
R E A L - T I M E S I M U L AT I O N O F I N D O O R A I R F L O W
U S I N G T H E L AT T I C E B O LT Z M A N N M E T H O D

O N G R A P H I C S P R O C E S S I N G U N I T

nicolas delbosc

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

School of Mechanical Engineering
Faculty of Engineering

September 2015

The candidate confirms that the work submitted is his own and that appropriate
credit has been given where reference has been made to the work of others.

This copy has been supplied on the understanding that it is copyright material
and that no quotation from the thesis may be published without proper

acknowledgement.

The right of Nicolas Delbosc to be identified as Author of this work has been
asserted by him in accordance with the Copyright, Designs and Patents Act 1988.

©2015 The University of Leeds and Nicolas Delbosc

A C K N O W L E D G M E N T S

I would like to thank my supervisors, Dr. J.L. Summers, and Dr.
A.I. Khan, for their continued support and invaluable discussions
throughout my time as a PhD student at the University of Leeds.

Furthermore, I would like to extend my gratification to my fellow
PhD students who helped make my time at the School of Mechanical
Engineering both a rewarding and enjoyable experience.

Finally, I would like to thank NVIDIA for donating two K40 GPUs
through the hardware donation program.

i

A B S T R A C T

This thesis investigates the usability of the lattice Boltzmann method
(LBM) for the simulation of indoor air flows in real-time. It describes
the work undertaken during the three years of a Ph.D. study in the
School of Mechanical Engineering at the University of Leeds, Eng-
land.

Real-time fluid simulation, i.e. the ability to simulate a virtual sys-
tem as fast as the real system would evolve, can benefit to many engi-
neering application such as the optimisation of the ventilation system
design in data centres or the simulation of pollutant transport in hos-
pitals. And although real-time fluid simulation is an active field of re-
search in computer graphics, these are generally focused on creating
visually appealing animation rather than aiming for physical accu-
racy. The approach taken for this thesis is different as it starts from a
physics based model, the lattice Boltzmann method, and takes advan-
tage of the computational power of a graphics processing unit (GPU)
to achieve real-time compute capability while maintaining good phys-
ical accuracy.

The lattice Boltzmann method is reviewed and detailed references
are given a variety of models. Particular attention is given to turbu-
lence modelling using the Smagorinsky model in LBM for the simu-
lation of high Reynolds number flow and the coupling of two LBM
simulations to simulate thermal flows under the Boussinesq approxi-
mation.

A detailed analysis of the implementation of the LBM on GPU is
conducted. A special attention is given to the optimisation of the al-
gorithm, and the program kernel is shown to achieve a performance
of up to 1.5 billion lattice node updates per second, which is found
to be sufficient for coarse real-time simulations. Additionally, a re-
view of the real-time visualisation integrated within the program is
presented and some of the techniques for automated code generation
are introduced.

The resulting software is validated against benchmark flows, using
their analytical solutions whenever possible, or against other simu-
lation results obtained using accepted method from classical compu-
tational fluid dynamics (CFD) either as published in the literature
or simulated in-house. The LBM is shown to resolve the flow with
similar accuracy and in less time.

iii

P U B L I C AT I O N S & TA L K S

Some ideas and figures have appeared previously in the following
publications and conference talks:

publications

• A.I. Khan, N. Delbosc, J.L. Summers, C.J. Noakes.
Real-time flow simulation of indoor environments using the Lattice
Boltzmann Method.
Journal of Building Simulation. August 2015, Volume 8, Issue 4,
Pages 405–414.
http://dx.doi.org/10.1007/s12273-015-0232-9

• N. Delbosc, J.L. Summers, A.I. Khan, N. Kapur, C.J. Noakes.
Optimised Implementation of the Lattice Boltzmann Method on a
Graphics Processing Unit Towards Real-Time Fluid Simulation.
Computer & Mathematics with Applications. February 2014,
Volume 67, Issue 2, Pages 462–475.
http://dx.doi.org/10.1016/j.camwa.2013.10.002

conference talks

• N. Delbosc, K.H. Luo, J.L. Summers.
Lattice Boltzmann Method for Turbulence : Real-Time Simulation and
Big Data Processing.
Whither Turbulence and Big Data for the 21st century, Corsica,
France, April 20–24, 2015.

• N. Delbosc, A.I. Khan, J.L. Summers.
Saving Energy in Data Centers Using Real-Time Simulation.
GPU Technology Conference (GTC 2015), San Jose, California,
USA, March 16–20, 2015.

• N. Delbosc.
Real-Time Fluid Simulation.
Villanova University, Philadelphia, USA, March 10, 2015. (in-
vited talk)

• N. Delbosc, J. Summers, A. Khan, C. Noakes.
Real-time simulation and visualisation of air flow in datacenters and
hospitals.
23rd International Conference on Discrete Simulation of Fluid
Dynamics (DSFD 2014), Paris, France, July 28 – August 1, 2014.

v

http://dx.doi.org/10.1007/s12273-015-0232-9
http://dx.doi.org/10.1016/j.camwa.2013.10.002

• N. Delbosc, G de Boer, J.L. Summers.
Managing data centres with the aid of real-time airflow simulations.
Datacentre Transformation Conference (DTC 2014), Manchester,
U.K., July 8, 2014

• N. Delbosc, A.I. Khan, J.L. Summers, C.J. Noakes.
Real-time Simulations and Visualisation of Air Flow in Datacenters
and Hospitals.
GPU Technology Conference (GTC 2014), San Jose, California,
USA, March 24–27, 2014.

• N. Delbosc, J.L. Summers, A.I. Khan.
Real-time Simulation of Air Flow in Datacenters and Hospitals.
International Conference for Mesoscopic Methods in Engineer-
ing and Science (ICMMES 2013), Oxford, U.K., July 22–26, 2013.

• N. Delbosc, J.L. Summers, A.I. Khan.
Real-Time Indoor Air Flow Simulation Using Lattice Boltzmann Method
on GPU.
International Conference for Mesoscopic Methods in Engineer-
ing and Science (ICMMES 2012), Taipei, Taiwan, July 23–27,
2012.

• N. Delbosc, J.L. Summers.
Nanofluid Simulation Using the Lattice Boltzmann Method on Graph-
ics Processing Unit.
Workshop on Nanomaths. Centre de Recerca Matemàtica (CRM),
Bellaterra, Barcelona, Spain, July 11-13, 2012.

vi

C O N T E N T S

1 introduction 1

1.1 Background and Motivations 1

1.2 Computational fluid dynamics (CFD) 2

1.2.1 Numerical Methods for CFD 4

1.2.2 Thermal Flows 6

1.2.3 Multiphase Flows 6

1.2.4 Turbulence Modelling 7

1.2.5 Commercial CFD Software. 9

1.3 Real-Time Fluid Simulation 10

1.4 Lattice Boltzmann Method (LBM) 14

1.5 Graphics Processing Unit (GPU) 17

1.6 Objectives of the Thesis 18

1.7 Thesis Outline . 19

2 the lattice boltzmann method 21

2.1 Introduction . 21

2.1.1 Historical background 21

2.1.2 Kinetic Theory 22

2.1.3 The Boltzmann Equation 23

2.1.4 The BGK Approximation 24

2.1.5 Multiple Relaxation Times 25

2.2 General Framework of the LBM 26

2.2.1 Space and Time Discretisation 27

2.2.2 Algorithm . 28

2.3 LBM for multi-physics applications 29

2.3.1 Standard LBM Model 30

2.3.2 Incompressible Model 31

2.3.3 LBM for Compressible Flows 33

2.3.4 Multiphase and Multicomponent Models 33

2.3.5 Thermal Models 39

2.3.6 Fluid-Structure Interaction 43

2.4 Alternative Models . 45

2.4.1 Entropic LBM . 45

2.4.2 Cascaded LBM 47

2.4.3 Link-Wise Artificial Compressibility Method . . 48

2.4.4 Further Reading 49

2.5 Turbulence modelling in LBM 50

2.5.1 Large Eddy Simulation 50

2.5.2 RANS Based Models 52

2.5.3 Further Reading 52

2.6 LBM with Non-Uniform Grids 53

2.7 Summary . 54

3 lbm algorithms 57

vii

3.1 Program Framework . 58

3.1.1 Initialisation Step 58

3.1.2 Streaming Step 58

3.1.3 Collision Step . 59

3.1.4 Boundary Step 61

3.2 Boundary Conditions . 62

3.2.1 Periodic . 62

3.2.2 Force Equilibrium 63

3.2.3 Bounce-Back . 63

3.2.4 Free Slip . 65

3.2.5 Zou-He . 66

3.2.6 Ho-Cheng-Lin 67

3.2.7 Interpolated Bounce-Back 68

3.2.8 Immersed Boundary Method 70

3.2.9 Further Reading 72

4 optimised implementation on gpu 73

4.1 A Brief History of GPU 73

4.2 Introduction to GPU programming 75

4.2.1 GPU programming methodology 75

4.2.2 Differences between CPU and GPU 76

4.2.3 SIMD programming philosophy 77

4.2.4 Code sample . 78

4.3 Implementation of the LBM on GPU 79

4.4 Optimisation of the LBM on GPU 80

4.4.1 Minimise memory access 81

4.4.2 Increase data coalescence 82

4.4.3 The streaming issue 86

4.4.4 Branch Divergence 87

4.4.5 Other optimisations 89

4.5 Real-time interactive visualisation 90

4.6 Multi-GPU programming 91

4.7 GPU code generation . 93

4.8 Summary . 96

5 computational performance 97

5.1 Performance Study . 97

5.1.1 On measuring performances 97

5.1.2 Single GPU performances 98

5.1.3 Multi-GPU performances 100

5.1.4 Maximum performance 101

5.1.5 Performance of other models 103

5.1.6 Effect of the streaming model 103

5.1.7 The issue of branch divergence 104

5.2 Optimisation tricks and tweaks 105

5.2.1 Using the NVIDIA Visual Profiler 105

5.2.2 Tweaking for the best performance 109

5.2.3 Error Correcting Code 112

viii

5.2.4 GPU boost . 113

5.3 Real-Time Capability . 114

5.4 Summary . 116

6 validation 117

6.1 2D Poiseuille Flow . 117

6.2 Lid-driven cavity . 121

6.2.1 Problem description 121

6.2.2 Two-dimensional results 122

6.2.3 Three-dimensional results 133

6.3 Thermal diffusion in a square cavity 136

6.3.1 Problem description. 136

6.3.2 Effect of the choice of boundary condition . . . 137

6.3.3 Effect of the initial temperature. 138

6.3.4 Effect of the relaxation time 139

6.3.5 Effect of the lattice resolution 139

6.3.6 Conclusion . 140

6.4 Thermal advection in a channel 140

6.4.1 Problem description 140

6.4.2 Analytical solution 141

6.4.3 Results and Discussion 142

6.4.4 Conclusion . 143

6.5 Natural convection in a square cavity 144

6.5.1 Methodology . 146

6.5.2 Effect of the Rayleigh number. 147

6.5.3 Effect of the resolution. 149

6.5.4 Effect of the forcing scheme 150

6.6 Summary . 151

7 application to indoor air flows 153

7.1 Introduction . 153

7.2 Ventilation Chamber . 154

7.2.1 Problem Description 155

7.2.2 Results . 157

7.2.3 Conclusion . 160

7.3 Data centre . 163

7.3.1 Problem Description 163

7.3.2 Results . 168

7.3.3 Conclusion . 170

7.4 Hospital Room . 171

7.5 Summary . 174

8 other applications 175

8.1 Introduction . 175

8.2 Multiphase Flows . 175

8.2.1 Droplet Impingement 176

8.2.2 Water in Diesel Filtration 179

8.3 Drag and lift on cylinder 181

8.4 Fluid-Structure Interaction 184

ix

8.5 MRT and Cascaded parameter search optimisation . . 186

8.6 Summary . 192

9 conclusions 193

9.1 Summary of Results . 193

9.2 Future Work . 195

a node descriptions 197

a.1 D2Q9 . 197

a.2 D3Q19 . 198

b unit conversion 199

c fast fluid dynamics 203

c.1 History . 203

c.2 Theory . 203

c.2.1 The Navier-Stokes equation 203

c.2.2 Helmholtz-Hodge decomposition theorem . . . 204

c.2.3 Chorin’s projection algorithm 204

c.3 Jos Stam’s algorithm . 205

c.3.1 Summary of the method 205

c.3.2 Advection . 206

c.3.3 Diffusion . 206

c.3.4 Force . 208

c.3.5 Projection . 208

c.4 Implementation . 208

c.5 Numerical Experiment 209

c.6 Summary . 209

d introduction to gpu programming in cuda 211

d.1 Architecture . 211

d.1.1 CUDA Thread Organization 211

d.1.2 Memory model 213

d.2 Programing Model . 214

d.2.1 Threads and Kernels 215

d.2.2 Memory Management 216

d.3 Execution Model . 218

Bibliography 220

x

1
I N T R O D U C T I O N

1.1 background and motivations

Simulations are at the core of all scientific modelling.
The word simulation comes from the Latin adjective similis, meaning

similar. In this context, simulating a physical system can be regarded
as making something similar to it, whether it is building a scaled ex-
periment or solving the equations that model its behaviour. This can
be done for a variety of reasons: to gain a better understanding of
its functioning, to study alternative conditions, and more... but in
general, the goal is to improve a particular aspect of the system. The
recourse to simulations can become necessary when the real system
cannot be directly accessed or modified or when its manufacturing
cost would be too high.

Often, computer simulations are used to study a model, and they
have become essential in the modelling of many natural systems in
physics, chemistry and biology, but also human systems in economics
or social science. Numerical simulations are nowadays an integral
part of engineering, as the equations that describe the motion of an
aircraft or the stiffness of a bridge are often too complex to be solved
without the help of computers.

But despite the growth in both speed and memory of computers
over the last decades, computer simulations are still regarded as a
complicated task. And engineering problems commonly require large
simulations that run for many hours on a dedicated cluster of comput-
ers, called a supercomputer. In particular, the domain of computational
fluid dynamics (CFD, see section 1.2), that is the numerical simulation
of fluid flows, has become associated with long running programs
consuming a lot of computational resources. This is because CFD
usually involves complex time dependant non-linear partial differen-
tial equations that are difficult to solve, even with the best computers.

The goal of this thesis is to develop new simulation tools, based on
novel numerical models and novel computer architectures, that will
allow for a real-time and interactive simulation of various fluid flow
problems applicable to engineering, and in particular indoor airflows.
The study, prediction and control of indoor airflows is of prime im-
portance in engineering and sprouts to many fields of applications,
from air conditioning for human comfort to thermal management for
equipments (eg, data centre) and to air quality control for manufac-
turing processes (eg, clean room) and for environments with a high
risk of contagion (eg, hospitals).

1

Because of excessive computation time, the majority of CFD mod-
els available today only consider steady-state scenarios which are not
able to capture the transient effects (such as varying load for a data
centre or the movement of people for a hospital) and are hence lim-
ited in their prediction capabilities. This work is seen as an important
keystone towards the development of a tool for the real-time control
of indoor ventilation systems where, ultimately, sensors and actua-
tors placed within the flow would be synchronised with the boundary
conditions of the simulation.

1.2 computational fluid dynamics (cfd)

Computational fluid dynamics, or CFD for short, is a area of research in
fluid mechanics that uses numerical methods and algorithms to study
fluid flows. CFD is useful both in theoretical research, to help with
the development of new models, as in engineering to ease the concep-
tion of new designs, and usually at lower cost than the experiment
and sometimes at a better accuracy.

The field of CFD is usually associated with the resolution of the
Navier-Stokes equation, a partial differential equation (PDE) which ex-
presses a local conservation law for the momentum in the system.
Due to the generality of this equation, it can be applied to model a
large variety of fluids, such as liquids (like water and oil) or gases
(like air). Indeed, although liquids and gases are two very distinct
types of fluid, their bulk behaviour can be described using the same
equation. When the compressibility effects are neglected, the differ-
ence between the two fluids boils down to a single physical property:
the kinematic viscosity, which describes the proficiency of the fluid to
diffuse momentum. Viscosity is the reason why the movement of
a fluid layer can induce movements in the neighbouring layers. It
can be shown that the viscosity characterises the rate of energy dis-
sipation in a fluid subject to a deformation, which is why stirring a
spoon in honey is harder than in tea (honey has a higher viscosity
than water, and therefore tea).

Henri Navier

(1785–1836)
Source: École des
Ponts, ParisTech

Sir Georges Stokes

(1819–1903)
Source: Popular

Science Monthly,
vol. 7, p. 641, 1875.

The Navier-Stokes equation was named after two physicists: one
French, Henri Navier and one Irish, Sir George‘ Stokes who stud-
ied and published (separately) studies on the law of momentum of
fluids during the first half of the 19th century. Solving the Navier-
Stokes equation can be a very challenging task; actually, an analytical
solution is only available for simple problems of limited use. How-
ever, in total disregard for the lack of mathematical proof1, engineers
have been computing approximated numerical solutions of the equa-

1 As a pure mathematical problem, the proof of the existence and smoothness of a
solution for the three-dimensional Navier-Stokes equation is still an unsolved prob-
lem. It is one of the seven Millennium Prize Problems by the Clay Mathematics Institute
which offers a $1,000,000 price to the first person providing a solution.

2

tion for a long time (with the help of computers and special algo-
rithms).

In its simplest incompressible form, the Navier-Stokes equation can
be written as

∂~u

∂t
+
(
~u · ~∇

)
~u = −

1

ρ
~∇p+ ν~∇2~u (1)

where ~u, p and ρ represents the velocity, pressure and density of the
fluid, respectively, and ν is the kinematic viscosity of the fluid. The
equation can also include additional stresses and body force terms.
The velocity and pressure in the fluid are functions of space ~x and
time t, i.e. ~u = ~u (~x, t) and p = p (~x, t), they are each represented by a
field of values rather than a single value. Air is a compressible fluid,
which means its density can also vary, however for indoor airflows,
the variations of density are small enough to be neglected and the
flow is assumed to be incompressible. For some fluids, known as non-
Newtonian, the viscosity can also vary with shear stress; these types
of fluids are significantly harder to study.

As written in (1), this equation constitutes a largely simplified
model for a viscous , single component fluid in an environment with-
out density or temperature variations. Although it only partially ad-
dresses the complexity of real fluids of interest in engineering applica-
tions, it can still lead to accurate predictions of the flow, in agreements
with the results of physical experiments.

The Navier-Stokes equation alone does not form a closed system.
There are 4 unknowns (ux, uy, uz and p) but only 3 equations (equa-
tion (1) can be projected against each of the 3 axis). In order to close
the problem, another equation needs to be considered.

∂ρ

∂t
+ ~∇ · (ρ~u) = 0 (2)

This equation is known as the continuity equation. It describes the
conservation of mass in the system. For an incompressible flow, the
density ρ is a constant, thus the continuity equation takes a simpler
form (which shows that the velocity filed of an incompressible flow
is divergence-free, also known as solenoidal).

~∇ · ~u = 0 (3)

It should be noted that to truly close the above equations, the
boundary conditions need to be addressed, more details on this are
available in section 3.2.

Through a process of dimensional analysis (see Appendix B), it
is common practice to re-express the physical terms in the Navier-
Stokes equation using dimensionless quantities along with a charac-
teristic lengh, velocity and time scales. This process is known as the

3

non-dimensionalisation of an equation. When applied to the Navier-
Stokes equation, an important dimensionless number naturally ap-
pears, the Reynolds number (Re).

Re =
LU

ν
(4)

where L is a characteristic length for the system, for instance it
could be the radius of a cylinder, U is a characteristic speed for the
system, for instance the speed of the cylinder, and ν is the kinematic
viscosity of the fluid as introduced previously.

Qualitative
description of the
fluid flow over a

cylinder for a large
range of Reynolds

number.

There are over dimensionless quantities that are used to charac-
terise fluid flows, but the Reynolds number is of particular impor-
tance because it describes what is the regime of the flow, such as lami-
nar, transient or turbulent, and it is what justifies using a scaled model
of an aeroplane during an experiment by matching the Reynolds
number of the experiment and that of the aeroplane. By its construc-
tion, the Reynolds number indicates the relative importance of iner-
tial to viscous forces, for small Reynolds number, viscous effects are
predominant and the flow is laminar and for large Reynolds number,
inertial effects are predominant and the flow becomes turbulent (see
illustration in the margin).

1.2.1 Numerical Methods for CFD

For many engineering problems, an analytical solution to the Navier-
Stokes equations cannot be found and it becomes necessary to resort
to numerical methods. Several numerical methods can be used to
obtain a numerical approximation to the Navier-Stokes equations, but
at their core, most of them rely on the discretisation of the equations
on a finite grid that can be solved numerically so that the value at each
grid point (or cell) matches that of the “exact” solution evaluated at
that point (with a certain truncation error).

The three methods most commonly used in engineering are (by
order of complexity) : the finite difference, the finite volume and the
finite element methods.

The finite difference methods are the most straightforward : the
derivatives at one node are computed in terms of a truncated Tay-
lor series expansion using the values at neighbouring nodes. The
size of the stencil (i.e., the amount of neighbouring nodes) used in
the computation determines the order of the truncation, and higher
order schemes will converge faster (give more accurate results) as
the resolution (i.e., the number of nodes in the domain) is increased.
These methods are simpler to implement but they are commonly re-
stricted to Cartesian grids which limit their application to complex
geometries.

Rather than considering the nodes, the finite volume and finite el-
ement schemes are both based on dividing the flow domain into a

4

(large) number of small cells, or volumes. Theses cells can be of any
shape (tetrahedra, prisms, cubes, ...) which allow the use of unstruc-
tured meshes finely refined around the object’s body.

The finite volume methods are based on the integration of the gov-
erning equations over each cells. This allows the divergence terms
of the equations to be transformed into a surface integral using the
divergence theorem.

Finite element approaches are traditionally used in solid mechanics
but can be adapted to fluid problems. These methods approximates
the unknown field by piecewise functions valid over each cell whose
coefficients are to be determined. The residuals, that is the difference
between the function and the exact solution, are minimised by multi-
plying them with a weighting function and integrating; which results
in simple algebraic equations for the coefficients of the approximating
function.

Each of these methods has several variants with different orders
of convergence, stabilities, advantages and disadvantages. It is also
possible to make problem specific simplifications in order to speed
up the computations. For instance, if the flow is axisymetrical (invari-
ant under any rotation around a specific axis), then it can be solved
as a 2D problem with the appropriate corrections on the acceleration.
Another example, if the flow is supposed to be steady, then the veloc-
ity does not vary over time, and the Navier-Stokes equation can be
simplified by removing the first term. However, for time dependant
flows, two different schemes can be used for the resolution: explicit
and implicit schemes. In explicit schemes, the state of the system at
a later time is directly computed from the state at the current time,
these schemes require the use of a significantly smaller time-step in
order to insure the stability. For implicit schemes, the new state is
found by solving an equation involving both the current and new
states, these schemes require the inversion of larger matrices and are
significantly slower, but they tend to be more stable.

Two other methods are worth mentioning : the spectral method
and the vorticity-streamfunction formulation whose principles are to
reformulate the Navier-Stokes equation in another basis or using dif-
ferent variables (respectively) in order to make them easier to solve.

The spectral methods uses a transformation (usually the Fourier trans-
form) to bring variables in a new space (called the spectral space)
where derivations and integrations become simple multiplication and
divisions. Once solved, the transformed solution can be converted
back to the original space using the inverse transformation. The
problem of such methods is in the choice of the right basis functions,
which can be difficult when dealing with complex geometries. How-
ever, provided a good basis is available, spectral methods are notori-
ous to achieve a high degree of fidelity of the solution, and can solve
the Navier-Stokes equation up to machine accuracy. As a result, spec-

5

tral methods are often confined to more academic problems like the
study of homogeneous isotropic turbulence.

The vorticity-streamfunction formulation is particularly interesting in
2D where it allows to reduce the dimensionality of the problem by re-
formulating the Navier-Stokes equation in terms of two scalar quanti-
ties (the vorticity and the stream function) instead of one vector quan-
tity (the velocity) and one scalar quantity (the pressure). However, as
for spectral methods, it can be difficult to define complex boundary
conditions within this context, and the range of applications of this
method is thus limited.

1.2.2 Thermal Flows

Thermal fluctuations play an important role in the dynamics of aAt 0 K, i.e.
−273.15 ◦C, all the

microscopic particles
are perfectly still,

thus it is the
smallest possible

temperature. It is
known as the

absolute zero.

flow. When the temperature of a volume of fluid increases, the ran-
dom motion of its constituent microscopic particles increases and as
a result, the volume increases hence, as the total mass is conserved,
the density decreases. If this volume of hot fluid is surrounded by
a colder fluid, then its density is locally lower, and this volume will
rise due to buoyancy. In the opposite, a volume of fluid colder that its
surrounding would fall because its density is relatively higher.

In a fluid flow, there are two processes by which the temperature
can transported:

• thermal advection, i.e., convection, as the fluid moves it carries
with it the particles of fluid and their temperature,

• thermal diffusion, the temperature of a fluid layer can propagate
to the neighbouring layers. This process also exist in solids
where it is know as thermal conduction.

The Péclet number (Pe) is a dimensionless number that can be used
to indicate the relative importance of advection to diffusion transport
rates.

Pe =
LU

α
(5)

where L and U are still the characteristic length and speed of the
system. And α is the coefficient of thermal diffusivity of the fluid.

For further details on the equations modelling thermal effects in a
fluid, see section 2.3.5.

1.2.3 Multiphase Flows

The simulation of multiphase flows, that is a system containing differ-
ent fluid phases such as liquids and gases interacting together (and
also with solids), is a notoriously challenging area of CFD. Indeed,
although the bulk of each phase can be individually simulated using

6

the Navier-Stokes equation, there are also some crucial physical phe-
nomenon happening at the interfaces, such as the surface tension for
example, that need to be modelled carefully. The modelling of multi-
phase flows becomes even more challenging when temperature varia-
tions comes into play, introducing phase changes like droplet conden-
sation and evaporation. It is worth noting that there is also a similar
category of fluid flow problems involving a mixture comprised of
different fluid species (e.g. water and oil) that can be either misci-
ble or immiscible. This type of flows are known as multi-component
flows. Multiple engineering problems involve multiphase and multi-
component flows and constitute active research fields. The mixing of
two fluids for manufacturing, droplet impingement for inkjet print-
ing, droplet extraction for filtering system, droplet evaporation for
spray cooling, etc... are a few examples.

There are various strategies to simulate multiphase flow that aims
at simplifying the problem. For instance, for large scale water-air
multiphase flow, like a dam break, the surface tension effects are
small and the air phase can be neglected. This type of problem is
known as free-surface flows. The volume of fluid (VOF) method is
a numerical technique that was designed to solve such problems. It
combines the simulation of the liquid phase using the Navier-Stokes
equation with an interface tracking technique to precisely solve the
location of the free surface. However at small scale, like in microflu-
idics, the surface tension forces cannot be neglected and classical CFD
techniques struggle to capture the effects of varying contact angles or
phase changes. On the other hand, the lattice Boltzmann method
(see 1.4) due to its kinetic nature can incorporate inter-molecular in-
teractions in a straightforward way and is able to capture the effects
effectively.

1.2.4 Turbulence Modelling

ResolvedDNS

LES

RANS

Resolved

Modelled

Modelled

Resolved

Eddy Size

Figure 1: Each turbulence model resolves different scales.

For high Reynolds number, the
inertial effects are predominant
and the flow becomes turbu-
lent. A turbulent flow is
a highly complex flow show-
ing many irregular and random
(chaotic) features and composed
of many eddies of largely dif-
ferent sizes. The largest eddies
have a size similar to the charac-
teristic length of the domain (integral scale). These eddies obtain
energy from the mean flow. By interacting together, the energy is
passed down sequentially from the larger eddies gradually to the
smaller ones, down to the smallest scale (Kolmogorov scale) at which

7

the energy is dissipated by viscosity. This process is know as the
turbulent energy cascade.

The variety of scales and the complexity of turbulent flows makes
the modelling of turbulence an extremely challenging topic in CFD.
Although there are many approaches to the numerical simulation of
turbulence, they can be classified into three categories, each solving
the flow down to a different scale (see figure 1).

direct numerical simulation (dns) :
the DNS solves the Navier-Stokes equation without any spe-
cific model for turbulence, which means the whole range of
eddies scales needs be resolved and the spatial resolution in
DNS must be of the same order as the Kolmogorov scale. Tur-
bulence theory shows that this scale is around Re

3
4 smaller than

the integral length scale, thus the number of cells required in
three-dimensional DNS increases with the Reynolds number as
O(Re9/4). Therefore, the computational cost of DNS is tremen-
dous for high Reynolds number flows. Nevertheless, the com-
putational power of today’s supercomputers allows to realise
the DNS simulation of turbulent flows up to Re = 104 − 105

using billions (i.e. 109) of cells [1, 2].

large eddy simulation (les) :
the view of LES is that large eddies are usually more energetic
and contribute more to the transport than the smaller ones, so
it sufficient to only solve accurately for the large scale of the
flow and the effect of the unresolved small scales on the fluid
motion is modelled using a sub-grid model. In practice, sim-
ple turbulence models, like the Smagorinsky model (see sec-
tion 2.5.1), suppose that the energy dissipation by the small
scale is isotropic and can be represented using a local eddy vis-
cosity which is added to the fluid kinematic viscosity. LES sim-
ulations are still expensive, but not as much as DNS and can
give higher accuracy than RANS, especially when the transient
behaviour of the flow is of importance.

reynolds-averaged navier stokes (rans) :
the RANS approach is to only simulate the mean flow averaged
in time and to model the fluctuations using additional transport
equations. It is the most computationally efficient way to sim-
ulate turbulent flows in engineering applications. However, a
single model cannot address all the complexity of turbulence,
and RANS simulation should be regarded as an engineering ap-
proximation of a complex turbulent flow. Amongst the various
RANS models, the k− ε model is is one of the most popular in
engineering. It introduces 2 additional transport equations to
model the turbulent kinetic energy k and the turbulent energy
dissipation ε.

8

1.2.5 Commercial CFD Software.

A introduction to CFD could not be complete without citing some
of the most used CFD software in engineering. The three following
software packages are used routinely by many engineers at the School
of Mechanical Engineering at the University of Leeds, and can be taught
in classes. They have been used to give comparable simulation results
throughout the Ph.D.

open foam : Open Foam2 is a free, open source CFD software pack-
age developed by a commercial company, OpenCFD Ltd, now
a subsidiary of the ESI group. It is based on the finite volume
method and due to its openness, it allows its user to customise
their own solver for an extensive range of problems from com-
plex fluid involving chemical reactions, turbulence and heat
transfer, to solid dynamics and electromagnetism.

fluent : with its first release in 1988, Fluent is one of the longest
running commercial CFD software. It was acquired in 2006 by
the company ANSYS, Inc. and is now part of ANSYS product
line3. The software is based on the finite volume method and
benefits of a simple graphical user interface and integrated pre
and post processing tools. It includes a large variety of mod-
els and dynamics that allows to simulate a large range of fluid
problems but is not as flexible as its competitors and access to
the details of the working of the solver is not possible.

comsol multiphysics : as its name suggest, COMSOL Multi-
physics4 strength lies in its capability for coupled physics phe-
nomena modelling. While a large variety of phenomena are
predefined through equation-based model templates, it allows
the user to modify them with their own equations for their spe-
cific multiphysics model. It also provides a modern graphical
interface with integrated pre and post processing tools.

Some CFD software choose to specialise to solve a specific type of
problem. For instance, software like 6Sigma5 and floVENT6 are ded-
icated to the simulation of HVAC (short for Heating, Ventilation and
Air Conditioning) and have been optimised to do it simply and effi-
ciently.

2 http://www.openfoam.com/
3 http://www.ansys.com/Products
4 http://www.comsol.com/comsol-multiphysics
5 http://www.futurefacilities.com/software/6SigmaDCOverview.php
6 http://www.mentor.com/products/mechanical/flovent/

9

http://www.openfoam.com/
http://www.ansys.com/Products
http://www.comsol.com/comsol-multiphysics
http://www.futurefacilities.com/software/6SigmaDCOverview.php
http://www.mentor.com/products/mechanical/flovent/

1.3 real-time fluid simulation

Real-time fluid simulation, i.e., computing the movement of a virtual
fluid as fast as the real physical fluid would evolve, is an active field
of research in Computer Graphics. While the numerical methods in-
troduced in the previous chapter can give very accurate solution to
the Navier-Stokes equations, they usually take a very long time to
converge and are not amenable to real-time simulation. On the other
hand, computer graphics and in particular computer games, have
been including in the recent years more and more real-time physical
simulations7. Some of these games showcase simple real-time fluid
simulations, but they are more focused on creating visually appealing
animations rather than aiming for physical accuracy. Nevertheless,
it is important to understand if these techniques could be useful to
engineering-type CFD and what the capability for real-time simula-
tion could bring to the field.

First and foremost, a real-time capability would give a completely
new way to approach CFD problems. Nowadays a simulation with a
typical CFD software is comprised of three key steps: (1) pre process-
ing, (2) numerical simulation of the flow and (3) post-processing.

1. During the pre-processing step, the engineer defines the charac-
teristic of the flow problem to be simulated by the solver in the
next step. This is when the solution domain is defined, the phys-
ical properties of the fluid are selected, the boundary conditions
are specified and more importantly when the mesh required by
the solver is generated. In itself, pre-processing can be a chal-
lenging task, and a wrong choice of any of the aforementioned
parameters might cause the solver to not properly converge.

2. The simulation is usually the longest step. The solver takes all
the parameters, boundary conditions and mesh from the pre-
processor and simulate the flow using the selected equations
and numerical method. It can range from a few minutes to sev-
eral days for complex high resolution engineering applications.

3. Finally, the results of the solver are analysed during the post-
processing step. By its nature, CFD generates a large amount of
data which requires specialised tool to dissect. A post-processor
is basically a visualisation tool that can display informations in
various forms such as vector, contour and surface plots but also
compute additional flow informations that are not necessarily
know to the solver such as vorticity, streamlines and streaklines.
The post-processor generates images and animation and it is
the role of the engineer to interpret the results of the simulation
from them.

7 http://www.geforce.com/hardware/technology/physx/games

10

http://www.geforce.com/hardware/technology/physx/games

Each of these steps can easily take from a few minutes to a few hours
depending on the application, but in a real-time context these steps
need to happen several times per second. The geometry can be up-
dated as the solver is running and the boundary conditions or even
the fluid properties can be modified on the fly. A real-time visualisa-
tion need to be connected to this process to inform the user on the
changes that he is performing and allow him to inspect the resulting
flow structures as they are being simulated. Typically, to avoid jit-
tering and provide a smooth experience, a real-time fluid simulation
need to be iterated at a minimum of 25 times per second, or frame per
second (FPS) as for a film. Therefore, each simulation-step must take
a maximum of 40 milliseconds to compute. The time constraints for
real-time CFD are extremely tight. The Figure 2 provides a represen-
tation of the design cycles using traditional CFD techniques against
real-time CFD. It should be noted that the computing time figures are
purely illustrative and would vary heavily depending on the applica-
tion.

• Geometry
• Boundary Conditions
• Meshing

Simulation

• Visualise
• Analyse

Post-Processing

Pre-Processing

30 min.

5-20 hr.

1 hr.

R
efi

n
e

D
es

ig
n

Iterative Design

Simulation

• Update Geometry

• Change Boundary
 Conditions

Steering

• Inspect Flow Structures

Real-Time

Visualisation

25 FPS

Interactive Design

Figure 2: Design cycles using traditional CFD versus real-time CFD.
The computational times provided are merely estimations for a
simple indoor air flow simulation, and in practice they largely vary
depending on the complexity of the simulation.

Real-time CFD and even “faster than real-time” CFD (the top trian-

computational time

re
al-

tim
e c

ap
ab

ili
ty

p
h

ys
ic

al
 t

im
e

slower than
real-time

faster than
real-time

Physical time of a
problem versus the
computational time
required to solve it.

gle on the figure in the margin) is necessary to inform early warning
systems. An example of such system, which is also amongst the only
one to use predictive CFD, is weather forecasting. Weather forecast-
ing relies on sensors for temperature, pressure and velocity spread
across the surface of the country (but also in the air). These sensors
are used to initialise the simulation, then the flow is solved on large
clusters of computers, several times per day for both short-term and
long-term forecasts. While the numerical methods used in weather
forecasting vary depending on the country, in the UK the Met Office
predictions come from a Unified Model which couples different simu-
lations running on different grids at different resolutions (and poten-

11

tially with different numerical schemes). At its core, the solver uses a
semi-implicit semi-lagrangian discretisation of the fully compressible
Navier-Stokes equation on a rotating sphere, and meanwhile several
additional processes operate to warm (or cool) and moisten (or dry)
the atmosphere, to form clouds and precipitation.

Another area that has been hinted at and where real-time CFD
would really help is in design optimisation. CFD is very often used by
engineers in order to optimise one or several parameters of a model,
from optimising the lift of an aerofoil to finding the optimal loca-
tion for the ventilation vents in a room. Optimisation in CFD is very
challenging because it requires to compute multiple simulations of
the same problem, where the parameters to optimise are varied; and
then, using clever techniques, guess the optimum based on interpo-
lation of the limited set of simulations. There is an entire field of
CFD devoted to that. Using real-time CFD, an engineer could vary
the parameters to optimise by hand while monitoring the quantities
of interest and quickly reach the optimal value for his problem. This
process of modifying the simulation while it is running is known as
computational steering.

Finally real-time CFD could bring a lot of benefits to teaching. Al-
lowing the teacher to illustrate abstract concepts of fluid mechanics
using real-time interactive simulations of real flows.

Maybe paradoxically, real-time simulation is easier to achieve for
larger systems than for small ones. Indeed, while it is easy to solve
planetary rotations due to gravity in real-time (one year to solve one
rotation of the planet Earth!) it would be much harder (impossible)
to solve microscopic particle collisions in real-time as they happen
on very short time scales. The same is true with fluids, while it is
possible (yet difficult) to simulate airflows around the globe in real-
time, it would be harder to simulate a micro droplet impacting a
surface in real-time. It is unlikely that real-time will ever be possible
for such small time scales, and even if was it would not be very useful
as the user would have to slow down the simulation to inspect the
results. For such cases, it is more convenient to consider interactive
CFD instead which still yields many of the benefits detailed above.

In 1965, the
engineer Gordon

Moore predicted that
the doubling of

component density
on an integrated

circuit (and thus the
performance) every

two years. Fifty
years later, the law

still holds, but its
end might be near as

components size
approach that of the
atom. Photo: Intel.

Nowadays, computers are very powerful machines and a single
top-end desktop computer can easily achieve several teraFLOPS, that
is several millions of millions of floating-point calculations per sec-
ond. And yet, this is still insufficient to allow real-time simulation
using traditional CFD methods (finite difference, volume, element),
although it might become possible one day due to Moore’s law. In
the meantime, it is necessary to come up with alternative methods,
and maybe trade off some of the physical accuracy for higher compu-
tational speed. The gaming industry and the computer graphics com-
munity do not prioritise the physical accuracy, instead they use spe-
cial numerical methods (usually wave-based or particle-based) that

12

looks convincing but do not resolve the Navier-Stokes equation. Al-
though, in some cases, the semi-lagrangian scheme, which crudely
approximate this equation, is used.

The most common way of faking a fluid in video games uses wave
functions to apply oscillations on a surface, and create the illusion of
a moving flow, but this hardly qualifies as a simulation. The second
most commonly used technique for large water bodies solves for the
shallow-water equation. When solely the surface of the water is of in-
terest and the heights of the fluctuations are small compared the size
of the water pool, the Navier-Stokes equation can be simplified by
integrating along the depth. This technique allows to simulate con-
vincingly waves propagating on the surface of the water and video
games might use it to simulate waves on a pool around a character’s
body, for instance. However, it is not amenable to indoor airflows.

Another way of approximating free-surface flows is using particles
like in the smooth particle hydrodynamics (SPH) method. That tech-
nique has gained popularity recently in video-games, despite its high
computational cost, and NVIDIA, a large video-game company, re-
cently developed a tool8 for real-time simulation using particles to
represent both fluids, solids and soft bodies. The idea of SPH is to
represent the fluid volume with particles that are advected using the
simple Newton’s law and the particles are subjects to an interaction
potential that tries to mimic surface tension. The technique is quite
good at representing free surface flows like a dam breaking and its
advantage is that it does not require a mesh (it is a meshless tech-
nique) as the particles are allowed to move freely until they hit an
obstacle. On the other hand, it does require a large number of parti-
cles to accurately represent the flow and boundary conditions such as
inlet/outlets are difficult to implement as particles have to enter/exit
the flow domain. It is therefore not amenable to indoor airflows ei-
ther.

Finally, the fast fluid method, also known as semi-lagrangian, is a grid-
based method that relies on the Navier-Stokes equation where the
advection term is approximated by guessing where the velocity of
each cell is coming from, following the flow trajectory and using an
interpolation scheme. The method is very interesting due to its good
computational efficiency and unconditional stability, as showcased
by its successful use in weather forecasting. However, it is relatively
inaccurate in its standard form but there are several possible modifi-
cations that aims at improving its accuracy (although they require to
loose some of its simplicity, efficiency and stability). More details on
the method will be given in Appendix C.

Another contender for real-time CFD, although it is very rarely
used in computer graphics, is the lattice Boltzmann method (LBM). As
a numerical method, the LBM can be regarded as an explicit scheme

8 https://developer.nvidia.com/physx-flex

13

https://developer.nvidia.com/physx-flex

second order in space and first order in time. Its explicit nature makes
the method very computationally efficient, but its real particularity is
that it does not solve directly for the Navier-Stokes equation or for an
approximated version of it. Instead, the LBM solves for a discrete ver-
sion of the Boltzmann equation, an equation coming from the kinetic
theory of gases. The LBM shows several advantages : it is simple, fast
(especially on parallel processors, see chapter 4), stable and it can ac-
curately solve for thermal and turbulent air-flows making it an ideal
candidate as the preferred numerical scheme in the real-time simula-
tion of indoor air-flow for this Ph.D. As a result, after introducing the
method in the next section, chapter 2 will give a detailed review of
the method, including some of its many variants, chapter 3 identifies
various boundary conditions and chapter 4 will discuss its optimised
implementation on a Graphics Processing Unit.

1.4 lattice boltzmann method (lbm)

microscopic

scale

mesoscopic

scale

LBM Navier-Stokes
Particle

Methods

velocity, pressuredistribution functions
particles position
and momentum

Figure 3: A fluid flow can be studied from various scales.

Three length scales (or time scales) can be defined for a fluid flow :
the microscopic scale, the macroscopic scale and between the two an
intermediary scale named : mesoscopic scale. These scales are repre-
sented in figure 3.

microscopic scale This is the scale of the molecules of fluid. At
this scale, particles have ballistic trajectories (Brownian motion)
with an average microscopic speed given by the temperature.
This is the scale that molecular dynamics and smooth particle
hydrodynamics try to replicate to some extent.

mesoscopic scale When the number of particles becomes large,
it becomes more convenient to average the particles over a vol-
ume. The kinetic theory studies the evolution of particle’s distri-
bution function. Distribution functions exist in phase space, for
instance f(~x, ~u, t) represents the number of particles per unit
volume having the velocity ~u within the volume surrounding

14

the location ~x and at time t. It is this mesoscopic viewpoint that
is taken by the LBM.

macroscopic scale This is the scale of the variations of vectors
fields (like the fluid speed ~u) and scalar fields (like the pressure
p or the temperature T). This scale is large enough compared
to the microscopic and the mesoscopic scale that the fluid can
be considered as a continuum substance, so that macroscopic
quantities are defined on every point ~x and every time t. For
instance, the speed can be written as ~u (~x, t) and the pressure as
p (~x, t). The behaviour of these macroscopic fields is described
accurately by the Navier-Stokes equation.

While it might seem strange that the LBM, focused on particle’s dis-
tribution function, can be used to simulate macroscopic flows, such
as indoor airflows, that are normally described by the Navier-Stokes
equation, the two methods do in fact produce the same results, and
with a similar accuracy, see chapters 6 and 7. Actually, it has been
shown that the Navier-Stokes equation can be derived from the lattice
Boltzmann equation through a low Mach number expansion known
as the Chapman–Enskog procedure [3].

It is important to note that the LBM is not a single method but
rather a category or group of methods that can be used to solve di-
verse partial differential equations (not just the incompressible Navier-
Stokes). This can make LBM confusing to the beginner, as it can
be difficult to choose which variant of the method to use for which
problem. On the other hand, it is this flexibility that make the LBM
so powerful allowing to simulate the incompressible Navier-Stokes
equation for isothermal single phase flow but also other problems
like multiphase flows using an interaction potential or completely
different problems such as solving the light transport equation [4, 5]
or the Schrödinger equation for quantum dynamics [6].

One of the strong point of LBM compared to traditional CFD (based
on Navier-Stokes) is that it does not require to solve a Poisson equa-
tion for the pressure. This allows the LBM to be intrinsically local,
i.e., each node can be computed independently from its neighbours,
which in turn results in very high performance when implemented on
a massively parallel processor like a GPU (see next section). A down-
side though, is that it comes at the price of a generally less accurate
pressure field and small variations in density that can cause pressure
waves. In this regard, the LBM is an artificially compressible scheme
to solve the incompressible Navier-Stokes equation, rather like the
artificial compressibility method (ACM) [7].

On the other hand, one of the downsides of LBM is its youth com-
pared to most other numerical methods in CFD. A direct consequence
of that is that the LBM still requires some development work (for in-
stance in the modelling of the turbulence) as well as a serious work
of classification and standardisation. Notably on the implementation of

15

the boundary conditions or on the process of unit conversion which
is too often overlooked (that is the process of transforming the macro-
scopic variables defining a problem into an initial state and boundary
conditions for the distribution functions used in the simulation).

The LBM is a very active field of research, and as such, there are
two yearly international conferences dedicated to it, hosted by differ-
ent universities each year. The Discrete Simulation in Fluid Dynam-
ics9 (DSFD), which is more focused on the theoretical development
of the method. And the International Conference for Mesoscopic
Methods in Engineering and Science10 (ICMMES) which features rel-
atively more engineering-focused applications. In the United King-
dom, the UK Consortium on Mesoscale Engineering Science11 (UK-
COMES) aims to bring together the expertise from multiple univer-
sities in the UK and to maintain DL_MESO12, a simulation package
based on LBM (free for academics).

Commercial LBM software

Due to its originality and youth, the LBM is not yet very popular
amongst CFD engineers, as a result there are only a few commercial
CFD software based on LBM.

ultrafluidx
13 : developed by the German company FluiDyna

GmbH which also develops an SPH software, a finite volume
software and a library for GPU acceleration of OpenFOAM. The
company is investing in GPU computing and all its software
feature GPU acceleration, allowing large performance increase.
The ultraFluidX software is mostly dedicated to the simulation
of airflows around moving vehicles, it features turbulence mod-
elling, a mesh refinement technique and it allows for in-situ
visualisation.

powerflow
14 : developed by the American company Exa Corpora-

tion and also focuses on the simulation of airflows around vehi-
cles. The company product line include a tool to study the noise
created by the interaction of the air and the moving vehicle and
a tool for thermal management as well as several dedicated soft-
ware for pre or post processing.

xflow
15 : developed by the Spanish company Next Limit S.L which

also develops fluid simulation software for the graphics indus-

9 http://www.dsfd2015.ed.ac.uk/home
10 https://www.icmmes.org
11 http://www.ukcomes.org/
12 http://www.stfc.ac.uk/SCD/support/40694.aspx
13 http://www.fluidyna.com/content/ultrafluidx
14 https://www.exa.com/powerflow.html
15 http://xflowcfd.com/

16

http://www.dsfd2015.ed.ac.uk/home
https://www.icmmes.org
http://www.ukcomes.org/
http://www.stfc.ac.uk/SCD/support/40694.aspx
http://www.fluidyna.com/content/ultrafluidx
https://www.exa.com/powerflow.html
http://xflowcfd.com/

try and a physically based image renderer for architecture ap-
plications. The solver is based on the factorised central moment
LBM and features an LES turbulence model (with special wall
modelling). It allows moving boundaries with adaptive wake
refinement and can simulate multiple fluid physics such as com-
pressibility, thermal fluctuations, turbulence, multiphase flows,
etc...

palabos
16 : Palabos is an open-source solver developed by the a

commercial company FlowKit Ltd. from Switzerland. It has
a reasonably large community from academia with an active
forum17 and a wiki18 full of useful information for beginners
looking to get started with LBM. The source code is written
in the C++ programming language and relies heavily on tem-
plates for compile time optimisation. It features a large variety
of models such as multi-phase/free-surface flow, thermal flow,
fluid-particle interaction and immersed moving object. It uses
a multi-block technique for mesh refinement and can scale well
with the number of cores, however it does not feature GPU ac-
celeration.

Due to the simplicity of its algorithm LBM also spawned a large
amount of open-source implementations, usually developed by a sin-
gle person and thus not very well maintained and limited in reach.
Nonetheless, the Sailfish19 project is particularly interesting as it uses
Python (a scripting language) to maintain the ease of use and gener-
ates an compilable code (C or CUDA) to achieve high performances,
and it works on GPU. A similar approach was used for the develop-
ment of the simulation code for this Ph.D.

1.5 graphics processing unit (gpu)

The GTX Titan X
from NVIDIA.
With 6 teraFLOPS
of compute power,
it is amongst the
fastest computer
chip to date.
Photo: NVIDIA.

A graphics card, also known as graphics processing unit, or GPU for
short, is a recent type of processor that focuses on parallel computing.
Traditionally, this type of computing device was found in video game
consoles and in gaming PC to accelerate the graphics computations.
Their functioning is significantly different to that of a central pro-
cessing unit (CPU) which handles of all of a computer’s processes.
While the CPU has to handle a large variety of tasks in a iterative
way, the GPU operations are more specialised and done in parallel
so that every pixels of the display is computed at the same time, for
instance. Over the last fifteen years, the architecture of the GPU has
evolved independently from that of the CPU and they are nowadays

16 http://www.palabos.org/
17 http://www.palabos.org/forum/
18 http://wiki.palabos.org/
19 http://sailfish.us.edu.pl/

17

http://www.palabos.org/
http://www.palabos.org/forum/
http://wiki.palabos.org/
http://sailfish.us.edu.pl/

much more powerful than their CPU counterpart. Both in term of
raw compute power, as they pack a massive amount of cores (a few
thousands versus a dozen for a CPU), but also in term of memory
bandwidth, that is the speed at which data can be accessed, using
their own dedicated memory. They can come in multiple forms or
shape, size, performance and price, but overall they are more inter-
esting than CPUs in term of performance per watt (power usage) and
performance per price.

On the other hand, a program needs to be written carefully in a
special programming language in order to run efficiently on a GPU,
it is not possible to just run a program compiled for a CPU. Even
so, the LBM can be implemented very efficiently on the GPU (as de-
scribed in chapter 4), achieving a performance of more than a billion
cell updates per second for a 3D problem, opening the door to the
simulation of complex indoor airflows in real-time.

1.6 objectives of the thesis

This thesis is in line with two research themes from two different insti-
tutes at the University of Leeds. Namely the Institute of Thermoflu-
ids in the school of Mechanical Engineering looking at the thermal
management of data centres and the Institute for Public Health and
Environmental Engineering with an interest on the control and the
optimisation of hospital ventilation.

The goal of this project is to develop a real-time capability for the
simulation of thermal and turbulent indoor air flows, running on a
single (high-end) desktop computer.

To this purpose, the lattice Boltzmann method is used as the main
numerical method for the solver, as it is more efficient than methods
that discretise the Navier-Stokes equation, while being as accurate.

Moreover the solver is implemented and optimised on a GPU, al-
lowing a computational speed increase of about two orders of magni-
tude compare the same implementation on the CPU.

The software needs to be able to handle the complex geometries
of indoor environment as well as being able to accurately model the
thermal and turbulent fluid behaviours while maintaining the real-
time capability. In addition, it needs to provide a facility for an easy
definition of the fluid flow problem with its geometry and appropri-
ate boundary conditions together with an in-situ visualisation tool
to allow for the real-time study of the flow as it is simulated and to
allow for computational steering from user inputs.

The finished software could have multiple applications in engineer-
ing but two applications are of particular interest. (1) The prediction
and control of thermal loads in data centres (see section 7.3) as well as
the optimisation of the ventilation system design in order to reduce
the cost of the cooling. The tool could be combined one day with sen-

18

sors and actuators located inside a data centre to allow for dynamic
adaptive cooling based on the servers load and the temperature pro-
file across the room. (2) The simulation of the ventilation in hospital
wards (see section 7.4) in order to improve the thermal comfort of the
patients and predicting the transport of pollutants (such as dust, bac-
teria and viruses) in the hope of creating one day smart hospitals that
would be able to respond quickly to the spread of a contamination.

1.7 thesis outline

Chapter 2 of the thesis provides an extensive description of the field
of LBM in its current state, with details on multi-physics modelling
(multi-phase or thermal coupling), on improved collision operators
for increased stability, on turbulence modelling and on techniques to
approach non-uniform grids.

Chapter 3 then extend the description with an important discus-
sion on the issues of initial and boundary conditions that any LBM
implementation must deal with.

Chapter 4 introduces the graphics processing unit and the concepts
of parallel programming. It describes the implementation of each
LBM model on the GPU and their optimisation in order to achieve
the highest computational throughput. This implementation is then
tested in chapter 5 for its performances and chapter 6 for its accuracy
against various benchmark problems.

Chapter 7 applies the described software and algorithms to the
simulation of indoor airflows by looking at a benchmark room for
the ventilation and at a the modelling of a small data centre.

Finally, chapter 8 showcases how the program has the potential
to be applied to a wider range of applications and presents some
results on multiphase flows, on fluid-structure interactions and on
the parameter search for enhancing the stability in some moment-
based models.

19

2
T H E L AT T I C E B O LT Z M A N N M E T H O D

2.1 introduction

This chapter delves into the lattice Boltzmann method (LBM), its ori-
gins as a cellular automaton, its foundations in kinetic theory, and the
general framework of the method; more details on the algorithm and
boundary conditions will be given in the next chapter. The current
chapter is an attempt at a comprehensive classification of the large
variety of models developed over the years for multi-physics appli-
cations. It includes a presentation of the alternative collision opera-
tors designed to improve the stability and accuracy over the standard
LBM, as well as a discussion on some of the techniques for turbulence
modelling and mesh refinement, both important topics for indoor air
flows modelling.

2.1.1 Historical background

The Boltzmann equation (see details in section 2.1.3) describes gas
behaviour through the statistical distribution of fluid particles. In
1973, Hardy, Pomeau, and de Pazzis [8] had the idea to render both
velocities and locations of the particles discrete by using a cellular au-
tomaton, known nowadays as the lattice gas automaton. Later, in 1986, A cellular

automaton, like the
popular Conway’s
Game of Life [9],
consist of a regular
grid of cells, each
which a finite
number of states.
Complex behaviours
can emerge from the
simple updating
rules.

Frisch, Hasslacher and Pomeau [10] provided the first lattice gas
automaton that was able to recover the Navier-Stokes equation. They
showed that when the collision rules conserve mass and momentum,
and if the underlying lattice has a sufficient symmetry (at least hexag-
onal in two dimensions) then the lattice gas automaton can lead to the
Navier-Stokes equation in the macroscopic limit [11].

In order to fix the issue of the high statistical noise with the lat-
tice Boltzmann automaton (i.e. one of its main drawbacks), a new
model was first introduced by McNamara and Zanetti in 1988 [12]:
the Lattice Boltzmann Equation. The basic idea is simple: replace
the Boolean variables (corresponding to a single Boolean molecule)
of the cellular automaton by floating point variables (corresponding
to the distribution function of molecules). Then in 1989, Higuera et
al. [13, 14] showed that using a linearised form of the collision opera-
tor increases significantly the accessible Reynolds numbers.

While by then, the core of what would become the lattice Boltz-
mann method (LBM) was founded, a very significant progress has been
made over the last 25 years, both in term of the theory, applications
and performances. While the lattice gas automaton started as an em-

21

pirical model to replicate fluid flow behaviour, the theoretical foun-
dations of the LBM are now sound : it is now clear in which limits
the Navier-Stokes equations are recovered [15, 16, 17] and the role of
the artificial compressibility is better understood [7]. Many models
have been proposed [18, 19, 20, 21] to increase the accuracy and nu-
merical stability of the LBM over the original implementation. This
has somehow fragmented the LBM into many different models, as
section 2.4 tries to convey, so much that it seems necessary to address
the LBM as the lattice Boltzmann methods (with a plural). These
LBM(s) have been employed in many areas with success, such as
flows in porous media [22, 23], turbulent flows [24, 25, 26, 27, 28], mul-
tiphase flows [29], thermally driven flows [30, 31, 32, 33], compress-
ible flows [34], electronic kinetic flows [35, 36], magnetohydrodynam-
ics [37], non-Newtonian flows [38], soft matter systems [39], shallow
water flows [40], reaction and combustion [41], radiation heat trans-
fer [42], relativistic hydrodynamics [43], quantum mechanics [6] and
so on.

The last twenty years have seen a massive improvements on the at-
tainable computational throughput as the machines, algorithms, and
implementations have evolved [44, 21, 45]. In the recent years, the rise
of the graphics processing unit as a general purpose computing plat-
form has opened the road to accurate fluid simulation in real-time
and in an interactive way [46].

Despite the scepticism at its beginnings (and some that still per-
sists today), the LBM is now accepted by the scientific community
as a viable way to simulate fluid flows, although its adoption by the
engineering community is rather limited, mostly due to the lack of
established commercial software. Its numerical stability, physical ac-
curacy, adaptivity to multiple problems and its numerical efficiency
on multi-core architecture makes it the ideal candidate for the future
generation of fluid flow solvers [47].

2.1.2 Kinetic Theory

Kinetic theory is the branch of statistical mechanics dealing with the
dynamics of non-equilibrium processes and their relaxation to ther-
modynamic equilibrium. At its foundation, the theory is based on
the molecular hypothesis of matter, which postulates that matter is not
continuous but is composed of a large (but finite) number of small
bodies, called molecules. The theory explains macroscopic properties
of gases, such as pressure, temperature, viscosity, thermal conduc-
tivity, etc., by considering the microscopic motion of the constituent
molecules.

In ordinary mechanics, the aim is usually to determine the events
that follow from prescribed initial conditions. This approach is not
viable for the kinetic theory of gas because (i) the detailed state of mo-

22

tion of every molecules at an initial instant is unknown and (ii) the
sheer number of molecules is too large (in the order of the Avogadro The Avogrado

constant, that is the
number of molecules
in one mole, is of the
order of 1023 which
largely exceeds the
capacity of even the
largest super-
computers in the
world (around 1016

flops).

constant) to allow to follow the subsequent motion of all the many
molecules that compose a gas. Hence kinetic theory does not even at-
tempt to consider the fate of individual molecules, but instead is only
interested in their statistical properties, such as the mean number,
momentum or energy of the molecules within an element of volume,
averaged over a short time interval. This point of view is necessary
because of the computational limitations but it is also physically ade-
quate, as experiments only measure such averaged properties.

Hence, in statistical mechanics a gas is described by the distribution
function of its molecules f (~x, ~u, t) which represents the probability of
finding a molecule at the position ~x, with the velocity ~u, at the time
t. Macroscopic laws of the evolution of gases can be predicted by
the molecular description of kinetic theory and one its main success
was to predict the second law of thermodynamics, one of the most
fundamental laws of nature which states that the entropy of a closed
system is always increasing.

2.1.3 The Boltzmann Equation

The Boltzmann Equation is the cornerstone of kinetic theory, it de-

Ludwig Eduard
Boltzmann
(1844–1906) was an
Austrian physicist
whose greatest
achievement was in
the development of
statistical mechanics,
which explains and
predicts how the
properties of atoms
determine the visible
properties of matter.
Image source: The
Dibner Library
Portrait Collection -
Smithsonian
Institution Libraries.

scribes the evolution of the distribution function f(~x, ~u, t) in terms of
micro-dynamic interactions. This equation was derived in 1872 by the
Austrian scientist Ludwig Boltzmann. And although this equation
was established more than a century ago, the formal mathematical
proof of global existence and rapid decay to equilibrium of classical
solutions was only achieved recently, in 2011 [48].

The Boltzmann Equation for the one-body distribution function
f(~x, ~u, t) can be written as:

(
∂t + ~u.∇~x +~F.∇~p

)
f(~x, ~u, t) = C12 (6)

where the left-hand side represents the streaming motion of the
molecules along the trajectories associated with the force field ~F (a
straight line if ~F = ~0) and C12 represents the effect of (two-body)
intermolecular collisions taking molecules in and out of the streaming
trajectory. It is assumed that encounters with other molecules occupy
a small part of the lifetime of a molecule, this implies that only binary
encounters are important.

The term C12 represents the collision integral of two particles, hence
the name collision operator; it acts only on the velocity ~u and is local
in the position ~x and time t. While the Boltzmann collision operator
can take various forms, as the Boltzmann Equation is applicable to a
large variety of systems, for a dilute gas of point-like and structure-

23

less molecules interacting via a short-range two-body potential, it can
be expressed as:

C12 (~u1) =

ˆ
R3

ˆ
S2
K (|~u1 − ~u2| , θ)

(
f
(
~u ′1
)
f
(
~u ′2
)
− f (~u1) f (~u2)

)
dΩd~u2

(7)
A pair of particles

before and after
collision.

where ~u1, ~u2 and ~u ′1, ~u ′2 are the velocities of a pair of particles be-
fore and after collision. The Boltzmann collision kernel K (|~u1 − ~u2| , θ)
only depends on the relative velocity |~u1 − ~u2|, and the deviation an-
gle θ.

2.1.4 The BGK Approximation

In order to simplify the Boltzmann equation (with the goal of finding
numerical or analytical solutions) without spoiling the physics, Bhat-
nagar, Gross and Krook introduced in 1954 [49] a single relaxation
time operator to replace the complex non linear integral collision op-
erator. They stated that the distribution function f (~x, ~u, t) is close to a
local equilibrium distribution function f(eq) (~x, ~u, t) and that it decaysThe notion of

locality is very
important to the

method, as it allows
for an efficient

parallel
implementation (see
Chapter 4 for more

details)

towards this equilibrium with some characteristic time τ.

CBGK (f (~x, ~u, t)) = −
f (~x, ~u, t) − f(eq) (~x, ~u, t)

τ
(8)

The lattice BGK equation drastically simplifies the collision opera-
tor by assuming a single value for the relaxation scale τ, which should
be in principle a functional of f (~x, ~u, t). Some models opt instead for
a collision involving multiple relaxation times (see next section), but
due to its simplicity, the lattice BGK equation has become the most
popular lattice Boltzmann model. While simplified, collision operator
in (8) retains some generality, as the local equilibrium f(eq) (~x, ~u, t) is
not linear, and can take many forms. In practice, the lattice BGK equa-
tion can be used to simulate fluid dynamics (ie. the Navier-Stokes
equation), while equation (7) is only valid for dilute gases.

In the simulations, the relaxation time (τ) acts like a kinematic vis-
cosity (ν) . When it is reduced, the distribution relaxes faster toward
the equilibrium and the fluid evolves quicker, this is characteristic of
high Reynolds number flows, i.e. low viscosity. Hence, it is sensible
that the viscosity must vary like the relaxation time. It can be shown
through a Chapman-Enskog expansion [3] that on a regular lattice
with spacing ∆x and constant time-step ∆t, there is indeed a linear
relation between them:

ν =
∆x2

3∆t

(
τ

∆t
−
1

2

)
. (9)

It is common practice to consider instead the relation between the
dimensionless quantities, i.e. ν = (τ− 1/2) /3. Hence, the dimension-
less relaxation time τ must always be higher than 1/2 in order for

24

the viscosity to stay positive, and numerical instabilities can arise as
τ approaches 1/2 (i.e. inviscid flows).

The above relation naturally comes out of the Chapman-Enskog
expansion in which the Navier-Stokes equations (with an additional
compressible term) are recovered from the lattice BGK equation,

∂ρ

∂t
+∇ · (ρ~u) = 0, (10)

∂ (ρ~u)

∂t
+∇ · (ρ~u~u) = −∇p+ ν

(
∇2 (ρ~u) +∇ (∇ · (ρ~u))

)
, (11)

with an error proportional to O
(
Ma3

)
in space [3] and propor-

tional to O (Ma · dt) in time [50], where Ma = u/cs is the Mach
number of the system, p = c2sρ is the pressure, cs = ∆x/(

√
3∆t) is

the speed of sound.

2.1.5 Multiple Relaxation Times

The multiple-relaxation-time (MRT) lattice Boltzmann equation (some-
times referred to as the generalised LBE) was introduced in 1992 by
d’Humières [51] to overcome some of defects of the BGK model, and
it has been shown to be superior in terms of accuracy and stabil-
ity [20]. The principle of MRT is to perform the collision in the space
of moments rather than the usual space of distribution functions, this
introduces new relaxation times (one for each independent moment)
that can be adjusted to tune both stability and accuracy.

The collision equation for the MRT model can be expressed as

CMRT (f) =M
−1 ·S ·

(
m−m(eq)

)
(12)

where m and m(eq) represent respectively the velocity moments of
the distribution functions f and their equilibria, M is a q× q matrix
which linearly transforms the distributions functions f to the velocity
moments m, m =M · f , and S is a q× q diagonal relaxation matrix,
where q is the number of discrete lattice velocities (see section 2.2.1).

Although the MRT model was introduced around the same period
as the BGK model, the latter has become the most popular lattice
Boltzmann model in spite of its well-known deficiencies. Although
the MRT overcomes some defect of the BGK, it comes at a price : on
top of the higher complexity, the choice for the high order moments
in not unique and depends on the lattice considered [20], and the
values for the free relaxations rates needs to be optimised for each
problem (an optimal choice suiting any simulation task is unknown,
see section 8.5). Moreover, taking moments in a static frame of ref-
erence and relaxing them at different rate can introduce violations
of Galilean invariance that are not present in the BGK model (see
section 2.4.2).

25

In a simplification attempt to allow for a better control of the ef-
fect of the relaxation rates on the overall dynamics, a two-relaxation
times (TRT) model was introduced by Ginzburg in 2009 [52, 53]. This
model only allows the two most important relaxation rates in the LBE;
it retains some of the advantages of the MRT model in terms of ac-
curacy and stability, while maintaining the simplicity of implemen-
tation and hence the computational efficiency. The idea behind the
TRT model is that since each velocity vector ~ei has an opposite one
~eı̄ = −~ei, any pair of population with opposite velocities (~ei,~eı̄) can
be decomposed into its symmetric (even) and anti-symmetric (odd)
components, written respectively as f+ and f−:

fi = f
+
i + f−i , fı̄ = f

+
i − f−i , f±i =

1

2
(fi ± fı̄) , (13)

f+i is always positive and can be seen as the average probability of
finding particles moving along the axis ~ei in any direction, while
f−i can be either positive or negative and depicts the average direction
of motion along that axis.

The TRT collision can then be expressed as:

CTRT (fi) = λe

(
f+i − f

(eq)+
i

)
+ λo

(
f−i − f

(eq)−
i

)
(14)

where λe and λo are the two relaxation parameters respectively
associated with the even and odd equilibrium distribution functions
f
(eq)+
i and f(eq)−

i .

In a more recent paper, Karlin et al. [54] revisited the MRT model
and introduced a new two-step relaxation operator that gives a com-
promise between the enhanced stability and accuracy of the MRT and
the simplicity of the BGK scheme.

2.2 general framework of the lbm

As a numerical method, the framework of the LBM is closely linked
to its numerical implementation. This section introduces the concept
of space and time discretisation that is inherent to any CFD method but
is achieved in a slightly different manner in LBM. Then the general
LBM algorithm is formally presented, as a numerical framework to
solve the lattice Boltzmann equation introduced in the previous sec-
tion. The two key steps of the algorithm, i.e. the streaming and colli-
sion steps, are presented here in a general form that is not dependent
on any of the specific LBM model introduced throughout the chapter.
More details on the algorithm and boundary condition will be given
in the next chapter.

26

2.2.1 Space and Time Discretisation

All CFD models rely on the discretisation of the considered quanti-
ties (i.e. velocity, pressure, etc.). While these quantities possess an
infinite degree of freedom in nature, because they are spatially ex-
tended fields, computers can only store a finite amount of variables,
and represent them with a finite accuracy. These fields must therefore
be represented by their values on a finite set of points distributed in
space, this is known as space discretisation.

A regular grid
typically used for
LBM.

The simplest and most often used one is a regular lattice with fixed
grid spacing (∆x), related to the resolution (N) along the length (L) by
∆x = L/(N− 1). The location (~xijk) of a simulation node on the lattice
is a multiple of the lattice spacing ∆x in each of the dimensions,

~xijk = i∆x êx + j∆x êy + k∆x êz, (15)

where (êx, êy, êz) is the unity base of the tree-dimensional space, and
i, j,k = 0 · · ·N − 1. A scalar field φ(~x) is hence represented by N3

values φijk that are numerical approximation of φ(~xijk).
The time, normally a continuous quantity in nature, is discretised

in the same manner by a set of equi-distributed finite time steps
tn = n∆t. A time varying field φ(t) is replaced by a numerical ap-
proximation φn ≈ φ(tn). Moreover, the cumbersome index notation
will be avoided in the remaining of this thesis for the more readable
notation with parentheses, i.e. the expression φ

(
~xijk, tn

)
is used to

represent the numerical approximation (not the exact value) of φ at
the position ~xijk and time step tn. Alternatively, the notation ~x might
be used in place of ~xijk when the indices are of little importance
and φ(i, j,k, t) might be used when the values of the indices needs
to be specified. Finally, although the distribution functions f (~x, t)
are always dependent of space and time, (~x, t) might be neglected to
simplify the expression.

The above discretisation and writing conventions are reasonably
standard in the field of CFD. Where the LBM distinguish itself is in
the discretisation of the velocities. In the Boltzmann equation (6), the
velocities ~u can take an infinite number of directions and magnitudes,
while in the LBM these velocities are restricted to a finite set of direc-
tions (V) that includes the zero velocity ~e0 = ~0 and the links between
a node and its closest neighbours. To insure isotropy, this set must be
symmetric and contain a sufficient amount of directions1. A lattice
with q velocities in d dimensions is usually denoted as DdQq, see
some examples in figure 4 and Appendix A.

In summary, the Boltzmann equation is simulated numerically by
discretising the system in both space and time, and major simplifica-
tions are made:

1 A minimum amount of velocity directions for two and three dimensional simulation
is typically 9 and 19 (respectively). Lattices with more directions will achieve a better
isotropy.

27

(a) D2Q9 (b) D2Q25 (c) D3Q19

Figure 4: Example of some lattice structure in two and three dimensions.

• the time evolves in finite time-steps ∆t,

t ∈ ∆tN (16)

• particle positions are confined to the nodes of a lattice,

~x ∈ ∆xNd (17)

• particle velocities are reduced to a finite set V, made from the
links between lattice sites,

V = {~ei}i∈{0,...,q−1} (18)

2.2.2 Algorithm

The attractiveness of the LBM comes from the simplicity of its algo-
rithm. The velocity distribution functions are discretised in space,
velocity and time as explained in the previous section. The index i is
used to match each distribution function fi (~x, t) to its corresponding
discrete velocity ~ei, the bold notation f represent a column vector
regrouping the q distribution functions,

f(~x, t) =
(
f0 (~x, t) , . . . , fq−1 (~x, t)

)ᵀ , (19)

where ᵀ is the transpose operation. The discrete lattice Boltzmann
equation can then be written as

f (~x+~ei∆t, t+∆t) − f (~x, t) = Ω (f (~x, t)) . (20)

In the above equation, the left hand side represents the streaming
motion of the particles stored in fi along the direction ~ei between the
time t and t+∆t, and the right hand side is the change in f due to
the collision operator Ω. As a result, any lattice Boltzmann model
solving for the LBE is implemented with the following steps:

28

1. Initialisation.
The flow requires some initial state at the beginning of the sim-
ulation, it is common practice to initialise it in a rest state (zero
velocity) but the choice of initial condition can influence the out-
come of the simulation (see example in section 6.3.3).

2. Streaming.
The velocity distribution functions are streamed along each lat-
tice link as in figure 5. This operation allows the diffusion of
the information from a node to its neighbour and it can be un-
derstood as the equivalent to the advection term in the Navier-
Stokes equation. But unlike the advection in classical CFD, the
streaming step in LBM is an exact operation, it does not involve
any interpolation and does not introduce any numerical viscos-
ity.

3. Collision.
The details of this step are highly dependent on the model, but
in general the macroscopic moments (e.g. velocity and density)
are computed at each node from the local (streamed) distribu-
tion functions. These are then used to compute a local equi-
librium and the distribution functions are relaxed towards it
(either with BGK or MRT). The locality of the collision-step al-
lows to update each node independently and result in a highly
efficient parallel algorithm (see chapter 4).

4. Boundary.
Clearly the streaming step as depicted in figure 5 is only valid
for the bulk of the simulation domain, on the edges some distri-
bution functions are leaving the simulation domain and some
undefined ones are entering. It is the role of the boundary
condition to properly define the distribution functions entering
the domain so that the recovered macroscopic quantities can be
specified. See chapter 3 for more details.

2.3 lbm for multi-physics applications

As mentioned in the introduction, the lattice Boltzmann method has
been applied with success to many types of flow problems and en-
gineering applications. The traditional BGK LBM is only valid for
single phase isothermal incompressible flows but the collision opera-
tor and, in particular, the form of the equilibrium distribution func-
tion can be modified for different flow properties or even for different
macroscopic equations.

29

Figure 5: Location of the density distribution functions before and after the
streaming step on a D2Q9 lattice. The velocities are drawn at half
their actual length to avoid overlapping.

2.3.1 Standard LBM Model

While it is difficult to track down an official LBM model, what is
referred to in this section as the standard model uses the equilibrium
function first introduced by Qian et al. in 1992 [55] using the BGK re-
laxation scheme. It is probably the most used model in the literature
and it is designed to simulate an isothermal incompressible single
phase flow; although it introduces a small artificial compressibility
term in the macroscopic Navier-Stokes equation (see comment in sec-
tion 2.4.3). The next two sections discuss how it can be modified to
remove the artificial compressibility or to simulate fully compressible
fluids.

In this model, the macroscopic density and velocity are recovered
from the set of velocity distribution functions at each node f (~x, t).
The density is simply the sum of all the distributions

ρ (~x, t) =
q−1∑
i=0

fi (~x, t) , (21)

where q is again the number of velocity directions. The momentum is
the average of the microscopic velocities ~ei weighted by their respec-
tive distribution functions fi. Once the density is known, the velocity
can be obtained from the momentum as

~u (~x, t) =
1

ρ

q−1∑
i=0

fi (~x, t)~ei . (22)

As explained previously, in the BGK approximation, the collision
operator Ω (f) is written as the relaxation of the distribution func-
tions f (~x, t) towards a local equilibrium f (eq) (~x, t) with the character-

30

istic relaxation time τ. Hence, each velocity direction i ∈ {0, . . . ,q− 1}
obeys the following discrete lattice Boltzmann equation

fi (~x+~ei, t+ 1) = fi (~x, t) −
fi (~x, t) − f(eq)

i (~x, t)
τ

, (23)

where the left hand side is a simple streaming operation.
The local equilibrium f (eq) (~x, t) is determined as low Mach num-

ber expansion of the Maxwell-Boltzmann distribution [56], up to the
second order in the velocity ~u and takes the general form

f
(eq)
i =ρ (2πKBT)

−D/2 e
−

(~ei−~u)2

2KBT (24)

'ρwi
(
A+B (~ei · ~u) +C (~ei · ~u)2 +D (~u · ~u)

)
, (25)

where A, B, C, D are constants to be determined and {wi} are lattice-
dependent constants that depends on the magnitude of {~ei} (but not
its direction). The above expression is only valid for small velocities,
i.e. small Mach numbers u/cs, where cs = 1/

√
3 is the dimensionless

speed of sound. The constants are found by imposing the constraints
of conservation of mass and momentum during the collision process,
i.e. the zeroth and first order moments of f(eq)

i must verify

q−1∑
i=0

f
(eq)
i = ρ ,

q−1∑
i=0

f
(eq)
i ~ei = ρ~u . (26)

The higher order moments of f(eq)
i must be chosen so that the re-

sulting continuum equations correctly describe the hydrodynamics of
the model. This forces the second order moment to be

q−1∑
i=0

f
(eq)
i eiαeiβ = Pαβ + ρuαuβ , (27)

where Pαβ is the pressure tensor.
Using all of the above constraints, the constants can be computed

and the resulting equilibrium is

f
(eq)
i = ρwi

(
1+ 3 (~ei · ~u) +

9

2
(~ei · ~u)2 −

3

2
(~u · ~u)

)
, (28)

the values of the weighting coefficients depends on the lattice struc-
ture and are given in Appendix A. For instance, for the D2Q9 lattice,
the weights are w0 = 4/9 for the rest velocity, w1−4 = 1/9 for the
main axes and w5−8 = 1/36 for the diagonals.

2.3.2 Incompressible Model

The equilibrium proposed in the previous section recovers the Navier-
Stokes equations with an additional compressibility term, as in equa-
tion (11). If the fluctuations in the fluid density are small, then the

31

density can be considered constant i.e. ρ ≈ ρ0 and equation (11)
becomes the standard incompressible Navier-Stokes equations,

~∇ · ~u = 0 ,

∂~u

∂t
+ ~u · ~∇~u = −

~∇p
ρ

+ ν~∇2~u .

Hence, the Navier-Stokes equation can be recovered from the stan-
dard BGK LBM on the assumption that (i) the Mach number is small
and (ii) the density has small spatial and temporal fluctuations. In
some cases, the solution of the BGK LBM might depart from the di-
rect solution of the incompressible Navier-Stokes equations due the
effects of the compressibility.

Another model [57] proposed to eliminate the compressible effects
by directly introducing the pressure into the equilibrium distribution
functions (in place of the density) in order recover exactly the in-
compressible Navier-Stokes equations, with no artificial compressible
term. The model, originally designed for a D2Q9 lattice, was later ex-
tended [58] for any DdQq lattice (hence for three dimensions). The
newly defined equilibrium takes the following form

f
(eq)
i = λip+ si (~u) , (29)

where si (~u) is the usual si (~u) = wi
(
1+ 3 (~ei · ~u) + 9

2
(~ei · ~u)2 − 3

2~u
2
)

,
and the parameters {λi} are determined by the constraints of conser-
vation of mass, momentum and second order tensor, that leads to

λi = 3wi, λ0 = 3 (w0 − 1) . (30)

For instance the coefficients for a D2Q9 lattice are λ0 = −5/3, λ1−4 =
1/3 and λ5−8 = 1/12.

The macroscopic variables for an incompressible fluid, i.e. the ve-
locity ~u and the pressure p, are given by

~u =
∑
i

fi~ei, p = −λ−10

(∑
i>0

fi + s0 (~u)

)
. (31)

The exact incompressible Navier-Stokes equations can be derived
from the above model through a multi-scale expansion. The physi-
cal meaning of fi in this model is different from that of the standard
LBM, here it is rather a Lagrangian variable than a distribution func-
tion and it can take negative values. Furthermore, the pressure is no
longer determined through the density by an equation of state any
more, instead the pressure is directly defined from f and can also
take negative values.

Another alternative form of equilibrium, is the so-called pseudo-
incompressible model first introduced by He and Luo in 1997 [3]. In

32

this model, it is assumed that the density is close to a constant ρ =

ρ0 + δρ that is substituted into the equilibrium as

f
(eq)
i = wi

(
ρ+ ρ0

(
3 (~ei · ~u) +

9

2
(~ei · ~u)2 −

3

2
~u2
))

, (32)

where the terms in δρ~u and δρ~u2 are neglected. The above equilib-
rium yields the exact incompressibility condition ~∇ · ~u = 0 for steady
flows, but otherwise propagates sounds waves in almost the same
way as the standard LBM, although at an incorrect speed [59]. More-
over, it has been shown to introduce some additional violations of the
Galilean invariance [60].

2.3.3 LBM for Compressible Flows

The standard LBM is only valid for slightly compressible flows (i.e.
quasi-incompressible) as the equilibrium distribution functions are
obtained as a low Mach number expansion of the Maxwell-Boltzmann
distribution. However, compressible flows problems often involve the
study of shock waves which happen at high Mach number.

For a compressible flow, the macroscopic energy density (ρE) must
be solved on top of the usual density, velocity and pressure, hence
the equilibrium must satisfy∑

i

1

2
f
(eq)
i eiαeiα =

1

2

(
ρ~u2 +Dp

)
= ρE . (33)

Several ways to construct new equilibrium distribution functions
that satisfy the above equation have been proposed in the literature.
For weakly compressible flows, i.e. still relatively small Mach num-
ber, it is possible to construct f(eq)

i from the same expansion as equa-
tion 25, but the coefficients are not constants, they are functions of the
velocity and energy [61, 62]. While these models are straightforward
extensions of the standard LBM, they require a large set of micro-
scopic velocities, they are limited in the range of specific-heat ratio
and Prandtl number as well as suffering for severe numerical instabil-
ity, even with MRT [63, 64] or with two coupled lattices [65].

Some alternative models have been suggested for the simulation of
compressible flows with the LBM [66, 67, 68, 69], including solving
for the discrete velocity Boltzmann equation using a finite volume
method [70] which has been applied to two- and three-dimensional
flows around an aircraft [71, 72]. Overall, compressible models for the
LBM are more complicated and further research efforts are needed to
tackle the current challenging issues.

2.3.4 Multiphase and Multicomponent Models

A multiphase fluid system involves phase interfaces (e.g. liquid and
gas) while a multicomponent system is mixture comprised of differ-

33

ent fluid species (e.g. water and oil). Furthermore, a multicomponent
fluid can be either miscible (e.g. tea and milk) or immiscible (e.g. wa-
ter and air) and a multiphase system can contain one or more fluid
components.

Many industrial processes involve multiphase and multicomponent
fluid flows, examples are inkjet printing [73], atomisation and spray
[74], digital rock physics for petroleum extraction [75, 76], microflu-
idics [77], etc. But because the macroscopic dynamics of these flows
is usually very complicated, traditional CFD models can encounter
difficulties with these systems. On the other hand, the LBM proposes
to recover the macroscopic behaviour of multiphase flows as a natu-
ral consequences of microscopic interactions among fluid molecules.
This feature is recognised as one of the main advantages of the LBM.

A variety of multiphase and multi-component models have been
established for the LBM from different viewpoints, as presented in
this section.

Colour Based Models

The first LBM model for multiphase flow was put forward by Gun-
stensen et al. in 1991 [78] as an improved version of the multiphase
lattice gas automaton [79]. In this model, each phase is represented
by a different set of distribution functions fr and fb, distinguished
by their respective colour (e.g. red and blue). The total distribution
function for the mixture, f = fr + fb evolves with an additional col-
lision operator Ωp (f) to model the perturbations that aroused by
interfacial tensions,

f (~x+~ei∆t, t+∆t) − f (~x, t) = Ω (f) +Ωp (f) . (34)

The inter-particle interactions are modelled by the local colour gra-
dient (~G) associated with the density differences between the two
phases (ψ),

ψ (~x, t) = ρr (~x, t) + ρb (~x, t) ,

~G (~x, t) =
∑
i

ψ (~x+~ei, t)~ei ,

Ωp = A|~G| cos (2θi) ,

(35)

where θi is the angle between ~ei and ~G, A is a parameter control-
ling the surface tension. In the bulk region, the colour gradient is
zero, and so is Ωp, hence the surface tension only takes effect in the
interfacial region, which is physically sound.

Once the total distribution is calculated according to equation (34),
the red and blue distributions need to be recovered through a re-
colouring process [78] to enforce the direction of the colour flux (~H =

ρr~ur − ρb~ub) to match that of the colour gradient ~G. During this
process, the fluid is driven to the bulk region with the same colour,
inducing the phase separation.

34

Modified colour models have been proposed [80, 81, 82, 83], includ-
ing its extension to miscible fluids [84], and these models have been
successfully applied to flows in porous media [81] and spinodal de-
composition [80]. However, the colour models are the earlier LBM
models for multiphase flows, they are based on a heuristical approach
rather than a physically correct description of the fluid.

Pseudo-Potential Models

In 1993, Shan and Chen [85] introduced a pseudo-potential to depict the
interaction force between fluid particles, and was later built upon by
several models [86, 87]. The pseudo-potential approach is the most
widely used LBM multiphase model due to its simplicity and versatil-
ity [29], furthermore it can be simply adapted to a multi-component
system through the use of multiple distribution functions [85, 88].

In this model, the force experienced by the particles of the compo-
nent σ at the position ~x from the particles of σ̄ at ~x ′ has the following
form,

~F
(
~x,~x ′

)
= −G

(∣∣~x−~x ′
∣∣)ψσ (~x)ψσ̄ (~x ′) (~x ′ −~x

)
, (36)

where G is a function controlling the interaction strength depending
on the distance |~x−~x ′| (usually a Green function) and ψ is a function
that only depends on the local density, which is implicitly a measure
of of the average distance between two particles. This is contrary to
continuum physics, where the detail of the interaction is given as a
function of the distance between two interacting particles (i.e. van
der Walls force). The function ψ (ρ (~x)) is called the effective mass [89].
The components σ and σ̄ can be different or the same. The total force
acting on the particles at ~x is the sum of all the interaction forces with
the neighbours,

~F (~x) = −ψ (~x)
∑

G
(∣∣~x−~x ′

∣∣)ψ (~x ′) (~x ′ −~x
)

. (37)

When only the closest neighbours on the lattice are considered, the
force can be written as,

~F (~x) = −Gψ (~x)

q∑
i=1

w
(
|~ei|
2
)
ψ (~x+~ei)~ei , (38)

where G is a scalar denoting the interaction strength, positive and
negative values lead to a repulsive and attractive force between parti-
cles, respectively. w(|~ei|

2) are some weights used for the calculation
of the force and they are different from those in equation (28). The
effective mass in the work of [85] has the following form,

ψ (~x) = ρ0

(
1− exp

(
−
ρ (~x)

ρ0

))
, (39)

where ρ0 is a normalisation constant usually chosen as unity.

35

The interaction force needs to be included into the LBM, it can
be achieved in different ways with various degrees of accuracy and
stability [90] but in the original model of [85] it is achieved by modify-
ing the velocity used in the calculation of the equilibrium distribution
functions,

~u(eq) (~x) = ~u (~x) + τ

(
~F (~x)

ρ (~x)
+ ~g

)
, (40)

where ~g is the acceleration due to gravity. In the case of a multi
components system, the common velocity ~u in the above equation
becomes a weighted average of the velocity of each phase

~u =

∑
σ
ρσ~uσ
τσ∑

σ
ρσ
τσ

. (41)

This force modifies the equation of state from that of an ideal gas,
i.e. PV = nRT , to

P (~x) = ρ (~x) c2s +
Gc2s
2
ψ (~x)2 . (42)

It is possible to rearrange the expression for ψ in order to get a
more realistic equation of state, and this can significantly enhance
the attainable density ratio [91].

Free Energy Models

Another approach is the free energy model proposed by Swift et al.
in 1996 [92] in which phase effects are directly introduced into the col-
lision process by considering a generalized equilibrium distribution
function that includes a non-ideal pressure tensor term.

The free energy of a one-component, two-phase fluid can be ex-
pressed by a Landau free energy functional [93],

Ψ =

ˆ
V

(
ψb (ρ) +

κ

2
(∂αρ)

2
)
dV − µb

ˆ
V

ρdV +

ˆ
S

ψs (ρs)dS , (43)

where ψb describes the bulk free energy of the system, κ2 (∂αρ)
2 mod-

els the free energy associated with any interfaces in the system and
the parameter κ is related to both the surface tension and interface
width, the second integral correspond to a Lagrange multiplier that
conserves the total mass of the system and the last integral describes
the interaction between the fluid and the solid surface.

Based on the free energy Ψ, the pressure (p) and thermodynamic
pressure tensor (P), which considers the contribution of the interface,
can be written as

p (~x) = ρ
δΨ

δρ
−Ψ = p0 − κρ~∇2ρ−

κ

2

(
~∇ρ
)2

, (44)

Pαβ = pδαβ + κ
∂ρ

∂xα

∂ρ

∂xβ
, (45)

36

where p0 = ρψ ′ (ρ) −ψ (ρ) is the equation of state.
The free energy model uses the same relaxation scheme as the stan-

dard LBM, see equation (23), but the equilibrium f
(eq)
i has an ad-

ditional dependency on the density gradient and is constructed to
enforce the following macroscopic constraints,∑

i

f
(eq)
i = ρ ,

∑
i

f
(eq)
i ~ei = ρ~u ,∑

i

f
(eq)
i eiαeiβ = Pαβ + ρuαuβ + ν

(
uα∂βρ+ uβ∂αρ+ δαβuγ∂γρ

)
.

(46)
As for the standard LBM, the equilibrium is also a power series

expansion in the velocity ~u, and can be expressed as

f
(eq)
i = Ai +Bi (~ei · ~u) +Ci~u2 +Di (~ei · ~u)2 +G : ~ei~ei , (47)

and according to the constraints in equation 46, the coefficients can
be obtained as

Ai = wi

(
p0 − κρ~∇2ρ−

κ

2

(
~∇ρ
)2

+ ν~u · ~∇ρ
)

,

Bi = wiρ, Ci = −
wiρ

2
, Di =

3wiρ

2
,

Gαα =
1

2

(
κ (∂αρ)

2 + 2νuα∂αρ
)

,

Gαβ =
1

16

(
κ (∂αρ)

(
∂βρ

)
+ νuα∂βρ+ νuβ∂αρ

)
.

(48)

With the above equilibrium, the recovered hydrodynamic equations
for the free energy model are

∂ρ

∂t
+ ~∇ · (ρ~u) = 0 , (49)

∂ (ρ~u)

∂t
+ ~∇ · (ρ~u~u) = −~∇ ·P + ν~∇2 (ρ~u) + ~∇

(
λ~∇ · (ρ~u)

)
−

(
τ−

1

2

)
∂p0
∂ρ

~∇ ·
(
~u~∇ρ+

(
~∇ρ
)
~u
)

, (50)

where the last term represents the surface tension and

ν =
1

4

(
τ−

1

2

)
, λ =

(
τ−

1

2

)(
1

2
−
∂p0
∂p

)
. (51)

He-Chen-Zhang Model

A common issue with multiphase LBM model is that large density
gradient in the vicinity of the interface can lead to numerical instabil-
ity. To overcome this difficulty, He et al. [87] proposed a model that
treats the interface as a separate quantity using an index function φ.

37

They also introduced a change of variable in the distribution func-
tions so that these large gradients are cancelled by a small quantity
in the transformed equations.

The evolution of φ is described by a first set of distribution func-
tions, noted f , with the following discrete lattice Boltzmann equation

fi (~x+~ei∆t, t+∆t) − fi (~x, t) =

−
1

τ

(
fi − f

(eq)
i

)
− 3Γi (~u)

(
1−

1

2τ

)
(~ei − ~u) · ~∇ψ (φ) , (52)

where f(eq)
i = φΓi (~u) = φwi

(
1+ 3~ei · ~u+ 9

2
(~ei · ~u)2 − 3

2~u
2
)

and the
index function is defined as φ =

∑
i fi.

The external forces and surface tension do not have an effect on
the mass conservation, thus they are neglected in equation . Only
the intermolecular force term, ~∇ψ (φ), must be retained because it is
essential in maintaining a sharp interface, which is expressed with
the Carnahan-Starling equation of state [94] as

ψ (φ) = p−
φ

3
= φ2

(
2
3
(2−φ)

(1−φ)3
− 4

)
. (53)

The density ρ and viscosity ν are determined by interpolating the
bulk values in the liquid phase (l) and gas phase (g)

ρ (φ) = ρg +
φ−φg
φl −φg

(ρl − ρg) ,ν (φ) = νg +
φ−φg
φl −φg

(νl − νg) .

(54)
The relaxation time τ is related to φ via the viscosity

τ (φ) =
1

2
+ 3ν (φ) . (55)

A second set of distribution functions, noted g, describes the evo-
lution of the velocity and pressure,

gi (~x+~ei∆t, t+∆t) − gi (~x, t) = −
1

τ

(
gi − g

(eq)
i

)
+(

1−
1

2τ

)
(~ei − ~u) ·

(
Γi (~u)

(
~Fs + ~g

)
−
(
Γi (~u) − Γi(~0)

)
~∇ψ (ρ)

)
,

(56)

where g(eq)
i = wi

(
p+ ρ

(
3~ei · ~u+ 9

2
(~ei · ~u)2 − 3

2~u
2
))

and the macro-
scopic pressure and momentum are recovered as

p =
∑
i

gi −
1

2
~u · ~∇ψ (ρ) , ρ~u = 3

∑
i

gi~ei +
1

2

(
~Fs + ~g

)
, (57)

and ψ (ρ) is the non-ideal part of the equation of state and ~Fs is the
surface tension force

ψ (ρ) = p−
ρ

3
, ~Fs = κρ~∇

(
~∇2ρ

)
. (58)

38

The large density gradients, ~∇ψ (ρ), appearing in equation (56), are
multiplied by the small term

(
Γi (~u) − Γi(~0)

)
, which help to reduce

numerical errors and improve the stability.

Free-Surface Models

In the simulation of fluid systems with high density ratio (e.g. water
and air) pseudo-potential and free energy models suffer from insta-
bility issues. In the free-surface approach, the low density phase (e.g.
the air) is neglected and the collision process is carried out only on
the nodes occupied (either fully or partially) by the water, the location
of the interface is updated solely based on the motion of the water
and can be done either with a volume of fluid technique [95, 96] or
through the level set method [97, 98] . This type of model is popular
in classical CFD but contrary to the previously presented models, the
dynamics of the interface is not a result of the microscopic interac-
tions, instead the surface tension effects must be introduced ad hoc
by modifying the collision based on the interface curvature [97]. As
only the liquid phase is simulated, some of the distribution functions
at the interface needs to be reconstructed and fluid nodes need to be
created or destroyed as the interface moves [99].

Further Reading

Because of its computational efficiency and conceptual simplicity, the
LBM has been widely employed for the simulations of a variety of
multiphase flows [100, 93, 73, 74, 76, 77]. However, the LBM suffers
from some limitations which restrict its applications, these include
the relative large spurious current [101] that increase with the density
ratio and are linked to the isotropy of the force [102, 103], the thermo-
dynamic inconsistencies, the limitation to low density and kinematic
viscosity ratio and the dependence of surface tension and density ra-
tio on the viscosity (see [29] and references therein).

2.3.5 Thermal Models

Currently, thermal LBM models fall into one of three categories: (i) the
multi-speed models, (ii) the double distribution functions models and
(iii) hybrid models.

Multi-Speed models

The multi-speed models are straight-forward extensions of the clas-
sical isothermal LBM BGK model, where the temperature T (or the

39

internal energy e) is computed as a second order moment of the dis-
tribution functions f , as [62]

ρe =
1

2

∑
i

(~ei − ~u)2 fi , (59)

and the temperature is related to the internal energy by e = (3/2) k/mT

where k is the Boltzmann factor and m the mass [31].
Usually, in order to accurately obtain the macroscopic evolution

equation for the temperature, a multi-speed model requires a larger
set of microscopic velocities than what is used in the corresponding
isothermal model (typically 52 in 2D [104]) and requires the equilib-
rium to be expanded up to the third or fourth order [105]. Hence, the
method is not very computationally efficient.

In the original model [62], the Prandtl number is fixed to unity, this
was later fixed [106] but with an incorrect viscosity in the viscous
dissipation of the energy. Moreover, the method suffers from severe
numerical instabilities for large temperature variations [104], which
limits its domain of applications to small Rayleigh numbers.

Double Distribution Functions Models

These models are based on the idea that if the viscous heat dissipa-
tion and compression work done by the pressure are negligible, then
the temperature field is passively advected by the fluid and obeys a
simple advection-diffusion equation. In which case, the temperature
equation can be solved on another lattice using an independent set of
temperature distribution functions.

Velocity Temperature

Advection

BoussinesqD2Q9, D3Q19 D2Q4, D3Q6

u

fi Ti

Figure 6: Structure of couple thermal LBM model using two independent
set of distribution functions. The first set is used to recover the
macroscopic density and velocity, while the second set recovers
the macroscopic temperature, but only requires a reduced number
of directions.

In the original model [107], the temperature was treated as a purely
passive scalar but since then, a variety of models have been developed
that treat the effect of the temperature on the velocity field in different
ways; for instance [108] treats the temperature as a component of a
fluid mixture and [109] proposed a model to simulate thermal flows
of non-ideal gases. In the approach of [30] and chosen in this work,
it is assumed that the temperature variations have little effect on the

40

fluid motion except in the buoyancy term, where the fluid density is
expected to be a linear function of the temperature,

ρ (~x) = ρ0 (1−β (T (~x) − T0)) (60)

where ρ0 and T0 are respectively the average fluid density and tem-
perature and β is the coefficient of thermal expansion. This assump-
tion, known as the Boussinesq approximation, is only valid for small
Mach number flows.

Under such circumstances, the governing equations for the velocity
and the temperature are

~∇ · ~u = 0 , (61)
∂~u

∂t
+ ~u · ~∇~u = −~∇P+ ν~∇2~u+ ~gβ (T − T0) , (62)

∂T

∂t
+ ~u · ~∇T = α~∇2T , (63)

where P = p/ρ0 is the reduced dynamic pressure, ~g is the acceleration
due to gravity and α is the thermal diffusivity.

The first two equations can be solved with the standard LBM model
with an appropriate forcing term (see next paragraph), and the third
equation is solved on a second lattice with a simplified equilibrium,

Ti (~x+~ei∆t, t+∆t) − Ti (~x, t) = −
Ti (~x, t) − T (eq)

i (~x, t)
τT

(64)

where Ti is the temperature distribution function associated with the
microscopic velocity ~ei, T

(eq)
i is the corresponding equilibrium and τT

is a dimensionless relaxation time, related to the thermal diffusivity
by

α =
(2τT − 1)

4

∆x2

∆t
. (65)

The macroscopic temperature is recovered as the sum of the tem-
perature distribution functions,

T =
∑
i

Ti . (66)

The lattice used to solve the temperature advection-diffusion equa-
tion requires relatively less direction than the one used for the veloc-
ity. Typically D2Q5 and D3Q7 are sufficient. Furthermore, the zero
velocity can be dispensed with. The general form for the temperature
distribution function on a lattice with or without the zero velocity, i.e.
DdQ(2q+1) or DdQ(2q), is given as [110]:

T
(eq)
i =

T

b

(
1+

b

2
~ei · ~u

)
(67)

where b = 2d or b = 2d+ 1.

41

The velocity and temperatures lattices are coupled by the addition
of the Boussinesq forcing term ~FB = −~gβ (T − T0) on the right hand
side of the discrete lattice Boltzmann equation (23),

fi (~x+~ei∆t, t+∆t) = fi (~x, t) −
fi (~x, t) − f(eq)

i (~x, t)
τ

+ Fi∆t . (68)

A simple approximation for the forcing term Fi is to apply the fol-
lowing forcing term to the two distribution functions that are aligned
with the direction of the gravity [30]:

Fi =
~ei ·~FB
2

=
±β (T − T0)

2
. (69)

It is also possible to use other discretisations of the forcing term
to improve the accuracy, [111] compares various expressions and pro-
poses the following expression in order to reduce the lattice effects
on the recovered macroscopic equations,

Fi =

(
1−

1

2τ

)
wi (~ei − ~u+ (~ei − ~u) ·~ei) ·~FB . (70)

where the fluid velocity is redefined as

~u =
1

ρ

(∑
i

fi~ei +
∆t

2
~FB

)
. (71)

It should noted that the above expression is only valid for a spe-
cific form of the equilibrium and for a specific collision operator (i.e.
BGK), moreover numerical experiments have shown that the gain in
accuracy over the simpler expression in equation (69) is minimal (see
section 6.5.4).

Hybrid Methods

In the previous it was shown that the double distribution models
solve separately for the velocity and temperature equations on two
different lattice. It is also possible to combine the LBM for the resolu-
tion of the velocity equation with another numerical method (usually
finite difference) for the resolution of the simpler advection-diffusion
equation for the temperature. This type of models are known as hy-
brid models [112, 113, 114, 115]. Unlike the other thermal models, an
hybrid model does not add a new set of distribution functions for the
temperature, instead it adds a new scalar field, hence the memory re-
quirements are significantly reduced and hybrid models can achieve
really high performance on GPU [115].

Again, assuming that the compression work and viscous heat dis-
sipation are negligible, the temperature equation can be expressed
as

∂T

∂t
+ ~u · ~∇T = α~∇2T , (72)

42

and this equation is discretised with the following scheme

T (~x, t+∆t) − T (~x, t) = α∆∗T − ~u · ~∇∗T , (73)

where ~∇∗ and ∆∗ ≡
(
~∇∗
)2

are respectively the discrete gradient and
Laplace operators. Their expression depends on the lattice used for
the velocity field, for example, in the D2Q9 model

∇∗xT = Ti+1,j − Ti−1,j +
1

4

(
Ti+1,j+1 − Ti−1,j+1 + Ti+1,j−1 − Ti−1,j−1

)
,

∇∗yT = Ti,j+1 − Ti,j−1 +
1

4

(
Ti+1,j+1 − Ti+1,j−1 + Ti−1,j+1 − Ti−1,j−1

)
,

(74)

∆∗T = 2
(
Ti+1,j + Ti−1,j + Ti,j+1 + Ti,j−1

)
−
1

2

(
Ti+1,j+1 + Ti−1,j+1 + Ti−1,j−1 + Ti+1,j−1

)
− 6Tij . (75)

2.3.6 Fluid-Structure Interaction

An object moving in a fluid transfers some of its momentum to the
surrounding fluid, and reciprocally the movements of the flow cre-
ates a force on an immersed object that is impacting its momentum.
Hence, the study of a moving object immersed in a fluid is a complex
two-way coupling problem. The object can be either a rigid solid or
it can have a deformable structure. In any case, the tracking of the
fluid-solid interface as the objects moves and deforms is a challenging
task.

In conventional CFD methods, the computation of a flow around a
moving deformable object often involves several tedious grid gener-
ations over time, making the solution process complicated. To ease
this process, it is desirable to develop an approach that decouples
the solution of the main governing equations and the implementa-
tion of the boundary conditions. The immersed boundary method
(IBM) is such an approach, it was originally proposed for the simu-
lation of blood flow in the heart [116]. In this method the flow field
uses a fixed Eulerian mesh that does not need to coincide with the
Lagrangian points used to represent the solid boundary and the ef-
fect of the boundary is represent by an additional forcing term on the
flow, which is solved on the whole domain including the exterior and
interior of the object. Since the flow is solved without considering the
presence of immersed objects, it is no longer necessary to match the
location of the object boundary with the grid and a simple Cartesian
mesh is sufficient.

The IBM approach has been successfully adapted to the LBM, for
the simulation of the sedimentation of rigid particles in a viscous
fuid [117, 118, 119] and for the simulation of cellular blood flow with

43

deformable cells [120]. Details on the implementation of the IBM
within a LBM scheme are available in section 3.2.8.

The dynamics of the objects (i.e. collisions and deformations) can-
not be solved by the LBM alone and require an external solver (for
instance, using the finite element method [119]). This solver requires
information on the solids characteristics as well as the force exerted
by the fluid onto the object which is extracted from the LBM flow
field. This force can be either evaluated by the stress-integration
method on the surface of the body [121] (as in classical CFD) or by
the momentum exchange method [122, 123]. The stress-integration
method is computationally laborious for two-dimensional flows and
in general difficult to implement for three-dimensional flows, while
the momentum-exchange method is reliable, accurate, and easy to im-
plement for both two-dimensional and three-dimensional flows [124].

Force evaluation based on stress integration

The force exerted by the fluid onto an object can be evaluated by
integrating the total stresses on the boundary of that object ∂Ω,

~F =

ˆ
∂Ω

(
−pI + ρν

(
~∇~u+

(
~∇~u
)ᵀ))

· ~ndA, (76)

where ~n is the unit normal vector out of the boundary ∂Ω. The
pressure p can be easily evaluated using the equation of state p = c2sρ,
while the deviatoric stress ταβ = ρν

(
∂αuβ + ∂βuα

)
can be evaluated

using the non-equilibirum part of the distribution functions f(neq)
i =

fi − f
(eq)
i ,

ταβ =

(
1−

1

2τ

)∑
i

f
(neq)
i

(
ei,αei,β −

1

D
~ei ·~eiδαβ

)
, (77)

where ei,α and ei,β are respectively the αth and βth Cartesian compo-
nents of the discrete velocity ~ei.

Both the values of the pressure and each of the six components
of the symmetric deviatoric stress tensor need to be obtained at the
actual surface location using a second-order extrapolation scheme
based on the values of p and ταβ at the neighbouring fluid nodes.
This make the method complicated and its implementation error-
prone.

Force evaluation based on the momentum-exchange

In the momentum exchange method, the force exerted on the solid
on a given boundary node ~xb is calculated from the force at each link
between two opposite directions ~eα = −~eᾱ

~Fα (~xb) = (fα (~xb) − fᾱ (~xb +~eα))~eα, (78)

44

and the total hydrodynamic force is found by simply summing over
all boundary links,

~F =
∑

all ~xb

∑
α∈links

~Fα (~xb) . (79)

The momentum exchange method is very easy to implement com-
putationally, moreover it has been shown to yield a similar accuracy
to the stress integration technique and even becomes superior when
the resolution is limited [124]. It is therefore the recommended force
evaluation method for its simplicity, accuracy and robustness, either
for straight or curved boundaries [124].

2.4 alternative models

While the BGK LBM can qualify as the standard LBM model due
to its popularity, its simple collision operator means its numerical
stability degrades for high Reynolds number flows, i.e. low viscosity
or as the relaxation τ approaches 1/2. This can be improved with the
use of multiple relaxation time [125, 59] (MRT, see section 2.1.5) but
choosing the right values for the additional relaxation times can be
sometimes cumbersome.

As a result, there has been significant efforts to develop alterna-
tive models to the BGK LBM, usually to improve the stability for
high Reynolds numbers flows and this section summarises some of
them. It should be noted that any of these alternative models can
in theory be adapted for multi-physics applications (thermal effects,
multiphase, etc.) as described in the previous section.

When the Reynolds number is really high, the flow becomes tur-
bulent, and in such cases it is sensible to make use of a turbulence
model, as will be discussed in the next section.

2.4.1 Entropic LBM

The idea of using Boltzmann H-theorem [126] for lattice Boltzmann
systems was first introduced by Chen and Teixeira in 2000 [127] to
reduce the instabilities observed in multi-speed thermal LBM models.
It was later proposed to adjust the local relaxation time to satisfy
the H-theorem [18], essentially making the method unconditionally
stable provided that some requirements are fulfilled [128]. A space
varying relaxation time is similar to the technique employed by a
sub-grid turbulence model in LBM (see section 2.5.1) and the entropic
LBM can be interpreted as a kind of sub-grid model [129, 130].

A discrete H-function H(f) =
∑
i fi ln (fi/wi) is introduced and the

equilibrium distribution function is modified as an extrema of H(f)
under constraints of mass and momentum conservation:

45

f
(eq)
i = ρwi

D∏
j=1

(
2−

√
1+ 3u2j

)2uj +
√
1+ 3u2j

1− uj

ei,j (80)

where j is the index of the spatial directions. The relaxation process
is modified to include a dynamically adjustable parameter α,

fi (~x+~ei∆t, t+∆t) − fi (~x, t) = αβ
(
f
(eq)
i − fi

)
, (81)

and α is evaluated at each node and each time-step as the solution of
the H function monotonicity constraint:

H
(
f+α

(
f(eq) − f

))
= H(f). (82)

The above equation does not have an analytical solution, hence
a root finding algorithm must be used at each node, introducing a
significant computational overhead compared to the BGK. This pro-
cedure ensures that the entropy is not increasing over time. In a
simulation, the over-relaxation parameter α is automatically fixed to
the value α = 2 whenever the simulation is resolved and is modified
only when the simulation is under-resolved, in a mechanism simi-
lar to a sub-grid model, although only informed by the Second Law
of Thermodynamics (H-theorem). These stabilisation events may be
rare in time and very localised in space, but they give the method its
unconditional stability [128].

The computational overhead introduced by the root finding pro-
cess depends on the physics of the problem (as the number of itera-
tions depends on the turbulence) and can introduce load balancing
issues (as some nodes might converge faster than others). There is a
number of possible optimisation strategies over the standard Newton-
Raphson algorithm [131], see discussion in [132], including approxi-
mating H based on a Taylor series expansion [133] which effectively
removes the need for an iterative process. This last technique is par-
ticularly convenient on GPU, as it avoids computational divergence
between the threads, but the algorithm looses some of its stability.
The equilibrium in equation (80) can also be used without a root
finding algorithm (i.e. using α = 2 everywhere) and the resulting
method can simulate fluid flows, although its stability degrades to
that of BGK LBM [59].

The entropic LBM has set off strong debates within the LBM com-
munity [134, 135]. Nevertheless, the method has been shown to
produce accurate result at high Reynolds number, even for under-
resolved flows [136, 132, 137]. Additionally, the entropic scheme
can be combined with MRT [138] for enhanced accuracy for large
Reynolds number, and can be adapted for multi-physics problem, in-
cluding multiphase flows [139] and thermal flows [140].

46

2.4.2 Cascaded LBM

The cascaded LBM is a recent model developed by Geier in 2006

[19, 141] which implements the MRT in a central moment space in a
attempt to restore the Galilean invariance of the LBM. The BGK LBM
itself is not fully invariant due to a cubic velocity dependency of the
viscosity [142], which limits its domain of validity; and the original
MRT method transforms the distributions functions into a set of raw
moments that are relaxed at different rates, introducing additional
violations of the Galilean invariance that are not present with BGK2.
Setting all relaxation rates to the same value solves the problem but
negates the superiority of MRT over SRT. The insufficient Galilean
invariance of the standard BGK and MRT can be identified as the
source of the instabilities that appear for small viscosities [19].

The cascaded LBM uses an additional transformation to convert
the raw moments into central moments that are shifted by the local
fluid velocity, hence restoring Galilean invariance. As a result, it has
a better stability and isotropy than MRT, allowing to reach higher
Reynolds number. Moreover the method appears to be uncondition-
ally stable, i.e. it achieves stable simulation down to the limit of zero
viscosity. However its complexity is significantly greater than that of
MRT, hence the detailed equations are not reproduced here, instead
the reader is referred to the following papers for more details on the
implementation [143, 144, 145].

In three dimensions, the D3Q27 lattice is used, and the microscopic
velocities are ~e(i,j,k) = (i, j,k) where i, j,k ∈ {−1, 0, 1} and the compo-
nents of ~e(i,j,k) are written as

(
e(i), e(j), e(k)

)
. The raw moments are

computed as
ρMpqr =

∑
i,j,k

f(i,j,k)e
p
(i)e

q
(j)e

r
(k) , (83)

where p,q, r ∈ {0, 1, 2}. For instance with this notation M000 = 1 and
M100, M010 and M001 are respectively the x, y and z components of
the macroscopic velocity ~u = (ux,uy,uz). Using the same notations,
the central moments are defined as

ρM̃pqr =
∑
i,j,k

f(i,j,k)
(
e(i) − ux

)p (
e(j) − uy

)q (
e(k) − uz

)r . (84)

As the central moments can be expressed from the raw moments (and
vice versa) a possible algorithm for the cascaded LBM is as follows,
i.e. like MRT with an additional transformation to and from central
moments.

1. Compute the raw moments Mpqr from the distribution func-
tions f(i,j,k).

2 In a recent paper [60], Dellar proposes a MRT model with velocity-dependent col-
lision rates to restore the Galilean invariance.

47

2. Compute the central moments M̃pqr from the raw moments.

3. Compute equilibrium central moments M̃(eq)
pqr and relaxes using

different relaxation times.

4. Compute the updated raw moments M∗pqr from the updated
central moments M̃∗pqr.

5. Compute the updated distribution functions f∗(i,j,k) from the up-
dated raw moments.

6. Stream the new distribution functions to their neighbours.

The complexity of the cascaded LBM and the need for a large number
of velocities in three-dimensions (i.e. D3Q27) means that it has a
limited popularity. Nevertheless, it has been used successfully for
turbulent simulations at high Reynolds number (up to 105) [145, 146],
but the lack of a sub-grid turbulence model means it does require
large resolutions to accurately resolve the flow, as in DNS.

While the cascaded LBM fixes the Galilean invariance of MRT, it
does not fix all of its problems. The relaxation of different moments
with different rates leads to a hyperviscosity, i.e. a numerical viscosity,
that severely limits the accuracy of the method [147, 148]. This arti-
fact is not well known as it exists only in three dimensions and de-
pends on moments that are neglected on some popular lattices even
in three dimensions. An ad hoc solution to this problem was pro-
posed in the form of the factorised central moment LBM [147], later
formalised in the context of the cumulant LBM [145]. Instead of solv-
ing the problems of the MRT by hand as they arise, [145] postulate
constraints for the observable quantities to evolve on independent
time scales. While assuming different relaxation rates for different
moments violate these constraints, cumulants [149], as an alternative
to the moments, fulfil the constraints naturally.

In can be noted that the cascaded LBM can also be seen as adopting
a generalised equilibrium in the frame at rest [150].

2.4.3 Link-Wise Artificial Compressibility Method

The link-wise artificial compressibility method (LW-ACM) is a recent
formulation of the artificial compressibility method for solving the
incompressible Navier-Stokes equation. The artificial compressibil-
ity method was first introduced by A.J. Chorin in 1967 [151], the
principle of the method lies in the introduction of an artificial com-
pressibility term in the incompressible Navier-Stokes equation that
disappears from the final results in the limit of the vanishing Mach
number. It is in that regard similar to the LBM (see [7] for a discus-
sion on the similarities and differences). In a recent paper, Asinari

et. al. [21] propose a reformulation of the method by a finite set of

48

GPU model maximum resolution Performance

GTX Titan 5763 (6 GB) 2500 MLups

Tesla K40 7363 (12 GB) 2200 MLups

Table 1: Performances of the LW-ACM D3Q19 isothermal model, measured
on the Tesla K40 GPU and extracted from [153] for the GTX Titan.

discrete links on a regular Cartesian mesh, in analogy with the LBM.
The method also shows similarities with the lattice kinetic scheme
[152].

The LW-ACM exploits both the advantages of the LBM (in terms
of computational efficiency and simple boundary conditions) and of
classical CFD (for instance, the consistency can be analysed using a
standard Taylor expansion, like for finite difference schemes). The
method only deals with macroscopic variables (i.e. velocity and pres-
sure) and the updating rule makes it possible to recover all the nec-
essary information from these variables. As a result, the memory
demand is significantly smaller than LBM and the method can be
optimised to achieve a better computational throughput, with a nu-
merical stability and accuracy similar to that of MRT.

The small memory requirements allows to simulate large resolu-
tions with good performances. Table 1, summarises the performance
for a three-dimensional (D3Q19) LW-ACM program running on GPU,
measured in million of nodes updated per second (MLUPS) and the
maximum resolution fitting in memory on the Tesla K40 used for the
thesis and on a GTX Titan as reported in [153]. These results are sig-
nificantly higher than that of the BGK LBM on the same lattice, see
section 5.1.2. The method has been very recently extended to the sim-
ulation of thermal flows and performs at 1300 MLups for a maximum
size of 5363 on the GTX Titan [154].

2.4.4 Further Reading

It is difficult to give a comprehensive list including every LBM mod-
els. It is the author’s belief that the entropic model, cascaded model
(and its generalisation in the context of cumulants) and the link-wise
ACM are the most promising alternatives to the standard BGK/MRT
LBM, which explains why these were detailed in the previous sub-
sections. But there is a plethora of other models that would deserve
further investigations.

Perhaps the simplest modification of the BGK LBM aiming at im-
proving its stability is the regularised model, introduced by Latt in
2006 [155, 156]. The basic idea of this approach is to replace the
non-equilibrium part of the distribution functions f(neq)

i = fi − f
(eq)
i

49

with a new first order regularised value f(reg) derived from the non-
equilibrium stress tensor Π(neq)

αβ =
∑
i f

(neq)
i

(
eiαeiβ − δαβc

2
s

)
as

f(reg) =
wi
2c4s

Qi :Π
(neq) (85)

where Qi = ~ei~ei − c
2
sI . This procedure enhances the stability and

accuracy of the BGK LBM to a level close to that of a MRT model, but
without the cumbersome moment transformation.

A recurring issue of LBM is the creation of spurious oscillation
(usually in a chequerboard pattern) near areas of steep velocity gra-
dients, Godunov theory [157] shows that this issue affect every high-
order scheme and that the capturing of a discontinuity without oscil-
lation requires that the spacial accuracy of the scheme is reduced to
first order. Brownlee et al. [158, 159, 160] proposed to adapt a flux
limiter scheme [161] to the LBM. Flux limiter scheme were invented
to combine high resolution schemes in areas with smooth fields and
first-order schemes in areas with sharp gradients. Limiters can be
constructed for the LBM by changing the non-equilibrium part of the
distribution, i.e. by forcing the distribution functions to stay close to
their local equilibrium, without changing the macroscopic variables.
This helps enforcing the positivity of the distribution functions and
hence the stability. While the limiters only need local information to
the node, the neighbour nodes can be included as well to implement
a non-local filter such as a median filter to reduce speckle noise [162]
or a selective viscosity filter [163]. The optimal filtering strategy is
problem specific difficult and cannot be given in a general way.

2.5 turbulence modelling in lbm

Although the alternative LBM models presented in the previous sec-
tion can achieve stable simulation for higher Reynolds number than
the BGK LBM, the use of a subgrid turbulence model becomes neces-
sary when the simulation is under resolved, i.e. the grid resolution
is large compared to the Kolmogorov scale. As mentioned in the in-
troduction (see section 1.2.4) the variety of scales and the complexity
of turbulent flows makes makes the modelling of turbulence an ex-
tremely challenging topic in CFD. Generally speaking, these models
can be classified into two categories: (i) large eddy simulation (LES)
and (ii) Reynolds averaged Navier-Stokes (RANS) based turbulence
models, each resolving the flow down to a different scale (see fig-
ure 1).

2.5.1 Large Eddy Simulation

The viewpoint of a Large Eddy Simulation (LES) is that large eddies
are usually more energetic and contribute more to the transport than

50

the smaller ones, so it is sufficient to only solve accurately for the
large scale of the flow and the effect of the unresolved small scales
on the fluid motion is modelled using a sub-grid model. In practice,
simple turbulence models, like the Smagorinsky model [164], suppose
that the energy dissipation by the small scale is isotropic and can be
represented using a local eddy viscosity νt which is added to the
fluid kinematic viscosity ν = ν0 + νt. In effect, this additional viscos-
ity increases the numerical stability of a simulation by damping short-
wavelength oscillations. LES simulations are still expensive, but not
as much as DNS and can give higher accuracy than RANS, especially
when the transient behaviour of the flow is of importance.

The Smagorinsky turbulence model, originally introduced in 1963

to compute the Reynolds stress term in the filtered Navier-Stokes
equations [164], has been very popular in LBM since 1994 [165]. The
simplicity of the calculation of the strain rate tensor in LBM is the
main reason for its success. In LBM, the local momentum stress-
tensor S̄αβ can be calculated from the second-order moment of the
non equilibrium distribution functions,

S̄αβ =
1

2

(
∂ūα

∂xβ
+
∂ūβ

∂xα

)
=

q∑
i=1

~eiα~eiβ

(
fi − f

(eq)
i

)
. (86)

And the eddy viscosity can be computed as [165]

νt =
1

6

(√
ν2 + 18C2s∆

2

√
S̄αβS̄αβ

)
, (87)

where ∆ is the filter width (i.e. ∆x in LBM, often chosen as unity) and
Cs > 0 is the Smagorinsky constant. Small values of Cs mean that
the sub-grid turbulence adds very little viscosity to the fluid, while
large values of Cs mean that sub-grid eddies have a strong impact
on the diffusion of the fluid and the grid scale. Its actual value can
depend on the geometry of the system but it is typically in the order
of Cs ≈ 0.1, which is smaller than the value of Cs = 0.17 used in
the Navier-Stokes LES [166]. Moreover, numerical experiments in a
2D lid-driven cavity (see section 6.2.2) have shown that even smaller
values (i.e. Cs = 0.03) yield better results, although deteriorating the
stability.

The computation of the stress-tensor and corresponding eddy vis-
cosity in LBM only requires information local to the node, hence
it is very computationally efficient (see section 5.1.5). In effect, the
Smagorinsky turbulence model is implemented in LBM by allowing
the relaxation time to vary locally in space, as τ = 1/2+ 3 (ν0 + νt) =
τ0 + 3νt.

51

2.5.2 RANS Based Models

The Reynolds averaged Navier-Stokes (RANS) approach to turbu-
lence is to only simulate the mean flow averaged in time and to
model the fluctuations using additional transport equations. It is the
most computationally efficient way to simulate turbulent flows for
engineering applications, but it should be regarded as an engineer-
ing approximation. Moreover, a single model cannot address all the
complexity of turbulence, and a large variety of RANS models ex-
its: algebraic models [167, 168, 169], one equation models [170, 171],
and two equation models [172, 173, 174, 175]. These models can be
adapted to the LBM, although not in their time-averaged form, as the
LBM is intrinsically time dependant.

Amongst the various RANS models, the k− ε model [172, 173] is
one of the most popular in engineering. It introduces two additional
transport equations to model the turbulent kinetic energy (k) and the
turbulent energy dissipation (ε). The first attempt at a RANS simu-
lation with the LBM dates as early as 1995 [26], the method uses two
additional sets of distribution functions to represent each of the tur-
bulent properties k and ε, and their collision dynamics is defined as
to recover the turbulence equations in their macroscopic behaviour.
Another solution is to use the LBM to solve the velocity field in con-
junction with a finite difference scheme to solve k− ε, as in [176].

Other RANS models have been translated to LBM, such as the k−
ω model [177] and the single equation Spalart-Allmaras model [178,
177, 179].

2.5.3 Further Reading

In its standard form, the Smagorinsky models assumes that the tur-
bulence is isotropic but that is not the case for the flow near the
walls and other boundaries. Thus, the model needs to be improved
to be able to successfully simulate the near-wall flow. One possi-
bility is to introduce a damping function that depends on the dis-
tance to the wall in order to account for the damping of scales near
the walls [180, 181, 176]. Another possibility is to use a dynamic
Smagorinsky model [180] which removes the need for an empirical
value of the LES constant and allows it to vary both in space and
time by computing it using two different filters.

Although the majority of the sub-grid turbulence models used in
the LBM are built around the Smagorinsky model, some recent work
by Sagaut [25, 182, 183] reuses the idea of the approximate decon-
volution model of Stloz et al. originally introduced in 1999 for the
Navier-Stokes LES [184]. This approach applies an approximate de-
convolution operator directly on the filtered distribution functions, it
is hence a microscopic description of the turbulence (rather that using

52

(1) (2) (3)

(4) (5) (6)

Figure 7: Illustration of different grid types.
(1) Regular grid. (2) Rectangular grid. (3) Non-uniform grid.
(4) Multi-block. (5) Quad-tree. (6) Unstructured grid.

the macroscopic stress-tensor), and has been implemented as part of
the LaBS simulation tool3 for engineering applications in automotive
and aerospace industries.

The Smagorinsky model has been applied to large range of prob-
lems, both academic [166, 165, 185, 180] and industrial [178, 186, 146,
187], showing that the LBM LES achieves a similar degree of accu-
racy to Navier-Stokes LES [166] and can be combined with mesh re-
finement techniques for large Reynolds number flows on complex
geometries [146, 187].

Other LES turbulence models have been incorporated into the LBM
framework, such the wall-adapting large eddy-viscosity model [188]
and the vorticity-streamfunction for two-dimensional flows [189].

It should be noted that a turbulence model can also be used in
combination with the the improved collision operator presented in
the previous section for enhanced stability and accuracy. For instance,
the Smagorinsky model can be combined with the MRT [180, 181, 190,
185, 191].

2.6 lbm with non-uniform grids

The standard LBM is restricted to square lattice grid in two spatial
dimensions and cubic lattice grids in three dimensions. This is an
heritage of the lattice gas automaton and allows the streaming step to
be an exact operation that does require any interpolation, and hence

3 http://www.labs-project.org

53

http://www.labs-project.org

does not introduce any additional numerical viscosity. The MRT can
potentially integrate an aspect ratio a = ∆x/∆y into the transforma-
tion matrix into to allow the LBM on rectangular grids [192, 193, 194].

But the flexibility of these meshes is limited, and flow around
irregular geometries require a fine mesh, i.e. high resolution, to
be accurately resolved. Instead, it is possible to locally refine the
mesh around the interface using a grid refinement [45, 195] or multi-
block [196, 197] method. In these methods, two grids with different
lattice spacing are combined, the distribution functions are updated
on the fine grid first and then on the coarser grid. The fine and coarse
grids usually share some common nodes, on which the distribution
functions are exchanged by interpolation. Moreover, multiple levels
of grid refinement can be introduced usually though the use of a
quadtree or a octree for two- or three-dimensional grids [198]. This
allows for a better accuracy of the solution near the boundaries and
can still achieve a good computational throughput by maintaining a
coarse grid for the bulk of the fluid domain. The grid refinement can
also be adapted over time to follow the flow structures, this technique
is known as dynamic mesh refinement [199, 200].

The LBM can function on non-uniform grids, i.e. the lattice spac-
ing ∆x varies with space, but the distribution functions must be in-
terpolated after each streaming step [201]. This technique, known
as the interpolation supplemented LBM allows the use of body-fitted
grids [202, 121]. Moreover, once the fact that the LBM is a special
finite difference scheme of the discrete Boltzmann equation is recog-
nised, the computational mesh can be fully decoupled from the the
underlying lattice, potentially allowing any arbitrary unstructured
mesh using finite volume or finite element [203, 204].

However, these techniques introduce a significant complexity, hence
a computational overhead, and the different interpolations can affect
both the effective viscosity and the anisotropy of the solution [205].
It is unclear if the improvement on the accuracy is worth the added
complexity and computational cost, as a fine regular GPU grid might
still be faster than a locally refined CPU mesh, even with several re-
cursive levels of refinements. Furthermore, several techniques like
the immersed boundary method (see section 2.3.6) remove some of
the needs for a refined mesh by using sub-grid interpolations to take
account of the exact location of the mesh within the grid.

2.7 summary

This chapter gave a pseudo-exhaustive introduction to the LBM and
the large variety of existing models. Some sections, like the study of
the various thermal and turbulence models, was directly motivated
by the application of the LBM to indoor air flows while some other
sections, like multiphase flows and fluid-structure interaction, was

54

mostly motivated by other applications that will be briefly discussed
in chapter 8. Nevertheless, multiphase problems can be encountered
in indoor air flow applications as well, for instance in the study of hu-
midity [206] or for novel cooling techniques using spray evaporative
cooling [207]. Fluid-structure interactions are relevant as well for the
study of the effects on particles dispersion of an opening door or a
person walking [208]. And the capability of the LBM in these areas
will help future research. Meanwhile, the sections on alternative col-
lision models and non-uniform grids techniques should be seen as
viable alternative methods that may be investigated further in some
future work.

55

3
L B M A L G O R I T H M S

The Navier-Stokes is a partial differential equation with time and
space derivatives, and as such, it possesses a unique solution when
adequate initial and boundary values for a given problem are speci-
fied. The problems of fluid dynamics are therefore initial and boundary
value problems.

When the flow is assumed to be steady-state, i.e. not varying over
time, the time derivatives in the equation can be removed and the
steady-state Navier-Stokes becomes simply a boundary value prob-
lem. However, the LBM equation is intrinsically time dependant and
requires some initial value. Different initial values can potentially
lead to different flow results (see for instance the effect of the ini-
tial temperature in section 6.3.3). For transient Navier-Stokes, it is
common to specify the initial value for a problem by imposing the ve-
locity and pressure field at the initial time t = 0. The same principle
applies to the LBM, but for the distribution functions; it is common
practice to initialise them using the equilibrium distribution function,
computed with the specified velocity and density.

While specifying an initial value is usually straightforward, bound-
ary values also require to be specified to uniquely define a problem,
and several approaches exist. The velocity profile along the domain
boundaries can be specified by values, i.e. Dirichlet boundary condi-
tion, or recovered from the velocity gradient in the direction normal
to the boundary, i.e. Neumann boundary condition, or the value of
pressure on the boundary can be specified. Although there is still
a wish to impose these boundary conditions for a LBM simulation,
boundaries in LBM work at different level: the unknown distributions
functions, i.e. those coming from outside of the simulation domain,
needs to be specified (by value) so that the recovered macroscopic
quantities matches the desired macroscopic boundary condition (i.e.
Dirichlet, Neumann or pressure). But the problem of defining the
unknown distribution functions for a specific macroscopic value is
usually under determined, i.e. there are fewer equations than un-
known. Hence there can be multiple implementations of the same
boundary condition with different trade-off between accuracy and
stability [209].

This chapter discusses the general implementation of the LBM on
a computer, and should be applicable to any architecture. Some of
the most useful boundary conditions are described for a single phase
isothermal flow but should be amenable to other types of flows.

57

3.1 program framework

The goal of any LBM program is to numerically solve the discrete
lattice Boltzmann equation,

f (~x+~ei∆t, t+∆t) = f (~x, t) +Ω (f (~x, t)) . (88)

As explained in chapter 2, this equation can be solved on differ-
ent types of lattices (DdQq), the collision operator can take different
forms (BGK, MRT, etc.) and the equilibrium can have multiple def-
initions depending on the physics (single phase, multiphase, etc.).
However, whatever the details of the scheme, there is always first an
initialisation step to set the initial values of the distribution functions,
followed by three steps:

1. the streaming step, that moves the distribution functions to their
neighbour nodes,

2. the collision step, that implements the collision operator, usu-
ally by relaxing towards an equilibrium state,

3. the boundary step, that defines the unknown distribution func-
tions at the boudaries.

The sequence of these three steps correspond to one time-step of the
LBM simulation, they are hence repeated in a loop until the final
time is reached. The simplicity of the LBM algorithm is one of its
most appealing features.

3.1.1 Initialisation Step

As mentioned previously, the initialisation step is performed once at
the beginning of the simulation and its goal is to define a starting
value for the distribution functions. It is common practice to use the
equilibrium distribution functions, evaluated with the desired macro-
scopic quantities as the initial values. As the equilibrium always con-
serves these quantities, the effective macroscopic values should be
exactly those specified.

fi (~x, 0) = f(eq)
i (ρ (~x) , ~u (~x)) (89)

For the standard LBM, a simple choice is often to start with a uni-
form flow with ~u = ~0 and ρ = 1. But the initial velocity and pressure
fields can also be made to vary in space, see for instance the study of
the rolling shear layer in section 8.5.

3.1.2 Streaming Step

This step is the only one whose implementation is unchanged across
every LBM models (apart from those on non-uniform grids). It is

58

thus a fundamental step of the LBM and it is relatively simple, as it
only require to copy the distribution functions to a different location
and does not involve any computations.

The streaming step basically implements the left hand side of equa-
tion (88), on each lattice node ~x, each distribution function fi (~x) is
streamed to an adjacent node in the direction of the microscopic ve-
locity ~ei, i.e. at location ~x + ~ei. Some care has to be taken as to
avoid overwriting an existing distribution function during the pro-
cess. While it is possible to use a single array f (~x) to limit memory
usage, the process can be cumbersome, especially in a parallel envi-
ronment, and it is simpler and more efficient to just use a second
array f temp (~x) to store the streamed distribution functions, despite
the memory overhead [210, 211].

The streaming step can be formally written as

f
temp
i (~x+~ei, t) = fi (~x, t) , (90)

and the process for a D2Q9 lattice is illustrated on the figure 5. The
distributions functions are streamed from the centre node to the ad-
jacent nodes. It is algorithmically equivalent to stream from the ad-
jacent nodes to the centre node, i.e. ftemp

i (~x) = fi (~x−~ei) and a dis-
cussion on the differences between the two schemes will be given in
section 4.4.3.

The streaming step needs to be modified for the nodes on the
boundary of the simulation domain because some distribution are ex-
iting the domain and some unknown ones are entering it. It is often
convenient to suppose that the domain is periodic in all directions, as
the periodic boundary condition is very easy to implement (see sec-
tion 3.2.1). It allows the streaming to keep the same form throughout
all of the domain and the correct boundary conditions can be added
as a post process by overwriting the periodically streamed distribu-
tion functions.

3.1.3 Collision Step

While the streaming step does not perform any computation and is
purely a memory copy between neighbour nodes, the collision step
contains most of the computations but they only usually only require
information local to each node, and it is hence a perfect target for
efficient parallel programming.

Its actual implementation is highly dependent on the LBM model
considered, this section describes the implementation of the collision
for the BGK and MRT single phase models.

59

BGK Collision Model

Using the BGK collision model, the distribution are simply relaxed
toward a local equilibrium using a single relaxation time τ, it can be
decomposed into three stages:

1. computation of the macroscopic quantities from the streamed
distribution functions f temp. On each node, the local distribu-
tion functions are from the temporary array and used to com-
pute the macroscopic quantities of the model (density ρ, velocity
~u, etc...) using the equations (21) and (22),

2. computation of the equilibrium distribution functions f (eq)

from the previously computed macroscopic quantities. This
stage depends on the physical model, i.e. the form of the equi-
librium. Some models might require some non-local quantities,
like the gradient of the density for multiphase models, in which
case the density has to be be stored to an array in stage 1 so that
the gradient can be computed in stage 2,

3. computation of the new distribution functions, i.e. f (t+∆t)

by relaxing the distribution functions in the temporary array
f temp toward the equilibrium f (eq) and save the result back to
the original array f .

In summary the BGK collision scheme can be implemented as

fi (~x, t+∆t) = ftemp
i (~x, t) −

1

τ

(
f

temp
i (~x, t) − f(eq)

i (~x, t)
)

. (91)

MRT Collision Model

The MRT collision is also composed of four stages during which the
distributions functions are transformed back and forth to the mo-
ments space where the relaxation is performed, the streaming step
is left unchanged.

1. computation of the macroscopic moments from the streamed
distribution functions f temp. It is essentially the same as stage
1 of BGK, but with additional moments. The moments are com-
puted at each node through a matrix operation m =M · f temp,
where M is a q× q transformation matrix,

2. computation of the equilibrium moments m(eq), usually from
the density and velocity computed in stage 1,

3. relaxation of the moments m towards their equilibrium m(eq)

using different relaxation times ωi = 1/τi, i.e. m∗i = mi −

ωi

(
mi −m

(eq)
i

)
,

60

4. reconstruction of the distributions functions f by using the
inverse transformation matrix M−1 on the relaxed moments
m∗, i.e. f (~x, t+∆t) =M−1 ·m∗.

In summary, the MRT collision scheme can be implemented as

f (~x, t+∆t) =M−1 ·
(
m (~x, t) −ω ·

(
m (~x, t) −m(eq) (~x, t)

))
, (92)

where m (~x, t) = M · f temp (~x, t) and ω is a diagonal matrix whose
elements are {ω0, . . . ,ωq}.

It is important to remind that the choice of the transformation ma-
trixM is not unique. Firstly, its size depends on the lattice considered
(i.e. there areq moments, where q is the number of microscopic di-
rections). Moreover, appart from the straighforward moments (den-
sity, velocity, pressure tensor), the higher order moments are often
non-physical and can be chosen freely, provided that they are all mo-
ments are independent (i.e. that the matrix M is invertible). There-
fore, no explicit expression for the transformation matrix is given in
the thesis, instead the interest reader is referred to the following refer-
ences [125, 20], where a sample implementation can be found for the
D2Q9, D2Q15 and D3Q19 lattices.

The implementation of the MRT in matrix form as described above
is straightforward to implement but it is computationally inefficient.
The matrices are sparse, i.e. they contain many zero elements, and
hence matrix multiplications involve many unnecessary operations.
An optimised implementation should avoid using matrix multiplica-
tions altogether. One possibility is to expand these multiplications
to remove the zero elements and avoid additional memory accesses,
this is cumbersome to do by hand but the process can be automated
(see section 4.7). Another possibility is to re-express the distribution
functions directly from the moments, i.e. algebraically and without a
transformation matrix [15].

3.1.4 Boundary Step

In a nutshell, the goal of the boundary step is to define the otherwise
undefined distribution functions at the boundaries after the stream-
ing step. There are multiple strategies that will be discussed in the
next section.

Once the three steps (streaming,collision,boundary) have been ap-
plied, the simulation is considered to have advanced in time by ∆t.
These steps are repeated N times until the total simulation time t =
N∆t has been reached. The macroscopic density and velocity fields
can be saved at regular intervals to a file, or in the case of a steady-
state solution only once at the end when the simulation has con-
verged.

61

3.2 boundary conditions

The boundary conditions are crucial in CFD because they define the
flow problem. Moreover, they sometimes dictate the accuracy and
stability of a simulation, as their effect can be seen in the bulk phase,
even far away from the boundary regions. As such, they deserve full
section dedicated to them.

The difficulty of boundary implementation in LBM comes from the
fact that there is no unique way of defining the distribution functions
at the boundary to recover the desired macroscopic conditions. In-
deed, while the macroscopic density and velocity is easily calculated
from the particle populations, the reverse procedure is more trouble-
some. Since the beginning of LBM in the early nineties many dif-
ferent boundary implementations have been proposed [212, 209, 213,
214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225] and there is no
consensus as to which boundary condition is the best one. Instead,
none of the method is really superior to the others, the choice of the
best boundary condition depends on the flow problem, and there is
usually a trade-off between accuracy and stability in show in multiple
review papers [209, 226]. This chapter discusses the implementation
of some of the most used boundary condition for the LBM. (And does
not propose yet another boundary implementation, as it is customary
for every Ph.D. thesis on LBM!)

3.2.1 Periodic

This is probably the simplest boundary condition, the distribution
functions going out from one side of the domain are simply streamed
back into the domain on the opposite side, as if they were attached
together. For example along the x-direction, it can be implemented
either with an if statements as

xright =

x+ 1 if (x < N− 1)

0 else
,

xleft =

x− 1 if (x > 0)

N− 1 else
,

(93)

where x ∈ {0, . . . ,N− 1} is the node location and xright and xleft are
the location of the right and left neighbours, respectively, or with a
modulus operation as

xright ≡ x+ 1(mod N) ,

xleft ≡ x− 1(mod N) .
(94)

Figure 8 illustrates this process for a D2Q9 lattice. If all the bound-
aries of a domain are set to periodic, then the domain topology can

62

(a) before streaming (b) after streaming

Figure 8: Illustration of the periodic boundary condition along the x-axis for
a D2Q9 lattice.

be assimilated to a torus (or an hyper-torus for three-dimensional do-

torus geometry

mains). Such configuration can be used to approximate an infinite do-
main and to limit the effect of the boundaries on the fluid behaviour.
It is a classical configuration for the study of isotropic turbulence in
CFD.

3.2.2 Force Equilibrium

This simple boundary condition works by imposing the equilibrium
distribution functions on either just the unknown or all the distribu-
tion functions of a boundary nodes, and can be use to set the velocity
and density at the boundary.

fi = f
(eq)
i (ρ, ~u) (95)

This is in general not a physically accurate boundary, because it does
not conserve mass and it should be avoided in production code. How-
ever, it is very simple to implement and particularly robust, so it can
be very useful to quickly set up a new boundary condition in a new
code or for a new problem before switching for a more accurate (but
often less stable) boundary scheme.

3.2.3 Bounce-Back

In this simple boundary condition, the distribution functions leaving
the domain are reverted to replace the unknown ones,

fi (~x) = fı̄ (~x) , (96)

where ~ei and ~eı̄ are pointing in opposite directions, i.e. ~ei = −~eı̄.
This effectively implements a no-slip boundary condition on a fixed

wall, as no momentum is neither received or lost by the node. The
relative simplicity of this boundary, compared to its equivalent in
traditional CFD, played a major role in the popularity of the LBM.

This boundary has two variant implements, so called full-way and
half-way bounce-back. This appellation is misleading as the physical

63

location of the wall is always one half grid spacing beyond the last
fluid node, in both variants. The main difference is that the half-
way bounce-back treats boundary nodes as fluid nodes, hence the
collision step is applied on those nodes, while they are considered as
solid nodes in the full-way bounce-back.

Full-way bounce-back

Fluid

Solid

Pre-streamt=t

Fluid

Solid

Post-streamt=t

Fluid

Solid

Bounce-backt=t

Fluid

Solid

Post-streamt=t+Δt

Figure 9: Illustration of the full-way bounce-back boundary condition on a
D2Q9 lattice, for a no-slip wall located at the bottom of the sim-
ulation domain. The variable vector length represents different
density values.

The full-way variant of the bounce-back method was historically
the first one and dates back to the age of the lattice gas automaton
[227]. It is relatively simpler because all of the distribution functions
are reverted regardless of the wall normal and the boundary nodes
are considered to be part of the solid, so the collision step is not ap-
plied on them, which is why this method is sometimes called dry
bounce-back. These nodes live outside of the simulation domain and
act as ghost-nodes purely to temporary store the bounced-back distri-
butions. The physical location of the boundary is half-way in between
the ghost-nodes and the fluid nodes, as depicted on figure 9. This
boundary condition is perfect to describe the geometry of a porous
media, where the pores can sometimes be one node thick and the
normal to the pore is not easily defined [22, 81, 23, 228, 38].

Half-way bounce-back

The half-way variant of the bounce-back boundary condition is sim-
ilar in its principle to the full-way variant, but the boundary nodes
are considered to be part of the fluid domain (i.e. they are wet) and
they are subject to collision step as any other fluid nodes. In this
variant, the reflection occurs during the same time-step but only on
the distribution functions that are exiting the domain. The half-way
bounce-back is purely local and does not require a ghost node, but
the wall-normal to the wall needs to be known in order to choose

64

Fluid

Solid

Pre-streamt=t

Fluid

Solid

Post-streamt=t

Fluid

Solid

Collisiont=t

Figure 10: Illustration of the half-way bounce-back condition on a D2Q9 lat-
tice, for a bottom solid wall. The three distribution functions nor-
mal to the wall, which are bounced-back, have different lengths
to simplify the visualisation.

which distribution to flip. The wall is physical located at half a grid
spacing outside of the fluid domain, as depicted on figure 10.

The half-way bounce-back has been shown to be more accurate
than the full way scheme, as it does not suffer from the lag of one-time
step. In particular, [215] showed that the half-way achieves second
order convergence under space refinement while the full-way bounce-
back is only first order. However this seems to be contradictory to the
second order numerical convergence obtained for both models on a
Poiseuille flow, see section 6.1.

Although the bounce-back method perform great in most situa-
tions, it might introduce a small slip velocity at the wall [215] and
the exact location might be offset from the half-way grid [59], this can
be solved with the MRT collision operator [59].

3.2.4 Free Slip

Fluid

Solid

Pre-streamt=t

Fluid

Solid

Post-streamt=t

Fluid

Solid

Collisiont=t

Figure 11: Illustration of the free-slip boundary condition on a D2Q9 lattice
at the bottom wall.

The free-slip boundary condition, also called symmetry boundary
condition, is that of a fixed wall where the fluid is allow to freely slip
on it, i.e. the velocity at the boundary is defined by the following
macroscopic equations,

~u · ~n = 0 (97)
∂~u

∂n
= ~0 (98)

where ~n is the normal direction to the boundary and n the corre-
sponding axis (either x, y or z). Hence there is no flow across the
boundary and the gradient of the velocity is zero at the boundary (as
if the velocity was symmetric).

65

This boundary is efficiently implemented in LBM by reflecting the
distribution functions along the boundary, as depicted in figure 11.
This type of boundary is required for two dimensional axisymmetric
flow models [229, 230, 231] or can simply be used to allow the flow to
slip at the wall. As for the bounce-back scheme, the free-slip bound-
ary can have a wet and dry implementation, and both require the
wall normal. The free-slip can also be combined with bounce-back to
achieve a partial slip boundary condition [232].

3.2.5 Zou-He

Fluid

Solid

Unknown
distributions at the

bottom boundary are
represented in red.

As the name suggests, this boundary condition was proposed by Zou

and He [225], its principle is to modify the unknown distributions at
the boundary, i.e. those coming from outside of the domain, so that
the recovered density (or velocity) is the desired one. This issue is that
there are usually more unknown distributions than moments, hence
more unknowns than equations. This result in an under resolved
system and additional equations are required to close the system. In
their method, Zou-He create more equations by applying a bounce-
back on the non-equilibrium part of the distributions. The proposed
scheme can be directly applied to the D2Q9 and D3Q15 lattices to set
either the velocity or density at the boundary, but requires significant
changes for larger lattices which makes it difficult to implement for a
D3Q19 lattice [233].

The following demonstrates how to apply the Zou-He boundary
on a bottom wall with a fixed velocity for a D2Q9 lattice. There are
three unknowns distributions, f3, f5 and f7, following the number-
ing convention of section A.1 and the density at the boundary (ρ) is
also an undetermined so there is a total of 4 unknowns. There are 3

equations coming from the definition of the density and velocity, in
the following equations unknowns are coloured in red,

ρ = f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8 , (99)

ρux = f1 − f2 + f8 − f6 + f5 − f7 , (100)

ρuy = f3 + f5 + f7 − f4 − f6 − f8 . (101)

The density can be obtained right away by combining equations
(99) and (101),

ρ =
1

1− uy
(f0 + f1 + f2 + 2 (f4 + f6 + f8)) (102)

An additional fourth equation is introduced by considering the
bounce-back rule on the non-equilibirum part of the particle distri-
bution functions normal to the boundary,

f3 − f
(eq)
3 = f4 − f

(eq)
4 (103)

66

where f(eq)
3 and f(eq)

4 can be computed from the velocity and density.
The system of equation is now close and the three unknown distri-

bution functions can be obtained as

f3 =f4 +
2

3
ρuy , (104)

f5 =f6 +
ρ

2

(
ux +

1

3
uy

)
+
1

2
(f2 − f1) , (105)

f7 =f8 +
ρ

2

(
−ux +

1

3
uy

)
−
1

2
(f2 − f1) . (106)

The boundary nodes in this method are wet, i.e. they are also
fluid nodes, thus the collision step must be applied on them. The
strength of this method is its numerical accuracy but its weakness is
its deficient stability for high Reynolds number.

3.2.6 Ho-Cheng-Lin

While the Zou-He boundary condition is convenient for the D2Q9

lattice (and usable for the D3Q15), its implementation for the popular
D3Q19 lattice is significantly more cumbersome [233]. The boundary
proposed by Ho-Chen-Lin [217] decomposes the unknown distribu-
tion functions as a combination of their equilibrium and a corrector,

fi = f
(eq)
i +wi~Q ·~ei (107)

where ~Q = (Qx,Qy,Qz) is to be determined. This effectively reduces
the number of unknowns to 3.

Ho-Chen-Lin boundary can be implemented in four steps:

1. For a pressure boundary, i.e. ρ = ρ0, the first step is to compute
the velocity normal to the boundary (u⊥). If the distribution
functions are written in the form f(i,j,k) = (i, j,k) where i, j,k ∈
{−1, 0, 1} then the equation for the density and velocity are

ρ = ρ0 =
∑
j,k

f(−1,j,k) +
∑
j,k

f(0,j,k) +
∑
j,k

f(1,j,k) , (108)

ρu⊥ =
∑
j,k

f(1,j,k) −
∑
j,k

f(−1,j,k) , (109)

where the unknowns are u⊥ and
{
f(1,j,k)

}
j,k ∈ {−1, 0, 1}, and

the two equations can be combined to solve u⊥ as

u⊥ = 1−
1

ρ0

∑
j,k

f(0,j,k) + 2
∑
j,k

f(−1,j,k)

 . (110)

For an inlet boundary, i.e. u⊥ = u0, ρ can be solved instead as

ρ =
1

1− u⊥

∑
j,k

f(0,j,k) + 2
∑
j,k

f(−1,j,k)

 . (111)

67

2. Once the density ρ and velocity ~u are known, the equilibrium
distribution functions f(eq)

i can be calculated.

3. By replacing the unknown distribution functions in the 3 mo-
mentum equations by the expression (107), the system is re-
duced to 3 unknowns Qx, Qy and Qz which can be solved
analytically.

4. Once ~Q is known, the unknown distribution can be evaluated
with equation (107).

3.2.7 Interpolated Bounce-Back

This boundary scheme is based on the bounce-back scheme (i.e. the
distribution functions are reflected at the wall to their incoming di-
rections, see section 3.2.3. In the bounce-back scheme the boundary
is always located half-way between two nodes (even in the so-called
full-way bounce-back). The interpolated bounce-back (IBB) uses first
or second order interpolations with the neighbour nodes to recon-
struct the value of the distribution function at a location that does not
coincide with a grid node. The method is mostly designed for fixed
boundary that are not aligned with the grid and can be extended to
moving boundaries via an additional term [212, 221].

wall

wall

wall

Figure 12: Illustration of the interpolated bounce-back boundary condition
in one dimension for a wall located between two grid sites. ~xt is
the original location of the distribution function that ended at ~xf
after doing a full bounce-back on the wall.

68

In the IBB, the location of the wall can be at any place place be-
tween two grid points. The bounced-back distribution function at
the last fluid node is recomputed based on the location of a virtual
fluid distribution function having bounce-back on the wall, see ~xt
on the figure 12, using some interpolation between the distribution
functions of that node and of its neighbour(s).

For each lattice link crossing the boundary, the distribution func-
tions coming from inside the wall (fi ′ (~xf)) is undefined after the
streaming step and needs to be defined using an interpolation of the
opposite distribution at the wall fi (~xf) and its closest neighbours
fi
(
~x ′f
)

and fi
(
~x ′′f
)
, where ~ei ′ = −~ei. The formula used for its defini-

tion depends on the distance between the wall and the last fluid node
q (see figure 12)

fi ′ (~xf, t+ 1) =

2qfi (~xf) + (1− 2q) fi
(
~x ′f
)
+ 2wiρ~ei · ~uw, q < 1/2

1
2qfi (~xf) +

2q−1
2q fi ′ (~xf) +

wiρ
q ~ei · ~uw, q > 1/2

(112)
The final term is introduced to account of an optional non-zero wall

velocity ~uw. The above formula is based on a first order interpolation
and only uses the first neighbour ~x ′f. A second order interpolation
using the second closest neighbour ~x ′′f can be used instead, and is
shown to yield higher accuracy [212].

fi ′ (~xf, t+ 1) =

q (1+ 2q) fi (~xf) +
(
1− 4q2

)
fi
(
~x ′f
)

−q (1− 2q) fi
(
~x ′′f
)
+ 2wiρ~ei · ~uw

q < 1/2

1

q (2q+ 1)
fi (~xf) +

(2q− 1)

q
fi ′ (~xf)

−
(2q− 1)

(2q+ 1)
fi ′
(
~x ′f
)
+

2wiρ

q (2q+ 1)
~ei · ~uw

q > 1/2

(113)
Although the algorithm is presented for a one dimensional config-

uration, it can still be applied to 2D and 3D simulation, as long as the
exact location of the intersection between the wall and the lattice can
be computed. For irregular shapes, this intersection might be difficult
to obtain.

Although the original papers showed that the interpolated bounce-
back improved over the standard bounce-back implementation for a
Poiseuille flow [221] and for a moving cylinder [212], it is not better in
all circumstances, Obrech [234] showed no significant differences in
the obtained Strouhal number for the flow past an inclined flat plate.

As the object is moving, solid nodes becomes fluid nodes, the distri-
bution functions of these nodes needs to be reconstructed to describe
a valid fluid node. The method to compute the values of the distri-
bution function is not unique. Lallemand et al. [212] proposes to

69

update solid nodes as if they were fluid nodes moving at the speed
of the solid or to use yet another extrapolation formula.

It should be noted that the use of the neighbour node for the in-
terpolation breaks the locality of the LBM. Accessing neighbour dis-
tribution functions might slow down the computations and the sec-
ond order interpolation might be difficult to perform in a porous
media, where solid nodes might be separated by less than three fluid
nodes. Nevertheless, the IBB can still be implemented efficiently on
the GPU [235].

3.2.8 Immersed Boundary Method

x x+1

y-1

y

y+1

y+2

x+2 x+3 x+4 x x+1

y-1

y

y+1

y+2

x+2 x+3 x+4

ra
diu

s

Figure 13: Example of the cell coverage ratio for a two dimensional box and
for a disk, it is computed per cell as the ratio of the red area to
the area of the cell (equal to one).

As introduced in section 2.3.6, the immersed boundary method
(IBM) was originally designed to handle fluid-structure interaction
of a deformable structure for classical CFD methods [116]. An equiv-
alent implementation exists for the LBM (see [119] and references
therein) that can be for moving and deformable boundaries or simply
boundaries that are not aligned with the simulation grid (as the inter-
polated bounce-back). The momentum transfer is achieved through a
secondary collision operator which strength depends on the cell cov-
erage ratio, i.e. the ratio of the volume of solid within a cell to the
volume of the cell itself. The method has several advantages over the
interpolated bounce-back:

• all the operations are local to the node, no need to interpolate
between neighbour nodes,

• the normal at the wall is not required (all the distribution func-
tions of a boundary node are affected by the scheme),

70

• easier implementation.

The algorithm makes use of the cell coverage ratio Bn (x,y, z) that is
the amount of solid within the node at location (x,y, z). Bn = 0 corre-
sponds to a pure fluid node and Bn = 1 corresponds to a pure solid
node. As an example, the following formulae shows how to compute
Bn (x,y) for a two-dimensional simulation where the solid is a box de-
fined by its two extreme corners (xmin,ymin) and (xmax,ymax), as shown
on figure 13. A node at location (i, j) is considered to be inside the
box (or on the boundary) if (i+ 1/2 > xmin) and (j+ 1/2 > ymin) and
(i− 1/2 6 xmax) and (j− 1/2 6 ymax), in which case the cell coverage
ratio is the product of the coverage along each axis. For instance,
Bn(x,y) =

(
x+ 1

2 − xmin
)
·
(
y+ 1

2 − ymin
)
. As for IBB, the evaluation

of Bn for complex object geometry is not always simple and can be-
come the most challenging component of the algorithm, figure 13

shows that even an object as simple as a disk can have a complex
coverage. In such cases, some strategies can be adopted such as cell
decomposition or polygonal approximation [119].

The algorithm for the IBM is as follows:

1. Compute the cell coverage ratio Bn (x,y)

2. Stream the distribution functions as usual

3. Compute the density ρ, velocity ~u and corresponding equilib-
rium f

(eq)
i (ρ, ~u) as usual.

4. Compute a second equilibrium f
(eq)
i (ρ, ~up) based on the object

velocity ~up.

5. Compute an additional collision operator, Ωsi , for each pair of
opposite distribution functions ~ei and ~ei ′ = −~ei.

Ωsi =
(
fi ′ − f

(eq)
i ′ (ρ, ~up)

)
−
(
fi − f

(eq)
i (ρ, ~up)

)
(114)

6. Relax toward the equilibrium using the usual collision operator,
i.e.,

(
fi − f

(eq)
i (ρ, ~u)

)
/τ for BGK and the secondary collision op-

erator Ωsi weighted with Bn

f
(new)
i = fi − (1−Bn)

(
fi − f

(eq)
i (ρ, ~u)

)
τ

+BnΩ
s
i (115)

7. If the fluid is submitted to external force (like gravity), then this
force is multiplied by (1−Bn) before being added.

The inside of the solid is simulated as a fluid which can be the cause
of instabilities; a possible solution is force the inside solid nodes to
the equilibrium, i.e. f(new)

i = f
(eq)
i (ρ, ~up)

71

3.2.9 Further Reading

Boundary conditions conditions in LBM is a difficult topic, the ac-
curacy and stability of a specific implementation can vary with the
Reynolds number of the flow [209]. Moreover, the simplicity of the
implementation and its applicability to multiple lattice types as well
as edges and corner nodes must be considered. Surprisingly, the force
equilibrium scheme (3.2.2) provides a simple and stable way to imple-
ment boundaries while achieving a reasonably good accuracy. Hence,
it offers a quick way to set up a working simulation before trading
for a more accurate boundary scheme.

While the boundaries described in this chapter fulfil the require-
ments for the applications studied in chapters 6, 7 and 8, a few
other techniques are worth investigating. Such as, the regularised
boundary condition that uses the value of macroscopic moments at
the wall [156], the non-reflecting boundary scheme to destroy the
pressure waves that can otherwise pollute the results [213], non-local
methods that interpolates the relevant quantities from the neighbour
nodes [222].

In the case of a LES simulation, the boundary condition should
include a modified model for the sub-grid stresses at the wall, see
[176, 188].

72

4
O P T I M I S E D I M P L E M E N TAT I O N O N G P U

The previous chapter gave a basic overview of the implementation of
the lattice Boltzmann method. This chapter discusses in more detail
the implementation of the method on graphics processing unit (GPU)
and the optimisation techniques developed during this work in order
to achieve the highest computational throughput.

Firstly, the reader is introduced to a short reminder on the history
of parallel computing, as well as a brief introduction to the main prin-
ciples of programming on GPU. The following sections dives into the
specifics of the implementation and optimisation of a LBM kernel for
a GPU, before discussing other related subjects such as real-time visu-
alisation, multi-GPU programming and automated code generation.

The results on the resulting computational efficiency after optimi-
sation of the program are presented in the next chapter.

4.1 a brief history of gpu

From the first calculating devices, like the abacus in the antiquity to
the widespread use of electronic computing devices in today’s society,
the world of computers has been through important changes. The term

“computer” used to
refer to “human
computer” as in a
person who
computes, often as a
job, and this usages
carried on up to the
second world war,
where human
computers played an
important role in the
war effort.

The first mechanical calculators, like Pascal’s calculator, were in-
vented in the 17th century. And the first electronic programmable
computers, using vacuum tubes emerged in the 1940s. After the in-
vention of transistors, followed by that of integrated circuits and fi-
nally that of microprocessors, the computer landscape has evolved
tremendously throughout the last 60 years. Nowadays, computers
can be found everywhere, in various shapes and sizes, from smart-
phones to supercomputers.

While most computers are based around a single central processing
unit (CPU) that performs operations in a sequential order, there has
been a shift over the recent years towards multi-core processors that
divide the work amongst several cores (in parallel). This is mostly
caused by the limits in core frequency, as the frequency of a core
increases it is able to perform more operations per second, but its
power usage and thermal envelope increases. As a result, today’s
frequency (in the GHz, i.e. 109 operations per second) have reached
a limit. A GPU is a recent type of processing unit that focuses on
massively parallel computations.

The first GPUs appeared in the late nineties to accelerate simple
graphical operations, these were not programmable in the sense that
they were using a fixed pipeline designed to compute vertex projec-

73

tion and triangle rasterisation in a specific, pre-defined way, hard-
coded on the hardware. GPUs became programmable in 2001, with
the introduction of shaders, short programs that allows to change
how vertexes, triangles and textures are handled, followed in 2004

by their formalisation within the OpenGL programming language. It
is around then that the first attempts to implement the LBM on GPU
was made with the contribution of Li et al. in 2003 [236]. At the time,
the implementation was convoluted, as the distribution functions had
to be mapped to different textures, where each texture could store 4

distributions as a red, green, blue and alpha (transparency) compo-
nents. Nevertheless, they successfully implemented both a D2Q9 and
D3Q19 BGK model, achieving a speed-up of up to 56 compared to a
CPU of the time. Their work was latter extended[237] to a cluster of
32 GPUs (NVIDIA GeForce FX 5800 Ultra) for the simulation of the
air flow around a city at a resolution of 480× 400× 80 (which would
be attainable nowadays on a single GPU).

The initial release of CUDA in 2007 popularised GPU computing
by exposing a programming model close to the C programming lan-
guage, i.e., more convenient for engineers than a shader language.
Tölke et al.[44, 238] reported the first 2D and 3D CUDA implemen-
tation of LBM, with gains of up to two orders of magnitude over
the CPU. Since then, GPU have significantly evolved in terms of per-
formance and flexibility, and programming models have changed as
well (CUDA is in version 7 at the time of writing). Nowadays, GPUs
are used in many field of research and engineering, such as (but not
limited to) computational fluid dynamics[239], deep learning neural
networks[240], finance[241], scientific visualisation[242].

A major drawback of CUDA is that it is proprietary : only NVIDIA
cards can run CUDA programs. Other frameworks aim at providing a
more generic approach: OpenCL1 (introduced in 2009 and supported
by a concurrent company AMD) is similar to CUDA but can run on
both NVIDIA GPU, AMD GPU, and CPU, while HMPP2, OpenACC3

and ArrayFire4 open GPU acceleration capabilities through the use
of preprocessor directives. The lack of universal standard in today’s
GPU ecosystem can be confusing. OpenCL is a good contender for
that role, but as of today it is still dragging behind CUDA, with a
limited number of functionality, reduced performance, and unstable
drivers.

GPUs have the additional advantage of having a good ratio of per-
formance per watt, as a result, 9 out of the 10 highest rated super-
computers in the world features GPUs; according to the Green500

5,
which ranks the most energy efficient supercomputers.

1 https://www.khronos.org/opencl/
2 http://exxactcorp.com/index.php/software/prod_list/2

3 http://openacc.org/
4 http://arrayfire.com/
5 http://www.green500.org (last updated in November 2014)

74

https://www.khronos.org/opencl/
http://exxactcorp.com/index.php/software/prod_list/2
http://openacc.org/
http://arrayfire.com/
http://www.green500.org

4.2 introduction to gpu programming

Before discussing the details of the implementation of the LBM on
GPU in the next section, this section gives an understanding of how
GPU works and how GPU programming differs from CPU program-
ming.

There are three main ideas behind GPU programming, and they
will be detailed in the following subsections: the GPU is physically
distinct from the CPU, the GPU is a “massively parallel machine”
and follows a single instruction multiple data (SIMD) programming
paradigm.

4.2.1 GPU programming methodology

The GPU programming methodology is closely linked to the com-
puter architecture. In a typical GPU-enabled computer, there is:

• a motherboard, to which each component connects to,
motherboard

CPU

RAM

HD

PCI-E

GPU

• a CPU, directly connected to the motherboard through a CPU
socket,

• several bars of RAM memory, connected with DIMM sockets,
for fast short-term storage,

• a hard drive, connected to a SATA port, for slow long-term stor-
age,

• and a GPU, connected to the motherboard via a PCI-Express
port.

Although today’s GPU has more features than it used to, it still cannot
function independently from the CPU. It is often regarded as a co-
processor to the CPU, i.e. as another processor to relieve the CPU
from some of the demanding computations. Historically, the CPU
has been the one driving the system, controlling the RAM, the hard-
drive and other components. It is still the case nowadays, the GPU
is being controlled by the CPU with a job submission process. Thus,
running a program on the GPU is typically done in three steps, as
illustrated in Figure 14:

1. send the data needed for the computations to the GPU,

2. run the GPU program (called a kernel),

3. send the results of the computations back to the CPU.

The GPU is physically far away from the CPU, and sending data
through the PCI-Express port is very slow. To overcome this limita-
tion, the GPU is equipped with its own memory which can achieve

75

CPU GPU
PCI Express

1

3

transfer

transfer

2

computation

Figure 14: Using the GPU is done in three steps.

high bandwidth throughput, even higher than that of the CPU RAM.
Usually, the CPU pre-processes the data, performs a memory copy
from the RAM to the GPU on-board memory, schedules the GPU
to run some computations on the data and then performs another
memory operation to copy the data back in order to post-process the
results. If special care is not taken, the memory transfers can end up
taking more time than the computations themselves.

4.2.2 Differences between CPU and GPU

Historically, higher performances were achieved by increasing the fre-
quency at which processors were running. But once the limit of pro-
cessor frequency was reached, the only way to create faster processors
was to built some that contain multiple units of computation, called
cores, and sharing the workload between these cores. Nowadays,
both CPUs and GPUs are multi-core processors, but the differences
in their architectures result in a different operating and programming
model.

Because the CPU is the central unit of the computer, it needs to
be able to handle tasks of many different types, e.g. sorting files,
scheduling processes, handling sockets... etc. This requires the CPU
to have a large number of fast control units, that allows for quickly
changing from one task to the next, and to have large amount of mem-
ory cache to reduce the unavoidable random access latencies. On the
other hand, the GPU is a more specialised hardware, it can only han-
dle one task at a time. However, modern GPUs host thousands of
cores while modern CPU only have a few. So although the GPU can
only tackle one task at a time, it can do it very efficiently, given that
the task can be processed in parallel among all the cores. The GPU
can solve some problems several order of magnitude faster than the
CPU, but it needs an efficient parallel algorithm and a large amount
of data to work on. This is the main distinction between many-core
and multi-core architectures.

The difference between CPU and GPU parallelism becomes evident
when looking at domain decomposition, for a parallel fluid simula-
tion algorithm for instance.

76

CPU GPU
Figure 15: Illustration of domain decomposition on a CPU and on a GPU.

• On a multi-core processor, like a recent CPU, there are a few cores
that can work on different tasks or be used cooperatively to-
wards the same task, by sharing the work equitably between
them. For example on a four-cores CPU, the program can split
the simulation domain into four sub-domains of equal sizes
(Figure 15). Each core would then compute a quarter of the do-
main. If the total number of nodes in the domain is Nx ×Ny ×
Nz where Nx, Ny and Nz are the number of nodes in each di-
rection, then each core would handle Nx ×Ny ×Nz/4 nodes.
It can be non-trivial to share the work equitably amongst the
cores, especially for complex geometries, this is known as a load
balancing issue.

• On a many-core processor, like a recent GPU, there are thousands
of cores and each core can handle thousands of threads. And In GPU computing,

a thread is the
smallest level of
parallelism, each
core handles many
threads. It allows to
efficiently hide the
instructions and
memory latencies.
Threads can be seen
as “virtual cores”.

the GPU has a thread scheduling mechanism that allows to run
a kernel with as many thread as necessary, even if this number
is higher than what the hardware can handle at one time. Thus
there is no need to divide the fluid domain into sub-domains on
the GPU. Instead, each node of the simulation can be associated
with a different thread (Figure 15). This is a completely different
level of parallelism to what is possible on a single CPU.

4.2.3 SIMD programming philosophy

There is another major difference between CPU and GPU which is
linked with the number of control units. GPU threads and CPU cores
are not designed to handle the same kind of work. As mentioned
previously, CPU cores can perform different tasks from each other
very efficiently, and on the other hand the GPU threads need to be all
doing the same task. Although having different works amongst GPU
threads is possible, it comes at price on the performance. Moreover,
GPU threads are slower than CPU cores, because they are running
at a smaller clock frequency and they have a different architecture.
They require comparatively more clock cycles than the CPU cores to

77

do the same operations, but on the other hand, millions of threads
can be run at the same on a GPU.

In other words, the GPU follows a SIMD programming model,
which stands for Single Instruction Multiple Data, each GPU thread
executes the same kernel function, on the corresponding section of
the data, i.e. the associated node, and all the threads are run in paral-
lel. The CPU does not follow the SIMD programming model, instead
it follows a MIMD model (Multiple Instruction Multiple Data) where
different instructions can be executed by the cores on different parts
of the data.

In conclusion,

• CPU cores can be doing very different works from each oth-
ers, the amount of work done by one core shouldn’t affect the
speed of another core. For instance, one core could be decoding
a video while the second core is busy sending file through the
network. This is possible because each core can work indepen-
dently from the others,

To use a simile, the
GPU can be seen as
a the head of a rake
and the data as dead

leaves on the
ground: if one of the

branches hits a
pebble, the branch

will create more
resistance and the

whole rake will slow
down.

• GPU threads, however, work collectively as a group and if one
of the threads is doing something different, the others have to
wait for it to finish. This is why it is crucial that all the threads
on the GPU follow the same instructions and access the data in
the same way6.

The GPU SIMD model comes with a special thread organisation, that
needs to be defined by the programmer. The thread are organised in
two levels on the GPU, see Figure 16:

1. First, the threads are grouped in three-dimensional blocks. Each
block is executed on a streaming multiprocessor7, and all threads
of a same block share the resources of the streaming multipro-
cessor where they are running.

2. Then, the blocks are organised on a three-dimensional grid.
This grid represents all the streaming multiprocessors running
in parallel. The grid can be bigger than the actual number of
streaming multiprocessors present on the GPU, in which case
the next block will be run as soon as a free space is available on
the grid.

4.2.4 Code sample

To summarise, the following listing shows how a typical GPU pro-
gram would look like in pseudo-code. Its actual implementation in
the CUDA programming language can be found in Appendix D.

6 This is know as coalesced memory access, see section 4.4.2.
7 A streaming multiprocessor is a group of GPU cores and the associated shared re-

sources, such as register and shared memory. More details in Appendix D.

78

Block Block Block

Block Block Block

Block Block Block

Grid Block

readread read

readread read

readread read

Figure 16: Threads organisation.

Initialise with

initial conditions

Streaming kernel

Collide kernel
Display kernel

Start

screenplotplot

Figure 17: Core structure of the LBM program.

Listing 1: Structure of a GPU program.

allocate memory on the CPU and on the GPU
initialise the data on the CPU
transfer the data from the CPU to the GPU
define the thread layout (grid size and block size)
execute the kernel on the GPU
transfer the data back from the GPU to the CPU
free memory on the CPU and the GPU

4.3 implementation of the lbm on gpu

This section introduces the numerical implementation for a real-time
3D flow solver using the LBM on a GPU. The source code devel-
oped during the thesis has been written using the CUDA C language
to be run on various NVIDIA GPUs. Nevertheless, all the program-
ming techniques presented in this chapter, including the optimisation
strategies presented in the next section, should be amenable to other
GPU brands (i.e. AMD) and other SIMD programming languages (i.e.
OpenCL).

The core structure of the LBM program running on GPU is repre-
sented in Fig. 17. At the start of the program, all the required memory
is allocated on the GPU and the CPU (optionally), this includes the

79

two set of arrays (19 arrays for a D3Q19 model) for the distribution
functions f and the temporary distribution functions ftmp and an ar-
ray for the results to output. If used, the distribution functions stored
on the CPU are initialised to their equilibrium values, then they are
transferred to the GPU. Otherwise, the distribution functions are ini-
tialised directly on the GPU by a specific kernel. Once the initialisa-
tion is finished, the program can enter the main loop, which consists
in the following steps: stream, collide and output the results. The
streaming-step of the LBM is handled by a “streaming kernel” that
reads the distribution functions stored in f and stores the streamed
distribution functions in ftmp. The collision step of the LBM, i.e.
computing the macroscopic quantities, the equilibrium distribution
functions and relaxing the distribution functions towards their local
equilibrium, is done by the “collide kernel” that reads the streamed
distribution functions from f and write the collided one back to ftmp.
The collide kernel also saves the quantity to display (e.g. the density
or the magnitude of the velocity) into an array called plot. This
plot array can later be transformed and displayed on the screen by
the display kernel, called at regular intervals. In a traditional CFD
software, the content of the plot array would be stored on the hard
drive in order to be studied later using a specialised post processing
tool. This is obviously still possible with the LBM solver, but if the
simulation can be done in real-time, it is more convenient to visualise
the results as they are being computed and to do the post-processing
in real-time. The visualisation tool can display the results in various
forms: slice moving through the domain, volume rendering, velocity
profile, etc. more details are given in Section 4.5.

Note that Fig. 17 only shows the bare bones of the system and that
other parts would need to be included to account for real-time user
interaction or sensors input.

4.4 optimisation of the lbm on gpu

This section studies how the basic LBM program presented in the
previous section can be optimised to run at the highest computational
throughput on a GPU.

The lattice Boltzmann algorithm requires relatively more memory
transactions than computing instructions, as each node operates on a
large number of distribution functions and requires only a few com-
putations in order to update them. In other words, accessing data, i.e.
the distribution functions, in memory takes longer than the compu-
tations on these data. As a result, the LBM is mainly limited by the
memory bandwidth of the device it is running on. There are different
strategies to increase the memory throughput of LBM:

• using smaller nodes.
Several node types can be used for three dimensional LBM:

80

D3Q11, D3Q15, D3Q19, D3Q27... Smaller nodes, like D3Q11,
uses comparatively less distribution functions than bigger nodes
which has the advantage of reducing the number of required
memory accesses to update a node. On the other hand, smaller
nodes span less directions in space which can lead to anisotropy
in the simulation results. The D3Q19 node was chosen for most Comparison of the

velocity fields on a
cross section at the
front of a jet for the
D3Q15 and D3Q19
lattices. The D3Q15
shows spurious high
frequency
fluctuations and a
clear anisotropy.

D3Q15

D3Q19

simulations, as an optimum ratio of accuracy over memory cost,
but the type of node can be customised, see Section 4.7 for more
details.

• using an improved collision operator.
Although this does not strictly accelerate the method, it is pos-
sible to take advantage of the wasted clock cycles while waiting
for memory to perform more operations toward an improved
collision model with multiple relaxation time or a turbulence
model. See the discussion in section 5.1.5.

• minimise memory access.
Reading and writing data to the GPU global memory is the
limiting factor of LBM, so an optimised implementation should
attempt to remove all unnecessary more memory access.

• increase data coalescence.
The memory access pattern can have a big impact on the GPU
performance. With a well designed pattern, an optimised im-
plementation can achieve significant speed-up over another im-
plementation.

4.4.1 Minimise memory access

An easy and efficient way of reduce the number of memory access to
global memory in a LBM program is by combining both stream and
collide kernels into a single kernel, as described in Fig. 18

Indeed, when using two kernels, the program performs two read-
access and two write-access to global memory (per distribution func-
tion per node and per time step). The distribution functions are read
from f, streamed to their neighbours and stored into ftmp by the
streaming kernel. Then the collide kernel reads distribution func-
tions from ftmp, computes the equilibrium, relaxes and saves the
new distribution functions back into f. However, by joining the two
kernels into one big kernel the number of memory access can be
halved: the stream&collide kernel does not store the streamed distri-
bution functions into ftmp, instead it keeps them in registers that are
directly used for the computations of the collision step, only the fi-
nal streamed and collided distribution functions are stored into ftmp.
In the following time-step the stream&collide kernel can either read
from ftmp and write to f or f and ftmp can be swapped, which is a

81

stream kernel

collide kernel

time
(loop)

write f

Data Array
Temporary
Data Array

stream & collide kernel

read f

Data Array
Temporary
Data Array

swap pointers

read f write f temp

read f temp

write f temp

f tempf

Figure 18: Blending the streaming and collision kernels into one reduces the
number of memory accesses by a factor of two.

very fast operation that only requires to exchange memory pointers
no memory copy is needed.

While merging the stream and collide kernels into one reduces by
a factor of two the usage of the global memory bandwidth, the tech-
nique also comes with two main drawbacks:

1. increased kernel size.
The length of the stream&collide kernel in terms of the number
of lines of source code is the sum of the number of lines of each
kernel. This can be an issue for readability and maintainability
as lengthy functions are harder to comprehend and maintain.
This is partially solved by the use of code generation techniques,
as described in Section 4.7.

2. increased kernel complexity.
Because the stream&collide kernel has to do more computa-
tions, it also require more resources and each thread running
the kernel requires more registers. But the total number of
register available per block is limited and if a kernel requires
too many registers, then it will not be possible to fully popu-
late the block with threads which could result in slower perfor-
mance. This problem will be discussed in more details in the
section 5.2.1.

4.4.2 Increase data coalescence

Another efficient way to increase the memory throughput of a GPU
program is to ensure memory accesses are coalesced. A memory access
pattern is called coalesced when all the threads in a block access con-
secutive memory locations. In this case, the accesses are combined
into one single request by the hardware. Finding a well structured
memory access can be challenging for any architecture, either CPU or

82

...

node1 node2 node3

thread1
1 2 3

thread2 thread3

......

(a) Array of Structures (b) Structure of Arrays

Figure 19: Two different memory access patterns for two different architec-
tures.

GPU, but the CPU makes the impact of unstructured memory access
(called uncoalesced) minimal by the use of large memory cache and
more sophisticated control units. Nevertheless, CPU and GPU both
benefits from a well structured memory access, although they prefer
different ones: the CPU favours memory arranged in an a so-called
Array of Structures (AoS) while the GPU favours memory aligned in
a Structure of Array (SoA) pattern instead.

The following listing describe how an Array of Structure can be
defined in the CUDA-C language, the 19 distribution functions are
grouped together in a structure called Node, then all the nodes are
aligned in a one-dimensional array. The layout of the distribution
functions in memory and the resulting uncoalesced memory access
are depicted on Fig 19a.

Listing 2: Array of Structures

//regroup 19 float variables together
struct Node { float f0, f1, f2, ..., f18; }
//create an array of Nx*Ny*Nz nodes
Node Lattice[Nx*Ny*Nz];
//example of how to access distribution functions
// node (i,j,k), fifth distribution
float value = Lattice[i+j*Nx+k*Nx*Ny].f5

To update a node, each thread need to access all the distribution
functions of the corresponding node (and some of the neighbouring
nodes as well). Using the AoS pattern, each thread accesses a local
area of the memory. This is perfect for a CPU implementation because
the CPU updates nodes one by one and the distribution functions for
each node will fit nicely in the cache memory, allowing to update the
nodes efficiently. But such pattern would be very inefficient for the
GPU: the accesses are not coalesced, as consecutive threads are not
accessing consecutive memory locations. For example, the accesses to
the distributions f0 of consecutive nodes by consecutive threads are
separated in memory space by 18 · 4 = 72 bytes (the 18 distributions
f1 to f18) and cannot be grouped into a single large memory access.

83

They would need to be serialized into many small accesses, which
would significantly slow down the execution of the kernel.

On the other hand, the Structure of Arrays pattern, as described in
the Listing 3, allows for coalesced access to the memory. In this pat-
tern, all the distribution functions corresponding to the same micro-
scopic directions ~ei are grouped together in an array, and the whole
lattice is described using 19 of these arrays.8

Listing 3: Structure of Arrays

//regroup 19 float arrays of size Nx*Ny*Nz together
struct Lattice
{
float f0[Nx*Ny*Nz];
float f1[Nx*Ny*Nz];
...
float f18[Nx*Ny*Nz];

}
//example of how to access distribution functions
// node (i,j,k), fifth distribution
float value = Lattice.f5[i+j*Nx+k*Nx*Ny];

As shown in Fig 19b, the Structure of Array memory pattern does
not group the set of 19 distribution functions defining a node together,
they are instead spread throughout the GPU memory. This pattern
would be particularly inefficient on the CPU as the 19 distributions
would not fit in the cache memory, but it fits the GPU nicely, as con-
secutive threads access consecutive memory addresses. Therefore,
the memory accesses are coalesced and can be grouped into a single
large memory request (one per distribution function).

To summarise, the optimal memory access pattern for a CPU is an
AoS, while the GPU need a SoA pattern. This difference in patterns
is one the reasons why it is difficult to develop cross architecture
programs, where the same source code base can be use for both the
CPU and GPU execution. Using a code generator (4.7), the access
pattern can be customised for the target architecture.

So achieving data coalescence on the GPU requires to use a SoA
pattern for accessing the memory, but the thread layout as well need
to be carefully chosen to adequately reflect the memory layout. The
safest way to insure proper data coalescence is to use the same lay-
out for the threads and for the memory. The 19 three-dimensional
arrays containing the distribution functions are physically stored in

8 With old GPUs of compute capability 1.x, the function parameters are passed to
the device via shared memory and are limited to 256 bytes. The SoA presented on
Listing 3 requires 2 · 19 · 8 = 304 bytes which would overflow the parameters limit
when compiling for architecture 1.x. Instead the 19 arrays have to be regrouped
within a single array, and accessed via index computation. This limit was removed
for the architecture 2.x and higher that uses 4KB of constant memory to store the
parameters.

84

x

z

y

1 block of threads

Figure 20: Thee-dimensional thread layout, using 1D blocks and a 2D grid..

memory as 19 one-dimensional arrays. The memory alignment fol-
lows the standard alignment in C programming: first aligned in the
x-direction, then in the y-direction and finally in the z-direction, al-
though this could be customised easily. The following code snippet
shows how to access the element (x,y, z) of the three-dimensional
array “array” using this alignment.

Listing 4: Three-dimensional memory index computation.

//compute the 1D index corresponding to (x,y,z)
int index = x + y * Nx + z * Nx*Ny;
//access the element (x,y,z) in the array
array[index] = ...

The threads are organised in a similar way to the memory, as shown
in 20: threads are aligned along a one-dimensional block of size Nx
and the blocks of threads are aligned on a two-dimensional grid of
size (Ny,Nz). Threads could also be organised on 2D blocks of size
(Nx,Ny) aligned on a 1D grid of size Nz, but the number of threads
in a block is limited9 so this is only possible for small simulations.

The following code snippet summarises how to define the grid and
block size, how to compute the 3D position of the thread and the
corresponding index to access the memory using the CUDA-C pro-
gramming language.

9 There is a maximum of 1024 threads per block on the Tesla C2070.

85

Listing 5: Thread Organisation in CUDA

__global__ void ExampleKernel(real* array, int Nx, int Ny,
int Nz)

{
// compute the 3D position of the thread
int x = threadIdx.x;
int y = blockIdx.x;
int z = blockIdx.y;
// compute the corresponding 1D index
int index = x + y * Nx + z * Nx*Ny;
//access the element (x,y,z) in the array
array[index] = ...
...

}

int main(void)
{
...
// define grid and block sizes
dim3 block_size(Nx, 1, 1);
dim3 grid_size(Ny, Nz, 1);
// launch the kernel
ExampleKernel <<<grid_size, block_size>>> (array, Nx, Ny,

Nz);
...

}

4.4.3 The streaming issue

Although using coalesced memory enables an important gain in mem-
ory bandwidth, with a corresponding increase in the efficiency of the
program, the nature of the LBM algorithm makes it impossible to
ever be fully coalesced. Indeed, the streaming-step requires one node
to access the distribution functions of the neighbouring nodes, hence
breaking the coalesced access pattern. Therefore, the streaming-step
is the most critical step of the whole LBM algorithm and will usually
represent most of the execution time of the stream&collide kernel.

However, the inefficiency of the uncoalesced memory accesses of
the streaming-step can be reduced by using a slightly different ver-
sion of the streaming step. On the GPU, uncoalesced reads memory
access are usually faster than uncoalesced write[243], so an efficient
LBM implementation can take advantages of this by replacing the un-
coalesced writes by uncoalesced reads during the streaming step. In-
deed the streaming step can be implemented in two equivalent ways:

86

• push-out streaming (SLOWER)

The distribution functions are pushed from the centre node to
the adjacent nodes. This pattern involves local reads (i.e. co-
alesced) of the distributions and non-local writes (i.e. uncoa-
lesced).

• pull-in streaming (FASTER)

The distribution functions are pulled from the neighbouring
nodes to the centre node. This pattern involves non-local (i.e.
uncoalesced) reads and local (i.e. coalesced) writes.

Because uncoalesced reads are faster than uncoalesced writes the first
streaming method ’push-out’ is slower than the second method ’pull-
in’, while being equivalent. Numerical experiments have show im-
plementing a pull-in streaming results in a speed-up of 10% in the
total execution time on the Tesla K40, see section 5.1.6. The speed-
up depends of the GPU architecture though, and older GPUs, with
compute capability 1.x should suffer the most from the uncoalesced
memory access, as they do not have cached global memory to hide
them.

4.4.4 Branch Divergence

Another unavoidable source of performance lost on the GPU is the
branch divergence (also called thread divergence). The use of flow con-
trols (such as an if condition for example) can be used inside a CUDA
kernel to request the threads to execute different instructions, but
doing so goes against the SIMD principle (i.e., each thread executes
the same instructions on a different section of the data, see subsec-
tion 4.2.3) and causes the execution paths of the threads to diverge,
with a significantly slower computational efficiency. So flow controls

87

x

z

y

Figure 21: Effect of boundaries on branch divergence. Light gray boundaries
do not introduce thread divergence, thus they are fast, but dark
gray boundaries cause divergence and are slow.

slow down the program and should be avoided whenever possible,
but they are always required to implement boundary conditions.

Listing 6: Boundary implementation and flow control.

if (thread is on the boundary)
then (special boundary code)
else (generic bulk code)

In practice, the impact of thread divergence on the performance of
the LBM on GPU depends on several factors, such as

• the GPU architecture; newer GPU are more efficient at flow con-
trol (50% slow down for the Tesla C2070 vs 30% for the newer
Tesla K40, see section 5.1.7),

• the differences between the branches; in some cases, it is possi-
ble to modify the code to increase the similarities between the
branches and this can aid reduce the performance loss,

• the location of the divergence; the divergence only appears within
the same group of threads and not between multiple groups,In fact, blocks are

further divided by
the GPU at

run-time into
groups of 32 threads
(called a warp) and
the divergence only
occurs at that level.

hence it can sometimes be avoided by reorganising the thread
layout.

With the thread organisation described previously, i.e. block of threads
aligned with the x-axis, boundary conditions aligned with that axis
do not cause divergence as all the threads within the same block fol-
low the same execution path. For example, in the case of the bound-
ary for the face y = 0, all the threads within the same block have the
same y-coordinate, thus they either execute the special boundary or
the generic bulk code, but never both. In summary, boundary along
the x-axis are efficient but those perpendicular are slow, this is illus-
trated by the figure 21.

88

4.4.5 Other optimisations

The reasonably simple optimisation techniques presented previously
are sufficient to achieve very high performance on modern hardware.
For instance, the BGK LBM D3Q19 isothermal code achieves 96% of
the effective memory bandwidth using these optimisations (see sec-
tion 5.1.4). On older hardware however, the cost of misaligned mem-
ory access used to be more important, and some additional optimisa-
tion techniques have been proposed[244, 243, 245, 44], such as using
the shared memory to perform the streaming-step in the uncoalesced
directions. Nowadays though, the improvements on the control units
and the automated caching of data removes the need for such optimi-
sations and simplifies the programming. Actually, keeping the code
source simple by avoiding unnecessary complexity is often a good
practice to improve performance. The KISS principle,

for “keep it simple
stupid”, is a famous
design principle in
computer science.

Bailey et. al [211] proposed a modified pattern for the streaming
step that removes the need for a temporary array (see section 4.3),
hence reducing the memory need by a factor of two. In their im-
plementation, the “A-A” pattern requires two kernels, one kernel is
executed for odd-iterations and performs a combined stream-collide-
stream on a single array, the second kernel executes on even-iterations
and only performs the collision step. This technique allows to sim-
ulate larger domain for a given memory size, but it does come at
the price of higher programming complexity and slightly longer ex-
ecution time. Moreover, the largest resolution allowing for real-time
capability (large resolutions cannot be simulated in real-time, see sec-
tion 5.3) can fit in the device memory.

In most optimised LBM GPU implementation, the CPU is left with
no work to do apart from scheduling kernel execution. It is possible
to consider using these wasted CPU cycles to compute a small part
of the simulation domain, in a sort of hybrid CPU-GPU computing.
This is exactly what Ye et al. [246] attempted, but the massive differ-
ence in CPU and GPU performance makes the added performance
improvement marginal at best. The 30% improvement presented in
their paper was only possible because the presented GPU implemen-
tation was really slow and unoptimised.

Some additional tricks and tweaks to get the most out of today’s
GPU are discussed in section 5.2.

It is worth mentioning that NVIDIA provides GPU programmers
with useful tools that can analyse the program and generate reports
on kernel execution time, memory usage and more to advise on
where to concentrate the optimisation efforts. The available tools
are nvprof that generate profiling data that can be imported into
the NVIDIA visual profiler (see section 5.2.1 for an example) and
cuda-memcheck and cuda-gdb that allow respectively to debug

89

one time-step of LBM 1.4 ms

copy results from GPU to CPU 6.8 ms

write results to the disk 1700 ms

display results with OpenGL 0.1 ms

Table 2: Time scales involved in computing and storing a 3D LBM simula-
tion at 1283.

memory leaks and kernel execution. All these tools are regrouped
within an Integrated Development Environment (IDE) called NSight10.

4.5 real-time interactive visualisation

In the context of real-time fluid simulation, as introduced in sec-
tion 1.3, it is both more convenient and efficient to visualise the re-
sults as they are computed rather than storing them to a file for later
post processing. This has many advantages such as interactivity, re-
sponsiveness, computational steering... but it is also a requirement to
maintain a real-time capability for large simulations.

Indeed, CFD is notorious to generate a large amount of data, and
storing then processing these data can be a challenge, this is closely
related to field of research known as big data. This is again an issue
of memory bandwidth, as storing the data on a disk is a slow pro-
cess, which can easily take longer than the computations. To give an
example of the differences in order of magnitudes between comput-
ing and storing, the table 2 compares some characteristic times based
on the optimised D3Q19 LBM program described in this section and
the measured performance (see chapter 5) for a cubic resolution of
1283. At this resolution, approximately 700 time-steps are computed
per second which generate 24 GB of data that would take 20 minutes
to store to the disk. It is clear that storing every time-step is not an
option, which is why some time-steps are usually “skipped” and the
simulation is saved at regular interval instead. Even so, saving only
every 1200 time-steps the program would be spending as much time
on the computations as on the the writing. Of course, it is possible to
omit as many time-steps as wanted, but then some important physi-
cal phenomena might happen in between two saves and be missed.

To remedy this problem, it is possible to integrate an efficient data
visualisation with the computations as the data are already on the
GPU (and the GPU is, after all, designed for rendering images). Hence,
for this work, a simple OpenGL window is integrated with the run-
ning simulation that allows for the real-time visualisation of the flow
features as well as some interactivity with mouse and keyboard in-
puts, all at a limited cost on the performance.

10 http://www.nvidia.com/nsight

90

http://www.nvidia.com/nsight

(a) Slice extraction of the temperature field
in a data centre.

(b) Vorticity field around a cylinder.

(c) Streamlines visualisation in a room us-
ing particle advection.

(d) Volume rendering of the vorticity field
around moving blades.

Figure 22: Different types of real-time fluid visualisations.

Usually, the instantaneous density, velocity or temperature field is
stored into the 3D plot array (see 4.3), that is later on post processed
to be displayed on the screen with OpenGL. But in many situations,
like for turbulent flows, the averaged fields over time is also of inter-
est, in which case these fields are stored in a separate buffer on the
GPU and accumulated at every time-step. This does add some over-
head to the program (one additional memory access per field) which
can affect the performance.

Once the relevant physical quantities have been stored in the GPU
memory, several visualisation techniques are available to provide the
user with useful information on the flow structures. The figure 22

presents some of these techniques applied on actual real-time simula-
tions.

4.6 multi-gpu programming

In the cases where a single GPU does not provide sufficient perfor-
mances for real-time simulation (i.e., a simulation requiring a very
large number of nodes), it becomes necessary to consider multi-GPU

91

programming, that is, distributing the computations across several
GPU running in parallel.

Multi-GPU development is essentially identical to programming
for multiple CPUs, the communications require a message passing
interface (MPI) library, and special care has to be taken to minimise
their impact on the performance, as the inter-GPU connections has a
significantly reduced bandwidth. While generic strategies for multi-
CPU optimisation, such as limiting interface surfaces and overlap-
ping communications and computations, still apply to the GPU, two
NVIDIA specific functionalities allow to limit CPU overhead.

1. For two (or more) GPU on the same motherboard, the CUDA
Peer-to-Peer[247] allows one GPU to directly access the memory
of another GPU through the PCI-Express without having to go
through CPU memory at all. The implementation is very con-
venient, after enabling the Peer-to-Peer access on each GPU, a
device pointer from another GPU memory can be passed as an
argument to the kernel, allowing read and write access to a dis-
tant GPU memory.

2. For a cluster of GPU (i.e. several GPU on different mother-
boards connected via a network), NVIDIA GPUDirect[247] sim-
plifies MPI implementation to limit the amount of CPU copies.
With a CUDA-aware MPI, a buffer in GPU memory can be
copied into a another GPU directly (with MPI_Send(...) and
MPI_Recv(...)). Although MPI does make a copy to the
CPU pinned memory in the background, it avoid unnecessary
copies between various CPU memories and improves perfor-
mance.

These two functions were first introduced with CUDA version 4.0
and require a GPU of the Fermi architecture (or newer). The first
method is significantly simpler to implement, and it was chosen for
this work, as the two GPU available were in the same computer. It
has been implemented for both two- and three-dimensional LBM (see
section 5.1.3), achieving 96% of the performance of a perfect scaling
(i.e., 1.96 times the performance of a single GPU).

Various multi-GPU implementation of the LBM can have been pro-
posed in the litterature, a few using peer-to-peer [248] and most using
MPI [249, 250, 251, 252, 253]. Domain partitioning is sometimes cho-
sen one-dimensional [249, 250], for simplicity reasons, while a 2D and
3D splitting [251, 252] would reduce the number of nodes at the in-
terfaces, it would also introduce edges and corners interfaces that are
difficult to handle.

Using CUDA streams, it is possible to overlap memory transfer
with GPU kernel computation, hence combined with an asynchronous
MPI the overhead of the communications can be significantly reduced.

92

Gray et. al. [253] showed a 26% improvement in the computational
speed for a D3Q19 LBM code running on 32 GPUs.

Running the LBM program on multi-GPU can make the visualisa-
tion more difficult. While in 2D, each GPU simply has to compute a
section of the final image, in 3D each GPU needs to render the visual-
isation to a separate buffer, then all the buffers need to be combined
and the pixels sorted based on their depth; this technique is known
as sort-last parallel rendering with depth-compositing [254].

4.7 gpu code generation

It is difficult to combine a generic program, applicable to many dif-
ferent models and problems, with the numerical efficiency of a spe-
cialised program, designed to solve a specific problem. This is in
essence why a low-level programming language, close to the com-
puter’s architecture (like C for instance), always outperforms a high-
level language, with higher level of abstractions designed to simplify
its usage (like Java for instance). On one hand, the use of a high-
level language allows for a simpler implementation, a better main-
tainability of the code over time, and an easier export of the program
to different computer architectures. On the other hand, a low-level
language, closely related to a specific architecture (e.g. CUDA for
NVIDIA GPU) allows for a tighter relation between the source code
and the machine instructions and the compilations results in better
performance.

In the context of the LBM on GPU, it is difficult to have a generic
source code, that can handle multiple models (incompressible, com-
pressible, multiphase, thermal, generic boundaries...), and maintain
a high-level of performance, similar to that of a specialised kernel
(for instance, specialised for incompressible single-phase isothermal
flow in a periodic domain). For this reason, the source code devel-
oped during this thesis is made of several quasi-independent folders,
each implementing a specific model, and more complex model can be
created by combining source codes from multiple folders. This has
the advantage of keeping the base models simple and efficient but
does add some (programming) overhead when two models have to
be merged.

Another possible approach is to first define a model in high-level
language, then to apply code generation techniques to generate an
optimised CUDA code, that could be made as efficient as a hand-
written one. This is the approach followed by the open-source LBM
solver Sailfish[255].

The need for code generation is best illustrated by the (simple) ex-
ample of loop unrolling. It is common practice for code optimisation
to unroll loops whenever possible. In LBM such a loop can be found
in the streaming-step, the listing 7 shows the loop over the 19 direc-

93

tions, where the distributions are stored in a four-dimensional array
(d), (x,y,z) is the node location, f[19] stores the distribution local
to the node after streaming and ex[19], ey[19], ez[19] store the
coordinates of each of the 19 directions. The same loop unrolled is
reported on listing 8, this method is faster because the coordinates
are substituted by addition and subtraction and registers are used in
place of the array f (hence removing the access to the arrays ex, ey,
ez and f). In theory, a smart compiler should be able to unroll the
loops by itself and to substitute the arrays by their values if the ar-
rays are properly defined as constant. But in practice, the manually
unrolled loop is usually faster, and in the worst case it has the same
speed.

Listing 7: Streaming-step loop for a D3Q19 lattice.

for (int i=0; i<19; i++)
f[i] = d[i][x+ex[i]][y+ey[i]][z+ez[i]];

Listing 8: Streaming-step loop (unrolled) for a D3Q19 lattice.

float f0 = d[0][x][y][z];
float f1 = d[1][x-1][y][z];
float f2 = d[2][x+1][y][z];
float f3 = d[3][x][y-1][z];
float f4 = d[4][x][y+1][z];
float f5 = d[5][x][y][z-1];
float f6 = d[6][x][y][z+1];
float f7 = d[7][x-1][y-1][z];
float f8 = d[8][x+1][y+1][z];
float f9 = d[9][x-1][y+1][z];
float f10 = d[10][x+1][y-1][z];
float f11 = d[11][x-1][y][z-1];
float f12 = d[12][x+1][y][z+1];
float f13 = d[13][x-1][y][z+1];
float f14 = d[14][x+1][y][z-1];
float f15 = d[15][x][y-1][z-1];
float f16 = d[16][x][y+1][z+1];
float f17 = d[17][x][y-1][z+1];
float f18 = d[18][x][y+1][z-1];

Clearly, the process of unrolling the loops can be automated. Also,
the above hand-made unrolled version restricts the lattice links to
a specific set of directions. For this purpose, a code generator was
designed in the simple high-level language LUA.

An LBM code generator for GPU must satisfy the following crite-
rias:

1. Simplicity of the syntax. The code for the source generation
should be shorted and simpler than the generated code, for in-
stance the final streaming-step in LUA looks like this:

94

for i,ei in ipairs(node.directions) do
fi = f(i,X+ei)

end

2. Algebra capability. This is not part of LUA, but a simple com-
puter algebra system (CAS) was implemented so LUA can treat
strings (like the density rho or the distributions f0, f1, f2,
...) as variables and performs mathematical operations on them.
Also constant expressions can be pre-computed during the gen-
eration process and simplified.

3. Vector calculus. On top of the mathematical algebra, LUA was
extended to operate on vector and arrays. For instance, this
allows the node velocity to be defined as

u = SUM(node.distributions * node.directions)

4. Abstraction of the target architecture. Defining a new LBM
model within the code generator does not require any knowl-
edge of CUDA, model definition is kept close to their mathe-
matical descrition. This simplifies the addition of new models,
but also by abstracting threads and memory layout allows to
tweak the target language, potentially for OpenCL or CPU.

Simple models, such as the BGK LBM, can be mathematically de-
fined independently of the lattice structure (i.e. node type), thus it is
possible to generate the code for any node type (e.g. D2Q9, D3Q19,
D3Q27...) simply based on the link directions and associated weights.
However, other models like MRT have different formulations depend-
ing on the node-type (because the set of moments are different). Nev-
ertheless, the code generation is still very valuable for MRT because
it allows to expand the matrix multiplication during the collision in
order to simplify the expressions and avoid lenghty memory access,
but also allows to run safety checks on the matrix to insure orthogo-
nality and reversibility. Listing 9 shows the lua code and generated
CUDA code equivalent to the matrix multiplication used to calculate
moments from [125] in D2Q9, i.e. |ρ〉 =M |f〉.

Listing 9: Moment computation for a D2Q9 MRT model, in LUA and the
CUDA output.

// LUA code
moments = model.M * node:df_matrix()

// Generated CUDA code
float rho = f0+f1+f2+f3+f4+f5+f6+f7+f8;
float E = -4*f0-f1-f2-f3-f4+2*f5+2*f6+2*f7+2*f8;
float E2 = 4*f0-2*f1-2*f2-2*f3-2*f4+f5+f6+f7+f8;
float Jx = f1-f3+f5-f6-f7+f8;
float Qx = -2*f1+2*f3+f5-f6-f7+f8;
float Jy = f2-f4+f5+f6-f7-f8;

95

float Qy = -2*f2+2*f4+f5+f6-f7-f8;
float Pxx = f1-f2+f3-f4;
float Pxy = f5-f6+f7-f8;

The implemented code generator is by no mean a finished product,
important features such boundary conditions and template-based gen-
eration are not integrated. Although, boundary conditions can be
generated seperately and then added manually to the kernel code,
see section 7.3.

The code generator has many other additional advantages, one of
them is the ability to generate LATEX formula from the LUA source
code that can be compiled into a pdf file for equation verification or
documentation.

4.8 summary

This chapter introduced the concept of GPU with its history from
simple graphics accelerators to the powerful computational units of
today. The difference of its inner working and programming com-
pared to the commonly used CPU were clarified and a particular em-
phasis was given to the development of optimisation techniques for
the LBM on GPU. These optimisations are centred around the max-
imisation of the available memory bandwidth, that will be shown to
be the main limiting factor for the performance on GPU in the next
chapter, in which the achieved performances will be measured and
discussed.

Higher level concepts were also briefly introduced, such as the need
for an interactive real-time visualisation, the techniques available for
multi-GPU programming and finally, the reasons and practices for
code generation.

96

5
C O M P U TAT I O N A L P E R F O R M A N C E

This chapter focuses on testing and analysing the numerical perfor-
mance of the LBM program on GPU and the effect of the optimisa-
tions presented in the previous chapter. Some simple “tricks” are in-
troduced that can significantly affect the performance of the program
without requiring much programming efforts. These are measured
on a variety of machines and for a wide range of models. The lim-
its in which the current performances can be sufficient for real-time
CFD are discussed. The next chapter will then extend the study to
the numerical accuracy of the method by comparing simulation re-
sults for well established flow problems against analytical solutions
or validated CFD results.

5.1 performance study

5.1.1 On measuring performances

Measuring the numerical performance of the LBM on GPU is some-
what a difficult task. Performances are mostly dependant on the com-
plexity of the LBM model and on the capability of the GPU used for
the computations, but they also depend on other parameters that are
harder to control. The operating system, as well as the video driver,
can have an effect on how efficiently the CPU dispatch work to the
GPU, thus affecting the performance. The presence of geometry has
an influence threads execution path (see subsection 5.1.7), and some
simple settings can a great impact on the efficiency of the GPU5.2.
Even temperatures can alter the performances.

Motherboard ASUS P6T7 WS

CPU Intel Xeon W3670

RAM 6 × 4 GB

GPU1 Quadro 600, 1 GB

GPU2 K40c, 12 GB

GPU3 K40c, 12 GB

Table 3: Description of the test sys-
tem.

Unless specified otherwise, all the performances di-
vulged in this section are measured on a desktop com-
puter comprised of two Tesla K40

1 and one Quadro
600 running CentOS 6.6 and using the CUDA toolkit
version 7.0 with the NVIDIA driver version 346.59

and compiled with the GNU compiler g++ version
4.7.2, table 3 gives a list of all its components.

To study the performance, the same benchmark
test is used throughout this chapter. This test is
based on an optimised CUDA kernel for the three-
dimensional simulation of an isothermal single phase
fluid using a D3Q19 node, the fluid is initially set at

1 The two Tesla K40 GPUs were donated by NVIDIA, through the Hardware Grant
Program.

97

rest and the domain sides are using periodic boundary conditions.
This is an idealised problem, but it provides a good reference for
performance study.

Performances are measured in term of the number of (lattice-)nodes
updated per second, usually in millions, i.e. MLups. Computing the
number of MLups is straightforward,

MLups = r×Nx ×Ny ×Nz/∆t (116)

where r is the number of recursive calls to the LBM kernel, (Nx, Ny,
Nz) is the size of the lattice in number of nodes and ∆t is the time
in seconds taken for the computations. By default, kernel launch is
asynchronous, i.e. the CPU orders some work to the GPU and does
not wait for it to complete its tasks, so when measuring computation
times, is important to call the function cudaDeviceSynchronize()
which forces the CPU to wait for the GPU to finish.

The number of MLups is dependent on the optimisation level, the
physical model and the lattice type. For instance, a LBM model us-
ing a D3Q15 lattice (with only 15 velocity directions) should achieve
a higher MLups than the same model on a D3Q19 lattice (with 19

directions).

5.1.2 Single GPU performances

The performance of the LBM benchmark are measured on a variety of
GPU (some are designed for gaming, i.e. GTX, and some are designed
for scientific computing, i.e. Tesla), and summarised on figure 23.
Interestingly, the GTX cards achieve better or similar performanceSo far, the memory

bandwidth has been
the limiting factor

for the performance.
This could change

with the future
generation of

NVIDIA’s GPU,
called Pascal,

featuring 3D staked
memory for

increased capacity
and bandwidth.

as the Tesla cards, while being less expensive. This is due to the
differences in memory bandwidth, it is often higher on gaming card
because of higher memory clock rates, and the LBM algorithm is very
memory intensive.

• First on the list, the Brix is handy mini-pc (6× 13× 11cm) sold
by the company Gybabite (£700) featuring a downgraded GTX
760. While the performance of that machine are about 4 times
slower than the Tesla K40, it is highly portable system that can
be taken for live demonstration in conferences.

• The Tesla C2070 (first released in 2010 at £4000) is based on an
older Fermi architecture, it about half as fast as the K40 in single
precision but is not very good at double precision.

• The Tesla K40 (first released end 2013 at £4000) is based on the
following generation of GPU, i.e. the Kepler architecture. This
is the main GPU used for the thesis and it is the one featured
on most of the performance studies in this chapter. It performs
approximately twice as fast in single precision than in double
precision.

98

CPU

Tesla C2070

GTX Titan

Tesla K40

GTX 780 Ti

GTX Titan Z

440
200

192
720

10-20

Brix
(GTX 760)

743
1515

1480
740

786

2500
1250

1785

500 1000 1500
double precision single precision

(higher is better)
MLUPS

2000 2500

Figure 23: Performance of the D3Q19 BGK LBM benchmark program run-
ning on different architectures of GPU, in single or double preci-
sion for floating point operations.

• The GTX Titan (released in 2013 at £1000) has very similar per-
formance to the Tesla K40, both in single and double precision,
while being less expensive, the more recent GTX Titan X (March
2015, £1000) could be faster in single precision but was not
tested. Although not on the

list, the newly
released (June 2015,
£600) GTX 980Ti
should provide even
higher performance
than the GTX 780Ti.

• The GTX 780 Ti (released end 2013 at £700) outperforms the
Tesla K40 reaching almost 1800 MLups, it is the best ratio of
performance/price on this list. On the other hand, it is not opti-
mised for double precision and it is more prone to overheating
which results in fluctuating performances.

• The GTX Titan Z (released in 2014 at £3000) combines two GK110

processors on the same board, it is basically a dual GPU card.
To utilise it to its full capacity, the benchmark was adapted to a
multi-GPU code using peer to peer memory access (see next sec-
tion). The two on-board GPUs are actually connected by a PCI-
Express interface which limits its potential performance. More-
over, the MLups significantly degrades over time as it heats
up, starting at 2850 MLups in single precision and stabilising
around 2500 MLups, as reported on the figure. Based on the
price and performance it is more interesting to invest in two
GTX Titans.

Meanwhile CPU performances are of a different order of magnitude.
A note on the CPU results, they do not provide a fair comparison,
as the GPU CUDA code has been highly optimised during the Ph.D.
while the CPU was not the focus. Here, the CUDA kernel is converted
into a C++ code by transforming the thread computation into for
loops and the outside most loop is made parallel over the 12 threads
of the Intel Xeon W3670 using the following directive.

99

#pragma omp parallel for

Furthermore, the kernel is split into two separate functions for the
streaming and the collision, allowing for the collision function to be
vectorised. The program is compiled with the Intel compiler using
the following command to enable the highest level of optimisation,
check on the vectorisation of the loop and enable the parallelisation
with OpenMP,

icc main.cpp -O3 -vec-report2 -fopenmp

To measure the number of MLUPs, the same D3Q19 LBM model
with single precision calculations and with the same 2563 lattice size
as for the GPU benchmarking is used. The CPU program achieves a
performance of 6 MLups, i.e. 250 times slower than the GPU program
on a Tesla K40. The streaming function, due to its non-local depen-
dencies, cannot be vectorised by the compiler. Modern CPUs possess
vector units that functions in a very similar way to GPU threads (per-
forming operations on a array in parallel) and their usage can signif-
icantly improve the performance. As a test, the call to the streaming
function can be removed from the program and it shows that the colli-
sion function alone runs at 24 MLups (although it would not give the
correct physical results anymore). It is possible that the CPU perfor-
mance could be optimised further by improving the vectorisation of
the code and making a more efficient use of the cached memory. Still,
even a highly optimised CPU code cannot compete against the GPU,
McIntosh-Smith et. al. [256] reported a performance of 100 MLups
on a Intel Xeon E5-2687 CPU for the same D3Q19 LBM model.

5.1.3 Multi-GPU performances

Although the developed multi-GPU LBM program is not fully opti-
mised, this section reports the measured performances for a 3D sim-
ulation running in parallel across two Tesla K40 GPUs, utilising the
CUDA peer to peer memory access described in section 4.6.

GPU1

GPU2

Domain
decomposition for
the 3D lid-driven

cavity.

Rather than simulating an empty periodic domain, this multi-GPU
benchmark simulates the three-dimensional lid-driven cavity (a prob-
lem described in section 6.2.3) on a 2563 resolution. On a single
Tesla K40, the lid-driven cavity problem performs slightly better (1535

MLups) than the periodic domain used for benchmarking because the
presence of the walls avoid some of the uncoalesced memory access.
With a perfect scaling and based on the single GPU performance, the
highest performance possible on two GPU is double that of single
GPU, i.e. 3070 MLups.

For the multi-GPU simulation, the domain is decomposed into two
sub-domains, the bottom half is simulated by GPU1 and the top half
by GPU2. At the interface, each GPU needs to access the distribution

100

functions stored in the other GPU memory (via the PCI-Express port)
during the streaming step. Because the memory bandwidth of the
PCI-Express is significantly smaller than that of the on-board memory
(8 GB/s versus 288 GB/s) it is expected to slow down the overall PCI-Express Speed

v1.x 4 GB/s

v2.x 8 GB/s

v3.0 15.75 GB/s

v4.0 31.51 GB/s

execution of the program compared to a perfect scaling.
After measurement, it is found that the program achieves a perfor-

mance of 2876 MLups, which is only 3.6% slower than that of a per-
fect scaling. It is possible that this performance could be improved
by using asynchronous memory transfers in order to overlap compu-
tations and memory access. Also, the upcoming NVIDIA NVLink
technology will be a new high-speed GPU interconnect that will al-
low for faster transfers between GPUs.

5.1.4 Maximum performance

The performance of the optimised LBM GPU program presented in
the two previous subsections seem satisfactory as it allows for real-
time simulation (see section 5.3) with a good accuracy (see chapter 6).
But is the program really optimal? Or could further optimisation
improve its performance? And if so, to which extent? To answer these
questions, this section looks at the maximum performance obtainable
on a tesla K40 GPU based on the effective memory throughput.

As presented in the previous chapter and confirmed by the tests
in subsection 5.2.1, the efficiency of the LBM implementation on a
GPU is currently limited by its memory bandwidth and not by its
computational power (i.e. floating point operations per second, or
FLOPS) which is often the quantity advertised. Hence, an easy way
to estimate the maximum performance of the program for a given
GPU is to divide the bandwidth for global memory access by the
number of bytes accessed per kernel call.

According to NVIDIA’s documentation2, the theoretical memory
bandwidth (with the highest clocks and ECC off) for a Tesla K40 is
Bth = 288 GB/s. This value is obtained by multiplying the number of
memory interfaces (also known as buses) by the frequency at which
they transfer data (i.e. the memory clock rate).

Bth = 2× 384b/8× 3GHz = 288GB/s (117)

On the Tesla K40, the memory bus 384 bits wide, i.e. 48 Bytes, while
the global memory is clocked at 3 GHz. The GPU memory works in
a double data rate (DDR) fashion, where two data are accessed per
cycle, thus the factor 2.

In practice however, the effective memory bandwidth is smaller
than the theoretical bandwidth (which is the one advertised). There-
fore, to establish the real memory bandwidth of the card, a test pro-
gram carries out a single memory transfer of 128 MB from GPU mem-

2 http://www.nvidia.com/object/tesla-servers.html

101

http://www.nvidia.com/object/tesla-servers.html

ory to another location in GPU memory using the cudaMemcpy func-
tion. This process is repeated ten times to obtain an average effective
memory bandwidth Beff. This is the same process which is used
in the bandwidth-test program, part of the NVIDIA SDK (Software
Development Kit). Although that program uses a 64 MB by default
which was found to give slightly smaller estimation of the effective
bandwidth on some cards. On the Tesla K40, with ECC and Boost
disabled (see sections 5.2.3 and 5.2.4 for details) the effective memory
bandwidth is measured to be Beff = 240 GB/s, that is 16.7 % smaller
than the theoretical bandwidth Bth.

Based on the effective memory bandwidth Beff, the maximum pos-
sible performance of the LBM program in MLups can be estimated
by supposing that the time spent on the calculations is negligible and
that the kernel achieves all of the available memory throughput. This
is obviously an idealised scenario, and the calculation will only give
an upper limit to the performance of the code. For example, the three-
dimensional isothermal LBM benchmark involves nineteen distribu-
tion functions and each one is read and written once per time-step. In
single precision, each distribution function uses 4 Bytes of memory,
so there is a total of 2× 19× 4 = 152 Bytes of memory accessed per
each node per time-step. Based on this number, each node can be
updated for a maximum of 240GB/s/152B = 1.579× 109 times per
seconds, hence the maximum number of nodes updated per second
is 1579 MLups.

This number can be compared with the measured performance of
the program, i.e. 1515 MLups, which is only 4% slower, proving that
the program is definitely limited by the memory bandwidth and that
any additional optimisation would only improve the performance by
maximum of 4%. Doing the reverse calculation shows that the LBM
kernel achieves a memory throughput of 230GB/s, which is 80% of
the theoretical memory bandwidth.

A similar technique can be used to estimate the maximum resolu-
tion of a simulation based on the lattice type and the size of the avail-
able memory on the GPU. For instance, for a D3Q19 lattice, each node
requires 19× 4 = 76 Bytes of memory in single precision. The Tesla
K40 features 12GB of memory, so it can store up to 12× 10243/76 '
170 · 106 nodes. As the current kernel implementation requires two
lattices for the streaming step (see section 4.3) the maximum resolu-
tion that could fit in GPU memory is 3

√
170 · 106/2 ' 439. In two

dimensions with a D2Q9 lattice the maximum square resolution is
133772.

In cases where higher resolutions are required, it might be tempt-
ing to use the CPU RAM as a buffer memory, but doing so would re-
quire the distribution functions to be transferred over the PCI Express
port, limiting memory bandwidth to approximately 6GB/s (from mea-

102

surements). Based on that bandwidth, the maximum achievable per-
formance would be around 40 MLups, thus it is not recommended.

5.1.5 Performance of other models

Until now, the performance study considered the isothermal BGK
LBM model on a D3Q19 lattice. It is expected that the LBM is mem-
ory bound on the GPU for all models and all lattice structures. Conse-
quently, performances are strongly linked to the number of distribu-
tion functions used in a model, and less related to its computational
complexity. Prefer computations

over memory access.
It is faster to use a
lattice with fewer
neighbours (e.g.
D3Q15 over
D3Q19) and to use
an improved
collision model (e.g.
MRT over BGK) to
maintain the same
accuracy level.

For instance, the three-dimensional thermal model used for the re-
sults in chapter 6 and chapter 7 is based on a D3Q19 lattice for the
velocity field and a D3Q6 for the temperature field, so it requires 6

more read and write access to global memory and its performs per-
forms 31 % slower than the isothermal model. On the other hand, the
addition of the Smagorinsky turbulence model (see section 2.5.1) that
requires many more computations but no additional memory access
only slows the code by a further 8%.

The performances of each model are summarised in table 4.

Model Performance in MLups

3D Isothermal 1518

3D Thermal 1041

3D Thermal and Turbulent 957

Table 4: Performance of various D3Q19 BGK LBM models in single precision
on the Tesla K40 GPU.

5.1.6 Effect of the streaming model

As described in section 4.4.3, the streaming step can be seen from two
different perspectives either the distribution functions are streamed
from one node to its neighbours (push-out streaming) or they are
streamed from the neighbours to the centre node (pull-in streaming).
Physically the two views are equivalent, but computationally they are
different and result in different performances.

• The pull-in method, which is the preferred method, performs
some uncoalesced reads but no uncoalesced writes, and gives a
performance of 1518 MLups.

• The pull-out method, on the other hand, performs no uncoa-
lesced reads but does some uncoalesced writes, resulting in a
performance of 1385 MLups, i.e. a 10% slow down of the pro-
gram.

103

Moreover, the Tesla K40 uses the L1 and L2 cache memories to hide
the latency related to uncoalesced writes, and it is likely that the slow
down would be even more severe on older GPU.

5.1.7 The issue of branch divergence

As described in section 4.4.4, boundary conditions can create a diver-
gence between the threads of a same block and result in a significant
performance lost. In order to illustrate this problem, this section con-
siders a worst case scenario where half of the node are solid (using
the full-way bounce-back scheme) and half of the nodes are fluid.
The solid nodes are organised on one node thick layers, each sepa-
rated by a layer of fluid cells. These layers can be either aligned with
the x-direction, which is also the direction of the blocks of threads
(see section 4.4.2), or they can be aligned along the y-direction, per-
pendicularly to the blocks of threads. In the code, this can be easily
achieved using the following expression,

Listing 10: Boundary alignment and thread divergence.

//Case 1 : x-aligned walls
if(y % 2 == 0)
{

//Bounce-back...
}
//Case 2 : y-aligned walls
if(x % 2 == 0)
{

//Bounce-back...
}

• In case 1, threads withing a block, i.e. constant x, are either
solids if the block has an even y-coordinate or fluid otherwise.
Hence, this type of boundary condition does not introduce di-
vergence between threads of a same block, only between differ-
ent blocks. As a result, the performance of the program is only
mildly affected, with the kernel achieving at 1448 MLups, i.e.
only a 4.6% decrease in performance compared with the empty
domain.

• On the other hand, case 2 is a worst case scenario for branch
divergence, as half of the thread within a block are solid and
half are fluid. Moreover, withing each warp (i.e. a group a 32

threads within a block) there is also the same divergence. The
performance is greatly affected, falling to 1025 Mlups, i.e. a
32.5% slow down compared to the empty domain benchmark.

104

In conclusion, is a better to align boundary conditions with thread
layout whenever possible to avoid divergence. Although that is not
always practical.

5.2 optimisation tricks and tweaks

As the performance of LBM is mostly limited by the available memory
bandwidth, the optimisation described in section 4.4, namely min-
imise memory access and increase data coalescence, are enough to
achieve good performances on a GPU. But some fine tweakings of
the kernel configuration and some simple tricks on the GPU settings
can be applied to squeeze every last bit of power out of the GPU. The
two tricks described in the subsections 5.2.3 and 5.2.4 require root ac-
cess to be applied, but they are worth the investment as they are only
one line long and each can improve the computational speed by 14%,
resulting in a total improvement of 35%.

5.2.1 Using the NVIDIA Visual Profiler

NVIDIA provides useful tools to help programmers develop their
GPU applications. One of these tools is Nsight3, it comes as an add-
on for Visual Studio on Windows or to Eclipse on Linux and it is a
powerful tool for the debugging and profiling of a CUDA code in
order to fully optimise its performance. It is well worth investing
some time in learning how to use it because it can really help track
a bug or find a performance bottleneck and save some time down
the line. In particular, its integrated Visual Profiler can also be used
independently to extract precious running time information on the
GPU kernel. It was used heavily for the results of this section. When
used independently, the following steps can be followed to profile a
CUDA program.

1. Compile the program by passing the option -lineinfo to nvcc.
This allows to access line numbers later when profiling a kernel.

2. Run the program through nvprof with the following command:

nvprof --analysis-metrics -o data.prof \
./program_name

The program will be run several times in various configurations
to build its profile. It is expected for it to run much slower than
usual during this process.

3. Import the profiling file data.prof into the NVIDIA Visual Pro-
filer, which can be started with the command nvvp.

3 http://www.nvidia.com/object/nsight.html

105

http://www.nvidia.com/object/nsight.html

The NVIDIA Visual Profiler allows for a guided analysis of the appli-
cations, it provides global measurements like the GPU usage or the
average time taken by each kernel, but it also allows to do a detailed
kernel analysis. As an example, this section looks at some of the
graphs generated by the profiler during the analysis of the optimised
compute kernel for the D3Q19 BGK LBM running on a K40 GPU. An-
other example of profiling and optimising an LBM application with
nvprof can be found in reference [257].

Compute utilisation vs memory utilisation

 0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Function Unit (Arithmetic) Memory (Device)

U
ti

li
sa

ti
o
n

Figure 24: Percentage of the time spent by the kernel in the computations
and in memory transactions.

Figure 24 shows that as expected the memory utilisation level is
higher than the arithmetic one, thus the kernel is limited by the mem-
ory bandwidth. The two levels add up to more than 100% because
some of the computations are overlapped with the memory access, i.e.
the GPU performs some computations while waiting for the memory
access to finish. Moreover, the profiler estimates the achieved global
memory bandwidth at 230 GB/s (i.e. 96% of the effective memory
bandwidth), confirming hand-made measurements.

Utilisation per memory type

 0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

L1/Shared M
em

ory

L2 C
ache

Texture C
ache

D
evice M

em
ory

System
 M

em
ory

U
ti

li
sa

ti
o
n

Figure 25: Ratio (in percentage) of achieved memory throughput to theoret-
ical memory bandwidth for each type of memory.

Figure shows the different usage levels for each memory type. The
constant/texture memory is not used in this kernel and neither is the

106

system memory (CPU RAM) apart from a short time during the ini-
tialisation. The profiler detects that the kernel is limited by the band-
width available to the device memory, as expected, and also detects 10

uncoalesced memory access caused by the streaming of the distribu-
tion functions in the x-direction. The use of L1 and L2 cache memory
was automatically generated by the compiler to improve some of the
memory transfers to the global memory.

Function Unit Utilisation

 0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Load/Store Arithmetic Control-Flow Texture

U
ti

li
s
a
ti

o
n

Figure 26: Utilisation level of each GPU function unit.

Different types of instructions are executed on different functions
units within each streaming multiprocessor. The profiler shows that
no function unit is overused, which would limit the kernel’s perfor-
mance. Instead, arithmetic instructions (such as add, multiply, etc.)
are roughly of the same order of utilisation as load and store instruc-
tions (for all types of memory), and some control-flow instructions
are needed for the periodic boundary conditions.

Instruction Execution Counts

 0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

FP32

FP64

Integer

C
ontrol

Load/Store

B
it-C

onvert

C
om

m
.

M
isc.

Inactive

E
x

ec
u

ti
o

n
 C

o
u

n
t

Figure 27: Percentage of execution cycles spent in each class.

The chart displayed on figure 27 shows the mix of instructions exe-
cuted by the kernel. The instructions are grouped into classes and for
each class, the chart shows the average percentage of thread execu-
tion cycles spent in that class. Interestingly, while the written kernel
seems to mostly involve (single precision) floating point operations

107

to compute the macroscopic quantities and the 19 equilibrium dis-
tribution functions, the index computations (with integers) end up
using a similar amount of cycles. Floating points operations are more
efficient on the GPU than integer operations.

Instruction Latency

execution

dependency

data

request

instruction

fetch

other

Figure 28: Stall reasons, limiting instruction level parallelism.

A good way to improve performances is to increase instruction
level parallelism. Within the kernel itself, some instructions can be
computed independently in parallel while some rely on the results
of previous instructions and need to wait for these to finish first, this
is called instruction stalling. The profiler allows to investigate the rea-
sons of these stalls in order to aid the developer in restructuring the
kernel’s code to reduce stalling and increase instruction parallelism.
According to the pie chart on figure , the performance of the LBM
kernel are limited by all the accesses to global memory (data request)
and by the dependencies of the computations (for instance ρ and ~v

needs to be computed first before computing the equilibrium distri-
bution functions).

Register Usage

The D3Q19 BGK LBM kernel uses 56 registers per thread. For this
test, the domain size is 2563 and block of threads are one dimensional
and expand along the x-direction, thus the block size is 256 and the
kernel needs 56× 256 = 14336 register for each block. This register
usage can prevent the kernel from fully utilising the GPU. Indeed,
the Tesla K40 provides up to 65536 register per streaming multipro-
cessor (SM), so based on the kernel’s need, each SM is limited to
simultaneously executing 4 blocks (i.e. 32 warps). In theory, the num-
ber of registers required per thread can be reduced (either by using
the -maxrregcount flag or the __launch_bounds__ qualifier) to
improve the occupancy of the GPU. But in practice, the achieved oc-
cupancy is already good enough (47.2%) and the performance would
not be significantly improved by a slight increase in occupancy.

108

5.2.2 Tweaking for the best performance

In addition to the general recommendations given in the previous
section, the following “rules of thumb” can be followed to tweak the
code to achieve the best possible performance.

Use a block size that is a multiple of 32

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 32 64 96 128 160 192 224 256 288 320 352 384 416

M
L

u
p
s

Block size

Figure 29: Performance of the D3Q19 LBM benchmark with varying block
size.

With the thread layout described in section 4.4.2, CUDA threads
are organised in one dimensional blocks aligned with the x-axis and
the length of a block is the same as the number of nodes along that
axis. The program is run for a wide range of domain sizes from 13

to 4383 which is the largest resolution possible on a single Tesla K40

(see comment in subsection 5.1.4), and the block size increases with
the domain size, the results can be observed on the figure 29. The
benchmark program averages at about 1400 MLups, but sizes that are
a multiple of 32 (the dotted lines on the figure) always achieve a sig-
nificantly higher performances. This is because threads are executed
in group of 32 (a warp) and when the block size is not a multiple of 32

some threads from the last warp are wasted. For unexplored reasons,
some random sizes, like 182 give significantly smaller performances.

Lattice sizes smaller than 643 would benefit from a two dimen-
sional thread layout, i.e. grouping a few one-dimensional blocks into
one, so that the number of threads per block would be increased and
so would the GPU occupancy.

109

Ensure single precision

As discussed previously, the use of single precision floating point
operations makes the computation twice as fast, while keeping a suf-
ficient level of accuracy (see chapter 6). In the code, floating point
numbers are defined as real, where real can be defined either as float
or double, by using the following command,

Listing 11: Define the type real as single precision floating point

typedef float real;

This allows to easily change the accuracy of the program.
However it easy to miss out constants left in the kernel code. For

instance in the following code sample, 1.0, 18.0, 4.5 and 1.5 will
be cast as double by the compiler, introducing involuntarily double
precision calculations. One solution is to use 1.f, 18.f, 4.5f and
1.5f to specify them as single precision floating point numbers.

Listing 12: Examples of hidden double precision calculations

//double precision calculations
f1eq = rho/18.0 * (1 + 3*vx + 4.5*vx*vx -1.5*v2);
//single precision calculations
f1eq = rho/18.f * (1 + 3*vx + 4.5f*vx*vx -1.5f*v2);
//cast to the chosen precision
f1eq = rho/real(18) * (1 + 3*vx + real(4.5)*vx*vx -real

(1.5)*v2);

A good way to check if there are some hidden double precision
numbers in a kernel is to compile it for the CUDA capability 1.0, us-
ing the flag -arch=sm_10. This old version did not support double
precision and the compiler will print a warning message during the
compilation.

g++ -arch=sm_10 program_name.cu
ptxas warning : Double is not supported. Demoting to float

Avoid non-standard data types

This is more of a general advise when programming for GPU. As
of today, even the latest version of CUDA, the use of advanced C++
functionalities (like classes, lambda functions, function template spe-
cialisation, etc.) often result in performance lost. Thus, in order to
achieve the highest performance possible, it is advisable to limit the
program to standard C data type like float, double and int and
to avoid function calls within a kernel. Of course, this is not always
practical and the use of classes and functions is an inherent part of
C++ programming that massively simplifies programmer’s job. So
programmers should not completely avoid these functionality if they

110

need them, but instead employ them with parsimony, knowing that
each time they are utilised they risk reducing the performance of the
program, sometimes only slightly and sometimes drastically.

For example, the lattice size, that is passed to the kernel as a pa-
rameter could be passed as unsigned int as it is always strictly
positive. But doing so results in a performance loss of 5.5 % because
the GPU is less efficient with an unsigned int than with a simple
int. It could also be suggested to abandon integer instructions alto-
gether, replacing them by floating operations with a cast to integer at
the end.

Help the compiler optimise the code

It can be sometimes useful to rearrange mathematical expressions to
help the compiler optimise the code. And this can have a significant
impact on the performance. For instance for the computation of the
macroscopic velocity ~v, the sum of the distribution functions needs to
be divided by the density ρ, this can be implemented in two ways,

Listing 13: The order of the terms within an expression matters.

//Expression 1
vx = (sum along x...)/rho;
vy = (sum along y...)/rho;
vz = (sum along z...)/rho;
//Expression 2
vx = (1/rho)*(sum along x...);
vy = (1/rho)*(sum along y...);
vz = (1/rho)*(sum along z...);

In expression 2, the compiler is able to recognise that the same
factor is multiplying each sum and optimise the code accordingly.
In terms of performances, the kernel using expression 1 runs at 1324

MLups, i.e. 13.3 % slower than with expression 2. This kind of simple
code restructuring can be worth the effort.

Try different compilers and architectures

As mentionned previously, benchmarking a GPU program is difficult
because the performance can depend on the compiler used and the
video driver. To showcase some of these difficulties, the same bench-
mark code is compiled for different target GPU architectures (using
the compilation flag -arch=sm_XX, where XX is either 10,20,30 or
35), but tested on the same Tesla K40 GPU (native CUDA capability
3.5) with CUDA 6.0 and version 346.59 video driver. The measured
performances are summarised on the table 5. More recent target archi-
tectures, like the Maxwell architectures (CUDA capability 5.0) cannot
be tested on the Tesla K40.

111

CUDA Capability Performance

1.0 1531 MLups

2.0 1515 MLups

3.0 1519 MLups

3.5 1518 MLups

Table 5: Performance of the D3Q19 BGK LBM benchmark compiled for dif-
ferent target GPU architectures.

As can be seen from the performances, the optimisations performed
by the compiler are not the same depending on the target architecture,
and the now deprecated capability 1.0 (it has been removed since
CUDA 7.0) gives the highest performance. However, the differences
in this test are infinitesimal, i.e. of the order of 1%. Also although
CUDA 7.0 removed the capability 1.0, the default 3.5 capability gives
a slightly better performance (1521 MLups).

5.2.3 Error Correcting Code

The error correcting code (ECC) is a piece of software implemented
directly into the GPU that allows for error checking on each mem-
ory access. It is only available on the high-end GPU (i.e. the Tesla
product line), but it can be disabled to improve the effective memory
bandwidth. This feature is mostly unknown in the LBM community,
only [258] reported on it.

It is possible, although very unlikely, that during an access to mem-
ory, some bits of the data become falsified, resulting in an erroneous
value being read, which can significantly affect the output of the pro-
gram and give false results. To remedy this problem, CPU imple-
ments an inbuilt tool that adds redundant data to every memory ac-
cess, such that erroneous bits can be detected and corrected. This is
not such a problem on gaming GPU, as a memory error will likely
result into some pixel behind of the wrong colour for one frame of an
animation, i.e. it is a minor, barely noticeable artefact. However, the
situation is very different for scientific computing, as these erroneous
bits can compromise the accuracy and the stability of simulations. As
a result, NVIDIA has added an error correcting code functionality to
its Tesla GPUs. When this functionality is enabled, the GPU reserves
12% of its total memory for the checking and performs some addi-
tional operations for each memory access. This obviously reduces
the effective memory bandwidth, and it also has side effects like mak-
ing the context synchronisation more expensive and reducing the ef-
ficiency of uncoalesced memory transactions [259]. The ECC imple-
mentation from NVIDIA can correct single-bit error and will throw
an cudaErrorECCUncorrectable message for larger errors.

112

To show the performance boost provided by disabling the ECC,
the D3Q19 BGK LBM program is run twice. Once with the ECC
enabled, and once with the ECC disabled after rebooting the com-
puter. The following command can be used to enable/disable the
ECC, nvidia-smi -e MODE (need root permissions), where MODE
is replaced by 0 to disable ECC and 1 to enable it. When the ECC
mode is enabled, the command nvidia-smi -q -d ECC allows to
check for the number of ECC errors detected since the last boot for
all the types of memories.

The measured performances are summarised in the table 6. It can
be seen that the effective memory bandwidth is increased by 13.2%
when disabling ECC, while the program speed is increased by 19.2%.
Not only the program is faster because of the additional available
bandwidth, but the computations are also more efficient. In other
words, the LBM program is achieving 91% of the effective bandwidth
when ECC is enabled while it reaches an impressive 96% when dis-
abled. In that case, only 4% of the time is spent on the computations.

Memory Bandwidth Program Speed Efficiency

ECC on 212 GB/s 1274 MLUPS 91%

ECC off 240 GB/s 1518 MLUPS 96%

Table 6: Performance of the D3Q19 BGK LBM benchmark program with and
without ECC and relative efficiency based on the effective memory
bandwidth. GPU clock rates are set to 3004,875MHz.

Disabling ECC might seem like a risky thing to do, but actually
running a program with ECC turned off is not such an issue. During
the four years of this Ph.D., and after using the GPU almost daily,
not even a single memory error has been detected. And based on the
discussion with an NVIDIA engineer at the GPU Technology Con-
ference, it is less likely to run into a memory error than to have a
defective GPU (in which case, the ECC should detect that).

In conclusion, it is advised to turn the ECC option off, because of
the performance improvement it provides, and to only turn in on if
the GPU starts behaving strangely.

5.2.4 GPU boost

NVIDIA GPU Boost is a feature available on both gaming cards (i.e.
GeForce) and professional cards (i.e Tesla) that dynamically improves
application performance by increasing the cores and memory clock
rates when sufficient power and thermal headroom are available. The
Tesla K40 GPU is designed for a specific Thermal Design Power (TDP)
of 235W, this TDP rating is an upper limit and in practice the GPU
never reaches this power limit (or it would crash). For example, dur-

113

ing the D3Q19 BGK LBM benchmark test, the GPU reaches a maxi-
mum of 185W with the highest frequency setting (see after).

Alternatively, the clock rates can be chosen manually amongst a
list of supported clocks, either by running the command line tool
nvidia-smi or programmatically using the NVIDIA Management
Library4. The list of supported clocks can be accessed with the com-
mand nvidia-smi -q -i ID -d SUPPORTED_CLOCKS, where ID
is the identification number of the GPU. On the Tesla K40, it outputs
the following.

Supported Clocks
Memory : 3004 MHz

Graphics : 875 MHz
Graphics : 810 MHz
Graphics : 745 MHz
Graphics : 666 MHz

Memory : 324 MHz
Graphics : 324 MHz

There a are two main modes, the idle mode, characterised by hav-
ing both memory and core clocked at 324MHz, and the normal mode
for running computations where the memory is at 3GHz and various
clock speeds are available. The default clock speed is 745 MHz, and
in theory the GPU boost technology should increase it to 875MHz
when the GPU is under stress. The user can alternatively force the
GPU to run at its highest clock rates using the following command,
nvidia-smi -ac 3004,875. For this command to take effect, the
user needs root access and he needs to have previously enabled the
perseverance mode on the GPU via the command nvidia-smi -pm
1.

This increase in clock rates results in faster computations but also
better memory bandwidth, and improves the performance of the
LBM benchmark by another 14%. It is probable that even better per-
formance could be achieved by overclocking the GPU, i.e. running
at higher frequencies than it was designed for, but NVIDIA does not
allow overclocking on its Tesla GPU. This is not the case with the
GeForce GPUs and that is why gaming card can sometimes provide
better performances than the professional card (see figure 23) .

5.3 real-time capability

The previous sections studied the efficiency of the LBM algorithm
on the GPU, and it was shown that the performances achieved are
close to the maximum theoretically possible on the given hardware.
This section takes on the problem of real-time capability and whether
these performances are sufficient to enable the real-time simulation
of complex flow problems.

4 https://developer.nvidia.com/nvidia-management-library-nvml

114

https://developer.nvidia.com/nvidia-management-library-nvml

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

10000 100000 1e+06 1e+07 1e+08 1e+09

V
L/CV = 1.0
L/CV = 0.1faster than

real-time

slower than
real-time

L/C = 10

Real-Time

Number of Nodes

R
ea

l-
T

im
e

R
at

e

Figure 30: Estimated real-time capability for several ratios of L/CV .

By definition, a flow can be simulated in real-time (or faster than
real-time) if the physical time corresponding to a simulation step is
equal (or greater than) the time taken by the computer to simulate
that time-step. In LBM, all the quantities are dimensionless and the
time-step needs to be recovered by a process of conversion of units
(see Appendix B), but in short, with a convective scaling, the physical
time-step δt can be related to the physical grid spacing δx and the
ratio of physical and lattice velocity CV as

δt =
δx

CV
=

δx

Vphys
Vlb (118)

The lattice velocity Vlb should be kept smaller than 0.1 to minimise
compressibility errors and insure stability, while the physical velocity
depends on the problem being simulated, but in the case of indoor air
flow ventilation, it is typically of the order of 1m/s to 10m/s. Thus
the velocity conversion factor is around 10 up to 100, i.e.

10 . CV . 100. (119)

The grid spacing δx can be expressed from the number of nodes
N = Nx ×Ny ×Nz and the physical length scale L, which can be
between a few meters for small offices up to a hundred of meters for
the largest data centre,

δx =
L
3
√
N

(120)

The time in seconds required to simulate a flow problem comprised
on N nodes with the optimised LBM running on GPU can be es-

115

timated from the number of nodes updated per second (i.e. 1500

MLups),

∆t =
N

MLups
(121)

The previous equations can be combined to estimate the real-time
rate, that is the ratio of computational time to physical time,

δt

∆t
=

MLups
N4/3

L

CV
(122)

Using the equation, the real-time rate can be computed for a given
problem and resolution, if higher or equal to 1, then the problem
can be simulated in real-time. Figure 30 shows the variation of the
real-time rate with the resolution for different ratios of L/CV . For a
typical indoor air-flow simulation, L/CV is of the order of 1, in which
case the critical value for real-time performance is 7.6 million nodes.
That should be sufficient for accurately simulating rooms with simple
geometry.

5.4 summary

Measuring the computational performance of a LBM program is a
delicate matter. Not only it depends on the optimisation level of the
source code, but also on the computing architecture, the compiler
options, the problem size and geometry, the physics at play... etc.

On top of the obvious “amount of computations per second”, one
might prefer to consider over performance criteria. For instance, for
the development of a green system, the performance per watt is often
cited.

Moreover, the comparison of CPU versus GPU performances is al-
ways an risky task: should the GPU results be compared against a
CPU using a single thread, or all the threads, or the vector units? And
then, should the development time be taken into consideration? Is a
ten percent increase in performance worth a year of development?

On the other hand, the CUDA language offer a simple yet efficient
programming environment, and using the straightforward optimisa-
tion techniques explained in the previous chapter, can achieve really
high performance for the LBM on GPU. Higher than a finely tuned
CPU implementation, and the simple tweaks introduced in this chap-
ter can help to maximise the usage of the available resources. More
importantly, the achieved performance is sufficient for real-time sim-
ulations in the context of most indoor air flows.

The validation of the program for benchmark CFD problems and
for several indoor air flows will be provided in the next two chapters.

116

6
VA L I D AT I O N

The purpose of this section is to validate the LBM solver implemented
on GPU for the simulation of both isothermal incompressible prob-
lems and thermal problems under the Boussinesq approximation, as
described in section 2.3.5. The first section takes an interest in the flow
through a channel, also known as Poiseuille flow, which has a simple
analytical solution. The second section focuses on the flow in a lid-
driven cavity, both as a two-dimensional and three-dimension prob-
lem. It is a standard benchmark for incompressible Navier-Stokes
solvers, and the LBM will be validated against results from the litera-
ture.

The last three sections study investigate thermal flows using three
test cases of increasing complexity. The first one is a simple purely dif-
fusive flow problem which has a simple analytical solution. The sec-
ond test case is a purely advected flow where the Boussinesq force has
been turned off; it has an analytical solution as well. The third case
is that of the natural convection of a flow in a differentially heated
cavity, also know as the double blazing problem. This last test case does
not possess an analytical solution, thus the LBM will be compared
against the results of a commercial CFD software, Fluent.

6.1 2d poiseuille flow

Jean Poiseuille
(1797-1869)
French physicist and
physiologist, he
studied the flow of
liquids through
small pipes, such as
blood flows in
capillaries and veins.

The Poiseuille flow, named after the French physicist Jean Poiseuille,
consists in the flow between two parallel plates, separated by a dis-
tance L, subjected to a constant body force (~F). It is a representation
of the stationary flow within a pipe subjected to a constant pressure
difference at each end. The established flow is time independent and
has a simple quadratic profile solely dependant on the distance to the
walls (y). The component of the velocity which is normal to the wall
in null (uy = 0), so the velocity can be expressed as ~u = ux(y) ~ex. The
Navier-Stokes equation can thus be reduced to a simple one dimen-
sional second order PDE that can be solved analytically.

ν
∂2u

∂y2
=
∂p

∂x
= cste (123)

Using the no-slip boundary conditions on each plate, i.e. u(0) =

u(L) = 0, it can be shown that the solution to equation (123) takes the
form

u(y) =
4umax

L2
y (y− L) (124)

117

where umax is the maximum flow velocity, located at the centre of the
pipe, and it can be expressed from the pressure gradient,

umax =
L2

8ν

∂p

∂x
. (125)

Illustration of the
velocity field in a

Poiseuille flow.

In the simulation, it is more convenient to drive the flow using a
constant body force ~F and periodic boundary conditions along the
streamwise direction, which avoid the need to implement pressure
boundary conditions. In this case, the force can be chosen so that the
velocity at the centre line is the desired umax (once the flow is fully
developed),

~F =
8ν

L2
umax ~ex. (126)

Due to its simplicity and the availability of an analytical solution,
the Poiseuille flow is often used to study the accuracy of boundary
conditions in LBM [225, 215]. Here, the goal is not to reproduce the
results of these studies (only the bounce-back method will be shown
for illustration), but rather as a mean to introduce the concepts of grid
convergence that will be applied in the next section (see 6.2).

The process of grid convergence, also known as a grid refinement
study, is a technique to evaluate discretisation errors in a CFD simula-
tion. It involves performing multiple simulations of the same system
using successively finer grids (i.e. higher resolutions) until the rele-
vant simulated physical quantities converge towards their asymptotic
values, which should be free from discretisation errors. The order of
convergence of the method is determined by how fast these quantities
converge.

As the resolution of the simulation (N) is increased, the grid spac-
ing (∆x) becomes finer and it important that other physical quantities
are scaled accordingly, so that the Reynolds number remains con-
stant,

Re =
UlbN

νlb
, (127)

where the subscript lb denotes lattice units.
Clearly, to keep the Reynolds number constant while N varies, one

must either vary the velocity Ulb (this is known as diffusive scaling)
or the viscosity νlb = (τ− 1/2)/3 (convective scaling). The convective
scaling process is similar to that of the Chapman-Enskog expansion
by which the compressible Navier-Stokes system is recovered. In con-
trast, the diffusive scaling views compressibility effects as numerical
effects and it is the natural choice if the LBM is viewed purely as
a numerical method to solve the incompressible Navier-Stokes equa-
tion [260].

118

In a diffusive scaling, the parameters are scaled as follows:

N→ 2N,

νlb → νlb,

Ulb → Ulb/2. (128)

In this scaling, the error due to compressibility effects decrease as
the same rate as the error due to grid discretisation. On the other
hand, as ∆t ∼ ∆x2, the required number of time steps can become
prohibitive for very large simulations. A more crucial issue is that in
the continuum limit N → ∞, the velocity tends to zero Ulb → 0 and
the round-off errors due to limited machine precision can become
predominant.

On the other hand, in a convective scaling, the parameters are
scaled as follows:

N→ 2N,

νlb → 2νlb,

Ulb → Ulb. (129)

Using this scaling, the compressibility errors that are of the order
O(U2lb) do not disappear even in the continuum limit N → ∞, but
they can be kept small by choosing a small value for Ulb. However,
it assumes the time to scale linearly with the number of grid points,
i.e. ∆t ∼ ∆x, rather than quadratically as in the diffusive scaling.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0 1-0.1 0.1 0.3 0.5 0.7 0.9 1.1

u
x

y

0

1

2

3

4

5

6

0

1

2

3

4

analytical
full-way BB
half-way BB

Figure 31: Illustration of the node locations and correspond-
ing flow velocities for half-way bounce-back using
N=5 and full-way bounce-back using N=7. The
walls are located at y = 0, and y = 1, they reside
half a distance away from the simulation nodes.

So the required number of time
steps is much less demanding.

To illustrate the process of
grid convergence, this section
evaluates the convergence under
a diffuse scaling of the so-called
half-way and full-way bounce-
back boundary conditions for
the simulation of the Poiseuille
flow in LBM using the simple
BGK collision operator. As the
flow is independent of the di-
rection x, the number of nodes
along x can be chosen very small.
The grid convergence is estab-
lished by considering the follow-
ing resolutions : 3 × 21, 3 × 31,
3 × 51, 3 × 71, 3 × 101, 3 × 201,
3× 301 and 3× 501.

In order to establish when the
flow has fully developed, the
maximum flow velocity ucmax is

119

monitored every 10000 time-steps, and the program runs until the
fluctuations are smaller than 10−10. This computed maximum veloc-
ity ucmax is then used to evaluate the analytical quadratic profile with
the equation (124) rather than the target analytical velocity uamax that
was used to estimate the force, as the two can differ slightly. To make
sure that the pipe centre aligns with a node location and avoid inter-
polations, N is always set as an odd number, and ucmax is measured
at the node i = (N− 1)/2, see figure 31.

As explained in section 3.2.3, the location of the solid wall is al-
ways half-way between the nodes, both in the ’half-way’ and in the
misnamed ’full-way’ boundary conditions and only the actual loca-
tion of the walls varies. In the half-way method, boundary nodes are
fluid nodes and the walls are located outside of the simulation do-
main. In the full-way bounce-back, boundary nodes are solid nodes
which reside outside of the fluid domain; thus they act as ghost-nodes
for the simulation, the velocity is not defined on these nodes and need
to be discarded. It is important when exporting the data and comput-
ing the analytical velocity profile to use the right node location, as
illustrated in figure 31,

y =

i+ 1

2

N half-way
i− 1

2

N−2 full-way
(130)

The viscosity is kept constant and the relaxation time is set to
τ = 0.55. The flow is driven by a constant body force ~F = (Fx, Fy),

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 10 100 1000

R
el

at
iv

e
E

rr
o

r

Grid Resolution

full-way bounce-back
half-way bounce-back

slope = 2

Figure 32: Grid convergence of the full-way and half-way boundary
condition in the BGK LBM for a 2D Poiseuille flow with
constant body force and diffusive scaling.

where Fx is set according to
equation 126 and Fy = 0. For
a constant body force like this,
it is sufficient to use a simple
scheme, like adding the follow-
ing term during the collision
process :

Fi =
wi
c2s

~ei ·~F. (131)

The velocity at the centre line
(umax) is computed so that the
Reynolds number of the flow is
always 100 (i.e. diffusive scal-
ing), umax = Re · νlb/N. The
global relative error, that quan-
tifies the difference between the
LBM velocity computed at the

120

ith node (uci) and the analytical solutions evaluated at the location
of the ith node (uai), is defined as

Relative Error =

√√√√∑i (uci − uai)2∑
i

(
uai
)2 , (132)

note that u is a generic (ux or uy) velocity component so the relative
error can be evaluated for each component. However in a Poiseuille
flow, the y component is always null, thus only the x component is
considered. As seen on figure 32, the relative errors have a slope
almost exactly equal to 2, both for the half-way and full-way bound-
ary conditions, although the later is slightly less accurate on coarse
mesh. This proves that the LBM is indeed second-order accurate for
this problem.

6.2 lid-driven cavity

The lid-driven cavity flow takes place in a square box and is driven
by imposing the constant translation of the top lid, while a no-slip
condition is imposed on the other walls (stationary walls). It is a
popular benchmark test for CFD methods. Its popularity comes from
its ability to generate complex vortex structure while retaining a sim-
ple geometry that allows for an easy implementation of the bound-
aries. The dynamic of the vortex structures in the lid-driven cavity
highly depends on the Reynolds number and has been the subject of
many investigations using a variety of methods, both experimentally
[261, 262] and numerically [263, 264, 265].

This section focuses on the simulation using the lattice Boltzmann
method, for a large range of Reynolds number, both in two and three
dimensions. It should be emphasised that a real cavity would de-
velop three-dimensional features due the no-slip conditions on the
end walls. As a result, two-dimensional simulations provide only a
first approximation, but they will be used to test the numerical sta-
bility and precision of multiple collision models and boundary con-
ditions, because they allow faster computations for a larger range of
resolutions than three-dimensional simulations. The LBM results are
compared amongst themselves as well as against results from bench-
mark simulations available in the literature.

6.2.1 Problem description

The flow considered is that of an incompressible fluid in a square (2D)
or cubic (3D) cavity of side length L. The flow is driven by the wall
at y = L, moving tangentially in the x-direction at a constant veloc-
ity Ulid, the other walls are stationary. The movement of the top lid
generates a large primary central vortex and several secondary vor-

121

tices rotating in the opposite direction, arising near the corners (see
sketch in the margin). The small vortices at the bottom corners can

y
xz

Ulid

L

L

Geometry of the
lid-driven cavity

problem.

be difficult to capture numerically as they are weak and small. The
top corners are both singular points (see section 6.2.2), and can be
the cause of catastrophic instabilities, particularly at high Reynolds
number. It is assumed for this section that the flow has steady state,
but it in practice, as the Reynolds number increases passed a certain
critical value, the flow becomes unsteady, it first shows an oscillating
behaviour and eventually becomes turbulent. As LBM is intrinsically
a time-dependent method, the flow is set to a uniform zero velocity
initially, then it is allowed to evolve in time until it does not change
anymore, this final state is the steady-state solution. Simulations are
assumed to have reached the steady-state once the L2 norm of the ve-
locity compared to an earlier snapshot in time is smaller than 10−12,

L2 =

√∑
i (~u (~xi, t− 1000δt) − ~u (~xi, t))

2∑
i (~u (~xi, t))

2
6 10−12. (133)

The convergence criteria for reaching the steady-state in LBM is
defined using the relative error of the velocity.

6.2.2 Two-dimensional results

Comparison with benchmark

The two-dimensional (2D) lid-driven cavity can be accurately simu-
lated by the LBM, even with the simple BGK collision operator, and
for a large range of Reynolds number, as demonstrated by the various
velocity profiles on figure 33. In order to match the LBM simulation
to the benchmark data provided by [263], the Reynolds number is
defined as Re = 3Ulid(N− 1)/(τ− 1/2), where the number of nodes
along the length of the cavity (N) is fixed to 256 (or 512 for high
Reynolds number), the velocity of the lid (Ulid) is fixed to 0.1 and the
relaxation time (τ) is computed to match Re. The simulation can be-
come unstable as τ approaches 1/2, especially with the LBM BGK, so
to avoid this problem, the resolution is increased to 512 if Re > 1000.
The side and bottom walls are stationary and can be easily imple-
mented with the half-way bounce-back method. The top wall is mov-
ing at the constant speed Ulid, there are multiple ways to implement
such a boundary, the momentum exchange method described in [266]
and based on [212] is preferred for its simplicity,

fi = fī + 6ρwiei,xUlid, (134)

where i is the index of the unknown distribution function at the top
wall, ī is the index of the opposite distribution function (i.e. ~ei =

−~eī), ei,x the x-component of the direction ~ei and wi the associated
weighting factor.

122

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1
-0.5 -0.2 0.1 0.4 0.7 1

u
y
/U

li
d

y
/L

x/L

ux/Ulid

ux
uy

Ghia

(a) Re = 100

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1
-0.5 -0.2 0.1 0.4 0.7 1

u
y
/U

li
d

y
/L

x/L

ux/Ulid

ux
uy

Ghia

(b) Re = 400

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1
-0.5 -0.2 0.1 0.4 0.7 1

u
y
/U

li
d

y
/L

x/L

ux/Ulid

ux
uy

Ghia

(c) Re = 1000

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1
-0.5 -0.2 0.1 0.4 0.7 1

u
y
/U

li
d

y
/L

x/L

ux/Ulid

ux
uy

Ghia

(d) Re = 3200

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1
-0.5 -0.2 0.1 0.4 0.7 1

u
y
/U

li
d

y
/L

x/L

ux/Ulid

ux
uy

Ghia

(e) Re = 5000

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1
-0.5 -0.2 0.1 0.4 0.7 1

u
y
/U

li
d

y
/L

x/L

ux/Ulid

ux
uy

Ghia

(f) Re = 7500

Figure 33: Velocity profiles obtained with the D2Q9 BGK LBM program of
the x-velocity (ux) across a vertical line and the y-velocity (uy)
across an horizontal line, crossing at the cavity geometric centre,
for various Reynolds numbers. The dots represents the bench-
mark data from [263].

123

0

0.5

1

(a) Re = 100

0

0.5

1

(b) Re = 400

0

0.5

1

(c) Re = 1000

0

0.5

1

(d) Re = 3200

0

0.5

1

(e) Re = 5000

0

0.5

1

(f) Re = 7500

Figure 34: Comparison of the streamlines in a 2D lid-driven cavity at differ-
ent Reynolds number. Vortex centres are located by a •.

124

The figure 33 shows a very good agreement between the veloc-
ity profiles extracted from the converged LBM simulations and the
benchmark results of [263]. However, it was found that a few of the
points provided in this paper were erroneous (probably due to typing
mistakes from the authors) as they were significantly off compared to
the other points. The table 7 lists these erroneous points and provides
their original and corrected values.

component Re location original value corrected value

x 3200 y = 0.4531 0.86636 0.086636

x 10000 y = 0.5 0.03111 -0.03111

y 400 x = 0.9063 0.23827 0.38

Table 7: List of erroneous point and corrected values for the lid-driven cavity
profiles provided by Ghia et al.[263].

The figure 34 display the streamlines in the lid-driven cavity for
each Reynolds number of interest. They show a large main central
vortex, rotating clockwise, that creates smaller vortices at the bottom
corners that are rotating in the opposite direction. The LBM properly
captures these second vortices, for the whole range of Reynolds num-
ber. At Re = 7200, it also captures a third level of vortices, rotating
clockwise, which appear in the bottom right corner. The streamlines
visually agree with the ones provided in the references [263, 266, 59].

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

u
y
/U

li
d

y
/L

x/L

ux/Ulid

N = 31
N = 51
N = 101
N = 1001
Ghia et al.

Figure 35: Velocity profile in the lid-driven cavity for Re =

400

Grid convergence

In this section, the lid-driven
cavity is used as a test case to
study the order of convergence
of the LBM under spatial re-
finement. The LBM is often
claimed to be second order ac-
curate in space [260], but that
is usually without considering
boundary conditions, which can
sometimes reduce the order of
convergence. The difficulty in
studying the grid convergence
for the lid-driven cavity comes
from the lack of analytical so-
lution, unlike for the Poiseuille
flow from section 6.1. In place of
an analytical solution, a numer-
ical simulation conducted on a
large grid is used as a “refer-

125

ence” simulation. A diffusive scaling is employed to set the param-
eters for different resolutions consisting of 31× 31, 51× 51, 71× 71,
101× 101, 301× 301, 501× 501, 701× 701 and 1001× 1001, this last
large resolution is taken as the reference simulation. These reso-
lutions are significantly larger than what is typically done in the
literature[266, 267, 268, 59] and is only made possible by the opti-
misation of LBM on GPU described previously (see section 4.4).

Figure 35 shows the improvements on the velocity profiles for Re =
400 as the resolution of the simulation is increased. From N = 101,
increasing the resolution does not significantly improve the results
and the profiles all merge into one. Thus, to avoid overcrowding
the figure, the velocity profiles for intermediate resolution between
N = 101 and N = 1001 are omitted.

It is clear that the larger resolutions results in more accurate simu-
lation, as their velocity profiles align perfectly with the sample points
of the reference, but it is important to estimate how fast these simula-
tions tend towards the reference to estimate the order of convergence.
To do so, multiple profiles at different resolutions need to be sub-
tracted (see equation 132). The resolution is chosen as an odd num-
ber, so the geometric centre matches exactly with x/L = y/L = 0.5,
i.e. i = j = (N− 1)/2 in lattice units. But that is not sufficient for all
the node locations to match exactly, even if the resolution is doubled,
because of the half-way location of the walls. To compensate for that,
the velocity of the reference simulation is extrapolated at the location
of the coarse one using linear interpolations. This added interpola-
tion does not affect the resulting convergence order.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

R
el

at
iv

e
E

rr
o

r

Grid Resolution

BGK, convective scaling (ref at N=1001 and N=5001)

Ux (vs N=5000)
Uy (vs N=5000)
Ux (vs N=1000)
Uy (vs N=1000)
slope = 1
slope = 2

Figure 36: Grid convergence of the BGK LBM for the x-
velocity (along the vertical centre line) and for the
y-velocity (along the horizontal centre line) in a
2D lid-driven cavity flow for Re = 400.

Figure 36 presents the conver-
gence results for the lid-driven
cavity simulated using the BGK
LBM. The Reynolds number is
again Re = 400, and the change
in resolution is done under a
diffusive scaling with the relax-
ation time fixed to τ = 0.55.
The relative error is computed
according to formula 132 where
uai is replaced by the velocity
taken from the 10012 simula-
tion. The relative error on the x-
velocity is measured on the ver-
tical centre line while that of the
y-velocity is taken on the hor-
izontal centre line. The simu-
lation seems to be converging
more like a first order scheme
(top light-green line) rather than

126

a second order scheme (bottom dark-green line) and the estimated
value for the order of convergence is approximately 1.2. The conver-
gence order appears to increase in the second half of the plot (i.e. for
N > 301), but it is likely due to the closeness to the reference located
at N = 1001. This is indeed confirmed when using an higher resolu-
tion (5001× 5001) simulation as the reference, as shown in light blue
and light red colour on the figure.

The convergence order observed here is much smaller compared
to what is usually claimed in the literature[266, 267]. There are mul-
tiple factors that can affect the convergence and might explain this
difference: boundary conditions for the top lid and the walls, relax-
ation time value, use of a convective scaling, modified collision oper-
ator (cascaded, MRT), measuring the relative error using the whole
field rather than lines, etc... Many combinations of these factors were
tested and ultimately none yield a significant change in the order of
convergence. The convergence of the LBM for the lid driven cavity
problem appears to be better than first order, but is still closer to first
order than second order.

 0.001

 0.01

 0.1

 1

 8 16 32 64 128 256 512 1024

R
el

at
iv

e
E

rr
o

r

Grid Resolution

slope = 1.93
slope = 1.6
slope = 1.43
slope = 1.3
reference at N = 128
reference at N = 256
reference at N = 512
reference at N = 1024

Figure 37: Grid convergence of the cascaded LBM in a 2D lid-
driven cavity flow for Re = 1000. Under-resolved
(i.e. small resolution) reference simulation gives
an incorrectly high convergence order.

The second order convergence
reported in the literature could
originate from the use of rel-
atively smaller lattice resolu-
tion. Comparing the velocity pro-
file against an under-resolved ref-
erence simulation tends to overesti-
mate the convergence order of the
method. This statement is clearly
illustrated in the figure 37. By
increasing the resolution of the
reference simulation from 128 to
1024, the convergence order de-
creases from 1.93, which would
imply quasi second order, to
1.3, which is closer to first or-
der. By comparing the coarse
simulations against a small res-
olution reference, that does not
fully recover the correct velocity
profile, the relative error is un-
derestimated and consequently the convergence order is overesti-
mated. This important aspect in the measure of convergence orders
and it has not been commented on before (to the best of the author’s
knowledge).

127

Convergence to steady state

For the range of Reynolds numbers considered, the flow in the 2D
lid-driven cavity is a steady-state, i.e. the flow does not vary with
time. However, the LBM is intrinsically time-dependent and the flow
needs to be solved as a time dependant flow. The flow starts with
a uniform zero velocity and evolves until the velocity does not vary
significantly any more, according to the convergence criteria defined
in the equation 133. It is interesting to study the evolution of this
convergence criteria over time, as plotted on figure 38, to see how
fast the LBM converges towards the steady-state. This is not to be
mistaken with a convergence study under time refinement (i.e. using
smaller time-steps).

The simulation parameters used to create the figure 38 are: Re =

400, N = 256, τ = 0.6, Ulid ≈ 0.05. The computations are performed
both in single precision (in blue on the figure) and double precision
(in green). The wall clock time (that is the time taken by the computer
to complete the simulation) for a given time-step and for a given pre-
cision can be found by following the light blue or light green line. The
double precision LBM reach a convergence criteria as small as 10−13

after approximately 6.105 times-steps, i.e. 40 seconds of computation.
While the best convergence for single precision is about 10−4, which
is reached after 2.105 time-steps, i.e. 8 seconds. Although the con-
vergence for single precision is not as good as in double precision
(due to larger rounding off errors), a relative error of 10−4 is likely to
be a sufficient accuracy for real-time applications, while the required
computing time is four times smaller than that of double precision.
Moreover, the overall quality of the velocity profiles does not appear
to be significantly affected by the lack of floating point precision.

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 200000 400000 600000 800000 1e+06
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

C
o

n
v

er
g

en
ce

 C
ri

te
ri

a

T
im

e
(s

ec
o

n
d

s)

Time Steps

convergence (single)
convergence (double)
wall clock time (single)
wall clock time (double)

Figure 38: Convergence of the LBM towards the steady-state solution for
Re = 400 in single or double precision computations.

128

High Reynolds number and turbulence

0

0.5

1

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1
-0.5 -0.2 0.1 0.4 0.7 1

u
y
/U

li
d

y
/L

x/L

ux/Ulid

ux
uy

Ghia

Figure 39: Streamlines and velocity profile in the 2D lid driven cavity for
Re = 10000 using the BGK LBM.

In their original paper, Ghia et al. [263] provide data of the lid driven
cavity simulated for a Reynolds number Re = 10000. Simulating
such a high Reynolds number using the LBM is challenging and
normally requires a high resolution mesh, because small relaxation
times result in unstable simulations. Moreover, the algorithm strug-
gles to converge towards a steady state, as the resulting flow displays
time varying features. This behaviour is expected, Re = 10000 has
been show to be beyond the first Hopf bifurcation, i.e. the Reynolds
number at which the flow changes from steady to unsteady charac-
teristics, for the 2D lid driven cavity flow, which is estimated to be
around Re = 8000 [269]. Nevertheless, the BGK LBM manages to
solve the flow with a reasonable accuracy, as displayed on figure 39,
provided that a large resolution (1023× 1023) is used. The streamline
plot shows the formation of a large third vortex in the bottom right
corner in agreement with the benchmark data.

For small resolutions (smaller than 256× 256), the BGK LBM is un-
stable and gives unreliable results. This section studies the effect of
changing the collision operator (MRT and cascaded) and using a tur-
bulence model (Smagorinsky LES) in order to accurately simulate the
lid-driven cavity for large Reynolds number with a small resolution.

The MRT and cascaded LBM both provide almost identical results.
Figure 40, displays the velocity profile for three different grid resolu-
tions 64× 64, 128× 128, 256× 256 for each model. These two models,
that do not rely on a sub-grid turbulence model, perform surpris-
ingly well for these small resolutions where the BGK LBM would not
be stable. The smallest resolution (N = 64) is too coarse for accurately
capturing the boundary layers, which is very thin, yet the resulting
velocity profile is not very far off the reference. However, for even
smaller resolutions, both methods become unstable (although it is

129

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1
-0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

u
y
/U

li
d

y
/L

x/L

ux/Ulid

N = 64
N = 128
N = 256
Ghia et al.

(a) MRT LBM

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1
-0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

u
y
/U

li
d

y
/L

x/L

ux/Ulid

N = 64
N = 128
N = 256
Ghia et al.

(b) Cascaded LBM

Figure 40: Velocity profile in the 2D lid driven cavity for Re = 10000 using
the MRT (left) and cascaded LBM (right).

possible that the cascaded LBM could be made unconditionally sta-
ble with different boundary conditions). The two higher resolutions
(N = 128 and N = 256) both resolve the boundary layers correctly
and the resulting profiles are very close to the reference. At the res-
olution N = 128, δx is about ten times the Kolmogorov length scale
(which varies as Re3/4) and this resolution is apparently sufficient to
solve the flow accurately without the need for a turbulence model.

Nevertheless, the LES turbulence model described in section 2.5.1
can be used to stabilise BGK simulations on these small resolution lat-
tices, as shown on figure 41. The introduction of a turbulence model
allows the resolution on small grids, even smaller than what is possi-
ble with MRT or cascaded, but it comes at the price of additional diffu-
sion. Indeed, the sub-grid turbulence model introduces an additional
eddy viscosity whose significance is controlled by a constant C, known
as Smagorinsky’s constant (for further details, see section 2.5.1). For
the resolution N = 256, it is found that the value of C required to
accurately solve the flow is around C = 0.03, which is smaller than
the value of C = 0.1 usually advised in the literature[189, 24]. As
depicted on the figure 41b, the accuracy of the result is improved as
the Smagorinsky constant C is decreased from 1.0, to 0.03. The value
C = 1.0 is clearly too large, it overestimates the effect of sub-grid
eddies and the effective viscosity is too large, as a result the velocity
profile represents better Re = 1000 than the reference. Using C = 0.1
gives a reasonable agreement with the reference, although it shows
a larger thickness of the boundary layers. Lowering the constant to
C = 0.03 allows for a more accurate resolution of the flow. Actu-
ally, it is likely than reducing C even more would further improve
the accuracy, but it appears that C cannot be lower than 0.03 (for
this setting), otherwise numerical instabilities arise. This means the

130

eddy viscosity is not sufficient to damp the high-frequency fluctua-
tions at small scale, and it would be interesting to see if combining
the turbulence modelling with an alternative collision operator (like
MRT or cascaded LBM) allows for a better stability. In this problem,
the Smagorinsky constant C should be chosen as small as possible,
as long as the resulting flow is numerically stable. Doing so, C can
be adjusted to allow for stable simulations on smaller grids even on
grids as small as 32×32where MRT and cascaded loose their stability.
The effect of reducing the resolution can be observed on figure 41a.
The smallest resolutions display spatial oscillations (see next section)
and do not resolve the boundary layers accurately. The use of a wall
turbulence model would be necessary to recover the velocity profile
more accurately for such coarse simulations.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1
-0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

u
y
/U

li
d

y
/L

x/L

ux/Ulid

N = 32
N = 64
N = 128
N = 256
Ghia et al.

(a) Changing resolution.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1
-0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

u
y
/U

li
d

y
/L

x/L

ux/Ulid

C = 1.00
C = 0.10
C = 0.03
Ghia et al.

(b) Changing Smagorinsky constant Cwith
fixed resolution N = 256.

Figure 41: Velocity profile in the 2D lid driven cavity for Re = 10000 using
the Smagorinsky BGK model.

Pressure field and corners issues

As mentioned previously, most of the issues related with the lid-
driven cavity arise from the top corners. These two corners are singu-
lar points to the flow: the velocity at these points is both that of the
lid (Ulid) and that of the walls (zero because of the no-slip property of
the wall). This is purely a modelling issue, a physical experiment in
the lab would likely see a gradient of velocity at each corner: zero at
the wall and Ulid some distance away. For a simulation, in practice, a
choice must be made for the corner nodes. Here, they are treated as if
they are part of the solid walls. Nevertheless, there is a large gradient
(the infinity actually!) between the velocity at the corner nodes and
their neighbour nodes. Numerical methods do not like large gradi-
ents, they often result in spurious oscillations that can lead to severe
numerical instabilities.

131

Figure 42: Contour of pressure in the 2D lid driven cavity for Re = 1000

using the resolution N = 128. From left to right: BGK, MRT and
cascaded LBM scheme.

In the LBM, the velocity field is not affected as much by these in-
stabilities as the pressure field. Thus, it is sensible to look at isocon-
tours of pressure to illustrate the problem. The figure 42 provides
a comparison of the isocontours of pressure for the BGK, MRT and
cascaded LBM models for Re = 1000 using a 128× 128 lattice and a
lid velocity Ulid = 0.1. The values for the contours are hand picked
to achieve a relatively uniform spacial coverage1, they are centred
around 1, which is the initial pressure. The BGK LBM shows strong
oscillation near the upper corners, which are mostly fixed using ei-
ther MRT or cascaded LBM. The results obtained by these last two
methods are very close, but it can be noticed that the cascaded LBM
gives smoother contours near the top lid.

The streamlines on figure 42 are constructed as contours of constant
values (known as isocontours) of the stream function ψ. For a 2D
flow, the stream function ψ is also the vector potential of the flow
~ψ = (0, 0,ψ) defined by

~u = ~∇× ~ψ, (135)

which can be projected along each axis to give

ux =
∂ψ

∂y
and uy = −

∂ψ

∂x
. (136)

In LBM, the stream function can be calculated by numerical inte-
gration:

ψ
(
xi,yj

)
= ψ

(
xi−1,yj

)
+ δxuy

(
xi−1,yj

)
, (137)

and ψ is set to zero on the domain borders (ψ(x = 0,y) = 0) to
provide initial values for the integration. The above formula only
provides a first order integration (which appears sufficiently accurate

1 the hand-picked pressure values are the following : 0.9980, 0.9982, 0.9985, 0.999,
0.9995, 1, 1.00025, 1.00035, 1.0005, 1.0008, 1.00094, 1.00098, 1.000993, 1.001, 1.00106,
1.0011, 1.0012, 1.00125, 1.00128, 1.002, 1.004, 1.008.

132

for the needs of this study) but the Simpson’s rule [59] can be applied
instead if second order integration is required:

ψ
(
xi+1,yj

)
= ψ

(
xi−1,yj

)
+
δx

6

[
uy
(
xi−1,yj

)
+4uy

(
xi,yj

)
+ uy

(
xi+1,yj

)]
. (138)

6.2.3 Three-dimensional results

Physically, the flow in a lid-driven cavity is unlikely to be two dimen-
sional (because of the effect of end walls) nor steady (especially for
high Reynolds number). The two dimensional steady state flows at
high Reynolds numbers presented in the previous section should be
considered as a “fictitious” flow. They were crucial, however, in the
study of the numerical stability and convergence of the LBM. This
section focuses on the three-dimensional lid-driven cavity. The geom-
etry is the same as in the previous section, but the domain is now
extended in the third dimension, enclosed by two additional no-slip
walls. It is expected that most of the results established in two di-
mensions are amenable to three dimensions, that is why this section
focuses solely on validating the 3D LBM with benchmark data and
estimating the convergence order.

Comparison with benchmark

There are relatively less numerical study in the literature considering
the three dimensional driven cavity than the two-dimensional one.
While the 1987 paper from Ku et. al. [264] is often considered as a ref-
erence, this section uses the work of Albensoeder and Kuhlmann[265],
as their 2005 paper provides the tables of data required to plot the
velocity profiles. Their simulations were carried out by solving the
incompressible Navier-Stokes equation using a Chebyshev pseudo-
spectral solver on a 96× 96× 96 grid, thus they wield a very high
accuracy.

Here, the simulations are performed with the BGK LBM model
using a D3Q19 node, the solid walls are implemented using the half-
way bounce-back scheme, and the top wall velocity is imposed us-
ing 134, like in the previous section. The velocity of the lid is set to
Ulid = 0.1 and the Reynolds number Re for a given resolution N is
adjusted by modifying the relaxation time τ as follows (convective
scaling)

τ =
1

2
+ 3

Ulid (N− 1)

Re
. (139)

As in the previous section, the velocity profiles are extracted along
a vertical line (for the x-component) and a horizontal line (for the y-
component). These profiles, shown on the figure 43, are in perfect
agreement with the benchmark data. While most of the figures use a

133

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1
-0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

u
y
/U

li
d

y
/L

x/L

ux/Ulid

Ux
Uy
Albensoeder

(a) Re=100, N=256

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1
-0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

u
y
/U

li
d

y
/L

x/L

ux/Ulid

Albensoeder
Ux, N = 16
Ux, N = 32
Uy, N = 16
Uy, N = 32

(b) Re=100, N=16 and N=32

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1
-0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

u
y
/U

li
d

y
/L

x/L

ux/Ulid

Ux
Uy
Albensoeder

(c) Re=400, N=256

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1
-0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

u
y
/U

li
d

y
/L

x/L

ux/Ulid

Ux
Uy
Albensoeder

(d) Re=1000, N=256

Figure 43: Velocity profiles in the 3D lid-driven cavity using the D3Q19 LBM
BGK model.

relatively large cubic resolution of 2563, figure 43b shows that small
resolution simulations (like 163 and 323) can also achieve good accu-
racy, although N = 16 is rather noisy, as can be seen by the sharp
fluctuations on the figure. It is clear that as the Reynolds number
increases, the effect of the additional end walls (in 3D) cannot be
neglected; both Re = 400 and Re = 1000 show differences in the 3D
velocity profiles compared to the 2D results presented in the previous
section in figure 33.

To conclude, the 3D isothermal LBM gives a satisfactory accuracy
for the lid-driven cavity problem, even with the BGK collision oper-
ator and even for small lattice resolutions, while providing an easy
and stable implementation. It is also very computationally efficient,
the running time ranges from a few seconds for the smallest resolu-
tion (N = 32) to a few dozens of minutes for the largest resolution
(N = 256). It would be interesting to see how the LBM performs for
higher Reynolds number, but no validated benchmark is available,
because the flow quickly becomes unsteady and turbulent.

134

Grid Convergence

 0.0001

 0.001

 0.01

 0.1

 1

 8 16 32 64 128 256

R
el

at
iv

e
E

rr
o
r

Grid Resolution

slope = 1
slope = 2

slope = 1.8
Ux

slope = 1.2
Uy

Figure 44: Grid convergence of the BGK LBM for the x and y velocity in a
3D lid-driven cavity flow for Re=100.

The convergence study is performed using the same procedure as
for the two-dimensional case. The lid-driven cavity for Re = 100

is simulated with a range of resolutions: 163, 323, 643, 1283, 2563,
the simulations are carried on until a steady-state is reached. After-
wards, the relative error is estimated by computing the L2 norm of
the velocity profiles compared against the highest resolution simu-
lation (N = 256), which is assumed to be the most accurate and is
taken as the “reference” (in the lack of analytical solution). A notable
difference with the previous study is that this time a convective scal-
ing is applied to limit the requirement on the computing time for the
largest resolution.

The results for the grid convergence of BGK LBM for the three-
dimensional lid-driven cavity are shown on the figure 44. It appears
that the convergence order higher than for the two-dimensional case.
The convergence order for the y-component of the velocity is approx-
imately 1.2, like in the two dimensional case. The relative errors on
the x-component are significantly smaller, and the convergence order
appears to be higher, around 1.8. It is unclear what is the source of
these differences, but the convergence order may be overestimated
and may decrease if the resolution of the reference was increased fur-
ther (see section 6.2.2).

Ultimately, this issue on the small convergence order of the LBM
is more of an academic problem than a practical one. In practice, the
LBM recovers the flow characteristics with a reasonable accuracy for
lattice sizes that are sufficiently small to allow real-time CFD.

135

6.3 thermal diffusion in a square cavity

6.3.1 Problem description.

coldhot

adiabatic

adiabatic

(a) Geometry

x
0

Ttheory

Thot

Tcold

Tinit

1

(b) Theory

x
0

Ttheory

Thot

Tcold

T
= 0

init

1

Texperiment

0
%
of

error

(c) Difference to theory

Figure 45: Thermal diffusion in square cavity.

This system is one of the simplest thermal problem possible: it is
that of a 2D cavity of size L× L, the left wall is heated at a constant
temperatureThot and the right wall is cooled at a constant tempera-
ture Tcold, the Boussinesq term is turned off, i.e. no gravity (~g = ~0),
thus there is no buoyancy. The domain is initially set to a rest state
with a constant temperature equal to the average temperature, i.e.
Tinit = (Thot + Tcold) /2. It is expected that after some time, a gradient
of temperature appears in the cavity, created by the diffusion of the
boundaries to the inside of the domain, while the velocity field stays
at rest.

This system is simulated using a D2Q9 node for the velocity, and
a D2Q4 node for the temperature. The boundary conditions are set
to half-way bounce-back for all four walls for the velocity, i.e. no-slip
boundaries. For the temperature, the top and bottom boundary con-
ditions are set to half-way bounce-back, i.e. they are adiabatic; and
the temperature is fixed on the left and right boundary conditions us-
ing either a force equilibrium scheme (eq. 141) or a macroscopic recovery
scheme (eq. 142), in order to compare their accuracy.

The effect of the initial temperature Tinit, lattice resolution N, re-
laxation time τ, boundary scheme and floating point precision are
investigated. In theory the temperature profile in the room should be
equal to

Ttheory(x) = Thot + (Thot − Tcold) · x (140)

where x is the normalised position, in the simulation the location of
the ith node is computed by x = (i+ 1/2)/N.

As the problem is essentially one dimensional, a profile of the tem-
perature along the x-axis is taken from the simulation at the centre
line of the cavity once the temperature has converged to a steady
state. This profile is then compared with the theoretical expression
for the temperature. As the two are very close under most settings, it
is more practical to plot the difference between them rather than a su-
perposition of the two plots. Initially, the difference is of the order of
(Thot − Tcold)/2, but over time the boundaries diffuses into the domain

136

and the difference reduces to a value close to zero. The percentage
of error is then defined as the maximum of the absolute value of the
error (see figure 45c).

6.3.2 Effect of the choice of boundary condition

-0.004

-0.003

-0.002

-0.001

 0

 0.001

 0.002

 0.003

 0.004

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
m

ea
su

re
d
-T

th
eo

ry

x/L

Difference to analitical solution for different boundary conditions

force equilibrium (double)
force equilibrium (single)

macroscopic recovery (double)
macroscopic recovery (single)

Figure 46: Effect of the boundary condition on the diffusion error.

The adiabatic walls for the temperature and all four walls for the
velocity are using half-way bounce-back as described in section 3.2.3.
The effects of using a full-way bounce-back are not studied. The tem-
perature on the left and right wall is fixed, and two different bound-
ary implementations for these walls are investigated:

1. Boundary type 1: “force equilibrium” scheme
Description: the unknown distribution function is replaced by
its equilibrium value, where the velocity of the fluid is zero.

funknown =
1

4
Twall (141)

2. Boundary type 2: “macroscopic recovery” shceme
Description: the unknown distribution function is replaced by
the difference between the macroscopic temperature at the wall
Twall and the sum of the known distribution functions.

funknown = Twall −

(∑
i∈known

fi

)
(142)

The final temperature profiles for both boundary types in single and
double precision are shown in Fig 46. Although the “force equilib-
rium” scheme allows for a simpler boundary implementation it does

137

not actually enforce the wanted temperature Twall but a slightly differ-
ent temperature Twall + ε, where ε is of the order of 0.4% of Twall. The
errors caused by this boundary condition clearly dominates the other
errors. The “macroscopic recovery” scheme is shown to properly en-
force the wanted macroscopic temperature, and the error fluctuations
seen in the single precision plot are unlikely to come from the bound-
ary condition. To summarise, the “force equilibrium” scheme allows
for quick implementation at the price of small inaccuracies on the
macroscopic temperature, but for just a little more complexity, the
“macroscopic recovery” scheme recovers exactly the macroscopic tem-
perature. Thus, it is recommend to use the second type in most situ-
ations. For a discussion of the advantage of using double precision,
read the next section.

6.3.3 Effect of the initial temperature.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.02 0.04 0.06 0.08 0.1

%
 e

rr
o
r

T
init

/T
hot

Figure 47: Effect of the initial temperature on the diffusion error.

To test the effect of the initial temperature on the accuracy of the
results, several simulations are conducted using a 5122 nodes lattice.
The relaxation time for the temperature is set to τT = 1 which is quite
diffusive and allows to reduce the time to reach the final state. The
temperature at the boundaries are set to Tcold = −1 and Thot = 1 so
that 0 is the average temperature and Tinit can be easily expressed as
a fraction of Thot. The simulations are run in single precision.

As can be seen from Fig. 47, the diffusion error is minimum (0.10%)
for Tinit = (Thot − Tcold)/2 = 0 and quickly reaches its maximum
(0.27%) as Tinit varies. So apart from a very small interval ∆Tinit = 0.06
around 0 where the error is minimal, the diffusion error is always of
the order of 0.27%. Running the simulation in double precision shows
a similar behaviour, but both the size of the interval and the value of
the maximum error are significantly smaller. Overall, the maximum

138

percentage error measured in double precision is 5 · 10−10%. So the
use of double precision significantly increases the accuracy of this
simulation, but the 0.27% error of single precision is considered suffi-
ciently small for the purpose of this thesis.

It is worth noting that if the temperature is initialised using the
expression for the theoretical temperature, then the temperature in
the cavity does not change with time, and the measured temperature
profile equals exactly the theoretical formula up to floating point pre-
cision, i.e. 10−8 and 10−16 in single and double precision respectively.

In conclusion, the initial state of the flow has an impact (although
minimal) on the resulting accuracy of the solution.

6.3.4 Effect of the relaxation time

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0 0.2 0.4 0.6 0.8 1

%
 e

rr
o

r

x/L

Percentage of error for various relaxation times

τT=1.0
τT=0.6
τT=0.55
τT=0.53
τT=0.52
τT=0.51

Figure 48: Effect of the relaxation time on the diffusion error.

The Figure 48 shows that as the relaxation time becomes closer to
the limit τT = 0.5 (no diffusivity), the temperature moves away from
the theoretical profile. This is due to the fact that smaller relaxation
time means smaller lattice diffusivity (Dlb = (τT − 1/2)/2), and the
flow converges slower towards the fully diffuse state.

It is expected that this issue is not restricted to the LBM.

6.3.5 Effect of the lattice resolution

In order to further illustrate the problem of the diffusion with a low
diffusivity, several simulations are conducted using different resolu-
tion but the same extremely small relaxation time τT = 0.501 which

139

-50

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 0 0.2 0.4 0.6 0.8 1

%
 e

rr
o

r

x/L

Percentage of error for various resolutions

N=32
N=64
N=128
N=256
N=512
N=1024

Figure 49: Effect of the lattice resolution on the diffusion error.

correspond to a lattice diffusivity of Dlb = 0.0005. With this small dif-
fusivity, it is difficult for the temperature at the boundary to diffuse
to the inside of the domain. Thus the boundaries only diffuse up to a
certain number of nodes, and as the lattice size increases so does the
deviation to the linear temperature profile, as shown in Figure 49.

6.3.6 Conclusion

In conclusion to this section, it was shown that the program recovers
the expected temperature profile with an error usually smaller than
1%. The program does struggle to recover the correct profile for very
small relaxation time on large lattices. This shows that small relax-
ation time should be avoided when simulating diffusion driven flows,
and that in such cases, increasing the resolution of the simulation will
not improve the accuracy.

6.4 thermal advection in a channel

6.4.1 Problem description

p
er
io
d
ic

p
er
io
d
ic

The previous section studied the accuracy of the program for a purely
diffusive problem. The system studied in this section includes ther-
mal advection as well as thermal diffusion but the buoyancy is still
turned off so that an analytical solution still exists. It is again a 2D
cavity of size L× L, the bottom and top walls are maintained at con-
stant temperatures, Tbottom and Ttop respectively. The bottom wall has

140

a constant normal velocity V0 but no parallel component, the top wall
has the same constant normal velocity V0 but also has a parallel com-
ponent U0. This problem represents a flow through a porous media
submitted to a gradient of temperature and a shear stress. The left
and right walls are periodic, thus the flow is independent of x. It is
assumed that a steady state exists, and that once the steady state is
reached, the y-component of the velocity becomes constant and equal
to V0.

6.4.2 Analytical solution

For this problem, the solution to the incompressible Navier-Stokes
equations can be found analytically. The equation on the x-component
of the velocity can be written as

ρ

(
∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y

)
= −

∂p

∂x
+ µ

(
∂2ux

∂x2
+
∂2ux

∂y2

)
(143)

All the derivatives in x are null as there is no dependence on x, and
as uy = V0 for a steady state, this equation can be simplified into

∂2ux

∂y2
=
V0
ν

∂ux

∂y
(144)

A general solution to this second order differential equation has
the form

ux(y) = Ae
ReyL +B (145)

Where V0ν y has been rearranged to V0L
ν
y
L = ReyL . Using the bound-

ary conditions ux(y = 0) = 0 and ux(y = L) = U0, the values of A
and B can be determined. The final expression for the velocity is then
obtained as

ux(y) = U0
eReyL − 1

eRe − 1
(146)

The advection diffusion equation on the temperature can be solved
in a similar way.

∂T

∂t
+
∂uxT

∂x
+
∂uyT

∂y
= D

(
∂2T

∂x2
+
∂2T

∂y2

)
,

∂2T

∂y2
=
V0
D

∂T

∂y
(147)

V0
D
y =

ν

D

V0L

ν

y

L
= RePr

y

L
(148)

T(y) = Tbottom +
(
Ttop − Tbottom

) eRePryL − 1

eRePr − 1
(149)

The flow in the cavity can be simulated for various parameters and
compared to the analytical solution.

141

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.2 0 0.2 0.4 0.6 0.8 1

y
/L

ux/U0

Re = 100
Re = 10
Re = 4.0
Re = 1.0
Re = 0.1

(a) Normalised velocity.

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.2 0 0.2 0.4 0.6 0.8 1

y
/L

(T-Tbottom)/(Ttop-Tbottom)

Re = 100
Re = 10
Re = 4.0
Re = 1.0
Re = 0.1

(b) Normalised temperature.

Figure 50: Profiles across the channel for varying Reynolds number.

6.4.3 Results and Discussion

Figure 50 shows several profiles for various Reynolds number of the
x-velocity and the temperature. The simulations are computed with
a resolution N = 128, a normal velocity V0 = 0.01, a parallel velocity
U0 = 0.1 and the following temperatures: Tbottom = 0, Ttop = 1, Tinit =

0.5.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0.1 1 10 100

m
ax

 %
 e

rr
o

r

Re

Velocity BC1 (double)
Velocity BC1 (single)
Velocity BC2 (double)
Velocity BC2 (single)
Temperature (double)
Temperature (single)

Figure 51: Percentage of error compared to the analytical so-
lutions for various boundary conditions and pre-
cision.

The viscosity τ is computed
to achieve the required Reynolds
number, and the diffusivity τT
is adjusted to obtain a Prandtl
number of 0.75, similar to that of
the air. The profiles are extracted
once the velocity and tempera-
ture have both reached a steady
state and they are normalised to
range between 0 and 1.

For small Reynolds number,
uy is close to zero and the chan-
nel behaves like a Couette flow,
the velocity has a linear pro-
file. As the Reynolds number
increases, the thickness of the
boundary layer near the top wall
decreases. This problem only
allows to study relatively small

Reynolds number, as the exponential term eRe appearing in the an-
alytical solution quickly exceeds the machine accuracy for Re > 700,
i.e. e700 = 10304, even in double precision. The effect of the Prandtl
number are not displayed because the Prandtl number does not af-
fect the velocity profile and it has the same effect on the temperature
profile as the Reynolds number, as they only appears in conjunction
with each other, i.e. through the term eRePr. The sharpness of the
boundary layer for high Reynolds number makes the solving of the

142

flow in the region of the top boundary more difficult, and can be a
source of errors, as shown in Figure 51.

 0.01

 0.1

 1

 10

 100

 32 64 128 256 512 1024

%
 e

rr
o

r

N

1

2

Velocity

Temperature

Figure 52: Percentage of error at Re = 100 for various resolu-
tions.

Figure 51 compares the maxi-
mum percentage of error on the
velocity and temperature pro-
files for different Reynolds num-
ber and boundary condition and
it uses a logarithmic scale be-
cause of the massive fluctua-
tions. The maximum error is
defined as the largest absolute
difference between the simula-
tion and the analytical solution
for all values of y. The first
boundary condition (BC1) cor-
responds to the “force equilib-
rium” scheme and deviates from
the analytical solution between
5% and 30%. This can be signifi-
cantly improved by using a Zou-
He scheme (see section 3.2.5),
which correspond on the Fig-
ure 51 to BC2. The use of single or double precision floating point
operation is shown to make little to no difference in the results.

Using the correct boundary scheme, the error is always smaller
than 2% even for high Reynolds number, and falls under 0.02% for
Re < 10. A 2% accuracy is considered sufficient for the needs of a
real-time solver, but this can be improved by increasing the resolu-
tion, as shown in Figure 52. Indeed the sharpness of the boundary
layer is the main source of inaccuracies for this problem, so increasing
the resolution increases the number of nodes available to model this
boundary layer, thus improving the accuracy. The slope of the curve
indicates that the error is proportional to δx2, i.e. the LBM shows a
second order convergence under spatial refinement for this problem.

6.4.4 Conclusion

The thermal LBM performs reasonably wells for this benchmark. The
analytical profile is recovered with less than 2% difference for a range
of Reynolds number. The LBM solver can actually outperform the
analytical solution and simulate Reynolds number of the order of
the thousand (although with some oscillations) while the analytical
solution cannot be computed for Re > 700. The use of single precision
does not reduces the accuracy significantly, thus it is advised to use
with single precision for such problems, as the computations will be
twice as fast.

143

6.5 natural convection in a square cavity

(a) Ra = 103 (b) Ra = 104

(c) Ra = 105 (d) Ra = 106

-1 10 0.5-0.5

Figure 53: Contour maps of temperature.

In the previous test cases, the Boussinesq term was turned off, thus
there was no buoyancy and the temperature was either purely dif-
fusing or solely being advected by the flow. This new test case is
radically different, as the dynamics of the flow will be mostly driven
by the buoyancy.

The system is very similar to that of Section 6.3, i.e. a cavity with
a cold and hot walls on opposite sides, but in this section the system
is under the influence of a constant gravity field ~g resulting in the
Boussinesq force ~FB = −~gβ (T − T0). The thermal gradient ∆T =

Thot − Tcold between the hot and cold walls leads to varying buoyancy
forces: the fluid near the hot wall expand and rises while the fluid
near the cold wall contracts and falls. A global circulation of the fluid
appears in the cavity : the fluid rises on the hot side, moves along the
top of the cavity then cools down when reaching the cold side and
falls, moves along the bottom of the cavity and reaches the hot wall,
etc...

144

(a) Ra = 103 (b) Ra = 104

(c) Ra = 105 (d) Ra = 106

Figure 54: Contour maps of stream function.

This problem does not have an analytical solution for the velocity
or the temperature fields, but it is a particularly common benchmark
for CFD solvers, and several numerical experiment can be found in
the literature[270, 271, 272, 273, 274].

It can be shown that the behaviour of the fluid in the buoyancy
driven cavity is determined by only two parameters : the Rayleigh
number (Ra) and the Prandtl number (Pr). The Rayleigh number
describes the ratio of the amount of heat transferred by convection
to the amount of heat transferred by conduction, it is defined by the
following equation.

Ra =
gβ∆TL3

νD
(150)

It can be rewritten in term of the lattice Boltzmann parameters as

Ra = 6
gβ∆T (N− 1)3

(2τ− 1) (2τT − 1)
(151)

The Prandtl number is the ratio of the kinematic viscosity ν to the
thermal diffusivity κ.

Pr =
ν

κ
(152)

145

It can be rewritten in term of the lattice Boltzmann parameters as

Pr =
2 (2τ− 1)

3 (2τT − 1)
(153)

The results presented in this section compare velocity profiles ob-
tained using the thermal LBM solver running on the GPU with the
results obtained with the popular commercial finite volume solver
Fluent, for a large range of Rayleigh numbers. Although the results
obtained with Fluent are not taken as benchmark, they were con-
firmed by two other commercial software (CFX and Comsol), so they
can be assumed to be reasonably accurate. Using the results from
Fluent, rather than published results, for the comparisons allows to
vary freely the parameters and to study a larger range of Rayleigh
number.

6.5.1 Methodology

As in the previous sections, the simulations with the LBM were com-
puted for a large number of time-steps, until the flow reaches a steady
state, while Fluent solved directly for a time independent solution. In
all the simulations, the Prandtl number is fixed to Pr = 0.789, i.e., that
of the air, and the resolution of the simulations is 256× 256 for both
LBM and Fluent appart from subsection 6.5.3 which studies the effect
of varying the resolution. The LBM parameters for the simulation are
set using the following methodology.

1. The boundaries temperatures are fixed.

Thot = 1, Tcold = −1, Tinit = (Thot + Tcold) /2 = 0 (154)

2. τ is chosen arbitrary. (cf. discussion on the next section)

3. τT is computed to recover the Prandtl number.

τT =
1

2
+
2
(
τ− 1

2

)
3Pr

(155)

4. gβ is computed to recover the Rayleigh number.

gβ =
Ra
(
τ− 1

2

) (
τT −

1
2

)
6∆T (N− 1)3

(156)

146

6.5.2 Effect of the Rayleigh number.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-1 -0.5 0 0.5 1

y
/L

u/umax

LBM Ra = 3.5
LBM Ra = 28
LBM Ra = 440
LBM Ra = 3500
LBM Ra = 28000
LBM Ra = 230000
LBM Ra = 1800000
LBM Ra = 3500000
LBM Ra = 28000000

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

y
/L

u/umax

Fluent Ra = 3.5
Fluent Ra = 28
Fluent Ra = 440
Fluent Ra = 3500
Fluent Ra = 28000
Fluent Ra = 230000
Fluent Ra = 1800000
Fluent Ra = 3500000
Fluent Ra = 28000000

(a) u-velocity

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

v
/v

m
a
x

x/L

LBM Ra = 3.5

LBM Ra = 28

LBM Ra = 440

LBM Ra = 3500

LBM Ra = 28000

LBM Ra = 230000

LBM Ra = 1800000

LBM Ra = 3500000

LBM Ra = 28000000

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

v
/v

m
a
x

x/L

Fluent Ra = 3.5

Fluent Ra = 28

Fluent Ra = 440

Fluent Ra = 3500

Fluent Ra = 28000

Fluent Ra = 230000

Fluent Ra = 1800000

Fluent Ra = 3500000

Fluent Ra = 28000000

(b) v-velocity

Figure 55: Normalised velocity profiles through the cavity geometric centre
for various Rayleigh number.

For small Rayleigh number, the effects of the buoyancy are small and
the temperature in the cavity behaves like in the purely diffusive cav-
ity of Section 6.3, the isocontours of temperatures are mostly verti-
cal lines with only small sinusoidal deviations. For higher Rayleigh

147

number, the effects of the buoyancy becomes higher at the wall, as
the temperature diffuses less, and this results in the formation of a
boundary layer at the walls, and the isocontours of temperature be-
come more horizontals. The highest Rayleigh number are harder to
solve because the thickness of the boundary layer becomes very small,
requiring high resolution meshes. Contour maps of velocity stream
function and temperature for Rayleigh numbers varying from 103 to
106 are shown in Figure 54 and Figure 53 respectively. They are visu-
ally in good agreement with [270].

The Figure 55 is a comparison of the normalised velocity profile
in the cavity between LBM (solid lines) and Fluent (circles), both
are using the same 256× 256 resolution. The u-velocity is measured
along a vertical line at x = L/2 and the v-velocity is measured along
an horizontal line at y = L/2. They represents Rayleigh number
varying from 3.5 to 2.8× 107 and both simulations agree reasonably
well within the whole range of Rayleigh numbers. Rayleigh number
smaller than 440 give the same normalised profile, thus they overlap
on the figure.

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

y
/L

u/umax

τ = 0.51 (double precision)
τ = 0.51, gβ = 1.5e-6, vmax = 0.007
τ = 0.60, gβ = 1.4e-4, vmax = 0.07
τ = 1.00, gβ = 3.7e-3, vmax = 0.43
Reference

Figure 56: x-velocity profile though the cavity geometric centre for Ra =

3.6× 106 and various relaxation time τ.

Most simulations were achieved using single precision computa-
tions with the same relaxation time τ = 0.6. However, two issues can
arise from this choice of relaxation time.

1. For small Rayleigh number, the coefficient of thermal expansion
gβ becomes very small (ex. gβ = 1.9 × 10−8 for Ra = 440

and τ = 0.6). It is thus necessary to either increase τ when Ra
becomes small or to use double precision. The smallest possible

148

value allowed for gβ in single precision appears to be around
10−6.

2. For high Rayleigh number, the opposite happens, gβ becomes
large, resulting in high velocities near the wall. If these veloci-
ties are too high the LBM performs poorly, as it is only valid for
small Mach number flows, and there is a risk that the simulation
becomes unstable. It is thus advised to use smaller relaxation
time for high Rayleigh number flows in order to reduce gβ and
the resulting maximum velocity. If reduced too much though,
the system falls back into issue number one (need for double
precision). This behaviour is illustrated by the Figure 56 for
Ra = 3.6× 106.

6.5.3 Effect of the resolution.

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

y
/L

v
/v

m
ax

u/umax

x/L

LBM N = 512
LBM N = 256
LBM N = 128
LBM N = 64
LBM N = 32
LBM N = 16
Reference

Figure 57: Normalised velocity profiles for Ra = 3500.

The resolution, i.e. the number of nodes used to simulate the cavity,
affects the results differently depending on the Rayleigh number.

1. For small Rayleigh number, where the buoyancy effects are
small, even very small resolutions (N = 16) can recover approx-
imately the behaviour of the flow. And the velocity profiles
match very closely the reference (Fluent) as soon as N > 32. As
the simulation is using a half-way bounce-back to implement
no slip at the walls, the actual location of the wall is outside
of the domain. Thus it can be seen on the velocity profiles in
Figure 57 that they never quite “reach the sides”, especially for
small resolution.

149

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y
/L

v
/v

m
ax

u/umax

x/L

LBM N = 512
LBM N = 256
LBM N = 128
LBM N = 64
Reference

Figure 58: Normalised velocity profiles for Ra = 3500000.

1. For high Rayleigh number, the buoyancy effects are large, and
the boundary layers are thin. High Rayleigh require either high
value of gβ∆T or very small relaxation times, especially for
small resolutions. Consequently, high Rayleigh number sim-
ulations are unstable when using small resolutions, and they
could use the hep of a turbulence model. Figure 58 shows some
simulations of Ra = 3500000 at various resolution starting at
N = 64, smaller resolutions are unstable. For the profiles of
the x-component of the velocity, N = 128 seems to give the best
match with the Fluent simulation. For the y-component, there
is no visible difference.

6.5.4 Effect of the forcing scheme

In section 2.3.5, it was shown that there are many possible schemes
to add a forcing term to the LBM equations. In particular, Guo’s
scheme [111] was designed to reduced the lattice effects on the equiv-
alent macroscopic equations compared to more simple schemes. The
Figure 59 compares the velocity profiles obtained using the Guo’s
scheme and with the simple scheme that adds the force directly to
the two distribution functions aligned with it. There is little to no
difference in the profiles, although Guo’s scheme does appear to be
slightly more accurate. From this results, it is thus advised to use the
simple scheme, as it is easier to implement and does not noticeably
affect the quality of the simulation.

150

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y
/L

v
/v

m
ax

u/umax

x/L

simple forcing
Guo forcing
Reference

Figure 59: Normalised velocity profiles for Ra = 3500000 and different forc-
ing scheme.

6.6 summary

Throughout this chapter the LBM on GPU program developed dur-
ing this thesis has been successfully validated for several benchmark
problems for which the simulation results (or analytical expressions)
are readily available in the literature. The program performs very
well for these test cases, as if often matches perfectly with the bench-
mark. And the use of single precision floating point for the calcula-
tion allows for faster computations while it did not show a significant
decrease in accuracy compared to double precision, provided that the
simulation parameters are chosen judiciously.

The deterioration of the spatial convergence from second to first
order for large lattice resolution in the case of the lid-driven cavity
is a worrying feature, but the simulation results are still close to the
benchmark even for small resolutions. The MRT and cascaded LBM
were shown to be superior to the BGK, especially in term of dissipat-
ing the fluctuations of the pressure field.

Further validation work could be done, such as investigating the
flow behaviour in transient scenarios or validity of the turbulence
model. However, they will both be discussed in the next chapter, for
the simulation of transient turbulent indoor air-flows.

While it is important to validate a new simulation code against
solid benchmarks, it should be noted that the models used in this
thesis for the simulation of indoor air flows have been validated in
the literature before. Hence the accuracy of the program should be
expected to be identical to that reported by the original papers.

151

7
A P P L I C AT I O N T O I N D O O R A I R F L O W S

7.1 introduction

The accurate simulation of indoor air flows for building performance
is a challenging task. Buildings are complex systems interacting in
multiple ways with their environment and the accurate modelling
of the heat transfer and mass transfer between the outdoor and in-
door environments requires large CFD simulations that can be of pro-
hibitive computational cost.

As a result, it is common practice to resort to simplified empiri-
cal formulae [275] but they only provide a crude approximation [276],
often in an averaged form, and suffer from important physical defi-
ciencies [277]. Regarding indoor simulations, the most popular meth-
ods are nodal [278], zonal [279] and multi-zonal models [280]. These
models represent the air in a room with either a single node or a few
cells by approximating the influence of the bulk parameters. They
are thus very computationally efficient but suffer in terms of physical
accuracy.

The use of CFD, sometimes combined with multi-zonal models
[280], in the assessment of building design has gained popularity over
the past few years [281], despite its high computational cost. CFD has
been applied at each stage of a building design and can provide de-
tailed information about outdoor airflows around buildings as well
as parameters in the indoor environment, such as air velocity, temper-
ature and contaminant concentrations.

CFD has been used to analyse the thermal environment [282], de-
sign of ventilation systems [283] and for evaluating indoor air qual-
ity [284]. Furthermore, CFD methods have been used to study smoke
dispersion in buildings [285] and model environment specific param-
eters such as airborne pathogen transport [286] inside hospitals.

While these CFD studies yield valuable information that informs
building design and information, the computational cost and mem-
ory requirements are so high that the majority of models are restricted
to steady-state scenarios which are not able to capture the transient
effects due to factors such as the movement of people, changes to
heat sources or ventilation speed. The computational complexity of
transient CFD models is such that the calculation time might extend
from hours to months [287, 288]. Hence, CFD based models are lim-
ited in their ability to provide quick evaluation at conceptual design
stage, and in conducting risk assessments for early warning systems
such as smoke management in case of building fire or transmission

153

of airborne infectious contaminant spreading in hospital wards, or
prediction and control of thermal loads in a data centre.

The computational time can be significantly reduced by accelerat-
ing the CFD simulation on high performance computing (HPC) facil-
ities [289]. But since the access to these facilities is limited and expen-
sive [288], novel alternative approaches must be developed in order
to simulate indoor air distributions on a personal desktop computer,
with a good physical accuracy and within an acceptable computing
time.

Recently, the fast fluid dynamics (FFD) method (see introduction
in section 1.3 and details in Appendix C) has been used to simulate
indoor environment in real-time on both CPU and GPU [288, 287,
290]. Although more accurate than zonal models, the FFD algorithm
in its standard form lacks the accuracy of CFD (see section C.5) but
some recent works [287, 288] on improving the accuracy have shown
some promising outcomes.

The present work explores the potential of GPUs to perform indoor
airflow CFD simulations using the LBM. The LBM models described
in chapter 2 implemented and optimised on the GPU (details in chap-
ter 4) are used to investigate the airflow dynamics for practical en-
gineering applications such as a ventilated room, a data centre, and
a hospital room. The results of the ventilated room and data centre
simulations, performed in real-time, are compared against the results
obtained with some of the prevalent commercial CFD software (see
brief in 1.2.5); while the hospital room provides solely qualitative re-
sults to study the applicability of the method in this type of problem.

7.2 ventilation chamber

Two mains techniques are available for the mechanical ventilation of
an office-sized room: mixing ventilation and displacement ventila-
tion [291]. This section considers the case of mixing ventilation in an
empty room, where the air is supplied to the room at relatively high
velocity, causing a high degree of mixing to take place. The geometry
used in the simulation is based on a 32m3 bio-aerosol chamber (Class
II) built in the school of Civil Engineering at the University of Leeds
[292] that was used to study aerial dispersion and spatial deposition
of pathogenic microorganisms in hospital rooms.

The simulation are performed using the D3Q19 LBM model with
the LES Smagorinsky turbulence model and a D3Q6 lattice to solve
for the advection diffusion equation for the temperature (see respec-
tive details in sections 2.5.1 and2.3.5). The temperature and velocity
fields from the LBM simulation are compared against those obtained
from the commercial CFD software ANSYS Fluent v13 (ANSYS 2010)
based on the Navier-Stokes equations with an equivalent LES turbu-
lence model.

154

4.2 m

2.
26

 m

3.36 m

0.47 0.95

1.75
1.98

0.28
0.51

3.25 3.73

outlet

inlet

inlet
outlet

x

y

z P1
P2

P3
P4P5

Figure 60: Ventilated test chamber geometry, showing the location of supply
and extract vents and the position of the “poles” for velocity and
temperature comparison. Left figure is a front view with inlet and
outlet locations in meters. Right figure is a 3D representation.

7.2.1 Problem Description

The geometry of the room is shown in Figure 60. Warm air is supplied
to the room through a high level wall mounted inlet on one side and
exits the room through a free outlet (Neumann boundary) located at
the bottom of the opposite wall. The volume flow rate is maintained
constant so that the room is subject to 6 ACH (air changes per hour),
i.e. an average inlet velocity of u0 = 0.48 m/s normal to the inlet.
Hence the Reynolds number computed from the hydraulic diameter
of the inlet (i.e. 2 (h×w) / (h+w)) is Re = 10 200. The supplied inlet
air temperature is Tin = 22 ◦C, and the walls are maintained at a con-
stant temperature Twall = 15 ◦C. The initial room temperature is the
average of Tin and Twall, and is taken as the reference temperature for
the Boussinesq force T0 = 18.5 ◦C. The LBM simulation is performed
on a regular cubic mesh of 1.7 million nodes, which was found to
give a good trade off between speed and accuracy [46], while the Flu-
ent simulation is using about half the number of nodes (533 918) but
with inlet and outlet mesh refinements and the default wall function
for near-wall treatment of the sub-grid turbulence.

The time-step used in the Fluent simulation is ∆tFluent = 0.01 s,
while the one used in LBM is about half of that (see table 8). In-
deed to match the time-step for the chosen spatial resolution would
have required to increase the inlet velocity in lattice units to u0,lbm =

0.48∆tFluent/CL ' 0.18, resulting in high numerical instabilities. More
details on unit conversion can be found in the appendix B.

In both models, the flow is simulated for 460 seconds so that it
can develop and become statistically steady; then the velocity and
temperature fields are averaged for a further 100 seconds to allow for
a steady-state comparison.

The LES results for the Fluent simulations are considered to be
converged when the residuals reaches less than 10−5 at every time-
step. These transient simulations are very computationally expensive,
thus they were performed on a server with 16 CPU processor cores for

155

Parameter Fluent (physical units) LBM (lattice units)

Room height (H) 2.26m 86

Room width (W) 3.36m 127

Room lenght (L) 4.20m 160

Inlet height (h) 0.23m 9

Inlet width (w) 0.48m 18

Length conversion (CL) CL = 4.2/160 ' 0.026m

Inlet velocity u0 0.48m/s 0.1

Speed conversion (CV) CV = 0.48/0.1 = 4.8m.s−1

Time step ∆t ∆tFluent = 0.01 s ∆tlbm = CL/CV

∆tlbm ' 0.005 s

Inlet Temperature Tin 22 ◦C 7

Wall Temperature Twall 15 ◦C 0

Reference Temperature T0 18.5 ◦C 3.5

Fluid density ρ 1.225 kg/m3 1.0

Kinematic viscosity ν = 1.46× 10−5m2/s τ− 1
2 = 3ν

C2L
CT

' 1.8× 10−6

Thermal Diffusivity D = 1.96× 10−5m2/s τT −
1
2 = 3D

C2L
CT

' 7.3× 10−6

Prandtl number Pr 0.75

Reynolds number Re 10 200

Smagorinsky constant CS 0.1 0.04

Turbulent Prandtl Prt 0.85 0.85

Table 8: Computational domain and simulation parameters used in ANSYS
CFD and LBM to simulate the flow inside the ventilated chamber.
The conversion factor for LBM are explicitly computed.

156

Figure 61: Steady-state comparison between FLUENT (left plots) and LBM
(right plots) simulations of the ventilated chamber. Contours of
normalised mean velocity (top plots) and normalised mean tem-
perature (bottom plots) are shown on a place at the centerline of
the inlet.

a total simulation times of 65 hours, i.e. 7 minutes of computations
for each physical second. On the other hand, the LBM simulation
running on a single Tesla K40 GPU requires 0.34 seconds to compute
one physical second, i.e. three times faster than real-time for a total
simulation time of only 3 minutes.

Inlet velocity field
based on
experimental data.

The second part of this study considers the transient behaviours of
the flows in the first five seconds. In this part, the flow considered
is isothermal and the inlet velocity has a varying profile (see figure)
due to the presence of a grid vent in the experimental measurements
[292] and the inlet jet is inclined at a 15 degree angle to the normal.

7.2.2 Results

Figure 61 shows the normalised contour plots of the time averaged
velocity magnitude and temperature across a plane through the cen-
treline of the inlet. While Fluent can directly export contour plots
of the flow with a certain colour scheme, the contour plots of LBM
were obtained by post-processing the images of the slice, using a sim-
ilar colour scheme and limiting the number of colours, thus lacking
the proper interpolations that could be achieved with a contour algo-
rithm. Nevertheless, in both cases, the contours shows the effect of
buoyancy on the incoming airflow, the warm inlet jet rises and comes
in contact with the cold ceiling then drops towards the floor as it
reaches the end of the chamber. While both LBM and FLUENT re-
sults show similar looking flow features, the LBM simulation obtains

157

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0 0.5 1 1.5 2 2.5 3 3.5M
e

a
n

 v
e

lo
c
it
y
 m

a
g

n
it
u

d
e

 (
m

/s
)

Distance to the inlet (m)

Mean velocity profile at inlet center line

LBM 0.1M
LBM 1.7M
LBM 7.2M

Ansys Fluent

 0

 5

 10

 15

 20

 25

 30

 0 0.5 1 1.5 2 2.5 3 3.5

M
e

a
n

 t
e

m
p

e
ra

tu
re

 (
°
C

)

Distance to the inlet (m)

Mean temperature profile at inlet center line

LBM 0.1M
LBM 1.7M
LBM 7.2M

Ansys Fluent

Figure 62: Comparison of the mean velocity profile (left) and the mean tem-
perature profile (right) across the room at the inlet centreline,
computed from LBM and ANSYS FLUENT simulations.

a larger mixing of the temperature while FLUENT results shows a
more stratified temperature field, where the bottom half of the room
is cold and the top half is hot. Moreover, the thickness of the bound-
ary layer in FLUENT is significantly smaller, this partly due the way
FLUENT export the data: the temperature and velocity at the walls
are not displayed on the image, only the internal flow is displayed.
This explains why the velocity in FLUENT does not appear to be
zero (and why the temperature is not a constant) on the walls. Even
so, the LBM still shows a thicker boundary layer which could be due
to the lack of a special treatment for the turbulence intensity near the
walls.

The LBM simulation shows important spurious fluctuations near
the inlet boundary, that forms a checker-board pattern, due to the
presence of high velocity gradient. These instabilities are characteris-
tics of the BGK collision operator for high Reynolds number flow, but
they do not appear to be harmful, as they are limited to the vicinity
of the inlet and the main flow structures are still recovered.

Figure 62 shows a comparison of the average velocity and temper-
ature profile in a cross section of the room that is aligned with the
centreline of the inlet. The FLUENT results are compared against the
LBM simulation for various resolutions (i.e. 0.1, 1.7 and 7.2 million
nodes).

Pole x z

1 1.1m 1.00m

2 1.1m 2.36m

3 3.1m 1.00m

4 3.1m 2.36m

5 2.1m 1.68m

Table 9: Location of the sam-
pling poles used for
comparing velocity
and temperature.

Clearly, the smallest resolution is not sufficient to re-
solve the flow accurately while the largest resolution only
marginally improves the overall profiles although it does
get rid of the spurious oscillations in the velocity profile
near the inlet.

Figure 63 compares the mean velocity magnitude and
temperature along the chamber height at five different
locations inside the chamber (see figure 60), designated
as poles 1-5. Table 9 sums up the x and z location of
each pole. The velocity profiled from the LBM simulation
shows a similar trend to the FLUENT results with some

158

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.1 0.2 0.3 0.4

H
ei

g
h
t

(m
)

Mean velocity magnitude (m/s)

Pole 1

Fluent
LBM

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25 30

H
ei

g
h
t

(m
)

Mean temperature (°C)

Pole 1

Fluent
LBM

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.1 0.2 0.3 0.4

H
ei

g
h
t

(m
)

Mean velocity magnitude (m/s)

Pole 2

Fluent
LBM

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25 30

H
ei

g
h
t

(m
)

Mean temperature (°C)

Pole 2

Fluent
LBM

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.1 0.2 0.3 0.4

H
ei

g
h
t

(m
)

Mean velocity magnitude (m/s)

Pole 3

Fluent
LBM

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25 30

H
ei

g
h
t

(m
)

Mean temperature (°C)

Pole 3

Fluent
LBM

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.1 0.2 0.3 0.4

H
ei

g
h
t

(m
)

Mean velocity magnitude (m/s)

Pole 4

Fluent
LBM

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25 30

H
ei

g
h
t

(m
)

Mean temperature (°C)

Pole 4

Fluent
LBM

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.1 0.2 0.3 0.4

H
ei

g
h
t

(m
)

Mean velocity magnitude (m/s)

Pole 5

Fluent
LBM

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25 30

H
ei

g
h
t

(m
)

Mean temperature (°C)

Pole 5

Fluent
LBM

Figure 63: Comparison of mean velocity (left) and temperature (right) be-
tween LBM and FLUENT for each of the five sampling poles.

159

differences in term of the local spatial fluctuations. There are large
differences near the top wall at z = 2.26m, the velocity and tempera-
ture reported by FLUENT appear to be significantly different for that
imposed by the boundary conditions. This again shows that FLUENT
does not export the actual data at the wall, but rather the value of the
first fluid node. LBM does produce the right values at the wall, but
shows a thicker boundary layer due to the lack of special treatment
for near-wall turbulence. Moreover, it appear that LBM achieves a
larger mixing of the temperature, the temperature change between
the top and bottom wall is mostly linear, while the FLUENT has a
more pronounced drop in temperature around the height z = 1m.

Figure 64 shows contours of instantaneous velocity magnitude (from
both FLUENT and LBM) on a plane through the centreline of the inlet,
during the initial transient phase, captured at various time between
0.5 and 5.5 seconds. The inlet airflow is based on the measured ex-
perimental profile discussed previously. During these first seconds
of simulations, the LBM shows qualitatively a similar behaviour to
the FLUENT simulation. Ultimately, for longer period of time, the
instantaneous flow field of the two simulations cannot match exactly
because of the chaotic nature of turbulence. The main noticeable dif-
ference is in the presence of evanescent pressure waves in the LBM
simulation cause by the inlet and due to the artificial compressibility
term. These artefacts can be mostly avoided by slowly increasing the
inlet velocity over time until it reaches its target value. This was not
implemented here to allow for the comparison with FLUENT.

7.2.3 Conclusion

While the ANSYS CFD simulation of the ventilated chamber took sev-
eral days to complete, the optimised LBM running on GPU can sim-
ulate the same flow problem in real-time (and actually about three
times faster than real-time). Although some discrepancies are ob-
served between the two simulations, likely due to the the differences
in the handling of the boundary conditions, the overall flow structure
is recovered correctly.

Due to its efficiency, the LBM simulation allows to quickly vary
the ventilation parameters (volume flow rate, inlet and outlet loca-
tions, etc.) and to instantly visualise the effect on the flow using the
integrated visualisation tool (see section 4.5). That tool can extract
velocity and temperature (either instantaneous or mean) along a two-
dimensional slice free to move within the domain or along a line, such
as the five measuring pole. The figure 65 is a screen-shot of the LBM
program that shows a representation of the room with a slice of the
instantaneous velocity field at the inlet, combined with the profiles of
mean velocity at each pole, updated in real-time.

160

0 1

Figure 64: Transient comparison of the isothermal normalised velocity mag-
nitude of the inlet jet of the ventilated chamber. FLUENT results
are on the left and LBM on the right. From top to bottom, the sim-
ulation time is 0.5, 1.5, 2.5, 3.5, 4.5 and 5.5 seconds respectively.

161

Figure
6

5:Screen-shot
of

the
real-tim

e
LBM

softw
are.O

n
the

left,m
ean

velocity
profiles

and
on

the
right

a
3D

view
of

the
room

.

162

7.3 data centre

A data centre is a facility that houses a large number of computer
systems, that can be networked together as in a supercomputer. The
high density of the computer systems results in a massive generation
of heat that needs to be dealt with, usually by transporting the heat
to the outside of the data centre using chillers and heat exchangers.
Failure to do so might result in some of the servers overheating and
having to shut down prematurely to avoid damaging the components,
resulting in the interruption of the services being provided.

Data centres are intensive energy users, with the data centre in-
dustry accounting for approximately 1.5% of global electricity con-
sumption [293]. Moreover about 45% of that energy is spend on the
infrastructure, i.e., cooling, fans and pumps [293]. As a result, there
is a desire both within the industry and amongst governments to
improve their efficiency in order to reduce costs and environmental
impact [294, 295].

CFD modelling can be used to improve cooling effectiveness, re-
duce power consumption and predict the presence of hot spots for
both a new data centre projects or the upgrading of an existing one
[296]. CFD has been used successfully to investigate the impact of
floor grille and underfloor obstructions [297], optimise the placement
of IT equipment [298] and study the effect of aisle containment [299,
300, 301]. The major challenges in producing accurate models are
the multiple length-scales [296], from the chip (in millimetres) to the
room level (tens of meters), and the various modes of thermal trans-
port and flow regimes [302].

This section aims at simulating a simple data centre model using
the developed LBM GPU program and to compare the simulation re-
sults against that of the open-source CFD package OpenFoam, the
commercial CFD software Comsol and Future Facilities’ 6Sigma, de-
signed specifically for data centre modelling (see section 1.2.5 and
reference for each software therein).

7.3.1 Problem Description

The geometry of the data centre is designed to allow for a simple
implementation in each of the numerical method considered while
keeping most the characteristics of a typical data centre.

The data centre room has a surface area of 28.8m2, it is comprised
of ten racks, organised in two rows facing each others as to provide a
cold aisle in the centre. Each rack is separated into two servers along
the height, so that the load between the top half and bottom half of
the rack can differ. This allows to keep the geometry configuration
relatively simple, but a more realistic model would divide the rack

163

plenum

underfloor

floor vent

CRAC outlet

CRAC inlet
(underfloor)

Figure 66: Sketch of the room geometry and air flows.

into each server blade, typically in the forties, depending on the size
of the rack and the height of each server (measured in rack units).

The cold air is supplied to the room at a constant temperature
Tsupply = 16 ◦C and a constant flow rate Qsupply = 1.134m2/s through
the bottom of the CRAC1 unit, which coincides with the bottom of
the plenum (i.e. the separation between the underfloor and the room),
and is placed placed against the back wall and aligned with the room
geometric centre. The cold air travels through the underfloor domain
and then enters the room through the floor vents, modelled as open
holes and located between the two rows of servers. This is a simpli-
fied model, as most a real underfloor might be filled with cables and
pipes that would noticeably affect the distribution of velocities arriv-
ing at the floor vent. Also, the floor grilles themselves are normally
grid-shaped, thus straightening the flow and affecting its momentum,
and they can sometimes be oriented to change the angle of the flow.
Hence a more accurate modelling need to account for the effect of the
floor grille on the flow [303, 304], here neglected to allow for an easier
comparison between each software.

The air enters each server through their front-faces and exits from
their back-faces after an increase of momentum and a rise in tempera-
ture. The volume flow rate through each server Qserver, as well as the
temperature rise ∆T , are dependant on its load level (see table 10).

Finally, the hot air is extracted by an outlet located at the top of
the CRAC unit and modelled with a Neumann boundary condition,
i.e., a constant static pressure preturn and zero normal-derivative (also
called zero-gradient) for the velocity and temperature, i.e. ∂~v

∂z = ~0

and ∂T
∂z = 0.

A sketch of the geometry with an approximative flow behaviour
is presented on the figure 66 and a plan of the room with detailed
measurements in meters can be found in figure 67.

1 Computer Room Air Conditioner

164

0.8m

1.8m

3.0m

4.0m

4.8m

0.6m

3.6m

6.0m

5.0m

0.6m

Top View

Front View

1.4m

3.4m

1.8m
2.0m

2.8m

1.0m

1.2m

1.0m

2.0m

0.1m

0.4m

x

y

x

z

Figure 67: Plan of the data centre room, top view and corresponding front
view. The CRAC is represented in dark grey, servers in light gray,
plenum in dashed lines and floor vents as fine grids.

165

The data centre room is considered to be a closed system, thus the
domain boundaries are modelled as wall using the so-called no-slip
boundary condition, i.e. the velocity of the fluid is null at the wall,

~v(x = 0.0m) = ~v(x = 4.8m) =

~v(y = 0.0m) = ~v(y = 6.0m) =

~v(z = −0.5m) = ~v(z = 2.8m) = ~0 (157)

The above macroscopic boundary condition is implemented with
the half-way bounce-back for the velocity distribution functions (see
section 3.2.3). The temperature distribution functions normal to the
walls (~n) are also bounced-back, effectively implementing an adia-
batic wall boundary condition,

~∇T · ~n = 0. (158)

The same adiabatic no-slip boundary condition is applied to all the
other solid walls in the simulation, i.e. the top and bottom faces of
the plenum and the side faces of the racks and CRAC unit.

The servers require slightly more complex boundary conditions,
which are dependant on their load, i.e., power usage. The normal-
derivative of both the velocity and temperature is set to zero (i.e. ∂~v∂x =
~0 and ∂T

∂x = 0) for the front faces of the servers; this condition is
sufficient to get an estimate of the rack inlet temperature Tin, and
it is common practice to use this value for validation of a model or
for comparison with an experiment. The temperature of the back
face of a server (Tout) is set based on the average temperature at the
front face (Tin) plus a temperature difference (∆T) that varies with the
server load and the velocity ~vout is set to achieve the specified volume
flow Qserver,

Tout =

´
TindA´
dA

+∆T , (159)

~vout =
Qserver´
dA

~n. (160)

This boundary condition requires the integration of the tempera-
ture over each server inlet face, which is a costly operation on the
GPU as it breaks data locality. Instead of integrating, it is possible to
use node to node temperature to achieve similar results while avoid-
ing a significant performance hit,

T(xoulet,y,z) = T(xinlet,y,z) +∆T , (161)

however, the integral form is chosen in order to conform to the way
the boundary is handled in the other CFD software.

166

IT Load (kW) ∆T (◦C) Qserver
(
m3/s

)
1.0 2.7 0.083

2.0 4.1 0.133

4.0 5.5 0.221

Table 10: Relation between server
load, temperature jump and
volumetric flow rate.

Each of the servers can have a different load (ei-
ther 0 kW, 1 kW, 2 kW or 4 kW) which is related
to the temperature change ∆T and the volumet-
ric flow rate Qserver by the table 10 . When the
server load is idle, i.e. 0 kW, it is replaced by a
solid wall with no-slip adiabatic boundary condi-
tions. This corresponds to the situation where idle
servers are blanked using an adiabatic lining. In
reality, it is more likely that an idle server will be
left untouched and thus will allow some of the air
to go through.

The temperature jump across a server as reported on the table 10

was obtained using the following formula,

∆T =
P · ν

Qserver · k · Pr
(162)

where P is the IT load (in kW), ν = 1.511 × 10−5 is the kinematic
viscosity of air (supposed constant), k = 2.57× 10−5 is the thermal
conductivity and Pr = 0.713 is the Prandtl number of the air (ratio of
kinematic viscosity to thermal diffusivity).

In order to associate a specific load to each servers, they are given
a distinct index, the bottom left row is numbered from 1 to 5, the top
left row from 6 to 10, the bottom right row from 11 to 15 and the
top right row from 16 to 20, as depicted on the figure 68. Then the IT
loads corresponding to each server index are reported on the table 11.

row 1 (le)

row 2 (right)

CRAC unit

1
2

6
7

8
9

10

11
12

13
14

1516
17

18
19

20

Figure 68: The 20 servers with their associated index (ID).

Left Row Right Row

Bottom Top Bottom Top

1 2.0 kW 6 0.0 kW 11 0.0 kW 16 4.0 kW

2 1.0 kW 7 1.0 kW 12 2.0 kW 17 0.0 kW

3 2.0 kW 8 2.0 kW 13 1.0 kW 18 1.0 kW

4 0.0 kW 9 0.0 kW 14 0.0 kW 19 1.0 kW

5 1.0 kW 10 1.0 kW 15 0.0 kW 20 1.0 kW

Table 11: IT load per server, see figure 68 to match an index against a server
location.

167

7.3.2 Results

(a) LBM (b) 6-Sigma

(c) Open-Foam (d) Comsol

Figure 69: Comparison of the time-averaged temperature field on a plane
aligned with x = 0.8m, across each software.

While the LBM solves for the velocity and temperature inside the
data centre as they evolve over time (i.e., in a transient-state), the
other methods used for the comparison solve directly for the time av-
eraged Navier-Stokes equations (i.e., as a steady-state). To allow the
comparison of the results between all the software, the LBM results
need to be averaged over time. Hence these are averaged for 3 min-
utes (of physical time), starting after 2 minutes from an initial state
with no velocity and a constant temperature of 20 ◦C. The effect of
the initial temperature will be investigated in the future.

Model Resolution Time

LBM 754K 5 minutes

6-Sigma 864K 37 minutes

Open Foam 1.3M 5.5 hours

Comsol 400K 14.7 hours

Table 12: Used resolution and computational
time across the models.

Another fundamental difference between
the LBM and the other models is in the
meshing, as this thesis implementation
does not support mesh refinement. Hence,
in theory, the LBM should require a higher
number of nodes to achieve the same level
of accuracy as the other models, which are
able to refine the mesh near the geome-
try. The results presented in this section
were computed using a regular mesh of
96× 119× 66 which took approximately 5

minutes (i.e. real-time) on the GPU. The used resolutions and time to
convergence for the other models are summarised in table 12.

As showcased by the figures 69, 70, and 71, the time-averaged tem-
perature fields compares favourably across all the methods : the tem-
perature at the back of the servers shows a similar distribution, the
cold air coming off the floor vents rises to the same height (approxi-

168

(a) LBM (b) 6-Sigma

(c) Open-Foam (d) Comsol

Figure 70: Comparison of the time-averaged temperature field on a plane
aligned with x = 2.4m, across each software.

(a) LBM (b) 6-Sigma

(c) Open-Foam (d) Comsol

Figure 71: Comparison of the time-averaged temperature field on a plane
aligned with y = 0.9m, across each software.

169

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

In
le

t
T

em
p

er
at

u
re

(°

C
)

Server ID

6Sigma
Open Foam

Comsol
LBM

Figure 72: Comparison of the average temperature at the inlet of each server
across each software.

mately 1.6m), the hot air is projected at the back of the servers with
the same angle and strength (indicating that the buoyancy is the same
in each software). However, the variations in colour schemes used for
the rendering of the slices does limit the comparison.

This trend is confirmed by comparing the average temperature at
each of the twenty server inlets across the four programs, as demon-
strated by the figure 72. For some servers (for instance server 1) all
the methods give the same temperature within 1 degree, but for some
servers (for instance server 8) there is up to a 5 degrees difference be-
tween the hottest and coldest prediction. Overall, the predicted tem-
perature at the server inlets agree reasonably well. The LBM seems
to give consistently a slightly higher temperature (by about 1 degree)
than the other methods, this might be due to the choice of initial
temperature.

7.3.3 Conclusion

Overall, the simulation results obtained with all four software are in
a good agreement, both in term of the overall flow structures and
in the average temperatures at each server inlet. A more detailed
comparison, including grid convergence and computation times will
be available in an upcoming jointly authored paper, but these pre-
liminary results seems to indicate that the level of accuracy achieved
by the LBM is similar to that of the other methods. Moreover, the
LBM provides an access to the transient state of the flow in real-time

170

(and faster) and could be used to inform dynamically the data centre
management.

However, the simulation results do suffer from some limitations
that will have to be tackled beforehand. First of all, the modelling of
the floor vents as an open hole does not account for the effect of the
floor tiles on the direction and momentum of the flow, which would
cause significant changes to the flow structure and thermal distribu-
tion. Secondly, the LBM display spurious thermal fluctuations that
appear as a chequerboard and are due to numerical instabilities. The
removal of these fluctuations might be possible through the use of
an MRT model (see section 2.1.5) or a flux limiter (see section 2.4.4)
or simply as a post processing step. Finally, the effects of the initial
state (i.e. initial temperature) and of the choice of start-time (and end-
time) for the averaging of the macroscopic fields are not studied in
this chapter, but will be the subject of future investigations.

7.4 hospital room

The simulation of an hospital room (or other indoor air flows) is not
significantly different from that of a data centre, as described in the
previous section. The problem is still that of an enclosed room, with
inlet(s) and outlet(s) for the ventilation and air conditioning, with
some solid walls for the geometry (i.e. equipments, beds, etc.) and
with some heated surfaces to represent humans. Additionally, an hos-
pital room simulation might include the advection of a scalar field
(representing the density of pollutants) or particle tracking to study
aerial dispersion and deposition of micro-organisms. Both method-
ologies are attainable with the LBM.

7.2 m

7.2 m

x

y

patientbed

inlet outletHCW

Figure 73: Hospital room layout (top view) with four beds with patients and
a health care worker (HCW).

This section considers an hypothetical four-bed hospital room sce-
nario to explore the potential insight that can be derived from a real-

171

time transient model. The room geometry, as depicted on figure 73,
has a surface area of 51.84m2 and comprises four beds (1.8m×0.6m×
0.75m each) and a patient lying on each bed represented by a cube
(1.44m× 0.3m× 0.2m) at a constant temperature of 37 ◦C, similar to
human body temperature. In the centre of the room, another heated
cube (0.6m× 0.3m× 1.8m) has been positioned to represent a health
care worker (HCW). Cold air at 15 ◦C is supplied to the room by a
supply inlet mounted on the left hand wall, and extracted by a sim-
ilar vent on the opposite wall. Both the inlet and extract vents are
assumed to be simple rectangular (0.5m× 0.2m) openings without
any grille. All the walls, including the floor, the ceiling and the beds
have the same adiabatic no-slip boundary condition used for the data
centre walls imposed on them.

Figure 74 shows three snapshots of the turbulent temperature field
inside the room at different times. These images are post-processed
from the real-time simulation results using the open-source 3D cre-
ation suite Blender2 and uses a volume rendering technique to dis-
play the temperature as a shaded volume. This post-processing is
slow and cannot be done in real-time, and while the real-time volume
rendered integrated to the LBM GPU program can achieve similar re-
sults, they do not yield the same visual quality.

The process of mapping numerical values (i.e. temperatures) to
colours is significantly different with volume rendering, each value
not only needs a colour but also an opacity (or emission) that dictates
how much light is absorbed (or emitted) by the voxels. This is how
volume rendering can achieve a high degree of realism for smoke
and fire animations. In an attempt to replicate the infamous ’rainbow’
colour map, used for most scientific visualisation despite its known

The infamous
rainbow colour map.

deficiencies [305], voxels with a small value of temperature (i.e. close
to 15 ◦C) are set to a colour from dark blue to light blue with a high
opacity and high temperature voxels (i.e. close to 37 ◦C) have vary-
ing colour from green to yellow to red, with increasing opacity. The
opacity for the temperature in between is set to zero, so that only the
cold and hot area appear in the final image.

As shown by the images of the figure 74, the LBM is able to capture
the complex interactions between the cold inlet airflow and the ther-
mal plumes of the patients and the HCW. With its real-time capability,
the positions of the inlet, outlet and HCW can be interactively moved
(either with the keyboard or with a remote control) as the simulation
is running to provide quantitative feedback into the effects of differ-
ent ventilation strategy on thermal comfort and indoor air quality or
the effects of a moving HCW on the mixing of the temperature. The
program could easily be adapted for other ward designs and for the
advection of both a scalar field or particles to study airborne infection
risks in a ward.

2 https://www.blender.org/

172

https://www.blender.org/

Figure 74: Time ordered snapshots at times 4, 10 and 20 seconds of the evolv-
ing turbulent temperature field in the four bed hospital room.

173

7.5 summary

As showcased by the three previous applications, the LBM program
running on GPU is capable of simulating complex indoor air flows in
real-time (or faster) while attaining a degree of accuracy in the sim-
ulation results similar to that of conventional CFD software. More-
over, the real-time capability of the LBM program is not restricted
to steady-state scenarios and the simulation could potentially be cou-
pled dynamically with sensors and actuators in the real system to
provide a novel adaptive management solution for data centres and
hospitals.

The current LBM model does suffer from some limitations, such
as the lack of near-wall turbulence model or the rise of spurious che-
querboard oscillations. Several strategies already exist to tackle these
limitations (see sections 2.5.3 and 2.4.4) and their application will be
the subject of future investigations.

174

8
O T H E R A P P L I C AT I O N S

8.1 introduction

While the previous chapter focused on the applicability of the LBM
GPU program to indoor air flows problems, the same program can be
applied to a larger variety of physical applications, with only some
minor modifications to the code. This chapter gives a brief overview
of some other applications that are not directly related to indoor air
flows, but that were tackled during the thesis through various col-
laborations. The applications presented here are meant to showcase
the large range of capabilities of the program without providing a
detailed analysis of each problem. Instead the reader will be referred
to the respective works of each collaborators.

While the physical equations and algorithms required for each
model were developed in a collaborative effort, the actual implemen-
tation on GPU and the simulations presented in this chapter are the
work of the author.

In the first part of this chapter, it is shown how the optimised LBM
on GPU solver can allow the simulation of complex engineering prob-
lems through multi-physics models. The real-time capability was es-
sential in the development of these models. Indeed, once the source
code is modified to incorporate a new physical model or a new type
of boundary conditions, it only takes a few seconds to update the flow
and visualise the results. This improves the iteration time between
code development and testing and allows for faster bug tracking and
for the exploration of alternative implementations. The last section
of this chapter discusses how the massive computational throughput
achieved by the GPU can also benefits more theoretical studies by al-
lowing the quick search of a large range of parameters with the goal
of finding an optimum.

8.2 multiphase flows

This section looks at two different multiphase problems : the be-
haviour of a water droplet falling under an impingement jet and im-
pacting on a flat surface, and the coalesced of water droplets from by
a mixture of water-diesel by an engine filter. Although both multi-
phase flows, these studies were motivated by two different collabora-
tions and use two different models.

The source code for these models was developed based on the
optimised single phase LBM code described in the previous chap-

175

Target surface

Tube

Droplet

Figure 75: Schematic of the simulation domain for numerical modelling.

ters. Multiphase models introduce non local coupling via the inter-
particle force that requires the evaluation of the pseudo-potential at
the neighbouring nodes, usually as a function of the macroscopic den-
sity. Therefore, the density at each node must be computed first at the
beginning of every time-step by a separate kernel and stored into a
separate array. This array is then used by the stream-collide kernel for
the force evaluation. These additional memory accesses significantly
slow down the program compared to a single phase simulation, but is
still sufficiently fast to allow for interactive simulations. It should be
noted that while interactive, the simulations presented in this section
are not computed in real-time as they involve micro-droplets whose
time scale is in the order of a micro second.

8.2.1 Droplet Impingement

The problem of a falling droplet impacting on a flat plate has been
extensively studied in the past, both numerically [306, 307] and ex-
perimentally [308, 309, 310], due to its application in spray cooling,
liquid spray coating and inkjet printing, however there is still a lack
of understanding of the complicated physics at play. Spray cooling is
among the most promising methods for cooling high power electronic
devices [311] and researchers at the University of Villanova have been
investigating the problem [312].

Such systems are difficult to model as the simulation needs to accu-
rately account for the effects of the impingement jet and surface ten-
sion forces on the droplet deformations during the impact as well as
the heat transfer from the surface to the droplet and its resulting evap-
oration (i.e. phase change). Moreover, traditional CFD techniques
fail to capture the dynamics of the contact angle during the receding
phase, hence it was decided to replicate the Villanova’s experiment
numerically using a multiphase LBM model in a collaborative work
with the University of Leeds. This section features some of the re-
sults of this collaboration, more details can be found in the thesis of
the Ph.D. student from Villanova [313].

176

(a) χ = 0.5

(b) χ = 0.0

(c) χ = −0.5

(d) χ = −1.0

Figure 76: Droplet impact behaviour for different value of the wetting pa-
rameter χ.

The chosen multiphase model is that of [87], which uses a Carnahan-
Starling equation of state [94] to reach high density ratios and intro-
duces an index function φ, to track the different phases and to main-
tain a sharp interface. That model only provides a starting point, as
it describes an isothermal flow. The equations for the model are de-
scribed in section 2.3.4, they were implemented on the CPU and GPU
in both two and three dimensions. The gradients (~∇) and Laplacian
(~∇2) are computed using a second order finite difference scheme (and
up to fourth order by including the diagonal elements) using central-
difference in the bulk and forward-difference on the boundaries.

A two-dimensional axisymetric model, with additional source terms
such that the emergent dynamics is expressed in a cylindrical coordi-
nates [230, 306, 231], was also implemented but it was discontinued
due to the complexity of its implementation.

In the experimental apparatus, a droplet is accelerated by a long
vertical tube with compressed air [313], however the simulation do-
main focuses on the area of impact between the droplet and the (po-
tentially heated) target surface, as described in figure 75. The top
boundary condition is an inlet with a constant velocity, a constant
pressure is imposed on the the left and right boundaries as to al-
low the excess air to exit the room, and the bottom boundary is set to
bounce-back distribution functions like a wall. The three-dimensional
velocity and pressure boundary conditions for this multiphase model
are based on the method described in section 3.2.6, but they are chal-
lenging because they involve multiple equations. A wetting param-
eter χ controls the density at the wall, by interpolating between the

177

(a) No inlet velocity.

(b) With inlet velocity.

Figure 77: Density and velocity fields of a single droplet with and without
an impingement jet.

density of the two phases, and hence controls the contact angle of a
droplet at rest on the surface. The dynamic values of the contact an-
gle with gravity and as the droplet spreads and recedes on the surface
then naturally emerges from the LBM simulation.

Figure 76 shows different droplet behaviours for four different val-
ues of the wetting parameter χ. For positive values, the surface is hy-
drophilic, i.e. the spreading radius of the droplet is large and the final
contact angle is small. For negative values, the surface is hydropho-
bic and the droplet usually bounces off the surface once (sometimes
twice) before settling with a large contact angle.

Figure 77 shows the velocity field for a stationary droplet, with and
without the impingement jet, both images use the same velocity scale.
For a stationary droplet, it is expected that the velocity field is uni-
form and nil but in the LBM small spurious velocity currents appear

178

new the interface (figure 77a) due to the large gradients. However,
these velocities are small compared to the inlet velocity (figure 77b).
The flow created by the inlet achieves qualitatively the expected be-
haviour, with a high uniform flow coming from the top boundary, ex-
iting symmetrically on each slide and decreasing in magnitude near
the bottom surface. This model will allow to study the effect of the
impinging jet on the spreading and receding dynamic of the droplet,
and ultimately on its evaporation and the cooling of the surface. More
details can be found in [313].

8.2.2 Water in Diesel Filtration

This study is motivated by the filtration of water droplets in diesel
fuel engines, it is part of a collaborative work with another fellow
Ph.D. student from the same department and more details on the
validation of the model and analysis of the results as well as more
references can be found in his thesis [314].

Topically, a diesel tank contains impurities, such as water droplets,
that can seriously degrade the engine performance and they need to
be extracted by a filter, before the fuel reaches the engine [315]. A
filter is made out of multiple layers of a non-woven fabric on the
principle that its fibres will mechanically force the micro-droplets to
coalesce into larger ones which can then be more easily separated and
collected.

The goal is to simulate the behaviour of the droplets as they move
through the fibres of the filter and coalesce into bigger droplets. Once
calibrated, such a simulation could be used to optimise the filter de-
sign and get a better control on the size of the droplets at the exit. The
mixture of water and oil is represented by a multiphase multicompo-
nent model as presented in [88, 85]. In this model, the water and oil
are simulated by two different set of distribution functions that are
coupled through the inter-particle force; this is essential as the two
fluids components have different physical properties. The equations
of the model were presented in section 2.3.4.

Although the Shan-Chen model [85] is limited to small density ra-
tio, it is still a choice for this system as the density ratio between the
water and the diesel is around 1.2, based on the the European diesel
fuel specification EN 590 [316]. The model was implemented in two
dimensions, which allows for the exploration of large simulation do-
mains, but a three-dimensional implementation is planned as well.

In the simulation showcased here, the flow is put in motion by an
inflow boundary condition on the left that imposes a constant velocity
and density at the inlet and by an outflow boundary condition on the
right which assumes that the macroscopic quantities at the outlet have
a zero gradient. The domain initially contains only oil, but several

179

Figure 78: Snapshots of density profiles showing water droplet coalescence
within the filter. The water phase is represented in white, the
diesel phase in grey and the solid fibres in black.
The full video is available at https://youtu.be/AgLqufg-hys.

water droplets with small radii are regularly added near the inlet to
approximate a water-diesel mixture on the left of the filter.

The filter fibres can take various geometries composed of rectangles
and circles, or constructed using a Perlin noise [317], as in figure 78.
The Perlin noise algorithm is commonly used in computer graphics
to create a smooth homogeneous isotropic noise. Here, a threshold
is applied on that noise to define the solid nodes (in black on the
figure), by varying this threshold the porosity can easily be adjusted.
Moreover, it can be varied in space so that the porosity is lower in the
centre, i.e. there are larger fibres in the centre. A simple bounce-back
boundary condition is applied on those solid nodes and their wetta-
bility is fixed to specify a contact angle at rest (90◦ for the figure).

The figure 78 shows the evolution of the system, as more and more
small water droplets are introduced, they are forced to coalesce on
the filter, creating large clusters of water which are then driven by
the flow to form large water droplets at the exit of the filter on the
right hand side. These preliminary results are promising, as they
qualitatively agree with the filter design, but a more detailed analysis
for a larger range of configurations will be available in [314].

180

https://youtu.be/AgLqufg-hys

8.3 drag and lift on cylinder

In the problems of fluid-structure interaction (see next section), it is
important to accurately measure the force exerted by the fluid on
an object. Fortunately, this force can be evaluated very efficiently
in the LBM by summing the contributions of the distribution func-
tions coming in and out of the object interface, as described in sec-
tion 2.3.6. This section briefly presents some of the results on the
forces (drag and lift) exerted by a constant moving flow on a sta-
tionary two-dimensional sphere, i.e. a cylinder, in the steady and
transient regimes and compares the evolution of the drag coefficient
with the Reynolds number against the literature.

Keeping the cylinder stationary allows to avoid the difficulties of
updating the location of the boundary nodes and, by Galilean invari-
ance, it should be equivalent to a cylinder moving at a constant speed
in a fluid at rest [212]. Hence, the cylinder is implemented using the
bounce-back scheme (see section 3.2.3, half-way or full-way did not
yield a measurable difference on the force) while the inlet and out
boundary conditions respectively on the left and right boundaries
are achieve with a simple force equilibrium scheme (see section 3.2.2).
The radius of the cylinder is set to r = 10 nodes, as a minimum to
accurately resolve its shape using a staircase approximation on the
square lattice. Because the top and bottom boundaries are set as pe-
riodic, the system geometry is equivalent to an infinite array of cylin-
ders, but the domain size is increased until the forces on the cylinder
do not change, i.e. until the effect of the boundaries on the resulting
forces is negligible. It was found that a significantly larger domain
is required, the results in this section use a 2048× 1001 lattice size.
The location of the cylinder within the domain does not affect the
drag force significantly, only the time required to reach the final state,
hence the cylinder is placed at a quarter of the width and half of the
height.

As can be seen on figure 79, the behaviour of the flow around the
cylinder is strongly dependent on the Reynolds number. For small

Qualitative
description of the
fluid flow over a
cylinder for a large
range of Reynolds
number.

values, the flow reaches a steady state solution, for intermediary val-
ues it displays an oscillatory behaviour and for large values it be-
comes turbulent. As a result, the drag force (i.e. the x-component
of the force exerted by the fluid on the cylinder) converges towards
a single value for small Reynolds number but oscillates for larger
ones, and it is then required to average the force over time to esti-
mate the drag coefficient. Also, the shredding of the wakes behind
the cylinder creates a oscillatory lift force (i.e. the y-component of
the force). These two behaviour can observed on figure 79 for two
different Reynolds number (Re) of 36 and 360. The Reynolds num-
ber is adjusted by keeping the velocity to u0 = 0.1 lattice unit and
computing the correct relation time as τ = 1/2+ 6u0r/Re. Very small

181

(a) Re = 36

(b) Re = 360

Figure 79: Drag force Fx(t) and lift force Fy(t) on a 2D cylinder over time.

Reynolds number (less than 1) would require very large relaxation
time and result in inaccurate simulations, hence the inlet velocity is
reduced to u0 = 0.01 for this range.

The drag coefficient CD is a dimensionless quantity that qualifies
the amount of resistance induced by the flow on the object, it is typ-
ically influenced by the shape of the object and by which direction
it is facing the wind. It is a useful quantity for aerodynamics, for
instance the shape of an aerofoil is designed to maximise the lift (up-
ward force) and minimise the drag. The drag coefficient is typically
defined as

CD =
2FD
ρ~u2A

, (163)

where FD is the drag force, i.e. the force in the direction of the flow
velocity, ρ is the density of the fluid, ~u is the velocity of the object
relative to the fluid and A is the reference area (usually the projected
area facing the wind).

The measurement, both experimentally and numerically, of the
drag coefficient for a three-dimensional sphere or a two-dimensional
cylinder has been the subject of many investigations [318, 319, 320,

182

Figure 80: Drag coefficient vs. Reynolds number for a circular cylinder:
• LBM,
◦ measurements by [319] as reproduced in [322],
−−− asymptotic formula for Re→ 0,
− ·−· numerical results by [320] and [321] for steady flows.

321]. For the purpose of this work, a 2D cylinder is considered and
CD can be directly expressed in lattice units

CD =
Fx

u20r
. (164)

As the force ~F is proportional to the number of boundary nodes
in the equation (79) and the number of boundary nodes increases
linearly with the radius r of the cylinder, the drag coefficient should
be independent of r.

The drag coefficient is measured for a large range of Reynolds num-
ber (from 0.1 to 1000) on top of the curve published in [322] and repro-
duced in figure 80. It can be seen that the results agree very well in
the range from 1 to 100, but the LBM tends to overpredict the drag for
both small and large values of Reynolds number. This could be due
the extremely large (or extremely small) values of relaxation times
required in those range. The study of larger Reynolds numbers with
LBM would require to either consider larger radius and domain size
or an improved collision operator with a turbulence model. It would
be interesting to see the drag coefficient curve obtained by keeping
the relaxation time fixed and varying only the fluid velocity.

183

8.4 fluid-structure interaction

In many engineering studies, the dynamic behaviour is the result
of one or several movable objects interacting with the surrounding
fluid flow, examples include automobile aerodynamics[ref], wind tur-
bine[ref], mixing[ref], etc. In some cases, the objects can be deformable

The infamous
Tokoma Narrows

Bridge collapsed in
1940 after violent

torsions caused by
winds [323].

and the interactions of the fluid with the structure can result in oscil-
latory deformations that can become catastrophic if not kept in check.

This sections looks at some fluid-solid interactions, i.e. the object is
a non deformable solid, using the LBM as discussed in section 2.3.6.
It is also possible to consider the case of deformable structures with
the LBM, as in [324], but this requires an additional solver for the
object deformations under the forces exerted by the fluid. Hence, this
work only considers one-way coupling (from the solid to the fluid).

Nevertheless, it is also possible to consider two-way coupling on
a solid object by computing the force exerted on the boundary of
the object (as in the previous section) and considering the force in
the momentum equation for that object [119]. And another research
group based in the Institute of Particle Science and Engineering, at the
University of Leeds, is developing such a two-coupling solver using
the LBM for the fluid component and the Discrete Element Method
(DEM) for the solid component. They are interested in the study of
the settling of objects under gravity for packing and fluidised beds
applications [325, 326]. The work presented in this section (and in
the previous one) was motivated by some collaborative work with
that group and utilises the immersed boundary method described in
section 3.2.8.

With this method, the object is represented by an array of voxels,
each voxel has an associated cell coverage ratio Bn (x,y, z), describ-
ing the amount of solid inside that voxel (a value between 0 and 1

allows to smooth the boundary to avoid staircase edges) and veloc-
ity ~u (x,y, z), describing the velocity of the object at that voxel. They
are updated at each time-step by a dedicated GPU kernel. This al-
lows for a simple description of a large variety of object shapes and
movements that tallies the voxel representation used in DEM. Using
the GPU to accelerate the LBM computations allowed to increase the
performance of the application by a factor of 10 to 20.

In order to illustrate some examples of applications, the the stir-
ring of the flow a two- or three-dimensional blade is considered, and
several snapshots of the instantaneous vorticity field are reported in
figure 81 and 82. Both systems can be simulated in real time. For
the 2D simulation, the cascaded LBM (see section 2.4.2) is used to
allow very small relaxation time, and the simple BGK model is used
in 3D. While in 2D, the vorticity is a scalar field and can be repre-
sented directly with a colour coded rotational direction, on the other
hand in 3D the vorticity is a vector field, hence only its magnitude is

184

(a) Close to the initial state. (b) Intermediate state. (c) After a long time.

Figure 81: Snapshots of the vorticity field created by a two dimensional ro-
tating blade using the immersed boundary method. Positive vor-
ticity is represented in blue and negative vorticity in red.
The full video is available at https://youtu.be/bSsT4QrQqAA.

(a) Close to the initial state. (b) Intermediate state. (c) After a long time.

Figure 82: Snapshots of the magnitude of the vorticity field created by two
counter rotating three dimensional blade. The axis of rotation is
represented by a vertical line.
The full video is available at https://youtu.be/oobdA2XncnE.

represented using real-time volume rendering. Finally, the blades are
coloured with a dark grey for both simulations.

It was found that the IBM model removes all the pressure waves
typically seen as the object rotate without a proper interpolation of
the boundary, as long as the rotational velocity does not change sud-
denly. In order to avoid pressure waves near the beginning of the
simulation, the rotation of the blades is slowly increased over time,
until its final velocity is reached. The resulting flows seem to be qual-
itatively accurate, but a detailed analysis would be required, more
results on LBM-DEM can be found in [325].

185

https://youtu.be/bSsT4QrQqAA
https://youtu.be/oobdA2XncnE

8.5 mrt and cascaded parameter search optimisation

It is well known that the LBM can become unstable for high Reynolds
number flows and many techniques aim to increase its stability. The
MRT method is one of such techniques. It introduces additional re-
laxation times that can be adjusted to suppress non-hydrodynamic
modes that do not appear directly in the continuum equations, but
may contribute to the instabilities. However, finding a good choice
for these free relaxation times can be a difficult task which is why
the MRT is often discarded in favour of simpler methods such as TRT
and BGK. On the other hand, the cascaded LBM (i.e., central moment
MRT) promises to increase the stability domain of the MRT and to
effectively remove the need to search for an optimum.

The massive computational power offered by the GPU allows to
explore a large range of relaxation times and to accurately determine
the stability domain of both MRT and cascaded LBM. Moreover, the
fast LBM simulations on the GPU can be combined with some opti-
misation algorithms to quickly estimate the set of optimal relaxation
rates for a specific problem.

While it is expected that the techniques and results presented have
the potential to be applied to a wide range of problems, this section
focuses on the benchmark problem of a perturbed shear layer in a
doubly-periodic domain, as originally studied in [327]. This setting
is often used to test the stability of fluid solvers and that of the MRT
LBM in particular [15]. It has multiple advantages: it is simple to set
up, does not require a special treatment of the boundaries (periodic),
and it develops thin layers that are hard to solve on a coarse mesh.

(a) t = 0 (b) t = 1 (c) t = 10

Figure 83: Snapshot of the velocity field (black arrows) and vorticity field
(red for positive, blue for negative) over time.

The initial velocity field is given by

ux =

U0 · tanh (κ (y− 1/4)) y 6 1/2

U0 · tanh (κ (3/4− y)) y > 1/2

uy = δ ·U0 · sin (2π (x+ 1/4)) + us

(165)

186

whereU0 is the initial bulk velocity of the flow, κ controls the width
of the shear layers, δ is the magnitude of the initial perturbations and
us is an optional shift velocity, to uniformly move the flow along
the y-direction and study the Galilean invariance of the results. All
the simulations were performed with U0 = 0.04 (i.e. Mach number
Ma ' 0.07) and parameters κ = 80 and δ = 0.05 as in [15], and the
main relaxation rate (τ associated with the shear viscosity) is adjusted
so that the Reynolds number is Re = U0 ·N/ν = 30 000 with τ =

1/2+ 3 · ν. The resulting flow and its evolution is illustrated on the
figure 83 by taking snapshots at three different times showing the
vorticity magnitude and the direction of the velocity field.

It is well known that the BGK has difficulties simulating this prob-
lem at small resolutions, as the shear layer becomes too thin for the
grid size [328, 15], at a resolution of 2562 there is a formation of spu-
rious currents and at a resolution of 1282 the simulation becomes
unstable very quickly. The resulting vorticity fields are displayed on
figure 84.

(a) N = 128, unstable (b) N = 256, spurious eddies (c) N = 512, all fine

Figure 84: Snapshot of the vorticity field (black for positive, white for nega-
tive) at time t = 1 for different resolutions with the BGK collision
operator.

The goal of this study is to find the values of the free relaxation
times that gives the best stability and accuracy for the coarse resolu-
tion of 1282 where the BGK is unstable. Three models are investigated
in two dimensions (i.e. for a D2Q9 node) : (1) the TRT model (see
section 2.1.5) with only one free parameter, (2) the MRT model (see
section 2.1.5) and (3) the cascaded model (see section 2.4.2) with three
free relaxation times, wb, w3 and w4 respectively associated with the
bulk viscosity, the energy square and the energy flux (following the
model of [143]). The MRT model is built from the cascaded model
but without the transformation to central moment space, hence it
provides the same three free relaxation times.

The TRT model has the advantage that it has only one free param-
eter, as one of the relaxation time is fixed by the Reynolds number
λe = 1/τ = 1/

(
3U0·NRe + 1

2

)
. The other relaxation time λo is free to

187

 0

 500

 1000

 1500

 2000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

D
iv

er
g

en
ce

 t
im

e

λo

1.343

peak 2

0.016

peak 1

Figure 85: Variation of the divergence time with the free relaxation rate λo
for the TRT model of [53].

vary in the interval [0; 2]. To investigate the effect of this parameter on
the stability of the simulation, the program is run several times with
identical starting conditions and λo is varied by increments of 0.001.
The program is exited as soon as instabilities appear, and the time at
witch these instabilities start (called divergence time) is recorded. Insta-
bilities are detected by monitoring the density over the entire domain,
and the simulation is considered to be unstable if the density becomes
negative, i.e., ρ 6 0. It is found that although varying λo allows to
vary the divergence time and to change the origin of the instabilities,
it is never sufficient to make the simulation stable. The figure 85

shows that the divergence varies between 1000 and 2000 time-steps
and presents two peaks for λo = 0.016 and λ0 = 1.343. Hence, it
can be concluded that the TRT model is not capable of simulating the
double shear layer problem for on a coarse grid.

The MRT and cascaded LBM offer two additional relaxation times
compared to TRT, hence the parameter space for these models is three
dimensional. And these relaxation times can be tweaked to obtain a
stable simulation. One possible to way to explore this 3D space is
to fix one of the relaxation time to 1 (i.e. the middle value) and to
vary the other two relaxation times to build a slice. The accuracy of
the slice depends on the number of simulation along each direction.
The figure 86 is constructed using 1002 regularly spaced simulations,
each simulation is allowed to evolve until instabilities appear or until
a total time t = 100 000 is reached (the simulation is then assumed
to be stable). The divergence-time is recorded and each simulation
is represented as a coloured point based on specified scale (see fig-
ure 86). The same technique is applied to the cascaded LBM, and the
results are displayed on figure 87.

Clearly, the choice of relaxation times is of prime importance on
the stability of the results. The main difference between MRT and
cascaded seems to be in the stability range of w3: in the MRT model
most of the domain w3 < 1 is highly unstable while in the cascaded

188

(a) w3 = 1 (b) w4 = 1 (c) wb = 1

Figure 86: Divergence time for the MRT model on three slices at constant
w3, w4 or wb.

(a) w3 = 1 (b) w4 = 1 (c) wb = 1

Figure 87: Divergence time for the cascaded model on three slices at con-
stant w3, w4 or wb.

method the whole range of w3 is available and the stability is mostly
controlled by wb and w4. The interface between the stable and un-
stable domains is particularly sharp which seems to indicate that the
envelope of the stability domain might be defined by an analytical
equation involving the relaxation times. In particular the slice w3 = 1
shows that the stability area is contained within two circular arcs. This
behaviour is made more evident when taking a slice at w3 = 2, as
shown in figure 88, constructed with 10002 simulations, where all of
the simulations outside of this domain diverge in less than 6 000 time
steps.

189

Figure 89: Divergence time on the slice w3 = 2, for the MRT model, up to
100 000 time steps.

Figure 88: Divergence time on the slice w3 = 2, for the MRT model up to
6 000 time steps.

However, by allowing the simulations to continue up to 100 000
time steps, it appears that some of the simulations within the two
circular arcs do become unstable after a long time and the stability
domain shrinks. But their distribution is highly chaotic, as can be
seen on the figure 89, including a zoom on the chaotic interface area.
Hence, it is unlikely that this chaotic interface could be defined by an
analytical formula, which contradicts the previous prediction.

But visualising the divergence time on 2D slices only allow to par-
tially explore the 3D space of the parameters wb, w3, w4. Although it
is possible to that space using N3 sample simulations, where N is the
number of samples along each axis, the computation time becomes
large and it is advantageous to instead spread the samples evenly
in the 3D space by sampling on a Latin hypercube [329]. With this
sampling technique, the number of simulations required to achieve a
specified spatial accuracy is significantly reduced. A response surface
can also be built from these sample points and be used in an optimi-
sation algorithm to find the location(s) of the most stable set(s) of
parameters [330]. Figure 90 shows the results of ten thousands sam-
ple simulations (computed in a few hours) that cover the whole 3D
domain with the same accuracy as 10003, i.e. one billion simulations.

190

(a) MRT (b) MRT

Figure 90: Scatter plot of the divergence time for the MRT and cascaded
models based on 10000 simulations sampled on a Latin hyper-
cube.

 0

 0.5

 1

 1.5

 2

 0 0.02 0.04 0.06 0.08 0.1

m
in

im
u

m
 w

3

u
s

Re = 10
6

Re = 1.2×10
5

Re = 3×10
4

Re = 10
4

Re = 10
3

Figure 91: Minimum required value of the relaxation rate w3 for a stable
simulation with the MRT LBM against the shift velocity (us), for
several values of Reynolds number (Re).

It is clear from this figure that the stability domain of the cascaded is
larger than that of the MRT, especially along w3.

As shown by the figures 86b, 86c and 90, the stability domain is
bounded my a minimum value of the relaxation rate w3, in other
terms there is a minimum value of w3 that is required for the simu-
lation to be stable. In this case (i.e no shift velocity and Re = 30 000),
this critical value is around w3 = 0.88; but as the Reynolds num-
ber is increased or as a shift velocity is introduced, the stability do-
main of the MRT decreases in volume and the minimum w3 required
for a stable simulation increases, as shown on figure 91. According
to this graph, the stability is unaltered for small shift velocities (i.e.
us < 0.01) but the stability range of w3 is significantly reduced as the
shift velocity is increased further. This phenomenon is not present
with the cascaded LBM, which shows that the method has an en-
hanced Galilean invariance over the MRT.

191

Figure 92: Isosurfaces of the L2 norm within the stable simulation domain
of wb, w3 and w4.

The previous studies focused on the stability of the methods. As a
complementary study, the accuracy of the results obtained with the
MRT method at time t = 1 (see figure 83) are compared against that
of the BGK, downscaled from a resolution of 5122 (i.e. for a stable
simulation). To measure the accuracy, the L2 norm of the velocity
between the MRT results and the BGK benchmark is computed, fig-
ure 92 shows several isosurfaces of constant L2. The figure presents
several shells of increasing accuracy, indicating the possibility of an
optimum set of relaxation rates, however the difference in term of the
L2 norm between these shells is minimal. This requires further inves-
tigations.

8.6 summary

As showcased throughout the multiple sections in this chapter, the
LBM program developed during this thesis can be applied to a large
variety of applications. The GPU is useful in practical engineering ap-
plications, by accelerating the computations of the results and allow-
ing a high level of interactivity; but also in more theoretical research,
by allowing to research quickly a vast space of parameters.

Most of the results presented throughout this chapter should be
seen as proof of concepts that will lead to further studies and publica-
tions from the author and collaborators.

192

9
C O N C L U S I O N S

In this thesis, a novel simulation tool for the study of indoor air flows
has been developed that implements the LBM for the novel comput-
ing architecture of the GPU. The detailed optimisation of the code,
combined with the natural parallelism of the LBM and the massive
computational throughput of the GPU allows for the simulations to
be computed in real-time, with an unprecedented level of interactiv-
ity. The resulting program has then been applied to the challenging
problem of thermal management in hospitals and data centre, achiev-
ing similar levels of accuracy compared to some of the commonly
used CFD software in the field.

In this chapter, conclusions are summarised and suggestions are
made for future extensions to the present work.

9.1 summary of results

Despite its unfamiliar formalism, the LBM is gaining popularity as an
alternative numerical method for CFD. Originally starting as a simple
cellular automaton, it has grown to become a solid numerical method
to solve the Navier-Stokes equations efficiently and has been success-
fully applied to a large variety of applications including thermally
driven flows [30, 31, 32, 33] and turbulent flows [24, 25, 26, 27, 28],
hence the motivation to apply the LBM to indoor air flows.

With the constant evolution of computing architectures, the recent
years have seen the GPU take a more important place in the high per-
formance computing (HPC) scene. The GPU is a relatively new kind
of processing unit that relies on massively parallel operations. As the
LBM algorithm is intrinsically node based, it is sensible to implement
the method on GPU, with the aim of significantly accelerating the
computations. Hence, this became the main focus of this thesis.

The CUDA for C programming language was chosen in place of
the alternatives because it offers a richer, more mature programming
environment and allows for better performances. Though, it does
limit the execution of the program to NVIDIA’s GPU only. The source
code was subject to extensive optimisation studies and as a result, the
program can achieve more than a billion node updates per second
(MLups) which equals or exceeds most of the performances reported
in the literature and represents a speed increase of a factor of 100

when compared to an equivalent CPU implementation. A relation-
ship between the MLups, the lattice resolution and the other problem

193

parameters was established that shows that the achieved performance
is sufficient for the real-time simulation of most indoor air flows.

The performance study identified the memory bandwidth as the
main bottleneck for the computations and some techniques and tricks
were devised to maximise it. A natural consequence is that a gaming
GPU (i.e. designed for video games) can achieve higher performances
at a lower price compared to a professional GPU (i.e. Tesla brand
GPU), mostly because of its increased memory bandwidth.

However, due to the restrictions of the CUDA language in term of
the reusability of highly optimised code, it became apparent that a
higher level language was required. Hence, an additional tool was
created using the LUA scripting language that is able to generate
an optimised CUDA source code for a large variety of models and
node type. The same tool can also generate specific boundary con-
ditions. This improves code usability without sacrificing any of the
performance.

On top of that, a real-time visualisation tool that uses the OpenGL
library was integrated with the program to allow for the inspection
of the flow structures as the simulation is evolving in order to save
disk space and avoid long writing times. The tool also enables com-
putational steering, the user can interact with the simulation as it is
evolving to modify boundary conditions, fluid properties..., etc.

The program was then validated for a large variety of academic
benchmark flows, including the lid-driven cavity and the naturally-
driven double glazing problem. Most of the simulated results provide
almost a perfect match when compared against the analytical profiles
(used when available) or against published benchmark results from
simulations (used when no analytical solution is available). During
the process, it was shown that when approached carefully, single pre-
cision floating point operations achieve a similar accuracy to double
precision while being twice as fast.

The validation was later extended to the case of indoor air flows.
These flows provide more of a challenge because their are both tran-
sient and turbulent, but the simulation results from the LBM com-
pared favourably against equivalent simulations obtained with var-
ious commercial CFD software. Especially in the case of the data
centre model, where the velocity and thermal profiles are accurately
predicted. While simulating the flows in real-time or faster.

Finally, the application of the program to a few other applications
was showcased, including different multiphase flows and fluid struc-
ture interaction problems. While these applications are not directly
linked to indoor air flows, they were part of different collaborations
that took place during the thesis and they demonstrate the applica-
bility of the developed software to a large variety of fluid flow prob-
lems. However, the presented results were brief and little detailed,
they should lead to a large amount of future work.

194

In the last section, the stability of the TRT, MRT and cascaded colli-
sion operator is discussed. The massive computational power of the
GPU allowed to explore the stability domain in the multi-dimensional
space of the free relaxation rates with an unprecedented level of de-
tails. Hence the GPU is not only useful to accelerate the computations
for engineering systems (and enables simulations in real-time) but it
is also useful in optimisation processes (by allowing for a faster eval-
uation of the parameter space).

9.2 future work

Although the results presented here are numerous and promising, in
some ways they only represent a beginning and the simulation tool
developed during the thesis is still far off a finished CFD software.
Possible directions for future research are therefore now suggested.
They fall into two categories : (1) improvements to the source code
and the program, and (2) possible future research areas.

The source code developed during the thesis does allow for a large
variety of problems to be simulated, but its usability is limited by the
need to implement boundary conditions and problem description di-
rectly in a program. This has been largely simplified through the
use of LUA, but the program would benefit from a graphical user in-
terface (GUI) for geometry construction and parameter modification
at runtime as well as a commodity tool for converting 3D geometry
from some standard file type into voxel data.

Adding new LBM models to the code generator that are not sim-
ilar to an existing one requires to know both the intricacy of LUA
and CUDA. It would be advantageous to allow new model definition
by text templates that will be converted by LUA into a CUDA source
code rather than constructing the source code directly from LUA (sim-
ilar to how Sailfish works [255]). Moreover, the code generator could
be extended to generate OpenCL code to allow the execution on other
GPU models as well as CPUs.

The real-time OpenGL visualisation offers an efficient way to study
the flow structures as they evolve, but its execution is limited to a lo-
cal workstation. As it might become necessary to run the simulation
on a distant GPU (for instance on a dedicated server), the visuali-
sation would require significant changes. During some preliminary
work, the visualisation was successfully piped to a simple web in-
terface through an http server running on the same machine as the
simulation. This could further extended to allow for a fully interac-
tive real-time remote visualisation.

As the program is applied to more complex models, the use of
multiple GPUs might become necessary to maintain the real-time ca-
pability. The achieved performance on two GPUs using peer to peer
memory access is promising but the scalability of the code beyond

195

two GPUs is unknown (and would require MPI communications for
use on a large server).

It is also likely that complex models with fine geometry details
will require some kind of grid refinement technique. The impact of
such techniques on the performance on GPU is unknown. Moreover,
it might be beneficial to use interpolation techniques (such as inter-
polated bounce-back for instance) for geometries that are misaligned
with the grid.

The Smagorinsky turbulence model, used in some of the simula-
tions throughout this thesis is in theory only applicable to homoge-
neous isotropic turbulence. Further work is required to implement
custom near-wall turbulent models or even dynamic turbulence mod-
els to avoid the issue on the choice of the Smagorinsky constant.

A recurring concern with simulations at high Reynolds number
is the apparition of a spurious chequerboard pattern in the velocity
and temperature fields due to numerical instabilities. This pattern
is linked to the second order spatial convergence and could be tack-
led with a flux limiter scheme, but both the MRT and cascaded have
been shown to significantly decrease this effect. It would be interest-
ing to implement these two models in 3D to see how it affects the
simulations.

This work only had scope to accelerate the calculation of the LBM
using an optimised implementation on GPU, but the creation of an ef-
fective smart hospital (or data centre) will require to overcome several
additional challenges.

1. Ability for accurate real-time and faster than real-time simula-
tions.

2. Accurate, non invasive, real-time sensors to capture the flow
structure, both in term of flow rates and temperatures.

3. A way to interpret point data from the sensors into volumetric
boundary conditions for the simulation.

4. A smart system that interprets the simulation results and up-
date the system through the use of some actuators.

While the first point was the main focus of the thesis and the LBM
on GPU does seem capable to achieve accurate real-time simulation
of indoor air flows, each of the other points will require special focus
that will need expertise from different fields. This is essentially a
multidisciplinary problem.

196

A
N O D E D E S C R I P T I O N S

The implement of the lattice Boltzmann method relies heavily on the
supporting lattice structure which can be described by looking at the
number and directions of the microscopic velocities of a single node.
The naming convention for a generic lattice structure is DdQq where
d is the dimension of the lattice (either 2 or 3) and q is the number of
microscopic velocities directions.

The following presents the most common lattice structures, i.e. D2Q9

and D3Q19, with the labelling of the directions as used throughout
this document and the corresponding weighing factors needed for the
calculation of the equilibrium distribution functions in equation 28.

The labelling of the directions is somehow arbitrary, but follows
some general rules:

• the centre zero velocity is always called ~e0 = ~0,

• main axes have lower index values than diagonals,

• the number of directions (including zero) must be an odd num-
ber for isotropy,

• two opposite directions must have sequential indices,

~e2i = −~e2i−1, i ∈
{
1, 2, . . . ,

q− 1

2

}
(166)

so that they can be grouped easily in multiple situations like
bounce-back (3.2.3), TRT 2.1.5, stress-tensor (2.5.1), etc.

a.1 d2q9

~e0 =(0, 0) w0 =4/9

~e1 =(1, 0) w1 =1/9

~e2 =(−1, 0) w2 =1/9

~e3 =(0, 1) w3 =1/9

~e4 =(0,−1) w4 =1/9

~e5 =(1, 1) w5 =1/36

~e6 =(−1,−1) w6 =1/36

~e7 =(−1, 1) w7 =1/36

~e8 =(1,−1) w8 =1/36
(167)

~e0 ~e1~e2

~e3

~e4

~e5

~e6

~e7

~e8

197

a.2 d3q19

x

y

z

~e0
~e1

~e2
~e3

~e4

~e5

~e6

~e7
~e8

~e9

~e10

~e11

~e12

~e13

~e14
~e15

~e16

~e17

~e18

~e0 =(0, 0, 0) w0 =1/3

~e1 =(1, 0, 0) w1 =1/18

~e2 =(−1, 0, 0) w2 =1/18

~e3 =(0, 1, 0) w3 =1/18

~e4 =(0,−1, 0) w4 =1/18

~e5 =(0, 0, 1) w5 =1/18

~e6 =(0,−0,−1) w6 =1/18

~e7 =(1, 1, 0) w7 =1/36

~e8 =(−1,−1, 0) w8 =1/36

~e9 =(1,−1, 0) w9 =1/36

~e10 =(−1, 1, 0) w10 =1/36

~e11 =(1, 0, 1) w11 =1/36

~e12 =(−1, 0,−1) w12 =1/36

~e13 =(1, 0,−1) w13 =1/36

~e14 =(−1, 0, 1) w14 =1/36

~e15 =(0, 1, 1) w15 =1/36

~e16 =(0,−1,−1) w16 =1/36

~e17 =(0, 1,−1) w17 =1/36

~e18 =(0,−1, 1) w18 =1/36

(168)

198

B
U N I T C O N V E R S I O N

A recurring issue with the LBM, when applied to engineering appli-
cations is the need to convert the physical parameters into the param-
eters of the LBM simulation, which are intrinsically adimentional or
dimensionless, that is, the variables described by the LBM do not have
dimensions. Although the rendering of a physical system into an
adimensional one is a well know process in CFD, the similar process Rendering a system

dimensionless, by
bringing out its
distinctive scales, is
a familiar concept in
physics. That is how
the dimensionless
quantities that
describe the
behaviour of a
system can be
brought into the
spotlight and how
the Reynolds
number is
constructed from the
Navier-Stokes
equation. It also
justifies the concept
of dynamic
similitude, i.e.,
replacing a system
by an equivalent
scaled model.

of converting units for LBM is often a source of error and confusion,
especially when starting with the method. This section tries to give
a clear overview of the unit conversion process, accompanied with
some examples of unit conversion for concrete problems in order to
give the reader a better understanding of the principles.

In order to convert from the physical units, which will denoted
with an underscore phys, into the lattice Boltzmann units, denoted
with an underscore lbm, that are used in the simulations, the coeffi-
cients of conversions for each physical dimension need to be deter-
mined.

For example,

Lphys = CLLlbm and Tphys = CTTlbm (169)

are linking the physical length scale Lphys to the LBM length scale
Llbm and the physical time scale Tphys to the LBM time scale Tlbm. As
the LB units are dimensionless, the dimensions on the right side of
the above equations are carried out by the conversions factors CL (has
dimension of a length, e.g. in meters) and CT (has the dimension of
a time, e.g. in seconds). There only exist 7 base units, as defined
by the international system of units (SI), of which only 4 are relevant
to CFD (length, time, mass and temperature). Hence it is very likely
for a system to use more units than the base units, thus some of the
physical quantities can expressed in term of the other quantities. As
an example, it can be shown that the conversion factor for the velocity
can be written as

CV = CL/CT , (170)

which means that the physical velocity can be converted using

Vphys =
CL
CT
Vlbm. (171)

The best strategy when approaching unit conversion is to make a
list of all the quantities that need to be converted and to work out
the conversion factors for all of them. While the SI system advocates
using length and time as the base units, these are not always the

199

wisest choice for a particular problem. For instance, a characteristic
length and speed for a system might be readily available but not a
characteristic time. In which case, it is better to express the time scale
in term of the length and velocity scales.

The unit conversion method can also be used in combination with
the dynamic similitude principle. Sometimes it might be convenient to
artificially increase the Mach number (Ma) to increase the time step.
Indeed it can be shown that

∆tphys ∼
∆xphys

Vphys
Ma . (172)

example 1 lid driven cavity

The lid driven cavity, as described in section 6.2, is a classical bench-
mark in CFD. In this problem, the dimension of the cavity and the
fluid properties are often omitted to focus instead on the Reynolds
number. In most problems, it is advisable to first formulate the prob-
lem in term of the dimensionless quantities that characterise the flow,
i.e. Reynolds and Rayleigh numbers.

Three quantities need to be defined (in lattice units) for the sim-
ulation : the resolution or number of nodes along the length of the
cavity (N), the velocity of the top lid (Ulbm), the relaxation time (τ).
But there are only two fundamental units in this problem : length
and time, hence one of the quantities has to be defined in term of the
others.

One possible choice is to fix the resolutionN and the top lid velocity
Ulbm, then the relaxation time is computed as

τlbm =
1

2
+ 3νlbm =

1

2
+ 3

Ulbm (N− 1)

Re
, (173)

where the viscosity (in lattice unit) can be estimated from the Reynolds
number

Re =
Ulbm (N− 1)

νlbm
. (174)

Another possibility is to fix the resolutionN and the relaxation time
νlbm, in which case the lid velocity can be obtained as

U0 =
Reνlbm
N− 1

=
Re
(
τ− 1

2

)
3 (N− 1)

. (175)

Yet another possibility is to compute the resolution N from the re-
laxation time and velocity, but this would only give an approximated
Reynolds number asNmust be an integer. In any case, it is important
to check that all the parameters are within an acceptable range.

200

While the above is sufficient to simulate a lid driven cavity at a
given Reynolds number, it does not take the physical time into ac-
count. The conversion formula for the time-step ∆t gives

∆tphys = CT∆tlbm = CT =
CL
CV

=
Lphys

(N− 1)

Ulbm

Uphys
, (176)

as the time-step in lattice unit is 1. Hence, the physical cavity length
and lid velocity need to be known to estimate the physical time-step.

201

C
FA S T F L U I D D Y N A M I C S

c.1 history

In 1999, Jos Stam introduced in his article stable fluid [331], a new
method to simulate fluid in real-time. Interestingly, the article was
published in the conference proceedings of SIGGRAPH99 (short for
Special Interest Group on GRAPHics and Interactive Techniques),
an annual conference in computer graphics. The method was thus in-
tended as a way of quickly computing visually appealing fluid anima-
tions, rather than as an accurate solver of the Navier-Stokes equations.
The algorithm is unconditionally stable, which is another indication
that it is destined to be used by artists rather than engineers.

The implementations of Jos Stam’s algorithm can vary, as does
the names used to describe the method. One can find reference to
the stable-fluid method, the fast-fluid method, the semi-Lagrangian method,
etc... for more clarity, it will refer to within this chapter as the Jos

Stam’s method.
However, any implementation rely on a Helmholtz-Hodge de-

composition [151], that decouples the velocity field into its divergence
free part and its irrotational part, combined with a quick (and cheap)
way of computing the advection. Most of the errors of the method
are introduced in the resolution of the advective term in the Navier-
Stokes equations. Other advection schemes, more accurate than the
one described by Jos Stam, do exist but often reduce the stability of
the method [332].

Implementations of Jos Stam algorithm on the GPU can be found
as early as 2003, using shaders [333], and a CUDA implementation
can be found as part of the CUDA SDK [332]. Since then, the al-
gorithm has been used proficiently in the film industry1, and some
attempts have been made to apply it to engineering applications [288,
287, 290].

c.2 theory

c.2.1 The Navier-Stokes equation

The Navier-Stokes equations, describing the evolution of an incom-
pressible fluid, can be written as:

1 Jos Stam was awarded the Academy Award for Technical Achievement during the
2008 Oscar ceremony for the design and implementation of the Maya Fluid Effects
system.

203

http://www.autodesk.com/maya
http://www.autodesk.com/maya

∂~u

∂t
+
(
~u · ~∇

)
~u = −

1

ρ
~∇p+ ν~∇2~u+~F (177)

~∇ · ~u = 0 (178)

where ~u (~x, t) = (ux,uy,uz) is the velocity field, p (~x, t) is the pres-
sure field, ρ is the density, ν is the kinematic viscosity, ~F is an external
force applied to the fluid, and ~∇ = (∂x,∂y,∂z) is the nabla operator.

c.2.2 Helmholtz-Hodge decomposition theorem

The Helmholtz-Hodge decomposition theorem states that a vector
field ~u (~x, t) defined on a domain D can be decomposed (in a unique
way) in the form:

~u = ~u1 + ~u2 (179)

where ~u1 is divergence-free (~∇ · ~u = 0), and ~u2 is irrotational (~∇×
~u2 = 0) and can be rewritten as ~u2 = ~∇φ (because ~∇×

(
~∇φ
)
= 0).

This theorem states that any vector field can be decomposed into
the sum of two other vector fields, a divergence-free vector field, and
a irrotational field.

c.2.3 Chorin’s projection algorithm

The algorithm introduced by [151] uses the Helmholtz-Hodge decom-
position to solve the equation (177) in two steps:

1. The first step computes an approximation of the vector field at
the next time-step, written ũ.

2. The second step corrects ũ so that the resulting velocity field
satisfies the incompressibility condition of equation (178).

First Step

If the pressure p is zero (supposedly), the equation (177) becomes,
after an explicit integration in time:

ũ− ~u(n)

∆t
+
(
~u(n) · ~∇

)
~u(n) = ν~∇2~u(n) +~F (180)

where ~u(n) is the velocity field at the n-th time step.

ũ = ~u(n) +∆t
(
−
(
~u(n) · ~∇

)
~u(n) + ν~∇2~u(n) +~F

)
(181)

In order to compute the intermediate velocity field ũ the advection
operator

(
~u(n) · ~∇

)
~u(n) and diffusion operator ~∇2~u(n) would have

to be discretised (using either finite difference or finite volume for
example).

204

Second Step

After the first step, the intermediate velocity field ũ does not sat-
isfy equation 178, hence it is not divergence-free. But the Helmholtz-
Hodge decomposition theorem tells us that it can be decomposed into
a unique divergence free velocity field ~u(n+1) and an irrotational ve-
locity field ~u ′ = ~∇φ.

ũ = ~u(n+1) + ~u ′ (182)

The velocity field ũ needs to be corrected so that ~u(n+1) = ũ− ~u ′

satisfies equation (177). Replacing ~u(n+1) in equation (177) gives:

(ũ− ~u ′) − ~u(n)

∆t
+
(
~u(n) · ~∇

)
~u(n) = −

1

ρ
~∇p(n+1) + ν~∇2~u(n) +~F

(183)
which simplifies in

~u ′ =
∆t

ρ
~∇p(n+1) (184)

so
~u(n+1) = ũ−

∆t

ρ
~∇p(n+1) (185)

The pressure p(n+1) is still unknown, but can be computed using
the incompressibility condition ~∇ · ~u(n+1) = 0 which implies

~∇2p(n+1) = ρ

∆t
~∇ · ũ (186)

This is the standard Poisson equation and can be solved as a linear
system using various numerical methods.

After the computation of the pressure, the intermediate velocity
field ũ can be corrected by subtracting from it the gradient of the
pressure. The resulting velocity field ~u(n+1) satisfies both the Navier-
Stokes equation (177) and the incompressibility equation (178). This
step is sometimes called projection because the approximative velocity
field ũ is projected onto a new divergence free velocity field u(n+1).

c.3 jos stam’s algorithm

The algorithm proposed in [331] is based on the Chorin’s projec-
tion algorithm, but it introduces several approximation in order to
make the computation faster and unconditionally stable. This sec-
tion presents the differences between Jos Stam’s algorithm and the
classical Chorin’s projection algorithm, as well as some details on
the discrete operators used in the Jos Stam’s method (only in two
dimensions for simplicity).

c.3.1 Summary of the method

1. Computation of ũ using the relation:

∂ũ

∂t
= −

(
~u(n) · ~∇

)
~u(n) + ν~∇2~u(n) +~F (187)

205

2. Computation of φ:
Compute ~∇ · ũ, then solve

~∇2φ = ~∇ · ũ (188)

3. Computation of ~u(n+1) using the relation:

~u(n+1) = ũ− ~∇φ (189)

c.3.2 Advection

Instead of solving the advection operator
(
~u · ~∇

)
~u through a com-

putationally expensive finite difference scheme, the velocity field is
updated like a particle system, where each grid cell is represented by
a particle. Using an explicit integration in time, the position ~x(t) of a
particle advected by the velocity field ~u(~x, t) is updated with:

~x(t+∆t) = ~x(t) + ~u(~x, t)∆t (190)

Fluid quantities (such as velocity, temperature or density) can be
advected in the same way. One issue of this explicit discretisation in
time is that it can result in unstable simulation if the magnitude of
~u∆t is greater than the size of a grid cell.

The solution is an implicit discretisation in time. Instead of advect-
ing quantities using the local value of the velocity field, they can be
traced back in time at the position where the particle was at the pre-
vious time step. The implicit time integration of a fluid quantity q is
achieved with the following formula :

q (~x, t+∆t) = q (~x− ~u (~x, t)∆t, t) (191)

In general, the position computed from ~x− ~u (~x, t) does not coin-
cide with a node centre, and the value of q must be interpolated from
the nearest neighbours.

c.3.3 Diffusion

The viscous equation ∂~u
∂t = ν~∇2~u can be solved using an explicit

discretisation

~u (~x, t+∆t) = ~u(~x, t) + ν∆t~∇2~u (~x, t) (192)

where ~∇2 is the discrete form of the Laplace operator. Once again,
this is not stable for large time-steps, and it is better to use the implicit
formulation instead :(

I − ν∆t~∇2
)
~u (~x, t+∆t) = ~u(~x, t) (193)

206

where I is the identity matrix. This a linear system of equations,
which can be solved numerically in various ways, but Jos Stam pro-
posed to use the Jacoby algorithm, an iterative solution technique
that starts with an approximate solution and improves on it at every
iteration.

Transforming a vector field equation into a matrix equation

As, discussed previously, the viscous equation can be rewritten using
an implicit time-stepping scheme as:(

I − ν∆t~∇2
)
~u (~x, t+∆t) = ~u(~x, t) (194)

But this is an equation on vector fields, i.e. ~u(~x) = (ux(x,y, z),
uy(x,y, z), uz(x,y, z)), and in order to be solved by a computer, it
needs to be expressed as a matrix equation. Usually for a two di-
mensional simulation, ~u(~x) is stored on the computer as a 2D matrix,
or more precisely, each component of ~u(~x) is stored as a 2D matrix.
But in order to transform the discrete viscous equation into a sys-
tem of linear equation, each component of ~u(~x) is stored as a one
dimensional vector. The following tables show how to transform a
2D matrix of size (Nx,Ny) into a 1D vector of size Nx ×Ny :

u1,1 u2,1 · · · uNx,1

u1,2 u2,2 · · · uNx,2
...

...
. . .

...

u1,Ny u2,Ny · · · uNx,Ny

 =

u1,1
...

uNx,1

u1,2
...

uNx,Ny

(195)

The Jacobi algorithm

The Jacobi algorithm can solve a matrix equation of the form Ax = b,
where a is the vector of values to solve (in this case either x- or y-
component of ~u or the pressure φ), b a vector of constants, and A is
a matrix (i.e., the Laplace operator).

The Jacoby algorithm starts with an initial guess2 for the solution
x(0), and each step k produces an improved solution x(k). For the
Poisson equation, involving solely the Laplace operator, the matrix
A is a tri-diagonal matrix, and is mainly filled with zeros. It does
not have to be built in memory, and the next iteration can be directly
computed from the previous one using the following formula :

x
(k+1)
i,j =

x
(k)
i−1,j + x

(k)
i+1,j + x

(k)
i,j−1 + x

(k)
i,j+1 +αbi,j

β
(196)

2 A good initial guess is often the value of the field at the previous time-step.

207

where xi,j and bi,j both represent one of the components of the
velocity at location (i, j), α =

(
∆x2

)
/ν∆t and β = 4+α.

c.3.4 Force

The force field ~F(~x, t) is simply added to the current velocity field, by
an explicit Euler integration in time :

~u (~x, t+∆t) = ~u (~x, t) +∆t~F(~x, t) (197)

c.3.5 Projection

Once the intermediate velocity ũ is computed, it needs to be projected
onto a divergence-free velocity-space.

First, the Poisson equation ~∇2φ = ~∇ · ũ is solved using the Jacobi
algorithm as described above :

φ
(k+1)
i,j =

φ
(k)
i−1,j +φ

(k)
i+1,j +φ

(k)
i,j−1 +φ

(k)
i,j+1 −∆x

2
(
~∇ · ũ

)
i,j

4
(198)

where φ is linked to the real pressure via φ = p∆t, and ~∇ · ũ is
computed through finite difference.

Then, the gradient of φ (computed with finite difference) is sub-
tracted from the intermediate velocity ũ.

c.4 implementation

All of the operations in Jos Stam’s algorithm are local to a node, or
involve the closest neighbours, and are hence easily amenable to the
implementation on GPU. A sample implementation can be found as
part of the CUDA SDK [334].

For this thesis work, the algorithm was implemented in three di-
mensions, including the advection-diffusion of temperature and the
vorticity confinement for the turbulence (see [335]), on the GPU us-
ing CUDA. The velocity u is stored as three 3D arrays (i.e. as a vector
field) and the pressure φ is stored as a one 3D array (i.e. as a scalar
field). A temporary velocity and pressure fields (utmp and φtmp) are
also allocated to avoid overwriting cells data.

Each step of the algorithm is implemented as a CUDA kernel, and
the program has the following structure :

1. Advection : ~utmp
x,y,z = ~uxd,yd,zd ,

where ~xd = (xd,yd, zd) = ~x − ~ux,y,z∆t. As ~xd does not, in
general, coincide with the grid, ~uxd,yd,zd is obtained as a tri-
linear interpolation of the 6 neighbour values.

208

2. Diffusion :

~ux,y,z =

(
~u

tmp
x,y,z + ν∆t

(
~u

tmp
x−1,y,z + ~u

tmp
x+1,y,z

+ ~u
tmp
x,y−1,z + ~u

tmp
x,y+1,z

+ ~u
tmp
x,y,z−1 + ~u

tmp
x,y,z+1

))
/ (1+ 6ν∆t)

, (199)

The above operation is reiterated for a specified amount of times.

3. Projection :

a) Divergence of velocity :

φ
tmp
x,y,z =

(
ux+1,y,z −ux−1,y,z

)
/2

+
(
vx,y+1,z −vx,y−1,z

)
/2

+
(
wx,y,z+1 −wx,y,z−1

)
/2

, (200)

where ~u = (u, v,w) in the above.

b) Diffusion of φ, similar to equation (199).

c) Subtract the gradient of φ to the velocity :

ux,y,z = ux,y,z −
(
φx+1,y,z −φx−1,y,z

)
/2

vx,y,z = vx,y,z −
(
φx,y+1,z −φx,y−1,z

)
/2

wx,y,z = wx,y,z −
(
φx,y,z+1 −φx,y,z−1

)
/2

, (201)

4. Add force : ~ux,y,z = ~ux,y,z +~Fx,y,z∆t, followed by another ap-
plication of step 3 to re-establish a divergence-free field.

c.5 numerical experiment

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1
-0.5 -0.2 0.1 0.4 0.7 1

u
y
/U

li
d

y
/L

x/L

ux/Ulid

ux
uy

Albensoeder

Figure 93: Velocity profiles through
the geometric centre lines
in the 3D lid-driven cavity
using Jos Stam’s model.

To test the accuracy of the method, the 3D lid-
driven cavity, as described in section 6.2, is sim-
ulated using a 1283 resolution, ∆t = 0.001 and 100

iterations of the Jacobi algorithm used in the diffu-
sion for a Reynolds number of 1000. It should be
noted that for these settings, the simulation is not
real-time, because they are meant to yield a good
accuracy. Yet, as show on the figure 93, the accu-
racy of the method when compared to the bench-
mark data is not satisfactory, even in such a simple
case.

c.6 summary

While the fast fluid method can potentially
achieve a higher MLups than the LBM, hence

209

could be more computationally efficient, its lack of accuracy, even
for simple benchmark problems caused the method to be put to the
side in favour of the LBM as the core CFD solver for the real-time
indoor air-flow simulation software developed during this thesis.

Nevertheless, the method is promising as it is based directly on the
Navier-Stokes equations, hence the limits in which they are approxi-
mated and the range of validity of the imposed approximation can in
theory be defined clearly. It would be interesting to study the effect
of higher order schemes, such as the MacCormark method [332], or
the improvements proposed in [287, 288].

210

D
I N T R O D U C T I O N T O G P U P R O G R A M M I N G I N
C U D A

d.1 architecture

Architecture Release date

Tesla 2006

Fermi 2010

Kepler 2014

Pascal 2016?

Table 13: Evolution of NVIDIA GPU
architecture.

The CUDA programming model is strongly linked to
the NVIDIA GPU architecture. This actual details of
the architecture changes with every model and gen-
eration (see table 13), but the abstraction provided by
CUDA stays the same, apart from the addition of new
features with each new version, designed to simplify
the programming (see section D.2).

d.1.1 CUDA Thread Organization

The architecture of Nvidia GPUs is based on highly threaded Stream-
ing Multiprocessors (SMs). The Tesla K40, which was used for most
of the present work, belongs to the Kepler architecture and features
fifteen SM, each SM has

• 192 Streaming Processors (SP, i.e. cores) which performs basics
operations in single precision,

• 64 Double Precision Units (DP Unit) for double precision compu-
tations,

• 32 Load/Store Units (LD/ST) for loading and storing data,

• 32 Special Function Units (SFU) for functions like cos() or exp(),

• as well as some dedicated memories of different types and speeds
(see next section).

The architecture of one SM is represented on the figure 94. In prac-
tice, these SM are grouped by tree inside a Graphics Processing Cluster
(GPC) and the Tesla K40 contains five GPC, in total that is 5(GPC)×
3(SM)× 192(SP) = 2880 cores. The architecture of the whole GPU is
reported on figure 95.

The microprocessors manage the creation, organization and execu-
tion of the threads. To do so, the SMs use an architecture named
Single Instruction Multiple Threads (SIMT, specific to Nvidia). A multi-
threaded program is partitioned into blocks of threads that execute
independently from each other, so that a GPU with more cores will
automatically execute the program in less time than a GPU with fewer
cores. More precisely, once a block is assigned to a SM, it further

211

Figure 94: Architecture of one Streaming Multiprocessors for the Tesla K40

(GK110B) NVIDIA GPU. Source: NVIDIA.

divided into groups of 32-threads1 called warps, scheduled by the
SIMT unit. At any time, the SM executes only one of its resident
warps. This allow the other warps to wait for long latency operations
without slowing down the overall execution throughput of the mas-
sive number of execution units. Each SM can accommodate up to 64

warps simultaneously, so each SM can execute up to 64×32 or 2048

threads concurrently. The K40 GPU has 15 SM, it means there can be
15×2048 or 30720 threads actives at the same time. This high num-
ber of threads allow the control units to hide the latency of memory
access.

Indeed, when an instruction executed by threads in a warp needs
to wait for the result of a previously initiated long-latency operation

1 The size of warps is implementation specific and might vary in the future.

212

Figure 95: Architecture of the Tesla K40 (GK110B) Nvidia GPU.
Source: Nvidia. (see zoom on figure 94)

(such as access to the global memory), the warp is placed in a wait-
ing area. Meanwhile, one of the other resident warps is selected for
execution by a priority mechanism.

It is worth noting that CUDA threads are of much lighter weight
than typical CPU threads. CUDA programmers can assume that
these threads take very few cycles to generate and schedule due to
efficient hardware support. This is in contrast with the CPU threads
that typically take thousands of clock cycles to generate and schedule.

d.1.2 Memory model

Figure 96: Overview of the CUDA device
memory model. Source: NVIDIA.

The GPU has its own Dynamic Random Ac-
cess Memory (DRAM, 12GBytes for Tesla K40),
which is not directly accessible by the CPU,
and inversely CPU RAM is not directly acces-
sible by the GPU. Data are copy to or from the
GPU through the PCI express, so data trans-
fers is really slow and it is crucial to minimize
these transfers in a program.

Figure 96 shows an overview of the CUDA
device memory model to understand the allo-
cation, movement, and usage of the various
memory types available on the device. At
the bottom of the picture are represented the
global memory and constant memory these
are the only memory types that the host (the
CPU) can write to and read from. The global

213

memory correspond to the central memory of the GPU, it can be ac-
cess by all the threads in reading and writing, it is the largest (12

GB) but it also has the greatest access latency. The constant mem-
ory is significantly smaller (64 KB) and allow read-only access by the
device but it provides faster access than the global memory.

Above the thread execution boxes in Figure 96 are registers and
shared memories. Variables that reside in these memories can be ac-
cessed at very high speed, however the small size of these memories
(64 KB and 48 KB respectively) limit their usage to small data. Reg-
isters are allocated to individual threads; each thread can only access
its own registers. A kernel function (see D.2.1) typically uses registers
to hold frequently accessed variables that are private to each thread.
Shared memories are allocated to thread blocks; all threads in a block
can access variables in the shared memory locations allocated to the
block, it is hence an efficient means for threads to cooperate.

d.2 programing model

Until 2006, graphic cards were very difficult to use because program-
mers had to use graphic Application Programming Interface (API), like
OpenGL or direct3D to program these chips. These APIs are meant
for graphical programing (like in video games), and are not partic-
ularly adequate for scientific computations. That’s why only a few
scientists could master the skills necessary to use these GPUs at that
time. Consequently, it did not become a widespread programming
phenomenon. Nonetheless, this technology was sufficiently exciting
to inspire some heroic efforts and excellent results.

But everything changed in 2007 with the release of CUDA. The API
C for CUDA is an extension of the C standard which enable the use
of GPUs in order to draw all their computing power out of them. A
CUDA program consists of one or more phases that are executed on
either the host (CPU) or a the device (GPU). The phases that exhibit
little or no data parallelism are implemented in host code. The phases
that exhibit rich amount of data parallelism are implemented in the
device code. The program supplies a single source code encompass-
ing both host and device code. The NVIDIA C Compiler (NVCC)
separates the two. The host code is straight ANSI C code and is com-
piled with the host’s standard C compilers and runs as an ordinary
process. The device code is written using ANSI C extended with key-
words for labeling data-parallel functions, called kernels, and their
associated data structures. The device code is typically further com-
piled by the NVCC and executed on a GPU device.

The execution of a typical CUDA program is composed of three
steps:

1. upload of data from the CPU to the GPU

214

2. invocation of the kernel function on the GPU, this generate a
large number of threads and each thread executes the some
code but on different parts of the data

3. download of the resulting data from the GPU to the CPU.

d.2.1 Threads and Kernels

This section discusses the CUDA kernel functions and the organi-
zations of threads generated by the invocation of kernel functions.
See figure 16 for a visual representation of threads organisation. In
CUDA, a kernel function specifies the code to be executed by all
threads of a parallel phase. Since all threads of a parallel phase exe-
cute the same code, CUDA programming is an instance of the well-
known Single-Program Multiple-Data (SPMD) parallel programming
style, a popular programming style for massively parallel computing
systems.

A kernel is defined by using a CUDA specific keyword :
“__global__” in front of the declaration of a function. This key-
word indicates that the function is a kernel and that it can be called
from host functions to generate a grid of threads. A kernel function
must return a void.

Listing 14: Kernel declaration in CUDA

//kernel declaration
__global__ void kernelFunc(type1 parameter1,

type2 parameter2,
...)

{
//function body

}

When a kernel is invoked, or launched, it is executed as grid of
parallel threads. Threads in a grid are organized into a two-level
hierarchy. At the top level, each grid consists of one or more thread
blocks. And each block in a grid must have the same number of
threads organized in the same manner. The call to a kernel has to
always specify the characteristics of the grid and the blocks:

Listing 15: Kernel call in CUDA

//launch the device computation kernel
kernelFunc<<<grid_size,block_size>>>(parameter1,

parameter2);

A grid of threads is a two dimensional array of three dimensional
blocks of threads. The parameters grid_size and block_size in the

215

previous call are the dimensions of the grid in number of blocks and
the dimension of the blocks in number of threads. These value are
generally of type dim3, which is a structure to define 3D dimension.

Listing 16: Grid and block definition in CUDA

//setup the execution configuration
dim3 grid_size(nb_block_x, nb_block_y);
dim3 block_size(nb_block_x, nb_block_y,

nb_block_z);

Since all threads in a grid execute the same kernel function, they
rely on unique coordinates to distinguish themselves from each other
and to identify the appropriate portion of the data to process. The
CUDA runtine system define two set of coordinates: blockId indi-
cates which block a thread is in and threadId indicates the position
of the thread in the block. The blockId and threadId appear as
built-in variables that are initialized by the runtime system and can
be accessed within the kernel functions. When a thread executes the
kernel function, references to the blockId and threadId variables
return the appropriate values that form coordinates of the thread. In
a similar way, the variables gridDim and blockDim can be used to
know the dimension of the grid and the blocks respectively.

In the grid level, the executing order of blocks in undetermined and
each block is executed completely independently from the others.

In the block level, each block have the same number of threads,
threads from a same block can share data through shared memory
and coordinate their activities using a barrier synchronization func-
tion called syncthreads().

d.2.2 Memory Management

In CUDA, host and devices have separate memory spaces. In order to
execute a kernel on a device, the programmer needs to allocate mem-
ory on the device and transfer pertinent data from the host memory
to the allocated device memory. Similarly, after device execution, the
programmer needs to transfer result data from the device back to the
host and free up the device memory that is no longer needed.

The function cudaMalloc() can be called from the host code to al-
locate some Global Memory. The first parameter for the cudaMalloc
function is the address of a pointer that will point to the allocated
Global Memory. The second parameter gives the requested alloca-
tion size in byte.

The data transfers are handle by the function cudaMemcpy() which
requires four parameters. The first and the second are pointers which
respectively point the destination memory address and the source ad-
dress to be copied from. The third parameter specify the number of

216

bytes to be copied. And the fourth parameters indicates the type of
transfer: from host to device, from device to host, from host to host
and from device to device.

After the computation, cudaFree() is called with pointer to de-
vice data to free the memory on the device.

Listing 17: Memory management in CUDA

type data[N],res[N];
int size = sizeof(type)*N;
type* devPtr;
cudaMalloc((void**)&devPtr, size);
cudaMemcpy(devPtr,data,size,

cudaMemcpyHostToDevice);
[...] //Kernel invocation code
cudaMemcpy(res, devPtr,size,

cudaMemcpyDeviceToHost);
cudaFree(devPtr);

Multidimensional arrays can be achieved by indexing a 1D array
(i.e. by computing a 1D index based on a 3D location) or through the
use of the dedicated functions cudaMallocPitch() and
cudaMallocArray(). These functions can allow for a better align-
ment of data in memory, hence faster memory access.

All these functions allocate global memory, but during the execu-
tion each thread can access to the different levels of memory seen
previously. CUDA defines registers, shared memory, and constant
memory that can be accessed at higher speed and in a more parallel
manner than the global memory.

All automatic variables except for arrays declared in a kernel or a
device function are placed into registers. The scopes of these auto-
matic variables are within individual threads. When a kernel func-
tion declares an automatic variable, a private copy of that variable is
generated for every thread that executes the kernel function. When a
thread terminates, all its automatic variables also cease to exist. Note
that accessing these variables is extremely fast but one must be care-
ful not to exceed the limited capacity of the register storage in the
hardware implementations.

Automatic array variables are not stored in registers. Instead, they
are stored into the global memory and incur long access delays and
potential access congestion. The scopes of these arrays are, same
as automatic scalar variable, within individual threads. Due to the
slow nature of automatic array variables, one should avoid using such
variables.

If a variable declaration is preceded by keywords “__shared__’’,
it declares a shared variable in CUDA. Such declaration must reside
within a kernel function or a device function. The scope of a shared

217

variable is within a thread block, that is, all threads in a block see the
same version of a shared variable. The lifetime of a shared variable
is within the duration of the kernel. Shared variables are an effi-
cient means for threads within a block to collaborate with each other.
Accessing to shared memory is extremely fast and highly parallel.
CUDA programmers often use shared memory to hold the portion of
global memory data that are heavily used in an execution phase of
kernel.

If a variable declaration is preceded by keywords “__constant__’’,
it declares a constant variable in CUDA. Declaration of constant vari-
ables must reside outside any function body. The scope of a constant
variable is all grids, meaning that all threads in all grids see the same
version of a constant variable. The lifetime of a constant variable
is the entire application execution. Constant variable are often used
for variables that provide input values to kernel functions. Constant
variables are stored in the global memory but are cached for efficient
access. However, the total size of constant variables in an application
is quite small (65Kb for Tesla 10 cards) so it can be used only for
few constants. The function cudaMemcpyToSymbol() must used to
transfer data from the host memory to the device constant memory.

d.3 execution model

When a CUDA kernel is launched it generates a grid of threads,
threads blocks are numbered and distributed to the Streaming Mul-
tiprocessors, and resources are dynamically distributed among the
blocks and threads. Then all threads in a blocks run concurrently on
a multiprocessor and once a block has finished its tasks, another block
is launched. This scalability allows the CUDA architecture to span a
wide range of GPUs by simply scaling the number of processors and
memory partitions.

The execution resources in a SM include register, thread block slots,
and thread slots. These resources are dynamically partitioned and as-
signed to thread blocks during runtime. This can alter performances,
from under-utilization of the GPU to the impossibility to run if re-
quired resources are higher than available resources (for example if
the number of threads per blocks is bigger than the maximum num-
ber authorized).

In CUDA, the occupancy is the ratio of active warps to the maxi-
mum number of warps supported on a multiprocessor of the GPU,
and maximizing this value can help to hide the latency of memory
access and increase performances. In the other hand, some optimiza-
tion, like the add of a local variable (which will increase the number
of registers) or the use of shared memory, will increase the number
of required resources and may reduce the occupancy, but will still im-

218

prove performances. It is up to the programmer to find a compromise,
by experimenting.

Thereby, the computation configuration must be though in order
to maximize the use of multiprocessors. Nvidia provide developers
with two tools to ease this task:

• the CUDA Occupancy Calculator allows to compute the multi-
processor occupancy of a GPU by a given CUDA kernel,

• the CUDA Visual Profiler allows to analyze the execution of
kernels and the use of SMs.

219

B I B L I O G R A P H Y

[1] Sergio Hoyas and Javier Jiménez. Scaling of the velocity fluctuations
in turbulent channels up to Reτ = 2003. Physics of Fluids (1994-present),
18(1):011702, 2006. (Cited on page 8.)

[2] C. Bailly and G. Comte-Bellot. Turbulence. Experimental Fluid Me-
chanics. Springer International Publishing, 2015. (Cited on page 8.)

[3] X. He and L.S. Luo. Lattice Boltzmann Model for the Incompressible
Navier-Stokes Equation. Journal of Statistical Physics, 88(3-4):927–944,
1997. (Cited on pages 15, 24, 25, and 32.)

[4] Robert Geist, James Westall, and Robert Schalkoff. Lattice-Boltzmann
Lighting. In Eurographics SYmposium on Rendering, 2004. (Cited on
page 15.)

[5] Robert Geist and James Westall. Lattice-Boltzmann Lighting Models.
GPU GEMS, 4, 2011. (Cited on page 15.)

[6] Paul J. Dellar. An exact energy conservation property of the quantum
lattice Boltzmann algorithm . Physics Letters A, 376(1):6 – 13, 2011.
(Cited on pages 15 and 22.)

[7] T. Ohwada, Pietro Asinari, and D. Yabusaki. Artificial Compressibility
Method and Lattice Boltzmann Method: Similarities and Differences.
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 61(12):3461–
3474, 2011. (Cited on pages 15, 22, and 48.)

[8] J. Hardy, Y. Pomeau, and O. de Pazzis. Time evolution of a two-
dimensional classical lattice system. Phys. Rev. Lett., 31:276–279, Jul
1973. (Cited on page 21.)

[9] Martin Gardner. Mathematical games: The fantastic combinations of
John Conway’s new solitaire game "life". Scientific American, 223(4):
120–123, 1970. (Cited on page 21.)

[10] U. Frisch, B. Hasslacher, and Y. Pomeau. Lattice-gas automata for the
navier-stokes equation. Phys. Rev. Lett., 56:1505–1508, Apr 1986. (Cited
on page 21.)

[11] Uriel Frisch, Dominique D’Humieres, Brosl Hasslacher, Pierre Lalle-
mand, Yves Pomeau, and Jean-Pierre Rivet. Lattice Gas Hydrodynam-
ics in Two and Three Dimensions. Complex Systems, 1(4):649–707, 1987.
(Cited on page 21.)

[12] Guy R. McNamara and Gianluigi Zanetti. Use of the Boltzmann Equa-
tion to Simulate Lattice-Gas Automata. Phys. Rev. Lett., 61:2332–2335,
Nov 1988. (Cited on page 21.)

[13] F. J. Higuera and J. Jiménez. Boltzmann Approach to Lattice Gas Sim-
ulations. EPL (Europhysics Letters), 9(7):663, 1989. (Cited on page 21.)

221

[14] F. J. Higuera, S. Succi, and R. Benzi. Lattice Gas Dynamics with En-
hanced Collisions. EPL (Europhysics Letters), 9(4):345, 1989. (Cited on
page 21.)

[15] P. J. Dellar. Incompressible limits of lattice Boltzmann equations using
multiple relaxation times. J. Comput. Phys., 190:351–370, 2003. (Cited
on pages 22, 61, 186, and 187.)

[16] Li-Shi Luo. Theory of the lattice Boltzmann method: Lattice Boltz-
mann models for nonideal gases. Phys. Rev. E, 62:4982–4996, Oct 2000.
(Cited on page 22.)

[17] R. R. Nourgaliev, T. N. Dinh, T. G. Theofanous, and D. Joseph. The lat-
tice Boltzmann equation method: Theoretical interpretation, numerics
and implications. Int. Multiphase Flow, J, pages 117–169, 2003. (Cited
on page 22.)

[18] Santosh Ansumali and IliyaV. Karlin. Entropy function approach to
the lattice boltzmann method. Journal of Statistical Physics, 107(1-2):
291–308, 2002. (Cited on pages 22 and 45.)

[19] Martin Geier, Andreas Greiner, and Jan G. Korvink. Cascaded digital
lattice boltzmann automata for high reynolds number flow. Phys. Rev.
E, 73:066705, Jun 2006. (Cited on pages 22 and 47.)

[20] D. d’Humieres, I. Ginzburg, M. Krafczyk, P. Lallemand, and L.S. Luo.
Multiple-Relaxation-Time Lattice Boltzmann Models in Three Dimen-
sions. Phil. Trans. R. Soc. A, 360:437–451, 2002. (Cited on pages 22, 25,
and 61.)

[21] Pietro Asinari, T. Ohwada, Eliodoro Chiavazzo, and Antonio Fabio
Di Rienzo. Link-wise Artificial Compressibility Method. JOURNAL
OF COMPUTATIONAL PHYSICS, 231:5109–5143, 2012. (Cited on
pages 22 and 48.)

[22] Zhaoli Guo and T. S. Zhao. Lattice Boltzmann model for incompress-
ible flows through porous media. Phys. Rev. E, 66:036304, Sep 2002.
(Cited on pages 22 and 64.)

[23] Andrew K. Gunstensen and Daniel H. Rothman. Lattice-Boltzmann
studies of immiscible two-phase flow through porous media. Journal
of Geophysical Research: Solid Earth, 98(B4):6431–6441, 1993. (Cited on
pages 22 and 64.)

[24] S. Hou, J. Sterling, S. Chen, and G.D. Doolen. A Lattice Boltzmann Sub-
grid Model for High Reynolds Number Flows, volume 6 of Fields Institute
Communications, pages 151–166. AMS, Providence, 1996. (Cited on
pages 22, 130, and 193.)

[25] Orestis Malaspinas and Pierre Sagaut. Advanced large-eddy simula-
tion for lattice Boltzmann methods: The approximate deconvolution
model. Physics of Fluids, 23(10):105103, 2011. (Cited on pages 22, 52,
and 193.)

[26] Sauro Succi, Giorgio Amati, and Roberto Benzi. Challenges in lattice
Boltzmann computing. Journal of Statistical Physics, 81(1-2):5–16, 1995.
(Cited on pages 22, 52, and 193.)

222

[27] Yan Peng, Wei Liao, Li-Shi Luo, and Lian-Ping Wang. Comparison
of the lattice Boltzmann and pseudo-spectral methods for decaying
turbulence: Low-order statistics . Computers & Fluids, 39(4):568 – 591,
2010. (Cited on pages 22 and 193.)

[28] Leila Jahanshaloo, Emad Pouryazdanpanah, and Nor Azwadi Che
Sidik. A Review on the Application of the Lattice Boltzmann Method
for Turbulent Flow Simulation. Numerical Heat Transfer, Part A: Appli-
cations, 64(11):938–953, 2013. (Cited on pages 22 and 193.)

[29] Li Chen, Qinjun Kang, Yutong Mu, Ya-Ling He, and Wen-Quan Tao.
A critical review of the pseudopotential multiphase lattice Boltzmann
model: Methods and applications . International Journal of Heat and
Mass Transfer, 76:210 – 236, 2014. (Cited on pages 22, 35, and 39.)

[30] Zhaoli Guo, Baochang Shi, and Chuguang Zheng. A coupled lattice
BGK model for the Boussinesq equations. International Journal for Nu-
merical Methods in Fluids, 39(4):325–342, 2002. (Cited on pages 22, 40,
42, and 193.)

[31] GuyR. McNamara, AlejandroL. Garcia, and BerniJ. Alder. A hydrody-
namically correct thermal lattice Boltzmann model. Journal of Statisti-
cal Physics, 87(5-6):1111–1121, 1997. (Cited on pages 22, 40, and 193.)

[32] Xiaoyi He, Shiyi Chen, and Gary D. Doolen. A Novel Thermal Model
for the Lattice Boltzmann Method in Incompressible Limit . Journal
of Computational Physics, 146(1):282 – 300, 1998. (Cited on pages 22

and 193.)

[33] Pierre Lallemand and Li-Shi Luo. Theory of the lattice Boltzmann
method: Acoustic and thermal properties in two and three dimen-
sions. Phys. Rev. E, 68:036706, Sep 2003. (Cited on pages 22 and 193.)

[34] Paul J Dellar. Lattice and discrete Boltzmann equations for fully com-
pressible flow. Computational Fluid and Solid Mechanics, pages 632–635,
2005. (Cited on page 22.)

[35] Jens Zudrop, Sabine Roller, and Pietro Asinari. Lattice Boltzmann
scheme for electrolytes by an extended Maxwell-Stefan approach.
Phys. Rev. E, 89:053310, May 2014. (Cited on page 22.)

[36] Zhaoli Guo, T. S. Zhao, and Yong Shi. A lattice Boltzmann algorithm
for electro-osmotic flows in microfluidic devices. The Journal of Chemi-
cal Physics, 122(14):144907, 2005. (Cited on page 22.)

[37] P. J. Dellar. Lattice kinetic schemes for magnetohydrodynamics. J.
Comput. Phys., 179:95–126, 2002. (Cited on page 22.)

[38] Einat Aharonov and Daniel H. Rothman. Non-Newtonian flow
(through porous media): A lattice-Boltzmann method. Geophysical
Research Letters, 20(8):679–682, 1993. (Cited on pages 22 and 64.)

[39] Burkhard Dunweg and Anthony J.C. Ladd. Lattice Boltzmann Simu-
lations of Soft Matter Systems. Advances in Polymer Science, pages
1–78. Springer Berlin Heidelberg, 2008. (Cited on page 22.)

223

[40] Jian Guo Zhou. Lattice Boltzmann methods for shallow water flows, vol-
ume 4. Springer, 2004. (Cited on page 22.)

[41] S. Succi, G. Bella, and F. Papetti. Lattice Kinetic Theory for Numerical
Combustion. Journal of Scientific Computing, 12(4):395–408, 1997. (Cited
on page 22.)

[42] Pietro Asinari, Subhash C. Mishra, and Romano Borchiellini. A Lattice
Boltzmann Formulation for the Analysis of Radiative Heat Transfer
Problems in a Participating Medium. Numerical Heat Transfer, Part B:
Fundamentals, 57(2):126–146, 2010. (Cited on page 22.)

[43] M. Mendoza, B. M. Boghosian, H. J. Herrmann, and S. Succi. Fast
Lattice Boltzmann Solver for Relativistic Hydrodynamics. Phys. Rev.
Lett., 105:014502, Jun 2010. (Cited on page 22.)

[44] J. Tölke and M. Krafczyk. TeraFLOP computing on a desktop PC
with GPUs for 3D CFD. International Journal of Computational Fluid
Dynamics, 22(7):443–456, 2008. (Cited on pages 22, 74, and 89.)

[45] Olga Filippova and Dieter Hanel. Grid refinement for lattice-bgk mod-
els. Journal of Computational Physics, 147(1):219 – 228, 1998. (Cited on
pages 22 and 54.)

[46] N. Delbosc, J.L. Summers, A.I. Khan, N. Kapur, and C.J. Noakes. Opti-
mized implementation of the lattice boltzmann method on a graphics
processing unit towards real-time fluid simulation. Computers & Math-
ematics with Applications, 67(2):462 – 475, 2014. (Cited on pages 22

and 155.)

[47] Sauro Succi. Lattice Boltzmann 2038. EPL (Europhysics Letters), 109(5):
50001, 2015. (Cited on page 22.)

[48] Philip Gressman and Robert Strain. Global classical solutions of the
Boltzmann equation without angular cut-off. Journal of the American
Mathematical Society, 24(3):771–847, 2011. (Cited on page 23.)

[49] Prabhu Lal Bhatnagar, Eugene P Gross, and Max Krook. A model for
collision processes in gases. I. Small amplitude processes in charged
and neutral one-component systems. Physical review, 94(3):511, 1954.
(Cited on page 24.)

[50] J. Wu and C. Shu. A solution-adaptive lattice Boltzmann method for
two-dimensional incompressible viscous flows. Journal of Computa-
tional Physics, 230(6):2246–2269, 2011. (Cited on page 25.)

[51] Dominique d’Humieres. Generalized Lattice-Boltzmann Equations.
Rarefied Gas Dynamics: Theory and Simulations - Progress in Astronautics
and Aeronautics, pages 450–458, 1992. (Cited on page 25.)

[52] Dominique d’Humières and Irina Ginzburg. Viscosity independent
numerical errors for Lattice Boltzmann models: from recurrence equa-
tions to "magic" collision numbers. Computers & Mathematics with Ap-
plications, 58(5):823–840, 2009. (Cited on page 26.)

224

[53] Irina Ginzburg. Une variation sur les proprietes magiques de modeles de
Boltzmann pour l’ecoulement microscopique et macroscopique. PhD the-
sis, Universite Pierre at Marie Curie, Paris, France, 2009. (Cited on
pages 26 and 188.)

[54] Ilya Karlin, Pietro Asinari, and Sauro Succi. Matrix lattice Boltzmann
reloaded. Philosophical Transactions of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences, 369(1944):2202–2210,
2011. (Cited on page 26.)

[55] YH Qian, Dominique d’Humières, and Pierre Lallemand. Lattice BGK
models for Navier-Stokes equation. EPL (Europhysics Letters), 17(6):479,
1992. (Cited on page 30.)

[56] Sauro Succi. The lattice Boltzmann equation: for fluid dynamics and beyond.
Oxford university press, 2001. (Cited on page 31.)

[57] Zhaoli Guo, Baochang Shi, and Nengchao Wang. Lattice BGK Model
for Incompressible Navier-Stokes Equation . Journal of Computational
Physics, 165(1):288–306, 2000. (Cited on page 32.)

[58] He Nan-Zhong, Wang Neng-Chao, Shi Bao-Chang, and Guo Zhao-
Li. A unified incompressible lattice BGK model and its application
to three-dimensional lid-driven cavity flow. Chinese Physics, 13(1):40,
2004. (Cited on page 32.)

[59] Li-Shi Luo, Wei Liao, Xingwang Chen, Yan Peng, and Wei Zhang.
Numerics of the lattice Boltzmann method: Effects of collision models
on the lattice Boltzmann simulations. Phys. Rev. E, 83:056710, May
2011. (Cited on pages 33, 45, 46, 65, 125, 126, and 133.)

[60] Paul J. Dellar. Lattice Boltzmann algorithms without cubic defects
in Galilean invariance on standard lattices . Journal of Computational
Physics, 259:270 – 283, 2014. (Cited on pages 33 and 47.)

[61] Y.H. Qian. Simulating thermohydrodynamics with lattice BGK mod-
els. Journal of Scientific Computing, 8(3):231–242, 1993. (Cited on
page 33.)

[62] Frank J Alexander, Shiyi Chen, and JD Sterling. Lattice boltzmann
thermohydrodynamics. Physical Review E, 47(4):R2249, 1993. (Cited
on pages 33 and 40.)

[63] Feng Chen, Aiguo Xu, Guangcai Zhang, Yingjun Li, and Sauro Succi.
Multiple-relaxation-time lattice Boltzmann approach to compressible
flows with flexible specific-heat ratio and Prandtl number. EPL (Euro-
physics Letters), 90(5):54003, 2010. (Cited on page 33.)

[64] Feng Chen, Aiguo Xu, Guangcai Zhang, and Yingjun Li. Multiple-
relaxation-time lattice Boltzmann model for compressible fluids.
Physics Letters A, 375(21):2129–2139, 2011. (Cited on page 33.)

[65] Qing Li, YL He, Yong Wang, and WQ Tao. Coupled double-
distribution-function lattice boltzmann method for the compressible
navier-stokes equations. Physical Review E, 76(5):056705, 2007. (Cited
on page 33.)

225

[66] K Qu, C Shu, and YT Chew. Alternative method to construct equilib-
rium distribution functions in lattice-Boltzmann method simulation
of inviscid compressible flows at high Mach number. Physical Review
E, 75(3):036706, 2007. (Cited on page 33.)

[67] Chenghai Sun. Lattice-Boltzmann models for high speed flows. Phys-
ical review E, 58(6):7283, 1998. (Cited on page 33.)

[68] Paul J Dellar. Two routes from the Boltzmann equation to compress-
ible flow of polyatomic gases. Progress in Computational Fluid Dynamics,
an International Journal, 8(1-4):84–96, 2008. (Cited on page 33.)

[69] Guy R McNamara, Alejandro L Garcia, and Berni J Alder. Stabiliza-
tion of thermal lattice Boltzmann models. Journal of Statistical Physics,
81(1-2):395–408, 1995. (Cited on page 33.)

[70] Takeshi Kataoka and Michihisa Tsutahara. Lattice Boltzmann model
for the compressible Navier-Stokes equations with flexible specific-
heat ratio. Physical review E, 69(3):035701, 2004. (Cited on page 33.)

[71] Kun Qu, Chang Shu, and Yong Tian Chew. Simulation of shock-wave
propagation with finite volume lattice Boltzmann method. Interna-
tional Journal of Modern Physics C, 18(04):447–454, 2007. (Cited on
page 33.)

[72] QU KUN. Development of lattice Boltzmann method for compressible
flows. PhD thesis, Northwestern Polytechnical University, China, 2009.
(Cited on page 33.)

[73] J. R. Castrejón-Pita, K. J. Kubiak, A. A. Castrejón-Pita, M. C. T. Wil-
son, and I. M. Hutchings. Mixing and internal dynamics of droplets
impacting and coalescing on a solid surface. Phys. Rev. E, 88:023023,
Aug 2013. (Cited on pages 34 and 39.)

[74] G. Falcucci, S. Chibbaro, S. Succi, X. Shan, and H. Chen. Lattice Boltz-
mann spray-like fluids. EPL (Europhysics Letters), 82(2):24005, 2008.
(Cited on pages 34 and 39.)

[75] Jonas Tölke. Lattice Boltzmann methods for digital rock physics. 23rd
International Conference on Discrete Simulation of Fluid Dynamics,
2014. (Cited on page 34.)

[76] Maclean O Amabeoku, Tariq M Al-Ghamdi, Yaoming Mu, R Ingrain,
and Jonas Tölke. Evaluation and Application of Digital Rock Physics
(DRP) for Special Core Analysis in Carbonate Formations. In IPTC
2013: International Petroleum Technology Conference, 2013. (Cited on
pages 34 and 39.)

[77] Junfeng Zhang. Lattice Boltzmann method for microfluidics: mod-
els and applications. Microfluidics and Nanofluidics, 10(1):1–28, 2011.
(Cited on pages 34 and 39.)

[78] Andrew K. Gunstensen, Daniel H. Rothman, Stéphane Zaleski, and
Gianluigi Zanetti. Lattice Boltzmann model of immiscible fluids. Phys.
Rev. A, 43:4320–4327, Apr 1991. (Cited on page 34.)

226

[79] DanielH. Rothman and JeffreyM. Keller. Immiscible cellular-
automaton fluids. Journal of Statistical Physics, 52(3-4):1119–1127, 1988.
(Cited on page 34.)

[80] Francis J Alexander, Shiyi Chen, and Daryl W Grunau. Hydrody-
namic spinodal decomposition: Growth kinetics and scaling functions.
Physical Review B, 48(1):634, 1993. (Cited on page 35.)

[81] Jonas Tölke. Lattice Boltzmann simulations of binary fluid flow
through porous media. Philosophical Transactions of the Royal Society
of London A: Mathematical, Physical and Engineering Sciences, 360(1792):
535–545, 2002. (Cited on pages 35 and 64.)

[82] Daryl Grunau, Shiyi Chen, and Kenneth Eggert. A lattice Boltzmann
model for multiphase fluid flows. Physics of Fluids A: Fluid Dynamics
(1989-1993), 5(10):2557–2562, 1993. (Cited on page 35.)

[83] U d’Ortona, D Salin, Marek Cieplak, Renata B Rybka, and Jayanth R
Banavar. Two-color nonlinear Boltzmann cellular automata: surface
tension and wetting. Physical Review E, 51(4):3718, 1995. (Cited on
page 35.)

[84] EG Flekkøy. Lattice Bhatnagar-Gross-Krook models for miscible flu-
ids. Physical Review E, 47(6):4247, 1993. (Cited on page 35.)

[85] Xiaowen Shan and Hudong Chen. Lattice Boltzmann model for simu-
lating flows with multiple phases and components. Physical Review E,
47(3):1815, 1993. (Cited on pages 35, 36, and 179.)

[86] Xiaowen Shan and Gary Doolen. Multicomponent lattice-Boltzmann
model with interparticle interaction. Journal of Statistical Physics, 81

(1-2):379–393, 1995. (Cited on page 35.)

[87] Xiaoyi He, Shiyi Chen, and Raoyang Zhang. A lattice boltzmann
scheme for incompressible multiphase flow and its application in sim-
ulation of rayleigh–taylor instability. Journal of Computational Physics,
152(2):642–663, 1999. (Cited on pages 35, 37, and 177.)

[88] Haibo Huang, Daniel T. Thorne, Marcel G. Schaap, and Michael C.
Sukop. Proposed approximation for contact angles in Shan-and-Chen-
type multicomponent multiphase lattice Boltzmann models. Phys. Rev.
E, 76:066701, Dec 2007. (Cited on pages 35 and 179.)

[89] Xiaowen Shan. Pressure tensor calculation in a class of nonideal gas
lattice Boltzmann models. Phys. Rev. E, 77:066702, Jun 2008. doi: 10.
1103/PhysRevE.77.066702. URL http://link.aps.org/doi/10.
1103/PhysRevE.77.066702. (Cited on page 35.)

[90] Daniel Lycett-Brown and Kai H. Luo. Improved forcing scheme in
pseudopotential lattice Boltzmann methods for multiphase flow at ar-
bitrarily high density ratios. Phys. Rev. E, 91:023305, Feb 2015. (Cited
on page 36.)

[91] Peng Yuan and Laura Schaefer. Equations of state in a lattice Boltz-
mann model. Physics of Fluids (1994-present), 18(4):042101, 2006. (Cited
on page 36.)

227

http://link.aps.org/doi/10.1103/PhysRevE.77.066702
http://link.aps.org/doi/10.1103/PhysRevE.77.066702

[92] Michael R. Swift, E. Orlandini, W. R. Osborn, and J. M. Yeomans.
Lattice Boltzmann simulations of liquid-gas and binary fluid systems.
Phys. Rev. E, 54:5041–5052, Nov 1996. (Cited on page 36.)

[93] H Kusumaatmaja, A Dupuis, and Julia M Yeomans. Lattice Boltz-
mann simulations of drop dynamics. Mathematics and Computers in
Simulation, 72(2):160–164, 2006. (Cited on pages 36 and 39.)

[94] Norman F Carnahan and Kenneth E Starling. Equation of state for
nonattracting rigid spheres. The Journal of Chemical Physics, 51(2):635–
636, 1969. (Cited on pages 38 and 177.)

[95] Irina Ginzburg and Konrad Steiner. Lattice Boltzmann model for free-
surface flow and its application to filling process in casting. Journal of
Computational Physics, 185(1):61–99, 2003. (Cited on page 39.)

[96] Cyril W Hirt and Billy D Nichols. Volume of fluid (VOF) method for
the dynamics of free boundaries. Journal of computational physics, 39(1):
201–225, 1981. (Cited on page 39.)

[97] U Rüde and N Thürey. Free surface lattice-Boltzmann fluid simula-
tions with and without level sets. In Vision, Modeling, and Visualization
2004: Proceedings, November 16-18, 2004, Standford, USA, page 199. IOS
Press, 2004. (Cited on page 39.)

[98] Mark Sussman, Peter Smereka, and Stanley Osher. A level set ap-
proach for computing solutions to incompressible two-phase flow.
Journal of Computational physics, 114(1):146–159, 1994. (Cited on
page 39.)

[99] Nils Thurey. Physically based Animation of Free Surface Flows with the
Lattice Boltzmann Method . PhD thesis, 2007. (Cited on page 39.)

[100] Christian F Janßen, Dennis Mierke, Micha Überrück, Silke Gralher,
and Thomas Rung. Validation of the GPU-Accelerated CFD Solver
ELBE for Free Surface Flow Problems in Civil and Environmental En-
gineering. Computation, 3(3):354–385, 2015. (Cited on page 39.)

[101] Shuling Hou, Xiaowen Shan, Qisu Zou, Gary D. Doolen, and Wendy E.
Soll. Evaluation of Two Lattice Boltzmann Models for Multiphase
Flows . Journal of Computational Physics, 138(2):695 – 713, 1997. (Cited
on page 39.)

[102] Xiaowen Shan. Analysis and reduction of the spurious current in a
class of multiphase lattice Boltzmann models. Phys. Rev. E, 73:047701,
Apr 2006. (Cited on page 39.)

[103] Kevin Connington and Taehun Lee. A review of spurious currents in
the lattice Boltzmann method for multiphase flows. Journal of mechan-
ical science and technology, 26(12):3857–3863, 2012. (Cited on page 39.)

[104] Chris Teixeira, Hudong Chen, and David M. Freed. Multi-speed ther-
mal lattice Boltzmann method stabilization via equilibrium under-
relaxation . Computer Physics Communications, 129(1-3):207–226, 2000.
(Cited on page 40.)

228

[105] Y Chen, H Ohashi, and M Akiyama. Thermal lattice Bhatnagar-Gross-
Krook model without nonlinear deviations in macrodynamic equa-
tions. Physical Review E, 50(4):2776, 1994. (Cited on page 40.)

[106] Y Chen, H Ohashi, and M Akiyama. Two-parameter thermal lattice
BGK model with a controllable Prandtl number. Journal of scientific
computing, 12(2):169–185, 1997. (Cited on page 40.)

[107] A Bartoloni, C Battista, S Cabasino, PS Paolucci, J Pech, R Sarno,
GM Todesco, M Torelli, W Tross, P Vicini, et al. LBE simulations
of Rayleigh-Benard convection on the APE100 parallel processor. In-
ternational Journal of Modern Physics C, 4(05):993–1006, 1993. (Cited on
page 40.)

[108] Xiaowen Shan. Simulation of rayleigh-bénard convection using a lat-
tice boltzmann method. Physical Review E, 55(3):2780, 1997. (Cited on
page 40.)

[109] Bruce J Palmer and David R Rector. Lattice Boltzmann algorithm for
simulating thermal flow in compressible fluids. Journal of Computa-
tional Physics, 161(1):1–20, 2000. (Cited on page 40.)

[110] Du Hong-Yan, Chai Zhen-Hua, and Shi Bao-Chang. Lattice Boltz-
mann study of mixed convection in a cubic cavity. Communications in
Theoretical Physics, 56(1):144, 2011. (Cited on page 41.)

[111] Zhaoli Guo, Chuguang Zheng, and Baochang Shi. Discrete lattice
effects on the forcing term in the lattice Boltzmann method. Physical
Review E, 65(4):046308, 2002. (Cited on pages 42 and 150.)

[112] Olga Filippova and Dieter Hänel. A novel lattice BGK approach for
low Mach number combustion. Journal of Computational Physics, 158

(2):139–160, 2000. (Cited on page 42.)

[113] Ahmed Mezrhab, M’hamed Bouzidi, and Pierre Lallemand. Hy-
brid lattice-Boltzmann finite-difference simulation of convective flows.
Computers & Fluids, 33(4):623–641, 2004. (Cited on page 42.)

[114] Frederik Verhaeghe, Bart Blanpain, and Patrick Wollants. Lattice Boltz-
mann method for double-diffusive natural convection. Physical Review
E, 75(4):046705, 2007. (Cited on page 42.)

[115] Christian Obrecht, Frédéric Kuznik, Bernard Tourancheau, and Jean-
Jacques Roux. The TheLMA project: A thermal lattice Boltzmann
solver for the GPU . Computers & Fluids, 54:118 – 126, 2012. (Cited on
page 42.)

[116] Charles S Peskin. Numerical analysis of blood flow in the heart. Jour-
nal of Computational Physics, 25(3):220 – 252, 1977. (Cited on pages 43

and 70.)

[117] Zhi-Gang Feng and Efstathios E Michaelides. The immersed
boundary-lattice boltzmann method for solving fluid-particles inter-
action problems. Journal of Computational Physics, 195(2):602–628, 2004.
(Cited on page 43.)

229

[118] X.D. Niu, C. Shu, Y.T. Chew, and Y. Peng. A momentum exchange-
based immersed boundary-lattice boltzmann method for simulating
incompressible viscous flows. Physics Letters A, 354(3):173 – 182, 2006.
(Cited on page 43.)

[119] D. R. J. Owen, C. R. Leonardi, and Y. T. Feng. An efficient framework
for fluid-structure interaction using the lattice Boltzmann method and
immersed moving boundaries. International Journal for Numerical Meth-
ods in Engineering, 87(1-5):66–95, 2011. (Cited on pages 43, 44, 70, 71,
and 184.)

[120] Daniel A. Reasor, Jonathan R. Clausen, and Cyrus K. Aidun. Cou-
pling the lattice-Boltzmann and spectrin-link methods for the direct
numerical simulation of cellular blood flow. International Journal for
Numerical Methods in Fluids, 68(6):767–781, 2012. (Cited on page 44.)

[121] Xiaoyi He and Gary Doolen. Lattice Boltzmann Method on Curvi-
linear Coordinates System: Flow around a Circular Cylinder. Journal
of Computational Physics, 134(2):306 – 315, 1997. (Cited on pages 44

and 54.)

[122] Anthony J. C. Ladd. Numerical simulations of particulate suspensions
via a discretized Boltzmann equation. Part 1. Theoretical foundation.
Journal of Fluid Mechanics, 271:285–309, 7 1994. (Cited on page 44.)

[123] Anthony J. C. Ladd. Numerical simulations of particulate suspen-
sions via a discretized Boltzmann equation. Part 2. Numerical results.
Journal of Fluid Mechanics, 271:311–339, 7 1994. (Cited on page 44.)

[124] Renwei Mei, Dazhi Yu, Wei Shyy, and Li-Shi Luo. Force evaluation in
the lattice Boltzmann method involving curved geometry. Phys. Rev.
E, 65:041203, Apr 2002. (Cited on pages 44 and 45.)

[125] Pierre Lallemand and Li-Shi Luo. Theory of the lattice Boltzmann
method: Dispersion, dissipation, isotropy, Galilean invariance, and
stability. Phys. Rev. E, 61:6546–6562, Jun 2000. (Cited on pages 45, 61,
and 95.)

[126] Ludwig Boltzmann. Weitere Studien ÃŒber das
WÃ€rmegleichgewicht unter GasmolekÃŒlen. In Kinetische The-
orie II, volume 67 of WTB Wissenschaftliche TaschenbÃŒcher, pages
115–225. Vieweg+Teubner Verlag, 1970. (Cited on page 45.)

[127] Hudong Chen and Chris Teixeira. H-theorem and origins of instabil-
ity in thermal lattice Boltzmann models . Computer Physics Communi-
cations, 129(1-3):21–31, 2000. (Cited on page 45.)

[128] Santosh Ansumali and Iliya V. Karlin. Stabilization of the lattice Boltz-
mann method by the H-theorem: A numerical test. Phys. Rev. E, 62:
7999–8003, Dec 2000. (Cited on pages 45 and 46.)

[129] Orestis Malaspinas, Michel Deville, and Bastien Chopard. Towards a
physical interpretation of the entropic lattice Boltzmann method. Phys.
Rev. E, 78:066705, Dec 2008. (Cited on page 45.)

230

[130] G. Vahala, B. Keating, M. Soe, J. Yepez, L. Vahala, and S. Ziegeler.
Entropic, LES and boundary conditions in lattice Boltzmann simula-
tions of turbulence. The European Physical Journal Special Topics, 171(1):
167–171, 2009. (Cited on page 45.)

[131] Tjalling J Ypma. Historical development of the Newton-Raphson
method. SIAM review, 37(4):531–551, 1995. (Cited on page 46.)

[132] Francesca Tosi, Stefano Ubertini, S. Succi, and I.V. Karlin. Optimiza-
tion strategies for the entropic lattice boltzmann method. Journal of
Scientific Computing, 30(3):369–387, 2007. (Cited on page 46.)

[133] T. Yasuda and N. Satofuka. An improved entropic lattice Boltzmann
model for parallel computation. Computers & Fluids, 45(1):187–190,
2011. 22nd International Conference on Parallel Computational Fluid
Dynamics (ParCFD 2010) ParCFD. (Cited on page 46.)

[134] I. V. Karlin, S. Succi, and S. S. Chikatamarla. Comment on “numerics
of the lattice boltzmann method: Effects of collision models on the lat-
tice boltzmann simulations”. Phys. Rev. E, 84:068701, Dec 2011. (Cited
on page 46.)

[135] Li-Shi Luo. Reply to “comment on ‘numerics of the lattice boltzmann
method: Effects of collision models on the lattice boltzmann simula-
tions”’. Phys. Rev. E, 86:048701, Oct 2012. (Cited on page 46.)

[136] S.S. Chikatamarla and I.V. Karlin. Entropic lattice boltzmann method
for turbulent flow simulations: Boundary conditions. Physica A: Sta-
tistical Mechanics and its Applications, 392(9):1925 – 1930, 2013. (Cited
on page 46.)

[137] I. V. Karlin, F. Bosch, and S. S. Chikatamarla. Gibbs’ principle for the
lattice-kinetic theory of fluid dynamics. Phys. Rev. E, 90:031302, Sep
2014. (Cited on page 46.)

[138] Shyam S. Chikatamarla Fabian Bosch and Ilya Karlin. Entropic multi-
relaxation models for simulation of fluid turbulence. ESAIM: Proceed-
ings and surveys., ?:1–10, 2015. (Cited on page 46.)

[139] A. Mazloomi M, S. S. Chikatamarla, and I. V. Karlin. Entropic Lattice
Boltzmann Method for Multiphase Flows. Phys. Rev. Lett., 114:174502,
May 2015. (Cited on page 46.)

[140] N. Frapolli, S. S. Chikatamarla, and I. V. Karlin. Multispeed entropic
lattice Boltzmann model for thermal flows. Phys. Rev. E, 90:043306,
Oct 2014. (Cited on page 46.)

[141] M Geier. Ab initio derivation of the cascaded Lattice Boltzmann Automaton.
PhD thesis, University of Freiburg–IMTEK, 2006. (Cited on page 47.)

[142] XB Nie, Xiaowen Shan, and H Chen. Galilean invariance of lattice
Boltzmann models. EPL (Europhysics Letters), 81(3):34005, 2008. (Cited
on page 47.)

[143] Daniel Lycett-Brown and Kai H. Luo. Multiphase cascaded lattice
boltzmann method. Computers & Mathematics with Applications, 67(2):
350 – 362, 2014. (Cited on pages 47 and 187.)

231

[144] Daniel Lycett-Brown, Kai H. Luo, Ronghou Liu, and Pengmei Lv. Bi-
nary droplet collision simulations by a multiphase cascaded lattice
boltzmann method. Physics of Fluids, 26(2):023303, 2014. (Cited on
page 47.)

[145] Martin Geier, Martin Schönherr, Andrea Pasquali, and Manfred
Krafczyk. The cumulant lattice boltzmann equation in three dimen-
sions: Theory and validation. Computers & Mathematics with Applica-
tions, (0):–, 2015. (Cited on pages 47 and 48.)

[146] S. Geller, S. Uphoff, and M. Krafczyk. Turbulent jet computations
based on MRT and Cascaded Lattice Boltzmann models. Computers
& Mathematics with Applications, 65(12):1956 – 1966, 2013. (Cited on
pages 48 and 53.)

[147] M. Geier, A. Greiner, and J. G. Korvink. A factorized central moment
lattice boltzmann method. The European Physical Journal Special Topics,
171(1):55–61, 2009. (Cited on page 48.)

[148] KannanN. Premnath and Sanjoy Banerjee. On the three-dimensional
central moment lattice boltzmann method. Journal of Statistical Physics,
143(4):747–794, 2011. (Cited on page 48.)

[149] Ronald A Fisher and John Wishart. The derivation of the pattern
formulae of two-way partitions from those of simpler patterns. Pro-
ceedings of the London Mathematical Society, 2(1):195–208, 1932. (Cited
on page 48.)

[150] Pietro Asinari. Generalized local equilibrium in the cascaded lat-
tice Boltzmann method. Phys. Rev. E, 78:016701, Jul 2008. (Cited on
page 48.)

[151] Alexandre Joel Chorin. A Numerical Method for Solving Incompress-
ible Viscous Flow Problems. Journal of Computational Physics, 2(1):12 –
26, 1967. (Cited on pages 48, 203, and 204.)

[152] Takaji Inamuro. A lattice kinetic scheme for incompressible viscous
flows with heat transfer. Philosophical transactions. Series A, Mathemat-
ical, physical, and engineering sciences, 360(1792):477–484, 2002. (Cited
on page 49.)

[153] Christian Obrecht, Pietro Asinari, Frederic Kuznik, and Jean-Jacques
Roux. High-performance implementations and large-scale validation
of the link-wise artificial compressibility method. Journal of Computa-
tional Physics, 275(0):143 – 153, 2014. (Cited on page 49.)

[154] Christian Obrecht, Pietro Asinari, Frederic Kuznik, and Jean-Jacques
Roux. Thermal link-wise artificial compressibility method: GPU im-
plementation and validation of a double-population model. Computers
& Mathematics with Applications, (0):–, 2015. (Cited on page 49.)

[155] Jonas Latt and Bastien Chopard. Lattice boltzmann method with regu-
larized pre-collision distribution functions. Mathematics and Computers
in Simulation, 72(2-6):165–168, 2006. Discrete Simulation of Fluid Dy-
namics in Complex Systems. (Cited on page 49.)

232

[156] Jonas Latt. Hydrodynamic limit of lattice Boltzmann equations. PhD thesis,
University of Geneva, 2007. (Cited on pages 49 and 72.)

[157] Sergei Konstantinovich Godunov. A difference method for numeri-
cal calculation of discontinuous solutions of the equations of hydro-
dynamics. Matematicheskii Sbornik, 89(3):271–306, 1959. (Cited on
page 50.)

[158] RA Brownlee, Alexander N Gorban, and Jeremy Levesley. Stabiliza-
tion of the lattice Boltzmann method using the Ehrenfests coarse-
graining idea. Physical Review E, 74(3):037703, 2006. (Cited on
page 50.)

[159] RA Brownlee, Alexander N Gorban, and Jeremy Levesley. Stability
and stabilization of the lattice Boltzmann method. Physical Review E,
75(3):036711, 2007. (Cited on page 50.)

[160] RA Brownlee, Alexander N Gorban, and Jeremy Levesley. Nonequi-
librium entropy limiters in lattice Boltzmann methods. Physica A: Sta-
tistical Mechanics and its Applications, 387(2):385–406, 2008. (Cited on
page 50.)

[161] Panos Tamamidis and Dennis N Assanis. Evaluation of various high-
order-accuracy schemes with and without flux limiters. International
Journal for Numerical Methods in Fluids, 16(10):931–948, 1993. (Cited on
page 50.)

[162] Robert A Brownlee, Jeremy Levesley, David Packwood, and Alexan-
der N Gorban. Add-ons for lattice Boltzmann methods: regulariza-
tion, filtering and limiters. Progress in Computational Physics, 3:31–52,
2013. (Cited on page 50.)

[163] Denis Ricot, Simon Marié, Pierre Sagaut, and Christophe Bailly. Lat-
tice Boltzmann method with selective viscosity filter. Journal of Com-
putational Physics, 228(12):4478–4490, 2009. (Cited on page 50.)

[164] J. Smagorinsky. General circulation experiments with the primitive
equations. Monthly Weather Review, 91(3):99–164, 1963. (Cited on
page 51.)

[165] S. Hou, J. Sterling, S. Chen, and G.D. Doolen. A Lattice Boltzmann Sub-
grid Model for High Reynolds Number Flows, volume 6 of Fields Institute
Communications, pages 151–166. AMS, Providence, 1996. (Cited on
pages 51 and 53.)

[166] Huidan Yu, Sharath S. Girimaji, and Li-Shi Luo. DNS and LES of
decaying isotropic turbulence with and without frame rotation using
lattice Boltzmann method. Journal of Computational Physics, 209(2):599

– 616, 2005. (Cited on pages 51 and 53.)

[167] A.M.O. Smith and Tuncer Cebeci. Numerical solution of the turbulent-
boundary-layer equations. Technical report, DTIC Document, 1967.
(Cited on page 52.)

[168] Barrett Stone Baldwin and Harvard Lomax. Thin layer approximation
and algebraic model for separated turbulent flows, volume 257. American
Institute of Aeronautics and Astronautics, 1978. (Cited on page 52.)

233

[169] Dennis A Johnson and LS King. A mathematically simple turbulence
closure model for attached and separated turbulent boundary layers.
AIAA journal, 23(11):1684–1692, 1985. (Cited on page 52.)

[170] Barrett Stone Baldwin and Timothy J Barth. A one-equation turbulence
transport model for high Reynolds number wall-bounded flows. National
Aeronautics and Space Administration, Ames Research Center, 1990.
(Cited on page 52.)

[171] Philipe R Spalart and Stephen R Allmaras. A one-equation turbulence
model for aerodynamic flows. American Institute of Aeronautics and
Astronautics, 1992. (Cited on page 52.)

[172] WP Jones and BEi Launder. The prediction of laminarization with
a two-equation model of turbulence. International journal of heat and
mass transfer, 15(2):301–314, 1972. (Cited on page 52.)

[173] VSASTBCG Yakhot, SA Orszag, S Thangam, TB Gatski, and
CG Speziale. Development of turbulence models for shear flows by a
double expansion technique. Physics of Fluids A: Fluid Dynamics (1989-
1993), 4(7):1510–1520, 1992. (Cited on page 52.)

[174] David C Wilcox et al. Turbulence modeling for CFD, volume 2. DCW
industries La Canada, CA, 1998. (Cited on page 52.)

[175] Florian R Menter. Zonal two equation k-turbulence models for aero-
dynamic flows. AIAA paper, 2906:1993, 1993. (Cited on page 52.)

[176] Christopher M. Teixeira. Incorporating turbulence models into the
lattice-Boltzmann method. Int. J. Mod. Phys. C, 9:1159–1175, 1998.
(Cited on pages 52 and 72.)

[177] C. Shu, Y. Peng, C. F. Zhou, and Y. T. Chew. Application of Taylor
series expansion and Least-squares-based lattice Boltzmann method
to simulate turbulent flows. Journal of Turbulence, 7:N38, 2006. (Cited
on page 52.)

[178] Xiao-Peng Chen. Applications of Lattice Boltzmann Method to Turbu-
lent Flow Around Two-Dimensional Airfoil. Engineering Applications of
Computational Fluid Mechanics, 6(4):572–580, 2012. (Cited on pages 52

and 53.)

[179] Kai Li, Chengwen Zhong, Congshan Zhuo, and Jun Cao. Non-
body-fitted Cartesian-mesh simulation of highly turbulent flows using
multi-relaxation-time lattice Boltzmann method . Computers & Mathe-
matics with Applications, 63(10):1481 – 1496, 2012. (Cited on page 52.)

[180] Kannan N. Premnath, Martin J. Pattison, and Sanjoy Banerjee.
Dynamic subgrid scale modeling of turbulent flows using lattice-
boltzmann method. Physica A: Statistical Mechanics and its Applications,
388(13):2640 – 2658, 2009. (Cited on pages 52 and 53.)

[181] Kannan N. Premnath, Martin J. Pattison, and Sanjoy Banerjee. Gener-
alized lattice boltzmann equation with forcing term for computation
of wall-bounded turbulent flows. Phys. Rev. E, 79:026703, Feb 2009.
(Cited on pages 52 and 53.)

234

[182] Pierre Sagaut. Toward advanced subgrid models for lattice-
boltzmann-based large-eddy simulation: Theoretical formulations.
Computers & Mathematics with Applications, 59(7):2194 – 2199, 2010.
Mesoscopic Methods in Engineering and Science International Con-
ferences on Mesoscopic Methods in Engineering and Science. (Cited
on page 52.)

[183] Orestis Malaspinas and Pierre Sagaut. Consistent subgrid scale mod-
elling for lattice boltzmann methods. Journal of Fluid Mechanics, 700:
514–542, 6 2012. (Cited on page 52.)

[184] S. Stolz and N. A. Adams. An approximate deconvolution proce-
dure for large-eddy simulation. Physics of Fluids, 11(7):1699–1701, 1999.
(Cited on page 52.)

[185] Huidan Yu, Li-Shi Luo, and Sharath S. Girimaji. LES of turbulent
square jet flow using an MRT lattice Boltzmann model. Comput-
ers & Fluids, 35(8-9):957–965, 2006. Proceedings of the First Interna-
tional Conference for Mesoscopic Methods in Engineering and Sci-
ence. (Cited on page 53.)

[186] Shin K. Kang and Yassin A. Hassan. The effect of lattice models within
the lattice boltzmann method in the simulation of wall-bounded tur-
bulent flows. Journal of Computational Physics, 232(1):100 – 117, 2013.
(Cited on page 53.)

[187] B Crouse, M Krafczyk, S KÃŒhner, E Rank, and C van Treeck. In-
door air flow analysis based on lattice boltzmann methods. Energy
and Buildings, 34(9):941–949, 2002. A View of Energy and Bilding Per-
formance Simulation at the start of the third millennium. (Cited on
page 53.)

[188] M. Weickert, G. Teike, O. Schmidt, and M. Sommerfeld. Investiga-
tion of the LES WALE turbulence model within the lattice Boltzmann
framework. Computers & Mathematics with Applications, 59(7):2200 –
2214, 2010. Mesoscopic Methods in Engineering and Science Interna-
tional Conferences on Mesoscopic Methods in Engineering and Sci-
ence. (Cited on pages 53 and 72.)

[189] Sheng Chen. A large-eddy-based lattice Boltzmann model for tur-
bulent flow simulation. Applied Mathematics and Computation, 215(2):
591–598, 2009. (Cited on pages 53 and 130.)

[190] L.S. Luo, M. Krafczyk, and J. Tölke. Large-eddy simulations with a
multiple-relaxation-time LBE model. International Journal of Modern
Physics B, 17:33–39, 2003. (Cited on page 53.)

[191] Xiaopei Liu, Wai-Man Pang, Jing Qin, and Chi-Wing Fu. Turbulence
simulation by adaptive multi-relaxation lattice boltzmann modeling.
Visualization and Computer Graphics, IEEE Transactions on, 20(2):289–302,
Feb 2014. (Cited on page 53.)

[192] JMVA Koelman. A simple lattice boltzmann scheme for navier-stokes
fluid flow. EPL (Europhysics Letters), 15(6):603, 1991. (Cited on
page 54.)

235

[193] Jian Guo Zhou. Mrt rectangular lattice boltzmann method. Inter-
national Journal of Modern Physics C, 23(05):1250040, 2012. (Cited on
page 54.)

[194] Yuan Zong, Cheng Peng, Zhaoli Guo, and Lian-Ping Wang. Design-
ing correct fluid hydrodynamics on a rectangular grid using MRT lat-
tice Boltzmann approach . Computers & Mathematics with Applications,
pages –, 2015. (Cited on page 54.)

[195] Alexandre Dupuis and Bastien Chopard. Theory and applications of
an alternative lattice Boltzmann grid refinement algorithm. Physical
Review E, 67(6):066707, 2003. (Cited on page 54.)

[196] Dazhi Yu, Renwei Mei, and Wei Shyy. A multi-block lattice Boltzmann
method for viscous fluid flows. International journal for numerical meth-
ods in fluids, 39(2):99–120, 2002. (Cited on page 54.)

[197] Daniel Lagrava, Orestis Malaspinas, Jonas Latt, and Bastien Chopard.
Advances in multi-domain lattice Boltzmann grid refinement. Journal
of Computational Physics, 231(14):4808–4822, 2012. (Cited on page 54.)

[198] Yu Chen, Qinjun Kang, Qingdong Cai, and Dongxiao Zhang. Lattice
Boltzmann method on quadtree grids. Physical Review E, 83(2):026707,
2011. (Cited on page 54.)

[199] Bernd Crouse, Ernst Rank, Manfred Krafczyk, and Jonas Tölke. A LB-
based approach for adaptive flow simulations. International Journal of
Modern Physics B, 17(01n02):109–112, 2003. (Cited on page 54.)

[200] Jonas Tölke, Sören Freudiger, and Manfred Krafczyk. An adaptive
scheme using hierarchical grids for lattice boltzmann multi-phase
flow simulations. Computers & fluids, 35(8):820–830, 2006. (Cited on
page 54.)

[201] Xiaoyi He, Li-Shi Luo, and Micah Dembo. Some progress in lattice
Boltzmann method. Part I. Nonuniform mesh grids. Journal of Compu-
tational Physics, 129(2):357–363, 1996. (Cited on page 54.)

[202] Masoud Mirzaei and Amin Poozesh. Simulation of fluid flow in a
body-fitted grid system using the lattice Boltzmann method. Physical
Review E, 87(6):063312, 2013. (Cited on page 54.)

[203] Francesca Nannelli and Sauro Succi. The lattice boltzmann equation
on irregular lattices. Journal of Statistical Physics, 68(3-4):401–407, 1992.
(Cited on page 54.)

[204] Taehun Lee and Ching-Long Lin. A characteristic Galerkin method
for discrete Boltzmann equation. Journal of Computational Physics, 171

(1):336–356, 2001. (Cited on page 54.)

[205] M’hamed Bouzidi, Dominique d’Humières, Pierre Lallemand, and Li-
Shi Luo. Lattice Boltzmann Equation on a Two-dimensional Rectan-
gular Grid. J. Comput. Phys., 172(2):704–717, September 2001. (Cited
on page 54.)

236

[206] Catalin Teodosiu, Raluca Hohota, Gilles Rusaouën, and Monika
Woloszyn. Numerical prediction of indoor air humidity and its ef-
fect on indoor environment. Building and Environment, 38(5):655–664,
2003. (Cited on page 55.)

[207] Richard C Chu, Robert E Simons, Michael J Ellsworth, Roger R
Schmidt, and Vincent Cozzolino. Review of cooling technologies for
computer products. Device and Materials Reliability, IEEE Transactions
on, 4(4):568–585, 2004. (Cited on page 55.)

[208] J-I Choi and Jack R Edwards. Large eddy simulation and zonal mod-
eling of human-induced contaminant transport. Indoor air, 18(3):233–
249, 2008. (Cited on page 55.)

[209] Jonas Latt, Bastien Chopard, Orestis Malaspinas, Michel Deville, and
Andreas Michler. Straight velocity boundaries in the lattice Boltzmann
method. Physical Review E, 77(5):056703, 2008. (Cited on pages 57, 62,
and 72.)

[210] Markus Wittmann, Thomas Zeiser, Georg Hager, and Gerhard Wellein.
Comparison of different propagation steps for lattice Boltzmann meth-
ods . Computers & Mathematics with Applications, 65(6):924 – 935, 2013.
Mesoscopic Methods in Engineering and Science. (Cited on page 59.)

[211] P. Bailey, J. Myre, S.D.C. Walsh, D.J. Lilja, and M.O. Saar. Accelerating
Lattice Boltzmann Fluid Flow Simulations Using Graphics Processors.
In International Conference on Parallel Processing, ICPP 2009., pages 550–
557, Sept 2009. (Cited on pages 59 and 89.)

[212] Pierre Lallemand and Li-Shi Luo. Lattice Boltzmann method for mov-
ing boundaries. Journal of Computational Physics, 184(2):406 – 421, 2003.
(Cited on pages 62, 68, 69, 122, and 181.)

[213] Kim Dehee, Kim Hyung Min, S Myung Jhon, J Stephen Vinay III, and
Buchanan John. A characteristic non-reflecting boundary treatment
in lattice Boltzmann method. Chinese Physics Letters, 25(6):1964, 2008.
(Cited on pages 62 and 72.)

[214] Joris CG Verschaeve. Analysis of the lattice Boltzmann Bhatnagar-
Gross-Krook no-slip boundary condition: Ways to improve accuracy
and stability. Physical Review E, 80(3):036703, 2009. (Cited on page 62.)

[215] Xiaoyi He, Qisu Zou, Li-Shi Luo, and Micah Dembo. Analytic solu-
tions of simple flows and analysis of nonslip boundary conditions for
the lattice Boltzmann BGK model. Journal of Statistical Physics, 87(1-2):
115–136, 1997. (Cited on pages 62, 65, and 118.)

[216] Martha A Gallivan, David R Noble, John G Georgiadis, and Richard O
Buckius. An evaluation of the bounce-back boundary condition for lat-
tice Boltzmann simulations. International Journal for Numerical Methods
in Fluids, 25(3):249–263, 1997. (Cited on page 62.)

[217] Chih-Fung Ho, Cheng Chang, Kuen-Hau Lin, and Chao-An Lin. Con-
sistent boundary conditions for 2d and 3d lattice boltzmann simula-
tions. Computer Modeling in Engineering and Sciences (CMES), 44(2):137,
2009. (Cited on pages 62 and 67.)

237

[218] PA Skordos. Initial and boundary conditions for the lattice Boltzmann
method. Physical Review E, 48(6):4823, 1993. (Cited on page 62.)

[219] Takaji Inamuro, Masato Yoshino, and Fumimaru Ogino. A non-slip
boundary condition for lattice Boltzmann simulations. Physics of Flu-
ids, 7(12):2928–2930, 1995. (Cited on page 62.)

[220] David R Noble, Shiyi Chen, John G Georgiadis, and Richard O Buck-
ius. A consistent hydrodynamic boundary condition for the lattice
Boltzmann method. Physics of Fluids (1994-present), 7(1):203–209, 1995.
(Cited on page 62.)

[221] M’hamed Bouzidi, Mouaouia Firdaouss, and Pierre Lallemand. Mo-
mentum transfer of a Boltzmann-lattice fluid with boundaries. Physics
of Fluids, 13(11):3452–3459, 2001. (Cited on pages 62, 68, and 69.)

[222] Zhaoli Guo, Chuguang Zheng, and Baochang Shi. An extrapolation
method for boundary conditions in lattice Boltzmann method. Physics
of Fluids, 14(6):2007–2010, 2002. (Cited on pages 62 and 72.)

[223] Michael Junk and Zhaoxia Yang. One-point boundary condition for
the lattice Boltzmann method. Phys. Rev. E, 72:066701, Dec 2005. (Cited
on page 62.)

[224] Shiyi Chen, Daniel MartÃnez, and Renwei Mei. On boundary condi-
tions in lattice Boltzmann methods. Physics of Fluids, 8(9):2527–2536,
1996. (Cited on page 62.)

[225] Qisu Zou and Xiaoyi He. On pressure and velocity boundary condi-
tions for the lattice Boltzmann BGK model. Physics of Fluids, 9(6):1591,
1997. (Cited on pages 62, 66, and 118.)

[226] Rupert W. Nash, Hywel B. Carver, Miguel O. Bernabeu, James Het-
herington, Derek Groen, Timm Krüger, and Peter V. Coveney. Choice
of boundary condition for lattice-boltzmann simulation of moderate-
reynolds-number flow in complex domains. Phys. Rev. E, 89:023303,
Feb 2014. (Cited on page 62.)

[227] Dominique d’Humieres and Piere Lallemand. Numerical simulations
of hydrodynamics with lattice gas automata in two dimensions. Com-
plex Systems, 1(4):599–632, 1987. (Cited on page 64.)

[228] Irina Ginzburg. Consistent lattice Boltzmann schemes for the
Brinkman model of porous flow and infinite Chapman-Enskog expan-
sion. Phys. Rev. E, 77:066704, Jun 2008. (Cited on page 64.)

[229] Jian Guo Zhou. Axisymmetric lattice boltzmann method revised. Phys.
Rev. E, 84:036704, Sep 2011. (Cited on page 66.)

[230] Shiladitya Mukherjee and John Abraham. Lattice Boltzmann simu-
lations of two-phase flow with high density ratio in axially symmet-
ric geometry. Phys. Rev. E, 75:026701, Feb 2007. (Cited on pages 66

and 177.)

[231] Kannan N. Premnath and John Abraham. Lattice Boltzmann model
for axisymmetric multiphase flows. Phys. Rev. E, 71:056706, May 2005.
(Cited on pages 66 and 177.)

238

[232] Nils Thürey, Klaus Iglberger, and Ulrich Rüde. Free Surface Flows
with Moving and Deforming Objects for LBM. In Proceedings of Vision,
Modeling and Visualization, volume 2006, pages 193–200, 2006. (Cited
on page 66.)

[233] Martin Hecht and Jens Harting. Implementation of on-site velocity
boundary conditions for D3Q19 lattice Boltzmann simulations. Journal
of Statistical Mechanics: Theory and Experiment, 2010(01):P01018, 2010.
(Cited on pages 66 and 67.)

[234] Christian Obrecht, F. Kuznik, B. Tourancheau, and J.-J. Roux. Direct
Numerical Simulation of the Flow Past an Inclined Flat Plate. Inter-
national Conference for Mesoscopic Methods in Engineering and Sci-
ence, ICMMES, July 2012. (Cited on page 69.)

[235] Christian Obrecht, Frédéric Kuznik, Bernard Tourancheau, and Jean-
Jacques Roux. Efficient GPU implementation of the linearly interpo-
lated bounce-back boundary condition. Computers & Mathematics with
Applications, 65(6):936 – 944, 2013. Mesoscopic Methods in Engineer-
ing and Science. (Cited on page 70.)

[236] Wei Li, Xiaoming Wei, and Arie Kaufman. Implementing lattice Boltz-
mann computation on graphics hardware. The Visual Computer, 19

(7-8):444–456, 2003. (Cited on page 74.)

[237] Zhe Fan, Feng Qiu, Arie Kaufman, and Suzanne Yoakum-Stover. GPU
Cluster for High Performance Computing. In Proceedings of the 2004
ACM/IEEE Conference on Supercomputing, SC ’04, pages 47–, Washing-
ton, DC, USA, 2004. IEEE Computer Society. (Cited on page 74.)

[238] Jonas Tölke. Implementation of a lattice boltzmann kernel using the
compute unified device architecture developed by nvidia. Computing
and Visualization in Science, 13(1):29–39, 2010. (Cited on page 74.)

[239] Adam Lichtl Stephen Jones. GPUs to Mars: Full-Scale Simulation
of SpaceX’s Mars Rocket Engine. GPU Technology Conference, 2015.
(Cited on page 74.)

[240] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Co-
hen, John Tran, Bryan Catanzaro, and Evan Shelhamer. cuDNN: Effi-
cient Primitives for Deep Learning. CoRR, abs/1410.0759, 2014. (Cited
on page 74.)

[241] M. Creel and M. Zubair. High Performance Implementation of an
Econometrics and Financial Application on GPUs. In High Performance
Computing, Networking, Storage and Analysis (SCC), 2012 SC Companion:,
pages 1147–1153, Nov 2012. (Cited on page 74.)

[242] Thomas Kroes, Frits H. Post, and Charl P. Botha. Exposure render: An
interactive photo-realistic volume rendering framework. PLoS ONE, 7

(7):e38586, 07 2012. (Cited on page 74.)

[243] Christian Obrecht, Frédéric Kuznik, Bernard Tourancheau, and Jean-
Jacques Roux. A new approach to the lattice boltzmann method for
graphics processing units. Computers & Mathematics with Applications,

239

61(12):3628–3638, 2011. Mesoscopic Methods for Engineering and Sci-
ence - Proceedings of ICMMES-09 Mesoscopic Methods for Engineer-
ing and Science. (Cited on pages 86 and 89.)

[244] A Lattice-Boltzmann solver for 3D fluid simulation on GPU. Sim-
ulation Modelling Practice and Theory, 25(0):163–171, 2012. (Cited on
page 89.)

[245] J. Habich, T. Zeiser, G. Hager, and G. Wellein. Performance analysis
and optimization strategies for a D3Q19 lattice Boltzmann kernel on
NVIDIA GPUs using CUDA. Advances in Engineering Software, 42(5):
266 – 272, 2011. PARENG 2009. (Cited on page 89.)

[246] Yu Ye, Kenli Li, Yan Wang, and Tan Deng. Parallel computation of
entropic lattice boltzmann method on hybrid cpu-gpu accelerated sys-
tem. Computers & Fluids, 110(0):114–121, 2015. ParCFD 2013. (Cited
on page 89.)

[247] Jiri Kraus. Introduction to CUDA-aware MPI and NVIDIA GPUDirect.
GPU Technology Conference, 2013. (Cited on page 92.)

[248] J. Kraus, M. Pivanti, S.F. Schifano, R. Tripiccione, and M. Zanella.
Benchmarking gpus with a parallel lattice-boltzmann code. In Com-
puter Architecture and High Performance Computing (SBAC-PAD), 2013
25th International Symposium on, pages 160–167, Oct 2013. (Cited on
page 92.)

[249] Christian Obrecht, Frederic Kuznik, Bernard Tourancheau, and Jean-
Jacques Roux. The TheLMA project: Multi-GPU implementation of
the lattice Boltzmann method. International Journal of High Performance
Computing Applications, 25(3):295–303, 2011. (Cited on page 92.)

[250] Christian Obrecht, Frédéric Kuznik, Bernard Tourancheau, and Jean-
Jacques Roux. Multi-gpu implementation of the lattice boltzmann
method. Computers & Mathematics with Applications, 65(2):252 – 261,
2013. Special Issue on Mesoscopic Methods in Engineering and Sci-
ence (ICMMES-2010, Edmonton, Canada). (Cited on page 92.)

[251] Arie Kaufman, Zhe Fan, and Kaloian Petkov. Implementing the lattice
Boltzmann model on commodity graphics hardware. Journal of Statis-
tical Mechanics: Theory and Experiment, 2009(06):P06016, 2009. (Cited
on page 92.)

[252] Alan Gray, Alistair Hart, Oliver Henrich, and Kevin Stratford. Scaling
soft matter physics to thousands of graphics processing units in par-
allel. International Journal of High Performance Computing Applications,
2015. (Cited on page 92.)

[253] Alan Gray, Alistair Hart, Alan Richardson, and Kevin Stratford. Lattice
Boltzmann for Large-Scale GPU Systems, pages 167–174. Advances in
Parallel Computing. IOS PRESS, 2012. (Cited on pages 92 and 93.)

[254] Kenneth Moreland, Brian Wylie, and Constantine Pavlakos. Sort-last
parallel rendering for viewing extremely large data sets on tile dis-
plays. In Proceedings of the IEEE 2001 Symposium on Parallel and Large-
data Visualization and Graphics, PVG ’01, pages 85–92. IEEE Press, 2001.
(Cited on page 93.)

240

[255] M. Januszewski and M. Kostur. Sailfish: A flexible multi-GPU imple-
mentation of the lattice Boltzmann method. Computer Physics Commu-
nications, 185(9):2350 – 2368, 2014. (Cited on pages 93 and 195.)

[256] Simon McIntosh-Smith, Michael Boulton, Dan Curran, and James
Price. On the Performance Portability of Structured Grid Codes on
Many-Core Computer Architectures. In JulianMartin Kunkel, Thomas
Ludwig, and HansWerner Meuer, editors, Supercomputing: 29th Inter-
national Conference, ISC 2014, Leipzig, Germany, June 22-26, 2014, Pro-
ceedings, volume 8488 of Lecture Notes in Computer Science, pages 53–75.
Springer International Publishing, 2014. (Cited on page 100.)

[257] Jiri Kraus. Optimizing a LBM Code For Compute Clusters With Ke-
pler GPUs. GPU Technology Conference, 2013. (Cited on page 106.)

[258] J. Habich, C. Feichtinger, H. Köstler, G. Hager, and G. Wellein. Per-
formance engineering for the lattice boltzmann method on gpgpus:
Architectural requirements and performance results. Computers & Flu-
ids, 80(0):276–282, 2013. Selected contributions of the 23rd Interna-
tional Conference on Parallel Fluid Dynamics ParCFD2011. (Cited on
page 112.)

[259] Nicholas Wilt. The CUDA Handbook : A Comprehensive Guide to
GPU Programming . Addison-Wesley Professional, 2012. (Cited on
page 112.)

[260] Michael Junk, Axel Klar, and Li-Shi Luo. Asymptotic analysis of the
lattice Boltzmann equation. J. Comput. Phys., 210:676–704, 2005. (Cited
on pages 118 and 125.)

[261] C. K. Aidun, N. G. Triantafillopoulos, and J. D. Benson. Global stabil-
ity of a lid-driven cavity with throughflow: Flow visualization stud-
ies. Physics of Fluids A: Fluid Dynamics, 3(9):2081–2091, 1991. (Cited on
page 121.)

[262] J. R. Koseff and R. L. Street. The Lid-Driven Cavity Flow: A Synthesis
of Qualitative and Quantitative Observations. 106(4):390, 1984. (Cited
on page 121.)

[263] U Ghia, K.N Ghia, and C.T Shin. High-Re solutions for incompressible
flow using the Navier-Stokes equations and a multigrid method. Jour-
nal of Computational Physics, 48(3):387–411, 1982. (Cited on pages 121,
122, 123, 125, and 129.)

[264] W a R C Ku and Richard S Hirsh. A Pseudospectral Method for So-
lution of the Three-Dimensional Incompressible Navier-Stokes Equa-
tions. Journal of Computational Physics, 70:439–462, 1987. (Cited on
pages 121 and 133.)

[265] S. Albensoeder and H. C. Kuhlmann. Accurate three-dimensional lid-
driven cavity flow. Journal of Computational Physics, 206(2):536–558,
2005. (Cited on pages 121 and 133.)

[266] Y. Ning and K. N. Premnath. Numerical Study of the Properties of
the Central Moment Lattice Boltzmann Method. ArXiv e-prints, 2012.
(Cited on pages 122, 125, 126, and 127.)

241

[267] A. Montessori, G. Falcucci, P. Prestininzi, M. La Rocca, and S. Succi.
Regularized lattice Bhatnagar-Gross-Krook model for two- and three-
dimensional cavity flow simulations. Phys. Rev. E, 89:053317, May
2014. (Cited on pages 126 and 127.)

[268] E. Aslan, I. Taymaz, and A. C. Benim. Investigation of the Lattice
Boltzmann SRT and MRT Stability for Lid Driven Cavity Flow. Inter-
national Journal of Materials, Mechanics and Manufacturing, 2(4):317–324,
2014. (Cited on page 126.)

[269] Ercan Erturk. Discussions on driven cavity flow. International Jour-
nal for Numerical Methods in Fluids, 60(3):275–294, 2009. (Cited on
page 129.)

[270] G. De Vahl Davis. Natural convection of air in a square cavity: A
bench mark numerical solution. International Journal for Numerical
Methods in Fluids, 3(3):249–264, 1983. (Cited on pages 145 and 148.)

[271] David A. Mayne, Asif S. Usmani, and Martin Crapper. h-adaptive
finite element solution of high Rayleigh number thermally driven cav-
ity problem. International Journal of Numerical Methods for Heat & Fluid
Flow, 10(6):598–615, 2000. (Cited on page 145.)

[272] M. Hortmann, M. Peric, and G. Scheuerer. Finite volume multigrid
prediction of laminar natural convection: Benchmark solutions. In-
ternational Journal for Numerical Methods in Fluids, 11(2):189–207, 1990.
(Cited on page 145.)

[273] P Le Quere and T.Alziary De Roquefortt. Computation of natural
convection in two-dimensional cavities with Chebyshev polynomi-
als. Journal of Computational Physics, 57(2):210–228, 1985. (Cited on
page 145.)

[274] P. Le Quere. Accurate solutions to the square thermally driven cavity
at high Rayleigh number. Computers & Fluids, 20(1):29–41, 1991. (Cited
on page 145.)

[275] Bert Blocken and Jan Carmeliet. A review of wind-driven rain re-
search in building science. Journal of Wind Engineering and Industrial
Aerodynamics, 92(13):1079 – 1130, 2004. (Cited on page 153.)

[276] Bert Blocken, Ted Stathopoulos, Jan Carmeliet, and Jan L.M. Hensen.
Application of computational fluid dynamics in building performance
simulation for the outdoor environment: an overview. Journal of Build-
ing Performance Simulation, 4(2):157–184, 2011. (Cited on page 153.)

[277] B. Blocken, G. Dezso, J. van Beeck, and J. Carmeliet. Comparison
of calculation models for wind-driven rain deposition on building fa-
cades. Atmospheric Environment, 44(14):1714 – 1725, 2010. (Cited on
page 153.)

[278] H. Boyer, J.P. Chabriat, B. Grondin-Perez, C. Tourrand, and J. Brau.
Thermal building simulation and computer generation of nodal mod-
els. Building and Environment, 31(3):207 – 214, 1996. (Cited on
page 153.)

242

[279] Ahmed Cherif Megri and Fariborz Haghighat. Zonal Modeling for
Simulating Indoor Environment of Buildings: Review, Recent Devel-
opments, and Applications. HVAC&R Research, 13(6):887–905, 2007.
(Cited on page 153.)

[280] Liangzhu Wang and Qingyan Chen. Validation of a coupled
multizone-cfd program for building airflow and contaminant trans-
port simulations. HVAC&R Research, 13(2):267–281, 2007. (Cited on
page 153.)

[281] Zhiqiang Zhai. Application of Computational Fluid Dynamics in
Building Design: Aspects and Trends. Indoor and Built Environment,
15(4):305–313, 2006. (Cited on page 153.)

[282] Eliton Fontana, Adriano da Silva, and Viviana Cocco Mariani. Natural
convection in a partially open square cavity with internal heat source:
An analysis of the opening mass flow. International Journal of Heat and
Mass Transfer, 54(7-8):1369–1386, 2011. (Cited on page 153.)

[283] Omar S. Asfour and Mohamed B. Gadi. A comparison between CFD
and Network models for predicting wind-driven ventilation in build-
ings. Building and Environment, 42(12):4079 – 4085, 2007. Indoor Air
2005 Conference. (Cited on page 153.)

[284] Bin Zhao and Ping Guan. Modeling particle dispersion in person-
alized ventilated room. Building and Environment, 42(3):1099 – 1109,
2007. (Cited on page 153.)

[285] T.X. Qin, Y.C. Guo, C.K. Chan, and W.Y. Lin. Numerical simulation
of the spread of smoke in an atrium under fire scenario. Building and
Environment, 44(1):56 – 65, 2009. (Cited on page 153.)

[286] C. J. Noakes, P. A. Sleigh, A. R. Escombe, and C. B. Beggs. Use of
cfd analysis in modifying a tb ward in lima, peru. Indoor and Built
Environment, 15(1):41–47, 2006. (Cited on page 153.)

[287] Mingang Jin, Wangda Zuo, and Qingyan Chen. Improvements of Fast
Fluid Dynamics for Simulating Air Flow in Buildings. Numerical Heat
Transfer, Part B: Fundamentals, 62(6):419–438, 2012. (Cited on pages 153,
154, 203, and 210.)

[288] Wangda Zuo, Jianjun Hu, and Qingyan Chen. Improvements on FFD
modeling by using different numerical schemes. Numerical Heat Trans-
fer, Part B Fundamentals, 58:1–16, 2010. (Cited on pages 153, 154, 203,
and 210.)

[289] C. Beghein, Y. Jiang, and Q. Y. Chen. Using large eddy simulation
to study particle motions in a room. Indoor Air, 15(4):281–290, 2005.
(Cited on page 154.)

[290] W. Zuo and Q. Chen. Real-time or faster-than-real-time simulation of
airflow in buildings. Indoor Air, 19(1):33–44, 2009. (Cited on pages 154

and 203.)

[291] Marcel Loomans. The measurement and simulation of indoor air flow. Uni-
versity of Eindhoven, 1998. (Cited on page 154.)

243

[292] M.-F. King, C.J. Noakes, P.A. Sleigh, and M.A. Camargo-Valero.
Bioaerosol deposition in single and two-bed hospital rooms: A nu-
merical and experimental study. Building and Environment, 59(0):436 –
447, 2013. (Cited on pages 154 and 157.)

[293] Jonathan Koomey. Growth in Data center electricity use 2005 to 2010.
Oakland, CA: Analytics Press, August 2011. (Cited on page 163.)

[294] Liam Newcombe, Mark Acton, John Booth, Sophia Flucker, Paul
Latham, Steve Strutt, and Robert Tozer. 2012 Best Practices for the
EU Code of Conduct on Data Centres. European Commision, Joint
Research Centre, 2012. (Cited on page 163.)

[295] Energy Efficiency in Data Centers: Recommendations for
Government-Industry Coordination. U.S. Department of Energy and
U.S. Environmental Protection Agency, 2008. (Cited on page 163.)

[296] Yogendra Joshi and Pramod Kumar. Introduction to Data Center En-
ergy Flow and Thermal Management. In Yogendra Joshi and Pramod
Kumar, editors, Energy Efficient Thermal Management of Data Centers,
pages 1–38. Springer US, 2012. (Cited on page 163.)

[297] Emad Samadiani, Jeffrey Rambo, and Yogendra Joshi. Numerical
modeling of perforated tile flow distribution in a raised-floor data
center. Journal of Electronic Packaging, 132(2):021002, 2010. (Cited on
page 163.)

[298] Jayantha Siriwardana, Saman K Halgamuge, Thomas Scherer, and
Wolfgang Schott. Minimizing the thermal impact of computing equip-
ment upgrades in data centers. Energy and Buildings, 50:81–92, 2012.
(Cited on page 163.)

[299] Kyosung Choo, Renan Manozzo Galante, and Michael M. Ohadi. En-
ergy consumption analysis of a medium-size primary data center in
an academic campus. Energy and Buildings, 76(0):414 – 421, 2014.
(Cited on page 163.)

[300] Dustin W. Demetriou and H. Ezzat Khalifa. Optimization of Enclosed
Aisle Data Centers Using Bypass Recirculation. Journal of Electronic
Packaging, 134:020904, June 2012. (Cited on page 163.)

[301] Vaibhav K Arghode, Vikneshan Sundaralingam, Yogendra Joshi, and
Wally Phelps. Thermal characteristics of open and contained data
center cold aisle. Journal of Heat Transfer, 135(6):061901, 2013. (Cited
on page 163.)

[302] S.K. Shrivastava, B.G. Sammakia, R. Schmidt, M. Iyengar, and J.W.
VanGilder. Experimental-Numerical Comparison for a High-Density
Data Center: Hot Spot Heat Fluxes in Excess of 500 W/FT2. In
Thermal and Thermomechanical Phenomena in Electronics Systems, 2006.
ITHERM ’06. The Tenth Intersociety Conference on, pages 402–411, May
2006. (Cited on page 163.)

[303] Vaibhav K Arghode, Pramod Kumar, Yogendra Joshi, Thomas Weiss,
and Gary Meyer. Rack level modeling of air flow through perforated
tile in a data center. Journal of Electronic Packaging, 135(3):030902, 2013.
(Cited on page 164.)

244

[304] Vaibhav K Arghode and Yash Joshi. Modeling strategies for air
flow through perforated tiles in a data center. Components, Packaging
and Manufacturing Technology, IEEE Transactions on, 3(5):800–810, 2013.
(Cited on page 164.)

[305] Kenneth Moreland. Diverging Color Maps for Scientific Visualization.
In George Bebis, Richard Boyle, Bahram Parvin, Darko Koracin, Yoshi-
nori Kuno, Junxian Wang, Renato Pajarola, Peter Lindstrom, André
Hinkenjann, MiguelL. EncarnaÃ§Ã£o, ClÃ¡udioT. Silva, and Daniel
Coming, editors, Advances in Visual Computing, volume 5876 of Lecture
Notes in Computer Science, pages 92–103. Springer Berlin Heidelberg,
2009. (Cited on page 172.)

[306] Shiladitya Mukherjee and John Abraham. Investigations of drop im-
pact on dry walls with a lattice-boltzmann model. Journal of colloid and
interface science, 312(2):341–354, 2007. (Cited on pages 176 and 177.)

[307] JR Castrejón-Pita, ES Betton, KJ Kubiak, MCT Wilson, and IM Hutch-
ings. The dynamics of the impact and coalescence of droplets on a
solid surface. Biomicrofluidics, 5(1):014112, 2011. (Cited on page 176.)

[308] R Rioboo, M Marengo, and C Tropea. Time evolution of liquid drop
impact onto solid, dry surfaces. Experiments in Fluids, 33(1):112–124,
2002. (Cited on page 176.)

[309] S Chandra and CT Avedisian. On the collision of a droplet with a solid
surface. In Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, volume 432, pages 13–41. The Royal
Society, 1991. (Cited on page 176.)

[310] Ilker S Bayer and Constantine M Megaridis. Contact angle dynam-
ics in droplets impacting on flat surfaces with different wetting char-
acteristics. Journal of Fluid Mechanics, 558:415–449, 2006. (Cited on
page 176.)

[311] ZB Yan, KC Toh, F Duan, TN Wong, KF Choo, PK Chan, and YS Chua.
Experimental study of impingement spray cooling for high power de-
vices. Applied Thermal Engineering, 30(10):1225–1230, 2010. (Cited on
page 176.)

[312] Andrés J Díaz and Alfonso Ortega. Investigation of a gas-propelled
liquid droplet impinging onto a heated surface. International Journal
of Heat and Mass Transfer, 67:1181–1190, 2013. (Cited on page 176.)

[313] Mahsa Ebrahim. Identification of the Impact Regimes of a Liquid Droplet
Propelled by a Gas Stream Impinging onto a Heated Surface . PhD the-
sis, University of Villanova, forthcoming. (Cited on pages 176, 177,
and 179.)

[314] Kirijen Vengadasalam. Water in diesel fuel filtration using lattice Boltz-
mann method . PhD thesis, University of Leeds, forthcoming. (Cited
on pages 179 and 180.)

[315] Kenneth S Sutherland and George Chase. Filters and filtration handbook.
Elsevier, 2011. (Cited on page 179.)

245

[316] EN 590. Automotive fuels - diesel - requirements and test methods,
1999. British Standards Institution. (Cited on page 179.)

[317] Kenneth Perlin. Course in advanced image synthesis. In ACM SIG-
GRAPH Conference, volume 18, 1984. (Cited on page 180.)

[318] Faith A Morrison. Data correlation for drag coefficient for sphere.
Michigan Technology University, Houghton, MI, 2010. (Cited on
page 182.)

[319] Carl Wieselsberger. New data on the laws of fluid resistance. 1922.
(Cited on pages 182 and 183.)

[320] AE Hamielec and JD Raal. Numerical studies of viscous flow around
circular cylinders. Physics of Fluids (1958-1988), 12(1):11–17, 1969.
(Cited on pages 182 and 183.)

[321] Bengt Fornberg. Steady viscous flow past a circular cylinder up to
reynolds number 600. Journal of Computational Physics, 61(2):297–320,
1985. (Cited on page 183.)

[322] Herrmann Schlichting, Klaus Gersten, and Klaus Gersten. Boundary-
layer theory. Springer Science & Business Media, 2000. (Cited on
page 183.)

[323] K. Yusuf Billah and Robert H. Scanlan. Resonance, tacoma narrows
bridge failure, and undergraduate physics textbooks. American Journal
of Physics, 59(2):118–124, 1991. (Cited on page 184.)

[324] Julien Favier, Alistair Revell, and Alfredo Pinelli. A Lattice Boltzmann-
Immersed Boundary method to simulate the fluid interaction with
moving and slender flexible objects. Journal of Computational Physics,
261:145–161, 2014. (Cited on page 184.)

[325] Rodrigo Guadarrama-Lara. Modelling fluid-structure interaction prob-
lems with coupled DEM-LBM . PhD thesis, University of Leeds, forth-
coming. (Cited on pages 184 and 185.)

[326] Rodrigo Guadarrama-Lara, Xiaodong Jia, and Michael Fairweather. A
meso-scale model for fluid-microstructure interactions. Procedia Engi-
neering, 102:1356–1365, 2015. (Cited on page 184.)

[327] Michael L Minion and David L Brown. Performance of under-resolved
two-dimensional incompressible flow simulations, ii. Journal of Com-
putational Physics, 138(2):734–765, 1997. (Cited on page 186.)

[328] Paul J. Dellar. Bulk and shear viscosities in lattice Boltzmann equa-
tions. Phys. Rev. E, 64:031203, Aug 2001. (Cited on page 187.)

[329] Michael D McKay, Richard J Beckman, and William J Conover. A
comparison of three methods for selecting values of input variables
in the analysis of output from a computer code. Technometrics, 42(1):
55–61, 2000. (Cited on page 190.)

[330] G Gary Wang. Adaptive response surface method using inherited
latin hypercube design points. Journal of Mechanical Design, 125(2):
210–220, 2003. (Cited on page 190.)

246

[331] Jos Stam. Stable fluids. In Proceedings of the 26th annual conference
on Computer graphics and interactive techniques, pages 121–128. ACM
Press/Addison-Wesley Publishing Co., 1999. (Cited on pages 203

and 205.)

[332] Andrew Selle, Ronald Fedkiw, Byungmoon Kim, Yingjie Liu, and
Jarek Rossignac. An unconditionally stable MacCormack method.
Journal of Scientific Computing, 35(2-3):350–371, 2008. (Cited on
pages 203 and 210.)

[333] Mark J Harris, William V Baxter, Thorsten Scheuermann, and
Anselmo Lastra. Simulation of cloud dynamics on graphics hard-
ware. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS con-
ference on Graphics hardware, pages 92–101. Eurographics Association,
2003. (Cited on page 203.)

[334] Nolan Goodnight. CUDA/OpenGL fluid simulation. NVIDIA Corpo-
ration, 2007. (Cited on page 208.)

[335] Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. Visual simula-
tion of smoke. In Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, pages 15–22. ACM, 2001. (Cited on
page 208.)

247

	Acknowledgments
	Abstract
	Publications
	1 Introduction
	1.1 Background and Motivations
	1.2 Computational fluid dynamics (CFD)
	1.2.1 Numerical Methods for CFD
	1.2.2 Thermal Flows
	1.2.3 Multiphase Flows
	1.2.4 Turbulence Modelling
	1.2.5 Commercial CFD Software.

	1.3 Real-Time Fluid Simulation
	1.4 Lattice Boltzmann Method (LBM)
	1.5 Graphics Processing Unit (GPU)
	1.6 Objectives of the Thesis
	1.7 Thesis Outline

	2 The Lattice Boltzmann Method
	2.1 Introduction
	2.1.1 Historical background
	2.1.2 Kinetic Theory
	2.1.3 The Boltzmann Equation
	2.1.4 The BGK Approximation
	2.1.5 Multiple Relaxation Times

	2.2 General Framework of the LBM
	2.2.1 Space and Time Discretisation
	2.2.2 Algorithm

	2.3 LBM for multi-physics applications
	2.3.1 Standard LBM Model
	2.3.2 Incompressible Model
	2.3.3 LBM for Compressible Flows
	2.3.4 Multiphase and Multicomponent Models
	2.3.5 Thermal Models
	2.3.6 Fluid-Structure Interaction

	2.4 Alternative Models
	2.4.1 Entropic LBM
	2.4.2 Cascaded LBM
	2.4.3 Link-Wise Artificial Compressibility Method
	2.4.4 Further Reading

	2.5 Turbulence modelling in LBM
	2.5.1 Large Eddy Simulation
	2.5.2 RANS Based Models
	2.5.3 Further Reading

	2.6 LBM with Non-Uniform Grids
	2.7 Summary

	3 LBM Algorithms
	3.1 Program Framework
	3.1.1 Initialisation Step
	3.1.2 Streaming Step
	3.1.3 Collision Step
	3.1.4 Boundary Step

	3.2 Boundary Conditions
	3.2.1 Periodic
	3.2.2 Force Equilibrium
	3.2.3 Bounce-Back
	3.2.4 Free Slip
	3.2.5 Zou-He
	3.2.6 Ho-Cheng-Lin
	3.2.7 Interpolated Bounce-Back
	3.2.8 Immersed Boundary Method
	3.2.9 Further Reading

	4 Optimised Implementation on GPU
	4.1 A Brief History of GPU
	4.2 Introduction to GPU programming
	4.2.1 GPU programming methodology
	4.2.2 Differences between CPU and GPU
	4.2.3 SIMD programming philosophy
	4.2.4 Code sample

	4.3 Implementation of the LBM on GPU
	4.4 Optimisation of the LBM on GPU
	4.4.1 Minimise memory access
	4.4.2 Increase data coalescence
	4.4.3 The streaming issue
	4.4.4 Branch Divergence
	4.4.5 Other optimisations

	4.5 Real-time interactive visualisation
	4.6 Multi-GPU programming
	4.7 GPU code generation
	4.8 Summary

	5 Computational Performance
	5.1 Performance Study
	5.1.1 On measuring performances
	5.1.2 Single GPU performances
	5.1.3 Multi-GPU performances
	5.1.4 Maximum performance
	5.1.5 Performance of other models
	5.1.6 Effect of the streaming model
	5.1.7 The issue of branch divergence

	5.2 Optimisation tricks and tweaks
	5.2.1 Using the NVIDIA Visual Profiler
	5.2.2 Tweaking for the best performance
	5.2.3 Error Correcting Code
	5.2.4 GPU boost

	5.3 Real-Time Capability
	5.4 Summary

	6 Validation
	6.1 2D Poiseuille Flow
	6.2 Lid-driven cavity
	6.2.1 Problem description
	6.2.2 Two-dimensional results
	6.2.3 Three-dimensional results

	6.3 Thermal diffusion in a square cavity
	6.3.1 Problem description.
	6.3.2 Effect of the choice of boundary condition
	6.3.3 Effect of the initial temperature.
	6.3.4 Effect of the relaxation time
	6.3.5 Effect of the lattice resolution
	6.3.6 Conclusion

	6.4 Thermal advection in a channel
	6.4.1 Problem description
	6.4.2 Analytical solution
	6.4.3 Results and Discussion
	6.4.4 Conclusion

	6.5 Natural convection in a square cavity
	6.5.1 Methodology
	6.5.2 Effect of the Rayleigh number.
	6.5.3 Effect of the resolution.
	6.5.4 Effect of the forcing scheme

	6.6 Summary

	7 Application to Indoor Air Flows
	7.1 Introduction
	7.2 Ventilation Chamber
	7.2.1 Problem Description
	7.2.2 Results
	7.2.3 Conclusion

	7.3 Data centre
	7.3.1 Problem Description
	7.3.2 Results
	7.3.3 Conclusion

	7.4 Hospital Room
	7.5 Summary

	8 Other Applications
	8.1 Introduction
	8.2 Multiphase Flows
	8.2.1 Droplet Impingement
	8.2.2 Water in Diesel Filtration

	8.3 Drag and lift on cylinder
	8.4 Fluid-Structure Interaction
	8.5 MRT and Cascaded parameter search optimisation
	8.6 Summary

	9 Conclusions
	9.1 Summary of Results
	9.2 Future Work

	A Node Descriptions
	A.1 D2Q9
	A.2 D3Q19

	B Unit Conversion
	C Fast Fluid Dynamics
	C.1 History
	C.2 Theory
	C.2.1 The Navier-Stokes equation
	C.2.2 Helmholtz-Hodge decomposition theorem
	C.2.3 Chorin's projection algorithm

	C.3 Jos Stam's algorithm
	C.3.1 Summary of the method
	C.3.2 Advection
	C.3.3 Diffusion
	C.3.4 Force
	C.3.5 Projection

	C.4 Implementation
	C.5 Numerical Experiment
	C.6 Summary

	D Introduction to GPU programming in CUDA
	D.1 Architecture
	D.1.1 CUDA Thread Organization
	D.1.2 Memory model

	D.2 Programing Model
	D.2.1 Threads and Kernels
	D.2.2 Memory Management

	D.3 Execution Model

	Bibliography

