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Abstract

This work describes the generation and matter interactions of laser radi-

ation with wavelengths between approximately 10 and 100 nanometres. The

properties and dynamics of plasmas, created rapidly by photons of this wave-

length range through the process of photoionization, are discussed here. A

collisional-radiative model has been developed and used to simulate the ion

populations in such plasmas and make comparisons with local thermodynamic

equilibrium (LTE), which is frequently used to model dense plasmas. Despite

the effects of rapid heating, due to the absorption of laser energy, and free

electron degeneracy, due to the high densities, it is shown that LTE holds

for such laser plasmas. Simulations predict that intense photoionizing radia-

tion can cause a wavelike lowering of opacity to propagate through plasma.

A number of experiments have been undertaken using a capillary discharge

laser operating in neon-like argon, with a wavelength of 46.9 nanometres.

Two focal geometries have been used to create plasmas at solid density: a

Fresnel zone plate and a multilayer mirror. The focal intensity profiles in

both cases have been modelled by a diffraction code, which closely matched

micrographs produced in these experiments. The motion of laser-produced

plasmas has been modelled by a 2-dimensional radiation-hydrodynamic code.

These simulations were extended to 3 dimensions by a geometrical approach

and compared to perforations made in thin targets. Laser experiments have

allowed the viability of simultaneously generating and probing dense plasmas

to be evaluated for both focusing geometries.
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“At that moment sergeant Lee thought he saw his certain destruction, and as a last

act of defence, let go the magazine, expecting that they would seize that likewise, and

thus all would be blown to atoms together.”

- Charles Griswold, writing in 1820 about an American submersible during the

American Revolutionary War (1775-1783)
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1 Introduction

The laser is an important scientific and industrial tool and there has been success

in widening its operational parameters since its invention. In this work, we discuss

the interaction with matter of lasers operating in the extreme ultraviolet (EUV) and

soft x-ray spectral range, with wavelengths below approximately 100 nm.

The successful implementation of lasing at such low wavelengths, using methods

described in this chapter, has led to several advantages over conventional visible

lasers. EUV radiation can focused more tightly than the visible, as the diffrac-

tion limit scales directly with the wavelength. This gives rise to the potential for

applications in manufacturing6 on the sub-micrometre scale,3 for example of micro-

electromechanical systems (MEMS), which has not yet been realised. Lasers in the

EUV spectral range allow the creation and diagnosis of extremely dense, but low

temperature plasmas, normally not accessible by conventional lasers. These studies

are important to fundamental science, with similar states of matter arising in astro-

physical objects such as brown dwarf stars.7 The combination of the high resolution

and coherence of EUV lasers allows many applications in imaging, from microscopy8

and interferometry9,10 to ablation mass spectrometry.11

In this chapter we introduce the plasma state of matter, which is crucial to

understanding the interaction of lasers with matter. We then discuss the methods

of generating laser radiation with short wavelengths. In Chapter 2 we outline the

mathematical framework of wave optics and its application to focusing such short

wavelength radiation. In Chapter 3 we present the energy distribution functions of

particles and the rates of atomic processes in plasmas. This allows the macroscopic

properties of plasmas in equilibrium to be calculated by a collisional-radiative model.

Simulations of non-equilibrium plasmas are presented in Chapter 4. Experiments

conducted using an EUV laser are presented in Chapter 5.

This work makes use of notation and unit conventions specific to plasma and

atomic physics, which are clarified in Appendix A. In particular, electronvolts are

used throughout the work to express energies (1 eV= 1.602×10−19 J). Temperatures

are implicitly multiplied by the Boltzmann constant kB and therefore also conve-

niently expressed in electronvolts. Mathematical methods used throughout this work

and associated notation are given in Appendix B. Of particular importance to this

work are Brent’s algorithm,12 used to efficiently find the roots of transcendental

equations, and methods of numerical integration.
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1.1 Plasmas

1.1 Plasmas

Laser radiation has an inherently large energy density when focused, which typically

leads to a fast rise in temperature of any matter upon which it is incident. Lasers

incident on solid targets cause melting and expansion leading to the removal of

material, referred to as ablation. In some cases, the radiation or thermal pressure

may lead to compression of material to high densities.13,14 Lasers are inherently out

of thermodynamic equilibrium, so they are able to create states of matter without a

well-defined temperature. Matter rapidly undergoes a phase transition to a plasma

when subjected to intense laser light, regardless of its starting phase. Therefore,

laser plasma interactions (LPI) are interchangeable with laser matter interactions,

and we will go into considerable detail discussing plasmas.

1.1.1 Plasma definition and basic properties

A plasma is a fluid state of matter which exists at high temperatures or densities.

The characteristic difference between a plasma and a condensed fluid, such as a

liquid or gas, is that matter no longer occupies the lowest possible energy states.

In conventional plasmas, energetically favourable molecular bonds break, electrons

in atoms become excited to high energy levels or become ionized completely; in

extreme conditions electron-positron pairs, which ordinarily seek to annihilate, may

coexist.15,16 Therefore, a plasma inevitably contains many types of charged particles,

free to move independently; it is this property of being a “carrier” of a multitude of

different particles which led Irving Langmuir to draw a similarity with blood plasma

and coin the name for physical plasmas.17

Mobile charges in a fluid lead to many remarkable properties, such as unique

mechanisms of thermal and electrical conduction, absorption and emission of radi-

ation, collective excitations and response to electromagnetic fields. A great deal of

effort is spent on modelling the hydrodynamic behaviour of plasmas, in response to

lasers at the micron scale, to magnetic fields in tokamaks on the laboratory scale and

to gravity on the galactic scale. However, it should be stressed that the aspect which

most sets plasmas apart from other states of matter is that some normally tightly

bound particles break into a great diversity of others. Atoms dissociate into ions

and electrons; nuclei into quarks and gluons, as temperature and density increases.

Much of this work takes a microscopic view of a classical plasma to calculate the

numbers of different types of ions, from which macroscopic quantities are derived.

An important property of a classical plasma is the ionization fraction, corre-
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1.1 Plasmas

sponding to the number of free electrons per atom,

Z∗ =
ne

NT

, (1)

where ne is the free electron density and NT the total density of atoms. We will

examine why such a seemingly energetically unfavourable state - electrons stripped

from nuclei - begins to dominate at high temperature.

Plasmas tend to be quasi-neutral, meaning that a free electron does not stray far

from its parent atom and there is no localised space charge. However, the charged

particles in a plasma are mobile enough to locally screen any buildup of charge. The

potential of a charged particle falls off with distance r not as r−1 for Coulomb’s law,

but as r−1 exp(−r/λD), where the Debye length is given by18

λD =

√
ε0Te

e2ne

, (2)

where Te is the electron temperature, e the electron’s charge and ε0 is the permittiv-

ity of free space. Of particular importance is the so-called plasma parameter, given

by

Λ = 4πneλ
3
D. (3)

Plasmas exhibit a similar range of behaviours to condensed matter, from a dilute

gas to a dense liquid or solid. A plasma corresponds to one of these regimes based on

the coupling parameter Γ. This is defined as the ratio of the Coulomb electrostatic

potential to the electron temperature,

Γ =
e2

4πε0(
4
3
πne)−1/3Te

= 31/3Λ−2/3, (4)

where the distance r is given by the average electron separation. Plasmas exhibit

classical gas-like behaviour when they are weakly coupled (Γ < 1) and more col-

lective and quantum behaviour when they are strongly coupled (Γ > 1). Laser-

produced plasmas may often have wide ranges of the coupling parameter, which

complicates their simulation.

Electrical and heat flow is governed by the collision of electrons with ions. The

flow of current j⃗ in plasmas obeys Ohm’s law as usual,

E⃗ = ηj⃗, (5)

where E is the electric field and η the resisivity, which is often given by the Spitzer

formula,19
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1.1 Plasmas

ηSpitzer =
πZ∗e2m

1/2
e Ξ

(4πε0)2T
3/2
e

, (6)

where Ξ is the so-called Coulomb logarithm; it is discussed further in §3.1.1. The

resistivity is proportional to the rate of collisions between the electrons and ions.

Heat flow in a plasma usually obeys Fourier’s law,

q⃗ = −k∇T, (7)

with an analogous Spitzer heat conductivity,

kSpitzer =
T

5/2
e (4πε0)

2

m
1/2
e e4

. (8)

However, Fourier’s law may break down if the temperature gradient is very steep, as

electrons may travel large distance before colliding and therefore depositing energy

away from the gradient. This is referred to as non-local transport and may be present

in laser-produced plasmas as a result of their extremely high energy fluxes.20

The mobile charges in plasmas interact in very novel ways with magnetic fields.

This is particularly important in space plasmas (interaction with the Earth’s, Sun’s,

galactic, etc. magnetic fields) and laboratory plasmas (magnetic confinement fusion

devices, magnetrons, etc.). In particular, the magnetic field affects how electromag-

netic waves behave in a plasma and alters the collective motion of plasma. However,

the magnetic fields are usually insignificant in the typically rapid and intense inter-

actions of short wavelength lasers and so are ignored in this work.

1.1.2 Interaction with radiation

Free electrons in a plasma oscillate about the ions, which remain largely stationary

due to inertia. The resonant plasma frequency is given by

ωp = c

√
nee2

mec2ε0
. (9)

The phase of an electromagnetic wave propagating right and left respectively through

a medium is given by exp(i[ñkx∓ ωt), where ñ is the refractive index. The plasma

frequency is added to the usual dispersion relation for electromagnetic waves, so

that in a collisionless plasma the relation becomes ω2 = c2k2 + ω2
p. Therefore the

index of refraction ñ = ck/ω due to these collective effects is given by

ñ =

√
1−

ω2
p

ω2
. (10)
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1.1 Plasmas

Additional collective absorption effects due to collisions or magnetization, such as

Landau damping or whistler waves may occur, but are not discussed here.

The refractive index implies that when an electromagnetic wave is incident on a

plasma, it is reflected if its frequency is below the plasma frequency. Consequently,

for a given frequency of radiation, there is a critical electron density above which it

cannot propagate. This critical density for a given photon energy ϵγ is given by

nc [10
23 cm−3] = 7.252× 10−3(ϵγ [eV])2. (11)

Visible light (ϵγ ∼ 2 eV) is reflected at densities of around 1021 cm−3. Therefore,

in most laser plasma experiments, light is reflected from an outwardly expanding

low density plasma plume and heat is conducted to the main target by electrons.

Plasmas at solid material densities (ne > 1023 cm−3) can only be created and heated

directly by photons in the VUV range or above (ϵγ ≳ 12 eV).

The amplitudes of charged particles’ oscillations depend on the strength of the

driving electric field. If the strength of the electromagnetic field changes during

a single period of oscillation, the acceleration in each phase will not cancel out

and the particle will not return to its starting position. This effect is called the

ponderomotive force, given by

F⃗ponderomotive = − e2ℏ2c
4ε0mc2ϵ2γ

∇I, (12)

where I is the intensity of radiation. We have used the following relation for the

electic field E in an electromagnetic wave: E2 = I/cε0, derived from the Poynting

vector.

In addition to the collective effects we have discussed, the individual interactions

of photons with particles are important in plasmas. Radiation is attenuated due to

absorption by plasmas at a rate given by

dI

dx
= −τI, (13)

where τ(ϵγ) is the opacity. It is usual to relate the opacity to some absorption

coefficient κ(ϵγ) through the relation τ = Nκ, where N is the density of absorbing

material.

Many microscopic processes contribute to the opacity, each with its own absorp-

tion coefficient; they are discussed further in §3.3. Photons may scatter from free

electrons through a Compton process. A free electron may also absorb a photon,

but an ion must be present to conserve momentum; this is referred to as inverse
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1.1 Plasmas
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Figure 1: The opacity of aluminium at a density of 1 g cm−3 and temperature 100

eV as a function of photon energy, calculated by the TOPS code of the Los Alamos

National Laboratory (LANL).21 The photon energy dependence of the bound-free

and free-free opacity is shown. The second plot shows the region of bound-bound

transitions in higher resolution.

bremsstrahlung or “free-free” absorption. A photon with sufficient energy may be

absorbed by atoms to photoionize a bound electron (“bound-free” absorption). Pho-

tons resonant with an atomic transition may be absorbed and excite bound electrons

from one quantum state to another (“bound-bound” absorption).

An example of the photon energy dependence of the opacity of an aluminium

plasma with a given temperature is given in Figure 1, along with the approximate

behaviour of the absorption coefficients of these processes. We see a baseline opacity

from free-free absorption, ∝ ϵ−3
γ , which occurs above the plasma frequency. We see

an absorption edge due to bound-free absorption, ∼ ϵ−3
γ , which corresponds to the

minimum threshold energy. Other resonant processes smear out the edge. Finally,

we see that the bound-bound absorption resonances have some width due to Doppler

and Stark broadening - the motion of ions and perturbing free electrons give the

atomic transitions a range of energies. Compton scattering is insignificant to the

total opacity in this case.

Bound-free absorption dominates the opacity of neutral materials (at low tem-

peratures) in the EUV and soft x-ray range because the photon energies are just

above the first absorption edge. For this reason, lasers in this spectral range can

only propagate freely through a vacuum, which complicates experimental setups.

However, as the temperature increases, the lower lying ionization stages become

depleted and the edge disappears thus lowering the opacity. EUV lasers must there-

fore be generated by plasmas hot enough to be transparent in this spectral range
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1.1 Plasmas

and with a density low enough that free-free absorption is insignificant. Solid-state

reflective optics for this spectral range are composed of metals or semiconductors,

whose outer valence electrons are effectively not bound to atoms and can therefore

not contribute to bound-free absorption.

Every atomic process has an associated inverse which balances it in equilibrium,

as discussed in §3.3. Therefore, absorption is complemented by the emission of

radiation. Lasers are not in a state of thermodynamic equilibrium and therefore

they typically produce states of matter which are themselves not in thermodynamic

equilibrium.

1.1.3 Hydrodynamic motion

The collective motion of plasma is governed by fluid mechanics.22 The equations of

motion may be expressed through a set of conservation laws, formulated as hyper-

bolic partial differential equations. A conservation law for a set of quantities y⃗ may

be written as

∂y⃗

∂t
+∇.J⃗(y⃗) = s⃗, (14)

where J⃗ are the associated fluxes and s⃗ are appropriate source terms. The conserved

quantities for a continuous fluid are densities of mass N , momentum Nv⃗ and energy

ε, with v⃗ the local fluid velocity. The correspoding conservation laws23 are

∂

∂t


N

Nv⃗

ε

+∇.


Nv⃗

Nv⃗ ⊗ v⃗ − Ip
v⃗(ε+ p)

 =


0

F⃗

Φ

 , (15)

where p is the pressure, F⃗ is an externally applied force and Φ is an energy flux.

These are typically referred to as the Euler equations for plasmas or the Navier-

Stokes equations, where F⃗ contains a viscosity term, for condensed fluids. These

equations are notoriously difficult to solve mathematically and lead to a range of

nonlinear and turbulent effects. In plasmas the situation may be complicated be-

cause of the large range of densities and pressures which occur. Typically, a plasma

is considered to consist of several fluids: electrons and ions are treated separately

and interact through collisions.

The Euler equations require “closure” in the form of expressions for the relation

of pressure and energy to mass density. Hydrodynamic simulations of plasma require

an accurate equation of state for quantities such as Z∗, used to determine the electron
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1.1 Plasmas

pressure, as a function of the total mass density and temperature. The assumption

of thermodynamic equilibrium, discussed in Chapter 3, may enable fast calculation

of equation of state. The validity of such assumptions for plasmas created by EUV

lasers, which operate manifestly out of equilibrium, is also discussed.
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Figure 2: Electron temperature Te (left) and density ρ (right) profiles simulated by

POLLUX at times indicated. An EUV laser (photon energy 26.5 eV), incident from

the top of page centered on r = 0, with a Gaussian profile of width 1 µm and peak

intensity 1010 W cm−2 (centered on r = 0) is incident on solid density (labelled by

the symbol ρ0) plastic (parylene-N) located at z = 0.

The propagation of radiation, whether from an external source or the plasma

itself, appears in the Φ term and is important to plasma simulations. Fluid motion

of laser plasmas is typically simulated using a radiation-hydrodynamic code. Space

is discretised in up to three dimensions, in the desired co-ordinate system. The

radiation field is modified through refraction by ray tracing through the plasma’s

refractive index and through absorption and emission by computing opacities and

emissivities. The fluid motion and local parameters are calculated through the Euler
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1.1 Plasmas

equations.

To solve the set of Euler equations for a laser-produced plasma, a hydrodynamic

code POLLUX was written at the University of York.24 The three conservation laws

of Equation (15) are solved in a 2 dimensional cylindrical geometry (with radial

distance r and height z); the system is symmetric about the z-axis (i.e. independent

of azimuthal coordinate θ). Conventionally, the laser propagates in the negative

z direction. The spatial dimensions are discretised into a grid, which evolves in

time to resolve the plasma expansion. The interaction of a laser beam is modelled

via bound-free and bound-bound absorption up to the critical surface. POLLUX

uses an equation of state model provided by the CHART-D package developed at

Sandia National Laboratories.25 The distribution of ionization and excitation stages,

required to obtain quantities like Z∗, is modelled assuming local thermodynamic

equilibrium (LTE), as discussed in §3.5. POLLUX outputs many plasma parameters,

such as ion and electron densities and temperatures, velocities, etc. on its spatial

grid at regular time intervals; examples at two times are shown in Figure 2. Like

many hydrodynamic codes, POLLUX cannot directly simulate a vacuum because a

zero material density leads to numerical instabilities. The vacuum regions are set

to a small, but finite density value, such as 10−5 of solid.
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1.2 Lasers

1.2 Lasers

Conventional lasers create photons by optical transitions between two atomic levels.

Through the process of stimulated emission (discussed in more detail in §3.3.3)

initial photons begin to produce additional photons in a chain reaction. This occurs

provided that a population inversion exists and therefore emission of new photons

matches or exceeds the rate of their absorption.26 The requirement for population

inversion is given by

∆N ≡
(
N2 −

g2
g1
N1

)
> 0, (16)

where N1, N2 are the densities of atoms in the lower and upper levels of the lasing

transition and g1, g2 are their degeneracies. The two atomic levels are separated by

the laser photon energy ϵγ, so that in thermodynamic equilibrium at temperature

T the Boltzmann ratio gives N2/N1 = exp(−ϵγ/T ) < 1. The upper lasing level

must therefore be “pumped” to achieve population inversion. At least one or more

additional levels are needed to achieve a population inversion, as otherwise the rate

of emission of photons cannot exceed the rate of absorption; radiation interacting

with a two-level atom drives Rabi oscillations,27 which cannot directly lead to lasing.

Once a population inversion is achieved, there is a net gain of radiation intensity

I given by

dI(ϵγ)

dz
=

[
B2→1

c
ϵγf(ϵγ)∆N

]
I(ϵγ), (17)

where the term in square brackets is the gain coefficient, B2→1 is the stimulated

emission coefficient and f(ϵγ) is the spectral lineshape of the transition, which obeys

the normalisation condition
∫∞
0

f(ϵγ)dϵγ = 1. This lineshape arises because the

energy split of the two atomic levels is not precisely constant for an ensemble of

atoms due to effects such as Doppler shifts. This treatment shows that the acronym

for Light Amplified by Stimulated Emission of Radiation does indeed provide a

succinct description of its operation.

When the radiation intensity in an amplifier is relatively low, the gain coeffi-

cient in Equation (17) takes its small-signal (intensity-independent) value and the

intensity grows exponentially. As the intensity grows, the gain becomes saturated

as atoms in the upper lasing level are depleted. For example, if the laser transition

is homogeneously broadened, the population inversion is effectively reduced to

∆N(I) =
∆N(0)

1 + I/Isat
, (18)
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1.2 Lasers

where Isat is the saturation intensity. From Equation (17), we see that the growth in

intensity transitions from exponential to linear growth above the saturation intensity.

Optical lasers typically operate with the gain medium inside a cavity. The beam

is amplified as it oscillates between mirrors at two ends of the cavity. However,

reflective optics at short wavelengths are extremely difficult to realise and have low

overall reflectivities at best, as discussed in §2. Furthermore, for short wavelength

lasers the gain is realised only for shorter periods of time than a cavity round-

trip. Therefore, extreme ultraviolet and soft x-ray lasers operate on the amplified

spontaneous emission (ASE) principle,28 rather than a true laser oscillator.

In order to generate short wavelength laser beams, we require that atomic energy

levels be spaced widely in energy. This occurs readily for highly charged ions with a

high atomic number Z. These ions have a large central potential and few electrons

to screen the nuclear charge, leading to the large required energy spacing. For

example, the energy levels of hydrogen-like ions scale as Z2. For this reason, and

as low charge ions have a high opacity, short wavelength lasers operate in plasmas;

the gain medium in free-electron lasers is also a highly energetic state of matter

comparable to a plasma. In order to produce the coherent and directional beam of

a typical laser, the gain medium must have a large extent in one dimension and be

limited in the others. In this section, we discuss approaches to generating such a

plasma and achieving population inversion.

Laser light has many attractive properties, which make them ideal for many sci-

entific and industrial applications. It is extremely monochromatic, as they operate

on quantised energy levels; despite broadening by dynamic and quantum effects,

their wavelength spread is narrow. Laser beams are strongly collimated, with typi-

cal divergences of a few milliradians. In part due to this small divergence, laser light

is able to reach extremely high intensity. Finally, laser light is coherent - its phase

has a well defined relatonship. It should be noted that many intense sources of short

wavelength radiation exist, which are not lasers. They can attain some of the afore-

mentioned properties by extensive spatial or wavelength filtering, strong focusing,

etc. They have the potential advantages of being more compact or cheaper; they

may also occur naturally. Though usually more widely applicable, the treatment of

interactions in this work assumes that radiation has laser-like properties.

1.2.1 Collisionally pumped lasers

The high energy densities required to create a plasma may be readily reached by

optical lasers. They are able to quickly deposit a large amount of energy, which
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creates the non-equilibrium atomic level distribution required for lasing. In practice,

two separate types of laser pulse are used in tandem - a long prepulse used to setup a

relatively slowly varying plasma plume and a short, intense pulse to deliver the bulk

energy. Once the energy is deposited, electron collisional processes, as described in

§3.3.3, populate the upper lasing levels.

To produce a spatially extended plasma, optical laser light is focused onto a

target in a long narrow line - this can be achieved by adding a cylindrical lens

to the focusing optics or by employing a tilted mirror. An example of such an

experimental setup is shown in Figure 3. By manipulating the angle of incidence

of the short pulse, the optimal electron density region may be selected, leading to

high energy conversion efficiencies.29 Elements which form metallic bonds or salts

are typcially chosen as the gain medium in such setups because they are reasonably

dense, can be machined to precision, are suitable for vacuums and have the requisite

high atomic numbers. Alternatively, the same optical setup may be used with a gas

cell target30 instead of a plane slab of material.

Solid target

Plasma

Pump
pulse

Short �
beam

Prepulse

Figure 3: A typical experimental setup used to achieve lasing from solid density

targets29 located inside a vacuum chamber. A long initial optical prepulse is focused

by a spherical and a cylindrical lens into a line at a solid slab target to create a

plasma. A second, more intense pulse is then focused at a variable angle in order to

create a population inversion.

A slightly alternative geometry used to produce a high aspect ratio plasma col-

umn from solid matter involves a microcapillary. A cylinder may be drilled into

solid material, into which two co-propagating laser beams are sent. The first, long,

low-power pulse is used to create an initial plasma as before; the second, intense

pulse creates the population inversion. The microcapillary additionally acts as a

waveguide for the resulting soft x-ray radiation.31
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Isoelectronic Photon

Element sequence Transition energy [eV] Reference

Nb Ni 4d 1S0 →4p 1P1 60.7 32

Li H 2p 2P0 →1s 2S1 91.8 31

Xe Pd 5d 1S0 →5p 1P1 29.7 30

Ru, Pd, Ag Ni 4d 1S0 →4p 1P1 75.1, 84.3, 89.2 29

Table 1: A review of the parameters of several experimentally achieved collisionally

pumped soft x-ray lasers.

Collisionally pumped short wavelength lasers typically operate on transitions

of closed-shell ions. Their ionization stages have relatively high ionization energies,

which leads to a stability of the distribution of ionization stages over a large temper-

ature and density range. Examples of experimental realisation of such collisionally

pumped lasers are given in Table 1 in chronological order, showing progress towards

higher photon energies and saturated laser output.

1.2.2 Capillary Discharge Lasers

The energy required to achieve the high ionization stages and population inversion

for lasing may be delivered to a plasma by an electric current discharge. A suc-

cessful scheme involves confining a low-density gas to be used as the gain medium

in a ceramic capillary. The gas is first weakly ionized by a radio frequency (RF)

discharge, which is widely used as an efficient method of plasma creation;33 this

greatly increases its electrical conductivity. A very high electrical current is quickly

ramped up between electrodes at two ends of the plasma cylinder - it typically rises

from 0 to ∼ 20 kA within tens of nanoseconds.34 This current heats and further

ionizes the plasma; it is large enough that the magnetic pressure due to the Lorentz

force F⃗ = j⃗ × B⃗ causes compression of the plasma column (similar to a z-pinch).

The plasma’s compression is aided by temperature-driven pressure gradients,

leading to a large increase in electron density. The plasma becomes quantitatively

similar to that produced by optical pumping. Electron collisions strongly pump

excited levels to produce a population inversion. The resultant laser beam is ex-

tremely collimated. It exits the chamber with the low-pressure gas, used as the gain

medium, through a narrow pinhole. A high grade vacuum can then be maintained

by differential pumping, so that the beam is not attenuated by neutral gas. The

choice of gas as the gain medium and discharging capacitors as the energy delivery

method allows high repetition rates to be achieved very reliably and cheaply.
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Lightly ionized 
argon plasma

j×B

Current
discharge

B

Laser
emission

Figure 4: Schematic diagram of the lasing cycle of a typical capillary discharge

laser. A ceramic capillary contains a gas which is lightly ionized by RF electrodes.

A current is discharged, heating and compressing the plasma. Electron collisions

create a population inversion and lasing occurs.

The relative ease with which capillary discharge lasers are able to operate mo-

tivates their continued development35 and exploration of potential applications36 in

science and industry. One of the leaders in this field is the Engineering Research Cen-

ter for Extreme Ultraviolet Science and Technology37 at Colorado State University,

with other contributing partners. As part of the work presented here, a collabora-

tion has been undertaken to further develop argon-based capillary discharge lasers

and conduct experiments with them; they are discussed further in §5.

1.2.3 X-ray Free-Electron Lasers

An accelerating charge radiates energy, whose power P is given for arbitrary motion

by the relativistic Larmor formula,38

P =
e2γ2

6πε0m2c3

∣∣∣∣dpµdt dpµ

dt

∣∣∣∣ , (19)

where the physical constants have their usual meanings, the relativistic factor γ =

(1 − v2/c2)−1/2 and p is the relativistic 4-momentum of the accelerating charge.

This formula implies that a charge radiates more energy as its speed or acceleration

increases. The special case of an accelerating charge in circular motion is usually

referred to as synchrotron radiation; it limits the performance of such particle ac-

celerators, since the particles experiencing a centripetal acceleration tend to radiate

energy and decelerate. In this case, for a circle of radius r, the spectrum of radiation

peaks at a photon energy ϵMAX
γ ∼ γ3/r. Therefore, this usually undesirable process
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can be harnessed to generate arbitrarily short wavelength radiation. Specially-built

synchrotron facilities, such as Diamond Light Source at the Rutherford Appleton

Laboratory, have found a wide range of applications; however, such sources are

not strictly lasers, because the radiation escapes tangentially before it is able to

stimulate further emission.

(b)

N

N

N
S

S

S(a)

Figure 5: (a) Schematic diagram of an undulator, with the magnetic fields directed

vertically and oscillation in the perpendicular plane. (b) Schematic diagram of

microbunching. The electron density profile initially varies slowly in the direction of

beam propagation, but coherent radiation causes wavelength-sized bunches to form

as pictured.

Significant stimulated emission of synchrotron radiation (and therefore lasing)

may be achieved if the radiation propagates along the same axis as the charged parti-

cles. This situation is realised by alternating magnetic fields in so-called undulators

or wigglers, as shown in Figure 5a. Electrons from a conventional linear accelerator

encounter regions of alternating field, so that although their bulk motion remains

linear, they oscillate transversally. Self-amplified sponatneous emission occurs if the

wavelength of emitted radiation λγ is resonant with the undulator period λu through

the relation39

λγ =
λu

2γ2

(
1 +

e2B2λ2
u

8π2(mc)2

)
, (20)

where B is the peak on-axis magnetic field. As a uniform electron bunch passes

through the undulator, it begins to form microbunches spaced by λγ as shown in

Figure 5b. As these microbunches develop, the coherent radiation is amplified ex-

ponentially until it reaches saturation, similarly to the gain of a conventional laser.
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1.2 Lasers

An undulator which is built specifically to create coherent beams of radiation in this

way is termed a free-electron laser (FEL).

We see that the photon energy ϵγ = hc/λγ can be scaled up, into the x-ray range

by increasing the γ factor; the current record of γ ∼ 2 × 105 is held by the Large

Electron-Positron Collider.40 Most FELs have fixed magnetic field strengths, but

have accurate actuators to make microscale adjustments to λu to “tune” the output

wavelength and to respond to the beam conditions.

Although free-electron lasers working in the x-ray range (XFEL) have only re-

cently been demonstrated, there is a large scientific interest in their use. The largest

currently operating XFEL is the Coherent Light Source at the Stanford Linear Ac-

celerator.41 The European XFEL42 project is under construction in Hamburg as

part of a collaboration of 11 countries.

1.2.4 Lasing without inversion

We have mentioned the large energy density required to obtain a population inver-

sion. The pump power required for inversion depends on the broadening type, but

typically scales as some large power of the laser’s photon energy.43 It would therefore

be desirable to somehow create laser gain, without requiring to maintain a costly

population inversion - the concept referred to as lasing without inversion (LWI). We

see from Equation (17) that this would be achieved if the atoms in the lower level

(with density N1) were to be prevented from absorbing light. One proposed scheme

envisions that atoms in the upper and lower lasing levels have motion relative to

one another. This means that light emitted by the upper level is Doppler-shifted

away from the absorption resonance in atoms of the lower levels; once they emit a

photon, they recoil and are themselves shifted out of resonance.

(a)

ħω
ħΩ

a

b

c
+
- (b)

1s2d  D
3

1s2p  P
3

1s2s  S
3

Figure 6: (a) A system with atomic levels a, b, c is perturbed by radiation with

photon energy ℏΩ. This transforms the system to the basis a, +, −, and lasing

can occur with photon energy ℏω. (b) LWI proposal using a virtual energy level in

helium44 by driving Rabi oscillations between the levels shown.
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Quantum coherence effects may be utilized to shift the atomic system from the

usual basis (referred to as “bare”) to a “dressed” basis. An external radiation field,

typically from an optical laser, can drive detuned Rabi oscillations which introduce

an asymmetry and shift to new basis, as sketched in Figure 6a. A scheme proposed to

achieve lasing via virtual atomic levels44 is shown diagramatically in Figure 6b. An

Nd:YAG laser (λ =1064 nm) and its second harmonic can drive Rabi oscillations on

the two transitions shown in helium (shorter-wavelength lasers can be used similarly

in other atoms of the helium isoelectronic sequence). Transient amplification can

then be achieved at λ = 266 nm. Although we do not discuss the full quantum

mechanical treatment of LWI, the concept may allow increasingly intense, efficient

or shorter-wavelength lasers to be produced.
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2 Optical theory

The wavelike properties of light are important to the propagation, focusing and ma-

nipulation of laser beams, particular for wavelength-scale structures. Geometrical

optics allows an intuitive model of light propagation on large scales, but fails to

describe a laser beam’s behaviour at its focus, the reflection from a structured mul-

tilayer and other interference effects. For example, light cannot be focused to a spot

smaller than its diffraction limit, which is proportional to the photons’ wavelength.45

This motivates a wave optics approach to modelling EUV laser beams. This chapter

outlines the mathematical background to this approach, gives examples of focusing

optics and presents wave phenomena used in this work.

The Huygens-Fresnel principle states that each point on a propagating wavefront

is the source of spherical waves. The wave amplitude at a point on a wavefront

depends on the amplitude at every point on a previous wavefront. This is a natural

consequence of Feynman’s interpretation of quantum mechanics,46 where particles

explore all possible paths between two points. The “wave” in this case corresponds

to the quantum mechanical concept of a wavefunction, whose modulus squared is

the probability of detecting a particle. This accounts for the fact that the same

integrated intensity profile is observed for a given number of photons, whether the

photons have travelled in a tight nanosecond bunch or one by one over many years.

2.1 Fresnel diffraction

A beam of coherent light may be modelled by considering the propagation of a

wave amplitude u ∈ C through space.47 The corresponding intensity is given by

I(x, y, z) = P |u(x, y, z)|2, where P is the beam power. The wave amplitude u for a

plane with co-ordinates x, y and the wave amplitude ũ for a parallel plane a distance

z away with co-ordinates x̃, ỹ are related by the Fresnel diffraction integral

ũ(x̃, ỹ) = N
∫ ∞

−∞

∫ ∞

−∞
u(x, y)

exp(ikρ)

ρ2
dxdy, (21)

where k = 2π/λ is the wavenumber of the light and ρ is the geometric distance from

(x, y, 0) to (x̃, ỹ, z); in Cartesian co-ordinates as above, ρ2 = (x − x̃)2 + (y − ỹ)2 +

z2. N (z) is a normalization factor to ensure energy conservation, which obeys the

equation

N 2

∫ ∞

−∞

∫ ∞

−∞
|ũ(x̃, ỹ)|2dx̃dỹ = 1. (22)
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2.1 Fresnel diffraction

In cylindrical polar coordinates the diffracted amplitude becomes

ũ(r̃, θ̃) = N
∫ 2π

0

∫ ∞

0

u(r, θ)
exp(ikρ)

ρ2
rdrdθ, (23)

with ρ2 = r̃2 + r2 − 2rr̃ cos(θ + θ̃) + z2. This problem is usually analytically and

computationally untenable for both co-ordinate systems due to the square root in

the calculation of ρ for the exponential, unless it is expanded using a Taylor series

ρ ≈ z +
(x− x̃)2 + (y − ỹ)2

2z
+O(4) = z +

r̃2 + r2 − 2rr̃ cos(θ + θ̃)

2z
+O(4), (24)

where O(4) refers to x4 and other higher-order terms. This expansion is valid for

z ≫ x, y. It is convenient to drop all terms which do not depend on the two co-

ordinates of the first plane, as in the exponent they naturally factor out of Equations

(21) and (23) and introduce only a phase factor which does not affect the final

intensity. Therefore, we define a reduced geometric distance to be used for the

calculation of the complex exponential in the Fresnel integral,

ρ− =
x2 + y2 − 2xx̃− 2yỹ

2z
=

r2 − 2rr̃ cos(θ + θ̃)

2z
. (25)

2.1.1 1-Dimensional Case

The initial amplitude in Equation (21) may be symmetric in one of the Cartesian

dimensions (e.g. y), such as for an infinitely long slit or grating. The integral over

y in Equation (21) can then be factored out and with the transformation y′ = y− ỹ

becomes simply
∫∞
−∞ exp(iky′2/2z)dy′ = exp(iπ/4)

√
2πz/k, which is a normalization

factor and a constant global phase.

The remaining integral can then be carried out keeping the x terms in the expan-

sion in Equation (25), provided that z is sufficiently large. In particular, a further

simplification can be made if the diffracted image is much larger than the source,

and consequently x̃ ≫ x. Then, the term in x2 can be dropped and the usual

Fraunhofer diffraction equation emerges,

ũ(x̃) = N
∫ ∞

−∞
u(x) exp

(
−ik

xx̃

z

)
dx = F [u(x)], (26)

where F is the Fourier transform. It is typically carried out numerically by a Fast

Fourier Transform algorithm, as discussed in Appendix B.5.

Of great interest is an amplitude which is symmetric in θ around the propagation

axis, such as a circular beam being focused by a lens on axis. Equation (23) may
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2.1 Fresnel diffraction

then be simplified by the substitution θ′ = θ+θ̃ and the two terms in the exponential

from Equation (25) may be treated separately;

ũ(r̃) = N exp

(
ik

[
z +

r̃2

z

])∫ ∞

0

ru(r) exp

(
ik

r2

2z

)∫ 2π

0

exp

(
−ik

rr̃ cos(θ′)

z

)
dθ′dr.

(27)

The angular integral is a standard form known as Bessel’s first integral,48

∫ 2π

0

exp (±iξ cos θ′) dθ′ = 2

∫ π

0

exp (±iξ cos θ′) dθ′ = 2πJ0(ξ), (28)

where J0(ξ) is the zeroth Bessel function of the first kind. Equation (27) then reduces

to

ũ(r̃) = N
∫ ∞

0

[
ru(r) exp

(
ik

r2

2z

)]
J0

(
k
rr̃

z

)
dr. (29)

This amounts to the so-called Hankel transform49 of the function in square brack-

ets, which is the radially symmetric version of the Fourier transform commonly asso-

ciated with diffraction patterns using J0(x) instead of exp(ix) as the basis function.

2.1.2 2-Dimensional Case

We aim to simulate an optical element inclined at an angle α to the axis of propaga-

tion of a circular beam, therefore breaking the angular symmetry. In order to define

ρ and make any suitable approximations, we begin for simplicity in Cartesian co-

ordinates and then transform to polars. The point P1 with co-ordinates (X1, Y1, 0)

lies in the starting plane, which has an origin at O1 and the usual polar co-ordinate

system. The point P2 with co-ordinates (X2, Y2, Z2) and origin at O2 lies on the

focal plane. The geometric distance ρ obeys

ρ2 = (X2 −X1)
2 + (Y2 − Y1)

2 + Z2
2 . (30)

O2 is a distance z along a line that is inclined at an angle 2α to the normal of

the starting plane. The focal plane is also inclined at an angle β to the starting

plane; the focal plane would be normal to the new propagation axis if β = 2α, but

is allowed to vary to match experimental conditions. As illustrated in Figure 7, this

leads to the co-ordinate transformations in Table 2.

Substituting the transformations into Equation (30), we obtain
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(a)

α

α

(b)

Figure 7: (a) An example of a single focusing optic at an angle α to the propagation

axis. In the case of a curved mirror, it is possible to “unroll” the optical system to

be equivalent to the transmissive optic, pictured above. (b) The co-ordinate system

for diffraction through the optical system.

Cartesian Polar

X1 r cos θ

Y1 r sin θ

X2 r̃ cos θ̃ cos β + z sin(2α)

Y2 r̃ sin θ̃

Z2 z cos(2α)− r̃ cos θ̃ sin β

Table 2: Co-ordinate transformations for the off-axis focusing optic.

ρ2 =r̃2 cos2 θ̃ cos2 β + 2r̃z cos θ̃ cos β sin(2α)− 2rr̃ cos θ̃ cos θ cos β − 2rz cos θ sin(2α)

+z2 sin2(2α)+r2 cos2 θ+r̃2 sin2 θ̃ − 2rr̃ sin θ̃ sin θ+r2 sin2 θ+z2 cos2(2α)

−2r̃z cos θ̃ cos(2α) sin β + r̃2 cos2 θ̃ sin2 β, (31)

where elements highlighted in red do not depend on the initial co-ordinates and

those highlighted in blue can be readily factorised using sin2 x + cos2 x ≡ 1. We

find the reduced geometric distance ρ−, similarly to Equation (25), by taking the

first-order Taylor approximation to the square root (z ≫ r) and then discarding z

and those parts shown in red. We therefore have for the reduced geometric distance

ρ− =
r2

2z
− r cos θ sin(2α)− rr̃

z

[
cos θ̃ cos θ cos β + sin θ̃ sin θ

]
, (32)

which reduces to the 1-Dimensonal case for α, β = 0. When calculating the diffrac-

tion pattern in this case, the focal spot or some element of interest may be shifted

away from the origin O2. To offset the pattern, for example along the x̃ axis, we

replace r̃ cos θ̃ → r̃ cos θ̃+ x0 in Equation (32), but leave all other terms unchanged,

or vice versa for ỹ.
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2.1 Fresnel diffraction

To solve the diffraction integrals described above, a code called SAFE2DIP: Simple

Algorithm for FrEsnel diffraction 2 DImensional Polar has been written as part of

this work. Discretising the (r̃, θ̃) plane and computing a double integral at each

point is readily parallelised and can be easily carried out over the dozens of threads

normally available on a modern CPU cluster. Specifically, the code is written in C

and parallelised with OpenMP. For computational stability, the complex exponential

exp(ikρ−) is split into a product of three exponential components, one for each term

in Equation (32).

Interest in numerical computation of the Fresnel integrals of the type
∫
cos[cos(x)]

dx has begun in the 1950s.50 The integrals above can be carried out numerically

using a Newton-Cotes type formula, with the necessary number of nodes found to

be given by 0.025(r̃−10 µm). By performing numerical experiments, we find that in

this case the complexity of the Clenshaw-Curtis method is not justified in achieving

a significant speed up. For this type of integral, Ehrenmark51 suggests the modified

Newton-Cotes type formula∫ x2

x1

f(x)dx = Af(x1) +Bf

(
x1 + x2

2

)
+ Af(x2), (33)

A =
x2 − x1 − 1

ω
sin[(x2 − x1)ω]

2(1− cos[(x2 − x1)ω])
,

B = x2 − x1 − 2A,

where ω is taken at each step to be half the average argument of the trigonometric

component of f(x) between x1 and x2. For instance, when evaluating
∫ b

a
cos[f(x)]dx

for f(a) = 2 and f(b) = 4, the value ω = 3 may be chosen in evaluating Ehrenmark’s

formula.

Evaluating integrals via a summation of very many terms can lead to floating

point errors. One simple algorithm for reducing these rounding errors due to Ka-

han52 takes advantage of the fact that addition is not commutative on computers.

Care must be taken to ensure that the compiler used is not overly aggressive in

implementing commutative simplifications.

Several examples of SAFE2DIP calculations are shown in Figure 8, for increasing

curved mirror tilt angles. The profile is symmetric in the case α = β = 0, and

we observe good agreement with a 1-dimensional code solving Equation (29); the

latter has also been successfully compared to an online resource.53 We see that the

increasing tilt angle leads to a spreading of the focal spot. In all three plots, the

intensity is scaled with respect to its maximum value, although the absolute value

of this maximum decreases as the tilt angle is increased. In each case, a value of the
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Figure 8: Results from SAFE2DIP calculations for a capillary discharge laser with

a wavelength of 46.9 nm reflected by a curved multilayer mirror, as discussed in

Chapter 5. The angles are (a) α = β = 0◦; (c) α = 2◦, β = 4◦; (d) α = 3◦, β = 6◦.

A line out (b) from the centre of the radially symmetric case (as shown) is compared

to a 1 dimensional code.

offset x0 has been chosen so that the peak is approximately centered.

It is important to note that the scale of diffraction patterns is set by the wave-

length of light in question through its relation to the wavenumber, λ = 2π/k. For

example, the smallest features of diffraction patterns and therefore the diffraction

limit of optical instruments have a size comparable to the wavelength. This has

important implications for working with short wavelength radiation, because the

margins of error on the positioning of optics are correspondingly much smaller than

for visible light.
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2.2 Multilayer Mirrors

2.2 Multilayer Mirrors

The refractive index of solids and plasmas is generally complex, where the real part

corresponds to the usual wave slowing and the imaginary part corresponds to an

opacity. It is usually referred to in the literature in terms of β and δ coefficients,

ñ = 1− δ + iβ, (34)

where β is sometimes also called the extinction coefficient (and may confusingly be

labelled k). Refraction at the interface of two regions of refractive index, ñ1 and

ñ2, is governed by a generalised version of Snell’s law (if the electromagnetic wave

remains transverse54,55)

ñ1 sin η̃1 = ñ2 sin η̃2, (35)

where η̃1, η̃2 ∈ C. The geometric angles made by the rays with the normal are given

by η = Re{η̃}.
At the interface of two media with different refractive indices, reflection and

transmission is governed by similarly complex versions of the usual Fresnel equa-

tions. The reflection amplitude coefficient for waves with perpendicular and parallel

polarization relative to the plane of incidence are given respectively by45

r⊥,∥ =
ñ1,2 cos η̃1 − ñ2,1 cos η̃2
ñ1 cos η̃1,2 + ñ2 cos η̃2,1

. (36)

The total reflectance (for intensity, rather than the wave amplitude) is given by

R = |r|2. A similar expression exists for the transmission amplitude coefficient t

and transmittance T = 1− R.

(a)

η
1
η
1

η
2

(b)
Substrate

Figure 9: (a) A medium of refractive index ñ2 immersed in a medium with index

ñ1, showing the repeated reflections between the interfaces. (b) Reflections from a

multilayer stack of refractive slabs, terminating at an opaque substrate.
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2.3 Talbot patterns

A multilayer mirror is constructed by stacking successive compounds of alter-

nating refractive indices, so that small reflections from each interface sum to a large

reflectivity. In addition to the transmission and reflection coefficients, each layer of

thickness z adds a phase factor of exp(2ikñz cos η) to the propagating wave. Reflec-

tions of this type occur between high-low and low-high refractive boundaries, which

implies that a wave incident on a slab of index ñ2 “sandwiched” between slabs of

index ñ1 will continuously be reflected between the two boundaries as shown in Fig-

ure 9a, with decreasing amplitude; this is modelled by the use of the formula for an

infinite geometric sum.

The software package IMD56 solves Equations (34) to (36) for a user-specified

stack of refractive layers, to obtain the reflectance, phase and many other param-

eters as a function of polarization, wavelength and incidence angle. It contains a

comprehensive library of materials, also allowing extrapolation outside of the known

parameter range and user-specified optical properties. The software is freely avail-

able, but requires the licensed IDL language to be installed.57

2.3 Talbot patterns

Suppose that the amplitude in Equation (21) at z = 0 is uniform in y and periodic

in the x dimension, so that it is defined on the interval {x ∈ R|0 ≤ x < b} and then

repeats itself infinitely in both directions. It can then be represented by a Fourier

series, such that58

u(x) =
∑
m

Am exp
[
2πi
(mx

b

)]
, (37)

where m ∈ Z and Am are the Fourier coefficients. The sum runs to infinity, but

we truncate it at some value M , which effectively makes the function u(x) discrete

at points spaced by b/M . By carrying out the integral in Equation (21) with the

paraxial approximation ρ ≈ z + 1
2z
(x− x̃)2, the wave amplitude becomes

ũ(x̃) =
∑
m

Am exp

[
iπλz

(
m2

b2

)]
exp

[
2πi

(
mx̃

b

)]
, (38)

where the global phase prefactor has been dropped as usual. If z is set to the

so-called Talbot distance

zT =
2b2

λ
, (39)
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2.3 Talbot patterns

the first exponential in Equation (38) becomes exp(2πim2) = 1, since m and hence

m2 are integers. This means that the same wave amplitude repeats every Talbot

distance.

To calculate the wave amplitude up to the first Talbot distance, the sum in

Equation (38) can be recast as an inverse discrete Fourier transform of the Fourier

coefficients and the quadratic phase coefficients. If x̃ is discretised on the same grid

as x, so that x̃ = pb/M , Equation (38) becomes

ũp =
∑
m

Am exp

[
iπλz

(
m2

b2

)]
exp [2πipm/M ]

= F−1

{
Am exp

[
iπλz

(
m2

b2

)]}
. (40)

The resulting wave amplitude at distance z can then be calculated through the

simple algorithm:

Define u

↓
Calculate F

↓
Multiply element m by exp[iπλzm2/b2]

↓
Calculate F−1

This approach can be readily extended to two dimensions by defining u(x, y) on

a square interval of length b, using two-dimensional Fourier routines and adding a

factor exp[iπλzn2/b2] to Equation (40) for the y dimension.

The 1-dimensional approximation is valid only if there is very little variation far

into the y dimension, while also repeating sufficiently many times in x. This effect is

named after Talbot,59 who first observed it for diffraction gratings. It is common to

plot the intensity as a function of x and z to produce a so-called “Talbot Carpet”,

as shown in Figure 10. The figure shows that not only does the pattern repeat at

z = zT , but it also repeats, albeit with a linear shift, at zT/2 and appears scaled at

other integer multiples of the Talbot distance.

In the 2-dimensional case, a sufficient number of apertures must be illuminated in

both dimensions in order for the diffraction pattern to approach the idealised Talbot

pattern. With a finite number of apertures, the wave amplitude deviates from the
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2.4 Focusing optics

0 z /2T
z T

x

Figure 10: Relative intensity of diffracted light from an infinite array of slits repeat-

ing in the x direction (three are shown) at successive planes in the z direction. This

type of plot is a so-called “Talbot Carpet”. This figure has been created using the

algorithm presented in this section.

Talbot pattern with increasing z. Nonetheless, with a grid of approximately 10× 10

apertures, a Talbot pattern is produced at the first Talbot distance.

Talbot patterns which contain the requisite number of apertures are resilient to

point defects in the initial mask. In this case, the initial wave amplitude is given by

u0 + u1, where u0 is the idealised periodic amplitude of Equation (37) and u1 is a

perturbation localised to one or more of the apertures. Diffraction is linear, so we

consider the two components individually; ũ0 is the familiar Talbot pattern, while

ũ1 is divergent and hence this wave amplitude decreases with propagation distance.

Therefore, the final wave amplitude tends to ũ0 and the perturbation decays away,

provided that it is small compared to the repeating pattern.

Printing 2-dimensional structures using EUV lasers has shown the above re-

silience to imperfections experimentally.60 For example, a fairly severe 1% deviation

was introduced by intentionally replacing several apertures with “incorrect” shapes.

The image at the first Talbot distance showed no signs of the defects. Moving to

further Talbot planes has also been verified to improve the final profile.

2.4 Focusing optics

Most types of glass and crystals typically used for optical applications are transmis-

sive for photon energies < 8 eV.61 For most EUV applications, the photoionization

cross section makes it impossible to use refractive optics due to the high corre-

sponding absorption. In fact, solid refractive optics are used to focus x-rays above
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2.4 Focusing optics

approximately 5 keV, where the photoionization cross section drops sufficiently not

to absorb the majority of the beam or become destroyed by a single shot. The

refractive index in this photon energy range is extremely close to unity, so stacks

of hundreds of single parabolic lenses are assembled into a Compound Refractive

Lens (CRL); beryllium CRLs have been successfully used to focus 8.2 keV photons

at LCLS.62

Here, we discuss the challenging approaches to efficiently focus EUV radiation

to intensities sufficient to ablate material or create warm dense matter. Multilayer

mirrors are able to reflect normally incident light in the EUV region; several curved

geometries may be exploited. Grazing incidence mirrors are extremely efficient to

high photon energies, therefore suitable to be used to transfer beams and also focus.

Crystals which “reflect” x-rays at grazing angles by the Bragg process (in fact a

type of diffraction) are used as optical elements in x-ray spectroscopy, but are not

discussed here. If reflection is not possible or undesirable, diffraction effects may

also be used to focus light over a wide range of wavelengths down to the EUV and

soft x-ray, provided that the optical material absorbs the radiation sufficiently well

to create an appropriate aperture. A Fresnel zone plate (FZP) is an example of such

an aperture and is described below.

Regardless of its type, the distances of an object and image (u and v respectively)

created by a thin focusing optic of focal length f obey the equation

1

u
+

1

v
=

1

f
. (41)

With the wave amplitude formulation of light propagation, the phase variation im-

parted on a beam by an optic is the parameter responsible for focusing. A wave

expanding from a point has a spherical wavefront; consequently, to focus light to a

point, a converging spherical phase must be imparted to it. Equation (41) can be

seen to represent an initial wave with expanding radius u transformed into a final

wave with converging radius v by an optic of focal length f .

2.4.1 Curved Mirrors

Arrangements of mirrors can focus light by introducing a path difference and hence

phase shift based on their shape. The simplest possible focusing element is a sin-

gle concave spherical mirror, placed and centred on the optical axis. For a beam

propagating along the z-axis, a spherical mirror aligned with the axis and with a

radius of curvature Rc has a surface given by the equation x2 + y2 + z2 = R2
c . If
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2.4 Focusing optics

the mirror is tilted by an angle α in, for example, the x direction, we can transform

the co-ordinate system using the usual rotation matrix to give x = x′ cosα− z′ sinα

and z = z′ cosα + z′ sinα. Transforming to polar co-ordinates, we have the phase

change due to a spherical mirror with transverse radius Rm given by

uref (r, θ) = exp(−2ik
√
R2

c cos
2 α− r2 + 2Rcr cos θ sinα)Θ(r −Rm)u0(x, y), (42)

where Θ is the Heaviside step function.

The inherent problem of a single such mirror is that the beam must propagate

backwards along the original axis (α = 0), or face a large astigmatism due to the

2Rcr cos θ sinα term. It also requires reflectance at normal incidence, which is not

possible or efficient for all wavelengths. For α ̸= 0, an extra dimension as detailed

above and hence significant additional computing power are required for theoretical

calculations. On the other hand, with only a single focusing element the reflective

losses, cost and setup time are minimised. Note that due to the law of reflection,

the optical axis in this case tilts by 2α.

In the case of a multilayer mirror, the angle of incidence η determines the re-

flectance r and the additional phase factor ϕMLM introduced by the multilayer,

adding two additional factors to Equation (42),

uMLM = exp(iϕMLM(η))r(η)uref . (43)

To determine the angle η, we note that the 2-dimensional surface of a mirror is de-

fined by its height relative to the z axis, as z = f(x, y), and so a vector perpendicular

to each tangent plane is given by

N⃗ =


∂f
∂x

∂f
∂y

−1

 . (44)

Taking the scalar product, which gives the product of the magnitudes of two vectors

with the cosine of the angle between them, with the negative unit vector −e⃗z =

(0, 0,−1)T results in

1 = cos(η)|N⃗ |

= cos(η)

√(
∂f

∂x

)2

+

(
∂f

∂y

)2

+ 1. (45)
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2.4 Focusing optics

After rearranging to isolate the cosine term and transforming using the trigonometric

identity arccos(1/
√
a+ b+ 1) ≡ arctan(

√
a+ b), we have

tan(η) =

√(
∂f

∂x

)2

+

(
∂f

∂y

)2

. (46)

If the surface is defined in cylindrical polar co-ordinates, z = f(r, θ), then Equation

(46) may be transformed using the relation

(
∂f

∂x

)2

+

(
∂f

∂y

)2

=

(
∂f

∂r

)2

+
1

r2

(
∂f

∂θ

)2

. (47)

(a) (b)

Figure 11: (a) Schwarzschild mirror pair focusing a collimated beam. (b)

Kirkpatrick-Baez grazing-incidence mirror pair.

In order to overcome the astigmatism due to the asymmetry of the single tilted

spherical mirror, two may be used to form Schwarzschild mirror pair as shown in

Figure 11a. Passing through a hole in the spherical mirror M2, the beam is incident

onto a smaller mirror M1. A “doughnut” profile is reflected by the first spherical

mirror M1 onto the second mirror M2. As a drawback, a central circular part of

the profile is not transmitted and part of the remaining beam is occluded by a

supporting structure for the first mirror, which intersects the beam. The addition of

a second mirror may unfavourably lower the total energy on target, if the reflectivity

at the desired wavelength is low. However, the idealised setup has angular symmetry,

which is largely unbroken by the addition of the supporting structure for the first

mirror, allowing a small focal spot to be achieved and simplifying simulations.

In the case where normal-incidence reflectivities are too low, such as for x-rays, a

pair of grazing-incidence Kirkpatrick-Baez mirrors may be used to focus the beam.

The mirrors are orientated at 90◦ and each curved mirror focuses in one direction.

The setup is pictured schematically in Figure 11b.
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2.4.2 Fresnel zone plates

In the cases where reflective optics are not possible or undesirable, it is possible

to focus light by diffracting it through a carefully chosen aperture. From Equation

(23), consider the on-axis (with r̃ = 0 and therefore θ-symmetric) diffraction pattern

at a distance f away from a uniformly illuminated (u = 1) circular aperture,

ũ(0) ∝
∫ ∞

0

r
exp(ikρ)

ρ2
dr, (48)

where the path length ρ =
√
f 2 + r2 takes a minimum at ρ0 = f . The complex

exponential in the integrand oscillates with increasing r from positive to negative,

leading mostly to cancellations in the final integral. In particular, the sign of the

integrand changes with increasing path length every λ/2; these regions of alternating

phase are termed Fresnel Zones. Applying this condition to find the radius of the

mth zone (m ∈ R), we have that

ρm = ρ0 +
mλ

2
(49)√

f 2 + r2m = f +
mλ

2
(50)

rm =

√
mλf +

(mλ)2

4
. (51)

The intensity I = |ũ|2 can be maximised, and therefore light can be focused,

if either the positive (from m even to m + 1) or negative (from m odd to m + 1)

component is filtered out. An example is shown in Figure 12(a), where regions of

negative and positive phase are coloured black and white respectively. The area

between any two zones π(r2m − r2m−1) = π(λf + (2m − 1)λ2/4) is approximately

independent of zone number and hence the total positive and negative areas are

approximately equal. Therefore, a zone plate transmits 50% of incident light.

For a given wavelength and focal length, there is a limit to the possible size of a

Fresnel zone plate; as the zone widths continue to decrease, the technological limit

of a manufacturing technique is reached. To estimate the total size of an FZP with

N zones and an outer zone width of ∆r, we have

∆r ≡ rN − rN−1 ≈
√
Nλf −

√
Nλf

√
1− 1

N

≈ rN
2N

, (52)

where we have kept the first two terms of the Taylor expansion of the square root.
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Figure 12: (a) A Fresnel zone plate, where the alternating black and white regions

may be equivalently either transmitting or absorbing. (b) The normalised intensity

profile at the focal point, with uniform illumination of the zone plate by 46.9 nm

light.

The geometric approach ignores the ρ−2 factor in Equation (48). We can find

more accurate expressions for the zone radii by calculating the intensity from the

full diffraction integral up to some arbitrary radial point,

I(R) =

∣∣∣∣∣∣
∫ R

0

r
exp

(
ik
√

f 2 + r2
)

f 2 + r2
dr

∣∣∣∣∣∣
2

,

=

[∫ √
f2+R2

f

sin kt

t
dt

]2
+

[∫ √
f2+R2

f

cos kt

t
dt

]2
, (53)

where we have used Euler’s formula and the substitution t =
√

r2 + f 2. We have

integrated from r = 0, the radius of the zeroth Fresnel zone, so we expect that I(R)

will grow with R until r1 due to a positive contribution to the integral, then decrease

until r2, etc. Therefore, the maxima and minima of I(R) correspond to negatve and

positive zone radii respectively. These stationary points can be found as usual by

finding the roots of dI
dR

∣∣
R=rm

, which we evaluate by exploiting the standard rules of

definite integrals, obtaining

dI

dR

∣∣∣∣
R=rm

=
2rm

f 2 + r2m

∫ √
f2+r2m

f

sin kt sin(k
√
f 2 + r2m) + cos kt cos(k

√
f 2 + r2m)

t
dt.

(54)

We can simplify this by discarding the prefactor, using the identity sinA sinB +

cosA cosB ≡ cos(B − A) and with the parameterization
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rm =
√
b2m − f 2, (55)

where bm is the mth root of

∆(x) =

∫ x

f

cos(k[x− t])

t
dt. (56)

By performing numerical experiments for f ≳ 100λ, we confirm that rm calculated

through Equations (51) and (55) agree to better than 0.1%. The former, geometric,

equation may therefore be used to bracket the roots of the latter to carry out Brent’s

algorithm (discussed in Appendix B.4).
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3 Thermodynamic properties of plasmas

A sufficiently large plasma (consisting of > 1010 particles) can be regarded as a

macroscopic thermodynamic system. The second law of thermodynamics states that

the entropy of such systems must tend to increase over time.63 As a consequence,

such plasmas tend to redistribute their internal energy to reach an equilibrium,

which is typically described by a temperature.

Different populations in a plasma, such as electrons, ions and photons, redis-

tribute their kinetic energy by means of collisions to reach a corresponding energy

distribution function, several of which are discussed below. These populations also

exchange energy with the bound electrons of ions, interacting with their potential

energy; particle number may not be conserved in such interactions, for example as

electrons or photons may be captured by the ions. The atomic processes in such

interactions and their rates are discussed in this chapter.

By assuming equilibria in the calculation of plasma properties, many theoretical

models can be significantly simplified. Properties of a system in equilibrium can be

determined from the state of the system at a given time, without needing to take

the system’s history into account. While such assumptions can greatly speed up and

simplify calculations, they require that the time to reach equilibrium be sufficiently

shorter than other timescales of interest. The types of thermodynamic equilibria in

plasmas and their applicability are discussed in this chapter.

3.1 Energy distribution functions

The motion of particles in a thermodynamic system can be characterised by a sta-

tistical velocity distribution F(v)dv or kinetic energy distribution f(ϵ)dϵ; these cor-

respond to particles moving with speeds from v to v + dv and with kinetic energies

from ϵ to ϵ+ dϵ. As with any probability distribution, it is possible to calculate ex-

pectation values (referred to as “moments” in this case), defined for some function

X as

⟨X⟩ =
∫ ∞

0

Xf(ϵ)dϵ. (57)

Usually, the moments for a polynomial X are numbered after the power. For any

distribution to be a true probability distribution function it must be normalised,

and hence we require that the zeroth moment satisfy ⟨1⟩ = 1.

The first moment of the energy distribution is the expectation value of energy,

i.e. the average kinetic energy of a particle. In this work, we define this as the total
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3.1 Energy distribution functions

heat capacity of a system of particles,

CV = ⟨ϵ⟩. (58)

The total kinetic energy density ε of such a system (in units of eV cm−3) is then

this average energy multiplied by the density of particles: ε = NCV . Pressure is

defined as the flux of momentum p per unit surface area,

P =
N

3

∫ ∞

0

vpf(p)dp =
N

3

∫ ∞

0

2ϵf(ϵ)dϵ (59)

=
2

3
N⟨ϵ⟩, (60)

where we have used ϵ = p2/2m, which holds for nonrelativistic particles, as discussed

below.

3.1.1 Maxwell-Boltzmann distribution

In the absence of external forces and if the density of particles and energy is low

enough that relativistic and quantum effects can be ignored, a system tends to

the Maxwell-Boltzmann distribution in steady state. For particles of mass m at a

temperature T , the Maxwell-Boltzmann velocity distribution function is given by

FMB (v, T ) dv =

√
2

π

(m
T

)3/2
v2 exp

(
−mv2

2T

)
dv, (61)

and the energy distribution by

fMB (ϵ, T ) dϵ =
2√
π

√
ϵ

T 3/2
exp

(
− ϵ

T

)
dϵ. (62)

The velocity distribution is plotted in Figure 13, showing the characteristing way

in which the peak and spread of the distribution increases with temperature. Dif-

ferentiating the function FMB(v), we find it peaks at v =
√
2T/m; this is therefore

the most probable particle speed. The first moment from Equation (58) gives the

Maxwell-Boltzmann heat capacity

CV =
3

2
T. (63)

This leads also to the equation of state of an ideal gas, p = NT .

It is clear that FMB(v) is non-relativistic, as there is a finite probability of having

v > c. However, even for a modestly high plasma temperature T = 1 keV, the

Maxwell-Boltzmann distribution predicts that < 10−110 of electrons (rest mass me =
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0 1000 2000 3000 4000 5000

v [km s−1]

F
M

B
(v
)

T = 2 eV

T = 10 eV

Figure 13: Maxwell-Boltzmann velocity distribution function FMB(v) plotted for

two temperatures as indicated.

511 keV/c2) have speeds in excess of c; this fraction is proportionally even lower for

the more massive ions. Therefore, particles are treated as non-relativistic throughout

this text.

Particles require time to exchange energy in order to reach a steady state dis-

tribution. An approximate expression has been derived by Spitzer19 for the time

taken by particles in a plasma to reach a steady temperature. The expression due

to Spitzer for the time taken by electrons to exchange energy is

te−e =

[
3

8ce4

√
mec2

2π

]
T

3/2
e

neΞ
(64)

≃ 3.3× 105
T

3/2
e

neΞ
,

and for electrons exchanging energy with ions the time is

te−i =
1

NTZ2

mi

me

te−e, (65)

where Ξ is the Coulomb logarithm, a function of the plasma parameter from Equa-

tion (3). In standard units, we have Λ = 3.48 × 108T
3/2
e n

−1/2
e . For relatively low

energy density plasmas, the classical expression for the Coulomb logarithm is

Ξ = ln(Λ). (66)

However, if plasma conditions lead to Λ < 1, Equation (66) would lead to unphys-

ically negative equilibration times. The Coulomb logarithm has been extrapolated

in such a case to the expression64
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Ξ = exp

(
1

Λ

)
E1

(
1

Λ

)
, (67)

where E1 is the first exponential integral, as outlined in Appendix B.1.

3.1.2 Fermi-Dirac distribution

The Maxwell-Boltzmann distribution is derived assuming that the kinetic energy of

a particle can take any arbitrary value and that any number of particles can have the

same energy. These assumptions apply only approximately in the case of quantum

mechanics: energies of particles are quantized, such as the familiar energy levels

of electrons in atoms, and the class of particles called fermions (electrons, protons,

3He atoms) may not occupy the same quantum state as each other. In practice, the

densities of particles more massive than electrons are sufficiently low in laboratory

plasmas for the Maxwell-Boltzmann distribution to be an accurate model for their

motion, as discussed below, and so the discussion here is restricted to electrons.

The wavefunctions of electrons in free space (zero potential) are plane waves with

quantized energies,

Ψ =
1√
V

exp
(
i⃗k.x⃗

)
, k⃗ =

2π

V 1/3


px

py

pz

 , ϵ =
h2k2

8π2me

, (68)

where V is the volume in position occupied by the electrons, k⃗ is their momentum

and x⃗ their position vector, and the symbols p are integers.

The probability of a given energy state being occupied is given by the Fermi

distribution,65

FFD(ϵ, Te) =
1

exp
(

ϵ−µ
Te

)
+ 1

(69)

=
1

2

[
1− tanh

(
ϵ− µ

2Te

)]
,

where µ(T ) is the chemical potential; we note that at ϵ = µ the occupation prob-

ability is equal to 1
2
. The temperature dependence of the occupation probability is

shown schematically in Figure 14a. To obtain the kinetic energy distribution func-

tion, Equation (69) must be multiplied by the density of states g(ϵ)dϵ - in effect, the

number of possible states with a given energy. The density of states in k-space is

V |⃗k|2d|⃗k|/π2, corresponding in terms of ϵ to
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g(ϵ)dϵ =
G

ne

√
ϵ, (70)

where it is useful to define the quantity G as the degeneracy of a free electron,

G = 4π

(
2mec

2

(hc)2

)3/2

. (71)

The Fermi-Dirac energy distribution for a gas of free electrons then becomes

fFD(ϵ, Te) =
G

ne

√
ϵFFD(ϵ, Te), (72)

which is compared in Figure 14b to the corresponding Maxwell-Boltzmann distribu-

tion. We see that the two distributions agree well at high temperatures, but diverge

at low temperatures. The Fermi-Dirac distribution has a larger width and peak en-

ergy there, as the Pauli exclusion principle prevents many electrons from occupying

low-lying energy states.

µ(T2) µ(T1) µ(0) ǫ

F
(ǫ
)

T

(a)
0 5 10 15 20 25 30

ǫ [eV]

f
(ǫ
)

ne = 1023 cm−3

Te = 10 eV

Te = 2 eV

(b)

Figure 14: (a) Schematic diagram of the occupation probability F (ϵ) with increasing

temperature (T2 > T1 > 0). The chemical potential, the point at which F (ϵ) =
1
2
, is shown for the three temperatures. The occupation probability becomes a

smoother function as temperature increases. (b) Comparison of the Fermi-Dirac

energy distribution (solid) to the Maxwell-Boltzmann (dashed) at temperatures as

indicated for an electron density ne = 1023 cm−3.

The chemical potential is defined as a normalization factor, ensuring that the

first moment is unity at each temperature. This leads to its definition through the

transcendental equation

⟨1⟩ = G

ne

∫ ∞

0

√
ϵ

exp
(

ϵ−µ
Te

)
+ 1

dϵ = 1. (73)

This integral can only be solved exactly in the special case of T = 0, when the Fermi

distribution becomes a step function of energy, FFD(ϵ, 0) = Θ(ϵ− µ),
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3.1 Energy distribution functions

∫ ∞

0

fFD(ϵ, 0)dϵ =

∫ µ(0)

0

G

ne

√
ϵdϵ. (74)

Equations (73) and (74) define the chemical potential for a given electron density

at zero temperature; it is usually termed the Fermi energy EF ,

µ(0) ≡ EF =

(
3

2

ne

G

)2/3

. (75)

At high temperatures, the Fermi-Dirac distribution must tend to the Maxwell-

Boltzmann. We therefore require an expression for the chemical potential of a

Maxwell-Boltzmann distribution, which we denote by µ̄. If we multiply the top and

bottom of the fraction in Equation (69) by exp(µ/T ), the denominator becomes

exp(ϵ/T ) + exp(µ/T ) ≈ exp(ϵ/T ), when µ becomes large and negative at high tem-

peratures. Equating this approximate form to the Maxwell-Boltzmann distribution

from Equation (62), we have

2√
π

√
ϵ

T
3/2
e

exp

(
− ϵ

Te

)
≈ G

ne

√
ϵ exp

(
µ− ϵ

Te

)
. (76)

This leads, after rearranging, to the Maxwell-Boltzmann chemical potential, with

µ̄(Te) = Te ln

[
4

3
√
π

(
EF

Te

)3/2
]
. (77)

For completeness, applying l’Hopital’s rule to this function gives limTe→0 µ̄(Te) = 0.

Theorems presented in Appendix C show that the chemical potential is bracketed

between EF and µ̄, allowing it to be calculated using Brent’s algorithm. However, it

is more computationally efficient to approximate it using a series expansion. Fixing

limTe→∞ µ(Te) = µ̄(Te) and µ(0) = EF has allowed the following Padé expansion of

the chemical potential:66

µ = Te

3
2
ln(u) +

∑7
i=0 aiu

i + a9u
9 + a10u

2.5

1 +
∑4

j=1 bju
2j

, (78)

where u = (2/3)2/3EF/Te and the expansion coefficients a and b are given in Table

3.

The heat capacity of a degenerate electron gas, from Equation (58), is given by

the transcendental equation

CV =
G

ne

∫ ∞

0

ϵ3/2

1 + exp( ϵ−µ
Te

)
dϵ. (79)
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3.1 Energy distribution functions

Coefficient Value

a0 ln(2/
√
π)

a1 0.0233056178489510

a2 1.0911595094936000

a3 -0.2993063964300200

a4 -0.0028618659615192

a5 0.5051953653801600

a6 0.0419579806591870

a7 1.3695261714367000

a9 0.2685157355131100

a10 -1.2582793945794000

b1 0.0813113962506270

b2 1.1903358203098999

b3 1.1445576113258000

b4 (2/3)2/3a9

Table 3: Coefficients for the Padé expansion of the chemical potential for the Fermi-

Dirac distribution given by Equation (78).

Intuitively, an electron gas contains energy even at T = 0 as the electrons then oc-

cupy energetic states up to the Fermi energy; we obtain CV (0) =
3
5
EF by performing

an integral similar to Equation (74). At non-vanishing temperatures, the heat capac-

ity tends to 3
2
Te as energy distribution tends to the Maxwell-Boltzmann, as shown in

Figure 15b. Likewise, the pressure tends to 2
5
NEF , termed the degeneracy pressure.

We require Equation (79) to be inverted, to allow the temperature to be cal-

culated as a function of energy density. The strategy for this is similar to the

calculation of the chemical potential. It may be calculated by using Brent’s method

with the bounds 2CV /3 > Te ≥ 0. This method was used to calculate CV (u) at

many values of u = Te/EF , allowing a Padé approximation to be obtained by curve

fitting. The coefficients were chosen so that the two asymptotic values of CV are

recovered at Te = 0 and as Te → ∞.

From the above expressions, the parameters defining a Fermi-Dirac distribution

of electrons, including its departure from the Maxwell-Boltzmann, depend on the

ratio ne/m
3/2
e . Therefore, for more massive particles to achieve a similar level of

degeneracy to electrons, their density must be proportionately higher. Electrons

are degenerate at densities above one electron per atom at solid material density;
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Figure 15: (a) The chemical potential for the Fermi-Dirac distribution µ(Te) (solid)

and its Maxwell-Boltzmann equivalent µ̄(Te) given by Equation (77) (dashed), for

a fixed free electron density of 1023 cm−3, corresponding approximately to the solid

density of many elements. (b) The heat capacity of free electrons as a function of

temperature for the distributions as labelled, for a fixed electron density of 5× 1022

cm−3.

correspondingly, densities of protons or more massive spin-1
2
nuclei which are orders

of magnitude higher than solid are required before they must start to be modelled

by the Fermi-Dirac distribution. Such high densities cannot be reached with current

experimental techniques, but have been deduced to be gravitationally confined inside

massive stellar objects, such as neutron stars.

3.1.3 Black-body radiation spectrum

Bosons are particles with integer spin; there is no limit to how many may occupy

a given energy state. The occupation probability for bosons is given by the Bose-

Einstein distribution65

FBE(ϵ, T ) =
1

exp
(
ϵ−µ
T

)
− 1

. (80)

We are particularly interested in photons. The wavefunctions of free photons are

similar to those of free electrons as given in Equation (68), but their energy differs

as they are massless:

Ψ =
1√
V

exp
(
i⃗k.x⃗

)
, k⃗ =

2π

V 1/3


px

py

pz

 , ϵ =
hc|⃗k|
2π

. (81)

The density of states for photons is identical to that for electrons in k-space,

V |⃗k|2d|⃗k|/π2, but in terms of ϵ it becomes
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3.1 Energy distribution functions

g(ϵ)dϵ =
8πϵ2

nγ(hc)3
dϵ, (82)

with nγ the density of photons. The energy distribution function is given as usual

by g(ϵ)FBE(ϵ, T ),

fBE(ϵ, T ) =
8πϵ2

nγ(hc)3
1

exp
(
ϵ−µ
T

)
− 1

. (83)

Hot matter in thermodynamic equilibrium radiates photons, usually termed

black-body radiation, with the Bose-Einstein energy distribution; since the num-

ber of photons is not conserved in such a system, the chemical potential vanishes,67

µ = 0. The spectral intensity I(ϵγ) of black-body radiation is given by the product

of the photon energy, density, speed (since we are interested in the power cross-

ing a unit area as opposed to the spatial density) and the Bose-Einstein energy

distribution at a particular radiation temperature Tr, so that

IBB(ϵγ) =
8πϵ3γ
h3c2

1

exp (ϵγ/Tr)− 1
, (84)

where the flux is incident over 4π sr; this spectral intensity is plotted in Figure 16.

As usual, an integral of the spectral intensity over the photon energy gives the total

intensity of the black-body radiation; in this case I = 2π5T 4
r /15h

3c2, referred to as

the Stefan-Boltzmann law.

0 10 20 30 40 50 60 70

ǫγ [eV]

I B
B
(ǫ

γ
)

Tr = 5 eV

Tr = 3 eV

Figure 16: Spectral intensity of black-body radiation from matter with a tempera-

ture as indicated.

Unlike electrons, classically photons cannot interact with each other in the ab-

sence of any other particles. Therefore, the timescale for photons to equilibrate

their energy and attain a black-body distribution is less precise - understandable,
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3.2 Rate equation treatment

perhaps, as photons do not “feel” time. As a consequence, it is common to encounter

a non-equilibrium photon distribution, such as the narrow linewidth of a laser or

line emission from a hot plasma.

3.2 Rate equation treatment

We have considered the distribution of kinetic energies of particles in a plasma, but

will now consider the distribution of the types of ion present as a function of energy

and particle density. The distribution of ions in plasmas are not, in general, in a

steady state. Such a statistical distribution can be calculated in the general case

by considering the atomic processes in a plasma. The approach followed here is to

assemble the populations into a vector N⃗ ; its elements are always real and positive.

We typically label each element Ni,j, where i numbers the ionization state and j the

atomic level within it, as discussed in Appendix A.2.

Atomic processes are of the form Ni,j → Ni′,j′ , with rates of transfer proportional

to the population of origin - in this case, Ni,j. Therefore, the rate of change of an

element of N⃗ is a linear combination of all elements of the vector; the rates of change

of the entire vector can be written as68

dN⃗

dt
= M(ne, Te)N⃗ , (85)

where M(ne, Te) is termed the rate matrix. The nonlinearity of this equation is

encapsulated by the fact that ne and Te are also typically a function of N⃗ .

The diagonal elements of the rate matrix must be the negative sum of the cor-

responding column in order to conserve the total number of ions in the system,

Mmm = −
∑

m̸=n Mnm, as an increase of one type of ion must be precisely balanced

by the decrease of another. It is shown in Appendix B.2 that as a consequence of

this fact, M is always singular.

Atomic processes involving free electrons have a corresponding transfer of energy

to or from the gas of free electrons. The rate of energy transfer is given by the prod-

uct of the atomic rate and the energy gap of the process. We therefore calculate the

rate of kinetic energy change due to collisional processes using the matrix equation

dε

dt
=
∑

M̄N⃗, (86)

where the auxiliary rate matrix M̄ is constructed by multiplying each element Mmn

by the energy difference Em −En; the sign is negative if the process is endothermic
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3.3 Atomic processes in plasmas

and the diagonals are zero. The temperature can then be calculated using the heat

capacity

ε = CV ne. (87)

For the Maxwell-Boltzmann distribution we therefore have Te = 2ε/3ne.

Although the negative and positive charges are mobile in a plasma, the bulk

remains quasineutral; an external observer would detect no net charge. For each

ion there is an appropriate number of electrons and therefore the electron and ion

densities are related by

ne =
∑
i,j

iNi,j. (88)

3.3 Atomic processes in plasmas

We will now proceed with a description and discussion of the rates used to populate

the matrices M and M̄ . The rate of an atomic process depends on the density of

all reacting particles multiplied by a rate coefficient R, which is a measure of the

probability of a reaction occuring. The total rate of a process is given by the product

of the densities of

R = R
∏

j incoming

Nj. (89)

The rate coefficient of a generalized process with m incoming, l outgoing and

n total particles is given by a series of integrals over all possible values of all the

particle energies as follows:

R =

∫ ∞

0

dϵ0· · ·
∫ ∞

0

dϵnδ(S)�
m∏
j=0

vjf(ϵj, Tj)
l−1∏
k=0

d

dϵk
σ(Ethreshold, ϵ0...ϵn), (90)

where the particle velocities vj =
√
2ϵj/m, σ(Ethreshold, ϵ0...ϵn) is the quantum me-

chanical cross section associated with the process, f is the kinetic energy distribution

of the particle and the argument of the delta function acts to impose energy conser-

vation,

S =
m∑
j=0

ϵj − Ethreshold −
l∑

k=0

ϵk. (91)
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3.3 Atomic processes in plasmas

The cross section is differentiated l− 1 times over each outgoing particle; the differ-

ential cross section effectively specifies the energy distributions of outgoing particles.

If the interacting particles are fermions, we must ensure that there are sufficient

empty energy states for the particle to occupy after the collision. We therefore

introduce a so-called Pauli blocking factor

F̃ (ϵ) = 1− FFD(ϵ) (92)

= exp

(
ϵ− µ

T

)
FFD(ϵ). (93)

We introduce one blocking factor for each outgoing electron in Equation (90). They

are only necessary if the temperature is low, as the blocking factor tends to unity at

high temperatures (when the energy distribution tends to the Maxwell-Boltzmann

distribution) where the energy states are only sparsely populated and no blocking

occurs. The symbol � in Equation (90) is used to take these blocking factors into

account and has two regimes,

�FD =
l∏

k=0

F̃ (ϵk),

�MB = 1.

In this work, we consider the interaction of light and electrons with, or in the

presence of, ions. However, due to the significantly lower mass and consequently

higher speeds of the electron compared to even the lightest ion, we consider ion to

be fixed when calculating rate coefficients and therefore drop integrals containing

their energies from Equation (90).

3.3.1 Principle of detailed balance

Atomic processes are reversible on the micro-scale, albeit with differing cross sec-

tions. If the cross section of a process is known, the cross section of the inverse rate

may be deduced from thermodynamics. By comparing populations in thermody-

namic equilibrium, which are in well-defined ratios, relations for cross sections and

their inverse can be derived. Once such relations are derived in equilibrium, they

apply equally for arbitrary rates, as the quantum mechanics of the interaction do

not depend on the populations.

Consider two mutually inverse processes α and β. The rates in equilibrium are,

by definition, equal, so that
∏

j NjRα =
∏

k NkRβ, where the indices j and k run
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3.3 Atomic processes in plasmas

over the incoming particles of process α and β respectively. The two processes

must have an identical number of interacting particles and therefore the variables of

integration in Equation (90) are identical, as are the arguments of the delta function.

We can therefore equate the integrands in both cases:

�α

∏
j

Nj

m∏
j=0

vjf(ϵj, Tj)
l−1∏
k=0

d

dϵk
σα = �β

∏
k

Nk

l∏
k=0

vkf(ϵk, Tk)
m−1∏
j=0

d

dϵj
σβ. (94)

This equality must hold in a hot, non-degenerate plasma. In this case, the

blocking factors tend to unity and the energy distribution function takes the form

of the Maxwell-Bolzmann distribution for electrons and the black-body distribution

for photons. The temperatures are also in equilibrium, Te = Tγ = T . We therefore

have

vfMB(ϵ, T ) =
2

T 3/2

√
2

mπ
exp

(
− ϵ

T

)
(electrons),

vfBB(ϵ, T ) =
2cϵ3γ
(hc)2

1

exp(ϵγ/T )− 1
(photons).

Finally, we can use thermodynamic equations to relate the different population

densities. For instance, the populations of two levels of a given ionization stage are

related using Boltzmann statistics: Ni,j/Ni,j′ = gj′/gj exp([Ej′ − Ej]/T ), where the

g factors correspond to the levels’ degeneracies.

This analysis, referred to as detailed balance, provides a recipe for calculating in-

verse cross sections. Once a process and its (differential) cross section are identified,

we are able to use the equilibrium energy distributions, known degeneracy factors

and appropriate thermodynamic equilibria to identify the inverse. In the following

sections, we will not derive the relations explicitly, but quote them together with

their historical names.

3.3.2 Collisional excitation and de-excitation

The high energy and free electron densities typical of a plasma are so large that a

significant number of atoms may be excited to very energetic quantum states not

typically seen in condensed matter. Bound electrons can be excited or de-excited

by the impact of free electrons, symbolically denoted for an atom X by

Xi,j + e− ⇌ Xi,j′ + e−.

We reserve the term “excitation” exclusively for endothermic transitions, where the

level j has lower potential energy than j′ and “de-excitation” for the inverse process.
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3.3 Atomic processes in plasmas

The total rate of collisional excitation is given by

Rcollisional excitation =
[
neJ

↑]Ni,j, (95)

where we have used the symbol J for the rate coefficient of this type of process in

which ↑ and ↓ denote excitation and de-excitation respectively. The rate is propor-

tional to the ion density of origin Ni,j, as noted in §3.3, with the quantity in brackets

appearing in the rate matrix M .

Functional forms for the cross section are typically obtained by fitting known

functions to experimental data. Experimentally, the cross section for this process

does not depend on the outgoing electron energy. It is useful to write the cross

section in terms of a collision strength Ω,

σ↑(ϵ0) =
Ω(ϵ0)

gjϵ0
, (96)

where gj is the degeneracy of the original state and ϵ0 the incoming electron energy.

Typical forms for the collisional cross section, in this case for carbon,69 have for

optically allowed transitions

Ωa

(
ϵ0
Ej

)
= B0 ln

(
ϵ0
Ej

)
+

3∑
k=1

Bk

(
ϵ0
Ej

)−(k−1)

, (97)

and two types of cross section for optically forbidden transitions

Ωf1

(
ϵ0
Ej

)
=

4∑
k=1

Bk

(
ϵ0
Ej

)−(k−1)

, (98)

Ωf2

(
ϵ0
Ej

)
=

4∑
k=1

Bk exp

(
−kB0

ϵ0
Ej

)
+B5

(
ϵ0
Ej

)−2

. (99)

To proceed, the associated collisional excitation rate coefficient may be calculated

through Equation (90). There is now only a single incoming and outgoing electron,

so all the energies in the system are well defined. For the Maxwell-Boltzmann

distribution, the integrals of Equation (90) reduce to

J↑ =

√
2

me

∫ ∞

0

∫ ∞

0

σ(ϵ0)δ(ϵ0 − ϵ1 − Ej)
√
ϵ0fMB(ϵ0, Te)�MBdϵ0dϵ1

=
2

gjT
3/2
e

√
2

πme

∫ ∞

Ej

Ω

(
ϵ0
Ej

)
exp

(
− ϵ0
Te

)
dϵ0. (100)
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We have carried out the integral over the outgoing electron energy ϵ1 to obtain the

Heaviside step function Θ(ϵ0 − Ej), which has modified the limits. We integrate

the logarithmic component by the treatment in Equation (191). We also make

use of the integral
∫∞
Ej

exp(−ϵ0/Te)dϵ0 = Te exp(−Ej/Te). The other polynomials

are integrated by parts, and the exponentials in Ωf2 may be combined with the

Maxwell-Boltzmann factor and integrated in a similar fashion:

J↑
a =

Ej

gj

√
8

πmeT 3
e

[
exp

(
−Ej

Te

)(
B1Te

Ej

+B3

)
+ E1

(
Ej

Te

)(
B0Te

Ej

+B2 −
B3Ej

Te

)]
(101)

J↑
f1 =

Ej

gj

√
8

πmeT 3
e

[
exp

(
−Ej

Te

)(
B1Te

Ej

+B3 +
B4

2

Te − Ej

Te

)
+E1

(
Ej

Te

)(
B2 −B3

Ej

Te

+
B4E

2
j

2T 2
e

)]
(102)

J↑
f2 =

Ej

gj

√
8

πmeT 3
e

[
4∑

k=1

Bk exp(−kB0 − Ej/Te)

kB0 + Ej/Te

+B5 exp

(
−Ej

Te

)
− B5Ej

Te

E1

(
Ej

Te

)]
.

(103)

A very general form for optically allowed transitions has been historically sug-

gested by Van Regemorter:70

J↑
V R =

8π3/2

√
3

a20Ry
2 fj

EjT
1/2
e

G(Ej/Te), (104)

where fj is the oscillator strength of the transition, a0 the Bohr radius and Ry

the Rydberg constant. The oscillator strength may be calculated from the overlap

integral of the wavefunctions of the higher and lower quantum state, or more com-

monly, determined by experiment.71 G(Ej/Te) is the so-called Gaunt factor, which

is a simplification of the overlap integral. Its functional form is given for differing

ranges of its arguments, in this case

G(Ej/Te) =

√
3

2π
E1(Ej/Te); Ej/Te → 0, (105)

G(Ej/Te) =
1

5
exp(−Ej/Te); Ej/Te > 1.

The Van Regemorter rate is historically significant and continues to be a good es-

timate for the collisional excitation rate against which more advanced calculations

may be benchmarked. It is useful because it applies to all elements and requires
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3.3 Atomic processes in plasmas

knowledge of only the oscillator strength. The oscillator strength is easier to deter-

mine through theory or experiment than a full cross section.

To compute the rates for degenerate plasmas, we use the Fermi-Dirac distribution

and insert a Pauli blocking factor for the outgoing electron into Equation (90).

Following the same treatment as above, we are left with the integral

J↑
FD =

G

negj

√
2

me

∫ ∞

Ej

Ω

(
ϵ0
Ej

)
FFD(ϵ0, Te)F̃ (ϵ0 − Ej, Te)dϵ0. (106)

There is no further analytic simplification to this integral, and it must be calculated

using numerical methods, as detailed in Appendix B.6.

To obtain the cross section of the inverse process, we use micro-reversibility re-

lations;72 these are derived through the principle of detailed balance. For collisional

excitation, this relation is given by

gj′ϵ0σ
↓(Ej, ϵ0) = gj(ϵ0 + Ej)σ

↑(Ej, ϵ0 + Ej). (107)

Substituting this into the integral for the rate coefficient, we can preserve the

limits and cross section in the excitation integral by shifting the argument of the

energy distribution function through the substitution ϵ̄0 = ϵ0−Ej. For the Maxwell-

Boltzmann distribution, exp(−ϵ̄0/Te) = exp(Ej/Te) exp(−ϵ0/Te), and so we have

J↓ =
gj
gj′

exp(Ej/Te)J
↑. (108)

For degenerate plasmas, the de-excitation coefficient is given by

J↓
FD =

G

negj

√
2

me

∫ ∞

Ej

Ω

(
ϵ0
Ej

)
FFD(ϵ0 − Ej, Te)F̃ (ϵ0, Te)dϵ0. (109)

Writing the blocking factors explicitly using the form in Equation (93), we have for

the excitation and de-excitation coefficients respectively

J↑
FD =

G

negj

√
2

me

∫ ∞

Ej

Ω

(
ϵ0
Ej

)
exp

(
ϵ0 − Ej − µ

Te

)
FFD(ϵ0 − Ej, Te)FFD(ϵ0, Te)dϵ0,

(110)

J↓
FD =

G

negj′

√
2

me

∫ ∞

Ej

Ω

(
ϵ0
Ej

)
exp

(
ϵ0 − µ

Te

)
FFD(ϵ0 − Ej, Te)FFD(ϵ0, Te)dϵ0.

(111)

The factor exp(−Ej/Te) may be taken outside the integral for collisional excitation,

and hence we see that Equation (108) also holds for degenerate plasmas.
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Collisional processes can force each level to transition to any other level in a given

ionization stage. Combinatorially, this is akin to the “Handshake Problem”73 ; this

implies that the maximum number of possible transitions for a given ionization stage

with n atomic levels is given by n(n−1)/2. The practical number of transitions may

be significantly lower, as some transitions have vanishing rate coefficients; optically

forbidden transitions often have Bk → 0 and oscillator strengths fj ≃ 0.

3.3.3 Spontaneous and stimulated emission

Atoms in excited states decay over time to lower energy states by the process of

spontaneous emission of a photon of energy ℏω = Ej,

Xi,j → Xi,j′ + γ,

with a rate given by

Rsponataneous emission = ANi,j.

The associated rate coefficient, sometimes referred to as the EinsteinA-coefficient,

is independent of the surrounding radiation field. It is related to the corresponding

oscillator strength fj by

Aj =
2πce2

(hc)2mec2ε0
E2

j fj. (112)

Photons resonant with this radiative transition can be absorbed, or stimulate

the emission of an identical (and in quantum terms entangled) photon, which is of

course central to the operation of lasers. The total rate of this process is given by

Rstimulated emission = BINi,j,

where we denote the Einstein B-coefficient with the symbols ↑ and ↓ for absorption

and stimulated emission respectively.

Derivation of the relationships between the Einstein coefficients is historically

perhaps the earliest use of the detailed balance principle. These relations are given

as follows:

A

B↓ =
2ϵ3γ
(hc)2

, (113)

B↓

B↑ =
gj
gj′

. (114)
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3.3.4 Collisional ionization and three body recombination

Free electrons of sufficient energy may collisionally excite bound electrons to the

energy level of the continuum, thereby ionizing them and releasing an additional

electron. Inversely, a free electron may recombine with and ion and in the process

“donate” its kinetic energy and liberated potential energy to another free electron

in a process called three body recombination. For an ion X, these processes are

schematically described as

Xi,j + e− ⇌ Xi+1,j′ + e− + e−.

We assume that generally only the outermost electron is ejected by an ionizing

collision and all others are unaffected. The excitation state of the inner electrons

is therefore preserved. By symmetry, electrons may recombine into any excitation

state, but leave the others unaffected.

The rate of collisional ionization is given by

Rcollisional ionization =
[
neK

↑]Ni, (115)

where K↑ is the rate coefficient. This rate coefficient is calculated as usual from

Equation (90). For an incoming electron with energy ϵ0 and two outgoing electrons

ϵ1 and ϵ2, we have

K↑ =

√
2

me

∫ ∞

0

∫ ∞

0

∫ ∞

0

√
ϵ0
dσ↑

dϵ1
f (ϵ0) δ(ϵ0 − Ei − ϵ1 − ϵ2)�dϵ0dϵ1dϵ2. (116)

Once again, we integrate over one of the outgoing electron energies ϵ2, yielding a

step function and shifting the limits. Thus, for the Maxwell-Boltzmann distribution

function the integral simplifies to

K↑ =

√
2

me

∫ ∞

Ei

∫ ϵ0−Ei

0

√
ϵ0
dσ↑

dϵ1
fMB (ϵ0) dϵ0dϵ1. (117)

The differential cross section by its definition must satisfy

∫ ϵ0−Ei

0

dσ↑(ϵ0, ϵ1)

dϵ1
dϵ1 = σ↑(ϵ0), (118)

so that Equation (117) reduces to

K↑ =

√
2

me

∫ ∞

Ei

√
ϵ0σ

↑ (ϵ0) fMB (ϵ0) dϵ0. (119)
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We discuss two of the most successful functional fits to the collisional ionization

cross section. The so-called BELI cross section is given by74

σ↑(ϵ0) =
1

Eiϵ0

[
C0 ln

(
ϵ0
Ei

)
+
∑
k=1

Ck

(
ϵ0 − Ei

ϵ0

)k
]
, (120)

where Ei is the ionization potential. This functional form requires precise curve

fitting to accurate atomic data for every individual ionization stage.

A very comprehensive study of σ↑ for many elements was undertaken by Lotz,75

which suggests for the functional form of the cross section

σ↑
L (ϵ0) =

ln (ϵ0/Ei)

ϵ0Ei

[
C0 + C1 exp

(
−C2

ϵ− Ei

Ei

)]
. (121)

The constants C1 and C2 are typically small and may be ignored, while remarkably

C0 is the product of ξ, the number of outer-shell electrons of the ion, and a numerical

constant which is universal to all elements and ionization stages. This cross section

is plotted in Figure 17a. In standard units, the rate coefficient becomes

K↑
L = 2.97× 10−6 ξ

T
1/2
e

E1 (Ei/Te)

Ei

. (122)

When electrons are ionised from a quantised energy level orbital by monoener-

getic radiation, such as an incident laser, their kinetic energy is fixed at ϵ0 = ϵγ−Ei.

This sharp distribution can be modelled by a δ-function:

fδ (ϵ0) = δ (ϵ0 − [ϵγ − Ei]) . (123)

The usual approach, applied to the δ-function distribution, leads to the following

expression for the rate coefficient:

K↑
δ = C0

√
2

me

∫ ∞

0

ln (ϵ0/Ei)√
ϵ0Ei

δ (ϵ0 − ϵelectron) dϵ0. (124)

Here, ϵelectron corresponds to Eγ−Ei in Equation (123). In this case, the photoionized

electron has sufficient energy to collisionally ionize, corresponding to ϵγ > 2Ei. This

condition can likewise be enforced by introducing a Heaviside function. The rate

coefficient then becomes

K↑
δ = 2.63× 10−6 ξ

√
ϵelectron

ln (ϵelectron/Ei)

Ei

. (125)

As a means of comparing the two rate coefficients, equivalent energy per elec-

tron can be taken to be ϵelectron = 3
2
Te. A plot comparing Maxwell-Boltzmann
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distribuion to the δ-function distribution with this assumption (Equations (122)

and (125) respectively) is shown in Figure 17b. The two functions are remarkably

similar for low temperatures (Te < 2Ei). However, as the temperature increases,

the former overlaps better with the peak of the Lotz cross section. Furthermore, it

may be assumed that more energetic electrons tend to equilibrate faster, and so the

Maxwell-Boltzmann distribution may be used to good accuracy.
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Figure 17: (a) Lotz’s75 collisional ionization cross section, plotted in reduced units

as indicated. (b) Comparison of the collisional ionization rate due to the Lotz cross

section for the Maxwell-Boltzmann and δ(ϵ0 − ϵelectron) energy distributions, with

ϵelectron = 3
2
Te, as indicated.

The calculation of the collisional ionization coefficient for a degenerate plasma

now requires two blocking factors for outgoing electrons. As a consequence, Equation

(118) cannot be used to integrate the differential cross section and therefore we

cannot use a formula such as that of Lotz for the total cross section. We therefore

have for the collisional ionization coefficient

K↑
FD =

√
2

me

∫ ∞

Ei

∫ ϵ0−Ei

0

√
ϵ0
dσ↑

dϵ1
fFD (ϵ0) F̃ (ϵ1, T )F̃ (ϵ0 − ϵ1 − Ei, T )dϵ0dϵ1. (126)

This rate coefficient is problematic to compute, as the blocking factors preclude

an analytic solution. More importantly, additonal information about the process

must be known, in the form of the differential cross section. In effect, the total cross

section does not provide enough information about the distribution of energies of

the outgoing electrons, which is necessary to fully take account of blocking factors.

One suggested formula for the differential cross section is due to Mott, with

reasonable agreement to experimental results:76,77
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(
dσ↑

dϵ1

)
Mott

=
4πa20Ry

2

ϵ0

[
1

(ϵ1 + Ei)2
+

1

(ϵ1 − ϵ0)2
− 1

(ϵ1 + Ei)(ϵ1 − ϵ0)

]
, (127)

where a0 is the Bohr radius and Ry the Rydberg constant. The Mott cross section is

nonzero for ϵ1 on the interval {0, ϵ0 −Ei}. It is symmetric about the middle of this

interval, as the two emergent electrons are indistinguishable particles. The Mott

cross section peaks at the two ends of its domain, which means that electrons are

most likely to emerge from collisional ionization in pairs: one fast and one slow.

When integrated as in Equation (118), the Mott cross section is not consistent

with experimentally derived cross sections or even the broadly applicable Lotz for-

mula: its integral does not produce a logarithmic dependence. However, it is possible

to use the functional form and properties of the Mott cross section to deduce one

which is compatible with experiments. Consider the indefinite integral

∫
1

(x+ a)(x+ b)
dx =

ln
(
x+a
x+b

)
(b− a)

. (128)

After applying the limits in Equation (118) and comparing to the first term in

Equation (120), we have

∫ ϵ0−Ei

0

1

(ϵ1 + a)(ϵ1 + b)
dϵ1 ≡

ln
(

ϵ0−Ei+a
ϵ0−Ei+b

b
a

)
(b− a)

=
ln
(

ϵ0
Ei

)
Ei

,

which allows the constants a and b to be solved for. The polynomial depnedence in

Equation (120) can be achieved by considering the integral

∫ ϵ0−Ei

0

ϵk−1
1 dϵ1 =

1

k
(ϵ0 − Ei)

k. (129)

Finally, the expression must be “mirrored” to be symmetric about the centre of its

domain just as the Mott cross section.

Lemma. A function f(x) defined on the interval 0 ≤ x ≤ L may be made symmetric

about L/2, while preserving its definite integral over the interval.

Let f̄(x) = 1
2
[f(x)+f(L−x)]. To be symmetric about L/2, the value of a function

at a point must equal the value at a point equidistant from L/2; for a point x1, such

an equidistant point must satisfy L/2 − x1 = L/2 + x1. Therefore, since f̄(x) =

f̄(L− x) by construction, this condition is satisfied. Finally,
∫ L

0
f(L− x1)dx1 may

be simplified by the substitution x2 = L − x1, giving −
∫ 0

L
f(x2)dx2 =

∫ L

0
f(x2)dx2.

Therefore, the definite integral is preserved by f̄(x).
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Figure 18: Comparison of the cross sections as indicated, given by Equation (127)

and (130), for Ei = 24.6 eV, (a) E0 = 100 eV and (b) E0 = 500 eV, without the

normalization constant.

As part of this work, we have produced the following expression for the collisional

ionization differential cross section:

dσ↑

dϵ1
=

1

2Eiϵ0

[
C0Ei

(ϵ1 + a)(ϵ1 + b)
+

C0Ei

(ϵ0 − ϵ1 − Ei + a)(ϵ0 − ϵ1 − Ei + b)

+
∑
k=1

kCk
ϵk−1
1 + (ϵ0 − ϵ1 − Ei)

k−1

ϵk0

]
, (130)

with the quantities

a =
1

2

(√
ϵ20 + 4E2

i − ϵ0

)
,

b = a+ Ei.

This expression is compared to the Mott cross section for two values of ϵ0 in Figure

18. We observe a reasonable similarity between the two functions. The equivalent

differential cross section for the Lotz formula is given by

dσ↑
L

dϵ1
=

1.32× 10−6ξ

ϵ0

√
me

2

[
1

(ϵ1 + a)(ϵ1 + b)
+

1

(ϵ0 − ϵ1 − Ei + a)(ϵ0 − ϵ1 − Ei + b)

]
.

(131)

The Fermi-Dirac collisional ionization rate coefficient can then be calculated

through the formula

K↑
FD =

√
2

me

G

ne

∫ ∞

Ei

∫ ϵ0−Ei

0

ϵ0
dσ↑

dϵ1
FFD (ϵ0, Te) F̃ (ϵ1, Te)F̃ (ϵ0 − ϵ1 − Ei, Te)dϵ0dϵ1.

(132)
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Again, there is no analytical form for this integral, requiring solution by numerical

methods as detailed in Appendix B.6.

The rate of three body recombination process requires two incoming electrons

and therefore has a quadratic dependence on electron density,

Rthree body recombination =
[
n2
eK

↓]Ni. (133)

To calculate the rate coefficient K↓, we reuse the collisional ionization cross section

via the micro-reversibility relations.72 For three body recombination, this gives√
2

me

Ggi+1ϵ1ϵ2σ
↓(Ei, ϵ1, ϵ2) = giϵ0

dσ↑

dϵ1
, (134)

where g corresponds to the degeneracy factor of the appropriate atomic level. Ap-

plying the general rate coefficient formula in Equation (90) and micro-reversibility

from Equation (134) to three body recombination, we have for the rate coefficient

K↓ =
gi
gi+1

1

G

√
2

me

∫ ∞

Ei

∫ ϵ0−Ei

0

ϵ0
dσ↑

dϵ1

f(ϵ1)√
ϵ1

f(ϵ0 − ϵ1 − Ei)√
ϵ0 − ϵ1 − Ei

�dϵ0dϵ1. (135)

When evaluating this rate coefficient for the Maxwell-Boltzmann distribution this

equation simplifies greatly. The square roots in the denominators cancel the same

factor in Equation (62), while a product of the exponential factors allows their argu-

ments to add linearly: exp(−ϵ1/Te) exp(−[ϵ0 − ϵ1 −Ei]/Te) = exp(Ei/Te) exp(−ϵ0).

As the dependence on ϵ1 has cancelled out, we are able to use Equation (118) to in-

tegrate the differential cross section. The resulting integral is directly comparable to

that for collisional ionization and so we have a relation between the two inverse-rate

coefficients:

K↓ =
2

√
πT

3/2
e

1

G

gi
gi+1

exp

(
Ei

Te

)
K↑. (136)

The micro-reversibility relations may also be applied to the calculation of the

degenerate rate coefficient. Inserting the Fermi-Dirac energy distribution and ap-

propriate blocking factor, we have for the three body recombination rate

K↓ =
gi
gi+1

G

n2
e

√
2

me

∫ ∞

Ei

∫ ϵ0−Ei

0

ϵ0
dσ↑

dϵ1
FFD(ϵ1, Te)FFD(ϵ0−ϵ1−Ei, Te)F̃ (ϵ0, Te)dϵ0dϵ1.

(137)

This may be related to the degenerate collisional ionization coefficient by explicitly

using the blocking factor of Equation (93). Consider the product of occupation

probabilities and blocking factors in Equation (132),
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Figure 19: Comparison of (a) collisional ionization and (b) three body recombination

rates of neutral carbon, with electron densities as indicated, computed with the

Maxwell-Boltzmann (dashed line) and Fermi-Dirac (solid line) energy distributions.

F (ϵ0)F̃ (ϵ1)F̃ (ϵ0 − ϵ1 − Ei) = exp

(
ϵ0 − 2µ− Ei

Te

)
F (ϵ1)F (ϵ0 − ϵ1 − Ei)F (ϵ0)

= exp

(
−µ+ Ei

Te

)
F (ϵ1)F (ϵ0 − ϵ1 − Ei)F̃ (ϵ0), (138)

where the labels FD and Te have been dropped for brevity. The factor exp(−[µ +

Ei]/Te) may be factored out of the integral in Equation (137), to obtain the relation

K↓
FD =

gi
gi+1

exp(µ/Te)

ne

exp

(
Ei

Te

)
K↑

FD. (139)

This relation also holds for the Maxwell-Boltzmann distribution if the chemical

potential is taken to be µ = µ̄, as defined in Equation (77).

3.3.5 Photoionization and radiative recombination

A photon whose energy exceeds the ionization energy of a given ion, ϵγ > Ei, may

be absorbed and strip off an electron by the process of photoionization,78 also called

bound-free absorption. Inversely, lone electrons recombining with ions must give off

their kinetic energy and liberated potential energy via a photon. Schematically, this

is

Xi,j + γ ⇌ Xi+1,j′ + e−.

The rate of photoionzation is given by

Rphotoionization =
[
IL↑]Ni, (140)
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where L↑ is the rate coefficient and I is the intensity of radiation. It is useful to group

the term in square brackets (which appears in the rate matrix) into a normalised

flux Φ = IL↑, in units of s−1.

The intensity is chosen for its experimental relevance, though it is qualitatively

different to the usual product of spatial particle densities in Equation (89). Intensi-

ties, normally given in units of W cm−2 must first be converted into units of eV cm−2

s−1 by the electric charge constant. We must add an extra factor of ϵ−1
γ to the rate

integral calculation as the intensity is in effect the product of the number of photons

with their energy. We use the fact that the speed of photons is approximately fixed

(if the index of refraction is largely independent of photon energy) to enable us to

convert the intensity (in units of eV cm2 s−1) to the spatial photon density (in units

of cm3) through a factor of c.

The rate coefficient for a given ionization stage is therefore given by

L↑ =

∫ ∞

Ei

σ△(ϵγ)
fγ(ϵγ)

ϵγ
�dϵγ, (141)

where σ△(ϵγ) is the cross section (the symbols △ and ▽ are used for radiative

cross sections to distinguish them from their collisional counterparts), which can be

estimated by ab initio quantummechanical calculations or obtained empirically. The

energy distribution of photons fγ(ϵγ) may be quite arbitrary, but we are particularly

interested in black-body radiation, discussed above, and laser pulses which we model

by fγ(ϵγ) = δ(ϵγ − Elaser).

An analytical expression for the photoionization cross section of hydrogen-like

ions is given by79

σ△
(Hydrogen−like)(ϵγ) =

6.3× 10−18

Z2

(
Ei

ϵγ

)3

. (142)

Photoionization cross sections of arbitrary ions tend to decrease above threshold as

a similar function of the photon energy, typically between ϵ−2
γ and ϵ−3

γ . Although

each ionization stage generally has an independent cross section value, to first order

it can be approximated as that of the neutral atom provided that the photon energy

is sufficient,

σ△
i ≃ σ△

0 Θ(Ei − ϵγ), (143)

where Θ is the Heaviside step function.

Lasers in the EUV range, whose photon energy is typicaly just above the first ion-

ization energy of most atoms, have close to maximum photoionization cross sections.
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Therefore, at sufficiently high intensities, the rate of photoionization dominates over

other collisional and radiative processes.

The inverse process of radiative recombination has a rate given by

Rradiative recombination =
[
neL

↓]Ni. (144)

To calculate the rate coefficient we use the detailed balance Milne relations,78

2gi,jmec
2ϵ0σ

▽(ϵ0) = gi+1,j′ϵ
2
γσ

△(ϵγ). (145)

We can substitute this relation into the appropriate form of Equation (90) and shift

the integration limits as usual, to obtain

L↓ =
gi+1,j′

gi,j

1

2mec2

√
2

me

∫ ∞

Ei

ϵ2γσ
△(ϵγ)

f(ϵγ − Ei)√
ϵγ − Ei

�dϵγ, (146)

where f is now the electrons’ energy distribution function. We can obtain an analytic

solution for the Maxwell-Boltzmann distribution and the hydrogen-like photoioniza-

tion cross section, which is known historically as Kramer’s formula:

L↓ =
gi+1,j′

gi,j

E3
i

Z2T
3/2
e

exp

(
Ei

Te

)
E1

(
Ei

Te

)
. (147)

The photoionization cross sections can vary somewhat between different ions and

even between the ionization stages for a given ion, but the formulae above generally

hold to a good degree of accuracy.

3.3.6 Autoionization and dielectronic recombination

An ion where two of the electrons are excited above the ground state, such that

the sum of the exctiation energies is greater than the ionization energy of a single

electron, may eject an electron through the process

Xi,j′′ ⇌ Xi+1,j + e−.

The second excited electron decays to the ground state to facilitate this transition.

The total rate of this process, termed autoionization, is given by

Rautoionization = [Q↑]Ni,j. (148)

As there is only a single free electron participating in the interaction, calculation

of the rate coefficient Q↑ through Equation (90) would lead only to an integral over a

delta function - in effect, all the energies for a given transition are fixed. Therefore,
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the simplest approach to obtain the coefficients of autoionization processes for given

transitions is to consult tabulated values. In a degenerate plasma, a single factor of

F̃ (Ei − Ej′′) must be added to account for Pauli blocking, where Ej′′ is the sum of

the excited energies.

The inverse process, called dielectronic recombination, has a rate given by

Rdielectronic recombination = [neQ
↓]Ni,j. (149)

The rate coefficient may be deduced directly from the principle of detailed balance

and is given in a non-degenerate plasma by

Q↓ = G
gi,j′′

gi+1,j

exp(−Ej′′/Te)Q
↑. (150)

Electrons are excited to the levels participating in autoionization by the usual

collisional-radiative processes, as discussed above. Similarly, ions may stabilize to

the ground state through emission of radiation following dielectronic recombination.

3.3.7 Bremsstrahlung and its inverse

An accelerating charge emits photons in processes such as synchrotron emission.

Electrons in a plasma continuously emit such radiation, called bremsstrahlung -

German for “braking radiation” - or sometimes referred to as free-free emission,

when deflected by collisions with ions. The classical limit of Equation (19) - Lar-

mor’s formula - for a single accelerating charge is P = e2a2/6πε0c
3, where a is its

acceleration. A single electron in a plasma generally has a2 ∝ 1/
√
ϵ, with the con-

stant of proportionality determined by analysis of Coulomb collisions. We quote

the classical result78 for the Larmor radiation from an electron in a plasma, mul-

tiply by the density of electrons and integrate over the Maxwell-Boltzmann energy

distribution to obtain the spectral intensity of bremsstrahlung radiation,

IBR(ϵγ) = ne

∫ ∞

ϵγ

e6

6
√
6π2ε30h(mec2)3/2

[
Z∑
i=1

i2Ni,j

]
fMB(ϵ0)√

ϵ0
dϵ0 (151)

=
e6

3
√
6π5/2ε30h(mec2)3/2

ne√
Te

exp

(
− ϵγ
Te

) Z∑
i=1

i2Ni,j. (152)

This classical formula has found widespread use, although more complex formulae

exist which take account of collective plasma scattering processes,80 as well as quan-

tum and relativistic effects. The absolute radiated intensity is given as usual by

I =
∫∞
0

IBR(ϵγ)dϵγ.
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Figure 20: Inverse bremsstrahlung coefficient for photon energy of 50 eV in carbon

as a function of temperature for logarithmically spaced densities from 0.1× (light)

to 1× (dark) solid density. The peaks are marked by black dots; peak position as a

function of Te is denoted by the black line. The ion populations and electron density

are calculated assuming steady state, as detailed in §3.

The unimaginitively named process of inverse bremsstrahlung has a significant

impact on the kinetic energy density of electrons. Photons are absorbed by electrons

in the presence of ions to conserve momentum, as opposed to a process such as

Compton scattering. As with all absorption processes, it is possible to assign an

absorption coefficient κIB, such that the attenuation of intensity and increase of free

kinetic energy is given by

dI

dx
=

dε

dt
= I

∫ ∞

0

κIB(ϵγ)fγ(ϵγ)dϵγ . (153)

Requiring that emission and absorption be equal in equilibrium (where the radiation

takes the black-body spectrum), we arrive using detailed balance at the absorption

coefficient:

κIB =
1

6
√
6π5/2

e6(hc)2

ε30(mec2)3/2
ne√
Teϵ3γ

[
1− exp

(
− ϵγ
Te

)] Z∑
i=1

i2Ni,j. (154)

Other suggestions for the absorption coefficient exist,81 but the functional depen-

dence on a system’s parameters of Equation (154) is universal. In particular, inverse

bremsstrahlung becomes less pronounced at higher temperatures and high photon

energies (where edge absorption and pair production78 become dominant). How-

ever, the process dominates at low temperatures and high densities and continues

73



3.3 Atomic processes in plasmas

to be significant at intermediate temperatures, where the ions reach high ionization

stages.

3.3.8 Continuum lowering

The discussion thus far has assumed that atomic physics in a plasma are identical

to that of isolated atoms in free space. In such a case, electrons orbit a central

potential and interact only with the nucleus and themselves. Even the presence of

neighbouring neutral atoms leaves the energy levels and ionization energies largely

unchanged, as long as the density of these atoms is sufficiently low. However, the

mobile charges in a hot dense plasma can deform the central atomic potential and

hence lower the ionization energy from its vacuum value,

(Ei)effective = Ei −∆E. (155)

This process is termed “continuum lowering” or “ionization potential depression”.

An accurate quantative expression for continuum lowering remains an unsolved

problem in plasma physics and the subject of intense debate. One leading expression

is due to Stewart and Pyatt:82

∆ESP =
Te

2(⟨Z⟩+ 1)

(3(⟨Z⟩+ 1)(i+ 1)e3n
1/2
e

4πε
3/2
0 T

3/2
e

+ 1

)2/3

− 1

 , (156)

where ⟨Z⟩ =
∑Z

i=0 i
2Ni,j/ne and i corresponds as usual to the ionization stage.

This expression was derived by considering the time-averaged effect of a Fermi-

Dirac distribution of free electrons penetrating inside the orbital radius of bound

electrons. An alternative model is the modified Ecker-Kröll,83

∆EEK =
ze2

4πε0

(
3

4π(ne +Ni)

)1/3

, (157)

where the quantity in brackets is also referred to as rEK , the Ecker-Kröll radius.

Before comparing the models to empirical data, we may observe several prob-

lems by inspection of these formulae. Quantum effects, such as the deformation of

the bound electrons’ wavefunctions by mobile charges, do not appear in either ex-

pression; by contrast, they appear prominently in collisional rate calculations in the

form of the cross sections. Relativistic effects - unimportant for the free electrons -

must be considered in the calculation of wavefunctions for high-Z atoms, but they

do not appear in these two formulae either. Finally and perhaps most importantly,

the expressions contain no time-dependent components; all the above-mentioned
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3.4 Steady state ionization balance

atomic processes have a characteristic timescale, such as the electron equilibration

time, and we can expect a similar effect to take place with continuum lowering.

The lowering may be sufficient enough that high-lying atomic levels cease to

exist. If the lowering is even higher, entire ionization stages may disappear into

the continuum. There are several approaches to incorporating this fact into plasma

models. Fictitious and very large ionization rates may be introduced to empty

those levels which lie above the continuum. Alternatively, the populations may be

“dumped” into the nearest existing higher ionization state, with an accompanying

rise of electron density and with the energy by which the continuum is lowered into

the kinetic energy of the free electrons.

Experimental studies of continuum lowering have thus far taken emission spectra

from dense plasmas and attempted to fit synthetic spectra, generated by collisional-

radiative models with a given ∆E model. The disappearance of emission lines

above certain temperatures and densities is a strong indication that those levels

have disappeared due to contiuum lowering. The Stewart-Pyatt model matches

several buried layer experiments,84 while a version of the modified Ecker-Kröll has

successfully matched XFEL experiments.85 There have been suggestions to explain

these differences and address some of the shortcomings of these two models.86 In

particular, the approach considers a view of thermodynamic processes, which range

from instant to adiabatic.

3.4 Steady state ionization balance

We can expect a plasma to come into some sort of equilibrium when the left hand

side of Equation (85) vanishes, that is dN⃗ss

dt
= 0⃗. However, it is not possible to

invert the rate matrix to find N⃗ss in this case, as it is singular; if it were not

singular and an inversion were possible, then the only steady state solution would

be N⃗ss = 0. Instead, we impose an additional condition that the total density of

ions in the system is fixed to NT :
∑

N⃗ = NT , or equivalently, as a scalar product

(1 . . . 1)†.N⃗ = NT . This allows us to write

MbrN⃗ss = (0 . . . 0 NT )
†, (158)

where Mbr is equivalent to the ordinary rate matrix M with the bottom row replaced

by ones. An inverse, M−1
br , can now be found and Equation (158) inverted to find

N⃗ss.

The system of rate equations in Equation (85) is not linear, however. The rate
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3.4 Steady state ionization balance

matrix M depends on ne, which is itself calculated from the corresponding ion

densities by quasineutrality. This problem is made tractable by recasting to first

calculate ne by using Brent’s algorithm to find the roots of

ne −
∑
i,j

iN⃗ss(ne) = 0, (159)

where N⃗ss is found at each iteration by the inversion of Equation (158). The ioniza-

tion fraction as a function of temperature for carbon is compared between the code

developed as part of this work, CRABS, and a commercial code, PROPACEOUS (see

§3.6). CRABS uses the LAPACK routine gesv, which performs the matrix inversion

required for Equation (158) through an LU decomposition.87
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Figure 21: Comparison of the steady state ionization fraction Z∗ = ne/NT of solid

density iron as a function of temperature computed by the code CRABS, developed

as part of this work, to the commercial code PROPACEOUS. The differences arise from

the atomic levels, cross sections and in particular the continuum lowering models

used by the codes.

The steady state electron density calculated using this method for carbon ions,

with the degenerate and non-degenerate rates, is shown in Figure 22. We see that

the differences are small without any incoming radiation, as the electrons are never

simultaneously cold or dense, as required for the chemical potential to deviate from

its Maxwell-Boltzmann value µ̄. However, a strong flux of photoionizing radiation

is able to create a very appreciable electron density even at low temperatures and

therefore the effects of degeneracy are important.
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Figure 22: Comparison of the steady state ionization fraction of a carbon plasma

(density of 2.23 g cm−3, corresponding to graphite) for Fermi-Dirac (solid) and

Maxwell-Boltzmann (dashed) statistics, irradiated by 50 eV photons at intensities

indicated.

3.5 Classification of equilibria

It is possible, in principle, to solve the rate matrix equation for the ion populations,

electron density and kinetic energy at a grid of different spatial points in a plasma.

Such a model may take input, such as the total ion density, the flux of radiation, etc.

from other calculations. In this approach, it is extremely costly computationally to

define the rate matrix at a sufficient number of time points. The plasma quantities

in such calculations will always tend to their equilibrium values, which may be

obtained by solving Equation (159). This generic plasma state is referred to as

the Collisional-Radiative Steady State (CRSS); we will discuss how often this is

practically the case in a changing plasma in §4. In both cases, the success of the

model depends on the accuracy of atomic levels, cross sections and the continuum

lowering model. There are several other types of equilibrium,88 which lead to useful

simplifications in certain specific cases.

If the density in a plasma is low, processes with weaker dependence on electron

density tend to dominate. Therefore, spontaneous emission and radiative recombina-

tion dominate over three body recombination and collisional de-excitation processes

in such a plasma. Only the dominant processes need to be considered. Populations

of excited states can then be calculated simply by balancing spontaneous emission
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3.5 Classification of equilibria

with collisional excitation, AjNi,j = neJ
↑Ni,0. Such a plasma is said to be in Coronal

Equilibrium (CE), like the relatively hot, low density plasma in a star’s corona - the

region above its surface which extends into space.

If the plasma density is high, collisional processes dominate over spontaneous

emission and radiative recombination. In this case, the collisional rates are precisely

in detailed balance. The ion populations are then independent of any cross sections,

but the ratios of excited states are given by the Boltzmann relations. The ratios of

populations of ionization stages, when the electron distribution is close the Maxwell-

Boltzmann, is given by the Saha-Bolzmann equation,89

Ni+1

Ni

= G
ḡi+1

ḡi

T
3/2
e

ne

exp

(
−Ei

Te

)
, (160)

where the effective degeneracies are given by ḡ =
∑

j gj exp(−Ej/Te). Such a plasma

is said to be in Local Thermodynamic Equilibrium (LTE).
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Figure 23: Deviation of relative ionization (Z∗ = ne/NT ) in steady state from LTE

as a function of electron temperature and density for (a) iron (solid density ρ0 = 7.9

g cm−3); (b) carbon (solid density ρ0 = 2.3 g cm−3) as indicated. The shaded orange

region indicates where the McWhirter criterion, given by Equation (161), holds.

McWhirter proposed a criterion90,91 which allows a quick estimate if a plasma is

in LTE, given in standard units by

ne > 1.7× 1014
√

Te(Ej)
3. (161)

This criterion was derived by insisting that the Van Regemorter excitation rate is

at least 10× greater than spontaneous emission for some key excited states. Re-

finements to it have since been proposed.92 We have evaluated the accuracy of this

criteron by comparing it to the deviation of the ionization fraction Z∗ = ne/NT of

LTE from CRSS in Figure 23. We see that it is close to the 0.1% deviation contour,
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3.5 Classification of equilibria

although for completeness we also require the condition Z∗ ≤ ZNT - a maximum of

Z electrons are available per ion.
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Figure 24: Comparison of steady state relative ionization as a function of electron

temperature in the case of no photon irradiation (solid line, equivalent to LTE)

and for constant irradiation by photons of energy 50 eV (dashed line) for (a) iron

(density ρ0/10 = 0.79 g cm−3) (b) carbon (density ρ0/10 = 0.23 g cm−3), both at an

intensity of 1015 W cm−2. The shaded orange region indicates the region of validity

of LTE as specified by Equation (163).

McWhirter’s criterion for LTE interrogates the electron density. We can use a

similar approach to McWhirter’s in order to estimate if the flux of ionizing photons

is low enough for the plasma to remain in LTE. We require that the Lotz rate of

collisional ionization is at least 10× greater than the rate of photoionization. We

consider the photons to be monochromatic (for example from a laser) with a photon

energy ϵγ. This condition can then be written as

neK
↑
i,jNi,j > 10

σ△

ϵγ
INi,j. (162)

Taking the Lotz formula from Equation (122) for collisional ionization and a hydrogen-

like photoionization cross section from Equation (142), we have in standard units,

ne > 1.31× 108
√
TeI

Z2ξE1(Ei/Te)

(
Ei

ϵγ

)4

Θ(ϵγ − Ei). (163)

We have compared the region of validity of this criterion to the CRSS ionization

fraction with and without an incident flux of photons in Figure 24.

If the plasma is in LTE and furthermore the radiation field is given by the

black-body distribution at the same temperature, the plasma is said to be in Ther-

modynamic Equilibrium (TE).
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3.6 Codes and databases for collisional-radiative modelling

3.6 Codes and databases for collisional-radiative modelling

There are many published databases of atomic levels and transitions, of which one of

the best maintained is the National Institute of Standards and Technology (NIST)

database.71 This database requires that the energies of levels be verified experi-

mentally to a very high degree of accuracy and ranks the results by the inherent

experimental uncertainty. A web interface also allows a synthetic emission spec-

trum to be displayed for a given electron density and temperature. A web portal

to opacity codes of the Los Alamos National Laboratory (LANL)21 contains many

cross sections for atomic processes for low-Z elements. The web portal also allows

approximate opacities of plasmas to be calculated.

To calculate atomic levels and some transition strengths from first principles,

there is a code called grasp2K.93 This atomic structure code uses the variational

principle to calculate wavefunctions and corresponding energies, including relativis-

tic effects which are important for high-Z atoms. The code has remarkable agree-

ment with experiment, for a wide range of ions.

The code PROPACEOUS, part of the PrismSPECT suite,94,95 is a commercially avail-

able code which calculates plasma parameters in LTE or CRSS. PrismSPECT is fo-

cused on 1-dimensional hydrodynamic simulation of laser- or ion-beam produced

plasmas and generation of synthetic spectra, which are compared with experimental

diagnostics. A similar online collisional-radiative code called FLYCHK,96 which out-

puts plasma quantities and can be used to model emission spectra, is maintained by

NIST.
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4 Microscopic plasma models

Steady state situations, such the distribution of ions in LTE, are convenient for

computing equation of state quantities and emission spectra. They are often used

to efficiently perform inline calculations as part of radiation-hydrodynamic codes.

However, steady state may only be reasonably assumed if there is sufficient time for

energy to be redistributed between electrons and ions by collisions. In this chapter,

we present a collisional-radiative code written to evaluate the timescales taken by

plasmas to reach steady state, to confirm that these timescales are insignificant

compared to hydrodynamic motion and to explore the transient behaviour of EUV

laser-produced plasmas.

4.1 Code description

The self-consistent set of rate equations (as outlined in §3.2) are solved by a code

called CRABS: routine for Collisional-Radiative ABSorption, written as part of this

work. The focus of the code is to model the interaction of a strong photoionizing

laser pulse with ion populations, and therefore radiation is modelled by a monochro-

matic distribution fγ(ϵγ) = δ(ϵγ − ELaser). The photon energy ELaser is in this case

only slightly higher than the first ionization energy of atoms, maximising its pho-

toionization cross section through Equation (142). CRABS can calculate rates from

the Maxwell-Boltzmann distribution via the direct integral formulae or at a signif-

icantly higher computational cost from the Fermi-Dirac distribution via numerical

integration. The resulting rate matrix can be used to calculate populations in steady

state or to evolve them in time using a 4th-order Runge-Kutta method, as discussed

in Appendix B.6. CRABS can include continuum lowering (which may be switched

“on” or “off”) through the Stewart-Pyatt model, given in Equation (156). This

model was chosen to be consistent with POLLUX and because it has been demon-

strated to agree well with experiments performed on dense plasmas. CRABS does not

model the motion of ions.

CRABS can solve a 0-dimensional model, which corresponds to either a small ele-

ment of volume or a system which is very homogeneous. It has the option to extend

to a 1-dimensional model, with the spatial axis corresponding to the propagation

of a laser and discretised as shown in Figure 25. An individual collisional-radiative

model is solved in a number of cells of thickness ∆x. A laser profile propagates

at a speed c, so that its intensity profile advances forward by one cell after a time

t = ∆x/c. At each timestep, the laser intensity is coupled to matter via the usual
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t = 0

t = ∆t

t = ∆x/c

t ≫ ∆t

Figure 25: Schematic diagram of discretization of time and space in the CRABS code.

The ion populations and electron temperature are solved for in each space cell and

the opacity is calculated. A laser pulse is incident from the right and advances

through the cells at times spaced by ∆x/c. The laser is absorbed as it travels

through the plasma, increasing the temperature.

radiative processes and is attenuated by

dI

dt
= −cκI, (164)

where the total absorption coefficient is the sum of the photoionization and inverse

bremsstrahlung coefficients κ = κΦ(ELaser) + κIB(ELaser).

CRABS uses a simplified “superconfiguration”97,98 atomic model with a ground

state and a single effective excited level for each ionization stage, as discussed in

Appendix D. The model’s physical complexity is targeted at simulating the absorp-

tion of photoionizing radiation by dense matter. Although such an atomic model

does not resolve individual quantum levels, as may be required to calculate the gain

of a laser for example, it allows long-term simulation of plasma out of steady state.

Atomic processes with insignificant rates (at the conditions considered in this work),

such as dielectronic and radiative recombination, are ignored for the sake of perfor-

mance. Autoionization is important only for x-ray photons with energies > 100 eV,

sufficient to excite tightly bound electrons to the autoionizing states. The rate of

three body recombination dominates over dielectronic recombination at higher den-

sities99,100 and towards solid, as we can see from the electron density dependence

(n2
e and ne) of the respective rates.

The radiation transport model considers only the propagation of a laser pulse

along a single axis. This appears a gross simplification, compared to the radiation

spectrum of plasmas containing many features from bremsstrahlung and line radia-

tion across all solid angles. However, this uniaxial propagation and monochromatic
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4.2 Plasma formation models

opacity model is accurate when the laser pulse is short and intense and therefore

dominates over other radiative processes. The total ion density in each cell is kept

constant, meaning that the model ignores hydrodynamic motion. This simplifica-

tion is acceptable because the timescales of atomic processes are significantly shorter

than those of any plasma fluid motion, as discussed below.

4.2 Plasma formation models

In order to verify CRABS, we compare results from a 0-dimensional run to an analyt-

ical solution of the rate equations which we derive below. We also consider the case

of a 0-dimensional plasma being rapidly created from solid material by a large flux

of short-wavelength radiation.

4.2.1 Analytical treatment of hydrogen

The atomic system of hydrogen has only two ionization stages; we consider in this

example a fixed electron temperature without the effects of continuum lowering or

any excited atomic levels above the ground state. This is the simplest possible sys-

tem and perhaps the only one for which an analytic solution exists. For a fixed Te,

the collisional ionization and three body recombination rates, K↑ and K↓ respec-

tively, are constant; all other rate coefficients are taken to be zero. In the usual

notation, the population densities of the neutral and singly ionized hydrogen are

denoted by N0 and N1 respectively. Now, the two coupled differential equations for

population densities to be solved become

dN0

dt
= n2

eN1K
↓ − neN0K

↑, (165)

dN1

dt
= −n2

eN1K
↓ + neN0K

↑. (166)

As usual, there is a constant total ion density NT = N0+N1. Finally, since there

is only a single electron per ionized atom, the electron density ne = N1. These two

relations may be substituted into Equation (166) to give

dN1

dt
= N1NTK

↑ −N2
1K

↑ −N3
1K

↓. (167)

Equation (167) is a nonlinear, first order ODE, whose exact solution is given by the

following transcendental equation:101

t− t0 =
1

NTX
arctanh

(
K↑ + 2K↓N1

X

)
+

1

2NTK↑ ln

(
N2

1

NTK↑ −N1 (K↑ +K↓N1)

)
,

(168)
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where X =
√
4NTK↑K↓ + (K↑)2 and t0 is some constant of integration. This solu-

tion may be simplified by assuming that three body recombination rate in Equation

(167) is insignificant compared to collisional ionization (namely K↓ = 0), which

holds for high electron temperature. This yields a simpler solution,

t− t0 =
2

NTK↑ arctanh

(
2N1

NT

− 1

)
. (169)

Rearranging this relation yields the time dependence of the populations,

N0 =
NT

2

[
1− tanh

(
NTK

↑

2
(t− t0)

)]
, (170)

N1 =
NT

2

[
1 + tanh

(
NTK

↑

2
(t− t0)

)]
. (171)

If a rate coefficient Φ = IL↑ corresponding to photoionization is included in this

treatment, the equivalent of Equation (166) becomes

dN1

dt
= −n2

eN1K
↓ + neN0K

↑ + ΦN0. (172)

Following the same treatment as above and with identical boundary conditions yields

a slightly modified version of the analytical hydrogen equation,

N1 =
NT

2
− Φ

2K↑ +

(
NT

2
+

Φ

2K↑

)
tanh

((
NTK

↑ + Φ
)

2
(t− t0)

)
. (173)

This result naturally reduces to the previous solution, given by Equation (171), in the

absence of photoionization (Φ = 0). The effect of photoionization is to increase the

rate at which the system reaches equilibrium and creates an asymmetric tendency

to ionize the atomic populations.

These two simple results, with and without incident photons, have been com-

pared to corresponding numerical simulations in Figure 26. In this case, the total

ion density NT = 1021 cm−3 and fixed electron temperature is Te = 25 eV. The

initial density of 1+ ions is zero in the photon case and small, but not zero in the

non-photonic case to avoid the trivial solution. The computational results show

remarkable similarity to the analytical case, although deviate slightly at later times

because of the over-simplifying assumption that three body recombination K↓ = 0

in the analytic case.

4.2.2 Plasma creation by EUV photons

It is useful to explore the creation of a plasma from cold solid matter by a constant

flux of EUV photons. CRABS was run with a single spatial cell with the superconfigu-
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Figure 26: Populations of neutral and ionized hydrogen in a simplified model at a

temperature Te = 25 eV and a total density of NT = 1021 cm−3 (a) without incident

photons with N1(0) = 105 cm−3; (b) with incident photons at a normalised flux

of Φ = 1012 s−1 and with N1(0) = 0 cm−3. The computational results (solid) are

compared to the analytical model (dashed).

ration atomic model of iron, constant irradiation with continuum lowering switched

off. The plasma is initially at a temperature of Te = 0; in the absence of continuum

lowering, this corresponds to every atom being neutral. With the start of irradi-

ation, the first free electrons are created solely by photoionization. Each electron

gains an energy of ELaser − E0 = 42.1 eV, and it is assumed that it thermalises to

a temperature of Te = 2
3
ε = 28.1 eV. However, this high temperature is far out

of equilibrium with the ionization distribution and unsustainable, leading to a fast

drop in temperature as additional electrons are collisionally ionized.
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Figure 27: Evolution of populations of ions (as indicated) and electron temperature

of solid density iron with an incident flux of 1015 W cm−2 of 50 eV photons. The

populations of higher ionization stages (8+ and higher) are negligible in this case.

As the electron density of a forming plasma rises, inverse bremsstrahlung becomes

more prominent at transferring energy from photons to electrons. Another process

which begins to occur is a cycle of photoionization and three body recombination,
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4.2 Plasma formation models

which in effect transfers the energy of a single photon to two electrons, without

a net change in ionization. These two processes eventually cause the temperature

fall to reverse at a minimum, followed by a steady ramp up. During this time, the

ionization distribution approaches the instantaneous steady state conditions.

This simplified model demonstrates the nature of short wavelength laser-plasma

interactions. A large density of free electrons is rapidly developed by photoioniza-

tion; the original phase of the matter very quickly transitions to a dense plasma.

We observe a fast drop in the initially high temperature, with a long-term linear

rise comparable to optical lasers. The plasma is created on timescales much faster

than those of hydrodynamic expansion (of the order of picoseconds), suggesting that

solid density plasma may be created by short-wavelength lasers.

We can use a 0-dimensional simulation (with continuum lowering) to explore the

effect of degeneracy on the creation of plasma by a laser pulse. We choose carbon

as it is a common target material, is low-Z (therefore simple computationally), and

accurate atomic data is readily available. Degeneracy is strongest when electron

density is high and temperature low. Therefore, a pulse which ionizes strongly and

heats weakly creates maximally degenerate plasma; a short, but intense pulse with

photons just above the first ionization energy fits these criteria.
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Figure 28: Evolution of the electron temperature and ionization fraction of carbon

(density of 3.53 g cm−3, corresponding to diamond) irradiated by a laser beam with

photon energies of 14 eV and Gaussian intensity as shown shaded with a full-width

half maximum of 1 fs and a peak intensity of 1014 W cm−2 with the Maxwell-

Boltzmann (dashed line) and the Fermi-Dirac (solid line) statistics as indicated.
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The results of simulations with the Fermi-Dirac and the Maxwell-Boltzmann dis-

tributions are compared in Figure 28. We have chosen an ion density corresponding

to diamond, the most dense known condensed state of carbon. The laser photons

have an energy of 14 eV, only slightly above E0 = 11.25 eV in a realistic temporally

Gaussian pulse of 1 fs duration.

The simulations begin identically, as there are insufficient electrons for degen-

eracy to take effect for the first ∼ 0.2 fs. Thereafter, the Fermi-Dirac model has

a lower ionization fraction due to reduced ionization rates, as a result of blocking

factors appearing preferrentially in the ionization rates (see formulae for K↑, L↑).

This results in a higher kinetic energy per electron, but this is compensated by

the larger heat capacity and therefore the temperature is lower in the Fermi-Dirac

model. These quantities equilibrate to steady-state values during the tail end of the

laser pulse.

We have considered a “worst case scenario” regarding the degeneracy of electrons.

A typical laser pulse is likely to be significantly longer and reach much hotter final

temperatures, where the two energy distributions become identical. Hydrodynamic

expansion at longer timescales would also act to lower the electron density and

therefore the degree of degeneracy. It is therefore justifiable to use the Maxwell-

Boltzmann distribution to model most short-wavelength laser interactions.

4.3 Time to steady state

We have previously discussed the deviation of a solid-density plasma in steady state

from LTE. We are also interested in quantifying how quickly a plasma reaches similar

steady state conditions. Plasmas may be rapidly heated by thermal conduction or

streaming fast electrons, if not directly by laser radiation.

We consider the plasma to be in CRSS at a starting temperature of Ts = 25 eV.

This plasma is relatively cold, but not degenerate, so that excessive computation

is not required. The amount of energy required to raise the temperature to some

final value Tf is calculated by considering the plasma’s total heat capacity. This

energy is transferred to the kinetic energy of the electrons ε at a linear rate during

a deposition time td, but without a flux of photons. If the energy were deposited

instantaneously (td = 0), the temperature would exceed Tf - kinetic energy would

require time to be transferred to the potential energy of ions. Likewise, although for

td ̸= 0 the energy rise is linear, the temperature rise is not. At each timestep after

td, the five most populated ionization stages are compared to their values in CRSS
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Figure 29: Ionization populations (as labelled) and temperature (inset) as a function

of time during a linear energy deposition causing the initial electron temperature

Ts = 25 eV to increase to Tf = 100 eV for iron plasma at 10−1/2× solid density.

The end of the deposition time at 100 fs and the subsequent equilibration time 180

fs later are indicated by vertical lines.

at Tf . When the deviation of each one is less than 1%, the plasma is considered to

have equilibrated, with an equilibration time teq as measured from td.

The results of a 0-dimensional CRABS simulation following the scheme above, with

td = 100 fs and Tf = 100 eV, are plotted in Figure 29. We see a rapid evolution of

ion populations during the time of energy deposition. When energy deposition stops,

the temperature begins to relax to Tf asymptotically, though its time dependence

cannot be described by elementary functions. The ion populations tend to steady

state in a similar manner. This asymptotic behaviour explains why the equilibration

threshold is set to a finite value (in this case 1%). Due to the nature of the rate

equations, the asymptotic approach takes infinitely long to precisely reach steady

state.

It is important to consider the equilibration time of electrons, because CRABS as-

sumes that the electrons instantaneously arrive at an appropriate Maxwell-Boltzmann

distribution regardless of the rate of deposition of energy. We therefore require that

teq ≫ te−e, where the Spitzer electron-electron equilibration time is given by Equa-

tion (64). It is also important to consider the timescales for energy transfer to
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Figure 30: Equilibration times as a function of total density as a fraction of solid

for (a) iron and (b) carbon. Simulations were run with Ts = 25 eV and Tf = 100

eV with a deposition time td as indicated. A trend-line of the equilibration times

proportional to N−2
T is plotted. The region where electrons have insufficient time

to thermalise is coloured blue; it is bounded by the electron-electron equilibration

time te−e. The region where electron-ion energy transfer begins to occur is coloured

red; it is bounded by te−i.

ions. It may be expected that some energy be lost to ions as the plasma tends

towards TE, where Te = Ti. We therefore require that te−i ≫ teq, where the Spitzer

electron-ion time is given by Equation (65), in order that the assumption that the

ion temperature is unchanged holds.

The results of a parameter scan of total ion density for carbon and iron are

shown in Figure 30. The density range covers values relevant for short wavelength

and intense optical laser experiments. We see a general decrease in equilibration time

with density, closely following a trendline with an inverse quadratic dependence on

density. At very high densities, the equilibration time vanishes and hence does not

appear on the logarithmic plot in Figure 30.

The electron density at a given temperature tends to increase with total ion

density, particularly due to continuum lowering, leading to an overall increase in

the atomic rates (∝ ne,n
2
e). In steady state, when rates are balanced, their absolute

magnitude is not important. However, high rates hasten the response of a system

to transient events, such as the energy deposition considered here, and hence teq

decreases with total ion density. As the atomic rates become higher, the ion pop-

ulations follow their instantaneous steady state values more closely during energy

deposition. At some point, this deviation from CRSS falls below the 1% equilibration

threshold and the equilibration time vanishes.

The appropriate energy distribution equilibration times are also plotted in Figure
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4.4 Bleaching wave propagation

30, evaluated at the final electron temperature. We confirm that below ∼ 5× solid

density the electrons reach a Maxwell-Boltzmann distribution much faster than the

atomic processes modelled in CRABS. Above this density continuum lowering models

have not been experimentally verified, hence there is large uncertainty in theoretical

models. We see also that above ∼ 0.1× solid ion density, the electron-ion equili-

bration time becomes comparable with teq, and hence the assumption that the ion

temperature remains constant no longer holds.
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Figure 31: Variation in equilibration time teq as a function of final temperature Tf

for iron and carbon at solid density with deposition time td = 100 fs and starting

temperature Ts = 25 eV.

The effect of the final temperature Tf on the equilibration time is plotted in

Figure 31, at solid ion density. In both cases, we see the equilibration time rise to a

peak and then begin to fall off with increasing Tf . It is intuitive that as the system

is driven to a higher final temperature, the populations are further from the final

steady state and, hence the equilibration time increases. However, above a certain

point, steady state populations cease to vary significantly with temperature. Given

this lack of variation, it is easier to reach steady state in this case and hence the

equilibration time drops at high temperatures.

4.4 Bleaching wave propagation

Having explored the interaction of lasers with an infinitessimal region of plasma,

we are interested in exploring the axial propagation of laser radiation. We have

seen that photoionization can dominate the absorption of radiation and can deplete

ionization stages with ionization energies exceeded by the photon energy. Conversely,

we can expect absorption to stop once these ionization stages are depleted. The
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4.4 Bleaching wave propagation

corresponding drop in opacity is termed “bleaching”, with a spatial and temporal

behaviour akin to a propagating wave as discussed below.

Prior to simulating bleaching using the 1-dimensional mode of CRABS, we can

derive an analytic model. Consider the spatial equivalent of Equation (164), with

radiation propagating from negative to positive x,

dI

dx
= −κI. (174)

We expect the radiation to be strongly attenuated in regions of high absorption

and conversely the intensity to be high in regions where bleaching has taken place.

Therefore, we can expect the absorption coefficient to behave as κ(x) ∝ I0 − I(x),

where I0 is the peak intensity. The mathematical treatment in this case is reminis-

cent of the analytical model of hydrogen, with

I(x) =
I0
2

[
1− tanh

(κ0

2
(x− x0)

)]
, (175)

κ(x) =
κ0

2

[
1 + tanh

(κ0

2
(x− x0)

)]
, (176)

where κ0 is the unperturbed absorption coefficient and x0 is a constant of integration.

We see that at a given point in time, the point x0 is a measure of how far the

radiation has propagated. We expect this point to propagate with time as the

bleaching process occurs. The speed of propagation may be derived by considering

the energetics of the interaction; it is given by the ratio of the flux of radiation to

the energy density required in order to fully bleach the opacity, namely

dx0

dt
=

I0
εbleach

, (177)

where

εbleach =
Z∑
i=0

Ni,jEiΘ(Ei − ϵγ). (178)

It should be noted that the bleaching wave is a collective excitation, rather than a

particle and is therefore not restricted by relativity. In the lab frame, therefore, it

is possible for the bleaching wave to propagate faster than c.

The discussion so far has focused on the case where the opacity is dominated

by photoionization, which decreases as radiation is absorbed. However, inverse

bremsstrahlung tends instead to increase with continued ionization, as it has a strong

dependence on the electron density and the charge states of ions. Therefore, this

treatment applies to low-density material, where inverse bremsstrahlung is weak.
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Figure 32: (a) The normalised photoionization absorption coefficient of helium at

atmospheric pressure (NT = 2.5 × 1019 cm−3) during irradiation by a laser pulse

with a flat profile, ELaser = 26.5 eV and I0 = 1010 W cm−2. (b) Simulated speed

of propagation of the bleaching wave dx0/dt (solid), defined as the point where the

normalised absorption coefficient takes a value of 0.5, and analytic value (dashed).

Results of a 1-dimensional CRABS simulation of atmospheric density helium, for

a laser with ELaser = 26.5 eV and a constant intensity profile, are shown in Figure

32. Helium was chosen as its ionization energy of E0 = 24.6 eV is narrowly above

this chosen laser photon energy, which is relevant to capillary discharge lasers, as

discussed in §5. We see that this fully collisional-radiative model confirms that the

absorption coefficient is bleached and verifies our very simple analytical model of

bleaching propagation. Plotted also is the speed of the bleaching wave, which tends

to a constant value. Although inverse bremsstrahlung was simulated, its effect was

small, because the density of gas at atmospheric pressures is low and helium is a

low-Z element.

The simulated bleaching velocity tends to a value of 2.2 × 10−3c, which is

remarkably close to the theoretical value computed from Equation (177), which

is 3.27× 10−3c. This similarity can be improved further, if the heat capacity of the

free electrons is included in Equation (178), assuming the end with a temperature

Te ≃ 10 eV.

We consider a similar interaction, but with two temporally Gaussian laser pulses

of differing peak intensity in Figure 33. The laser is incident on a region of finite

thickness of helium (properties identical to those above) and measured after emerg-

ing from the region of helium. We see that for the more intense pulse, the first

third of the pulse is strongly attenuated as the opacity is bleached and thereafter

the pulse is not affected. However, the less intense pulse does not contain enough

energy to bleach the helium completely and is therefore completely absorbed.
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Figure 33: Temporal variation of a Gaussian laser pulse with peak intensities of

(a) 1011 W cm−2 and (b) 1010 W cm−2 incident on 2 mm thick region of helium.

ELaser = 26.5 eV and NT = 2.5× 1019 cm−3 as in Figure 32.

The paradigm discussed above offers an interesting effect, which may be ex-

plored experimentally. Any focused laser pulse will form a Bessel profile in space,

as discussed in §2.1. The attenuation of the pulse, when interacting with a region

of helium, will therefore be spatially dependent and produce a modified profile.

The diffraction-limited focused profile of a capillary discharge laser and the effect of

attenuation of a region of helium are shown in Figure 34a.

At a distance of one focal length beyond the interaction region, the laser pulse

expands to its original size. In the absence of any interaction, an identical image of

the beam would be formed here. In the case of a beam from a capillary discharge

laser, this profile is annular as discussed in §5.2.2, with a local minimum at its centre.

After an interaction, the image would be modified by diffraction. In this case, the

central minimum of the profile is less pronounced.

An experiment may therefore be conducted, whereby a laser pulse propagating

through vacuum is focused onto a helium gas jet. Local gas pressures of the order of

several atmospheres can be readily achieved inside a high vacuum (required for EUV

laser propagation) by such jets.102 Precise measurements may be taken by imaging

the beam with a CCD before and after the interaction. This is shown in Figure 34c

with simulated idealised CCD images of the beam before and after the interaction

with the helium jet. The peak absorption coefficient scales linearly with the total ion

density and therefore the 2 mm region mentioned above may be shrunk or expanded

as necessary by control of the gas pressure. This may be necessary depending on

the focal length of the optic used - it is required that the region of interaction be

much shorter than the length scale for the spatial profile to change significantly.
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Figure 34: (a) The focused spatial intensity profile of a capillary discharge laser

(solid) and the profile resulting from the interaction with a region of helium (shaded).

(b) Schematic diagram for a proposed experiment: an initially annular profile is

focused onto helium, has attenuation based on the peak intensity and has a modified

profile when defocused. (c) Sketch to illustrate the proposed experimental setup.

The annular beam from a capillary discharge laser (as shown on the left) is focused

onto a helium jet. Comparison of the beam profiles before and after the interaction

allows the plasma to be diagnosed.

It is more difficult to observe similar bleaching waves in solid density materials,

because of the effect of inverse bremsstrahlung. It is clear from Equation (154)

that the inverse bremsstrahlung absorption coefficient strongly depends on density

and the charge of the ions in a plasma. This coefficient would therefore be much

higher in plasmas created from typical solid laser targets, made of plastics or metals,

compared to the helium gas jet considered above.

The results of a CRABS simulation of carbon at solid density, with constant ir-

radiation by EUV photons, are shown in Figure 35. We see that the opacity due

to photoionization is bleached at early times, as predicted by Equations (175) and

(176). However, the absorption due to inverse bremsstrahlung quickly grows as the
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Figure 35: The contribution to the absorption coefficient due to (a) photoionization

and (b) inverse bremsstrahlung for solid density carbon irradiated by photons with

intensity I = 1014 W cm−2 and photon energy ϵγ = 26.5 eV at times indicated. The

coefficients are normalised to the photoionization coefficient for neutral carbon.

electron density and average charge state of the ions increases, exceeding the ini-

tial photoionization coefficient κ0 by an order of magnitude. Absorption by inverse

bremsstrahlung begins to fall only when the plasma has been heated to moderately

high temperatures (≳ 50 eV in this example). The laser radiation is being absorbed

by this method to directly heat the electrons, preventing its propagation further

into the target. For such high density targets, it is difficult to observe a bleaching

of opacity before strong hydrodynamic expansion begins to occur.

95



5 EUV transmission experiments

In this chapter, we discuss laser experiments performed at the Department of Elec-

trical and Computer Engineering of Colorado State University (CSU). Many short-

wavelength radiation sources have been developed at the EUV Engineering Research

Center.37 In particular, a number of compact EUV capillary discharge lasers are in

operation at CSU, two of which have been used for this work. These capillary lasers

operate on the 1s2 2s2 2p5 3p 1S0 → 1s2 2s2 2p5 3s 1P1 transition of Ar8+ (neon

isoelectronic sequence), with a corresponding photon energy ϵγ = 26.5 eV. The ar-

gon is initially confined in a long alumina capillary and a population inversion is

achieved by a rapid electrical discharge, as detailed in §1.2.2.

The experiments aimed to create and probe a solid density plasma by the cap-

illary discharge laser, while also setting out experimental techniques to be used for

future, larger-scale experiments. The experiments allowed the benchmarking of the

hydrodynamic code POLLUX, as well as the diffraction codes written as part of this

work. We have exploited two different versions of the capillary discharge laser, with

similar properties. Each version employed a separate focusing geometry: a Fresnel

zone plate (FZP) and a spherical multilayer mirror (MLM). The FZP is part of an

ablation mass spectrometry system, with an older laser. The MLM experiment was

attached to a newer laser system, development of which has recently been completed.

The focused laser caused ablation of thick solid targets in initial experiments,

leaving an ablation crater. The craters could then be analyzed by microscopes,

which allows direct comparisons with POLLUX simulations. The depth of these craters

(which is a parameter that may be easily quantified) was much less than the target

thickness, so that simulations treated their extent as semi-infinite. Targets suffi-

ciently thin to be ablated by a single shot were also used, allowing a portion of the

beam to be transmitted through the target and imaged. The thickness was chosen

so that a single shot had sufficient energy for a significant fraction to be transmitted.

Targets

Parylene-N was chosen as the main target material for the experiments. It is a

resilient plastic composed of equal proportions of carbon and hydrogen. This com-

position simplifies the hydrodynamic modelling by POLLUX, as well as other codes

used for spectroscopy studies. As a plastic, it can be manufactured into a range

of self-supporting structures, or cut in the laboratory. Aluminium was used as a

secondary target material.
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Figure 36: Engineering drawing103 (dimensioned in mm) of the target holders for the

parylene-N targets produced by the target fabrication group at the Central Laser

Facility (CLF).

For the transmission experiment, films of two thicknesses, 429 nm and 1028 nm,

were produced and characterised by the target fabrication group of the Central Laser

Facility (CLF). The films were attached to rigid aluminium holders, as shown in the

engineering drawing in Figure 36. The films were stretched over a regular grid of 0.5

mm diameter holes to form the targets. As a secondary target material, aluminium

foils of 1.2, 2.5 and 25 µm were mounted onto several target holders at CSU after

removal of the parylene-N films.

5.1 Zone plate focus experiments

A Fresnel zone plate (FZP) is used to achieve a tight focus, with intensities up to 1010

W cm−2, as part of a previously established ablation mass spectrometry experiment.

In a mass spectrometer, ions are accelerated by a DC voltage, allowing the mass to

charge ratios of the constituent ions to be determined; in this case, a laser-produced

plasma is the source of ions.11 The narrow focal spots allow a 3-dimensional map of

isotope compositions to be built up from a given sample. The experimental setup

used for mass spectrometry (with thick targets) is shown in Figure 37, with the

transmission experiment inset.
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Figure 37: The focusing geometry using a zone plate to ablate thick targets (top),

as part of the ablation mass spectrometry experiment at CSU.11 The setup used to

image a beam transmitted through thin targets (inset).

5.1.1 Focal geometry

The FZP parameters are given in Table 4. To allow the plasma to be extracted, a

central opening is created by removing the first few zones. The laser beam is guided

to the experiment by toroidal gold grazing-incidence mirrors with high reflectivity.

These mirrors were used to transfer the beam through the experimental setup; fo-

cusing was achieved solely by the FZP. Capillary discharge lasers typically have an

annular profile, as characterised in §5.2.2, which expands to a diameter of several

millimetres when it reaches the experiment. The size of the FZP is limited to a

much smaller diameter by the size of the outer zone, meaning that only 3.1% of the

total laser energy is delivered to the target.

Focal length 2.1 mm

Outer diameter 0.5 mm

Outer zone width 200 nm

Number of zones ∼ 625

Central opening 50 µm

Table 4: Physical parameters of the Fresnel zone plate used in experiments at CSU.

The FZP has a very short focal length, making it challenging to achieve a good

focal spot. The zone plate’s mount is motorised, so that it may be positioned

to within 1 µm of the focal distance away from the target’s surface. An optical

microscope is used to confirm ablation of the target by visual observation.

To image the beam as it is transmitted through a thin target, the optical micro-
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scope was replaced by an Andor DO436 CCD. This model was chosen as it has a

very large range of photon energy response (10−2 to 103 eV). It can capture photons

for times > 100 ms, which is sufficient to capture a whole laser shot sequence, but

must subsequently digitise for approximately 3 seconds, which is very slow compared

to the maximum repetition rate of this type of argon-based capillary discharge laser.

The pixel size is 13.5 µm, which provides sufficient resolution to image the details

in the transmitted beam; 2048 pixels in each dimension give a length of 27.6 mm on

each side, which is sufficient to image the entire beam up to several metres from the

capillary. Each pixel on the CCD has a maximum possible response, after which it

saturates, continuing to saturate neighbouring pixels and possibly to damage the de-

tector. To adjust the intensity response of the CCD and protect it from saturation,

a filter must be used.

We have used specially constructed aluminium filters with thicknesses of between

0.5 and 1.2 µm, attached to a 1” circular steel holder. The holders were mounted

in slots on a protective metal screen, which was designed to shield the CCD from

stray light entering the vacuum chamber and debris created by ablation. This setup

allowed multiple filters of different thicknesses to be used to attenuate the beam by

the required amount.
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Figure 38: Signals from the mass spectrometer for three shots (as coloured). The

peaks are labelled with the corresponding elemental ionization stage. The differences

in the three cases are caused by slight variations in the focal intensity.

Removing the optical microscope to mount the CCD made it difficult to find

the position of the focal spot. We found that the mass spectrometer’s signal could

be used to determine when significant ablation was occuring and hence when the

target was at the focal point. The spectrometer measures a time-resolved voltage

signal proportional to the density of passing ions. The time of flight of the ions is

a function of their mass to charge ratio. With the optical microscope attached, we

have identified peaks corresponding to the first two charge states of carbon when
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ablation was occuring. The mass spectrometer signals for three shots at focus are

shown in Figure 38 after the optical microscope was replaced with the CCD, so that

the transmitted beam could be imaged.

5.1.2 Ablation results
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Figure 39: (a) Measured ablation profile, compared to POLLUX simulations with a

single central Gaussian peak and the predicted double peak, as indicated. Exper-

imental data supplied by Ilya Kuznetsov; POLLUX simulations were performed by

Andrew Rossall.3 (b) Normalised intensity profile for zone plate parameters in Ta-

ble 4, 8 µm away from the nominal focal distance. An analytic fit of a central

Gaussian peak, along with a side lobe, is also shown.

The ablation craters created on the surface of the thick targets were scanned

by an atomic force microscope (AFM). This method yields high-resolution measure-

ments of the surface depth, building up a 3-dimensional nanoscale image. A line

out through the centre of a crater is shown in Figure 39a. We compare this profile

to the depth of solid density material remaining after laser interactions in POLLUX

simulations.

As a purely hydrodynamic code, POLLUX requires a relatively simple spatial in-

tensity profile. By default, such a profile is Gaussian to match the diffraction-limited

beams of optical lasers. However, 1-dimensional diffraction calculations show the

presence of side lobes, as shown in Figure 39b, for a distance along the beam axis

z at or close to the focal point. These lobes have been parameterized via a second

offset Gaussian, with an intensity of 6% of the central peak. This profile has been

incorporated into POLLUX by Andrew Rossall, allowing good agreement to be found

with the measured crater.3

Using the mass spectrometer to achieve a focus, we were able to successfully
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Figure 40: (a) Reflection and transmission micrographs of the target surface at 100×
magnification. (b) Raw and background subtracted CCD images of the transmitted

beam. (c) Line out of the logarithmic intensity profile recorded by the CCD at a

distance of 416 mm beyond the target.

ablate the 429 nm parylene-N targets and record the transmitted intensity. Micro-

graphs of the target region, after the surface was coated in gold by vapour deposition,

are shown in Figure 40a. The opaque coating was added to improve the contrast of

the micrographs. The transmitted laser beam forms an intensity peak, which has

been captured by the CCD as shown in Figure 40b. The raw CCD images contain a

background with a vertical gradient, which can readily be subtracted. A logarithmic

line out of this intensity peak is shown in Figure 40c. An absolute spatial scale is

obtained from the pixel size (13.5 µm), with the CCD positioned 416 mm from the

target.

Ablation of the 429 nm parylene-N was simulated in POLLUX; the resulting den-

sity at two simulation times is shown in Figure 41. The intensity profile used is

that of Figure 39b; the focused laser had a full-width half maximum (FWHM) of

approximately 200 nm and peak intensity of approximately 1010 W cm−2. The final

result of such simulations is a hole with a diameter of 630 nm. The thin targets

lacked the tensile strength to be measured by the AFM, so a direct comparison to

POLLUX simulations could not be made. An extreme upper bound on the hole size

can be obtained from their pattern on the target surface. Shots were made at inter-

vals of 1 µm in a closed loop. If the diameter of the holes exceeded this spacing, the

enclosed region would fall away. Although the holes are close to the microscope’s

resolution limit, we are able to estimate their diameter at 700 nm from the optical

micrographs.
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Figure 41: Density profiles computed by POLLUX normalised to solid density ρ0 at

times indicated. The EUV laser is incident from the top of page, centered on r = 0.

The intensity profile used is identical to that in Figure 39b, with a peak intensity of

1010 W cm−2.

5.2 Multilayer mirror focus experiments

A newly developed capillary discharge laser was used for the ablation experiments

with a multilayer mirror focusing geometry. This laser is a prototype of a system

which has been developed to enter serial manufacturing and to be sold to academic

and industrial users as a single unit, produced by XUV Lasers, Inc. The operational

parameters are shown in Table 5. As the first scientific experiments conducted with

the laser system, the undertaking described in this section was used to improve

the design specifications for future laser units. The multilayer mirror was able to

achieve peak intensities of ∼ 3×1010 W cm−2, exceeding those of the FZP. Previous

experiments using argon capillary discharge lasers with MLMs have shown successful

ablation of solid density targets,104 motivating the present work.

Wavelength 46.9 nm

Repetition rate < 10 Hz

Pulse duration (FWHM) ∼ 1 ns

Pulse energy < 50 µJ

Beam divergence ∼ 5 mrad

Table 5: Operational parameters of the capillary discharge laser developed by XUV

Lasers, Inc. The peak repetition rate, pulse energy and beam divergence were veri-

fied during experiments described here and are discussed further below.

The capillary discharge laser is extremely compact compared even with labora-

tory optical lasers, as shown in Figure 42. The main cylindrical tank contains the
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Main tank
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Figure 42: Image of the prototype capillary discharge laser of XUV Lasers, Inc.

used in experiments. The main features and approximate beam line of the laser are

labelled; in addition asterisks label the vacuum pumps (yellow), vacuum gauges and

their displays (red). The total setup pictured is approximately 1.5 m in length.

capacitors and electronics required to produce the 18 kA discharge with ∼ 30 ns rise

time leading to lasing. Biodegradable dielectric oil is used both as an insulator and

as a coolant, with connections between parts of the laser and to a spillover tank as

shown in Figure 42. The alumina capillary is located in a holder which extends from

the main tank. An argon tank and roughing pump connected to the capillary en-

sure an appropriate background pressure of 40 Pa for lasing. The laser beam passes

out of the capillary holder through a pinhole, into two vacuum chambers containing

diagnostics and then to the main experimental chamber. This pumping geometry

maintains the lasing pressure required in the capillary and a reasonable vacuum of

10−3 Pa in the experimental chamber.

5.2.1 Experimental setup and preliminary measurements

We have used a Sc/Si multilayer coating on a concave spherical glass substrate to

focus the 46.9 nm beam onto the target; its properties are given in Table 6. As

the CCD must be mounted on an NW-50 flange, the beam had to be guided to

a wall parallel or perpendicular to the original beam propagation and therefore

a “Z” configuration with a second, identical mirror to recollimate the beam was

used as shown in Figure 43. The collimating mirror (M2) had a higher surface
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roughness than the focusing mirror (M1) and had experienced damage, leading to

lower performance. In practice, the entire target holder shown in Figure 36 proved

too wide to be inserted into the “Z” experimental configuration without clipping

the laser beams. Vertical cuts were made to isolate a strip with a single column of

targets. The mirrors were tilted by an angle α = 4.7◦ to the incoming beam.

Figure 43: Experimental setup for the multilayer mirror (MLM) ablation experi-

ment.

Reflectivity (46.9 nm) ∼ 40%

Radius of curvature Rc 10 cm

Transverse radius Rm 0.5”

Scandium layer 11.0 nm

Silicon layer 13.7 nm

Interface layer 3 nm

Table 6: Physical properties of the multilayer mirrors used. The reflectivity and

interface layer thickness are an estimate observed to agree with previous experi-

ments.105

The experiment was contained in an experimental chamber, connected by a bel-

low directly to the laser setup shown in Figure 42. The experimental chamber had

dimensions (in mm) of 560×475×382 and did not require independent pumping.

The optical components shown in Figure 43 were supported by holders attached to

an optical breadboard on the bottom of the experimental chamber. The targets

were supported on a motorised mount with three linear degrees of freedom, with a

minimum step size of 0.1 mm in each direction, which allowed the focal spot to be

located in the z dimension and shots to be made on target at intervals in the (x,y)

plane. When replacing one type of target with another (for example, of different
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thickness), it was not possible to maintain the z position to an accuracy better than

∼ 0.3 mm. Ablation results were obtained for a range of focal positions defined by

this uncertainty. However, as the focal profile is spatially extended by the large tilt

angle of the MLM, this accuracy is sufficiently high compared to f = 5 cm (the focal

length of the MLM) so that approximately the same peak intensity is achieved for

the range of z. Nonetheless, accurate positioning remains a significant challenge in

experiments with EUV radiation, as described in Chapter 2.

5.2.2 Beam profile

It is important to measure the intensity profile of the beam emerging from the laser

as the unperturbed profile can then be used to calculate the intensity at the focal

spot via diffraction integrals. We have measured the laser profile by placing a CCD

just before the experimental chamber, at a distance of 745 mm from the end of the

capillary. An image of the beam produced in this way is shown in Figure 44a. There

is a large background signal due to long-timescale spontaneous emission from the

argon plasma shining through an inline ionization detector (discussed in §5.2.3).

The laser beam forms an annular profile in the lower right of the image, narrowly

clipping the detector. Background emission is removed by taking the difference of

two pulses with different energies. Spontaneous emission mostly occurs during the

compression phase of the capillary discharge laser, so it is not practically possible to

produce a totally “dark” background signal. However, when comparing two pulses

with different energies, the background remains almost constant, yielding a multiple

of the laser signal. The background-corrected profile is shown in Figure 44b, where

the structured background has disappeared to leave random noise and an intense

signal.

To express the intensity as an analytical function, we fit to the difference of two

lasing signals a pseudo-Gaussian function given by

I(r) = (A− c) exp

(
−(r − r0)

2

w2

)
+ c r ≤ r0, (179)

I(r) = A exp

(
−(r − r0)

2

w2

)
r > r0, (180)

where r is the radial distance from the centre of the profile and A, c, r0 and w are

fit parameters. Due to the CCD response, which can saturate at high intensities,

this difference is not well defined in the region close to r0. Therefore, this region

was excluded from the fitting routine. The resulting fit is shown in Figure 44c. It
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Figure 44: (a) The annular profile of the laser beam measured directly using the

CCD, behind a 2.5 µm aluminium filter. The outer circular structure is due to the

inline detector. (b) Difference of two laser pulses (each of differing energy) to remove

background. (c) An average (black) over a number of line outs from the centre of

the beam (grey) with background subtracted. An analytic function (red) fit to the

profile is shown.

should be noted that this measurement does not provide an accurate value for the

fluence of the laser and hence only the relative values of A and c are meaningful.

The 2.5 µm aluminium filter used to shield the CCD had striations, correspond-

ing to imperfections in the rolled aluminium sheet as visible in Figure 44a. Visual

inspection shows a small azimuthal asymmetry in the beam, as there are three dis-

tinct and separate groupings of black regions (one partially clipped by the inline

detector) corresponding to regions of maximal intensity where the CCD has been

saturated. It is difficult to confirm whether this effect is due to filter imperfec-

tions. This motivates a more careful determination of the intensity profile in future

experiments.
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5.2.3 Pulse energy measurement

Determination of the laser pulse energy enables the intensities at the laser focus to

be deduced. As with most lasers, pulse energies of capillary discharge lasers vary

from shot to shot, but they are perhaps more difficult to measure than usual due to

the general lack of flexibility in EUV and soft x-ray optics. Due to the pulse energy

variation, non-destructive measurements are desirable for every experimental shot.

We have used an inline ionization detector to measure pulse energies. The laser

beam passes into a chamber, which is turbo-pumped, but nonetheless contains gas

particles at pressures of 10−3 Pa. The beam is sent through a short cylindrical tube,

with two electrodes biased to −2 kV at each end. The residual gas is ionized by the

beam and creates an electrical signal, measured by the electrodes. The integrated

signal is proportional to the pulse energy, though the precise relation depends on

parameters such as the gas pressure and the proximity of the beam relative to the

cylinder. The inline detector can provide accurate pulse energy measurements after

calibration, provided that the experimental conditions are kept largely constant.

In order to calibrate the inline detector with an absolute measurement of the

pulse energy, we have used a photodiode, which can be attached to the laser in

place of the connection to the experimental chamber. The diode is biased to −2

kV and produces a voltage signal by electron photoemission when struck by the

laser beam. The laser’s pulse energy (typically reported in µJ) is related to the

time-integrated voltage V through the relation

Epulse[J] =
ϵγ[eV]

qHZ[Ω]

∫ ∞

−∞
V [V]dt[s], (181)

where Z is the detector’s impedance, H is the attenuation factor of the filter and q is

the quantum efficiency of the absorbing material. For the diode used, the impedance

Z = 50 Ω, and the gold had a quantum efficiency qAu = 0.054.

Hole diameter 10 µm

Hole density 105 cm−2

Transmission fraction 7.85%

Table 7: Parameters of the gold-coated mesh used in front of the photodiode to

attenuate the EUV laser beam.

We have used the Talbot effect in the design of a filter for the photodiode.

Unfiltered, the laser energy is too high to be measured accurately, as a space charge

is created in front of the detector by a large flux of photo-electrons. The detector
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z: 0 cm 4 cm 5 cm

y

x

Figure 45: Talbot pattern for laser light with a wavelength of 46.9 nm, with a filter

of regularly spaced circular holes of 10 µm diameter at distances z as indicated.

is required to yield a standalone measurement of the absolute pulse energy, so an

unperforated aluminium filter (with a uniform, but finite attenuation) cannot be

used to attenuate the beam. The uncertainty in the aluminium and oxidation layer

thickness would introduce a high uncertainty into the filter transmission. An array

of circular holes in a mesh, coated with gold (which almost infinitely attenuates the

laser light) with properties listed in Table 7 was used instead.

We require that the resultant diffraction pattern from the mesh is sufficiently

diffuse that a space charge does not form around the detector. Placing the mesh

directly next to the photodiode could create undesirable alternating regions of high

and low intensity. In this case, therefore, forming a Talbot pattern would also be

undesirable. As discussed in §2.3, small perturbations to an initial Talbot mask

tend to decay away, so large departures from an idealised regular grid are required

to avoid a Talbot pattern repetition. We can therefore take a Talbot pattern to

be the worst-case scenario in terms of having alternating regions of high and low

intensity beam.

When the circular holes are arrayed regularly, we can calculate the resultant

Talbot pattern in order to optimise the distance at which to place the mesh, so that

the local intensity at the diode is not too great. The initial mesh and Talbot patterns

at two distances, 4 and 5 cm, are shown in Figure 45. The grounded gold mesh needs

to be positioned away from the diode in order to prevent a short circuit between

the two, while also fitting within the constrained dimensions of the apparatus. A
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position at a distance of 4 cm was chosen for the diode. We see from Figure 45 that

the resulting pattern is significantly more uniform than the original mesh, therefore

minimising the unwanted space charge build-up at the diode.
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Figure 46: (a) Typical voltage signal from the photodiode (solid line), with a Gaus-

sian fit used to integrate it (shaded region). (b) Magnitude of the voltage signal

from the inline ionization detector for the same shot (solid line) with a noise floor

as indicated and trapezoidal integration of the shaded region. (c) Pulse energies

measured by both detectors as indicated for a number of shots at 1 Hz. (d) Each

detector’s energies plotted against each other (points) and the fit line (solid).

The voltage signals for both detectors were measured and digitised by Pico Tech-

nology oscilloscope. The photodiode signal is easy to isolate from any background

and a Gaussian function can be readily fit to the digitised datapoints; an example

is shown in Figure 46a, with fit parameters A = 16.8 V and t1/2 = 1.12 ns. The

voltage signal can then be integrated analytically through Equation (186). We see

from this example that the main signal is followed by an oscillation, which has been

confirmed to originate from an imperfect electrical termination causing reflections

and is ignored by the fit routine.
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The inline detector produces a more complicated signal with a noise background

for the duration of the capillary laser’s cycle, most likely due to spontaneous emis-

sion. After subtracting this noise floor, it is difficult to describe the result with an

analytic function; instead, it may be integrated trapezoidally. An example of the

voltage signal, together with the noise floor and region of integration, is shown in

Figure 46b.

In order to calibrate the integrated voltage signal from the inline detector with

the photodiode energy calculated using Equation (181), a statistically significant

number of laser shots must be compared to accurately determine the constant of

proportionality. We have analysed three sets of 1000 shots (the digitization limit

for a single run of the oscilloscope) to determine this conversion factor. Results

from both detectors for one such set, where the energy ramped up as the laser

began operation, are shown in Figure 46c. The shot-to-shot variation is typical

of the capillary discharge laser. The statistical fit is evaluated by comparing both

detectors’ energy values as in Figure 46d. We see that the points lie within 5 µJ

of the fit line (which is taken as the error margin of the measurements), with the

exception of a number of high energy pulses, where the energy is overestimated by

the inline detector.

As a result of the studies of these methods of pulse energy measurement, we

discovered that the laser’s pulse energy is maximised for continuous operation with

repetition rates of 1 Hz - the lowest possible repetition rate at the time of the

experiments. However, this maximum was reached only after a ramp-up of 20 or

more continuous shots, as can be seen in Figure 46c. In order to conduct the planned

experiment with a single intense pulse delivered to a target, these initial shots must

be diverted away. To achieve this, we installed a rudimentary shutter which was

a movable optical mirror (opaque to EUV radiation) with the appropriate vacuum

feed-through controls. Although it was only manually operable, it was possible to

time it to open for the last shot in a given sequence. It is preferrable to integrate a

similar movable beam blocker into the control electronics of future experiments.

5.2.4 Alignment and focal spot characterisation

In order to align the optical components and targets with the invisible EUV beam,

we have retraced their path using a low-power helium-neon (HeNe) alignment laser.

Initially counter-propagating in the plane of the capillary, the HeNe is inserted into

the beamline using two adjustable mirrors. We ensure co-alignment of the beams

by manipulating the mirrors to fix the visible beam to two photoresist samples (one
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for each mirror) previously exposed to the EUV beam. The sample closer to the

laser is removed to allow access to the other and replaced into its position with an

accuracy of 1 mm, leading to an angular accuracy of ∼ 1 mrad.

To form the photoresists, microscope glass slides were cut to size to fit into

holders and coated with a layer of the plastic PMMA (polymethyl methacrylate).

After removal from the vacuum chamber, EUV exposed slides can be developed for

post-shot analysis by applying a 1:3 solution of MIBK (methyl isobutyl ketone) and

IPA (isopropyl alcohol) respectively with pressurized nitrogen gas used to remove

excess fluid.

0.2 mm

Figure 47: Developed PMMA slide showing beam profiles spaced in the z-direction

(perpendicular to the plane of the slide) by 0.5 mm (top) and 0.2 mm (bottom).

When focusing the laser beam, the PMMA slides may be used to image the

size and shape of the beam at the desired focal plane with the aid of an optical

microscope. The regions of highest intensity, where material has been ablated, are

visible without development. We have found that 20× microscope magnification is

sufficient for this purpose. Imaging the focal spot is necessary to confirm its position,

as although the HeNe beam can propagate coaxially with the EUV beam, it has a

different beam shape (as discussed below) and different interaction with the optics,

for example a different phase change due to the MLMs.

An approximate scan (in steps of 0.5 and 0.2 mm respectively) along the beam

axis, around the planned target position, used to locate the optimal focal spot is

shown in Figure 47. The beam was clipped on one side, which allowed straight-

forward identification of the focal spot using the observation that the beam shape

inverts about the focal position. We see that the beam shapes are generally self-

similar outside the focal region, but become difficult to predict near focus without

detailed modelling.

Fine scans of beam shapes close to the focus provide an opportunity to bench-

mark the code SAFE2DIP, by comparisons with its output. We performed a scan
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0.1 mm

Figure 48: (Top) Microscope image of ablation profiles of parylene-N coated onto

glass slides spaced in the z-dimension by 0.1 mm. The blackened regions correspond

to ablation of the glass substrate. (Bottom) The ablation profiles (red) with an

intensity contour (black) calculated by SAFE2DIP.

over z in the focal region in steps of 0.1 mm, ablating the surface of microscope

glass slides coated with parylene-N. Images of the slides taken at 20× magnification

are shown in Figure 48; three images are “stitched together” to reproduce the entire

region. The pink colour of the parylene-N film allows it to be easily distinguished

from the glass substrate, in areas where the intensity was sufficient to cause ablation.

In areas of very high fluence the glass substrate for the photoresist has been ablated,

leaving regions which appear black under microscope illumination. The regions of

glass have been digitally extracted from the micrographs and are shown enlarged

in red in Figure 48. Contours of a constant intensity taken from SAFE2DIP simu-

lations spaced by 0.1 mm are also pictured. There is a generally good agreement

between the simulations and the micrographs. The details of SAFE2DIP calculations

are discussed in more detail in the next section.

5.3 Multilayer mirror focus results and analysis

We have performed experiments to ablate thin targets and captured the transmitted

beam using the CCD. These images were collated together with the corresponding

pulse energy and high magnification micrographs of the ablation regions. These are

shown in Figure 49.
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(a)
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(b)
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(c)

0.05 mm 0.05 mm

Figure 49: Reflection (left) and transmission (right) micrographs of parylene-N tar-

gets of thickness (a) 1028 nm, (b) 429 nm and (c) aluminium of thickness 1200

nm.

5.3.1 Simulations of the focal spots

To match the ablation profiles seen in the micrographs, simulations were performed

with SAFE2DIP. The EUV laser beam was modelled by an offset Gaussian profile, as

outlined in §5.2.2. It was treated as a spherical wave expanding from a point at the

end of the capillary. The phase profile is spherical with a radius of curvature equal

to the distance from the capillary and the widths w and r0 scaled appropriately.

The beam’s amplitude and phase are modified by a multilayer mirror, as given

by Equation (43). The angular dependence of the reflection amplitude r (whose

modulus squared gives the total reflectance) and extra phase has been computed by

the IMD code56 for the Sc/Si mirror parameters in Table 6. In order to accelerate
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Figure 50: Reflection amplitude and phase as a function of the incidence angle onto

the Sc/Si mirrors, as calculated by the IMD code and analytic fits.

calculations, it is useful to fit these quantities by analytic functions. This leads to a

parameterisation of the form

ϕMLM = Aϕη
2, (182)

r = A
r
(1 +Dη2){1− tanh[C(|η| −B)]}, (183)

where η is the angle of incidence onto the mirror and Aϕ, Ar
, B, C, D are the

fit parameters. These functions and the IMD simulations are shown in Figure 50.

We see a good agreement between the simulation and fit up to approximately 25◦,

which is a sufficient range for the mirrors in this experiment. It is noteworthy that

the additional phase is largely quadratic, similar to the phase added by the mirror

curvature itself. This effect shifts the position of the focal spot.

The measured beam profile of Equations (179) and (180), together with the

MLM properties, allows a parameter scan of the focal profile along the beam axis.

Measured values of the mirror tilt angle α = 4.7◦ (the beam is then reflected at an

angle 2α) and target tilt angle β = 9.4◦ were used in the SAFE2DIP geometry, which

is shown in Figure 7. The Fresnel diffraction integral is normalised via Equation

(22), using the beam energy values obtained from the inline detector. Two examples

of focal profiles are shown in Figure 51.

We are able to match the results of SAFE2DIP simulations to ablated profiles

by considering contours of constant intensity. We have made such comparisons

with ablation of parylene-N from glass slides in §5.2.4, but thin targets provide an

unambiguous point of comparison through the contrast of the holes made in the

target material. Contours are overlaid onto micrographs of 1028 nm thick parylene-

N after 30 shots on target and 1200 nm thick aluminium after two shots on target in
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Figure 51: The results of SAFE2DIP simulations of the focal spot profile of the off-

axis MLM, with α = 4.7◦ at (a) z = 49.75 mm and (b) z = 49.85 mm. The profiles

have been normalised to an intensity corresponding to an average pulse energy of

32 µJ, as measured by the inline detector.

(a) (b)

5 µm 5 µm

Figure 52: Intensity contours taken from SAFE2DIP simulations overlaid on mi-

crographs with 100× magnification of (a) 1028 nm parylene-N and (b) 1200 nm

aluminium.

Figure 52; the region with intensity above the contour threshold is filled in the latter

case, showing that the profile is hollow. We see good overall agreement between the

simulations and experimental results, particularly since the large number of shots
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in the given examples smooth out any unexpected asymmetries in the laser profile.

5.3.2 Hydrodynamic simulations

We are unable to use an azimuthally symmetric code like POLLUX to directly model

the fundamentally 2-dimensional focal intensity profiles and therefore 3-dimensional

plasmas produced by the tilted MLMs. A fully 3-dimensional radiation-hydrodynamic

code is currently under development at the University of York.106 However, POLLUX

simulations can be used to attain a reasonable approximation to the ablated profiles,

because 3-dimensional effects like lateral heat conduction are not significant at the

target surface. This implies that target ablation is strongly dependent only on the

local intensity.

We therefore use the simplifying assumption that if we simulate a plasma in 2

dimensions (for example in x and z), the result is independent of the variation in

the other lateral dimension (in this case, y). Schematically, we assume that plasma

properties along a line (red) through a circular intensity profile . are similar to those

along a line through a linear intensity profile . .
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Figure 53: Time-resolved target depth on the POLLUX grid (points) parameterised by

super-Gaussian curves (lines). A depth of 1028 nm corresponds to ablation through

the entire target. The targets are 1028 nm thick parylene-N with incident laser

radiation with a peak intensity of (a) 1010 W cm−2 and (b) 2.5× 1010 W cm−2 and

FWHM of 2 µm, as shown schematically by the shaded region.

We obtain a time-resolved target depth from POLLUX simulations by tracking

the outermost (in the cylindrical dimension z) grid points with solid density. At

the final simulation time, this depth corresponds to the measurable ablation profile

after the experiment. The depth at these discrete points can be parameterised by a

super-Gaussian function Gn (discussed in Appendix B), allowing interpolation to a

116



5.3 Multilayer mirror focus results and analysis

finer grid. This may be necessary, because many grid points are required to simulate

the plasma plume created by laser interactions (which can be seen, for example, in

Figure 41), leading to a relatively low resolution at the focus of the laser. Examples

of such time-resolved depth profiles, starting with uniformly thick 1028 nm parylene-

N, are shown for two intensities in Figure 53. We see that the more intense pulse is

able to directly penetrate the parylene-N target, while two shots would be required

for the less intense pulse.
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Figure 54: (a) SAFE2DIP simulation with α = 4.7◦ at z = 49.75 mm with a circle

over the “arc” (light blue) and symmetric straight lines over the V-shape (red). (b)

Intensity as a function of angle over the circle.

The SAFE2DIP intensity profiles can be decomposed into several geometric com-

ponents, as shown in Figure 54. The profile is composed of a prominent circular

“arc” feature, which contains the highest intensity of the entire profile at 2.8× 1010

W cm−2 and has a FWHM of 2 µm. We take a line out from the arc along a circle
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with a radius of 19 µm. The rest of the profile forms a V-shape, with a varying

FWHM and an approximately constant intensity of 5 × 109 W cm−2. We take a

line out along a straight line (the profile is symmetric about its centre) to form the

V-shape. The present approach is described for an arbitrary curve in Appendix E.

With the decompositions of the simulated intensity profile, we use the assump-

tion that the lateral intensity variation has no effect on the laser-produced plasma

to obtain a fully 3-dimensional target profile from the parameterised POLLUX sim-

ulations. We impose simulated depths along a line perpendicular to the points on

the arc and the V-shape. The intensities at points on these lines allow the appro-

priate parameterised depth profile to be imposed perpendicularly outwards. The

codes SAFE2DIP and POLLUX give results at discrete points in their parameter space

- intensity on specific grid points or depth profiles with a certain peak intensity;

interpolation yields values between these discrete points. A depth profile calculated

by this method for a single shot incident on 1028 nm parylene-N is shown in Figure

55a.

Such a target depth profile is calculated for all the relevant focal intensity profiles,

target thicknesses and materials. To allow a direct comparison to the micrographs,

we take a contour corresponding to a depth of 1028 nm - the region predicted to

have been penetrated by the laser. These contours are overlaid over micrographs

with five different sets of conditions in Figure 55.

We see a generally good agreement between the micrographs and computed con-

tours, but several experimental considerations must be taken into account. Due to

the annular capillary discharge laser profile, above a certain MLM tilt angle, the

focused intensity profiles form a closed loop of high intensity around a central min-

imum; this can be seen in SAFE2DIP calculations presented above. As a result, solid

pieces of material ∼ 5 µm across are cut from the targets, but remain intact. Such

a piece, which has remained attached to the target after a single shot, is labelled by

a green asterisk in Figure 55b. The targets have also been affected by venting the

experimental chamber back to atmospheric pressure, which creates cracks in regions

embrittled by the laser. The targets have been prepared under tension; its release by

laser interactions, in addition to embrittlement, has caused cracks as seen in Figure

55e.

5.3.3 Transmission analysis

The second multilayer mirror M2 recollimated the transmitted laser radiation, al-

lowing it to be imaged by the CCD after attenuation by a filter. This optical
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5.3 Multilayer mirror focus results and analysis
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Figure 55: (a) Simulated depth profile of a single laser shot on a 1028 nm parylene-N

target. Micrographs of targets of this thickness overlaid with contours corresponding

to where the target has been penetrated (corresponding to a depth of 0 nm) by (b)

single shot, (c) two shots and (d) 30 shots. Contours over (e) 429 nm parylene-N

target after a single shot and (f) 1.2 µm aluminium target after two shots. A region

of unablated target material in (b), which has folded inwards, is denoted by the

green asterisk. The distance z from the MLM to the targets differed by up to 30

µm in these cases, leading to different incident intensity profiles.
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5.3 Multilayer mirror focus results and analysis

arrangement led to strong distortion of the annular laser profile, even in the absence

of any targets, but nonetheless provided an additional diagnostic for EUV laser ab-

lation experiments. The two mirrors produced a small de-magnification, because

they were not separated by precisely 2f and because of a small mismatch in the

focal lengths, despite having identical radii of curvature to within manufacturing

tolerances. An image of the laser beam after passing through the optical system

in the absence of a target is shown in Figure 56a. Despite the strong distortion, a

line out of the intensity profile, as given in Figure 56b, closely matches the annular

profile measured previously after scaling the linear dimension to account for the

de-magnification.

The laser intensities captured during single-shot ablation of the targets are

largely consistent with diffraction calculations and allow some insight into the plasma

interactions. CCD images of the transmitted laser beam through the 429 and 1028

nm parylene-N targets are shown in Figures 56c and 56e respectively. Contrast

in the latter has been greatly increased, to compensate for the small transmitted

energy fraction. Transmitted intensity profiles have been obtained by calculating

diffraction through the areas where the targets have been penetrated in §5.3.2. In

effect, the aperture is treated as a spatial filter to the incident intensity profile. The

resultant diffracted intensities are given in Figures 56d and 56f respectively. The

de-magnification factor obtained from scaling in Figure 55b was used to ultimately

scale the linear dimensions in these simulations.

The CCD images may be used to obtain a value for the total fraction of the

energy of a single pulse transmitted after interactions with a target. We have taken

a sum of the detector counts over the beam shape in CCD images taken with and

without interaction with a target. The ratio of these two cases gives the transmitted

energy fraction, when weighted by the individual pulse energies taken from the inline

detector. These ratios are given for three experimental conditions in Table 8.

Target conditions Transmission fraction

429 nm parylene-N, 0 shots 1.5±0.35%

429 nm parylene-N, 1 shot ∼ 100%

1028 nm parylene-N, 0 shots 0.31±0.065%

1028 nm parylene-N, 1 shot 33.4±6.6%

Table 8: The fraction of laser light transmitted through a range of targets as mea-

sured by the CCD.

120



5.3 Multilayer mirror focus results and analysis
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Figure 56: (a) Background subtracted image of the EUV laser beam after pass-

ing through the MLM optical setup, as shown in Figure 43. (b) Intensity profile

along the red line, compared to the fit of Equations (179) and (180), with appro-

priate scaling due to de-magnification in the optical setup and normalised to the

A parameter in the fit equations. (c) Single-shot transmission through a 429 nm

parylene-N target (ablation profile shown in Figure 55e) with contours from (d) the

simulated transmitted intensity. (e) High-contrast image of transmission through

a 1028 nm parylene-N target (ablation profile shown in Figure 55b) and (f) the

simulated intensity.

121



5.3 Multilayer mirror focus results and analysis

At present, the hydrodynamic simulations have insufficient spatial resolution to

provide the optical depths and phase modulation required to achieve full agreement

between measurments and simulations of transmission in the experiments discussed.

The results in this section show modest qualitative agreement and motivate further

experiments. Previous studies have used coherent EUV radiation to diagnose plas-

mas created by intense, short-pulse optical lasers.119 The present work opens the

possibility to create and diagnose a plasma using a single EUV pulse. The plasma

generated in this way may be significantly more dense because of the higher criti-

cal density of EUV photons. A long optical laser pulse may instead be used as a

backlighter to image the low-density expanding plasma plume after the main EUV

pulse.
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6 Conclusions

This work has explored the methods of focusing lasers with wavelengths in the ex-

treme ultraviolet (EUV) range, and the plasmas produced at such a focal spot. The

effects of wave optics - diffraction and inteference - have been used to achieve focused

intensities of ≤ 3 × 1010 W cm−2 and simulated by the code SAFE2DIP, written as

part of this work. Plasmas produced by these and higher intensities have been sim-

ulated on the microscopic scale using the collisional-radiative code CRABS, written

as part of this work, and on the macroscopic scale by the radiation-hydrodynamic

code POLLUX, written previously at the University of York. Experiments have been

undertaken with a novel capillary discharge laser to validate these codes and to

develop techniques for future experiments.

We have shown that solid-density plasmas produced by EUV lasers remain close

to local thermodynamic equilibrium (LTE). LTE holds exactly if the collisions be-

tween electrons and ions are solely responsible for the change in the excitation and

ionization state of the ions. Due to the high densities, the collisional rates do indeed

dominate over radiative rates for low to moderate incident intensities of radiation

(0 < I < 1012 W cm−2). A criterion has been derived to determine if photoioniza-

tion has an effect on LTE in similar fashion to that of McWhirter, which determines

if the density is sufficient for LTE to hold.

We have studied the effect of rapid heating on a plasma, by considering a rapid

increase in the electrons’ kinetic energy over 10 or 100 fs. This is taken as an extreme

case, with heating typically occurring on much longer timescales. The collisional

rates are sufficiently high that LTE is reached in a time < 1 ps after such transient

heating for plasma densities as low as 10% of solid. Such timescales are well below

the timescales of interest for hydrodynamic expansion occuring when EUV lasers

interact with solid-density targets.

The statistics of electrons at high density must be modelled by the Fermi-Dirac

distribution, because many of the available quantum states have been occupied.

The rates of electron collisions with ions are reduced, as such collisions can occur

only if free quantum states exist for the outgoing electrons. Accounting for the

outgoing electrons requires detailed data for the collisional ionization differential

cross section, which is relatively poorly studied. We have found that even for solid-

density plasmas, these quantum degeneracy effects are insignificant if the incident

flux of ionizing radiation is relatively small. In that case, the electron density and

temperature are simultaneously low and vice versa, while LTE holds. However, the
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Fermi-Dirac distribution deviates from the Maxwell-Boltzmann distribution only

when the electrons are both cold and dense. This is the case when the plasma is

driven out of LTE by a high intensity (> 1013 W cm−2) of photoionizing radiation. In

practice, such a flux of radiation would rapidly heat the plasma to high temperatures

where the electrons behave classically. The difference in the atomic rates and heat

capacity between the two cases may nonetheless lead to differences in the final

properties of the plasma.

The results of the collisional-radiative modelling are fortuitous, because the state

of a plasma in LTE is determined by the relatively straightforward Saha-Boltzmann

equation. LTE eliminates the need to calculate computationally expensive atomic

processes, whose rates depend on experimentally determined cross sections. It allows

the equation of state of plasmas to be calculated inline by hydrodynamic codes like

POLLUX.

If a plasma is generated at low density, for example from a gas, it may exhibit

interesting non-LTE properties. This is the principle behind the capillary discharge

laser operating in an argon plasma created by a strong electrical discharge, which

has been used for experiments described here. Laser gain can only be achieved if

the medium is fundamentally out of thermodynamic equilibrium, which is achieved

by the electrical discharge in this case. We have explored how a laser focused onto

a gas target may lead to a drop in opacity, allowing the laser to propagate further.

This cycle of opacity “bleaching” propagates at a well-defined rate, which can be

estimated by simple energy considerations. The phenomenon of opacity bleaching

may be observed by the change in the intensity profile of the transmitted laser beam,

due to diffraction. At higher densities, strong inverse bremsstrahlung absorption

prevents a bleaching wave from propagating.

The wave description of light is very important to the design of optics for laser

wavelengths below the visible. Low reflectivities and high absorption by many solid

state materials in the EUV spectral region makes it challenging to conduct experi-

ments. Significant net reflectivity is possible only from a stack of wavelength-sized

dielectric layers, with net reflectivities of ≤ 60%.

Experiments have been undertaken on a new version of capillary discharge laser

with a wavelength of 46.9 nm. This laser’s pulse shapes and energies were measured

as part of this work. Two types of focusing geometry have been exploited in these

experiments: a Fresnel zone plate (FZP) and multilayer mirror (MLM). The FZP

has the advantages of a very tight focal spot and its inherent angular symmetry.

However, it is greatly limited in size, as the zone widths become ever smaller. Only
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a small fraction of the laser beam is then available to be focused, and the FZP

requires half of the incident flux (negative zones) to be filtered. Furthermore, the

tight focus comes at the cost of an extremely short focal length - for example, the

FZP used for experiments had f = 2.1 mm. Practically, targets must be located

within several micrometres of the focal position, but without specialist positioning

and fiducial equipment, it is difficult to position a target to an accuracy better than

0.1 mm.

MLMs can be manufactured to capture an entire laser beam with ease and have

advantageously long focal lengths. However, the setup with a single MLM tilted

with respect to the beam axis, has led to asymmetric and spatially extended focal

profiles. Nonetheless, peak intensities were achieved exceeding those of the FZP

setup. We have seen good agreement between SAFE2DIP simulations and ablation

profiles created in experiments. To avoid such asymmetries, MLMs must be used in

a pair-wise arrangement such as the Schwarzschild or Kirkpatrick-Baez, leading to

a tight focus with angular symmetry, but at the expense of an extra reflective loss

and a great increase in the complexity of the setup.

The radiation-hydrodynamic code POLLUX has been used to simulate the abla-

tion of material and motion of plasmas created by the capillary discharge laser.

POLLUX simulations are able to successfully predict the depth of ablation in solid

density material, if the incident laser radiation has full angular symmetry. This

work presents approaches to model asymmetric intensity profiles using POLLUX by

deomposing them into simple geometric components. This approach is valid because

lateral heat transport is not significant in this regime of laser interactions. Good

agreement is found between ablation profiles calculated by this approach and a wide

range of experimental parameters.

We have demonstrated the feasibility of both creating and imaging a dense

plasma with a single EUV laser beam transmitted through a thin target. Com-

plete analysis of the transmission requires accurate hydrodynamic models, but may

serve as an important diagnostic in future experiments. The high spatial and tem-

poral coherence of EUV lasers opens the possibility to perform interferometry. Their

high photon energies allow the poorly understood regime of high density plasmas to

be studied.
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Future work

� Further experiments are planned to be undertaken using capillary discharge

lasers operating at 46.9 nm. A Schwarzschild objective may be constructed

in order to make use of the large total energy throughput of reflective optics,

while minimizing the focal spot size. The theoretical framework developed in

this work may be extended to simulate the intensity at the focus by solving

appropriate Fresnel integrals. Multilayer effects may be calculated by the IMD

code, which has been further verified for 46.9 nm photons as part of this work;

the effect of radial asymmetries, such as from the mirror supports, can be

simulated by a code like SAFE2DIP.

� An increase in peak intensity would allow a wider range of target thickness and

material to be investigated, in order to further verify POLLUX across differing

plasma conditions. In addition to solid targets, chosen for this work in part

because of their simplicity, an EUV laser may be focused onto a gas jet. The

density profile of such a jet would need to be characterised and used in simu-

lations in order to explain the results of such experiments. Further diagnostics

for the plasma parameters, such as visible or soft x-ray spectrometers, may be

added to the setup.

� The effects of electron degeneracy in collisional-radiative models may be ex-

plored further. The increased computational cost of the related numerical

integrals may be offset by further parallelism. Newly emerging computing ar-

chitectures, such as Graphics Processing Units (GPUs), are based on a large

number of multi-threaded processors, each of which can evaluate an individual

rate coefficient simultaneously. Simulations requiring many rate evaluations

may then be performed with an efficient code on a high performance cluster

in a reasonable time.
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Appendices

A Conventions

This section discusses the units and notation used throughout this text, which are

frequently used in plasma physics.

A.1 Units

It is convenient when describing plasmas to use electronvolts (eV), centimetres (cm)

and seconds (s), instead of the usual seven SI base units. Electronvolts are par-

ticularly useful when considering plasmas, as the kinetic energies and ionization

potentials of particles in plasmas are typically tens or hundreds of eV. The symbols

used throughout this work and their units are shown in Table 9.

Quantity Symbol Unit

Length l, x, δx... cm

Time t s

Mass m, me eV/c2

Energy E, ϵ, ϵγ eV

Temperature T , Te, Tr eV

Density N , n cm−3

Energy density ε eV cm−3

Intensity I W cm−2

Spectral Intensity I(ϵγ) s−1 cm−2

Partition function Z −
Degeneracy g −
Coulomb logarithm Ξ −

Table 9: Unless stated otherwise, these symbols and units are used throughout the

text.

Temperatures are implicitly multiplied by the Boltzmann constant kB in order to

express them in units of eV. Masses are given in units of eV/c2, as they are frequently

multiplied by the speed of light squared; this leads to convenient quantities for the

masses of subatomic particles. One exception to this are intensities, which are given

in the units of W cm−2 as are commonly used for laser physics. Intensities may

be converted to units of eV s−1 cm−2 through division by the elementary charge
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e = 1.602176× 10−19 A s. Several pertinent combinations of elementary constants,

which are frequently used in plasma physics, are given in Table 10.

Constant Value Units

ℏc = hc/2π 1.97327×10−5 eV cm

e2/ε0 1.80705×10−6 eV cm

mec
2 5.10999×105 eV

Ry = mec
2e4/8(hc)2ε20 1.36057×101 eV

G = 4π(2mec
2/h2c2)3/2 6.81220×1021 eV−3/2 cm−3

Table 10: Numerical values of combinations of physical constants which occur fre-

quently throughout this text.

As ions, electrons and radiation may frequently be out of thermodynamic equi-

librium with one another, temperatures are frequently subscripted Ti, Te and Tr

respectively. We subscript quantities involving photons with the symbol γ. We dis-

tinguish between the absolute intensity of radiation I - a power per unit area - and

the spectral intensity I(ϵ) - the power per unit area per photon energy. The two are

related via the integral I =
∫∞
0

I(ϵγ)dϵγ.

A.2 Atomic physics conventions

As a result of the high energy densities in plasmas, electrons in atoms may be

excited to highly energetic quantum states and ionized many times. We use the

words “atom” and “ion” interchangeably in this work; a neutral atom is considered

to be an “ion” with zero charge. Each electron bound to an atom has an integer-

valued principal quantum number n and an azimuthal quantum number l. To denote

such an atom’s configuration, each electron is labelled with the numerical value of n

and a letter corresponding to l; for historical reasons, the first four values of l take

the letters s, p, d, f and thereafter increase alphabetically. The principal quantum

numbers may also be referred to in the literature as shells, labelled K, L, M etc.,

while an azimuthal quantum number within a shell is termed a subshell. Electrons

have a further spin quantum number m = ±1, usually not labelled. Each quantum

state may only be occupied by a single electron due to the Pauli exclusion principle.

An example of a typical electron configuration of neon is 1s2 2s2 2p5 3p, where there

are two 1s electrons etc.; we see that the outermost electron has been excited from

the ground state and we may refer to this configuration as 3p in shorthand. States

may also be labelled using the spectroscopic notation 2S+1LJ , where L, S and J
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are the orbital, spin and total angular momentum; L is denoted by the S, P, D, F

convention.

We are interested in the densities of ions in specific ionization stages and config-

urations. The generic symbol N for the density of ions in units of cm−3 is referred

to with a subscript i, which corresponds to its charge; for example, in the case of

carbon, N5 refers to the number density of C5+ ions; i = 0 corresponds to a neutral

atom. Densities may be further subscripted by j to denote the excited level, so that

N5,0 is the density of 5+ ions in the ground state. A given excited state may not

correspond to a superconfiguration, as detailed in Appendix D. The density of ions

in a given ionization stage is given by the sum over the excited states Ni =
∑

j Ni,j,

and the total ion density by the sum over ionization stages NT =
∑

i Ni. As dis-

cussed in §3.2, these ion densities are often assembled into a vector N⃗ ; the comma

in the notation of Ni,j distinguishes it from a rank-2 tensor.

The charge of an ion (and hence the maximum value of i) is denoted by Z.

Ionization potentials, denoted by Ei, correspond to the energy of the transition

i− 1 → i; for example, for carbon E5 is the ionization potential of the C4+ → C5+

transition. While E is reserved for well-defined energies, such as those of atomic

transitions, ϵ is used for dynamically varying energies, such as the kinetic energy of

electrons in a plasma; often these are dummy variables in a definite integral. Electron

density is invariably denoted by ne. The configuration energies are denoted by Ei,j,

or sometimes simply by Ej.
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B Mathematical methods

We present the mathematical functions, numerical methods for solutions of tran-

scendental and differential equations, along with associated notation as used in this

text.

B.1 Important functions

The Dirac δ-function is zero everywhere except the origin and satisfies the relations

∫ b

a

δ(x)dx = 1, b > 0, a < 0,∫ b

a

δ(x)f(x)dx = f(0), b > 0, a < 0,∫ b

a

δ(x)dx =

∫ b

a

δ(x)f(x)dx = 0, ab > 0.

The Kronecker delta δij is the discrete equivalent of the continuous Dirac δ-function,

non-vanishing for its indices taking equal values. Closely related is the Heaviside

step function, which satisifies

Θ(x) =

∫ x

−∞
δ(t)dt. (184)

The Heaviside function Θ(x) is therefore zero and unity for negative and positive x

respectively. It should be noted that Θ(0) = 1
2
.

The Gaussian function is frequently used throughout the text for its useful prop-

erties. It is defined as

G(x) = A exp

[
−4 ln 2

(
x− x0

x1/2

)2
]
, (185)

where x0 is the centre and x1/2 is the full-width half maximum (FWHM), the distance

between the two points at which the Gaussian is A/2. The integral of the Gaussian

function over its entire domain is given by

∫ ∞

−∞
G(x)dx =

2A

x1/2

√
ln 2

π
. (186)

The integral over a subset of its domain is equivalent to the error function. For

curve fitting, we also make use of the super-Gaussian function

Gn(x) = A exp

[(
x− x0

w

)n]
, (187)
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where w is a measure of the width of the super-Gaussian peak and n ∈ R (not

restricted to integers) adjusts the steepness of this peak.

Exponential integrals

The family of exponential integral functions is defined through the relation

En (x) =

∫ ∞

x

exp (−t)

tn
dt. (188)

They are denoted in bold to distinguish them from ionization energies etc. Of

particular importance is the function E1, which may be useful when integrating

over the Maxwell-Boltzmann distribution. We are interested in definite integrals of

the type

∫ ∞

Y

ln
( ϵ

Y

)
exp

(
− ϵ

Z

)
dϵ = Z

∫ ∞

Y/Z

ln

(
Zt

Y

)
exp (−t) dt, (189)

simplified in this case by the substitution t = ϵ/Z. We proceed integrating by parts,

∫ ∞

Y/Z

ln

(
Zt

Y

)
exp (−t) dt =

[
− ln

(
Zt

Y

)
exp (−t)

]t=∞

t=Y/Z

+

∫ ∞

Y/Z

exp(−t)

t
dt. (190)

The square brackets vanish: we have ln(1) = 0 in the lower limit and since exp(t)

grows faster than ln(t), the ratio in the upper limit also tends to zero. We therefore

have

∫ ∞

Y

ln
( ϵ

Y

)
exp

(
− ϵ

Z

)
dϵ = ZE1

(
Y

Z

)
. (191)

The function E1 can be efficiently calculated by numerical methods.107

B.2 Tensors

Vectors and matrices are used in collisional-radiative modelling and in mathemat-

ical methods throughout this work. Vectors are denoted by an arrow, such as v⃗.

Subscripts are used to denote the elements of tensors. For a matrix element Amn,

the rows are denoted by m and columns by n so that matrix multiplication can be

implemented as usual: um =
∑

n Amnvn. The symbol I is used to denote the iden-

tity matrix, whose elements are δij. The superscript symbol † is used to denote the

transpose. Finally, we demonstrate that rate matrices, as presented in §3.2, cannot

be directly inverted.
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Theorem 1. A matrix M whose diagonals are the negative sum of their corre-

sponding columns (Mnn = −
∑

m̸=n Mnm) is singular (det(M) = 0).

Proof. The determinant of a matrix is unchanged by adding the elements of a row to

the corresponding elements of another row.108 It is therefore unchanged by adding to

a given row all the others, leading its elements to be
∑

mMnm =
∑

m̸=n Mnm+Mnn =

0. A matrix with one or more zero rows has a zero determinant.109 This implies

that M has no inverse.

B.3 Curve fitting

In this work, much use is made of curve fitting routines to parameterise a set of points

obtained from experiments or simulations through an analytic function. Given a set

of pairs of points (xi, yi), the aim is to minimise the χ2 error

χ2 =
∑
i

yi − f(xi, p⃗) (192)

for some set of input parameters p⃗ to an appropriate function f . Minimisation

algorithms attempt to approach the minimum point by perturbing the current best

estimate of p⃗ by a step h⃗. The Jacobian matrix Jij = ∂f(xi, p⃗)/∂pj is often used to

calculate h⃗.

Perhaps the most often used χ2-minimisation algorithm is the Levenberg − Mar-

quardt.110 The step h⃗ is a solution to the equation

(J†J + λdiag(J†J))⃗h = J†[y⃗ − f⃗(p⃗)], (193)

where λ > 0 is some scalar damping term. The routine curve fit in the scipy.

optimize library of Python efficiently implements this algorithm and has been used

throughout this work.

B.4 Root-finding algorithms

In this work, we encounter many equations without analytical solutions. In this

case, we rearrange the equation in question so that the RHS, for example, is equal

to zero, and then attempt to find its roots, i.e. the point where it vanishes. The

roots are typically found iteratively. One of the best-known algorithms to find the

root of an analytic function is the Newton-Raphson method, which approximates

the function by its tangent. If xi is an estimate for the root of a function f , then a
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better estimate is given by

xi+1 = xi −
f(xi)

f ′(xi)
, (194)

where f ′ is the function’s derivative. If the exact derivative is replaced by a finite

difference ∆f/∆x, this is referred to as the secant method.

If only a single root of a function is known to lie in some interval a ≤ x ≤ b,

then it may be found by repeated bisection of the interval. Each time, the root is

localized to one half of the remaining interval. Similarly, if the function is known at

several points on both sides of the root, then a spline may be fit to the points and

used to interpolate to find the root. Depending on the number of known points, this

leads to linear, quadratic, cubic etc. interpolation. Brent’s algorithm12 combines

the above methods, choosing the optimal one at every iteration. The disadvantage

is that, like the bisection method, it requires the presence of precisely one root in

some interval. By contrast, the Newton-Raphson or secant methods will typically

converge on a root for a well behaved function, though they are slower than Brent’s

algorithm and may fall into a basin of attraction, leading to an infinite cycle. Brent’s

algorithm is particularly important in this work as part of the CRABS code for finding

the steady state electron density for a plasma at fixed temperature and total ion

density, as described in §3.4.

B.5 Fast Fourier Transform

Fourier methods are extremely valuable in mathematics and are applied numeri-

cally via the Discrete Fourier Transform (DFT) to signal processing and to solve

differential equations. They are particularly useful in diffraction, as outlined in

Chapter 2. The DFT of an N -dimensional tensor g with M elements, such that

{j ∈ Z|0 ≤ j < M}, is given by

Gk0...kN−1
=

M−1∑
j0=0

exp(∓2πij0k0/M) · · ·
M−1∑

jN−1=0

exp(∓2πijN−1kN−1/M)gj0...jN−1
.

(195)

The − and + signs correspond to the DFT, labelled F , and its inverse, labelled

F−1, respectively.

A particularly efficient method for computing the DFT due to Cooley and

Tukey111 is the Fast Fourier Transform (FFT). The method factorises the exponen-

tials to simplify calculations; for example, the exponential factor exp(−2πi/6) may

be computed from exp(−2πi/12) through the identity exp(−2πi/6) ≡ exp(−2πi/12)2

by a single multiplication, greatly speeding up the calculation. The FFT algorithm
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is implemented by the freely available C library FFTW112 (“Fastest Fourier Transform

in the West”), which has been very highly optimised for modern computers.

B.6 Numerical integration

Calculating a definite integral of a function which cannot be integrated analytically

is often referred to as quadrature. All the methods of quadrature transform a con-

tinuous integral into a discrete sum of the integrand evaluated at many points xi

(called nodes or abscissae),

∫ b

a

f(x)dx ≈
N∑
j=0

wjf(xj), (196)

where N +1 is the total number of function evaluations and wj are weights, specific

to the numerical method.

Most familiar are the Newton-Cotes type of formula, where xj are spaced reg-

ularly by ∆x = (b − a)/N . The simplest practical method is trapezoidal, where

wj = ∆x/2 for j = 0, N and ∆x otherwise. There are higher-order Newton-Cotes

methods,113,114 with more complicated weights which allowing higher-order polyno-

mials to be integrated exactly.

More complicated quadrature methods require the limits of the integral to be

exactly −1 and +1. We recast a general integral using the transformation

t =
2x− b− a

b− a
, (197)

so that the integral becomes

∫ b

a

f(x)dx =
b− a

2

∫ 1

−1

f(t)dt. (198)

The Curtis-Clenshaw integral formula is derived by attempting to expand f(t)

as a series of Chebyshev polynomials,113 which gives

∫ 1

−1

f(t)dt = − 4

N

N∑
j=0

f (cos(πj/N))

N/2∑
k=0

cos(2πjk/N)

k2 − 1
. (199)

The weights wi are comprised of a sum over cosines at each node. Given that

Re{exp(2πjk/N)} = cos(2πjk/N), it is possible to calculate the weights efficiently

by performing an FFT.

The method of Gaussian quadrature recasts the weights and nodes in terms of

coupled linear equations, which may be efficiently solved by matrix methods. An
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algorithm by Golub and Welsch115,116 allows the calculation of Gaussian nodes and

weights from a symmetric tridiagonal matrix J , whose non-zero elements are given

by

Jj+1,j = Jj,j+1 =
1

2
√

1− (2j)2
. (200)

Let the eigenvectors and eigenvalues of J be denoted by v⃗j and λj respectively. Then

the Gaussian integral becomes

∫ 1

−1

f(t)dt = 2
N∑
j=0

(vj,0)
2f (λj) , (201)

where vj,0 is the 0
th element of the jth eigenvector. As the matrix J is real, symmetric

and tridiagonal, specialised algorithms may be used for its matrix decomposition; the

commonly used LAPACK algorithms contain the function stev for this purpose.87

The above three methods have been listed in order of their accuracy (for a given

N). It is clear by inspection that the increase in efficiency of the latter two methods

comes at a cost of having to compute the non-trivial weights and nodes. This cost is

offset when many repeated integrals are performed with the same N , as nodes and

weights may be reused each time, even if the limits a and b are different.

Solution of differential equations

We frequently require finding a solution to a set of coupled differential equations

for a set of variables, starting with some initial conditions. It is useful to write the

variables in a vector y⃗, so that they satisfy

dy⃗

dt
= f (t, y⃗) . (202)

They can then be solved by discretising t and iterating from an initial boundary

condition y⃗(t0) to obtain the value y⃗(tn) at each discrete point in time. It is possible

to solve Equation (202) naively using the formula y⃗(tn+1) = y⃗(tn) + f(tn, y⃗(tn))∆t,

but a much more accurate approach is to use the 4th-order Runge-Kutta formula117

(often referred to as RK4),

y⃗n+1 = y⃗n +
1

6
∆t
(
k⃗1 + 2k⃗2 + 2k⃗3 + k⃗4

)
, (203)
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where the coefficients are given by

k⃗1 = f (tn, y⃗n) ,

k⃗2 = f
(
tn +∆t/2, y⃗n + k⃗1∆t/2

)
,

k⃗3 = f
(
tn +∆t/2, y⃗n + k⃗2∆t/2

)
,

k⃗4 = f
(
tn +∆t, y⃗n + k⃗3∆t

)
.

This algorithm has an error of order ∆t5, compared to ∆t2 for the simple method.

Runge-Kutta methods with more k⃗ coefficients exist, with errors of correspondingly

higher orders.
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C Properties of the Fermi-Dirac distribution

The statistics of electrons, two of which may not occupy the same quantum state,

are determined by the Fermi-Dirac energy distribution. This distribution is mathe-

matically and computationally challenging because it requires the chemical potential

to be known. The chemical potential is defined transcendentally, through the inte-

gral in Equation (73). The application of the Fermi-Dirac distribution is relevant to

warm dense matter and to the shell and fuel during inertial fusion compression. It is

therefore worthwhile to examine some of the mathematical features of the chemical

potential.

At T = 0, the chemical potential takes a value of the Fermi energy, µ(0) = EF ,

as in Equation (75). At high temperatures, we require that the chemical poten-

tial approach the asymptotic form µ̄(T ) = T ln
[
(4/3

√
π) (EF/T )

3/2
]
. We show in

this section that the chemical potential decreases as the temperature decreases and

approaches µ̄ asymptotically.

Theorem 2. For a given fixed electron density ne, the chemical potential is a

monotonically decreasing function of temperature.

Proof. For a function to decrease monotonically, its derivative must be everywhere

negative. Differentiating Equation (73), we have

dµ

dT
= −T

∫∞
0
(ϵ− µ)

√
ϵAdϵ∫∞

0

√
ϵAdϵ

, (204)

A = exp

(
ϵ− µ

T

)[
1 + exp

(
ϵ− µ

T

)]−2

. (205)

T , ϵ and A are positive and therefore µ decreases monotonically if the numerator is

positive:
∫∞
0
(ϵ − µ)

√
ϵAdϵ > 0. For µ < 0, the factor (ϵ − µ) becomes positive, as

are all other factors in the integrand, so the condition is satisfied.

For µ > 0, we split the integral into three parts:
∫∞
0
(ϵ − µ)

√
ϵAdϵ =

∫∞
2µ
(ϵ −

µ)
√
ϵAdϵ +

∫ 2µ

µ
(ϵ̄ − µ)

√
ϵ̄Adϵ̄ +

∫ µ

0
(ϵ − µ)

√
ϵAdϵ, where we have chosen a different

variable of integration in the second integral. The first part is positive, since ϵ > µ.

For the second integral, we make the substitution ϵ = 2µ− ϵ̄, leading to

∫ 2µ

µ

(ϵ̄− µ)
√
ϵ̄ exp

(
ϵ̄−µ
T

)[
1 + exp

(
ϵ̄−µ
T

)]2 dϵ̄ =

∫ µ

0

(µ− ϵ)
√
2µ− ϵAdϵ. (206)

The new limits allow two integrals to be combined together, meaning that we

require
∫ µ

0
(µ− ϵ)(

√
2µ− ϵ−

√
ϵ)Adϵ > 0. Given the limits, 0 ≤ ϵ ≤ µ, we see that

both brackets are positive and therefore dµ
dT

is negative as required.
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Theorem 3. The chemical potential µ(T ) is always greater than its asymptotic

form µ̄(T ).

Proof. From Equation (73), we have that

3

2E
3/2
F

∫ ∞

0

√
ϵ

1 + exp[(ϵ− µ)/T ]
dϵ = 1.

Given that all the quantities are real, the relation 1+exp[(ϵ−µ)/T ] > exp[(ϵ−µ)/T ]

leads to
3

2E
3/2
F

∫ ∞

0

√
ϵ

exp[(ϵ− µ)/T ]
dϵ > 1,

which simplifies to

3

2

(
T

EF

)3/2

exp(µ/T )

∫ ∞

0

√
ϵ/T

exp[ϵ/T ]
d(ϵ/T ) > 1.

Using the familiar definite integral
∫∞
0

√
x exp(−x)dx =

√
π/2, this simplifies to

3
√
π

4

(
T

EF

)3/2

exp(µ/T ) > 1.

Rearranging and substituting the definition of µ̄(T ) from Equation (77), we see

indeed that µ(T ) > µ̄(T ).

138



D Superconfiguration atomic models

In Chapter 3, we have discussed atomic rates which are repsonsible for exciting ions

in a plasma to highly energetic quantum states. Determining the proportion of ions

in a given state is central to determining the emissivities and opacities of plasmas

used for spectroscopy and radiation-hydrodynamics. The quantum state of an atom

is one of infinitely many solutions to the Schrödinger equation. In a realistic plasma,

continuum lowering reduces the number of possible states to a finite number.78 The

problem becomes solvable, but nonetheless computationally very expensive.

(a) (b) (c)

Figure 57: Grotrian diagrams for neutral helium (drawn approximately to scale);

autoionizing states are not shown here. (a) A selection of individual quantum states

plotted by energy and orbital angular momentum; data from NIST.71 (b) A super-

configuration approach, where the individual levels have been grouped by principal

quantum number n. (c) The approach in the current work, grouping the significant

levels into a single excited state.

One approach commonly used to reduce this computational load is to take a

weighted average over many similar quantum states to gather them together into a

single “superconfiguration”.97,98 The occupation of states in such a superconfigu-

ration is then always assumed to be in LTE and therefore given by the Boltzmann

ratio
Ni,j′

Ni,j

=
gj′

gj
exp(Ej/Te). (207)
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This approach is justified for levels closely spaced in energy, because then the col-

lisional rates between these levels are extremely high. A small threshold energy

increases the integral in Equation (90); furthermore, the cross sections for such pro-

cesses are typically large. For example, transitions involving a single spin “flip” or

change in orbital angular momentum (but no change in principal quantum number)

have these properties. For this reason, states may be grouped into superconfigu-

rations by n, the principal quantum number.96 As n increases, the states are ever

more closely spaced and therefore can be grouped further. This is shown for neu-

tral helium in Figure 57b. States with very high n are generally extremely close to

LTE as a result of their energy spacing118 or are not present because of continuum

lowering.

After grouping atomic levels into superconfigurations, appropriate cross sections

must be obtained for the atomic rate coefficients. The Lotz and Van Regemorter

formulas require only an effective ionization/excitation energy and oscillator strength

in the latter case. A more level-specific cross section, such as that of Equation

(97), can be obtained by curve fitting;98 atomic databases frequently offer such

superconfiguration-averaged cross sections.21

The atomic model used in this work is a further simplification of the supercon-

figuration approach. We group all the levels for principal quantum number n ≥ 2

into a single excited level; the n = 1 grouping corresponds to the ground level. The

simple Boltzmann ratio of Equation (207) ensures that the ground state is almost

invariably the most highly populated in equilibrium. Transitions to excited states

are “bottlenecked” through the fastest transition from the ground state, because the

redistribution between n ≥ 2 is comparatively much faster. We therefore take the

highest cross section to calculate the excitation rate between the two atomic levels

of each ionization stage, or the sum of several cross sections in the case where atomic

data is available and their magnitude is comparable. This approach makes possible

the time-dependent collisional-radiative calculations presented in Chapter 4, but is

not suitable for detailed spectroscopic analysis, for example, where transitions from

fine structure levels must be resolved.
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E Focal point coordinates

Consider a curve C in 2-dimensional Cartesian space passing through the set of

points with coordinates (x0, y0). Each point on this curve is parameterised by a

single unique variable α, namely x0 = x0(α), y0 = y0(α). A line L is perpendicular

to the tangent to the curve at the point with coordinate α. |β| is the distance

along L; the sign of beta determines the direction along L. Therefore, a pair of

coordinates α, β can be used to specify a point in the 2-dimensional space with

Cartesian coordinates (x, y) as shown in Figure 58a.

(a) (b)

Figure 58: (a) A system of coordinates relative to a curve C, where α is equivalent

to the position along the curve and β to the perpendicular distance from it. (b) The

region around the tangent line, showing the relationship between the local gradient

and displacement.

We are interested in converting between Cartesian coordinates and this new

coordinate system. Figure 58b makes clear that by using the properties of similar

triangles and Pythagoras’s theorem respectively, we have that

x− x0

y − y0
=

dy0
dx0

=
dy0
dα

(
dx0

dα

)−1

, (208)

β =
√
(x− x0)2 + (y − y0)2. (209)

After rearranging, this leads to

x− x0 + (y − y0)
dy0
dx0

= 0, (210)

β = (y − y0)

√
1 +

(
dy0
dx0

)2

. (211)

A root-finding routine can be used to calculate α from Equation (210) and use it to

calculate β from Equation (211). There are two considerations when transforming
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between the two aformentioned coordinate systems. Firstly, the set of acceptable

values of α and β for a given curve may not span the entire Cartesian space; on the

other hand, it is guaranteed that there is a Cartesian coordinate for every possible

α and β. Secondly, a given curve may have a one-to-many relationship between a

given Cartesian coordinate (which is unique) and pairs of α, β.

This coordinate system may be readily applied to the parameterisation of the

asymmetric intensity profiles close to focus, as encountered in Chapter 5. The curve

C (such as those in Figure 54) is chosen to run along the local peak intensity, so that

the intensity variation is strongest perpendicular to C (along β). The intensity at

every point on the curve I(α) is then used to impose the appropriate depth profile

along β; examples of the profiles which would be imposed for I(α) = 1010 and I(α) =

2.5× 1010 W cm−2 are given in Figure 53. This approach treats the hydrodynamics

along β as essentially 2-dimensional, because the intensity variation is small parallel

to C (along α) and therefore so too are the flux of heat and momentum in this

direction.
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