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Abstract 
The ubiquitously expressed cellular-Src (C-Src) protein kinase has a number of 

neural isoforms known as neural-Src (N-Src) kinases. One such isoform, N1-Src 

has an insert of five or six amino acids in its SH3 domain, changing target 

protein specificity. Previous data have shown that N1-Src expression levels 

correlate positively with good prognosis childhood neuroblastoma cancer; which 

develop from neural crest-derived tissues. In this project it was shown using RT-

PCR that peaks in N1-Src expression correspond to stages of primary and 

secondary neurogenesis in the Xenopus tropicalis and zebrafish model 

organisms. An additional Xenopus-specific isoform, termed N3-Src, which 

previously had no ascribed function, possesses 22 additional amino acids in its 

SH3 domain. Here it was shown that N3-Src expression levels also peak during 

primary and secondary neurogenesis and that both isoforms are somewhat 

upregulated in noggin mRNA-injected animal cap explants. In situ hybridisation 

using locked nucleic acid (LNA) probes showed that the expression of these 

isoforms is restricted to neural and neural crest structures during early Xenopus 

tropicalis development. Antisense morpholino oligo-mediated knockdown of 

Xenopus tropicalis N1-Src and N3-Src resulted in locomotive defects, the 

expansion of the proliferative neural plate marker sox3 and the reduction of the 

neural differentiation marker n. tubulin in neurula stage Xenopus tropicalis 

embryos and a subtle reduction in phox2a expression at tailbud stages; a 

marker of noradrenergic cells from which neuroblastoma cancers derive. Whilst 

N1-Src overexpression had no detectable effect on Xenopus tropicalis embryo 

phenotype or the expression of the neural markers analysed, N3-Src 

overexpression caused a reduction in both eye pigmentation and the expression 

of phox2a. These data support functions of neural Src isoforms in the regulation 

of vertebrate neural development. 
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Chapter one: Introduction 

Protein phosphorylation 
Protein phosphorylation is a mechanism by which proteins are post-

translationally modified by the covalent addition of one or more gamma-

phosphate groups from ATP, resulting in their activation or inactivation 

and allowing cells to rapidly signal both intracellularly and intercellularly 

without the need for protein synthesis. By adding phosphate groups to 

target proteins, kinase proteins facilitate the phosphorylation process, 

whilst phosphatase proteins reverse this by removing phosphate groups. 

Protein phosphorylation results in the activation of multiple cell signalling 

pathways, which modulate key cellular activities such as differentiation, 

cell cycle progression, cytoskeletal arrangement and cell motility 

(Johnson 2009).  

 

Protein phosphorylation in higher eukaryotes occurs on serine, threonine 

and tyrosine residues, upon the recognition of the surrounding amino 

acids, known as the ‘motif’ (Amanchy et al. 2007).  

Src Family Kinases 
Src Family Kinases (SFKs) are a family of ten non-receptor tyrosine 

kinases known as Src, Lck, Hck, Fyn, Blk, Lyn, Fgr, Yes, Frk and Yrk 

(Smida & Smidová 1969; Amata et al. 2014). SFKs are a group of 

proteins with related structures, in the form of conserved protein domains, 

termed Src homology (SH) domains (Figure 1).  

 

The first tyrosine kinase protein to be discovered, viral-Src (v-Src) is an 

essential oncogenic component of the transforming capability of the Rous 

Sarcoma Virus (RSV) after which Src and subsequently the protein family 

was named. RSV infection causes neoplastic transformation of chicken 

fibroblasts (Smida & Smidová 1969) whilst uninfected chicken cells also 

contain DNA that is partially complementary to the virus RNA (Baluda 

1972), a feature that has been shown to be conserved in avian species 

(Stehelin et al. 1976) and in fact all Parazoa and Uemetazoa (Schartl & 
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Barnekow 1982). This proto-oncogene encodes the cellular product 

known as C-Src and is believed to be the gene from which the 

transforming capacity encoded by v-Src originally derived, upon its 

integration into the viral genome (Stehelin et al. 1976), owing to its 

functions in regulating proliferation, cell adhesion and cell migration 

(Baumgartner et al. 2008). C-Src overexpression and activation is 

associated with many human cancers, including cancers of the breast, 

brain, pancreas and colon (Irby & Yeatman 2000).  

 

Src Family Kinase protein domains 

The SH4 domain 
At the amino terminus, SFK proteins are membrane targeted via the SH4 

domain. This occurs via myristoylation and palmitoylation of basic 

arginine residues. The N terminal Met-Gly-X-X-X-Ser/Thr consensus 

sequence is recognised and myristoylated cotranslationally by the 

covalent addition of the myristate group to the glycine residue at position 

two by N-myristyl transferase (Resh 1993; Resh 1994). In addition to 

myristolylation, SFK proteins are palmitoylated at N-terminal cysteine 

Figure 1: Src Family Kinase (SFK) domain structure: SFK proteins possess an N-terminal membrane targeting 
SH4 domain, a variable unique domain, a substrate-specifying SH3 domain (the site of neural microexon inclusion, 
the amino acid sequences of which are shown), a phosphotyrosine-binding SH2 domain and a kinase domain, 
which is connected to the SH2 domain via a linker. SFK proteins are subjected to regulatory phoshpohorylations; at 
the activating Y416 and inactivating Y527 sites. Amino acid positions refer to the chicken Src protein.  
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residues; at position three and additionally position five in the Lck protein, 

by palmitoyltransferase enzymes following myristoylation. Palmitoylation 

occurs on all members of the SFK family, with the exceptions of Src and 

Blk (Koegl et al. 1994). Whilst Src is not palmitoylated, its membrane 

association is promoted by the presence of alternate basic lysine 

residues at the N terminus, forming the Met-Gly-X-X-Lys-X-Lys-X motif, 

variants of which are shared by other SFK proteins and promote 

membrane association via electrostatic interactions with acidic 

phospholipid head groups (Silverman et al. 1993). In addition, Src 

contains three arginine residues at positions 14-16, which further 

increase this positive charge and strengthen the electrostatic interaction 

(Resh 1994).  

 

Membrane targeting and anchorage of SFKs primarily targets them to the 

plasma membrane inner surface, which permits their function in 

propagating cellular signalling. Membrane localisation enables SFK 

proteins to interact with other membrane proteins, including 

transmembrane proteins (Thomas & Brugge 1997). In doing so, SFKs are 

able to phosphorylate proteins in association with membrane proteins, 

which themselves lack intrinsic kinase activity and thus enables cellular 

signalling (Courtneidge et al. 1993).  

The unique domain 
C-terminal to the membrane-targeting SH4 domain is the unique domain; 

an intrinsically disordered region (Maffei et al. 2015) of 50-90 amino acids 

in length, which is the most variable region between SFK proteins (Amata 

et al. 2014). Due to their intrinsically disordered nature, no single domain 

structure or function has be attributed to this domain, however the unique 

domains of specific SFK proteins are highly conserved between different 

species and exchanging the unique domain of Src for the unique domain 

of Yes switches its functions in gene expression regulation and cell 

morphology (Hoey et al. 2000; Summy et al. 2003), implying that this 

domain is important in SFK function and specificity.  
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The Src unique domain has been shown to interact with acidic lipids via 

the unique lipid-binding region (ULBR), the Src SH3 domain both 

intramolecularly and intermolecularly and proteins such as calcium-bound 

calmodulin (Pérez et al. 2013) and the adaptor protein NADH 

dehydrogenase subunit 2 (ND2), which bridges the binding of Src and the 

N-methyl-d-aspartate (NMDA) receptor (Gingrich et al. 2004).  

 

Pérez et al. (2013) showed in vitro that there are multiple sites of Src 

unique domain phosphorylation that are able to regulate its binding. 

Phosphorylation of T37 or S75 of human Src (T34 and S72 of chicken Src 

(Amata et al. 2014)) by p25-activated Cyclin-dependent kinase 5 (Cdk5) 

reduces the interaction between the ULBR and acidic phospholipids. This 

promotes ubiquitination-mediated Src degradation, thereby regulating its 

levels and therefore Src activity (Pan et al. 2011). In the context of 

cellular function and in particular cell division, S75 phosphorylation by 

Cdk5 has been observed in the human Y79 retinoblastoma cell line (Kato 

& Maeda 1999). This is postulated to reduce lipid binding by the ULBR, 

changing the Src localisation to cytosolic; the location associated with cell 

cycle progression (David-Pfeuty 1990) and a feature of oncogenic v-Src 

(Willingham et al. 1979). This may encourage cancerous behaviour by 

changing the Src substrates to those associated with cell cycle 

progression, such as the Transmembrane and Associated with Src 

Kinases (Trask) protein, which interacts with cell adhesion and matrix 

proteins. These include syndecans and cadherins, whose mitotic 

relocalisation from the cell membrane to the cytosol is associated with the 

loss of adhesion observed during mitosis (Bhatt et al. 2005). In the non-

cancerous state, Src S75 phosphorylation leads to the ubiquitination, 

limiting and therefore regulating cytosolic Src activity (Pan et al. 2011).  

 

Pérez et al. (2013) showed that the interaction between the unique and 

SH3 domains is allosterically inhibited by polyproline peptide binding to 

the SH3 domain, whilst unique domain binding to calcium-bound 

Calmodulin enhances lipid binding by the ULBR. These data highlight the 

functional significance and regulation of this domain.  
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The SH3 domain 
C-terminal to the unique domain is the SH3 domain. The SH3 domain 

functions in target protein binding (Pérez et al. 2013). The SH3 domain 

comprises of 55-75 amino acids, folded to form two three-stranded 

antiparallel beta sheets, which are packed at right angles to one another. 

There are three key interaction points present in the SH3 domains of SFK 

proteins; two recognition pockets responsible for binding proline and a 

specificity pocket which binds the flanking arginine or lysine residue. This 

forms a hydrophobic binding pocket, which binds proline rich substrate 

and ligand peptides; specifically the R/KxxPxxP or PxxPxR/K polyproline 

motifs (Yu et al. 1992; Zarrinpar et al. 2003). In addition to these 

interaction points, a region referred to as the specificity zone present in 

the SH3 domain targets the specificity of substrate binding via non-

consensus sequences and is made of two loops that connect the two 

beta sheets. They are known as the n-Src loop and the RT loop (Saksela 

& Permi 2012). In addition, the Src SH3 domain is able to bind lipids and 

Src unique domains via the RT and n-Src loops (Pérez et al. 2013).  

 

C-terminal to the SH3 domain are the SH2 and kinase domains, which 

are separated by a linker domain. The linker domain binds to the SH3 

domain via its left-handed polyproline type II helix. This causes the SFK 

to adopt a closed and inactive conformation and is essential in regulating 

the SFK activity (Gonfloni et al. 1997). 

 

The SH2 domain 
The SH2 domain also participates in ligand and substrate binding, which 

occurs due to its affinity for phosphotyrosine (Huang et al. 2008). The 

SH2 domain has important functions in substrate binding and negative 

autoregulation of kinase activity (Filippakopoulos et al. 2009).  

 

SFK substrate binding mediated by the SH2 domain permits the 

association of SFK proteins such as Src with focal adhesion kinase 

(FAK), via integrin-induced FAK phosphorylation at Y397 (Guan 1997; 
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Lindfors et al. 2012). This association allows Src to phosphorylate FAK in 

its kinase domain activation loop which consequentially becomes 

activated, forming an active FAK-Src complex (Mitra & Schlaepfer 2006). 

This promotes the turnover of focal adhesions, cell migration, survival and 

anchorage independent growth (Westhoff et al. 2004; Mitra & Schlaepfer 

2006). 

 

The negative autoregulation of SFK function imparted by the SH2 domain 

is facilitated by its binding to phosphorylated Y527 in Src and the 

corresponding phosphotyrosine residue in other SFK proteins, which is 

present at the carboxy terminus of SFK proteins (Filippakopoulos et al. 

2009). C-Srk Kinase, the SFK regulator, performs Y527 phosphorylation. 

SH2 domain binding to phosphorylated Y527 causes the protein to adopt 

a closed and inactive conformation. The cancer-causing v-Src lacks the 

Y527 residue and therefore cannot be regulated in this manner, leading 

to unregulated Src activity, causing cancer (Okada 2012). In cancers that 

do not have somatic mutations in either Src or Csk, changes have been 

observed in the expression levels of Csk regulators such as Csk-binding 

protein (Cbp), which binds Csk and SFK proteins and directs membrane 

localisation (Kawabuchi et al. 2000;  Oneyama et al. 2008).  

 

The kinase domain 
The SFK kinase domain, also known as the SH1 domain is responsible 

for the SFK effector kinase functions, adding phosphate groups to target 

proteins. Full kinase activity is attained upon phosphorylation of Y416 in 

the kinase domain activation loop. This is mediated by 

autophosphorylation and mutation of the ATP binding site (K295M) 

prevents Y416 phosphorylation (Irtegun et al. 2013).  

 

Src regulation 
As described, SFK proteins are subjected to regulation of their activities, 

thus preventing cellular transformation. It has been described that the 

Csk protein phosphorylates Y527, enabling its binding to the SH2 
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domain. This interaction is stabilised by the binding of the SH3 domain to 

the linker domain, which separates the SH2 and kinase domains. This 

closed conformation prevents the autophosphorylation of Y416 in the 

kinase domain activation loop, thereby rendering the SFK protein 

inactive. Y527 dephosphorylation is then required to reverse this process 

(Okada 2012).  

 

Neural Src kinase  
Brugge et al. (1985) demonstrated that the neurons of rats express 15-20 

times higher Src protein levels and six times higher Src kinase activity 

than fibroblast cells, measured as 35S-methionine levels and both 32P 

incorporation and enolase phosphorylation respectively. 

Immunoprecipitated Src from neurons and fibroblasts also presented 

different migration properties following V8 protease digestion; a serine 

endoprotease, which cleaves peptide bonds C-terminal to glutamic acid 

residues. Two amino terminal digestion products of Mr 18,000 and 16,000 

migrated more slowly in the neural immunoprecipitate. Martinez et al. 

(1987) showed that this corresponds to a neuron-specific six amino acid 

insertion into the SH3 domain, encoded by the insertion of a microexon 

between exons 3 and 4 and was termed Neural Src (N1-Src). The N1-Src 

splice variant has been detected in vertebrates from teleost fish to 

mammals (Raulf et al. 1989), where the microexon also encodes a six 

amino acid insert. In Xenopus species, the N1-Src microexons (of which 

Xenopus tropicalis have one and Xenopus laevis have two) encode 

inserts of five amino acid (Figure 1) (Collett & Steele 1992).  

 

It has been observed that an additional neural Src isoform is expressed in 

the neurons of mammals such as humans and was termed N2-Src. This 

isoform has an insert of 11 additional amino acids, immediately C-

terminal to the N1-Src insert, which are expressed concomitantly to 

produce the N2-Src protein (Figure 1) (Pyper & Bolen 1990).  
 



	 20 

The Neural-Src inserts are located in the n-Src loop in the specificity zone 

of the SH3 domain. The inserts change the Src target protein and 

substrate specificities, for example, the N1-Src insert increases the 

affinity of this protein for proteins such as NMDA receptors (Groveman et 

al. 2011), the axon guidance protein EVL (Ena/VASP-like protein) 

(Lambrechts et al. 2000) and the post-synaptic scaffolding protein 

Delphillin (Miyagi et al. 2002).  

 

Neural Src in neuroblastoma cancer 
Neuroblastoma is a cancer that develops from neural precursors known 

as neuroblasts. More specifically, neuroblastoma cancers develop from 

neuroblasts of the sympathetic branch of the autonomic nervous system, 

which derives from the neural crest. It is the most common cause of 

childhood extracranial solid tumours and arises in the adrenal glands, 

neck, chest abdomen and pelvis (Ciccarone et al. 1989).  
 

Bjelfman et al. (1990) demonstrated that C-Src and N1-Src proteins are 

detectable in neuroblastoma cancer cell lines, whilst neuroepithelioma 

cell lines express only C-Src.  By immunoblotting primary tumour samples 

of child patients, this group also showed the expression of the two Src 

isoforms in neuroblastoma, gangioneuroblastoma and retinoblastoma 

primary tumours, whilst N1-Src was undetected in ganglioneuroma, Askin 

tumour and an adult esthesinoneuroblastoma samples. Of the 27 

neuroblastoma tumours analysed, 23 samples were positive for N1-Src 

expression. 12 tumours from infant patients (≤18 months old) expected to 

have a favourable outcome with stage 1-3 neuroblastoma cancer were 

analysed; nine of which expressed more N1-Src than C-Src. A tenth 

patient expressed equal amounts of the two isoforms and was given 

intensive treatment due to the high-risk nature of this cancer. In three 

infants with stage 4, highly malignant disease, the tumours expressed 

more C-Src than N1-Src, whilst in tumours of an additional three non-

infant patients with stage 4 cancer, only C-Src could be detected. Five out 

of six of the patients with stage 4 cancers died. From this, they concluded 



	 21 

that age and the ratio between C-Src and N1-Src levels predicted 

neuroblastoma prognosis; with younger age and higher levels of N1-Src 

than C-Src proteins correlating with better prognosis.  

 

Neuroblastoma cancers exhibit spontaneous regression, most often in 

children under 18 months of age (Brodeur & Bagatell 2014), with the 

neuroblast-like cancer cells differentiating to form benign tumours 

(Reynolds 2002).  

 

Using developmental biology to study protein function and 
disease 
To predict the roles of particular proteins in disease, it is necessary to 

understand their normal functions. To do so, the process of development 

can be studied. In this project, the development of the model organisms 

Xenopus and zebrafish (Danio rerio) were used to investigate how N1-Src 

functions in nervous system development. In differentiating embryonic 

cells, protein levels and/or activities can be modified, the consequences 

of which can indicate functions. It can then be inferred how proteins 

function aberrantly in disease. It could be argued that development is a 

strong model for studying childhood neuroblastoma as this is a 

spontaneously regressing cancer of neuroblasts, of which the prognosis 

worsens with age.  

 

Neural development 
Nervous system development occurs as a series of steps in which 

transcription factors activate and repress the expression of other 

transcription factors and effector proteins, ultimately patterning a fully 

functional nervous system that enables organisms to perceive and 

respond to endogenous and exogenous stimuli, in order to survive. Such 

processes have been revealed as highly conserved between vertebrates 

(Wullimann et al. 2005), supporting their use in these analyses.  
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Xenopus neural development 
Nervous system development begins with the process of neural induction. 

In Xenopus this occurs during late blastula and gastrula stages (Kuroda 

et al. 2004). The early Xenopus blastula embryo consists of an 

asymmetrically pigmented hollow ball of cells with both anterioposterior 

and dorsoventral axes. Within the blastula stage embryo, numerous 

signalling pathways begin to establish the three primary germ layers; 

endoderm, mesoderm and ectoderm, which during gastrulation continue 

to be patterned and reorganise to their correct locations for function. The 

lighter, less pigmented and denser hemisphere is known as the vegetal 

pole, from which the endoderm originates and later differentiates into the 

gut and associated organs such as the pancreas and liver.  The darker, 

more pigmented hemisphere is known as the animal hemisphere and 

comprises future ectodermal cells, which later differentiate into epithelial 

and nervous tissues. The intervening equatorial cells make up the future 

mesodermal tissues, which include blood, cartilage and bone (Yasuo & 

Lemaire 2001).   

 

It is the dorsal-most mesodermal cells, which have the properties of 

Spemann-Manngold’s organiser that release the necessary signals for 

a b Neural inductive
genes e.g. noggin

Neural prepattern 
genes e.g. sox3 
and soxD

Proneural genes
e.g. x-ngnr-1

Neurogenic genes
e.g. x-delta-1

Figure 2: The cascade of transcriptional activation and repression that establishes the 
neurectoderm followed by differentiating neurons within this domain (a) neural induction 
establishes the neuroectoderm, (b) a cascade of transcriptional activation and repression 
establishes differentiated neurons of the nervous system. 
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neural induction. This establishes the region of the ectoderm that is 

competent to form the nervous system, known as the neuroectoderm 

(Spemann & H. Mangold 1924; Yanagi et al. 2015). Bone morphogenic 

proteins (BMPs) are secreted proteins expressed throughout the blastula 

stage embryo. Upon ligand binding, BMP cell surface receptors 

phosphorylate the BMP effector proteins Smad1, 5 and 8 which form 

complexes with the co-Smad known as Smad4 and accumulate in the 

nucleus where they regulate transcription. BMP signalling induces the 

ventral ectoderm to form epithelium whilst inhibition of BMP signalling is 

necessary to induce neuroectoderm. Neural inductive signals originating 

from Spemann-Mangold’s organiser include inhibitors of BMP signalling, 

such as Chordin and Noggin, which are expressed due to elevated levels 

of β-catenin. They are secreted into the animal hemisphere where they 

extracellularly bind BMP dimers and prevent them from inducing 

epidermal fate in the dorsal ectoderm (Figure 2a) (Shi & Massagué 

2003). In addition, FGF molecules in this region bind to their dimeric 

tyrosine kinase receptors, activating the MAP Kinase pathway. This leads 

to the phosphorylation of the Smad1 linker region, which inhibits its 

translocation to the nucleus (Pera et al. 2003), and therefore further 

inhibits BMP signalling and thus promotes neural fate in the dorsal 

ectoderm.  

 

Following neural induction, neurogenesis ensues from gastrulation 

onwards in which neurons are specified in the neuroectoderm. In non-

amniotic vertebrates such as Xenopus and zebrafish, neurogenesis 

occurs in two waves, known as primary and secondary neurogenesis, in 

which primary and secondary neurons develop respectively. Primary 

neurons established during primary neurogenesis enable the tail flick 

response of tailbud embryos and facilitate early motility in the aqueous 

environment. Xenopus primary neurons begin to differentiate and become 

established during gastrula stages until Xenopus stage 36/37 (Schlosser 

et al. 2002), via the cascade of transcriptional activation and repression 

shown in Figure 2b that ensures the neural plate is of an adequate size 

for the entire nervous system to develop, but that only a subset of cells in 
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the neural plate develop into specific neural subpopulations. The majority 

of primary neurons are later replaced during secondary neurogenesis that 

occurs within the neural tube (Schlosser et al. 2002).  

 

At the beginning of primary neurogenesis the neural prepattern genes 

sox2 and sox3; members of the SRY-box containing genes B1 (SoxB1) 

family are expressed in the neuroectoderm in response to neural 

induction. They encode transcription factors that promote cell division in 

the mitotically active neural plate to ensure it reaches a sufficient size for 

the nervous system to develop. To do this, Sox2 and Sox3 act to 

downregulate the expression of neurogenic genes which otherwise 

promote neuroblast differentiation into neurons, such as X-ngnr (Rogers 

et al. 2009). In addition, they maintain the capacity of the neuroectoderm 

to respond to neural inductive signals via its ability to respond to FGF 

signalling and promoting the repression of BMP signalling, for example by 

inhibiting the expression of bmp4; a BMP ligand (Mizuseki, Kishi, Matsui, 

et al. 1998; Rogers et al. 2009).  

 

The neural prepattern gene soxD, which is expressed in response to 

BMP antagonism and sox3 expression (Rogers et al. 2009), then sets the 

open neural plate down the path of neural determination by activating the 

expression of a neural determination factor - the early proneural gene 

neurogenin (X-ngnr) (Mizuseki, Kishi, Shiota, et al. 1998), which in turn 

activates the expression of the late proneural genes, such as the basic 

helix loop helix transcription factor neuroD; a neural differentiation factor 

(Cao et al. 2002; Lee et al. 1995). This pathway establishes neural 

differentiation, which can be visualised as populations of n. tubulin 

expression (a marker of differentiated neurons) (Kuroda et al. 2004). 

 

During neurogenesis, three distinct neural subpopulations form on either 

side of the dorsal midline that can be visualised as expression domains of 

neuroD and n. tubulin. These subpopulations of cells differentiate in 

longitudinal domains positioned medially, intermediately and laterally with 

respect to the midline on both sides of the neural plate (Figure 3). As the 
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neural plate rolls and fuses to form the neural tube, the medially and 

laterally positioned subpopulations become positioned ventrally and 

dorsally respectively, with the intermediately positioned population 

located between (Brewster et al. 1998). These ventrally, dorsally and 

intermediately-positioned subpopulations go on to differentiate into motor, 

sensory and interneurons respectively and their positions within the 

neural tube enable the formation of properly formed neural circuits. The 

three longitudinal domains are established by Notch and Delta-mediated 

lateral inhibition. In this highly conserved pathway, cells in the neural 

plate that express the highest levels of X-ngnr activate the expression of 

delta, which encodes a transmembrane ligand. The Delta receptor, 

known as Notch is expressed throughout the neural plate (Yan et al. 

2009). Upon Delta ligand binding, Notch receptors on the surfaces of 

cells located between the columns of highest X-ngnr expression undergo 

proteolysis, releasing the Notch intracellular domain. The Notch 

intracellular domain then enters the nucleus, where it associates with the 

vertebrate homologue of the Drosophila melanogaster DNA binding 

protein Suppressor of Hairless (Su(H)) . This converts it to a 

transcriptional activator, which activates the expression of the Enhancer 

of Split (Espl) complex and Hairy; inhibitors of neurogenesis. These 

proteins act, for example by inhibiting the expression of X-ngnr (Ma et al. 

Figure 3: The longitudinal columns of N. tubulin expression across the 
mediolateral axis of neural stage Xenopus embryos. ‘l’, ‘i’ and ‘m’ refer to 
lateral, intermediate and medial positions across the mediolateral axis of the 
neural stage neural plate, which differentiate into sensory, inter and motor 
neurons respectively. 
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1996) and therefore neurons are not specified in the domains between 

the longitudinal columns of highest X-ngnr levels, thus creating the three 

distinct subpopulations described.  

 

Secondary neurogenesis occurs in the neural tube of non-amniotic 

vertebrates such as Xenopus and zebrafish and occurs from Xenopus 

stage 46 onwards (Schlosser et al. 2002). Secondary neurogenesis has 

been more closely likened to amniotic neurogenesis, such as that of 

humans, occurring in the neural tube. It is believed that the pathways are 

conserved between primary and secondary neurogenesis (Wullimann et 

al. 2005).  

 

Whilst differences exist, the pathways involved in neural development, 

such as FGF and BMP signalling and also Notch-Delta lateral inhibition 

are highly conserved between vertebrates, such as Xenopus, zebrafish 

and mammalian species and even invertebrates such as Drosophila 

melanogaster (Pownall & Isaacs 2010; Rogers et al. 2011; Sanes et al. 

2011).  

 

Neural crest development 
Neuroblastoma cancer develops in tissues of the sympathetic nervous 

system, which differentiates from cells of the neural crest. The neural 

crest develops from cells located laterally on either side of the neural 

plate, which delaminate from the neuroectoderm-ectoderm margin as the 

neural tube rolls up, fuses and detaches from the surrounding ectoderm 

(Figure 4). The process of neural crest development is owing to an 

epithelial to mesenchymal transition, as the cells that delaminate then 

migrate to peripheral locations (Lim & Thiery 2012), where they contribute 

to peripheral nervous system development and also craniofacial cartilage 

and bone and also glia (Trainor 2005).  
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The strengths of using Xenopus and zebrafish as model 
organisms to study development and disease 
In this project, Xenopus tropicalis, Xenopus laevis and zebrafish were 

used to gain understanding into the function of neural Src isoforms in the 

context of development. These organisms provide many practical 

advantages due to their fully sequenced genomes and large clutch sizes. 

Their external development and large embryo sizes also enable the 

microinjection of reagents (Hirsch et al. 2002) such as antisense 

morpholino oligos and in vitro transcribed mRNA for knockdown and 

overexpression analyses, and additionally the microinjection of the 

reagents necessary to generate knockout organisms, via clustered 

regularly-interspaced short palindromic repeats (CRISPR)/CRISPR-

associated (Cas) technology. 

 

Previous work relevant to this project  

xN1-Src expression and functional analyses 
By dissecting away the neural plate from the surrounding tissue and 

performing RT-PCR, Collett & Steele (1992)  demonstrated that the 

neural plate was the region of highest Xenopus N1-Src (xN1-Src) 

expression in neurula stage Xenopus embryos. In this project the spatial 

expression profile of the xN1-Src isoform during early Xenopus tropicalis 

Figure 4: Neural crest cells delaminate from the neural plate-non-
neural ectoderm boundary as the neural plate rolls up and fuses to 
form the neural tube. Non-neural ectoderm, neural crest and neural tube 
are represented in blue, yellow and red respectively.  
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development was analysed using in situ hybridisation, which has not 

previously been identified. 

 

Philip Lewis (thesis, 2014), showed using RT-PCR on early-stage 

Xenopus tropicalis embryos, that xN1-src transcripts are present at low 

levels in the maternal transcript pool, increase during primary 

neurogenesis and neurulation and then begin to decrease at tailbud 

stages, after neurulation is complete and the neural tube is closed and 

positioned in the dorsal side of the embryo (Schroeder 1970). In this 

project the temporal expression profiles of Src variants during Xenopus 

tropicalis neural induction and primary neurogenesis was investigated in 

greater detail, as well as their expression patterns at the onset of 

secondary neurogenesis. In addition, zebrafish primary neurogenesis and 

secondary neurogenesis were examined for the temporal expression 

patterns of N1-Src, as an additional model of vertebrate development.  

 

Philip Lewis also demonstrated that COS7 fibroblast cells transfected with 

either mammalian or Xenopus laevis N1-Src constructs develop neurite-

like processes. In the absence of xN1-Src (achieved using antisense 

morpholino oligos), he also showed that Xenopus tropicalis embryos 

develop a reduction and an expansion in the spatial expression patterns 

of n. tubulin and sox3 respectively, along with defects in the locomotive 

response to touch stimuli. This project sought to investigate these effects 

in more detail whilst also investigating the effects on the development of 

the neural crest; from which neuroblastoma cancers develop.   

 

xN3-Src 
RT-PCR performed by Philip Lewis (thesis, 2014) to analyse the 

embryonic temporal expression pattern of xN1-Src revealed the 

expression of an additional polyadenylated Src splice variant with an 

insert between exons 3 and 4, termed xN3-Src. This insert includes the 

xN1-Src microexon and an additional 70 nucleotides located 5’ to the 

xN1-Src insert. The predicted protein sequence of this transcript encodes 
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the SH4 and unique domains and the SH3 domain amino-terminal to the 

xN1-Src insert followed by 22 additional amino acids, before a stop codon 

in the SH3 domain (Figure 1). The RT-PCR data showed that xN3-Src 

expression also increases during primary neurogenesis as primary 

neurons become established, peaking at stage 17, before decreasing as 

the neural plate rolls up.  

 

This project sought to explore the previously unidentified spatial 

expression profile of this isoform using in situ hybridisation, as well as 

looking in more detail at its temporal expression profile during primary 

neurogenesis as well as secondary neurogenesis. This project looked to 

ascribe a function for this isoform using knockdown and overexpression 

analyses as functional analyses of this isoform had not previously been 

performed.  

 

N1-Src knockout Zebrafish line 
In addition to using antisense morpholino oligo-mediated neural Src 

knockdown in Xenopus tropicalis embryos, knockout N1-Src lines may 

offer insight into N1-Src functions. Due to their fast generation time, 

zebrafish are an ideal model for achieving this. To do so, CRISPR-

mediated homologous recombination is a technique by which the N1-Src 

microexon could be excised, leaving the C-Src transcript intact.  

  

Aims 
• Establish the temporal expression profiles of Src variants during 

primary and secondary neurogenesis in Xenopus tropicalis and 

zebrafish embryos. 

• Establish the spatial expression patterns of neural Src variants 

during Xenopus tropicalis primary neurogenesis.  

• Analyse the effects of xN1-Src and xN3-Src knockdown and 

overexpression on embryo morphology and the expression of 

neural and neural crest markers.  
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• Generate the necessary reagents for CRISPR-mediated 

homologous recombination at the zebrafish N1-Src microexon 

locus.  
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Chapter two: Methods 

Phylogenetic analyses 
The vertebrate phylogenetic tree was constructed from NCBI taxonomy 

browser data (NCBI n.d.; Sayers et al. 2009; Benson et al. 2009), using 

the phyloT phylogenetic tree generator (biobyte solutions GmbH, 2014) 

and displayed using iTOL (version 3.0) (iTOL n.d.; Letunic & Bork 2007; 

Letunic & Bork 2011).  

 

Expression of Src isoforms throughout vertebrate evolution was analysed 

using nucleotide and amino acid basic local alignment sequence trace 

(BLAST) searches, analysing expressed sequence tags, annotated and 

predicted sequences. Catshark transcriptome data was also analysed 

(John Mulley, personal communication). The NCBI Conserved Domains 

search tool was used to predict the amino acids to which conserved Src 

domains correspond (NCBI n.d.; Marchler-Bauer et al. 2014).  

 

Embryo collection and manipulation 

Xenopus embryo collection and injection 
Xenopus tropicalis and Xenopus laevis were primed to ovulate by the 

injection of Human Chorionic Gonadotropin (HCG) (Winterbottom et al. 

2011) by a licensed lab member, with a low dose prime the day before 

embryo collection and a high dose on the morning of collection. 

 

Xenopus tropicalis testes were harvested and incubated in L15 medium 

with 10% Foetal Calf Serum (FCS) at 11-13°C. Testes were 

homogenised in this solution prior to in vitro fertilisation. Fertilisations 

were carried out on plates coated with L15/FCS solution by the 

application of sperm suspension. Five minutes later, embryos were 

flooded with Modified Ringers Solution (MRS)/9  (11.11 mM NaCl, 0.2mM 

KCl, 0.22 mM CaCl2, 0.11mM MgCl2 and 5mM Hepes/NaOH (Tindall et 

al. 2007)) and left to rotate. Embryos were then de-jellied using 3% L-

cysteine in MRS/9 (pH 7.8-8), rinsed and incubated in MRS/9. 
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Xenopus laevis testes were harvested and incubated at 4°C in molecular 

grade water. Testes were homogenised in this solution prior to in vitro 

fertilisation. Five minutes after the application of sperm suspension, 

embryos were flooded in Normal Amphibian Medium (NAM)/3 (3.7mM 

NaCl, 0.067mM KCl, 0.033mM Ca(NO3)2, 0.033mM MgSO4, 3.3µM 

EDTA, 5mM HEPES, pH 7.4, with 1mM NaHCO3 and 25µg/ml 

gentamycin (Slack & Forman 1980)) and left to rotate. Embryos were 

then de-jellied using 3% L-cysteine hydrochloride in NAM/3 (pH7.8-8), 

rinsed and incubated in NAM/3.  

 

Xenopus tropicalis and Xenopus laevis microinjections were carried out in 

3% ficoll in MRS/9 and 5% ficoll in NAM/3 respectively using a pneumatic 

microinjector. Following incubation in the ficoll solutions to allow healing, 

Xenopus tropicalis and Xenopus laevis embryos were transferred to 

MRS/20 (5mM NaCl, 0.09 mM KCl, 0.1mM CaCl2, 0.05mM MgCl2 5mM 

Hepes, with 0.1mg/ml gentamycin (Tindall et al. 2007)) and NAM/10 

(1.1mM NaCl, 0.02mM KCl, 0.01mM Ca(NO3)2, 0.01mM MgSO4, 1µM 

EDTA, 5mM HEPES, pH 7.4, with 25µg/ml gentamycin (Slack & Forman 

1980)) respectively. At the relevant stages, according to the normal table 

of Xenopus laevis development (Nieuwkoop & Faber 1994), embryos 

were flash frozen on dry ice for RNA extraction and reverse transcription 

polymerase chain reaction (RT-PCR) or fixed in MEMFA (3.7% 

formaldehyde solution, 10% MEM salts, MEM salts: 1M MOPS, pH 7.4, 

20mM EGTA, and 10mM MgSO4 (Guille 1999)) for in situ hybridisation, 

following the removal of vitelline membranes.  

 

Xenopus embryos were injected with in vitro synthesised mRNA for 

overexpression analyses and antisense morpholino oligos (AMOs) for 

knockdown analyses, designed by Philip Lewis and purchased from Gene 

Tools (Philomath OR) (Table 1). Before injection, AMOs were heated to 

65°C for 10 minutes. 
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Table 1: Antisense morpholino oligo sequences designed by Philip Lewis to 

knockdown neural Src isoforms 

Antisense morpholino oligo Sequence 

AMO A  GTCAGGTCTCCTATGGCACAGCATG 

AMO D GCCGCCGGATGGTCACATACCTCAT 
Where AMO A refers to the splice acceptor-targeting AMO and AMO D refers to the splice donor-
targeting AMO.  

Xenopus tropicalis animal cap explants 
Xenopus tropicalis embryos were injected bilaterally in the animal 

hemisphere as previously described at the 2-4 cell stage with 15pg 

noggin mRNA (synthesised by Hannah Brunsdon) in a final volume of 4nl. 

Embryos were cultured at 27°C in 3% ficoll in MRS/9 to allow healing 

before being transferred to MRS/20 and cultured until late blastula 

stages. Animal caps were then dissected using a tungsten needle in NAM 

and incubated at 23°C until control embryos reached stage 16/17. At this 

point the animal caps were flash frozen on dry ice, in addition to control 

animal caps dissected from water-injected or uninjected embryos. A 

sample of noggin-injected embryos were allowed to develop in MRS/20 to 

confirm that the noggin mRNA had exerted the expected effects.   

 

Harvesting of Xenopus tropicalis adult tissues 
Following the sacrifice of Xenopus tropicalis adult males for the harvest of 

testes, samples of brain, skin, muscle, heart, lung and liver were 

dissected and flash frozen on dry ice. 

 

Zebrafish embryo injection and collection 
Zebrafish embryos were collected and incubated at 28°C in E3 media 

(5mM NaCl, 0.17mM KCl, 0.33 mM CaCl2 and 0.33 mM MgSO4, pH6.8-

6.9 (Dou et al. 2008) with 0.15x10-5% methylene blue solution to inhibit 

fungal growth). Embryos were injected into the yolk cell between the one 

cell and eight cell stage and allowed to develop at 28°C until the relevant 

developmental stages had been reached (according to Kimmel et al. 
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(1995)) at which point they were fixed in MEMFA for imaging or flash 

frozen on dry ice for DNA extraction.  

 

Molecular biology methods  

Gel electrophoresis 
To analyse nucleic acid levels and product sizes, gel electrophoresis was 

used. Samples of DNA and RNA were separated on agarose gels of the 

specified agarose percentage in Tris-Acetate-EDTA (TAE: 40mM Tris, pH 

7.6, 20mM acetic acid, 1mM EDTA (te Poele & Joel 1999) or Tris-Borate-

EDTA buffer (TBE: 89mM Tris, pH 7.6, 89mM boric acid, 2mM EDTA 

(Meadus 2003)) at 150-200V. Gels were stained with ethidium bromide or 

SYBR safe and DNA sizes were predicted by running alongside the 2-log 

DNA ladder or low molecular weight DNA ladder (both New England 

BioLabs). 

Nucleic acid purification 
Nucleic acids were purified using phenolchloroform/chloroform 

extractions in which an equal volume of phenolchloroform was added, 

vortexed for one minute and microcentrifuged for five minutes. The 

aqueous phase was removed and placed in a fresh tube. An equal 

volume of chloroform was then added, vortexed for one minute and 

microcentrifuged for five minutes. The aqueous phase was removed and 

placed in a fresh tube.  

 

After phenolchloroform/chloroform extraction, the nucleic acids were 

precipitated using by adding an equal volume of propan-2-ol (Electran) or 

one-tenth of the volume of 3M sodium acetate (NaOAc) and two volumes 

of 100% ice-cold ethanol. The method used for each of the nucleic acid 

precipitations are stated. In both protocols, the solutions were vortexed 

for one minute and then stored at -20°C overnight. Tubes were then 

microcentrifuged for 15 minutes and the supernatant removed. Pellets 

were washed with 1ml ice-cold 70% ethanol by vortexing for one minute 

and microcentrifuging for five minutes. The supernatant was removed and 
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the pellet was dried using a desiccator before being resuspended in the 

volume of molecular grade water indicated.  

RNA extraction for semi-quantitative PCR  
To extract RNA, flash-frozen embryos were homogenised by pipetting in 

1ml Tri Reagent whilst adult tissue samples were homogenised in 1ml Tri 

Reagent using a glass tissue homogeniser. Both were then 

microcentrifuged for 10 minutes. The supernatant was removed, placed in 

a fresh tube and allowed to stand at room temperature for five minutes. 

Nucleic acid extraction then proceeded as described, with the adaptations 

described below. 200µl chloroform was added to the homogenised 

sample in Tri reagent, vortexed for one minute and left to stand at room 

temperature for five minutes, before being microcentrifuged for 15 

minutes. The aqueous phase was removed and an additional chloroform 

purification step was performed as described previously. The aqueous 

phase was transferred to a fresh tube, to which 500µl propan-2-ol 

(Electran) was added and was placed at -20°C for 30 minutes. Tubes 

were microcentrifuged for 15 minutes. The supernatant was disposed of 

and the pellet was washed with ice-cold 70% ethanol by vortexing for one 

minute and microcentrifuging for five minutes. The supernatant was 

removed and the pellets dried in a desiccator for 5-10 minutes. Pellets 

were resuspended in 50µl water and 60µl 7.5M LiCl/50mM EDTA by 

vortexing for one minute and heating at 80°C for one minute before being 

stored at -80°C for at least 48 hours. After this time, solutions were 

microcentrifuged for 30 minutes and the supernatants discarded. Pellets 

were washed twice in 1ml ice-cold 70% ethanol by vortexing for one 

minute and then microcentrifuging for five minutes. Pellets were dried 

using a desiccator for 5-10 minutes and resuspended in 30µl water by 

heating for one minute at 80°C before vortexing for one minute. RNA 

concentrations were determined by use of the nanodrop.  

cDNA first strand synthesis 
To synthesise complementary DNA (cDNA) 1µl primer (Oligo dT or 

random hexamers), RNA (3µg for Xenopus tropicalis embryo stage 

series, 1µg for adult tissue and animal cap explants and 0.63µg for 
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zebrafish embryos), 1µl 10mM dNTPs and water up to a total volume of 

12µl were mixed by gentle pipetting in a sterile PCR tube in the specified 

order. Tubes were incubated at 65°C for five minutes before being chilled 

on ice for two minutes. Tubes were then spun briefly to collect 

condensation. 4µl first strand buffer, 0.1M DTT and 1.0µl water were 

added to each tube and incubated at 42°C for two minutes. 1µl 

Superscript II (200 units) was added to each tube with water controls 

used to demonstrate the absence of genomic DNA contamination. Tubes 

were then incubated for an hour at 42°C before a 15 minute incubation at 

72°C to inactivate the reverse transcriptase.   

 
Table 2: Primers used to amplify Xenopus tropicalis cDNA and plasmid 

sequencing 

Primer  Sequence (5’è3') 
Annealing 
temperature (°C) 

Pan-Src	 forward	 (Philip	
Lewis)	 ATCTCGCACCGAGACAGACT 55.5	
Pan-Src	 reverse	 (Philip	
Lewis)	 ACTGAGTGCGAGACGTGATG 55.5	
N-Src	 forward	 (Philip	
Lewis)	 ACTGTGACCTGACGCCTTTT	 55.5	
N-Src	 reverse	 (Philip	
Lewis)	 CTTCCCTCATGTCAGGTCTC	 55.5	

C-Src	specific	reverse	 CAGTCGCCTTCCGTGTTATT	 55.5	

N1-Src	specific	reverse	 CCTCATGTCAGGTCTCGTGTT	 55.5	

N3-Src	specific	reverse	 CACAGCATGTGAGGGAAAGA	 55.5	

L8	forward	 GGGCTGTCGACTTCGCTGAA	 55.5	

L8	reverse	 ATACGACCACCACCAGCAAC	 55.5	
Full length N3-Src 
Forward TCTCCCGATATCTCAGGCA 54.5 

Full length N3-Src 
Reverse CTATGGCACAGCATGTGAGG 54.5 

N3-Src+XbaI GAGAGATCTAGACTATGGCACAGCATGT
GAGG 57.6 

N3-Src+BamHI GAGAGAGGATCCATGGGTGCCACTAAAA
GCAA 57.6 

xN1-Src sequencing 
1 GCGTCTGCTGCTGAGCCTTG N/A 

xN1-Src sequencing 
2 CCACGTAGGCCATGCCTGAA  N/A 

Phox2a Forward GAGAGCGGCCAACTCTAAGA 51.1 

Phox2a Reverse TTAGAACAAATTTGCCTTCA 51.1 
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Semi-quantitative RT-PCR to analyse Src expression levels 
PCR primers shown in Tables 2 and 3 for Xenopus and zebrafish 

respectively were used to amplify cDNA from embryos, adult tissues and 

animal cap explants, with L8 used as a housekeeping gene for Xenopus 

tropicalis and EF1α for zebrafish samples (EF1α sequences were used 

according to Tang et al. (2007)). The N-Src primers that amplify xN1-Src 

and xN3-Src, Pan-Src primers that amplify C-Src, xN1-Src, and xN3-Src 

and primers amplifying the housekeeping gene L8 were designed by 

Philip Lewis. For the PCR reaction, 8.5µl water, 1.0µl cDNA, 1.5µl 

forward primer (10µM), 1.5µl reverse primer (10µM) and 12.5µl 2X 

Promega PCR master mix were assembled and mixed by vortexing. The 

PCR programme used was as follows; 3 minutes at 95°C, 30 cycles of 30 

seconds at 95°C, 30 seconds at the annealing temperature (specified in 

Table 2 or 3) and 50 seconds at 72°C before a final extension of 15 

minutes at 72°C, with the annealing temperatures optimised for maximum 

amplification efficiency and specificity. 

 
Table 3: Primers used to amplify zebrafish cDNA and genomic DNA 

 

Primer  Sequence (5’è3') 
Annealing 
temperature (°C) 

Pan-Src Forward GCGCGGCACACAGCCCA 55 
C-Src specific 
reverse CCACCAGTCACCCTCCGTGT 55 
N1-Src specific 
reverse CCTGGGGTTCAACTTTCTCG 55 

EF1α forward CTGGAGGCCAGCTCAAACAT 55 

EF1α reverse 
ATCAAGAAGAGTAGTACCGCTAGCATT
AC 55 

N1-Src sgRNA 
forward 

GCAGCTAATACGACTCACTATAGGTAG
GAGAAAGTTGAACCCCGTTTTAGAGCT
AGAAATA 60 

Tyrosinase sgRNA 
forward 

GCAGCTAATACGACTCACTATAGGAGA
GACGAGCTGAAGAGCGTTTTAGAGCT
AGAAATA 

Synthesised by 
Elliot Jokl 

sgRNA reverse 

AAAAGCACCGACTCGGGCCACTTTTTC
AAGTTGATAACGGACTAGCCTTATTTTA
ACTTGCTATTTCTAGCTCTAAAAC  - 

CRISPR screening 
primer forward GAAGCTTCTGCTGTTTGCTC 52 
CRISPR screening 
primer reverse CAGGTGGACAAGCAAATGGTG 52 
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The RT-PCR products were separated by gel electrophoresis on a 2% 

agarose gel as previously described. Control samples included cDNA 

synthesised in the absence of reverse transcriptase to check for genomic 

DNA contamination and primer-only controls to check for primer 

contamination. Time course RT-PCRs were analysed for expression 

levels using ImageJ. 

Plasmid amplification  
To amplify plasmids, including those containing in situ hybridisation 

probes and xN1-Src and xN3-Src sequences for over-expression 

analyses, 40µl DH5α competent bacterial cells were thawed on ice before 

being added to 1µl plasmid and left on ice for 30 minutes. The cells were 

then heat shocked at 42°C for 90 seconds. Tubes were then transferred 

back to ice for 2 minutes and 1ml LB culture medium was added. Tubes 

were incubated in a 37°C shaking incubator for one hour. 20µl and 200µl 

solution was each plated onto LB/Agar plates containing 100µg/ml 

ampicillin, and incubated overnight at 37°C. Single colonies were 

selected for overnight culture and added to 3ml LB medium containing 

100µg/ml ampicillin. Amplified plasmids were isolated using the QIAprep 

Spin Miniprep Kit (Qiagen) using a microcentrifuge according to the 

manufacturer’s instructions.  

 

Plasmid sequencing was performed by the Technology Facility Genomics 

Laboratory at the University of York.  

 

Plasmid digestion 
Plasmids were digested at 37°C using the relevant restriction enzyme 

(Roche) and the appropriate volume of the 10x enzyme buffer. Buffers 

were selected that yield the highest digestion efficiency, according to the 

manufacturer (Table 4). The total volume was made up using molecular 

grade water.  
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Table 4: SuRE/Cut buffers used for restriction digests 

Restriction enzyme SuRE/Cut buffer used 

EcoRI H 

XbaI A 

BamHI A 

NotI H 

ApaI A 

SmaI H 

NcoI H 

ClaI H 

 

xN3-Src cloning 
The xN3-Src open reading frame was amplified from random hexamer-

primed stage 15 cDNA using Phusion polymerase (New England 

Biolabs); 31.5µl molecular grade water, 10µl 5x high fidelity buffer, 1µl 

dNTPs (10mM), 2.5µl forward primer (10µM), 2.5µl reverse primer 

(10µM), 2µl cDNA and 0.5µl Phusion polymerase were assembled and 

mixed and the following PCR programme was used; 30 seconds at 95°C, 

35 cycles of 10 seconds at 95°C, 30 seconds at 54.5°C and 30 seconds 

at 72°C before a final extension at 72°C for 10 minutes. After the 72°C 

final extension, 1µl Taq polymerase was added and the PCR reaction 

was maintained at 72°C for a further 15 minutes. Successful amplification 

was confirmed by gel electrophoresis and the PCR product was cloned 

into the T-Easy plasmid; 5µl 2x T-Easy ligation buffer, 1µl T-Easy vector, 

2µl PCR product, 1µl T4 DNA ligase and 1µl molecular grade water were 

mixed and incubated at 4°C overnight.   

 

The ligation reaction was then transformed into DH5α cells and plated out 

as previously described. DH5α colonies were screened for the plasmid 

containing the xN3-Src insert using colony PCR; colonies were selected 

by pipetting in 2µl molecular grade water. A replica plate was created by 

streaking the solution over the surface, with the colony solution then 

added to a PCR tube with 1µl forward primer (10µM) and 1µl reverse 

primer (10µM), 1µl molecular grade water and 5µl 2x Promega PCR 
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master mix. Primers were used to amplify the region between the T7 and 

SP6 promoters. The following PCR programme was used; two minutes at 

95°C, 25 cycles of 30 seconds at 95°C, 30 seconds at 50°C and 60 

seconds at 72°C before a final extension of 15 minutes at 72°C. The 

presence or absence of the insert was confirmed by gel electrophoresis 

on a 2% agarose gel as described. Clones showing an insert of the 

correct size were amplified by overnight culture and purified using the 

QIAprep Spin Miniprep Kit as described. 3µl of each of the plasmids 

screened was digested using 2µl EcoRI in a total volume of 20µl to 

confirm the presence of the insert following amplification, as described 

previously. Uncut plasmid and cut plasmid were run on a 1% agarose gel 

to confirm that the insert of the correct size was present.  

 

xN3-Src was amplified using Phusion polymerase from xN3-Src-T-Easy 

with primers containing XbaI and BamHI restriction sites (Table 2); 10µl 

5x high fidelity buffer, 1µl dNTPs (10µM), 2.5µl N3-Src XbaI primer 

(10µM), 2.5µl N3-Src BamHI primer (10µM), 2µl xN3-Src-T-Easy 

(0.5ng/µl), 0.5µl Phusion polymerase and molecular grade water (up to 

50µl final volume) were assembled and the following PCR programme 

was used; 30 seconds at 95°C, 30 cycles of 10 seconds at 95°C, 30 

seconds at 57.6°C and 30 seconds at 72°C before a final extension of 10 

minutes at 72°C. Successful amplification and subsequent purification 

using  the QIAquick PCR purification kit (used according to the 

manufacturers instructions) were confirmed by gel electrophoresis on a 

1.5% agarose gel, as previously described.  

 

20µl PCR product was digested to completion using 2µl BamHI and XbaI 

in a total volume of 50µl. 4µg pCS2+ plasmid was also digested as 

described previously using 1.5µl XbaI and 1.5µl BamHI singularly (to 

confirm that both enzymes are able to digest the plasmid) and in 

combination in a total volume of 50µl. Both reactions were incubated for 

3-4 hours.  
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Digestion was confirmed by gel electrophoresis; undigested pCS2+ was 

run alongside pCS2+ digested with XbaI and/or BamHI on a 1% agarose 

gel. The doubly digested products were extracted using the QIAquick gel 

extraction kit (Qiagen), according to the manufacturer’s instructions. The 

digested and purified xN3-Src and pCS2+ products were ligated; 10µl 2x 

ligation buffer, 3µl pCS2+, 3µl xN3-Src, 2µl T4 DNA ligase and 2µl 

molecular grade water were assembled and incubated at 4°C overnight. 

The ligation products were transformed into DH5α as described 

previously. Colonies positive for the xN3-Src insert were identified using 

colony PCR, as previously described, using primers to amplify the region 

between the SP6 and T3 promoters. Colonies positive for the insert were 

amplified using overnight culture and purified using the QIAprep Spin 

Miniprep Kit. To confirm that the insert was present, 2µl of each isolated 

clone was digested for at least two hours in a total volume of 20µl using 

1µl XbaI and 1µl BamHI and run alongside undigested plasmid on a 1% 

agarose gel. Colonies containing the insert were then sequenced from 

both the T7 and SP6 promoters.   

 

In vitro transcription of synthetic messenger RNA for microinjection 
xN1-Src was cloned into pCS2+ by Philip Lewis. This plasmid was 

sequenced from the T7 and SP6 promoters and using additional 

sequencing primers shown in Table 2 to confirm that the expected 

sequence was present. xN1-Src-pCS2+ and xN3-Src-pCS2+ plasmids 

were linearised by restriction digest using the Not1 restriction enzyme 

(Table 5); 3µg plasmid was digested for 90 minutes by 3µl Not1 in a total 

reaction volume of 50µl. Plasmid digestion was confirmed by gel 

electrophoresis on a 1% agarose gel. Once digestion to completion had 

been confirmed, the volume of plasmid was brought up to 200µl with 

water and was purified using a phenolchloroform/chloroform extraction 

and then sodium acetate/ethanol precipitation as described previously 

and resuspended in 20µl water. The presence of purified and digested 

plasmid was confirmed by gel electrophoresis on a 1% agarose gel.  
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 mRNA was synthesised by in vitro transcription using the Megascript 

SP6 Transcription Kit (Ambion). At room temperature, the following 

components were assembled; 4.5µl RNase-free water, 2µl ATP (50mM), 

2µl CTP (50mM), 2µl UTP (50mM), 2µl GTP (5mM), 2.5µl mGTP (cap, 

40mM), 2µl transcription buffer, 5µl linearised plasmid and 2µl SP6 

enzyme. After gentle mixing, the reaction was incubated at 37°C for four 

hours, after which the presence of mRNA was confirmed by gel 

electrophoresis on a 2% agarose gel. Once transcription had been 

confirmed, 1µl DNase I was added and the solution was incubated at 

37°C for 15 minutes to remove the DNA template. To stop the reaction, 

115µl water and 15µl ammonium acetate were added. The mRNA was 

extracted using a phenolchloroform/chloroform extraction and propan-2-ol 

precipitation as described previously and resuspended in 20µl water. 

mRNA concentration was measured using Nanodrop.  

 

Generating a phox2a probe for in situ hybridisation 
To synthesise an in situ hybridisation probe for detection of the neural 

crest marker phox2a, non-homeobox phox2a sequence was amplified by 

PCR and cloned. 8.5µl water, 1.0µl stage 25 cDNA, 1.5µl forward primer 

(10µM), 1.5µl reverse primer (10µM, primers both shown in Table 2) and 

12.5µl 2x Promega PCR master mix were assembled and the following 

PCR programme was used; five minutes at 95°C, 35 cycles of 30 

seconds at 95°C, 30 seconds at 51.1°C and 45 seconds at 72°C before a 

final extension of 15 minutes at 72°C. Amplification of the correct product 

size was confirmed by gel electrophoresis on a 1.5% agarose gel. The 

PCR product was purified using the QIAquick PCR purification kit 

(Qiagen) according to the manufacturer’s instructions. The purified 

product was ligated to the T-Easy plasmid, transformed into DH5α cells 

and plated out as described previously. The colonies were screened for 

the phox2a insert using colony PCR, as described previously. Primers 

used to amplify this region of phox2a were used to screen for the insert. 

Clones with an insert of the expected size were sequenced to determine 
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the polymerase and restriction enzyme necessary to generate an 

antisense transcript for use in in situ hybridisation (Table 5).  

 

Synthesis of probes for standard in situ hybridisation  
To generate a template for in situ hybridisation probe synthesis, 2.5µg of 

each plasmid was linearised by digestion for 90 minutes using 3µl of the 

relevant restriction enzyme (Table 5) in a total volume of 100µl. Complete 

digestion was verified by gel electrophoresis - digested plasmid was run 

alongside undigested digested plasmid on a 0.8% agarose gel. Digested 

plasmid was purified by phenolchloroform/chloroform extraction and 

sodium acetate/ethanol precipitation as previously described. The 

linearised plasmid was then resuspended in 5µl water. Digested plasmid 

purification was confirmed by gel electrophoresis on a 0.8% agarose gel.  

  

To synthesise the DIG-labelled RNA probes, the following components 

were assembled at room temperature and allowed to react for two hours 

at 37°C; 10µl 10x transcription buffer, 2.5µl 10x DIG NTP mix, 5µl 100mM 

dithiothreitol (DDT), 2µl RNasin (50 units), 2µl appropriate polymerase 

(150 units), 2.5µl linearised plasmid and 26µl water. After two hours, an 

additional 2µl polymerase (50 units) was added and incubated for a 

further two hours at 37°C. Transcription was confirmed by gel 

electrophoresis on a 2% agarose gel. Upon confirmation of transcription 

having taken place, 1µl RN-ase-free DNase I was added and the reaction 

was incubated for 20 minutes at 37°C to remove the DNA template. To 

confirm that the DNA template had been destroyed whilst the RNA probe 

had not, a sample of the probe solution was run on a 2% agarose gel. To 

stop the reaction and precipitate the probe, 50µl water, 25µl 10M 

Ammonium Acetate and 312.5µl 100% ice-cold ethanol were added and 

the solution was stored at -80°C for 45 minutes, before being 

microcentrifuged for 15 minutes. The supernatant was then removed and 

replaced with 100µl ice-cold 70% ethanol, which was vortexed for one 

minute and microcentrifuged for five minutes. The probe was then 

resuspended in 50µl water and stored at -80°C. For in situ hybridisation 
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reactions, the amount of probe necessary was estimated by gel 

electrophoresis on a 2% agarose gel, as described. 
 
Table 5: Plasmids used to synthesise in situ hybridisation probes and mRNA 

Insert Vector 
Restriction 
enzyme used 

Polymerase	for	
sense	RNA	

Polymerase for 
antisense RNA Plasmid source 

N. tubulin (beta II) pGEM-5Zf(-) ApaI -	 SP6+hydrolysis Harland lab 

Sox3 pBSK(+) SmaI -	 T7 Grainger lab 

Phox2a pGEM T-Easy NcoI -	 SP6 Own 

xN1-Src pCS2+ NotI	 SP6	 -	 Philip Lewis 

xN3-Src pCS2+ NotI	 SP6	 -	 Own 
 

Due to its long length, the n. tubulin probe was hydrolysed to enable 

embryo penetration. 25µl probe was incubated at 60°C for 12.5 minutes 

in hydrolysis solution (80mM NaHCO3 and 120mM Na2CO3 (Silva et al. 

2006)). The incubation time was calculated according to Willars & 

Challiss (2004) using the equation below. Following hydrolysis, 50µl 5M 

ammonium acetate (NH4OAc) and 312.5µl 100% ethanol were added to 

precipitate the probe and the solution was incubated overnight at -80°C. 

The solution was then microcentrifuged for 15 minutes. The supernatant 

was then removed and the pellet was washed with 70% ethanol and dried 

as previously described. The probe was resuspended in 25µl water and 

gel electrophoresis on a 2% gel was used to confirm that the probe had 

successfully been purified.  

 

t =      (starting length, kb) – (desired length, kb) 

          0.11(starting length, kb x desired length, kb) 

 
Where t = time, the starting length for this probe was 1.6kb and the desired length was 

0.5kb 

In situ hybridisation 
The in situ hybridisation protocol was carried out as described by Harland 

(1991) with modifications, as described by Guiral et al. (2010) and set out 
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below. Embryos were prepared for in situ hybridisation by removal of the 

embryo vitteline membrane using forceps. They were then fixed by rolling 

for one hour in glass scintillation vials containing 10-20ml MEMFA. The 

MEMFA was then replaced with 100% methanol and rolled for a further 

five minutes to dehydrate the embryos. This was then replaced with fresh 

methanol, rolled for a further five minutes and stored at -20°C.  

 

Embryos were brought to room temperature in 100% methanol and then 

rehydrated by washing on a roller once for 10 minutes in 75% 

methanol/PBSAT (PBSAT: 8mM Na2HPO4, 150mM NaCl, 2mM 

KH2PO4, 3mM KCl, pH7.4 and 0.1% Tween (Fehr et al. 2007)), once for 

10 minutes in 50% methanol/PBSAT and a further three times for five 

minutes in PBSAT. Embryos were then permeabilised by treating with 

10µg/ml proteinase K at room temperature with gentle stirring. Stage 14-

17 embryos were treated with proteinase K for 9 minutes, stage 21 

embryos for 10 minutes, stage 24-25 embryos for 11 minutes and 

embryos of stage 27 and above for 12 minutes. Embryos were then 

rinsed twice with 5ml 0.1M triethanolamine (pH 7.8) for five minutes to 

reduce background staining. To the second triethanolamine wash, 12.5µl 

acetic anhydride was added and swirled often as they mix poorly. After 

five minutes, a further 12.5µl acetic anhydride was added for five 

additional minutes. Embryos were then washed twice with PBSAT for five 

minutes and then refixed for 20 minutes with 10% formalin/PBSAT on the 

roller. They were then washed five times for five minutes with PBSAT. 

Embryos were transferred in 1ml PBSAT into Eppendorf tubes containing 

250µl hybridisation buffer (50% formamide, 5x SSC (pH 7), 100µg/ml 

heparin, 1x Denhart’s, 0.1% Tween, 0.1% CHAPS, 10mM EDTA), which 

was then replaced with 1ml fresh hybridisation buffer heated to 60°C. The 

hybridisation buffer was then replaced with 1ml fresh hybridisation buffer 

containing 1mg/ml total yeast RNA and embryos were prehybridised for 

two hours on a horizontal rocker at 60°C, to further reduce non-specific 

probe binding. DIG-labelled probes were heated to 80°C for three 

minutes to denature secondary structures before being added to fresh 

hybridisation buffer containing total yeast RNA at 60°C. 2-4µl probe was 
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added according to the gel electrophoresis band intensity. Embryos were 

incubated in this solution at 60°C overnight in the horizontal rocker.  

 

The following day, embryos were washed twice with 1ml hybridisation 

buffer for 10 minutes at 60°C on the horizontal rocker. Embryos were 

then subjected to a series of washes to increase binding stringency, 

during which solutions were preheated to 60°C and embryos were rocked 

at 60°C. Embryos were maintained on a hot block at 60°C whilst solutions 

were changed. Embryos were washed three times for 20 minutes in 2x 

SSC with 0.1% Tween and then three times for 30 minutes in 0.2x SSC 

with 0.1% Tween. They were then washed twice for 15 minutes at room 

temperature in Maleic acid buffer (MAB; 100mM maleic acid, 150mM 

NaCl, pH 7.8 (Jevtić & Levy 2015)) with 0.1% Tween on the horizontal 

rocker. This was then replaced with MAB with 2% Boehringer Mannheim 

Blocking reagent (BMB) and rocked at room temperature for 30 minutes. 

Embryos were then pre-incubated for two hours at room temperature in 

1.5ml MAB with 2% BMB and 20% heat treated lamb serum (lamb serum 

had previously been heat treated at 60°C for 30 minutes) to prevent non-

specific binding of the anti-digoxygenin antibody. This solution was then 

replaced with fresh solution of MAB, BMB and lamb serum, containing 

1/2000 dilution of affinity purified sheep anti-digoxygenin antibody 

coupled to alkaline phosphatase and rocked overnight at 4°C.  

 

Following the second 2x SSC wash, embryos probed for n. tubulin were 

treated for 30 minutes at 37°C with 1ml 2x SSC supplemented with 

20µg/ml RNase A to remove non-specifically bound probe and reduce 

background staining. Embryos were then washed with 2x SSC for 10 

minutes at room temperature followed by three 30 minute washes in 0.2x 

SSC at 37°C. The protocol then continued as per the other probes.  

 

The antibody was removed the following day and embryos were washed 

by rocking in MAB with 0.1% Tween three times for five minutes at room 

temperature. Embryos were then returned to large scintillation vials 

containing MAB with 0.1% Tween and washed by rocking at room 
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temperature three times for one hour. Embryos were then washed once 

for three minutes and then once for 10 minutes in Alkaline Phosphastase 

buffer (AP buffer; 100mM Trizma, 50mM MgCl2, 100mM NaCl at pH 9.5). 

This was then replaced with 1ml BM purple precipitating solution (the 

alkaline phosphatase substrate) (Roche), and left undisturbed until 

staining had developed. Once staining had developed, embryos were 

washed twice in PBSAT for 15 minutes and re-fixed by rocking in 10% 

formalin overnight at room temperature and stored in the formalin 

solution.  

 

To remove embryo pigmentation, embryos were washed in PBSAT and 

then bleached in 5% H2O2 in PBSAT by rolling under a lamp. Once 

pigmentation was no longer present, embryos were washed with PBST 

and re-fixed and stored in 10% formalin in PBSAT.   

 

Locked nucleic acid probe in situ hybridisation protocol  
To detect the xN1-Src and xN3-Src microexons, 19 nucleotide-long 

probes were designed, incorporating xN1-Src and xN3-Src reverse 

compliment sequences (Table 6). BLAST searches were used to confirm 

that no off-target sequence homologies of more than 14 nucleotides exist 

and Locked nucleic acids (LNAs) were incorporated at every third 

position, according to Darnell et al. (2010) and DIG-labelled at the 5’ and 

3’ ends. LNA probes were purchased from and synthesised by Exiqon.  

 

The LNA in situ hybridisation was carried out as per the traditional 

technique, with some alterations based on Sweetman (2011), with 

additional modifications detailed below. The hybridisation temperature 

was calculated using the Exiqon melting temperature calculator (Exiqon 

n.d.) minus 22°C, according to Darnell et al. (2010). This temperature 

was used for pre-hybridisation, hybridisation and subsequent SSC 

washes. The hybridisation time was extended to two overnight 

incubations in the presence of the same probe, which was retained and 

stored at -80°C for future use. Embryos were rocked in MAB, 2% BMB 
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and 20% heated lamb serum for three hours before incubation with the 

antibody and washed six times for one hour and then overnight in MAB 

with 0.1% Tween following antibody incubation. Initial incubation in BM 

purple was carried out until diffuse purple staining was present, at which 

point embryos were washed twice for ten minutes and then overnight in 

4x MAB with 0.1% Tween. The BM purple solution was then replaced and 

the process repeated until specific staining developed. At this point, 

embryos were re-fixed in 10% Formalin/PBSAT overnight and stored in 

this solution. Embryos were then bleached as described previously and 

rolled in 100% methanol to reduce background staining, rinsed with PBST 

and re-fixed.  

	
Table 6: LNA probe sequences for in situ hybridisation 

Probe Probe sequence (5’è3’) (+ represents LNA) 
Hybridisation 
temperature (°C) 

xN1-Src +TCC+CTC+ATG+TCA+GGT+CTC+G 57 
xN3-Src +AGA+ACG+TGA+GAG+GTC+ACA+C 49 
 

sgRNA synthesis and microinjection into zebrafish embryos 
sgRNA DNA templates were synthesised by PCR using partially 

overlapping primers and Phusion polymerase. Primers were designed 

according to Nakayama et al. (2014) to target the zebrafish N1-Src 

microexon and the zebrafish tyrisonase gene (the latter was designed by 

Elliot Jokl). These primers are shown in Table 3 and the gene-targeting 

sequences present on the forward primer are highlighted in bold. A 

common reverse primer was used for the syntheses of both templates. 

10µl 10X high fidelity buffer, 1µl dNTPs (10mM), 5µl forward primer and 

6.5µl reverse primer (both at 0.2mg/ml), 27µl molecular grade water and 

0.5µl Phusion polymerase were mixed and PCR was carried out using 

the following programme; 98°C for 10 seconds, 35 cycles of 98°C for 10 

seconds, 60°C for 30 seconds and 72°C for 15 seconds and then 72°C 

10 minutes, followed by a 4°C hold. Template synthesis was confirmed by 

gel electrophoresis on a 2% agarose gel. In vitro transcription was 

performed using the MEGAshortscript kit (Ambion) according to the 
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manufacturer’s instructions with non-purified 4µl DNA template. The 

reaction was incubated at 37°C for four hours. Once transcription was 

confirmed as successful by gel electrophoresis on a 2% agarose gel, 1µl 

DNase was added to remove the DNA template and the reaction was 

incubated at 37°C for 15 minutes. 15µl ammonium acetate and 115µl 

water were then added and the sgRNA was purified using 

phenolchloroform/chloroform extraction and propan-2-ol precipitation as 

described previously. The pellet was washed with 120µl ice-cold 70% 

ethanol by vortexing for one minute and microcentrifuging for five 

minutes. The supernatant was removed and the pellet was dried using a 

desiccator. The sgRNA was resuspended in 20µl molecular grade water 

by vortexing for one minute, heating to 80°C for one minute and then 

vortexing for a further minute. sgRNA purification was confirmed by gel 

electrophoresis on a 2% agarose gel and the concentration was 

measured using Nanodrop.  

 

600pg tyrosinase sgRNA was injected into wild type zebrafish embryos 

alongside 1ng recombinant Cas9 protein (made by Olga Moroz, York 

Structural Biology Laboratory, using the plasmid and methods described 

in Gagon et al. (2014)). 600pg N1-Src sgRNA was injected alongside 1ng 

Cas9 protein and 100pg ssDNA oligo to guide homologous recombination 

(5’TCACGTCTCCTCTGTGTTTTTCCTCTACACGCTCTCGCTCGTTTAT

GTAGGTTGGTAAAGTTGCTCTTGCTTTCAGCTTCTGATGAGTGTTTAT

GTATGT3’), in a final volume of 3nl per embryo.  

 

Zebrafish genomic DNA extraction and PCR genetic screen of 
CRISPR-targeted embryos 
Zebrafish genomic DNA was extracted from targeted embryos (injected 

with ssDNA, sgRNA and Cas9 protein) and untargeted embryos (injected 

with Cas9 protein only). Single embryos were flash frozen in PCR tubes 

on dry ice five days post fertilisation (dpf). Prior to DNA extraction, 

embryos were thawed on ice. To each embryo, 200µl Tad lysis buffer 

was added (50mM Tris pH7, 50mM NaCl, 5mM EDTA, 0.5% SDS, 10% 
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Chelex and 250µg/ml Poteinase K) and incubated at 55°C for 60 minutes, 

95°C for 15 minutes followed by a 4°C hold, using a PCR machine. 

Embryos were then vortexed and microcentrifuged for 10 minutes and the 

supernatant containing the genomic DNA was removed and placed in a 

fresh tube.  

 

The targeted locus was amplified using PCR primers designed to amplify 

the region surrounding the N1-Src microexon (Table 3) and the following 

PCR programme; 95°C for 2 minutes, 30 cycles of 95°C for 30 seconds, 

50°C for 30 seconds and 72°C for 30 seconds, followed by 72°C for 10 

minutes and a 4°C hold. 10µl PCR product was run with 1µl 6x loading 

buffer on a 5% acrylamide gel (3.3ml 30% polyacrylamide, 2ml 10X TBE, 

100µl APS, 30µl TEMED, 14.5ml water), alongside 5µl low molecular 

weight ladder. The gel was stained for 20 minutes in ethidium bromide.  

 

Embryo imaging and ImageJ analyses 
Images of embryo phenotypes and in situ hybridisations were taken using 

a LeicaMZ FLIII microscope and processed using SPOT Advanced 

Software and Photoshop (Adobe). Expression domains identified using in 

situ hybridisation were measured using ImageJ. Videos of locomotive 

phenotypes in response to touch stimuli were taken using a JVC TK-

C1381 camera and processed with ArcSoft ShowBiz software. Videos of 

embryos responding to a touch stimulus were analysed for their 

behaviour and cropped to the point of contact and 0.15 seconds later. 

Stills from these two time points were overlaid and analysed for the 

distance between the centre of the right eye at these two time points 

using ImageJ. ImageJ was also used to semi-quantitatively analyse 

temporal expression profiles by densitometry. For each time point, the 

densitometry value was normalised to the value of the loading control; 

either L8 or EF1α. 

 

 

 



	 51 

Chapter 3: Results 

3.1 Phylogenetic analysis of neural Src splice variants 

3.1.1 Introduction 
In order to understand the function of neural Src isoforms, it is essential 

to consider their evolutionary origins, as the context of their emergence 

may offer insight into their functions. To do so, the expression of neural-

Src isoforms in vertebrate evolution was examined by performing basic 

local alignment sequence trace (BLAST) searches of available expressed 

sequence tags, annotated and predicted sequences on NCBI and of 

tissue-specific RNA-Sequencing (RNA-Seq) transcriptome Catshark data 

(John Mulley, personal communication). 

 

3.1.2 Results 
Figure 5 shows the expression of N1-Src, N2-Src and N3-Src across 

vertebrate evolution mapped onto the phylogenetic tree constructed from 

NCBI taxonomy browser data. The expression of N1-Src was detected in 

the Vertebrata subphylum of the Chordata phylum in species from the 

primitive cartilaginous fish, the Catshark, Scyliorhinidae to higher 

vertebrates including humans and Xenopus species. The expression of 

the N1-Src isoform was also detected in the ray-finned fish; in the 

subclass of Actinopterygii known as the Neopterygians, in both the 

Holostei infraclass (in in the spotted gar (Lepisosteus oculatus)) and the 

Teleostei infraclass (in the Tonguefish (Cynoglossus semilaevis) and the 

zebrafish (Danio rerio)). Whilst the expression of N1-Src was not detected 

in the Coelacanthidae (Coelacanths), Dipnoi (Lungfish), Polypteriformes 

(Bichirs and Reedfish), Acipenseriformes (Paddlefish and Sturgeons) or 

the Amiidae (Bowfins), this may reflect the insufficient sensitivity of the 

transcriptome data, rather than the absence of N1-Src expression across 

these phylogenies. This may also explain why we are unable to identify 

N1-Src in the more primitive vertebrates; the jawless fish (Lampreys and 

Hagfish). Conversely, it may be that the evolutionary emergence of this 
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isoform coincided which the evolution of the jaw, which gave rise to the 

Chondrichthyes - the sharks and rays.  

 

Figure 6 shows the amino acids encoded by the N1-Src microexons 

detected in the species shown in Figure 5. At both the N and C termini of 

the insert in all species analysed there are conserved positively charged 

arginine residues. Additionally, at the second position (in organisms with 

a five amino acid long insert) or the third position (in organisms with a six 

amino acid long insert) there is a non-polar hydrophobic residue. In the 

Figure 6: The N1-Src insert sequences detected in the species shown in 
Figure 5. Highlighted in grey are the amino acids present in the N1-Src protein that 
are flanked by amino acids found also in the C-Src protein. 

Figure 5: The expression of neural Src isoforms in the Vertebrata subphylum of Chordata. Ticks indicate 
detected expression of the relevant isoform. 



	 53 

most ancient vertebrate in which the insert was detected, the Catshark, 

the insert is five amino acids long, whereas the insert is six amino acids 

long in species of the Neopterygian subclass and the evolutionarily 

modern Tetrapoda species, the Homo sapiens. Surprisingly, in Xenopus 

laevis and Xenopus tropicalis, a more evolutionary ancient species of the 

Tetrapoda superclass, the microexon encodes only five amino acids. This 

amino acid discrepancy is likely to be the second position lysine, as the 

characteristics of the surrounding amino acids are more highly 

conserved.  

 

Whilst the expression of N1-Src appears to be widespread across the 

Vertebrata subphylum, detection of the N2-Src isoform is restricted to 

mammals. Equally, the xN3-Src variant has only been detected in 

Xenopus tropicalis. 

 

 

A BLAST search of Catshark tissue-specific RNA-Seq data revealed the 

expression of N1-Src in this ancient vertebrate and surprisingly the 

expression of an additional Src variant, which was termed ‘N4-Src’. The 

predicted protein sequence of this isoform, shown in Figure 7 encodes 

Figure 7: The predicted protein sequence of the Catshark N4-Src variant with 
the conserved protein domains predicted using NCBI Conserved Domain 
Search. The SH3 (amino acids 91-123), SH2 (amino acids 122-218) and kinase 
domains (245-391) are shown in yellow, red and blue respectively. The asterisk 
indicates the site at which the region of the C-Src SH3 domain is missing.   
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the unique, SH2 and kinase domains of the C-Src and N-Src variants 

(predicted using an NCBI conserved domain search) but an incomplete 

SH3 domain, owing to 55 highly conserved amino acids at positions 

E123-E155 being absent. These amino acids correspond to the region 

carboxy terminal to the site of the neural Src insertions. The SH3 domain 

is necessary for substrate binding and autoinhibiton of kinase activity, via 

its association with the SH2-kinase linker domain (Ulmer et al. 2002), 

therefore if it is translated, this protein would have higher kinase activity 

and would have to rely on other domains for substrate binding, such as 

the unique and SH2 domains. 

 

Figure 8 shows the tissue specific expression patterns of the Src variants 

detected in the Catshark RNA-Seq data. C-Src expression was detected 

in the pancreas but also at higher levels in the brain and liver, whilst the 

expression of the N1-Src and N4-Src variants was only detected in the 

brain. It is likely that high sequence homology explains the identical 

expression levels detected for the N1-Src and N4-Src variants. The 

expression of the N4-Src variant can also be detected in the Teleost 

species, the Tonguefish, in which N1-Src expression was also detected, 

as described previously. In addition, the expression of N4-Src was also 

Figure 8: Tissue-specific expression of the N4-Src isoform in the Catshark, 
Scyliorhinidae. Expression levels measured in Fragments Per Kilobase of exon per 
million fragments Mapped (FPKM). 
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detected in the Stinkbird (Opisthocomus hoazin) – a member of the 

Tetrapoda superclass, of which humans are also members. 

 

3.1.3 Discussion 
N1-Src is a conserved neural Src variant that is expressed in vertebrates 

from the shark to humans, whilst the expression of other neural Src 

variants; N2-Src and N3-Src show more restricted expression during 

vertebrate evolution, having been detected in only mammals and 

Xenopus tropicalis respectively. N4-Src represents a newly identified 

brain-specific variant whose expression has been detected in the 

Catshark, Schliorhinidae, the Teleost fish known as the Tonguefish 

(Cynoglossus semilaevis) the tetrapod species; the Stinkbird, 

Opisthocomus hoazin. As the N4-Src variant lacks sequence present in 

C-Src and N1-Src, it may represent incomplete sequencing of these 

variants. However, we would expect that some RNA-seq reads will bridge 

the 3’ and 5’ ends surrounding the sequence is missing, allowing us to 

identify this variant in a manner analogous to identifying C-Src as a 

different variant to N1-Src. To confirm that this is a real variant, it must be 

cloned and sequenced.   

 

More detailed analyses of RNA-seq data in addition to Pan-Src PCR 

priming may reveal additional isoforms to be studied using functional 

analyses, as was the case for xN3-Src, whose expression cannot be 

detected using BLAST searches as is not annotated or identifiable in 

Xenopus expressed sequence tags (ESTs).  

 

3.2 Temporal and spatial expression analyses of neural Src 
splice variants 

3.2.1 Introduction 
To understand the function of neural Src isoforms during neurogenesis, it 

is important to identify their expression levels throughout the relevant 

developmental stages, which can be performed using reverse 
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transcription PCR (RT-PCR). Understanding their expression levels 

during processes such as neural induction and neurogenesis may 

indicate specific roles of neural Src isoforms. For instance, the expression 

of neural Src variants during neural induction would imply a function 

earlier in nervous system development than the products of genes 

expressed during neurogenesis and neurulation. This allows us to put into 

context the effects observed when neural Src expression levels are 

perturbed. To analyse the expression levels of the Src splice variants in 

isolation from one another, variant-specific primers were designed that 

overlap the relevant exon boundaries to exclude amplification of the other 

variants (Figure 9).  These primers were used in conjunction with the 

primers used by Philip Lewis (thesis, 2014) that amplify C-Src, xN1-Src 

and xN3-Src (Pan-Src primers) or xN1-Src and xN3-Src (N-Src primers).  

 

Equally, analysing the spatial expression patterns of these variants 

throughout early development will enable the identification of the tissues 

Primer&design&–&temporal&expression&

Exon&3& N1&N3& Exon&4&

Exon&3& N1&N3& Exon&4&

Exon&3& Exon&4&

Philip&Lewis&

Exon&3& N1& Exon&4&

C;Src&

xN1;Src&

xN3;Src&

Pan;Src&and&N;Src&

Figure 9: Priming strategy used to analyse the expression of the Src splice variants. 
The expression of the Src splice variants were analysed individually using Pan-Src primers 
designed by Philip Lewis that amplify cDNA of all three variants simultaneously (the red and 
purple primers) or the neural-Src isoforms together (the red and green primers).The lower 
primer pairs were also used to analyse the expression of each Src splice variant 
individually. 

Exon%3% N1%N3% Exon%4%

Exon%3% N1% Exon%4%xN1*Src%

xN3*Src%

Figure 10: LNA probe transcript targeting to analyse the neural Src isoform spatial 
expression patterns 
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in which these variants are expressed and from this, inferences can be 

made regarding their functions within the embryo at the particular stage of 

development. As the sequences of C-Src, xN1-Src and xN3-Src isoforms 

vary by the presence or absence of microexons, it was not possible to 

use traditional in situ hybridisation probes of approximately 400 

nucleotides in length. Instead the probes that were used contain modified 

RNA nucleotides known as locked nucleic acids (LNAs) at every third 

nucleotide position (according to Válóczi et al. (2004); Darnell et al. 

(2010)), which increases the melting temperature of the probe:mRNA 

interaction (Braasch & Corey 2001). This allows reactions using short 

probes to retain specificity by permitting the hybridisation to be carried out 

at high temperatures. LNA probes were designed to analyse the spatial 

expression patterns of the xN1-Src microexon and the xN3-Src 

microexon (Figure 10). Xenopus tropicalis embryos were used in these 

analyses as they have only one Src gene, whereas Xenopus laevis have 

two. 

Results 

3.2.2 Src expression analysis during early Xenopus tropicalis 
development: Temporal expression analyses 
Figure 11 shows that at stage 4, C-Src mRNA is present in the maternal 

mRNA pool, before the mid-blastula transition (pre-MBT) and the onset of 

zygotic transcription (Newport & Kirschner 1982). The C-Src expression 

level peaks at gastrula stage 12 before returning to the level observed at 

cleavage and blastula stages. From here onwards, the expression level 

remains relatively constant in the stages analysed.  

 

xN1-Src mRNA and xN3-Src mRNA are also detectable pre-MBT at stage 

4 and then increase in their expression levels during neural induction at 

blastula stage 8 to gastrula stages 10-12 (Kuroda et al. 2004) and 

increase further during primary neurogenesis from gastrula to neurula 

stages (which begins at stage 13 (Shuldiner et al. 1991)) to early tailbud 

stage 25 (Lamborghini 1980). xN1-Src and xN3-Src expression levels 

then decrease at stage 25 after neurulation; after the neural plate has 
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rolled up and closed to form a tube at stage 20 (Schroeder 1970). Their 

expression levels then decrease further towards the end of primary 

neurogenesis at late tailbud stage 35; after primary neurons have been 

established (Thuret et al. 2015) and the embryo is able to swim freely. 

Both xN1-Src and xN3-Src peak in their expression levels at neurula 

stage 18, whilst xN3-Src displays an additional but lower expression peak 

at blastula stage 8.  

 

In a more detailed analysis of gastrula and neurula stage embryos 

(Figure 12), it was observed that from gastrula stage 10.5, xN1-Src and 

Figure 11: The temporal expression profiles of Src splice variants during early Xenopus 
tropicalis development analysed using RT-PCR. Densitometry measured using ImageJ and 
normalised to L8. NF stage = Nieuwkoop and Faber (1994) stages of Xenopus development. 
RNA extracted from stage 18 embryos was used for the no RT and water controls. This figure 
represents data from one experiment, n=1. 
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xN3-Src expression levels increase as neural induction ensues and as 

gastrulation and primary neurogenesis begin, whilst C-Src levels remain 

more constant. Once the neuroectoderm has become established and as 

primary neurogenesis continues during neurula stages, these levels 

continue to increase up to stage 17, before plateauing towards the end of 

neurulation at stage 19. Each of these time course experiments was 

performed once.  

 

Figure 12: The temporal expression profiles of Src splice variants during 
Xenopus tropicalis primary neurogenesis analysed using RT-PCR. Densitometry 
measured using ImageJ and normalised to L8. NF stage = Nieuwkoop and Faber 
(1994) stages of Xenopus development. RNA extracted from stage 19 embryos was 
used for the no RT and water controls. This figure represents data from one 
experiment, n=1. 
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3.2.3 Src expression analysis during secondary neurogenesis: 
Temporal expression analysis 
Figure 13 shows that following the decrease in expression levels at 

stages 25 and 35, both xN1-Src and xN3-Src levels subsequently 

increase at the beginning of secondary neurogenesis at stage 46. During 

secondary neurogenesis the majority of primary neurons that enable 

embryonic swimming reflexes are replaced by secondary neurons, which 

develop during a phase of neurogenesis that proceeds in the neural tube, 

which has been more closely likened to the neurogenesis of amniotes, 

such as humans (Wullimann et al. 2005). It is during secondary 

neurogenesis that neurons termed ‘secondary neurons’ differentiate, that 

are functional into adulthood (Forehand & Farel 1982).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.4 Src temporal expression analysis during zebrafish primary and 
secondary neurogenesis 
It is important to investigate the temporal expression patterns of Src 

isoforms in multiple examples of vertebrate development as conserved 

patterns of gene expression enable stronger predictions to be made 

regarding their expression in other vertebrate species, such as humans. 

Figure 13: The temporal expression profiles of Src splice variants at the end of 
primary neurogenesis and the beginning of secondary neurogenesis analysed 
using RT-PCR.  NF stage = Nieuwkoop and Faber (1994) stages of Xenopus 
development. RNA extracted from stage 25 embryos was used for the no RT and 
water controls. Neural Src expression was analysed using neural Src primers 
designed by Philip Lewis. This figure represents data from one experiment, n=1. 
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Zebrafish neurogenesis was studied for the expression levels of the Src 

splice variants as an additional example of vertebrate development.   

 

Figure 14 shows that in the 4-cell stage zebrafish embryo, before the 

onset of zygotic transcription (pre-MBT) (Kane & Kimmel 1993), both C-

Src and N1-Src are expressed in the maternal mRNA pool at relatively 

high levels. At the blastula stage, when neural induction begins (Schmidt 

et al. 2013) known as the high stage, C-Src and N1-Src expression can 

also be detected. Both C-Src and N1-Src expression levels then 

decrease but remain detectable during gastrulation at stages 75% epiboly 

Figure 14: The temporal expression profiles of Src splice variants during early zebrafish 
development analysed using RT-PCR. Densitometry measured using ImageJ and normalised to EF1α. 
Zebrafish embryos were staged according to Kimmel et al. (1995). RNA extracted from embryos at 24hpf 
was used for no RT and water controls. This figure represents data from one experiment, n=1. 
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to bud stage, as neural induction continues and neurogenesis begins 

(Schmidt et al. 2013) and then increase as primary neurogenesis 

continues at the three-somite stage. It is during somitogenesis that a 

process equivalent to Xenopus neurulation occurs as the neural keel 

forms from the neural plate and hollows out to form the neural tube 

(Fahrbach 2013). Whilst C-Src expression then plateaus at 24 hours post 

fertilisation (hpf), N-Src expression continues to increase as primary 

neurogenesis continues at 24hpf. N1-Src expression then increases 

further as primary neurogenesis ends and secondary neurogenesis 

begins at 28hpf (Zhao et al. 2011). Pan-Src priming, which amplifies C-

Src and insertions at the N1-Src microexon locus, detected no additional 

Src splice products (data not shown). 

  

3.2.5 Src expression analysis during early Xenopus development: 
Spatial expression analysis of the xN1-Src microexon 
Figure 15a and 15b show that the LNA probe designed to analyse the 

spatial expression pattern of the xN1-Src microexon (present in both xN1-

Src and xN3-Src transcripts), detected higher expression in the animal 

hemisphere than the ventral hemisphere at the blastula stage 9. As 

neural induction and neurogenesis proceed, expression of the xN1-Src 

microexon can be seen throughout the neural plate, akin to sox3 

expression (Rogers et al. 2009) (indicated by the black arrows in Figures 

15c and 15d). In stage 20-21 embryos xN1-Src microexon expression 

remains restricted to this region after the neural plate has rolled up to 

form the neural tube during neurulation (Figures 15e and 15f). At tailbud 

stage 26, the expression of the xN1-Src microexon is detectable in the 

neural tube and also in the anterior head region. Expression is also 

detectable in the branchial arches; a structure populated by neural crest 

cells (indicated by the red arrow) (Koestner et al. 2008). When the 

embryo was dissected laterally at stage 26, higher expression was 

detected in the neural tube of the anterior section, corresponding to the 

head region (Figure 15g) than the posterior tail section (Figure 15h).  
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Whilst existing protocol recommends preabsorption of LNA probes six 

times to increase probe specificity (as described by Warrander et al. 

2015), there was no noticeable difference in the amount of background 

staining when preabsorbed or fresh probe was used (data not shown). 

  

 

3.2.6 Src expression analysis during early Xenopus development: 
Spatial expression analysis of xN3-Src 
Figure 16c shows that at stage 5, there is an animal to ventral gradient of 

xN3-Src expression with xN3-Src transcripts localised to the animal 

hemisphere (Figures 16a and 16b). At stages 12-20 (Figures 16d-g), as 

neurogenesis and neurulation proceeds, xN3-Src is expressed at highest 

Figure 15: The spatial expression pattern of the xN1-Src microexon during early Xenopus tropicalis 
development analysed using in situ hybridisation with an LNA probe. (a) stage 9 animal view, (b) stage 9 vegetal 
view, (c+d) stage 15 and stage 18 dorsal views, anterior to the top, (e+f) stage 20 and 21 dorsal views, anterior to the 
left, (g+h) anterior and posterior lateral sections of stage 26 embryo, dorsal to the top, (i) stage 26 lateral view, anterior 
to the left, dorsal to the top, (j) stage 26 dorsal view, anterior to the left. Inset (stages 15-21) are lateral views anterior to 
the left, dorsal to the top. Black arrows indicate the neural plate, white arrows indicate the closed neural tube, red arrows 
indicate the brachial arches. Embryos were staged according to Nieuwkoop and Faber (1994) stages of Xenopus 
development. Ant. NT = anterior neural tube, Post. NT = posterior neural tube. 
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levels in the neural plate and then the neural tube. At tailbud stages 25-

39 (Figures 16h, 16i and 16l), expression is detectable in the neural tube 

and also the eye. Expression is also localised to the branchial arches. 

Lateral sections of stage 34 and 39 embryos show that xN3-Src 

expression is more diffuse in the anterior head region than the posterior 

tail region (Figures 16j, 16k, 16m and16n). 

 

3.2.7 Neural-inductive signals upregulate neural-Src splice variants 
Neural induction occurs partly as a result of the BMP inhibition by 

molecules such as Noggin and Chordin; dorsalising factors released by 

Figure 16: The spatial expression pattern of the xN3-Src microexon during early Xenopus 
tropicalis development analysed using in situ hybridisation with an LNA probe. Embryos were 
staged according to Nieuwkoop and Faber (1994) stages of Xenopus development. (a) stage 5 animal 
view, (b) stage 5 vegetal view, (c) stage 5 lateral view, animal pole to the top, (d-f) stage 12, 15, 18 
dorsal views, anterior to the top, (g) dorsal view, anterior to the left, (h, i, l) stage 25, 34, 39 lateral 
views, anterior to the left, dorsal to the top, (j+K) anterior and posterior lateral sections of stage 34 
embryo, dorsal to the top, (m+n) anterior and posterior lateral sections of stage 29 embryo, dorsal to the 
top. Inset (stages 15-20) are lateral views; anterior to the left, dorsal to the top. Inset (stages 25-39) are 
dorsal views; anterior to the left. Black arrows indicate the neural plate, white arrows indicate the closed 
neural tube, red arrows indicate the brachial arches and yellow arrows indicate the eye. Ant. NT = 
anterior neural tube, Post. NT = posterior neural tube. 
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Spemann-Mangold’s organizer (Spemann & Hilde Mangold 1924; Smith 

& Harland 1992; Sasai et al. 1994). Microinjection of noggin mRNA 

results in embryo dorsalization (Smith & Harland 1992; Holley et al. 

1996), visible in the phenotype shown in figure 17b; a positive control for 

noggin translation and activity. In an experiment that was performed 

once, when undissected control embryos reached stage 16-17 (Figure 

17a), animal cap explants dissected from sibling embryos injected with 

noggin mRNA exhibited a slight increase in expression of xN1-Src and 

xN3-Src relative to animal cap explants from uninjected embryos, whilst 

C-Src expression remained unchanged (Figure 17c).	

3.2.8 Src expression analysis in adult Xenopus tropicalis tissues 
N1-Src expression has previously been detected in the human foetal 

brain and at lower levels in the adult brain but is absent in other adult and 

Figure 17: Noggin-induced upregulation of neural Src isoforms in 
animal cap explants analysed using RT-PCR. (a) uninjected neurula 
stage embryos, (b) noggin mRNA-injected phenotype, (c) RT-PCR of animal 
cap explants. RNA extracted from uninjected animal caps was used for no 
RT and water controls. Neural Src expression was analysed using neural 
Src primers designed by Philip Lewis This figure represents data from one 
experiment, n=1. 
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foetal tissues, including the pancreas, liver and lung (Pyper & Bolen 

1990). Conversely, it was unknown as to whether the expression of the 

novel xN3-Src isoform is restricted to embryogenesis or whether its 

expression was maintained into adulthood and if so, in which tissues it is 

expressed. In an experiment performed once, RT-PCR performed on 

RNA extracted from Xenopus tropicalis adult tissues showed as 

expected, that xN1-Src expression is detectable in the brain, and more 

surprisingly at lower levels in the heart (Figure 18). Additionally, xN3-Src 

expression is also detectable in these two tissues but neither isoform is 

detectable in the other tissues analysed. Pan-Src priming detected no 

additional Src splicing between exons three and four (data not shown). C-

Src expression was detected in all adult tissues analysed. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2.9 Discussion 
Temporal expression analyses 
RT-PCR analyses of Xenopus tropicalis and zebrafish embryos showed 

that expression levels of neural Src variants correlate with primary and 

secondary neurogenesis and that Xenopus tropicalis xN1-Src and xN3-

Figure 18: The expression of Src isoforms in adult Xenopus tropicalis tissues 
measured using RT-PCR. RNA extracted from the brain was used for no RT and water 
controls. xN1-Src expression was analysed using xN1-Src-specific primers. Both xN1-
Src and xN3-Src expression levels were analysed using neural Src primers designed by 
Philip Lewis This figure represents data from one experiment, n=1. 
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Src expression is maintained into adulthood, where expression is 

restricted to the brain and the heart. This recapitulates the findings of 

Philip Lewis (thesis, 2014) who showed that expression of the neural Src 

variants were detectable in the maternal mRNA pool and increased in 

expression towards a peak during primary neurogenesis. Additionally, this 

project builds his work, where Pan-Src priming (which detected C-Src, 

xN1-Src and xN3-Src expression) and neural-Src priming (which detected 

xN1-Src and xN3-Src expression) were used to analyse the expression of 

Src isoforms during primary neurogenesis. In these experiments, isoform-

specific primers have been used to analyse the temporal expression 

patterns of the specific splice variants in isolation from one another during 

both primary and secondary neurogenesis. In addition to the detailed 

temporal expression analyses of Src isoforms during Xenopus tropicalis 

neural development, the temporal expression patterns of N1-Src isoforms 

was also shown to peak during zebrafish primary and secondary 

neurogenesis and provides an additional example of vertebrate 

development. These RT-PCR experiments and densitometries should be 

repeated for statistical validation. For more quantitative analyses, 

quantitative PCR (qPCR) should be used.  In addition, the isoform-

specific primers must be validated. To do so, the primers should be 

shown to amplify cloned cDNA of the specific isoform they are intended, 

and not the other isoforms. In addition, the products should be cloned and 

sequenced to confirm their identities. Due to time constraints, this was not 

possible during this project.  

 

During neural induction at blastula and gastrula stages, xN1-Src and xN3-

Src expression levels were shown to increase from low levels of maternal 

mRNA that was deposited pre-MBT. Upregulation of the neural Src 

isoforms during neural induction was recapitulated in the noggin-injected 

animal explants, where it was observed that overexpression of the BMP 

inhibitor noggin caused a slight increase in the expression levels of both 

xN1-Src and xN3-Src, relative to the basal level expressed in the animal 

caps dissected from uninjected control embryos. This experiment must be 

repeated to confirm that the subtle changes observed are statistically 
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significant. In addition, qPCR should be used to measure such small 

changes in gene expression, however this was not possible due to time 

constraints. 

 

To normalise the expression patterns of the Src variants using RT-PCR, 

expression levels of the house keeping genes L8 and elongation factor 

1α (EF1α) were used for Xenopus tropicalis and zebrafish respectively. 

The expression levels of mRNA encoding the ribosomal protein L8 has 

been shown to be constant in its expression levels up until stage 19 in 

Xenopus laevis, relative to the total RNA levels (Sindelka et al. 2006) and 

whilst EF1α levels were shown to be stably expressed during 

development, compared with other housekeeping genes studied 

(McCurley & Callard 2008), more accurate levels of gene expression may 

be calculated by comparison with total RNA levels, though this is a more 

difficult and time consuming approach.  

 

Spatial expression analyses 
The in situ hybridisation experiments using LNA probes demonstrated the 

neural, eye and neural crest expression pattern of the xN1-Src microexon 

during Xenopus tropicalis primary neurogenesis. It is important to note 

that the LNA probe designed to detect the xN1-Src microexon is likely to 

detect xN3-Src transcripts in addition to xN1-Src transcripts, and 

therefore should be referred to as the ‘N-Src LNA probe’. This is because 

the xN1-Src microexon is present in the xN3-Src transcript. It is unlikely 

that the two nucleotides at the 3’ end of the probe that are homologous to 

the 3’ end of exon 3 enable the probe to distinguish between the xN1-src 

and xN3-Src isoforms (You et al. 2006). To analyse the spatial 

expression pattern of xN1-Src specifically, it would be necessary to 

design an LNA probe that spans more of the 3’ end of exon 3, therefore 

excluding binding of the LNA probe to the xN3-Src microexon, in a 

manner analogous to the RT-PCR primer design used in the time course 

experiments. To increase the specificity further, additional LNAs may be 

introduced (You et al. 2006).   
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In addition to using designing additional LNA probes to analyse the 

expression patterns of these microexons, work must be done to validate 

their specificities. The LNA probes were designed to have as little 

sequence homology to other transcripts as possible; using BLAST 

searches to predict off-target binding via sequence homology. Darnell et 

al. (2010) showed using chicken embryos that signal could be detected 

from LNA in situ hybridisation probes of 14 nucleotides but not probes of 

12 nucleotides in length. For this reason, probes were designed that had 

sequence homology of less than 14 nucleotides to off-target transcripts. 

xN3-Src expression cannot be detected using BLAST searches of 

published Xenopus transcriptome data; therefore it is possible that 

BLAST searches are of insufficient sensitivity to predict off-target binding. 

These LNA in situ hybridisation experiments therefore require stronger 

negative controls, such as LNA probes with mismatches to the xN1-Src 

and xN3-Src microexons or random sequences that are not predicted to 

bind to any transcripts in the Xenopus tropicalis transcriptome. This is 

necessary to demonstrate that the staining observed is not background 

staining that can occur when performing in situ hybridisation. Conversely, 

an LNA probe designed against a transcript of a known but different 

neural expression pattern such as n. tubulin would act as a positive 

control for the use of these probes in assessing different expression 

patterns. Alternatively, to support the expression patterns observed using 

the N3-Src LNA probe, multiple LNA probes could be generated, 

targeting different regions of the 70-nucleotide insert. This is not possible 

for the xN1-Src probe due to the short microexon sequence length. Due 

to time limitations it was not possible to perform these controls during this 

project, however they are essential in supporting this data. Nevertheless, 

these experiments represent the first detailed analyses of the neural and 

neural-crest-restricted expression patterns of neural Src isoforms during 

embryogenesis.  

	

SFK proteins are subjected to many posttranslational modifications, some 

of which alter protein levels. For example, the unique domain 

phosphorylation at Thr37 or Ser75 in human Src by p25-activated cyclin 
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dependent kinase 5 (cdk5) promotes ubiquitination-mediated Src 

degradation (Pan et al. 2011). Whilst analyses of mRNA levels show the 

temporal and tissue-specific splicing of the neural Src RNA to produce 

mature mRNA and may indicate protein levels, this highlights the 

importance of studying protein levels to understand fully the tissues in 

which the neural Src proteins isoforms are expressed and the 

developmental stages at which this occurs. To do so, anti-neural-Src 

antibodies are required for western blot analyses of temporal expression 

patterns and immunostaining analyses of spatial expression patterns.  

	

In conclusion, in Xenopus tropicalis, xN1-Src and xN3-Src are expressed 

in neural tissues during primary and secondary neurogenesis, placing 

their expression in the correct time and place for a role in neural 

development.  

3.3 Functional analyses of neural Src isoforms 

3.3.1 Introduction 
Owing to the large sizes of Xenopus and zebrafish embryos and their 

consequential ease of injection, understanding of protein function can be 

gained from microinjecting the reagents necessary for overexpression 

and knockdown/knockout technologies and observing their effects on 

developmental processes. To understand the function of xN3-Src using 

overexpression analyses in Xenopus tropicalis embryos, it was necessary 

to clone this isoform, from which mRNA was synthesised in vitro and 

microinjected. As xN1-Src has previously been cloned (by Philip Lewis), 

synthetic mRNA could be transcribed.  

 

Two antisense morpholino oligos (AMOs) were previously designed by 

Philip Lewis to knockdown the expression of the neural Src variants in 

Xenopus tropicalis by binding to and inhibiting the splice donor and 

Figure 19: The splice-blocking antisense morpholino oligo (AMO) strategy used to knockdown 
the neural Src isoforms 
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acceptor sites of xN1-Src via their complementary sequences (Figure 19, 

sequences shown in Table 1, page 31), whilst leaving the expression of 

C-Src mRNA unaffected. We may predict that injecting the splice 

acceptor site-inhibiting AMO (AMO A) singularly may knockdown xN1-Src 

expression alone, as an alternative splice acceptor is spliced to exon 3 to 

produce mature xN3-Src mRNA. Conversely, we may expect that 

microinjecting AMOs targeting the splice donor site (AMO D) would knock 

down both xN1-Src and xN3-Src as this site is used to produce both 

mature mRNAs by being spliced to exon 4. Furthermore, we may 

hypothesise that when used in combination, these AMOs would knock 

down xN1-Src expression by inhibiting the splice acceptor site and both 

xN1-Src and xN3-Src expression by inhibiting the splice donor site used 

for the expression of the both neural variants (as shown in Table 7). 

Xenopus tropicalis embryos were used in these analyses as they have 

only one Src gene, whereas Xenopus laevis have two.  

 
Table 7: The predicted effects of Antisense Morpholino Oligo microinjection on 

Src splice variant expression 

 
Where ✔ indicates the expression of the isoform and ✖ indicates the splicing of the transcript is 
inhibited 
 

To understand the functions of these proteins using overexpression and 

knockdown analyses, embryos injected with these constructs can be 

observed for changes in phenotype and analysed for changes in the 

expression of neural and neural crest markers using in situ hybridisation. 

Unilateral injection of mRNA and AMOs allow subtle changes in gene 

expression to be identified using in situ hybridisation as the expression 

patterns in the two embryo hemispheres can be compared, rather than 

Antisense 

morpholino oligo 

Predicted effects on Src splice variant expression 

C-Src xN1-Src xN3-Src 

Acceptor ✔ ✖ ✔ 

Donor ✔ ✖ ✖ 

Acceptor + Donor ✔ ✖ ✖ 
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comparing large population averages. It could also be argued that this is 

a more accurate method of analysing changes in gene expression.  Such 

markers include sox3 (a marker of the proliferating neural plate, (Rogers 

et al. 2009)), n. tubulin (a marker of differentiated neurons (Kuroda et al. 

2004)) and phox2a (a marker of neural crest). Phox2a is a transcription 

factor that is responsible for regulating the expression of tyrosine 

hydroxylase and dopamine beta-hydroxylase; enzymes which are 

required for noradrenergic neuron development (Lo et al. 1999) – a 

subpopulation of neurons of the peripheral autonomic nervous system 

derived from the neural crest, from which neuroblastoma cancers develop 

in humans (Wylie et al. 2015).  

 

In addition to analysing neural Src morphant Xenopus tropicalis embryos, 

Figure 20: CRISPR-mediated homologous recombination strategy for creating an N1-Src 
knockout zebrafish line. A single guide RNA (sgRNA, green) guiding cleavage of the N1-Src 
microexon (red) by Cas9 protein (yellow) would create double strand breaks at the DNA locus. 
This can be repaired by homologous recombination, guided by a single stranded DNA (ssDNA) 
template containing the sequence surrounding but not including the N1-Src microexon (blue) to 
excise the N1-Src microexon from the genomic locus. Figure designed by author.  
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clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-

associated (Cas)-mediated homologous recombination may allow the 

removal of the N1-Src microexon from the genome, whilst leaving C-Src 

splicing and transcription unaffected (Figure 20). To do so, microinjection 

of Cas9 protein alongside single guide RNA (sgRNA) that is 

complementary to the N1-Src microexon would in theory recruit this 

endonuclease to the N1-Src locus and guide its cleavage, creating double 

strand breaks. Alone, this would be repaired by non-homologous end 

joining (NHEJ), an error-prone DNA repair mechanism (Ran et al. 2013) 

which may knockout the function of N1-Src via the formation of indels but 

may also affect the closely positioned exons of other splice variants and 

may therefore have off-target effects. Co-injecting a single stranded DNA 

(ssDNA) oligo template containing 50 nucleotides of homologous 

sequence immediately before and after but not including the N1-Src 

microexon would provide a guide for DNA repair (Ward 2015), allowing 

the error free mechanism of DNA repair known as homology directed 

repair (HDR) or homologous recombination to take place and the excision 

of the N1-Src microexon (Maruyama et al. 2015).  

 

As the xN1-Src splice acceptor site is necessary to generate both xN1-

Src and xN3-Src transcripts in Xenopus, and zebrafish show no additional 

Src splicing between exons 3 and 4, the zebrafish model offers the 

opportunity to study the function of N1-Src in isolation using this method, 

as this would hypothetically affect neither C-Src nor additional Src 

isoforms. In addition, whilst being tetraploid, zebrafish have only one Src 

gene and therefore only one gene must be targeted to generate null 

organisms. 

 

Results 

3.3.2 Unilateral injection technique 
To demonstrate the method of unilateral embryo injection in Xenopus 

tropicalis, TdTomato mRNA was injected at the two to eight-cell stage. 

Embryos were then observed for the unilateral expression of the 
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fluorescent protein. Figure 21 shows that the fluorescent protein can be 

detected unilaterally at tailbud stage. Due to the formation of the lighter 

pigmented gray crescent in the animal pole of early cleavage stage 

embryos following cortical rotation, it is possible to distinguish the left and 

right embryo hemispheres (Huxley & Beer 2015). This provides an 

accurate and reproducible way of targeting mRNAs and AMOs to one 

particular hemisphere, without the need for co-injecting tracers that mark 

the injected hemisphere. In subsequent experiments, embryos were 

injected into the left hemisphere.  

 

3.3.3 Antisense-morpholino oligo knockdown of neural Src splice 
variants 
To test the effects of the splice-blocking antisense morpholino oligos 

(AMOs) on the splicing of Src isoforms, embryos were injected bilaterally 

with the AMOs singularly or in combination and RT-PCR was then 

performed at stage 16-17; a time point at which high xN1-Src and xN3-

Src expression is ordinarily observed. Figure 22 shows that that injecting 

the AMOs singularly or in combination results in the knockdown of both 

xN1-Src and xN3-Src variants and therefore the AMOs cannot be used to 

specifically target xN1-Src, as predicted in Table 7. The death rate 

observed in embryos injected with AMO A and AMO D individually was 

13% and 14% respectively, higher than the uninjected ficoll control 

embryos (3%), however no embryos injected with the AMOs in 

combination died, therefore it is unlikely that toxicity is associated with the 

injection of these AMOs.  

 

Figure 21: Unilateral microinjection technique 
demonstrated by the injection of TdTomato mRNA. 
Dorsal view of stage 23 embryo.  
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AMO A was microinjected alone in subsequent experiments, as Figure 22 

shows that it is sufficient to knockdown the expression of the neural Src 

isoforms. 

 

The injection of AMO A was used to assess the specificity of the xN-Src 

LNA probe as a reduction in staining was expected upon the inhibition of 

neural Src splicing. Embryos injected unilaterally with AMO A showed no 

reduction in staining using this probe at neurula stage and embryos 

displayed the expression pattern shown in Figure 15c (n=8, data not 

shown).  

 

 

 

 

 

 

 

 

 

 

 

 

3.3.4 The effects of xN1-Src and xN3-Src knockdown on the 
locomotive responses of Xenopus tropicalis embryos 
To analyse whether the knockdown of xN1-Src and xN3-Src has an effect 

on the overall development of neural circuitry, the swimming response to 

a light touch stimulus to the tail was analysed. The responses of free-

swimming embryos to this stimulus was categorised as either ‘dart’ or 

‘twitch’ responses (according to Lewis (2014)). The normal and expected 

response is the embryo righting itself and rapidly swimming away, which 

is referred to as the ‘dart’ response. In contrast, a ‘twitch’ response 

consists of the embryo remaining horizontal and swimming only a short 

Figure 22: Antisense morpholino oligo mediated knockdown of 
the neural Src isoforms, analysed using RT-PCR. RNA 
extracted from uninjected embryos was used for no RT and water 
controls. Neural Src expression was analysed using neural Src 
primers designed by Philip Lewis This figure represents data from 
one experiment, n=1. 

AMO-mediated	knockdown	of	xN1	and	xN3-Src	

Done	

xN3-Src 

xN1-Src 
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distance, owing to abnormal, convulsing-type swimming (both 

phenotypes are shown as an overlay of stills taken immediately after the 

touch stimulus and 0.15 seconds later in Figures 23a and 23b). Figure 

23d shows that of embryos of one fertilisation, 94% of ficoll-cultured 

embryos (uninjected embryos cultured in the same medium as injected 

embryos) and 100% of water-injected embryos exhibited the dart 

response, and the remaining 6% of ficoll-cultured embryos showed the 

twitch response (n=18 and 5 respectively). In contrast, 71% of AMO A-

injected embryos exhibited the dart response, and the remaining 29% 

showed the twitch response (n=21). Video figures attached are labelled 

with swimming phenotype categorisations (Figures 23f-h).  

 

Figure 23: The effects of antisense morpholino oligo-mediated knockdown of neural Src isoforms on the 
locomotive phenotype of Xenopus tropicalis embryos. (a) overlay of the ‘dart’ phenotype, (b) overlay of the 
‘twitch’ phenotype, (c) overlay method used to measure the distance travelled in the first 0.15 seconds after a touch 
stimulus to the tail, (d) quantification of the phenotypes shown in a and b, (e) quantification of the distances 
travelled as shown in c relative to mean of the distance travelled by water-injected embryos. Video figures 23f-h are 
available on the attached CD. All embryos injected and analysed were from a single set of fertilisations; therefore 
this data represents a single experiment, with 21 AMO-injected, 5 water-injected and 18 ficoll control embryos 
analysed. 
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In addition, the distance travelled by these embryos was quantified using 

ImageJ by overlaying the stills taken at the point of contact and 0.15 

seconds later and measuring the distance travelled by the embryo as the 

distance between the centre of the eye at these two time points (as 

shown in Figure 23c). Figure 23e shows that water-injected and ficoll-

treated embryos travelled 1.4 and 1.6 times further respectively than 

embryos injected with AMO A in the first 0.15 seconds after the touch 

stimulus. Therefore, not only is coordinated movement reduced in AMO 

A-injected embryos, characterised by their swimming responses, but this 

also impedes their escape from a touch stimulus. 

 
3.3.5 Generating probes for in situ hybridisation including phox2a 
cloning  
Existing sox3 and n. tubulin constructs, from which antisense in situ 

hybridisation probes could be synthesised offer the ability to analyse the 

proliferating versus differentiating status of the neural plate, in the 

presence of knocked-down and overexpressed neural Src variants. To 

analyse the effects on neural crest development, phox2a was cloned and 

an antisense probe transcript was synthesised. RT-PCR was used to 

amplify phox2a from stage 25 cDNA (Figure 24a). A non-homeobox 

region of the phox2a transcript was amplified, cloned and sequenced and 

an antisense in situ hybridisation probe was synthesised. Non-homeobox 

sequence was chosen, aiming to reduce background staining via off-

target binding to other homeobox domain-containing proteins. Figure 24b 

shows that that the probe synthesised from this construct enables the 

Figure 24: Generating an in situ hybridisation probe to analyse the spatial expression pattern of 
the neural crest marker phox2a. (a) RT-PCR of stage 25 cDNA using primers to amplify non-
homeobox domain phox2a sequence, (b) spatial expression pattern of phox2a at the tailbud stage in 
Xenopus tropicalis. Lateral view of stage 23 embryo.  

Phox2a	probe	–	RT-PCR	and	in	situ	
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detection of the developing noradrenergic neurons from the neural crest 

in Xenopus tropicalis.   

3.3.6 The effects of xN1-Src and xN3-Src knockdown on the 
expression of neural and neural crest markers 
To investigate the effects of AMO A on neurogenesis that may explain the 

observed defects in locomotion, the expression of neurogenic markers n. 

tubulin and sox3 were analysed in unilaterally injected embryos – 

comparing the injected and uninjected hemispheres.  

 

75% of embryos showed reduced n. tubulin expression in the hemisphere 

injected with AMO A relative to the uninjected hemisphere (n=12), with 

the remaining 17% and 8% of embryos showing reduced n. tubulin 

Figure 25: The effect of neural Src knockdown on the expression pattern of n. tubulin 
in embryos injected in the left hemisphere. (a) loss of left hemisphere staining, (b) loss of 
right hemisphere staining, (c) loss of staining in neither hemisphere, (d) quantification of a-c. 
Dorsal views of neurula stage embryos. 14 embryos were analysed from a single set of 
fertilisations; therefore this data represents a single experiment.  

 AMO	N.	tubulin	

0 

10 

20 

30 

40 

50 

60 

70 

80 

Left Right No reduction 

Pe
rc

en
ta

ge
 o

f e
m

br
yo

s 
(%

) 

Hemisphere of reduced n. tubulin expression relative to 
the other hemisphere 

d 



	 79 

expression in the right (uninjected) hemisphere or no reduction 

respectively (Figure 25). Reduced n. tubulin staining was observed 

across all three longitudinal domains that mark the motor neurons, 

interneurons and sensory neurons (shown in Figure 3, page 22). 

 

As the expression of the neural differentiation marker n. tubulin was 

reduced upon neural Src knockdown, AMO A-injected embryos were 

analysed for a corresponding effect on the expression of sox3 as a 

reduction in the number of proliferating neural precursors or an expansion 

of the number of proliferating neural precursors at the expense of 

differentiation would both explain this observation. In each hemisphere, 

the width of the sox3-positive domain was measured using ImageJ as a 

straight line (as indicated by the red line in Figure 26a), at a point at 

which there was a clear distinction between stained and unstained cells. 

The the ratio of the widths of these domains was then calculated for each 

Figure 26: The effect of neural Src knockdown on the expression pattern of sox3 in embryos injected in 
the left hemisphere, measured using ImageJ. (a) expansion of sox3 expression in the left hemisphere at 
neurula stage. Indicated by the red line is an illustration of how measurements of the width of the sox3-positive 
domain were taken. Please note that this is not an actual measurement. (b) expansion of sox3 expression in 
the right hemisphere at neurula stage, (c) expansion of sox3 expression in the left hemisphere at tailbud stage, 
(d) expansion of sox3 expression in the left hemisphere at tailbud stage, (e) quantification of a-d. Dorsal views 
of neurula and tailbud stage embryos. 17 neurula stage embryos were pooled from two sets of fertilisations and 
7 tailbud stage embryos were used from one set of fertilisations, therefore these data represent single 
experiments. 

AMO	Sox3	

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

Open neural plate Tailbud 

P
er

ce
nt

ag
e 

of
 e

m
br

yo
s 

di
sp

la
yi

ng
 

so
x3

 e
xp

an
si

on
 in

 th
e 

in
di

ca
te

d 
he

m
is

ph
er

e 
(%

) 

Embryo stage 

Right 

Left 

e	



	 80 

embryo, where a value of one represents equally sized domains and a 

value greater than one represents a larger sox3 positive domain in the 

injected hemisphere and vice versa. When a cut off for expanded sox3 

expression was defined as a 1% difference between the widths in the two 

hemispheres (a ratio of the injected:uninjected widths of 1.01 or above), 

sox3-domain expansion was identified in the AMO A-injected hemisphere 

Figure 27: The effect of neural Src knockdown on the expression pattern of phox2a in 
embryos injected in the left hemisphere, measured using ImageJ. (a) and (b) reduced 
length of phox2a domain in the left hemisphere. Indicated by the red line in (a) is an 
illustration of how measurements of the phox2a-positive domain were taken. Please note 
that this is not an actual measurement. (c) and (d) reduced length of phox2a domain in the 
right hemisphere, (e) quantification of a-d phenoptypes. Lateral views of early tailbud stage 
embryos. 15 embryos were pooled from two sets of fertilisations; therefore these data 
represent a single experiment.  
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(left) of 76% of embryos relative to the uninjected hemisphere, compared 

to 24% of embryos that showed expansion in the uninjected hemisphere 

relative to the injected hemisphere at neurula stages (Figures 26a, 26b, 

26e). When the threshold of expansion was increased to 10% (a ratio of 

1.1), 71% of embryos displayed expansion in the left hemisphere and 

18% and 12% of embryos showed expansion in the uninjected (right) 

hemisphere and neither hemisphere respectively (n=17). At early tailbud 

stage, when neurulation is complete, expansion of the sox3-positive 

domain was detected in both hemispheres in equal proportions (Figures 
26c-e, n=8). 

 

ImageJ was also used to measure the longitudinal length of the phox2a 

expression domain at the surface of either side of the embryo from the 

first to the last cell along the rostrocaudal axis at early tailbud stages 

(indicated by the red line, Figure 27a). The ratios of the sizes of these 

domains were calculated as described for the sox3 analyses. 40% of 

embryos showed ratios of 0.4-0.7, a higher proportion of embryos than 

the 27% of embryos with ratios of 1.31-2.20 (n=15), therefore more 

embryos exhibited a smaller phox2a positive domain in the injected 

hemisphere when sizes of the two domains differed by more than 30%.  

 

Embryos were injected with AMO A in eight injection sessions. Control 

embryos were either injected with control AMOs, water, or incubated in 

ficoll in seven of these sessions. Across these experiments, a death rate 

of 39% was observed in AMO A-injected embryos, higher than 30% of 

control AMO or water-injected embryos and 23% of ficoll control embryos.  

 

3.3.7 xN1-Src overexpression 
To analyse the function of xN1-Src and xN3-Src in vivo, mRNA was 

transcribed in vitro for overexpression analyses in Xenopus embryos. 

Xenopus laevis xN1-Src mRNA was transcribed from xN1-Src-pCS2+ 

(cloned by Philip Lewis (thesis, 2014)).  

 



	 82 

Unilateral and bilateral xN1-Src mRNA microinjection yielded no obvious 

phenotypic effects on Xenopus laevis or Xenopus tropicalis embryos 

(data not shown). Embryos microinjected unilaterally were analysed for 

the spatial expression patterns of the neural markers n. tubulin and sox3 

and the neural crest marker phox2a to assess for subtle changes in 

neurogenic gene expression between the injected and uninjected 

hemispheres that did not result in phenotypic defects.  

 

 

In the xN1-Src mRNA-injected hemisphere (the left hemisphere), there 

was no effect on the spatial expression pattern of n. tubulin, with an equal 

Figure 28: The effect of xN1-Src overexpression on the expression pattern of n. 
tubulin in embryos injected in the left hemisphere. (a) loss of left hemisphere staining, 
(b) loss of right hemisphere staining, (c) loss of staining in neither hemisphere, (d) 
quantification of a-c. Dorsal views of neurula stage embryos. 12 embryos were analysed 
from a single set of fertilisations; therefore these data represent a single experiment. 
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proportion embryos showing reduced n. tubulin expression each of the 

two hemispheres relative to the other (17%) with the remaining 67% of 

embryos showing no relative reduction in either hemisphere (figure 28, 

n=12). 

 

In embryos injected unilaterally with xN1-Src mRNA, 10% more embryos 

showed mediolateral expansion of the sox3 expression domain 

(measured as described previously), which may represent a subtle 

difference in the expression pattern, with 53% and 43% of embryos 

Figure 29: The effect of xN1-Src overexpression on the expression pattern of sox3 in 
embryos injected in the left hemisphere, measured using ImageJ. (a) expansion of sox3 
expression in the left hemisphere at neurula stage, (b) expansion of sox3 expression in the 
right hemisphere at neurula stage, (c) expansion of sox3 expression in neither hemisphere at 
neurula stage, (d) quantification of a-c. Dorsal views of neurula stage embryos. 30 embryos 
were analysed from a single set of fertilisations; therefore these data represent a single 
experiment. 
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showing expansion in the left and right hemispheres respectively (Figure 

29, n=30). 

 

To compare the lengths of the phox2a positive domains in the left and 

right hemispheres of xN1-Src mRNA-injected embryos, it was necessary 

to calculate the longitudinal length of the domain as a proportion of the 

embryo length (owing to differences in magnifications). When the ratios of 

these proportions were compared, it was observed that xN1-Src mRNA 

had no effect on the length of the phox2a positive domain, as 50% of 

embryos showed expansion in each of the two hemispheres (n=8).  

Figure 30: The effect of xN1-Src overexpression on the expression pattern of 
phox2a in embryos injected in the left hemisphere, measured using ImageJ. (a) and 
(b) increased length of phox2a domain in the left hemisphere, (c) and (d) increased length 
of phox2a domain in the right hemisphere, (e) quantification of a-d phenoptypes. Lateral 
views of early tailbud stage embryos. 8 embryos were analysed from a single set of 
fertilisations; therefore these data represent a single experiment.  
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Embryos were injected unilaterally with xN1-Src mRNA or incubated in 

ficoll across three injection sessions. A higher death rate was observed in 

xN1-Src mRNA injected embryos (24%) than the control embryos (16%), 

though this may be attributable to the injection process, rather than 

resulting from xN1-Src over-expression.  

 

3.3.8 xN3-Src cloning 
xN3-Src was cloned from stage 15 cDNA synthesised by random 

hexamer priming. Primers amplifying the full coding sequence were 

designed for Phusion polymerase-mediated PCR, to generate an error-

free template. This product was then cloned into the pGEM T-Easy 

vector, from which directional cloning was achieved by amplifying the 

product using PCR primers containing restriction enzyme sites also 

present in the pCS2+ plasmid. Both the plasmid and PCR product were 

digested with these enzymes, purified and ligated together to produce 

cloned xN3-Src, from which full-length, polyadenylated transcripts were 

synthesised for embryo microinjection.  

 

Sequencing of the pCS2-xN3-Src construct revealed an A-G point 

mutation present at nucleotide position 357, encoding a D111N missense 

mutation in the predicted amino acid sequence.  

 

3.3.9 xN3-Src overexpression 
Across three injection sessions, 1ng and/or 500pg xN3-Src mRNA was 

injected bilaterally, with control embryos injected with an equal volume of 

water and additional control embryos incubated in ficoll.  Bilaterally over-

expressing xN3-Src mRNA resulted in the loss of eye pigmentation 

and/or reduced eye size (Figure 31a-c). With increased xN3-Src dose 

from 500pg to 1ng, there was a dose-dependent increase in the number 

of embryos displaying reduced eye pigmentation and/or size. Unilateral 

and bilateral reduction in eye pigmentation and/or size was each 

observed in 7% of embryos injected with 500pg xN3-Src mRNA, whilst 
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9% and 39% of embryos injected with 1ng xN3-Src mRNA displayed 

these phenotypes respectively, compared to water-injected embryos (2% 

and 2% of embryos) and ficoll control embryos (2% and 4% of embryos, 

respectively) (Figure 31d). 

 

There was an increased death rate from 17% to 29% observed with 

increased dose of xN3-Src mRNA, higher than the ficoll control embryos 

(17%), however this was lower than the death rate of water-injected 

embryos (33%), therefore it is unlikely that microinjection of xN3-Src 

mRNA is detrimental to embryo survival, beyond the microinjection 

process itself. 

  

Xenopus tropicalis embryos were injected unilaterally in the left 

hemisphere with xN3-Src mRNA in two injection sessions. In each set of 

injections embryos were either injected with an equal volume of water or 

incubated in ficoll. A death rate of 14% was observed in ficoll control 

embryos, 17% of water-injected embryos and 20% of xN3-Src-injected 

embryos. 

 

Figure 31: The effect of xN3-Src overexpression on Xenopus tropicalis eye pigmentation in bilaterally injected 
embryos. (a) wild type eye pigmentation, (b) unilateral reduced eye pigmentation (lateral and dorsal views of separate 
embryos), (c) bilateral reduced eye pigmentation, (d) quantification of phenotypes shown in a-c. Lateral and dorsal views 
of stage 40 embryos. Embryos were injected and analysed from three fertilisations; in two injection sessions xN3-Src 
mRNA was injected in the two quantities, alongside water and embryos were injected with ficoll. In the third injection 
session embryos were injected with 1ng xN3-Src mRNA, water or incubated in ficoll. In total, 29 embryos were injected 
with 500pg xN3-Src mRNA, 75 with 1ng xN3-Src mRNA, 60 with water and 99 were incubated with ficoll. 
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Unilateral xN3-Src mRNA injection had no effect on the spatial 

expression pattern of n. tubulin, with 40% of embryos showing reduced 

expression in each hemisphere relative to the other and the remaining 

20% of embryos showing reduction in neither hemisphere relative to the 

other (n=10, Figure 32).  

 

By measuring the width of the anterior neural plate sox3 expression 

domains as described previously in embryos injected unilaterally with 

xN3-Src mRNA, it was observed that 44% of embryos show expanded 

expression in each of the right and left hemispheres, relative to the other, 

with the remaining 11% of embryos showing expansion of the sox3 

Figure 32: The effect of xN3-Src overexpression on the expression pattern of 
n. tubulin in embryos injected in the left hemisphere. (a) loss of left hemisphere 
staining, (b) loss of right hemisphere staining, (c) quantification of the dorsal views 
of neurula stage embryos. 10 embryos were analysed from a single set of 
fertilisations therefore these data represent a single experiment.  
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expression domain in neither hemisphere (n=9, Figure 33), indicating that 

there was no effect of xN3-Src mRNA overexpression on the size of this 

domain. 

  

 

Figure 34 shows that at tailbud stage, the phox2a expression domain was 

reduced in the injected hemisphere relative to the uninjected hemisphere 

in 70% of embryos, compared to 30% of embryos that showed a 

reduction in phox2a staining in the uninjected hemisphere relative to the 

Figure 33: The effect of xN3-Src overexpression on the expression pattern of sox3 in 
embryos injected in the left hemisphere, measured using ImageJ. (a) expansion of sox3 
expression in the left hemisphere at neurula stage, (b) expansion of sox3 expression in the right 
hemisphere at neurula stage, (c) expansion of sox3 expression in neither hemisphere at neurula 
stage, (d) quantification of a-c. Dorsal views of neurula stage embryos. 9 embryos were analysed 
from a single set of fertilisations; therefore these data represent a single experiment. 
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injected hemisphere. 10% of embryos showed no change in the 

expression of phox2a (n=10). 

3.3.11 Generating the necessary reagents to perform CRISPR-
mediated homologous recombination and excision of the N1-Src 
microexon in zebrafish embryos 
PCR using partially overlapping primers yielded template DNA from which 

gene-specific sgRNA was transcribed in vitro (the sequence of which was 

used according to Nakayama et al. (2014)), for microinjection alongside 

Cas9 protein (synthesised by Olga Moroz, according to Gagnon et al. 

(2014)). To specifically target N1-Src whilst leaving C-Src unaffected, 

CRISPR-mediated homologous recombination was used. By designing 

and co-injecting a ssDNA oligo containing the DNA sequence 5’ and 3’ to 

Figure 34: The effect of xN3-Src overexpression of the spatial expression pattern of phox2a in tailbud stage 
embryos injected into the left hemisphere. (a) and (b) loss of left hemisphere staining, (c) and (d) loss of right 
hemisphere staining, (e) and (f) loss of staining in neither hemisphere, (g) quantification of phenotypes shown in a-f. 
Lateral views of stage 24 embryos. 10 embryos were analysed from a single se of fertilisations; therefore these data 
represent a single experiment. phox2a  expression domains were not measured using ImageJ for this experiment.  
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but not including the N1-Src microexon, alongside sgRNA and Cas9 

protein, the aim was to induce homologous recombination at the N1-Src 

locus, excising the N1-Src microexon whilst leaving the surrounding 

sequence intact.  

 

To test the efficacy of the Cas9 protein and the ability of the in vitro 

transcribed sgRNA molecules to guide gene targeting, the tyrosinase 

gene was targeted (designed and synthesised by Elliot Jokl). Tyrosinase 

is necessary to generate the pigmentation seen in embryos from 

approximately two days post fertilisation (Burgoyne et al. 2015), and in its 

absence, albinism results. Using sgRNA targeting this gene, co-injected 

with Cas9 protein, albinism was observed to varying severity in the F0 

generation, with most of the successfully targeted embryos showing 

strong albinism (35%, n=42, Figure 35).  

 

Figure 35: Testing the Cas9 protein and recruiting sgRNA sequence by targeting tyrosinase. (a) uninjected WT 
phenotype, (b) Cas9 only injected WT phenotype, (c) Cas9 and sgRNA injected WT phenotype, (d) mild albinism 
phenotype, (e) moderate albinism phenotype, (f) strong albinism phenotype, (g) complete albinism phenotype, (h) 
quantification of a-g. WT=wild type. Lateral and dorsal views of embryos at 5 days post fertilisation. This experiment 
was performed once. 
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In N1-Src targeted embryos, no obvious phenotype was observed (data 

not shown). Embryos were screened for the desired mutation by 

analysing the size of the genomic locus using PCR. The wild type (WT) 

sequence contains the 18 base pairs encoding the N1-Src microexon and 

using the PCR primers used here, produces a fragment of 184 base pairs 

(indicated by the black arrow on Figure 36). Following homologous 

recombination, the locus should contain 18 fewer base pairs, once the 

microexon has been excised. In embryos injected with the necessary 

components to guide homologous recombination-mediated N1-Src 

excision, a PCR product can be detected that is smaller than the wild type 

product seen in untargeted embryos (indicated by the grey arrow on 

Figure 36), which may represent the product of this recombination event. 

To confirm that homologous recombination has taken place, it is 

necessary to sequence the products. Due to time restrictions, it was not 

possible to do so during this project.  

 

Figure 36: Screen for excision of the N1-Src microexon. PCR amplification of a 
region of the Src gene that contains the N1-Src microexon yields a product of the 
size expected for the wild type gene (indicated by the black arrow) and smaller 
fragments, which may represent N1-Src microexon excision, creating a product that 
is 18 base pairs shorter (indicated by the grey arrow). This experiment was 
performed with different embryos but in a single experiment.  
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Discussion  

3.3.12 Antisense-morpholino oligo knockdown of neural Src splice 
variants 
Figure 22 shows that in Xenopus tropicalis the AMOs designed by Philip 

Lewis can be used singularly or in combination to knockdown the 

expression of both neural Src splice variants, whereas they have 

previously been used only in combination (Lewis, 2014). It was not 

possible to specifically target the xN1-Src variant using AMO A, as was 

predicted in Table 7 however by reducing the number of AMOs injected, 

we may hypothesise that the probability of off-target effects by sequence 

homology to other transcripts decreases. 

 

It was not possible to demonstrate the specificity of the LNA probe using 

AMO-injected embryos. Whilst this may indicate non-specific binding of 

the probe to other transcripts in the embryo, it may also indicate that upon 

AMO injection, the cells that would ordinarily express these variants 

retain unspliced pre-mRNA (Eisen & Smith 2008). This unspliced mRNA 

may be the target of probe binding. Though the RT-PCR on AMO-injected 

embryos did not detect any such products, the intervening intron retained 

due to the AMO binding may be too large for detection using the PCR 

settings used, though the possibility of off-target binding cannot be 

overlooked. This highlights the necessity for generating an N1-Src 

knockout zebrafish line, in which the spatial expression pattern shown in 

wild type (WT) embryos can be verified by in situ hybridisation in mutant 

embryos. It is possible that CRISPR could be used to demonstrate the 

specificity of the Xenopus neural Src probes. Due to the likelihood of 

mosaicism, whole-organism functional analyses would be difficult in 

embryos subjected to CRISPR-mediated homologous recombination, 

however mosaic organisms could be used for LNA probe validation, as 

the in situ hybridisation signal should be reduced in clonal patches.	

 

To study the isoforms in isolation, splice-blocking AMOs used here (that 

should not affect synthetic mRNA synthesised from a spliced cDNA 
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template), could be co-injected with ‘rescue’ levels of each variant, 

though the amounts of mRNA injected would have to be demonstrated to 

be physiologically relevant, otherwise the effects of knockdown of one 

variant and the overexpression of the other may be observed. Equally, 

rescue experiments of this nature cause the expression in the entire 

embryo, including tissues in which endogenous expression does not 

occur, potentially causing additional artefacts. Therefore, we remain 

unable to cleanly knockdown the expression of each neural Src variant in 

isolation in order to study its function, whilst leaving the expression of the 

other unaffected, highlighting the need for a knockout organism.  

 

3.3.13 The effects of xN1-Src and xN3-Src knockdown on the 
locomotive responses of Xenopus tropicalis to touch stimuli  
In embryos injected with AMO A, shorter distances travelled and a higher 

number of ‘twitch’ rather than ‘dart’ swimming phenotypes were observed 

in response to a touch stimulus to the tail, in agreement with previous 

data (Lewis 2014). The distance travelled by embryos in response to the 

touch stimulus was measured as a straight line, which does not 

necessarily reflect the absolute movement of the embryo, but is indicative 

of whether the embryo was able to respond normally, by the swimming 

away from the stimulus.  

 

An additional caveat of this experimental approach was that some 

embryos exhibited different swimming behaviour when stimulated to the 

behaviour observed outside of the experimental procedure; showing little 

response to the touch stimulus when normal swimming behaviour had 

previously been observed, and therefore were discounted. This may be 

due to inconsistencies in the touch stimulus intensity as very light stimuli 

may provoke a different response. Perhaps this reflects a need for 

repeated stimulations per embryo and acclimatisation of the embryos to 

the surroundings before the experimental stimulation takes place. 
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3.3.14 xN1-Src and xN3-Src knockdown causes expanded 
expression of the proliferative neural plate marker sox3 and 
decreased expression of the differentiation markers n. tubulin and 
phox2a 
In accordance with the findings of Philip Lewis (Thesis, 2015), expansion 

of sox3 expression and reduced n. tubulin expression were observed in 

the injected hemispheres of embryos injected unilaterally with AMO A. To 

define an arbitrary cut-off of expansion, the ratios of left to right sox3 

positive domain widths were compared and analysed for an increase of 

1% relative to the other domain. Increasing the cut off to a 10% change 

reduced the percentage of embryos showing expansion in the AMO A-

injected hemisphere by 5% but also reduced the percentage of embryos 

showing expansion in the uninjected hemisphere by 6%, with the 

percentage of embryos showing no asymmetry increasing. The 

physiologically relevant threshold for the expansion in open neural plate 

proliferation is unknown and therefore any threshold used remains 

arbitrary, however we can conclude that an expansion has indeed 

occurred in AMO A-injected hemispheres. In these experiments the width 

of the longitudinal domain of sox3 expression was measured at a point in 

the anterior neural plate where stained and unstained cells could be 

distinguished. If the expansion is irregular along the neural plate, 

measuring the area of the sox3 positive domain rather than the width at 

one point may disregard this irregularity and reflect more reproducibly the 

size of the proliferative neural plate.  

 

In tailbud stage embryos, once the neural plate had rolled up and fused to 

form the neural tube, no difference was detected between the widths of 

the sox3-positive domain on either side of the midline. It is possible that 

at this stage, measuring the dorsal width of the neural tube on either side 

of the midline is of insufficient sensitivity for measuring this three 

dimensional structure.  

 

In accordance with the increased size of the proliferative domain 

(measured as the domain of sox3 expression), reduced n. tubulin 
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expression was observed in the AMO A-injected hemispheres at neurula 

stages and a subtle reduction was observed in the longitudinal length of 

the phox2a positive domain in early tailbud stage embryos. We may 

hypothesise that the decrease in expression of markers of neural and 

neural crest differentiation n. tubulin and phox2a, accompanied by the 

increase in the expression of the proliferative marker sox3 reflects a role 

of neural Src isoforms in neural differentiation.  

 

3.3.15 The effect of xN1-Src and xN3-Src overexpression on embryo 
morphology and the spatial expression pattern of sox3, n. tubulin 
and phox2a  
Existing data has shown that xN1-Src transfection is able to induce 

neurite-like projections in cell culture (Lewis 2014) and its high levels 

correlate with improved prognosis of neuroblastoma cancer (Bjelfman et 

al. 1990), however there was no effect of microinjecting mRNA encoding 

xN1-Src on embryo morphology or on the expression of neural or neural 

crest markers (or possibly a subtle effect in the case of sox3), despite 

mammalian N1-Src mRNA microinjection being able to induce 

craniofacial defects and embryo posteriorisation in Xenopus laevis (Lewis 

2014). 

 

xN3-Src was cloned into the pCS2+ plasmid, from which synthetic mRNA 

was transcribed in vitro for overexpression analyses in Xenopus embryos. 

Sequencing revealed a D111N missense mutation present in the cloned 

product, which may represent a PCR error as the mutation occurs at a 

highly conserved residue, however Phusion polymerase was used 

throughout the cloning process due to its proofreading capability, and 

therefore this mutation may represent a naturally occurring polymorphism 

at this locus. It may be hypothesised that if this sequence discrepancy 

does represent a PCR error, due to the position of the mutated amino 

acid at the extreme C-terminus, where there is no recognised conserved 

domain, it would not alter the function of the product in the 

overexpression analyses. However, this cannot be ignored and a 
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construct of the wild type sequence which can be aligned to the published 

genomic sequenced and identified by Philip Lewis (thesis, 2014) should 

be cloned for the transcription and injection of synthetic mRNA to confirm 

that the effects on eye pigmentation and phox2a expression are also 

observed.  

 

Further experiments are required to support the effects observed on 

locomotive responses, phenotypes and neural and neural crest marker 

expression profiles. Repeated experiments are essential to calculate the 

statistical significance of the effects observed here. Additionally, control 

morpholinos designed to target a transcript not expressed in Xenopus 

tropicalis and control mRNA, such as mRNA encoding TdTomato must be 

injected. This would control for the effect of microinjection and injection of 

morpholinos/mRNA. Comparing the AMO-injected embryos with control 

embryos should also be performed to control for natural 

differences/asymmetry that may occur between the two hemispheres. A 

time course RT-PCR analysis of AMO A-injected embryos should be 

performed to investigate the stages of development at which neural Src 

isoforms are knocked down and when expression is no longer inhibited, 

to predict which stages of neurogenesis are affected. Moreover, rescue 

experiments should be performed where mRNA encoding each of the 

splice variants is co-injected alongside the morpholino, however a caveat 

of this approach is that the mRNA would then be ubiquitously expressed 

throughout the embryo, rather than its restricted neural expression and 

thus may have different effects.  

 

Whilst sox3 and phox2a expression domains were measured using 

ImageJ (except for xN3-Src mRNA-injected embryos), n. tubulin 

expression changes were judged ‘by eye’ and therefore represent more 

subjective analyses. If clearer staining with less background was present, 

particularly in the case of n. tubulin, the individual cells or domains of 

expression could be counted or measured and compared. Due to time 

constraints, it was not possible to optimise these in situ hybridisations to a 

sufficient standard for these sorts of analyses.  
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3.3.17 Generating the necessary reagents to perform CRISPR-
mediated homologous recombination and excision of the N1-Src 
microexon in zebrafish 
In addition to analysing the effects of reduced protein levels in morphant 

embryos, such analyses could be performed in embryos of a null N1-Src 

knockout line, the generation of which may be possible in zebrafish using 

CRISPR/Cas9 -mediated homologous recombination at the N1-Src locus. 

It is advantageous to use this technology in zebrafish rather than 

Xenopus due to their faster generation time. This is required because a 

specific homologous-recombination-mediated mutation is required; a 

process of low efficiency (Chu et al. 2015), which is expected to generate 

the mutation at low frequency, thus forming mosaic organisms. Because 

of this, germ-line transmission is required to generate non-mosaic 

organisms with this specific mutation and therefore fast generation times 

are advantageous. Due to time constraints, such lines have not yet been 

created, however it been demonstrated that the reagents may be in place 

to do so.  

	

In conclusion, these data support a role for the expression of neural Src 

variants in balancing proliferation and differentiation of neural precursors. 

In addition, the reagents required to study their functions are being 

developed, including morpholino oligos and the components required to 

generate an N1-Src knockout zebrafish line.  
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Chapter 4: Discussion 

Expression analyses of the neural Src splice variants 

Evolutionary expression analyses 
Thus far, the most primitive species in which the N1-Src splice variant 

has been detected is the Catshark. The sharks and rays are the most 

ancient of the jawed fish, preceded in the evolution of the vertebrates only 

by the jawless fish – the Lampreys and Hagfish (Holland et al. 1994). In 

the absence of extensive transcriptome data, and once sufficiently 

annotated, the Lamprey and Hagfish genomes may offer further insight 

into the evolutionary emergence of N1-Src. By analysing the genomic 

sequence between exons 3 and 4 of C-Src, it may be possible to predict 

whether this region has the capacity to encode an N1-Src isoform, 

analogous to those that we see in more modern vertebrates.  

 

The amino acid sequences encoded by N1-Src microexons vary in length 

at either five or six amino acids long, putatively caused by the loss or gain 

of a positively charged lysine residue at position two of the insert. Within 

this insert, we may predict that the highly conserved amino and carboxy-

terminal arginine residues and the third position hydrophobic amino acids 

are more important for N1-Src function than other amino acids, for 

example by directing substrate specificity and binding. To study the 

importance of these conserved amino acids, overexpression analyses in 

Xenopus and zebrafish embryos could be performed in which the 

sequence encoding particular amino acids has been mutated.  

 

The expression of N2-Src in mammals such as humans coincides with 

higher cognition that we see in such species. Whilst the expression of the 

N3-Src variant has only been detected in Xenopus tropicalis, the 

expression of Src splice variants of this nature may in fact be more 

widespread. If the function of this isoform relies upon the encoding of the 

N-terminal region, the unique domain, an intermediate sequence and 

then a stop codon, it may not be possible to detect the expression of 
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orthologous Src isoforms in other organisms using BLAST searches, 

particularly if the sequence between the end of exon 3 and the stop 

codon does not infer function and thus is less likely to be conserved. The 

N3-Src variant itself cannot be detected in Xenopus tropicalis using 

BLAST searches of ESTs, but only transcript-specific RT-PCR, therefore 

the available transcriptome data may be of insufficient sensitivity for 

detecting variants of this expression level.  

 

The N4-Src variant was identified in the Catshark, and detected in the 

Stinkbird and the Tonguefish; representing species from the sharks, the 

ray finned fish and the teleosts. Thus far, a function of this isoform has 

not been elucidated, however its tissue-specific expression points to a 

neural function. Functional analyses are required to further the research 

into this variant. Using Xenopus, where a variant of this nature has not 

been detected, injecting synthetic mRNA encoding a hypothetical 

construct encoding N4-Src may provide some insight. Additionally, RT-

PCR using primers that amplify the entire Src sequence may reveal 

isoforms that have not yet been identified.	

 

Temporal and spatial analyses of xN1-Src and xN3-Src 
Using RT-PCR, it was shown in this project that neural Src splice variants 

are upregulated during neural induction and that overexpression mRNA 

encoding the neural inducer Noggin leads to a putative and subtle 

upregulation of these variants in noggin mRNA-injected animal cap 

explants, compared to uninjected control explants. This is in-keeping with 

the observations made by Collett & Steele 1993 who showed xN1-Src 

upregulation in Xenopus laevis animal cap explants cultured with the 

adjacent mesoderm (the germ layer in which the secreted Noggin protein 

is synthesised). They observed that expression was activated from an 

undetectable baseline, whereas Figure 17c shows a basal level of 

expression in animal caps from uninjected embryos, however this may be 

due to a higher detection sensitivity of the RT-PCR used here. The basal 

levels of expression detected in the control animal caps may represent 
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maternally deposited xN1-Src and xN3-Src transcripts, which were 

detected in the RT-PCR time course analyses and the in situ 

hybridisation experiments; where it was shown that xN3-Src is localised 

to the animal hemisphere pre-MBT at stage 5; the future ectoderm, which 

in part gives rise to the neuroectoderm from which neural tissue derives. 

 

As neurulation and neurogenesis proceed, the neural Src variants 

increase and peak in their expression levels and become localised to the 

neural plate as neurons become specified and the neural tube rolls up, 

fuses and lowers ventrally into the embryo to form the neural tube. This 

spatial restriction of xN1-Src expression during neurulation supports the 

results of Collett & Steele (1992), who showed that xN1-Src expression 

could be detected at much higher levels in the dissected Xenopus leavis 

neural plate, than the rest of the embryo.  
 

Towards the end of gastrulation and during neurulation, primary 

neurogenesis is at its highest levels, with the majority of neural 

precursors being specified to differentiate into functional neurons and 

becoming post-mitotic (Wullimann et al. 2005). Previous data has shown 

that specific neural populations including Rohon Beard sensory neurons 

and primary motor neurons are specified during neurogenesis at gastrula 

stages (Lamborghini 1980), which then continues during neurula stages 

(Wullimann et al. 2005). At this point the neural differentiation marker n. 

tubulin can be detected as longitudinal domains marking the three neural 

subpopulations (motor neurons, interneurons and Rohon Beard sensory 

neurons (Nieber et al. 2009)). It is at these stages that the expression 

levels of neural Src splice variants are at their highest. These analyses of 

the temporal and spatial expression patterns therefore place the 

expression of these variants at the correct time and place for roles in 

primary neurogenesis.   

 

Once primary neurogenesis is complete and the tail-flick response has 

become established at tailbud stage, stage 35 (Thuret et al. 2015; 

Roberts et al. 2000), the expression of N-Src variants decrease and 
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becomes restricted to the neural tube, the eye and neural crest. The 

expression of these variants then increases again at the beginning of 

secondary neurogenesis. This is a previously unstudied time point in 

which neurogenesis occurs in the neural tube via pathways that are 

highly conserved between primary and secondary neurogenesis and the 

neurogenesis that occurs in other vertebrate organisms (Wullimann et al. 

2005). The spatial expression patterns of neural Src variants at these 

later stages have not yet been studied. To explore the expression of 

neural Src variants during secondary neurogenesis in more detail, later 

stages should be analysed, as the stages studied here represent early 

stages of secondary neurogenesis, beginning at stage 46 in Xenopus 

(Wullimann et al. 2005) and at 28hpf in zebrafish (Zhao et al. 2011). In 

the temporal analyses of primary neurogenesis, neural Src variants are 

expressed early in the neurogenic process however particularly in the 

case of the zebrafish, expression levels are at their highest relatively late 

in the primary neurogenic pathway; towards the end of neurulation at 

stage 19 in Xenopus tropicalis and at 24hpf in zebrafish. This may also 

be the case during secondary neurogenesis and therefore later stages of 

secondary neurogenesis should be analysed in detail. Such stages of 

secondary neurogenesis in which neurogenesis occurs in the hollow 

neural tube have been more closely likened to the neurogenesis of 

amniotes such as humans, than the neurogenesis that occurs in the open 

neural plate, thus highlighting the importance of their detailed analyses. 

However, the pathways that regulate primary and secondary 

neurogenesis show high conservation (Wullimann et al. 2005), therefore 

the relevance of studying nonamniotic primary neurogenesis, as a model 

of human neurogenesis should not be undervalued.  

 

The spatial expression analyses of neural Src variants focused on early 

stages of Xenopus tropicalis development. In addition to the temporal 

expression analyses of secondary neurogenesis, spatial expression 

analyses should also be performed at these later stages to investigate the 

tissues in which these variants are expressed. To provide an additional 

example of vertebrate development, zebrafish embryos should also be 
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analysed for the spatial expression pattern of N1-Src during primary and 

secondary neurogenesis. 

 

xN1-Src and xN3-Src expression was detected in the adult Xenopus 

tropicalis brain. It can therefore be concluded that in addition to xN1-Src, 

xN3-Src expression is maintained into adulthood. Expression of neither 

variant was detected in the other ectodermal tissue studied; the skin, nor 

was either detected in the endodermal derivatives the lung or liver; in line 

with the findings of Pyper & Bolen (1990), who showed N1-Src was 

expressed in the human adult brain but not in the lung, liver or pancreas. 

Surprisingly, in this experiment xN1-Src and xN3-Src expression were 

also detected in the heart. It could be hypothesised that this is due to the 

high level of autonomic neuron innervation necessary for the heart’s 

contractile function (Vaseghi & Shivkumar 2008), however expression of 

neither variant was detected in the muscle; an additional mesodermal 

derivative with high levels of motor neuron innervation (Purves et al. 

2001). C-Src expression was detectable in all adult tissues studied, fitting 

with evidence that shows its ubiquitous expression (Pyper & Bolen 1990). 

The expression analyses of Src variants in Xenopus tropicalis adult 

tissues showed the expression of xN1-Src and a product of approximately 

the same size as xN3-Src in the brain, supporting previous findings by 

Pyper & Bolen (1990). The expression of these variants was also 

detected in the heart; a previously unstudied tissue. In situ hybridisation 

using neural Src LNA probes did not reveal embryonic staining of the 

myocardium, which can be visualised as a domain of nkx2.5 expression; 

a transcriptional regulator of heart development visible at the cardiac 

crescent of tailbud stage embryos (Brade et al. 2007). This suggests that 

if the expression detected in the heart does exist, expression must be 

restricted to later embryonic development and to the adult heart, though 

these experiments must be repeated to conform that these products do 

not represent sample contamination and the products cloned to confirm 

their identities.  
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Comparing the expression of neural Src splice variants during 
Xenopus tropicalis and zebrafish early embryogenesis 
Whilst both C-Src and xN1-Src levels begin at relatively low levels in the 

maternal mRNA pool of Xenopus tropicalis embryos and then increase 

during neural induction and the beginning of neurogenesis at gastrula 

stages, the expression of C-Src and N1-Src can be detected at much 

higher starting levels at the equivalent zebrafish cleavage stages, relative 

to the expression levels at other time points. Their expression levels then 

decrease at the beginning of neurogenesis during gastrula stages, before 

increasing as primary neurogenesis continues during somitogenesis 

stages, which occurs alongside the formation of the neural tube (Schmidt 

et al. 2013). Whilst N1-Src expression increases later in zebrafish than 

Xenopus tropicalis, occurring after gastrulation, both species exhibit 

increases in N-Src expression levels during neurogenesis that occurs 

alongside the formation of the neural tube.  There was then an additional 

increase in N1-Src expression during secondary neurogenesis at 28hpf 

(Zhao et al. 2011), as was observed in Xenopus tropicalis, though in the 

zebrafish developmental stages studied, the N1-Src expression level did 

not decrease between primary and secondary neurogenesis. A more 

detailed time course is required between these time points to investigate 

the detailed dynamics of N1-Src expression levels.  

 

Functional analyses of neural Src isoforms using knockdown 
technology 
The data presented in this project show that bilateral microinjection of 

AMO A, which inhibits the expression of neural Src variants, result in 

locomotive defects and recapitulate the findings of Lewis (2014). After the 

initial sensory perception of the stimulus, de-regulated locomotion 

responses may reflect dysfunction at many levels. Coordinated free 

swimming can be observed from stage 33, at which point the uninucleate 

myotomes, innervated by motor neurons are able to coordinate swimming 

upon sensory stimulation (Muntz 1975). At the stage of development 

analysed here (approximately stage 40-41), defects in coordinated 
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swimming may reflect faults in the development of axial musculature, 

neural circuitry or neuromuscular junctions. If the defects were in the 

neural circuitry, they are unlikely to result from deficiencies in hindbrain 

development, as the free swimming responses analysed here can be 

evoked in stage 37/38 Xenopus laevis embryos in which the hindbrain 

had been removed (Khan & Roberts 1982), and therefore if neuronal 

circuitry defects are the cause, they are likely to reside in the spinal cord 

neural circuitry and may be to some extent explained by the unilateral 

injection results, which showed an increase in the size of the proliferative 

neural plate (marked by sox3 expression) and a reduction in the number 

of differentiated neurons (marked by n. tubulin staining)..  

 

A reduction in the number of mature neurons forming reflex arcs during 

primary neurogenesis would account for the inability of embryos to 

respond to a touch stimulus with the reflex swimming response displayed 

at tailbud stages (Roberts et al. 2000). The morphant embryos appeared 

able to sense the stimulus but were unable to respond with coordinated 

movements. This effect could be ascribed to defects in motor neuron 

differentiation however n. tubulin staining in unilaterally injected embryos 

did not reveal a specific subset of neurons was affected by the AMO-

mediated knockdown more than the others. To investigate this more 

precisely, the effects on specific neural populations should be 

investigated using in situ hybridisation probes that mark sensory neurons, 

interneurons and motor neurons, such as the Rohon Beard sensory 

neuron marker runx1 (Hulstrand & Houston 2013), the interneuron 

markers vsx1 (D’Autilia et al. 2006) and gsh2 (Illes et al. 2009) and the 

motor neuron markers xHB9 (Saha et al. 1997) and nkx6.1 (Illes et al. 

2009). In addition, to confirm that the effect observed is due to an effect 

on neural circuitry and not an effect on the axial musculature that is 

necessary for coordinated swimming, future experiments should consider 

the possible effects on myogenesis that may also cause the locomotive 

phenotype seen here. To do so, the expression of myogenic markers 

such as myoD and myf-5 (Hopwood et al. 1991) in morphant embryos 

should be analysed.  
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In unilaterally injected morphant embryos, in which the neural plate 

expresses C-Src but not xN1-src, the proliferation increased (shown as 

an increase in sox3 staining) and the differentiation decreased (shown as 

a decrease in n. tubulin staining). This concept of increased proliferation 

and decreased differentiation in the presence of C-Src and absence of 

N1-Src mirrors the observations made by Bjelfman et al. (1990) who 

showed that neuroblastoma cancer tumour samples that expressed 

higher levels of N1-Src than C-Src had better prognosis, resulting from 

tumour differentiation and spontaneous regression. Additionally, a subtle 

reduction was observed in the expression domain of the noradrenergic 

neuron marker phox2a in tailbud stage embryos, which marks the cells 

whose human equivalents develop into neuroblastoma cancer (Wylie et 

al. 2015). When studied in greater detail, Xenopus neurogenesis 

therefore provides a strong model by which neural Src function can be 

studied in the context of neuroblastoma cancer.  

 

RT-PCR analyses did not reveal a gross upregulation of C-Src levels 

upon neural Src knockdown (Figure 22) however AMO-mediated 

knockdown of neural Src variants may cause an increase in C-Src 

expression specifically in the cells that ordinarily express neural Src 

variants, due to the lack of availability of other splice sites. Whilst a gross 

upregulation of C-Src was not detected using RT-PCR, it is possible that 

the upregulation is restricted to the cells that normally express the neural 

Src variants and therefore was undetectable using this method.  

Increased C-Src levels may increase the proliferative capacity of these 

cells, as promoting proliferation is a known function of the C-Src isoform 

(Kilkenny et al. 2003), and may explain the increased size of the sox3 

expression domain. Dissecting the neural plate and performing RT-PCR 

on this specific structure may show subtle upregulation of C-Src mRNA in 

this structure if this is the case. Alternatively, a C-Src-specific LNA in situ 

hybridisation probe could be designed to span exons 3 and 4, excluding 

neural Src binding. Increased signal detected from this probe in morphant 

embryos would indicate whether the levels of this transcript increase. 



	 106 

These analyses investigate the effects of the knockdown of both xN1-Src 

and xN3-Src as it was not possible to target xN1-Src alone using AMO A, 

as predicted (Table 7, Figure 22). It may be possible to knockdown xN3-

Src specifically by targeting the splice acceptor site of this transcript 

however it has not been possible to target xN1-Src specifically, therefore 

demonstrating a limitation of this approach. In addition, using the 

zebrafish model organism, discrepancies have been shown between the 

phenotypes identified in morphant and mutant embryos, which have in 

part been attributed to the off-target activation of p53-dependent 

apoptosis (Robu et al. 2007). Equally, abolishing the levels of a protein of 

interest may yield different effects to merely reducing protein levels using 

knockdown approaches. Knockout model organisms provide the cleanest 

manner by which protein function can be studied in vivo and we 

hypothesise that a zebrafish N1-Src knockout line could be generated 

using CRISPR-mediated homologous recombination. Homozygous null 

embryos could be bred from heterozygous parents; a process beyond the 

time limits of this project. Whilst it was not shown here that such lines 

have been created, it was shown that the reagents might now be in place 

to do so.  

 

The transparency of zebrafish embryos provide additional benefits as the 

CRISPR could be performed in transgenic lines with fluorescent proteins 

expressed in neural and neural crest populations. The effects of 

knockdown could then be analysed in time course experiments on live 

embryos using light sheet microscopy, without the need for in situ 

hybridisation.  

 

Functional analyses of neural Src isoforms using mRNA 
overexpression  
In situ hybridisation showed that the xN1-Src and xN3-Src microexons 

are expressed in neural structures including the neural plate and tube and 

neural crest structures such as branchial arches. Whilst xN1-Src 

overexpression resulted in no observable phenotype, xN3-Src mRNA 
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overexpression resulted in the reduction of eye size and/or pigmentation 

and a reduction in phox2a staining of the noradrenergic neurons at 

tailbud stages. Analysing earlier stages of development may reveal a 

specific time point at which the development of these structures becomes 

deregulated, perhaps offering insight into effector functions of xN3-Src in 

the development of the eye and this neural crest subpopulation. The co-

localisation of xN3-Src expression and the structures whose development 

was inhibited by xN3-Src overexpression suggests that the observed 

effects reflect an endogenous function of xN3-Src, rather than a non-

specific artefact of overexpression in the whole organism.  

 

xN3-Src overexpression caused an inhibition of eye and noradrenergic 

neuron development in the absence of SH3 domain-mediated substrate 

binding, owing to a stop codon in this domain. This may reflect a 

regulatory function of this isoform, for example by binding to C-Src, xN1-

Src or other SFK proteins via its unique domain (Pérez et al. 2013). To 

explore this possibility, tagging the xN3-Src N-terminus, for example with 

a HA tag, would allow this interaction to be assessed via co-

immunoprecipitation experiments. Analysing COS7 fibroblast cells 

transfected with the xN3-Src-pCS2+ plasmid generated in this project and 

the xN1-Src-pCS2+ plasmid cloned by Philip Lewis for the outgrowth of 

neurites (Lewis 2014) may also indicate whether xN3-Src is able to inhibit 

xN1-Src function.  

 

In knockout, morphant and mRNA-injected embryos, large-scale 

analyses, such as RNA-seq may reveal additional genes in the pathway 

of neurogenesis whose expression levels are regulated by neural Src 

isoforms, to be validated using techniques such as in situ hybridisation 

and immunostaining.  

 

Concluding remarks 
This project builds on the work by Philip Lewis (2014) and shows in detail 

the temporal and spatial expression patterns of the neural Src variants 
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whose expression in neural tissues during periods of neurogenesis 

indicate that they may have roles in the development of the nervous 

system. In addition, experiments in this project have shown that 

molecular tools, including morpholino oligos and putatively the reagents 

necessary to generate a N1-Src knockout zebrafish line are being 

gathered to help study the roles of these isoforms in Xenopus tropicalis 

and zebrafish neurogeneses. By studying the function of these isoforms 

during such processes, we aim to elucidate their functions during 

vertebrate neurogenesis, which may offer insight into how N1-Src levels 

determine neuroblastoma cancer prognosis.   
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