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1 Abstract 
Voltage-gated Na+ channels (VGSCs) initiate and propagate action potentials in 

neurones. Functional VGSCs have been found in an increasing number of cancer cells 

and patient biopsies from different tissues. Blocking VGSCs using pharmacological 

agents or suppressing VGSC expression using RNA interference reduces cell 

metastatic behaviour, such as migration and invasion in vitro and metastasis in vivo in 

rodent models. In breast cancer, a high mRNA level of Nav1.5, a VGSC isoform, 

correlates with metastasis and poor prognosis. However, the detailed mechanism(s) 

underlying VGSC-dependent metastatic cell behaviours is not fully understood. 

Depolarised membrane potential (Vm) induces mitotic activity in neurones and 

causes tumourigenesis in Xenopus laevis. Given that VGSCs depolarise the Vm upon 

action potential firing in neurones, using MDA-MB-231 human breast cancer cells 

where VGSCs are endogenously expressed, the present study hypothesised that 

VGSCs increase cell metastatic behaviours by depolarising the Vm. 

This study found that VGSCs depolarise the Vm of MDA-MB-231 cells by ~4 mV. 

Hyperpolarising the Vm by blocking VGSCs with tetrodotoxin (TTX) or activating large 

conductance Ca2+-activated K+ channels using NS-1619 slowed cell migration to a 

similar extent. Rac1 is a small GTPase that potentiates cell migration via facilitating 

actin filament assembly. Both TTX and NS-1619 reduced the active Rac1 level at the 

leading edge of cells, suggesting that Vm controls Rac1 activity/distribution and 

henceforth cell motility in MDA-MB-231 cells. However, MDA-MB-231 cell invasion was 

inhibited by TTX but not NS-1619, suggesting that Na+, rather than Vm, may be the 

factor that underlies VGSC-dependent cell invasion. Finally, this study recorded Na+ 

current carried by VGSCs in tumour cells in tissue slices from mice, suggesting that 

VGSCs are functional in vivo. In summary, the present study provides novel evidence 

elucidating mechanisms underlying VGSC-dependent metastatic cell behaviours. 

Future experiments should explore VGSC/Vm as potential therapeutic targets in cancer 

treatment. 
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1 Chapter 1: General Introduction 

1.1 The discovery of voltage-gated Na+ channels  

In 1952, during their research on the squid giant axon, Hodgkin and Huxley 

demonstrated that the electrical signals in nerve arise from the activation of a voltage-

dependent Na+ current (INa) at the axon membrane that transports INa into the cell 

(Hodgkin & Huxley, 1952a, b, c, d). The fast inward INa inactivates within 2 ms, and is 

replaced by a voltage-dependent, outward K+ current (IK) that brings the membrane to its 

electrically resting state (Hodgkin & Huxley, 1952a, b). INa and IK result in the all-or-none 

nervous response called the action potential (Hodgkin, 1939; Hodgkin & Huxley, 1952d). 

Not only did their seminal work demonstrate the powerfulness of the voltage-clamp 

technique, which controls the voltage across the cell membrane and measures the 

membrane current (Hodgkin et al., 1952), but it also established the foundation of 

research into electrical signals in modern physiology and neuroscience. 

Together with the first successful intracellular recording of an action potential in the 

giant squid axon, Hodgkin, along with Cole & Curtis’ work implied the existence of 

specialised machineries, later known as ion channels, at the cell membrane that permit 

the increased permeability of Na+ and K+ ions (Hodgkin, 1937; Cole & Curtis, 1939; Cole 

& Hodgkin, 1939). In the 1960s, researchers began to probe the structure of voltage-

gated Na+ channels (VGSCs) by identifying their binding sites with tetrodotoxin (TTX) 

and saxitoxin (STX) (Kao & Nishiyama, 1965; Camougis et al., 1967; Hille, 1968), both 

selective VGSC blockers (Buchwald et al., 1964). In the 1970s, solubilisation and 

purification of VGSCs labelled with TTX or STX was developed (Ritchie & Rogart, 

1977a), which heralded the purification of the VGSC protein in 1980 from scorpion toxin-

labelled N18 neuroblastoma cells (Beneski & Catterall, 1980). Along with a later study, 

which demonstrated a partial purification of a TTX-binding protein from electric eel 

electroplax (Agnew et al., 1980), the purified 260 kDa neurotoxin-binding protein was 
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later known as the VGSC α subunit. Two smaller β subunits, namely β1 (36 kDa) and β2 

(33 kDa), were discovered thereafter (Hartshorne et al., 1982). In the 2000s, a splice 

variant of β1, β1B, was reported (Kazen-Gillespie et al., 2000; Qin et al., 2003), and β3 

and β4 were also identified (Morgan et al., 2000; Yu et al., 2003). Recently, the crystal 

structures of bacterial VGSC proteins from Arcobacter butzleri at 2.7–3.2 Å resolution 

(Payandeh et al., 2011; Payandeh et al., 2012), Alphaproteobacterium HIMB114 at 3.05 

Å resolution (Zhang et al., 2012) and Magnetococcus sp. marinus at 4.0 Å resolution 

(McCusker et al., 2012) were solved. 

In mammals, VGSCs are protein complexes that consist of one pore-forming α 

subunit covalently or non-covalently linked with one or more β subunits (Catterall, 2000; 

Isom, 2002; Brackenbury & Isom, 2011). 

 

1.2 VGSC α subunits 

To date, 10 VGSC α subunit proteins, Nav1.1–Nav1.9 and NaX, have been 

identified in humans, and they are encoded by ten different genes (SCN1A–SCN11A, 

Table 1.1) (Goldin, 2001; Catterall, 2012). The α subunits have distinct expression 

profiles in human tissues and show different sensitivity to blockage by TTX (Table 1.1) 

(Offermanns & Rosenthal, 2008; Catterall, 2012). 

 

1.2.1 The structure of VGSC α subunit 

The VGSC α subunit is a transmembrane homotetramer. Each of the four domains 

(I–IV) has six transmembrane segments (S1–S6, Figure 1.1) (Noda et al., 1984). The 

central pore-forming area consists of four S5–S6 segments and their re-entrant pore 

loops (Payandeh et al., 2011), surrounded by the symmetrically distributed S1–S4 

(Figure 1.1) (Payandeh et al., 2011). The permeability of Na+ through VGSCs is similar 
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Figure 1.1. The structure of the voltage-gated Na+ channel (VGSC).  

The VGSC α subunit contains four domains each with six transmembrane segments. 
Segment 4 (yellow) is the voltage sensor. The inactivation loop between domain III and 
IV is highlighted in red. The drug binding sites at the α subunit are shown (Cestele & 
Catterall, 2000). All VGSC β subunits contain an immunoglobulin (Ig) loop. β1–β4 are 
transmembrane proteins, whereas β1B is a secreted protein (Isom, 2002). There are 
various phosphorylation sites on both the α and β subunits. The binding sites for annexin 
II light chain (p11) (Okuse et al., 2002), ankiryn G (Lemaillet et al., 2003), multicopy 
suppressor of Gsp1 (MOG1) (Wu et al., 2008), Nedd-4 (van Bemmelen et al., 2004), 
syntrophin (Gee et al., 1998), dystrophin (Gee et al., 1998) and protein tyrosine 
phosphatase 1 (PTPH1) (Jespersen et al., 2006) are shown. EF: EF-hand motif. IFM: 
isoleucine-phenylalanine-methionine motif. IQ: isoleucine-glutamine domain. Ѱ: 
glycosylation site.  
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to Li+, but 12-fold greater than K+ and many organic cations (Hille, 1971, 1972), and the 

selective Na+ transportation is mediated by the ion selectivity filter formed by the side 

chains of four highly conserved glutamic acid residues on the S1–S2 loop (Heinemann 

et al., 1992; Payandeh et al., 2011). When Na+ with planar waters of hydration approach 

the ion selectivity filter, the negatively charged glutamic acid residues interact with Na+ 

and partially remove its water of hydration. Na+ is hydrated while being transported 

through the pore and interacts with other bound water at the inner shell of the pore 

(Payandeh et al., 2011). Interestingly, in spite of the high degree of structural similarity 

between VGSCs and voltage-gated K+ channels (VGPCs), this mechanism is distinct 

from K+ transportation through VGPCs, in which K+ ions are deprived of water of 

hydration when passing through the channel (Zhou et al., 2001).  

 

1.2.2 Activation and inactivation of VGSC α subunits 

The opening of VGSCs requires a small transmembrane capacitive current (“gating 

current”) carried by “gating charges” (Hodgkin & Huxley, 1952d; Armstrong & Bezanilla, 

1973; Hirschberg et al., 1995). It is now known that the positively charged arginine 

residues at the VGSC S4 segment serve as the gating charges (Bezanilla, 2000; 

Catterall, 2000). When VGSCs are in their resting state, the gating charges are 

electrically neutralised by negatively charged residues in the S2 and S3 segments. Upon 

membrane potential (Vm) depolarisation (i.e. the transmembrane voltage becomes less 

negative, in contrast to Vm hyperpolarisation where the voltage becomes more negative), 

the S4 segment moves towards the extracellular side by rotating, a conformation change 

that leads to the opening of the pore (Yang & Horn, 1995; Yang et al., 1996; Bezanilla, 

2000; Groome, 2014). This allows the fast influx of Na+ within a few milliseconds upon 

channel activation, leading to a fast inward INa.  

Following activation, VGSCs undergo fast inactivation, and thus the inward INa is 

transient. Research using anti-peptide antibodies has demonstrated that the intracellular 
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loop between domain III and IV is the key element during fast inactivation (Vassilev et 

al., 1988; Vassilev et al., 1989). The detailed structure of the inactivation loop was later 

probed by nuclear magnetic resonance (NMR) (Rohl et al., 1999). It is proposed that the 

loop contains an α-helix followed by a key hydrophobic sequence containing isoleucine-

phenylalanine-methionine (the IFM motif, Figure 1.1, which can fold at a pair of glycine 

residues and plug to the inner mouth of the pore (West et al., 1992; Kellenberger et al., 

1996; Kellenberger et al., 1997a; Kellenberger et al., 1997b; Rohl et al., 1999). After fast 

channel inactivation, before the channel reaches full inactivation state, a small amount of 

Na+ is still able to flow through the pore. This phenomenon results in a small INa, namely 

persistent INa, whose size comprises only a small percentage of the peak transient INa. 

However, persistent INa does not fully inactivate and can last for hundreds of milliseconds 

(Stafstrom, 2011). In neurones, persistent INa extends the duration of Vm depolarisation 

and together with other types of Vm-depolarising currents, persistent INa can mediate 

sustained neuronal excitability by lowering the threshold of action potential generation 

and therefore support repetitive firing (Stafstrom et al., 1985; French et al., 1990; Beck & 

Yaari, 2008).  

 

1.2.3 Toxin-binding sites on VGSC α subunits 

Many neurotoxins and synthetic compounds can bind to a number of sites on the 

VGSC α subunit and thus modify channel activity. So far, six neurotoxin binding sites 

have been identified (Table 1.2) and these have contributed greatly to the identification 

of VGSC structure-function relationships since the 1970s (Hille, 1975; Cestele & 

Catterall, 2000).  

The binding site of TTX, STX and μ-conotoxin is called site 1 (Figure 1.1). These 

neurotoxins exhibit extracellular pore-blocking mechanism (Hille, 1968), because they 

bind to the re-entrant loop between S5 and S6 where the mouth of the pore is formed 

(Noda et al., 1989; Terlau et al., 1991). Upon binding to site 1, these toxins occlude 
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Table 1.2. The neurotoxin binding sites on the voltage-gated Na+ channel α subunit 

Binding site Locations Neurotoxins References 

Site 1 Domain I, II, III and IV S5-S6 TTX, STX, μ-
conotoxin 

(Noda et al., 1989; 
Terlau et al., 1991) 

Site 2 Domain I and IV S6 Veratridine, 
batrachotoxin 

(Ulbricht, 1969; 
Catterall, 1977; 

Ragsdale et al., 1994, 
1996) 

Site 3 Domain I and IV S3-S4 α scorpion toxins, 
sea-anemone toxins 

(Catterall & Beress, 
1978; Rogers et al., 

1996) 
Site 4 Domain II S1-S2 and S3-S4 β scorpion toxins (Cestele et al., 1998) 

Site 5 Domain I S6, domain IV S5 Brevetoxins and 
ciguatoxins 

(Benoit et al., 1986; 
Lombet et al., 1987; 
Trainer et al., 1994) 

Site 6 Unknown TxVIA (Hasson et al., 1993) 
STX: saxitoxin; TTX: tetrodotoxin 
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extracellular Na+ entry to the pore and therefore reduce Na+ conductance (Narahashi et 

al., 1964; Hille, 1968). It is suggested μ-conotoxin shares an overlapping but not 

identical binding region with TTX and STX. Additional extracellular residues at the S5–

S6 segment in domain II are required for μ-conotoxin binding (Chahine et al., 1998). 

VGSC isoforms show different binding affinity with neurotoxins that bind to site 1. For 

example, Nav1.1–1.4, 1.6 and 1.7 can be blocked by TTX in the nanomolar range, 

whereas Nav1.5, 1.8 and 1.9 are sensitive to TTX at micromolar concentrations (Table 

1.1) (Goldin, 2001). 

Neurotoxin binding site 2 is in the intramembrane region comprising S6 in both 

domain I and IV. Site 2-binding drugs such as veratridine and batrachotoxin have higher 

affinity for activated VGSCs and cause sustained channel activation, meanwhile shifting 

the voltage-dependence of activation to a more negative potential (Ulbricht, 1969; 

Albuquerque et al., 1971). These effects are achieved by allosteric modulation of the 

channel, shifting the channel conformational equilibrium to the activated state (Catterall, 

1977, 1980). It is proposed that the antiepileptic and anticonvulsant drug phenytoin also 

binds to this region (Ragsdale et al., 1994, 1996). 

α scorpion toxins and sea-anemone toxins (ATX) bind to an extracellular region 

between S3 and S4 in domain IV, and this site is known as neurotoxin binding site 3 

(Catterall & Beress, 1978; Rogers et al., 1996). Because the S4 segments are voltage 

sensors, it is proposed that α scorpion toxins and ATX inhibit conformational changes 

during the fast inactivation stage by restricting the movement of the S4 segment in 

domain IV (Rogers et al., 1996), and therefore keeping VGSCs in their activated state. 

β scorpion toxins act on the neurotoxin-binding site 4 in the S1–S2 and S3–S4 

loops in domain II (Cestele et al., 1998). By binding to the voltage sensor extracellular 

domain, β scorpion toxins restrict the movement of the S4 segment in domain II and 

stabilise the segment in its activated conformation, therefore causing a sustained 
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activation and a negative shift in the voltage-dependence of activation (Cestele et al., 

1998; Cestele & Catterall, 2000). 

Similar to site 2, neurotoxin binding site 5 is also a transmembrane region at S6 in 

domain I plus S5 in domain IV, and its binding toxins include lipid-soluble brevetoxins 

and ciguatoxins (Benoit et al., 1986; Lombet et al., 1987; Trainer et al., 1994). As with 

site 2-binding compounds, these toxins block the inactivation of the channel and result in 

a negative shift in the voltage-dependence of activation (Huang et al., 1984; Benoit et 

al., 1986). 

The location of neurotoxin binding site 6 is as yet unknown. A site-6-binding toxin 

isolated from the venom of the cone snail Conus textile, TxVIA, increases action 

potential duration by inhibiting VGSC inactivation (Hasson et al., 1993). 

 

1.2.4 Localisation of VGSC α subunits in excitable cells 

Different α subunit isoforms show significant diversity in tissue-specific expression 

(Table 1.1). In humans, Nav1.1, Nav1.2, Nav1.3 and Nav1.6 are widely expressed in the 

central nervous system (CNS) (Lu et al., 1992; Malo et al., 1994a; Malo et al., 1994b; 

Plummer et al., 1997), whereas the most abundant α subunits in dorsal root ganglion 

(DRG) neurones in the peripheral nervous system (PNS) are Nav1.7, Nav1.8 and Nav1.9 

(Klugbauer et al., 1995; Rabert et al., 1998; Dib-Hajj et al., 1999a; Dib-Hajj et al., 1999b; 

Jeong et al., 2000). Nav1.4 is mainly localised in skeletal muscle (George et al., 1991; 

Wang et al., 1992a), whereas Nav1.5 is present mainly in the heart (Gellens et al., 1992; 

George et al., 1995). Finally, NaX has been found abundantly in uterus muscle, heart 

(George et al., 1992) and hippocampus (Gorter et al., 2010), where it may contribute to 

Na+ sensing (Shimizu et al., 2007). 

VGSC α subunits also have dynamic expression profiles during development 

(Waxman, 2000). For example, in rats, the level of Nav1.3 in the CNS peaks at birth and 

decreases during postnatal development (Beckh et al., 1989; Felts et al., 1997). In 
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adulthood, Nav1.1, Nav1.2 and Nav1.6 become the major VGSCs in the CNS (Beckh et 

al., 1989; Brysch et al., 1991; Waxman et al., 1994; Felts et al., 1997; Schaller & 

Caldwell, 2000). During postnatal development, Nav1.2 is replaced by Nav1.6 following 

myelination and formation of nodes of Ranvier (Westenbroek et al., 1989; Boiko et al., 

2001; Kaplan et al., 2001). In addition, in rats, Nav1.5 is expressed in neonatal but not 

adult skeletal muscle (Kallen et al., 1990). Furthermore, genes encoding VGSC α 

subunits show alternative splicing during development (Copley, 2004; Diss et al., 2004). 

For example, alternative splicing of two exons encoding the domain I segment 3 (DI:S3) 

region is responsible for expression of either “adult” and “neonatal” isoforms of Nav1.2 

(Sarao et al., 1991), Nav1.3 (Gustafson et al., 1993; Lu & Brown, 1998), Nav1.5 (Diss et 

al., 2001), Nav1.6 (Plummer et al., 1997) and Nav1.7 (Belcher et al., 1995). 

Immunocytochemistry and electron microscopy have demonstrated specific 

subcellular localisations of α subunit isoforms. At rat nodes of Ranvier, VGSCs are 

clustered at > 103/μm2 (Quick & Waxman, 1977; Ritchie & Rogart, 1977a; Waxman, 

2000). This is in sharp contrast to the density of VGSCs in the internodal axon 

membrane, which is < 25/μm2 (Ritchie & Rogart, 1977b; Shrager, 1989). In rat 

hippocampal neurones, Nav1.1 is highly expressed in the cell bodies, whereas Nav1.2 is 

observed mainly in the axons (Gong et al., 1999). In mouse cortical pyramidal neurones, 

a computation model estimated a high VGSC density that gives a conductance of ~2500 

pS/μm2, which is ~50 times of that in the proximal dendrites (Kole et al., 2008). 

 

1.2.5 Localisation and function of VGSC α subunits in non-excitable cells 

The localisation of VGSCs is not restricted to the so-called “excitable cells” in the 

CNS/PNS, heart and skeletal muscle. Over the past four decades, VGSCs have also 

been found in “non-excitable” cells (Table 1.3) (Black & Waxman, 2013). The expression 

of VGSCs in these cells contributes to their cellular functionality: inhibiting VGSC α 

subunits with TTX reduces cell motility in dendritic cells (Kis-Toth et al., 2011), microglia  
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Table 1.3. The expression and function of voltage-gated Na+ channel (VGSC) α 

subunits in non-excitable, non-cancerous cell types 

Cell type 

Type of VGSC α 
subunit or Na+ 

current 
expressed 

Effects upon VGSC 
blockade with TTX References 

Astrocytes Nav1.2, 1.3, 1.5 
and 1.6 

Reduced Na+/K+-ATPase 
activity and increased 

cell death 

(Sontheimer et al., 
1994) 

Chrondrocytes TTX-sensitive Unknown (Sugimoto et al., 
1996) 

Dendritic cells 
(CD1a+) Nav1.7 

Inhibited cell migration; 
attenuated secretion; 

sensitised cells for 
activation 

(Kis-Toth et al., 2011) 

Endothelial cells Nav1.4, 1.5 and 
1.6 

Increased shear-stress-
induced ERK1/2 

activation 
(Traub et al., 1999) 

Fibroblasts Nav1.2, 1.3, 1.5, 
1.6 and 1.7 Unknown (Chatelier et al., 

2012) 

Keratinocytes Nav1.1, 1.6 and 
1.8 Inhibited ATP release (Zhao et al., 2008) 

Islet β-cells Nav1.2 and 1.3 Reduced insulin release 
(Donatsch et al., 
1977; Pressel & 

Misler, 1991) 

Macrophages Nav1.5 and 1.6 
Attenuated phagocytosis 

and invasion; reduced 
podosome formation 

(Carrithers et al., 
2007; Black et al., 
2009; Carrithers et 

al., 2009) 

Microglia Nav1.1, 1.5 and 
1.6 

Reduced cell migration, 
phagocytosis and 
cytokine release 

(Black et al., 2009) 

Odontoblasts Nav1.2 Reduced transmission of 
pain signals? (Allard et al., 2006) 

Oligodendrocyte 
precursor cells 

(NG2+) 
TTX-sensitive Reduced ligand-induced 

migration (Tong et al., 2009) 

Osteoblasts Nav1.2 Unknown (Black et al., 1995) 
Red blood cells Nav1.4 and 1.7 Unknown (Hoffman et al., 2004) 

Retinal glial cells Nav1.6 Reduced ligand-induced 
glutamate release (Linnertz et al., 2011) 

Schwann cells Nav1.2 and 1.3 Unknown (Oh et al., 1994) 

T lymphocytes Nav1.5 
Inhibited cell migration; 

prevention of the positive 
selection of CD4+ T cells 

(Fraser et al., 2004; 
Lo et al., 2012) 

Table is adapted from (Black & Waxman, 2013). 
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(Craner et al., 2005; Black et al., 2009; Pappalardo et al., 2014a; Pappalardo et al., 

2014b) and NG2+ oligodendrocyte precursor cells (Tong et al., 2009). TTX also reduces 

the invasiveness of macrophages (Carrithers et al., 2007; Carrithers et al., 2009), T 

lymphocytes (Fraser et al., 2004) and cancer cells (Section 1.4). Nav1.5 contributes to 

CD4+ CD8+ double-positive selection of thymocytes by causing a sustained Ca2+ influx 

(Lo et al., 2012). In certain cell types, VGSCs also play a role in secretion: blocking 

Nav1.7 with TTX in CD1a+ dendritic cells reduces the release of tumour necrosis factor 

(TNF)-α and interleukin (IL)-10 from these cells (Kis-Toth et al., 2011). Additionally, TTX 

reduces IL-1α, IL-1β and TNF-α release in microglia (Black et al., 2009). In pancreatic 

islet β-cells, TTX attenuates insulin release (Donatsch et al., 1977; Pressel & Misler, 

1991). TTX-mediated blockage of Nav1.6 in retinal glial cells reduces ligand-induced 

release of glutamate (Linnertz et al., 2011). Moreover, TTX application inhibits 

subcutaneous ATP release in keratinocytes (Zhao et al., 2008). Reduced levels of 

phagocytosis have been reported in TTX-treated macrophages and microglia (Carrithers 

et al., 2007; Black et al., 2009; Carrithers et al., 2009). Furthermore, TTX reduces 

Na+/K+-ATPase activity and increases cell death in astrocytes (Sontheimer et al., 1994). 

Finally, an increased activation of the shear-stress-induced extracellular signal-regulated 

kinase (ERK) 1/2 has been reported in TTX-treated endothelial cells (Traub et al., 1999). 

 

1.2.6 Regulation of VGSC α subunits 

VGSC α subunits are subject to post-translational modifications. Soon after their 

purification, researchers found out that the VGSC α subunits can be phosphorylated by 

both cAMP-dependent protein kinase (PKA) (Costa et al., 1982; Costa & Catterall, 

1984a) and protein kinase C (PKC) (Costa & Catterall, 1984b). Protein sequencing of rat 

Nav1.2 has demonstrated that PKA phosphorylates on four serine residues (S573, S610, 

S623 and S687) in the intracellular loop between domain I and II (Murphy et al., 1993), 

whereas PKC phosphorylates on three serine residues (S554, S573 and S576) in the   
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same intracellular loop, and S1506 in the inactivation loop between domain III and IV 

(Figure 1.1) (Numann et al., 1991; Schreibmayer et al., 1991; West et al., 1991). The 

dephosphorylation of VGSC α subunits in rat brain neurones is mediated by calcineurin, 

a Ca2+-regulated phosphatase also known as phosphatase 2B, and phosphatase 1A or 

2A (Murphy et al., 1993; Chen et al., 1995). Additionally, VGSCs in rat brain neurones 

are tyrosine phosphorylated and are modulated by association with the catalytic domain 

of receptor protein kinase tyrosine phosphatase β (RPTPβ) (Ratcliffe et al., 2000). 

The activation of PKA reduces INa in Nav1.2-expressing Xenopus oocytes and 

human embryonic kidney (HEK) 293 cells (Smith & Goldin, 1996; Cantrell et al., 1997). 

Phosphorylation by PKC also reduces VGSC activity in Chinese hamster ovary (CHO) 

cells (Numann et al., 1991) and Xenopus oocytes expressing Nav1.2 (Dascal & Lotan, 

1991; Schreibmayer et al., 1991). Neither PKA nor PKC modulation changes the 

voltage-dependence of activation or kinetics in these cell models. The reduction of peak 

INa caused by PKA phosphorylation is because VGSCs are shifted to a “null gating 

mode” in which the channels have lower probability of transiting to the open state upon 

Vm depolarisation (Li et al., 1992; Cantrell & Catterall, 2001). On the other hand, COS-7 

cells that were transfected with mouse Nav1.8 bearing mutated PKA phosphorylation 

sites at the domain I–II intracellular loop show a depolarised shift in the voltage-

dependence of activation compared with those transfected with normal mouse Nav1.8 

(Fitzgerald et al., 1999). In rat sensory neurones, activating PKA or PKC increases peak 

INa, and rather than modulating the channel directly, PKC enables subsequent PKA-

mediated VGSC modulation (Gold et al., 1998). Both the PKA- and PKC-mediated 

VGSC modulations show functional effects in the nervous system. For example, D1 G-

protein-coupled dopamine receptors reduce peak INa and therefore increase the 

threshold for action potential firing via PKA-dependent phosphorylation of VGSCs 

(Surmeier & Kitai, 1997). In rat pyramidal neurones, muscarinic receptor activation slows 

the inactivation of VGSCs via the PKC phosphorylation pathway and increases the 
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duration of action potentials, reducing the action potential firing frequency (Azouz et al., 

1994; Alroy et al., 1999). 

VGSC α subunits expressed in various mammalian cell models are also modulated 

by Ca2+ (Young & Caldwell, 2005; Van Petegem et al., 2012; Gabelli et al., 2015). Ca2+ 

directly regulates VGSCs by interacting with the EF-hand-like motifs in the C-terminus of 

the α subunit (Figure 1.1). The EF-hand-like motifs in different VGSC α subunit isoforms 

consist of overlapping, but not identical, residues: NMR data have demonstrated that 

Nav1.5 residues 1788–1862 fold into the motifs (Chagot et al., 2009), whereas in Nav1.2 

the responsible residues span from 1777 to 1882 (Miloushev et al., 2009). In addition, 

Ca2+ can indirectly modulate VGSCs by binding to calmodulin (CaM) (Deschenes et al., 

2002; Sarhan et al., 2009; Sarhan et al., 2012; Gabelli et al., 2014; Gabelli et al., 2015). 

CaM is a 17 kDa protein that can bind up to four Ca2+ ions with its four EF-hand motifs 

(Chou et al., 2001). CaM binds to VGSC α subunits at the isoleucine-glutamine (IQ) 

domains of the C-terminus (Herzog et al., 2003; Biswas et al., 2008; Sarhan et al., 

2012). Experiments using Nav1.5 have shown that the increased intracellular Ca2+ 

results in a ~10 mV depolarising shift in the steady-state inactivation relationship (Tan et 

al., 2002; Wingo et al., 2004; Biswas et al., 2009). 

The α subunits possess glycosylation sites located in the extracellular loop 

between S5 and S6 in domain I (Figure 1.1) (Bennett, 2002). In neuroblastoma cells in 

which endogenous VGSCs are expressed, inhibition of glycosylation reduced the 

number of α subunits at the cell surface (Waechter et al., 1983). The removal of 

glycosylation in Nav1.4 caused a depolarising shift in the voltage-dependence of 

activation and steady-state inactivation (Bennett et al., 1997). However, for Nav1.5, a 

depolarising shift was observed in activation and a hyperpolarising shift in inactivation 

(Zhang et al., 2003), suggesting that glycosylation has different effects on individual 

VGSC types (Diss et al., 2001).  
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In tsA-201 cells, co-expression of Nav1.2 with βγ subunits of G proteins (Gβγ) 

causes a hyperpolarising shift in the voltage-dependence of activation and steady-state 

inactivation (Ma et al., 1997). Gβγ also increases persistent INa, which therefore enhances 

neuronal excitability (Ma et al., 1997). Furthermore, for Nav1.8, annexin II light chain 

(p11) binds to the N-terminus of the channel and facilitates translocation to the plasma 

membrane (Okuse et al., 2002). In rat Nav1.2, a 9-amino acid motif at the intracellular 

loop between domain II and III (loop 2) is required for binding to ankyrin G (Lemaillet et 

al., 2003), which is necessary for the retention of the neurofascin/Nav1.2 loop 2 chimeric 

molecule at the axon initial segment (AIS) in cultured hippocampal neurones (Lemaillet 

et al., 2003). Multicopy suppressor of Gsp1 (MOG1) binds to the loop 2 of Nav1.5 (Wu et 

al., 2008). Overexpression of MOG1 increases the expression of Nav1.5 at the cell 

surface of neonatal cardiomyocytes, which leads to increased INa density (Wu et al., 

2008).  

The C-terminus of Nav1.5 also contains a binding site for Nedd4/Nedd4-like 

ubiquitin-protein ligases, where Nedd4-2-dependent Nav1.5 ubiquitination in heart 

extracts and transfected HEK cells was observed (van Bemmelen et al., 2004). Nedd4-2 

does not alter the kinetics of Nav1.5 in HEK cells but results in a reduced Nav1.5 

localisation at the cell membrane and therefore a decrease in INa density (van Bemmelen 

et al., 2004). The C-terminus of rat Nav1.4 and brain VGSCs also contains the binding 

sites for syntrophin and dystrophin, which links VGSCs to the cytoskeleton and the 

extracellular matrix via dystrophin-associated protein complex (DAPC) (Gee et al., 

1998). Cardiomyocytes from dystrophin-deficient mice have reduced INa, suggesting the 

requirement of DAPC in maintaining the proper function of Nav1.5 (Gavillet et al., 2006). 

The interaction between Nav1.5 and protein tyrosine phosphatase 1 (PTPH1) is also 

found at the C-terminus of the channel (Jespersen et al., 2006). Co-expression of Nav1.5 

and PTPH1 in HEK293 cells showed a hyperpolarising shift in steady-state inactivation 
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(Jespersen et al., 2006). Finally, the auxiliary VGSC β subunits also play an important 

role in modulating the activity of α subunits (Section 1.3.5). 

 

1.2.7 VGSC α subunits and channelopathies 

Mutations in VGSC α subunits lead to a number of diseases (channelopathies), in 

part due to alterations of the structure and/or the biophysical properties of the channel 

(Table 1.1) (Mantegazza et al., 2010a; Mantegazza et al., 2010b; Mantegazza & 

Catterall, 2012). To begin with, SCN1A missense mutations result in channel loss of 

function due to folding defects in the protein (Mantegazza et al., 2010a). SCN1A 

mutations cause various types of epilepsy, including febrile epilepsy, Dravet syndrome 

and generalised epilepsy with febrile seizure plus (GEFS+) (Escayg et al., 2000; Claes 

et al., 2001; Spampanato et al., 2001; Lossin et al., 2002). In addition, a group of 

patients with benign familial neonatal-infantile seizures carry SCN2A mutations 

(Sugawara et al., 2001; Misra et al., 2008). An SCN3A mutation has also been described 

in a patient with cryptogenic paediatric partial epilepsy (Holland et al., 2008). Frame-shift 

mutations in SCN8A have been identified in patients with familial ataxia (Trudeau et al., 

2006). 

VGSC mutations are also linked to channelopathies in skeletal muscle. Four 

known missense mutations in exons 22 and 24 of SCN4A associate with paramyotonia 

congenita (Matthews et al., 2008). Moreover, three mutations in the S4 segment have 

been shown to cause hypokalemic periodic paralysis (Sokolov et al., 2007). 

A group of mutations that cause cardiac channelopathies have also been identified 

in SCN5A. One of the most well-known cardiac disorders caused by mutations in SCN5A 

is long QT syndrome (Wang et al., 1995), which is due to abnormal Nav1.5 inactivation 

delaying the repolarisation stage during cardiac action potential firing. Long QT 

syndrome increases the risk for ventricular arrhythmias. It has also been reported that  

20 % of patients with Brugada syndrome bear mutations in SCN5A (Probst et al., 2003). 
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Other typical cardiac diseases that relate to mutations in SCN5A include sudden cardiac 

death, sudden infant death syndromes, cardiac arrhythmia (Wilde & Brugada, 2011) and 

atrial fibrillation (Olson et al., 2005). 

Nav1.7 and Nav1.8, expressed in the PNS, are involved in neuropathic pain 

syndromes, including spinal cord injury pain, phantom limb pain and painful diabetic 

neuropathy (Lampert et al., 2010). Nav1.7 plays a crucial role in mediating pain signals in 

the PNS. Mutations in SCN9A associate with congenital insensitivity to pain (Cox et al., 

2006), paroxysmal extreme pain disorder and inherited erythromelalgia (Dib-Hajj et al., 

2009a; Dib-Hajj et al., 2009b). In addition, Nav1.8 contributes to inflammatory pain and 

peripheral pain syndromes (Liu & Wood, 2011; Schuelert & McDougall, 2012). Nav1.9 

plays an important role in pain signalling (Dib-Hajj et al., 2015). Gain-of-function 

mutations in SCN11A can cause familial episodic pain (Zhang et al., 2013), painful 

peripheral neuropathy (Huang et al., 2014) and loss of pain perception (Leipold et al., 

2013). Finally, mutations in SCN7A, which encodes NaX in human cerebellum, associate 

with temporal lobe epilepsy (Gorter et al., 2010).  

 

1.3 VGSC β subunits 

Four β subunit genes that encode five β subunit proteins have been identified in 

humans (Table 1.4) (Brackenbury & Isom, 2011). SCN1B encodes β1 and its splice 

variant β1B, whereas SCN2B, SCN3B and SCN4B encode β2, β3 and β4, respectively. 

 

1.3.1 Structure of VGSC β subunits 

β1–β4 are transmembrane proteins, containing an extracellular N-terminus, single 

transmembrane segment and an intracellular C-terminus (Isom & Catterall, 1996). The 

alternative splice variant β1B is a soluble, secreted molecule without a transmembrane 

region (Figure 1.1) (Patino et al., 2011). The β subunit extracellular immunoglobulin (Ig) 
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Table 1.4. The expression of voltage-gated Na+ channel β subunits in humans 

Gene Protein Primary tissues Related neuronal 
disorders in humans Reference 

SCN1B β1 CNS, PNS, skeletal 
muscle and heart 

GEFS+; Dravet 
syndrome; Brugada 

syndrome; familiar atrial 
fibrillation; neuropathic 

pain 

(Wallace et al., 
1998; Coward et 

al., 2001; 
Wallace et al., 

2002; Scheffer et 
al., 2007; Patino 

et al., 2009; 
Ogiwara et al., 

2012) 

SCN1B β1B CNS, PNS, skeletal 
muscle 

Brugada syndrome; 
epilepsy 

(Watanabe et al., 
2008; Hu et al., 

2012) 

SCN2B β2 CNS, PNS skeletal 
muscle and heart Neuropathic pain (Coward et al., 

2001) 

SCN3B β3 CNS, PNS and heart Temporal lobe epilepsy (van Gassen et 
al., 2009) 

SCN4B β4 CNS, PNS and heart Huntington’s disease? (Oyama et al., 
2006) 

CNS and PNS: central/peripheral nervous system; GEFS+: generalised epilepsy with febrile 
seizure plus. 
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loop structure is unique among ion channel auxiliary subunits (Brackenbury & Isom, 

2011). The intracellular domain of β1 and β2 interacts with ankyrin (Malhotra et al., 

2000), by which these β subunits anchor themselves to cytoskeleton (Malhotra et al., 

2002; Malhotra et al., 2004). 

Residues at both the N- and C-terminus of β1 and β3 non-covalently interact with 

the α subunit (Hartshorne et al., 1982; Messner & Catterall, 1985; McCormick et al., 

1998; Meadows et al., 2001; Spampanato et al., 2004). However, both β2 and β4 

covalently associate with α subunits via a single disulphide bond that is formed between 

the C26 residue at the extracellular region of either β subunit and one of multiple 

cysteine residues at the S5–S6 loop of the α subunit (Hartshorne et al., 1982; Messner & 

Catterall, 1985; Yu et al., 2003; Chen et al., 2012). 

 

1.3.2 Localisation of VGSC β subunits 

The expression of β subunits has been reported in neurones in the CNS and PNS, 

as well as skeletal and cardiac muscle cells (Table 1.4) (Isom et al., 1992; Isom et al., 

1995a; Morgan et al., 2000; Yu et al., 2003; Maier et al., 2004; Lopez-Santiago et al., 

2007; Brackenbury et al., 2010; Lopez-Santiago et al., 2011; Kaufmann et al., 2013). 

Similar to the α subunits, β subunits have also been identified in non-excitable cells, 

including rat astrocytes (Oh & Waxman, 1995), human glia (Aronica et al., 2003) and 

endothelial cells (Andrikopoulos et al., 2011b), as well as in cancer cells (Section 1.4.4). 

β subunit expression profiles depend on developmental stage. For example, in rat brain, 

the level of β1 and β2 increases during postnatal development and replaces β1B and 

β3, which peak at birth (Kazen-Gillespie et al., 2000; Shah et al., 2001). β1B is also the 

predominant splice variant during human foetal brain development (Patino et al., 2011).  

β subunits are localised to the AIS (Rasband, 2010; Buffington & Rasband, 2013) 

and nodes of Ranvier (Kaplan et al., 2001; Chen et al., 2004; Patino et al., 2009; 
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Buffington & Rasband, 2013), agreeing with their roles in regulating the expression and 

gating of α subunits during action potential firing at these regions. Moreover, β1 localises 

to the growth cone in mouse cerebellar granule neurones (CGNs), where it contributes 

to the neurite outgrowth and pathfinding (Davis et al., 2004; Brackenbury et al., 2008; 

Brackenbury et al., 2010).  

 

1.3.3 VGSC β subunits are cell adhesion molecules 

All VGSC β subunits are members of the Ig superfamily of cell adhesion molecules 

(CAMs) (Isom et al., 1995a; Brackenbury & Isom, 2011). To date, both the homophilic 

interactions, by which the Ig domains from two identical β subunits interact, and the 

heterophilic interactions, by which the Ig domain of a β subunit interacts with other 

CAMs, have been reported (Malhotra et al., 2000; McEwen & Isom, 2004).  

β1-β1 homophilic interactions increase cell aggregation and ankyrin recruitment in 

Drosophila S2 cells (Malhotra et al., 2000). Heterophilic adhesion partners of β1 include 

contactin (Kazarinova-Noyes et al., 2001), neurofascin-155, neurofascin-186 (Ratcliffe et 

al., 2001; McEwen et al., 2004), N-cadherin (Malhotra et al., 2000) and tenascin-R 

(Srinivasan et al., 1998). Heterophilic interactions with β1 lead to various outcomes: β1-

contactin (as well as β2-contactin) co-expression increases Nav1.2 expression at the 

plasma membrane of CHL cells (Kazarinova-Noyes et al., 2001). β1 (as well as β2)-

bearing CHL cells are repelled from tenascin-R expressing extracellular matrix, 

indicating a role of β subunits in directing cell migration (Xiao et al., 1999). β3 homophilic 

interactions have been reported in transfected HEK293 cells (Yereddi et al., 2013) but 

not in transfected Drosophila S2 cells (McEwen et al., 2009). It is proposed that, in 

contrast to β1, β3 has limited heterophilic interactions with other CAMs: for example, β3 

does not associate with contactin (McEwen et al., 2009). Finally, the homophilic 

interaction between β4-β4 has been identified in mouse striatum and striatonigral fibres 

(Miyazaki et al., 2014). 
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β1-β1 homophilic interactions mediate neurite outgrowth in mouse CGNs (Davis et 

al., 2004). Overexpression of β4 also induces neurite outgrowth in Neuro2a cells 

(Oyama et al., 2006). Interestingly, co-culture of CGNs with β2-expressing fibroblast 

monolayers reduces the neurite length (Davis et al., 2004), suggesting different β 

subunits have distinct roles in modulating neurite outgrowth in the CNS. β1-mediated 

neurite outgrowth requires the presence fyn kinase and contactin (Brackenbury et al., 

2008). In addition, INa carried by Nav1.6 is required for β1-mediated neurite outgrowth, 

and in turn, β1 expression enhances the size of the INa (Brackenbury et al., 2010). 

Therefore, there is reciprocal interaction between Nav1.6 and β1 to regulate neurite 

outgrowth and excitability (Brackenbury et al., 2010). 

 

1.3.4 Regulation of VGSC β subunits 

β subunits are subject to post-translational regulation. There is a tyrosine 

phosphorylation site at the intracellular domain of β1 (β1Y181) (Figure 1.1) (Malhotra et 

al., 2002). The phosphorylation status of β1Y181 has been shown to affect the functional 

localisation of β1: in cardiomyocytes, tyrosine-phosphorylated β1 colocalises with Nav1.5 

at intercalated discs, whereas non-phosphorylated β1 is found at the T-tubules, 

colocalising with TTX-sensitive VGSCs (Malhotra et al., 2004). 

Three to four glycosylation sites are present at the Ig loop region of the β subunits 

(Messner & Catterall, 1985; Isom et al., 1992). Sialylation, a common type of 

glycosylation in VGSCs induced by sialic acids, is necessary for the β1-dependent 

modulation of channel gating in CHO cells (Johnson et al., 2004).  

β1–β4 are all subject to proteolytic cleavage by α-, β- and γ-secretase (Kim et al., 

2005; Wong et al., 2005). Both α- and β-secretase release the extracellular domain of 

β1–β4 from the full-length protein, whereas γ-secretase releases the intracellular 

domain into the cytoplasm (Wong et al., 2005). Interestingly, the cleaved intracellular 
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domain of β2 traffics to the nucleus and increases Nav1.1 mRNA and protein levels in 

cells from mouse cerebellum (Kim et al., 2007).  

 

1.3.5 β subunits modulate the activity of α subunits 

The activity of VGSC α subunits is modulated by the auxiliary β subunits in the 

protein complex. In heterologous systems, co-expression of β1, β2 or β3 with rat Nav1.2 

in Xenopus oocytes accelerates channel inactivation and results in a shift of steady-state 

inactivation towards a more negative voltage (Isom et al., 1992; Patton et al., 1994; Isom 

et al., 1995a; Isom et al., 1995b; Morgan et al., 2000). Co-expression of β1 or β2 with rat 

Nav1.6 in Xenopus oocytes also accelerates channel inactivation and causes a 

hyperpolarising shift in the voltage-dependence of activation but shows no effect on the 

steady-state inactivation (Smith et al., 1998a). Moreover, both β1 and β2 increase peak 

INa density carried by Nav1.2 in oocytes (Isom et al., 1992; Isom et al., 1995a). Finally, β4 

has been shown to cause a negative shift in the voltage-dependence of Nav1.2 or Nav1.4 

activation (Yu et al., 2003) and in the steady-state inactivation of Nav1.5 (Medeiros-

Domingo et al., 2007). 

In Chinese hamster lung (CHL) cells, co-expressing β1 and Nav1.2 gives similar 

results to Xenopus oocytes, including an increase in peak INa density and a negative shift 

in the steady-state inactivation (Isom et al., 1995b). Interestingly, β2 requires co-

expression of β1 to exert its modulatory roles on Nav1.2 in CHL cells (Kazarinova-Noyes 

et al., 2001). In rat brain neurones, β2 increases membrane capacitance, likely due to its 

role in facilitating insertion of α subunits into the cell membrane (Schmidt et al., 1985; 

Schmidt & Catterall, 1986; Isom et al., 1995a). In HEK293 cells, co-expression of β1 or 

β3 increases the peak INa carried by Nav1.7, whereas β2 or β4 has no significant effect 

on the peak INa (Laedermann et al., 2013). β1 and β3 also cause a positive shift in 

steady-state inactivation (Laedermann et al., 2013). When co-expressed with Nav1.3 or 
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Nav1.5, β3 negatively shifts the steady-state inactivation in CHO cells (Meadows et al., 

2002; Ko et al., 2005). 

The effect of β subunits on action potential firing and INa has also been 

investigated in vivo using transgenic mice. Electrophysiological recordings from 

postnatal (10–18 days) Scn1b null mice show hyperexcitability in the CA3 region of the 

hippocampus (Brackenbury et al., 2013). The hyperexcitability has also been reported in 

DRG neurones in the same animal model (Lopez-Santiago et al., 2011). On the other 

hand, reduced INa and impaired excitability have been observed in CGNs from Scn1b-

null mice (Brackenbury et al., 2010). Thus, β1 regulates neuronal excitability in a cell-

type dependent manner.  

In vivo evidence has also demonstrated that β1 regulates excitability in the heart. 

Increased transient and persistent INa were recorded from ventricular cardiomyocytes of 

Scn1b null mice, leading to prolonged action potential repolarisation and QT interval 

(Lopez-Santiago et al., 2007). Interestingly, 3H-saxitoxin binding experiments show that 

the number of TTX-sensitive and TTX-resistant VGSCs increased in Scn1b-null 

ventricular myocytes (Lopez-Santiago et al., 2007).  

It is noteworthy that β1 also regulates the distribution and expression of the α 

subunits: compared to wildtype, CA3 hippocampal neurones in Scn1b-null mice have 

reduced Nav1.1 but increased Nav1.3 protein levels (Chen et al., 2004), and a 

subpopulation of Scn1b-null CGNs show an increase in Nav1.1 at the AIS (Brackenbury 

et al., 2010). Localisation of Nav1.6 at the AIS in a subpopulation of CGNs is also 

dependent on β1 (Brackenbury et al., 2010). Additionally, Scn2b-null mice have reduced 

INa at the nodes of Ranvier of mouse optic nerves (Chen et al., 2002). 

 

1.3.6 β subunits and neuronal disorders 

Mutations in human β subunit genes associate with neuronal disorders (Table 1.4) 

(Savio-Galimberti et al., 2012; Baroni & Moran, 2015). At least seven mutations in 
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SCN1B have been reported in GEFS+ patients (Wallace et al., 1998; Wallace et al., 

2002). Six of these (C121W, R85C, R85H, I70_E74del, R125L and D25N) occur in the 

β1 Ig loop, suggesting the significance of the Ig structure in regulating excitability. Two 

β1 mutations, R125C and I106F, have been found in Dravet syndrome patients (Patino 

et al., 2009; Ogiwara et al., 2012). Brugada syndrome is associated with mutations 

including R214Q and E87Q in β1/β1B (Watanabe et al., 2008; Hu et al., 2012). R85H, 

another mutation in the Ig domain, and D153N mutation in the intracellular domain of β1 

have been reported in patients with familial atrial fibrillation (Scheffer et al., 2007). β1, as 

well as β2, has functional roles in conducting neuropathic pain (Coward et al., 2001). 

Reduced β3 protein level can lead to temporal lobe epilepsy (van Gassen et al., 2009). 

Finally, down-regulation of β4 may cause neurite degeneration in the striatum of 

Huntington’s disease transgenic mice and patients with Huntington’s disease (Oyama et 

al., 2006).  

 

1.4 The involvement of VGSCs in cancer progression 

1.4.1 Breast cancer 

Cancer is one of the leading causes of deaths. Globally, approximately 14 million 

new cancer cases and eight million cancer-related deaths were reported in 2012 (Torre 

et al., 2015). 11 % of all cancer cases are breast cancer (BCa) (Maxmen, 2012). In 

women, BCa had the highest incidence (> 1.6 million) and was the leading cause of 

cancer-related deaths (> 0.5 million) worldwide in 2012, which accounted for 15 % of 

cancer-related deaths in females (Torre et al., 2015). BCa is categorised into three 

groups according to the expression profiles of oestrogen receptor (ER), progesterone 

receptor (PR) and human epidermal growth factor receptor 2 (HER2). In the US, the 

“triple-negative (ER—/PR—/HER2—)” subtype has been found in 13 % of BCa patients. 

These patients have a significantly lower 5-year survival rate (Maxmen, 2012) and an 
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increased likelihood of distant recurrence within five years of diagnosis compared with 

those diagnosed with other types of BCa (Dent et al., 2007). Until recently, adjuvant 

chemotherapy, which includes anthracyclines and/or taxanes (Joensuu & Gligorov, 

2012; von Minckwitz & Martin, 2012), is the primary therapy for triple-negative BCa 

(Anders & Carey, 2008; Irvin & Carey, 2008), since this BCa subtype is resistant to 

HER2-targeted treatments using trastuzumab and hormonal therapies using tamoxifen 

and aromatase inhibitors (Cleator et al., 2007). Triple-negative BCa shares many 

molecular features with cancers that carry breast cancer 1 (BRCA1) mutations (Cleator 

et al., 2007), including p53 mutations (Crook et al., 1997; Schlichtholz et al., 1998), ER 

negativity (Lakhani et al., 2005) and HER2 negativity (Lakhani et al., 2002). Because 

BRCA1 plays a central role in repairing double-stranded DNA breaks by homologous 

recombination (Turner et al., 2004), dysfunctional BRCA1 repairs damaged DNA with 

less accuracy that can lead to genome instability (Cleator et al., 2007), one of the 

hallmarks of cancer (Hanahan & Weinberg, 2011). When the BRCA1 pathway is 

compromised, poly (ADP-ribose) polymerase (PARP)-dependent non-homologous 

recombination becomes the primary pathway during DNA repair (Javle & Curtin, 2011). 

A novel targeted therapy using PARP inhibitors was proposed for BRCA1-associated 

cancers, and the efficacy of PARP inhibitors in triple-negative BCa therapy has gained 

attention in the past few years (Do & Chen, 2013). 

Cancer becomes difficult to cure when the cancer at the primary site (primary 

tumour) spreads to distant sites (metastasis). In BCa patients, the most common 

metastasis sites include lungs, bones, liver, pleura and adrenal glands, and metastases 

at multiple sites have been frequently found in patients (Weigelt et al., 2005). Recent 

reports also showed increased incidence of brain metastasis arising from triple-negative 

BCa (Lin et al., 2008; Niwinska et al., 2010).  Once BCa metastasises, the five-year 

survival rate is only 26 % (Lu et al., 2009). Although adjuvant therapy, in which 

chemotherapy is often combined with other agents (e.g. tamoxifen and trastuzumab for 
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ER+ and HER2+ BCa patients, respectively), after primary BCa removal, has been used 

in treating BCa metastases, its side effects, such as premature menopause (Ganz, 

2005), infertility (Ganz et al., 2003) and sexual dysfunction (Howard-Anderson et al., 

2012), often lead to deteriorated quality of life in patients. Metastasis is regarded one of 

the hallmarks of cancer (Hanahan & Weinberg, 2011), and one of the key goals in 

clinical and basic cancer research is to effectively detect and reduce BCa metastasis 

and therefore improve the prognosis of BCa patients. 

 

1.4.2 The metastatic cascade: involvement of migration and invasion 

Metastasis is a complex sequence of events that includes cell detachment from the 

primary site, migration and invasion through the local tissue, penetration through the 

basement membrane into lymphatic and blood vessels (intravasation), travelling through 

the circulation, exiting the circulation (extravasation), settling at distant sites, and 

proliferation into new tumours (Figure 1.2) (Gupta & Massague, 2006). 

An important event during malignant cancer cell migration and invasion in vivo is 

the way that the cells “sense” their surrounding environment and hence exert metastatic 

behaviours (Allinen et al., 2004). Integrins, a family of cell adhesion receptors that bind 

to ligands in extracellular matrix (ECM), have a crucial role in interacting with the ECM 

and thus activating receptor tyrosine kinases (RTKs) and intracellular signals leading to 

cell migration and invasion (Giancotti & Ruoslahti, 1999; Hynes, 2002). Upon binding to 

the ECM, integrins recruit and partially activate focal adhesion kinase (FAK) (Oktay et 

al., 1999), a molecule that is regarded as a central hub in cancer cell migration control 

(Sieg et al., 2000; Schlaepfer & Mitra, 2004). Full phosphorylation of FAK is mediated by 

src kinase (Xing et al., 1994), resulting in recruitment of a number of important effectors 

that promote cancer cell metastasis (Mitra & Schlaepfer, 2006), including the small 

GTPase Rac (Hsia et al., 2003; Ishibe et al., 2004), guanine nucleotide exchange factors  
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Figure 1.2. The metastatic cascade.  

Metastasis involves several key steps, including (1) the detachment of cells from the 
primary site, (2) migration and invasion through the local tissue, (3) penetration through 
the basement membrane into lymphatic and blood vessels (intravasation), (4) travelling 
through the circulation, (5) exiting the circulation (extravasation), settling at distant sites, 
and (6) proliferation into new tumours. Figure is adapted from (Bacac & Stamenkovic, 
2008). 
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(GEFs) (Zhai et al., 2003), scaffold proteins GRB2 and ezrin (Schlaepfer et al., 1994; 

Poullet et al., 2001) and the proteolytic enzyme calpain (Carragher et al., 2003; Chan et 

al., 2010). A group of molecules from the small GTPase family are then activated by 

FAK, including Rho (Palazzo et al., 2004), Rac and Cdc42 (Keely et al., 1997). All of 

these proteins contribute to cell migration as well as invasion (Ridley et al., 2003; 

Raftopoulou & Hall, 2004; Ridley, 2011). Rac and Cdc42 promote actin polymerisation 

by activating the Arp2/3 complex at the leading edge of the cell, leading to the formation 

of lamellipodia and filopodia, respectively (Nobes & Hall, 1995). On the other hand, Rho 

activation links to the ERK-Jun-amino-terminal kinase (JNK) pathway (Krueger et al., 

2001), which promotes cell migration by controlling myosin contraction (Kimura et al., 

1996) .  

The invasion of cancer cells also involves the proteolytic cleavage of the ECM by 

matrix metalloproteinases (MMPs) (Egeblad & Werb, 2002; Bacac & Stamenkovic, 

2008). A number of MMPs, including MMP-14, -15 and -16, are involved in the 

degradation of the basement membrane upon the first steps of invasion. MMP-14 has 

also been reported to regulate cancer cell morphology during invasion (Hotary et al., 

2003). CD44, a cell surface proteoglycan that promotes metastasis (McFarlane et al., 

2015), is also an interaction partner of MMP-14 (Kajita et al., 2001; Mori et al., 2002). 

Next, before invading through the basement membrane completely, MMPs indirectly 

promote local invasion, angiogenesis, and evasion of apoptosis by facilitating the 

maturation of growth factors including the epidermal growth factor (EGF) (Yu et al., 

2002), or by activating the tumour growth factor β (TGF-β) in a CD44-dependent 

pathway (Yu & Stamenkovic, 2000). 

The cellular machineries and mechanisms involved in the metastatic cascade are 

highly complex and are often cell-type dependent. Although membrane proteins such as 

integrins and MMPs perform key roles in this process, interestingly, many types of ion 

channels and transporters at the plasma membrane are also involved and functionally 
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contribute to the metastasis. Thus, modulating ion channels and transporters in cancer 

has recently emerged as a potentially novel therapeutic modality. In addition to the 

reports showing the roles of K+ channels (Huang & Jan, 2014; Pardo & Stuhmer, 2014), 

Ca2+ channels (Prevarskaya et al., 2007; Prevarskaya et al., 2014), Cl- channels (Turner 

& Sontheimer, 2014) and ion transporters (Lastraioli et al., 2015; Stock & Schwab, 2015) 

in promoting cancer cell metastatic behaviours, the therapeutic value of targeting 

VGSCs in cancer is becoming increasingly promising, given that VGSCs specifically 

promote cell metastatic behaviours, such as migration and invasion, in vitro, as well as 

tumour growth and metastasis in vivo (Besson et al., 2015; Roger et al., 2015). 

 

1.4.3 α subunits in cancer 

1.4.3.1 Expression of α subunits in cancer 

The first evidence of VGSC expression in cancer cells was reported in 1987 in 

theK562/ADM multidrug-resistant (MDR) human leukaemia cancer cell line (Yamashita 

et al., 1987). Immediately following this study, another group found TTX-sensitive INa in 

the human MDR T-cell leukaemia CCRF-CEM/VLB100 cell line but not in the drug-

sensitive CCRF-CEM cell line (Lee et al., 1988). Both studies imply a relationship 

between INa/VGSC expression and malignancy. Since then, the VGSC mRNA and/or 

proteins have been found in increasing number of human cancer cell lines and patient 

tissue samples originating from various organs (Table 1.5). 

In BCa cells, INa carried by VGSCs was first identified in 2003 in the triple-negative, 

highly metastatic human MDA-MB-231 BCa cell line (Roger et al., 2003). The INa was 

absent in non-tumourigenic MCF-10A mammary epithelial cells and weakly metastatic 

MCF-7 and MDA-MB-468 BCa cells (Roger et al., 2003; Fraser et al., 2005). The mRNA 

expression level is > 100-fold higher in MDA-MB-231 cells compared with MCF-7 cells 

(Fraser et al., 2005). Although Nav1.5, Nav1.6 and Nav1.7 mRNA expression was found   
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in MDA-MB-231 cells, Nav1.5 contributes to ~82 % of the total VGSC expression (Fraser 

et al., 2005), and following studies using small-interfering RNA (siRNA) (Brackenbury et 

al., 2007) and anti-peptide antibody (Chioni et al., 2005) confirmed the INa recorded in 

MDA-MB-231 cells is mainly carried by the neonatal splice variant of Nav1.5. Neonatal 

Nav1.5 protein is also found in human BCa tissues but not in normal breast, and 

increased neonatal Nav1.5 mRNA expression associates with lymph node metastasis 

(Fraser et al., 2005). 

In prostate cancer (PCa) cell lines, INa has been recorded from the highly 

metastatic rat Mat-LyLu but not weakly metastatic AT-2 cells (Grimes et al., 1995). The 

INa in Mat-LyLu cells is abolished by 100 nM TTX, suggesting presence of a TTX-

sensitive VGSC isoform, later found to be neonatal Nav1.7 (Diss et al., 2001). TTX-

sensitive INa, which is carried by Nav1.7 (Diss et al., 2001), was found in highly invasive 

human PC-3 cells, but was absent in the less invasive LNCaP cells (Laniado et al., 

1997). This is in agreement with VGSC mRNA expression levels in these cells: the 

Nav1.7 mRNA level is ~1 × 106-fold higher in Mat-LyLu cells than in AT-2 cells, and in 

PC-3 cells it is ~1100-fold higher compared to LNCaP cells (Diss et al., 2001). The 

expression of α subunits in specimens from patients with benign prostatic hyperplasia or 

low-grade prostatic intraepithelial neoplasia is low compared to high-grade PCa, and the 

Nav1.7 mRNA level is greater in high-grade PCa (Diss et al., 2005; Diss et al., 2008). 

INa carried by VGSCs has been reported in strongly metastatic H460, H23 and 

Calu-1 non-small-cell lung cancer (NSCLC) cell lines, but the current is absent in weakly 

invasive A549 and non-cancerous lung epithelial NL20 and BEAS-2B cells (Roger et al., 

2007; Campbell et al., 2013). However, Nav1.6 and Nav1.7 mRNA are expressed in all of 

these cells (Roger et al., 2007). In addition, TTX-sensitive current has also been 

recorded in human NCI-H128, NCI-H69 and NCI-H146 small-cell lung cancer cell lines 

(Pancrazio et al., 1989). Nav1.3, Nav1.5 and Nav1.6 mRNA was reported in H69, H209 
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and H510 small-cell lung cancer (SCLC) cells, and Nav1.9 mRNA was also identified in 

H510 cells (Onganer et al., 2005). 

Nav1.5 is functionally expressed in SW620, SW480 and HT29 human colon cancer 

cell lines (House et al., 2010; Baptista-Hon et al., 2014). Nav1.5 expression is 

significantly higher in human colon cancer specimens than in normal colon tissues 

(House et al., 2010). The Nav1.6 mRNA expression level is significantly higher in 

colorectal carcinoma tissues compared to normal counterparts (Igci et al., 2015). 

Moreover, TTX-sensitive INa has been recorded in the primary cultures of human cervical 

cancer, where mRNA for Nav1.2, Nav1.4 and Nav1.7 are found (Diaz et al., 2007). 

Interestingly, analyses of RNA levels from biopsies showed that normal cervical cells 

express mRNA for Nav1.4, whereas cervical cancer cells have up-regulated Nav1.2, 

Nav1.6 and Nav1.7 mRNA (Diaz et al., 2007). Agreeing with this, another study showed 

that Nav1.6 and Nav1.7 mRNA levels are higher in cervical cancer than in non-cancerous 

cervical biopsies (Hernandez-Plata et al., 2012). The localisation of Nav1.6 and Nav1.7 is 

limited to the plasma membrane of cells from the intermediate and superficial zone of 

the cervical squamous epithelium in non-cancerous cervical biopsies, but VGSC 

expression is widely distributed in the plasma membrane, cytoplasm and nucleus region 

in most of the cells from cervical cancer biopsies (Hernandez-Plata et al., 2012). Nav1.6 

contributes ~51 % of the total INa in cervical cancer primary culture cells (Hernandez-

Plata et al., 2012). Additionally, real-time PCR (qPCR) analyses have shown increases 

in Nav1.2, Nav1.4, Nav1.5 and Nav1.7 mRNA expression in strongly metastatic ovarian 

cancer cells (Caov-3 and SKOV-3) in comparison to weakly metastatic Anglne ovarian 

cancer cells (Gao et al., 2010). Nav1.5 expression was only found in ovarian cancer with 

lymph node metastasis specimens (Gao et al., 2010). 

Finally, other cancerous tissue/cell lines in which VGSCs have been identified 

include human neoplastic mesothelial cells, where the TTX-sensitive INa was reported 

(Fulgenzi et al., 2006), and U251 human brain astrocytomas, where functional Nav1.5 
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channels was reported (Xing et al., 2014). Functional Nav1.5 is present in NB-1 

neuroblastoma cells (Ou et al., 2005). THP-1 and HTB-66 melanoma cells express 

functional Nav1.6 (Carrithers et al., 2009). Nav1.1, Nav1.2, Nav1.3, Nav1.4, Nav1.6 and 

NaX mRNA have also been identified in human glioma specimens, but further studies are 

needed in order to assess the VGSC protein level (Schrey et al., 2002). 

 

1.4.3.2 Functional roles of α subunits in cancer 

VGSC activity potentiates a number of cell behaviours that contribute to metastasis 

in vitro including invasion, transwell migration, lateral motility, galvanotaxis, process 

extension, adhesion, plasma membrane endocytic activity, vesicular patterning, and 

gene expression (Table 1.6) (Brackenbury, 2012). 

Blocking VGSCs using TTX (Fraser et al., 2005; Brackenbury et al., 2007), 

phenytoin (Yang et al., 2012), ranolazine (Driffort et al., 2014), or silencing Nav1.5 with 

siRNA also reduces MDA-MB-231 cell invasion through Matrigel (Brackenbury et al., 

2007; Gillet et al., 2009), whereas the cell in vitro proliferation is not affected. Similarly, 

TTX reduces Mat-LyLu and PC-3 PCa cell invasion but shows no effects on AT-2 and 

LNCaP cells where functional VGSCs are absent (Grimes et al., 1995; Laniado et al., 

1997). Interestingly, overexpression of Nav1.4 in LNCaP cells increases cell 

invasiveness, which can be reversed by TTX application, suggesting that VGSC 

expression is sufficient to promote invasion (Bennett et al., 2004). Na+ influx carried by 

VGSCs also increases H460, H23 and Calu-1 NSCLC cell invasion (Roger et al., 2007). 

Moreover, TTX and siRNA targeting Nav1.5 reduce the invasiveness of SW620, SW480 

and HT29 human colon cancer cells, and blocking Nav1.5 with ropivacaine in SW620 

cells showed a similar effect (House et al., 2010; Baptista-Hon et al., 2014). 

Furthermore, in primary cervical cancer culture, TTX inhibits cell invasion but does not 

affect cell proliferation (Diaz et al., 2007). Caov-3 and SKOV-3 ovarian cancer cells 

show reduced invasiveness, but not proliferation, after TTX treatment (Gao et al., 2010). 
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In addition, TTX also suppresses the invasion of Jurkat lymphocytes (Fraser et al., 

2004), human neoplastic mesothelial cells (Fulgenzi et al., 2006), and THP-1 and HTB-

66 melanoma cells (Carrithers et al., 2009). Finally, silencing neonatal Nav1.5 with 

siRNA reduces U251 human brain astrocytoma cell invasion (Xing et al., 2014). 

Whether VGSCs control cell motility in vitro is under debate: TTX reduces the 

number of migrated MDA-MB-231 cells in some transwell migration studies (Fraser et 

al., 2005; Isbilen et al., 2006; Brackenbury et al., 2007; Chioni et al., 2010) but not others 

(Roger et al., 2003). In addition, phenytoin reduces the lateral motility of MDA-MB-231 

cells in wound healing assays (Yang et al., 2012; Aktas et al., 2015). TTX-treated Mat-

LyLu cells show reduced transwell migration (Brackenbury et al., 2007) and lateral 

motility (Fraser et al., 2003). The transwell migration of PC-3M cells (Uysal-Onganer & 

Djamgoz, 2007) and the lateral motility of U251 cells (Xing et al., 2014) are also reduced 

after TTX treatment. However, the transwell migration of H460, H23 and Calu-1 cells 

(Roger et al., 2007), Caov-3 and SKOV-3 cells (Gao et al., 2010), and primary cervical 

cancer culture cells is not affected by TTX (Diaz et al., 2007). Therefore, whether or not 

VGSCs promote cancer cell migration is highly cell type-dependent. More experiments 

are needed in order to elucidate the role of VGSCs in controlling cancer cell migration. 

Both Mat-LyLu and MDA-MB-231 cells are galvanotactic, meaning that they move 

directionally in response to an electric field. Mat-LyLu cells move towards the cathode 

(Djamgoz et al., 2001), whereas MDA-MB-231 cells move towards the anode (Fraser et 

al., 2005), following the application of an electric field of 3 V/cm. TTX application 

significantly reduces the galvanotaxis in both types of cells (Djamgoz et al., 2001; Fraser 

et al., 2005). On the other hand, veratridine enhances the galvanotactic movement of 

Mat-LyLu cells (Djamgoz et al., 2001). 

VGSCs change the morphology of Mat-LyLu cells by decreasing cell process 

length and increasing cell body diameter and process thickness (Fraser et al., 1999). In  
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MDA-MB-231 cells, inhibiting Nav1.5 using small-hairpin RNA (shRNA) (Brisson et al., 

2013; Nelson et al., 2015b) or ranolazine (Driffort et al., 2014) causes less elongated cell 

morphology. Moreover, PC-3M and Mat-LyLu cells pre-treated with TTX show reduced 

adhesion to glass coverslips (Palmer et al., 2008). Additionally, TTX reduces the 

endocytic/vesicular uptake of horseradish peroxidase in Mat-LyLu and MDA-MB-231 

cells (Mycielska et al., 2003; Krasowska et al., 2004; Fraser et al., 2005; Krasowska et 

al., 2009), whereas opening VGSCs in MDA-MB-231 cells with aconitine has the 

opposite effect (Fraser et al., 2005; Krasowska et al., 2009). Aggregated vesicles are 

observed in Mat-LyLu and MDA-MB-231 cells following the uptake of horseradish 

peroxidase, which is attenuated by TTX treatment (Mycielska et al., 2003; Krasowska et 

al., 2004, 2009). Furthermore, interestingly, in NCL-H146 SCLC cells, VGSCs are 

involved in the initiation of action potential firing (Blandino et al., 1995). 

VGSC α subunits also regulate expression of invasion-related genes. In colon 

cancer, using HT29 cells, bioinformatic analyses revealed that Nav1.5 mRNA may 

regulate the expression of genes that encode MMPs (e.g. ADAM9), members involved in 

Ca2+ signalling (e.g. CCR9) and membrane remodelling (e.g. CHMP4C) (House et al., 

2010). A following study demonstrated that activating Nav1.5 with veratridine increases 

invasion-related gene expression in SW620 cells, including CD44, CLIC, WNT9A, ITGB, 

SEMA6A and VEGFC (House et al., 2015). 

VGSCs potentiate cancer progression in vivo. Rats subcutaneously implanted with 

Mat-LyLu cells show significantly reduced tumour metastases and improved survival as 

a result of daily TTX injection into the tumour (Yildirim et al., 2012). Daily injection with 

phenytoin significantly reduced tumour growth and metastasis to lungs, liver and spleen 

in mice bearing orthotopic tumour of MDA-MB-231 cells (Nelson et al., 2015a). In 

addition, ranolazine treatment reduces metastasis to lungs after injection of MDA-MB-

231 cells into the mouse tail vein (Driffort et al., 2014). More recently, it has been shown 

that tumour growth and metastasis are significantly decreased in mice implanted with 
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MDA-MB-231 cells where Nav1.5 expression is suppressed by shRNA, compared to 

those implanted with MDA-MB-231 cells infected with control scrambled shRNA (Nelson 

et al., 2015b). Therefore, an increasing body of evidence shows the expression of 

VGSCs in cancer cells and cancer patient biopsies, and suggests a role in promoting 

metastatic behaviours, both in vitro and in vivo.  

 

1.4.3.3 Mechanisms underlying α subunit-dependent cancer cell metastatic 

behaviours 

Several models have been proposed in order to explain enhanced metastatic 

behaviours caused by VGSC α subunits, which include regulation of pH, gene 

expression and activity of protein kinases. 

In MDA-MB-231 cells, Nav1.5 has been shown to increase cell invasion by 

allosterically activating Na+-H+ exchanger type 1 (NHE1) at the plasma membrane. 

NHE1 regulates the intracellular pH and acidifies the immediate extracellular 

environment by extruding H+, favouring the proteolytic activity of cathepsin B and S 

(Gillet et al., 2009; Brisson et al., 2011). Nav1.5 co-immunoprecipitates with NHE1, and it 

is proposed that both the proteins form functional complexes located in caveolin-1-

containing lipid rafts at invadopodia (Brisson et al., 2011; Brisson et al., 2013). 

Moreover, Nav1.5 promotes src kinase activity and phosphorylation of cortactin and 

cofilin, which both lead to actin polymerisation (Brisson et al., 2013). In addition, 

silencing Nav1.5 expression by using shRNA reduces the protein level of the metastasis-

promoting molecule CD44 in MDA-MB-231 cells (Nelson et al., 2015b). 

In SW620 colon cancer cells, veratridine increases the size of INa, cell 

invasiveness, and activates mitogen activated protein kinase (MAPK) signalling (House 

et al., 2015). U0126, an inhibitor of MAPK/ERK kinase (MEK), abolishes the ERK 

phosphorylation caused by veratridine, suggesting VGSCs enhance SW620 cell invasion 

via the ERK signalling pathway. The process is mediated by PKA and the small GTPase 
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Rap1B, and ultimately leads to activation of various transcription factors (TFs) including 

ELK1, ETS-1 and c-Jun (House et al., 2015). Interestingly, veratridine also increases the 

protein level of CD44, as in MDA-MB-231 cells (House et al., 2015; Nelson et al., 

2015b), suggesting that the Nav1.5-CD44 signalling axis may be universal in promoting 

metastasis in various types of cancer. 

In H460 NSCLC cells, EGF increases cell invasion in a Nav1.7-dependent manner 

(Campbell et al., 2013). Application of the ERK inhibitor U0126 inhibits cell invasion and 

co-application of U0126 and TTX showed no additive effect, suggesting that Nav1.7-

dependent H460 cell invasion is via the ERK pathway (Campbell et al., 2013). In 

summary, the proposed models suggest α subunits increase cancer cell invasion by 

several mechanisms. However, there may be further undiscovered mechanism(s), and 

future experiments are needed to clarify whether these mechanisms are widely 

applicable among all cancers. 

 

1.4.3.4 Regulation of α subunit expression in cancer cells 

The expression of α subunits in cancer cells is also subject to a variety of 

regulations. Autoregulation of VGSCs has been reported in PCa cells, where 48 h TTX 

pre-treatment reduces Nav1.7 mRNA level in PC-3M cells (Mycielska et al., 2005). In 

Mat-LyLu PCa cells, INa activates PKA, which in turn potentiates Nav1.7 mRNA 

expression and protein trafficking to the plasma membrane (Brackenbury & Djamgoz, 

2006). Similarly, in MDA-MB-231 BCa cells, pre-treatment with the PKA activator 

forskolin for 24 h increases Nav1.5 mRNA level as well as the protein level at the plasma 

membrane (Chioni et al., 2010); on the other hand, pre-treatment with TTX reduces PKA 

phosphorylation and PKA-induced cell transwell migration (Chioni et al., 2010). 

Serum affects the size of INa and the kinetics of the α subunits in Mat-LyLu cells 

(Ding & Djamgoz, 2004). Growth factors in serum have a number of effects on VGSCs: 

EGF increases Nav1.7 mRNA level and protein expression in PC-3M cells, which then 
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potentiates cell migration, invasion and endocytosis (Uysal-Onganer & Djamgoz, 2007). 

In Mat-LyLu cells, EGF increases INa density as well as cell transwell migration (Ding et 

al., 2008). The mRNA level of Nav1.7 is also up-regulated in H460 NSCLC cells after 

EGF treatment, along with increased cell invasion (Campbell et al., 2013). Nerve growth 

factor (NGF) enhances INa in Mat-LyLu cells (Brackenbury & Djamgoz, 2007); however, 

the NGF-induced increase in cell transwell migration is independent of VGSC activity 

(Brackenbury & Djamgoz, 2007). Additionally, the estrogen β-estradiol increases INa in 

MDA-MB-231 cells, and the action is dependent on GPR30, a G-protein-coupled ER, 

and PKA (Fraser et al., 2010). In summary, both the expression and function of α 

subunits in cancer cells are regulated by growth factors and hormones, and the 

autoregulation of α subunits also occurs. 

 

1.4.4 β subunits in cancer 

In addition to α subunits, VGSC β subunits have been identified in a number of 

cancer cells (Table 1.7) where they contribute to metastatic behaviour (Table 1.6). β1 

has a relatively higher expression in MCF-7 cells than in MDA-MB-231 cells, and it  

facilitates MCF-7 cell adhesion to substrate but slows transwell migration (Chioni et al., 

2009). Overexpression of β1 in MDA-MB-231 cells increases MDA-MB-231 cell-cell 

adhesion and process outgrowth but reduces cell migration in vitro (Chioni et al., 2009). 

Interestingly, silencing β1 using siRNA increases the Nav1.5 mRNA and protein level in 

MCF-7 cells (Chioni et al., 2009), whereas overexpressing β1 in MDA-MB-231 cells 

enhances INa density (Chioni et al., 2009). β1 mRNA and protein are present in patient 

BCa samples, and the β1 protein expression, determined by immunohistochemistry, is 

significantly higher in tumour tissue than normal breast tissue (Nelson et al., 2014). 

Overexpression of β1 increases process outgrowth in MDA-MB-231 cells via homophilic  
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Table 1.7. Voltage-gated Na+ channels β subunit expression in cancer 
Protein Gene Cancer type References 

β1 SCN1B Breast, prostate, 
cervical, NSCLC 

(Roger et al., 2007; 
Diss et al., 2008; 

Chioni et al., 2009; 
Hernandez-Plata et 
al., 2012; Nelson et 

al., 2014) 

β2 SCN2B Breast, prostate, 
cervical, NSCLC 

(Roger et al., 2007; 
Diss et al., 2008; 

Chioni et al., 2009; 
Hernandez-Plata et 

al., 2012; Jansson et 
al., 2012) 

β3 SCN3B Prostate, NSCLC 
(Roger et al., 2007; 
Hernandez-Plata et 

al., 2012) 

β4 SCN4B Breast, prostate, 
cervical, NSCLC 

(Roger et al., 2007; 
Diss et al., 2008; 

Chioni et al., 2009; 
Hernandez-Plata et 

al., 2012) 
NSCLC: non-small cell lung cancer. Table is adapted from (Brackenbury, 2012). 



 

 

54 

adhesion, which is dependent on fyn kinase and Na+ influx through α subunits (Nelson et 

al., 2014), similar to its role in the CNS (Brackenbury et al., 2008; Brackenbury et al., 

2010). Compared to control MDA-MB-231 cells, mice bearing β1-overexpressing MDA-

MB-231 cells show increased tumour growth and vascularisation, together with 

increased metastasis to lungs and liver (Nelson et al., 2014). Taken together, β1 

expression enhances cell adhesion and process outgrowth but retards migration of BCa 

cells in vitro, where it also regulates the expression and activity of α subunits. In vivo, β1 

potentiates BCa tumour growth and metastasis.  

The total β subunit mRNA level in metastatic PC-3 and PC-3M cells is significantly 

higher than in weakly metastatic LNCaP cells, and β1 is again the predominant isoform 

(Diss et al., 2008). However, the mRNA levels of β1–β4 are similar comparing PCa and 

non-PCa biopsies (Diss et al., 2008), possibly because the processing of the tissue 

causes inaccuracy by including cells not only from PCa but also surrounding non-

cancerous tissues, such as skeletal muscle, where β subunits are also expressed (Diss 

et al., 2008). Additionally, β1–β4 mRNAs have been found in cervical cancer tissues. 

Compared to non-cancerous cervix tissues, β2, β3 and β4 mRNA levels are up-

regulated in cervical cancer, whereas in primary culture, β2 and β4 mRNAs are hardly 

detected (Hernandez-Plata et al., 2012). One possible explanation is that the roles of β 

subunits as cell adhesion molecules are different in biopsies and primary cultures 

(Hernandez-Plata et al., 2012). 

LNCaP cells overexpressing β2 display an elongated cell body with a reduced cell 

volume and increased migratory and invasive capacity, as well as a preferential binding 

to vitronectin compared to control LNCaP cells (Jansson et al., 2012). In contrast to the 

role of β1 in the MDA-MB-231 BCa mouse model, subcutaneously implanted LNCaP-β2 

cells show reduced tumour take and tumour volume in vivo (Jansson et al., 2012). Thus, 

β1 and β2 may interact with different extracellular proteins in these different models and 

therefore exert distinct cellular behaviours.  
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SCN3B contains two response elements to p53 (Adachi et al., 2004). SCN3B is 

up-regulated after DNA damage in a p53-dependent manner in mouse embryonic 

fibroblasts, and overexpression of p53 up-regulates the β3 mRNA level in HCT116, 

Saos2 and H1299 human cancer cell lines (Adachi et al., 2004). Finally, although β1–β4 

mRNA has been found in SCLC cell lines, their roles in regulating cell activity have not 

been studied (Roger et al., 2007). In summary, VGSC β subunits are present in several 

cancer types, and they regulate key steps associated with metastasis.  

 

1.4.5 Therapeutic value of VGSCs in BCa 

Tumour microarray data have revealed that the Nav1.5 mRNA level is significantly 

higher in BCa biopsies from patients than in normal breast samples, and is higher in 

BCa samples from patients who developed metastasis, recurrence, or who died in five 

years (Yang et al., 2012), suggesting a relationship between Nav1.5 expression and 

malignancy in patients. Recent in vivo data show that suppressing VGSC activity 

reduces tumour growth and metastasis in rodents (Yildirim et al., 2012; Driffort et al., 

2014; Nelson et al., 2015a; Nelson et al., 2015b). Importantly, some of the studies 

adopted drugs inhibiting VGSCs that are approved by the US Food and Drug 

Administration (FDA) (Driffort et al., 2014; Nelson et al., 2015a), and repurposing these 

drugs may be a new strategy for cancer treatment. Riluzole, a compound that blocks 

VGSCs and the metabotropic glutamate receptor 1, reduces BCa growth in mice 

(Speyer et al., 2012) and supresses metabolic activity in patients with melanoma (Yip et 

al., 2009). A novel VGSC blocker, RS100642, reduces oxidative stress and improves 

animal survival in 7,12-dimethylbenz(a)anthracene (DMBA)-induced rat BCa model 

(Batcioglu et al., 2012). Taken together, an increasing amount of evidence suggests that 

VGSC α subunits may be novel targets in cancer treatment. 

 



 

 

56 

1.5 Membrane potential as a functional signal in cancer progression 

An important outcome of collective ion channel and transporter activity is the 

change in cellular Vm. Vm, defined as the voltage across the plasma membrane, arises 

due to the unequal distribution of various types of ions, including Na+, K+, Cl- and Ca2+. 

As described by the Goldman-Hodgkin-Katz equation (Equation 1.1), the Vm depends on 

the permeability (P) and both the intracellular and extracellular concentrations of major 

ions (Goldman, 1943; Hodgkin & Katz, 1949): 

 

𝑉" = 	 %&
'
ln	(

+,-.[01
.]34+5.[6

.]34+789[:;9]<
+,-.[01.]<4+5.[6.]<4+789[:;9]3

)  (Equation 1.1) 

 

where R is the ideal gas constant, T temperature and F Faraday’s constant. As 

described in Section 1.1, in excitable cells including neurones, skeletal muscle fibres and 

cardiomyocytes, action potentials initiate from the depolarisation of Vm.  

Seminal work describing the functional roles of Vm in non-excitable cells began in 

the late 1960s, pioneered by Clarence D. Cone Jr. While studying mitotic activities in 

sarcoma cells, he reported that Vm undergoes hyperpolarisation before entering M phase 

(Cone, 1969), and that Vm hyperpolarisation reversibly blocks DNA synthesis and mitosis 

(Cone, 1970). Cone and colleagues then demonstrated that Vm depolarisation is able to 

initiate mitosis in CHO cells and mouse spleen lymphocytes (Cone & Tongier, 1971; 

Kiefer et al., 1980), whereas hyperpolarised Vm immediately precedes mitotic arrest 

(Cone & Tongier, 1973).  

 

1.5.1 Depolarised Vm correlates with tumourigenesis   

As early as the 1970s, Clarence D. Cone Jr. postulated that the Vm is correlated 

with the level of cell differentiation (Cone, 1971). A similar phenomenon was seen in 

earlier studies, which demonstrated significant Vm depolarisation during malignant 
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transformation of normal cells (Tokuoka & Morioka, 1957; Johnstone, 1959). Indeed, 

recordings from rodent and human tissues revealed that proliferative cells, especially 

rapidly proliferating tumour cells, display relatively depolarised Vm, whereas non-

proliferating, terminally differentiated somatic cells, such as muscle cells and neurones, 

are characterised by their hyperpolarised Vm (Figure 1.3) (Binggeli & Weinstein, 1986; 

Blackiston et al., 2009; Yang & Brackenbury, 2013).  

Direct in vitro and in vivo comparisons of Vm levels between normal and cancerous 

breast cells (Marino et al., 1994), hepatocytes and hepatocellular carcinoma cells 

(Binggeli & Cameron, 1980; Stevenson et al., 1989), normal and neoplastic 

adrenocortical tissues (Lymangrover et al., 1975), normal embryonic fibroblasts and 

fibrosarcoma (Binggeli & Weinstein, 1985), benign and cancerous skin cells (Melczer & 

Kiss, 1957; Woodrough et al., 1975), and between normal and cancerous ovarian tissue 

(Redmann et al., 1972) show that cancer cells tend to be more depolarised than their 

normal counterparts. In a study where the Vm of MCF-10A, MCF-7, MDA-MB-468 and 

MDA-MB-231 BCa cells was compared, Vm was found to be more depolarised as the 

metastatic potential of the cell line increased: the Vm of the strongly metastatic MDA-MB-

231 cells is ~-19 mV, whereas the Vm is ~-40 and ~-50 mV in MCF-7 and MCF-10A 

cells, respectively (Fraser et al., 2005). In PCa, the Vm of strongly metastatic PC-3 cells 

is ~5 mV more depolarised than the weakly metastatic LNCaP cells (Laniado et al., 

1997). These findings suggest a correlation between depolarised Vm and cancer 

malignancy. Since Vm is determined by the combined activities of ion 

channels/transporters at the cell membrane, it would be natural to consider Vm merely as 

an epi-phenomenon resulting from changes in intracellular concentration of ions. 

However, over the past four decades, increasing evidence has shown that Vm is a 

functional signal regulating a number of cell behaviours, including cell proliferation, 

migration and stem cell differentiation (Yang & Brackenbury, 2013). 
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Figure 1.3. Membrane potential (Vm) scale.  

Rapidly proliferating cancer cells possess relatively  depolarised Vm (red box), while the 
Vm of quiescent cells is generally more hyperpolarised (cyan box). The Vm of proliferative 
somatic cells is also depolarised. Figure is adapted from (Binggeli & Weinstein, 1986; 
Yang & Brackenbury, 2013). 
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1.5.2 Vm and cell proliferation 

Depolarisation can function as a signal initiating mitosis and DNA synthesis in both 

highly proliferative tumour and non-tumour cells (Orr et al., 1972; Binggeli & Weinstein, 

1986). Artificially altering the Vm by modulating the extracellular ionic composition or 

applying the Na+/K+-ATPase inhibitor ouabain revealed interesting results: firstly, 

hyperpolarising the Vm of CHO cells to -45 mV induces mitotic arrest, and cell division is 

fully blocked at -75 mV. The cell cycle is resumed by depolarising the Vm to -10 mV 

(Cone, 1971). Secondly, quiescent (G0) mature chick spinal cord neurones show mitotic 

activity after depolarisation (Cone & Cone, 1976). By contrast, hyperpolarised Vm 

immediately precedes mitotic arrest (Cone & Tongier, 1973).  

An additional layer of complexity in this model is that the Vm fluctuates during cell 

cycle progression, and follows a multi-step and rhythmic pattern (Wonderlin & Strobl, 

1996; Blackiston et al., 2009) (Figure 1.4). Vm hyperpolarisation at the G1/S checkpoint is 

generally required for S phase initiation. For example, depolarising the cell membrane 

halts G1/S progression in glia (Canady et al., 1990), Schwann cells (Wilson & Chiu, 

1993), lymphocytes (Price et al., 1989; Freedman et al., 1992; Wang et al., 1992b), V79 

Chinese hamster lung cells (Sachs et al., 1974), C1300 mouse neuroblastoma cells 

(Boonstra et al., 1981) and MCF-7 human BCa cells (Wonderlin et al., 1995). The Vm 

then remains relatively hyperpolarised through S phase in some cell types (Sachs et al., 

1974; Boonstra et al., 1981; Strobl et al., 1995; Wonderlin et al., 1995), and more 

depolarised in others (Arcangeli et al., 1995; MacFarlane & Sontheimer, 2000). 

Moreover, the G2/M transition exhibits a depolarised Vm (Sachs et al., 1974; Boonstra et 

al., 1981; Blackiston et al., 2009), although it is not yet clear whether or not this 

depolarisation is a prerequisite for G2/M progression. In rat cardiomyocytes, ouabain-

induced depolarisation leads to an increased population in G2/M (and S) phase (Lan et 

al., 2014). In D54-MG human glioma cells, the Vm depolarisation at G2/M is likely 
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Figure 1.4. Membrane potential (Vm) and the progression of cell cycle.  

Vm undergoes  hyperpolarisation at G1/S border, by virtue of K+ efflux through various 
types of K+ channels.  Before cells enter M phase, increased Cl- efflux accompanies Vm 
depolarisation.  Quiescent cells at G0 stage show mitotic activities after Vm depolarisation. 
Figure is adapted from (Yang & Brackenbury, 2013).  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 mediated by Cl- efflux through the outward rectifying ClC3 channels (Habela et al., 

2008). In addition, exogenous ClC2 channels are highly expressed in M phase in NRK-

49F rat kidney fibroblasts (Zheng et al., 2002).  

The fluctuation of Vm levels across the cell cycle does not necessarily contradict 

the observation that depolarised Vm could be a signature of cancer cells. The mean Vm 

values in cancer cells are consistently depolarised relative to most normal somatic cell 

types (Figure 1.3). For example, MCF-7 cells arrested at G1 phase have a Vm of -9 mV 

and hyperpolarize to ~-30 mV in the S phase (Wonderlin et al., 1995). Both these values 

are more depolarised than normal breast cells, e.g. the mean Vm of unsynchronised 

MCF-10A cells is between -40 and -58 mV (Wonderlin et al., 1995; Fraser et al., 2005). 

Evidence suggests that the fluctuation in K+ conductance contributes significantly 

to changes in Vm during the cell cycle. For example, in neuroblastoma and Ehrlich 

ascites cells, there is a transient decrease in K+ efflux before entering the G2 phase, and 

a relatively high level of K+ efflux during the M phase (Mills & Tupper, 1976; Boonstra et 

al., 1981). Given the diversity of K+ channel types (Hille, 1992; Miller, 2000; Wang, 

2004), their contributions to the Vm and Vm-dependent cell cycle progression are 

probably context-dependent and highly complex. For example, inhibition of cell 

proliferation with K+ channel inhibitors does not correlate with changes in the Vm in rat 

C6 glioma cells (Rouzaire-Dubois et al., 2000). In addition, the Vm is likely to be 

determined by the collective activities of a variety of ions channels/transporters, which 

may exhibit reciprocal interactions and form a large and complex network responsible for 

Vm regulation and its downstream effects.  

 

1.5.3 Ion channel-dependent regulation of proliferation and Vm 

Numerous studies have shown that pharmacological or genetic block of VGPCs 

reduces proliferation of cancer cells (Fraser et al., 2000; Ouadid-Ahidouch et al., 2000; 

Abdul & Hoosein, 2002; Chang et al., 2003; Menendez et al., 2010) (Figure 1.5).  
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Increasing evidence suggests that Ether à go-go (EAG) K+ channels may serve as 

biomarkers for cancer (Ouadid-Ahidouch et al., 2001; Farias et al., 2004; Pardo et al., 

2005; Hemmerlein et al., 2006; Ousingsawat et al., 2007; Ortiz et al., 2011; Rodriguez-

Rasgado et al., 2012). Inhibition of EAG channel expression reduces proliferation in 

several cancer cell lines, whereas implantation of CHO cells overexpressing EAG 

channels in mice induces tumours (Pardo et al., 1999). In synchronised SH-SY5Y 

neuroblastoma cells, EAG current (IEAG) is reduced to less than 5 % in G1 phase, 

compared to unsynchronised controls, suggesting that the activity of EAG channels is 

cell-cycle dependent (Meyer & Heinemann, 1998). Indeed, in MCF-7 cells, inhibiting 

EAG channels with astemizole increases the proportion of cells in G1 phase and reduces 

the proportion in S phase (Borowiec et al., 2007). In contrast, activation of human EAG 

(hEAG) channels is responsible for hyperpolarisation at late G1 before the cells enter the 

S phase (Ouadid-Ahidouch et al., 2001). Interestingly, the hyperpolarisation is 

accompanied by increased Ca2+-activated K+ (KCa) channel currents (Ouadid-Ahidouch 

et al., 2001), which might result from the elevated intracellular Ca2+ due to the increased 

electrochemical gradient during the hyperpolarisation (Nilius & Wohlrab, 1992; Ouadid-

Ahidouch & Ahidouch, 2008). 

KCa channels were thought to be one of the main controllers of the Vm in Friend 

murine erythroleukemia cells (Arcangeli et al., 1987). KCa channels have been found in 

glioma (Liu et al., 2002), PCa (Gessner et al., 2005), BCa (Haren et al., 2010) and the 

CD133+ subpopulation of SH-SY5Y cells (Park et al., 2010). Inhibiting KCa channels with 

iberiotoxin (IbTx) arrests D54-MG glioma cells in S phase, and leads to apoptosis 

(Weaver et al., 2004). Thus, the functional contribution of KCa channels to cell cycle 

regulation appears to be distinct from VGPC channels. In addition, in MCF-7 cells, 

inhibition of ATP-sensitive K+ (KATP) channels reversibly arrests cells in the G0/G1 phase 

(Woodfork et al., 1995). The two-pore domain K+ channel, TREK1, increases 

proliferation of PC-3 and LNCaP cells (Voloshyna et al., 2008). In CHO cells, 
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overexpression of TREK1 increases the number of cells in S phase, and reduces the 

number of cells at G0/G1 phase (Voloshyna et al., 2008). 

Human EAG-related gene (HERG) K+ channels are strongly inwardly rectifying and 

conduct K+ influx when the voltage is more negative than the K+ equilibrium potential 

(Trudeau et al., 1995; Smith et al., 1996). HERG current (IHERG) is expressed at early 

developmental stages in the neural crest, central nervous system, dorsal root ganglion 

(DRG) and skeletal muscle, and is replaced by classic inward rectifier K+ current (IKir) 

later in development (Arcangeli et al., 1997; Crociani et al., 2000). HERG channels are 

up-regulated in a number of cancers (Arcangeli, 2005). Moreover, IHERG increases 

tumour cell proliferation (Bianchi et al., 1998; Wang et al., 2002). The activity of IHERG 

itself is cell cycle dependent (Arcangeli et al., 1995), suggesting a complex relationship 

between IHERG, Vm and proliferation. Additionally, inward rectifier K+ (Kir) channels have 

been reported in various cancer cell types, and are required for proliferation, including 

Kir2.2 (Lee et al., 2010), Kir3.1 and Kir3.4 (Plummer et al., 2004; Takanami et al., 2004; 

Plummer et al., 2005; Wagner et al., 2010). In contrast, overexpression of Kir4.1 in 

glioma cells hyperpolarises the Vm and increases the number of cells in quiescent G0/G1, 

reducing the proportion in G2/M phase (Higashimori & Sontheimer, 2007). Thus, different 

Kir channels may play opposing roles in regulation of Vm/proliferation, as a result of their 

heterogeneous voltage dependence.  

The mechanisms underlying ion channel-dependent proliferation of cancer cells 

include direct interaction between ion channels and other pro-proliferative signalling 

pathways (Wang, 2004; Ouadid-Ahidouch & Ahidouch, 2008; Prevarskaya et al., 2010). 

For example, co-expression of HERG and tumour necrosis factor receptor 1 (TNFR1) 

has been found at the cell membrane of SKBR3 BCa and SH-SY5Y neuroblastoma 

cells, and HERG appears to recruit TNFR1 to the membrane, therefore enhancing TNF-

α-induced cancer cell proliferation (Wang et al., 2002). Alternatively, ion channel-

mediated Vm hyperpolarisation would increase the electrochemical gradient for Ca2+ and 
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therefore elevate the intracellular Ca2+ concentration through voltage-independent Ca2+ 

channels, such as transient receptor potential (TRP) channels (Nilius & Wohlrab, 1992; 

Wang, 2004; Ouadid-Ahidouch & Ahidouch, 2008). Ca2+ signalling is functional across 

the whole cell cycle (Santella et al., 2005). For example, Ca2+ is required for G1 

progression and G1/S transition (Hazelton et al., 1979; Choi et al., 2006). In turn, 

intracellular Ca2+ and CaM can regulate KCa and EAG channels (Khanna et al., 1999; 

Ziechner et al., 2006; Ouadid-Ahidouch & Ahidouch, 2008). Thus, there may be a 

reciprocal, autoregulatory relationship between ion channel activity, Vm, intracellular Ca2+ 

signalling, and proliferation. 

Changes in Vm are likely to trigger intracellular signalling messengers such as Ca2+ 

in order to drive sustained proliferation. Vm is a double-edged sword when fulfilling its 

role in regulating intracellular Ca2+: a depolarised Vm activates voltage-gated Ca2+ 

channels (VGCCs) that result in Ca2+ influx (Borodinsky & Fiszman, 1998; Zhang et al., 

2008), whereas a hyperpolarised Vm increases the transmembrane electrochemical 

gradient and therefore enhances the driving force for entry of Ca2+ and other types of 

cations (Prevarskaya et al., 2010; Schwab et al., 2012; Yang & Brackenbury, 2013). 

Inhibition of Ca2+ entry or CaM/CaM kinase (CaMK) shows cell cycle arrest at specific 

checkpoints. For example, depleting extracellular Ca2+ results in human WI-38 

fibroblasts accumulating at G1 (Hazelton et al., 1979); inhibition of CaMK arrests 3T3 

cells at G1 phase (Tombes et al., 1995; Morris et al., 1998). Moreover, TFs including the 

nuclear factor of activated T cells (NFAT), c-Myc, c-Jun and c-Fos are also Ca2+-

dependent (Prevarskaya et al., 2014). Activation of these TFs then promotes cancer cell 

growth by inducing the expression of cyclins and cyclin-dependent kinases (CDKs) 

(Roderick & Cook, 2008). In summary, a multiplicity of ion channels (predominantly K+-

conducting) participates in Vm regulation (both depolarisation and hyperpolarisation) in 

cancer cells. In turn, changes in Vm promote transition through cell cycle checkpoints. 
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1.5.4 Role of Vm in cancer cell migration  

Vm is regarded as an indirect factor that can affect cell migration, whose main 

regulatory role might be setting up the electrical driving force for Ca2+ (Prevarskaya et al., 

2010; Schwab et al., 2012). Intracellular Ca2+ concentration ([Ca2+]i) displays a gradient 

in migrating cells, with the lowest concentration at the leading edge (Brundage et al., 

1991). “Ca2+ flicker” describes a phenomenon whereby local [Ca2+]i undergoes dynamic 

regulations during cell migration (Wei et al., 2009; Wei et al., 2012). In WI-38 fibroblasts, 

the membrane-stretch sensitive TRP melastatin channel TRPM7 collaborates with the 

store Ca2+releasing inositol 1,4,5-trisphosphate (IP3) receptor to induce stochastic Ca2+ 

flicker activity at the leading edge of migrating cells. The transient increase in local Ca2+ 

concentration steers directional turning. It is proposed that the Ca2+ flickers facilitate 

local cytoskeletal rearrangement, force generation and integrin turnover (Wei et al., 

2009; Wei et al., 2012). More, the retraction of the rear-end body is mediated by myosin 

contraction controlled by the phosphorylation of myosin regulatory light chain (MLC) 

through Ca2+-dependent MLC kinase (MLCK) (Olson & Sahai, 2009). The [Ca2+]i 

fluctuations play a role in regulating tractional forces (Lee et al., 1999; Ridley et al., 

2003), direction sensing, and cytoskeleton reorganisation (Figure 1.6) (Pettit & Fay, 

1998).  

Vm may also affect downstream intracellular signalling cascades that could 

contribute to cell migration in a Ca2+-independent way. In kidney epithelial cells, Vm 

depolarisation induces phosphorylation of MLC without inducing Ca2+ signalling, but 

instead by activating the Rho-associated kinase (ROCK) pathway (Szaszi et al., 2005). 

In addition, actin filaments undergo reorganisation following Vm depolarisation in bovine 

eye endothelial and epithelial cells (Chifflet et al., 2003; Chifflet et al., 2004), suggesting 

a functional role for Vm in cytoskeletal reorganisation, although it is not clear whether or 

not Ca2+ signalling is involved.  
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Figure 1.6. Relationships between Na+, K+, Cl- channels and membrane potential (Vm) in 

cancer cell  migration.  

Vm provides the driving force for Ca2+, and downstream Ca2+ signalling  leads to cell 
migration. Vm also regulates cytoskeleton  reorganisation. Cl- and K+ channels 
both  contribute to Vm regulation and cell volume control. Inhibiting particular  Na+, K+ and 
Cl- channels can reduce cancer cell migration.  However, how Na+ contributes to Vm 
regulation and Ca2+ signalling in cancer is less understood (dashed lines). Figure is 
adapted from (Yang & Brackenbury, 2013). 



 

 

68 

A number of Na+, K+ and Cl- channels, which may potentially contribute to the Vm, 

are directly implicated in cancer cell migration (Section 1.4.3.2). In several breast 

carcinoma/melanoma cell lines, KCa2.3, which is responsible for maintaining a 

hyperpolarised Vm, enhances migration, likely via promotion of intracellular Ca2+ 

signalling (Potier et al., 2006; Chantome et al., 2009). In addition, KCa3.1 activity causes 

a local shrinkage at the rear of migrating MDCK-F cells, therefore supporting retraction 

at this pole during movement (Schwab et al., 2006). In order to maintain 

electroneutrality, K+ efflux must be accompanied by an anion, which is Cl- under most 

circumstances (Schwab et al., 2007; Schwab et al., 2012). In agreement with this, Cl- 

channels, which contribute to the depolarised Vm in glioma cells, enhance migration and 

invasion by permitting the release of K+, Cl- and water at the leading edge, resulting in 

shrinkage and facilitating movement into tortuous extracellular spaces (Soroceanu et al., 

1999; Sontheimer, 2008; Habela et al., 2009; Schwab et al., 2012). In summary, a direct 

role for Vm in regulating cancer cell migration is much less clear than for proliferation. 

Additionally, it is noteworthy that the contribution of Na+ channels to Vm, and whether Na+ 

channel activity affects Ca2+ signalling in cancer cells, are less studied (Figure 1.6). 

 

1.5.5 Vm and the differentiation of cancer stem cells 

Stem cells and cancer cells share similar properties, such as the ability to 

differentiate and self-renew, increased membrane transporter activity and the ability to 

migrate and metastasise (Wicha et al., 2006). The cancer stem cell (CSC) hypothesis 

contains two key concepts: (1) cancers arise from dysregulated transformation of normal 

tissue stem cells or progenitor cells, and (2) cellular components that display stem cell 

properties can lead to cancer progression (Wicha et al., 2006). In contrast to normal, 

regulated asymmetric division of stem cells during tissue homeostasis, where a stem cell 

produces one copy of itself and one cell that later differentiates into a mature cell (Figure 

1.7), the dysregulation of transformed CSCs during tumourigenesis involves “symmetric  
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Figure 1.7. Membrane potential (Vm) in normal stem cell differentiation and hypothesised 

role for Vm in  cancer stem cells (CSCs).  

Depolarised Vm is needed during the maintenance of stem cells.  Stem cell undergoes 
asymmetric division where it produces one copy of itself and one  progeny that later 
differentiates into mature cells. The maturation requires Vm hyperpolarisation 
(Sundelacruz et al., 2008). However, CSCs  frequently undergo symmetric division, in 
which one CSC divides into two identical  CSC progenies (Wicha et al., 2006). Sustained 
Vm depolarisation may help to  maintain the increasing CSCs in an undifferentiated state. 
Proliferation of CSCs may  increase cancer malignancy.  Figure is adapted from (Yang & 
Brackenbury, 2013). 
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division” in which each malignant CSC generates two identical daughter cells (giving rise 

to either proliferation or differentiation), which significantly expands the malignant CSC 

reservoir (Figure 1.7) (Liu et al., 2005). 

The involvement of Vm in differentiation of normal stem cells has been previously 

reported. Studies in quail neural crest cells and a subpopulation of SH-SY5Y 

neuroblastoma cells have demonstrated that stem cells exhibit distinct bioelectrical 

profiles during development (Arcangeli et al., 1997; Biagiotti et al., 2006; Sundelacruz et 

al., 2009). In particular, a hyperpolarised Vm is required during stem cell maturation 

(Sundelacruz et al., 2009). For example, Kir-induced Vm hyperpolarisation is required for 

human myoblast fusion (Liu et al., 1998). In a genome-wide microarray analysis of 

depolarisation-regulated genes in postnatal mouse cerebellar granule neurones, among 

87 depolarisation-responsive genes, 22 are developmentally up-regulated and 26 are 

developmentally down-regulated (Sato et al., 2005). Remarkably, 18 of the 22 (82 %) 

developmentally up-regulated genes coincide with depolarisation down-regulated genes, 

and 20 of 26 (77 %) developmentally down-regulated genes coincide with depolarisation 

up-regulated genes (Sato et al., 2005). Vm hyperpolarisation is also a functional 

determinant of human mesenchymal stem cell (hMSC) differentiation. Pharmacologically 

induced Vm depolarisation suppresses adipogenic and osteogenic differentiation of 

hMSCs (Sundelacruz et al., 2008). In addition, depolarisation reduces the differentiation 

phenotype of hMSC-derived cells and enables plastic transdifferentiation (Sundelacruz 

et al., 2013). Taken together, these data suggest that a depolarised Vm may maintain 

cells in an undifferentiated stage at the gene expression level. Therefore, it is not 

unreasonable to postulate that depolarised Vm may also contribute to maintaining a 

population of undifferentiated CSCs (Figure 1.7). 
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1.5.6 Depolarised Vm regulates tumourigenesis and development in vivo 

Studies published by Michael Levin’s group have examined the functional roles of 

Vm in development and tumourigenesis using Xenopus laevis and planarian flatworms. 

The researchers depolarised the Vm of Xenopus laevis embryos by reducing the 

environmental Cl- concentration and concurrently activating the endogenous glycine 

receptor Cl- channels using ivermectin (Lobikin et al., 2012). Using this method, the 

researchers found that during Xenopus laevis development, the depolarised 

melanocytes in the tadpole neural crest exhibit neoplastic phenotypes including over-

proliferation, arborized cell morphology and increased local invasion.  

One study demonstrated that these metastatic phenotypes are ion type and ion 

channel non-specific, because firstly, the phenotypes caused by depolarisation could be 

rescued by expressing hyperpolarising inward-rectifier K+ channels, and secondly, the 

malignant phenotype could be induced or suppressed simply by adjusting extracellular 

Cl- concentration, as predicted by Goldman-Hodgkin-Katz equation (Lobikin et al., 2012). 

Interestingly, overexpression of a human oncogene Gli1 in Xenopus laevis embryos by 

microinjection induced tumour-like structures in developed tadpoles, and Na+ imaging 

revealed that such structures are enriched for Na+ (Lobikin et al., 2012). SLC5A8, a 

sodium butyrate co-transporter, is shown to play a vital role in the Vm signal transduction 

pathway: butyrate is suggested to act as a histone deacetylase inhibitor upon Vm 

hyperpolarisation, and since acetylation of histones leads to arrest of cell proliferation, 

the over-proliferation of cells is reduced due to butyrate influx (Tseng & Levin, 2012; 

Chernet & Levin, 2013).  

Studies also proposed that these effects are mediated by voltage control of 

serotonin release from melanocytes (Blackiston et al., 2011; Chernet & Levin, 2013; 

Lobikin et al., 2015): a depolarised Vm increases serotonin export through the serotonin 

transporter (SERT) at plasma membrane, resulting in an increase in serotonin 

concentration in the extracellular microenvironment. Consequently, the serotonin 
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receptors, including 5HT-R2 and 5HT-R5, on nearby melanocytes and on pituitary 

melanotrope cells, are activated. The activation of 5HT receptors consequently 

stimulates adenylyl cyclase (AC), causing release of melanocyte-stimulating hormone; 

this increases the expression of Sox10 and Slug, both TFs, across the animal body, 

which ultimately result in cell over-proliferation (Lobikin et al., 2015). 

During development of the Xenopus laevis embryo, a gradual Vm hyperpolarisation 

is reported in the cells lining the neural tube at the start of neural fold formation and 

before the neural tube closure (Pai et al., 2015). Hyperpolarising the embryo by 

expressing hyperpolarising ion channels reduces expression of brain TFs including otx2, 

emx and bf1. Unlike the model proposed in the melanocytes using the same animal 

model, here, both Ca2+ flux and gap junction-mediated Vm regulation, but not the 

serotonin signalling pathway, are involved in Vm-dependent brain development (Pai et 

al., 2015).  

In Dugesia japonica planaria, Vm depolarisation plays a role during development 

and regeneration. Dissected planarian flatworm pharynx fragments (blastema) can 

regenerate and grow into a new flatworm. After dissection, it has been shown that H+-K+-

ATPase activity depolarises the Vm of the anterior blastema, and inhibition of the H+-K+-

ATPase with SCH-28080 abolishes the depolarised Vm and blocks anterior polarity and 

head regeneration (Beane et al., 2011; Beane et al., 2013). Interestingly, hyperpolarised 

blastemas become either tail- or headless, whereas ivermectin-induced Vm 

depolarisation at the posterior of pharynx results in head formation (Beane et al., 2011). 

It is suggested that depolarised Vm increases Ca2+ influx carried by VGCCs and 

therefore mediates regeneration (Beane et al., 2011).  

In summary, Vm has been previously regarded simply as an outcome of the 

collective activity of ion channels/transporters at the cell membrane. However, more and 

more data suggest that Vm is a functional signal in cell proliferation, migration and stem 

cell differentiation in vitro as well as tissue development and regeneration in vivo. 
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Cancer cells tend to possess a depolarised Vm, but the roles of Vm in regulating cancer 

cell metastatic behaviours including migration and invasion are less studied. Similarly, it 

is unknown whether VGSCs are functionally involved in regulating the Vm of BCa cells. 

 

1.6 Hypothesis and aims 

The overall hypothesis of the present study was that VGSCs in MDA-MB-231 cells 

increase cancer cell metastatic behaviours, including migration and invasion, via 

depolarising the Vm. The aims of this study were three-fold: 

(1) To investigate the involvement of VGSCs in Vm regulation in human MDA-

MB-231 cells. 

(2) To investigate whether Vm contributes to VGSC-dependent cancer cell 

migration and invasion. 

(3) To study the Vm and INa in primary tumours from mice xenografted with MDA-

MB-231 cells. 

The data presented in this thesis have resulted in several peer-reviewed 

publications, and a further manuscript in preparation, detailed in Error! Reference 

source not found.. 
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2 Chapter 2: Materials and Methods 

2.1 Cell culture 

2.1.1 Cell lines 

MDA-MB-231 human BCa cells were a gift from Prof Lori Isom (University of 

Michigan). MDA-MB-231 cells stably expressing enhanced green fluorescent protein 

(eGFP) and luciferase (Nelson et al., 2014) were stably transduced with lentivirus for 

shRNAs targeting Nav1.5 (hereafter called “Nav1.5-shRNA” cells) or non-targeting 

control shRNA  (hereafter called “shRNA control” cells) using MISSION pLKO.1-puro 

shRNA transduction particles (Sigma) (Nelson et al., 2015b). Molecular identify of cells 

was confirmed by short tandem repeat analysis (Masters et al., 2001). MCF-7 cells 

where the oestrogen receptor α was knocked-down using shRNA (namely pII cells) 

(Luqmani et al., 2009) and control MCF-7 cells were a gift from Prof Yunus A. Luqmani 

(Kuwait University). Cells were confirmed to be mycoplasma-free (Section 2.1.5). 

 

2.1.2 Maintenance and passage of cells 

MDA-MB-231 cells were grown in Dulbecco’s modified eagle medium (DMEM, 

Life Technologies) supplemented with 5 % foetal bovine serum (FBS, Life 

Technologies) and 4 mM L-glutamine (Life Technologies) at 37 °C, 5 % CO2, 100 % 

relative humidity. For Nav1.5-shRNA and shRNA control cells, G418 (4 μl/ml, Sigma), 

blasticidin (2 μl/ml, AppliChem) and puromycin (0.1 μl/ml, Sigma) were applied to the 

cell culture medium. Unless otherwise stated, cells were grown in T25 flasks (Corning) 

or 10 cm culture dishes (Corning). The cell culture medium was changed every 72 h for 

MDA-MB-231 cells, or 48 h for Nav1.5-shRNA and shRNA control cells. 
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Cells were passaged when the density reached approximately 90 %. After 

aspirating the old medium, 1 ml trypsin-EDTA (0.05 %, Life Technologies) was applied 

to the cells, and the cells were transferred into cell incubator for 30 s before viewing at 

10X under an inverted microscope. Cells were incubated for a further 15 s if they were 

not starting to lift from the culture surface. Before the cells started to lift off, trypsin-

EDTA was removed from the culture dish or flask, and was replaced with 2 ml culture 

medium. Cells adherent to the surface were triturated gently using a P1000 pipette. 

Four to six drops of the cell suspension were transferred to a new culture dish or flask, 

and 10 ml culture medium was added. Cells were passaged no more than 10 times 

after thawing. 

 

2.1.3 Cell counting 

To count the cells, 20 μl of well-mixed cell suspension was placed in one 

chamber of an improved Neubauer haemocytometer and covered with a rectangular 

glass coverslip. Cells at each of the four corner squares were counted using a hand-

held counter. The number of cells in the suspension was calculated using the following 

equation: 

 

𝐶𝑒𝑙𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	 𝑝𝑒𝑟	𝑚𝑙 = 	 &GH1;	IJ"KLM	GN	OL;;P	OGJIHLQ
R

	×	10R (Equation 2.1) 

	

2.1.4 Freezing and thawing cells 

Cells were transferred to a 15 ml falcon tube after being removed from the 

surface of a ~90 % confluent culture dish or flask. Cells in the falcon tube were pelleted 

using a bench-top centrifuge at ~200 g at room temperature. The supernatant was 

carefully removed using a P1000 pipette, and the pellet was resuspended in 1 ml 
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freezing medium, containing 70 % (v/v) DMEM, 20 % (v/v) FBS and 10 % (v/v) dimethyl 

sulfoxide (DMSO). Cells were then aliquoted into cryovials (200 μl/vial). The vials were 

placed upright in a polystyrene box and stored at -80 °C for one week before being 

transferred into a liquid nitrogen dewar for long-term storage. 

To thaw the cells, culture medium (10 ml) was prepared in an empty flask. A 

cryovial containing frozen cells was taken from the liquid nitrogen dewar and thawed in 

a water bath at 37 °C for 30 s. The defrosted suspension was then gently transferred to 

the flask. After 24 h, the medium was changed. 

 

2.1.5 Mycoplasma testing in cell cultures 

Cells were confirmed to be free of mycoplasma contamination before use in 

experiments and were routinely tested at six-month intervals. Cells were plated on 13 

mm uncoated glass coverslips in a 35 mm culture dish and cultured in culture medium 

for 48 h. The medium was then removed and cells were fixed with 1 ml methanol at 

room temperature for 5 min. Methanol was removed after cell fixation, 4',6-diamidino-2-

phenylindole (DAPI) (1 ml) prepared at 0.5 μg/ml in methanol was added. Cells were 

incubated at room temperature for a further 10 min before washing once with methanol, 

followed by two additional washes using phosphate buffered saline (PBS, Life 

Technologies). Approximately 20 μl of Faramount mounting medium (Dako) was 

applied to a rectangular No. 1 glass microscope slide. The glass coverslip was then 

mounted onto the slide suing a pair of forceps, with the cell-growing surface facing the 

mounting medium. The slides were examined using an epi-fluorescence microscope 

(Section 2.9). Cells without mycoplasma contamination showed no DAPI staining in the 

cytoplasm, or adjacent to cells. 
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2.2 Pharmacology 

Drugs used in the present study and the concentrations used are detailed in 

Table 2.1. 

 

2.3 Tumour xenografts in mouse mammary fat pad 

2.3.1 Ethics statement 

Investigation has been conducted in accordance with the ethical standards 

according to the Declaration of Helsinki and according to national and international 

guidelines and has been approved by the University of York Ethical Review Process. 

The work presented in the current study was under authority of a Home Office-

approved protocol (Project Licence number: 60/4277). 

 

2.3.2  Animals 

Female immunocompromised mice (rag2-/-, gc-/-) were obtained from the 

Yorkshire Cancer Research Unit at the University of York. Mice were maintained under 

specific pathogen free (SPF) conditions in individually ventilated cages. Each cage 

contained three to five mice with food and water provided ad libitum. Mice were 

weaned three weeks after birth, and were maintained for a further three weeks before 

surgery. In total, 50 mice from 13 cages were used in this study. 

 

2.3.3 Tumour xenograft orthotopic implantation 

The following work was done in a class II bio-safety cabinet, which was cleaned 

with 70 % ethanol before the procedure. Each mouse was weighed on a scale before 

being transferred to an anaesthesia chamber supplied with 2 % isoflurane for 2 min. 

Once unconscious, the animal was moved onto a sterile drape on a heat pad, with  
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Table 2.1. Pharmacologial agents used in the study 

Name Manufacturer Solvent and stock 
concentration 

Working 
concentration 

Gramicidin Sigma Ethanol; 5 mM 0.4 % v/v (20  μM) 
IbTx Alomone Labs Water; 20 μM  0.5 % v/v (100 nM) 

Ionomycin Cayman 
Chemical Ethanol; 14.1 mM 0.46 % v/v (10 μM) 

Nifedipine Alomone Labs DMSO; 5 mM  0.2 % v/v (10 μM) 

NS-1619 Alomone Labs DMSO; 10 mM 0.01 – 0.4 % v/v (1–
40 μM) 

Nystatin Serva DMSO; 30 mg/ml 0.4 % v/v (120 μg/ml) 
Phenytoin Sigma 75 mM NaOH; 180 mM  0.06 % v/v (100 μM) 

TTX Alomone Labs Water; 1 mM 3 % v/v (30 μM) 
Veratridine Alomone Labs DMSO; 5 mM 2 % v/v (20 μM) 

IbTx: iberiotoxin; TTX: tetrodotoxin 
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constant isoflurane at 1.5 % supplied via a nose cone. Carprofen (100 μl) at 0.75 

mg/ml was subcutaneously injected before an ear notch tag was applied. The mouse 

abdomen area was then gently shaved and cleaned with a piece of gauze sprayed with 

chlorhexidine (0.2 % w/v). A 2 mm-long incision was made at the centre of abdomen 

between the fourth inguinal mammary glands (Figure 2.1). The skin was separated 

from muscle and fat pad using forceps. Cells (5 × 105) suspended in Matrigel/PBS were 

gently injected via a 1 ml insulin syringe. The wound was then closed using sutures. 

The mouse was transferred to a recovery cage, and the recovery from anaesthesia 

was monitored for 20 min. The animal was returned to its home cage after checking the 

wound. 

 

2.3.4 Tumour size measurement using callipers 

The health status and weights of the mice were checked the day after surgery. 

Animals were weighed every other day thereafter, until tumours developed 

(approximately seven days after surgery). When the tumour was observed in the 

mammary fat pad, the weight of the animal was measured daily, and the size of the 

tumour was monitored using callipers once a day. To determine the tumour volume, 

both the greatest longitudinal diameter (length) and the greatest transverse diameter 

(width) were measured using callipers, and the tumour volume was calculated as: 

 

𝑇𝑢𝑚𝑜𝑢𝑟	𝑣𝑜𝑙𝑢𝑚𝑒/𝑤𝑒𝑖𝑔ℎ𝑡	(𝑚𝑚_	or	mg) = 0.5	×	(𝑙𝑒𝑛𝑔𝑡ℎ	×	𝑤𝑖𝑑𝑡ℎg) (Equation 2.2) 

 
Mice were euthanised using a Schedule 1 method 20–37 days after surgery, or 

before the weight of the tumour reached 10 % of the animal’s body weight, or if the 

weight loss approached 20 % of the body weight at the day of surgery (Workman et al., 

2010). 
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Figure 2.1. Location of mammary tissues in the female mouse.  

In total, there are five pairs of mammary glands in the female mouse. The present 
study orthotopically implanted breast cancer cells in the fourth inguinal mammary 
gland. Red line indicates the incision site. Diagram is adapted from (Scudamore, 2014). 
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2.4 Electrophysiology 

2.4.1 Cell preparation 

Three days before recording, cells (6 × 104) were plated on two uncoated glass 

coverslips in a 35 mm culture dish with 2 ml culture medium. Cells were incubated as in 

Section 2.1.2. The medium was changed 48 h after seeding the cells. 

 

2.4.2 Solutions 

Extracellular and intracellular recording solutions used in the present study and 

their components are in Table 2.2 and Table 2.3, respectively. In Na+-free extracellular 

solutions, NaCl was replaced with equimolar choline chloride (ChoCl) or N-methyl-D-

glucamine (NMDG). Extracellular solution with Ba2+ was used to block BKCa channels, 

and extracellular solution with Cd2+ was used to block VGCCs (Hille, 2001).  

For intracellular solutions, ethylene glycol tetraacetic acid (EGTA) was used to 

buffer Ca2+. Free Ca2+ concentration in the intracellular solution was calculated using 

the MaxChelator program (Stanford University). Cs+ was used to inhibit VGPCs and Kir 

channels (Hille, 2001) 

 

2.4.3 Equipment for voltage- and current-clamp recordings 

Equipment for electrophysiology was set up as in Figure 2.2. A MultiClamp 700B 

amplifier (Molecular Devices) was used to record voltage-activated membrane current 

and voltage, and a Digidata 1440A data acquisition system (Molecular Devices) was 

used for analogue-digital signal conversion. A VC34 (Scientific Instruments) computer-

controlled valve system and a Dymax 5 (Charles Austen Pumps) air pump were used 

to control solution flow. A current and voltage clamp headstage (Molecular Devices CV-  
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Figure 2.2. Electrophysiology equipment used in this study.  

Perfusion of external solution was controlled by a VC34 valve control system and a 
Dymax 5 pump. Cells were immersed in extracellular solution and observed using an 
Olympus BX51WI microscope. Pipette movement was controlled by the PatchStar 
micromanipulator. The electrical signal was transmitted to the MultiClamp 700B 
amplifier through the CV-7B headstage. Analogue and digital signals were converted 
using the Digidata 1440A. User commands were sent to the amplifier using Clampex 
and the MultiClamp 700B Commander.  
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7B) was connected to a PatchStar micromanipulator (Scientifica) in order to control 

pipette movement. A silver wire was used as the recording electrode inside the pipette. 

Before installation onto the headstage the silver wire was chlorided by connecting to 

the positive pole of a 9 V cell, while the other end was soaked in 3 M KCl. It was re-

chlorided at regular intervals. 

Cells were observed using an Olympus BX51WI light microscope. A chamber 

(Warner Instruments RC-26GLP) fixed by a stage adaptor (Warner Instruments SA-

OLY/2) was used to hold cells on coverslips under constant perfusion with extracellular 

physiological saline solution (PSS). The data acquired by the Digidata 1440A were 

saved to a PC running Clampex 10.4 and MultiClamp 700B Commander 2.1.0 software 

(Molecular Devices). User commands were sent to the MultiClamp 700B using this 

software.  

 

2.4.4 Preparation of borosilicate pipettes 

Both blunt ends of borosilicate glass capillaries (Harvard Apparatus GC150TF-

7.5) were fire-polished in a Bunsen flame and then pulled into pipettes using a P-97 

micropipette puller (Sutter Instrument). After pulling, pipette tips were fire-polished 

using a Narishige MF-830 microforge, in order to give resistances of 3.5–4.5 MΩ when 

filled with internal solution.  

 

2.4.5 Recording current using whole-cell patch clamp from cultured cells 

Current across the plasma membrane was recorded using the whole-cell patch 

clamp technique. A single target cell was located at 40X magnification. Approximately 

10 μl intracellular solution was backfilled into glass pipette through a 0.45 μm filter and 

the pipette was installed onto the headstage. Approximately 2 ml of air was injected 

into the pipette using a syringe connecting to the headstage, providing positive 
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pressure. The pipette was firstly moved close to the bottom of the chamber under 10X 

magnification, and it was then moved to the target cell from above with 40X 

magnification. The pipette offset was compensated. When the pipette was slightly 

pressing the cell, giving a “dimple” on the cell membrane, positive pressure was 

released, and if a high resistance seal (gigaseal) did not start to form, 0.1–0.2 ml 

negative pressure was gently applied. When the seal resistance started to increase, 

holding voltage was set in Clampex (Table 2.4). When the seal resistance was stably at 

≥ 1.1 GΩ, approximately  0.3 ml suction was applied as negative pressure to break the 

cell membrane patch. Whole-cell capacitance, and fast and slow pipette capacitance 

values were displayed in the Multiclamp 700B Commander software panel, and were 

compensated. Typical series resistance was between 5–15 MΩ, and was compensated 

by 40–60 %.  

Membrane currents were acquired and digitised at 50 kHz using a Digidata 

1440A interface (Molecular Devices), low-pass filtered at 10 kHz and analysed using 

pCLAMP 10.4 software (Molecular Devices). Linear components of leak were 

subtracted using a P/6 protocol (Armstrong & Bezanilla, 1977). 

 

2.4.6 Perforated patch clamp recordings 

The perforated patch clamp technique was used to record the large-conductance 

Ca2+-activated K+ (BKCa) current in MDA-MB-231 cells (Akaike & Harata, 1994). A 

gigaseal was achieved as described above. However, instead of achieving whole-cell 

configuration by applying negative pressure, the target cell was continuously held 

between -25 and -60 mV, at whichever the seal was best maintained. In the 

“Membrane Test” window (2.5 mV test pulse sampling at 100 Hz), when the membrane 

capacitance transient current occurred (typically after 15–20 minutes), whole-cell 

capacitance was manually compensated. Typical series resistance ranged between 20   
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Table 2.4. Holding potential applied to cells when forming a gigaseal 

Seal resistance Holding potential 
20–30 MΩ -25 mV 

30–100 MΩ -50 mV 
100–300 MΩ -65 mV 
300–500 MΩ -70 mV 

500 MΩ–1.0 GΩ  -80 mV 



 

 

88 

and 40 MΩ, and was compensated by 50–70 %.  

 

2.4.7 Voltage-clamp protocols 

The following protocols were used in the voltage-clamp experiments in this study. 

A 250 ms pre-pulse at -120 mV was applied to all of the protocols, unless otherwise 

stated: 

(1) Standard INa stimulation protocol: cells were depolarised from -120 mV to -

10 mV for 50 ms, repeated 10 times. The inter-pulse interval was 100 ms. 

(2) Standard INa stimulation protocol with -80 mV pre-pulse: cells were 

depolarised from -80 mV to -10 mV for 50 ms, repeated 10 times. The inter-

pulse interval was 100 ms. 

(3) Standard current-voltage protocol: cells were depolarised to voltages 

ranging from -80 mV to +30 mV for 60 ms in 5 mV increments. The inter-

pulse interval was minimum. 

(4) INa steady-state inactivation protocol: cells were depolarised to -10 mV for 

60 ms following 250 ms conditioning pulses between -120 mV to -10 mV in 

10 mV increments. The inter-pulse interval was 20 ms. 

(5) BKCa current (IBKCa)-voltage protocol in perforated patch configuration: cells 

were depolarised to voltages ranging from -60 mV to +90 mV for 300 ms in 

10 mV increments. The inter-pulse interval was 50 ms. 

 

2.4.8 Vm measurement in I=0 mode 

In the Multiclamp 700B, I=0 is a special mode of current clamp, where all input 

commands are disconnected. This mode reports the resting Vm of the cells1. When the 

recording pipette was in contact with the extracellular PSS, the bridge balance and 

                                                

1 Multiclamp 700B Theory and Operation Rev. D, Axon Instruments, 2005. 
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pipette capacitance neutralisation were firstly adjusted in the current clamp mode. 

Gigaseal and whole-cell configuration were achieved in voltage clamp mode. Within 5 s 

of reaching whole-cell configuration, the steady-state Vm of a cell was recorded in the 

I=0 mode.  

To monitor the continuous Vm change in individual cells in response to 

treatments, cells were held for 60 s in the standard PSS, 150 s in PSS plus treatment 

and a further 150 s for treatment washout. The mean Vm over the last 5, 15, 30 and 60 

s in each of the three stages was used to quantify the data. The flow rate was 

approximately 2 ml/min. The Vm signal was sampled at 200 Hz, and low-pass filtered at 

10 kHz. Liquid junction potentials were calculated using the integrated tool in Clampex 

10.4 software and were compensated while analysing the data offline, using the 

following equation (Barry & Lynch, 1991): 

 

𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑒𝑑	𝑉"	 𝑚𝑉 = 𝑅𝑎𝑤	𝑉" − 	𝐿𝑖𝑞𝑢𝑖𝑑	𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛	𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙	(Equation 2.3) 
 

2.4.9 Slice recording 

Tumours were allowed to grow until diameter ≥ 6 mm before mice were 

euthanised by a Schedule 1 method. The tumour was then quickly dissected from the 

body and stored in ice-cold standard PSS for approximately 10 min. Fur and 

surrounding muscle tissues were removed from the tumour with a razor blade on ice. 

Tissue was kept moist by continually immersing with ice-cold PSS. The tumour tissue 

block was then fixed on the pedestal of vibratome (Campden Instruments) using 

cyanoacrylate glue and was horizontally supported by an ~8 mm × 8 mm 5 % agar 

block. The tissue was then covered with ice-cold PSS before slicing. A homemade 

holding chamber was made by putting 3–5 cell strainers (100 μm mesh, Corning) in a 

10 cm cell culture dish, supplied with 20 ml standard PSS at room temperature. Slices 
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(250 μm) were cut and incubated in the cell strainers inside the holding chamber at 

room temperature for at least 20 minutes before recording. 

A slice was transferred from the holding chamber to the recording chamber by 

using a homemade glass Pasteur pipette, and was held in place with an SHD-26GH/15 

slice anchor (Warner Instruments). Areas without floating cells were firstly determined 

at 10X magnification, followed by targeting a healthy cell at 40X. The following criteria 

were applied when targeting a cell: the cell should be attached to the slice and should 

have a smooth plasma membrane, and for shRNA control cells, they should be eGFP-

positive. The eGFP was excited by using a pE100 CoolLED at 470 nm and the 

fluorophore emission was gathered at 525 ± 50 nm. Once a cell was selected, its 

distance to the edge of the tumour slice was determined by using an eyepiece reticle. 

The slices were divided into three regions according to the distance from the edge: (1) 

periphery, which is ≤ 1 mm from the edge; (2) intermediate region, which is ≥ 1 mm but 

≤ 1.5 mm from the edge; and (3) centre, which is ≥ 1.5 mm from the edge. INa and Vm 

were recorded as described in Section 2.4.5 and Section 2.4.8, respectively. 

 

2.5 In vitro assays 

2.5.1 MTT proliferation assay 

MDA-MB-231 cell proliferation was measured using the thiazolyl blue tetrazolium 

bromide (MTT) assay (Grimes et al., 1995). Stock MTT was dissolved in sterile PBS at 

5 mg/ml. Cells (3 × 105) were plated in each well of a 12-well plate supplemented with 

1 ml culture medium. Three wells were prepared for each condition. After 24 h, the old 

medium was replaced with fresh culture medium containing appropriate treatments 

(Table 2.1). Cells were incubated overnight. The medium was aspirated the next day, 

replaced with MTT diluted at 1:5 in culture medium (final MTT concentration at 1 

mg/ml). Cells were incubated in the dark for 4 h. MTT medium was then replaced with 
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1 ml DMSO to lyse the cells for 10 minutes, before 125 μl autoclaved glycine buffer 

(0.1 M glycine + 0.1 M NaCl, adjusted to pH at 10.5 with NaOH) was added. The 12-

well plate was gently swirled and was incubated in the dark for a further 10 minutes. 

Aliquots (800 μl) were transferred to plastic cuvettes and absorbance at 570 nm was 

determined using a spectrophotometer. DMSO (1 ml) plus glycine buffer (125 μl) was 

used as blank during spectrophotometer calibration. 

To convert the absorbance to cell number, another 12-well plate seeded with 

1,000, 3,000, 1 × 104 and 3 × 104 cells (prepared in triplicate) was prepared along with 

the plate for experimental conditions. These cells were incubated for two hours before 

the medium was replaced with MTT. Cells were then lysed and the absorbance at 570 

nm was taken as described above to generate a standard curve (Figure 4.12). The 

experiment was repeated three times on different days. For each technical repeat, 

three wells were prepared per condition. 

 

2.5.2 Matrigel invasion assay 

The invasion assay was carried out using 24-well BioCoat Matrigel Invasion 

Chambers (Corning). MDA-MB-231 cells (2.5 × 104) were seeded in the upper 

compartment supplemented with 1 % FBS and appropriate treatments according to the 

manufacturer’s instructions. The lower compartment contained 10 % FBS as a 

chemoattractant and appropriate treatments (Table 2.1). Cells were incubated at 37 °C 

for 24 h before the removal of non-invaded cells from the upper surface of chambers 

using cotton buds. Cells that invaded through the Matrigel and polyethylene 

terephthalate membrane were fixed using 4 % (w/v) paraformaldehyde in PBS for 10 

min, and were washed three times with PBS, 5 min/time, before being stained with 

DAPI at 0.5 µg/ml in distilled water. The membrane was then carefully removed using a 

scalpel and mounted on a glass microscope slide in Faramount mounting medium 
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(Dako) and then sealed with 13 mm glass coverslip. DAPI-positive invaded cells on the 

membrane were counted using an epi-fluorescence microscope at 20X (Section 2.9). 

The experiment was repeated at least three times on different days. For each technical 

repeat, two wells were prepared per condition. 

 

2.5.3 Wound healing assay 

Cell migration was determined using wound healing assays (Fraser et al., 2003). 

Ptychography was used to monitor cell movement (Marrison et al., 2013). Cells (2 × 

105) were seeded on a glass bottomed 6-well plate and were allowed to grow for 48 h 

before a confluent cell monolayer was formed. A stainless steel spatula was used to 

make a straight wound through the cell monolayer (Figure 4.13a). Cells were then 

washed once with 37 °C DMEM to remove debris before appropriate treatments were 

applied (Table 2.1). Empirically, the doubling time of MDA-MB-231 cells cultured in our 

lab was 12-18 hours. To reduce the impact of cell proliferation on wound closure, given 

the accessibility of the image acquisition system, cells were allowed to migrate into the 

wound for 16 h. 

Image acquisition by ptychography was done by Dr Richard Kasprowicz and Dr 

Rakesh Suman (PhaseFocus Ltd.). Images of the wounds were acquired using a 

Phasefocus VL-21 microscope over 16 h at 9 min intervals. Image sequences of the 

gap closure were analysed in a semi-automated fashion using TScratch software 

(Geback et al., 2009), which calculated the percentage of cell-free space in each 

image. For each image sequence, the percentage of cell-free space was normalised 

relative to the initial free space measured in the first image. Half time (t1/2) values for 

gap closure were obtained in order to quantify the differences in speed of gap closure 

between treatments. The t1/2 of gap closure was obtained by averaging all time values 

associated with normalised gap closure values in the range of 45–55 %. Cell 
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proliferation during the wound healing assay was analysed by measuring the total cell 

volume of the whole field of view, over time using the Phasefocus Cell Analysis 

Toolbox image analysis package. To calculate proliferation, the cell volume data were 

normalised by expressing the cell volume as a ratio of the cell volume at 1.5 h. The 

experiment was repeated for three times on different days. For each technical repeat, 

two wells were prepared per condition. 

 

2.6 Immunocytochemistry 

MDA-MB-231 cells (1.6 × 105) were cultured on glass coverslips in 4-well plates 

for 48 h in order to form a confluent cell monolayer. A wound was made on the 

monolayer (Section 2.5.3). Cells were then washed once with 37 °C DMEM to remove 

debris. Appropriate treatments was subsequently applied, and cells were to allowed to 

migrate into the wound for 3 h. Cells were fixed in 4 % (w/v) paraformaldehyde in PBS 

for 10 min, followed by three PBS washes (5 min/wash). The fixed cells were then 

treated with blocking buffer (1x PBS, 5 % v/v normal goat serum and 0.3% v/v Triton X-

100) for 1 h. Cells were incubated with mouse anti-active Rac1 primary antibody 

(Neweast Biosciences) diluted to 1:500 in antibody dilution buffer (1% w/v bovine 

serum albumin and 0.3 % v/v Triton X-100 in PBS) at room temperature overnight. The 

solution was removed next day, and cells were washed three times with PBS before 

being incubated with Alexa 488-conjugated goat anti mouse IgG secondary antibody 

(1:500; Life Technologies) for 2 h at room temperature in the dark. Finally, after three 

washes with PBS, cells were then incubated with Alexa 633-conjugated phalloidin 

(1:50; Life Technologies) for 20 min at room temperature in the dark. Coverslips were 

then mounted on glass microscope slides in Prolong Gold with DAPI (Life 

Technologies). The slides were examined using a confocal microscope at 40X 

magnification (Section 2.10).  
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2.7 Ca2+ imaging 

Cells (9 × 104) were cultured on coverslips for 48 h before incubating with 2.5 μM 

Fura-2-AM (PromoKine) plus 0.05 % (v/v) Pluronic F-127 (Invitrogen) in DMEM for 20 

minutes at 37 °C in the dark. Cells were then washed twice in 37 °C DMEM with 5 % 

FBS, and were settled in dark at 37 °C for 20 min, and then at room temperature for a 

further 15 min before transferring onto a RC-20H closed bath imaging chamber 

(Warner Instruments) according to the manufacturer’s instructions. Cells were perfused 

with appropriate solutions at room temperature. The imaging chamber with P-2H stage 

adapter was mounted on an epi-fluorescence microscope and observed at 20X. 

Extracellular solutions were applied using a two-channel gravity perfusion system with 

a peristaltic pump. The flow rate was approximately 500 μl/min. Cells were treated with 

a second solution for 6–12 min, 2 min after the experiment began, and were 

subsequently washed with standard PSS for 6 min, if applicable. At the end of the 

experiment, ionomycin (10 μM, Table 2.1) was added to the standard PSS as a 

positive control (Liu & Hermann, 1978). 

 

2.8 Na+ imaging 

Cells (6 × 104) were grown on glass coverslip for 24 h and were then labelled with 

5 μM SBFI-AM (Sigma) and 0.1 % (v/v) Pluronic F-127 (Life Technologies) in DMEM 

with 0 % FBS at 37 °C in the dark for 1 h. Excess SBFI-AM was washed once with 37 

°C DMEM supplemented with 5 % FBS. The coverslip was placed in a RC-20H closed 

bath imaging chamber (Warner Instruments) and was perfused with standard PSS with 

appropriate treatments at room temperature (Table 2.1). The chamber was mounted on 

an epi-fluorescece microscope with a P-2H stage adapter, and cells were observed at 

40X. Extracellular solutions were applied using a two-channel gravity perfusion system 
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with a peristaltic pump. The flow rate was approximately 500 μl/min. Cells were treated 

with test solution for 12 min, 2 min after the experiment began. Cells were then treated 

with extracellular solution containing 10 mM Na+ (Table 2.2). To calibrate the 

intracellular Na+ concentration ([Na+]i), cells were subsequently perfused with 

extracellular solution with 10 and 20 mM Na+ (Table 2.2) plus Na+ ionophore gramicidin 

(20 μM, Table 2.1) at the end of experiment, 12 min each (Figure 5.1a). The 

experiment was repeated three or six times.  

 

2.9 Epi-fluorescence microscopy 

A Nikon Eclipse TE200 epi-fluorescence microscope was used for all epi-

fluorescent imaging. SimplePCI 6.0 software was used to control the imaging system. 

Images were captured using a RoleraXR Fast1394 charge-coupled device (CCD) 

camera (QImaging). For mycoplasma test (Section 2.1.5) and Matrigel invasion assay 

(Section 2.5.2), DAPI was excited at 340 nm and the fluorescence signal was gathered 

at 512 nm. SBFI and Fura-2 were excited alternately at 340 and 380 nm, and 

fluorescence signal was collected at 512 nm. For Ca2+ imaging, images were captured 

at 0.2 frames/s. The image plane was auto-focused every 40 frames. For Na+ imaging, 

the image acquisition rate was 0.1 frames/s. 

 

2.10 Confocal microscopy 

Immunocytochemistry slides were examined using a Zeiss LSM 880 laser 

scanning confocal microscope with a 40X oil objective lens. ZEN 2012 software was 

used to control the microscope. The size of acquired images was 212.3 μm × 212.3 μm 

(1024 × 1024 pixels). The pinhole size was 1–1.05 airy unit. DAPI was excited at 405 

nm, and the emission was collected at 410–500 nm. Alexa Fluor 488 was excited at 

488 nm, and the emission at 500–580 nm was collected. Finally, Alexa Fluor 633 was 
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excited at 633 nm, and the fluorescence signal was collected at 638–747 nm. In each 

technical repeat, three or four images were taken on each coverslip, and two coverslips 

were examined in each experimental condition. Three technical repeats were 

performed. 

 

2.11 Image analyses 

Three analyses were performed to analyse different parameters in the 

immunocytochemistry study. Only cells at the edges of the wound were selected, and 

the image analyses were performed in a blinded fashion. Three technical repeats were 

performed. 

Firstly, cell circularity was calculated using a free-hand tool in ImageJ software 

using the following equation (Brisson et al., 2013): 

 

𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 = 4𝜋	×	 sML1
+LMt"LHLMu

	  (Equation 2.4) 

 

For each technical repeat, 20–25 cells per condition were analysed blinded to 

treatment. 

Secondly, cells were categorised into two groups: with and without obvious 

lamellipodia. For each technical repeat, 40–50 cells per condition were analysed 

blinded to treatment.  

Thirdly, the signal intensity of F-actin and active Rac1 at lamellipodia was 

analysed as described in (Dang et al., 2013), with the following modifications: ImageJ 

with the Radial Profile Extended plugin (Philippe Carl, CNRS, France) was used in the 

analysis. In the plugin, the starting radius was set to 0.28 μm, radius increment = 0.28 

μm, ending radius = 5.6 μm and total integrated angle = 90 °, resulting 20 arcs in total 

(Figure 4.17b). Both F-actin and active Rac-1 signal density on each of the arcs were 
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obtained and were normalised relative to those at the innermost arc. For each technical 

repeat, 20–30 cells were analysed blinded to treatment in each condition.  

For Ca2+ and Na+ imaging, image files (in stacked TIFF format) generated from 

the time-lapse experiments were opened in ImageJ software. 20–70 (in Ca2+ imaging) 

or 7–20 (Na+ imaging) randomly selected adhesive single cells in the field of view were 

selected as regions of interest (ROI). The images were split according to the excitation 

wavelength. The fluorescence intensities of all the cell of interest over time at the two 

wavelengths were gathered by using the stack measurement function of the ROI 

manager plugin in the ImageJ software. The ratio of fluorescence intensity at 340 and 

380 nm (340/380 ratio) was calculated for each cell in Microsoft Excel.  

In Na+ imaging, the [Na+]i equalled to the extracellular Na+ concentration ([Na+]o) 

after gramicidin treatment (Roger et al., 2007). A linear relationship between [Na+]i and 

fluorescence intensity was obtained for a given individual cell by correlating its mean 

340/380 ratio over the last 1 min of 10 and 20 mM Na+ treatment with [Na+]i = 10 and 20 

mM, respectively (Figure 5.1c). Using the linear relationship, the 340/380 ratio of the 

same cell in other experimental conditions was therefore converted to [Na+]i. Unless 

otherwise stated, [Na+]i of 7–20 cells in each technical repeat was calculated 

individually and then averaged. 

 

2.12 Curve fitting 

All curve fitting analyses were done using the Graphpad Prism 6.0 software. The 

conductance-voltage relationships were calculated using the following equation (Ding & 

Djamgoz, 2004): 

 

𝐺 = 	 w
xyxz{|

    (Equation 2.5) 
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where G is the conductance, I the current amplitude, V the command voltage, and Vrev 

the reversal potential calculated using the Nernst equation: 

 

𝑉ML} = 	
%&
~'
	ln :1HtGI	OGIOLIHM1HtGI	GJHPtQL	H�L	OL;;

:1HtGI	OGIOLIHM1HtGI	tIPtQL	H�L	OL;;
  (Equation 2.6) 

 

where R is the universal gas constant, T the absolute temperature, z valence of ion, F 

the Faraday constant. In the present study, the Vrev for Na+ was +86.3 mV when using 

the standard PSS and the standard intracellular solution. 

The steady-state inactivation (availability) and conductance-voltage relationship 

were fitted by the Boltzmann equation: 

 

𝑋 = 	 �

�4L
(��
u
9�)/�   (Equation 2.7) 

 

where X is the fitted parameter (availability or conductance), V1/2 the voltage at which 

half-maximal conductance or availability occurs, k the slope factor and V the command 

voltage.  

The current-voltage relationship of IBKCa was fitted to a single exponential 

equation (Sanguinetti & Jurkiewicz, 1990): 

 

𝑌 = 	𝑌�	×	𝑒��    (Equation 2.8) 

 

where Y0 is the Y value when x is at 0, and k the rate constant. 

Finally, the drug dose-response curve was fitted to a sigmoidal logistic equation 

(Roger et al., 2003): 
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𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒	𝑜𝑓	𝑏𝑙𝑜𝑐𝑘 = ���

�4( �7��
�z��	�3��{��z-�<3�)

�	
	  (Equation 2.9) 

 

where IC50 is the concentration of drug at which half of its maximal effect occurs; and n 

the slope giving the Hill coefficient.  

 

2.13 Statistics 

Data are presented as mean ± SEM. Graphpad Prism 6.0 software was used to 

perform all statistical analyses. Paired or unpaired Student’s two-tailed t-test was used 

to compare two samples. Multiple comparisons were made using ANOVA followed by 

Tukey post-hoc tests. Fisher’s exact test was used to examine the distribution of 

samples within a population. To analyse tables with more than two rows or columns, 

Bonferroni correction was applied for multiple comparisons (MacDonald & Gardner, 

2000). Results were considered significant at P < 0.05. 
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3 Chapter 3: Na+- and VGSC-dependent Vm regulation in MDA-MB-

231 cells 

3.1 Introduction 

VGSCs are protein complexes that comprise one pore-forming α subunit and one 

or more auxiliary β subunits (Catterall, 2012). In excitable cells, such as neurones, 

cardiomyocytes and skeletal muscle cells, VGSCs depolarise the Vm to initiate action 

potential firing (Hille, 2001). Functional α subunits have been identified in an increasing 

number of cancer cells and patient tissue samples from various tissue origins, including 

breast, prostate, colon, cervix, lungs and brain. VGSCs potentiate metastatic cell 

behaviours such as invasion and migration in vitro (Brackenbury, 2012; Roger et al., 

2015), and their activity/expression increases tumour growth (Nelson et al., 2015a) and 

metastasis (Yildirim et al., 2012; Driffort et al., 2014; Nelson et al., 2015a; Nelson et al., 

2015b) in rodent models. In BCa patient tissue samples, the mRNA level of Nav1.5 

correlates with lymph node metastasis (Fraser et al., 2005) and poor prognosis (Yang 

et al., 2012), suggesting that targeting VGSCs may have therapeutic value in cancer 

treatment.  

β subunits are also present in cancer cells originating from breast, prostate, 

cervix and lung (Roger et al., 2007; Diss et al., 2008; Chioni et al., 2009; Hernandez-

Plata et al., 2012; Jansson et al., 2012). β subunits regulate metastasis-related cell 

activity in vitro. For example, β1 overexpression increases invasion and process 

outgrowth in MDA-MB-231 cells (Nelson et al., 2014) and reduces migration in wound 

healing asays (Chioni et al., 2009). MDA-MB-231 cells overexpressing β1 show 

increased primary tumour growth, vascularisation and metastasis to lungs and liver in 

mice (Nelson et al., 2014).  
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Several models have been proposed to explain the mechanisms underlying 

VGSC α subunit-dependent cancer cell invasion and migration. Firstly, in MDA-MB-231 

cells, Na+ influx carried by Nav1.5 allosterically regulates NHE1, which increases the 

efflux of H+ through plasma membrane and causes an acidic extracellular environment 

that favours the proteolytic activity of cysteine cathepsin B and S (Gillet et al., 2009; 

Brisson et al., 2011), and ultimately enhances cell invasion. Nav1.5 activity also 

increases src kinase activity and phosphorylation of the actin-nucleation-promoting 

factor cortactin, which can lead to invadopodia formation (Brisson et al., 2013). 

Additionally, reduced Nav1.5 expression decreases the protein level of the metastasis-

promoting molecule CD44 (Nelson et al., 2015b). Moreover, in SW620 colon cancer 

cells, increased Na+ influx carried by Nav1.5 causes sustained activation of MAPK and 

increases the expression of invasion-related genes including CD44, CLIC, WNT9A, 

ITGB, SEMA6A and VEGFC (House et al., 2015). In H460 NSCLC cells, Nav1.7-

dependent cell invasion is mediated via the ERK pathway (Campbell et al., 2013).  

Activity of ion channels can regulate the Vm of cells. Cancer cells usually possess 

a more depolarised Vm than their normal counterparts (Binggeli & Weinstein, 1986; 

Yang & Brackenbury, 2013). In PCa cells, the Vm of strongly metastatic PC-3 cells is ~5 

mV more depolarised than the weakly metastatic LNCaP cells (Laniado et al., 1997), 

and in BCa cells, depolarised Vm associates with increased cancer cell metastatic 

potential: compared to non-metastatic, VGSC-negative MCF-7 cells (~-40 mV), strongly 

metastatic VGSC-expressing MDA-MB-231 cells have a more depolarised Vm (~-20 

mV) (Fraser et al., 2005). However, whether the depolarised Vm is caused by Na+ influx 

via VGSCs is not known. 

Importantly, Vm is now regarded more than an epi-phenomenon in non-excitable 

cells: a large amount of data has shown that Vm regulates cell cycle progression in 

normal (Blackiston et al., 2009) and cancer cells (Yang & Brackenbury, 2013). A 

depolarised Vm can cause reorganisation of actin filament network in bovine eye 
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endothelial and epithelial cells (Chifflet et al., 2003; Chifflet et al., 2004; Chifflet et al., 

2005). In kidney epithelial cells, Vm depolarisation induces phosphorylation of MLC by 

activating the ROCK pathway (Szaszi et al., 2005). Furthermore, in vivo evidence 

shows that depolarised Vm leads to tumourigenesis in Xenopus laevis (Blackiston et al., 

2011; Lobikin et al., 2012; Lobikin et al., 2015). Taken together, Vm has been 

suggested as an instructive signal in cancer progression, but whether or not VGSCs 

increase cancer cells metastatic behaviours by depolarising the Vm is not known. 

The relationship between tumour ER status and prognosis in BCa patients has 

been long established. In general, compared to ER+ tumours, BCa patients bearing 

ER— tumours have higher risk of mortality (Parl et al., 1984; Aaltomaa et al., 1991b, a; 

Crowe et al., 1991; Dunnwald et al., 2007). ER status associates with distinct gene 

expression pattern in BCa patients (Perou et al., 2000; Gruvberger et al., 2001; Sorlie 

et al., 2001; van 't Veer et al., 2002), and is known as the most important discriminator 

of gene expression profiles (Sotiriou et al., 2003). Compared to ER— MDA-MB-231 

cells, ER+ MCF-7 cells show weaker metastatic potential (Thompson et al., 1992; 

Roger et al., 2003; Fraser et al., 2005). Indeed, C4 and C4-12, two MCF-7 cell sublines 

where ER expression is lost, show abolished oestrogen-mediated, insulin-like growth 

factor-I receptor-dependent cell growth (Oesterreich et al., 2001). Despite all the 

evidence showing the high malignancy of ER— cells and the roles of VGSCs in 

promoting cell metastatic behaviours, it was not until 2010 that researchers 

investigated the interplay between oestrogen signalling and VGSCs in cancer: GPR30 

(a G-protein-coupled oestrogen receptor) is identified in MDA-MB-231 cells, and 

external application of β-oestradiol (E2) or G-1, a GPR30 agonist, increases INa in a 

PKA-dependent manner (Fraser et al., 2010). Additionally, acute application of E2 

increased MDA-MB-231 cell adhesion, which is abrogated by co-application with TTX, 

suggesting the importance of VGSCs in mediating oestrogen signalling (Fraser et al., 
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2010). However, whether ERα regulates functional VGSC expression has not been 

studied.  

 

3.1.1 Hypotheses and aims 

The main hypothesis underlying this Chapter was that VGSCs depolarise the 

resting Vm of MDA-MB-231 cells. A second hypothesis was that ER knockdown in 

MCF-7 cells may lead to functional VGSC expression.  

 The specific aims were: 

(1) To investigate whether or not extracellular Na+ regulates the Vm in MDA-

MB-231 cells. 

(2) To study the involvement of VGSCs in regulating the Vm in MDA-MB-231 

cells. 

(3) To record membrane current in MCF-7 and pII (a derivative MCF-7 cell line 

where ERα expression was stably down-regulated) cells. 

 

3.2 Results 

3.2.1 Na+ conductance depolarises the Vm of MDA-MB-231 cells 

The effect of extracellular Na+ on the Vm of MDA-MB-231 cells was investigated 

using whole-cell patch clamp recording in I=0 mode (Section 2.4.8). Standard 

intracellular solution was used in all experiments recording the cell Vm (Table 2.3).  

Firstly, whether or not Na+ conductance through plasma membrane regulates the 

Vm was studied. In these experiments, NaCl in the standard extracellular PSS was 

replaced with equimolar ChoCl or NMDG (Table 2.2). The Vm of MDA-MB-231 cells 

was continuously measured over a 6 min experiment that comprised three steps: (1) 

cells were initially perfused with the standard PSS for 60 s, followed by (2) Na+-free 
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PSS treatment for 150 s, and (3) a final washout with the standard PSS for a further 

150 s (Figure 3.1a).  

Replacement of extracellular NaCl with ChoCl reversibly hyperpolarised the Vm of 

MDA-MB-231 cells (Figure 3.1a). In order to quantify the data, the mean Vm over the 

ast 5 s, 15 s, 30 s and 60 s of each of the three experimental steps was analysed, with 

the liquid junction potentials compensated (3 mV in standard PSS and 5.3 mV in 

ChoCl, Section 2.4.8) (Figure 3.1b, Table 3.1). Comparisons of the mean Vm over the 

last 5 s of the three steps showed that the Vm of MDA-MB-231 cells significantly 

hyperpolarised from -10.4 ± 1.0 mV to -20.4 ± 2.0 mV after ChoCl treatment (P < 0.001; 

ANOVA with Tukey post-hoc test; n = 10). By washing out ChoCl with standard PSS, 

the Vm recovered to -12.9 ± 2.3 mV (P < 0.001 compared with ChoCl; P = 0.22 

compared with standard PSS; ANOVA with Tukey post-hoc test; n = 10). Statistical 

analyses comparing the Vm across other measurement intervals (15 s, 30 s and 60 s) 

are in Figure 3.1b and Table 3.1. 

Next, NMDG was used as an alternative extracellular NaCl substitute to confirm 

the results. Similar to ChoCl, NMDG reversibly hyperpolarised the Vm of MDA-MB-231 

cells (Figure 3.2a). Taking the mean Vm over the last 5 s of the three experimental 

steps as an example, with the liquid junction potentials compensated (3 mV in standard 

PSS and 7.7 mV in NMDG), NMDG significantly hyperpolarised the Vm from -10.3 ± 2.0 

mV to -24.8 ± 2.4 mV (P < 0.001; ANOVA with Tukey post-hoc test; n = 7), and the Vm 

subsequently recovered to -13.2 ± 2.7 mV after NMDG washout (P < 0.001 compared 

with NMDG; P = 0.15 compared with standard PSS; ANOVA with Tukey post-hoc test; 

n = 7). Statistical analyses of the Vm using other measurement intervals are shown in 

Figure 3.2b and Table 3.2. In summary, these two experiments demonstrated that 

extracellular Na+ depolarises the Vm of MDA-MB-231 cells by 10–15 mV, suggesting 

the dependence of Vm on inward Na+ conductance. 
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Figure 3.1. Replacement of extracellular NaCl with choline chloride (ChoCl) 

hyperpolarises the membrane potential (Vm) of MDA-MB-231 cells.  

(a) MDA-MB-231 cells were perfused with standard physiological saline solution (PSS) 
for 60 s followed by Na+-free ChoCl solution for 150 s, which was subsequently washed 
out using standard PSS for a further 150 s. Black and grey traces show mean ± SEM 
(n = 10). Dotted vertical lines take the ChoCl treatment period as an example to 
indicate various measurement intervals (last 5 s, 15 s, 30 s and 60 s) in each of the 
three steps. Liquid junction potentials (3 mV in standard PSS and 5.3 mV in ChoCl) are 
not compensated. (b) The mean Vm was compared over the indicated measurement 
intervals. Liquid junction potentials (3 mV in standard PSS and 5.3 mV in ChoCl) are 
compensated. (***) P < 0.001 compared with standard PSS; (##) P < 0.01 compared 
with ChoCl solution; ANOVA with Tukey post-hoc test (n = 10). Data are mean ± SEM. 
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Table 3.1. Mean membrane potential (Vm) of MDA-MB-231 cells after choline chloride 

(ChoCl) treatment and washout. 

Measurement interval Vm in standard PSS 
(mV) 

Vm in ChoCl 
(mV) 

Vm in washout 
(mV) 

Last 5 s -10.4 ± 1.0 -20.4 ± 2.0 *** -12.9 ± 2.3 ## 

Last 15 s -10.4 ± 1.0 -19.9 ± 2.0 *** -13.0 ± 2.3 ## 

Last 30 s -10.3 ± 1.0 -19.6 ± 1.9 *** -13.0 ± 2.2 ## 

Last 60 s -10.3 ± 1.0 -18.5 ± 1.9 *** -13.0 ± 2.2 ## 

Liquid junction potentials (3 mV in standard PSS and 5.3 mV in ChoCl) were 
compensated offline. PSS: physiological saline solution. (***) P < 0.001 compared with 
Vm in standard PSS; (##) P < 0.01 compared with Vm in ChoCl; ANOVA with Tukey 
post-hoc test (n = 10). Data are mean ± SEM. 
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Figure 3.2. Replacement of extracellular NaCl with N-methyl-D-glucamine (NMDG) 

hyperpolarises the membrane potential (Vm) of MDA-MB-231 cells.  

(a) MDA-MB-231 cells were perfused with standard physiological saline solution (PSS) 
for 60 s followed by Na+-free NMDG solution for 150 s, which was subsequently 
washed out using standard PSS for a further 150 s. Black and grey traces show mean 
± SEM (n = 7). Dotted vertical lines take the NMDG treatment period as an example to 
indicate various measurement intervals (last 5 s, 15 s, 30 s and 60 s) in each of the 
three steps. Liquid junction potentials (3 mV in standard PSS and 7.7 mV in NMDG) 
are not compensated. (b) The mean Vm was compared over the indicated 
measurement intervals. Liquid junction potentials (3 mV in standard PSS and 7.7 mV in 
NMDG) are compensated. (***) P < 0.001 compared with standard PSS; (##) P < 0.01 
compared with NMDG solution; ANOVA with Tukey post-hoc test (n = 7). Data are 
mean ± SEM. 
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Table 3.2. Mean membrane potential (Vm) of MDA-MB-231 cells after N-methyl-D-

glucamine (NMDG) treatment and washout. 

Measurement interval Vm in standard PSS 
(mV) Vm in NMDG (mV) Vm in washout (mV) 

Last 5 s -10.3 ± 2.0 -24.8 ± 2.4 *** -13.2 ± 2.7 ### 

Last 15 s -10.3 ± 2.0 -24.1 ± 2.5 *** -13.4 ± 2.5 ## 

Last 30 s -10.5 ± 2.0 -24.1 ± 2.5 *** -13.7 ± 2.6 ## 

Last 60 s -10.8 ± 1.8 -23.3 ± 2.4 *** -13.7 ± 2.5 ## 

Liquid junction potentials (3 mV in standard PSS and 7.7 mV in NMDG) were 
compensated offline. PSS: physiological saline solution. (***) P < 0.001 compared with 
Vm in standard PSS; (##) P < 0.01 compared with Vm in NMDG; ANOVA with Tukey 
post-hoc test (n = 7). Data are mean ± SEM. 
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3.2.2 VGSC window current in MDA-MB-231 cells 

In neurones, in spite of its small amplitude compared to the transient INa, 

persistent INa has an important role in shaping the action potential firing pattern, 

especially in the subthreshold voltage range (Stafstrom, 2011). Therefore, this study 

hypothesised that VGSCs may carry persistent INa, which would depolarise the steady-

state Vm in MDA-MB-231 cells. Indeed, eliciting INa in MDA-MB-231 cells using the 

standard INa stimulation protocol (Section 2.4.7) showed both transient and persistent 

INa (measured as mean current between 45 ms and 50 ms following depolarisation) 

(Figure 3.3a and b). Voltage-dependent activation (Figure 3.3c) and the steady-state 

inactivation (Figure 3.3d) of VGSCs were investigated. Normalised conductance 

(G/GMax) was calculated from the current data and plotted as a function of voltage 

(Section 2.12) (Figure 3.3e; n = 14). Normalised current (I/IMax) was plotted as a 

function of the pre-pulse voltage (Figure 3.3e; n = 9). Both G/GMax and I/IMax curves 

were fitted with Boltzmann functions (Section 2.12). Overlapping the G/GMax and I/IMax 

curves revealed a window INa between -50 mV and -10 mV (Figure 3.3e, dotted box; 

Figure 3.3f, shadowed area). At the typical resting Vm of ~-10 mV (Table 3.1 and Table 

3.2), 1.0 ± 0.4 % of the VGSCs in MDA-MB-231 cells are available to carry persistent 

INa and thus may regulate the Vm (Figure 3.3f). 
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Figure 3.3. The window Na+ current (INa) in MDA-MB-231 cells. 

(a) Typical whole-cell recording of INa in MDA-MB-231 cell. Dotted box shows the 
persistent INa. (b) The persistent INa in (a). Cells were depolarised to -10 mV for 50 ms 
following a 250 ms pre-pulse at -120 mV. Persistent INa was measured as mean current 
between 45 ms and 50 ms following depolarisation. (c) Typical whole-cell recording 
from MDA-MB-231 cell by depolarising the cells to voltages in the range -80 to +30 mV 
(60 ms) in 5 mV increments following a 250 ms pre-pulse at -120 mV. Every other INa 
trace is shown for clarity. (d) Steady-state inactivation of whole-cell INa. INa was elicited 
by -10 mV pulse (60 ms) following 250 ms conditioning voltage pre-pulses between -
120 mV and -10 mV in 10 mV increments. (e and f) Activation and steady-state 
inactivation of INa recorded from MDA-MB-231 cells. Normalised conductance (G/GMax) 
was calculated from the current data and plotted as a function of voltage (n = 14). 
Normalised current (I/IMax) was plotted as a function of the pre-pulse voltage (n = 9). 
Data are fitted with Boltzmann functions. The area inside the dotted box of (e) is 
presented in (f). Shadowed area in (f) indicates the window INa. Data are mean ± SEM.  
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3.2.3 TTX reduces INa and hyperpolarises the Vm of MDA-MB-231 cells 

The predominant VGSC isoform expressed in MDA-MB-231 cells is Nav1.5 

(Fraser et al., 2005), which is a TTX-resistant VGSC subtype that can only be blocked 

by TTX in the micromolar range (Goldin, 2001). To confirm the channel blocking effect 

of TTX, INa was firstly recorded in the standard PSS using the Cs+-containing 

intracellular solution. Perfusion with 30 μM TTX for 2 min significantly reduced transient 

(Figure 3.4a) as well as persistent INa (Figure 3.4b). Transient INa was reduced to 12.2 ± 

0.8 % after TTX treatment (Figure 3.4c; P < 0.001; ANOVA with Tukey post-hoc test; n 

= 7), and when TTX was subsequently washed out using standard PSS for 2 min, 

transient INa recovered to 106.4 ± 6.7 % (Figure 3.4c; P < 0.001 compared with TTX; P 

= 0.49 compared with standard PSS; ANOVA with Tukey post-hoc test; n = 7). As for 

persistent INa, TTX reduced the current to 26.7 ± 5.9 % of control (Figure 3.4d; P < 

0.05; ANOVA with Tukey post hoc test; n = 4), and following washout persistent INa 

recovered to 103.5 ± 31.2 % (Figure 3.4d; P < 0.05 compared with TTX; P = 0.99 

compared with control; ANOVA with Tukey post hoc test; n = 4). The data suggest that 

TTX at 30 μM potently blocks transient and persistent INa in MDA-MB-231 cells.  

Next, the study examined whether VGSCs regulate the Vm of MDA-MB-231 cells 

using TTX. Since TTX inhibited Na+ influx through VGSCs, the reduction in [Na+]i should 

cause a hyperpolarised Vm. To test this, cells were consecutively perfused with 

standard PSS for 60 s, followed by 30 μM TTX for 150 s, and finally washout with 

standard PSS for a further 150 s). TTX, but not the vehicle (148 μM citrate at pH = 4.8), 

significantly hyperpolarised the Vm of MDA-MB-231 cells (Figure 3.5a and b). The 

mean Vm over the last 5 s, 15 s, 30 s and 60 s of each of the three experimental steps 

after TTX and vehicle treatment was analysed with the liquid junction potentials (3 mV) 

compensated (Figure 3.5c and d; Table 3.3 and Table 3.4).  
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Figure 3.4. Tetrodotoxin (TTX) reduces transient and persistent Na+ current (INa) in 

MDA-MB-231 cells. 

(a) Representative INa recorded from MDA-MB-231 cells in standard physiological 
saline solution (PSS) (blue), 30 μM TTX (red) and after washout (green). Transient INa 
is labelled, and the dotted box shows the persistent INa. (b) Enlargement of the dotted 
box in (a), showing the persistent INa. INa was elicited by depolarising the cell to -10 mV 
following a 250 ms pre-pulse at -120 mV. Persistent INa between 45–50 ms after 
depolarisation was adopted in data analyses. (c) Normalised transient INa after 30 μM 
TTX treatment and subsequent washout. (***) P < 0.001; ANOVA with Tukey post-hoc 
test (n = 7). (d) Normalised persistent INa after 30 μM TTX treatment and the 
subsequent washout (*) P < 0.05; ANOVA with Tukey post-hoc test (n = 4). Data are 
mean ± SEM. 
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Figure 3.5. Tetrodotoxin (TTX) hyperpolarises the membrane potential (Vm) of MDA-

MB-231 cells. 

MDA-MB-231 cells were treated with standard physiological saline solution (PSS) for 
60 s before being perfused with (a) 30 μM TTX or (b) vehicle, 148 μM citrate at pH = 
4.8, for 150 s. TTX and citrate buffer were subsequently washed out with standard PSS 
for a further 150 s. Black trace shows the mean Vm of n = 17 (a) or n = 13 (b), and the 
grey traces show the SEM. Dotted vertical lines indicate the various measurement 
intervals (last 5 s, 15 s, 30 s and 60 s). Liquid junction potentials (3 mV) are not 
compensated. The mean Vm over indicated measurement intervals after (c) TTX or (d) 
citrate buffer treatment. Liquid junction potentials (3 mV) are compensated. (**) P < 
0.01 and (***) P < 0.001 compared to PSS; ANOVA with Tukey post-hoc test [n = 17 in 
(c) and n = 13 in (d)]. Data are mean ± SEM.  
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Table 3.3. Mean membrane potential (Vm) of MDA-MB-231 cells after tetrodotoxin 

(TTX, 30 μM) treatment and washout. 

Measurement interval Vm in standard PSS 
(mV) 

Vm in 30 μM TTX 
(mV) 

Vm in washout 
(mV) 

Last 5 s -13.2 ± 1.3 -17.5 ± 1.6 *** -14.8 ± 1.4 

Last 15 s -12.9 ± 1.2 -17.5 ± 1.6 *** -14.9 ± 1.5 

Last 30 s -12.5 ± 1.2 -17.6 ± 1.7 *** -15.2 ± 1.6 

Last 60 s -12.2 ± 1.2 -16.8 ± 1.5 ** -15.3 ± 1.6 

Liquid junction potentials (3 mV) were compensated offline. PSS: physiological saline 
solution. (**) P < 0.01; (***) P < 0.001 compared with Vm in standard PSS; ANOVA with 
Tukey post-hoc test (n = 17). Data are mean ± SEM. 
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Table 3.4. Mean membrane potential (Vm) of MDA-MB-231 cells after citrate (148 μM; 

pH = 4.8) treatment and washout. 

Measurement interval Vm in standard PSS 
(mV) 

Vm in 148 μM citrate 
(mV) 

Vm in washout 
(mV) 

Last 5 s -12.0 ± 1.5 -11.2 ±1.7 (n.s.) -11.0 ± 1.0 

Last 15 s -12.0 ± 1.5 -11.5 ± 1.6 (n.s.) -10.9 ± 1.0 

Last 30 s -12.3 ± 1.4 -11.6 ± 1.5 (n.s.) -10.8 ± 1.0 

Last 60 s -12.7 ± 1.3 -11.6 ± 1.4 (n.s.) -10.7 ± 1.0 

Liquid junction potentials (3 mV) were compensated offline. PSS: physiological saline 
solution. n.s. not significant compared with Vm in standard PSS; ANOVA with Tukey 
post-hoc test (n = 13). Data are mean ± SEM. 
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At the last 5 s of each of the three steps, 30 μM TTX significantly hyperpolarised 

the Vm of MDA-MB-231 cells from -13.2 ± 1.3 mV to -17.5 ± 1.6 mV (P < 0.001; ANOVA 

with Tukey post-hoc test; n = 17). The Vm partially recovered to -14.8 ± 1.4 mV after 

drug washout, such that it was not significantly different compared to the Vm recorded in 

standard PSS (P = 0.37; ANOVA with Tukey post-hoc test; n = 17) or in TTX (P = 0.07; 

ANOVA with Tukey post-hoc test; n = 17). Statistical analyses of the Vm using other 

measurement intervals are in Figure 3.5c and Table 3.3.  

Importantly, applying the same experimental procedure, citrate (148 μM, pH = 

4.8), vehicle for 30 μM TTX, did not change the Vm significantly (Figure 3.5d; Table 

3.4). Taking the last 5 s of each of the three experimental steps as example, the mean 

Vm in standard PSS and citrate was -12.0 ± 1.5 mV and -11.2 ± 1.7 mV, respectively (P 

= 0.93; ANOVA with Tukey post hoc test; n = 13). After washout, the Vm was -11.0 ± 

1.0 mV (P = 0.99; ANOVA with Tukey post hoc test; n = 13). Statistical analyses of the 

Vm using other measurement intervals are in Figure 3.5d and Table 3.4, showing that 

citrate did not alter the Vm. In summary, the data showed that blocking VGSCs using 

TTX hyperpolarised the Vm by approximately 4.3 mV. 

 

3.2.4 Phenytoin reduces INa and hyperpolarises the Vm of MDA-MB-231 

cells 

Phenytoin is a class 1b VGSC-blocking antiarrhythmic agent. During action 

potential firing, phenytoin decreases the phase 0 (depolarisation) slope, reduces the 

action potential duration, and increases effective refractory period (Vaughan Williams, 

1975). Phenytoin causes tonic and use-dependent inhibition on INa in MDA-MB-231 

cells (Yang et al., 2012). The tonic block is more potent at more depolarised holding 

voltages (Ragsdale et al., 1991). Previously, phenytoin at 50 μM was shown to inhibit 

transient INa by 43 % and persistent INa by 42 % when MDA-MB-231 cells were 
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depolarised to -10 mV from -120 mV. The tonic block following depolarisation to -10 

mV from -80 mV was stronger, as the transient and persistent INa was inhibited by 80 % 

and 49 % (Yang et al., 2012). In the present study, 100 μM phenytoin was used in 

order to obtain greater inhibition of transient and persistent INa. The INa was recorded in 

standard PSS using Cs+-containing intracellular solution. When the holding potential 

was -120 mV, perfusion with phenytoin (100 μM) for 2 min inhibited both transient INa 

(Figure 3.6a) and persistent INa (Figure 3.6b): after incubation with phenytoin for 2 min, 

transient INa was reduced to 51.9 ± 3.2 %, compared to standard PSS (Figure 3.6c; P < 

0.001; ANOVA with Tukey post hoc test; n = 9). Washout (2 min) partially recovered 

the transient INa to 72.6 ± 4.0 % of control (Figure 3.6a and c; P < 0.001; ANOVA with 

Tukey post hoc test; n = 9). Similarly, phenytoin (100 μM) significantly reduced the 

persistent INa to 63.2 ± 10.8 %, compared to standard PSS (Figure 3.6b and d; P < 

0.01; ANOVA with Tukey post hoc test; n = 4). Washout recovered the persistent INa to 

102.6 ± 1.3 % compared to standard PSS (Figure 3.6b and d; P < 0.01 compared with 

phenytoin; P = 0.96 compared with standard PSS; ANOVA with Tukey post hoc test; n 

= 9). 

Phenytoin showed stronger inhibition when the holding potential was at -80 mV 

(Figure 3.7a and b). The transient INa was reduced to 11.9 ± 3.8 % of standard PSS 

(Figure 3.7c; P < 0.001; ANOVA with Tukey post hoc test; n = 4). The transient INa was 

partially recovered to 54.8 ± 7.5 % (Figure 3.7c; P < 0.001 compared with standard 

PSS and phenytoin; ANOVA with Tukey post hoc test; n = 4). Similarly, phenytoin 

reduced the persistent INa to 5.3 ± 8.2 %, compared to standard PSS (Figure 3.7d; P < 

0.001; ANOVA with Tukey post hoc test; n = 3), and the persistent INa only recovered to 

54.0 ± 12.2 % (Figure 3.7d; P < 0.05 compared with standard PSS and phenytoin; 

ANOVA with Tukey post hoc test; n = 3). In summary, phenytoin at 100 μM showed 

stronger tonic block of both transient and persistent INa at a more depolarised holding 

potential.  
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Figure 3.6. Phenytoin inhibits Na+ current (INa) in MDA-MB-231 cells at holding potential 

= -120 mV. 

(a) Representative INa recorded from MDA-MB-231 cells in standard physiological 
saline solution (PSS) (blue), 100 μM phenytoin (red) and after washout (green). 
Transient INa is labelled, and the dotted box shows the persistent INa. (b) Enlargement 
of the dotted box in (a), showing the persistent INa. INa was elicited by depolarising the 
cell to -10 mV following a 250 ms pre-pulse at -120 mV. Persistent INa between 45–50 
ms after depolarisation was adopted in data analyses. (c) Normalised transient INa after 
100 μM phentoin treatment and subsequent washout. (**) P < 0.01; ANOVA with Tukey 
post-hoc test (n = 9). (d) Normalised persistent INa after 100 μM phenytoin treatment 
and the subsequent washout (**) P < 0.001; ANOVA with Tukey post-hoc test (n = 4). 
Data are mean ± SEM. 
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Figure 3.7. Phenytoin inhibits Na+ current (INa) in MDA-MB-231 cells at holding potential 

= -80 mV. 

(a) Representative INa recorded from MDA-MB-231 cells in standard physiological 
saline solution (PSS) (blue), 100 μM phenytoin (red) and after washout (green). 
Transient INa is labelled, and the dotted box shows the persistent INa. (b) Enlargement 
of the dotted box in (a), showing the persistent INa. INa was elicited by depolarising the 
cell to -10 mV following a 250 ms pre-pulse at -80 mV. Persistent INa between 45–50 
ms after depolarisation was adopted in data analyses. (c) Normalised transient INa after 
100 μM phentoin treatment and subsequent washout. (***) P < 0.001; ANOVA with 
Tukey post-hoc test (n = 4). (d) Normalised persistent INa after 100 μM phenytoin 
treatment and the subsequent washout (***) P < 0.001; (*) P < 0.05; ANOVA with 
Tukey post-hoc test (n = 3). Data are mean ± SEM. 
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Next, the effect of 100 μM phenytoin on steady-state Vm of MDA-MB-231 cells 

was investigated. Cells were initially perfused with standard PSS for 60 s, followed by 

phenytoin/vehicle for 150 s, and then a washout step with standard PSS for a further 

150 s. Phenytoin, but not the vehicle (75 μM NaOH), significantly hyperpolarised the 

Vm (Figure 3.8a and b). At the last 5 s of each of the three experimental steps, the Vm 

of MDA-MB-231 cells hyperpolarised from -12.6 ± 1.5 mV to -15.7 ± 1.7 mV after 

phenytoin treatment (Figure 3.8c; Table 3.5; P < 0.001; ANOVA with Tukey post hoc 

test; n = 12), however, the Vm only partially recovered to -14.6 ± 1.9 mV following 

washout (Figure 3.8c; Table 3.5; P = 0.59; n = 12). Similarly, the Vm was significantly 

hyperpolarised in the last 15 s, 30 s and 60 s following phenytoin treatment (Figure 

3.8c; Table 3.5; n = 12). In contrast, NaOH (75 μM), the vehicle for 100 μM phenytoin, 

did not significantly change the Vm (Figure 3.8d), as the mean Vm was -10.8 ± 1.5 mV, -

11.0 ± 1.3 mV, and -10.1 ± 2 mV in standard PSS, NaOH and washout, respectively, in 

the last 5 s of each step (Figure 3.8d; Table 3.6; P = 0.98 comparing NaOH and 

standard PSS; n = 9). Similarly, the Vm was not significantly changed using other 

measurement intervals (Figure 3.8d; Table 3.6; n = 9). In summary, like TTX, phenytoin 

showed similar Vm-hyperpolarising effect on MDA-MB-231 cells by blocking VGSCs. 
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Figure 3.8. Phenytoin hyperpolarises the membrane potential (Vm) of MDA-MB-231 

cells. 

MDA-MB-231 cells were treated with standard physiological saline solution (PSS) for 
60 s before being perfused with (a) 100 μM phenytoin or (b) vehicle, 75 μM NaOH, for 
150 s. Phenytoin and NaOH were subsequently washed out with standard PSS for a 
further 150 s. Black trace shows the mean Vm of n = 12 (a) or n = 9 (b), and the grey 
traces show the SEM. Dotted vertical lines indicate the various measurement intervals 
(last 5 s, 15 s, 30 s and 60 s). Liquid junction potentials (3 mV) are not compensated. 
The mean Vm over indicated measurement intervals after (c) phenytoin or (d) NaOH 
treatment. Liquid junction potentials (3 mV) are compensated. (*) P < 0.05; (**) P < 
0.01 and (***) P < 0.001 compared to standard PSS; ANOVA with Tukey post-hoc test 
[n = 12 in (c) and n = 9 in (d)]. Data are mean ± SEM.  
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Table 3.5. Mean membrane potential (Vm) of MDA-MB-231 cells after phenytoin (100 

μM) treatment and washout. 
Measurement 

interval 
Vm in standard PSS 

(mV) 
Vm in 100 μM 

phenytoin (mV) Vm in washout (mV) 

Last 5 s -12.6 ± 1.5 -15.7 ± 1.7 *** -14.6 ± 1.9 

Last 15 s -12.7 ± 1.5 -15.9 ± 1.9 ** -14.8 ± 1.9 

Last 30 s -12.9 ± 1.5 -15.6 ± 1.9 ** -14.9 ± 1.9 

Last 60 s -13.0 ± 1.5 -15.4 ± 1.9 * -15.2 ± 2.0 

Liquid junction potentials (3 mV) were compensated offline. PSS: physiological saline 
solution. (*) P < 0.05; (**) P < 0.01; (***) P < 0.001 compared with Vm in standard PSS; 
ANOVA with Tukey post-hoc test (n = 12). Data are mean ± SEM. 
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Table 3.6. Mean membrane potential (Vm) of MDA-MB-231 cells after NaOH (75 μM) 

treatment and washout. 
Measurement 

interval 
Vm in standard PSS 

(mV) 
Vm in 75 μM NaOH 

(mV) Vm in washout (mV) 

Last 5 s -10.8 ± 1.5 -11.0 ± 1.3 (n.s.) -10.1 ± 2.0 

Last 15 s -10.9 ± 1.3 -11.1 ± 1.3 (n.s.) -10.2 ± 2.1 

Last 30 s -10.9 ± 1.3 -11.1 ± 1.2 (n.s.) -10.3 ± 2.1 

Last 60 s -10.9 ± 1.3 -11.1 ± 1.2 (n.s.) -10.3 ± 2.1 

Liquid junction potentials (3 mV) were compensated offline. PSS: physiological saline 
solution. n.s. not significant compared with Vm in standard PSS; ANOVA with Tukey 
post-hoc test (n = 9). Data are mean ± SEM. 
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3.2.5 Veratridine increases the persistent INa and depolarises the Vm in 

MDA-MB-231 cells 

Blocking VGSCs using TTX and phenytoin hyperpolarised the Vm. To further 

investigate the role of VGSC in the Vm regulation in MDA-MB-231 cells, the present 

study hypothesised that activating VGSCs would cause a Vm depolarisation. 

Veratridine is an alkaloid that binds to the toxin binding site 2, and it increases 

persistent INa by increasing the channel opening probability but decreases transient INa 

by decreasing single channel conductance (Ulbricht, 1998; Wang & Wang, 2003). In 

the following experiment, veratridine at 100 μM was adopted as a VGSC opener 

(House et al., 2015).  

Firstly, the effects of veratridine on INa were tested using the whole-cell patch 

clamp technique in voltage-clamp mode using the standard current-voltage protocol 

(Section 2.4.7). INa was firstly recorded in standard PSS before cells were perfused with 

100 μM veratridine for 2 min, followed by a 2 min washout. Veratridine increased 

persistent INa of MDA-MB-231 cells, and the persistent INa increased further even after 

washout (Figure 3.9a and b). The current-voltage relationships of both transient and 

persistent INa are shown in (Figure 3.9c and d), where the INa was normalised to whole-

cell capacitance: veratridine and the following washout did not significantly alter the 

transient current-voltage relationship (Figure 3.9c; ANOVA with Tukey post hoc test; n 

= 6). The peak transient INa was slightly reduced, albeit not significantly, from -12.1 ± 

2.2 pA/pF to -9.3 ± 1.2 pA/pF after veratridine treatment (Figure 3.9d; P = 0.10 

compared to standard PSS; ANOVA with Tukey post hoc test; n = 6), and was -9.8 ± 

1.5 pA/pF after washout. 

The persistent INa density, measured 45–50 ms after depolarisation, increased 

upon depolarisation to voltages in the range of -25 mV to -10 mV (Figure 3.9e; P < 

0.05; ANOVA with Tukey post hoc test; n = 6), and the persistent INa density increased 
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Figure 3.9. Veratridine increases the persistent Na+ current (INa) in MDA-MB-231 cells. 

Representative transient (a) and persistent (b) INa in an MDA-MB-231 cell in standard 
PSS, followed by 2 min veratridine (100 μM) treatment and 2 min washout. Cell was 
depolarised to 0 mV for 60 ms from a 250 ms pre-pulse at -120 mV. Dotted box in (a) 
represents the persistent INa that is shown in (b). Persistent INa between 45–50 ms after 
depolarisation was adopted in data analyses. (c) The current-voltage relationship of 
transient INa and (d) the peak transient INa density after veratridine treatment and 
washout (n = 6). (e) The current-voltage relationship of persistent INa. (*) P < 0.05 
comparing standard PSS and veratridine; (#) P < 0.05 comparing standard PSS and 
washout. (f) The mean persistent INa density after veratridine treatment and washout. 
(*) P < 0.05; n.s. not significant; ANOVA with Tukey post hoc test (n = 6). (g) The 
normalised conductance of INa in all experimental conditions (n = 6), fitted with 
Boltzmann equations. Cells were depolarised to voltages between -80 mV to +30 mV in 
5 mV increments following a 250 ms pre-pulse at -120 mV. Data are mean ± SEM.  
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further after washout (Figure 3.9e; P < 0.05; ANOVA with Tukey post hoc test; n = 6). 

The maximal persistent INa was increased from -0.5 ± 0.2 pA/pF in standard PSS to -

1.3 ± 0.2 pA/pF in veratridine (Figure 3.9f; P = 0.06; ANOVA with Tukey post hoc test; 

n = 6). Following washout the maximal persistent INa increased further to -2.1 ± 0.4 

pA/pF, which was significantly different compared with standard PSS (Figure 3.9f; P < 

0.05; ANOVA with Tukey post hoc test; n = 6) as well as the veratridine treatment 

(Figure 3.9f; P < 0.05; ANOVA with Tukey post hoc test; n = 6). 

Veratridine at 100 μM did not change the voltage-dependence of activation 

(Figure 3.9g). INa characteristics including V1/2, k, activation voltage (Va), voltage at 

current peak (Vp) and time to peak (Tp) were constant after veratridine treatment and 

following washout (Table 3.7). Because (1) veratridine increased the persistent INa in a 

non-reversible manner, and (2) 4 min after veratridine treatment (including washout) 

the persistent INa was significantly increased at voltages between -25 mV and -10 mV, 

the effect of veratridine on MDA-MB-231 cell Vm was assessed by measuring the 

steady-state Vm after incubating cells with 100 μM veratridine for 6 min, instead of 

performing a time-course Vm measurement as done in previous sections. Veratridine 

depolarised the Vm from -16.4 ± 1.4 mV to -12.6 ± 1.4 mV (Figure 3.10; P < 0.05; t-test; 

n = 14 in each condition). Together with the data presented in Section 3.2.3 and 

Section 3.2.4, modulation of VGSCs by using pharmacological agents has revealed a 

functional role for VGSCs in regulating the Vm of MDA-MB-231 cells. 
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Table 3.7. Characteristics of Na+ current after veratridine (100 μM) treatment and 

washout. 

Parameters and 
conditions Standard PSS Veratridine (100 

μM) Washout P 

V1/2 (mV) -23.0 ± 1.8 -26.6 ± 1.8 -27.89 ± 1.5 0.07 

k (mV) 10.1 ± 0.8 10.1 ± 0.5 10.2 ± 0.5 0.98 

Va (mV) -39.2 ± 0.8 -42.5 ± 2.1 -42.5 ± 1.1 0.23 

Vp (mV) -1.7 ± 1.1 -1.7 ± 1.1 -5.0 ± 2.2 0.23 

Tp (ms) 2.7 ± 0.5 2.1 ± 0.6 2.1 ± 0.4 0.40 

V1/2: the voltage at which half-maximal conductance or availability occurs; k: slope 
factor; Va: activation voltage; Vp: voltage at current peak; Tp: time to peak. ANOVA with 
Tukey post hoc test (n = 6). Data are mean ± SEM. 
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Figure 3.10. Veratridine depolarises the Vm of MDA-MB-231 cells. 

Cells were pre-treated with DMSO (2 % v/v) or 100 μM veratridine in the standard PSS 
for 6 min before their steady-state Vm was recorded. (*) P < 0.05; t-test (n = 14 in each 
condition). Data are mean ± SEM. 
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3.2.6 Suppressing Nav1.5 expression using shRNA hyperpolarises the Vm 

of MDA-MB-231 cells 

In addition to inhibiting VGSC activity using pharmacological agents, Nav1.5, the 

main VGSC isoform in MDA-MB-231 cells (Fraser et al., 2005), was stably down-

regulated by lentiviral shRNA in order to specifically examine how Nav1.5 regulates cell 

metastatic behaviours compared to cells transduced with non-targeting control shRNA. 

Genetically suppressing Nav1.5 expression also has advantages such as the 

avoidance of non-target effects associated with certain pharmacological agents, e.g. 

phenytoin also inhibits HERG channels at high concentration (IC50 ≥ 300 μM) 

(Danielsson et al., 2003). Stable knockdown with shRNA also enables the study of 

long-term effects of Nav1.5 on cell behaviour. 

INa from cells that were stably transduced with two different sets of shRNA 

(“Nav1.5-shRNA 1” and “Nav1.5-shRNA 2” cells) or with non-targeting control shRNA 

(“shRNA control” cells) were tested in the study Figure 3.11. Both Nav1.5 mRNA and 

protein levels were reduced in Nav1.5-shRNA 1 and 2 cells (Nelson et al., 2015b). 

Using the standard current-voltage protocol (Section 2.4.7) whole-cell INa recording 

showed that both Nav1.5-shRNA 1 (Figure 3.11a) and Nav1.5-shRNA 2 (Figure 3.11b) 

cells had smaller INa compared to shRNA control cells (Figure 3.11c), which is also 

displayed in the current-voltage relationship (Figure 3.11d). The peak INa density of 

shRNA control, Nav1.5-shRNA 1 and Nav1.5-shRNA 2 cells was -14.9 ± 2.1 pA/pF, -0.1 

± 0.1 pA/pF and -7.9 ± 2.2 pA/pF, respectively (Figure 3.11e). Since Nav1.5-shRNA 1 

cells showed the greatest INa reduction than cells bearing Nav1.5-shRNA 2 (Figure 

3.11d and e; P < 0.05; ANOVA with Tukey post hoc test; n = 8), the steady-state Vm of 

Nav1.5-shRNA 1 cells (hereafter referred to as Nav1.5-shRNA cells) was recorded and 

compared with shRNA control cells (Figure 3.12). Down-regulation of Nav1.5  
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Figure 3.11. Down-regulating Nav1.5 using small-hairpin RNA (shRNA) reduced the 

Na+ current (INa) in MDA-MB-231 cells. 

Representative INa traces in (a) non-targeting shRNA-expressing (shRNA control) cells, 
(b) Nav1.5-shRNA 1 cells and (c) Nav1.5-shRNA 2 cells. INa was elicited after 
depolarisation to voltages ranging from -80 mV to +30 mV in 5 mV increments following 
a 250 ms pre-pulse at -120 mV. Every other INa trace is shown for clarity. (d) Current-
voltage relationship of the transient INa recorded from shRNA control and Nav1.5-
shRNA 1 and 2 cells. (e) Peak transient INa density of shRNA control and Nav1.5-
shRNA 1 and 2 cells. (*) P < 0.05; (***) P < 0.001; ANOVA with Tukey post hoc test (n 
= 8 in each condition). Data are mean ± SEM. 
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Figure 3.12. Nav1.5 causes a steady-state membrane potential (Vm) depolarisation in 

MDA-MB-231 cells. 

Comparison of the Vm recorded in cells bearing control non-targeting shRNA (shRNA 
control cells) and in cells where Nav1.5 expression was down-regulated with lentiviral 
shRNA (Nav1.5-shRNA cells). (**): P < 0.01; t-test (n = 16 in each condition). Data are 
mean ± SEM. 
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significantly hyperpolarised the Vm from -12.6 ± 0.9 mV to -16.0 ± 0.8 mV (Figure 3.12; 

P < 0.01; t-test; n = 16 in each condition). Taken together, data presented in this 

Chapter so far suggest that VGSCs depolarise the steady-state Vm of MDA-MB-231 

cells by 3.2–4.3 mV. 

 

3.2.7 Voltage-dependent INa recorded in ERα- MCF-7 cells 

pII is an MCF-7 derivative cell line where ERα was stably knocked down by using 

shRNA (Luqmani et al., 2009). To test the hypothesis that down-regulation of ER in 

BCa cells may increase malignancy by inducing VGSC expression, the membrane 

currents of pII and parental control MCF-7 cells was also investigated in the present 

study.  

The standard intracellular solution (Cs+-free) was used while recording the whole-

cell current. In the control MCF-7 cells, both inward and outward current were absent in 

eight cells recorded after depolarisation from -120 mV (250 ms) to voltages ranging 

between -60 mV and +80 mV for 60 ms (Figure 3.13a). Interestingly, however, two out 

of five pII cells recorded showed fast voltage-dependent inward current together with 

voltage-dependent persistent outward current (Figure 3.13b). Additionally, two cells 

exhibited only persistent outward current. The current-voltage relationships of the 

inward and outward current are shown in Figure 3.13c (n = 2) and Figure 3.13d (n = 4), 

respectively. Alongside with these findings, our collaborators confirmed the expression 

of Nav1.5 mRNA and protein in pII cells (Mohammed et al., 2015). Therefore, it is likely 

that the fast inward current is INa carried by Nav1.5. In summary, a voltage-dependent 

inward INa, was seen in a proportion of ERα-knockdown pII cells but not in parental 

MCF-7 cells. Further experiments should examine the TTX sensitivity of the inward 

current and the type of persistent outward current. 
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Figure 3.13. Membrane current recorded from pII and parental MCF-7 cells. 

Representative whole-cell current recorded from (a) control MCF-7 cells (n = 8) and (b) 
pII cells where ERα expression was down-regulated using shRNA. The current-voltage 
relationship of (c) inward (n = 2) and (d) outward (n = 4) current recorded from pII cells. 
Cells were depolarised to voltages between -60 mV and +80 mV in 10 mV increments 
following a 250 ms pre-pulse at -120 mV. Every other INa trace is shown for clarity. In 
(d), the mean current between 45 ms and 50 ms after the test-pulse was analysed. 
Data are mean ± SEM. 
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3.3 Discussion 

In the standard PSS, the Vm of MDA-MB-231 cells is approximately -10 mV. The 

value significantly deviates from the equilibrium potential of K+ and Cl- (-82 mV and 

0.06 mV, respectively, under the experimental condition in this study), while the Na+ 

equilibrium potential is +86.3 mV. Na+ conductance therefore may act as an important 

determinant of the depolarised Vm of MDA-MB-231 cells. Indeed, data in this Chapter 

show that depletion of extracellular Na+ hyperpolarises the Vm of MDA-MB-231 cells by 

10–14 mV. Using pharmacological agents or shRNA, data in this Chapter also show 

that VGSCs cause a steady-state Vm depolarisation of 3.2–4.3 mV in MDA-MB-231 

cells.  

Specifically suppressing Nav1.5 expression using shRNA abolishes the INa in 

MDA-MB-231 cells, supporting the previous study showing that Nav1.5 is the 

predominant VGSC isoform in MDA-MB-231 cells (Brackenbury et al., 2007). 

Considering that TTX (30 μM), phenytoin (100 μM) and Nav1.5-shRNA hyperpolarised 

the Vm to a similar extent, TTX- and phenytoin-induced Vm hyperpolarisation is likely 

caused by blockade of Nav1.5 in MDA-MB-231 cells. In addition, Nav1.5-dependent Vm 

depolarisation may be independent of other Vm regulation pathway, since the 

hyperpolarised Vm in Nav1.5-shRNA cells has not been compensated for over time in 

culture.  

In H460 NSCLC cells, blocking Nav1.7 with TTX (0.5 μM) hyperpolarises the Vm 

by 10 mV (Campbell et al., 2013), which is a greater effect than blocking Nav1.5 in 

MDA-MB-231 cells. One possible explanation is that H460 cells have a more 

hyperpolarised Vm (-27 mV), and at this voltage, the window INa is stronger in H460 

cells compared with that in MDA-MB-231 cells (Campbell et al., 2013). In addition, the 

present study has recorded the continuous Vm from individual cells that were perfused 

with phenytoin or TTX, which can reveal the immediate effect of the drugs on Vm and 

diminish cell-to-cell differences that would occur from recording independent cells from 
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two conditions, as in (Campbell et al., 2013). Another study reported that the Vm of 

other VGSC-expressing NSCLC cells does not significantly differ from those where 

VGSCs are absent (Roger et al., 2007). Comparisons between a number of cell lines 

with distinct INa  and IK current profiles, as in (Roger et al., 2007), cannot determine 

whether or not VGSCs regulate cell Vm. On the other hand, continuous 

pharmacological experiments on single cells as in the present study, clearly shows that 

VGSCs regulate the Vm in MDA-MB-231 cells. 

The mean Vm did not fully recover after eliminating TTX or phenytoin from the 

recording chamber (Sections 3.2.3 and 3.2.4). Since phenytoin binds to the toxin 

binding site 2, which is at the intracellular side (Lipkind & Fozzard, 2010), it may require 

much longer time in the washout step before the drug dissociates from the VGSC 

complex. Additionally, when MDA-MB-231 cells are at their typical Vm (~-10 mV), 

VGSCs are mostly in the inactivated state that has higher affinity for phenytoin 

(Ragsdale et al., 1991; Kuo & Bean, 1994), making drug dissociation by washout more 

difficult. However, TTX can be washed out relatively easily since it binds to toxin 

binding site 1 at the extracellular loop (Noda et al., 1989; Terlau et al., 1991), confirmed 

by the voltage-clamp study (Figure 3.4). Considering that TTX does not show state-

dependent binding (Narahashi et al., 1964), one possible explanation is that other ion 

channels and transporters are activated when the Vm is hyperpolarised by blocking 

VGSCs, and therefore it may take longer for cells to recover their original Vm after 

washout. Indeed, the Vm slowly but constantly depolarises during washout. Further 

work is required to test these possibilities.  

Veratridine is a VGSC agonist that has been shown to increase persistent INa  

whilst decreasing transient INa (Ulbricht, 1969). In the present study, voltage-clamp 

experiments using veratridine (100 μM) showed a similar result (Figure 3.9). Moreover, 

the persistent INa increased further after veratridine washout. Possible reasons are: (1) 

veratridine is a membrane-soluble protein which tightly binds to the neurotoxin-binding 
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site 2 (Ulbricht, 1998; Cestele & Catterall, 2000), and (2) veratridine binds preferentially 

to open channels (Barnes & Hille, 1988; Ulbricht, 1998). Consequently, the effect of 

veratridine became stronger because of repeated channel openings during the 

recording protocols. The persistent INa after depolarisation to voltages from -25 mV to -

10 mV significantly increased following veratridine application (Figure 3.9), and this 

agrees well with the findings that veratridine depolarised the Vm by 3.8 mV (Figure 

3.10), because the Vm of MDA-MB-231 cells lies within this voltage range. A similar 

result has been reported in H460 cells, where the Vm depolarised by 4 mV after 

treatment with 50 μM veratridine (Campbell et al., 2013).  

Several questions are raised by these results. The VGSC-dependent Vm 

regulation only contributes to 30–40 % of the extracellular Na+-dependent Vm 

depolarisation in MDA-MB-231 cells, suggesting that there are other Na+-permeable 

pathways at the cells plasma membrane that can depolarise the Vm, such as epithelial 

Na+ channels (ENaC), NHE1, Na+-Ca2+ exchanger (NCX) and Na+ transporters 

including the Na+-K+-2Cl- co-transporter. Further experiments should address their 

roles in Vm regulation in MDA-MB-231 cells. Additionally, compared to MCF-7 cells, 

which have a Vm of -40 mV (Fraser et al., 2005), results in this Chapter show that the 

depolarised Vm of MDA-MB-231 cells is only partly due to Na+ influx. Therefore, the 

absence of Vm-hyperpolarising ion channels/transporters and/or the presence of other 

Vm-depolarising ion channels/transporters may also contribute to the depolarised Vm of 

MDA-MB-231 cells. 

In pII cells, a MCF-7 cell derivative where ERα is stably knocked down, a voltage-

dependent fast inward current was recorded, which was absent in control MCF-7 cells. 

Further study suggested that the current is probably INa carried by Nav1.5. TTX, 

phenytoin and siRNA targeting Nav1.5 significantly reduced EGF-induced invasion in 

pII cells (Mohammed et al., 2015). Although microarray data show that Nav1.5 mRNA 

level does not correlate with ER status in BCa patient samples (Yang et al., 2012), ER 
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down-regulation may still increase functional channel expression and/or channel 

trafficking to the plasma membrane of BCa cells. Further study should focus on 

determining the electrophysiological characteristics of the INa-like current recorded in pII 

cells and investigate how ER down-regulation induced the functional current. 

 

3.4 Conclusion 

This Chapter demonstrated that replacement of the extracellular NaCl with ChoCl 

and NMDG hyperpolarised the Vm of MDA-MB-231 cells by approximately 10 and 14 

mV, respectively. In addition, inhibiting VGSC activity using TTX, phenytoin and 

Nav1.5-targeting shRNA showed that VGSCs depolarise the steady-state Vm of MDA-

MB-231 cells by 3.2–4.3 mV. On the other hand, increasing the persistent INa using 

veratridine depolarised the Vm by 3.8 mV. Thus, Na+ conductance across the plasma 

membrane regulates the Vm, partly contributed by VGSCs (Figure 3.14). Whether the 

depolarised Vm has functional roles in promoting MDA-MB-231 cells metastatic 

behaviours will be investigated in the following Chapter.  
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Figure 3.14. Na+ conductance contributes to membrane potential (Vm) regulation in 

cancer cells. 

An update to Figure 1.6 with the findings in this Chapter showing the involvement of 
Na+ in Vm regulation (red line). The relationship between Na+ and Ca2+ signalling has 
not been studied (dashed line). Figure is adapted from (Yang & Brackenbury, 2013). 
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4 Chapter 4: Functional role of the depolarised Vm caused by 

VGSCs in MDA-MB-231 cells in vitro 

4.1 Introduction 

Over the past few decades, functional VGSCs have been identified in an 

increasing number of cancer cell lines where they promote metastatic cell behaviours 

including cell migration and invasion (Brackenbury, 2012; Roger et al., 2015). For BCa, 

recent in vivo experiments showed that inhibiting VGSC α subunits with phenytoin 

decreases BCa cell growth and metastasis (Nelson et al., 2015a), and that ranolazine-

treated mice had reduced BCa cell colonisation to the lungs (Driffort et al., 2014). 

However, the detailed mechanism(s) by which VGSCs increase cancer cell metastatic 

behaviours is not fully understood. It is proposed that in MDA-MB-231 cells, Nav1.5 

increases H+ efflux through NHE1, resulting in a lower extracellular pH that promotes 

proteolytic activity of cysteine cathepsin B and S, thus increasing cell invasion (Gillet et 

al., 2009; Brisson et al., 2011). A following study demonstrated that inhibiting Nav1.5 

with TTX decreased src kinase activity and phosphorylation of the actin nucleation 

promoting factor cortactin (Brisson et al., 2013). In MDA-MB-231 cells where Nav1.5 is 

down-regulated by using shRNA, the protein level of the metastasis-promoting 

molecule CD44 is also reduced (Nelson et al., 2015b). Furthermore, in SW620 human 

colon cancer cells, VGSC activity leads to persistent MAPK activation in a Rap1-

dependent manner, with the downstream effect of activating expression of invasion-

related genes including CD44 (House et al., 2015). Finally, β1–β1 homophilic adhesion 

increases MDA-MB-231 cell process outgrowth in a fyn kinase-dependent pathway, 

where Na+ influx is also required (Nelson et al., 2014). However, other undiscovered 

mechanisms may also underlie VGSC-dependent metastatic cell behaviours. For 
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example, in a wound healing assay, rat cortical astrocytes show elevated [Ca2+]i upon 

wound scratching, which is attenuated by blocking NCX or VGSCs using KB-R7943 or 

TTX, respectively (Pappalardo et al., 2014b). The inhibitory effects on [Ca2+]i caused by 

these two compounds are similar, and therefore it is proposed that Na+ influx through 

VGSCs regulates [Ca2+]i through NCX (Pappalardo et al., 2014b). Na+ influx through 

VGSCs increases [Ca2+]i in THP-1 macrophages via NCX on the mitochondrial 

membrane (Carrithers et al., 2009). In human umbilical vein endothelial cells, Na+ 

carried by VGSCs increases Ca2+ influx through NCX, which is necessary in vascular 

endothelial growth factor (VEGF)-induced ERK1/2 activation (Andrikopoulos et al., 

2011a; Andrikopoulos et al., 2011b).  

Cancer cells possess a depolarised Vm compared to their counterparts from 

normal tissues (Binggeli & Weinstein, 1986; Yang & Brackenbury, 2013). A depolarised 

Vm is not merely an epi-phenomenon that is the outcome of the collective activity of 

many ion channels and transporters at the plasma membrane: apart from its 

involvement in promoting cell cycle progression and maintaining stem cells in an 

undifferentiated state (Sundelacruz et al., 2009; Yang & Brackenbury, 2013), 

depolarised Vm is also able to promote cytoskeleton reorganisation (Chifflet et al., 

2003; Chifflet et al., 2004). In a wound healing assay using bovine corneal endothelial 

cells, Vm depolarisation occurs in cells at the edge of the wound and extends inwards, 

and the depolarised Vm causes actin network reorganisation during wound healing 

(Chifflet et al., 2005). The Vm depolarisation is caused by increased Na+ permeability 

via ENaC, but the resulting cytoskeleton reorganisation is Na+-independent (Chifflet et 

al., 2005).  

Cell migration comprises several key steps, including extension of the 

lamellipodium, formation of new adhesion sites at the front, cell body contraction and 

detachment of adhesions at the rear (Raftopoulou & Hall, 2004). Members of the Rho 

small GTPase family, including Rho, Rac and Cdc42, have pivotal roles in cell 
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migration. These GTPases switch between a GTP-bound active form and a GDP-

bound inactive form. GEFs activate small GTPases by increasing the release of GDP 

and binding of GTP. Upon activation, the most well established function of these small 

GTPases is their contribution to cell migration and morphogenesis by regulating the 

actin and microtubule cytoskeleton (Hall, 1998). However, Rho, Rac and Cdc42 have 

distinct effects on the actin cytoskeleton: in 3T3 fibroblasts, activation of Rho results in 

the formation of stress fibres at the rear of the cell, Cdc42 causes the formation of 

filopodia, and Rac leads to the formation of lamellipodia (Nobes & Hall, 1995). During 

lamellipodia formation, Rac initiates actin polymerisation through the Arp2/3 complex 

mediated by the nucleation-promoting Wiskott-Aldrich syndrome protein-family 

verprolin-homologous proteins (WAVE) (Jaffe & Hall, 2005). The instructive role of 

Rac1, a member of the Rac family, during lamellipodium formation has been confirmed 

by an optogenetic study: activation of a photoactivatable Rac1 is sufficient to induce 

lamellipodium extension, cell motility and control the directionality of cell movement 

(Wu et al., 2009). In addition to their roles in controlling the cytoskeleton, Rac GTPases 

are capable of activating JNKs, leading to alterations in gene expression (Coso et al., 

1995). Rac also participates in regulation of the mitogen-activated protein (MAP) 

signalling pathway: mixed lineage kinase 3 (MLK3), a MAP kinase kinase kinase, is a 

direct binding target of Rac (Brancho et al., 2005). In COS-7 cells, a MLK3 dominant 

negative mutant abolished JNK activation by Rac (Teramoto et al., 1996).  

Vm can be a functional signal in regulating small GTPases. The activation of Ras 

and Rap1, a small GTPase that is required in NGF-induced ERK activation (York et al., 

1998), caused by Vm depolarisation has been reported in mouse cortical neurones 

(Baldassa et al., 2003). In PC12 cells, the depolarised Vm increases the active Ras 

level in a PKA-dependent manner (Obara et al., 2007). More recently, a study has 

demonstrated that in baby hamster kidney cells, Vm depolarisation enhances 

phosphatidylserine and nanoclustering of K-Ras, a Ras mutant and one of the most 
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frequently activated oncogenes (Kranenburg, 2005), and K-Ras-dependent MAPK 

signalling (Zhou et al., 2015). Therefore, Vm may regulate metastatic cell behaviours 

through small GTPases.  

In humans, BKCa channels are encoded by KCNMA1 and may associate with 

auxiliary β subunits (β1–β4) (Salkoff et al., 2006). The BKCa channel protein has seven 

transmembrane domains, an extracellular N-terminus, and an intracellular C-terminus 

(Meera et al., 1997; Yuan et al., 2010), where three Ca2+ binding sites are located 

(Schreiber & Salkoff, 1997; Xia et al., 2002). The channel monomer comprises one 

voltage-sensing module and one Ca2+-sensing module that are both important in 

channel opening (Barrett et al., 1982; Latorre & Brauchi, 2006). However, evidence 

suggests that the activation of BKCa channels is primarily caused by Vm depolarisation 

whereas Ca2+ functions as an amplifier (Meera et al., 1996; Stefani et al., 1997). In 

Xenopus oocytes, when [Ca2+]i is ≤ 100 nM, BKCa channels become purely voltage-

gated and independent of Ca2+, with an activation V1/2 ≥ 220 mV (Meera et al., 1996). In 

a physiological range of Vm, BKCa channels function in Ca2+-dependent mode, where 

V1/2 values linearly increase with cytosolic free [Ca2+] (Cui et al., 1997).  

VGSCs depolarise the Vm of MDA-MB-231 cells by approximately 4 mV (Section 

3.2.6). Considering that MDA-MB-231 cells have a Vm at ~-10 mV (Section 3.2.1), 

inhibition of VGSCs accounts for a ~40 % increase in the transmembrane voltage. 

Given that VGSCs regulate Vm in MDA-MB-231 cells and that Vm is functionally 

instructive in regulating metastatic cell behaviours in other cell models, it is possible 

that VGSCs may regulate metastatic cell behaviours via modulation of the Vm. To 

specifically study the role of Vm without altering the Na+ conductance through VGSCs, it 

is possible to modulate the Vm of MDA-MB-231 cells through activating endogenously 

expressed BKCa channels (Khaitan et al., 2009; Ma et al., 2012). 

 



 

 

143 

4.1.1 Hypothesis and aims 

The hypothesis of the Chapter was that depolarised Vm is an instructive signal in 

promoting MDA-MB-231 cell metastatic behaviours including proliferation, migration 

and invasion. The specific aims were: 

(1) To investigate whether or not Vm can alter [Ca2+]i in MDA-MB-231 cells. 

(2) To hyperpolarise the Vm to a similar extent to 30 μM TTX by activating BKCa 

channels. 

(3) To study the effect of Vm hyperpolarisation on MDA-MB-231 cell migration 

and invasion. 

(4) To investigate the active Rac1 distribution in MDA-MB-231 cell lamellipodia 

after Vm hyperpolarisation. 

 

4.2 Results 

4.2.1 Monitoring [Ca2+]i in MDA-MB-231 cells using Fura-2 

Using MDA-MB-231 cells, Fura-2 was chosen as the intracellular Ca2+ fluorescent 

indicator for the following reasons: firstly, Fura-2 has the lowest dissociation constant 

(Kd) among all the Fura-2/Indo-1 derivatives at 0.14 μM, which is close to the [Ca2+]i of 

MDA-MB-231 cells reported previously [97 ± 2 nM in (Winnicka et al., 2008), and 142 ± 

39 nM in (Sareen et al., 2007)]. Since the sensitivity of a Ca2+ fluorescent indicator is 

most reliable in a [Ca2+]i range below or close to the Kd (Takahashi et al., 1999), Fura-2 

should be the most suitable intracellular Ca2+ indicator to use in MDA-MB-231 cells. 

Secondly, Fura-2 is a ratiometric fluorescent indicator that allows for better quantitative 

measurement of [Ca2+]i measurement compared to single wavelength indicators 

(Bootman et al., 2013).  

To begin with, a control experiment using standard PSS was carried out in order 

to monitor the [Ca2+]i of MDA-MB-231 cells, reported as 340/380 ratio (Section 2.7). 
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Fura-2 labelled MDA-MB-231 cells were observed under a Nikon Eclipse TE200 epi-

fluorescence microscope (Section 2.9) and perfused with standard PSS at room 

temperature for 14 min. Cells were excited alternately at 340 nm and 380 nm, and 

fluorescence emission at 512 nm was collected using a RoleraXR Fast 1394 CCD 

camera (Section 2.9). Over the standard PSS treatment period, the majority of the cells 

did not show obvious [Ca2+]i oscillations (Figure 4.1a and b; n = 55 from one of three 

repeats), whereas some cells (n = 5 out of 55) showed a slow increase and 

subsequent decrease in [Ca2+]i (“Ca2+ spike”; Figure 4.1c, arrow head).  At the end of 

the experiment, ionomycin (10 μM), a positive control (Liu & Hermann, 1978), 

increased the [Ca2+]i in all the cells. The 340/380 ratios of the individual cells were 

averaged in Figure 4.1e and f (n = 55).  

 

4.2.2 Extracellular Na+ depletion does not significantly alter [Ca2+]i in 

MDA-MB-231 cells 

Replacing extracellular Na+ with ChoCl caused a Vm hyperpolarisation of 10 mV 

(Section 3.2.1). This hyperpolarisation might increase the driving force of Ca2+ entry via 

Ca2+-permeable channels (Prevarskaya et al., 2014), and hence increase the [Ca2+]i in 

MDA-MB-231 cells. To test this, Fura-2 labelled cells were perfused with ChoCl 

solution for 6 min following 2 min in standard PSS. ChoCl did not change the [Ca2+]i in 

MDA-MB-231 cells (data from one of three technical repeats are shown in Figure 4.2a–

d; n = 70), nor did the following washout (Figure 4.2a–d). The mean 340/380 ratios of 

cells were 1.0 ± 0.1, 1.0 ± 0.1, and 1.0 ± 0.1 over the last 30 s of standard PSS, ChoCl 

and washout, respectively, showing no statistical difference (Figure 4.2e; P = 0.23; 

ANOVA with Tukey post hoc test; n = 3). Therefore, Vm hyperpolarisation by removal of 

extracellular Na+ does not cause a significant change in the [Ca2+]i in MDA-MB-231  

 



 

 

145 

  

 
Figure 4.1. Intracellular Ca2+ concentration ([Ca2+]i) of MDA-MB-231 cells in standard 

physiological saline solution (PSS). 

(a) The [Ca2+]i of individual cells, presented as the ratio of fluorescence signals 
subsequently collected at excitation wavelengths 340 nm and 380 nm (340/380 ratio), 
during standard PSS treatment for 14 min, before ionomycin (10 μM) as the positive 
control was applied. The 340/380 ratios of cells during standard PSS treatment are 
also shown in (b). (c) A representative cell exhibiting a Ca2+ spike. (d) and (e) show the 
averaged trace of (a) and (b), respectively (n = 55 from one of three repeats). Data are 
mean ± SEM in (d) and (e). 
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Figure 4.2. Intracellular Ca2+ concentration ([Ca2+]i) of MDA-MB-231 cells after choline 

chloride (ChoCl) treatment. 

(a) The [Ca2+]i of individual cells, presented as the ratio of fluorescence signals 
subsequently collected at excitation wavelength = 340 nm and 380 nm (340/380 ratio), 
in standard physiological saline solution (PSS) for 2 min, followed by 6 min ChoCl 
treatment and a further 6 min washout, before ionomycin (10 μM) as the positive 
control was applied. The 340/380 ratios of cells before ionomycin treatment are also 
shown in (b). (c) and (d) show the averaged trace of (a) and (b), respectively (n = 70 
from one of three repeats). (e) The mean 340/380 ratio over the last 30 s of standard 
PSS, ChoCl treatment and washout. (f) The number of cells that exhibit Ca2+ spikes in 
standard PSS and ChoCl. ANOVA with Tukey post hoc test in (e) (n = 3). Fisher’s 
exact test in (f) (178 cells from three repeats). Data are mean ± SEM in (c), (d) and (e). 
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cells. Additionally, the number of cells that exhibited Ca2+ spikes during ChoCl 

treatment did not significantly differ compared to that in the standard PSS (Figure 4.2f; 

P = 0.15; Fisher’s exact test; 178 cells from three repeats).  

 

4.2.3 TTX application does not change the [Ca2+]i in MDA-MB-231 cells 

Since depletion of extracellular Na+ does not change [Ca2+]i, blocking VGSCs 

with TTX should not bring significant change to the [Ca2+]i. Indeed, application of 30 μM 

TTX showed no significant change in the [Ca2+]i on individual MDA-MB-231 cells, nor 

did the following washout (data from one of three technical repeats are shown in Figure 

4.3a–d; n = 55). The mean 340/380 ratios over the last 30 s of standard PSS, TTX 

treatment and washout were 1.0 ± 0.0, 1.0 ± 0.1 and 1.1 ± 0.1, respectively (Figure 

4.3e; P = 0.24; ANOVA with Tukey post hoc test; n = 3). Compared to standard PSS, 

TTX at 30 μM did not significantly change the number of cells that showed Ca2+ spikes 

(Figure 4.3f; P = 0.15; Fisher’s exact test; 185 cells from three repeats).  

In a following experiment, MDA-MB-231 cells were pre-treated with 30 μM TTX 

for 48 h before the drug was washed out 2 min after starting image acquisition. This 

was to investigate whether or not [Ca2+]i changes when the VGSC-mediated Na+ influx 

is resumed after inhibition for 48 h. Representative 340/380 ratios of cells from one of 

three technical repeats are shown in Figure 4.4a–d. [Ca2+]i of MDA-MB-231 cells did 

not significantly change after TTX washout: the mean 340/380 ratio over the last 30 s 

of TTX treatment and washout was 1.1 ± 0.1 and 1.1 ± 0.1, respectively (Figure 4.4e; P 

= 0.40; t-test; n = 3). Washing out TTX using standard PSS did not significantly alter 

the number of cells that exhibited Ca2+ spikes (Figure 4.4f; P = 0.55; Fisher’s exact 

test; 100 cells from three repeats). In summary, these data demonstrate that in MDA-

MB-231 cells, replacing extracellular Na+ with choline does not significantly change the 

[Ca2+]i. Acutely blocking VGSCs with TTX, or release of the cells from 48 h TTX  
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Figure 4.3. Intracellular Ca2+ concentration ([Ca2+]i) of MDA-MB-231 cells after acute 

tetrodotoxin (TTX) treatment. 

(a) The [Ca2+]i of individual cells, presented as the ratio of fluorescence signals 
subsequently collected at excitation wavelength = 340 nm and 380 nm (340/380 ratio), 
in standard physiological saline solution (PSS) for 2 min, followed by 6 min TTX (30 
μM) treatment and a further 6 min washout, before ionomycin (10 μM) as the positive 
control was applied. The 340/380 ratios of cells before ionomycin treatment are also 
shown in (b). (c) and (d) show the averaged trace of (a) and (b), respectively (n = 55 
from one of three repeats). (e) The mean 340/380 ratio over the last 30 s of standard 
PSS, TTX treatment and washout. (f) The number of cells that exhibit Ca2+ spikes in 
standard PSS and TTX. ANOVA with Tukey post hoc test in (e) (n = 3). Fisher’s exact 
test in (f) (185 cells from three repeats). Data are mean ± SEM in (c), (d) and (e). 
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Figure 4.4. Intracellular Ca2+ concentration ([Ca2+]i) of MDA-MB-231 cells released from 

48 h tetrodotoxin (TTX) treatment. 

(a) The [Ca2+]i of individual cells, presented as the ratio of fluorescence signals 
subsequently collected at excitation wavelength = 340 nm and 380 nm (340/380 ratio). 
Cells were pre-incubated with TTX (30 μM) for 48 h. TTX was washed out 2 min after 
image acquisition started for 12 min, before ionomycin (10 μM) as the positive control 
was applied. The 340/380 ratios of cells before ionomycin treatment are also shown in 
(b). (c) and (d) show the averaged trace of (a) and (b), respectively (n = 55 from one of 
three repeats). (e) The mean 340/380 ratio over the last 30 s of TTX treatment and 
washout. (f) The number of cells that exhibit Ca2+ spikes in TTX and following washout. 
n.s.: not significant. t-test in (e) (n = 3).  Fisher’s exact test in (f) (100 cells from three 
repeats). Data are mean ± SEM in (c), (d) and (e). 
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treatment did not change the [Ca2+]i. Therefore, Vm hyperpolarisation and/or VGSCs 

may not regulate [Ca2+]i in MDA-MB-231 cells. 

 

4.2.4 Recording endogenous IBKCa in MDA-MB-231 cells 

4.2.4.1 Whole-cell patch clamp recording 

In kidney tubular cells, Vm depolarisation induces MLC phosphorylation via the 

ROCK pathway in a Ca2+-independent manner (Szaszi et al., 2005). In the next part of 

the study, in order to hyperpolarise the Vm of MDA-MB-231 cells without blocking  

VGSCs, endogenously expressed BKCa channels were modulated (Roger et al., 2004; 

Khaitan et al., 2009). The typical Vm of MDA-MB-231 cells (~-10 mV) is more positive 

than the Vrev of K+ (-82 mV). Consequently, upon activation, BKCa channels should carry 

outward IBKCa and therefore hyperpolarise the Vm.  

Firstly, membrane current was recorded from MDA-MB-231 cells using the 

whole-cell patch clamp technique by depolarising the Vm from -120 mV to +80 mV 

using Cs+-free intracellular solution where the free [Ca2+] was buffered at 5.7 nM 

(Section 2.4.2). However, the outward IBKCa was not observed (Figure 4.5a). Since the 

activation of BKCa channels requires both Ca2+ and Vm depolarisation (Barrett et al., 

1982), the free [Ca2+] in the intracellular solution was increased to 100 nM, which is 

close to the concentration measured in MDA-MB-231 cells previously (Sareen et al., 

2007; Winnicka et al., 2008). At this concentration, persistent outward current was seen 

in one out of five MDA-MB-231 cells (Figure 4.5b).  

Next, the free [Ca2+] in the intracellular solution was increased further to 7.8 μM. 

Interestingly, in whole-cell patch clamp mode, in addition to the transient INa and the 

persistent outward current observed in Figure 4.5b, non-inactivating inward current was 

also recorded when depolarising the Vm to ≥ +30 mV (Figure 4.6a). The mean current 

amplitude between 100 ms and 150 ms after depolarisation was then analysed  
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Figure 4.5. Recording the current of large-conductance Ca2+ activated K+ (BKCa) 

channels in MDA-MB-231 cells using whole-cell patch clamp technique. 

Representative current traces from MDA-MB-231 cells with free [Ca2+] buffered at (a) 
5.7 nM and (b) 100 nM in the intracellular (pipette) solution. At free [Ca2+] = 100 nM, 
one out of five cells showed persistent outward current. Cells were held at -120 mV 
for 250 ms before depolarising to voltages ranging from -60 mV to +80 mV for 100 
ms in 10 mV increments. Every other current trace is shown for clarity. 
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Figure 4.6. A persistent inward current recorded in MDA-MB-231 cells. 

(a) The representative current trace and (b) the current-voltage relationship recorded 
from MDA-MB-231 cells in whole-cell patch clamp mode where the free [Ca2+] in the 
intracellular (pipette) solution was buffered at 7.8 μM. Cells were depolarised to 
voltages from -60 mV to +90 mV for 300 ms in 10 mV increments following a 250 ms 
pre-pulse at -120 mV. Every other current trace is shown for clarity. Panel (b) shows 
the mean current over 50 ms, 100 ms after the depolarisation takes place (n = 3). Data 
are mean ± SEM. 
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because (1) the transient INa was inactivated within 10 ms after depolarisation, and (2) 

50 ms after depolarisation, the size of the persistent INa is small (Section 3.2.3), and 

therefore INa at 100 ms after depolarisation would not contaminate measurement of 

other currents. As shown in the current-voltage relationship (Figure 4.6b; n = 3), the 

outward current density gradually increases from -60 mV. The membrane current 

peaks at +30 mV with the value of 4.0 ± 1.0 pA/pF (n = 3), and the inward current 

becomes the dominant type of current after this voltage, indicated by the decrease of 

membrane current density. The size of the slow inward current increases linearly as the  

depolarisation becomes more positive. At +90 mV, where the recording protocol 

terminates, the mean current density is -4.7 ± 1.0 pA/pF (n = 3). 

This persistent inward current has not been previously reported in MDA-MB-231 

cells. The characteristic slow inactivation and voltage-dependent activation are similar 

to those of L-type VGCCs (Hille, 2001). In order to investigate whether or not the 

current is Ca2+ carried by VGCCs, extracellular Ca2+ was replaced with Ba2+. Ba2+ 

blocks BKCa channels but can be a charge carrier through VGCCs (Armstrong & 

Matteson, 1985; Neyton & Miller, 1988; Hainsworth et al., 2006). None of the three 

tested cells treated with Ba2+-containing PSS showed persistent inward current at 

depolarised voltages (Figure 4.7a; n = 3). The current density at +90 mV was 1.5 ± 0.9 

pA/pF (n = 3), significantly different to that recorded using Ba2+-free extracellular saline 

solution, which was -4.7 ± 0.9 pA/pF (Figure 4.6; P < 0.01; t-test; n = 3). There was 

also a reduction, although not statistically significant, of the peak outward current 

density compared with the cells in the standard extracellular PSS [1.8 ± 1.0 pA/pF at 

+80 mV in the Ba2+-containing extracellular saline solution (Figure 4.7b) vs. 4.0 ± 1.0 

pA/pF at +30 mV in the standard PSS (Figure 4.6b). P = 0.17; t-test; n = 3 in both 

conditions]. In addition, extracellular co-application of 20 μM nifedipine and 200 μM 

Cd2+, which both block L-type VGCCs (Rosenberg et al., 1988; Furukawa et al., 1999),  
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Figure 4.7. The effects of Ba2+, and co-application of nifedipine and Cd2+ on the 

membrane current. 

(a) The representative current trace, and (b) the current-voltage relationship of the 
membrane current recorded from MDA-MB-231 cells treated with extracellular Ba2+ in 
whole-cell patch clamp mode where the free [Ca2+] in the intracellular (pipette) solution 
was buffered at 12.2 μM (n = 3). (c, d) Without Ba2+, 200 μM Cd2+ was added to the 
PSS. Nifedipine (20 μM) was also applied extracellularly. The recorded membrane 
current from a single cell is shown in (c) and the current-voltage-relationship in (d) (n = 
1). Cells were depolarised to voltages from -60 mV to +90 mV for 300 ms in 10 mV 
increments following a 250 ms pre-pulse at -120 mV. Every other current trace is 
shown for clarity. Panel (b) and (d) show the mean current over 50 ms, starting from 
100 ms after the depolarisation. Data are mean ± SEM in (b) and mean only in (d). 
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did not inhibit the persistent inward current (Figure 4.7c and d; n = 1). Taken together, 

these data suggest that VGCCs do not carry the persistent inward current.  

Because [Ca2+]i at micromolar range is much higher than in physiological 

conditions and the principle goal of the current experiment was to record IBKCa , the 

nature of this persistent inward current was not investigated further. 

 

4.2.4.2 Perforated patch clamp recording 

As an ionophore, nystatin selectively induces a conductance for monovalent ions 

but no permeability for divalent ions such as Ca2+ (Cass & Dalmark, 1973). Therefore, 

in order to leave the [Ca2+]i of MDA-MB-231 cells at its physiological level, perforated 

patch clamp using nystatin (120 μM) was adopted to isolate the outward IBKCa in MDA-

MB-231 cells. Both INa and persistent outward current were observed in all three cells 

tested (Figure 4.8).  

In order to further characterise the persistent outward current, in the next 

experiment, NS-1619, a BKCa channel activator (Macmillan et al., 1995), and IbTx, a 

BKCa channel blocker (Calderone, 2002), were applied to MDA-MB-231 cells and 

membrane current was recorded in perforated patch clamp mode. Compared to control 

(Figure 4.9a), application of 1 μM NS-1619 increased the amplitude of the persistent 

outward current (Figure 4.9b). Co-application of 1 μM NS-1619 and 100 nM IbTx 

inhibited the outward current (Figure 4.9c). The current-voltage relationships of the 

membrane current under three conditions are fitted into exponential equations (Section 

2.12), as shown in Figure 4.9d. In summary, the outward persistent current recorded in 

MDA-MB-231 cells using perforated patch clamp recording is IBKCa. 
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Figure 4.8. Recording the current of large-conductance Ca2+ activated K+ (BKCa) 

channels in MDA-MB-231 cells using perforated patch clamp technique. 

Nystatin (120 μM) was used in perforated patch clamp recordings. Three out of three 
cells tested showed both inward Na+ current and persistent outward current. Cells were 
held at -120 mV for 250 ms before depolarising to voltages ranging from -60 mV to +80 
mV for 100 ms in 10 mV increments. Every other current trace is shown for clarity. 
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Figure 4.9. The NS-1619- and iberiotoxin (IbTx)-sensitive large-conductance Ca2+-

activated K+ (BKCa) current in MDA-MB-231 cells. 

Perforated patch clamp recordings showing membrane current, elicited by +80 mV 
depolarisation following a 250 ms pre-pulse at -120 mV, in (a) control, (b) following 1 
μM NS-1619 treatment, and (c) after further co-application of 1 μM NS-1619 and 100 
nM IbTx. (d) Current-voltage relationship of the BKCa current. Data are fitted to single 
exponential equations. BKCa current was activated from a -120 mV (250 ms) pre-pulse 
to voltages between -60 mV and +90 mV for 300 ms in 10 mV increments (n = 5). 
Panel (d) analysed the mean current over 50 ms, starting from 100 ms after the 
depolarisation. Data are mean ± SEM. 
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4.2.5 Hyperpolarising the Vm of MDA-MB-231 cells using NS-1619 

When the resting Vm is more positive than the Vrev for K+, NS-1619 increases K+ 

efflux through BKCa channels, thus hyperpolarising the Vm (Prior et al., 1998). Next, 

using whole-cell patch clamp, the effect of NS-1619 on Vm of MDA-MB-231 cells was 

investigated. Using intracellular solution containing 100 nM [Ca2+] (Table 2.3), cells 

were incubated with NS-1619 for 6 min before the recording. NS-1619 at 1 μM, 5 μM, 

10 μM and 40 μM hyperpolarised the steady-state Vm of MDA-MB-231 cells to -15.0 ±  

0.6 mV (n = 12), -25.2 ± 1.13 mV (n = 6), -31.7 ± 3.2 mV (n = 10) and -51.8 ± 3.3 mV (n 

= 9), respectively, in a dose-dependent manner (Figure 4.10a). Compared with the Vm 

in the standard PSS, which is -10.6 ± 1.3 mV (n = 12), 1 μM NS-1619 significantly 

hyperpolarised the Vm by 4.4 mV to -15.0 ± 0.6 mV (Figure 4.10b; P < 0.01; t-test; n = 

12), similar to the hyperpolarisation caused by 30 μM TTX (Section 3.2.3). 

Finally, the Vm recorded using the standard intracellular solution (free [Ca2+] = 5.7 

nM, Table 2.3) is -10.3 ± 1.0 mV (n = 10), which does not significantly differ from that 

recorded using the intracellular solution with 100 nM free [Ca2+], which is -10.6 ± 1.2 

mV (Figure 4.11; P = 0.82; t-test; n = 12), suggesting that at the physiological [Ca2+]i of 

100 nM (Sareen et al., 2007; Winnicka et al., 2008), BKCa channels have negligible 

contribution to regulating the Vm in MDA-MB-231 cells in the absence of NS-1619. 

 

4.2.6 NS-1619 does not affect MDA-MB-231 cell proliferation 

The dynamic change of Vm has instructive roles in promoting cell cycle 

progression: Vm undergoes hyperpolarisation at G1/S border and depolarisation at G2/M 

(Blackiston et al., 2009; Yang & Brackenbury, 2013). Blocking VGSCs using TTX or 

phenytoin hyperpolarises the Vm in MDA-MB-231 cells (Section 3.2.3 and Section 

3.2.4). However, previously published studies show that these inhibitors do not affect  
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Figure 4.10. NS-1619 hyperpolarises the membrane potential (Vm) of MDA-MB-231 

cells. 

(a) The dose-response curve of 1, 5, 10 and 40 μM NS-1619 on the steady-state Vm of 
MDA-MB-231 cells (n ≥ 6). The data are fitted to a sigmoidal logistic equation. (b) 
Effect of 1 μM NS-1619 on the steady-state Vm of MDA-MB-231 cells. Cells were 
incubated with the drug for 2 min before their Vm was recorded using whole-cell patch 
clamp. (**) P < 0.01; t-test (n = 12 in each condition). Data are mean ± SEM. Liquid 
junction potential (3 mV) is compensated. 
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Figure 4.11. Membrane potential (Vm) recorded in whole-cell patch mode with different 

free [Ca2+] in the recording pipette.  

The Vm recorded using intracellular (pipette) solution with free [Ca2+] buffered at 5.7 nM 
and 100 nM using EGTA in whole-cell patch clamp mode. Liquid junction potential is 
compensated. n.s. not significant; t-test (n = 10 and 12 in 5.7 nM and 100 nM [Ca2+], 
respectively). Data are mean ± SEM. 
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the proliferation of MDA-MB-231 cells in vitro (Roger et al., 2003; Fraser et al., 2005; 

Yang et al., 2012). Here, NS-1619 was applied at two concentrations and its 

hyperpolarising effects on MDA-MB-231 cell proliferation was measured using the MTT 

assay (Section 2.5.1). Figure 4.12a shows a typical linear standard curve generated for 

one of the three technical repeats, relating the absorbance of MTT at 570 nm to cell 

number, with R2 = 0.98. The cell numbers after 24 h incubation with 1 μM or 40 μM NS-

1619 were (7.2 ± 0.6) × 104 and (7.1 ± 0.6) × 104, respectively, which is not significantly 

different from that of control at (7.2 ± 0.6) × 104 (Figure 4.12b; P = 1.00 and 0.94 

comparing control with 1 μM and 40 μM NS-1619, respectively; ANOVA with Tukey 

post hoc test; n = 9). In summary, these data suggest that hyperpolarising the Vm using 

NS-1619 does not affect MDA-MB-231 cell proliferation. 

 

4.2.7 NS-1619 reduces MDA-MB-231 cell migration 

Since blockade of VGSCs reduces MDA-MB-231 cell motility (Fraser et al., 2003; 

Yang et al., 2012), the effect of hyperpolarising the Vm with NS-1619 or TTX on 

migration was examined using ptychrography technique. MDA-MB-231 cells were 

grown into confluent monolayers before a wound was made. Cells were then washed 

once with 37 °C DMEM with 0 % FBS to remove cell debris before TTX (30 μM) or NS-

1619 (1 μM) was applied. The cells were then allowed to migrate into wounds for 16 h, 

at 37 °C, 5 % CO2 under a Phasefocus VL-21 microscope. Figure 4.13a shows 

representative wounds under all conditions at the beginning and end of the experiment. 

Because cells undergo volume increase during mitosis, the cell volume measured 

using ptychography is a direct indicator of cell proliferation (Marrison et al., 2013). 

Neither 30 μM TTX nor 1 μM NS-1619 significantly altered the rate of cell volume 

increase (Figure 4.13b; n = 3). The cell volume gradient was (2.8 ± 0.1) × 104 μm3/h in 

control, (2.0 ± 0.1) × 104 μm3/h and (2.2 ± 0.3) × 104 μm3/h after 30 μM TTX and 1 μM  
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Figure 4.12. NS-1619 does not affect MDA-MB-231 cell proliferation. 

MDA-MB-231 cell proliferation was determined by using 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) assay. (a) Representative linear standard curve 
relating the absorbance of MTT at 570 nm (A570) with cell number. (b) The number of 
cells after 24 h treatment with 1 μM or 40 μM NS-1619. ANOVA with Tukey post hoc 
test (n = 9). Data are mean ± SEM. 
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Figure 4.13. NS-1619 and tetrodotoxin reduce MDA-MB-231 cell lateral migration. 

(a) Representative wounds at the beginning (0 h) and the end (16 h) of wound healing 
assay with TTX (30 μM) or NS-1619 (1 μM) treatment. (b) Cell proliferation, indicated 
by the normalised cell volume during wound healing assays. Dashed lines show mean 
± SEM. (c) Cell volume gradient, an index of cell growth rate, during the wound healing 
assays. (d) Normalised wound area (“gap”) in the wound healing assays. Dashed lines 
show mean ± SEM. (e) t1/2 of wound closure in (d). Scale bar = 100 μm. (*) P < 0.05; 
n.s. not significant; ANOVA with Tukey post hoc test (n = 3). Data are mean ± SEM. 
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NS-1619 treatment, respectively (Figure 4.13b; P = 0.10 and 0.16 comparing TTX and 

NS-1619 with control, respectively; P = 0.54 comparing with TTX and NS-1619; 

ANOVA with Tukey post hoc test; n = 3).  

While the cells migrated into the wound, the remaining wound area (gap 

remaining) was measured over 16 h (Figure 4.13d). The t1/2 of wound closure 

increased from 5.7 ± 1.1 h in control to 9.8 ± 0.7 h in 30 μM TTX and 9.9 ± 0.1 h in 1 

μM NS-1619 (Figure 4.13e; P < 0.05 comparing TTX or NS-1619 with control; P = 1.00 

comparing 30 μM TTX with 1 μM NS-1619; ANOVA with Tukey post hoc test; n = 3). 

Thus, by hyperpolarising the Vm to a comparable voltage, TTX and NS-1619 increased 

the t1/2 of wound closure to a similar extent, suggesting that VGSCs may increase 

MDA-MB-231 cell motility by depolarising the Vm. 

 

4.2.8 NS-1619 does not affect MDA-MB-231 cell invasion 

Blocking VGSCs with TTX reduces MDA-MB-231 cell Matrigel invasion (Fraser et 

al., 2005; Brackenbury et al., 2007). Next, the functional role of Vm in mediating 

invasion was investigated. MDA-MB-231 cells were grown on Matrigel-coated invasion 

chambers with TTX or NS-1619 for 24 h before the invaded cells were fixed using 

paraformaldehyde and stained with DAPI. The number of DAPI-positive cells was 

counted under an epi-fluorescence microscope. TTX at 30 μM significantly reduced the 

number of invaded cells to 58.3 ± 6.5 % of control (Figure 4.14a; P < 0.01 compared 

with control, ANOVA with Tukey post hoc test; n = 7), whereas NS-1619 at 1 μM did 

not significantly alter the number of invaded cells (Figure 4.14a; P = 0.98 compared 

with control and P < 0.05 compared with TTX; ANOVA with Tukey post hoc test; n = 7). 

Moreover, using 40 μM NS-1619 to hyperpolarise the Vm of MDA-MB-231 cells further 

to -51.8 ± 3.3 mV (Figure 4.10a) did not significantly change the number of invaded 

cells compared with control (Figure 4.14b; 114.3 ± 24.5 % of control; P = 0.58; ANOVA  
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Figure 4.14. NS-1619 does not alter MDA-MB-231 invasion in vitro. 

(a) Invaded cells (normalised to control) after 24 h treatment with 30 μM TTX or 1 μM 
NS-1619 were measured using the Matrigel invasion assay. (*) P < 0.05; (**) P < 0.01, 
respectively; ANOVA with Tukey post hoc test (n = 7). (b) Invaded cells after 40 μM 
NS-1619 treatment for 24 h. n.s. not significant; t-test (n = 6). Data are mean ± SEM. 
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with Tukey post hoc test; n = 6), suggesting that Vm may not be a factor regulating 

MDA-MB-231 cell invasion in vitro. 

 

4.2.9 TTX and NS-1619 alter MDA-MB-231 cell morphology 

In MDA-MB-231 cells, Nav1.5 modulates cytoskeletal components and promotes 

an elongated cell morphology (Brisson et al., 2013; Nelson et al., 2015b). Additionally, 

blocking VGSCs with ranolazine increases the circularity of MDA-MB-231 cells (Driffort 

et al., 2014), whereas TTX application reduces process length on Mat-LyLu cells 

(Fraser et al., 1999). To test whether Nav1.5-mediated morphology regulation is 

dependent on Vm, a wound was made on confluent MDA-MB-231 cell monolayer 

followed by a wash with 37 °C DMEM with 0 % FBS to remove cell debris before TTX 

(30 μM) or NS-1619 (1 μM) was applied. Cells were then allowed to migrate into the 

wound for 3 h before being fixed with paraformaldehyde. F-actin and nucleus were 

labelled with Alexa 633-conjugated phalloidin and DAPI, respectively. Cells were then 

examined using a Zeiss LSM 880 laser scanning confocal microscope. The boundaries 

of single cells (20–25 cells per condition in each of three technical repeats) at both 

ends of the wound were determined using the free-hand line tool in ImageJ software 

(Figure 4.15a), and circularity was calculated using the same software according to 

Equation 2.4. TTX (30 μM) significantly increased the circularity from 0.54 ± 0.17 in 

control to 0.64 ± 0.15 (Figure 4.15a and b; P < 0.001; ANOVA with Tukey post hoc test; 

n = 61 in control and n = 62 in TTX). Similarly, NS-1619 (1 μM) increased the circularity 

to 0.61 ± 0.15 (P < 0.05 compared with control; ANOVA with Tukey post hoc test; n = 

61 in control and n = 67 in NS-1619). Interestingly, there was no statistically significant 

difference in circularity between TTX and NS-1619 treatment (P = 0.56; ANOVA with 

Tukey post hoc test; n = 62 in TTX and n = 67 in NS-1619), suggesting both the drugs 

reduced the elongated morphology of MDA-MB-231 cells to a similar degree. 
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Figure 4.15. Tetrodotoxin (TTX) and NS-1619 increase MDA-MB-231 cell circularity.  

(a) Representative cell morphology after TTX (30 μM) and NS-1619 (1 μM) treatment 
for 3 h. Cells were stained with Alexa 633-conjugated phalloidin (red) and DAPI (blue). 
Lower row shows the boundaries of cells of interest in the upper row, by which the 
circularity of cells was calculated. (b) Circularity of MDA-MB-231 cells after TTX and 
NS-1619 treatment. (*)P < 0.05; (***) P < 0.001; n.s. not significant; ANOVA with Tukey 
post hoc test (n = 61, 62 and 67 in control, TTX and NS-1619, respectively). Data are 
mean ± SEM. Scale bar = 20 μm. 
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4.2.10 TTX and NS-1619 reduce the proportion of MDA-MB-231 cells 

bearing lamellipodia 

The protrusion of lamellipodia initiates cell migration (Small et al., 2002). Given 

that both TTX and NS-1619 reduce MDA-MB-231 cell migration and induce a round 

morphology, these compounds may reduce the formation of lamellipodia in MDA-MB-

231 cells. The proportion of cells with a lamellipodium after TTX (30 μM) and NS-1619 

(1 μM) treatment was analysed using the images acquired in Section 4.2.9. The 

proportion of cells with lamellipodium was compared pairwise using Fisher’s exact tests 

among control, TTX and NS-1619 treatments, resulting in three comparisons. 

Bonferroni correction was applied for multiple comparisons: with three pairwise 

comparisons, the P value must be less than 0.05 ÷ 3 = 0.016 to be significant at the P 

< 0.05 level (MacDonald & Gardner, 2000). The pairwise P value between control and 

TTX was 0.0002, suggesting the distribution of samples was significantly different 

between the two conditions, i.e. TTX reduced the proportion of MDA-MB-231 cells 

bearing a lamellipodium (Table 4.1). The P value comparing NS-1619 and control was 

< 0.0001, suggesting that NS-1619 also reduced the proportion of cells with 

lamellipodium (Table 4.1). However, the proportion of cells bearing a lamellipodium did 

not differ between TTX and NS-1619 (P = 0.84). In summary, both TTX (30 μM) and 

NS-1619 (1 μM) significantly reduced the proportion of cells bearing a lamellipodium to 

a similar degree, consistent with these compounds inhibiting migration. 

 

4.2.11 TTX and NS-1619 reduce the active Rac1 level at the leading edge of 

MDA-MB-231 cells 

The small GTPase Rac1 is one of the key molecules required for the formation of 

lamellipodia, by promoting the assembly of actin filaments (Ridley, 2015). Activating 

Rac1 is sufficient to induce cell migration (Wu et al., 2009; Montell et al., 2012). Since  
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Table 4.1. The proportion of MDA-MB-231 cells bearing a lamellipodium after 

tetrodotoxin (TTX) and NS-1619 treatment. 

 Control 30 μM TTX 1 μM NS-1619 

Representative 
cells 

   
Cells with 

lamellipodium 109 72 * 66 * 

Cells without 
lamellipodium 41 69 * 73 * 

Total # of cells 150 141 139 

(*) adjusted P < 0.05 compared with control. Fisher’s exact test with Bonferroni 
corrections for multiple comparisons. Three technical repeats were preformed. Red: F-
actin; green: active Rac1; blue: DAPI. Scale bar = 20 μm. 



 

 

170 

hyperpolarising Vm using TTX (30 μM) and NS-1619 (1 μM) retarded MDA-MB-231 cell 

migration (Section 4.2.7) and reduced the proportion of cells with a lamellipodium 

(Section 4.2.10), it is possible that Vm may regulate Rac1 activity, actin filament 

assembly and thus cell migration. To test this, MDA-MB-231 cells were fixed during a 

wound healing assay using paraformaldehyde as described in Section 4.2.9, and were 

labelled with an anti-active Rac1 antibody. Cells were then labelled with Alexa 488-

conjugated secondary antibody and Alexa 633-conjugated phalloidin, and nuclei were 

labelled with DAPI. Samples were examined using a Zeiss LSM 880 confocal 

microscope. The active Rac1 fluorescence intensity was strong at the leading edge of 

cells in control, but was weaker in TTX (30 μM)- or NS-1619 (1 μM)-treated MDA-MB-

231 cells (Figure 4.16, arrows).   

In order to quantify the data, a 90 ° quadrant mask with a radius of 5.6 μm 

encompassing the lamellipodium/cell leading edge was applied to cells that were 

migrating into the wound (Figure 4.17a). Inside the mask, the signal density of F-actin 

and active Rac1 across a series of arcs with various radii was gathered and normalised 

to that of the innermost arc (Figure 4.17b). Treatment with TTX (30 μM) or NS-1619 (1 

μM) reduced the F-actin signal density in outer arcs within the lamellipodia (Figure 

4.15a, Figure 4.17c, Table 4.1). The active Rac1 signal density at the leading edge of 

lamellipodia was also significantly reduced (Figure 4.15a, Figure 4.17d, Table 4.1). For 

example, the active Rac1 signal in the arc with radius of 4.76 μm was 129.4 ± 4.6 % in 

control, 113.9 ± 4.2 % in TTX (P < 0.05 compared with control; ANOVA with Tukey post 

hoc test; n = 67 in control and n = 66 in TTX) and 107.9 ± 3.5 % in NS-1619 (P < 0.001 

compared with control; P = 0.56 compared with 30 μM TTX; ANOVA with Tukey post 

hoc test; n = 71). Therefore, in MDA-MB-231 cells, decreased active Rac1 levels at the 

leading edge caused by Vm hyperpolarisation may reduce lamellipodia formation, 

induce round morphology and reduce motility, by inhibiting F-actin.  
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Figure 4.16. The expression of F-actin and active Rac1 in MDA-MB-231 cells after 

tetrodotoxin (TTX) and NS-1619 treatment. 

In a wound healing assay, MDA-MB-231 cells were allowed to migrate into the wound 
for 3 h in the presence/absence of TTX (30 μM) or NS-1619 (1 μM). Cells were then 
fixed with paraformaldehyde and labelled with mouse anti-active Rac1 antibody, 
followed by Alexa 488 conjugated goat anti mouse IgG secondary antibody. F-actin 
was labelled with Alexa 633-conjugated phalloidin. Cells were then mounted on 
microscope slides with DAPI and were examined using a Zeiss LSM 880 laser 
scanning confocal microscope. White arrows highlight active Rac1 staining at cell 
leading edge. Scale bar = 20 μm. 
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Figure 4.17. F-actin and active Rac1 signal intensity in the lamellipodium of MDA-MB-

231 cells. 

(a) Representative cell (in control condition) showing the quadrant mask as the region 
of interest for analysing F-actin and active Rac1 signal intensity at lamellipodia. (b) The 
signal density was measured across 20 arcs with various radii, in 0.28 μm increments, 
within the quadrant. (c) Normalised F-actin and (d) active Rac1 signal density across 
the arcs indicated in (b). (*) P < 0.05 comparing control and TTX (30 μM), and 
comparing control and NS-1619 (1 μM); ANOVA with Tukey post hoc test (n = 61, 62 
and 67 in control, TTX and NS-1619, respectively). Data are mean ± SEM. Scale bar = 
20 μm. 
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Taken together, data in this Chapter suggest that Vm hyperpolarisation does not 

significantly alter the [Ca2+]i in MDA-MB-231 cells. Activating BKCa channels with NS-

1619 mimicked TTX-induced Vm hyperpolarisation. Comparisons between cells treated 

with TTX and NS-1619 demonstrated that VGSC-induced Vm hyperpolarisation inhibits 

MDA-MB-231 cell motility, causes round cell morphology; reduces the proportion of 

cells with a lamellipodium, and decreases the level of active Rac1 at cell leading edge. 

In contrast, VGSCs appear to promote invasion independent of the Vm. 

 

4.3 Discussion 

4.3.1 Vm hyperpolarisation does not change [Ca2+]i in MDA-MB-231 cells 

Since Vm changes have been shown to regulate [Ca2+]i via Ca2+-permeable 

channels (Schwab et al., 2012), in the present study, it was hypothesised that Vm 

hyperpolarisation might change [Ca2+]i in MDA-MB-231 cells. However, replacing 

extracellular NaCl with ChoCl to hyperpolarise the Vm, or blocking VGSCs using TTX 

did not cause significant changes to the [Ca2+]i, nor the number of cells that exhibit Ca2+ 

spikes. Interestingly, unpublished data from Dr Scott Fraser (Imperial College London) 

presented at the 2015 Ion Channels, Transporters and Cancer meeting reported that at 

room temperature, MDA-MB-231 cells in ATP- and serum-free saline solution show 

spontaneous Ca2+ spikes, measured using Fluo-4 as the Ca2+ fluorescence indicator, 

and TTX reduced the occurrence and the magnitude of these Ca2+ spikes (Fraser et al., 

2015). Furthermore, high KCl application at the end of the experiment caused a large 

increase in [Ca2+]i. Several factors may contribute to the disagreement with the data in 

this Chapter. Firstly, in contrast to Fura-2, Fluo-4 is a non-ratiometric Ca2+ fluorescence 

indicator with a lower affinity (Kd = 300 nM) (Gee et al., 2000). Fluo-4 may be less 

sensitive than Fura-2 but does not chelate [Ca2+]i as strongly as Fura-2 (Takahashi et 

al., 1999). Hence, compared with Fura-2, Fluo-4 may be more suitable for recording 
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Ca2+ activities that depend on free cytosolic Ca2+, such as store-operated Ca2+ entry 

(SOCE) through Ca2+-release activated Ca2+ (CRAC) channels (Takahashi et al., 

1999). Future experiments should directly compare these Ca2+ fluorescence indicators. 

Secondly, the high KCl-induced Ca2+ increase reported by Dr Fraser suggests the 

presence of depolarisation-induced Ca2+ entry or release from stores. The machinery 

that carries the Ca2+ influx in MDA-MB-231 cells needs to be further investigated. In the 

present study, VGCCs were not detected in MDA-MB-231 cells. The scenario that the 

Ca2+ was released from the store is also unlikely, because as a low affinity Ca2+ 

indicator, Fluo-4 can bind to Ca2+ in organelles in the first place (Takahashi et al., 1999; 

Lambert, 2006), therefore, any Ca2+ release from the store/organelle should be 

reflected as redistribution rather than an increase of Fluo-4 signal intensity. Clearly, the 

link between VGSC/Vm and [Ca2+]i in MDA-MB-231 cells needs further investigation, 

using multiple Ca2+ indicators. 

 

4.3.2 BKCa channels hyperpolarise the Vm of MDA-MB-231 cells 

Experiments in this Chapter investigated whether the depolarised Vm per se is a 

functional factor in promoting cancer cell metastatic behaviours by modulating 

endogenous BKCa channels. Unexpectedly, while searching for a suitable protocol to 

record the BKCa current, a voltage-dependent persistent inward current was discovered 

in MDA-MB-231 cells when the [Ca2+]i was buffered at 7.8 μM. The current is not 

sensitive to VGCC blockers nifedipine and Cd2+, but is abolished by Ba2+, which inhibits 

BKCa channels. Other groups have also recorded similar inward current while studying 

BKCa channels by applying [Ca2+]i in the micromolar range (Cui et al., 1997; Xia et al., 

2002), and mutations in the BKCa intracellular regulator of the conductance of K+ (RCK) 

domain abolish this inward current (Xia et al., 2002). The persistent inward current may 

also be mediated by other types of Ca2+-sensitive currents, such as Ca2+-activated Cl- 
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current and CRAC (Hartzell et al., 2005; Motiani et al., 2010). Future work is required to 

establish whether this inward current is a feature of endogenous BKCa channels, or is 

due to indirect activation of another type of channel, e.g. ClC3 (Habela et al., 2008). 

In whole-cell patch clamp mode, by buffering the [Ca2+] in the intracellular solution 

to 100 nM, which is close to the physiological [Ca2+]i reported in MDA-MB-231 cells 

(Sareen et al., 2007; Winnicka et al., 2008), BKCa current can be recorded from MDA-

MB-231 cells, in agreement with a previous study (Roger et al., 2004). However, the 

perforated patch clamp technique leaves the [Ca2+]i uncontaminated by components in 

the recording pipette, and this technique delivered better success rate in recording 

BKCa currents from MDA-MB-231 cells. The current-voltage relationship obtained is 

similar to that reported previously (Roger et al., 2004). Activating BKCa channels using 

NS-1619 at various concentrations hyperpolarised the Vm. Interestingly, activating BKCa 

channels in MDA-MB-231 cells using 40 μM NS-1619 yielded a Vm at ~-52 mV, similar 

to that in non-tumourigenic mammary epithelial MCF-10A cells where various types of 

K+ channels are present (Fraser et al., 2005). This suggests that the depolarised Vm (~-

10 mV) recorded from MDA-MB-231 cells should be attributed to the Na+ influx carried 

by VGSCs as well as the low activity of Vm-hyperpolarising K+ channels. 

 

4.3.3 Vm hyperpolarisation does not inhibit MDA-MB-231 cell proliferation 

Although Vm can function as an instructive signal in promoting cell cycle 

progression, previous reports have shown that blocking VGSCs with TTX or phenytoin 

does not affect cancer cell proliferation in vitro (Roger et al., 2003; Fraser et al., 2005; 

Yang et al., 2012; Aktas et al., 2015). In the present study, hyperpolarising the Vm 

using NS-1619 did not affect MDA-MB-231 cell proliferation. However, another study 

reported that NS-1619 at 50 μM reduced MDA-MB-231 cell growth by 40 % (Roger et 

al., 2004). This discrepancy is probably due to the higher concentration and the 
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different incubation period adopted [5 days in (Roger et al., 2004) vs. 1 day in the 

present study]. Since Vm hyperpolarisation inhibits MDA-MB-231 cell migration (Section 

4.2.7), the cell colonies may expand more slowly and therefore longer incubation leads 

to higher cell population density, which may induce contact inhibition of proliferation 

and locomotion, as well as apoptosis (Bates et al., 1994). Future work needs to 

determine whether in MDA-MB-231 cells, Vm regulates cell proliferation in a cell-density 

dependent manner.  

In rat cerebellar neurones, Vm-dependent cell cycle progression is partly 

dependent on promoting the activity of VGCCs that trigger downstream Ca2+ signalling 

by carrying Ca2+ influx upon Vm depolarisation (Borodinsky & Fiszman, 1998). 

However, in MDA-MB-231 cells, there is no evidence showing the presence of VGCCs. 

In addition, Ca2+ imaging data show that Vm hyperpolarisation, which is thought to be 

able to increase the driving force of Ca2+ entry, does not significantly alter the [Ca2+]i of 

MDA-MB-231 cells (Section 4.2.2), suggesting Vm may not play an important role in 

Ca2+-dependent proliferation of MDA-MB-231 cells. 

 

4.3.4 Vm hyperpolarisation reduces migration but not invasion 

In MDA-MB-231 cells, Vm depolarisation caused by VGSCs promotes cell motility, 

because TTX (30 μM) or NS-1619 (1 μM) hyperpolarised the Vm to a similar degree 

and decreased migration to comparable levels. Activating BKCa channels has been 

previously reported to reduce migration of glioma cells, although the molecular 

mechanism was unclear (Bordey et al., 2000; Kraft et al., 2003). However, another 

study using the same 1321N glioma cells as in Kraft et al., 2003 demonstrated that 

inhibiting BKCa channels reduced cell transwell migration (Weaver et al., 2004). The 

authors proposed that this is because BKCa channel activity is necessary for regulating 

cell volume (Schwab et al., 1994; Weskamp et al., 2000; Schwab, 2001), which is 
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important while the cells are migrating through the 8 μm-sized pores on the 

polyethylene terephthalate membrane. In this Chapter, ptychography was used to 

measure the change in MDA-MB-231 cell volume in wound healing assays, and 1 μM 

NS-1619 did not significantly alter the cell volume compared to control. Therefore, it is 

possible that the role of BKCa channels in controlling cell volume is more significant in 

transwell migration than in lateral migration. 

Interestingly, the inactivation of BKCa channels in MDA-MB-231 cells grown on 

monolayers of human brain microvasculature endothelial HCMEC/D3 cells reduced 

transendothelial migration (Khaitan et al., 2009). This suggests that the functionality of 

BKCa channels during MDA-MB-231 cell migration is dependent on the culture 

conditions and the extracellular environment. MDA-MB-231 cell invasion was not 

affected by hyperpolarising the Vm using NS-1619, however, TTX reduced invasion by 

~42 % (Section 4.2.8), consistent with previous reports (Fraser et al., 2005; 

Brackenbury et al., 2007). Thus, the data in this Chapter suggest that VGSCs control 

MDA-MB-231 cell migration and invasion via different pathways: VGSC-mediated Vm 

depolarisation promotes cell migration, whereas Na+ itself may lead to a more invasive 

phenotype in MDA-MB-231 cells, independent of regulating the Vm. Indeed, a model 

previously proposed by Dr Sebastien Roger’s group argues that Na+ allosterically 

regulates NHE1 at the MDA-MB-231 cell plasma membrane, which acidifies 

extracellular pH and therefore promotes cysteine cathepsin B and S proteolytic activity, 

leading to a more invasive phenotype (Gillet et al., 2009; Brisson et al., 2011).  

 

4.3.5 Vm hyperpolarisation reduces the active Rac1 level at the leading 

edge 

The relationship between VGSCs and small GTPase Rac1 was recently reported, 

where researchers demonstrated that in ATP-stimulated microglia, VGSCs increased 
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[Ca2+]i via NCX and subsequently activated ERK and Rac1, which led to migration 

(Persson et al., 2014). However, data here show that in MDA-MB-231 cells, 

hyperpolarising the Vm using TTX and NS-1619 both reduced the active Rac1 level at 

the cell leading edge, but the [Ca2+]i did not significantly change after ChoCl or TTX 

treatment. This suggests that NCX activity may not be involved in the Vm-dependent 

[Ca2+]i regulation in the context of MDA-MB-231 cells, and Rac1 may be regulated by 

Vm/VGSCs but not Ca2+. 

The VGSC-Vm-Rac1 signalling axis fits well in a previously proposed model in 

MDA-MB-231 cells in which VGSCs potentiate the phosphorylation of src kinase and 

cortactin (Brisson et al., 2013). Src kinase can promote cortactin phosphorylation via 

Rac1 activation (Head et al., 2003; Servitja et al., 2003), which ultimately facilitates 

lamellipodia formation by activating the Arp2/3 complex (Miki et al., 1998; Krueger et 

al., 2003). Interestingly, it has been reported that VGSC activity caused the activation 

of the small GTPase Rap1B in SW620 cells (House et al., 2015). Further experiments 

should explore whether the activation of Rap1B is due to the Vm-depolarising role of 

VGSCs in these cells. 

The detailed mechanism by which Vm regulates Rac1 activation and/or 

distribution is not yet clear. Vm may regulate Rac1 activity via controlling GEFs, For 

example, GEF-H1 (a Rho GEF) is activated upon Vm depolarisation (Waheed et al., 

2010). In addition, the Vm depolarisation-induced activation of Ras and Rap1 has been 

reported in mouse cortical neurones (Baldassa et al., 2003). In PC12 cells, Vm 

depolarisation activates Ras in a PKA-dependent manner (Obara et al., 2007). Given 

that VGSCs activate PKA in MDA-MB-231 and Mat-LyLu cells (Brackenbury & 

Djamgoz, 2006; Chioni et al., 2010), activation of Rac1 may be through this pathway. 

More recently, a study has demonstrated that Vm depolarisation enhances 

phosphatidylserine and K-Ras nanoclustering in baby hamster kidney cells, and K-Ras 

nanoclustering upon Vm depolarisation activates the MAPK signalling pathway (Zhou et 
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al., 2015). Taken together, emerging data suggest that a depolarised Vm is a functional 

signal in activating small GTPases. It may consequently and/or concurrently promote 

the MAPK signalling pathway, which in turn controls key cellular behaviours including 

proliferation, differentiation and development (Shaul & Seger, 2007).  

 

4.4 Conclusion 

The data in this Chapter show that Vm hyperpolarisation and blockade of VGSC 

have no impact on [Ca2+]i of MDA-MB-231 cells. Modulating the Vm using TTX and NS-

1619 has revealed a role for Vm depolarisation in promoting migration but not invasion 

of MDA-MB-231 cells. TTX and NS-1619 both reduce lamellipodium formation and 

cause a round morphology in these cells, likely through reducing the active Rac1 level 

at the leading edge of lamellipodia (Figure 4.18). Further studies should elucidate the 

detailed molecular mechanism(s) by which a depolarised Vm activates Rac1 in BCa 

cells. 
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Figure 4.18. Depolarised membrane potential (Vm) increases MDA-MB-231 cell 

migration.  

This Chapter demonstrated that blocking voltage-gated Na+ channels (VGSCs) or 
hyperpolarising the Vm does not change intracellular Ca2+ concentration ([Ca2+]i, red 
cross). However, VGSC activity and depolarised Vm promotes lamellipodium formation 
and cell migration by increasing active Rac1 level at MDA-MB-231 cell leading edge (red 
arrow). Whether Na+/VGSC regulates Rac1 activity independent of Vm is not clear 
(dashed line). Figure is adapted from (Yang & Brackenbury, 2013). 



 

 

181 

5 Chapter 5: Investigating the INa and Vm in tumour tissue slices 

5.1 Introduction 

Na+ accumulation in tumour cells was reported in the 1980s: X-ray microanalyses 

of freeze-dried tissue sections revealed that cancer cells have a higher [Na+]i: the mean 

[Na+]i of H6 mouse hepatoma, 7777 rat hepatoma, C3H mouse adenocarcinoma and 

13762 HF rat adenocarcinoma is 451 mmol/kg in freeze-dried tissue sections, which is 

significantly higher than that in their non-cancerous counterparts (138 mmol/kg) 

(Cameron et al., 1980). In addition, rapidly proliferating cells, including neonatal mouse 

cardiomyocytes and rat thymus cortex cells, have significantly higher [Na+]i (196 

mmol/kg) than slowly proliferating cells, such as rat thymus medulla and mouse/rat 

mammary epithelial cells (140 mmol/kg), but have significantly lower [Na+]i than cancer 

cells (Cameron et al., 1980). Electron probe X-ray analysis revealed that daily injection 

of amiloride to H6 hepatoma-bearing mice reduces intranuclear [Na+]i from 499 mmol/kg 

to 275 mmol/kg and significantly decreases tumour growth (Sparks et al., 1983). In 

Xenopus laevis, Na+ accumulation appears in regions where cells over-proliferate 

(Lobikin et al., 2012). Moreover, quantitative magnetic resonance imaging (MRI) has 

shown that the total tissue Na+ concentration in patients’ BCa lesions is 53 mmol/l, which 

is significantly elevated compared to benign lesions (26 mmol/l) (Ouwerkerk et al., 

2007). 

How Na+ accumulates in cancer cells is not clear. Recently, it is reported that 

VGSCs increase the [Na+]i in lung cancer cells: compared to VGSC-expressing H460 

NSCLC cells, the [Na+]i of VGSC-lacking normal NL-20 cells or non-invasive A549 cells 

is significantly lower (Roger et al., 2007; Campbell et al., 2013). Blocking VGSCs in 

H460 cells with TTX reduces the [Na+]i from 22.3 mM to 10.8 mM (Campbell et al., 

2013). Therefore, considering the correlation between increased [Na+]i and 
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tumourigenesis (Pool et al., 1981; Sparks et al., 1983), it is possible that the high 

malignancy of MDA-MB-231 cells may be partly due to a high [Na+]i caused by VGSCs. 

Indeed, VGSCs increase MDA-MB-231 cell migration by depolarising the Vm, but Na+ per 

se may be important in potentiating cell invasion. Thus, it is likely that VGSCs may also 

regulate [Na+]i in MDA-MB-231 cells. 

In mouse BCa models, inhibiting Nav1.5 with phenytoin or ranolazine reduces 

tumour growth (Nelson et al., 2015a) and metastasis (Yildirim et al., 2012; Driffort et al., 

2014; Nelson et al., 2015a; Nelson et al., 2015b). Together with the in vitro data (Fraser 

et al., 2005; Brackenbury et al., 2007; Yang et al., 2012), these studies suggest that 

VGSCs may be potential therapeutic targets in cancer treatment. However, the 

functional activity of VGSCs in tumours in vivo has not been explored. In this Chapter, 

whole-cell slice recording, which has been frequently used to study neuronal activities in 

the brain (Blanton et al., 1989), was performed on BCa tissue slices to study the INa and 

Vm in cancer cells ex vivo. The whole-cell recording technique has been previously used 

in slices to investigate the electrophysiological properties of single cancer cells. For 

example, Cl- currents were recorded in human glioma cells in patient tissue slices 

(Ullrich et al., 1998), and action potentials were recorded from human oligodendroglioma 

and oligoastrocytoma cells in brain slices (Patt et al., 1996). However, VGSC activity in 

BCa cells in tissue slices has not been studied. 

A previous study used sharp electrode to measure the Vm of human breast cells in 

slices from biopsies and reported that the Vm is significantly more depolarised in biopsies 

from patients who are diagnosed with infiltrating ductal carcinoma compared to patients 

with benign breast disease (Marino et al., 1994). The same study also showed that in 

comparison to normal fibroblasts, chemically transformed fibroblasts have more 

depolarised Vm (Marino et al., 1994). In Xenopus laevis, Vm depolarisation can induce 

tumourigenesis in vivo (Lobikin et al., 2012). During development, melanocytes with 

artificially depolarised Vm exhibit a neoplastic phenotype in the tadpole neural crest, 
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including over-proliferation, arborized cell morphology and increased local invasion 

(Blackiston et al., 2011). It is proposed that depolarised Vm increases serotonin export at 

the melanocyte plasma membrane, resulting in an increase in serotonin concentration in 

the extracellular microenvironment. Serotonin receptors on nearby melanocytes and on 

pituitary melanotrope cells are then activated, increasing the expression of TFs, 

including Sox10 and Slug, ultimately resulting in cellular over-proliferation (Lobikin et al., 

2015).  

Given the functional expression of VGSCs in MDA-MB-231 cells in vitro, INa carried 

by VGSCs should also be present in MDA-MB-231 tumour xenografts in vivo. 

Additionally, since the depolarised Vm and Na+ influx have pro-migratory and pro-

invasive roles in vitro, cancer cells at the periphery of tumour tissue may have larger INa 

and/or more depolarised Vm during their invasion into surrounding non-tumour tissue. 

 

5.1.1 Hypotheses and aims 

The hypotheses in this Chapter were (1) VGSCs regulate [Na+]i in MDA-MB-231 

cells in vitro, and (2) VGSCs are functionally active in vivo. The aims in this Chapter 

were: 

(1) To use the Na+ reporting fluorescent probe SBFI to measure the steady-state 

[Na+]i of MDA-MB-231 cells. 

(2) To measure the [Na+]i after extracellular Na+ depletion, TTX or NS-1619 

treatment. 

(3) To record the INa and Vm across various regions of mouse MDA-MB-231 

primary tumour tissue. 

(4) To compare the tumour growth in shRNA control- and Nav1.5-shRNA-

bearing mice. 
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5.2 Results 

5.2.1 Measurement of [Na+]i in MDA-MB-231 cells in vitro 

Tumour cells have higher [Na+]i compared with normal cell types (Cameron et al., 

1980). VGSCs in MDA-MB-231 cells carry INa, but whether VGSCs regulate the [Na+]i of 

MDA-MB-231 cells has not been investigated. Here, SBFI was used as the intracellular 

Na+ fluorescent indicator to measure the [Na+]i. SBFI is a ratiometric Na+-selective dye 

with Kd for Na+ of 7.4 mM in the presence of K+ (Minta & Tsien, 1989). Upon Na+ binding, 

SBFI shows an increase in the ratio of energy absorbed at 340 nm and 380 nm (Minta & 

Tsien, 1989). MDA-MB-231 cells were labelled with 5 μM SBFI in DMEM supplemented 

with 5 % FBS at 37 °C in the dark before being transferred to standard PSS for 2 min 

(Figure 5.1a). SBFI was alternately excited at 340 and 380 nm and the fluorescence 

emission at 512 nm was monitored using a Nikon Eclipse TE200 epi-fluorescence 

microscope as described in Section 2.9 (Figure 5.1b, top panel). After the incubation 

with the standard extracellular PSS, cells were treated with extracellular solution 

containing 10 mM Na+ for 2 min in order to let the cells settle in a low [Na+]o environment, 

before being consecutively perfused with 10 mM Na+ extracellular solution plus 20 μM 

Na+ ionophore gramicidin for 12 min, and then extracellular solution containing 20 mM 

Na+ plus 20 μM gramicidin for a further 12 min (Figure 5.1a).  

As shown in Figure 5.1b, cells in the 20 mM Na+ PSS showed increased 340/380 

ratio compared to 10 mM Na+ PSS, indicating an increase of [Na+]i . Cells had higher 

340/380 ratio in standard PSS than in 10 mM Na+ PSS, but lower than in 20 mM Na+ 

PSS, suggesting that the [Na+]i in standard PSS is between 10 mM and 20 mM.  

The [Na+]i was determined for individual cells. Figure 5.1c shows the calculation of [Na+]i 

in a representative cell. The mean 340/380 ratios over the last 60 s of PSS, 10 mM and 

20 mM Na+ extracellular solution treatment were 1.31, 1.23 and 1.34, respectively. A 

linear relationship between 340/380 ratio and [Na+]i was derived by plotting [Na+]i at 10 

mM and 20 mM with the corresponding 340/380 ratios, giving: 
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Figure 5.1. Measurement of intracellular Na+ concentration ([Na+]i) of MDA-MB-231 cells. 

(a) Na+ imaging experimental outline. (b) Representative SBFI fluorescence intensity at 
excitation = 340 nm and 380 nm when cells were perfused with standard PSS (top 
panel), extracellular solution containing 10 mM Na+ plus 20 μM gramicidin (middle panel) 
and extracellular solution containing 20 mM Na+ plus 20 μM gramicidin (bottom panel). 
(c) Relationship between SBFI fluorescence intensity (340/380 ratio) and [Na+]i in a 
representative cell. Scale bar = 10 μm. 
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340/380	𝑟𝑎𝑡𝑖𝑜 = 	0.01171	×	[𝑁𝑎4]t + 1.111	   (Equation 5.1) 

 

Hence, the [Na+]i of the cell in standard PSS was calculated as (1.31 – 1.111) ÷ 0.01171 

= 17.0 mM for this cell. Six technical repeats were performed. In each repeat, [Na+]i of 8 - 

20 cells was calculated individually and averaged in each of the experiment, giving a 

steady-state [Na+]i of MDA-MB-231 cells of 15.6 ± 0.7 mM (Figure 5.2b; n = 6). 

Next, the effect of replacing extracellular NaCl with NMDG on the [Na+]i of MDA-

MB-231 cells was investigated. After labelling the cells with SBFI (5 μM), cells were 

immediately transferred to NMDG saline solution where NaCl was replaced with 

equimolar NMDG. After 2 min, cells were consecutively perfused with 10 mM Na+ 

extracellular solution for 2 min, 10 mM Na+ extracellular solution plus 20 μM gramicidin 

for 12 min, and 20 mM Na+ extracellular solution plus 20 μM gramicidin for 12 min 

(Figure 5.2a). The 340/380 ratios were obtained, and the [Na+]i was calculated as 

described above. The steady-state [Na+]i of MDA-MB-231 cells after extracellular Na+ 

depletion was 7.6 ± 1.7 mM, which was significantly lower than in control (Figure 5.2; P < 

0.05; ANOVA with Tukey post hoc test; n = 6 in standard PSS and n = 3 in NMDG). 

The effect of VGSC activity on [Na+]i in MDA-MB-231 cells was also examined. 

Cells were pre-incubated with 30 μM TTX for 48 h before imaging. TTX was also present 

during the labelling the cells with SBFI and in the first 2 min after the cells were perfused 

with standard PSS. TTX was then washed out with 10 mM Na+ extracellular solution 

before 10 mM and 20 mM Na+ PSS plus gramicidin were consecutively applied. 

Compared with standard PSS, TTX significantly reduced the steady-state [Na+]i of MDA-

MB-231 cells from 15.6 ± 0.7 mM to 11.3 ± 0.5 mM (Figure 5.2b; P < 0.05; ANOVA with 

Tukey post hoc test; n = 6 in standard PSS and n = 3 in TTX). However, the [Na+]i of 

MDA-MB-231 cells was not significantly different comparing TTX and NMDG treatment 

(Figure 5.2b; P = 0.08; ANOVA with Tukey post hoc test; n = 3 in both conditions). In  
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Figure 5.2. Depletion of extracellular Na+ and tetrodotoxin (TTX) pre-treatment reduced 

the Na+ concentration ([Na+]i) of MDA-MB-231 cells. 

(a) Na+ imaging experimental outline. Cells were perfused with N-methyl-D-glucamine 
(NMDG)-containing extracellular solution or TTX (30 μM) for 2 min, before perfusion in 
10 mM Na+ extracellular solution and then gramicidin-containing extracellular solutions. 
For TTX, cells were pre-incubated with 30 μM TTX for 48 h. (b) The comparison of the 
steady-state [Na+]i in standard extracellular physiological saline solution (PSS), in NMDG 
extracellular solution, and after TTX (30 μM) treatment. (*) P < 0.05; (**) P < 0.01; 
ANOVA with Tukey post hoc test (n = 6 in standard PSS and n = 3 in NMDG and TTX). 
Data are mean ± SEM. 
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summary, extracellular Na+ depletion and incubation with TTX (30 μM) both reduced the 

[Na+]i. 

 

5.2.2 Suppressing Nav1.5 expression using shRNA reduces [Na+]i in MDA-

MB-231 cells 

The steady-state [Na+]i of Nav1.5-shRNA and shRNA control cells was measured 

as described in Section 5.2.1. The [Na+]i of shRNA control and Nav1.5-shRNA cells was 

13.5 ± 0.4 mM and 9.4 ± 0.7 mV (n = 3 in both conditions), respectively, showing a 

significant difference (Figure 5.3; P < 0.01; t-test; n = 3 in both conditions). Therefore, 

these data suggest that Nav1.5, by carrying a sustained Na+ influx, causes an increase in 

the steady-state [Na+]i in MDA-MB-231 cells. 

 

5.2.3 NS1619 (1 μM) does not significantly alter the [Na+]i in MDA-MB-231 

cells 

Both 30 μM TTX and 1 μM NS-1619 hyperpolarised the Vm of MDA-MB-231 cells 

to a similar degree, and Vm hyperpolarisation inhibited cell migration and reduced active 

Rac1 levels at cell leading edge (Section 4.3.5), suggesting that VGSCs potentiate 

MDA-MB-231 cell migration by depolarising the Vm. In order to investigate whether 1 μM 

NS-1619 hyperpolarises the Vm without altering [Na+]i, SBFI-labelled MDA-MB-231 cells 

were perfused with 1 μM NS-1619 for 5 min (Figure 5.4a). The mean [Na+]i both before 

and after NS-1619 treatment was 14.3 ± 1.0 mM (Figure 5.4b; P = 0.93; t-test; n = 22 

from three technical repeats). In summary, in MDA-MB-231 cells, depleting extracellular 

Na+ or blocking VGSCs reduced [Na+]i. Importantly, NS-1619 (1 μM) did not significantly 

change [Na+]i. Thus, the inhibitory role of NS-1619 (1 μM) on MDA-MB-231 cell 

migration (Section 4.2.7) is achieved via Vm hyperpolarisation and not [Na+]i regulation. 
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Figure 5.3. The intracellular Na+ concentration ([Na+]i) of MDA-MB-231 cells is reduced 

when Nav1.5 expression is suppressed by shRNA. 

(a) Na+ imaging experimental outline. Cells were perfused with standard saline solution 
(PSS) for 2 min before settled in 10 mM Na+ extracellular solution and being perfused 
with gramicidin-containing extracellular solutions (b) The steady-state [Na+]i of MDA-MB-
231 cells where Nav1.5 expression was suppressed by shRNA (Nav1.5-shRNA), and the 
scrambled RNA control (shRNA control). (**) P < 0.01; t-test (n = 3 in both conditions). 
Data are mean ± SEM.  
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Figure 5.4. NS-1619 (1 μM) application does not change the intracellular Na+  

concentration ([Na+]i) in MDA-MB-231 cells. 

(a) Na+ imaging experimental outline. Cells were treated with standard PSS (2 min) 
followed by 1 μM NS-1619 (5 min), before perfusion with 10 mM Na+ extracellular 
solution and then gramicidin-containing extracellular solutions. (b) [Na+]i of individual 
MDA-MB-231 cells after NS-1619 (1 μM) treatment. n.s. not significant; t-test (n = 22 
cells from three technical repeats). Data are mean only. 
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5.2.4 Recording the INa and Vm from cells in tumour tissue slices 

Although many in vitro studies have recorded the INa carried by VGSCs from 

cancer cells with different tissue origins, functional VGSC activity has not been studied in 

intact tumour tissue before. Here, the whole-cell patch clamp technique was used to 

study the INa and Vm of shRNA control cells xenografted in mice. GFP-expressing shRNA 

control cells were mixed with Matrigel/PBS and were orthotopically injected in the fourth 

left inguinal fat pad (Section 2.3.3). Tumours were allowed to grow for 20–37 days 

before being removed following euthanisation (Figure 5.5a). The fur and surrounding 

muscle tissue were gently removed from the tumour using a blade (Figure 5.5b), and the 

processed tumour was fixed onto the pedestal of a vibratome using cyanoacrylate glue 

and was immersed in ice-cold standard extracellular PSS (Figure 5.5c). A 5 % agar 

block was fixed onto the pedestal to support the tumour (Figure 5.5c), and the tumour 

was sliced at 250 μm. Tumour slices were incubated in the standard extracellular PSS at 

room temperature for at least 20 min before being transferred into the electrophysiology 

recording chamber and tightly held using a slice anchor (Figure 5.5d). The slice was 

continuously perfused with standard PSS. The tumour slice was firstly examined at 10X 

(Figure 5.5e). Next, healthy, GFP-positive cells were located at 40X before they were 

sealed with recording pipette containing Cs+-free standard intracellular solution (Figure 

5.5f).  

Similar to shRNA control cells recorded in vitro, tumour cells showed fast inward 

INa ex vivo. The current-voltage relationship from a representative cell is shown in  

(Figure 5.6a and b). Among all the 60 cells recorded from 18 mice across six cages, 39 

cells (65 %) showed detectable INa. The current was inhibited by applying 30 μM TTX  

(Figure 5.6c; n = 3), and was recovered after subsequent washout using the standard 

extracellular PSS (Figure 5.6d; n = 3), suggesting that the fast inward current is carried 

by VGSCs. The current-voltage relationship of all the cells with INa is shown in Figure 

5.6e (n = 39). The relationships between INa conductance/availability and voltage were 
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Figure 5.5. Performing electrophysiological study on mouse tumour tissue slices. 

Tumour tissue was processed, sliced and mounted on an electrophysiology recording 
chamber. (a) The primary tumour was dissected from a euthanised mouse. (b) The fur 
and surrounding muscle tissue were removed from the tumour using a blade. (c) The 
tumour was fixed onto the pedestal of vibratome and was immersed in ice-cold 
physiological saline solution (PSS). (d) Tumour was sliced and incubated with PSS in a 
holding chamber at room temperature at least 20 min before being transferred to the 
electrophysiology recording chamber, and held with a slice anchor. (e and f) Bright field 
images of tumour tissue at 10X (e) and 40X (f). P in (f) shows the recording pipette. 
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fitted with Boltzmann functions (Figure 5.6f): the V1/2 and the k for the conductance curve 

were -27.2 ± 1.4 mV and 3.9 ± 0.5 mV (n = 39), respectively. For the availability curve, 

V1/2 was -87.4 ± 2.4 mV and the k was -0.7 ± 2.2 mV (n = 12).  

The relationship between peak INa density and the number of days following 

tumour implantation was also investigated (Figure 5.7a). The linear regression shows 

that the number of days after surgery did not correlate with size of the peak INa density 

(Figure 5.7a; Pearson r = 0.27; P = 0.09; n = 39). Moreover, the size of tumours did not 

correlate with peak INa density (Figure 5.7b; Pearson r = 0.11; P = 0.49; n = 39).  

Compared with recording shRNA control cells cultured in vitro, tumour cells in vivo 

had subtly different electrophysiological properties. To begin with, the whole-cell 

capacitance recorded from cells on tissue slices was 11.7 ± 0.5 pF, which is significantly 

less than that recorded in vitro (23.1 ± 2.0 pF; Figure 5.8a; P < 0.001; t-test; n = 8 in in 

vitro and n = 60 in ex vivo). Since whole-cell capacitance is determined by cell surface 

area (Hille, 2001), the data suggest that compared with in vitro 2D culture, the average 

size of cells was significantly smaller when growing in vivo. However, the peak INa 

density was not significantly different comparing in vitro and ex vivo (-14.9 ± 2.1 pA/pF 

vs. -11.8 ± 1.6 pA/pF; Figure 5.8b; P = 0.39; n = 8 in in vitro and 39 in ex vivo). 

Interestingly, the Vm of cells on tissue slices was more depolarised than for in vitro 

recordings (-7.8 ± 0.5 mV vs. -12.6 ± 0.9 mV; Figure 5.8c; P < 0.001; n = 16 in in vitro 

and 60 in ex vivo). 
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Figure 5.6. Na+ current (INa) recorded from tumour tissue slices. 

(a) INa recorded from a representative cell from a tumour tissue slice. (b) The fast inward 
current was abolished by (c) TTX (30 μM) application, and (d) the current was recovered 
after subsequent washout. (e) The current-voltage relationship of INa recorded (n = 39; 
18 mice from six independent cages). (f) Normalised INa availability and conductance 
plotted against voltage. Data are fitted with Boltzmann functions (n = 39 in conductance 
and 14 in availability). For (a), (e) and activation in (f), cells were depolarised from a -120 
mV pre-pulse (250 ms) to voltages between -80 and 0 mV for 50 ms in 5 mV increments. 
For inactivation in (f), cells were held at various pre-pulses ranging from -120 mV to -10 
mV for 250 ms before depolarisation to -10 mV for 50 ms. Data are mean ± SEM in (e) 
and (f). 
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Figure 5.7. The relationship between tumour volume/stage and peak Na+ current (INa) 

density. 

(a) The relationship between peak INa density and the number of days after tumour 
implantation (n = 39). (b) The relationship between peak INa density and tumour volume 
(n = 39). Solid line shows linear regression and broken lines 95 % confidence intervals. 
Pearson r = 0.27 (P = 0.09) in (a), and Pearson r = 0.11 (P = 0.49) in (b). 
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Figure 5.8. Cell capacitance, Na+ current (INa) density and membrane potential (Vm) in 

vitro and ex vivo. 

The comparison of (a) cell capacitance, (b) peak INa density and (c) Vm recorded using 
whole cell patch clamp in vitro and ex vivo. (***) P < 0.001. n.s. not significant; t-test. (a) 
n = 8 in in vitro and n = 60 in ex vivo. (b) n = 8 in in vitro and n = 39 in ex vivo. (c) n = 16 
in in vitro and n = 60 in ex vivo. Liquid junction potential is compensated in (c). Data are 
mean ± SEM. 
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5.2.5 Investigating the INa from cells across various regions of the tumour 

Previously published in vitro evidence shows that VGSCs potentiate local invasion 

of MDA-MB-231 cells by enhancing the activity of cysteine cathepsins B and S (Gillet et 

al., 2009; Brisson et al., 2013). Additionally, VGSCs increase MDA-MB-231 cell motility 

by depolarising the cell Vm (Section 4.2.7). Therefore, since INa/Vm lead to cancer cell 

migration and invasion, next, the INa and Vm were compared across central and 

peripheral regions of orthotopic primary tumours of shRNA control cells. 

Slices from primary tumours were categorised into three regions, namely 

periphery, intermediate region and centre, according to distance from the edge of the 

tumour. The distance between recorded cells and the tumour edge was determined 

using an eyepiece reticule. Cells that were ≤ 1 mm from the edge were categorised as in 

the periphery; those > 1mm and ≤ 1.5 mm as in the intermediate region; and those ≥ 1.5 

mm as in the centre (Figure 5.9a). The whole-cell capacitance was 11.8 ± 0.6 pF, 11.4 ± 

0.9 pF and 12.1 ± 1.1 pF in periphery, intermediate region and centre, respectively, 

showing no statistically significant difference across regions (Figure 5.9b; P = 0.87; 

ANOVA with Tukey post hoc test; n = 25, 20 and 15, respectively). Moreover, the peak 

INa density in the periphery was -11.44 ± 1.3 pA/pF, which was not different from that in 

the intermediate region (-12.44 ± 4.3 pA/pF) or in the centre (-10.9 ± 1.8 pA/pF; P = 

0.93; ANOVA with Tukey post hoc test; n = 20, 12 and 7, respectively).  

The INa conductance and availability in the periphery (Figure 5.10a; n = 20 in 

activation and n = 3 in inactivation), the intermediate region (Figure 5.10b; n = 12 in 

activation and n = 3 in inactivation) and centre (Figure 5.10c; n = 7 in activation and n = 

3 in inactivation) were analysed by plotting the normalised INa or conductance against 

voltage. The activation/inactivation V1/2 and slope factor k did not differ across tumour 

regions (Table 5.1; ANOVA with Tukey post hoc test; conductance: n = 20, 12 and 7 in 

periphery, intermediate region and centre; availability: n = 3 in all these regions).  
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Figure 5.9. Na+ current (INa) density across various regions of tumour tissue slices. 

(a) Diagram showing the definition of the periphery (≤ 1 mm from the edge of tumour 
tissue slice), intermediate region (> 1 and ≤ 1.5 mm from the edge of tissue slice) and 
centre (> 1.5 mm from the edge) regions of the tumour. (b) Comparison of whole-cell 
capacitance and (c) peak INa density across the periphery, intermediate region and 
centre of tumour. ANOVA with Tukey post hoc test. n = 25, 20 and 15 in periphery, 
intermediate region and centre, respectively). 
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Figure 5.10. Na+ current (INa) availability and conductance across various regions of 

tumour tissue slices. 

The normalised INa availability and conductance in the (a) periphery, (b) intermediate 
region and the (c) centre plotted against voltage. Data are fitted with Boltzmann 
functions. (a) n = 20 in conductance and 3 in availability. (b) n = 12 in conductance and 3 
in availability. (c) n = 7 in conductance and n = 3 in availability. For activation, cells were 
depolarised from a -120 mV pre-pulse (250 ms) to voltages between -80 mV and +30 
mV for 50 ms in 5 mV increments. For inactivation, cells were held at various voltages 
ranging from -120 mV to -10 mV for 250 ms before depolarisation to -10 mV for 50 ms. 
Data are mean ± SEM.  
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Table 5.1 Characteristics of Na+ current recorded in various tumour regions. 

 Periphery Intermediate 
region Centre P 

Va (mV) -31.0 ± 1.8 -27.9 ± 3.1 -27.9 ± 0.4 0.55 

Vp (mV) 9.8 ± 1.9 10.0 ± 3.4 9.3 ± 3.2 0.99 

Tp at 0 mV (ms) 1.41 ± 0.11 1.51 ± 0.41 1.01 ± 0.11 0.56 

Activation V1/2 
(mV) -27.3 ± 0.9 -26.9 ± 1.8 -26.2 ± 1.8 0.88 

Activation k 
(mV) 7.1 ± 0.8 7.0 ± 1.5 5.7 ± 1.5 0.74 

Inactivation V1/2 
(mV) -85.6 ± 6.1 -90.0 ± 1.0 -89.1 ± 1.5 0.69 

Inactivation k 
(mV) -13.0 ± 5.1 -4.5 ± 1.0 -5.9 ± 1.3 0.20 

Va, activation voltage; Vp voltage at current peak; Tp time to peak; V1/2, half activation 
or inactivation voltage; k: slope factor. Periphery: ≤ 1 mm from tumour edge; 
intermediate region: > 1 mm and ≤ 1.5 mm from the edge; centre: > 1.5 mm from the 
edge. ANOVA with Tukey post hoc test. Data are mean ± SEM. 
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Other INa characteristics including the activation voltage Va, voltage at peak current Vp 

and time to peak Tp at 0 mV were not significantly different across the three tumour 

regions (Table 5.1; ANOVA with Tukey post hoc test; n = 20, 12 and 7 in periphery, 

intermediate and centre). Finally, the proportion of cells that had INa was not significantly 

different across the three regions (Table 5.2; Fisher’s exact tests with Bonferroni 

corrections). In summary, the data suggest that the whole-cell capacitance, peak INa 

density, as well as the INa characteristics, were not significantly different across various 

tumour regions. 

 

5.2.6 Investigating the Vm from cells across various regions of mouse 

primary tumour 

The Vm recorded from cells in orthotopic tumours is significantly more depolarised 

than cells cultured in vitro (Section 5.2.4). Next, the Vm across the tumour periphery, 

intermediate region and centre was analysed. The Vm was highly consistent across the 

three regions: cells in the periphery had a Vm of -7.6 ± 0.6 mV (n = 26), and the Vm of 

cells in the intermediate region and centre was -8.8 ± 1.3 mV (n = 18) and -7.2 ± 0.3 mV 

(n = 10), respectively (Figure 5.11; P = 0.53; ANOVA with Tukey post hoc test). The data 

suggest that in tumour tissues, the level of cell Vm does not correlate with the position of 

the cell.  
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Table 5.2. The proportion of cells with Na+ current (INa) across tumour regions. 

 Periphery Intermediate region Centre 

Number of cells 
with INa 

20 12 7 

Number of cells 
without INa 

6 6 9 

Total 26 18 16 

Periphery: ≤ 1 mm from tumour edge; intermediate region: > 1 mm and ≤ 1.5 mm from 
the edge; centre: > 1.5 mm from the edge. No statistical difference in the proportions 
of cells with INa across the regions. Fisher’s exact test with Bonferroni corrections. 
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Figure 5.11. The tumour cell membrane potential (Vm) at various regions across 

orthotopic tumours. 

The Vm was measured using whole-cell patch clamp. Periphery: ≤ 1 mm from tumour 
edge; intermediate region: > 1 mm and ≤ 1.5 mm from the edge; centre: > 1.5 mm from 
the edge. ANOVA with Tukey post hoc test. n = 26, 18 and 10 in periphery, intermediate 
and centre, respectively. Data are mean ± SEM. 
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5.2.7 Nav1.5-shRNA cells showed reduced tumour growth in mice 

Blocking VGSCs decreases cancer cell migration and invasion in vitro 

(Brackenbury, 2012; Roger et al., 2015). Recently, an increasing number of in vivo 

studies has demonstrated the potential therapeutic value of VGSCs in cancer treatment. 

For example, we have previously reported that using an orthotopic BCa model where 

MDA-MB-231 cells were implanted into mouse mammary fat pads, daily intraperitoneal 

injection of phenytoin reduced primary tumour growth and invasion and inhibited 

metastasis to lungs, liver and spleen (Nelson et al., 2015a). Here, the effect of Nav1.5 on 

tumour growth was investigated. The dimensions of the tumour (length and width) were 

determined using calliper measurement, and the volume of the tumour was calculated 

using Equation 2.2. 

Mice developed palpable tumours typically 8–9 days after the surgery. As shown in 

Figure 5.12, two weeks following tumour cell implantation, the primary tumour 

development in Nav1.5-shRNA cell-bearing mice was significantly less than in mice 

implanted with shRNA control cells. At the end of the experiment (typically 28 days after 

surgery), the tumour volume was 327.0 ± 21.2 mm3 in mice with shRNA control cells and 

155.3 ± 18.4 mm3 in mice bearing Nav1.5-shRNA cells (Figure 5.12; P < 0.001; t-test; n = 

13 for shRNA control and n = 16 for Nav1.5-shRNA cells). Therefore, Nav1.5 promotes 

primary tumour growth in vivo. 
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Figure 5.12. Suppressing Nav1.5 expression using shRNA reduces primary tumour 

growth in vivo. 

Nav1.5-shRNA or shRNA control MDA-MB-231 cells (5 × 105) were orthotopically 
implanted under the fourth left inguinal fat pad in immunodeficient mice. The dimensions 
of the tumour were measured using callipers, and the tumour volume was calculated as 
volume = 0.5 × (length × width2). (*) P < 0.05; (**) P < 0.01; (***) P < 0.001; t-test (n = 13 
and n = 16 in shRNA control and Nav1.5-shRNA, respectively). Data are mean ± SEM. 
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5.3 Discussion 

5.3.1 VGSCs increase [Na+]i in MDA-MB-231 cells 

Cancer cells are reported to have higher [Na+]i compared to normal cells (Cone & 

Tongier, 1973; Smith et al., 1978; Cameron et al., 1980), and the implication of high 

[Na+]i in tumourigenesis and/or mitogenesis has been reported since the late 1970’s 

(Smith et al., 1978; Pool et al., 1981; Sparks et al., 1983). Recently, quantitative Na+ MRI 

has shown that the total tissue Na+ concentration is higher in malignant BCa tissues than 

in benign lesions (Ouwerkerk et al., 2007). In this Chapter, pre-incubation with 30 μM 

TTX for 48 h, or Nav1.5 knockdown with shRNA both showed a similar reduction in [Na+]i 

compared to controls, suggesting that VGSCs result in Na+ accumulation in MDA-MB-

231 cells. The result agrees with other studies on H460 NSCLC cells where VGSCs are 

expressed (Roger et al., 2007; Campbell et al., 2013). MDA-MB-231 cells treated with 

NMDG showed further but not statistically significant [Na+]i reduction than reported in the 

TTX and Nav1.5-shRNA experiment, suggesting that VGSCs are the predominant 

pathway that causes Na+ accumulation in MDA-MB-231 cells. Future experiments should 

investigate how other Na+ transporters, such as NHE1 (Brisson et al., 2011), regulate 

[Na+]i, and whether or not leak INa or ENaC are present in MDA-MB-231 cells and 

increase [Na+]i (Kellenberger & Schild, 2002). 

According to the Goldman-Hodgkin-Katz equation (Equation 1.1), increased [Na+]i 

is an important factor that contributes to the depolarised Vm in MDA-MB-231 cells. A 

calculation using the Nernst equation predicts that the reduced [Na+]i (from 15.6 mM to 

7.6 mM) after NMDG treatment would lead to a hyperpolarising shift in the Na+ 

equilibrium potential of -18.3 mV, which is close to the Vm hyperpolarisation (~-15 mV) 

recorded using whole-cell patch clamp technique (Section 3.2.1). However, the 

calculated Vm hyperpolarisation based on the decreased [Na+]i in TTX-treated cells and 

shRNA control cells is -8.2 mV and -12.8 mV, respectively, which is more than 2-fold 

greater than the electrophysiology data (Section 3.2.3 and Section 3.2.6). This may be 



 

 

207 

due to the limited resolution of SBFI and/or epi-fluorescence microscopy when 

determining changes in [Na+]i at a few mV. Future experiments should address this 

discrepancy by using alternative Na+-sensitive fluorescent indicator, using a confocal 

microscope, or using methods that are more sensitive to small changes in the [Na+]i, 

such as the intracellular ion-selective microelectrode (ISME) technique (Shattock & Bers, 

1989). 

A recent study showed that Na+ accumulated at the “regeneration bud” during tail 

regeneration in Xenopus laevis (Tseng et al., 2010). In the tadpole tail amputation 

model, application of the Na+ ionophore monensin with Na+ gluconate increased the level 

of MSX-1, a regenerative marker, at the wound, and eventually facilitated the regrowth of 

limbs at the amputation site (Tseng & Levin, 2013). Using the same animal model, high 

local [Na+] can be indicative of tumourigenesis in vivo (Lobikin et al., 2012). Together, 

the evidence suggests a role for [Na+]i in intracellular signalling. Indeed, data in Section 

4.2.7 suggest that it was the Na+ ions, rather than Vm, that increased the invasiveness of 

MDA-MB-231 cells in vitro. This agrees with the previously proposed Nav1.5-Na+-NHE1-

cathepsin pathway in MDA-MB-231 cell invasion (Gillet et al., 2009; Brisson et al., 2011). 

Furthermore, Na+ carried by VGSCs can also enhance the activity of NCX in microglia, 

which ultimately leads to [Ca2+]i increase and ERK activation (Pappalardo et al., 2014b; 

Persson et al., 2014). In THP-1 macrophages, activating Nav1.6 with veratridine 

increases Na+ release from cationic vesicular compartments, which then increases 

mitochondrial Ca2+ release via NCX (Carrithers et al., 2009). Finally, how the increased 

[Na+]i regulates the activity of other Na+-related ion transporters and exchangers remains 

unclear in cancer cells. For example, in rat kidney tubules, [Na+]i increases Na+-K+ 

ATPase activity and cell surface expression in a PKA-dependent manner (Vinciguerra et 

al., 2003). Future experiments should address the potential Na+-dependent regulation of 

transmembrane transportation of various types of ions and their role in downstream 

intracellular signals in cancer cells. 



 

 

208 

Considering the role of the depolarised Vm in promoting cancer cell migration 

(Section 4.2.7) and the role of Na+ in inducing tumourigenesis and cancer cell invasion, 

further experiments should explore whether combining Vm hyperpolarisation with [Na+]i 

reduction can reduce the malignancy of cancer cells both in vitro and in vivo. Data in 

Section 3.2.1 and Section 5.2.1 demonstrated the impact of the extracellular 

environment on [Na+]i and Vm: MDA-MB-231 cells in a Na+-free environment displayed 

significant [Na+]i reduction as well as hyperpolarised Vm. The clinical value of reducing 

[Na+]o in patient tumour tissue during cancer treatment should be investigated in the 

future.  

 

5.3.2 Recording the INa in tumour tissue 

An increasing number of reports demonstrate the presence of VGSCs in various 

types of cancer cell lines and biopsies. Since 2012, the therapeutic potential of VGSCs 

in cancer treatment has been investigated in vivo. Application of VGSC blockers such as 

TTX (Yildirim et al., 2012), ranolazine (Driffort et al., 2014) and phenytoin (Nelson et al., 

2015a) reduced tumour progression in vivo. Agreeing with these previous reports, 

Section 5.2.7 showed that Nav1.5-shRNA significantly decreased primary tumour growth 

compared to shRNA control cells. Nav1.5/INa increased the tumour growth probably by 

reducing cell apoptosis, since the density of activated caspase 3+ apoptotic cells was 

significantly lower in shRNA control tumours (Nelson et al., 2015b). Additionally, Nav1.5-

shRNA cell-bearing mice showed reduced metastases to lungs, liver and spleen (Nelson 

et al., 2015b), which is similar to the effects caused by phenytoin (Nelson et al., 2015a). 

In spite of all the data showing the clinical relevance of targeting VGSCs in cancer 

treatment, until now, the INa in cells in tumour tissue had not been studied. In the present 

study, by performing whole-cell patch clamp recording on tumour tissue slices, data in 

Section 5.2.4 provide the first direct evidence showing INa carried by VGSCs in primary 
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tumour tissue. The tumour slice recording technique may have value when applied to 

recording INa on tumour tissues from cancer patients in the future. 

Compared to most mammalian tissues that exist at 2–9 % O2 (Hockel & Vaupel, 

2001; Bertout et al., 2008), cells in solid tumours are thought to experience sustained 

hypoxia (defined as ≤ 2 % O2) due to the restrained O2 delivery (Hockel & Vaupel, 2001), 

which is the result of the structural abnormalities of tumour microvessels and disrupted 

microcirculation (Vaupel et al., 1989). Surgical specimens of cervical tumours showed 

that compared to well-oxygenated tumours, hypoxic tumours exhibit a more invasive 

phenotype and more frequent parametrial spread, resulting in a worse survival rate 

(Hockel et al., 1996). Hypoxia can modulate the function of VGSCs. In rat ventricular 

myocytes, hypoxia augmented the persistent INa (Ju et al., 1996); in rat glomus cells in 

the carotid body, chronic hypoxia for 1–2 weeks increased transient INa; and Nav1.5-

expressing HEK293 cells showed increased persistent INa under acute hypoxia (Fearon 

& Brown, 2004). In MDA-MB-231 cells, acute hypoxia (2 % O2) increases persistent INa, 

and 24 h hypoxic treatment increases Matrigel invasion (Djamgoz & Onkal, 2013). In the 

present study, the tumour tissue was divided into three regions, namely periphery, 

intermediate region and centre, and the characteristics of INa were consistent across 

these regions. However, it was not possible to resolve hypoxia and/or distance from 

vasculature in this model. In a future experiment, transgenic mice with GFP-tagged 

VEGF (Kishimoto et al., 2000), which serves as an angiogenesis marker (Hoeben et al., 

2004), could be used to study the INa from tumour cells from regions with different blood 

vessel densities.  

 

5.3.3 The unvarying Vm across the tumour tissue  

Given the pro-migratory role of the depolarised Vm in MDA-MB-231 cell in vitro, it is 

logical to hypothesise that the Vm of tumour cells at the edge of tumour tissue would be 

more depolarised. However, the Vm was broadly unvarying across the tumour tissue. 
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Future experiments should perfuse the slices with TTX and test whether or not VGSCs 

regulate the Vm in cells in tumour tissue. On the other hand, gap junctions are able to 

regulate Vm at long-range (Chernet & Levin, 2014), and they may cause a unified Vm 

across the cells in tumour tissue via transporting ions intercellularly. However, a group 

has performed dye injection experiments using Lucifer Yellow on MDA-MB-231 cell 

monolayers cultured in vitro (Qin et al., 2002), where they found that the diffusion of dye 

was inefficient, given that only 6 % of cells exhibited dye transfer (Qin et al., 2002), 

suggesting a limited role for gap junctions in intercellular communication in this cell line. 

Interestingly, although exogenously expressing Cx43 in MDA-MB-231 cells increased 

the proportion of cells with dye transfer to 37 % (Qin et al., 2002), MDA-MB-231 cells 

over-expressing Cx43 did not form gap junctions in vivo (Qin et al., 2002). Future 

experiments should block Cx43 connexon using pharmacological agents such as 

mefloquine (Juszczak & Swiergiel, 2009) or perform juxtapositional recordings on cells in 

tumour tissue to further investigate whether the Vm of a target cell can be affected by 

artificially controlling the Vm in its adjacent cell, and whether the depolarised, unvarying 

Vm across tumour tissue is caused by the in vivo tumour microenvironment. 

 

5.4 Conclusion 

This Chapter has demonstrated that VGSCs not only depolarise the Vm of MDA-

MB-231 cells in vitro, but also cause Na+ accumulation in these cells. Suppressing 

Nav1.5 expression with shRNA significantly reduced tumour growth in vivo, supporting 

the value of targeting VGSCs in cancer treatment. For the first time, INa carried by 

VGSCs has been recorded in tumour tissue slices, indicating the role of VGSCs in 

regulating Na+ influx in vivo and suggesting that Vm of tumour cells in vivo may not be 

intrinsically regulated. Future experiments should record INa from tumour tissue samples 

from patients, and should address how cell Vm is regulated in vivo. 
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6 Chapter 6: Discussion 

6.1 The knowledge gap in understanding VGSC-dependent metastasis 

Cancer is a leading cause of death, given that 8.2 million cancer deaths occurred 

globally in 2012 (Torre et al., 2015). Recently, an increasing number of ion channels and 

transporters have been identified in cancer cells and biopsies from patient tumours 

(Prevarskaya et al., 2010; Lastraioli et al., 2015; Stock & Schwab, 2015), where they 

regulate metastasis-related activities such as proliferation, apoptosis, adhesion, 

migration, invasion and gene expression (Brackenbury, 2012; Roger et al., 2015; Stock 

& Schwab, 2015). Excitingly, studies have highlighted the therapeutic potential of ion 

channels as novel targets in cancer treatment (Prevarskaya et al., 2011; Brackenbury, 

2012; Huang & Jan, 2014; Turner & Sontheimer, 2014).  

VGSCs were previously thought to be expressed only in excitable cells, such as 

neurones, skeletal muscle cells and cardiomyocytes, where they initiate the firing of 

action potentials (Catterall, 2000). VGSCs are also expressed predominantly in cancer 

cells with strong migration and/or invasion potential (Brackenbury, 2012; Roger et al., 

2015). Compared to less malignant cancer cells, highly metastatic or multidrug-resistant 

cancer cells exhibit INa together with reduced outward IK (Yamashita et al., 1987; Lee et 

al., 1988; Fraser et al., 2005; Fulgenzi et al., 2006). Moreover, inhibiting VGSCs with 

pharmacological agents or shRNA/siRNA reduces proliferation and metastasis in vivo 

(Yildirim et al., 2012; Driffort et al., 2014; Nelson et al., 2015a; Nelson et al., 2015b), and 

cell metastatic behaviour in vitro (Roger et al., 2003; Fraser et al., 2005; Brackenbury et 

al., 2007; Roger et al., 2007; House et al., 2010; Yang et al., 2012; Campbell et al., 

2013; Xing et al., 2014; House et al., 2015). However, the detailed molecular 

mechanism(s) underlying VGSC-dependent cancer cell migration and invasion is not yet 

clear. 
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As in excitable cells, Na+ influx carried by VGSCs through the cancer cell plasma 

membrane may cause two main physiological changes to the cell: increased [Na+]i and 

depolarised Vm. It was reported over 30 years ago that cancer cells possess higher [Na+]i 

compared to cells derived from healthy tissue (Smith et al., 1978; Cameron et al., 1980; 

Pool et al., 1981), and reducing [Na+]i in tumour cells slows tumour growth in vivo 

(Sparks et al., 1983), suggesting the role of intracellular Na+ in tumourigenesis. 

However, according to the Nernst equation (Equation 2.6), the increase of the [Na+]i will 

also inevitably depolarise the Vm of cells under physiological conditions.  

Vm is more than an epi-phenomenon that only indicates the difference of ionic 

concentration across cell plasma membrane. An increasing amount of evidence has 

shown that Vm is a functional signal per se (Sundelacruz et al., 2009; Yang & 

Brackenbury, 2013; Lobikin et al., 2015; Zhou et al., 2015). During cell proliferation, a 

depolarised Vm is necessary for G1/S transition in the cell cycle (Cone & Tongier, 1971), 

whereas a hyperpolarised Vm is required at the G2/M border (Habela et al., 2008). Vm 

depolarisation is able to induce mitogenesis/tumourigenesis both in vitro and in vivo. 

Sustained Vm depolarisation (1–3 h) induces mitotic activity in terminally differentiated 

neurones (Stillwell et al., 1973; Cone & Cone, 1976). In Xenopus laevis and Dugesia 

japonica planaria, Vm depolarisation facilitates the regeneration of amputated tissues 

(Beane et al., 2011; Beane et al., 2013; Tseng & Levin, 2013). Artificially depolarising 

the Vm in Xenopus laevis embryos induces tumour formation (Blackiston et al., 2011; 

Lobikin et al., 2012). Taken together, this evidence suggests a powerful role for a 

depolarised Vm in promoting tumourigenesis. Therefore, it is not surprising that cancer 

cells generally display a depolarised Vm, and that the cells from cancer tissue possess a 

more depolarised Vm compared to those from normal tissue of the same origin (Binggeli 

& Weinstein, 1986; Yang & Brackenbury, 2013). 

Given the importance of Vm in regulating cellular behaviours, this PhD Thesis 

aimed to explore the relationship between VGSCs and the depolarised Vm reported in 
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MDA-MB-231 cells and investigate whether VGSC-mediated cell migration/invasion is 

also dependent on the Vm in these cells.  

 

6.2 VGSCs depolarise the Vm and therefore increase cell motility in vitro 

Before this study, there was no evidence showing whether VGSCs potentiate 

cancer cell migration and/or invasion due to Na+ per se or via their possible role in 

altering the Vm. The involvement of VGSCs in Vm regulation was examined in MDA-MB-

231 cells. Blocking VGSCs using phenytoin or TTX causes a 3–4 mV Vm 

hyperpolarisation. Nav1.5-shRNA cells are 3.4 mV more hyperpolarised than control 

cells, suggesting that Nav1.5 causes a steady-state Vm depolarisation, and that the 

depolarised Vm caused by Nav1.5 is not compensated by other ion-permeable pathways 

when the Na+ conductance through Nav1.5 is shut down. Since the Vm of MDA-MB-231 

cells is at approximately -10 mV, blocking Nav1.5 leads to a 40 % increase in the 

transmembrane voltage. Extracellular Na+ depletion causes a much larger Vm 

hyperpolarisation of 10–15 mV, which points to other Na+ permeable pathways in MDA-

MB-231 cells that contribute to the depolarised Vm, in addition to VGSCs. Future 

experiments should address the involvement of Na+-K+ ATPase (Winnicka et al., 2008) 

and NHE1 (Brisson et al., 2011) in Na+ -dependent Vm regulation in MDA-MB-231 cells. 

Additionally, the presence of other Na+ -permeable ion channels/ transporters, such as 

ENaC, NCX and Na+-K+-2Cl- co-transporter, has not been reported in MDA-MB-231 

cells, and whether or not they contribute to Na+-dependent Vm regulation should be 

investigated in future studies. Another study showed that blocking Nav1.7 in H460 non-

small cell lung cancer cells hyperpolarises the Vm by 10 mV (Campbell et al., 2013). 

Taken together, VGSCs are now known to cause Vm depolarisation not only in excitable 

cells during action potential firing, but also in non-excitable cancer cells.  

In order to study the role of Vm without interfering with [Na+]i, subsequent 

experiments modulated the endogenously expressed BKCa channels in MDA-MB-231 
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cells (Section 0). The activity of BKCa channels is weak in MDA-MB-231 cells (Section 0), 

probably because the [Ca2+]i is not sufficiently high to fully activate the channel (Barrett 

et al., 1982). Activating BKCa channels in MDA-MB-231 cells using 40 μM NS-1619 

yielded a Vm of -52 mV, similar to that in MCF-10A cells where various types of K+ 

channels are present (Fraser et al., 2005). A previous report showed that suppressing 

hEAG1 channels in MDA-MB-231 cells depolarises the Vm by 18 mV (Hammadi et al., 

2012). Therefore, the depolarised Vm (~-10 mV) recorded from MDA-MB-231 cells 

should be attributed to the increased permeability to Na+ via VGSCs as well as the weak 

activity of Vm-hyperpolarising K+ channels.  

NS-1619 at 1 μM hyperpolarised the steady-state Vm of MDA-MB-231 cells by 

approximately 4 mV, replicating the effect of 30 μM TTX in these cells. Importantly, 1 μM 

NS-1619 did not significantly alter the [Na+]i (Section 5.2.3). In a wound healing assay, 

NS-1619 (1 μM) and TTX (30 μM) reduced cell migration in vitro to a strikingly similar 

extent (Section 4.2.7). However, while 30 μM TTX showed a strong inhibitory effect on 

invasion through Matrigel, NS-1619, at both 1 μM and 40 μM, did not have any effect 

(Section 4.2.7). These data suggest that VGSC-mediated Vm depolarisation leads to 

increased cell migration, whilst VGSC-dependent cell invasion is Na+- but not Vm-

dependent. Na+ may promote cell invasion via the previously proposed Nav1.5-NHE1-

cathepsins pathway (Gillet et al., 2009; Brisson et al., 2011; Brisson et al., 2013). For the 

first time, data presented in this Thesis show that Nav1.5 potentiates cancer cell 

migration and invasion via different mechanisms. 

 

6.3 Vm and [Ca2+]i regulation 

Vm is a double-edged sword in regulating [Ca2+]i (Schwab et al., 2012; Yang & 

Brackenbury, 2013). On one hand, a depolarised Vm can activate VGCCs, which then 

causes Ca2+ influx (Borodinsky & Fiszman, 1998). On the other hand, a hyperpolarised 

Vm may increase the driving force of passive Ca2+ entry via Ca2+-permeable, voltage-
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independent channels (Prevarskaya et al., 2011; Schwab et al., 2012). For example, in 

MDA-MB-231 cells, hEAG1 channels cause a hyperpolarised Vm, and blocking these 

channels reduces Ca2+ entry via Orai1 (Hammadi et al., 2012), suggesting that Vm-

hyperpolarisation increases [Ca2+]i in MDA-MB-231 cells. However, in the present study, 

replacing extracellular NaCl with ChoCl or blocking VGSCs with TTX, both 

hyperpolarising the Vm (Section 3.2.1), did not significantly alter the [Ca2+]i in MDA-MB-

231 cells. It is possible that hEAG1-induced Ca2+ entry requires a hEAG1-Orai1 

interaction, whereas the hyperpolarised Vm is not necessary. Indeed, ion channels can 

regulate intracellular signalling without conducting ions. For example, 3T3 fibroblasts 

transfected with Drosophila EAG channels show increased p38 MAPK activity and 

proliferation, which is independent of ion flux through the expressed EAG channels but 

depends on the position of the channel voltage sensor domain (Hegle et al., 2006).  

VGSCs are present in THP-1 macrophages (Carrithers et al., 2009), rat cortical 

astrocytes (Pappalardo et al., 2014b) and microglia (Persson et al., 2014), where they 

play a role in [Ca2+]i regulation by collaborating with NCX on the mitochondrial or plasma 

membrane. In human umbilical vein endothelial cells, Ca2+ influx through NCX is 

required for VEGF-induced ERK1/2 activation, which requires Na+ carried by VGSCs 

(Andrikopoulos et al., 2011a; Andrikopoulos et al., 2011b). In mouse cardiomyocytes, INa 

potentiates Ca2+ influx in wildtype but not NCX-knockout mice (Larbig et al., 2010). It is 

noteworthy that the mode of action of NCX is Vm-dependent (Blaustein & Lederer, 1999): 

when the Vm is more depolarised than the Vrev of NCX, the exchanger works in its 

reverse mode, importing Ca2+. Therefore, whether or not VGSCs potentiate NCX activity 

and then causes an increase of [Ca2+]i in these cells should be studied in the future. 

 

6.4 Vm and the small GTPases 

Work presented in this Thesis examined the possible underlying mechanism by 

which Vm hyperpolarisation inhibited migration of MDA-MB-231 cells in vitro. The 
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proportion of cells with lamellipodia in NS-1619- and TTX-treated MDA-MB-231 cells 

was reduced; the cells had a less elongated morphology after treatment with either of 

the drugs, suggesting Vm hyperpolarisation causes alterations in cytoskeletal 

components (Section 4.2.9). Active Rac1 at cell leading edge was reduced to a similar 

degree by TTX (30 μM) and NS-1619 (1 μM) treatment (Section 4.2.11). Therefore, the 

results suggest a functional role for the depolarised Vm in increasing active Rac1 levels 

at the leading edge. However, whether this is due to the redistribution of active Rac1 in 

the cell body, or increased Rac1 activation at cell leading edge is not clear. Future 

experiments should examine the protein level of total Rac1 and active Rac1 upon Vm 

depolarisation.  

The relationship between VGSC activity and the small GTPase Rac1 was recently 

investigated in microglia, where VGSCs increase [Ca2+]i via NCX and subsequently 

activate ERK and Rac1, which leads to migration in an ATP-dependent manner 

(Persson et al., 2014). Since the [Ca2+]i does not change after Vm hyperpolarisation or 

blocking VGSCs in MDA-MB-231 cells (Section 0), the activation of Rac1 may be 

dependent on the depolarised Vm per se.  

A depolarised Vm can activate small GTPases in both a Ca2+-dependent and 

independent manner. For example, in mouse cortical neurones, Vm depolarisation 

activates Ras and Rap1 via PKA and calmodulin, which subsequently induces ERK 

activation (Baldassa et al., 2003). Similarly, Vm depolarisation in PC12 cells induces c-

fos expression via PKA and MAPK, and the process requires the Ca2+-sensitive proline-

rich tyrosine kinase 2 (Park et al., 2000). In rat caudal arterial smooth muscle cells, the 

depolarised Vm activates ROCK and downstream MLCK in a VGCC- dependent manner 

and ultimately leads to muscle contraction (Mita et al., 2002; Mita et al., 2013). On the 

other hand, in LLC-PK1 kidney tubule epithelial cells, Vm depolarisation induces MLC 

phosphorylation via a Rho- and ROCK-dependent but Ca2+-independent pathway 

(Szaszi et al., 2005). In this pathway, phosphorylation is caused by the activation of 
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GEFs upon Vm depolarisation (Waheed et al., 2010). More recently, a study has 

demonstrated that Vm depolarisation enhances phosphatidylserine and K-Ras 

nanoclustering in baby hamster kidney cells, and K-Ras nanoclustering upon Vm 

depolarisation activates MAPK signalling (Zhou et al., 2015). Taken together, 

depolarised Vm is emerging as a functional signal in activating small GTPases. These 

activated small GTPases can then increase the assembly of cytoskeletal components, or 

promote the MAPK signalling pathway, which controls key cellular behaviours including 

proliferation, differentiation and development (Shaul & Seger, 2007). 

Interestingly, Nav1.5 activity activates Rap1B in SW620 cells (House et al., 2015). 

Given the capability of a depolarised Vm in activating small GTPases, future experiments 

should explore whether the activation of Rap1B is due to the Vm-depolarising role of 

Nav1.5 in SW620 cells. In order to fully understand the Vm-dependent small GTPase 

activation pathways in cancer cells, future experiments should also investigate the up-

stream effectors of Rac1 that lead to its activation, such as GEFs, upon Vm 

depolarisation. Moreover, since the activation of small GTPases may increase cancer 

malignancy by promoting cancer cell migration/invasion (Sahai & Marshall, 2002; 

Downward, 2003; Yamazaki et al., 2005), how VGSCs/Vm regulate other small GTPases 

in cancer cells should be further examined. Recently, it was reported that the Nav1.5 

level in MDA-MB-231 cells positively correlates to that of RhoA (Dulong et al., 2014). In 

the future, one may expect that the relationships between VGSC/Vm and other cancer-

related small GTPases such as Rab (Cheng et al., 2004), Ras (von Lintig et al., 2000; 

Eckert et al., 2004) and Arf (Hashimoto et al., 2004) will be revealed. 

 

6.5 The roles of VGSCs in cancer cells: an updated view 

In MDA-MB-231 cells, the Nav1.5-Vm-Rac1 signalling axis fits well in a previously 

proposed model that shows Nav1.5 potentiates the phosphorylation of src kinase, 

cortactin and cofilin (Brisson et al., 2013). Src kinase can promote cortactin 
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phosphorylation by increasing Rac1 activity (Servitja et al., 2003), and active Rac1 can 

potentiate cortactin phosphorylation (Head et al., 2003), which ultimately facilitates 

lamellipodia formation by activating the Arp2/3 complex (Miki et al., 1998; Krueger et al., 

2003). 

Together with other previously published data, more detail showing the 

downstream signals initiated by VGSC activity has been revealed (Figure 6.1). In Mat-

LyLu PCa and MDA-MB-231 cells, Na+ influx through Nav1.7 or Nav1.5 activates PKA, 

which consequently increases Nav1.7/Nav1.5 mRNA level and increases the trafficking of 

VGSC α subunit protein to the plasma membrane (Brackenbury & Djamgoz, 2006; 

Chioni et al., 2010). Additionally, Na+ influx carried by Nav1.5 allosterically potentiates the 

activity of NHE1 in MDA-MB-231 cells, which leads to an acidic extracellular 

environment, favouring the pH-dependent proteolytic activity of cysteine cathepsins B 

and S (Gillet et al., 2009; Brisson et al., 2011; Brisson et al., 2013).  

Moreover, Nav1.5 positively regulates the expression of the metastasis-promoting 

CD44 protein in MDA-MB-231 and SW620 cells (House et al., 2015; Nelson et al., 

2015b), which may lead to the activation of src kinase (Bourguignon et al., 2001; Lee et 

al., 2008). Given that CD44 promotes invasion by up-regulating the cortactin mRNA level 

(Hill et al., 2006), taken together, these data suggest that the CD44-src-cortactin axis is 

regulated by Nav1.5 in cancer cells.  

In BCa cell lines, the expression of VGSCs appears to be associated with ER 

status: VGSCs are expressed in ER— MDA-MB-231 cells but not in ER+ MCF-7 cells. 

Interestingly, down-regulation of ER in MCF-7 cells induced functional expression of 

VGSCs, likely Nav1.5 (Section 3.2.7) (Mohammed et al., 2015).  Although microarray 

data show that Nav1.5 mRNA levels do not correlate with ER status in BCa patient 

samples (Yang et al., 2012), ER down-regulation may increase functional channel 

activity and/or channel trafficking to plasma membrane of BCa cells, independent of 

mRNA regulation.  
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Figure 6.1. The roles of voltage-gated Na+ channels in different cancer cells.  

In MDA-MB-231 cells, Nav1.5 carries Na+ influx, which depolarises the Vm, increasing 
Rac1 activity (Section 4.2.11). VGSC activity also activates src kinase (Brisson et al., 
2013). Rac1 and src kinase control cytoskeletal modification by regulating the Arp2/3 
complex and phosphorylation of cortactin and cofilin (Pollard, 2007; Stock & Schwab, 
2015). Nav1.5 positively regulates the expression of CD44 (Nelson et al., 2015b), which 
may lead to src activation (Lee et al., 2008). Na+ also increases H+ efflux through NHE1, 
which enhances cathepsin protease activity (Brisson et al., 2011; Brisson et al., 2013; 
Pardo & Stuhmer, 2014). In SW620 colon cancer cells, Nav1.5 transcriptionally up-
regulates invasion-related genes via an ERK signalling pathway (Schwab et al., 2012; 
House et al., 2015; Roger et al., 2015). In MDA-MB-231 and Mat-LyLu prostate cells, 
Na+ influx potentiates VGSC synthesis at transcription level and increases VGSC 
trafficking to the plasma membrane in a PKA-dependent manner (Brackenbury & 
Djamgoz, 2006; Chioni et al., 2010). In addition, in MDA-MB-231 cells, ER down-
regulation induces functional Nav1.5 expression (Section 3.2.7). The auxiliary β1 subunit 
increases cancer cell process outgrowth via fyn kinase (Nelson et al., 2014). β1 also 
increases INa density in MDA-MB-231 cells (Chioni et al., 2009). Red lines indicate the 
findings in this study. 
 



 

 

220 

In SW620 colon cancer cells, Nav1.5 activity leads to persistent MAPK activation in 

a Rap1-dependent manner (House et al., 2015), and it also transcriptionally activates the 

expression of invasion-related genes via an ERK/c-Jun pathway (House et al., 2010; 

House et al., 2015). Finally, the auxiliary β1 subunit can potentiate Na+ influx through 

Nav1.5 in MDA-MB-231 cells (Chioni et al., 2009), and can also facilitate neurite-like 

process outgrowth on BCa cells in vitro in a fyn kinase-dependent manner, where Na+ 

conductance through the α subunits is also required (Nelson et al., 2014). In conclusion, 

a number of models have shown distinct downstream signalling pathways initiated by 

VGSCs in different cancer cells. Future studies should investigate whether these 

mechanisms are applicable to all cancers where VGSCs are present, or whether they 

are dependent on the cancer type or VGSC isoform. 

 

6.6 Na+ and tumourigenesis  

In Xenopus laevis, Na+ accumulation appears in regions where cells over-

proliferate (Lobikin et al., 2012). High [Na+]i correlates with tumourigenesis in mammalian 

cell types (Cameron et al., 1980; Pool et al., 1981; Sparks et al., 1983). Therefore, this 

study also investigated whether VGSCs regulate [Na+]i in MDA-MB-231 cells. TTX and 

Nav1.5-shRNA reduced [Na+]i , suggesting that Nav1.5 not only depolarises the Vm but 

also cause Na+ accumulation in MDA-MB-231 cells (Section 0). This result agrees with 

another study using H460 NSCLC cells where Nav1.7 is expressed, showing that 

blocking Nav1.7 using TTX reduces [Na+]i (Campbell et al., 2013). However, how Na+ per 

se contributes to tumourigenesis is less understood. As discussed above, Na+ increases 

MDA-MB-231 cell invasion by allosterically regulating NHE1 (Gillet et al., 2009; Brisson 

et al., 2011; Brisson et al., 2013), but how Na+ regulates other ion channels/transporters 

in cancer is less studied. Increased [Na+]i enhances the activity and cell surface 

expression of Na+-K+ ATPase in rat kidney cortical collecting duct cells and opossum 

kidney cells (Vinciguerra et al., 2003; Sjostrom et al., 2007). As discussed in Section 6.3, 
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Na+ influx via VGSCs may increase [Ca2+]i through NCX in human umbilical vein 

endothelial cells and mouse cardiomyocytes (Larbig et al., 2010; Andrikopoulos et al., 

2011a; Andrikopoulos et al., 2011b). Future work should investigate whether or not 

increased Na+-K+ ATPase and/or NCX activity leads to tumourigenesis.  

 

6.7 Recording INa and Vm on cells from tumour tissue slices  

In spite of all the in vivo evidence showing that suppressing VGSC expression or 

blocking VGSC activity reduces tumour growth and metastasis (Yildirim et al., 2012; 

Driffort et al., 2014; Nelson et al., 2015a; Nelson et al., 2015b), the INa on cells in tumour 

tissue had not been previously studied. By performing whole-cell patch clamp recording 

on tumour tissue slices, this study provides direct evidence showing INa carried by 

VGSCs in primary tumour tissue. The INa characteristics did not differ across the tissue, 

suggesting that VGSCs are homogeneously expressed in orthotopically implanted 

tumours. In vitro, hypoxia increases persistent INa in MDA-MB-231 cells (Djamgoz & 

Onkal, 2013), but VGSC activity in hypoxic regions of tumour tissue was not 

investigated. Future experiments using Tie2-promoter driven GFP in transgenic mice 

(Schlaeger et al., 1997; Motoike et al., 2000), where endothelial cells of vasculature are 

labelled with GFP, in order to study whether or not INa differs in tumour regions with 

various blood vessel densities.  

The Vm recorded ex vivo was more depolarised than in cells cultured in vitro 

(Section 5.2.4), and the Vm across tumour tissue did not vary. It is possible that the Vm of 

cells in tumour tissue is regulated at a tissue-scale via gap junctions (Chernet et al., 

2014; Chernet & Levin, 2014). Cx43 is expressed in MDA-MB-231 cells (Qin et al., 

2002), and future experiments can apply Cx43 blockers such as mefloquine (Juszczak & 

Swiergiel, 2009) on tumour tissue and investigate whether or not inhibiting gap junctional 

intercellular communication causes different distributions of cell Vm across tumour tissue. 
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6.8 Clinical relevance 

Using an orthotopic mouse model, suppressing Nav1.5 expression using shRNA 

reduced tumour growth (Section 5.2.7) and metastasis to liver, lungs and spleen in mice 

(Nelson et al., 2015b). Moreover, phenytoin, an FDA-approved anticonvulsant, reduces 

tumour growth in mice bearing MDA-MB-231 cells, possibly by increasing cancer cell 

apoptosis (Nelson et al., 2015a). In addition, phenytoin also reduced cancer cell invasion 

and metastasis to liver, lungs and spleen (Nelson et al., 2015a). Additionally, ranolazine, 

another FDA-approved antiarrhythmic, reduces lung metastasis after injection of MDA-

MB-231 cells into the tail vein (Driffort et al., 2014). Similarly, subcutaneously implanted 

Mat-LyLu cells show reduced lung metastasis in rats following local injection with TTX 

(Yildirim et al., 2012). In summary, using various tumour implantation models, inhibiting 

VGSCs results in reduced primary tumour growth and/or metastasis, suggesting the 

significance of repurposing VGSC-targeting antiarrhythmic antiepileptic drugs as a 

potential new cancer treatment. Further studies should investigate combining VGSC-

blocking anti-arrhythmics with chemotherapy, radiation therapy and/or hormone therapy 

during cancer treatment in order to inhibit metastasis. 

 

6.9 Future directions 

Given the data presented in this study, a number of future experiments should be 

done to better illustrate the relationships between VGSC/Vm and tumour progression 

both in vitro and in vivo.  

To begin with, whether VGSCs regulate Vm in other cancer cell types and thereby 

potentiate cancer cell migration by activating Rac1 should be studied. On the other 

hand, Rac1 may not be the only small GTPase that is activated upon Vm depolarisation 

in cancer cells, and the activity of other cancer-related small GTPases should be 

investigated in response to changes in Vm. More importantly, how exactly a depolarised 

Vm activates small GTPases in cancer is still unclear.  
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One of the limitations of the present study is that Vm was determined in individual 

cells using the whole-cell patch clamp technique. In spite of their limited accuracy, Vm-

sensitive fluorescent indicators are becoming popular in studying tissue-scale, temporal 

and spatial Vm change in vivo (Adams & Levin, 2012). Future studies can combine Vm- 

and Na+-/Ca2+-sensitive fluorophores to investigate dynamics between [Na+]i, Vm and 

[Ca2+]i.  

The effector(s) of increased [Na+]i in tumours is not completely clear. However, 

considering the pro-invasive role of intracellular Na+ and the pro-migratory role of 

depolarised Vm, reducing [Na+]o may have therapeutic value in cancer treatment, since 

replacement of extracellular NaCl with NMDG both hyperpolarises the Vm and reduces 

[Na+]i. Future experiments should test this hypothesis both in vitro and in vivo. 

Polyoma middle T oncoprotein-expressing (PyMT) mice can develop BCa and 

lung-metastasis spontaneously (Lin et al., 2003; Fantozzi & Christofori, 2006). 

Interestingly, the BCa progression in PyMT mice accompanies loss of ER (Lin et al., 

2003). Given that suppressing ER expression leads to functional VGSC expression in 

MCF-7 cells (Section 3.2.7), the PyMT mouse is an ideal model to investigate how 

VGSCs are up-regulated during cancer progression.  

In conclusion, given the significance of VGSC/Na+/depolarised Vm in promoting 

cancer progression both in vitro and in vivo, one may expect further elucidation of the 

VGSC-dependent metastasis pathways, as well as their potential exploration as 

therapeutic targets in cancer treatment.  
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7 Abbreviations 

AC: adenylyl cyclase 

AIS: axon initial segment 

ATX: sea-anemone toxins 

BCa: breast cancer 

BKCa channels: large conductance Ca2+-activated K+ channels 

BRCA1: breast cancer 1 

[Ca2+]i: intracellular Ca2+ concentration 

CaM: calmodulin 

CAM: cell adhesion molecule 

CaMK: calmodulin kinase 

CCD: charge-coupled device 

CDK: cyclin-dependent kinases 

CGN: cerebellar granule neuron 

CHL cells: Chinese hamster lung cells 

CHO cells: Chinese hamster ovary cells 

ChoCl: choline chloride 

CNS: the central nervous system 

CRAC channels: Ca2+-release activated Ca2+ channels 

CSC: cancer stem cell 

DAPC: dystrophin-associated protein complex 

DAPI: 4',6-diamidino-2-phenylindole 

DMBA: 7,12-dimethylbenz(a)anthracene 

DMEM: Dulbecco’s modified eagle medium 

DMSO: dimethyl sulfoxide 

DRG: dorsal root ganglion 

E2: β-oestradiol 

EAG channels: Ether à go-go channels 

ECM: extracellular matrix 

EGF: epidermal growth factor 

eGFP: enhanced green fluorescent protein 

EGTA: ethylene glycol tetraacetic acid 

ENaC: epithelial Na+ channel 

ER: oestrogen receptor 

ERK: extracellular signal-regulated kinase 
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FAK: focal adhesion kinase 

FBS: foetal bovine serum 

FDA: the US Food and Drug Administration 

Gβγ: the βγ subunits of G proteins 

GEF: guanine nucleotide exchange factor 

GEFS+: generalised epilepsy with febrile seizure plus 

hEAG channels: human Ether à go-go channels 

HEK: human embryonic kidney 

HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HER2: human epidermal growth factor receptor 2 

HERG: human EAG-related gene 

hMSC: human mesenchymal stem cell 

IBKCa: large conductance Ca2+-activated K+ channels current 

IbTx: iberiotoxin 

IC50: the concentration of drug at which half of its maximal effect occurs 

IEAG: EAG current 

IFM motif: isoleucine-phenylalanine-methionine motif  

Ig: immunoglobulin 

IHERG: HERG current 

IK: K+ current 

IKir: inward rectifier K+ current 

IL: interleukin 

INa: Na+ current 

IP3: inositol 1,4,5-trisphosphate 

IQ domain: isoleucine-glutamine domain 

ISME: ion-selective microelectrode 

JNK: ERK-Jun-amino-terminal kinase 

k: slope factor 

KATP channels: ATP-sensitive K+ channels 

KCa channels: Ca2+-activated K+ channels 

Kd: dissociation constant 

Kir channels: inward rectifier K+ channels 

MAP: mitogen-activated protein 

MAPK: mitogen-activated protein kinase 

MDR: multidrug-resistant 

MEK: MAPK/ERK kinase 
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MLC: myosin regulatory light chain 

MLCK: MLC kinase 

MLK3: mixed lineage kinase 3 

MMP: matrix metalloproteinases 

MOG1: multicopy suppressor of Gsp1 

MRI: magnetic resonance imaging 

MTT: thiazolyl blue tetrazolium bromide 

[Na+]i: intracellular Na+ concentration 

[Na+]o : extracellular Na+ concentration 

Nav1.5-shRNA: shRNA targeting Nav1.5 

NCX: Na+-Ca2+ exchanger 

NFAT: nuclear factor of activated T cells 

NGF: nerve growth factor 

NHE1: Na+-H+ exchanger type 1 

NMDG: N-methyl-D-glucamine 

NMR: nuclear magnetic resonance  

NSCLC: non-small cell lung cancer 

p11: annexin II light chain  

PARP: poly (ADP-ribose) polymerase 

PBS: phosphate saline solution 

PCa: prostate cancer 

PKA: cAMP-dependent protein kinase  

PKC: protein kinase C 

PNS: the peripheral nervous system 

PR: progesterone receptor 

PSS: physiological saline solution 

PTPH1: protein tyrosine phosphatase 1 

PyMT: polyoma middle T 

qPCR: real-time PCR 

RCK: regulator of the conductance of K+ 

ROCK: Rho-associated kinase 

ROI: region of interest 

RPTPβ: receptor protein kinase tyrosine phosphatase β 

RTK: receptor tyrosine kinases 

SCLC: small-cell lung cancer 

SERT: serotonin transporter 
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shRNA: small-hairpin RNA 

shRNA control: non-targeting shRNA control 

siRNA: small-interfering RNA 

SOCE: store-operated Ca2+ entry 

SPF: specific pathogen free 

STX: saxitoxin 

t1/2: half time 

TF: transcription factor 

TGF: tumour growth factor 

TNF: tumour necrosis factor 

TNFR1: tumour necrosis factor receptor 1 

Tp: time to peak 

TRP: transient receptor potential 

TTX: tetrodotoxin 

V1/2: the voltage at which half-maximal conductance or availability occurs 

Va: activation voltage 

VEGF: vascular endothelial growth factor  

VGCC: voltage-gated Ca2+ channel 

VGPC: voltage-gated K+ channel 

VGSC: voltage-gated Na+ channel 

Vm: membrane potential 

Vp: voltage at current peak 

Vrev: reversal potential 

WAVE: Wiskott-Aldrich syndrome protein-family verprolin-homologous proteins 
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