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Abstract

This thesis addresses the problems in structural learning, particularly focusing on struc-

tural characterization and matching. To this end, we present an approach named Ihara

coefficients, which is capable of characterizing structures of varying order into pattern

space related to prime cycles. Furthermore, we develop a matching algorithm for es-

tablishing correspondences between structures by conducting dominant cluster analysis

(DCA) on a direct product hypergraph (DPH) .

In Chapter 3 we describe how to extract characteristics from the Ihara zeta function

for the purpose of clustering graphs. The novel contributions of this chapter are twofold.

First, we demonstrate how to characterize unweighted graphs in a permutation invariant

manner using the polynomial coefficients from the Ihara zeta function, i.e. the Ihara co-

efficients. Second, we generalize the definition of the Ihara coefficients to edge-weighted

graphs. For an unweighted graph, the Ihara zeta function is the reciprocal of a quasi char-

acteristic polynomial of the adjacency matrix of the associated oriented line graph. Since

the Ihara zeta function has poles which give rise to infinities, the most convenient numeri-

cally stable representation is to work with the coefficients of the quasi characteristic poly-

nomial. Moreover, the polynomial coefficients are invariant to vertex order permutations

and also convey information concerning the cycle structure of the graph. To generalize

the representation to edge-weighted graphs we make use of the reduced Bartholdi zeta

function. We prove that the computation of the Ihara coefficients for unweighted graphs

is a special case of our proposed method for unit edge-weights. We also present a spectral

analysis of the Ihara coefficients and indicate their advantages over other graph spectral

methods. We apply the proposed graph characterization method to capturing graph-class

structure and clustering graphs. Experimental results reveal that the Ihara coefficients are

more effective than methods based on Laplacian spectra.



In Chapter 4 we aim to seek a compact characterization of nonuniform unweighted

hypergraphs for the purposes of clustering. To this end, we develop a polynomial charac-

terization for hypergraphs based on the Ihara zeta function. We investigate the flexibility

of the polynomial coefficients for learning relational structures with different relational

orders. Furthermore, we develop an efficient method for computing the coefficient set.

Our representation for hypergraphs takes into account not only the vertex connections

but also the hyperedge cardinalities, and thus can distinguish different relational orders,

which is prone to ambiguity if the hypergraph Laplacian is used. In our experimental eval-

uation, we demonstrate the effectiveness of the proposed characterization for clustering

nonuniform unweighted hypergraphs and its advantages over the spectral characterization

of the hypergraph Laplacian.

In addition to the flexible characterization algorithms developed based on the Ihara co-

efficients, we present a novel structural matching algorithm in Chapter 5. This algorithm

can be used both for pairwise matching and higher order matching. We formulate the

problem of high order structural matching by applying dominant cluster analysis (DCA)

to a direct product hypergraph (DPH) (essentially the extension of the association graph

idea to hypergraphs). For brevity we refer to the resulting algorithm as DPH-DCA. The

starting point for our method is to construct aK-uniform direct product hypergraph for the

two sets of higher-order features to be matched. Each vertex in the direct product hyper-

graph represents a potential correspondence and the weight on each hyperedge represents

the agreement between twoK-tuples drawn from the two feature sets. Vertices represent-

ing correct assignments tend to form a strongly intra-connected cluster, i.e. a dominant

cluster. We evaluate the association of each vertex belonging to the dominant cluster by

maximizing an objective function which maintains the K-tuple agreements. The poten-

tial correspondences with non-zero association weights are more likely to belong to the

dominant cluster than the remaining zero-weighted ones. They are thus selected as correct

matchings subject to the one-to-one correspondence constraint. Furthermore, we present a
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route to improving the matching accuracy by invoking prior knowledge and show how the

available outliers can be rejected to avoid contextual ambiguity. The effectiveness of the

overall DPH-DCA framework can also be justified in terms of evolutionary game theory,

and we hereby observe that the optimal solution obtained by DPH-DCA achieves a Nash

equilibrium subject to the Karush-Kuhn-Tucker (KKT) conditions. An experimental eval-

uation shows that our method outperforms several state-of-the-art higher order structural

matching methods both in terms of immunity to additive noise and robustness to outliers.

All the methods presented in this thesis will allow themselves to be applied to both

pairwise and higher order relational patterns, and thus provide a route to addressing the

structural characterization and matching problems by invoking multiple relationships.
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Chapter 1

Introduction

In this chapter we provide an introduction and motivation for the research work presented

in this thesis, explaining why we are interested in structural characterization and match-

ing. We commence by introducing the problems encountered in learning with structured

data. Then we briefly describe the possible alternative approaches to these problems, fol-

lowed by our research goals and contributions. Finally, an outline of the thesis is provided

at the end of this chapter.

1.1 The Problems

Structured data have been widely used for representing relational patterns. Pattern anal-

ysis tasks involving trees, graphs and hypergraphs arise in a number of domains such as

natural language processing, proteomics/chemoinformatics, data mining, computer vision

and complex systems.

In computer vision graph-structures are widely used to abstract image structure. Fur-

thermore, to capture the multiple relationships between visual features, hypergraphs have

been exploited as a more sophisticated representation for image abstraction. The first

steps in extracting (hyper)graph structures from images are those of segmentation and

1



perceptual grouping. However, the algorithms used to segment the image primitives are

not reliable. As a result there are both additional and missing vertices in these extracted

graphs due to segmentation errors and variations arise accordingly. Thus, structural learn-

ing methods, which are capable of capturing the variations both between and within dif-

ferent classes of structures, are needed.

However, learning with (hyper)graphs is difficult. One important reason is that (hy-

per)graphs are not vectors and hence can not be easily summarized. This renders the

problem of characterizing the mean and covariance of structure categories in their origi-

nal forms intractable. Moreover, there is no natural ordering of vertices and (hyper)edges

and special algorithms are needed to establish correspondences. Due to these difficulties,

relatively little methodology is available straightforwardly for learning with (hyper)graph

structures. In particular, vectorial methods from statistical machine learning can not be

easily applied to the structured data, since there is no canonical ordering of the vertices in

a (hyper)graph.

There are several approaches to coping with the difficulties that arise in learning with

structural patterns. One possible route is to work with permutation invariant graph char-

acteristics that relate to the topological structure, such as vertex number, edge number,

and (hyper)graph radius and perimeter. Alternative features that can be used to establish

pattern vectors include (hyper)graph spectra and (hyper)graph polynomial characteristics.

By characterizing (hyper)graphs using these features, we can embed (hyper)graphs in a

vector space and manipulate them as point patterns. We can characterize structural vari-

ations in terms of statistical variations across the point patterns. Furthermore, we can

measure (dis)similarities between a pair of (hyper)graphs by computing the feature dis-

tance between vectorial representations for the (hyper)graphs, and then perform pairwise

clustering or embed sets of (hyper)graphs in a vector space using multi-dimensional scal-

ing on the (dis)similarities.

Another possible method for overcoming the difficulties in (hyper)graph based learn-

2



ing is to establish a mapping between two vertex sets. This family of methods takes

advantage of the likelihood that particular vertices and (hyper)edges co-occur and estab-

lishes correspondences between vertices of two structures. The matching strategy can

be applied to learning modes of structural variation within a (hyper)graph class. Further-

more, the matching methods also play an important role in constructing generative models

for graphs, because vertex correspondences are required as a prerequisite in learning the

model and the model inference.

Structural characterization and matching are both approaches to addressing the diffi-

culties in learning with structured data. However, the most exiting methods are confined

to pairwise graphs and do not lend themselves to higher order relationship patterns, i.e.

hypergraphs. Therefore, characterization and matching methods available for higher order

relationships have been a longstanding quest in structural pattern recognition.

1.2 Our Goals

The overall goal of this thesis is to develop novel methods addressing the problems en-

countered in structural learning. Specifically,

i) We aim to establish a novel vectorial representation for graphs to which statistical

learning methods can be applied. In particular, we will explore the Ihara zeta function,

which is governed by the cycle frequencies of a graph. Based on the Ihara zeta function we

will develop novel graph characterization methods incorporating topological properties,

spectral features and polynomial characteristics of graphs. Furthermore, we will develop

a method to extend the representation from unweighted graphs to edge-weighted graphs.

ii) We aim to make a polynomial analysis of hypergraphs by using the Ihara zeta func-

tion, to establish a novel hypergraph characterization method. We will show how to rep-

resent a hypergraph by using a colored oriented line graph in the Ihara zeta function. We

will demonstrate the effectiveness of the new representation in avoiding order ambigui-
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ties of the hypergraph Laplacian. Additionally, we will develop an efficient computational

method that renders the computation of the new representation tractable in practice.

iii) We aim to develop a novel method for high order structural matching. Our strat-

egy is to cast the high order matching problem into that of high order clustering. We

will show how to establish correct correspondences by clustering vertices in a hypergraph

constructed on the two sets of features with high order relationships to be matched. Addi-

tionally, we will provide a route to making use of prior knowledge of outliers to improve

the matching performance.

1.3 Contributions

To achieve the research goals described in Section 1.2, we make the following specific

contributions:

1.3.1 Graph Characterization Based on the Ihara Coefficients

We develop a new framework for characterizing graphs using features based on the Ihara

zeta function. In its original form the Ihara zeta function is defined over the prime cy-

cles of a graph and has poles corresponding to the lengths of the prime cycles. Hence,

if we attempt to sample the Ihara zeta function to obtain a characterization, we will en-

counter numerical instabilities due to the associated infinities. However, since the Ihara

zeta function is determined by the cycle frequencies in a graph, there should be a number

of alternative numerically stable representations upon which we can draw. The Ihara zeta

function is the reciprocal of the quasi characteristic polynomial of an oriented line graph.

We therefore make use of the coefficients of the polynomial, i.e. the Ihara coefficients, as

our features. The Ihara coefficients are determined by the cycle frequencies in the graph,

and not only avoid the danger of infinities, but are also permutation invariants.

Unfortunately, the Ihara zeta function is only defined for unweighted graphs and can
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not be applied to edge-weighted graphs. The reasons for this are twofold: first, when we

encounter weighted edges, the cycle lengths are determined not only by the numbers of

connected edges, but also by their cumulative weights; second, the determinant expression

for the Ihara zeta function is determined by integer prime cycle lengths, and can not be

easily generalized to weighted path length. To overcome these problems, we develop

a novel method for computing the Ihara coefficients for edge-weighted graphs. This is

effected by generalizing the determinant form of the Ihara zeta function using a reduced

Bartholdi zeta function. We demonstrate that the computation of the Ihara coefficients

for unweighted graphs is a special case of our proposed method for graphs of unit edge-

weight. In this way we can accommodate both unweighted and edge-weighted graphs,

and make the proposed approach a flexible method for both cases.

1.3.2 Polynomial Analysis of Hypergraphs Based on the Ihara Coef-

ficients

We propose to use the Ihara zeta function for hypergraph characterization. To demon-

strate the effectiveness of the Ihara zeta function, we first explain the shortcomings of

the spectral methods for representing nonuniform unweighted hypergraphs theoretically

and then present our proposed method to address it. Unlike the method introduced in

[1] and those reviewed in [2], we do not establish graph approximations based on the

original vertex set of a hypergraph. Instead we transform the hypergraph into a colored

oriented line graph, in which the vertex set includes information concerning the relational

orders of the original hypergraph vertices. This avoids attaching a weight to the hyper-

edge when it is unnecessary. Our characterization is based on the determinant form of the

Ihara zeta function. In this way, we provide a matrix representation that naturally avoids

the order ambiguity which might occur when the hypergraph Laplacian is used. Asso-

ciated with the determinant is a set of characteristic polynomial coefficients which are

referred to as the Ihara coefficients and constitute our representation for the hypergraph.
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It is the discriminative ability that readily makes the Ihara coefficients a flexible method

for distinguishing high order structures. Furthermore, we develop an efficient method for

computing the hypergraph Ihara coefficients, which renders the computation of the coeffi-

cients tractable. We apply the proposed characterization method to clustering hypergraphs

extracted from images of different object views and demonstrate their superiority to the

hypergraph Laplacian and the normalized hypergraph Laplacian.

1.3.3 High Order Structural Matching Based on DPH-DCA

We develop a novel framework for high order matching based on dominant cluster anal-

ysis (DCA) on a direct product hypergraph (DPH). For brevity we refer to the framework

as DPH-DCA. The idea is motivated by the concept of main cluster for graph matching

[50] and its generalization for higher order matching [28]. However, we use a different

algorithm to extract the dominant cluster, which not only outperforms the state-of-the-

art methods but also satisfies basic probabilistic properties. Furthermore, we present a

method for incorporating prior knowledge regarding outliers into our framework using a

specific initialization. This improves the matching performance of our method and com-

parable results can not be achieved by using alternative high order matching algorithms

[28][110]. We also justify the effectiveness of the DPH-DCA framework in terms of evo-

lutionary game theory. The theoretical contribution here is the novel framework for high

order matching in terms of clustering and its game theoretic interpretation. Furthermore,

the proposed method also provides a route for a comprehensive understanding of the re-

lationship between high order cluster and matching. The practical contribution is that

our method outperforms the state-of-the-art high order matching methods in the practical

experiments.
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1.4 Thesis Outline

The rest of the thesis is organized as follows: Chapter 2 reviews the research literature

on structural characterization and matching; Chapter 3 presents a graph characterization

method based on the Ihara coefficients; Chapter 4 introduces a polynomial analysis of

hypergraphs based on the Ihara coefficients; Chapter 5 describes a hypergraph matching

method based on DPH-DCA; Chapter 6 concludes the work in this thesis and points out

possible directions for future research. Additionally, Appendix A presents the relationship

between the discrete-time quantum walks and the Ihara zeta function, which provides a

new perspective on the research of the Ihara zeta function.

7



Chapter 2

Literature Review

Graphs and hypergraphs are important representations for structured data in pattern recog-

nition. One aim of this thesis is to develop learning methods that can effectively charac-

terize or match high order structures. In the light of this aim, we commence in Section

2.1 by reviewing fundamental graph characteristics along with zeta functions as a more

sophisticated graph representation. Additionally, in this section we explain our motivation

for conducting structural characterization using the Ihara zeta function. We then review

the graph-based learning methods in Section 2.2, followed by an overview of hypergraph

representation for structural pattern recognition in Section 2.3. Finally, we review the

research literature on the structural matching in Section 2.4, in which we also describe

the shortcomings of existing methods which motivate our novel framework for high order

matching.

2.1 Graph Characteristics and Zeta Functions

Various statistical methods are available for learning patterns represented by vectors.

However, these statistical methods are not suitable for structured data such as trees, graphs

and hypergraphs. This is because structural patterns can not be easily converted into vec-
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tors, and the difficulties arise in several aspects. First, there is no natural ordering for the

vertices in an unlabeled structure, and this is in contrast to vector components that have

a natural order. Second, the variation within a particular graph class may result in sub-

tle changes in structures of individual graphs. This may involve different vertex set and

edge set cardinalities for graphs drawn from the same class. Moreover, subspaces (e.g.

eigenspaces) spanned by the matrix representations of graphs with different vertex set

cardinalities are of different dimensions, and thus pattern vectors residing in the resulting

subspaces would be of different lengths. All these difficulties need to be addressed if we

want to apply the existing statistical methods to learning with structural patterns.

The task of structural characterization is to characterize classes of structural patterns

into a feature space where statistical learning methods can be readily applied. To this end,

the key issue is to extract from structural patterns a set of characteristics which not only

exactly describe the individual structures but also capture the variations between/within

the structure classes. In this regard, the most straightforward characteristics for graphs

are the topological properties, such as vertex set cardinality, edge density, graph perimeter

and volume [58]. Furthermore, by measuring the topological difference between graphs,

graph edit distance can be neatly defined [76]. Bunke et al. [68][69][32] embed graphs

into a feature space by using kernel strategies which adopt edit distance as a similarity

measure. Within such graph characterization frameworks, graphs can be easily classified

by using statistical learning approaches such as SVM. Although the topological features

have a straightforward meaning concerning the structures, they are hard to enumerate

for objects with a considerable size. The computational complexity for edit distance is

exponential to the cardinality of the vertex set and is usually computationally prohibitive

in practice, unless approximations are made subject to certain constraints [68]. These

shortcomings limit the direct use of topological properties for the purpose of structural

characterization.

Another approach to graph characterization is to extract alternative vertex permuta-
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tion invariant characteristics straightforwardly from the matrix representations of graphs.

Here the initial matrix representation M can be based either on the adjacency matrix, the

Laplacian matrix or the signless Laplacian [26]. The definition of the adjacency matrix A

for a graph G(V,E) is as follows

Auv =

⎧⎨⎩ w(u, v) if {u, v} ∈ E;

0 otherwise;
(2.1)

where w(u, v) is the weight attached to the edge {u, v}. For an unweighted graph, w(u, v)

is 1 if there is an edge between vertices u and v. The degree of a vertex u ∈ V , denoted

by d(u), is defined as

d(u) =
∑

v:{v,u}∈E
w(u, v). (2.2)

For an unweighted graph, the degree of a vertex is simply the number of vertices adja-

cent to it. For a graphG(V,E)with |V | = N , the matrix D = diag(d(v1), d(v2), . . . , d(vN)),

with the vertex degrees on the diagonal and zeros elsewhere is referred to as the degree

matrix.

The Laplacian matrix L of a graph G(V,E) is defined as L = A − D, with entries

Luv =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
W (u, v) if {u, v} ∈ E;

−d(u) if u = v;

0 otherwise.

(2.3)

The matrix representation can be characterized using its eigenvalues sp(M) and eign-

evectors (i.e. using spectral graph theory). For instance, Luo, Wilson and Hancock [58]

have made use of graph spectra to construct a set of handcrafted permutation invariant

spectral features for the purpose of clustering graphs. Kondor et al. [47] have presented

an approach to extracting the skew spectrum from the adjacency matrix of a graph up

to a combinatorial transformation, and incorporated it into SVM kernels for the classifi-

cation of chemical molecules. Furthermore, the same authors have refined their spectral
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method by considering the number as well as the position of labeled subgraphs in a given

graph [48]. Though the spectral features appear to be less related to graph topology than

the straightforward topological characteristics, the Laplacian spectra give a competitive

performance in clustering graphs over various alternative methods [103].

For the graph matrix representation M, the coefficients of its characteristic polynomial

det(λI − M) can also be taken as graph characteristics. These coefficients are closely re-

lated to the eigenvalues of M, i.e. the graph spectrum. Brooks [12] has generalized

the computation of the coefficients of the characteristic polynomial using three different

methods. His first method is to express the coefficients in terms of the eigenvalues of the

matrix representation, his second method uses the relationship between the coefficients

and the kth derivative of the associated determinant, and the third method is a brute force

method using matrix elements. Thus, it is clear that the eigenvalue-based and polynomial-

based approaches are closely related to each other and can lead to a number of practical

graph characterizations. In this regard, pioneering research can be found in Wilson, Han-

cock and Luo’s work [102] which shows how to extract a rich family of permutation

invariants from a graph by applying elementary symmetric polynomials to the elements

of the spectral matrix derived from the Laplacian matrix .

An alternative possible characterization method that has received relatively little at-

tention in the computer vision and pattern recognition community is provided by the zeta

functions. In number theory, the Riemann zeta function is determined by the locations

of the prime numbers. Bai, Wilson and Hancock [4] have explored the use of a modified

version of the Riemann zeta function as a means of characterizing the shape of the heat

kernel trace of a graph. They have also shown that the derivative of the zeta function at

the origin is related to the determinant of the Laplacian matrix. Another natural extension

of the Riemann zeta function from prime numbers to graphs is the Ihara zeta function.

The Ihara zeta function is determined by the set of prime cycles on a graph, and is de-

tailed in [44] and [45]. Hashimoto [40] subsequently deduced explicit factorizations for
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bi-regular bipartite graphs. Bass [7] has generalized Hashimoto’s factorization to all fi-

nite graphs. Stark and Terras [88][89][90] have published a series of articles on the topic.

They commence by presenting a survey of the Ihara zeta function and its properties. Their

novel contribution is to generalize the Ihara zeta function to develop edge and path based

variants. Recently, Storm has further developed and refined the Ihara zeta function for

hypergraphs [91].

The Ihara zeta function draws on the reciprocal of a polynomial associated with a

graph and is hence akin to methods from algebraic graph theory. However, it also re-

lies upon a graph transformation. This is an interesting observation since the quest for

improved alternatives to the adjacency and Laplacian matrices has been a longstanding

quest in spectral graph theory. Recently, the signless Laplacian (i.e. the degree matrix

plus the adjacency matrix) has been suggested. However, Emms et al. [31] have recently

shown that a unitary matrix characterization of the oriented line graph can be used to re-

duce or even completely lift the cospectrality of certain classes of graph, including trees

and strongly regular graphs. This points to the fact that one potentially profitable route to

improving methods from spectral graph theory may reside in graph transformation.

Although the Ihara zeta function have been widely investigated in the mathematics

literature, it has received little attention as a means of characterizing graphs in machine

learning. Furthermore, to be rendered tractable for real world problems in pattern recog-

nition, the issue of how to generate stable pattern vectors from the Ihara zeta function

must be addressed. Zhao et al. [111] have recently used Savchenko’s formulation of the

zeta function [78], expressed in terms of cycles, to generate merge weights for clustering

over a graph-based representation of pairwise similarity data. Their formulation is based

on a representation of oriented line graphs, which is an intermediate step in the develop-

ment of the Ihara zeta function studied in this work. Watanabe et al. [99] have presented

an approach to the analysis of Loopy Belief Propagation (LBP) by establishing a formula

that connects the Hessian of the Bethe free energy with the edge Ihara zeta function.
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A substantial part of this thesis is concerned with the Ihara zeta function. The motiva-

tion for us to explore the Ihara zeta function for structural characterization is twofold: first,

the Ihara zeta function is determined by cycle frequencies, and thus capable of reflecting

graph topologies; second, the Ihara zeta function can be expressed in a polynomial form

of a transformed graph such that certain polynomial and spectral analysis can be done

based on it. These properties of the Ihara zeta function allow it to naturally incorporate

topologies, spectra and polynomials into a unifying representation, and thus enable it to

have the potential to result in a rich family of structural characteristics.

2.2 Graph Representations for Pattern Recognition

This section reviews the various graph representations used in pattern recognition, not

restricted to graph characterization. Graph-based methods are widely used in solving

problems in computer vision and pattern recognition at different levels of feature abstrac-

tion. Early work related to graph-based representations focuses on identifying subgraph

isomorphism [94] or measuring edit distance [76] for the purpose of structural pattern

recognition. These methods enumerate the node attributes to obtain an optimal solution

to certain cost functions. Therefore, graphs are not characterized in a mathematically

consistent way by using these methods. However, this shortcoming can be overcome by

adopting graph spectral methods [22] for graph characterization. In addition to repre-

senting graphs in terms of vertex set and edge set, another graph representation used in

spectral graph theory is adjacency matrix or Laplacian matrix. Each entry of the matrix is

associated with the pairwise relationship between two vertices, and the indices of the en-

try represent labels for the two vertices. By using the matrix representations, graphs can

be processed in a computationally efficient and consistent way, because existing comput-

ing algorithms for matrices can be straightforwardly applied to graphs. Therefore, many

statistical pattern recognition algorithms can directly work on graph-based data once the
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matrix representations are established. One good example is to formulate the problem of

clustering as that of computing the principal eigenvector of the normalized affinity matrix

for a graph [100]. Furthermore, Zass et al. [109] have shown how to provide a probabilis-

tic interpretation for this formulation by developing a completely positive factorization

scheme. On the other hand, Shi et al. have [87] presented a method based on the normal-

ized Laplacian matrix rather than the normalized affinity matrix. Their method is referred

to as normalized cut because it is capable of balancing the cut and the association. Robles-

Kelly et al. [70] have introduced a probabilistic framework based on a Bernoulli model

which adopts EM algorithm for extracting the leading eigenvector as the cluster mem-

bership indicators. Pavan et al. [64] have formulated the problem of pairwise clustering

as that of extracting the dominant set of vertices from a graph. Based on this notation,

Rota-Bulo et al. have developed game-theoretic approaches to partial clique enumeration

[74] and hypergraph clustering [73]. Qiu et al. [65] have characterized the random walk

on a graph using the commute time between vertices and proved that the commute time

matrix is a more robust measure of the proximity of data than the raw proximity matrix.

Behmo et al. [9] have exploited the formulation based on commute times as a manner

of image representation. Furthermore, some researchers have investigated the problem of

graph based learning by incorporating the path-based information between vertices as a

replacement of pairwise similarity. Representative work includes Path-Based Clustering

[33] and the sum-over-paths covariance kernel [59].

Different from clustering graph vertices, the research on graph embedding aims to

seek a low dimensional coordinates for the vertices. This is often conducted in a manifold

learning scenario, where certain local features of the manifold underlying the original

data are preserved. Based on a similar notion to normalized cut, Belkin et al. [8] have

presented a graph embedding framework called Laplacian eigenmaps for dimensionality

reduction. Other notable manifold learning methods include ISOMAP [92] and LLE [75].

These manifold learning methods adopt different cost functions and thus result in differ-
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ent local structure preservations. Recently, Yan et al. [105] have generalized traditional

embedding methods such as PCA by using a graph embedding framework and extended it

into non-negative versions [107][98][55]. Shaw et al. [85] have introduced an embedding

strategy which preserves the global topological properties of an input graph.

A preliminary step for all these graph-based methods (both for clustering and em-

bedding) is to establish a graph over the training data. Data samples are represented

as vertices of the graph and the edges represent the pairwise relationships between them.

The methods for establishing a graph and measuring vertex similarities (i.e. edge weights)

have a great influence on the subsequent graph-based learning algorithms. Therefore, the

process of graph construction has recently attracted much research interest [60][27][46]

as it remains only partially solved.

In addition to representing the pairwise relationship within a training data set (i.e.

normalized cut, ISOMAP and LLE), graph-based methods also play an important role in

learning with structured data. Problems of this kind arise when training data are not rep-

resented in vectors but in terms of relational structures such as trees and graphs. In this

case, learning algorithms which admit structured data are needed. For example, the prob-

lem of discovering shape and object categories is frequently posed as one of clustering a

set of graphs. This is an important process since it can be used to organize large databases

of graphs in a manner that renders retrieval efficiency [80].

The strategies for learning with structured data can be roughly classified into two cat-

egories. The first is the graph characterization methods reviewed in Section 2.1. The

second is to develop specific learning algorithms which admit individual graphs or trees

as input. For the second category, a similarity between structured data samples is defined

and traditional learning schemes are applied based on the pairwise similarities between

structured data samples. For example, graph similarities can be computed by using tree or

graph edit distance and structured objects are assigned to classes using pairwise clustering

[15][93]. However, the use of pairwise similarities alone is a rather crude way to capture
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the modes of variation present in graphs of a particular class. Moreover, it requires the

computation of vertex correspondences which is sometimes an unreliable process. The

graph kernels [66][97] overcome this problem to a certain degree by naturally incorporat-

ing vertex correspondences into the process of learning. This is effected by the learning

process in which every pair of vertices drawn separately from two graphs are compared

to obtain an entry of the kernel matrix. However, the process of vertex enumeration gives

rise to computational inefficiency. Although fast computational scheme [86] has recently

been proposed, these methods still undergo heavy computational overheads. In contrast

to the graph kernel strategies, graph characterization methods would be more efficient if

pattern vectors are suitably established, because it avoids enumerating the comparisons

between every pair of vertices.

2.3 Hypergraph Representations for Pattern Recognition

There has recently been an increasing interest in hypergraph-based methods for repre-

senting and processing structures where the relations present are not simply pairwise.

The main reason for this trend is that hypergraph representations allow vertices to be mul-

tiply connected by hyperedges and can hence capture multiple relationships between fea-

tures. Due to their effectiveness in representing multiple relationships, hypergraph-based

methods have been applied to various practical problems such as partitioning netlists [38]

and clustering categorial data [34]. For visual processing, to the best of our knowledge,

the first attempt at representing visual objects using hypergraphs dates back to Wong et

al.’s [104] framework for 3D object recognition. In this work a 3D object model based

on a hypergraph representation is constructed, and this encodes the geometric and shape

information with polyhedrons as vertices and hyperedges. Object synthesis and recogni-

tion tasks are performed by merging and partitioning the vertex and hyperedge set. The

method is realized using set operations and the hypergraphs are not characterized in a
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mathematically consistent way. Later, Bretto et al. [11] introduced a hypergraph model

for image representation, where they successfully and simultaneously solved the prob-

lems of image segmentation, noise reduction and edge detection. However, their method

also relies on a crude form of set manipulation. Agarwal et al. [1] have performed visual

clustering by partitioning a weighted graph transformed from the original hypergraph by

a weighted sum of its hyperedges into the graph edge. Recently, Rota-Bulo et al. [72]

have established a hypergraph model for estimating affine parameters in vision problems.

Bunke et al. [14] have developed a hypergraph matching algorithm for object recognition,

where consistency checks are conducted on hyperedges. The computational paradigm un-

derlying their method is based on tree search operations. Zass et al.[110] and Duchenne

et al.[28] have separately applied high-degree affinity arrays (i.e. tensors) to formulat-

ing hypergraph matching problems up to different cost functions. Both methods address

the matching process in an algebraic manner but must undergo intractable computational

overheads if hyperedges are not suitably sampled. Shashua et al. [83][84] have per-

formed visual clustering by adopting tensors for representing uniform hypergraphs (i.e.

those for which the hyperedges have identical cardinality) extracted from images and

videos. Their work have been complemented by He et al.’s [43] algorithm for detecting

number of clusters in tensor-based framework. Similar methods include those described

in [36][18][19][20][73], in which tensors (uniform hypergraphs) have been used to repre-

sent the multiple relationships between objects. Additionally, tensors have recently been

used to generalize dimensionality reduction methods based on linear subspace analysis

into higher orders [96][106][42][41]. However, the tensor representation considers all

possible permutations of a subset of vertices and establishes hyperedges with cardinality

consistent with the relational order. Therefore, tensors can only represent uniform hy-

pergraphs, and are not suited for nonuniform hypergraphs (i.e. hypergraphs with varying

hyperedge cardinalities).

One common feature of these existing hypergraph representations is that they exploit
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domain specific and goal directed representations. Specifically, most of them are confined

to uniform hypergraphs and do not lend themselves to generalization. The reason for this

lies in the difficulty in formulating a nonuniform hypergraph in a mathematically neat

way for computation. There has yet to be a widely accepted and consistent way for rep-

resenting and characterizing nonuniform hypergraphs, and this remains an open problem

when exploiting hypergraphs for machine learning. Moreover, to be easily manipulated,

hypergraphs must be represented in a mathematically consistent form, using structures

such as matrices or vectors.

Since Chung’s [23] definition of the Laplacian matrix for K-uniform hypergraphs,

there have been several attempts to develop matrix representations of hypergraphs. To es-

tablish the adjacency matrix and Laplacian matrix for a hypergraph, an equivalent graph

representation is often required. Once the graph approximation is to hand, its graph rep-

resentation matrices (e.g. the adjacency matrix (2.1) and the Laplacian matrix (2.3)) are

referred to as the corresponding hypergraph representation matrices. It is based on these

approximate matrix representations that the subsequential processes of hypergraphs (e.g.

high order clustering and matching) take place. Agarwal et al. [2] have compared a

number of alternative graph representations [10][34][54][71][112] for hypergraphs and

explained their relationships with each other in machine learning. One common feature

for these methods, as well as the method in [1], is that a weight is assumed to be associ-

ated with each hyperedge. Additionally, the graph representations for a hypergraph can be

classified into two categories: (a) the clique expansion [1][10][34][71] and (b) the star ex-

pansion [54][112]. The clique expansion represents a hypergraph by constructing a graph

with all pairs of vertices within a hyperedge connecting to each other. The star expansion

represents a hypergraph by introducing a new vertex to every hyperedge, and constructing

a graph with all vertices within a hyperedge connecting to the newly introduced vertex. In

both strategies, each edge in each individual graph representation is weighted in a manner

determined by the corresponding hyperedge weight in a task-specific way that is differ-
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ent from others. Moreover, these graph-based representations for hypergraphs are just

approximations and give rise to information loss, as reported in [1]. This deficiency may

result in ambiguities when the approximation methods are used to distinguish structures

with different relational orders.

To address these shortcomings, an effective matrix representation for hypergraphs is

needed, such that the ambiguities of relational order can be overcome. To this end, trivial

graph approximations should be avoided for hypergraph representation. In the mathemat-

ics literature, the definitions of the Ihara zeta function has recently been extended from

graphs to hypergraphs [91]. In the determinant form of the Ihara zeta function, a graph

representation is also used for describing the hypergraph. However, this graph repre-

sentation uses color edges to capture the hyperedge connectivity and does not result in

information loss regarding relational order. We will make a polynomial analysis of the

hypergraph Ihara zeta function and develop a family of features that readily characterize

hypergraphs into a feature space suitable for hypergraph clustering.

2.4 Structural Matching

Many problems in computer vision and machine learning are those of establishing con-

sistent correspondences between two sets of features. This is possible because individual

feature sets usually have internal structure, and between-set correspondences can be re-

covered by measuring the (dis)similarities between the structural contexts of the features.

We refer to the process of establishing correspondences subject to structural similarity as

structural matching, which is necessary in many pattern recognition tasks. For example,

to establish visual correspondences between two objects from the same class, we need

not only to measure the visual similarities but also maintain the consistence in spatial

arrangement between corresponding feature points. In addition to the straightforward

applications, challenges of structural matching also arise in knowledge discovery from
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large graph datasets, where suitable methods are required to robustly organize, query and

navigate large sets of graphs extracted from real world data, such as visual images and

chemical molecules. To this end, we need to establish an explicit class archetype and

maintain correspondences between individual objects belonging to it. Additionally, the

procedure of correspondence maintenance is also of key importance in learning genera-

tive models for graphs, where vertex correspondences are assumed to be prior knowledge

for constructing supergraph prototypes [93].

The early research literature on structural matching focuses on establishing consistent

correspondences between features using pairwise relationships. This problem is often

formulated in terms of graph matching, which can be solved by optimizing an objective

function associated with the compatibility matrix (i.e. the matrix with entries represent-

ing the agreements of two graph edges). Umeyama [95] has presented a spectral matching

method for graphs of the same size. In his study, a pair of graphs both with vertex cardi-

nalityN are embedded into feature space where anN-dimensional coordinate is obtained

for each vertex. Comparisons are made between every pair of vertex coordinates and

the Hungarian algorithm is used to extract the most dominant correspondences. Based

on a similar notion, Shapiro et al. [82] have proposed a spectral technique which ac-

commodates graphs with different sizes by truncating the least significant modes in the

coordinate vectors for vertices. Gold et al. [35] have provided a softassign strategy, in

which a two-way constraint is enforced in the objective function and Sinkhorn’s normal-

ization method is used to obtain the optimal solution. Wilson et al. [101] have derived

a probability distribution for relational errors that occur when there is significant graph

corruption and presented a graph matching method based on discrete relaxation. Luo et

al. [58] have presented a graph matching approach by using the EM algorithm and sin-

gular value decomposition. An overview of the research literature before the year 2004

can be found in the survey article [24]. Recently, Leordeanu et al. [50] have proposed

an efficient matching approach based on graph spectral methods, in which the elements
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of the principal eigenvector for the compatibility matrix are used as the matching scores.

Further developments of this graph spectral approach include balancing the compatibility

matrix [25] and developing an efficient algorithm for solving quadratic assignment prob-

lems in graph matching [52]. Albarelli et al. [3] have formulated the matching problem

in terms of a non-competitive game. Furthermore, various learning methods have been

proposed to optimize the parameters for graph matching [52][16].

All the graph matching methods are confined to pairwise representations, i.e. the re-

lational order between features is two. Our work in this thesis, on the other hand, is

concerned with high order structural matching, i.e. relational orders not restricted to two.

We will investigate the problem of high order structural matching in terms of hypergraph

formulations. Hypergraphs have the capability of capturing multiple relationships be-

tween features. After presenting one hypergraph characterization method in Chapter 4,

we will continue to explore hypergraphs in a structural matching scenario in Chapter 5,

since characterization and matching are the two main strategies for learning classes of

structural patterns.

Recently a number of researchers have attempted to extend the matching process to

incorporate higher order relations. Their research aims are similar to those in this the-

sis. Zass et al. [110] are among the first to investigate this problem by introducing a

probabilistic hypergraph matching framework, in which higher order relationships are

marginalized to unary order. Chertok et al. [21] have improved this work by marginalizing

the higher order relationships to be pairwise and then adopted pairwise graph matching

methods. However, these two methods only approximate the hypergraph representation

by using a clique graph. It has already been pointed out in [1] that this graph approxima-

tion is just a low pass representation of the original hypergraph and causes information

loss and inaccuracy. On the other hand, Duchenne et al. [28] have developed the spectral

technique for graph matching [50] into a higher order matching framework using tensor

power iteration. Although they adopt an L1 norm constraint in computation, the origi-
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nal objective function is subject to an L2 norm. Furthermore, their method is developed

in a heuristic manner, and the effectiveness can not be clearly explained. Our proposed

method will address these shortcomings accordingly. We do not approximate hypergraphs

using graph representation. Moreover, our proposed method will satisfy the basic axiom

of probability and can be explained in terms of high order clustering.

2.5 Summary

We have reviewed the research literature on structural characterization and matching, both

for pairwise and higher order representations. We have analyzed the deficiencies of the

existing methods and pointed out our possible solutions for overcoming these shortcom-

ings. This chapter can be summarized as follows.

There is a substantial body of research on graph based learning methods and most of

it lies in the graph partition or graph embedding scenario. Graphs as natural represen-

tations for structured data are also widely used in the structural pattern recognition. In

the literature most structural characteristics are extracted from the original form or the

original matrix representation of a graph, and graph characterization in a transformed do-

main has rarely been investigated. The Ihara zeta function provides potential approaches

to characterizing transformed graphs using polynomial or spectral methods. Furthermore,

the original form of the Ihara zeta function is defined on cycle frequencies and thus is

closely related to graph topologies. These properties of the Ihara zeta function motivate

us to explore it as a powerful structural characterization method.

The research literature on hypergraph based learning algorithms is generally confined

to tensor factorization, which is a higher order extension of its pairwise counterpart. When

hypergraphs are used for representing higher order structured data in structural pattern

recognition, they are often approximated by a graph representation. Trivial graph approx-

imations may give rise to certain information loss and result in ambiguities in distinguish-
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ing different relational orders. To address these shortcomings in the existing hypergraph-

based methods, we will continue to explore the Ihara zeta function as an effective tool for

high order characterization. We will also show that the characterization method devel-

oped in this thesis is flexible for both pairwise and higher order structures and can thus

overcome the ambiguities caused by the approximation methods in the literature.

Research on structural matching has extended over forty years and various strategies

have been proposed to solve the pairwise correspondence problems. In contrast, the re-

search on high order matching is still at a relatively early stage. Existing high order

matching algorithms are either approximated by graph matching or developed in a heuris-

tic manner, and thus are far from maturity. To address these shortcomings, we will present

a novel hypergraph matching framework. Our method can be explained in terms of high

order clustering and we will show its advantages over the state of the art methods.

Above all, the work in this thesis addresses the shortcomings in the research literature

and aims to present effective structural characterization and matching methods. We will

compare our proposed methods with the state of the art methods and discuss in detail our

contributions to the research literature in the subsequent chapters.
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Chapter 3

Graph Characterization via Ihara

Coefficients

We present a route to graph characterization based on the Ihara zeta function in this chap-

ter. We first review the fundamental knowledge related to the Ihara zeta function and

describe how to extract graph characteristics from it. We then extend the representation to

edge-weighted graphs and provide a spectral interpretation of the proposed method. Both

quantitative and qualitative experiments are conducted to verify the effectiveness of the

proposed method in graph characterization.

3.1 The Ihara Zeta Function

In this section we commence by reviewing how to construct the Ihara zeta function for a

graph. We then explore the possibility of using a set of polynomial coefficients from the

Ihara zeta function as a representation of graph-structure. Our novel contribution here is

to use the existing ideas from graph theory to develop a new representation for graphs.
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3.1.1 Definition

In a graph a cycle (i.e. closed path) is referred to as a prime cycle as long as it satisfies the

following two conditions: i) the cycle and its cyclic permutations have no backtracking;

ii) the cycle is not a multiple of another cycle. The equivalence class [p] associated with

the prime cycle p is the set of cyclic permutations of p. Based on these notions, the Ihara

zeta function associated with a finite connected graph is defined as [44][45]:

ZG(u) =
∏
[p]

(
1− uL(p)

)−1
. (3.1)

The product is over the equivalence classes [p] of prime cycles p, and L(p) denotes the

length of p. Since the number of prime cycles in a graph is usually infinite, the expression

given in (3.1) is not tractable for practical purposes. As a result, the Ihara zeta function

is generally an infinite product. However, one of its elegant features is that it can be

collapsed down into a rational function, which renders it of practical utility.

3.1.2 Rational Expression

For a graph G(V,E) with vertex set V of cardinality |V | = N and edge set E of cardi-

nality |E| =M , the rational expression for the Ihara zeta function is [7]:

ZG(u) =
(
1− u2

)χ(G)
det

(
IN − uA + u2Q

)−1
, (3.2)

where χ(G) is the Euler number of the graph G(V,E), which is defined as χ(G) =

N −M , and A is the adjacency matrix of the graph. The degree matrix D is constructed

by placing the column sums of the adjacency matrix as diagonal elements, while setting

the off-diagonal elements to zero. Finally, with Ik denoting the k×k identity matrix, Q is

the matrix difference of the degree matrix D and the identity matrix IN , i.e. Q = D − IN .
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3.1.3 Permutation Invariant

The topology of a graph is invariant under permutations of the node labels. However,

neither the adjacency matrix nor the Laplacian matrix for isomorphic graphs are permuta-

tion invariant. Suppose A and Ap are the adjacency matrices associated with isomorphic

graphs G(V,E) and GP (V,E) respectively. Let P be the permutation matrix representing

the changes in node order between G(V,E) and GP (V,E). P is an orthogonal matrix.

The permutation relationship between the two adjacency matrices is AP = PAPT and so

is QP = PQPT . The Ihara zeta function of GP (V,E) can be denoted as:

ZGP
(u) =

(
1− u2

)χ(G)
det

(
I − uAP + u2QP

)−1

=
(
1− u2

)χ(G)
det

(
I − uPAPT + u2PQPT

)−1

=
(
1− u2

)χ(G)
det

(
PIPT − uPAPT + u2PQPT

)−1

=
(
1− u2

)χ(G)
det

(
I − uA + u2Q

)−1

= ZG(u). (3.3)

The Ihara zeta functions of the graphs G and GP appearing in (3.3) have the same form.

This proves that it is invariant to node order permutations. As a result, the equivalent

representations of the Ihara zeta function, such as its derivatives or the coefficients of the

polynomial of its reciprocal, are also invariant to node order permutation.

3.1.4 Determinant Expression

For md2 graphs, i.e. those graphs in which every vertex has degree at least 2, it is straight-

forward to show from equation (3.1) that the Ihara zeta function can be rewritten in the

form of the reciprocal of a polynomial. Although the Ihara zeta function can be evaluated

efficiently using (3.2), the task of enumerating the coefficients of the polynomial appear-

ing in the denominator of the Ihara zeta function (3.2) is difficult, except by resorting to

software for symbolic calculation. To efficiently compute these coefficients we adopt a
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different strategy. We first transform the graph into an oriented line graph. The Ihara zeta

function is then the reciprocal of the quasi characteristic polynomial for the adjacency

matrix of the oriented line graph.

Oriented Line Graph

To commence, we construct the oriented line graph of the original graph from the asso-

ciated symmetric digraph. The symmetric digraph SDG(V,Ed) of a graph G(V,E) is

composed of a finite nonempty vertex set V identical to that of G(V,E) and a finite mul-

tiset Ed of oriented edges called arcs, which consist of ordered pairs of vertices. For arc

ed(u, w) ∈ Ed where u and w are elements in V , the origin of ed(u, w) is defined to be

o(ed) = u and the terminus is t(ed) = w. Its inverse arc, which is formed by switch-

ing the origin and terminus of ed(u, w), is denoted by ed(w, u). For the graph G(V,E),

we can obtain the associated symmetric digraph SDG(V,Ed) by replacing each edge of

G(V,E) by an arc pair in which the two arcs are inverse to each other. An example il-

lustrating how to derive the symmetric digraph from an original graph is shown in Figure

3.1. Figure 3.1(a) shows an example graph with five vertices and six edges and Figure

3.1(b) shows its corresponding symmetric digraph.

The oriented line graph associated with the original graph can be defined using the

symmetric digraph. It is a dual graph of the symmetric digraph since its arc set and vertex

set are constructed from the vertex set and the arc set of its corresponding symmetric

digraph, respectively. The construction of the vertex set VL and the arc set EdL of the

oriented line graph can be expressed as follows [49]:⎧⎨⎩ VL = Ed(SDG);

EdL = {(ed(u, v), ed(v, w)) ∈ Ed(SDG)× Ed(SDG); u �= w}.
(3.4)

From (3.4) we can see that the vertices of the oriented line graph are obtained from the

arcs of the symmetric digraph, and as a result we can denote an arc edi in the symmetric

digraph and its corresponding vertex vLi in the oriented line graph using the same index
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(a) Original graph. (b) Symmetric digraph. (c) Oriented line graph.

FIGURE 3.1: GRAPH EXAMPLE.

i. According to (3.4), an arc would be directed from vertex vLi to vLj in the oriented line

graph subject to the necessary condition that the terminus of the arc edi connects the origin

of the arc edj . The only exception in this case is that the reverse arc pairs do not establish

arcs in the oriented line graph. For the example graph in Figure 3.1(a), the corresponding

oriented line graph is shown in Figure 3.1(c) (disregarding for the time being the arcs

consisting of a dashed line and two arrows on both ends). We can see that there is an

arc directed from vertex vL11 to vL7 in Figure 3.1(c), due to the connection between the

terminus of the arc ed11 and the origin of the arc ed7 in Figure 3.1(b). However, there is

no arc between the vertex vL3 and vL9 in Figure 3.1(c), because the arcs ed3 and ed9 are a

reverse arc pair in Figure 3.1(b).

The adjacency matrix T of the oriented line graph, which is a 2M×2M square matrix,

is referred to as the Perron-Frobenius operator of the original graph. For the (i, j)th entry

of T, T(i, j) is 1 if there is one arc directed from the vertex i to the vertex j in the oriented

line graph, and 0 otherwise. Unlike the adjacency matrix of an undirected graph, the

Perron-Frobenius operator T is not a symmetric matrix due to the constraint that arises in

(3.4).

Furthermore, we also notice that the arc set of the oriented line graph is adopted by
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discrete-time quantum walks as the state space. To make this study one step further, we

investigate the relationship between the Ihara zeta function and the discrete-time quantum

walks, and find that the Perron-Frobenius operator can be formulated in terms of the

positive support of the transpose of the transition matrix of the discrete-time quantum

walks. Detailed analysis of this relationship can be found in Appendix A.

Quasi Characteristic Polynomial

With the oriented line graph to hand, the Ihara zeta function can be written in the form of

a determinant [7][49] using the Perron-Frobenius operator:

Z−1
G (u) = det(I − uT). (3.5)

Here we refer to det(I − λM) as the quasi characteristic polynomial of the matrix M. It

is different from the characteristic polynomial det(λI − M) by multiplying the argument

with M rather than the identity matrix I. From (3.5) it is clear that the reciprocal of the

Ihara zeta function for a graph is the quasi characteristic polynomial of T, and can be

expressed as:

Z−1
G (u) = c0 + c1u+ · · ·+ c2M−1u

2M−1 + c2Mu
2M . (3.6)

We refer to the polynomial coefficients {c1, c2, . . . , c2M} in (3.6) as Ihara coefficients.

They are the coefficients of the quasi characteristic polynomial and are the antitone se-

quence of the characteristic polynomial coefficients of T.

3.1.5 Ihara Coefficients for Characterizing Graphs

To establish pattern vectors from the Ihara zeta function for the purpose of machine learn-

ing, it is natural to consider taking function-samples as the elements of the pattern vectors.

However, function-samples have no known exact significance related to graph structure.

Furthermore, there is the possibility of sampling at the locations of poles and these give
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rise to infinities. Hence, the pattern vectors consisting of function samples are potentially

unstable representations of graphs.

On the other hand, the Ihara coefficients do not give rise to infinities. These coeffi-

cients are essentially descriptors of graph structure. Provided G(V,E) is a simple graph,

the coefficients have the following properties [79]: a) the coefficients c3, c4, and c5 are

respectively the negative of twice the number of triangles, squares, and pentagons in G,

b) c6 is the negative of twice the number of hexagons in G plus four times the number of

pairs of edge disjoint triangles plus twice the number of pairs of triangles with a common

edge, c) c7 is the negative of twice the number of heptagons in G plus four times the

number of edge disjoint pairs of one triangle and one square plus twice the number of

pairs of one triangle and one square that share a common edge, and d) the highest order

coefficient is associated with the degree d(vi), which is the number of edges incident to

vertex vi:

c2M = (−1)χ(G)
∏
vi∈V

(d(vi)− 1) . (3.7)

For unweighted graphs, the set of Ihara coefficients can play the role of pattern vectors

for describing graphs, not only because they are numerically stable, but also because they

characterize the graph structure in terms of cycle frequencies.

3.2 Ihara Coefficients for Edge-weighted Graphs

Although (3.5) characterizes unweighted graphs in a compact way using the quasi char-

acteristic polynomial of the Perron-Frobenius operator, when it comes to edge-weighted

graphs, i.e. the edges not only record the vertex connections but also have a scalar weight

attached to each of them, then the method introduced in Section 3.1.4 is no longer ap-

plicable. This is because the Perron-Frobenius operator for an unweighted graph is the

adjacency matrix of the associated oriented line graph, which only bears relational infor-

mation and defaults the edge weights to binary values. This hinders the generalization
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of the determinant expression of the Ihara zeta function as a characterization of edge-

weighted graphs.

To overcome this problem and furnish characterization methods for edge-weighted

graphs, we generate the required Perron-Frobenius operator from a simplified version

of the Bartholdi zeta function. The Bartholdi zeta function is a more sophisticated zeta

function defined over two independent variables. We then introduce a scheme to charac-

terize the edge-weighted graphs using the quasi characteristic polynomial of the modified

Perron-Frobenius operator. The novel contribution here is to extend the definition of Ihara

coefficients from unweighted to edge-weighted graphs.

3.2.1 Bartholdi Zeta Function

The Bartholdi zeta function of a graph aims to generalize the zeta function using the con-

cept of a ‘prime circle’ [6]. For a graph G(V,E), the rational expression of the Bartholdi

zeta function is:

ZGB(u, t) =
(
1− (1− t)2u2

)χ(G)×
det

(
IN − uA + (1− t)u2(D − (1− t)IN)

)−1
, (3.8)

where χ(G) is the Euler number (defined with (3.2) previously for the Ihara zeta function).

Compared with the Ihara zeta function in its rational form (3.2), the rational expression

for the Bartholdi zeta function involves an additional variable t, which is closely related

to the cyclic bump count of a cycle in a graph. Here a cycle with one-step backtracking

is referred to as a single cyclic bump. One noteworthy property of the Bartholdi zeta

function is that when t = 0, it reduces to the Ihara zeta function. For more details of the

Bartholdi zeta function and its relationship with the Ihara zeta function, we refer readers

to [6], [61] and [77].
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3.2.2 Ihara Polynomial for Edge-weighted Graphs

Based on Bartholdi’s work, Mizuno and Sato have developed the following determinant

expression for the Bartholdi zeta function [61]:

ZGB(u, t) = det (I2M − (B − (1− t)J)u))−1. (3.9)

In this form the zeta function is equivalent to (3.8) and is suitable for dealing with both

unweighted graphs and edge-weighted graphs. There are two 2M × 2M operators B

and J in (3.9), which are both closely related to the symmetric digraph of the original

graph. For a graph Gw(V,E) with weighted edges, the associated symmetric digraph

SDGw(V,E) can be constructed by replacing each edge of Gw(V,E) with an arc pair in

which the two arcs are the reverses of each other. The edge weights are then attached

to each of its generating arcs. This process is quite similar to that adopted in the case

of unweighted graphs introduced in Section 3.1.4, except that there is the additional step

of weight attachment. To illustrate this point, suppose that the example in Figure 3.1(a)

is edge-weighted. Its symmetric digraph will retain the structure shown in the Figure

3.1(b). The only difference is that there is an attribute associated to each reverse arc pair

determined by the edge weight in the original graph.

Based on the symmetric digraph, the elements of the operators B and J can be com-

puted as follows:

Bij =

⎧⎨⎩ wdj if t(edi) = o(edj)

0 otherwise,
Jij =

⎧⎨⎩ 1 if edi = ēdj

0 otherwise.
(3.10)

Here, a) t(edi) and o(edj) denote the origin and terminus of the arc edi in the symmetric

digraph, respectively, b) ēdj denotes the inverse arc of edj and c) wdj is the weight of the

arc edj in the symmetric graph, which is equal to the weight of the edge of the original

graph from which the arc is derived.

For edge-weighted graphs, when t = 0 in (3.9), the determinant form of the Bartholdi
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zeta function reduces to the corresponding Ihara form denoted as follows:

ZG(u) = det(I2M − u(B − J))−1 = det(I2M − uTw)
−1. (3.11)

where we define Tw = B − J to be the Perron-Frobenius operator for edge-weighted

graphs. Moreover, Tw can also be regarded as the adjacency matrix of the oriented line

graph of the original edge-weighted graph. The form in (3.11) was mentioned in [77] as

an intermediate step to develop a new Bartholdi zeta function. However, it has not been

studied from the perspective of edge-weighted graphs, which are the emphasis of this

section.

The establishment of the matrices B and J summarizes the process of constructing the

oriented line graph from a edge-weighted graph. Here, the oriented line graph is similar

in structure with that for the corresponding unweighted case, except with the addition of

arcs between vertices deriving from the reverse arc pairs in the symmetric digraph. Unlike

the unweighted case, the reverse arc pairs in the symmetric digraph are used to establish

arcs in the oriented line graph from an edge-weighted graph. That is, if the arcs edi and

edj are a reverse pair in the weighted symmetric digraph, there would be a reverse arc pair

between the vertices vLi and vLj in the oriented line graph. The weight measures of the

reverse arc pairs are different from the remaining arcs in the oriented line graph. Suppose

that the vertices in the oriented line graph are attributed by the same weights as their

corresponding arc in the symmetric digraph. Each edge in a reverse arc pair is attributed

by the weight of its terminus vertex minus one, according to (3.10) and (3.11). The

remaining arcs that have no reverse counterparts are attributed by their terminus vertex

weights only, according to the definition of B in (3.10).

The structure of the oriented line graph of the example graph in Figure 3.1(a) (suppose

it is edge weighted) is shown in Figure 3.1(c). A dashed line with arrows at both ends is

an arc pair, which represents two arcs that are reverse to each other and originate from

the reverse arcs in Figure 3.1(b). Solid lines with an arrow on one end and which are

similar part to the unweighted case in structure, are arcs derived subject to the constraint
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in (3.4). The arcs denoted by the dashed line and the solid line are weighted differently.

For example, the edge directed from the vertex vL11 to vL7 is attributed by the edge-weight

of ed7 in Figure 3.1(b), that is, the weight of the edge connecting v1 and v2 in Figure 3.1(a).

On the other hand, each edge of the arc pair between the vertices vL4 and vL10 is attributed

by the edge-weight of ed4 or ed10 in Figure 3.1(b) minus one, that is, the weight of the edge

connecting v4 and v5 in Figure 3.1(a) minus one.

There are several points that need to be stressed here. First, unlike in (3.4), there is

no requirement on the exclusion of reversed arcs in the computation of the operator B

in (3.10). Second, the operator J records all the reversed arc relations. Third, when it

comes to unweighted graphs, Tw reduces to T in (3.5). This is because in this case B

reduces to a binary matrix representing orientations and connections only. More impor-

tantly, the operator Tw, i.e. the difference of B and J, naturally satisfies all the constraints

in (3.4) when it is reduced to an unweighted version. Above all, our proposed scheme

establishes a generalized version of the Perron-Frobenius operator, which is available to

both unweighted graphs and edge-weighted graphs.

3.2.3 Ihara Coefficients for Edge-weighted Graphs

According to our observations in Section 3.2.2, the Ihara coefficients can be constructed

for both unweighted graphs and edge-weighted graphs in a unified manner. Here, we

denote the Perron-Frobenius operator of a graph, irrespective of whether it is unweighted

or edge-weighted, as Tw. According to (3.11), the Ihara coefficients can be derived from

the polynomial:

Z−1
G (u) = det(I − uTw)

= c0 + c1u+ · · ·+ c2M−1u
2M−1 + c2Mu

2M . (3.12)

From (3.12), the Ihara coefficients {c0, c1, . . . , c2M} are the coefficients of the quasi char-

acteristic polynomial of the matrix Tw. Pattern vectors �v = [c0 c1 . . . c2M ]T for character-
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izing graphs can then be established with Ihara coefficients as components. As discussed

in Section 3.1.5, the Ihara coefficients not only avoid the hazards of infinities that are

encountered if function samples are used, but also convey information concerning graph

structure and topology.

3.3 Graph Spectral Interpretation

For unweighted graphs, the Ihara coefficients are essentially descriptors of graph struc-

ture. For edge-weighted graphs, however, the Ihara coefficient have no direct links with

the cycle frequencies or vertex degrees in the graph. Here we study the Ihara coefficients

for md2 graphs from a spectral standpoint. We perform a comprehensive analysis on the

effectiveness of the Ihara coefficient for clustering md2 graphs.

As stated in Sections 3.1.4 and 3.2.2, there is always one oriented line graph associated

with an md2 graph. In practice the cardinality of the vertex set of the oriented line graph

is much greater than, or at least equal to, that of the original graph. The construction of

the oriented line graph is thus a process of transforming the original graph into a new

version with adjacency matrix Tw in a higher dimensional space than that of the original

graph. Furthermore, the Ihara coefficients are determined by the spectrum of the Perron-

Frobenius operator. Each coefficient can be derived from the polynomial of the eigenvalue

set {λ̃1, λ̃2 ... λ̃n} of Tw as follows:

c2M−r = (−1)r
∑

k1<k2< ... <kr

λ̃k1λ̃k2 ... λ̃kr (3.13)

The eigenvalue set of Tw is just the pole set of the Ihara zeta function. For an unweighted

graph, it is linked to the lengths of prime cycles. Equation (3.13) provides an efficient

way to compute the Ihara coefficients by enumerating the eigenvalues of a 2M × 2M

matrix. This is close in spirit to the first method for computing the polynomial coefficients

suggested by Brooks [12]. Moreover, it is more efficient than the third method suggested
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by Brooks, which is based on computing the determinant of 2M × 2M matrix
(

2M
2M−r

)
times to obtain the coefficient c2M−r.

From the above spectral analysis, we can see that the computational complexity of

obtaining the Ihara coefficients is governed by the eigen-decomposition of the Perron-

Frobenius operator and this requires O(M 3) operations.

The Ihara coefficients are signed elementary symmetric polynomials (ESP) on the

eigenvalues of Tw. It is interesting to note that Wilson, Luo and Hancock [102] have

applied elementary symmetric polynomials to the elements of the spectral matrix Y =
√
ΛΦT of the Laplacian matrix L = YYT = ΦΛΦT . The same authors have also ex-

plored using the leading eigenvalues of the graph matrix representations, i.e. truncated

spectra [58]. By using ESP they overcome problems of restricted performance encoun-

tered using the truncated spectra. However, the work is based on the Laplacian matrix L

rather than the Perron-Frobenius operator Tw. The Ihara coefficients, on the other hand,

are the coefficients of the quasi characteristic polynomial of Tw and are determined by

the full spectrum of Tw according to (3.13). Furthermore, the Perron-Frobenius operator

extracts graph characteristics in a higher dimensional feature space instead of the matrix

representations of the original graph. Therefore, the Ihara coefficients not only capture

richer graph characteristics than graph spectral representations, but also naturally avoid

the spectral truncation. In our experiments, we compare the performance of the Ihara co-

efficients with the truncated Laplacian spectrum and the ESP of the Laplacian spectrum.

3.4 Experimental Evaluation

We test our proposed method on both unweighted and edge-weighted graphs. For graphs

of each type, we report results on both synthetic and real world data. The experiments on

synthetic data are aimed at evaluating the ability of the Ihara coefficients to distinguish

between graphs under controlled structural errors. The experiments on real world data
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aim to assess whether the Ihara coefficients can be embedded in a pattern space that

reveals their cluster structure. Both qualitative and quantitative evaluations are made in

our experiments.

3.4.1 Unweighted Graphs

Synthetic Graphs

We commence by investigating the relationship between graph edit distance and the Eu-

clidean distance between pattern vectors composed of Ihara coefficients. The edit distance

between two graphs G1 and G2 is the minimum edit cost taken over all sequences of edit

operations that transform G1 into G2. In our experiments we establish a new graph by

deleting a certain number of edges from a seed graph. We assign to each deletion an edit

cost equal to the deleted edge weight. The edit distance between the edited graph and the

seed graph is equal to the total deleted edge weights, i.e. dEdit =
∑

e Deletedw(e). For

unweighted graphs, the edge weight is unity for each deleted edge and the edit distance is

equal to the number of edges deleted.

We commence with a set of randomly generated md2 graphs. The seed graph for

the set has 100 vertices and 300 edges. The remainder of the graphs in the set are ob-

tained by deleting the edges of the seed graph (indexed from 1 to 30). At each level of

editing, 100 trials are performed and the edges deleted are chosen randomly, subject to

preserving the md2 constraint. In our experiments, we construct two Ihara coefficient

pattern vectors �vI = [c3, c4, c5, c6, c7, ln(|c2M |)]T and �vIS = [c3, c4, ln(|c2M |)]T . Since

the components of �vIS are a subset of those of �vI , we refer to �vI as the pattern vector

composed of unselected Ihara coefficients and �vIS as that composed of selected Ihara co-

efficients. The final component of each pattern vector is scaled in a logarithmic manner

to avoid problems of dynamic range. For comparison, we also establish pattern vectors

with the same dimension as �vI using the truncated spectrum of the Laplacian matrix.
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The leading eigenvalues of the Laplacian matrix experimentally play a dominant role in

characterizing graphs. Thus we take the second smallest through to the seventh smallest

eigenvalues of graph Laplacian L as components, i.e. �vL = [λ2, λ3, λ4, λ5, λ6, λ7]
T ,

where L = ΦΛΦT , Λ = diag(λ1, λ2, · · · λN) and 0 = λ1 ≤ λ2 ≤ · · · ≤ λN . We

refer to �vL as the Laplacian spectral pattern vector, which proves to be one of the most

effective spectral representations for graphs [103]. The feature distance between pattern

vectors �vi and �vj is defined as the Euclidean distance di,j =
√
(�vi − �vj)T (�vi − �vj). We in-

vestigate the representational power and stability of the pattern vectors. The experimental

results are shown in Figure 3.2. Figure 3.2(a) shows the feature distance between pat-

tern vectors (composed of unselected Ihara coefficients) of the seed graph and the edited

graph as a function of the edit distance, i.e. the number of edges deleted. The relative

standard deviation (RSD) is also shown as an error bar on each measurement. The Ihara

coefficient distance generally follows the edit distance. Figure 3.2(b) shows the feature

distance between Laplacian spectral pattern vectors, as well as the corresponding RSD,

as a function of the edit distance (but scaled differently to Figure 3.2(a)). From Figures

3.2(a) and 3.2(b) it is clear that the dynamic range of the coefficient feature distance is

much larger than that of the Laplacian spectral distance for a corresponding edit distance.

Thus the Ihara coefficients are more sensitive to graph edits than the truncated Laplacian

spectra. Figure 3.2(c) shows the feature distance computed using the selected Ihara coef-

ficients as a function of the edit distance. Compared with Figure 3.2(a), the selected Ihara

coefficients are more linear with the edit distance than the unselected Ihara coefficients.

To evaluate how reliably the Ihara coefficient distance and the Laplacian spectral distance

predict the edit distance, we plot their RSD as a function of edit distance in Figure 3.2(d).

From Figure 3.2(d), it is clear that although the unselected Ihara coefficients are less stable

than the graph spectra, the selected Ihara coefficients offer the best stability. This illus-

trates that the Ihara coefficients have the potential to provide a more stable representation

than the truncated Laplacian spectra when the proper coefficient selection is performed.
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Further discussion on the coefficient selection will be detailed in the next subsection.

View-based Object Recognition

We apply the pattern vectors composed of Ihara coefficients to two graph datasets. The

first set of graphs are extracted from three sequences of images of model houses [58].

The second set of graphs are extracted from images of three toys. The third set of graphs

are extracted from images of the objects in the COIL database [62]. Sample images of

the model houses, toys and objects in the COIL database are shown in Figures 3.3(a)

(referred to as the CMU, MOVI and Chalet sequences from left to right), 3.3(b) and

3.3(c) respectively. There are ten pictures taken for each model house from different view

angles, thirty pictures taken for each toy from different view angles, and seventy two

pictures taken for each object in the COIL database from different view angles. We first

extract corner points from each image using the Harris detector [39]. Then we establish

Delaunay graphs based on these corner points as vertices. Each vertex is used as the

seed of a Voronoi region, which expands radically with a constant speed. The collision

fronts of the regions delineate the image plane into polygons, and the Delaunay graph

is the region adjacency graph for the Voronoi polygons. Figure 3.3 shows the Delaunay

graphs superimposed on the sample images of the objects. Once we have extracted graphs

from the objects, we can establish pattern vectors using either the Ihara coefficients or the

truncated Laplacian spectra. One way to evaluate the effectiveness of the pattern vectors

for clustering graphs is to applyK-means to them to obtain clusters and then compute the

Rand indices to assess the clustering performance. The Rand index is defined as RI =

X/(X+Y ), where X is the number of agreements and Y is the number of disagreements

in cluster assignment. If two objects are in the same cluster in both the ground truth

clustering and the clustering from our experiment, this counts as an agreement. If two

objects are in the same cluster in the ground truth clustering but are in different clusters

in our experiment, this counts as a disagreement. The Rand index takes a value in the

39



0 5 10 15 20 25 30 35
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Edit Distance

F
ea

tu
re

 D
is

ta
nc

e

(a) Unselected Ihara coefficients.
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(b) Truncated Laplacian spectra.
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(c) Selected Ihara coefficients.
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FIGURE 3.2: (A) (B) (C) REPRESENTATIONAL POWER ILLUSTRATED BY THE DIS-

TANCE BETWEEN FEATURE VECTORS VERSUS GRAPH EDIT DISTANCE AND (D) STA-

BILITY OF THE FEATURE DISTANCE TO PREDICT THE EDIT DISTANCE.
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(a) House image samples.

(b) Toy image samples.

(c) Image samples in COIL dataset.

FIGURE 3.3: EXTRACTED GRAPHS FOR EXPERIMENTS.

interval [0,1], where 1 corresponds to a perfect clustering.

To take the study of establishing pattern vectors using Ihara coefficients one step fur-

ther, we first explore which combination of the coefficients gives the best performance

on the real world data because not all the coefficients are equally useful in characteriz-

ing graphs. This can be observed from Figure 3.4, where the pattern vector composed

of a subset of the Ihara coefficients {c3, c4, c5, c6, c7, ln(|c2M |)} are separately applied

to the house sequences and the first three objects in the COIL dataset. As the number

of coefficients involved in a pattern vector increases, the Rand index does not always
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exhibit a corresponding increase. This is in accordance with the experimental results

on synthetic graphs in Section 3.4.1. Therefore, only a subset of the coefficients con-

tribute significantly in representing graph features. That is, some coefficients may be

redundant and some others may reduce the effectiveness of graph characterization. We

thus need to select a subset of salient coefficients, i.e. those that take on distinct val-

ues for different classes and also exhibit small variance within the class. To do this, we

compute the between-class scatter Sb =
∑U

i=1Di(c̄k,i − c̄k)
2 and the within-class scatter

Sw =
∑U

i=1

∑
ck,i,j∈Ci

(ck,i,j − c̄k,i)
2 of the individual coefficients, where c̄k is the mean

of the samples for coefficient ck, c̄k,i is the mean of the samples for ck in class Ci, Di

is the number of samples in class Ci and U is the total number of classes. We then use

the criterion function JC = (Sb + Sw)/Sw to evaluate the performance of the individual

coefficients. We select the coefficients according to the condition that the individual coef-

ficients that make the largest contributions to JC are the most significant. We select three

objects and for each object ten sample images are used as training data to compute the

criterion function value. Figure 3.5 shows the criterion function values for the coefficients

extracted from the three datasets. The beginning and trailing coefficients offer more dis-

crimination than the intermediate ones. This is because the remaining coefficients provide

no significant increase in information over c3, c4 and c2M since they are determined by the

number of triangles and squares in the graph and the vertex degrees, which are the most

basic characteristics from md2 graphs. Based on this feature selection analysis, we work

with the pattern vector �vIS = [c3, c4, ln(|c2M |)]T . The three components of �vIS extracted

from the first four objects in the COIL dataset are shown in Figure 3.6 as a function of

view number. Each line in a given plot represents the coefficients extracted from one ob-

ject. The lines in each plot are well separated, thus indicating that the three coefficients

are sufficient to distinguish different object classes.

We then apply the pattern vectors composed of a) truncated Laplacian spectra, i.e.

the leading three nonzero Laplacian eigenvalues, b) unselected Ihara coefficients and c)
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FIGURE 3.4: CLUSTERING PERFORMANCE FOR DIFFERENT NUMBERS OF COEFFI-

CIENTS.

selected Ihara coefficients to the house sequences, toy pictures and the first four objects in

the COIL dataset. Figures 3.7, 3.8 and 3.9 show the clustering results obtained by embed-

ding the pattern vectors for the three datasets separately into a three-dimensional space

using PCA. The selected coefficients outperform both the truncated Laplacian spectra and

the unselected coefficients, and give clusters with better separation.

Finally we focus our attention on the COIL dataset, and evaluate the clustering per-

formance obtained with different numbers of object classes. After embedding the pattern

vectors into a three-dimensional space using PCA, we locate clusters using the K-means

method and calculate the Rand index. The Rand indices for each kind of pattern vectors

are shown in Table 3.1. The selected Ihara coefficients give the best performance and the

truncated Laplacian spectra the poorest.

3.4.2 Edge-weighted Graphs

For edge-weighted graphs, we evaluate our proposed scheme in two ways. We again

commence with a study on synthetic data aimed at evaluating the ability of the Ihara co-

efficients to distinguish between edge-weighted graphs under controlled structural errors.

43



c(3) c(4) c(5) c(6) c(7) ln(|c(2M)|)
22

24

26

28

30

32

34

36

38

Coefficient Label

(S
b+

S
w

)/
S

w

(a) COIL data.

c(3) c(4) c(5) c(6) c(7) ln(|c(2M)|)
6

6.5

7

7.5

8

8.5

9

Coefficient Label

(S
b+

S
w

)/
S

w

(b) Toy data.
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FIGURE 3.5: CRITERION FUNCTION VALUES FOR UNWEIGHTED GRAPHS.

Pattern vector
Number of object classes

4 5 6 7 8

Truncated Laplacian spectra 0.93 0.87 0.85 0.85 0.87

Unselected Ihara coefficients 0.98 0.88 0.88 0.85 0.86

Selected Ihara coefficients 0.99 0.93 0.87 0.87 0.88

TABLE 3.1: RAND INDICES FOR UNWEIGHTED GRAPHS FROM THE COIL DATASET.
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FIGURE 3.6: IHARA COEFFICIENTS FOR UNWEIGHTED GRAPHS EXTRACTED FROM

THE COIL DATASET.
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(a) Truncated Laplacian spectra for the house
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(b) Unselected Ihara coefficients for the house

dataset.
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(c) Selected Ihara coefficients for the house dataset.

FIGURE 3.7: CLUSTERING PERFORMANCE FOR UNWEIGHTED GRAPHS EXTRACTED

FROM THE HOUSE DATASET.
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(a) Truncated Laplacian spectra for the toy data.
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(b) Unselected Ihara coefficients for the toy data.
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(c) Selected Ihara coefficients for the toy data.

FIGURE 3.8: CLUSTERING PERFORMANCE FOR UNWEIGHTED GRAPHS EXTRACTED

FROM THE TOY DATASET.
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(a) Truncated Laplacian spectra for the COIL
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(b) Unselected Ihara coefficients for the COIL

dataset.
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(c) Selected Ihara coefficients for the COIL dataset.

FIGURE 3.9: CLUSTERING PERFORMANCE FOR UNWEIGHTED GRAPHS EXTRACTED

FROM THE COIL DATASET.
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Second, we focus on real world data and assess the effectiveness of the Ihara coefficient

pattern vectors in detecting object clusters.

Synthetic Graphs

We first investigate the relationship between graph edit distance and the feature distance

between Ihara coefficient pattern vectors for edge-weighted graphs. We commence with

a single randomly generated md2 graph as the seed graph with 100 vertices and 300

weighted edges. In this subsection, the edge weights are always generated so as to have

a uniform distribution over the interval [0.5, 1.5]. We obtain edited versions of the seed

graph by randomly deleting edges, with the number of deleted edges varying from 1 to 30.

For each number of deletions, we perform ten randomized edge deletion trials subject to

the md2 constraint. We compute the Ihara coefficients using (3.13) and construct the pat-

tern vector in the form of �vWI = [c3, c4, ln(|c2M−3|), ln(|c2M−2|), ln(|c2M−1|), ln(|c2M |)]T .

The final four components of the pattern vector are scaled in a logarithmic manner to

avoid unbalanced variance. Figure 3.10 plots the feature distances obtained using the

pattern vectors composed of Ihara coefficients, versus the corresponding graph edit dis-

tances between the seed graph and its modified variants. The main feature to note from

the plot is that for edge-weighted graphs the Ihara coefficient distance again generally

follows the weighted edit distance. Moreover, for small distances the variation of Ihara

coefficient distance is approximately linear with edit distance. For large edit distance the

Ihara coefficient distance becomes more scattered.

To take this study on synthetic data one step further, we have studied the distribution

of the Ihara coefficient feature distance. We investigate two sets of graphs. The first set

consists of graphs which are obtained by randomly deleting one edge from a seed graph

with 100 vertices and 301 weighted edges, subject to the md2 constraint. The second set

are md2 graphs randomly generated with 100 vertices and 300 weighted edges. Figure

3.11(a) shows the distribution of the Euclidean feature distance between the vectors of
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FIGURE 3.10: SCATTER PLOT OF THE DISTANCES COMPUTED USING THE IHARA

COEFFICIENTS VERSUS THE CORRESPONDING EDIT DISTANCE.
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FIGURE 3.11: DISTANCE DISTRIBUTION OF RANDOM EDGE-WEIGHTED GRAPHS.
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FIGURE 3.12: FEATURES FROM RANDOMLY GENERATED EDGE-WEIGHTED GRAPHS

WITH A FIXED NUMBER OF EDIT OPERATIONS.
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FIGURE 3.13: CLUSTERS FOR THREE CLASSES OF EDGE-WEIGHTED GRAPHS.
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Ihara coefficients for the first set of graphs (red asterisk curve) and that of the second

set (black circle curve). The modal distance between pattern vectors for graphs with

random edge edits is much smaller than that for the structurally distinct graphs. For

comparison, Figure 3.11(b) shows the distribution of the Mahalanobis distance for the two

sets of graphs. The Mahalanobis distance between pattern vectors �vi and �vj is defined as

di,j =
√
(�vi − �vj)TΣ−1(�vi − �vj) where Σ is the covariance matrix of the pattern vectors.

The Mahalanobis distance accounts for correlated features using the covariance and can

correctly scale the feature components. The main feature to note in Figure 3.11 is that the

two distributions are almost totally non-overlapping. From Figures 3.11(a) and 3.11(b),

the distance between pattern vectors appears to provide scope for distinguishing between

distinct graphs when there are variations in edge structure due to noise.

To provide an illustration and make a more comprehensive comparison with the graph

spectral methods, we create two graph sets for testing the alternative representations.

These two graph sets are established according to different types of graph edits sepa-

rately. Each of the two sets are three classes of graphs separately derived from three seed

graphs, which are again randomly generated with 100 vertices and 300 weighted edges.

However, we perform two different types of edit operations on the seed graphs to estab-

lish the two graph sets separately. The first is to randomly delete eight edges at each

time, and the second is with a random number of edge deletions from one to eight in each

trial. We begin by performing the first type of edit operations on three seed graphs. Sixty

four random trials of the edits are performed on each of the three seed graphs separately.

Graph features of the three classes of edited graphs are shown in Figure 3.12, where Fig-

ures 3.12(a), 3.12(b) and 3.12(c) respectively show a) the largest Laplacian eigenvalue, b)

the final coefficient of the elementary symmetric polynomial [102] of Laplacian spectrum

(ESP’s) and c) the final Ihara coefficient as a function of trial number. The main feature to

note is that in the case of the Ihara coefficients, the variance is smallest and there is little

overlap. The remaining two methods are overlapped to a more severe degree.
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Next we embed the pattern vectors for the two sets of edited graphs separately into a

three-dimensional space using PCA to evaluate their performance in clustering. We ap-

plied this procedure both to the Laplacian spectral pattern vector consisting of the second

through to the seventh Laplacian eigenvalues and to the Ihara coefficient vector �vWI . Fig-

ure 3.13 shows the experimental results. Figures 3.13(a) and 3.13(b) respectively show

the clusters generated by the truncated Laplacian spectra and the Ihara coefficients, sub-

ject to the first type of graph edits. Although the Laplacian spectral method appears to

produce ‘good’ clusters in Figure 3.13(a), there are some problems that are worth noting.

First, the right two clusters are so close that they almost merge into one. Second, the

left cluster has a non-compact ring shape and there are no graphs near the cluster center.

However, the clusters in Figure 3.13(b) produced by the Ihara coefficient method are both

more compact and more separable. Figures 3.13(c) and 3.13(d) show the results for the

second type of graph edits. In this more complex situation, the Laplacian spectral method

yields clusters with considerable scattering, as illustrated in Figure 3.13(c). However, for

the Ihara coefficients, although there are a small number of outlier samples (two black

triangles in the pink star cluster and one pink star in the green circle cluster), the overall

performance is better and provides the basis for a usable clustering technique.

View-based Object Recognition

We now establish the pattern vectors composed of Ihara coefficients for edge-weighted

graphs extracted from three datasets which have been used in Section 3.4.1, i.e. the house

sequences, the toy pictures and the images from the COIL dataset. Here Delaunay graphs

are also extracted as explained in Section 3.4.1. However, to consider edge-weighted

graphs, the edge connecting vertices indexed by i and j is exponentially weighted by the

negative of the Euclidean distance between the two vertices, i.e. wij = exp[−k ||xi − xj ||]
where xi and xj are coordinates of corner points i and j in an image and k is a scalar

scaling factor.

54



c(3) c(4) c(5) c(6) c(7) ln[|c(2M−4)|] ln[|c(2M−3)|] ln[|(c2M−2)|] ln[|c(2M−1)|] ln[|c(2M)|]
40

60

80

100

120

140

160

Coefficient Label

(S
b+

S
w

)/
S

w

(a) House data.

c(3) c(4) c(5) c(6) c(7) ln[|c(2M−4)|]ln[|c(2M−3)|]ln[|(c2M−2)|]ln[|c(2M−1)|] ln[|c(2M)|]
6.5

7

7.5

8

8.5

9

9.5

Coefficient Label

(S
b+

S
w

)/
S

w
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FIGURE 3.14: CRITERION FUNCTION VALUES FOR EDGE-WEIGHTED GRAPHS.
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(c) Ihara coefficients.

FIGURE 3.15: STATISTICS OF THE FEATURES FROM EDGE-WEIGHTED GRAPHS EX-

TRACTED FROM THE COIL DATASET.
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(a) Truncated Laplacian spectra for the house data.
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(b) Ihara coefficients for the house data.

FIGURE 3.16: CLUSTERING PERFORMANCE FOR EDGE-WEIGHTED GRAPHS EX-

TRACTED FROM THE HOUSE DATASET.
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(a) Truncated Laplacian spectra for the toy data.
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(b) Ihara coefficients for the toy data.

FIGURE 3.17: CLUSTERING PERFORMANCE FOR EDGE-WEIGHTED GRAPHS EX-

TRACTED FROM THE TOY DATASET.
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(a) Truncated Laplacian spectra for the COIL data.
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(b) Ihara coefficients for the COIL data.

FIGURE 3.18: CLUSTERING PERFORMANCE FOR EDGE-WEIGHTED GRAPHS EX-

TRACTED FROM THE COIL DATASET.

We first explore which coefficients provide the strongest discrimination between the

graphs for the different object classes. To do this, we select the coefficients according to

the criterion introduced in Section 3.4.1 that the individual coefficients which make the

largest contributions to the criterion function are the most significant ones. For each of

three selected objects, ten sample images are used as training data to compute the criterion

function value. Figures 3.14(a), 3.14(b) and 3.14(c) show the criterion function values for

the coefficients extracted from the house dataset, the toy dataset and the COIL dataset

respectively. It is clear that the leading few and trailing coefficients contribute more to

distinguishing the objects than the intermediate ones.

Next we evaluate the performance of the pattern vectors in distinguishing real world

graph classes. We test the Laplacian eigenvalues, the ESP’s and the Ihara coefficients on

the COIL dataset. Figure 3.15 shows the statistics of the same four objects as a function of

coefficient indices. For each coefficient we show the mean value and standard error over

different views. For Figure 3.15, different colored lines correspond to different objects.

The main features to note here are that a) both the Ihara coefficients and the ESP’s are

better separated than the Laplacian eigenvalues, b) there is now little difference between
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the Ihara coefficients and the ESP’s. This latter point is attributable to the high regularity

of the Delaunay graphs.

We then use �vWIS1 = [c3, c4, ln(|c2M |)]T , �vWIS2 = [c3, ln(|c2M−1|), ln(|c2M |)]T

and �vWIS3 = [ln(|c2M−2|), ln(|c2M−1|), ln(|c2M |)]T as the pattern vectors characterizing

the edge-weighted graphs extracted from the house sequences, the toy pictures and the

COIL dataset respectively. For comparison, we use the leading three non-zero Laplacian

eigenvalues as the spectral pattern vector for the two datasets. We embed the pattern

vectors into a three-dimensional space using PCA. Figures 3.16(a) and 3.16(b) show the

clusters of graphs extracted from the house sequences, produced by the Laplacian spectral

method and the Ihara coefficients respectively. Figures 3.17(a) and 3.17(b) show the clus-

ters of graphs extracted from the three classes of toy pictures, produced by the Laplacian

spectral method and the Ihara coefficients respectively. Figures 3.18(a) and 3.18(b) show

the clusters of graphs extracted from the first four objects of the COIL dataset, produced

by the Laplacian spectral method and the Ihara coefficients respectively. From Figures

3.16, 3.17 and 3.18 it is clear that the Ihara coefficients outperform the Laplacian spectral

method in producing good clusters.

To take the quantitative evaluation of the pattern vectors one step further, we concen-

trate our attention on the COIL dataset, and evaluate the clustering performance obtained

with different numbers of object classes. After performing PCA on the pattern vectors,

we locate the clusters using the K-means method and calculate the Rand index for the

resulting clusters. The Rand indices for the Laplacian spectral method and for the Ihara

coefficients are listed in Table 3.2. From Table 3.2 it is clear that the Ihara coefficients

outperform Laplacian spectra for all numbers of object classes studied.
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Pattern vector
Number of object classes

4 5 6 7 8

Truncated Laplacian spectra 0.94 0.87 0.87 0.86 0.87

Ihara coefficients 0.99 0.95 0.90 0.88 0.89

TABLE 3.2: RAND INDICES FOR EDGE-WEIGHTED GRAPHS FROM THE COIL

DATASET.

3.5 Summary

In this chapter we have studied how to extract characteristics from graphs using the Ihara

zeta function, and have exploited the resulting characterization for the purposes of clus-

tering graphs. We use Ihara coefficients to construct pattern vectors. Furthermore we

have provided a route that allows the Ihara coefficients to be extended from unweighted

to edge-weighted graphs. This is achieved by establishing the Perron-Frobenius operator

for edge-weighted graphs with the assistance of a reduced Barthodi zeta function. This

generalization allows us to compute the Ihara coefficients for both unweighted graphs

and edge-weighted graphs in a unified manner. We have performed a spectral analysis

that reveals the reasons why the Ihara coefficients are more effective in distinguishing

graph classes than the graph spectral methods. Experiments have been conducted on both

synthetic and real world data, and reveal not only that the Ihara coefficients are effective

for graph clustering but that they also outperform the truncated Laplacian spectra.
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Chapter 4

Hypergraph Characterization via Ihara

Coefficients

In this chapter we present a hypergraph characterization method based on the Ihara coef-

ficients. We verify that the Ihara coefficients are flexible for graphs and hypergraphs, and

can distinguish structures consisting of vertices with the same pairwise connectivity but

different relational orders. Furthermore, we present an efficient method for the coefficient

computation. Experiments show both the effectiveness and efficiency of the proposed

method.

4.1 Hypergraph Fundamentals

In this section, we review the definitions of hypergraphs and hypergraph Laplacian. Fur-

thermore, we reveal the shortcoming of hypergraph Laplacian spectra in distinguishing

hypergraphs when their differences are simply relationship orders, and explain the possi-

ble reasons for this deficiency.
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4.1.1 Definition

A hypergraph is defined as a set pair HG(V,E) where V is a set of elements, called

vertices, and E is a set of non-empty subsets of V called hyperedges. A hypergraph is

a generalization of a graph. Unlike graph edges which are pairs of vertices, hyperedges

are arbitrarily sized sets of vertices, and can therefore contain an arbitrary number of

vertices. Examples of a hypergraph are shown in Figures 4.1 and 4.3. For the hypergraph

in Figure 4.3, the vertex set is V = {v1, v2, v3, v4, v5} and the hyperedge set is E = {e1 =
{v1, v3}, e2 = {v1, v2}, e3 = {v2, v4, v5}, e4 = {v3, v4, v5}}. The representation of

a hypergraph in the form of sets, concretely captures the relationship between vertices

and hyperedges. However, it is difficult to manipulate this form in a computationally

convenient way. Thus one alternative representation of a hypergraph is in the form of

a matrix. For a hypergraph with I vertices and J hyperedges, we establish an I × J

incidence matrix H with element hi,j as follows:

hi,j =

⎧⎨⎩ 1 if vi ∈ ej ;

0 otherwise.
(4.1)

The incidence matrix of the hypergraph HG(V,E) can be more easily manipulated than

its equivalent set representation.

4.1.2 Hypergraph Laplacian Spectrum

Although the incidence matrix can fully describe the characteristics of a hypergraph, the

matrix elements represent vertex-to-hyperedge relationships rather than vertex-to-vertex

relationships. To obtain a vertex-to-vertex representation, we need to establish the ad-

jacency matrix and Laplacian matrix for a hypergraph. To achieve this goal, a graph

representation for the hypergraph is required. One possible method is to construct a graph

with edges weighted by the quotient of the corresponding hyperedge weight and cardi-

nality [112]. In this case, even those edges derived from an unweighted hyperedge are
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(a) (b)

FIGURE 4.1: UNWEIGHTED HYPERGRAPHS WITH THE SAME ADJACENCY MATRIX

AND LAPLACIAN MATRIX.

(a) Oriented line graph of Figure 4.1(a). (b) Oriented line graph of Figure 4.1(b).

FIGURE 4.2: ORIENTED LINE GRAPHS ASSOCIATED WITH THE HYPERGRAPHS IN

FIGURE 4.1.
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assigned a non-unit weight. As an alternative, rather than attaching a weight to each

edge in the graph representation, one definition of the adjacency matrix and the associ-

ated Laplacian matrix for a nonuniform unweighted hypergraph are AH = HHT − Dv

and LH = Dv − AH = 2Dv − HHT respectively, where Dv is the diagonal vertex degree

matrix whose diagonal element d(vi) is the summation of the elements in the ith row of H

[67]. The set of eigenvalues of LH are referred to as the hypergraph Laplacian spectrum

and can be used in a straightforward way as characteristics captured from HG(V,E).

However, these matrix representations exhibit deficiencies when used to characterize

relational structures. For example, for the hypergraphs in Figures 4.1(a) and 4.1(b), the

adjacency matrices are identical, and so are the associated Laplacian matrices. Specifi-

cally, the adjacency matrix and Laplacian matrix for the two hypergraphs in Figure 4.1

are as follows:

AH =

⎛⎜⎜⎜⎝
0 1 1

1 0 1

1 1 0

⎞⎟⎟⎟⎠ LH =

⎛⎜⎜⎜⎝
2 −1 −1

−1 2 −1

−1 −1 2

⎞⎟⎟⎟⎠ .

It is clear that neither the unweighted adjacency matrix nor the Laplacian matrix can

distinguish these two hypergraphs. One important reason for the limited usefulness of

the above hypergraph matrix representations is that they result in information loss when

relational orders of varying degree are present. The adjacency matrix and the Laplacian

matrix introduced above only record the adjacency relationships between pairs of nodes

and neglect the cardinalities of the hyperedges. In this regard they can not distinguish

between pairwise relationships and higher order relationships for the same set of vertices.

To overcome this deficiency, we must resort to tools that are capable of distinguishing

hypergraphs with the same pairwise connectivity among the same set of vertices but with

different relational orders. To this end, we adopt characteristic polynomials extracted

from the Ihara zeta function as a means of representing hypergraphs. In the next section,

we commence by showing that the Ihara zeta function can be used to represent this type
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of relational structure in hypergraphs. We use the Ihara coefficients, i.e. the characteristic

polynomial coefficients extracted from the determinant form of the Ihara zeta function,

as hypergraph characteristics. We show that the Ihara coefficients not only encode the

relational structure in a consistent way but also overcome the deficiencies caused by the

vertex-to-vertex matrix representations described above.

4.2 Ihara zeta function from graphs to hypergraphs

The definition and rational expression of an Ihara zeta function for a graph have been

introduced in Chapter 3. Based on the definition of the graph Ihara zeta function (3.1),

Storm [91] has extended the definition of the Ihara zeta function to a hypergraphHG(V,E)

as follows:

ζH(u) =
∏
p∈PH

(
1− u|p|

)−1
, (4.2)

where PH is the set of the equivalence classes of prime cycles in the hypergraphHG(V,E).

A prime cycle in a hypergraph is a closed path with no backtrack. That is, no hyperedge

is traversed twice in the prime cycle. For example, the cycle {v1 → v2 → v3 → v1} in the

hypergraph in Figure 4.1(a) is a prime cycle. However, the cycle {v1 → v2 → v3 → v1}
in the hypergraph in Figure 4.1(b) is not a prime cycle. This is because the hyperedge e1,

e2 and e3 are only traversed once separately in the cycle {v1 → v2 → v3 → v1} in Figure

4.1(a). On the other hand, the cycle {v1 → v2 → v3 → v1} traverses the hyperedge e1

more than once in Figure 4.1(b) and does not make it a prime cycle.

To formulate the Ihara zeta function for a hypergraph in a manner similar with (3.2),

the bipartite graph representation of the hypergraph is needed. To establish the associated

bipartite graph, we use a dual representation in which each hyperedge is represented by

a new vertex. The union of the new vertex set and the original vertex set constitute the

vertex set of the associated bipartite graph. Each new vertex is incident to each of original

vertices in the corresponding hyperedge. The new vertices corresponding to hyperedges

65



are on one side and the original hypergraph vertices are on the other side. Thus the

bipartite graph and star expansion for a hypergraph share the same form, although they

are defined for different purposes. For instance, the bipartite graph associated with the

example hypergraph in Figure 4.3 is shown in Figure 4.4.

The Ihara zeta function of the hypergraph HG(V,E) can be equivalently expressed in

a rational form as follows:

ζH(u) = ZBG(
√
u) = (1− u)χ(BG)det

(
I|V (HG)|+|E(HG)| −

√
uABG + uQBG

)−1
, (4.3)

where ZBG(.) is the Ihara zeta function of the bipartite graph, χ(BG)is the Euler number

of the associated bipartite graph, ABG is the adjacency matrix of the associated bipartite

graph ofHG(V,E), and QBG = DBG−I|V (HG)|+|E(HG)|. Further details on the arguments

leading from (3.2) to (4.3) can be found in Storm’s paper [91].

The adjacency matrix of the associated bipartite graph can be formulated using the

incidence matrix H of HG(V,E):

ABG =

⎡⎣ 0|E(H)|×|E(H)| HT

H 0|V (H)|×|V (H)|

⎤⎦ . (4.4)

The hypergraph Ihara zeta function in the form of (4.3) provides an alternative method

for the function value computation. It also results in a useful computational method which

lifts the efficiency of computing the Ihara coefficients and will be discussed later on in

Section 4.5.

4.3 Permutation Invariant

The structure of a hypergraph is invariant under permutations of nodes and hyperedge

labels. If we want to represent a hypergraph using a pattern vector, we should ensure

that the elements of the pattern vector are invariant to permutations of the vertex labels.

However, the incidence matrix is modified by the vertex order and hyperedge order, since
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the rows and columns are indexed by the vertex order and hyperedge order, respectively.

If we relabel the vertices, the incidence matrix undergoes a permutation of rows, and if we

relabel the hyperedges, the incidence matrix undergoes a permutation of columns. The

elements of the adjacency matrix and Laplacian matrix for a hypergraph can be labeled

by the vertex labels alone without taking into account the hyperedge labels. However,

these two kinds of matrices also undergo column and row permutations when the vertex

labels interchange. On the other hand, the hypergraph Ihara zeta function is invariant

to label permutations on both vertices and hyperedges. To prove this property, suppose

that H and HP are the incidence matrices associated with two isomorphic hypergraphs

HG(V,E) and HGP (V,E), respectively. Let the matrix PV be the node permutation

matrix representing the change in node order between HG(V,E) and HGP (V,E) and

PE the hyperedge permutation matrix representing the change in hyperedge order. Both

PV and PE are orthogonal matrices and as a result PV PT
V = IV and PEPT

E = IE , where IV

and IE are identity matrices of the same size of PV and PE, respectively. The permutation

relationship between the two incidence matrices can be denoted as HP = PV HPE. Thus,

the relationship between the adjacency matrix of HGP (V,E) and that of HG(V,E) is:

ABGP
=

⎡⎣0|E(HG)|×|E(HG)| PT
EHTPT

V

PV HPE 0|V (HG)|×|V (HG)|

⎤⎦ = PABGPT (4.5)

where

P =

⎡⎣ PT
E 0|E(HG)|×|V (HG)|

0|V (HG)|×|E(HG)| PV

⎤⎦ (4.6)

and P is an orthogonal matrix with the size of (|V (HG)| + |E(HG)|) × (|V (HG)| +
|E(HG)|).

Suppose that the Ihara zeta function for HGP (V,E) is:

ζHP
(u) = (1− u)χ(BGP )det

(
I|V (HG)|+|E(HG)| −

√
uABGP

+ uQBGP

)−1
. (4.7)

Let S = det
(
I|V (HG)|+|E(HG)| −

√
uABGP

+ uQBGP

)
, then
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S = det
(
I|V (HG)|+|E(HG)| −

√
uPABGPT + uPQBGPT

)
= det

(
PI|V (HG)|+|E(HG)|PT −√

uPABGPT + uPQBGPT
)

= det
[
P

(
I|V (HG)|+|E(HG)| −

√
uABG + uQBG

)
PT

]
= det

(
I|V (Hg)|+|E(HG)| −

√
uABG + uQBG

)
. (4.8)

Thus we have

ζHP
(u) = (1− u)χ(BGP )S = ζH(u). (4.9)

Therefore, the Ihara zeta function for a hypergraph and the characteristics derived

from it are invariant to the permutations of both the vertex labels and hyperedge labels.

4.4 Determinant Expression of the Ihara Zeta Function

for Hypergraphs

From the definition (4.2), it is clear that the Ihara zeta function for a hypergraph is the

reciprocal of a polynomial:

ζH(u) = (c0 + c1u+ · · ·+ cM−1u
M−1 + cMu

M)−1, (4.10)

where M is the highest order of the polynomial, of which the detail will be discussed

in Section 4.4.2. The polynomial coefficients c0, c2, . . . , cM are referred to as the Ihara

coefficients. Although the Ihara zeta function can be evaluated efficiently using (4.3),

the task of enumerating the coefficients of the polynomial appearing in the denominator

of the Ihara zeta function (4.3) is difficult, except by resorting to software for symbolic

calculation. To efficiently compute these coefficients, a different strategy is adopted. The

hypergraph is first transformed into an oriented line graph. The Ihara zeta function is then

the reciprocal of the characteristic polynomial for the adjacency matrix of the oriented

line graph.
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FIGURE 4.3: HYPERGRAPH

EXAMPLE.

FIGURE 4.4: BIPARTITE GRAPH.

4.4.1 Oriented Line Graph

To establish the oriented line graph associated with HG(V,E), we commence by con-

structing a |ei|-clique, i.e. clique expansion, by connecting each pair of vertices in ei

through an edge for each hyperedge ei ∈ E. The resulting graph is denoted byGH(V,EG).

It is important to stress that there are potential multiple edges between two vertices in

GH(V,EG) if the two vertices are encompassed by more than one common hyperedge

in HG(V,E). Suppose there are p hyperedges encompassing two vertices in HG(V,E).

The p hyperedges induces p edges separately between the two vertices inGH(V,EG). For

the example hypergraph in Figure 4.3, GH(V,EG) is shown in Figure 4.5. In this exam-

ple, the edges belonging to the common clique are indicated by the same color while the

different cliques are colored differently. In the example, there are two edges between v4

and v5 colored differently, and these are induced by e3 and e4 in the original hypergraph

in Figure 4.3, respectively.

For GH(V,EG), the associated symmetric digraph DGH(V,Ed) can be obtained by

replacing each edge of GH(V,EG) by an arc (oriented edge) pair in which the two arcs

are inverse to one another. For GH(V,EG) in Figure 4.5, the associated DGH(V,Ed) is
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FIGURE 4.5: CLIQUE. FIGURE 4.6: DI-CLIQUE.

FIGURE 4.7: ORIENTED LINE GRAPH.
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shown in Figure 4.6. Finally, the oriented line graph of the hypergraph can be established

based on the symmetric digraph. The vertex set and edge set of the oriented line graph

are defined as follows [91]:

⎧⎨⎩ Vol = Ed;

Eol = {(u, v)i, (v, w)j ∈ Ed ×Ed : i �= j};
(4.11)

where the subscripts i and j denote the indices of the hyperedges from which the arcs

(u, v) and (v, w) are, respectively, induced.

One observation that needs to be made here is that the adjacency matrix AH and Lapla-

cian matrix LH for a hypergraph introduced in Section 4.1.2 are in fact those of the graph

established on the clique expansion, but without an edge-weight attachment. These ma-

trix representations can induce ambiguities when representing relational structures with

different relational orders. This point is illustrated by the two hypergraphs in Figure 4.1,

which have the same clique graph and thus the same adjacency matrix and Laplacian ma-

trix. The reason for this is that the clique expansion only records adjacency relationships

between pairs of vertices and can not distinguish whether or not two edges are derived

from the same hyperedge. Thus the clique graph representations for a hypergraph may

result in the loss of information concerning relational order. However, the Ihara zeta

function overcomes this deficiency by avoiding the interaction between any two edges

derived from the same hyperedge. This is due to the constraint in (4.11) that the connect-

ing arc pair induced by the same hyperedge in the original hypergraph can not establish

an oriented edge in the oriented line graph. On the other hand, if a pair of reverse arcs

in DGH(V,Ed) are induced by different hyperedges in the original hypergraph, they can

establish a pair of reverse oriented edges in the oriented line graph. These properties are

illustrated in Figure 4.7, which shows the oriented line graph obtained by transforming

from the original hypergraph in Figure 4.3. From (4.11) it is clear that the vertices of the

oriented line graph are obtained from the arcs of the symmetric digraph. As a result we

can denote an arc in the digraph and its corresponding vertex in the oriented line graph
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using the same label. In Figure 4.6 the terminus of the arc ed7 points to the origin of the

arc ed6. However, there is no oriented edge between vertices ed7 and ed6 in Figure 4.7.

The reason for this is that they are derived from the same hyperedge e5 in Figure 4.3. As

a result, the constraint prevents connections between any nodes with the same color in

Figure 4.7. On the other hand, there is a pair of reverse oriented edges (represented by

one line with arrows on both ends) between ed15 and ed8 in Figure 4.7. The reason for this

is that although ed15 and ed8 are reverse arcs in Figure 4.6, they are induced by different

hyperedges, i.e. e3 and e4, respectively, in the original hypergraph in Figure 4.3. This is

the also the case for ed7 and ed16 in Figures 4.6 and 4.7. As a result of these properties, the

example hypergraphs in Figures 4.1(a) and 4.1(b), which have both the same adjacency

matrix and the same Laplacian matrix, produce oriented line graphs with totally different

structures as shown in Figures 4.2(a) and 4.2(b), respectively.

The adjacency matrix TH of the oriented line graph is the Perron-Frobenius operator

of the original hypergraph. For the (i, j)th entry of TH , TH(i, j) is 1 if there is one

edge directed from the vertex with label i to the vertex with label j in the oriented line

graph, and otherwise it is 0. Unlike the adjacency matrix of an undirected graph, the

Perron-Frobenius operator for a hypergraph is not a symmetric matrix. This is because

the constraint in (4.11) arises in the construction of oriented edges. Specifically, any two

arcs induced by the same hyperedge in the original hypergraph are not allowed to establish

an oriented edge in the oriented line graph.

4.4.2 Characteristic Polynomial

With the oriented line graph to hand, the Ihara zeta function for a hypergraph can be

written in the form of a determinant [91] using the Perron-Frobenius operator:

ζH(u) = det(IH − uTH)
−1. (4.12)

From (4.12) we can see that M in (4.10) is the dimensionality of the square matrix
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TH .

The Perron-Frobenius operators of the hypergraphs in Figures 4.1(a) and 4.1(b) are,

respectively:

THa =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 1 1 0 0 1

0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, THb = 0.

Substituting the above Perron-Frobenius operators into (4.12), we obtain the Ihara

zeta functions for the hypergraphs in Figures 4.1(a) and 4.1(b) as follows:

ζHa(u) = (1− 2u3 + u6)−1; (4.13)

ζHb(u) = 1. (4.14)

The two functions have different forms and are thus available for distinguishing hy-

pergraphs with the same clique expansion. This again verifies the validity of the Ihara zeta

function in distinguishing hypergraphs which might cause ambiguities when traditional

matrix representations such as adjacency matrix and Laplacian matrix are used.

From (4.12), we can see that the reciprocal Ihara zeta function for a hypergraph is in

fact the characteristic polynomial of the Perron-Frobenius operator, that is

ζ−1
H (u) =

M∑
r=0

cru
r =

M∏
k=1

(u− λk) (4.15)

where λk denotes the kth eigenvalue of the Perron-Frobenius operator TH .

To establish pattern vectors from the hypergraph Ihara zeta function for the purposes

of characterizing hypergraphs in machine learning, it is natural to consider taking function

samples as the elements. Although the function values at most of the sampling points will
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perform well in distinguishing hypergraphs, there is the possibility of sampling at poles

(when u = λk) giving rise to meaningless infinities. Hence, the pattern vectors consisting

of function samples are potentially unstable representations of hypergraphs, since the

distribution of the eigenvalues of TH and hence the poles are unknown beforehand.

The characteristic polynomial coefficients in (4.10), i.e. the Ihara coefficients, do not

give rise to infinities. Furthermore, these coefficients relate strongly to the hypergraph-

structure since the Ihara zeta function records information about prime cycles in the hy-

pergraphs. We use the Ihara coefficients as the elements of the pattern vector for a hyper-

graph and then apply them to clustering hypergraphs. From (4.15) it is clear that the char-

acteristic polynomial coefficients are determined by the spectrum of the Perron-Frobenius

operator. Each coefficient can be derived from the elementary symmetric polynomials of

the eigenvalue set {λ1, λ2, λ3 . . . } of TH as follows:

cr = (−1)r
∑

k1<k2< ... <kr

λk1λk2 ... λkr . (4.16)

4.5 Numerical Computation

We can compute the Ihara zeta function values by using (4.3). However, to efficiently

compute the Ihara coefficients, we need to compute the characteristic polynomial of TH

in (4.12) and thus obtain the function form in (4.10) to compute the coefficient set. How-

ever, the construction of the oriented line graph for a hypergraph is complicated and com-

putationally expensive. Furthermore, the eigencomputation on TH tends to induce large

values which often leads to floating point overflow errors. Therefore, the computation of

the Ihara coefficients from the characteristic polynomial of TH is impractical in real-world

situations.

To overcome the deficiency of computing the Ihara coefficients using (4.12) and (4.16),

in this section, we develop a novel yet straightforward method which commences from

the associated bipartite graph. Instead of constructing the oriented line graph for a hy-
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pergraph, we establish the oriented line graph for the bipartite graph associated with the

hypergraph. The construction of the oriented line graph for a graph (at this stage for the

associated bipartite graph) is simply a special case of the procedures described in Section

4.4.1 as long as the hypergraph is 2-uniform. Considering the rational expression (4.3)

based on the associated bipartite graph, we have

ζ−1
H (u) = Z−1

BG(
√
u) = det(IBG −√

uTBG) (4.17)

where TBG is the Perron-Frobenius operator of the associated bipartite graph, of which

the reciprocal Ihara zeta function is represented as

Z−1
BG(u) =

∏
p∈PBG

(
1− u|p|

)
=

(
1− u|p1|

) (
1− u|p2|

) (
1− u|p3|

) · · · , (4.18)

where pi is the ith prime cycle in the set PBG of prime cycle equivalence classes of the

bipartite graph. Note that every prime cycle in a bipartite graph has an even length, i.e.

|pi| is always an even number for a bipartite graph. Let {c̃0, c̃1, c̃2, c̃3, c̃4, c̃5, c̃6 . . .} denote

the Ihara coefficient set for the bipartite graph. It is clear that Z−1
BG(u) is a polynomial

with the odd coefficients equal to zero, that is

Z−1
BG(u) = det(IBG − uTBG)

= c̃0 + c̃1u+ c̃2u
2 + c̃3u

3 + c̃4u
4 + c̃5u

5 + c̃6u
6 + · · ·

= c̃0 + 0u+ c̃2u
2 + 0u3 + c̃4u

4 + 0u5 + c̃6u
6 + · · ·

= c̃0 + c̃2u
2 + c̃4u

4 + c̃6u
6 + · · · . (4.19)

Therefore, if we take
√
u as the argument of the Ihara zeta function of the bipartite graph
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instead of u, we have

ζ−1
H (u) = Z−1

BG(
√
u)

= det(IBG −√
uTBG)

=
(
1− (

√
u)|p1|

) (
1− (

√
u)|p2|

) (
1− (

√
u)|p3|

) · · ·
= c̃0 + 0

√
u+ c̃2(

√
u)2 + 0(

√
u)3 + c̃4(

√
u)4 + 0(

√
u)5 + c̃6(

√
u)6 + · · ·

= c̃0 + c̃2u+ c̃4u
2 + c̃6u

3 + · · ·
= c0 + c1u+ c2u

2 + c3u
3 + · · · . (4.20)

As we can see from (4.20), the polynomial coefficients of the hypergraph can be efficiently

obtained by selecting just the even-indexed Ihara coefficients of the associated bipartite

graph. Suppose {λ̃1, λ̃2, λ̃3 ... } is the eigenvalue set associated with TBG, then each Ihara

coefficient can be computed as

cr = c̃2r =
∑

k1<k2< ... <k2r−1<k2r

λ̃k1λ̃k2 ... λ̃k2r−1 λ̃k2r . (4.21)

The high computational overheads associated with TH are due to the large size of the

matrix TH . On the other hand, TBG overcomes this drawback since it is much smaller

in size than TH , especially for hypergraphs with large hyperedge cardinalities. The

size of the Perron-Frobenius operator of a nonuniform hypergraph tends to be difficult

to enumerate. Here we thus use the K-uniform hypergraph, i.e. hypergraph with ev-

ery hyperedge containing K vertices, for analyzing the computational complexity of the

Perron-Frobenius operators TH and TBG. Suppose there are in total N hyperedges in

the K-uniform hypergraph. To obtain TH , the clique expansion and its digraph of the

K-uniform hypergraph need to be established according to the transform introduced in

Section 4.4.1. This procedure produces an oriented line graph with K(K − 1)N vertices

and a Perron-Frobenius operator of size (K − 1)KN × (K − 1)KN . To obtain TBG, the

bipartite graph and its digraph of the K-uniform hypergraph need to be established. This
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procedure produces an oriented line graph with 2KN vertices and a Perron-Frobenius

operator of size 2KN × 2KN . For uniform hypergraphs K is greater than 2, and the

relation always holds for 2KN ≤ (K − 1)KN . As a result, the size of TBG is smaller

than that of TH as long as K > 3. Additionally, the computational complexity of obtain-

ing the Ihara coefficients is governed by the eigendecomposition of the Perron-Frobenius

operator. This requires O(n3) operations where n is the size of the Perron-Frobenius op-

erator. Therefore, the computational overheads of eigendecomposition on TBG are lower

than those of TH .

4.6 Experiments

Our experiments are aimed at evaluating both the effectiveness and efficiency of our pro-

posed method. In Section 4.6.1, we test our proposed method on real-world data with the

aim of assessing the representational power of the Ihara coefficients for hypergraph char-

acterization. In Section 4.6.2, we measure the computational overheads of our numerical

method for computing the hypergraph Ihara coefficients (presented in Section 4.5) and

compare it with the original method based on the Perron-Frobenius operator TH .

4.6.1 Hypergraph Clustering

In this subsection, we evaluate the effectiveness of the Ihara coefficients in clustering

hypergraphs. Specifically, we assess whether the hypergraph Ihara coefficients can be

embedded into a pattern space that reveals their cluster structure. We also compare the

method based on hypergraph Ihara coefficients with the spectral characterization of hy-

pergraphs.

This subsection is divided into two parts. Firstly, we introduce a hypergraph extrac-

tion method based on high-level feature points of images. Secondly we test our proposed

hypergraph characterization method on hypergraphs extracted from 2D different views of
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3D objects. Both qualitative and quantitative evaluations are made to verify the effective-

ness of the proposed method.

Hypergraph Representation of Objects

To the best of our knowledge, Bretto et al. [11] were among the first to propose the use

of hypergraph-based image representations. In their work, they incorporate the inten-

sity values of picture elements into the neighborhood description for edge detection and

denoising. However, this representation is low level pixel-based and is computationally

burdensome.

Here we adopt a high-level hypergraph representation, i.e. feature hypergraph, based

on feature points, rather than the pixel contents of an image. The hypergraph associated

with one object is established with m vertices and m hyperedges, where m is the cardi-

nality of the feature point set V = {v1, v2 . . . vm} extracted from the object. Each feature

point is represented by one vertex in the hypergraph and therefore the feature point set is

identical to the hypergraph vertex set (denoted by V ). Each hyperedge is specific to one

vertex, which we define as the seed of the hyperedge.

To determine the elements of each hyperedge in addition to the seed, we measure the

similarities between the intensities of the seed and of the other vertices which lie in the

spatial neighborhood of the seed. This confines the extent of the hyperedge. Let c(vi)

denote the spatial coordinate of the feature point vi in an image, I(vi) denote the intensity

of vi, Φj1 be a fixed value which represents the distance threshold for neighborhood, and

Φj2 be the similarity threshold between the vertex intensities. The similarity threshold

Φj2 could be either a fixed value or calculated in an adaptive manner. In our experiments,

we adapt the threshold Φj2 so that it is equal to the standard deviation of the intensities of

the neighboring feature point

Φj2 =
1

NNeigh − 1

√ ∑
i, ‖c(vi)−c(vj )‖≤Φj1

[I(vi)− I(vj)]2 (4.22)
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(a) Houses.

(b) Toys.

(c) COIL.

FIGURE 4.8: DATASETS.
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 4.9: HYPEREDGES ENCOMPASSING THE SELECTED FEATURE POINT IN THE

MOVI HOUSE IMAGES.

(a)  3o (b)  6o (c)  9o (d)  12o

(e)  15o (f)  18o (g)  21o (h)  24o

FIGURE 4.10: HYPEREDGES ENCOMPASSING THE SELECTED FEATURE POINT IN THE

TOY LOBSTER IMAGES.
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(a)  −15o (b)  −10o (c)  −5o (d)  0o

(e)  5o (f)  10o (g)  15o (h)  20o

FIGURE 4.11: HYPEREDGES ENCOMPASSING THE SELECTED FEATURE POINT IN THE

TOY DUCK IMAGES.

where NNeigh is the number of feature points in the neighborhood of the feature point vj .

The association of the vertex vi to the hyperedge E(vj) derived from the seed vj is

determined as follows

vi

⎧⎨⎩ ∈ E(vj) if ‖c(vi)− c(vj)‖ ≤ Φj1 and if | I(vi)− I(vj) |≤ Φj2;

/∈ E(vj) otherwise.
(4.23)

The first condition confines one set of candidate vertices to the spatial neighborhood of

the seed. The second condition selects a set of candidate vertices satisfying the similarity

constraint. The intersection of the two sets constitute one hyperedge. We refer to the

hypergraph established in (4.23) as the feature hypergraph of an object.

The incidence matrix of the feature hypergraph is hence of sizem×m. The ith column

represents the hyperedge derived from vi, and the jth row corresponds to vertex vj . Thus
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the element of incidence matrix is denoted as

h(i, j) =

⎧⎨⎩ 1 if ‖c(vi)− c(vj)‖ ≤ Φj1 and if | I(vi)− I(vj) |≤ Φj2;

0 otherwise.
(4.24)

This strategy for extracting hypergraphs from images is similar to the method in-

troduced in [11], where the common feature of these two methods is that the adaptive

similarity threshold is used to capture the local variance. The main difference between

them is that the hypergraphs established in [11] are based on all the pixels in an image

and is a low-level visual representation. The hypergraphs thus obtained tend to be large

in size and induce expensive computational overheads. Our method, on the other hand,

is based on feature points rather than the complete image pixel set and is a high-level

representation. We establish hypergraphs with reasonably small sizes, which are easy to

compute and process.

In our experiments on real world data, we extract hypergraphs from 2D image se-

quences of 3D objects. The first set of hypergraphs are extracted from house images in

the CMU, MOVI and Chalet sequences (samples are shown in Figure 4.8(a)), the second

set are extracted from images of three toys (samples are shown in Figure 4.8(b)), and

the third set are extracted from images of eight objects in the COIL dataset (samples are

shown in Figure 4.8(c)). In these datasets, the pictures for each object are taken from

different view angles. There are ten pictures taken for each model house, thirty pictures

for each toy, and seventy two pictures for each object in the COIL database. To establish

hypergraphs on the objects, we first extract feature points using the Harris detector [39]

as the vertices of hypergraphs. For each image, we construct the feature hypergraph using

the method presented in this subsection. Here the neighborhood threshold Φj1 is set to be

1/4 the size of the image, and similarity threshold Φj2 is computed using (4.22). We visu-

alize one object of each dataset by sequencing eight of its consecutive images in Figures

4.9, 4.10 and 4.11 separately. The eight views of the toy lobster in Figure 4.10 are taken

consecutively with interval 3◦. The eight views of the toy duck in Figure 4.11 are taken

82



consecutively with interval 5◦. In Figures 4.9, 4.10 and 4.11, the feature points extracted

by the Harris detector are super-imposed on the images. Here we highlight an example

seed vertex as a circled green asterisk. Those vertices belonging to the same hyperedge

spanned by the seed vertex are shown as uncircled green asterisks. The remaining feature

points are shown as red dots. From the examples in the different sequences it is clear that

the hyperedge is generally stable under the change of viewpoint.

Hypergraph Ihara Coefficients for Clustering

We evaluate the effectiveness of the Ihara coefficients in clustering hypergraphs extracted

from the different image sequences in Section 4.6.1. We use this problem as an appli-

cation vehicle to demonstrate the utility of our hypergraph characterization. It must be

stressed that our encoding of image feature arrangements does not necessarily represent

the optimal way to use this information, and much research remains to be done to define

how the information can be used in an optimal way. Moreover, the imagery used in our

study does not necessarily provide a demanding test of the method. However, the data

has been used in a number of earlier studies [16][103] of graph-based method for object

view clustering. In fact the object recognition problem posed by the imagery is quite

straightforward and could probably be solved using very simple image statistics such as

gray-scale or color histograms. Nonetheless, it must be stressed that our representation

based on the Ihara zeta function provides a characterization of the arrangement of image

features that is invariant to translation, rotation and scaling. We stress that the literature

on image representation using hypergraphs is still in its infancy and little is available as a

standard of comparison or benchmark.

We commence by exploring which coefficients provide the strongest discrimination

between the hypergraphs for the different object classes. To do this, we compute the

between-class scatter Sb =
∑U

i=1Di(c̄k,i − c̄k)
2 and the within-class scatter Sw =

∑U
i=1∑

ck,i,j∈Ci
(ck,i,j − c̄k,i)

2 of the individual coefficients, where c̄k is the mean of the samples
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for coefficient ck, c̄k,i is the mean of the samples for ck in class Ci, Di is the number of

samples in classCi and U is the total number of classes. We then use the criterion function

JC = (Sb + Sw)/Sw to evaluate the performance of the individual coefficients. Figure

4.12 illustrates the function values of JC for the beginning and trailing hypergraph Ihara

coefficients for the house dataset. For the trailing coefficients, the criterion function values

for both the original coefficients and the natural logarithm scaled coefficients are plotted.

It is clear that the natural logarithm scaled trailing coefficients are more distinctive than

the original trailing coefficients and the leading ones, and there is a tendency that the

leading coefficients are more discriminative than the intermediate ones. Figure 4.13 shows

the logarithm of the coefficient standard deviation as a function of coefficient index. It is

clear that the standard deviation of the trailing coefficients is many orders of magnitude

larger than that of the leading coefficients. It is for this reason that we re-scale the trailing

coefficients by taking the natural logarithm in our experiments.
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FIGURE 4.12: CRITERION FUNCTION

VALUES FOR THE HOUSE DATASET.
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FIGURE 4.13: VARIANCE OF THE COEF-

FICIENTS FOR THE HOUSE DATASET.

We compute the Ihara coefficients for a hypergraph as described in Section 4.5 and

construct a pattern vector of the form �v = [c3, c4, ln(|cM−3|), ln(|cM−2|), ln(|cM−1|),
ln(|cM |)]T . The reason for which we choose c3 and c4 as elements of the pattern vector is

twofold. First, these two coefficients are more discriminative than the intermediate ones as
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illustrated in Figure 4.12. Second and more importantly, c3 and c4 straightforwardly refer

to some structural characteristics of the associated oriented line graph (i.e. c3 is number of

triangles and c4 that of squares [49][79]). The last four components of the pattern vector

are scaled in a logarithmic way to avoid problems of dynamic range. The other trailing

coefficients are not taken as pattern vector elements due to their big values and great

variance. For comparison, we use the truncated spectra of the Laplacian matrix introduced

in Section 4.1.2 and the normalized Laplacian matrix described in [112]. The normalized

Laplacian matrix of a hypergraph is defined as L̂H = I|V |−D−1/2
v HDeHTD−1/2

v , where Dv

is the diagonal vertex degree matrix whose diagonal element d(vi) is the summation of the

ith row of H, and De is the diagonal vertex degree matrix whose diagonal element d(ej) is

the summation of the jth column of H. We take the second through to the seventh smallest

eigenvalues of the Laplacian matrix, i.e. �vL = [λL2 , λ
L
3 , λ

L
4 , λ

L
5 , λ

L
6 , λ

L
7 ]

T , and those of

the normalized Laplacian matrix, i.e. �vNL = [λNL
2 , λNL

3 , λNL
4 , λNL

5 , λNL
6 , λNL

7 ]T , as the

elements of pattern vectors. Figure 4.14 shows the Euclidean distance matrix for the three

different pattern vectors, i.e. the truncated normalized Laplacian spectra, the truncated

Laplacian spectra and the Ihara coefficients, on the House sequences. From Figure 4.14

it is clear that the truncated normalized Laplacian spectral vectors do not yield a strong

block structure while the remaining two methods provide much better results. Figure

4.15 shows the PCA projections of the three different hypergraph pattern vectors for the

Chalet house images. We explore whether the projection preserves the ordering of views

which were obtained as the camera panned around the object. Each point in the pattern

space is marked with a view number which corresponds to the order of the camera angle

and the line connects consecutive object views. It is clear that the normalized Laplacian

spectral method yields an erratic trajectory and the Laplacian spectral method provides a

slightly clearer trajectory but is still hard to track. On the other hand, the Ihara coefficients

produce a smoother trajectory and the neighboring images in the sequence are generally

Euclidean neighbors in the eigenspace.
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Figures 4.16(a), 4.16(b) and 4.16(c) illustrate the behavior of the leading non-zero

eigenvalue of the normalized Laplacian matrix, the largest (final) eigenvalue of the Lapla-

cian matrix and the final Ihara coefficient, respectively, of the first four objects in the

COIL dataset. The four dotted lines represent the four objects separately. From Figure

4.16 it is clear that the second smallest eigenvalue of the normalized Laplacian matrix

results in an overlap of all four objects. The largest eigenvalue of the Laplacian matrix

results in an overlap for objects 1 and 2. On the other hand, when the final Ihara coef-

ficient is used, the different objects are well separated. This reveals the potential of the

Ihara coefficients as a means to effectively cluster objects.

We then embed the three different pattern vectors for hypergraphs extracted from the

house sequences, the toy dataset and the COIL dataset into a three-dimensional space

using PCA for the purposes of visualization. Figure 4.17 shows the results for the three

classes of model houses. Figure 4.18 shows the results for the three classes of toys.

Figures 4.19 shows the results for the first four objects in the COIL dataset. From Figures

4.17, 4.18 and 4.19 it is clear that the Ihara coefficients produce the best clusters, while the

truncated normalized Laplacian spectra perform the worst of all among the three methods.

To take the quantitative evaluation of the pattern vectors one step further, we concen-

trate our attention on the COIL dataset, and evaluate the clustering performance obtained

with different numbers of object classes. We compare the hypergraph Ihara coefficients

with alternative hypergraph based methods (Laplacian spectra and normalized Laplacian

spectra) as well as the method of spatial envelope [63]. Unlike the hypergraph based

methods which use a high-level representation for visual information, the spatial enve-

lope is a low-level pixel-based approach that represents the dominant spatial structure of

a scene. For comparison, we first perform PCA on the pattern vectors established by

using different methods. We then locate the clusters using the K-means method and cal-

culate the Rand indices for the resulting clusters. The Rand indices for the three methods

are listed in Table 4.1. From Table 4.1 it is clear that the Ihara coefficients outperform
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Pattern Vector
Number of Object Classes

5 6 7 8

Spatial Envelope 0.7762 0.6775 0.7141 0.6944

Truncated Normalized Laplacian Spectra 0.7323 0.7074 0.7650 0.8030

Truncated Laplacian Spectra 0.8574 0.8564 0.8454 0.8449

Ihara Coefficients 0.9355 0.8859 0.8716 0.8812

TABLE 4.1: RAND INDICES.

the alternative two spectral methods as well as spatial envelope for all numbers of object

classes studied.

4.6.2 Computational Evaluation

In this subsection, we evaluate the computational efficiency of the algorithms for com-

puting the hypergraph Ihara coefficients, and reveal the relationship between their com-

putational overheads and the structural complexity of the associated graphs. The algo-

rithms are tested on synthetic K-uniform hypergraphs, though the Ihara coefficients ap-

ply to nonuniform hypergraphs as well, because their structural complexity is easier to

manipulate than randomly generated nonuniform hypergraphs. Each of the algorithms

investigated were programmed using 32bit Matlab 2007a and run on a 2.40 GHz Intel(R)

Core(TM)2 CPU with 3.24 GB of RAM.

We commence by computing the hypergraph Ihara coefficients for a set hypergraphs

with just one hyperedge and varying the number of vertices from 2 to 80. In other words

we investigate the effect of varying the relational order. The time required to compute the

coefficients based on the Perron-Frobenius operator TH generated from the original hy-

pergraph and the Perron-Frobenius operator TBG generated from the associated bipartite

graph are plotted separately as a function of relational order K (i.e. number of vertices
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(c) Ihara coefficients.

FIGURE 4.14: DISTANCE MATRIX.
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(b) Truncated Laplacian spectra.
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(c) Ihara coefficients.

FIGURE 4.15: WITHIN-CLASS VIEW TRAJECTORY.
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FIGURE 4.16: COEFFICIENT PLOT.
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(a) Truncated normalized Laplacian spectra.
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(b) Truncated Laplacian spectra.
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(c) Ihara coefficients.

FIGURE 4.17: CLUSTERS FOR THREE CLASSES OF HOUSES.
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FIGURE 4.18: CLUSTERS FOR THREE CLASSES OF TOYS.
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(c) Ihara coefficients.

FIGURE 4.19: CLUSTERS FOR FOUR OBJECTS IN COIL DATASET.
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participating in a hyperedge) in Figure 4.20. As the vertex cardinality of the hypergraph

becomes larger from 2 up to 80, the time required to compute the coefficients based on

TH grows exponentially. However, the time required to compute the coefficients based

on TBG remains almost constant with increasing size of the relational order. Thus the

computing time of the TBG-based method is less sensitive to relational order.
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FIGURE 4.20: COMPUTING TIME FOR THE HYPERGRAPHS WITH ONE HYPEREDGE.

We then test the TH-based and TBG-based methods on K-uniform hypergraphs. We

fix the vertex cardinality to 10 and establish K-uniform hypergraphs with the relational

order K varying from 2 to 9. We confine the hypergraph established at each relational

order to be complete, i.e. the hyperedges are the set of combinations of K different

vertices. The total number of hyperedges, the total number of vertices of the oriented

line graph generated from the original hypergraph, and the total number of vertices of

the oriented line graph generated from the associated bipartite graph for each K-uniform

hypergraph are shown in Figure 4.21. For the same K-uniform hypergraph, the vertex

cardinality of the oriented line graph generated from the original hypergraph is greater

than that from the associated bipartite graph.

The computing time for the methods based on the original hypergraph and the associ-

ated bipartite graph, i.e. TH and TBG respectively, are plotted separately as a function of
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relational order K in Figure 4.22. For K-uniform hypergraphs, the trend for the comput-

ing time for the TH-based method is close to that of the vertex cardinality of the oriented

line graph generated from the original hypergraph. This is also the case for computing

time for TBG-based method and the vertex cardinality of the oriented line graph generated

from the associated bipartite graph. Since the vertex cardinality of the former is greater

than that of the latter, our proposed TBG-based method is certain to have lower computa-

tional overheads than the original method based on TH . This is supported by the results

shown in Figure 4.22 and also accords with the complexity analysis presented in Section

4.5.
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FIGURE 4.21: QUANTITIES IN THE REP-

RESENTATION.
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FIGURE 4.22: COMPUTING TIME FOR

THE K-UNIFORM HYPERGRAPHS.

To evaluate the computational overheads of the algorithms for hypergraphs extracted

from real-world images, we investigate the computing time of the TH- and TBG-based

methods for the image sequence in Figure 4.11. Hypergraphs are constructed for the

images as described in Section 4.6.1. The number of vertices and the average hyperedge

cardinality for each hypergraph are presented in Table 4.2. Figure 4.23 illustrates the com-

puting time for both methods. It is clear that the TBG-based method is significantly more

efficient than the TH-based method for hypergraphs extracted from real-world images.
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Image (a) (b) (c) (d) (e) (f) (h) (g)

Number of vertices 40 33 39 39 39 35 34 36

Average hyperedge cardinality 8.33 7.48 7.79 8.08 7.72 6.23 6.65 6.69

TABLE 4.2: SIZE OF HYPERGRAPHS EXTRACTED FROM IMAGES IN FIG .4.11.
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FIGURE 4.23: COMPUTING TIME FOR THE HYPERGRAPHS EXTRACTED FROM THE

IMAGES OF THE TOY DUCKS.

4.7 Summary

In this chapter we have performed a characteristic polynomial analysis on hypergraphs

and characterize (nonuniform) unweighted hypergraphs based on the Ihara zeta function.

We have used the Ihara coefficients as the elements in the pattern vector for a hypergraph.

We have also introduced an efficient method for computing the Ihara coefficients based

on the associated bipartite graph. The Ihara coefficients are capable of distinguishing

relational orders and thus can avoid the ambiguities caused by the hypergraph Laplacian.

Experimental results show the effectiveness of the proposed method.
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Chapter 5

High Order Structural Matching Using

Dominant Cluster Analysis on a Direct

Product Hypergraph

The idea described in this chapter is to extend the main cluster method of Leordeanu and

Hebert [50] for graph matching and its generalization for high order matching [28], by us-

ing dominant cluster analysis (DCA) on a direct product hypergraph (DPH). For brevity

we refer to the resulting algorithm as DPH-DCA. The novel aspect of our work resides

in the use of the new concept of dominant cluster to develop an algorithm that not only

outperforms the state-of-the-art methods but also satisfies the basic axioms of probabil-

ity. We also present a method for initializing our algorithm that can be used to suppress

outliers. This improves the matching performance of our method, and comparable results

can not be achieved by using alternative high order matching algorithms [28][110]. Fur-

thermore, we justify our DPH-DCA framework in terms of evolutionary game theory, and

hereby observe that the optimal solution obtained by DPH-DCA achieves a Nash equi-

librium subject to the Karush-Kuhn-Tucker (KKT) conditions. It is important to stress

that we disregard the situation where feature labels are used as a reference for matching
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(e.g. [14][108]) in the thesis. Instead, we concentrate our attention on the more challeng-

ing matching problem in which the only available information are the internal structural

relationships between features within a set.

5.1 Problem Formulation

We consider the problem of matching two sets of features both with high order relation-

ships. In each feature set, we refer to a subset of K elements as a K-tuple, and the Kth

order relationships within the set are described in terms of measuring the similarity of each

K-tuple. We thus represent the set of Kth order feature relationships by a K-uniform hy-

pergraph HG(V,E), whose hyperedges have identical cardinality K. Each vertex vi ∈ V

in the K-uniform hypergraph HG(V,E) represents one element in the feature set. Each

hyperedge ei ∈ E represents one K-tuple {vi1, · · · , viK} ∈ V and the weight attached

to each hyperedge represents the similarity measure on the K-tuple encompassed by the

hyperedge. For simplicity, we denote a vertex vi by its index i in the remainder of our

work. The K-uniform hypergraph HG(V,E) can be represented as a Kth order tensor

H, whose element Hi1,··· ,iK is the hyperedge weight if there is a hyperedge encompassing

the vertex subset {i1, · · · , iK} ∈ V , and zero otherwise. The problem of matching two

feature sets both constituted by Kth order relationships can then be transformed to that

of matching the two associated K-uniform hypergraphs HG(V,E) and HG′(V ′, E ′). To

this end, we establish a high order compatibility tensor C, i.e. compatibility tensor, for

HG(V,E) and HG′(V ′, E ′). The elements of the Kth order compatibility tensor C are

defined as follows

Ci1i′1,··· ,iKi′K =

⎧⎨⎩ 0 if Hi1,··· ,iK = 0 or H ′
i′1,··· ,i′K = 0;

s(Hi1,··· ,iK , H
′
i′1,··· ,i′K) otherwise;

(5.1)
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where s(·, ·) is a function that measures the similarity between a pair of hyperedges, and

there are many alternative methods that are available in literature to define the func-

tion. In our study, we adopt the definition s(Hi1,··· ,iK , H
′
i′1,··· ,i′K) = exp(−‖Hi1,··· ,iK −

H ′
i′1,··· ,i′K‖

2
2/σ1) where σ1 is a scaling parameter. This function derives from the Gaus-

sian kernel for measuring similarity between features and has been widely used in the

matching scenario [25][28][50]. Each element of the compatibility tensor C represents

a similarity measure between the two corresponding hyperedges. The hyperedge pair

{i1, · · · , iK} and {i′1, · · · , i′K} with a large similarity measure has a large probability

Pr({i1, · · · , iK} ↔ {i′1, · · · , i′K}|H,H ′) for matching. Here the notation ↔ denotes a

possible matching between a pair of hyperedges or a pair of vertices. Under the condi-

tional independence assumption of the matching process [110], the probability for hyper-

edge correspondence can be factorized over the associated vertices of the hyperedges as

follows

Pr({i1, · · · , iK} ↔ {i′1, · · · , i′K}|HG,HG′) =
K∏

n=1

Pr(in ↔ i′n|HG,HG′) (5.2)

where Pr(in ↔ i′n|HG,HG′) denotes the probability for the possible matching in ↔
i′n to be correct. For two hypergraphs HG(V,E) and HG(V ′, E ′) with |V | = N and

|V ′| = N ′ respectively, we denote their N × N ′ matching matrix by P with the (i, i′)th

entry Pii′ = Pr(i ↔ i′|HG,HG′). According to (5.2), high order matching problems

can be formulated as locating the matching probability that most closely accords with

the elements of the compatibility tensor, i.e. seeking the optimal P by maximizing the

following objective function
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f(P) =
N∑

i1=1

N ′∑
i′1=1

· · ·
N∑

iK=1

N ′∑
i′K=1

Ci1i′1,··· ,iKi′KPr({i1, · · · , iK} ↔ {i′1, · · · , i′K}|HG,HG′)

=

N∑
i1=1

N ′∑
i′1=1

· · ·
N∑

iK=1

N ′∑
i′K=1

Ci1i′1,··· ,iKi′K

K∏
n=1

Pini′n (5.3)

subject to ∀i, j, Pii ≥ 0 and
∑N

i=1

∑N ′
i′=1 Pii′ = 1. The objective function (5.3) is the cor-

relation between the hyperedge similarityCi1i′1,··· ,iKi′K and theK-wise product
∏K

n=1 Pini′n

for vertex correspondences. It is a natural extension of the objective function that is com-

monly used in classical pairwise matching algorithms such as softassign [35]. It gener-

alizes the relational order from two to an arbitrary high order K. This formulation has

also been adopted in tensor power iteration for higher order matching [28]. However, the

difference between our method and the existing algorithms is that we restrict the solution

of (5.3) to obey the the fundamental axioms of probability, i.e. positiveness and unit total

probability mass. This constraint not only provides an alternative probabilistic perspec-

tive for hypergraph matching, but also proves convenient for optimization. We denote the

optimal solution matrix of (5.3) by P̂ with the (i, i′)th entry P̂ii′ = P̂r(i ↔ i′|HG,HG′).

We refer to P̂r(i ↔ i′|HG,HG′) as the matching probability for vertex i and i′. The set

of matching probabilities {P̂r(i ↔ i′|HG,HG′)|i ∈ V ; i′ ∈ V ′} maximizing (5.3) indi-

cate how likely it is that each correspondence is correct according to structural similarity

between the two hypergraphs HG and HG′.

On the other hand, we also observe that the objective function (5.3) can be justified in

terms of evolutionary game theory. In this regard we will further describe how the pro-

cess of optimizing (5.3) achieves a Nash equilibrium subject to the Karush-Kuhn-Tucker

(KKT) conditions. This observation provides a different perspective for understanding

the principles underlying our high order matching framework. The details regarding the

evolutionary game theoretic interpretation will be presented in Section 5.4.

Once the set of matching probabilities satisfying (5.3) are computed, correspondences
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between vertices drawn from HG and HG′ can be established. Matchings with a zero

probability are the least likely correspondences, and matchings with nonzero probabilities

tend to be those with significant similarity between their structural contexts. Our aim is to

seek the subset of possible correspondences with non-zero matching probabilities which

satisfy (5.3), that are subject to the one-to-one matching constraint.

5.2 High Order Matching As Dominant Cluster Analysis

on a Direct Product Hypergraph

In this section we pose the high order relational matching problem formulated in (5.3)

as one of dominant cluster analysis (DCA) on a direct product hypergraph (DPH). We

commence by establishing a direct product hypergraph for the two hypergraphs, which

separately represent the two sets of high order features to be matched. Optimal matching

can be achieved by extracting the dominant cluster of vertices from the direct product

hypergraph.

5.2.1 Direct Product Hypergraph

The construction of a direct product hypergraph for two K-uniform hypergraphs is a gen-

eralization of that of the direct product graph [97], which can be used to construct kernels

for graph classification. We extend the concept of a direct product graph to encapsulate

high order relations residing in a hypergraph and apply this generalization to hypergraph

matching problems. For two K-uniform hypergraphs HG(V,E) and HG′(V ′, E ′), the

direct product HG× is a hypergraph with vertex set

V× = {(i, i′)|i ∈ V, i′ ∈ V ′}; (5.4)

and edge set

E× = {{(i1, i′1) · · · (iK , i′K)}|{i1, · · · , iK} ∈ E, {i′1, · · · , i′K} ∈ E ′}. (5.5)
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The vertex set of the direct product hypergraph HG× consists of Cartesian pairs of

vertices drawn from HG and HG′ separately. Thus the cardinality of the vertex set of

HG× is |V×| = |V ||V ′| = NN ′. The direct product hypergraph HG× is K-uniform,

and each K-tuple of vertices in HG× is encompassed in a hyperedge if and only if the

corresponding vertices in HG and HG′ are both encompassed by a hyperedge in the

relevant hypergraph. Each hyperedge in a direct product hypergraph is weighted by the

similarity between the two associated hyperedges from HG and HG′. Two example

hypergraphs and their direct product hypergraph are shown in Figure 5.8 and Table 5.2

respectively.

FIGURE 5.8: TWO EXAMPLE HYPERGRAPHS (LEFT AND RIGHT).

Hyperedge index 1 2 3 4 5 6 7 8 9 10 11 12

Vertex indices

11′ 11′ 12′ 12′ 13′ 13′ 12′ 12′ 13′ 13′ 14′ 14′

22′ 23′ 21′ 23′ 21′ 22′ 23′ 24′ 22′ 24′ 22′ 23′

33′ 32′ 33′ 31′ 32′ 31′ 34′ 33′ 34′ 32′ 33′ 32′

Hyperedge weight s(e1, e1′) s(e1, e2′)

TABLE 5.2: DIRECT PRODUCT HYPERGRAPH OF THE TWO HYPERGRAPHS IN FIGURE

5.8. (FOR SIMPLICITY WE INDEX EACH VERTEX (i, i ′) ∈ V× BY ii′.)

In Table 5.2 we can see that there is no hyperedge encompassing {(1, 1′), (2, 2′), (3, 4′)}
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in the direct product hypergraph. This is because {1′, 2′, 4′} is not encompassed by a hy-

peredge in the right example hypergraph in Figure 5.8 .

Furthermore, from our definition of direct product hypergraph, it is clear that the com-

patibility tensor C defined in (5.1) is in fact the tensor C× associated with the direct product

hypergraph HG× for HG and HG′. Every possible matching i ↔ i′ is associated with

the vertex (i, i′) in HG×. For simplicity we let α denote the vertex represented by the

Cartesian pair (i, i′), and let D denote the subset of vertices in HG× which represent the

correct vertex matching for HG and HG′. We denote the probability for the vertex α

belonging to D by Pr(α ∈ D|HG×). For a direct product hypergraph with N× vertices,

we establish an N×× 1 vector p with the αth element pα = Pr(α ∈ D|HG×). With these

ingredients the optimal model satisfying the condition (5.3) reduces to

p̂ = argmax
p

N×∑
α1=1

· · ·
N×∑

αK=1

Cα1,··· ,αK

K∏
n=1

pαn (5.6)

subject to the constraints ∀α, pα ≥ 0 and
∑N×

α=1 pα = 1. According to (5.6), zero proba-

bility will be assigned to the vertices that do not belong to D. We refer to the probability

P̂r(α ∈ D|HG×) = p̂α where p̂α is the αth element of the vector p̂ satisfying the opti-

mality condition in (5.6) as the association probability for the vertex α. Therefore, the

matching problem can be solved by extracting the cluster of vertices with nonzero asso-

ciation probabilities in the direct product hypergraph.

5.2.2 Dominant Cluster Analysis

In this subsection, we present a route to obtaining the optimal matching by clustering the

vertices in the direct product hypergraph. Drawing on the concept of the dominant set

in a graph [64] and its game theoretic generalization [73], we commence by defining the

average similarity of a subset of vertices in the direct product hypergraph.
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Definition 1. The average similarity of a subset Ṽ× of vertices in a K-uniform direct

product hypergraph HG×(V×, E×) is defined as

S(Ṽ×) =
∑

{α1,··· ,αK}⊂˜V×

Cα1,··· ,αK

K∏
n=1

wαn (5.7)

subject to the positiveness constraintwα ≥ 0 for α ∈ V× and the normalization constraint∑
α∈V× wα = 1, where Cα1,··· ,αK

is the element of the tensor C× for HG×(V×, E×), the

set {α1, · · · , αK} represents a K-tuple in V×, and wα is the association weight assigned

to the vertex α.

Theorem 1. For a K-regular direct product hypergraph HG×(V×, E×), if we set the

association weight of a vertex equal to the association probability, i.e. wα = P̂r(α ∈
D|HG×) which maximizes the objective function (5.6), the subset of vertices with non-

zero weights have the largest average similarity over all possible subsets of vertices and

all possible vertex weighting assignments.

Proof. Let V̂× ⊆ V× denote the vertex subset that is associated with non-zero association

probabilities, then we have the following properties for α ∈ V× and the subset V̂×

i) ∀α ∈ V̂×, wα = P̂r(α ∈ D|HG×) > 0;

ii) ∀α /∈ V̂× and α ∈ V×, wα = P̂r(α ∈ D|HG×) = 0.

As a result of these two properties, the average similarity of V̂× is

S(V̂×) =
∑

{α1,··· ,αK}⊂̂V×

Cα1,··· ,αK

K∏
n=1

wαn

=

N×∑
α1=1

· · ·
N×∑

αK=1

Cα1,··· ,αK

K∏
n=1

P̂r(αn ∈ D|HG×) (5.8)

Equation (5.8) holds because for any K-tuple including one vertex αn /∈ V̂× the term

Cα1,··· ,αK

∏K
n=1 P̂r(αn ∈ D|HG×) is equal to zero.

It is clear that the average similarity of V̂× is associated with the optimal solution of

(7), which runs over all possible weighting assignments. As a result, the subset of vertices
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with non-zero association probabilities as weights have the largest average similarity over

all possible subsets of vertices and all possible vertex weighting assignments.

Definition 2. A dominant cluster for a direct product hypergraph is the subset of vertices

whose association probabilities are not zero.

Based on Definitions 1 and 2 and Theorem 1, it is clear that the problem of high order

matching can be straightforwardly transformed to a process of extracting the dominant

cluster from the direct product hypergraph. We refer to this process as dominant cluster

analysis on a direct product graph (DPH-DCA).

Let w denote a vector with the αth element wα. According to the iterative technique

for maximization reported in [5], the maximization of a homogeneous polynomial g(w)

with the constraints that ∀α,wα > 0 and
∑

αwα = 1 can be achieved by applying the

following update until converged

wnew
α = wα

∂g(w)

∂wα
/

N×∑
β=1

w(β)
∂g(w)

∂wβ
∀α. (5.9)

In the matching scenario, we define g(w) =
∑N×

α1=1 · · ·
∑N×

αK=1Cα1,··· ,αK

∏K
n=1wαn . Ac-

cording to the definition of the compatibility tenor in (5.1), Cα1,··· ,αK
= 0 if in α1, · · · , αK

there is a pair of indices equal to each other. As a result, the partial derivative of g(w) can

be computed as follows

∂g(w)

∂wα
= K

N×∑
α2=1

· · ·
N×∑

αK=1

Cα,α2,··· ,αK

K∏
n=2

wαn (5.10)

Substituting (5.10) into (5.9), we can easily perform DPH-DCA by applying the following

update until convergence is reached

wnew
α =

wα

∑N×
α2=1 · · ·

∑N×
αK=1Cα,α2,··· ,αK

∏K
n=2wαn∑N×

β=1wβ

∑N×
β2=1 · · ·

∑N×
βK=1Cβ,β2,··· ,βK

∏K
n=2wβn

(5.11)

At convergence we obtain the optimal weight vector ŵ = [ŵ1, ŵ2, · · · , ŵN×]
T , with

the αth component ŵα representing the the optimal association weight for the vertex α
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belonging to the dominant cluster D. Since α is the simplified donation for the Cartesian

pair (i, i′), ŵα also represents the optimal score for i ↔ i′ to be a correct matching. In

other words, p̂ = ŵ is an optimal solution for the objective function (5.6) and its original

form (5.3).

5.3 Matching with Prior Rejections

The high order structural matching algorithm described in Section 5.2 is an unsupervised

process. The weight of each vertex in the direct product hypergraph can be initialized

by using a uniform distribution of probability. However, if two vertices in a hypergraph

have the same structural context, i.e. their interchange does not change the hypergraph

structure, they can cause ambiguity when matching is attempted. Two alternative state-

of-the-art methods, namely probabilistic hypergraph matching [110] and tensor power

iteration [28], also suffer from this shortcoming. An example of the ambiguity is shown

in Figure 5.9, in which the vertices 2 and 5 have the same structural context within the

left hypergraph. We compute the compatibility tensor C for the two hypergraphs in Figure

5.9, according to (5.1) with σ1 = 1. If we adopt the initialization of weighting each vertex

by a uniform probability 1/20, the matching scores computed by using different methods

for all the 20 possible matchings are shown in Table 5.3 (disregarding the row (d) for

the time being). It is clear that although the three methods adopt different optimization

strategies, each of them results in the same matching score for 2 ↔ 2′ and 5 ↔ 2′,

and can not distinguish which one of the two possible matchings is more likely to be

correct. This is misleading because only one of the two possibilities is allowed to be

correct under the one-to-one matching constraint. The reason for this ambiguity within the

DPH-DCA framework is that the matching scores are initialized by a uniform distribution

of probability for the update formula (5.11) and this results in a matching ambiguity for

vertices with the same structural context in a hypergraph.
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FIGURE 5.9: EXAMPLE HYPERGRAPHS CAUSING MATCHING AMBIGUITIES.

However, if prior knowledge about outliers (i.e. hypergraph vertices for which no

match exists) is available, we can to a certain extent avoid the ambiguity and improve

matching accuracy by using a different initialization strategy. We refer to the vertex sub-

set V o
× ⊆ V× (i.e. possible correspondences) associated with available outliers as prior

rejections, and the adopted initialization in the light of prior rejections is as follows

w(α) =

⎧⎨⎩ 0 if α ∈ V o
×;

1/(N× −No
×) otherwise;

(5.12)

where No
× is the cardinality of V o

×. The matching scores for the hypergraph examples in

Figure 5.9 are shown in the row (d) of Table 5.3, where we assume that the vertex 5 is an

identified outlier. It is clear that 5 ↔ 2′ maintains a zero score and does not necessarily

influence the matching score for 2 ↔ 2′ any more.

The initialization scheme (5.12) improves the matching accuracy within the DPH-

DCA framework because the vertex weight wα in the numerator of the update formula

(5.11) plays an important role in maintaining the initial rejection. It enables the prior

rejections to maintain a zero weight and does not affect the matching scores for other pos-

sible correspondences at each update until converged. The extent to which the matching

accuracy can be improved depends on the amount of prior rejections available. The more
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1 ↔ 1′ 2 ↔ 1′ 3 ↔ 1′ 4 ↔ 1′ 5 ↔ 1′ 1 ↔ 2′ 2 ↔ 2′ 3 ↔ 2′ 4 ↔ 2′ 5 ↔ 2′

(a) 0.1866 0.1866 0.1866 0.1866 0.1866 0.0938 0.2401 0.2208 0.2208 0.2401

(b) 0.1971 0 0 0 0 0 0.1989 0 0 0.1989

(c) 0.5000 0 0 0 0 0 0.1250 0 0 0.1250

(d) 0.5000 0 0 0 0 0 0.1667 0 0 0

1 ↔ 3′ 2 ↔ 3′ 3 ↔ 3′ 4 ↔ 3′ 5 ↔ 3′ 1 ↔ 4′ 2 ↔ 4′ 3 ↔ 4′ 4 ↔ 4′ 5 ↔ 4′

(a) 0.0782 0.2283 0.2462 0.2276 0.2283 0.0782 0.2283 0.2276 0.2462 0.2283

(b) 0 0 0.1989 0.0036 0 0 0 0.0036 0.1989 0

(c) 0 0 0.1250 0 0 0 0 0 0.1250 0

(d) 0 0 0.1667 0 0 0 0 0 0.1667 0

TABLE 5.3: MATCHING SCORES FOR THE TWO EXAMPLE HYPERGRAPHS IN FIGURE

5.9 COMPUTED BY USING THE ALTERNATIVE METHODS (A) PROBABILISTIC HYPER-

GRAPH MATCHING, (B) TENSOR POWER ITERATION, (C) DPH-DCA WITHOUT PRIOR

REJECTIONS AND (D) DPH-DCA WITH PRIOR REJECTIONS.

prior knowledge concerning the outliers that is available, the more accurate the matching

that can be obtained. This will be verified in our experimental section.

However, the initialization scheme (5.12) does not apply to the two alternative meth-

ods described in the literature [110][28]. The probabilistic hypergraph matching method

[110] initializes a matching score by a fixed value obtained from the marginalization of the

compatibility tensor, and thus can not accommodate the prior rejections by using (5.12).

The tensor power iteration method [28], though manually initialized, converges to a fixed

matching score for different initializations. As a result, the two alternative methods are

unable to accommodate prior rejections in the same manner as our DPH-DCA framework.
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5.4 An Evolutionary Game Theoretic Interpretation

In this section, we provide an evolutionary game theoretic perspective for the DPH-DCA

framework. We are motivated by the recent work of game theoretic approach to visual

correspondence [3], in which the problem of graph matching is posed as that of a non-

cooperative game. The main difference is that the DPH-DCA framework can be applied

to establishing both pairwise and higher order correspondences while the game theoretic

approach presented in [3] is restricted to pairwise graphs. The game-theoretic analysis

has also been incorporated into a clustering scenario [73]. On the other hand, we adopt

evolutionary game theory here as a justification of our high order matching framework

rather than that of clustering.

The general evolutionary game theory has been comprehensively investigated in a vast

variety of research fields such as sociology, economics and biology. In an evolutionary

game, a population of independent players simultaneously select their preferred strategies,

and each player receives a payoff proportional to the compatibility of the selected strategy

with respect to the strategies selected by the other players. The evolution within a game is

a selection mechanism that spreads the fittest strategies in the population, and accordingly

drives the detrimental ones to extinction. The evolution will finally result in a state of

evolutionarily stable strategies that maximizes the average payoff over the population.

We justify the DPH-DCA framework for structural matching in terms of strategic in-

teractions (i.e. evolutionary games) among a population of players. Given two sets ofKth

order relational features, we refer to each possible correspondence between two features

which are drawn from the two sets separately as a strategy. Based on the formulation of

the DPH-DCA framework presented in Section 5.2, we assume there is a game with N×

strategies. We denote the probability distribution over all strategies by anN×-dimensional

vector p with the αth component pα representing the probability for an independent player

to select the αth strategy, subject to the conditions a) ∀α, pα ≥ 0 and b)
∑N×

α=1 pα = 1.

Additionally, the element Cα1,··· ,αK
of the compatibility tensor C× is used to provide a
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payoff for players selecting the strategies α1, · · · , αK . The overall average payoff with

respect to K independent players involved in the game is

g(p) =
N×∑
α1=1

· · ·
N×∑

αK=1

Cα1,··· ,αK

K∏
n=1

pαn . (5.13)

The overall average payoff (5.13) can also be formulated in terms of the tensor nota-

tion. To this end, we define the tensor product function with respect to the compatibility

tensor C× and K probability vectors p1, · · · , pK as follows

G(p1, · · · , pK) = C× ×1 pT
1 ×2 pT

2 · · · ×K pT
K . (5.14)

Any interchanges of the vectors in (5.14) do not affect the value of the tensor product

due to the hypersymmetric property of the compatibility tensor C×. See [96] for more

details about the product for a tensor.

Let pi = p, ∀ pi ∈ {p1, · · · , pK}, and we have the the overall average payoff (5.13)

reformulated in terms of the tensor notation as follows

g(p) = G(

K players︷ ︸︸ ︷
p, · · · , p) = C× ×1 pT ×2 pT · · · ×K pT . (5.15)

In the evolution within a game, the probability vector p is expected to achieve the

state of evolutionarily stable strategies thereby in the most favor of maximizing the over-

all average payoff (5.15). On the other hand, it is worth noting that the relations in (5.13)

and (5.15) are in fact identical to that in the objective function (5.3) for the DPH-DCA

framework. Additionally, the update (5.11) behaves in a sense as the process of evolu-

tion, in which the strategies favoring the overall average payoff tend to be selected and

thus survive every round of evolution while the unfavorable strategies become less prefer-

able and finally extinct in the evolution. This can be verified by the fact that the update

(5.11) at convergence only maintains the most favorable weights contributing to the max-

imization of (5.6) with non-zero values and drives the remaining less favorable weights to

zero. One concrete example can be seen in the rows (c) and (d) of Table 5.3, where only
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weights associated with optimal matchings exhibit non-zero values. Correspondences as-

sociated with the identified outliers (prior rejections) can be regarded as strategies which

are acknowledged by all independent players as unfavorable choices, and they are thus

not supposed to be selected by any independent player. Therefore, according to the dis-

cussions in Section 5.2, the optimal matching probability vector p̂ that maximizes the

objective function (5.3) also provides the evolutionarily stable strategies for the evolu-

tionary game with respect to the compatibility C×. This observation not only justifies our

objective function (5.3) in terms of evolutionary game theory but also provides a novel

perspective for high order structural matching.

For a further exploration of evolutionary game theory in the high order structural

matching scenario, we investigate the Lagrange function for maximizing overall average

payoff (5.13). Let u1, · · · , uN× and λ be Lagrange multipliers and u = [u1, · · · , uN×]
T ,

and the Lagrange function with respect to p is

L(p, u, λ) = G(

K players︷ ︸︸ ︷
p, · · · , p) + u · p + λ(1−

N×∑
α=1

pα). (5.16)

The optimal probability vector p̂ maximizing the overall average payoff (5.15) is supposed

to satisfy the relation

∂G(

K players︷ ︸︸ ︷
p, · · · , p)
∂pα

∣∣∣
p=p̂

+ uαp̂α − λ = 0, (5.17)

for 1 ≤ α ≤ N×. Let eα denote an N×-dimensional vector with the αth element 1 and the

remaining elements 0. According to the partial derivative (5.18) of the objective function
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(5.6), we have the partial derivative of the overall average payoff (5.15) as follows

∂G(

K players︷ ︸︸ ︷
p, · · · , p)
∂pα

∣∣∣
p=p̂

=K

N×∑
α2=1

· · ·
N×∑

αK=1

Cα,α2,··· ,αK

K∏
n=2

p̂αn

=C× ×1 p̂T ×2 p̂T · · · ×α eTα · · · ×K p̂T

=C× ×1 p̂T ×2 p̂T · · · ×K−1 p̂T ×K eTα

=G(

K−1 players︷ ︸︸ ︷
p̂, · · · , p̂ , eα) (5.18)

Substituting (5.18) into (5.17), we have the following relations

λ = u1 +K

N×∑
α2=1

· · ·
N×∑

αK=1

C1,α2,··· ,αK

K∏
n=2

p̂αn ,

λ = u2 +K

N×∑
α2=1

· · ·
N×∑

αK=1

C2,α2,··· ,αK

K∏
n=2

p̂αn ,

...

λ = uα +K

N×∑
α2=1

· · ·
N×∑

αK=1

Cα,α2,··· ,αK

K∏
n=2

p̂αn , (5.19)

...

λ = uN× +K

N×∑
α2=1

· · ·
N×∑

αK=1

CN×,α2,··· ,αK

K∏
n=2

p̂αn .

Let e be an N×-dimensional all one vector e = [1, · · · , 1]T and z = [z1, z2, · · · , zN×]
T

with the αth element zα =
∑N×

α2=1 · · ·
∑N×

αK=1Cα,α2,··· ,αK

∏K
n=2 p̂αn . We have the relations

in (5.19) rewritten in terms of matrices as follows

λe = u +Kz. (5.20)

Performing inner product on both sides of (5.20) with p̂, we have

λe · p̂ = u · p̂ +Kz · p̂. (5.21)
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Since e · p̂ = 1 and Kz · p̂ =
∑N×

α1=1 · · ·
∑N×

αK=1Cα1,··· ,αK

∏K
n=1 p̂αn , we have

λ =

N×∑
α=1

uαp̂α +

N×∑
α1=1

· · ·
N×∑

αK=1

Cα1,··· ,αK

K∏
n=1

p̂αn . (5.22)

If for 1 ≤ α ≤ N×, uα ≥ 0 and
∑N×

α=1 uαpα = 0, the vector p with the αth element pα

is referred to as a point satisfying the Karush-Kuhn-Tucker (KKT) conditions [56] for the

Lagrange function (5.16). Therefore, for the optimal matching probability vector p̂ which

satisfies KKT conditions, λ =
∑N×

α1=1 · · ·
∑N×

αK=1Cα1,··· ,αK

∏K
n=1 p̂αn = G(

K players︷ ︸︸ ︷
p̂, · · · , p̂) is

the maximum value of the average payoff (5.15). In this case, the relation (5.17) can be

rewritten as

G(

K−1 players︷ ︸︸ ︷
p̂, · · · , p̂ , eα) + uαp̂α = G(

K players︷ ︸︸ ︷
p̂, · · · , p̂) (5.23)

According to the KKT conditions, uα = 0 if pα > 0. Thus we have the following two

relations

G(

K−1 players︷ ︸︸ ︷
p̂, · · · , p̂ , eα) ≤ G(

K players︷ ︸︸ ︷
p̂, · · · , p̂), for 1 ≤ α ≤ N×; (5.24)

G(

K−1 players︷ ︸︸ ︷
p̂, · · · , p̂ , eα) = G(

K players︷ ︸︸ ︷
p̂, · · · , p̂), for α with respect to pα > 0. (5.25)

The relations in (5.24) and (5.25) are in fact sufficient conditions for a Nash equilibrium

of an N×-strategy, K-player evolutionary game [13]. We refer to G(

K−1 players︷ ︸︸ ︷
p̂, · · · , p̂ , eα) as the

average payoff obtained by the α-strategist. Here an α-strategist is a player who insists on

choosing the strategy α in the process regardless of the evolution of the remaining strate-

gies. This is in contrast to the overall average payoff G(

K players︷ ︸︸ ︷
p̂, · · · , p̂) where the probability

p̂ of the evolutionarily stable strategies can be achieved through the evaluation among all

the N× strategies. We can thus alternatively interpret the optimization of the matching

probability vector p̂ as a Nash equilibrium in the game with compatibility C×, subject to

the KKT conditions.
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5.5 Experiments

We test our algorithm for high order structural matching on two types of data. Firstly, we

test our method on synthetic data to evaluate its robustness to noise and outliers. Secondly,

we conduct experiments to match features extracted from images. Prior rejections are

considered for both types of data to improve the matching accuracy. We compare our

method with two state-of-the-art methods, i.e. probabilistic hypergraph matching [110]

and tensor power iteration [28].

5.5.1 Matching Synthetic Data

We commence with the random generation of a structural prototype with 15 vertices. The

distance dij between each pair of vertices i and j of the prototype is randomly distributed

subject to the Gaussian distribution N(1, 0.5). We test our method by establishing cor-

respondence between the prototype structure and a modified structure. The alternative

modifications include a) noise addition, b) vertex deletion, c) rescaling and d) rotation.

Since neither the probabilistic hypergraph matching nor tensor power iteration methods

rely on a specific initialization, we test our DPH-DCA matching method without prior

rejections to make a fair comparison with these two alternative methods.

We first compare the performance of different methods under a varying degree of

added noise, both for graph matching and hypergraph matching. To this end we per-

turb the prototype structure by adding noise to the distance between each vertex pair

and generate a modified structure. The noise added is normally distributed according

to N(0, σ2), and we vary σ2 from 0.04 up to 0.36 to evaluate the matching accuracy at

different noise levels. We conduct 100 trials at each noise level. For graph matching,

we measure the pairwise similarity between the two points i and j within each set by

using gij = exp(−‖dij‖2/σ2) where σ2 is the scaling parameter and is set to 0.5 in this

experiment. One the other hand, when pairwise measures can not properly reflect the
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similarities between structures, e.g. similar polygons with different areas, higher order

similarity measures are required for establishing hypergraph representations. To test the

performance of different methods for hypergraph matching we re-scaled the distance be-

tween each of vertex pairs by a random factor and rotate the structure by a random angle.

In this case, the pairwise relationships are no longer sufficient for the matching task. We

use the sum of polar sines presented in [53] as a higher order similarity measure for point

tuples. We measure the similarity of every 3-tuple within the vertex set and thus establish

a weighted 3-uniform hypergraph for the structure. The compatibility tensor C for two

structures is computed according to (5.1) with σ1 = 0.1. Figures 5.10(a) and 5.10(b)

illustrate the results of the matching accuracy as a function of noise level. It is clear that

our DPH-DCA framework outperforms the two alternative methods at each noise level.

To take the investigation one step further, we study the performance of our method for

matching structures of different vertex cardinalities. To this end, we extract a substruc-

ture from a prototype and slightly perturb the distance between each vertex pair by adding

random noise normally distributed according to N(0, 0.04) . The cardinality of the ver-

tex set of the substructure varies from 14 down to 5. Vertices not in the substructure are

outliers for the matching process. For each vertex cardinality of a substructure, 100 trials

are performed. Figures 5.10(c) and 5.10(d) illustrate the matching accuracy as a func-

tion of outlier number for the three methods. It is clear that our DPH-DCA framework

outperforms the two alternative methods at each number of outliers.

We have also evaluated the matching accuracy of our DPH-DCA framework at differ-

ent levels of available prior rejections. To this end, we have extracted a 5-vertex substruc-

ture from a prototype and slightly perturb the distance between each vertex pair by adding

random noise normally distributed according to N(0, 0.04). We involve prior rejections

by rejecting the matchings associated with a varying number of outliers. Figures 5.11(a)

and 5.11(b) illustrate the matching accuracy as a function of the number of rejected out-

liers. It is clear that the matching accuracy grows monotonically as the number of rejected
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(a) Graphs.
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(b) Hypergraphs.
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(c) Graphs.
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(d) Hypergraphs.

FIGURE 5.10: MATCHING PERFORMANCE AT DIFFERENT LEVELS OF NOISE AND

DIFFERENT NUMBERS OF OUTLIERS.
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(a) Graphs.
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(b) Hypergraphs.

FIGURE 5.11: IMPROVEMENT OF MATCHING PERFORMANCE WITH PRIOR REJEC-

TIONS.

outliers increases.

5.5.2 Image Correspondences

We apply the different methods to the CMU house sequence, which has been widely

used to test matching algorithms [16][21][28][57] and provides a baseline for comparison.

We perform graph matching for this dataset and evaluate the performance for alternative

methods. We use the Harris detector [39] to extract corner points from the images. The

matching results for the first and tenth frames in the sequence are shown in Figure 5.12.

The probabilistic hypergraph matching produces three incorrect correspondences, tensor

power iteration produces four incorrect correspondences, and our DPH-DCA algorithm

(without prior rejections) establishes all correct matchings. The matching results for the

first and twentieth frames in the sequence are shown in Figure 5.13. From Figures 5.13(a),

5.13(b) and 5.13(c) it is clear that although our DPH-DCA algorithm outperforms the two

alternative methods, it still produces two false matches. The reasons for this is two-fold.

Firstly, relative to the corner points extracted in the first frame, the positional disturbance
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on the corner points in the twentieth frame is greater than that on those in the tenth frame.

Secondly and more importantly, there are three corner points in the bottom part of the first

frame which have no exact correspondence with any points in the twentieth frame, and

thus can be considered as outliers. The positional disturbance and outliers are a conse-

quence of the limited effectiveness of the corner detector for extracting invariant features

from frames where the noise variance is significant. Figure 5.13(d) shows the correspon-

dences produced by our DPH-DCA algorithm with prior rejections and the green marked

points are the those rejected as outliers. It is clear that after prior rejections, all of the cor-

respondences produced by DPH-DCA are visually correct though there are still positional

disturbances for the corner points.

We then apply the alternative matching methods to an image sequence of a toy human

being, which has been used in the experiments of the preceding chapters for structural

clustering. In Figure 5.14 we visualize the performance of the alternative methods by

matching the first and twelfth frames. Furthermore, we test the alternative methods to

match a pair of images from one class of COIL dataset and the matching results are

illustrated in Figure 5.15. It is clear that DPH-DCA provides the most visually correct

correspondences among alternative methods.

To make a quantitative evaluation of the alternative methods, we plot the matching

accuracy between the first frame and the subsequent frames in an image sequence as a

function of frame number. The accuracy for DPH-DCA is computed without prior rejec-

tions. The accuracy curves for the image sequences of the CMU house and the toy human

being are shown in Figures 5.16(a) and 5.16(b), respectively. From all the experimental

results for the two sequences of images, it is clear that our DPH-DCA method (without

rejections) outperforms the two alternative methods. Moreover, with the assistance of

prior rejection, we can further improve the matching results of DPH-DCA.

To visualize the matching for real world images we test the alternative methods on
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(a) Probabilistic hypergraph matching. (b) Tensor power iteration.

(c) DPH-DCA.

FIGURE 5.12: CORRESPONDENCE BETWEEN THE FIRST AND TENTH HOUSE IMAGES.
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(a) Probabilistic hypergraph matching. (b) Tensor power iteration.

(c) DPH-DCA. (d) DPH-DCA with prior rejections.

FIGURE 5.13: CORRESPONDENCE BETWEEN THE FIRST AND TWENTIETH HOUSE

IMAGES.
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(a) Probabilistic hypergraph matching. (b) Tensor power iteration.

(c) DPH-DCA. (d) DPH-DCA with prior rejections.

FIGURE 5.14: CORRESPONDENCE BETWEEN THE MODEL AND TWELFTH IMAGES OF

THE TOY HUMAN BEING.
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(a) Probabilistic hypergraph matching. (b) Tensor power iteration.

(c) DPH-DCA. (d) DPH-DCA with prior rejections.

FIGURE 5.15: CORRESPONDENCE BETWEEN THE IMAGES OF THE TOY PIGS.
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(a) Images for the CMU house.
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(b) Images for the toy human being.

FIGURE 5.16: GRAPH MATCHING PERFORMANCE FOR IMAGES.
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frames of video1. We use the Harris detector to extract corner points from the first and

30th frames. We use the sum of polar sines presented in [53] to measure the similarity

of every 3-tuple in the corner point set and thus establish a weighted 3-uniform hyper-

graph for each image. Figure 5.17 illustrates the matching performances for alternative

methods. The matching results for the two comparison methods are visualized in Figures

5.17(a) and 5.17(b), where 11 correct correspondences and 4 incorrect ones are obtained

by using the tensor power iteration, and 12 correct correspondences and 3 incorrect ones

by the probabilistic hypergraph matching. For DCA without prior rejections (visualized

in Figure 5.17(c)), we obtain 14 correct correspondences and 1 incorrect ones. Figure

5.17(d) visualizes the matching result by rejecting two outliers (green marked). It is clear

that the false match is eliminated by incorporating the proper prior rejections.

5.5.3 Test for Nash Equilibrium

In Section 5.4 we have justified the DPH-DCA framework in terms of evolutionary game

theory. Furthermore, we have also observed that the optimal solution obtained by DPH-

DCA achieves a Nash equilibrium subject to the Karush-Kuhn-Tucker (KKT) conditions.

To experimentally verify this observation, we make a quantitative evaluation on the av-

erage payoff obtained by evolutionarily stable strategies both with and without an α-

strategist. We first compute the average payoff for the matchings demonstrated in Figures

5.12(c), 5.13(c), 5.14(c) and 5.15(c) by using equation (5.15). The values for the over-

all average payoff (i.e. that without an α-strategist) are plotted as red asterisks in the

four subfigures of Figure 5.18. Every unmatched pair of vertices represents a strategy α

which has been driven to extinction in the evolution. For the α-strategist selecting the

extinct strategy α, we compute the average payoff with respect to p̂ and eα by using equa-

tion (5.18). The sorted average payoff involving extinct strategies (i.e. unmatched vertex

pairs) are plotted as black triangles in the four subfigures of Figure 5.18. It is clear that

1http://www.suri.it.okayama-u.ac.jp/e-program-separate.html
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(a) Probabilistic hypergraph matching. (b) Tensor power iteration.

(c) DPH-DCA. (d) DPH-DCA with two prior rejections.

FIGURE 5.17: IMAGE CORRESPONDENCES.
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the values of the average payoff obtained with consideration of an α-strategist are less

than those of the overall average payoff.

We then evaluate the average payoff for all the matching pairs in the image sequences

of the CMU house and the toy human being. For each two images to be matched, we refer

to the pair of the leftmost vertex in one image and the rightmost vertex in the other image

as the extinct strategy α. This assumption is reasonable because these two vertices always

tend to be so different in structural context that they are very unlikely (almost impossible)

to be matched by using alternative matching methods. We plot the overall average payoff

for each pair of images as red asterisks and plot the average payoff with the α-strategist

as black triangles. It is easy to observe that the values of the overall average payoff

overwhelm those with the α-strategist. Both Figures 5.18 and 5.19 experimentally verify

the fact that the high order matching satisfies the relation (5.25) in Nash equilibrium, and

thus provide a practical support for our interpretation in Section 5.4.

5.6 Summary

In this chapter we have presented a novel approach to high order structural matching.

We have transformed the matching problem to that of extracting the dominant cluster

from the direct product hypergraph for two feature sets with high order relationships.

Prior knowledge about outliers can be easily involved in our framework by initializing the

matchings associated with the outliers by a zero weight. Additionally, we have explained

how to justify the proposed framework in terms of evolutionary game theory. Experiments

have shown that our method outperforms the state-of-the-art methods.
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(a) The first and tenth house frames.
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(b) The first and twentieth house frames.
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(c) Images for the model toy human being and the

twelfth toy human being.
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(d) Images for toy pigs.

FIGURE 5.18: AVERAGE PAYOFF ASSOCIATED WITH CORRESPONDENCES FOR A PAIR

OF IMAGES.
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(a) House image sequence.
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(b) Image sequence for toy human being.

FIGURE 5.19: AVERAGE PAYOFF ASSOCIATED WITH CORRESPONDENCES FOR DIF-

FERENT IMAGE PAIRS.

127



Chapter 6

Conclusions and Future Work

6.1 Conclusions

We have presented two structural learning methods, Ihara coefficients for the purpose of

structural characterization and DPH-DCA for the purpose of structural matching. These

two methods can be applied to both pairwise and higher order relational structures.

To develop an effective vectorial representation for graphs, we have firstly studied

how to extract characteristics from graphs using the Ihara zeta function. We have used a

set of polynomial coefficients, i.e. Ihara coefficients, derived from a transformed graph to

construct pattern vectors. Furthermore, we have provided a route that enables the Ihara

coefficients to be extended from unweighted to edge-weighted graphs. This is accom-

plished by establishing the Perron-Frobenius operator for edge-weighted graphs with the

assistance of a reduced Barthodi zeta function. This generalization allows us to compute

the Ihara coefficients for both unweighted graphs and edge-weighted graphs in a unifying

manner. We have performed a spectral analysis that explains the reasons for the Ihara

coefficients having greater representational power than the graph spectral methods. We

have also shown how the Ihara coefficients can be computed in terms of the spectrum of a

transformed graph. Additionally, the Ihara coefficients are by definition closely related to
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graph topologies. We can thus conclude that the Ihara coefficients are polynomial char-

acteristics combining both topological properties and spectral features. This advantage

makes the Ihara coefficients a more powerful graph characterization method over those

restricted to either topologies or spectra.

We have also performed a polynomial analysis on hypergraphs and characterize (nonuni-

form) unweighted hypergraphs based on the Ihara zeta function. We have used the polyno-

mial coefficients, i.e. Ihara coefficients, as the elements in the pattern vector for a hyper-

graph. We have verified that the Ihara coefficients are capable of distinguishing relational

orders and thus avoid the ambiguities caused by the hypergraph Laplacian. Although the

hypergraph Ihara coefficients are characteristics extracted in a polynomial manner, they

can be computed in terms of the adjacency spectrum of a colored oriented line graph

representation of the original hypergraph. Additionally, the definition of the hypergraph

Ihara zeta function enables the coefficients to reflect certain topological properties of the

associated colored oriented line graph. Therefore, the Ihara coefficients can be regarded

as a set of quite general characteristics, as they bear information regarding polynomials,

spectra and topologies. Furthermore, we have also introduced an efficient method for

computing the hypergraph Ihara coefficients based on the associated bipartite graph. This

is effected due to the fact that the associated bipartite graph results in a relatively small

sized graph representation of the hypergraph, on which the Ihara coefficients are com-

puted. All the above merits make the Ihara coefficients a flexible and effective method for

high order structural characterization.

In the last part of this thesis we have presented a novel approach to high order struc-

tural matching. We have cast the problem of high order matching to that of high order

clustering. To this end, we have first established a direct product hypergraph for two

feature sets with high order relationships. In the direct product hypergraph, every vertex

represents a possible correspondence between a pair of vertices drawn separately from the

two feature sets. The vertices representing correct correspondences are supposed to form
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a dominant cluster and those for incorrect correspondences should not be included in the

cluster. Thus, we have developed a method for extracting the dominant cluster for correct

correspondences, which is referred to as dominant cluster analysis on a direct product hy-

pergraph (DPH-DCA). We have also shown that prior knowledge about outliers in either

feature set can be easily incorporated into our framework by initializing the matchings as-

sociated with the outliers by a zero weight. Our DPH-DCA framework naturally satisfies

the basic axioms of probability, i.e. sum to one and positiveness. Furthermore, we have

justified our framework in terms of evolutionary game theory. We have observed that a

Nash equilibrium can be achieved in our matching framework subject to the KKT condi-

tions. Last but not least, our matching approach is a flexible method that can be applied

to establishing correspondences between either a pair of graphs or a pair of hypergraphs.

We have conducted experiments on both pairwise and higher order structured data

using the proposed methods. For each method, we have made an experimental comparison

with state of the art methods, where both qualitative and quantitative evaluations have

been made. Experimental results show the effectiveness of the method presented in this

thesis.

6.2 Limitations

Although the methods described in this thesis outperform the state of the art methods,

there are still some limitations to be noted.

We have shown both theoretically and experimentally that the Ihara coefficients out-

perform the spectral methods in graph characterization. However, the Ihara coefficients

do not apply to hierarchical structures, e.g. ordered trees. As many practical problems

exhibit themselves with hierarchical structures, the Ihara coefficients see limits in the ap-

plications of analyzing tree-like graphs, such as molecules and internet. The reason for

this limitation is that the Ihara zeta function is governed by cycle frequencies of graphs
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and the Ihara coefficients are thus insufficient to reflect structural characteristics such as

branches and vertex orderings. As a result, the Ihara coefficients are not capable of dis-

tinguishing graphs with the same cyclic structure but different vertex orderings or branch

structures.

Although we have described how to characterize hypergraphs using a high order gen-

eralization of the Ihara coefficients, this representation is restricted to unweighted hyper-

graphs. On the other hand, edge-weighted hypergraph representations, which are capable

of not only capturing the multiple connections among vertices, but also depicting the

affinity of the vertices encompassed in a hyperedge, have emerged in the recent literature.

The hypergraph Ihara coefficients described in this thesis, however, do not exhibit them-

selves with the capability of handling edge-weighted hypergraphs. In the representation

of a hypergraph using the colored oriented line graph, edges drawn from the same hyper-

edge share the common color. As far as edge-weighted hypergraphs are concerned, not

only is the same color required for edges drawn from a common hyperedge but also the

weight of each hyperedge is supposed to be broken down and assigned to its derivative

edges according to certain criteria. Since there has not yet been a widely accepted method

for graph representations of hypergraphs, the extension of hypergraph Ihara coefficients

to edge-weighted hypergraphs is still a problem to be solved.

Additionally, the feature selection method adopted for (hyper)graph characterization

based on Ihara coefficients is heuristic. The individual Ihara coefficients contribute in

quite different ways to (hyper)graph characterization. Furthermore, their different com-

binations manifest a variation of the representational power of the coefficients. It is thus

important to understand their individual significance and their optimal combinations.

In the general matching scenario, the similarity measure between hyperedges plays

an important role in establishing the compatibility tensor and has a great influence on the

subsequent matching performance. In this thesis, we have used the Gaussian kernel for

measuring the similarity of a pair of hyperedges, and we have used the sum of polar sines
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as a higher order similarity measure for point tuples. Although these measures have al-

ready been used in algorithms for various pattern recognition problems, there is still no

theoretical evidence to prove them to be optimal options. Therefore, the choice of simi-

larity measures in this work is heuristic, and we need to carry out a further investigation

on how to define a reasonable similarity measure that is capable of reflecting structural

features more convincingly.

6.3 Future Work

To address the shortcomings described in the preceding section, we suggest some possible

approaches to overcoming them in future work.

To generalize the functionality of the Ihara coefficients and make them available to

hierarchical structures such as ordered trees, we may develop a new zeta function with the

consideration of N-step backtracking. In the new definition, the zeta function is expected

to be refined such that its polynomial coefficients are not only suitable to distinguish

branch structures but also capable of incorporating vertex ordering information.

K-uniform hypergraphs with weighted hyperedges have recently been exploited as a

powerful tool in representing data with high order relations. It is thus worth trying to

generalize the Ihara zeta function to admit edge-weighted hypergraphs. To this end, we

have to determine the criteria upon which a reasonable edge-weighting strategy for graph

representations of hypergraphs can be established. Furthermore, we need to work out the

method for computing the solution that satisfies the criteria.

Since the method of feature selection plays an important part in determining the rep-

resentational power of the Ihara coefficients, it might be interesting for us to adopt some

more sophisticated strategies (e.g. simulated annealing) to identify the most discrimina-

tive coefficient subset.

For our hypergraph matching framework, we need to develop more accurate similar-
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ity measures by investigating more sophisticated metrics that can effectively capture the

relationship between hyperedges. We also need to develop strategies for evaluating the

effectiveness of varying parameter values in the similarity measure and thus obtaining

the optimal solution. Other possible future work regarding DPH-DCA includes devel-

oping the combined methodology for both high order clustering and matching. As the

DPH-DCA method formulates the problem of matching in terms of clustering, it should

be possible to establish a unifying framework both for high order clustering and matching

based on DPH-DCA.

Furthermore, the methodologies developed in the thesis should not be confined to

computer vision. Possible applications can be explored in various research fields such as

biological networks, molecular computing, social networks and complex systems.
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Appendix A

Relationship between the Ihara Zeta

Function and Discrete-Time Quantum

Walks

A.1 Discrete-time Quantum Walks

This section reviews the fundamental knowledge of discrete-time quantum walks. These

notions are derived from the study of a quantum mechanical system. Detailed knowledge

of quantum mechanics reviewed in this section can be found in the textbook [81] and the

thesis [29].

To establish discrete-time quantum walks on a graph G(V,E), we first replace each

edge e(u, v) ∈ E of the graph by a pair of reverse arcs ed(u, v) and ed(v, u), and denote

the set of arcs by Ed, which is also referred to as the state space for the discrete-time

quantum walks. Using Dirac’s notation, we denote the state on the arc ed(u, v) by |uv〉,
and the general state of the quantum walks is of the form

|ψ〉 =
∑

ed(u,v)∈Ed

αuv|uv〉, (A.1)
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where the quantum amplitudesαuv are complex. Using (A.1), the probability that the walk

is in the state |uv〉 is given by Pr(|uv〉) = αuvα
∗
uv, where α∗

uv is the complex conjugate of

αuv.

The evolution of the state vector between the steps t and t + 1 is determined by the

transition matrix U. The entries of U determine the probabilities for transitions between

states, i.e. |ψt+1〉 = U|ψt〉. Since the evolution of the walk is linear and conserves

probability, the matrix U must be unitary, i.e. U−1 = U†, where U† denotes the complex

conjugate of the matrix transposed. Furthermore, the transition matrix U is supposed

to assign the same amplitudes to all transitions |u1v〉 → |vui〉, ui ∈ N (v) \ u1 (2 ≤
i ≤ r) and a different amplitude to the transition |u1v〉 → |vu1〉, because the walks

on an unweighted graph does not rely on any labeling of the edges or vertices. The

Grover diffusion matrices [37] are usually adopted as the transition matrices, because

they are the matrices furthest from the identity which are unitary and are not dependent

on any labeling of the vertices. Using the Grover diffusion matrices, the transition matrix

U = [U(w,x),(u,v)]ed(w,x),ed(u,v)∈Ed
has entries

U(w,x),(u,v) =

⎧⎨⎩ 2
dv

− δux, v = w,

0, otherwise,
(A.2)

where δux is Kronecker delta, i.e. δux = 1 if u = x and 0 otherwise. The definition in

(A.2) allows destructive interference to take place, because the entries of U are negative as

well as positive, though be real. The negative entries of U can result in negative quantum

amplitudes for a state.
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A.2 Relationship between the Ihara Zeta Function and

Discrete-time Quantum Walks

In this section we will show how to express the Perron-Frobenius operator in terms of the

transition matrix of the discrete-time quantum walks. To achieve this goal, we introduce

the definition of the positive support of a matrix.

Definition 3. The positive support S+(M) = [si,j]m×n of the matrix M = [Mi,j ]m×n is

defined to be a matrix with entries

si,j =

⎧⎨⎩ 1, Mi,j > 0,

0, otherwise,
(A.3)

where 1 ≤ i ≤ m, 1 ≤ j ≤ n .

Theorem 2. Let T be the Perron-Frobenius operator in the Ihara zeta function of a simple

graph G(V,E) subject to the md2 constraint (i.e. that any vertex of a simple graph are

adjacent to at least two other vertices). Let U be the Grover diffusion matrix governing

the evolution of the discrete-time quantum walks on the graph G(V,E). Then T is the

positive support of the transpose of U, i.e. T = S+(U′).

Proof. For the graph G(V,E), the state transition matrix U of the discrete-time quantum

walks and the Perron-Frobenius operator T of the Ihara zeta function are both 2|E|×2|E|
matrices. This is because both the cardinality |VL| of the vertex set VL of the associated

oriented line graph OLG(VL, EdL) and the total number of basis states in the discrete-

time quantum walks are equal to the cardinality |Ed| of the arc set Ed of the associated

symmetric digraph SDG(V,Ed), and it is obvious that |Ed| = 2|E|.
Specifically, all the non-zero entries of T are 1 while the same entries in U′ are

weighted by twice of the reciprocal of the connecting vertex degree in the graphG(V,E).

Additionally, the entries representing reverse arcs in U′ have values 2/dv − 1 (v ∈ V )

while the same entries in T are always set to zeros.
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The md2 constraint requires any vertex of the simple graph G(V,E) are adjacent to at

least two other vertices (dv ≥ 2, v ∈ V ). Therefore,

2

dv
− 1 ≤ 0. (A.4)

We thus have
U(w,x),(u,v) > 0 if v = w and u �= x,

U(w,x),(u,v) ≤ 0 otherwise,
(A.5)

for u, v, w, x ∈ V and ed(w, x), ed(u, v) ∈ Ed. From the relations in (A.5) we can

conclude that T = S+(U′). This completes the proof.

A.3 The Ihara Zeta Function and Cospectral Regular Graphs

Scott and Storm [79] have numerically proved that the Ihara zeta function is superior to the

adjacency matrix spectrum in distinguishing non-isomorphic graphs. Furthermore, they

have pointed out that in some circumstances the Ihara zeta function can not distinguish

non-isomorphic graphs. However, they have not offered an explanation or analysis of

the cases in which the Ihara zeta function fails to resolve spectral ambiguities. From our

empirical work [30][31] and based on the relationship between the Ihara zeta function

and discrete-time quantum walks described in Section A.2, we assert that the Ihara zeta

function is not able to properly distinguish cospectral regular graphs.

To verify this assertion, we first establish the matrix T̃ = [T̃(u,v),(w,x)]u,v,w,x∈V on the

graph G(V,E). The entries of T̃ are

T̃(u,v),(w,x) = AuvAwxδvw

(
1− δux

)
, (A.6)

where u, v, w, x ∈ V and Auv is the (u, v)th entry of the adjacency matrix of G(V,E).

Consequently, T̃ is a |V |2 × |V |2 matrix which can be established in a similar manner

to the Perron-Frobenius operator T. It is the adjacency matrix of a transformed graph

GT̃(VT̃, ET̃) of G(V,E), with vertex set and edge set defined as follows
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VT̃ = {(u, v) | u, v ∈ V },
ET̃ = {((u, v), (w, x)) | u, v, w, x ∈ V }.

(A.7)

The matrix T̃ indexes each entry using two ordered vertex pairs. The eigenvalues of T̃ are

the same as the eigenvalues of T but with the addition of |V |2−2|E| zero eigenvalues due

to the additional zeros in the matrix T̃.

Theorem 3. Let G(V,E) be a k-regular graph with n vertices. Let T be the Perron-

Frobenius operator appearing in the Ihara zeta function of G(V,E). The eigenvalues of

T are determined by the eigenvalues of the adjacency matrix A of G(V,E) .

Proof. Let λA be an eigenvalue of A with corresponding eigenvectorψ = [ψu1 , ψu2 , . . . , ψu|V | ]
′

where ui ∈ V , 1 ≤ i ≤ |V |. Let λ be an eigenvalue of T̃ with corresponding eigenvector

φ = [φ(u1,v1), φ(u2,v2), . . . , φ(u|V |,v|V |), ]
′ where ui, vi ∈ V, 1 ≤ i ≤ |V |. We then have

λφ(u,v) =
∑

w,x∈V
T̃(u,v),(w,x)φ(w,x). (A.8)

Substituting the relation in (A.6) into (A.8) and making use of the symmetry of A, we

have

λφ(u,v) =
∑

w,x∈V
AuvAwxδvw

(
1− δux

)
φ(w,x)

=
∑
x∈V

AuvAvxφ(v,x) −Auvφ(v,u). (A.9)

We define the vector φ with entries

φ(v,x) = Avx

(
ψx − fψv

)
, (A.10)

and likewise

φ(v,u) = Avu

(
ψu − fψv

)
, (A.11)

φ(u,v) = Auv

(
ψv − fψu

)
, (A.12)
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where f is a complex constant forG(V,E) and u, v, x ∈ V . We now proceed to show that

φ is an eigenvector of T̃. Substituting the relations in (A.10) and (A.11) into the relation

in (A.9), we obtain

λφ(u,v) =
∑
x∈V

AuvAvx

(
ψx − fψv

)
−Auv

(
ψu − fψv

)
= Auv

( ∑
x∈V

Avxψx − fψv

∑
x∈V

Avx

)
−Auvψu + Auvfψv

= AuvλAψv − Auvfψvk −Auvψu + Auvfψv

= Auv

(
ψv(λA − kf + f)− ψu

)
= λAuv

(
ψv
λA − kf + f

λ
− 1

λ
ψu

)
. (A.13)

From (A.13) we observe that

φ(u,v) = Auv

(
ψv
λA − kf + f

λ
− 1

λ
ψu

)
. (A.14)

Comparing the relation in (A.14) with our assumption (A.12) we deduce the following

equations

λA − kf + f

λ
= 1, (A.15)

1

λ
= f. (A.16)

Solving (A.15) and (A.16) we finally obtain

λ =
λA
2

± i

√
k − 1− λ2A

4
. (A.17)

These eigenvalues account for 2|V | of the eigenvalues of T̃. The remaining 2|E| − 2|V |
non-zero eigenvalues take the values ±1 each with multiplicity |E| − |V |. To verify this

point we consider the eigenvectors for T̃ of the form

φ(u,v) = Auvwuv. (A.18)
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where wuv is constant corresponding to Auv. Substituting the relation in (A.18) into the

relation in (A.9), we have

λφ(u,v) = Auv

∑
x∈V

Avxwvx − Auvwvu. (A.19)

According to the relations in (A.18) and (A.19), φ(u,v) will an element of the eigen-

vector for T̃ under the following conditions

∑
x∈V

Auxwux = 0 ∀ u, (A.20)

wuv = −wvu, (A.21)

or wuv = wvu. (A.22)

The values of wuv which correspond to A are irrelevant, so we can set the relations

in (A.20) to zero. It is clear that when the relation in (A.21) holds, λ = 1. On the other

hand, when the relation in (A.22) holds, λ = −1. Additionally, the relation in (A.21)

or (A.22) provides us with |E| non-zero variables, and the relation in (A.20) with |V |
linear constraints. We thus have |E| − |V | linearly independent solutions for λ = +1 and

|E| − |V | linear independent solutions for λ = −1, giving 2|E| − 2|V | solutions. This

completes the spectrum of T̃ and thus T.

We can therefore conclude that the spectrum of T is determined by the spectrum of

the adjacency matrix A of the graph G(V,E). This completes the proof.

Theorem 4. The Ihara zeta function can not distinguish non-isomorphic regular graphs

which are cospectral with respect to the adjacency matrix.

Proof. The Ihara coefficients have a relationship with the spectrum of the Perron-Frobenius

operator such that each coefficient can be derived from the elementary symmetric poly-
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nomials of the eigenvalue set {λ1, λ2, · · · , λ2|E|} of T of the graph G(V,E) as follows

c1 = −
2|E|∑
k=1

λk,

c2 =

2|E|∑
k=1

2|E|∑
p=k+1

λkλp,

...

cr = (−1)r
∑

k1<k2< ... <kr

λk1λk2 ... λkr , (A.23)

...

c2|E| =
2|E|∏
k=1

λk.

From Theorem 3, we know that the eigenvalue set {λ1, λ2, · · · , λ2|E|} of T of a regular

graph G(V,E) is determined by the eigenvalues of the adjacency matrix A of G(V,E).

From (A.23), the reciprocal Ihara zeta function is completely determined by the eigen-

value set of T. Thus, the regular graphs which are cospectral with respect to the adja-

cency matrix should also have identical Ihara zeta functions. We can therefore conclude

that the Ihara zeta function can not distinguish non-isomorphic regular graphs which are

cospectral with respect to the adjacency matrix. This completes the proof.

A.4 Summary

We have explored the relationship between the Ihara zeta function and discrete-time quan-

tum walks. The analysis hinges around the fact that the Perron-Frobenius operator in the

Ihara zeta function can be formulated in terms of the positive support of the transpose of

the transition matrix of the discrete-time quantum walks. Furthermore, we have proved

that the Ihara zeta function fails to distinguish adjacency cospectral regular graphs. This
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supplements Scott and Storm [79] recent research on the Ihara zeta function in distin-

guishing cospectral graphs. Moreover, it suggests that formulating an alternative zeta

function in terms of the characteristic polynomial of Tn (n ≥ 3) may solve problems

associated with cospectrality.
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