced skin enhancement, changes in be-
haviour inside the blood vessels and bone interiors.

Figure 7.15: Parametric maps ofIRE with the moving-window (left) and model-based
(right) approaches.
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tion 7.4.5

Besides heuristicsME and IRE, clinicians often use a range of parameters derived

from Î signals; examples include ‘time to reach 90% ofME’ [119]. It is clear that with

the approach presented the estimation of such parameters isstraightforward.

In some studies the difference in the parametric maps obtained by different algorithms

is not dramatic, in others it is more significant. Even if we observe a difference in the

number of pixels contributing to the parametric maps, the values of IRE and ME for

the accepted pixels are comparable. However, estimation ofthe heuristics from the ap-

proximations fitted through noise allows minimising the noise influence. Therefore, the

proposed method provides greater confidence in the measurements.

7.4.3 Tonset

Another important measure used to characterise tissue behaviour is the time of onset of

enhancement [119]. This time estimated using the moving-window algorithm (TIRE in

Figure 7.16) corresponds to the instant where the maximum ofthe gradient occurs. This

estimated can be adjusted to the actual time of onset, given an estimate ofIRE, its instant

of occurrence, and an assumption of a baseline of 1. A simple approach is to determine

the straight line intersection illustrated in Figure 7.16.Let us define this time asT ′
onset.

20

1  
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IRE

Î

T
T

onset
’

Î=1

Figure 7.16: DeterminingTonsetgivenTIRE andIRE. Intersection of the maximum gradi-
ent line and a baseline definesT

′
onset. The pointTIRE is estimated as an average within a

moving window of size 5.

The model-based method provides an alternative approach (t1 of Figure 7.1) and we
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have compared these.

Two histograms of the statisticTonset estimated for one of the DCE-MRI slices with

the model-based and improved moving-window approaches areshown in Figure 7.17; the

statistic has only been computed at locations deemed ‘interesting’ in both approaches.

Figure 7.18 shows the distribution of per-pixel differences in these estimates.
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Figure 7.17: Histograms ofTonset estimated with the model-based (left) and modified
moving-window (right) approaches.

The histogram in Figure 7.18 exhibits bias, obtained as a result of per-pixel subtraction

of t1 from T
′
onset. Recalling that the size of the window is 5, the histogram demonstrates

that if the duration of the wash-in is less than 5 time instants then we might expectt1 >

T
′
onset, and if the duration is more than five thent1 < T

′
onset. Figure 7.18 suggests that the

latter case dominates. Examples are shown in Figure 7.19.

In the great majority of cases, when estimates are different, these estimates differ in

magnitude by at most 1 and so there is arguably no difference,but there are still many

cases in which the difference is appreciable (around 20% of locations of interest). On

inspection, it is hard to say which approach generates more clinically plausible interpre-

tation of Î .

An example of this is shown in Figure 7.19 (left); onset of enhancement estimated with

the improved original approachT
′
onset= 7 and with the model-based approacht1 = 6. This

experiment has been performed on 100 randomly selected curves.

In some cases the estimates give the same results, however, in about 20% of cases

the estimate ofTonset provided by the model-based approach is preferable to that of the

moving-window. One such example is shown in Figure 7.19 (right).
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Figure 7.19: Different estimates ofTonset. Left: The model-based approach generates a
more reliable result. Right: The choice of which estimate should be preferred is unclear.

7.4.4 Number of enhancing voxelsNtotal

The correct estimation of a parameter such as the percentageof enhancing voxelsNtotal

is useful for the evaluation of a patient condition (assessment of the extent of RA and

tracking disease progression) more accurately, and potentially estimating the degree of

RA based on quantitative rather than the pain scoring or visual assessment based [174]

measures.

Subtraction of pre- and post-contrast images is often used to compute a number of

enhancing voxels [21, 175, 233, 278]. Areas with synovitis,erosions, and bone oedema

are manually or semi-automatically pre-segmented, and thenumber of enhancing voxels

located within these areas is computed to score the disease progression or response to



Chapter 7 141 Analysis of DCE-MRI data

treatment. With the moving-window approach this judgementhas been made via criteria

such as requiringME > 1.2 andTonset< 60s [195].

Our method permits an improved measure: we label as ‘non-enhancing’ any voxel

which assumes the labelM0. Further, we are able to identify tissues that did not absorb

enough Gd-DTPA to exhibit maximum enhancement.

Table 7.3 shows the number of enhancing pixels (Ntotal) normalised to the total number

of pixels processed in the temporal slice (that is, pixels within the joints’ interior) for a

random selection of DCE-MRI studies acquired with the high and low field scanners.

Due to the minimised artefactual enhancement, there is a clear qualitative difference in

these numbers. Figure 7.24 illustrates the results obtained on several slices with these

approaches.

Study Model-based approach Moving-window approach
High-field data
1 0.58 (22%) 0.68
2 0.59 (6%) 0.63
3 0.42 (10%) 0.51
4 0.39 (13%) 0.57
5 0.39 (2%) 0.57
Low-field data
1 0.68 (3%) 0.97
2 0.57 (6%) 0.86
3 0.32 (1%) 0.89
4 0.42 (4%) 0.97
5 (healthy control) 0.1 (10%) 0.98

Table 7.3: The number of enhancing voxels estimated with themoving-window and
model-based approaches. In the second column, we include the percentage of pixels
corresponding to locations where we observe continuous Gd-DTPA absorption.

7.4.5 Codings of the Gd-DTPA take-up and parametric maps ofME

and IRE

We are further able to map the Gd-DTPA take-up by plotting theadoption of models

M1 −M3. Blood vessels usually assumeM3, indicating (as expected) presence of the

wash-out phase. Most signal intensity vs. time curves corresponding to the disease-

affected tissues normally assign modelsM2 orM3, indicating a plateau of intensity and full

absorption of the Gd-DTPA. However, some require the modelM1, suggesting a wash-in

phase continues after the procedure has been completed.
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Figure 7.20 illustrates this for different studies; a predominance of red indicates the

procedure is incomplete. Information of this nature may clearly be of use in tuning the

procedure.

Figure 7.20: Gd-DTPA take-up maps: highly perfused tissuesand blood vessels are usu-
ally modelled byM3 (blue), inflamed tissues byM2 (green), tissues where procedure is
incomplete byM1 (red).

Figures 7.21 and 7.22 show parametric maps forME, IRE and Gd-DTPA uptake

built for a DCE-MRI study of the MCPJs using the model-based and moving-window

approaches.

We note that:

• The model-based technique permits the accurate separationof non-enhancing bone

marrow and fat, muscle, which assumes low-intermediate enhancement, and syn-

ovitis, which normally assumes high-intermediate for active RA patients.

• Before images were aligned, voxels located in the skin area were composed of a

mixture of the tissues (dermis and epidermis), and exhibited intermediate enhance-

ment. When the skin layers were aligned with the registration approach, only pixels

within the epidermis remained enhanced. This has reduced the overall width of the

skin enhancement.

• With the moving-window algorithm ‘interesting’ voxels arethose, whereME > 1.2

andTonset< 8.5. Often, heuristics estimated for signal intensity vs. time curves

located within the blood vessels did not satisfy this approach, and the corresponding

pixels were eliminated. With the model-based technique only pixels whosêI curves

assumedM0 were excluded. These pixels never appear within the blood vessels.

Therefore, blood vessels partially ignored in the maps obtained with the moving-

window method are in evidence with the model-based technique.

• Parametric maps obtained with the proposed method are less corrupted by noise
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Figure 7.21: A dynamic frame from a temporal slice with a small amount of motion
analysed with the moving-window and model-based approaches. Top row: Post-contrast
image, parametric maps ofME and IRE obtained with the moving-window approach.
Bottom row: Gd-DTPA take-up map, parametric maps ofME andIRE obtained with the
model-based approach.

Figure 7.22: A dynamic frame from a temporal slice with a significant motion analysed
with the moving-window and model-based approaches. Top row: Post-contrast image,
parametric maps ofME and IRE obtained with the moving-window approach; Bottom
row: Gd-DTPA take-up map, parametric maps ofME andIRE obtained with the model-
based approach.
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Figure 7.23: Parametric maps ofME (top) and Gd-DTPA uptake (bottom) for datasets
acquired with the low-field scanner. Left: Patient with active RA, SE sequence. Middle:
Patient with active RA, GRE sequence. Right: Healthy control, GRE sequence.

and provide a clearer visualisation of the bone contours, blood vessels, and disease-

affected areas.

• We are able to detect areas of subtle and sparse enhancement (Figure 7.23) which

are very difficult to locate by viewing images one by one or even with the subtrac-

tion method. These areas are of particular interest for the assessment of RA in wrist

studies. Figure 7.23 illustrates maps ofME and Gd-DTPA take-up constructed with

the model-based method for DCE-MRI data of the wrist joint acquired by the low

field scanner.

The data obtained from the low-field scanner was also processed with the moving-

window technique. We experimented with windows of different size – a larger size win-

dow (> 5) smoothes out the details of the signal intensity vs. time curves and does not

allow for the efficient differentiation of tissues. Figure 7.24 illustrates the parametric

maps constructed with the moving window (top) and model-based (bottom) techniques.

The joints were segmented automatically before the algorithms have been applied. Fig-

ure 7.25 shows parametric maps ofME when no segmentation was applied.

In the parametric map constructed with the moving-window technique pixels located

within the marker and bone interiors were colour-coded, implying response to the Gd-

DTPA. In the corresponding map obtained with the model-based approach no pixels

within the bones or marker were coloured as they assumed model M0.
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Figure 7.24: Top: Parametric maps ofME and IRE obtained with the moving-window
technique (window size 5×5). Bottom: Corresponding results obtained with the model-
based technique.

Figure 7.25: Parametric maps ofME obtained with the moving-window technique (left)
and the model-based (right) techniques. The joints’ contour was not segmented.
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7.5 Results

This section presents the experimental results that confirmthe reliability of the model-

based approach for RA assessment, and illustrate the benefits of such analysis for evalua-

tion of the disease progression2.

Healthy controls. One of the datasets was acquired from a subject with no RA, butsuf-

fered from occult wrist pain – possibly due to a ganglion in the wrist joint, that was

not found in the post contrast sequences [50]. Pre-, post-contrast images and para-

metric map ofME and Gd-DTPA take-up constructed for this subject are shown in

Figure 7.26.

Figure 7.26: Pre-, post-contrast images and parametric maps ofME and Gd-DTPA uptake
for patient with no diagnosis of RA.

Disease assessment in the healthy controls is problematic.It is challenging to dif-

ferentiate RA patients from those who suffer from wrist painbut are not affected by

the disease.

Currently, this analysis is performed with a ROI based method. Usually the posi-

tion of the ROI is chosen at the patient’s suggestion or presumptively based on the

anatomical landmarks [50]. The ROI covers the area where thepatient feels pain the

most. Such evaluation might result in erroneous diagnosis if the ROI is misplaced.

The proposed technique eliminated the problem with ROI placement and allows

objective assessment of such patients. Medical experts from Frederiksberg hos-

pital performed a visual inspection of the results illustrated in Figure 7.26. They

concluded that the maps clearly show that the patient does not have inflammatory

arthritis, however exhibits some tissue reaction on the contrast agent. Quantitatively

for this patient we found thatNtotal = 0.06,ME is on average 1.3 with the maximum

at 2.4.
2The observers viewed images with prior knowledge of which method was used to generate them (i.e.

not a blind study).
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The condition of this patient was also evaluated using ultrasound with a Doppler

technique; experiments were performed by specialists fromthe Parker Institute,

Denmark. The results obtained with the model-based technique correspond to the

US evaluation, which showed mild colour Doppler activity inthe wrist leading to

the conclusion that the patient suffered from a mild unspecific irritation of the wrist.

Parameters for RA patients and healthy controls.Figure 7.27 illustratesME andNtotal

estimated for 33 subjects with active RA (129 temporal slices) and 4 controls (12

temporal slices). The maximum enhancement in healthy controls is always below

20%, with the total number of enhancing pixelsNtotal less than 5%. The enhanc-

ing pixels are located sparsely in the skin and blood vessels. On average in slices

corresponding to the patients with active RAME is between 2.5 and 4 with the

maximum reaching 14, andNtotal is between 0.3 and 0.4, depending on the degree

of inflammation. This could provide a good metric for identifying healthy controls

and measuring disease progress of RA patients.
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Figure 7.27: Box-and-whisker plot ofME (left) andNtotal (right) for patients with active
RA and healthy controls; N – is a number of patients.

Assessment of data from follow-up examinations.We have analysed several datasets

acquired in follow-up examinations. The first patient was scanned 2 times in the

axial plane after the injection of the intra-articular glucocorticoid. Figure 7.28 il-

lustrates parametric maps.

Parametric maps in Figure 7.28 suggest a diminished perfusion in the visible pan-

nus3 and clear improvement of the patient’s condition. This is anexpected treat-

ment effect. The experts also confirmed that this information is not available with

the conventional images after Gd-DTPA contrast, where the patient had high and

unchanged synovitis at the follow-up.

3Pannus is a medical term for a hanging flap of tissue. Pannus consists of skin and fat. In people
suffering from rheumatoid arthritis, pannus tissue eventually forms in the joint affected by the disease,
causing loss of bone and cartilage. [260]
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Figure 7.28: Parametric map ofME and Gd-uptake constructed for RA patient in the first
(left) and last (right) examinations. The patient has shownimprovement.

Another patient was re-scanned in the coronal direction three times after injection

of a steroid. He had had short clinical relief, but got worse afew days after each

injection with pain and discomfort in the wrist. This information is reflected by

the parametric maps shown in Figure 7.29. The first image was acquired at the

first examination, second – after the injection of a steroid and illustrates minor

improvements. After a short period, this patient got worse,and the image on the

right illustrates this.

7.6 Conclusion

Quantitative analysis of contrast enhanced dynamic MRI datasets involved in monitoring

and assessment of RA has been discussed. We presented a technique that allows extraction

of various parameters such asME, IRE, andTonset, which are essential for the assessment

of the data acquired from patients with rheumatoid arthritis.

These heuristics are derived from linear approximations rather than from raw signal

intensity curves, making their estimation robust to the subjective opinion of the operator

and noise effects. The choice of the ‘best’ model for each curve allows for accurate

tissue classification. Voxel-by-voxel analysis eliminated a need for ROI placement and

a choice of an optimal moving-window size, which makes the results fully automated,
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Figure 7.29: Parametric maps constructed for a patient re-scanned 3 times after the in-
jection of a steroid. The first image was acquired at the first examination, second – after
the injection of a steroid and illustrates minor improvements. After a short period, this
patient got worse, and the image on the right illustrates this.

easily reproducible and objective.

This approach to the extraction of the heuristics and parametric maps permits eas-

ier visual assessment of the degree of inflammation in RA patients, which allow for a

more accurate analysis of the extent of the disease and differentiation of various tissues.

Moreover, indications of Gd-DTPA take-up, hitherto unavailable, provide improved iden-

tification of tissue behaviour according to its temporal pattern of the contrast agent uptake.

Among the randomly chosen patient cohort in this pilot study, parametric maps ofME

andIRE constructed for healthy and RA patients are noticeably different, corresponding

to our expectations and clinical judgments provided by the experienced observers and

radiologists. The results demonstrate that the model-based technique is sensitive and may

be useful in the diagnosis and follow-up examinations of thepatients who are receiving

disease-controlling treatment.

The method provides a numeric evaluation upon which clinical and research decisions

can confidently be made. The possibility of the evaluation ofthe data acquired from the

low-field MRI scanners further extends the usability of the method as such scanners are

more patient friendly [214] and cost efficient compared to the high-field machines.
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Blood vessel segmentation

The assessment of disease progression or patient response to treatment can be done via

constructing parametric maps and computing the number of enhancing pixels within a

certain threshold of values of the parametersME andIRE. In terms of these parameters

behaviour of the blood vessels corresponding to the veins isvery similar to the behaviour

of the inflamed synovium: normalised signal intensity vs. time curves exhibit significant

intensity change, assume modelM2 or M3 and high values ofME andIRE. This might

complicate objective and visual assessment of the data. In this chapter we will discuss

an algorithm for the detection of the blood vessels in DCE-MRI data of the MCP joints

acquired with the high field scanner.

8.1 Segmentation algorithm

The tissues within the joints’ envelope will be classified into vessel / non-vessel with a

three-stage, coarse-to-fine approach.

• Firstly, the shape of the normalised signal intensity vs. time curves is analysed by

principal components analysis (PCA) applied to temporal slices. The behaviour

of the normalised signal intensity curves extracted from pixels located within the

blood vessels and synovium is similar at the baseline, wash-in, and plateau phases.

At the wash-out phase, their behaviour starts to diverge: the vessels are expected to

leak out the contrast agent earlier. However, due to the short duration of this phase,

150
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not all pixels within the blood vessels exhibit a wash-out. Therefore, classification

of the tissues based on the signal intensity vs. time curve behaviour during the

wash-out is imperfect.

• Subsequently, these results were refined using more specificparameters such asME

andIRE.

• In the last stage, the spatial relationship between the pixels located within the ves-

sels were considered through probabilistic modelling.

8.1.1 Principal component analysis

Firstly, to assess a pattern of behaviour in the signal intensity vs. time curves, we applied

PCA to 20 temporal slices randomly chosen from 10 DCE-MRI datasets of the MCP

joints. Pixels at which the normalised signal intensity vs.time curves assumedM0 and

M1 were excluded. Figure 8.1 illustrates the mean and principal components from this

data sample.
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Figure 8.1: The mean (in bold), the mean± 2 standard deviations of the first principal
components (left), and the mean±2 standard deviations of the second principal compo-
nent (right). The mean + component is shown in red; the mean - component – in green.

The first two components capture 97% of the information present in the data. The

shape of the temporal course of the first component corresponds to the behaviour of the

inflamed tissues, and the second to the blood vessels.

Secondly, we manually outlined synovial tissue and blood vessels in these 20 DCE-

MRI slices. Figure 8.2 illustrates the mean and the mean± two first principal components,

estimated for pixels located within the perfused tissues (left) and the blood vessels (right).

Figures 8.2 illustrates that the mean± 2 principal components(standard deviations)

corresponding to the blood vessels exhibits a clear wash-out, and the mean± 2 principal

components corresponding to the synovial tissues might exhibit an intensity plateau and

slight intensity increase. This behaviour is consistent and reflects presence of the wash-

out phase in the blood vessels.
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Figure 8.2: The mean± 2 standard deviation of the first (in red) and second (in black)
principal components estimated for the inflamed synovial tissue (left) and blood vessels
(right). The mean + component is shown in solid line.

Using this result we attempt to discriminate between the vessels and synovial tissue.

Let µ andv1 denote the mean and the first principal component estimated for the blood

vessels, andη andw1 the mean and the first principal component estimated for the syn-

ovial tissue outlined in a 10 slice data sample. Thus, the following two models can be

tried:

φ = µ +αv1

ϕ = η +βw1

whereα andβ are multipliers for the principal components;φ describes behaviour typical

for the blood vessels andϕ for the synovial tissue.

All signal intensity vs. time curves in a sample temporal slice were projected onφ
andϕ to calculateα andβ . This reflects the correlation between the model and a curve.

Figure 8.3 illustrates a samplêI curve (in black) derived from a blood vessel (left) and a

synovial tissue (right) projected onφ (red) andϕ (blue).

Using these PCA descriptors eachÎ curve can be assigned a provisional vessel / non-

vessel label: if for aÎ curve α < β , then the corresponding pixel is assigned a label

‘vessel’, otherwise, whenβ > α, ‘non-vessel’. Figure 8.4 illustrates the results obtained

for a sample DCE-MRI slice. Euclidian distance based comparison is valid as eigenvalues

are similar (i.e. two sets have approximately the same variance).

At this stage, approximately 50% of pixels were classified correctly. The algorithm

did not deliver false negative results; all errors were false positive. This result suggests
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Figure 8.3: SamplêI curves (in black) derived from a blood vessel (left) and synovial
tissue (right) projected onφ (red) andϕ (blue).

Figure 8.4: Left: A post-contrast image from a sample DCE-MRI slice with enhancing
pixels shown in red. Right: The same image after classification with PCA: pixels classi-
fied as vessels are shown in red.

that PCA can only crudely classify the tissues; it fails to separate synovial tissue from the

blood vessels, however isolates tissues with a high vascularity from the rest of the tissues

present in the joints.

We will proceed by analysing the behaviour of the signal intensity curves correspond-

ing to the pixels labelled as vessels at this stage.

8.1.2 Spatial relationship

Empirically, it was found that distributions of the heuristics ME and IRE on the pixels

classified with PCA as vessels are and Gaussian1. Figure 8.5 illustrates distribution of

ME andIRE derived for a sample DCE-MRI slice.

The measureTonset was less informative. The wash-in phase in the vessels that en-

hance as the result of the inflow effect starts early (less than 4 time instants); the wash-in

1Kolmogorov-Smirnov statistical test of goodness of fit confirmed this observation. The GMM was first
fit, then KS done on each Gaussian
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Figure 8.5: Histograms ofME and IRE for a sample DCE-MRI temporal slice of the
MCP joints acquired with the high-field scanner.

of the vessels enhancing in response to the contrast agent starts at about 3rd-5th time in-

stant. There are no strict constraints on when the wash-in can be expected in the synovial

tissues. Therefore, we used only three parameters< ME, IRE,M > to describe behaviour

of signal intensity vs. time curves.

We fit a mixture model of two 3 dimensional Gaussian functionsto the data with the

expectation maximisation algorithm (EM) and label the two components as vessel / non-

vessel based on the assumption that the mixture, in which allcomponents of the mean

are higher represents a vessel. Unsupervised EM algorithm was chosen over a supervised

approach due to the data variability.

We define the set of parameters for each pixel of a dynamic frame in a temporal slice

asX = {xi , i = 1...N} whereN is the number of pixels. A corresponding field of labels

L = {l i , i = 1...N} is defined, wherel i ∈ {λ1,λ2} denotes a pixel as vessel/non-vessel.

The task is to find the assignment of labels to each pixel whichmaximises the probability

of the observed parameters. Assuming independence betweenpixels, we can write this

probability as:

p(X|L) = ∏
i

p(xi |l i,θ)t(l i), (8.1)

wheret represents a prior on the proportion of each class within thedata, andp(xi|l i ,θ)

the conditional probability distribution of the parameters< ME, IRE,M > given the label

(and model).

Given the independence assumption made, the assignment of labels maximizing the
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probability can be found separately for each pixel:

l∗i (xi) = argmax
l i

p(xi|l i,θ)t(l i) (8.2)

The noise present in the data and imprecision in the model we used leave some error

(evaluated in Figure 8.8). Therefore, we exploit the fact that the blood vessels have non-

negligible spatial support by assuming that neighbouring voxels are likely to have the

same label in the absence of significant differences in the grey level between them.

8.1.3 Final steps

Markov random field (MRF) [84] based filtering allows refinement of our initial assign-

ment of labels toL. We define a set of cliquesC which represents the connections between

pixels in the image (considered as nodes on a graph). We have adopted an 8-connected

neighbourhood such that the cliques contain all pairs of pixels which are neighbouring

on the 8 compass points (north, north-east, etc.). Note thatthe cliques are unordered, for

example north/south relationships are considered identical.

The energy function, which is a mechanism for modelling contextual information, is

described by Equation 8.3, where we omitted dependence on the fixed parametersθ for

the sake of clarity.

E = −
N

∑
i=1

logp(xi |l i)+α ∑
<i, j>∈C

Ψ( fi , f j , l i, l j) (8.3)

α ≥ 0 controls the relative importance of the terms. Based on theempirical observations,

α was set to 1, giving equal weight to both terms,Ψ is defined as the following, wheref

is a pixel intensity in the post-contrast image,|C| is the number of cliques:

Ψ =







0 l i = l j

1−e−
| fi− f j |2

2σ2 , σ =
√

1
|C| | fi − f j |2 l i 6= l j

(8.4)

For an input set of pixelsP and a set of labelsL, the goal is to find a labelling or a

mapping fromP to L which minimises the energy function. This assignment of thelabels

to the pixels was found with the mincut-maxflow algorithm, which is known to give the

global minimum [29,239].

We can refine region boundaries using the adaptive segmentation based algorithm

discussed in Chapter 5. An example of a blood vessel’s boundary is shown in Figure 8.6,
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Figure 8.6: Left: A boundary of a blood vessel refined with an adaptive segmentation
technique; the position of the initial boundary is shown in black and the final boundary in
red. Right: Contour of the red boundary shown on the left.

where the initial boundary is shown in black and the final boundary in red. The method

works, but is not necessary given the MRF output.

Figure 8.7 illustrates results of the algorithm on several slices, where blood vessels

are outlined in the parametric map ofME.

Figure 8.7: Top: Parametric maps ofME corresponding to DCE-MRI slices with seg-
mented blood vessels (the contour is shown in blue). Bottom:Corresponding post-
contrast images.

8.2 Experiments and discussion

PCA classification As the first step of the algorithm, we attempted to analyse thepattern

of behaviour in the blood vessels and perfused tissue using PCA. Figure 8.4 illus-

trates the results of PCA based classification on a sample DCE-MRI slice; pixels

classified as vessels are shown in red.

Our experiments demonstrate that PCA fails to segment out the blood vessels, how-

ever, it separates severely affected tissue and blood vessels from the rest of the tissue

in the joints.
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We performed PCA-based classification on 60 DCE-MRI slices of the MCP joints.

The results show that approximately 30% of the total number of pixels within the

joints’ interior without bones are identified as vessels, 50− 60% of these pixels

classified correctly.

Numerical evaluation of the pixel reduction is given in Table D in Appendix D.

Figure 8.12 illustrates the percentage of the pixels that correspond to the vessels in

respect to the total number of pixels.

EM based classificationWe applied the EM algorithm to the pixels classified as vessels

with PCA. Each such pixel was labelledl1/l2 based on the value of the heuristics

{ME, IRE} and a model numberM. We evaluate performance of the EM algorithm

with a different number and combination of the initial parameters using Receiving

Operating Curves (ROC) space2.

Five DCE-MRI studies (30 slices) with manually segmented blood vessels were

used in this experiment. The true positive rate was computedas the ratio between

the true positive pixels and a total number of pixels within the blood vessels, and the

false positive rate as the ratio between the false positive pixels and a total number

of true non blood vessel pixels.

The heuristicsME andIRE and model numberM computed for a DCE-MRI slice

were normalised to be zero-mean and unit variance. Figure 8.8 illustrates the per-

formance of the best classifiers, where the true positive rate is the sensitivity and

the false positive rate is equivalent to one minus specificity.

Clearly, the number and combination of the initial parameters influence perfor-

mance of the algorithm. In order to choose the best classifierthe area under the

ROC curve [261] was computed. Before we compute the area under the curve, the

convex hull was formed. Using the convex hull approach mighthave changed the

results. However, the difference in the classifiers’ performance is significant, and

therefore influence of the convex hall was not dramatic. The classifier with the

{ME, IRE,M} set of parameters delivered the best results. Figure 8.9 illustrates

performance of this classifier on 6 post-contrast images.

Pixels identified as false positive normally appear in the disease affected areas and

their heuristics are very similar to those of blood vessels.Pixels identified as false

2In a ROC curve the true positive rate (Sensitivity) is plotted in function of the false positive rate (100-
Specificity) for different cut-off points. Each point on theROC plot represents a sensitivity/specificity pair.
A test with perfect discrimination (no overlap in the two distributions) has a ROC plot that passes through
the upper left corner (100% sensitivity, 100% specificity).Therefore the closer the ROC plot is to the upper
left corner, the higher the overall accuracy of the test.
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Figure 8.8: ROC curves for EM classifiers with different combination of the measures.

negative normally surround blood vessels and their exclusion / inclusion might be

due to observer’s mis-detection. Figure 8.10 illustrates false positive and false neg-

ative pixels for one of the DCE-MRI slices.

8.2.1 Blood vessel detection

In this section we evaluate performance of the segmentationalgorithm on 60 DCE-MRI

slices of the MCP joints. Firstly, the ability of the algorithm to detect vessels in tempo-

ral slices will be assessed, then we will compare automatically segmented and manually

outlined blood vessels using the mutual overlap based metric.

The number of the blood vessels per slice varies from 8 to 17. Table 8.1 illustrates a

number of automatically vs. manually detected blood vessels.

Table 8.1: Detection of the blood vessels in temporal slices[Number of blood vessels
delivered by the algorithm / Total number of vessel in a temporal slice];S– scan number;
P – patient number.

P/ S P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

S1 9/9 14/14 16/16 14/14 9/9 12/12 12/12 12/12 10/10 17/17
S2 9/9 11/11 14/15 12/13 11/13 9/10 12/13 10/10 9/9 14/16
S3 9/9 11/12 17/17 14/14 12/12 11/11 11/12 8/9 8/10 14/15
S4 8/9 13/13 16/17 12/14 9/10 12/13 10/12 6/8 12/12 15/15
S5 8/8 10/11 17/17 15/15 11/11 12/12 13/13 10/10 12/13 15/15
S6 9/9 12/12 16/17 16/16 11/11 10/10 13/13 12/12 12/12 16/16
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Figure 8.9: Six post-contrast images from different DCE-MRI slices; pixels classified as
vessels are shown in red.

In our experiments, the algorithm did not deliver false positive results; thus, no post-

processing to remove over-segmented regions is needed. However, some blood vessels

of small size (area less than 5 pixels) were not detected. Thelocation of these under-

segmented vessels can be recovered when a 3D vessel tree is reconstructed. To illustrate

the approximate location of the vessels we applied an interpolation technique [137] on the

vessels’ location. Figure 8.11 illustrates the result.

The quality of the automatically segmented vessels was compared with manually out-

lined regions on each step of the algorithm (PCA, PCA+EM, PCA+EM+MRF); for the

60 temporal slices we computed a number of pixels within the vessels in respect to the

overall number of detected pixels. Figure 8.12 illustratesthe results.

There is an incremental increase in segmentation quality: after PCA based classifica-

tion about 50% of pixels were classified correctly; EM refinesthis result to 70% of the

detected pixels representing vessels. MRF filtering increases this to 90%.

This experiment illustrates that the proposed strategy generates promising results. On

average the algorithm detects 92% of vessels in dynamic MRI slices of the MCPJs, with
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Figure 8.10: False negative in red (left) and false positivein blue (right) pixels detected
with the EM classifier.

Figure 8.11: Left: Location of the blood vessels in a sample DCE-MRI study. Right:
Depiction of the vessel tree and bone interiors (3D view).

mutual overlap between GT and obtained segmentations exceeding 90%.

8.3 Conclusion

The algorithm presented in this chapter allows for accuratesegmentation of the blood

vessels from DCE-MRI datasets of the hand joints acquired with high-field scanner. The

algorithm has not been applied to the data acquired with the low-field scanner, as the

blood vessels are not visible in these images.

We demonstrated how a combination of approaches motivated by the physiological

properties of the individual tissues, such as speed of absorption and concentration of a

contrast agent, can be employed to describe the behaviour ofthe vessels and synovitis.

MRF-based filtering incorporating prior information aboutthe smoothness and the

data term, describing intensities of the pixels in post-contrast images, was used to exploit

the fact that the pixels located within the blood vessels areunlikely to have significant

differences in the grey level. It allowed us to remove ambiguities due to low contrast and

partial volume effects, which significantly improved the segmentation quality.

In our application the number and shape of vessels vary significantly within the study,

and the vessel segmentation problem was solved on a slice-by-slice basis, rather than in

3D space. However, for an application where the slice thickness is smaller, the extension

of the algorithm would be straightforward. Future work should focus on testing of the

method on datasets acquired from different joints, extending the approach to perform on

3D images, and investigation of the algorithm’s performance when other heuristics are
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Figure 8.12: A number of pixels within the vessels in respectto the total number of
detected pixels at different steps of the algorithm: PCA / PCA+EM / PCA+EM+MRF.

included.
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Conclusions

9.1 Summary of work

Magnetic resonance was first applied in regard to biologicaltissue assessment in the late

1970s, however its recognition as a clinical imaging modality occurred only in the late

1980s. It is still a developing technology, moving from the manual qualitative to fully

automated quantitative analysis of tissue conditions.

With constantly evolving hardware and the increasing use ofMRI in clinical applica-

tions, there is a high demand for efficient and robust image reconstruction and analysis

algorithms. The use of quantitative measurement techniques that can represent informa-

tion about the tissue in numerical rather than subjective terms increases [181].

The current trend is towards developing fully automated strategies that will be in-

dependent of a particular machine, magnetic field strength,pulse sequence or operator.

The results obtained with such methods are potentially morereproducible because effects

related to particular MR machines and parameters have been removed.

MR already plays an important role in diagnostic imaging such as monitoring disease

progression, assessment of the patient’s response to treatment, and treatment selection.

DCE-MRI has recently become a promising modality for RA diagnosis, with the main

thrust being the detection of the disease at an early stage, when disease-modifying drugs

can be used. Early diagnosis of rheumatoid arthritis and early, aggressive treatment can

help prevent joint damage and deformity, which ultimately means for a patient the differ-

ence between a relatively normal life style and a disability. Data acquired in the presence

of the contrast agent, especially by low field MRI scanners, is often corrupted by noise

due to patient motion or hardware instability. The poor quality of the data slows down its

reading, moreover, might influence diagnostic decisions.

Existing DCE-MRI data analysis approaches, as outlined in Chapter 2, include no pre-

162
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processing techniques that can contribute to data fidelity and may produce highly subjec-

tive results. For example, the nave manual viewing method, where the interpretation of the

data is performed by an experienced radiologist who analyses the MR intensity images,

obtained as a result of a baseline image subtraction from thepost-contrast data [72, 250],

is time-consuming and highly subjective. The inter-observer errors associated with this

method can reach 20% [50].

Results produced by semi-automated methods such as the region-of-interest approach

[50] depend highly on the position and size of ROI. Inaccurate ROI placement may result

in a 20-30% error [162].

Recently, voxel-by-voxel analysis of DCE-MRI data gained attention from both re-

searchers and medical doctors. Pharmacokinetic methods [31, 134, 245] and heuristic

approaches [195], which consider the statistics related tothe intensity change in DCE-

MRI datasets, have been demonstrated to provide sufficient information for discerning

different types of tissue. These methods focus on evaluating the temporal component

of DCE-MRI data as given by intensity vs. time course changesof the individual voxels,

enabling physicians to analyse tissue condition based on its response to the contrast agent.

Currently, in clinical practise it is impossible to assess the accuracy with which phar-

macokinetic variables reflect the true underlying changes in concentration of the contrast

agent [119]. The accuracy of the estimates will depend on thepharmacokinetic model

used and the signal to noise ratio in any individual case. This is a particular problem with

applications where noise is the dominant, or only, cause of variation of contrast agent

concentration [119].

Furthermore, both pharmacokinetic and heuristic approaches assume that the intensity

change at each voxel can be attributed to the contrast leakage. However, patient movement

can introduce artefactual enhancement with implications on the extracted measurements.

Nevertheless, voxel-by-voxel analysis based methods represent a more reliable alternative

to the contemporary naı̈ve data reading, and might become widely accepted in the future.

The aim of this thesis was to develop automatic techniques for the analysis of dynamic

contrast-enhanced magnetic resonance imaging data involved in rheumatoid arthritis stud-

ies of the hand and wrist joints. The framework of the algorithms presented here permits

the enhancement of data quality as well as its objective analysis. The essential motivation

behind this work has been its acceptance in everyday clinical environments.

Unlike previous work, the approach for DCE-MRI data analysis presented here em-

ploys efficient segmentation and registration algorithms that compensate for patient move-

ment and contribute to data fidelity, and a modelling technique that permits the objective

and robust computation of heuristics describing the shape of the signal intensity curves.
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In this work we did not seek to duplicate or improve the pharmacokinetic methods,

but instead presented an efficient approach that allows the enhancement or substitution of

widely used methods such as naı̈ve viewing and ROI based method. A comparison of the

results produced by our approach and the established pharmacokinetic methods would be

beneficial, and future work should venture in that direction.

Our approach to data analysis permits the automated assessment of the disease pro-

gression and patient response to the treatment. Such analysis is largely user independent

and time efficient. The methods are designed to deliver objective and reproducible re-

sults. Each algorithm introduced in this work supports radiologists at certain steps in the

DCE-MRI data analysis.

Registration compensates for the problems associated with subject motion during the

imaging and, therefore, validates the assumption that eachvoxel within DCE-MRI

slices represents a particular tissue type. In the presenceof contrast/brightness

changes, the artefacts associated with the motion have beensuccessfully eliminated

with the 3D registration algorithm enhanced with theW-transformation.

Registration algorithm has been applied to datasets acquired with low- and high-

field scanners and demonstrated promising results.

Segmentation algorithms were designed to locate the tissues of interest within the joints’

envelope and to exclude the bone interiors and blood vesselsfrom analysis of DCE-

MRI data of the MCPJs. This permits more efficient data processing and objective

evaluation and interpretation of the parametric maps.

Segmentation of joints envelopes was performed on the datasets acquired with low-

and high-field scanners. Bone interiors and blood vessels were segmented in 2D

images acquired by the high-field scanner; these algorithmshave not been tried on

the data acquired with the low-field scanner.

Quantitative analysis has the capability to objectively evaluate a patient’s condition and

to track the disease progression. Furthermore, we proposeda robust scheme for

tissue behaviour classification, which is based on the tissues’ temporal pattern of

contrast agent uptake. Such analysis might be useful for guiding data acquisition

and the contrast agent dose estimation.

This approach has been demonstrated on datasets acquired bylow- and high-field

scanners.

The outcome of each algorithm was carefully evaluated by quantitative techniques, de-

veloped as part of this thesis, as well as detailed discussion of its visual presentation with
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experienced observers and radiologists1. This evaluation has shown to be of particular

importance, because it is often difficult or even impossibleto acquire definite reference

labels which perfectly reflect the biological truth.

According to clinical experts the automated analysis allows the depiction of different

disease activity in separate compartments of the joints; itdelivers more differentiated

and comprehensive information to the reader regarding the areas with the most active

perfusion, and might have a positive impact on RA studies’ timelines, cost, and success.

9.2 Discussion and algorithm improvements

The work described in this thesis could be extended in a number of ways. There are obvi-

ous enhancements that could improve the computational efficiency of the algorithms, such

as re-implementing the methods using more efficient programming languages and opti-

misation techniques. This section discusses assumptions and limitations of the presented

algorithms, and possible improvements to them.

Image registration As discussed in Chapter 4 the main component of the motion in

DCE-MRI data acquired from RA patients is physical tremor associated with the

instability of a patient’s hand. The anatomy of the tissues does not change signif-

icantly in the images acquired within a short time period. Our experiments with

the parameterλ , responsible for the regularisation of the geometric / intensity and

smoothness terms in the registration algorithm presented in Chapter 4, indicate that

the influence of the smoothness term is not significant.

The experiments presented here were only performed with thedata acquired from

the same patient, therefore the registration could have been accomplished with a

rigid approach accompanied by a method for the intensity change equalisation in

pre- and post-contrast images.

The registration algorithm used as the basis for the approach discussed in Chapter 4

has been shown to perform on inter-patient data [184]. Therefore, one of the pos-

sible extensions of the registration approach is its testing and possible adjustment

to for performance on datasets acquired in the follow-up examinations, where the

anatomy of the soft tissue such as synovium changes dramatically.

1Results were viewed by medical experts from the Parker Institute, Copenhagen, Denmark and Clin-
ica Reumatologica, Genoa, Italy, and experienced observesfrom the Academic Unit of Medical Physics,
University of Leeds, Leeds General Infirmary, Leeds, UK.
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Image segmentationThe algorithms for background, bone, and blood vessels segmenta-

tion were specifically designed for this application. Each of the algorithms was de-

veloped independently. Currently, each image within a temporal slice is segmented

in 2D space, then a 3D structure of the anatomy is formed usingthe interpolation

method [137].

The current trend in medical image segmentation is towards the generalisation of

segmentation approaches. Potentially, the MCPJs tissue segmentation task can be

reformulated in terms of the texture modelling [40] or levelsets [172].

These methods do not depend on the geometry or position of thetissue of interest,

and allow simultaneous segmentation of the tissues within the joints, which should

shorten the processing time and permit detecting the edge ofthe anatomy more

precisely.

Alternatively, given a larger number of samples, the problem of bone and blood

vessel segmentation could have been solved using active shape models [53]. Recent

publications demonstrate the applicability of the ASM to recover various topologies

[142] and discuss how initialisation and optimisation problems can be overcome

[54].

Evaluation In this thesis we often used both supervised metrics: the newone and mutual-

overlap based. We have compared behaviour of the metrics andfound that the pro-

posed approach generates more reliable results. However, currently, mutual overlap

metric is widely accepted and therefore, majority of the authors report their results

using this metric. Thus, in order to algorithms developed against the ones published

in the literature, mutual-overlap based approach was used.

It was demonstrated that unsupervised approaches that incorporate a number of

stand alone measures via SVM [45] and Bayesian classifiers [275] have shown very

promising performance. However, the metrics [45] and [275]have never been tested

on MR data; on the other hand, the family of unsupervised metrics proposed here

performed well on such datasets. Therefore, unification of these approaches could

be the next step in unsupervised evaluation.

Quantitative analysis Here we have presented results obtained on a limited pilot study

of images. The data have been acquired with both high and low field MRI scan-

ners, using different sequences, and acquisition parameters. This demonstrates the

adaptability of the approach with this domain.

The nature of inflammatory diseases such as cancer and brain tumours leads us to
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believe that the algorithms will be useful in these applications. The applicability of

the method to DCE-MRI datasets acquired from other organs / body parts and by

different scanners, of course, needs to be examined.

In order to describe the tissue behaviour, we have employed linear approximations.

This approach may be further enhanced by incorporating moresophisticated mod-

els. However, complexity of the model might incur a longer computational time.

Currently, we perform the data analysis using the segmentation and registration

steps as a pre-process to the contrast modelling. This is a time-consuming approach,

as eacĥI curve needs to be approximated by four models. Incorporating heuristic

modelling into the classifier of the registration method might improve the efficiency

of the approach.

Visualisation Parametric maps of the heuristicsME andIRE are colour coded in such a

way that the highest values of the heuristics and consequently the brightest colours

correspond to the enhancement of the blood vessels. Therefore, the magnitude of

the synovial tissue enchantment is coloured relative to theblood vessels’ enhance-

ment.

This allows the evaluation of intra-patient inflammation; however, in the absence

of the vessels or when comparing datasets acquired from different patients, this

assumption needs to be replaced.

With the appropriate clinical expertise, it would be possible to generate intervals

in the heuristics’ values and assign a colour to each interval, so that it reflects the

tissue condition. Such colour coding would then allow objective inter-patient and

inter-sequence comparison.

Currently, parametric maps illustrate the magnitude of inflammation in each tem-

poral slice. Visualisation of the synovial tissue in 3D space would permit an even

better visual assessment of a patient’s condition and allows for a more accurate

diagnosis.

9.3 Subsequent steps in the analysis of DCE-MRI data

The algorithms presented in this thesis support radiologists throughout the analysis of

DCE-MRI data. The registration and segmentation contribute to the data fidelity; the

quantitative analysis and visualisation of the heuristicsgive a visual feedback that enables
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radiologists to localise inflamed synovial tissue and to analyse the magnitude and spread

of the disease. However, the final diagnosis still requires the radiologist’s expertise.

The next step in the assessment of RA by means of DCE-MRI is theautomatic di-

agnosis of a patient’s condition. For this purpose it would be essential to derive a new

scoring procedure that would be based on the objective heuristic parameters rather than

the subjective opinion of an operator [174].

During clinical diagnosis, a tissue is commonly investigated from a variety of view-

points [247]. Diagnostic techniques such as DCE-MRI, X-ray, and CT provide a broad

range of complementary information exposing tissue features. As an extension of this

work, it would be interesting to understand how methods proposed in this thesis can

be extended to processing the input derived from other scanning modalities. It will be

challenging to align, analyse, and correlate the information provided by data of different

dimensionalities and resolutions.

To develop a new scoring system, it would be essential to compare information pro-

vided by the parametric maps and gold standard techniques such as ultrasound and static

MRI. Moreover, correlation between the current scoring methods, such as ROI based and

OMERACT-RAMRIS methods, and parametric maps needs to be established. This work

would not be accomplished without sufficient clinical expertise and a large number of

datasets.

Another direction in which this work can be extended is towards a more comprehen-

sive understanding of the differences and similarities in the behaviour of the synovium

and bone marrow oedema, which is essentially an inflammationinside the joint. It has re-

cently been discovered that bone marrow oedema and erosive changes provide additional

information about RA activity and may be used as very reliable markers [157,232].

Using the proposed segmentation algorithm, we outlined contours of the bone interiors

in the datasets acquired by the high-field MRI scanner and processed them with the model-

based approach. The results illustrated in Figure 9.1 confirm the clinical opinion that this

patient has visible inflammation within the joints.

The automatic classification of inflamed synovial tissue, bone marrow oedema, and

erosions, and automatic measurement of the oedema volumes will require further devel-

opment and optimisation of both segmentation and quantitative analysis approaches.

It is of course crucial to proceed with any further development of this work in collab-

oration with medical experts, who ultimately will ratify the medical benefit of any such

work.
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Figure 9.1: Top: Pre-and post-contrast images. Bottom:ME (left) andIRE (right) com-
puted for pixels within the joints.
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Appendix A

Registration algorithms

Automated Image Registration (AIR) [266] applicable for intra-subject image registra-

tion using a rigid-body model (PET, MRI), inter-modality (PET-MRI) registration,

and inter-subject registration;

Automatic Mutual Information-based Registration (AMIR) [ 135] is a method for as-

sessing the accuracy of CT/PET image registration;

FLIRT: FMRIB’s Linear Image Registration Tool [120] performs linear (affine) intra-

and inter-modal PET and MRI brain image registration;

Interactive Point Selection (IPS) [262] is a semi-automated landmark-based method with

least-squares optimisation, applied for neuroreceptor PET and MRI studies;

Medical Image Processing, Analysis, and Visualisation (MIPAV) [8] performs landmark-

based registration on PET, MRI, CT, or microscopy data;

Statistical Parametric Mapping (SPM) [80] incorporates a number of different cost func-

tions related to the mutual information for registration ofbrain fMRI, PET, and

SPECT images;

The Visualisation ToolKit (VTK) [98] is an image processing and visualisation tool.

VTK implements affine, grid and thin-plate spline transformations with nearest

neighboor, trilinear or tricubic interpolation on meshes,regular sampled, structure

and unstructured grids.
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Appendix B

Segmentation evaluation

Table B.1: Evaluation of the preliminary segmentation partof the algorithm.P – patient
number; Slice – slice number. In each cell: [A number of bonesdetected by the algorithm
/ a number of bones detected by the expert].

Patient 1 Slice 1 Slice 2 Slice 3 Slice 4 Slice 5 Slice 6
MCPJ2 1/1 1/1 0/0 0/0 1/1 1/1
MCPJ3 1/1 1/1 1/1 1/1 0/0 0/0
MCPJ4 1/1 1/1 1/1 0/0 1/1 1/1
MCPJ5 1/1 0/0 1/1 1/1 1/1 0/1
Patient 2 Slice 1 Slice 2 Slice 3 Slice 4 Slice 5 Slice 6
MCPJ2 1/1 1/1 1/1 0/0 1/1 1/1
MCPJ3 1/1 1/1 1/1 1/1 0/0 0/0
MCPJ4 1/1 1/1 1/1 0/0 1/1 1/1
MCPJ5 1/1 0/0 1/1 1/1 1/1 0/1
Patient 3 Slice 1 Slice 2 Slice 3 Slice 4 Slice 5 Slice 6
MCPJ2 1/1 1/1 1/1 0/0 1/1 1/1
MCPJ3 1/1 1/1 0/0 0/0 0/0 1/1
MCPJ4 1/1 1/1 1/1 1/1 1/1 1/1
MCPJ5 1/1 0/0 1/1 1/1 1/1 1/1
Patient 4 Slice 1 Slice 2 Slice 3 Slice 4 Slice 5 Slice 6
MCPJ2 1/1 1/1 0/0 0/0 1/1 1/1
MCPJ3 1/1 1/1 1/1 0/0 0/0 1/1
MCPJ4 1/1 1/1 0/0 0/1 1/1 1/1
MCPJ5 1/1 1/1 1/1 1/1 0/1 1/1
Patient 5 Slice 1 Slice 2 Slice 3 Slice 4 Slice 5 Slice 6
MCPJ2 1/1 0/1 0/0 0/0 1/1 1/1
MCPJ3 1/1 1/1 1/1 1/1 0/0 1/1
MCPJ4 1/1 1/1 1/1 1/1 0/0 1/1
MCPJ5 1/1 1/1 1/1 1/1 0/1 1/1
Patient 6 Slice 1 Slice 2 Slice 3 Slice 4 Slice 5 Slice 6
MCPJ2 1/1 1/1 0/0 0/0 1/1 1/1
MCPJ3 1/1 1/1 1/1 1/1 0/0 1/1
MCPJ4 1/1 1/1 1/1 0/0 1/1 1/1
MCPJ5 1/1 0/0 1/1 1/1 1/1 1/1
Patient 7 Slice 1 Slice 2 Slice 3 Slice 4 Slice 5 Slice 6
MCPJ2 1/1 1/1 1/1 0/0 0/0 1/1
MCPJ3 1/1 1/1 1/1 1/1 0/0 1/1
MCPJ4 1/1 1/1 0/0 0/0 1/1 1/1
MCPJ5 1/1 0/0 1/1 1/1 1/1 1/1
Patient 8 Slice 1 Slice 2 Slice 3 Slice 4 Slice 5 Slice 6
MCPJ2 0/0 0/0 0/0 0/0 0/1 1/1
MCPJ3 1/1 1/1 1/1 1/1 0/0 0/0
MCPJ4 1/1 1/1 0/0 0/0 1/1 1/1
MCPJ5 0/0 0/0 1/1 1/1 1/1 1/1
Patient 9 Slice 1 Slice 2 Slice 3 Slice 4 Slice 5 Slice 6
MCPJ2 1/1 1/1 0/0 1/1 1/1 1/1
MCPJ3 1/1 1/1 1/1 0/0 0/1 1/1
MCPJ4 1/1 1/1 1/1 0/0 1/1 1/1
MCPJ5 1/1 0/0 1/1 1/1 1/1 1/1
Patient 10 Slice 1 Slice 2 Slice 3 Slice 4 Slice 5 Slice 6
MCPJ2 1/1 1/1 1/1 0/0 1/1 1/1
MCPJ3 1/1 1/1 1/1 1/1 0/0 1/1
MCPJ4 1/1 1/1 1/1 0/0 1/1 1/1
MCPJ5 1/1 0/0 1/1 1/1 1/1 1/1
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Appendix C

Evaluation by human observers

[ ] Segmentation 1 is better that segmentation 2
[ ] Segmentation 2 is better that segmentation 1
[ ] Segmentations are indistinguishable in quality

[ ] Segmentation 1 is better that segmentation 2
[ ] Segmentation 2 is better that segmentation 1
[ ] Segmentations are indistinguishable in quality

[ ] Segmentation 1 is better that segmentation 2
[ ] Segmentation 2 is better that segmentation 1
[ ] Segmentations are indistinguishable in quality

[ ] Segmentation 1 is better that segmentation 2
[ ] Segmentation 2 is better that segmentation 1
[ ] Segmentations are indistinguishable in quality

1. 2.

1. 2.

1. 2.

1. 2.

Figure C.1: Four pairs of segmentation outputs given to the human observers. GT overlay is
shown in red, machine segmentation in yellow.
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Appendix D

Number of pixels under consideration

[Number of pixels within joint interior excluding bone interiors / Number of pixels that exhibit

wash-out phase];P – patient number; SliceN – temporal slice number.

Slice 1 Slice 2 Slice 3 Slice 4 Slice 5 Slice 6
P1 17053/6807 18038/6515 17883/6694 18425/6490 16471/5504 16949/5908
P2 11557/4845 11631/2382 11359/3801 11995/3532 10577/2265 10149/1921
P3 14809/7455 15697/5473 15507/5033 13828/4271 12681/3761 11558/2743
P4 17256/5241 18288/5187 18827/5354 19269/4642 16618/4140 12727/3034
P5 14882/5174 15397/4241 15893/5118 15599/4522 16100/4500 12308/4150
P6 12341/3756 13067/3807 12942/3582 12383/3216 11203/2778 10452/2706
P7 11617/4515 11600/3513 11385/3368 12076/3224 10586/2659 9963/2305
P8 19360/5726 23394/4916 18568/4885 18368/4840 17679/4300 16812/3521
P9 13994/4003 13535/3623 13972/3423 14382/818 13516/3590 12004/2552
P10 14008/4254 13512/3578 13656/3529 14400/3658 12766/3926 11935/2538
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