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Abstract 

The urothelium, the epithelial lining of the bladder, is exposed to urinary-excreted 

carcinogens from environmental, occupational and dietary sources. These 

carcinogens include heavy metals such as cadmium. As cadmium is a weak mutagen, 

this suggests that genetic mechanisms are not responsible for cadmium-induced 

carcinogenesis. Non-genotoxic carcinogenesis is relatively poorly understood, 

however recent advances show that epigenetic dysregulation of gene expression may 

play an important role. The aim of my research was to investigate epigenetic 

dysregulation as the candidate mechanism underlying cadmium carcinogenesis of 

human urothelial cells. 

Normal human urothelial (NHU) cells were cultured as finite cell lines following 

isolation from surgical specimens. When established in vitro, NHU cells have a 

highly proliferative phenotype and can be induced to differentiate using two 

published methods: either through PPARγ-mediated differentiation or serum-

mediated differentiation.  

Exposure of NHU cells to cadmium inhibited expression of the tumour suppressor 

genes, p16, APC and RASSF1A. As dysplasia is axiomatic of carcinoma in situ, the 

precursor to muscle invasive urothelial carcinoma, the potential of NHU cells to 

differentiate in the presence of cadmium was investigated. Following exposure to 

cadmium, there was a failure to upregulate archetypical differentiation-associated 

genes, including uroplakin 1A and 2, and cytokeratins 13 and 20. Trichostatin A, a 

histone deacetylase inhibitor was able to reverse some of these changes. 

Mass spectrometry and immunoblotting were utilised to investigate post-translational 

histone modification changes caused by cadmium exposure. Data showed that there 

was a change in histone modification marks present in NHU cell cultures exposed to 

cadmium that failed to upregulate differentiation markers. An increase in repressive 

histone marks such as methylation at H3K9 was found alongside a decrease in active 

marks such as acetylation at H3K18 and H3K23.  

This study presents evidence that cadmium exposure changes the epigenome of NHU 

cells and leads to compromised urothelial differentiation and downregulation of 

tumour suppressor genes.   
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1 Introduction 

1.1 Urothelium 

The urothelium is a transitional epithelium that lines the mammalian urinary tract, 

including the renal pelvis, ureter, bladder and proximal urethra.  It functions to 

provide a permeability barrier to urine thereby protecting the underlying stroma 

(Fellows & Marshall, 1972).  

The urothelium is stratified into three cell layers; basal, intermediate and superficial 

(Figure 1.1) with each layer having a morphologically distinct cell type (Richter & 

Moize, 1963). The basal layer is composed of small closely packed cells of diameter 

5-10 µm which form a single layer of cells that are in contact with the basement 

membrane. The basal cells support one to four layers of larger, polygonal 

intermediate cells that have a diameter of 20 µm. The most luminal layer consists of 

terminally differentiated superficial cells, otherwise known as umbrella cells because 

they cover several underlying intermediate cells.  Superficial cells have a hexagonal 

shape, are often binucleated and have a diameter ranging from 50-120 µm (Lewis, 

2000). The three cell zones can be distinguished through the differential expression 

of cytokeratin and claudin isotypes and the expression of uroplakins by the 

superficial cells. 

 

Figure 1.1. A haematoxylin and eosin stained section of human bladder tissue showing the 

multiple cell layers.  

The urothelium is a mitotically-quiescent tissue in situ, but in response to injury or 

infection it possesses a high regenerative capacity (Hicks, 1975; Jost, 1989; Lavelle 

et al., 2002). This proliferation response to bladder injury is believed to be regulated 

by signal feedback between basal cells of the urothelium and the stromal cells that 

underlie them. Shin et al. (2011) showed that basal urothelial cells express the 

Lumen 

Lamina	propria 

Urothelium  
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secreted protein signal Sonic hedgehog (Shh), and in response to injury Shh 

expression in these basal cells increases and results in increased stromal expression 

of Wnt protein signals that lead to the proliferation of both urothelial and stomal 

cells. An additional study using a rodent damage model identified the involvement of 

the BMP4 signalling pathway during urothelial regeneration (Mysorekar et al., 

2009).   

1.1.1 Cytokeratins 

Cytokeratins (CK) are keratin-containing intermediate filaments within the 

cytoplasm of epithelial cells. They exist as heterodimers which come together to 

form a tetramer by anti-parallel binding; these tetramers then form protofilaments 

which intertwine in pairs to form protofibrils. Four protofibrils represent one 

cytokeratin filament.  

There are at least 20 different CK isotypes in humans and their expression profiles 

can be used to classify epithelia and to determine the differentiation stage (reviewed 

by Chu & Weiss, 2002; Southgate et al., 1999). CK20 is an indicator of terminal 

differentiation and is only found in the superficial cell zone of urothelium (Moll et 

al., 1992; Harnden et al., 1996). CK13 is an indicator of transitional differentiation 

and is expressed in the basal and intermediate cell zones (Achtstatter et al., 1985; 

Moll et al., 1988; Varley et al., 2004). CK7, CK8, CK18 and CK19 are expressed 

throughout the three cell layers (Schaafsma et al., 1989). CK14 is an indicator of 

squamous differentiation and is expressed in cases of squamous metaplasia (Harnden 

& Southgate, 1997).   

1.1.2 Uroplakins 

The apical surface of superficial cells is highly specialised, containing multiple 

thickened plaques of asymmetric unit membrane (AUM), which are comprised of the 

products of the urothelium-specific uroplakin genes (Wu et al., 1994; Sun et al., 

1999).  The AUM is thought to strengthen the urothelial apical surface, preventing 

the cells from rupturing during bladder distension and act to help prevent 

transcellular diffusion (Hu et al., 2002). Individual AUM plaques are surrounded by 

‘hinge’ regions of normal symmetrical plasma membrane. There are five uroplakin 

proteins that have been identified in man: UPK1A, UPK1B, UPK2, UPK3A and 

UPK3B (Figure 1.2; Wu et al., 1990; Wu et al., 1994; Deng et al., 2002). UPK1A 
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and UPK1B are members of the tetraspanin family of proteins, which are a family of 

membrane proteins that have four transmembrane domains, whereas UPK2, UPK3A 

and UPK3B are single transmembrane domain proteins (Yu et al., 1994). UPK1A 

pairs with UPK2, and UPK1B pairs with either UPK3A or UPK3B to form the AUM 

plaques (Wu et al., 1994; Deng et al., 2002). Urothelial barrier function can be 

affected by impaired formation of the AUM plaques as demonstrated by UPK2 and 

UPK3A knockout mice, which showed increased water and urea permeability across 

the urothelium (Hu et al., 2000; Hu et al., 2002; Kong at al., 2004). 

 

 

Figure 1.2. The uroplakins. UPK1A and UPK1B are members of the tetraspanning family of 

proteins. UPK2, UPK3A and UPK3B are single transmembrane proteins. The brackets denote 

known pairing interactions between UPK isoforms. Solid circles represent N-linked glycan sites. 

Figure adapted from Deng et al., 2002. 

In normal human urothelium uroplakins are only expressed in terminally 

differentiated superficial ‘umbrella’ cells (Lobban et al., 1998; Varley & Southgate, 

2008).  

1.1.3 Tight junctions 

Tight junction complexes prevent paracellular diffusion and help to establish polarity 

in mammalian epithelia. The tight junction barrier is formed by integral 

transmembrane proteins that seal the paracellular spaces. These proteins include 

occludin, junctional adhesion molecule and claudins (Figure 1.3). These 

transmembrane proteins attach to cytoplasmic proteins such as the zona occluden 

(ZO) proteins that act to cluster the barrier-forming proteins and link the tight 

junction to the actin cytoskeleton (Schneeberger & Lynch, 2004). 

! !!!!!!!UPK1A! !!!!!!!UPK2!! ! !UPK3A! ! !!!!! !UPK1B! ! !!!UPK3B!

Lumen!
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Claudins are small (20-27 kDa) transmembrane proteins. They are tetra-spanning 

proteins that have two extracellular loops and their N- and C-termini located in the 

cytoplasm (Schneeberger & Lynch, 2004; Krause et al., 2008). In humans there are 

24 members of the claudin family. Claudins can interact homotypically and 

heterotypically to form fibrils; for example claudin 3 and 5 interact (Coyne et al., 

2003; Angelow et al., 2008). Immunohistochemical localisation of claudins in human 

urothelium has shown that claudin 3 is expressed only at ‘kissing points’ between 

superficial cells. Claudin 4 and 5 were expressed at intercellular junctions in the 

superficial cell zone with claudin 4 also being expressed by the basal and 

intermediate cell zones and Claudin 7 was expressed by intermediate cells (Varley et 

al., 2006; Smith et al., 2015). 

Zona occludens (ZO) proteins are part of a large family of membrane-associated 

guanylate kinase homologues. The C-terminus of all claudins except claudin 12, 

binds to proteins that contain a PDZ domain, which includes ZO-1, ZO-2 and ZO-3 

(Itoh et al., 1999). ZO-1 and ZO-2 have been shown to be essential for spatial 

organisation of claudins in epithelial cells (Umeda et al., 2006). 

 

Figure 1.3. Structure of tight junctions. 
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1.2 Bladder stem cells and progenitor cells 

Traditionally, epithelial stem cells reside in the basal cell layers as seen in skin, oral 

mucosa and the prostate (Bickenbach, 1987; Tsujimura et al., 2002). A DNA 

nucleotide labelling (BrdU) study in rats showed that potential bladder 

stem/progenitor cells were localised to the basal cell layer (Kurzrock et al., 2008). 

Additionally, Shh-expressing cells that have been shown to have long term 

regenerative capacity are proposed to be Keratin 5-expressing basal cells (Shin et al., 

2011; Thangappan & Kurzrock, 2009).  

However, from the use of fate mapping studies, Gandhi et al. (2013) observed that 

Keratin 5-expressing basal cells rarely produce intermediate or superficial cells. They 

found that P-cells, a transient urothelial cell type, are progenitors in the embryo and 

intermediate cells are progenitors in the adult urothelium and that both cell types 

require retinoids for their specification. Sun et al. (2014) found that label-retaining 

cells (BrdU or EdU) were distributed in all three cell layers of the urothelium and 

were most concentrated in the bladder trigone. 

Wezel et al. (2014) used the expression of nerve growth factor receptor (NGFR), a 

cell surface-expressed marker that is restricted to basal cells, to isolate basal NGFR+ 

and suprabasal NGFR- urothelial cells. Both basal and suprabasal cell populations 

showed long term proliferation and the capacity to form hierarchically organised 

differentiated urothelium similar to native urothelium. Colopy et al (2014) showed 

that UPEC-induced injury resulted in the loss of the superficial cell layer followed by 

the proliferation of label retaining cells in the basal and intermediate cell layers. This 

suggests that two distinct progenitor cell populations may exist in the basal and 

intermediate cell layers (Castillo-Martin et al., 2010; Colopy et al., 2014). 
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1.3 Urothelial cells in vitro 

Numerous techniques for the growth of normal human urothelium in vitro have been 

reported (Reznikoff et al., 1983; Kirk et al., 1985; Dubeau & Jones, 1987; Rahman et 

al., 1987; Hutton et al., 1993; Southgate et al., 1994; Southgate et al., 2002). Human 

urothelium can be isolated from surgical specimens, disaggregated and then grown in 

monolayer culture as finite Normal Human Urothelial (NHU) cell lines (Southgate et 

al., 1994; 2002). When established in a low calcium keratinocyte serum-free medium 

(KSFM), NHU cells have a highly proliferative phenotype which is driven by the 

mitogen-activated protein kinase (MAPK) signalling cascade downstream of an 

epidermal growth factor receptor (EGFR)-activated autocrine signalling loop (Varley 

et al., 2005).  Analysis of CK, claudin and uroplakin expression shows that in serum 

free conditions NHU cells are non-differentiated and adopt a squamous basal-like 

phenotype (Southgate et al., 1994; Lobban et al., 1998; Varley et al., 2006). 

1.3.1 Differentiation of NHU cell cultures 

Differentiation of NHU cell cultures can be induced by two methods: one involves 

subculture of NHU cell cultures in medium containing serum (Cross et al., 2005), 

while the other involves pharmacological activation of peroxisome proliferator-

activated receptor gamma (PPARγ) and concurrent inhibition of the EGFR autocrine 

signalling loop (Varley et al., 2004).   

1.3.1.1 Serum- mediated differentiation 

NHU cells subcultured in medium supplemented with 5% bovine serum and near 

physiological calcium (2 mM) reproducibly differentiate to form a stratified 

urothelium, consisting of basal, intermediate and superficial cells, with an efficient 

barrier function demonstrating low diffusive permeability to urea and water (Cross et 

al., 2005). Barrier function can be assessed by transepithelial electrical resistance 

(TER) to determine the potential difference across an epithelial sheet. An epithelia is 

considered to have a ‘tight’ barrier function with a resistance >500 Ω.cm2, whereas a 

‘leaky’ epithelia has a TER <500 Ω.cm2 (Fromter & Diamond, 1972; Lewis, 2000). 

The urothelium has one of the highest recorded TER for any tissue with a TER 

typically greater than 2500 Ω.cm2 (Lewis & Diamond, 1975; 1976; Hu et al., 2002). 

When NHU cells were seeded on permeable membranes and maintained in 5% 

bovine serum and physiological calcium, cultures developed a high TER greater than 
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3000 Ω.cm2 (Cross et al., 2005). Cells differentiated using 5% bovine serum and 

2mM calcium switch from a proliferative/squamous phenotype to a transitional cell 

phenotype confirmed by the expression of tight junction components ZO-1, occludin, 

claudin 4 and an increase in the number of cells expressing CK13 alongside a 

decrease in those expressing CK14 (Cross et al., 2005).  

1.3.1.2 PPARγ-mediated differentiation 

PPARγ is a member of the nuclear receptor family and is a ligand-activated 

transcription factor. It is the highest expressed PPAR isoform in human urothelium 

(Guan et al., 1997). The heterodimerisation of ligand-bound PPARγ with retinoid X 

receptor results in formation of an active transcription factor that binds specific 

regions of DNA in the promoters of target genes called peroxisome proliferator 

response elements (PPRE) (Blanquart et al., 2003). PPARγ activation has been 

shown to have roles in the differentiation of numerous cell types including 

adipocytes (Lowell, 1999). 

Activation of PPARγ in NHU cell cultures with troglitazone (TZ) can induce 

upregulation of the urothelial differentiation marker UPK2 (Varley et al., 2004a) and 

induce transitional differentiation as demonstrated by the gain of CK13 and loss of 

CK14 protein expression (Varley et al., 2004b). Due to autocrine EGFR activity in 

NHU cells (Varley et al., 2005) which phosphorylates and inhibits PPARγ, PPARγ-

mediated differentiation requires the concurrent inhibition of EGFR with PD153035 

(PD) or the downstream MAPK/ERK protein inhibitor U0126. This allows for a 

more robust expression of uroplakins as well as cytokeratins and tight junction 

proteins (Varley et al., 2006). 

1.3.1.3 Transcription factors involved in urothelial differentiation 

Transcription factors upregulated by PPARγ activation have been shown to be 

involved in the expression of differentiation markers. The hypothesis that 

intermediary factors may be involved came about because the differentiation marker 

UPK2 does not contain a PPRE in its promoter region and because upregulation of 

UPK2 mRNA levels does not occur until 24-48 hours after PPARγ activation. This is 

later than other markers of differentiation such as FABP4 and AQP3 that contain a 

PPRE in their promoter region and are upregulated within six hours (Flemming, 

2008). Varley et al. (2009) identified several transcription factors including 
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interferon regulatory factor (IRF1) and forkhead box A1 (FOXA1) that were 

upregulated within 12 hours of induction of differentiation and which had PPREs in 

their promoter regions. Both IRF1 and FOXA1 were shown to bind the promoter 

region of UPK2 and their knockdown inhibited differentiation. Other transcription 

factors that have been shown to be involved in urothelial differentiation include 

grainyhead-like protein 3 homolog (GRHL3), ETS-related transcription factor Elf-3 

(ELF3), krueppel-like factor 5 (KLF5) and GATA-binding protein 3 (GATA3) (Yu 

et al., 2009; Bell et al., 2011; Bock et al., 2014). 
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1.4 Bladder Cancer 

The majority of bladder cancers arise from the urothelium and in its most aggressive 

form, where urothelial carcinoma (UC) invades the detrusor smooth muscle of the 

bladder wall, it is associated with a high mortality (<50 % 5yr survival).  The 

classical understanding of UC is based on clinical and genetic evidence which 

suggests that UC develops via two pathways: the Ta tumour pathway and the 

carcinoma in situ (CIS) pathway (Figure 1.4). The Ta/T1 pathway is characterised by 

low-grade frequently recurrent superficial tumours, which rarely progress to the 

muscle invasive stage (70–80% of human UC cases), whereas CIS lesions are high 

grade and often progress to muscle invasive carcinomas (20–30% of human UC 

cases). The two pathways are associated with different initiating mutations. Low 

grade superficial UCs frequently have activating mutations in the fibroblast growth 

factor receptor 3 (FGFR3) gene (75%) (Cappellen et al., 1999; Billerey et al., 2001), 

or in genes of the RAS pathway (10-15%) (Jebar et al., 2005) both of which activate 

the MAPK pathway. By contrast the high-grade muscle invasive tumours contain 

mutations in genes encoding the tumour suppressor p53 and/or retinoblastoma 

protein (RB) leading to a loss of function (Hartmann et al., 2002; Hopman et al., 

2002; Hurst et al., 2008). Loss of PTEN function and activation of the Wnt signalling 

pathway have also been proposed to play a role in muscle-invasive bladder tumours 

(Puzio-Kuter et al., 2009). 

Recent genome-wide expression and sequencing studies have identified distinct basal 

and luminal molecular subtypes of muscle-invasive bladder cancer (MIBC) that 

share molecular features with basal and luminal breast cancers (Sjodahl et al., 2012; 

2013; Choi et al., 2014; Damrauer et al., 2014). Luminal MIBCs are enriched for 

uroplakins, KRT20, ERBB2 and differentiation markers such as FOXA1, GATA3, 

TRIM24 and PPARγ, while basal MIBCs are enriched for KRT5, KRT6, KRT14, 

CD44 and CDH3. Luminal MIBCs frequently have papillary morphology and 

FGFR3 upregulation or mutation.  
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Figure 1.4. Diagram of urothelial carcinoma progression. Low grade, non-invasive papillary 

tumours are associated with activating mutations in FGFR3 and RAS. High grade muscle-

invasive tumours are associated with loss of p53 or RB function.  Later stage and carcinoma in 

situ tumours express extracellular matrix remodelling genes. (Cappellen et al., 1999; Billerey et 

al., 2001; Jebar et al., 2005; Hartmann et al., 2002; Hopman et al., 2002; Hurst et al., 2008). 
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1.5 Epigenetics 

Epigenetics is defined as heritable changes in gene expression that are not 

accompanied by changes in DNA sequence (Jones & Baylin, 2007). Major epigenetic 

mechanisms include DNA methylation, post-translational modifications of histones 

and non-coding RNA-mediated gene silencing. Epigenetic mechanisms are essential 

for normal development as they regulate the expression of genes involved in key 

biological processes. However epigenetic changes have also been shown to play a 

role in cancer; this was first shown back in the 1980s when global DNA 

hypomethylation was reported in human tumours (Feinberg & Vogelstein, 1983).  

Since then many other epigenetic mechanisms have been implicated in cancer 

including histone modifications, microRNA expression and nucleosome positioning. 

1.5.1 DNA methylation 

DNA methylation is the most well studied epigenetic alteration. The DNA 

methyltransferase  (DNMT) family mediates the methylation of cytosines through 

the transfer of a single methyl group from S-adenosyl methionine (SAM) to cytosine 

forming 5-methyl cytosine (5-MeC). DNA methylation silences genes by preventing 

access of transcription factors to their respective binding sites either directly by 

methylation of transcription factor binding sequences or indirectly through the 

recruitment of methyl-CpG-binding domain (MBD) proteins. MBD proteins can 

directly block transcription factor binding or they can recruit chromatin modifiers 

that alter the chromatin structure into a more repressive environment (Newell-Price 

et al., 2000). 

1.5.2 Histone modifications 

DNA is packaged into chromatin, which may be partitioned into condensed regions 

called heterochromatin or into more relaxed accessible regions called euchromatin 

(Felsenfeld & Groudine, 2003). The fundamental repeating unit of chromatin is the 

nucleosome, consisting of 147 bp of DNA wrapped approximately 1.7 superhelical 

turns around a core histone octamer, comprising two H2A/H2B dimers and a H3/H4 

tetramer (Luger et al., 1997). Chromatin structure affects every DNA-based process 

including gene transcription, DNA replication and DNA repair (Kouzarides, 2003). 

One approach to establish, maintain and modulate chromatin structure involves post-
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translational modification of histones, particularly of histone N-terminal tails 

(Bannister & Kouzarides, 2011). 

The N-terminal tail domains of the core histones contain an extraordinary number of 

sites that can be subjected to post-translational modification (Grant, 2001; Goll & 

Bestor, 2002; Turner, 2002). Some modifications, such as acetylation and 

phosphorylation, can alter the charge of the tails and, therefore, have the potential to 

influence chromatin through electrostatic mechanisms. However, the primary 

mechanism by which histone modifications act appears to be through altering the 

ability of non-histone proteins to interact with chromatin (Martin & Zhang, 2005; 

Grewal & Moazed, 2003; Iizuka & Smith, 2003; Jenuwein & Allis, 2001). 

The acetylation of histone tails by histone acetyltransferases (HATs) induces 

chromatin decondensation, whereas the removal of acetyl groups by histone 

deacetylases (HDACs) promotes a tighter binding of the histone to the DNA. 

Methylation of histones can be associated with either euchromatin or 

heterochromatin depending on the target histone residue. For example, the tri-

methylation of histone H3 lysine 27 (H3K27me3) is implicated in gene repression by 

promoting a compact chromatin structure (Ringrose et al., 2004), whereas di/tri-

methylated histone H3 lysine 4 (H3K4me2/me3) is associated with transcriptional 

activation, with the highest levels of this modification being observed near 

transcriptional start sites of highly expressed genes (Shi et al., 2004). The enzymes 

that add or remove methylation marks on lysine residues are known as lysine 

methyltransferases (KMTs) and lysine demethylases (KDMs) (Allis et al., 2007). 

1.5.3 Epigenetic modifiers 

Trichostatin A and 5-aza-deoxycytidine are two epigenetic modifiers that are widely 

used in studies to examine epigenetic mechanisms. Trichostatin A (TSA) is a 

Streptomyces metabolite, which specifically inhibits mammalian histone deacetylase 

at nanomolar concentrations and causes accumulation of highly acetylated histone 

molecules in mammalian cells (Yoshida et al., 1995). 5-aza-deoxycytidine (5aza) is 

an epigenetic modifier that inhibits DNA methyltransferase activity, which results in 

DNA demethylation (hypomethylation) and gene activation by remodelling 

chromatin (Creusot et al., 1982; Taylor & Jones, 1982; Christman et al., 1983). This 
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remodelling of chromatin structure allows transcription factors to bind to the 

promoter regions, assembly of the transcription complex, and alters gene expression. 
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1.6 Epigenetic Silencing in Bladder Cancer 

In 2006, Stransky et al. developed a systematic approach, using a combination of 

transcriptome correlation map analysis and comparative genomic hybridization array 

data, to identify regional transcriptional deregulation that occurs independently of 

DNA-copy number changes. Using this approach they were the first to identity the 

long range silencing of numerous chromosomal regions by epigenetic silencing. In 

2011, Vallot et al., extended this approach to identify seven chromosomal regions of 

genes that were silenced by epigenetic mechanisms in bladder tumours; they defined 

this simultaneous silencing of several chromosome regions as a new phenotype 

termed the multiple regional epigenetic silencing (MRES) phenotype and showed 

how the genes associated with this phenotype overlapped with the 100 genes of a 

gene expression signature for carcinoma in situ found by Dyrskjot et al. (2004). 

Vallot et al. showed that the mechanism of epigenetic silencing of these regions was 

associated with histone H3K9 and H3K27 methylation and H3K9 hypoacetylation 

and not DNA methylation. This study also highlighted that the silenced regions in the 

MRES phenotype contained known or potential tumour suppressor genes such as 

PLCD1, DLEC1 and HOXA5. 

Nishiyama et al. (2010) carried out DNA methylation studies comparing urothelia 

from normal urothelium, non-cancerous urothelium from patients with UC and 

samples of urothelial carcinoma. They found that non-cancerous urothelia from 

patients with UC had methylated regions similar to UC samples, but distinct from 

normal urothelium samples. Methylation patterns were able to discriminate patients 

who suffered from recurrence after surgery from patients who did not. This study 

showed that DNA methylation profiling could provide indicators for carcinogenic 

risk estimation and prognosis.  

Several groups have described differential methylation of promoters of genes known 

to have altered expression in UC such as RASSF1A, APC and p53 (Maruyama et al., 

2001; Catto et al., 2005). This has been linked to the altered expression of DNMT1 

during urothelial carcinogenesis as reported by Nakagawa (2005). Dhawan et al. 

(2006) found that aberrant promoter methylation occurs early in urothelial 

carcinogenesis. A follow up study by the same group was performed investigating 

the relationship between DNA methylation, histone methylation and gene expression 
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(Dudziec et al., 2012). They profiled two repressive histone modifications 

(H3K9me3 and H3K27me3) using ChIP-Seq, cytosine methylation using MeDIP and 

mRNA expression in normal and malignant urothelial cell lines. H3K27me3 was 

found to occur around genes with low expression in all cells, whereas H3K9me3 was 

only weakly associated with repression in a subset of genes with DNA methylation. 

DNA methylation itself was more closely related to gene expression in malignant 

rather than normal cell lines. 

Chromatin-remodelling genes have been found to exhibit genetic mutations in 

bladder cancer. These include KDM6A, which encodes a histone demethylase; 

MLL/KMT2A, MLL2/KMT2D and MLL3/KMT2C, which encode histone 

methyltransferases; AT-rich interactive domain 1A (ARID1A) which encodes a 

component of the SWI/SNF chromatin-remodelling complex; E1A-binding protein 

p300 (EP300) and CREB-binding protein (CREBBP), which encode histone 

acetyltransferases; and nuclear receptor co-repressor 1 (NCOR1), which encodes a 

histone deacetylase (Gui et al., 2011; Guo et al., 2013). 
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1.7 Non-coding RNAs in Bladder Cancer 

Many non-coding RNAs have been reported to show abnormal expression in bladder 

cancer tissue. Micro RNAs (miRNAs) are small (18-25 nucleotides) molecules that 

regulate gene expression post-transcriptionally. Altered miRNA expression in 

bladder cancer was first reported in 2007 with ten miRNAs (miR-221, -223, -23a, -

185, -103-1, -205, -23b, -26b, -203 and -17-5p) found to be upregulated in bladder 

cancers compared to normal bladder mucosa (Gottardo et al. 2007). The majority of 

studies involving miRNA and bladder cancer have compared miRNA expression 

between normal bladder tissue, muscle-invasive bladder cancer (MIBC) and non 

muscle-invasive bladder cancer (NMIBC). The general trend is that miRNAs are 

upregulated in MIBC and downregulated in NIMBC (Catto et al., 2009; Veerla et al., 

2009; Neely et al., 2010; Han et al., 2011; Guancial et al., 2014). Catto et al. (2009) 

found that MIBC was characterised by miRNA upregulation, including miR-21, 

which has previously been shown to downregulate the p53 pathway 

(Papagiannakopoulos et al., 2008), and miR-373, which promotes tumour invasion 

and metastasis (Huang et al., 2008). NMIBC tumours exhibited downregulation of 

many miRNAs including the loss of miR-99a and miR-100, which led to the 

upregulation of FGFR3 (Catto et al., 2009).  

Recent studies have shown how miRNAs may promote bladder cancer progression. 

These include a study that has shown miR-96 may function as an onco-miRNA and 

that the upregulation of miR-96 may contribute to aggressive malignancy via 

suppressing CDKN1A protein expression in bladder cancer cells (Wu et al., 2015). 

Sun et al. (2015) found that the suppression of miR-138 in bladder cancer may 

promote ZEB2-mediated cancer invasion and metastasis.  

Long non-coding RNAs (lncRNAs) are RNA molecules with a length of more than 

200 nucleotides. Han et al. (2013) reported upregulated expression of the lncRNA 

MALAT1 in high-grade versus low grade carcinomas and also in invasive compared 

to non-invasive carcinomas. The long intergenic non-coding RNA UBC1 was 

upregulated in bladder cancer tissues compared with normal adjacent tissues, and 

linc-UBC1 overexpression was shown to correlate with lymph node metastasis and 

poor survival (He et al., 2013). Functional studies found linc-UBC1 associates with 
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polycomb repressive complex 2 (PRC2) and regulates the histone modification status 

of target genes.  

H19 is a long non-coding RNA that harbours pro-tumorigenic properties (Barsyte-

Lovejoy et al., 2006; Matouk et al., 2007; Yang et al., 2012). Luo et al. (2013) found 

that H19 expression is increased in bladder cancer tissues and was associated with 

disease progression, with functional studies suggesting H19 may regulate metastasis 

by associating with enhancer of zeste homolog 2 (EZH2) and inhibiting E-cadherin 

expression.  
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1.8 Metals in Cancer 

Epidemiological, animal and cell culture experimental studies have shown that an 

increase in cancer incidence is associated with exposure to non-genotoxic metals 

such as nickel, arsenic and cadmium.  

Nickel compounds are known human non-mutagenic carcinogens that target the 

respiratory system. This targeting is due to bioavailability rather than a tissue-

restricted effect, as the route of exposure of the nickel compounds is through 

inhalation. Both water soluble and insoluble nickel compounds have been implicated 

in human lung and nasal cancers, with insoluble nickel compounds shown to be more 

potent carcinogens (NTP 1996a, 1996b).  Epigenetic changes implicated in nickel-

induced carcinogenesis include gene silencing by DNA hypermethylation (Lee et al., 

1995), decreased histone acetylation of H2A, H2B, H3 and H4 (Broday et al., 2000; 

Golebiowski & Kasprzak, 2005; Ke et al., 2006), increases in histone H3 Lysine 9 

dimethylation (Chen et al., 2006) and increases in histone ubiquitination H2A and 

H2B (Karaczyn et al., 2006).  

Arsenic and inorganic arsenic compounds are known human carcinogens which 

target multiple sites including the lung, skin and urinary bladder.  Inorganic arsenic is 

able to be methylated during its metabolism in the liver using S-adenosyl methionine 

(SAM) as the methyl donor to form monomethylarsonic acid and dimethylarsinic 

acid (DMA(V)). DMA(V) has been shown to induce urinary bladder carcinomas in 

rats that were orally exposed in either their water supply or by addition to their food 

(Wei et al., 1999).  Epigenetic changes implicated in arsenic-induced carcinogenesis 

include increased DNA methylation of the p53 promoter (Mass & Wang, 1997), and 

alterations in global histone H3 methylation, with decreases in H3K27 trimethylation 

and increases in di- and trimethylated H3K4 (Zhou et al, 2008).  

Arsenic treatment has also been shown to increase cell proliferation through the 

activation of signal transduction pathways. Mice that were treated with sodium 

arsenite in their drinking water developed hyperplasia of the bladder urothelium 

within 4 weeks of exposure. In the same study, it was found that arsenic can 

stimulate the growth of UROtsa cells, an immortalized human urothelial cell line 

(Simeonova et al, 2000).  It had also been shown using the UROtsa cell line that 

arsenic exposure leads to c-Src-dependent activation of the EGFR and MAPK 
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pathway (Simeonova et al., 2002). This proliferation-enhancing effect of arsenic may 

also contribute to its ability to cause cancer. 

1.8.1 Cadmium 

Cadmium is a toxic transition metal that has been classified as a known human 

carcinogen by both the International Agency for Research on Cancer and the 

National Toxicology Program of the USA (IARC, 1993; NTP, 2000). The 

classification of cadmium as a human carcinogen is based on epidemiological studies 

in humans (Waalkes, 2000) and experimental studies in animals which show 

cadmium as a multiple tissue carcinogen (Takenaka et al., 1983; Waalkes et al., 

1999). Cadmium has a long biological half-time in humans which is estimated to be 

between 15-20 years (Jin et al., 1998). The human body has a limited capacity to 

limit the harm of cadmium exposure as the metal cannot be metabolised to less toxic 

species and is poorly excreted, effectively making it a cumulative toxin (Goering et 

al., 1994). 

1.8.2 Sources of Exposure  

Occupational exposure to cadmium comes from activities such as lead and zinc 

smelting, melting or welding cadmium-coated steel, using cadmium-containing 

solders and the use, processing and production of cadmium powders for nickel-

cadmium batteries (IARC, 1993). Recently diesel fumes, which contain cadmium, 

have been shown to be carcinogenic to humans (IARC, 2012). It is thought that 

people in high-risk industries exposed to diesel fumes, such as miners, railway 

workers and truck drivers have about a 40% increased risk of developing cancer. The 

general population can be exposed to cadmium via contaminated food or drinking 

water and by the inhalation of cigarette smoke (Jarup & Akesson, 2009; Adams et 

al., 2011). It is believed that the smoking of cigarettes can double the lifetime body 

burden of cadmium (Tokar et al., 2011).  
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1.9 Cadmium and Bladder Cancer 

High-grade bladder cancer is particularly common in South Yorkshire, with some 

health regions having higher-than-average incidence rates (Figure 1.5). This reflects 

local clinical observations of increased high-grade bladder cancer risk amongst metal 

workers exposed to cadmium (J Catto, personal communication).  

 
Figure 1.5. Bladder cancer risk for men in Yorkshire. From the Environment and Health Atlas 

for England and Wales (www.envhealthatlas.co.uk) produced by the UK Small Area Health 

Statistics Unit at Imperial College London. 

A meta-analysis looking at the association between bladder cancer incidence and 

occupation found that metal workers were at an increased risk (Reulen et al., 2008). 

1.9.1 Epidemiological and clinical studies 

Evidence in support of cadmium being a bladder carcinogen includes a 1994 

population-based case-control study of the associations between various cancers and 

occupational exposures which found evidence suggesting a link between cadmium 

exposure and cancer of the urinary bladder (Siemiatycki et al., 1994). This is 

supported by a Belgian case-controlled study which suggested that individuals with 

increased exposure to cadmium have an increased risk of bladder cancer, using blood 

cadmium levels as a marker for cadmium exposure (Kellen et al., 2007). Blood 
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cadmium is considered to reflect current exposure rather than whole body burden, 

while urinary cadmium reflects the total burden of cadmium (ATSDR, 1999). A 

further case-controlled study from Tunisia observed that an increased risk of bladder 

cancer was associated with an increase in cadmium blood concentrations (Feki-

Tounsi et al., 2013). A follow up study by Feki-Tounsi et al. (2014) investigating 

levels of toxic metals in patients with bladder tumours was performed. It was found 

that cadmium concentrations were significantly elevated in normal tissues adjacent to 

tumours compared to controls. 

A study in 1998 based on ten patients with bladder cancer used atomic spectrometry 

to measure urinary cadmium concentrations. It was found that in 60% of the patients 

urinary cadmium was increased, implying an involvement of cadmium in bladder 

cancer (Darewiczet al., 1998).  

An investigation measuring metallothionein-bound cadmium concentration in urine 

using size exclusion chromatography coupled to inductively-coupled mass 

spectrometry found that in bladder cancer patients MT-bound cadmium was 

significantly elevated compared to the control group (Wolf et al., 2009). 

Finally a case-control study that examined the association between the expression of 

metallothioneins and bladder tumours, and also compared cadmium levels in tissue 

and hair of 37 bovine bladder tumours against 17 controls, found that increased 

expression of metallothioneins was associated with bladder tumours and that 

cadmium concentrations in hair were significantly higher in the bladder tumour 

group compared to the control group (Amaral et al., 2009). 

1.9.2 Experimental studies  

Few animal studies have focused on cadmium-induced cancers. Injection, inhalation 

or ingestion of cadmium into animal models has been shown to cause cancer in 

several sites (Waalkes et al., 1999a; 1999b), however, only one study has showed 

that injection of cadmium led to the development of a bladder tumour (Waalkes et 

al., 2000). 

In vitro studies indicating cadmium as a potential human bladder carcinogen include 

a study which demonstrated that cadmium is able to induce malignant transformation 

of immortalized human urothelial cells in vitro (Sens et al., 2004). It was 

demonstrated that long-term exposure to 1 µM Cd resulted in UROtsa cells that were 
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able to form colonies in soft agar and tumours when heterotransplanted into nude 

mice. Tumour heterotransplants produced by these cadmium-transformed cells were 

epithelial in character and had features consistent with urothelial carcinoma (Sens et 

al., 2004). 
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1.10 Cadmium Carcinogenesis 

Cadmium compounds are not mutagenic in bacterial assays (Beyersmann & Hartwig, 

1994) and cadmium salts did not cause DNA damage in cell extracts or with isolated 

DNA (Valverde et al., 2001). This implies cadmium-induced carcinogenesis may be 

mediated through non-genotoxic or indirect genotoxic mechanisms. Proposed 

mechanisms for cadmium carcinogenesis have been outlined below (Figure 1.6). 

 

Figure 1.6. Proposed mechanisms involved in cadmium-induced carcinogenicity. 

1.10.1 Oxidative stress 

Cd2+ does not catalyse the Fenton-type production of free radicals because it does not 

accept or donate electrons under physiological conditions. However, increased levels 

of reactive oxygen species have been observed in vitro and in vivo (Liu et al., 2009). 

This is believed to be caused by the inhibitory effect of cadmium on antioxidant 

enzymes such as catalase, superoxide dismutase, glutathione reductase and 

glutathione peroxidase (Stohs et al., 2001; Valko et al., 2006). Cadmium compounds 

have been shown to induce DNA strand breaks and oxidative DNA base 

modifications in mammalian cells, but effects were small and restricted to high 

concentrations (Dally & Hartwig, 1997; Schwerdtle et al., 2010). The induction of 

DNA strand breaks and chromosomal aberrations by cadmium in mammalian cells 

could be suppressed by antioxidants and antioxidative enzymes (Ochi et al., 1987; 

Stohs et al., 2001; Valko et al., 2006). Oxidative DNA damage does not appear to be 

sufficient to explain the carcinogenicity of cadmium. 
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1.10.2 Induction of genes 

Exposure to cadmium has been shown to induce the expression of many genes 

including immediate early response genes (IEGs) and stress response genes including 

metallothionein genes and heat-shock genes.  

Immediate early response genes are genes that are activated rapidly and transiently 

after a variety of cellular stimuli. IEGs encode transcription factors and DNA-

binding proteins that regulate cell growth and differentiation. The IEGs most studied 

with respect to cadmium toxicity and carcinogenesis are c-fos, c-jun and c-myc. 

These genes are overexpressed in response to cadmium exposure in vitro and in vivo 

(Achanzar et al., 2000; Jin & Ringertz, 1990; Matsuoka & Call, 1995).  

Cadmium exposure to cells and whole animals has been shown to result in the 

induction of several stress response genes, including those involved in 

metallothionein synthesis (Hart et al., 1996), genes involved in the synthesis of 

glutathione (Hatcher et al., 1995), and genes encoding heat shock proteins (Lee et al., 

2002). Cadmium has been shown to induce heat shock protein genes by generating 

denatured or abnormal proteins by reacting with thiol groups or by substituting for 

zinc in proteins (Parsell & Lindquist, 1994). Both metallothionein and glutathione 

play a role in cellular defence against cadmium toxicity and carcinogenesis by 

scavenging and sequestering the Cd2+ ion to prevent its interaction with critical 

cellular targets.  

Metallothioneins (MTs) are a family of cysteine-rich low molecular weight proteins 

that bind heavy metals. There are eleven functional MT isoforms in humans that are 

divided into four classes, MT1 to MT4. MT1 and MT2 are expressed in many cell 

types and their function is to maintain cellular zinc homeostasis and protect against 

heavy metal and oxidant damage. MT1/2 transcription is regulated by the metal 

regulatory transcription factor 1 (MTF1), a zinc-sensing zinc-finger transcription 

factor that binds to short DNA sequence motifs termed metal response elements 

(MREs) present in the promoter region of metallothionein genes (Stuart et al., 1985). 

Upon cadmium exposure, MT-bound Zn2+ is replaced by Cd2+ which then activates 

MTF1 (Figure 1.7; Günther et al., 2012). 
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Figure 1.7. Proposed molecular mechanism of MT transcription in response to cadmium 

exposure. MTF1 can be activated directly by zinc or indirectly by release of zinc from 

metallothioneins upon cadmium exposure (Zhang et al., 2003). Upon zinc binding MTF1 

translocates to the nucleus where it binds to metal response elements (MRE) located upstream 

of the MT gene coding sequences. MTF1 interacts with other transcription factors and recruits 

the histone acetyltransferases p300 resulting in increased MT transcription. 

1.10.3 Inhibition of DNA repair 

Inhibition of DNA repair has been identified as a mechanism contributing to the 

carcinogenic potential of cadmium. DNA damage can be caused by environmental 

agents or endogenous factors and is repaired by DNA damage repair pathways. 

These include base-excision repair, nucleotide-excision repair, recombinational 

repair and mismatch repair.  Low concentrations of cadmium have been 

demonstrated to inhibit the repair of oxidative damage in mammalian cells (Dally & 

Hartwig, 1997). During nucleotide-excision repair cadmium was shown to inhibit the 

removal of thymine dimers generated by UV-irradiation by interfering with the first 

step of the repair pathway. Cadmium was shown to inhibit two proteins, Fpg and 

XPA (Asmuss et al., 2000); these proteins are zinc-finger proteins and the inhibitory 

MRE 

MTF1 

MTF1 
p300 

cytosol 

nucleus 

Zn2+ 

Cd2+ 

MTF1 

MT 

Transcrip)on	
machinery	



  Chapter 1 
 

41 

 

effect of cadmium was believed to be due substitution of zinc by cadmium (Hartwig, 

2001). 

1.10.4 Epigenetic mechanisms 

Although cadmium can induce oxidative stress, it is poorly mutagenic and has a 

weak DNA binding affinity; therefore it is believed that another way cadmium may 

promote carcinogenesis is through epigenetic mechanisms.  

1.10.4.1 DNA methylation 

To date, the most reported epigenetic changes associated with cadmium exposure 

relate to changes in DNA methylation; however cadmium exposure has been shown 

to cause both hypermethylation and hypomethylation. Takiguchi and colleagues 

showed that cadmium is an effective inhibitor of DNA methyltransferases (DNMTs) 

and initially induced DNA hypomethylation in TRL1215 rat liver cells in vitro. 

However prolonged exposure led to the emergence of cadmium-transformed cells 

which exhibited increased DNA methylation and DNMT activity (Takiguchi et al., 

2003). The study showed that acute cadmium exposure led to reduced DNA 

methyltransferase activity both in vitro, in TRL1215 liver cells, and in an ex vivo 

system using purified bacterial DNA methyltransferase. Kinetic analysis performed 

indicated that cadmium interacts with enzymes at sites other than the catalytic site. 

The authors put forward the DNA binding site of the DNMTs as a strong candidate 

as it contains numerous cysteines, which are known to bind cadmium. A later study 

using cadmium-transformed human prostate epithelial cells showed that increased 

DNMT enzymatic activity was associated with over-expression of DNMT3b without 

changes in DNMT1 (Benbrahim-Tallaa et al., 2007). The over-expression of 

DNMT3b correlated with reduced expression of the tumour suppressor genes, 

RASSF1A and p16. It was reported that the promoter regions of these genes were 

heavily methylated, indicating gene silencing due to DNA hypermethylation. 

Additionally the expression of these genes could be restored by treatment of the cells 

with 5-aza-2’-deoxycytidine, a DNA demethylating agent, giving evidence that 

chronic cadmium exposure induces gene-specific DNA hypermethylation and gene 

silencing. The overall effect of cadmium exposure on DNA methylation suggests that 

short exposures are associated with DNA hypomethylation whereas chronic 
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exposures are associated with DNA hypermethylation (Martinez-Zamudio & Ha, 

2011). 

1.10.4.2 Histone modifications 

Few studies have been performed investigating histone modification changes due to 

cadmium exposure. One study looking at changes in histone modifications caused by 

direct cadmium exposure, used cadmium-transformed immortalized human urothelial 

cells to determine if epigenetic modifications control urothelial metallothionein 3 

(MT-3) gene expression (Somji et al., 2011). The study found that in non-

transformed UROtsa cells the MT-3 gene is silenced by a mechanism involving 

histone modification of the MT-3 promoter. Transformation of the UROtsa cells with 

Cd2+ modified the chromatin of the MT-3 promoter to a bivalent state with both 

active (H4 acetylation, H3K4 methylation) and repressive (H3K9 and H3K27 

methylation) histone marks present. 

However, other changes in histone modifications have been reported due to 

cadmium. In a study reporting the epigenetic and genotoxic effects of cadmium 

telluride quantum dots in human breast carcinoma cells, free cadmium ions released 

in the cells led to chromatin condensation and histone hypoacetylation (Choi et al., 

2008). The hypoacetylation of histone H3 was detected by both immunofluorescence 

and western blotting, with the hypoacetylation being reversed by treatment with 

trichostatin A, a histone deacetylase inhibitor. 

1.10.4.3 Non-coding RNA expression 

Peripheral blood leukocytes from 63 workers at an electric-furnace steel plant were 

analysed after exposure to particular matter containing cadmium. miR-146a was 

found to be negatively correlated to occupational cadmium exposure while miR-222 

and miR-21 were significantly increased after 3 days exposure to the metal-rich 

particulate matter (Bollati et al., 2010). Cadmium has been shown to affect miRNA 

levels in vitro. miRNA expression was analysed after cadmium exposure in a human 

hepatocellular carcinoma cell line using an Agilent microarray. Several differentially 

expressed miRNAs were found, some of which were members of the let-7 family, 

which exhibit oncosuppressor functions (Fabbri et al., 2012). 

Two studies have reported changes in lncRNA expression upon cadmium exposure. 

Human-induced pluripotent stem cells treated with cadmium showed an increase in 
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the expression levels of two lncRNAs GABPB1-AS1 and LINC00152 (Tani et al., 

2014). Zhou et al. (2015) reported aberrant expression profiles of lncRNAs in Cd2+-

transformed human bronchial epithelial cells (16HBE) compared to untreated 16HBE 

cells with lncRNA-ENST00000414355 showing the highest expression out of ten of 

the most significantly upregulated lncRNA when validated by real time PCR. The 

authors showed that expression of ENST0000041435 was detected in the blood and 

urine of workers exposed to cadmium, with a strong positive correlation between 

found blood ENST0000041435 and urine cadmium. Additionally, expression of 

ENST00000414355 increased in a dose-dependent manner in the lungs of Cd2+-

exposed rats. 
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1.11 Thesis aims 

The urothelium is exposed to urinary-excreted carcinogens from environmental, 

occupational and dietary sources. These carcinogens include heavy metals such as 

cadmium; however, cadmium is a weak mutagen suggesting that genetic mechanisms 

are not responsible for cadmium carcinogenesis. Non-genotoxic carcinogenesis is 

relatively poorly understood, however recent advances show that epigenetic 

dysregulation of gene expression may play an important role. 

The aim of this thesis was to investigate cadmium carcinogenesis of human 

urothelial cells and the role that epigenetic dysregulation of gene expression may 

play. 

The working hypothesis is that exposure of the urothelium to cadmium leads to 

epigenetic dysregulation of gene expression, including down-regulation of tumour 

suppressor genes, causing field changes within the urothelium characteristic of 

dysplasia/carcinoma in situ (loss of differentiation), which is the best characterised 

precursor of invasive carcinomas.  

The specific objectives of this thesis were to: 

• Determine the effect of cadmium exposure on proliferative and differentiated 

NHU cells in vitro. 

• Investigate whether the effects of cadmium can be reversed using two well-

characterised epigenetic modifiers (TSA and 5-azacytidine).  

• Assess the effect of cadmium on tumour suppressor gene expression. 

• Analyse Agilent microarrays to identify gene expression changes that occur 

when urothelial cells are differentiated in the presence of cadmium and TSA. 

• Examine proliferative and differentiated cadmium-treated NHU cell cultures 

for changes in global levels of post-translational histone modifications.
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2 Materials and Methods 

2.1 Practical work and collaborations 

All practical work was carried out in the Jack Birch Unit for Molecular 

Carcinogenesis in the Department of Biology at the University of York with the 

following exceptions. Microarray experiments were carried out in the Genomics 

Department of the Technology Facility at the University of York. The quantification 

of post-translational histone modifications by LCMS/MS was carried out in 

collaboration with Dr Mark Dickman and Tom Minshull from the Department of 

Chemical and Biological Engineering at the University of Sheffield. 

2.2 Suppliers 

Commercial suppliers and manufacturers are indicated at the first mention of the 

reagent or equipment in the text. A complete list of suppliers’ names and web 

addresses is provided in Appendix 1. 

2.3 Stock Solutions 

Recipes for all stock solutions are listed in Appendix 2. General laboratory solutions 

were prepared using deionised water (dH2O). Tissue culture grade solutions were 

prepared with ultra-pure water from a Purelab Ultra Genetic (Elga) ultra violet water 

purification unit. Heat stable solutions were sterilised by autoclaving at 121°C (1 

bar) for 50 minutes, and other solutions were sterilised by syringe filtration through 

filters with 0.2µm pore size (VWR).   

2.4 Reagents 

2.4.1 Antibodies 

Primary antibodies used in this study are listed in (Table 2.1). Antibodies were 

titrated on known positive cell or tissue controls in order to establish the optimal 

concentration prior to use. Primary antibodies were aliquotted and stored as 

recommended by the manufacturer. Fluorophore-conjugated secondary antibodies 

were titrated prior to use and stored in the dark at 4°C (Table 2.2). Representative 

western blot images for each antibody are shown in Appendix 3.  
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Table 2.1. Primary Antibodies. Table listing primary antibodies used throughout this study 

along with their use (WB: western blotting, IF: immunofluorescence, IHC: 

immunohistochemistry, ChIP: Chromatin Immunoprecipitation). Antibodies used for western 

blotting also include molecular weight of protein. 

Antigen Host Supplier Catalogue 
Number 

Use Molecular 
Weight  

β-actin Mouse Sigma A5441 WB (1:250000) 42 kDa 

CK13 Mouse Abnova MAB1864 WB (1:1000) 
IF (1:500) 
IHC (1:500) 

50 kDa 

CK14 Mouse Serotech MCA890 WB (1:1000) 50 kDa 
CK14 Mouse ICRF  IF (1:5)  
CK20 Mouse Cymbus 

Bioscience Ltd 
 IF (1:100)  

Claudin 4 Mouse Zymed 32-9400 WB (1:1000) 22 kDa 
Claudin 5 Mouse Invitrogen 35-2500 WB (1:250) 22-24 kDa 
H2AK5ac Rabbit Cell Signalling 2576 WB (1:1000) 14 kDa 
Histone H3 Rabbit Abcam ab1791 WB (1:1000) 

ChIP: 2.4 µg 
for each ChIP 

17 kDa 

H3K4me3 Rabbit Cell Signalling 9751S WB (1:1000) 17 kDa 
H3K9ac Rabbit Cell Signalling 9671 WB (1:1000) 17 kDa 
H3K9me2 Rabbit Diagenode 060-050 WB (1:1000) 

IF (1:500) 
17 kDa 

H3K9me2 Mouse Abcam ab1220 WB (1:1000) 17 kDa 
H3K9me3 Rabbit Diagenode 056-050 WB (1:1000) 

IF (1:500) 
ChIP: 2.4 µg 
for each ChIP 

17 kDa 

H3K9/14ac Rabbit Diagenode 005-050 WB (1:1000) 17 kDa 
H3K18ac Rabbit Millipore 07-354-S WB (1:10000) 17 kDa 
H3K23ac Rabbit Millipore 07-355-S WB (1:10000) 17 kDa 
H3K27me3 Rabbit Cell Signalling 9733S WB (1:1000) 17 kDa 
H4K8ac Rabbit Cell Signalling 2594 WB (1:1000) 11 kDa 
H4K20me3 Rabbit Diagenode 057-100 WB (1:1000) 11 kDa 
p16 Mouse Santa Cruz Sc-1661 WB (1:1000) 16 kDa 
Rabbit IgG Goat Rockland 611131122 ChIP: 2.4 µg 

for each ChIP 
 

SOX9 Goat Santa Cruz  Sc-17341 IF (1:50)  
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Table 2.2. Secondary Antibodies. 

Antigen Conjugate Host Supplier & Cat. Number Application 

Mouse IgG Alexa 680 Goat Life Technologies, A21057 WB (1:10000) 

Rabbit IgG IR Dye 800 Goat Rockland, 611-132-122 WB (1:10000) 

Goat IgG Alexa 594 Donkey Life Technologies, A11058 IF (1:500) 

Mouse IgG Alexa 488 Goat Life Technologies, A11001 IF (1:500) 

Mouse IgG Alexa 594 Goat Life Technologies, A11005 IF (1:700) 

Rabbit IgG Alexa 488 Goat Life Technologies, A11008 IF (1:400) 

Rabbit IgG Alexa 594 Goat Life Technologies, A11012 IF (1:500) 

 

2.4.2 Chemicals and Agonists/Antagonists 

Chemicals and agonists/antagonists were reconstituted in sterile H2O or tissue culture 

grade dimethyl sulfoxide (DMSO; Sigma) according to the manufacturer’s 

instructions and stored in single use aliquots at -20°C. Prior to use, dilutions were 

made from the stock solutions into growth medium, for vehicle controls 0.1% DMSO 

(v/v) was added to medium (Table 2.3). 

Table 2.3 Chemicals and Agonists/Antagonists 

Compound Target Supplier & 

Catalogue 

Number 

Stock 

concentration 

Effective 

concentration in 

medium 

 PD153035 

(PD) 

EGFR inhibitor Calbiochem, 

234490 

10 mM in 

DMSO 

1 µM 

Troglitozone 

(TZ) 

PPARγ agonist Tocris, 3114 100 mM in 

DMSO 

1 µM 

Cadmium 

chloride 

(CdCl2) 

- Sigma, 

202908 

0.1 M in 

ddH2O 

10 nM - 20 µM 

Trichostatin A 

(TSA) 

Histone 

deacetylase 

inhibitor 

Sigma, T8552 4 mM in 

DMSO 

400 nM 

5-Azacytidine 

(5aza) 

DNA 

methyltransferase 

inhibitor 

Sigma, A1287 500 µM in  

KSFMc 

1 µM 
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2.5 Cell Culture 

2.5.1 General 

All tissue culture work was undertaken using aseptic techniques within a class II 

laminar flow safety cabinet with HEPA filtration (Envair or Medical Air 

technology). Surfaces were cleaned with 70% (v/v) ethanol before and after use.  

Waste media and cells which did not contain cadmium chloride were aspirated by 

vacuum into a Buchner flask containing 10% (w/v) Virkon® sterilising agent (SLS) 

for decontamination. Waste medium containing cadmium chloride was aspirated 

using disposable sterile pipettes (Sarstedt) then put into bottles containing 10% (w/v) 

Virkon® for decontamination of medium and cells and disposed of via Biology 

Department internal chemical waste disposal. All used plastic-ware contaminated 

with cadmium chloride was placed in a double-bagged clinical waste bag for disposal 

by incineration. 

Cultures were maintained in HeraCell 240 incubators (Thermo Scientific) at 37°C in 

a humidified atmosphere of 5% CO2 in air. Culture medium was replaced on cell 

monolayers every 2 to 3 days. 

All tissue culture centrifuge steps were carried out in a Sigma benchtop swing-angled 

centrifuge (Philip Harris) at 250 g for 5 min at ambient temperature. 

An inverted Nikon phase-contrast microscope was used for observation of cell 

cultures. Monochrome images were captured using a Nikon Coolpix 4500 digital 

camera. 

2.5.2 Primary Urothelial Cell Culture 

2.5.2.1 Plastic-ware 

Primary urothelial cell lines were maintained in Primaria® (Becton Dickinson) or 

Cell+ (Sarstedt) flasks and dishes. These flasks and dishes have a mixture of 

negative, positive and nitrogen containing functional groups on the polystyrene 

surface that help to support the attachment of the primary urothelial cells to the 

surface. 
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2.5.2.2 Tissue Specimens  

Human urological specimens of urinary bladder, ureter and renal pelvis were 

obtained from patients with no history of urothelial neoplasia. All specimens were 

collected following ethical approval from an NHS Research Ethics Committee and 

with the patient’s written informed consent where required. On arrival each tissue 

sample was allocated an arbitrary laboratory record number (Y-number, e.g. Y1019). 

Details of tissue samples and subsequent cell lines used in this study are listed in 

Table 2.4. Specimens were collected in 25 mL plastic universal tubes containing 

sterile transport medium (Appendix 2) and were stored at 4°C until processed. 

Table 2.4. Source and demographics of tissue samples and subsequent NHU cell lines. 

Cell 
line 

Surgical 
Procedure 

Origin of 
Tissue 

Donor Age 
(years) 

Donor Sex 
(M/F) 

Y1019 Unknown Ureter 43 F 

Y1054 Unknown Ureter 57 M 

Y1075 Pyeloplasty Bladder 21 M 

Y1141 Pyeloplasty Renal pelvis 32 M 

Y1160 Pyeloplasty Ureter 25 M 

Y1183 Nephrectomy Ureter 75 M 

Y1197 Pyeloplasty Renal pelvis 73 M 

Y1202 Nephrectomy Ureter 56 F 

Y1226 Nephrectomy Ureter 78 M 

Y1233 Nephrectomy Ureter 81 F 

Y1236 Nephrectomy Ureter 57 M 

Y1237 Nephrectomy Ureter 73 M 

Y1244 Pyeloplasty Renal pelvis 43 M 

Y1270 Nephrectomy Ureter 76 F 

Y1279 Pyeloplasty Renal pelvis 52 F 

Y1335 Nephrectomy Ureter 70 M 

Y1357 Nephrectomy Ureter 38 F 

Y1441 Renal transplant Ureter 57 M 

Y1445 Renal transplant Ureter 79 F 

Y1451 Nephrectomy Ureter 61 F 

Y1456 Renal transplant Ureter 78 F 

Y1529 Nephrectomy Ureter 68 F 
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2.5.2.3 Isolation and culture of primary human urothelial cells 

Primary Normal Human Urothelial (NHU) cell lines were established from 

urological specimens as previously described (Southgate et al., 1994; Southgate et 

al., 2002). Samples were removed from the plastic universal tubes by pouring into a 

clean sterile Petri dish (Nunc) along with the transport medium the sample came in. 

Unwanted connective and fatty tissue was removed using sterile scissors and forceps. 

A small representative sample of each specimen was fixed overnight in 10% (v/v) 

formalin in PBS for routine histology. The remaining tissue was cut into 1 cm2 pieces 

and incubated in 10 mL stripper medium (Appendix 2) for 4 hours at 37 °C or 16 

hours (overnight) at 4 °C. Sheets of urothelial cells were gently separated from the 

stroma using forceps, collected by centrifugation and then resuspended in 2 mL (100 

U/mL) collagenase type IV (Appendix 2) and incubated for 20 minutes at 37 °C. 

Cells were collected by centrifugation, counted with a haemocytometer and seeded at 

a minimum density of 4 x104 cells/cm2 in Keratinocyte Serum-Free Medium (KSFM; 

Invitrogen), supplemented with 5 ng/mL recombinant human epidermal growth 

factor (rhEGF; Invitrogen), 50 µg/mL bovine pituitary extract (BPE; Invitrogen) and 

30 ng/mL cholera toxin (Sigma). This complete medium (KSFMc) was used for all 

experiments. 

2.5.2.4 Subculture of NHU cell lines 

NHU cell cultures were passaged when they reached near confluence by incubating 

cell monolayers in PBS with 0.1% (w/v) EDTA (Sigma) for 5 minutes at 37 °C, until 

the cells began to round up and dissociated from each other. Cultures were then 

incubated in a minimal volume (0.3 - 1 mL, dependent on size of dish or flask) 

0.25% (w/v) trypsin (Sigma Aldrich) and 0.02% (w/v) EDTA in Hank’s balanced 

salt solution (HBSS; Invitrogen) for 2 minutes at 37 °C. Cells were harvested into 5 

mL KSFMc containing 1.5 mg/mL soybean trypsin inhibitor (Sigma). Cells were 

collected by centrifugation and resuspended into KSFMc before being seeded into 

fresh sterile dishes or flasks. NHU cells were passaged at split ratios between 1:3 and 

1:6. All experiments were performed on NHU cells of passage 2-5.  

2.5.2.5 Cryopreservation 

NHU cells from one T75 cm2 flask were harvested as for passaging, collected by 

centrifugation and resuspended in 6 mL ice-cold KSFMc containing 10% (v/v) FBS 
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(Seralab) and 10% (v/v) tissue culture grade DMSO, which inhibits the formation of 

ice crystals during cryopreservation. 1 mL of cell suspension was aliquoted into 1 

mL polypropylene cyrovials (Greiner) and transferred to an isopropanol-filled 

freezing container (Sigma Aldrich) at -80°C. This allowed cells to cool at a rate of 

approximately 1°C per minute. Cells were kept at -80°C overnight and transferred to 

a liquid nitrogen-containing storage dewar at -196°C. Cells were recovered by rapid 

thawing in a 37°C water bath. Cells were then diluted with 5 mL pre-warmed 

KSFMc, centrifuged and resuspended in KSFMc and plated at the required density. 

Medium was changed after 24 hours to remove any unattached cells. 

2.5.3 In vitro differentiation of NHU cell cultures 

Differentiation of NHU cell cultures was induced by two established methods: 

1) pharmacological  activation of peroxisome proliferator-activated receptor 

gamma (PPARγ) by the PPARγ agonist, troglitazone, and concurrent 

inhibition of the EGFR autocrine signalling loop, through the use of an EGFR 

tyrosine kinase inhibitor, PD153035 (Varley et al., 2004)  

2) a ‘biomimetic model’ that involves subculture of NHU cell cultures in 

medium containing adult bovine serum and a near physiological calcium 

concentration of 2 mM (ABS/Ca2+) (Cross et al., 2005). 

2.5.3.1 Pharmacological Differentiation  

Troglitazone (TZ) (Sigma Aldrich) was solubilised in tissue grade DMSO (Sigma), 

to a final molarity of 100 mM. PD153035 (PD) (Calbiochem) was solubilised in 

DMSO, to a final molarity of 10 mM.  

NHU cells were cultured to 80% confluence in KSFMc. For differentiation, medium 

was replaced with KSFMc containing 1 µM TZ and 1 µM PD diluted in DMSO 

totaling 0.1% of the medium volume. For control experiments performed without the 

presence of TZ and PD, KSFMc with 0.1% DMSO (v/v) was added as a vehicle 

control. After 24 h, medium was replenished with KSFMc containing 1 µM PD for 

differentiation-induced cells, or with 0.1% (v/v) DMSO for control cells. Cells were 

cultured up to 7 days with medium replaced every 2-3 days. 
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2.5.3.2 Biomimetic Differentiation 

NHU cells were cultured to 80% confluence in KSFMc. Medium was then replaced 

with KSFMc supplemented with 5% (v/v) adult bovine serum (ABS, Seralab). Cells 

were cultured in 5% ABS for five days with media changed after 2/3 days. Cells 

were harvested and then either seeded into more flasks or onto Snapwell™ culture 

inserts (Fisher Scientific) or ThinCert 0.4 micron transparent inserts (Greiner Bio-

One) for electrophysiological studies. Cells were seeded at 5x105 cells per insert in 

500 µL volume and 3 mL culture medium placed into the basal chamber. After 24 

hours the exogenous calcium concentration was increased to 2 mM using a 1M CaCl2 

stock. Cell cultures were then maintained in medium containing 5% ABS and 2 mM 

Ca2+ with medium being replaced every 2-3 days. 

2.5.4 Treatment of NHU cell cultures with Cadmium Chloride, TSA and 5-

azacytidine 

Cadmium chloride was solubilised in ddH2O then sterilised by syringe filtration 

through filters with 0.2µm pore size (VWR), TSA was reconstituted in tissue grade 

dimethyl sulfoxide (DMSO, Sigma) and 5-azacytidine was solubilised in KSFMc. 

5-azacytidine and TSA treatments were applied to NHU cell cultures at the same 

time point as TZ/PD treatments, with TSA being added to stock concentrations of TZ 

and PD in DMSO to give a final concentration of 0.1% DMSO in growth medium. 

2.5.5 Proliferation Assay 

An alamarBlue® assay quantitatively measures proliferation by using a fluorometric 

growth indicator based on mitochondrial enzyme activity. NHU cells were seeded at 

a concentration of 2x104 cells mL-1 in to 96-well plates, treated with cadmium 

chloride concentrations and underwent alamarBlue® assays at 1, 3, 5, 7 and 9 days 

post cadmium treatment. alamarBlue® solution was diluted 1:10 with KSFMc and 

then incubated with the cells for four hours at 37°c. Absorbance was measured at 570 

and 630nm. Results were normalised against no cell controls and the percentage 

reduction in alamarBlue® calculated.  

2.5.6 Population Doublings 

Cell counts were performed using an “Improved Neubauer” haemocytometer (VWR) 

by placing 10 µL of cell suspension under each side of the coverslip on to a 
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haemocytometer. Cells were counted in four grids and the average cell number was 

equivalent to the cell density in 1x10-4 mL of medium. Once cells were counted they 

were seeded onto Primaria® flasks. When cultures reached 80% confluence cells 

were passaged, counted and then seeded onto new Primaria® flasks. Number of 

populations doublings equals log2 (CMF), where CMF (cell multiplication factor) 

equals the final cell number divided by the initial cell number. 

2.5.7 Fixation of cultured cells in formaldehyde for ChIP experiments 

Cells were cultured in 10 cm Primaria® dishes and treated with 10 mL medium 

containing required compounds. Dishes were placed on an orbital shaker and 189 µL 

of 37% (w/v) formaldehyde added drop-wise directly to the medium to a final 

concentration of 1%. After 10 min, cross-linking was quenched by addition of 798 

µL 125 mM glycine to a final concentration of 12.5  mM, followed by incubation at 

ambient temperature for 5 min. Cells were rinsed and scrape harvested in PBS and 

then transferred to 15 mL centrifuge tubes. Cells were pelleted by centrifugation at 

800 g for 5 min, and the supernatants thoroughly aspirated and cell pellets stored at -

80°C until use. 

2.5.8 Measurements of transepithelial electrical resistance (TER) 

TER can be used as an indicator of barrier function by cultured epithelial cells. 

Differentiation was induced using the “biomimetic” protocol as described above 

(section 2.5.3.2). The barrier function of cultured urothelium established on 

Snapwell™ or Griener membranes was monitored over 6-9 days using an EVOM™ 

Epithelial Voltohmmeter (World Precision Instruments) under sterile conditions.  

2.5.9 Scratch-wounding 

Differentiated NHU cell cultures grown on Snapwell™ or Griener membranes were 

scratched with a P10 pipette tip. Barrier recovery was monitored by measuring 

transepithelial electrical resistance. 

2.5.10 Dispase (II) lifting of differentiated cell sheets 

To conserve differentiated sheets for histological analysis, culture medium was 

removed from the Snapwell™ or Greiner inserts, before cell cultures were washed 

twice with 1x Dulbecco’s phosphate-buffered saline (DPBS) (without Mg2+ and Ca2+ 

ions; Gibco) heated to 37 °C. Wells were flooded with 2% dispase II (Sigma) and 
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incubated at 37 °C for 30-60 minutes, until intact sheets were detached and able to be 

lifted from the membrane. Differentiated sheets were collected in a Cellsafe Capsule 

(Cell Path), before being fixed in 10% (v/v) formalin in PBS overnight. After 

overnight fixation, samples were placed in 70% (v/v) ethanol until embedding took 

place. 

2.6 Western Blotting 

2.6.1 Protein Extraction 

Culture medium was aspirated and cells were washed twice with cold PBS before 

aspirating PBS. Cells were scrape-harvested in 100 µL 2% (w/v) SDS sample buffer 

containing protease inhibitors (Appendix 2) and transferred to a cold 1.5 mL micro-

centrifuge tube. Lysates were sonicated on ice for two ten-second bursts with a ten 

second rest between bursts, using a Branson Sonifier set to 25 W, 40% amplitude. 

Whole cell lysates were left to chill on ice for 30 minutes before centrifuging at 

18,000 g for 30 minutes in a centrifuged chilled to 4 °C. Supernatant was collected, 

aliquoted and stored at -80 °C until use. 

2.6.2 Protein Quantification 

Total protein concentration of each sample was determined using a Coomassie® 

protein assay reagent kit (Pierce), which is based on the Bradford colorimetric assay. 

Samples were diluted 1:12.5 in dH2O. 10 µL of each sample was aliquoted in 

duplicate into a 96-well plate with 200 µL Coomassie reagent. The absorbance of 

samples was measured at test and reference wavelengths of 570 and 630nm, 

respectively using a MRX II 96-well plate spectrophotometer (Dynex). Samples were 

measured alongside bovine serum albumin (BSA) (Pierce) diluted to concentrations 

ranging from 0 to 1000 µg/mL in dH2O. The Revelation software package (Dynex) 

was used to plot the BSA standard curve and calculate the R2 value. The average of 

duplicate absorbance readings from each sample was used to estimate the protein 

concentration by comparison with the BSA standard curve.  
2.6.3 SDS-Polyacrylamide Gel Electrophoresis 

Protein samples were mixed with 4x LDS (Lithium Dodecyl Sulfate) (Life 

Technologies) and 10x reducing agent (Life Technologies). Reagents were diluted to 

a final concentration of 1x with dH2O into volumes suitable to fit into wells (10-well 
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gels have a 40 µL maximum limit per well and 15-well gels have a 26 µL maximum 

per well), and then heated at 70 °C for ten minutes. 

Proteins were resolved by electrophoresis through 1 mm thick 10 or 15 well 4-12% 

Bis-Tris NuPAGE pre-cast polyacrylamide gels using the Novex system 

(Invitrogen). The gel and wells were rinsed in dH2O and assembled in to the Novex 

tank according to the manufacturer’s instructions. 5 µL of All-Blue pre-stained 

marker (BioRad) was run as a protein size marker. Bis-Tris gels were run in either 1x 

MES buffer or 1x MOPS buffer (Life Technologies). 500 µL antioxidant (Life 

Technologies) was added to the inner chamber of the tank during electrophoresis, 

which was carried out at 200 V for 50 minutes, or until the running buffer reached 

the foot of the gel. 

2.6.4 Western blotting using LI-COR Odyssey 

Polyvinyldifluoride (PVDF) sheets (Millipore) were cut to size and dipped in 

methanol to wet, rinsed in H2O and equilibrated in transfer buffer (Appendix 2) for 

10 min. Protein was transferred to PVDF by semi-dry transfer between fibre blotting 

pads (Life Sciences, E-PAGE Blotting Pads) and filter paper (Whatman Grade 1, 150 

mM) at 30 V for 2 h, keeping the tank on ice. PVDF membrane was rinsed in Tris 

buffered saline (TBS) (pH 7.4). Transferred protein was visualised by reversible 

staining with 42 mM Ponceau red in 3 % (v/v) trichloroacetic acid, and washed off in 

dH2O.  

To block free protein-binding sites and minimise non-specific binding, membranes 

were incubated in Odyssey blocking buffer (LI-COR) diluted 1:1 (v/v) with TBS for 

1 hour at ambient temperature on an orbital shaker. Odyssey blocking buffer is also 

optimised to reduce autofluorescence of the membranes at detection wavelengths of 

the LI-COR scanner system. Membranes were probed with primary antibody diluted 

in blocking buffer and TBS-0.1% Tween 20 for 16 hours at 4 °C with shaking. 0.1% 

(w/v) NaN3 was included in the primary antibody solutions as a preservative. 

Membranes were washed four times with TBS-0.1% Tween 20 (Appendix 2) and 

were then probed with secondary antibody, diluted in blocking buffer and TBS-0.1% 

Tween 20, for one hour at ambient temperature with shaking. Membranes were 

washed four times for five minutes in TBS-0.1% Tween before one wash in TBS.  
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Membranes were scanned on the LI-COR Odyssey scanner (Odyssey CLx Scanner, 

LICOR). The LICOR uses laser excitation at 685 and 785 nm to stimulate emission 

from the Alexa-conjugated secondary antibodies and a scan-head with 700 and 800 

nm filters to detect their respective emissions. Scans were analysed using Odyssey 

v1.1 software (LI-COR). Band intensities were measured using the Odyssey software 

by drawing boxes around the protein band to calculate densitometry following 

background subtraction.  

2.6.5 Recycling western blot membranes 

Membranes were stripped to allow re-probing. Membranes were stripped by 

incubating in high pH Western Blot Recycling Kit reagent (Source Bioscience 

Autogen) for 30 minutes at ambient temperature on an orbital shaker. After stripping, 

secondary antibody was applied and membrane scanned as above to confirm removal 

of primary antibodies. Membranes were then washed in TBS, re-blocked and re-

probed as in section 2.6.4 above. 

2.7 Immunofluorescence labelling 

2.7.1 Slide Preparation 

12–well slides (CA Hendley) were wiped with 70% (v/v) ethanol, placed into a metal 

rack in a pipette box and autoclaved to sterilise. Slides were placed in to individual 

chambers of Heraeus boxes (Greiner) using sterile forceps. Cells were seeded in 50 

µL droplets at 1x105 cells mL-1 for proliferative studies or 3x105 cells mL-1 for 

differentiation studies. Cells were left to attach for four hours at 37 °C, before the 

chambers of the Heraeus box were flooded with 5 mL of medium. Cells were treated 

the following day (as indicated for each experiment) with medium replaced every 2-3 

days. At the desired time point cells were washed in PBS and fixed. Slides were 

fixed in methanol:acetone in a 1:1 mixture for 30 seconds before being air-dried and 

stored in cling film desiccated at -20 °C until use. 

2.7.2 Immunolabelling 

Primary antibodies were diluted in TBS containing 0.1% (w/v) BSA and 0.1% (w/v) 

NaN3, pH 7.6. In order to contain the antibodies within individual wells, wells were 

surrounded by liquid repellent grease (Dako Pen, Dako). 20 µL of primary antibody 

solution or TBS (negative control) was added to each well. Cells were incubated with 
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antibodies overnight at 4 °C and then slides were washed three times with PBS on an 

orbital shaker. From this point slides were protected from UV light using aluminium 

foil in order to protect the fluorophores. 20 µL of appropriate secondary antibody 

diluted in TBS containing 0.1% (w/v) BSA and 0.1% (w/v) NaN3, pH 7.6, was 

applied to each well for one hour at ambient temperature. Slides were then washed 

with PBS containing 0.25% (w/v) Tween 20 for 5 minutes on an orbital shaker.  

Nuclei were stained by incubation with Hoechst 33258, diluted to 0.1 µg/mL in PBS, 

for 5 minutes at ambient temperature. Slides were washed once in PBS and then 

rinsed in distilled water. Slides were mounted in antifade solution (appendix 2) and 

sealed under glass coverslips using nail varnish.   

2.7.3 Fluorescence microscopy 

Labelled immunofluorescence slides were viewed under epifluorescence illumination 

using an Olympus BX60 microscope with x20, x40 and x60 oil immersion 

objectives. The microscope was equipped with appropriate excitation and emission 

filters for bisbenzimide (blue), and dual and specific filters for FITC (green) and 

Texas Red (red). Images were captured using an Olympus DP50 digital camera and 

Image- Pro® Plus software. 

2.7.4 Quantification using TissueQuest 

TissueQuest (TissueGnostics) is analysis software for cells and stained areas in 

samples stained with immunofluorescent markers. TissueQuest software was used to 

quantify CK13, CK14 and CK20 protein expression from immunofluorescence 

microscopy images acquired as described in section 1.7.3. Samples were only 

comparable if labelled at the same time and if TissueQuest settings were unaltered 

after initial optimisation. 

Hoechst 33258 labelling of nuclei was used as a master marker for cell identification. 

Furthermore, the average nuclear size, discrimination area, discrimination grey value 

and background threshold for the master marker was specified. Immunolabelling 

intensity was quantified using the appropriate cellular mask parameter. Masks 

projecting from identified cell nuclei were adjusted using the scale settings until cell 

boundaries were clearly identified. Labelling within the masks was quantified and 

data was displayed as dot plot scattergrams indicating arbitrary fluorescence intensity 

values. In order to differentiate between positive and negative cells, cut-offs based on 
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visual assessment were set in the dot plots. The percentage of positively labelled 

cells was then determined. 

2.8 Histology 

2.8.1 Tissue embedding and sections 

Tissue samples were fixed overnight in 10% (v/v) formalin in PBS and transferred to 

70% (v/v) ethanol until required. Samples were encased in embedding cassettes and 

submerged in fresh 70% ethanol for 10 minutes on an orbital shaker. This was 

followed by three changes in absolute ethanol, two changes in propan-2-ol and four 

changes in xylene for 10 minutes each. Samples were transferred to molten paraffin 

wax (Thermo) at 60 °C for 15 minutes, followed by three further 15 minute 

incubations in fresh wax. Tissue samples were orientated within a metal mould, 

embedded in wax and allowed to solidify on a cold table (RA Lamb). 5 µm sections 

were cut using a Leica RM2135 rotary microtome and collected onto electrostatically 

charged Super Frost Plus™ microscope slides (BDH). Sections were allowed to dry 

and then baked on a hot plate (RA Lamb) at 50 °C for one hour then stored at 

ambient temperature until use. 

2.8.2 In vitro cell sheets 

Formalin fixed differentiated cell sheets lifted by dispase (II) (section 2.5.10) were 

submerged in fresh 70% (v/v) ethanol for 5 minutes on an orbital shaker. Samples 

were then sequentially submerged in absolute ethanol (x3), propan-2-ol (x2) for 5 

minutes each. The alcohol was removed from cell sheets with xylene (4 washes of 5 

minutes each). Cell sheets were then transferred to molten paraffin wax (Thermo) at 

60 °C for 10 minutes, followed by three further 10 minute incubations in fresh wax. 

Cell sheets were then orientated, embedded in wax and cut as previously described in 

section 2.8.1. 

2.8.3 Haematoxylin and eosin staining 

Sections were de-waxed with two 10 minute washes in xylene followed by two one 

minute washes in xylene then rehydrated by three one minute washes in absolute 

ethanol and one minute wash in 70% (v/v) ethanol. Sections were then washed for 

one minute under running tap water before staining in haematoxylin for two minutes. 

Slides were washed in running water for one minute before a one minute wash in 
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Scott’s tap water followed by another wash in running water for one minute. Sections 

were stained in eosin for 30 seconds before being washed in running water for one 

minute. Sections were dehydrated with a one minute wash in 70% (v/v) ethanol 

followed by three one minute washes in absolute ethanol and two one minute washes 

in xylene. Slides were mounted with DPX (Cell Path) and sealed under glass 

coverslips. 

2.9 Immunohistochemistry 

Immunolabelling was performed using an indirect streptavidin ‘ABC’ 

immunoperoxidase method. A CK7 positive control and negative control, where TBS 

was substituted for primary antibody, were used in every experiment.  

2.9.1 Dewaxing tissue sections 

Paraffin wax-embedded sections were de-waxed with two 10 minute washes in 

xylene, followed by two one minute xylene washes. Sections were rehydrated by 

three one minute washes in absolute ethanol, a one minute wash in 70% (v/v) ethanol 

and a one minute wash under running tap water. 

2.9.2 Antigen retrieval 

Antigen retrieval was performed to restore the immunoreactivity of antigens masked 

by tissue processing. The method of antigen retrieval used in this study was 

trypsinisation followed by citric acid heat retrieval. Trypsinisation was performed by 

incubating sections in 100 mL of 0.1% (w/v) trypsin (Sigma) in 0.1% (w/v) CaCl2. 

pH 7.8, for 1 minute at 37 °C. This was followed by citric acid heat retrieval where 

slides were microwaved in a Pyrex dish containing 10 mM citric acid buffer, pH 6.0 

(appendix 2). The dish was covered with punctured Clingfilm, microwaved on full 

power for 13 minutes and then rapidly cooled on ice. Following antigen retrieval 

slides were washed under running tap water. 

2.9.3 Blocking of endogenous sites 

Slides were placed in Shandon Sequenza units (Thermo) and washed once with TBS 

(appendix 2). Endogenous avidin sites were blocked with 100 µL of avidin followed 

by 100 µL biotin from the blocking kit (Vector Labs). Sections were incubated for 10 

minutes at ambient temperature for each blocking step with two TBS washes after 

each step. Non-specifc antibody binding was eliminated by blocking each section 
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with 100 µL of normal rabbit serum (10% (v/v) in TBS for 5 minutes at ambient 

temperature.  

2.9.4 Steptavidin ‘ABC’ Immunoperxidase method 

100 µL of CK13 primary antibody, or CK7 primary antibody (positive control) or 

TBS (negative control) was applied to the slides and incubated at 4 °C overnight. 

Primary antibody was washed off with three washes of TBS. 100 µL of biotinylated 

secondary antibody was applied to each slide for 30 minutes at ambient temperature, 

followed by two washes with TBS. 100 µL steptavidin-biotin HRP complex (Vector 

Labs), prepared according to the manufacturer’s instructions, was applied to each 

slide and incubated for 30 minutes at ambient temperature. Slides were then washed 

twice with TBS and once with distilled water. Bound antibody was visualised using a 

Diaminobenzidine (DAB) substrate prepared using Sigma Fast DAB tablets 

dissolved in 5ml dH2O. Slides were incubated with 200 µL DAB solution for a 

maximum of 15 minutes before being washed twice with distilled water.  

2.9.5 Dehydration and mounting of sections 

Slides were removed from the Shandon Sequenza units and placed into staining 

racks. Slides were counterstained for 5-10 seconds with haematoxylin and washed 

under running tap water. Sections were dehydrated through 70% and absolute 

ethanol and four changes of xylene. Slides were mounted in DPX (Cell Path) and 

sealed under glass coverslips.  

2.9.6 Quantification using HistoQuest 

Images of whole tissue sections were captured using an AxioScan.Z1 slide scanner 

(Zeiss) and Zen 2012 blue edition software (Zeiss). Images were stored as .czi files 

and opened using HistoQuest software (TissueGnostics) in order to quantify CK13 

expression on differentiated cell sheets treated with or without cadmium.  HistoQuest 

is brightfield image analysis software for the FACS-like analysis of samples stained 

with immunohistochemical or other stains. 

Haematoxylin staining was used as a master marker for cell identification on the 

basis of nuclear detection. Furthermore, the average nuclear size, discrimination area, 

discrimination grey value and background threshold for the master marker was 

specified. DAB intensity was quantified using the inside and outside cellular mask 
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parameter to produce scattergrams displaying arbitrary intensity values. In order to 

differentiate between positive and negative cells, cut-offs based on visual assessment 

were set. The percentage of positively labelled cells was then determined. 

2.10 Analysis of Gene Expression 

2.10.1 General 

For RNA work, all solutions were made with ultra pure dH2O treated with 0.1% (v/v) 

diethyl pyrocarbonate (DEPC) at ambient temperature overnight. 13 mL 

polypropylene tubes and caps (Starstedt) were also incubated overnight with 0.1% 

(v/v) DEPC to inhibit RNase activity. DEPC was then destroyed by autoclaving. 

RNase/DNase free microfuge tubes and pipette tips (Axygen) were used for all RNA 

experiments. RNase Zap  (Ambion) was used to clean the bench and pipettes before 

use.  

2.10.2 RNA Extraction 

Culture medium was aspirated from cell cultures. Trizol™ solution was added to 25 

cm2 flasks (2.5 mL) or Snapwell membranes (1 ml per Snapwell) and left to incubate 

on a rocking platform for 5 min before scrape-harvesting and transferring to a DEPC- 

treated 13 mL centrifuge tube. At this point samples can be stored at -80 °C until 

further processing. Lysates were thawed on ice then left at ambient temperature for 

five minutes to allow complete dissociation of nucleoprotein complexes. 0.2 mL 

chloroform was added per millilitre of Trizol reagent. Lysates were vortexed for 15 

seconds and incubated at ambient temperature for two minutes, followed by 

centrifugation at 12,000 g for 15 minutes at 4 °C. Centrifugation was performed in a 

Sorvall RC-5 using rotor SM-24. The upper aqueous phase, containing the mRNA, 

was collected and transferred to a fresh DEPC-treated centrifuge tube. RNA was 

precipitated by the addition of 0.5 mL propan-2-ol per millilitre of Trizol and 

incubated at ambient temperature for 10 minutes. RNA was centrifuged at 12,000 g 

for 20 minutes at 4 °C. Following centrifugation the supernatant was discarded. The 

RNA pellet was washed with 75% (v/v) ethanol and centrifuged at 7500 g for 10 

minutes at 4 °C. Ethanol was removed and pellets air-dried. Pellets were resuspended 

in 30 µL nuclease free DEPC treated ddH2O then stored at -80 °C. 
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2.10.3 DNase Treatment  

RNA samples were treated with the DNA-easy kit (Ambion) to remove any DNA 

contamination. 3 µL DNase 1 Buffer was added to RNA followed by 1 µL rDNase 1 

(2 U/µL). After mixing by pipetting the sample was incubated for 30 minutes at 37 

°C. DNase Inactivation Reagent was resuspended by vortexing to tube to form a 

slurry, 3.3 µL was then added to each sample to terminate the digestion. Samples 

were incubated at ambient temperature for two minutes then centrifuged for 90 

seconds at 10,000g. RNA contained in the aqueous phase was collected and placed 

into a new microfuge tube then 1 µL (40 U/µL) of RNaseOUT (Life Technologies) 

was mixed into samples to prevent degradation of RNA by RNases.  

2.10.4 Quantification of RNA 

RNA was quantified by UV spectrophotometry. Samples were measured directly 

using a Nanodrop ND-1000 Spectrophotometer. Optical densities (ODs) were 

measured at 260 and 280nm and concentration calculated from the Nanodrop 

software. Sample purity was derived from the OD260/OD280 ratio, which is 2.0 for 

pure preparations of RNA.  

2.10.5 cDNA synthesis with Random Hexamers 

DNA-free RNA was reverse transcribed using Invitrogen’s SuperScript® II First-

Strand Synthesis Kit and 50 ng random hexamers primers. 1 µg of DNase treated 

RNA was mixed with 1 µL (50 ng/µL) random hexamers and nuclease-free H2O in a 

final volume of 12 µL. Samples were incubated at 65°C to anneal primers to RNA. 

To each sample the following volumes of reagents from the kit were added: 4 µL 5x 

First-Strand Buffer, 2 µL 0.1 M DTT and 1 µL dNTP mix (10 mM each). Samples 

were incubated at 25°C for two minutes. As a control for the presence of 

contaminating DNA, two of each sample was prepared and at this stage one sample 

was mixed with 1 µL (50 U/µL) of Superscript II reverse transcriptase, and the other 

with 1 µL nuclease-free H2O. Samples were incubated at 25 °C for ten minutes 

followed by 42 °C for 50 minutes and then heated at 70 °C for 15 minutes in order to 

inactivate the enzyme. cDNA samples were then used neat for RT-PCR reactions or 

diluted 1in 5 for RTQPCR. 
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2.10.6 Primer Design 

Primers were designed against target regions using the NCBI primer-BLAST tool 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/). Primers used for SYBR-green 

QPCR were designed using Primer express Software v.3 (Applied Biosystems) using 

recommended optimal parameters. The top ranked primers were checked for 

specificity using the NCBI primer-BLAST search facility. Primers were ordered 

from MWG Eurofins and stock made in nuclease free ddH2O. Primer sequences used 

in this thesis are detailed in Table 2.5. 

Table 2.5. Primers used for RTPCR and RTQPCR in this study. Primers for SYBR-green 

QPCR were designed to have an amplicon length between 50 and 125 bases.  

Gene Primer Sequence (5’-3’) Amplicon Length 

APC For – GGCTTCTTCTGGACAGATTGATTT 

Rev - ATCCTTCCCGGCTTCCATA 
125 

ELF3 For – GTTCATCCGGGACATCCTC 

Rev - GCTCAGCTTCTCGTAGGTC 
160 

FOXA1 For - CAAGAGTTGCTTGACCGAAAGTT 

Rev - TGTTCCCAGGGCCATCTGT 
75 

GAPDH For – ACCCAGAAGACTGTGGATGG 

Rev - TTCTAGACGGCAGGTCAGGT 
201 

GAPDH 

(QPCR) 

For - CAAGGTCATCCATGACAACTTTG 

Rev - GGGCCATCCACAGTCTTCTG 
90 

GATA3 For – TCCAGACACATGTCCTCCCT 

Rev - TGGTGTGGTCCAAAGGACAG 
113 

GRHL3 For – GTGACAAGGGAGCTGAGAGG 
Rev - CAGTCTCTGGCCGAAGGTAG 153 

IRF1 For – TGCATTTATTTATACAGTGCCTTGCT 

Rev - CCCTCCCTGGGCCTGTT 
79 

KDM3A For – CTGTCAAAGGTGTTCGAGAAATGT 

Rev - CACCCAGTGCAGGTTGAAGA 
65 

KDM3B For – CCCAACTTTCTTGACCACATCA 

Rev - CCCGCTTTGAAGCATCTGA 
70 

KDM4A For – CCCAGGAAGTGCTCAAAGCT 

Rev - GGGAAATCAGGGTCATCTTGTG 
59 
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Gene Primer Sequence (5’-3’) Amplicon Length 

KDM4B For – CCCTCCAAAAGCCGTCAGA 

Rev - GCCAGAGGTGAAGCACATCTC 
60 

KDM4C For – GGCTATGAGAAGCCCGAGAA 

Rev - CAGGTGACTTTGGCCATGAA 
58 

KDM4E For – GCCAACTGTTCAGCCTGCAT 

Rev - TTGAGCTCTACTCCTTGTACCCATT 
61 

KDM7A For – GTGATGGATGTGGAACGTTATGTAG 

Rev - TGCCTCGCCACATCAATG 
65 

KDM7B/PHF2 For – CAAGCGGGTCCTCAACGT 

Rev - CCACGAAGCTGGACATTCG 
62 

KDM7C/PHF8 For – GGCTCCATTCCCCTAACCA 

Rev - GACAGCCTGGACATGGACACT 
59 

KLF5 For – GACACCTCAGCTTCCTCCAG 

Rev - ACTCTGGTGGCTGAAAATGG 
232 

KRT13 For – CTGATGTCCGTAGGCCTTAAATCT 

Rev - GGGAACTGCCGGCTCTCT 
83 

KRT14 For - CGGCCTGCTGAGATCAAAGA 

Rev - ATCTGCAGAAGGACATTGGCA 
107 

KRT20 For – CAAAAAGGAGCATCAGGAGGAA 

Rev - CAACCTCCACATTGACAGTGTTG 
71 

NR3C1 For – GAGGAGGAGCTACTGTGAAGGTTT 

Rev - TTCGCTGCTTGGAGTCTGATT 
78 

P16INK4A For - GCGGAAGGTCCCTCAGACA  

Rev - TGATCTAAGTTTCCCGAGGTTTCTC 
73 

RASSF1A For - ACAAGGGCACGTGAAGTCATT 

Rev - GCTCAGCGCGCTCAAAG 
91 

SOX9 For – AGCGACGTCATCTCCAACATC 

Rev - GTTGGGCGGCAGGTACTG 
66 

UPK1A For – CATTCTTGCTGAACCGTTTGTG 

Rev - GTGACCGTGACAGAACTCTCATG 
77 

UPK2 For - CAGTGCCTCACCTTCCAACA 

Rev - TGGTAAAATGGGAGGAAAGTCAA 
77 
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2.10.7 Polymerase Chain Reaction 

PCR was performed using a T100 thermal cycler (BioRad) and the GoTaq® reagent 

kit (Promega).  PCR reactions were made to total volumes of 20 µL, with 8.5 µL 

ddH2O, 4 µL GoTaq® buffer, 0.4 µL dNTPs (10 mM), 2 µL MgCl2 (25 mM), 2 µL 

forward primer (10 µM), 2 µL reverse primer (10 µM). 0.1 µL GoTaq® polymerase 

and 1 µL test cDNA or ddH2O (negative control) or genomic DNA (positive 

control). DNA underwent a two minute initial denaturation step at 95° C, followed 

by 25-35 cycles of denaturation for 30 seconds at 95 °C, annealing for 30 seconds at 

50-65 °C (depending on optimal temperature for primers) and 1 min/Kb DNA at 72 

°C for extension. A final extension stage of five minutes at 72 °C was followed by 

incubation at 4 °C. 

2.10.8 Gel Electrophoresis 

DNA was visualised under UV light after separation by gel electrophoresis. 

Electrophoresis grade agarose was boiled in 1x Tris-Borate-EDTA (TBE) buffer 

(Appendix 2) and cooled to 50 °C before adding 1/10,000 (v/v) GelRed (Cambridge 

Bioscience), which fluoresces under UV light when it intercalates with double 

stranded DNA. Gels were cast and then allowed to set before PCR products and 

Hyperladder I or IV (Bioline) were electrophoresed on the gel submerged in 1x TBE 

at 80V for 30 minutes. Gel images were captured digitally using a Gene Genius Gel 

Imaging System (Syngene) with GeneSnap software.  

2.10.9 SYBR® Green Quantitative PCR 

Quantitative polymerase chain reaction (QPCR) is a powerful method that enables 

the accumulation of PCR products to be measured over time. The binding of SYBR® 

Green I Dye to double-stranded DNA emits a fluorescent signal. The increase in 

fluorescence over time is proportional to the accumulation of PCR products. Fast 

SYBR® Green Master Mix (Applied Biosystems) containing the SYBR® Green I 

Dye, AmpliTaq® Fast DNA Polymerase, dNTPs, Uracil-DNA Glycosylase and a 

passive internal reference (ROX) was used.  5 µL of cDNA was mixed with 10 µL of 

the 2x Fast SYBR® Green Master Mix, 3.8 µL ddH2O and 0.6 µL each of the 

forward and reverse primers (10 mM) in the wells of a optical 96-well plate (Applied 

Biosystems). Each cDNA sample was amplified by QPCR in triplicate wells and 

negative control samples (where the reverse transcriptase was omitted during cDNA 



  Chapter 2 
 

66 

 

synthesis) were included. The plates were sealed with optical adhesive covers 

(Applied Biosystems) and briefly centrifuged. Plates were run on a StepOnePlus™ 

Real-Time PCR System (Applied Biosystems) and analysed with StepOne™ 

Software. The thermal profile used was: incubation at 95 °C for 20 seconds, followed 

by 40 cycles of denaturation at 95 °C for 3 seconds and elongation at 60 °C for 30 

seconds. 

During each cycle the fluorescence of the SYBR® Green I Dye was detected for 

every well. This fluorescence signal was normalised against the fluorophore ROX 

(yielding the normalised reporter value) to account for any changes in plate 

fluorescence that were unrelated to product amplification.  

A final stage was included to establish the melting profiles of the products and give 

dissociation curves. This involved incubation for 15 seconds at 95 °C, 60 °C and 

finally 95 °C to ensure only one product was produced. Dissociation curves 

confirmed both the presence of a single amplification product and the absence of 

primer dimers for each primer set (example shown in Figure 2.1). 

Amplification plots were generated by the StepOne™ Software. Threshold values 

were set in the region of exponential amplification across all of the plots. Threshold 

cycle (Ct) values were obtained as the cycle at which the fluorescence generated 

within a reaction crosses the threshold value. QPCR results were expressed as 

relative quantification (RQ) (relative expression/fold change). This is calculated 

using the following calculations: 

Sample values were calculated relative to GAPDH to give ∆Ct: 

  ∆Ct = Ct target – Ct GAPDH 

This was then calibrated to the control/calibrator sample to give ∆∆Ct: 

 ∆∆Ct = Ct test sample – Ct control/calibrator samples 

Relative quantification was then calculated using: 

 RQ = 2∆∆Ct 
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Figure 2.1. An example dissociation curve. Dissociation plot showing the change in fluorescence 

against temperature. Replicate cDNA samples are shown in purple and the corresponding 

negative control sample is shown in red. Note the presence of one peak, representing the 

dissociation curve of a product in each of the cDNA samples and the absence of product in the 

negative control. Also note the absence of primer dimers. 

 

 

 

 



  Chapter 2 
 

68 

 

2.10.10 Microarrays 

Two independent NHU cell lines (Y1441 and Y1451) were treated ± TZPD  ± 10 µM 

CdCl2 ± 400 nM TSA for 3 days. RNA was extracted from the 8 treated NHU cell 

cultures as described in section 2.10.2, followed by DNase treatment (section 2.10.3). 

RNA was quantified using a ND-1000 Spectrophotometer (section 2.10.4) and 1 ug 

of RNA was synthesised into cDNA using random hexamers (section 2.10.5) in order 

to perform RTQPCR (section 2.10.9) to determine that the cadmium and TSA 

treatment had been successful prior to microarrays being perfomed. 

Gene expression analysis was performed using Agilent SurePrint G3 Human 

Microarrays. Microarrays were carried out by the Genomics Department of the 

Bioscience Technology Facility at the University of York. Normalisation and fold 

change calculations were carried out by the Bioscience Technology Facility’s 

Bioinformatics Laboratory using GeneSpring software (Agilent). Normalised 

intensity values and fold change data was supplied in the form of Excel spreadsheets. 

2.10.11 Gene ontology and promoter analysis 

Gene ontology enrichment analysis was performed using the PANTHER 

Classification System (http://pantherdb.org/) as described by Mi et al. (2013). 

Enrichment analysis finds which GO terms are over-represented (or under-

represented) using annotations for that gene set. 

Promoter analysis for the four differentiation genes (UPK1A, UPK2, KRT13 and 

KRT20) was carried out using the PSCAN promoter analysis tool, which was run 

against the JASPAR database of transcription factor binding profiles 

(http://159.149.160.51/pscan/) as described by Zambelli et al. (2009). 

2.11 Chromatin Immunoprecipitation-(Q)PCR 

Chromatin Immunoprecipitation (ChIP-QPCR) involves immunoprecipitation of 

formaldehyde fixed chromatin-DNA complexes followed by quantitative PCR 

(Figure 2.2).  Cross-linked cell samples were subjected to hypotonic lysis and 

sonication to fragment chromatin. DNA-histone complexes were incubated with 

antibody:bead complexes, using antibodies raised against specific histone 

modifications. Protein:DNA complexes were then eluted from beads, cross-links 
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were reversed and ChIP-DNA was purified by phenol:chloroform extraction. ChIP-

DNA was then analysed by PCR. 

 

Figure 2.2. Cross-linking chromatin immunoprecipitation overview. 

2.11.1 Blocking of Dynabeads® 

Magnetic protein-G conjugated Dynabeads® (Novex) were used for 

immunoprecipitations (IP). Before beads were used for IP, beads were pre-blocked to 

reduce non-specific binding. Every 100 µL of bead suspension was mixed with 1 mL 

of RIPA buffer (Appendix 2), beads were then recovered on a magnet and mixed 

with another 1 mL RIPA buffer for a total of three washes. Beads were then mixed 

with 1 mL blocking buffer (0.2 mg/mL glycogen, 0.2 mg/ml BSA and 0.2 mg/mL 

yeast tRNA in RIPA buffer). Beads were incubated with blocking buffer overnight at 
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4 °C. Beads were recovered on a magnet and washed twice with RIPA buffer before 

diluted to starting volume in RIPA buffer. 

2.11.2 Preparation of chromatin from formaldehyde fixed cell pellets 

Cell pellets which had been fixed in formaldehyde (section 2.5.7) were thawed and 

resuspended in 1 mL of cold Swelling Buffer (Appendix 2) with freshly added 0.5% 

NP-40 and 1:500 protease inhibitors. Samples were transferred to a 1.5 mL micro-

centrifuge tube and incubated for 20 minutes on ice on an orbital shaker. Samples 

were then centrifuged at 800 g for 5 minutes at 4 °C. Pellet was resuspended in 1 mL 

RIPA buffer containing protease inhibitors. Chromatin was sonicated on ice with a 

probe sonicator (50% power output, MSE Soniprep 150).  

For initial optimisation, samples were sonicated for 10 cycles of 15 seconds with 30 

second breaks between bursts. After each cycle a 50 µL aliquot was taken from the 

sample; the sample was then topped up with equal volume RIPA buffer. Aliquots 

were topped up to 250 µL with RIPA buffer, and then incubated at 65°C overnight to 

reverse cross-links. Samples were cooled to ambient temperature and 250 µL TE 

buffer (Appendix 2) and 10 µL of 10 mg/mL proteinase K was added to each aliquot 

before incubation at 37 °C for two hours. Fragmented DNA was purified by 

phenol:chloroform phase separation. To each aliquot, 500 µL of a 1:1 mixture of 

phenol:chloroform was added before vortexing for 30 seconds followed by 

centrifugation for 15 minutes at 14,000 g at ambient temperature. The upper phase 

was collected into a new 1.5 mL centrifuge tube. 50 µL of 3M sodium acetate was 

added along with 1 mL 100% ethanol before incubating the samples at -80 °C for 

one hour. Samples were centrifuged at 18,000g for 15 minutes at 4 °C, supernatant 

was removed then the pellet was washed in 1 mL 70% (v/v) ethanol before 

centrifugation for 15 minutes at 18,0000g at 4  °C.  Ethanol was removed and the 

pellets were air-dried. Pellets were resuspended in 25 µL TE buffer. DNA was then 

electrophoretically separated on a 0.75% agarose gel. The number of cycles where 

the DNA was fragmented to 100-600 bp was chosen as the optimum number of 

cycles for sonication (8 cycles).  

For all sonication performed, 50 µL aliquots were always taken after the final 

sonication cycle and subjected to purification, and fragmentation of DNA assessed 

by electrophoresis through agarose gels as above.  
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2.11.3 Quantification of DNA 

DNA was quantified by UV spectrophotometry. Samples were measured directly 

using a Nanodrop ND-1000 Spectrophotometer (Thermo Scientific). Optical 

densities (ODs) were measured at 260 and 280nm and concentration calculated from 

the Nanodrop™ software.  

2.11.4 Preparation of Antibody-Bead complexes 

10 µL blocked Dynabeads® were used for each IP. Beads were washed twice with 

RIPA buffer.  Beads were recovered using a magnetic rack. 2.4 µg antibody (H3 or 

H3K9me3) was added to each 10 µL beads, diluted to 100 µl using RIPA buffer then 

incubated for two hours on a rotator at 4 °C.  For negative control samples Rabbit 

IgG was used.   

2.11.5 Immunoprecipitation and Washes 

2 µg chromatin was diluted with RIPA-ChIP Buffer (Appendix 2) to 100 µL. To pre-

clear chromatin which binds non-specifically to Dynabeads®, blocked Dynabeads® 

that had been washed twice in RIPA-ChIP buffer were added to chromatin samples 

(10 µL beads per 100 µL chromatin) and then incubated with rotation at 4 °C for 90 

minutes. Samples were placed on a magnetic rack and cleaned chromatin recovered. 

100 µL pre-cleared chromatin was added into each 0.2 mL PCR tube containing 

antibody-beads complexes held to the wall in a magnetic rack on ice, and from which 

the RIPA buffer had been pipetted out. At this point 100 µL pre-cleared chromatin 

from each treatment sample was added to 1.5 mL centrifuge tubes to be used as the 

input chromatin. Samples were removed from the magnetic rack to release the 

antibody-bead complexes into the chromatin suspension and samples were then 

incubated on a rotator for two hours at 4 °C. Tubes were centrifuged for one second 

to bring down any solution trapped in the lid during incubation then immune 

complexes were captured by placing tubes in a chilled magnetic rack.  

Supernatant was discarded, 100 µL ice cold RIPA buffer was added and the tubes 

were then removed from the magnetic rack to release the immune complexes into the 

buffer. The complexes were resuspended by gentle manual agitation and tubes were 

then placed on a rotator for four minutes at 4 °C. This step was repeated for a total of 

three washes in RIPA buffer. Tubes were briefly centrifuged, supernatant removed, 



  Chapter 2 
 

72 

 

100 µL TE buffer added then incubated for four minutes on a rotator at 4 °C. Tubes 

were briefly centrifuged, placed on ice and then contents were transferred to separate 

clean 0.2 mL tubes on ice. The complexes were captured in the magnetic rack and 

TE buffer removed. 

2.11.6 DNA Recovery by Phenol-Chloroform Extraction 

150 µL complete elution buffer (Appendix 2) was added to each tube then incubated 

for two hours on a Thermomixer at 68 °C, 1300 rpm. Tubes were removed from the 

Thermomixer and briefly centrifuged before beads where captured on the magnetic 

rack. Supernatant was collected and placed in a clean 1.5 mL centrifuge tube. 150 µL 

complete elution buffer was added to the remaining ChIP material and incubated on 

the Thermomixer for five minutes at 68 °C, 1300 rpm. Tubes were removed from the 

Thermomixer, beads captured using the magnetic rack, supernatant collected and 

then combined with the first supernatant, 200 µL elution buffer was then to the 

combined supernatants.  

Input chromatin samples were prepared by the addition of 200 µL elution buffer 

(Appendix 2) and 7.5 µL proteinase K (2 mg/mL). Samples were vortexed and then 

incubated for two hours on a heating block at 68 °C. Samples were removed from the 

heating block and 200 µL elution buffer was added. 

DNA was extracted once with 500 µL phenol:chloroform. Samples were centrifuged 

at 14,000g for five minutes to separate the phases then 460 µL of the aqueous phase 

was transferred to a clean 1.5 mL centrifuge tube. DNA was then extracted with 460 

µL chloroform. Samples were centrifuged at 14,000g for five minutes and 400 µL of 

the aqueous phase was then transferred to a clean 1.5 mL centrifuge tube. 44 µL 3M 

sodium acetate (pH 7.0) and 1 mL 100% ethanol was added to the aqueous phase, 

mixed thoroughly and then incubated for at least one hour at -80 °C. Samples were 

thawed and centrifuged at 18,000g for 15 minutes at 4 °C. Supernatant was removed, 

1 mL 70% ethanol was added and then vortexed briefly to wash the DNA pellet then 

centrifuged at 18,000g for ten minutes at 4 °C. This step was repeated to give two 

ethanol washes. Ethanol was removed and DNA dissolved in 60 µL TE buffer. 

Samples were stored at -80 °C until use. 
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2.11.7 Analysis using PCR and QPCR  

Chromatin Immunoprecipitation success was ascertained by ChIP-PCR. The 

Ensemble genome browser (www.ensemble.org) was used to identify the sequences 

for KRT13, KRT20, UPK1A and UPK2. These sequences were inputted into primer 

design software (http://www.ncbi.nlm.nih.gov/tools/primer-blast/). The software was 

instructed to design a PCR product of 50-150 bp (Table 2.6). The search target was 

the human reference genome (hg19) and all other settings were left as default. The 

highest ranked primer pair with no other hits in the genome was chosen.  

Table 2.6. Primers for ChIP(Q)PCR. 

Gene Primer Sequence Amplicon Length 

KRT13 For - GAGCTCCTCTGCCAGCTATG 

Rev - CACCAAAACCACAGCTCACG 
146 

KRT20 For – TCAGTACAGTGGGCATGCAG 

Rev – TCACCGTGTGTCTGGAGTTG 
99 

UPK1A For – TGCGGCAGCAGCGGA 

Rev – AATGATATTGCCCACAACTAGCAG 
70 

UPK2 For – CACCCCTGCTGCCCATC 

Rev – GCAGCCCCTGGGGACA 
70 

 

1 µL of purified ChIP-DNA and chromatin IP input were prepared for PCR using the 

GoTaq (Promega) PCR kit as described in section 2.10.7. PCR was performed using 

the conditions outlined in Table 2.7. 10 µL of PCR reactions were separated by 

electrophoresis on a 4 % agarose gel and gels photographed under UV light using a 

Gene Genius Gel Imaging System (Syngene) with GeneSnap software to visualise 

DNA bands.  

Table 2.7. ChIP-PCR amplification settings. 

Step Temperature Time 
1 95 °C 2 min 
2 95 °C 30 s 
3 60 °C 30 s 
4 72 °C 15 s 
5 Go to 2 35 cycles 
6 72 °C 5 min 
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SYBR® Green QPCR (as described in section 2.10.9) was then utilised to quantify 

the changes observed for four known differentiation genes KRT13, KRT14, UPK1A 

and UPK2. ChIP-DNA was diluted 1:2.5 with 5 µL DNA added to each reaction. 

Data was represented as % of input where % of input = (2-Ct IP/2-Ct input) x 100. 

2.12 Quantification of post-translational histone modifications using mass 

spectrometry 

Quantification of global post-translational histone changes using mass spectrometry 

was performed in collaboration with Dr Mark Dickman and Tom Minshull from the 

Department of Chemical and Biological Engineering at the University of Sheffield.  

Quantification of post-translational histone changes was performed following the 

procedures in Figure 2.3. Cell culture treatments and preparation of histones was 

performed in York; RP-HPLC, LCMS/MS and MS analyses were performed by Tom 

Minshull in Sheffield. 

 

Figure 2.3. Work flow for the quantification of post-translational histone modifications by mass 

spectrometry. 

2.12.1 Acid extraction of histones 

Culture medium was aspirated from cell cultures in 75 cm2 flasks. Cell monolayers 

were incubated in 0.1% (w/v) EDTA in PBS for 5 minutes at 37 °C, until the cells 

began to round up and dissociated from each other. Cells were then incubated in 1 

mL of 0.25 % (w/v) trypsin (Sigma Aldrich) and 0.02% (w/v) EDTA in Hank’s 
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balanced salt solution (Invitrogen) for 2 minutes at 37 °C. Cells were harvested into 

5 mL KSFMc containing 1.5 mg/mL soybean trypsin inhibitor (Sigma). Cells were 

collected by centrifugation (10 min, 300g), supernatant was discarded and cell pellets 

were washed in PBS and centrifuged again at 300g for ten minutes. Supernatant was 

discarded; cell pellets were resuspended in 1 mL hypotonic lysis buffer (Appendix 2) 

and transferred to a 1.5 mL centrifuge tube. Samples were incubated for 30 minutes 

on a rotator at 4 °C to promote hypotonic swelling of cells and lysis by mechanical 

shearing during rotation. Intact nuclei were pelleted by centrifugation at 10,000g for 

ten minutes at 4 °C. Supernatant was discarded and nuclei were resuspended in 400 

µL 0.4 N H2SO4 then incubated on a rotator for four hours at 4 °C. Samples were 

centrifuged at 16,000g for ten minutes at 4 °C to remove nuclear debris. Supernatant 

containing histones was transferred in to a clean 1.5 mL centrifuge tube. 132 µL 

trichloroacetic acid (Sigma) was added drop-wise to the histone solution (to give a 

final concentration of 33% TCA) after which the tube was inverted several times to 

mix the solutions. The samples were incubated overnight at 4 °C. Histones were 

pelleted by centrifugation at 16,000g for ten minutes at 4 °C. Supernatant was 

removed and the histones where then washed with ice-cold acetone to remove the 

acid from the solution without dissolving the protein pellet. Samples were 

centrifuged for ten minutes at 16,000g at 4 °C. The acetone washing step was 

performed twice before histones were left to air-dry at ambient temperature for 20 

minutes before being dissolved in 100 µL ddH20. 

2.12.2 Quantification and purity testing of histones 

The histone protein concentration of each sample was determined using a 

Coomassie® protein assay reagent kit (Pierce), which is based on the Bradford 

colorimetric assay. Samples were diluted 1:5 in dH2O. 10 µL of each sample was 

aliquoted in duplicate into a 96-well plate with 200 µL Coomassie reagent. The 

absorbance of samples was measured at test and reference wavelengths of 570 and 

630nm, respectively using a MRX II 96-well plate spectrophotometer (Dynex). 

Samples were measured alongside bovine serum albumin (BSA) (Pierce) diluted to 

concentrations ranging from 0 to 1000 µg/mL in dH2O. The Revelation software 

package (Dynex) was used to plot the BSA standard curve and calculate the R2 value. 

The average of duplicate absorbance readings from each sample was used to estimate 

the protein concentration by comparison with the BSA standard curve.  
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Histone purity was tested by SDS-Polyacrylamide gel electrophoresis. 2.5 µg 

histones samples were mixed with 4x LDS (Life Technologies) and 10x reducing 

agent (Life Technologies). Reagents were diluted to a final concentration of 1x with 

dH2O into a total volume of 10 µL and then heated at 70 °C for ten minutes. Histones 

were resolved by electrophoresis through 1 mm thick 10 well 4-12% Bis-Tris 

NuPAGE pre-cast polyacrylamide gels using the Novex system (Invitrogen). The gel 

and wells were rinsed in dH2O and assembled in to the Novex tank according to the 

manufacturer’s instructions. 5 µL of All-Blue pre-stained marker (BioRad) was run 

as a protein size marker. Bis-Tris gels were run in 1x MES buffer (Life 

Technologies). 500 µL antioxidant (Life Technologies) was added to the inner 

chamber of the tank during electrophoresis, which was carried out at 200 V for 50 

minutes. Gels were washed in dH2O, stained with Coomassie Brilliant Blue solution 

(Appendix 2) for one hour and then rinsed in dH2O for at least 30 minutes. 

2.12.3 Chemical derivatization and tryptic digestion 

In these procedures extracted histones were first derivatized using propionic 

anhydride to neutralise charge and block lysine residues before digestion using 

trypsin, which cleaved only the arginine residues as all lysine residues were blocked 

by endogenous modifications or chemically by conversion to propionyl amides, to 

give reproducible histone peptides. 

10 µg histones were diluted with 5 µL 100 mM ammonium bicarbonate (pH 8) 

before 2 µL concentrated ammonium hydroxide was added to the sample. Fresh 

propionylation reagent was prepared by adding 75 µL propionic anhydride to 25 µL 

isopropanol. 10 µL propionylation reagent was added to histone samples followed by 

vortexing and then a short spin down in a mini-centrifuge. pH was then checked 

using pH indicator strips; if pH was less than 8, ammonium hydroxide was added 

dropwise until pH was approximately 8. Samples were incubated for 20 minutes at 

51 °C. Samples were dried down to approximately 5 µL in a SpeedVac concentrator 

(Thermo Scientific) at ambient temperature for 20 minutes. Samples were diluted 

with 5 µL 100 mM ammonium bicarbonate (pH 8) before the propionylation reaction 

was performed a second time to ensure maximum conversion. 2 µL concentrated 

ammonium hydroxide was added followed by 10 µL propionylation reagent, pH was 

tested and then samples were incubated for 20 minutes at 51 °C. 
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50 µL 100 mM ammonium bicarbonate (pH 8) was added to the propionylated 

histones. Trypsin was added to the samples to make a 20:1 (w/w) protein:trypsin 

ratio and samples were then incubated overnight at 37 °C. The trypsin digestion was 

quenched by adding glacial acetic acid and pH was measured to make sure pH had 

dropped to about 3. Samples were then incubated at -80 °C for 10 minutes in order to 

inactivate the trypsin. Samples were dried down to approximately 5 µL in a 

SpeedVac concentrator before chemical derivatization with propionic anhydride was 

performed in order to convert the newly trypsin-generated N-termini on peptides to 

propionyl amides. 2 µL concentrated ammonium hydroxide was added followed by 

10 µL propionylation reagent, pH was tested and then samples were incubated for 20 

minutes at 51 °C. Samples were diluted with 5 µL 100 mM ammonium bicarbonate 

(pH 8) before the propionylation reaction was performed a second time to ensure 

maximum conversion. Samples were then dried down in a SpeedVac concentrator. 

2.12.4 HPLC fractionation 

Digested, propionylated histone samples were resuspended in 10 µL 0.1% 

trifluoroacetic acid (TFA) and were fractionated on the U3000 HPLC (Thermo 

Scientific) with a Hypercarb™ Column (50 x 2.1 mm, 5 µm particle size) (Thermo 

Scientific) running Chromleon software. Buffers used for HPLC: Buffer A contained 

3% Acetonitrile (ACN) and 0.1% TFA and Buffer B contained 97 % ACN and 0.1% 

TFA. Parameters used: column temperature was 30 °C, UV was 214 mm (50 Hz) and 

flow rate was 0.2 mL/min. Gradient used is outlined in Table 2.8. Fractions were 

collected every 60 seconds (18 in total) in a 384 lo-bind deep well plate, starting at 

eight minutes. Following collection samples were transferred to lo-bind micro 

centrifuge tubes (Eppendorf), vacuum centrifuged to dryness and then stored at -80 

°C. 
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Table 2.8. HPLC gradient for fractionation of histone samples. 

% Buffer B Time (min) Flow rate (µL/min) 

0 0 0.3 

0 1 0.3 

70 25 0.3 

90 26 0.3 

90 30 0.3 

5 31 0.3 

0 35 0.3 

	

2.12.5 Mass spectrometry 

All samples were re-suspended in 10 µL 0.1% TFA (LC-MS grade), and a proportion 

of this was used for LC/MS analysis. Peptides were separated on an Ultimate 3000 

RSLC nano liquid chromatography system (Dionex), using a 150 mm x 75 µm i.d. 

PepMap reversed phase column (Dionex) online with the mass spectrometer. Elution 

of peptides occurred over 61 minutes with the following gradient (see Table 2.9). 

Buffers used: Buffer A contained 0.1% Formic acid (FA) and 3% ACN (LC-MS 

grade) and Buffer B contained 0.1% FA and 97% ACN (LC-MS grade). 

Table 2.9. RP-HPLC gradient. 

% Buffer B Time (min) Flow rate (µL/min) 

3 0 0.3 

3 2 0.3 

25 30 0.3 

50 40.1 0.3 

90 41 0.3 

90 47 0.3 

3 48 0.3 

3 55 0.3 

 

MS/MS data was acquired using the MaXis Ultra high resolution quadrupole time-

of-flight (Q-ToF) system (Bruker Daltonics) using a data dependent acquisition 

approach. A captive spray ESI was used to introduce the sample into the mass 
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spectrometer. MS and MS/MS scans (m/z 100-1800) were acquired in positive ion 

mode. Automatic internal calibration was performed using HP 1221.990364. 

 

2.12.6 Analysis 

Mass spectrometry analsysis (Figure 2.4) was performed as described by Dickman er 

al. (2013). Line spectra data was analysed in Data Analysis 4.1 software (Bruker 

Daltonics) and used to create .mgf files. The sum peak finder algorithm was used for 

peak detection using a signal to noise (S/N) ratio of 100 and an absolute intensity 

threshold of 3000. The .mgf files were then searched in MASCOT v2.5.1 using 

Mascot Daemon (Matrix science). MS and MS/MS tolerance were set at 0.15 Da, 

and searched against the SwissProt database with the Homo sapiens Taxonomy 

selected. Fixed modifications were set as propionylation (K & N-term) Variable 

modification selected were Methylpropionylation (K), Dimethylation (K), 

Trimethylation (K), Phosphorylation (S,T) and Acetylation (K) Enzyme selected was 

Arg-C (due to the propionylation reaction altering the specificity), with 2 missed 

cleavages allowed. Charge states searched were 2+, 3+ and 4+. All post-translational 

modifications were manually verified via manual assignments of MS/MS peaks. The 

relative abundance of histone peptides was determined by the integration of 

smoothed (gauss algorithm, 1 cycle) extracted ion chromatograms. This process was 

automated using Hist-o-matic VBscript. Finally, correction factor as detailed by Lin 

et al. (2014) were applied, to compensate for differences in ionisation efficiency 

between differently modified peptides. 
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Figure 2.4. Mass spectrometry analysis for quantification of post-translational histone 

modifications. 

 

 

Line	spectra	data	was	processed	into	peak	list	by	DataAnalysis	so5ware	(Bruker)	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Example above shows total ion chromatogram and extracted ion chromatograms for various modified peptides ([M+2H]2+ ions) 
spanning the 9–17 residues KSTGGKAPR. Labels indicate the particular modified form eluting in that peak. 

	
	

All MS-MS spectra from modified peptides were manually inspected for accurate mass and correct fragmentation 
assignment (example below shows K23ac) 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	

MS/MS spectrum of the [M+2H]2+ precursor ion from the digest of propionylated histone H3. This peptide span residues 18–26 
and was found to contain an acetylation (ac) modification on K23. b and y type ions are labeled.	

	
 

Relative abundance of each modified peptide determined by integration of smoothed extracted ion chromatograms 
	
	

Correction factor applied to compensate for differences in ionisation efficiency 

Predicted mass for b and 
y ions for acetylated 
18-26 (KQLATKAAR) 
peptide at K23 

Mass spectrum of the 
precursor parent ion 

differentiates this peptide 
as being acetylated as the 

experimental mass is 
consistent with an 

acetylation mark 



  Chapter 2 
 

81 

 

2.13 Statistical Analysis 

Data is represented graphically using Microsoft Excel and GraphPad. Data is 

represented as the mean of all replicates with error bars representing ± one standard 

deviation. Statistical tests were performed using GraphPad Prism 6 software. One-

way analysis of variance (ANOVA) tests were used to compare three or more sample 

means along with the appropriate post-test. Dunnett’s post-test was performed to 

compare whether each treatment was significantly different to the control treatment. 

Tukey’s post-test was performed to test which treatments were significantly different 

from each other. Details of statistical tests used are cited in the figure legends. 
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3 Effect of Cadmium on Proliferation and Differentiation of NHU 
Cell Cultures 

3.1 Aim & Objectives 

The aim of this chapter was to determine the effect that cadmium treatment had on 

proliferative and differentiated NHU cells in culture. 

The working hypothesis is that exposure of the urothelium to cadmium leads to 

epigenetic dysregulation of gene expression, causing field changes within the 

urothelium characteristic of dysplasia/carcinoma in situ, which is the most common 

precursor of invasive carcinomas. 

The specific objectives of this chapter were to assess the effect of cadmium on: 

a) proliferative NHU cell cultures. 

b) the differentiation potential of NHU cell cultures 

- ABS/Ca2+ and TZ/PD differentiating NHU cell cultures. 

- ABS/Ca2+ differentiated NHU cell cultures. 

- the expression of transcription factors involved in urothelial differentiation.  

c) tumour suppressor gene expression in NHU cell cultures. 

 

3.2 Experimental Approach 

3.2.1 Proliferative NHU cell cultures 

To investigate the effect that cadmium exposure had on proliferative NHU cell 

cultures, urothelial cell cultures were established in KSFMc, (Keratinocyte serum-

free medium supplemented with 50 µg/mL bovine pituitary extract, 5 ng/mL 

epidermal growth factor and 30 ng/mL cholera toxin) then left to adhere overnight 

before addition of cadmium chloride.  

alamarBlue® assays and population doubling calculations were used to assess the 

effect of cadmium on the proliferation of NHU cells. An alamarBlue® assay uses a 

mitochondrial enzyme assay in order to measure proliferation by using the 

assumption that mitochondrial activity is proportional to cell number. Number of 

population doublings equals log2 (CMF), where CMF (cell multiplication factor) 

equals the final cell number divided by the initial cell number.   
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3.2.2 Differentiated NHU cell cultures 

In order to look at the effect cadmium had on differentiation, NHU cell cultures were 

established in KSFMc medium until cultures reached at least 80% confluence, at this 

point two methods to induce NHU cell differentiation were used as described in 

sections 2.5.3.1 and 2.5.3.2, with medium replaced every 2/3 days:  

(1) 5% serum and 2 mM Ca2+ (Biomimetic)  

 
 

(2) Troglitazone and PD153035 (Pharmacological) 

 

Using the ABS/Ca2+ method NHU cell cultures were exposed to cadmium before, 

during and after differentiation (Figure 3.1).  

Cadmium treatments were applied to proliferative NHU cell cultures before the 

induction of differentiation in order to investigate whether cadmium exposure 

affected the potential of NHU cell cultures to differentiate. Immunoblotting was used 

to examine protein expression of differentiation markers, ie. claudins and 

cytokeratins. 

ABS/Ca2+ differentiating cell cultures were treated with cadmium to test whether 

cadmium would affect the ability of cultures to form a functional barrier. 

Transepithelial electrical resistance (TER) measurements were used to monitor 

barrier formation.  

ABS/Ca2+ differentiated cell sheets were exposed to cadmium once a stable barrier 

was formed to investigate whether NHU cell cultures were able to maintain a tight 
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barrier upon cadmium insult. Additionally, differentiated cell sheets were wounded 

in order to see if the presence of cadmium would affect their ability to recover. TER 

measurements were used to monitor barrier function. 

 

Figure 3.1. Experimental approach for cadmium chloride treatments using the ABS/Ca2+ 

method of differentiation induction. 

Using the TZPD method, NHU cell cultures were exposed to cadmium before and 

during the induction of differentiation in order to investigate whether cadmium 

affected their ability to differentiate (Figure 3.2). Immunoblotting along with 

immunofluorescence microscopy was used to examine protein expression of 

differentiation markers.  

 

Figure 3.2. Experimental approach for cadmium chloride treatments using the TZPD method of 

differentiation induction. 

RT(Q)PCR was used to assess transcript levels of differentiation-associated genes 

and transcription factors known to be involved in urothelial differentiation. 
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3.2.3 Tumour suppressor genes 

RTQPCR was used to assess transcript levels of the tumour suppressor gene p16 in 

proliferative and TZPD-induced differentiated NHU cell cultures.  

Immunoblotting was used to examine protein expression of p16 in proliferative NHU 

cell cultures exposed to cadmium for up to 22 days. 

RTPCR was used to assess transcript levels of three tumour suppressor genes, (p16, 

RASSF1A and APC) in ABS/Ca2+ differentiated NHU cell cultures. 
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3.3 Results 

3.3.1 Proliferation 

NHU cells cultured in concentrations up to 10 µM CdCl2 showed no differences in 

their proliferative ability to reach confluence over a 96 hour treatment period, 

however 100 µM CdCl2 proved toxic to the cells within 48 hours (Figure 3.3).  From 

further study it was found that constant exposure to 10 µM CdCl2 was tolerated by 

the cultures, but more than 5 days treatment with 25 µM CdCl2 was toxic, as at day 5 

the cells had started to round up, indicative of cell death (Figure 3.4).  

 
Figure 3.3. Phase contrast microscopy of proliferating NHU cell cultures. NHU cell cultures 

(Y1054) were treated with a range of cadmium chloride concentrations for 96 hours with images 

taken at time points 0, 48 and 96 hours.  
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Figure 3.4. Phase contrast microscopy of proliferating NHU cell cultures. NHU cell cultures   

(Y1160) were maintained in  KSFMc medium or treated with 10 µM or 25 µM cadmium 

chloride for 120 hours. Images taken at 0 hours and 120 hours. 

An alamarBlue® assay showed that NHU cells treated with 1 and 5 µM CdCl2 

proliferated at the same rate as the KSFMc control whereas cultures treated with 10 

µM CdCl2 showed a reduced rate of proliferation but were still able to reach full 

confluence. Concentrations above 10 µM CdCl2 proved toxic, with cultures failing to 

thrive (Figure 3.5 A). 

Statistically significant differences in culture biomass were observed between 

KSFMc control and cultures in 10, 15, 20, and 25 µM CdCl2 at day 3 (Figure 3.5 B). 

At days 5 and 7 there was still a statistically significant difference in biomass 

between cultures maintained in control medium and those treated with 10 µM CdCl2; 

however, by day 9 there were no significant differences between cell cultures 

maintained in KSFMc or those treated with 1, 5 and 10 µM CdCl2 (Figure 3.5 C).  
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Figure 3.5. Effect of cadmium chloride on NHU cell growth. A) Y1237 NHU cells were seeded at 

a concentration of 2x104 cells mL-1 in 96-well plates, treated with cadmium chloride 

concentrations and underwent alamarBlue® assays at 1, 3, 5, 7 and 9 days post cadmium 

treatment. Results were normalised against no cell controls and the percentage reduction in 

alamarBlue calculated. Each data point is the average of 6 replicates with standard deviations 

shown by error bars. B) alamarBlue® assays performed after 3 days of culture in KSFMc ± 

CdCl2.  (***p<0.001, ANOVA then Dunnett’s post test). C) alamarBlue® assays performed after 

5, 7, 9 days of culture in KSFMc ± CdCl2.  (***p<0.001, ANOVA then Dunnett’s post test). 

0.00#

10.00#

20.00#

30.00#

40.00#

50.00#

60.00#

70.00#

80.00#

90.00#

100.00#

0# 1# 2# 3# 4# 5# 6# 7# 8# 9# 10#

%
 A

la
m

ar
 B

lu
e 

R
ed

uc
tio

n 

Day$
KSFM#Control# 1#μM#CdCl₂# 5#μM#CdCl₂# 10#μM#CdCl₂#

15#μM#CdCl₂# 20#μM#CdCl₂# 25#μM#CdCl₂#

0"

10"

20"

30"

40"

50"

60"

KSFM"
Control"

1"μM"
CdCl₂"

5"μM"
CdCl₂"

10"μM"
CdCl₂"

15"μM"
CdCl₂"

20"μM"
CdCl₂"

25"μM"
CdCl₂"

%
"A
la
m
ar
"b
lu
e"
re
du

c-
on

"

Day"3"

***"

***"
***" ***"

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

100"

5" 7" 9"

%
"A
la
m
ar
"b
lu
e"
re
du

c-
on

"

KSFM"Control"

1"μM"CdCl₂"

5"μM"CdCl₂"

10"μM"CdCl₂"

***"

***"

A 

B 

C 



  Chapter 3 
 

89 

 

Population doubling calculations were used to assess the cumulative effect that 

cadmium exposure had upon proliferating NHU cells over several generations. 

Proliferating NHU cell cultures were exposed to 1, 10 and 25 µM CdCl2. Cumulative 

population doublings of continuous exposure in two cell lines (Figure 3.6) showed 

that NHU cell cultures exposed to 10 µM CdCl2 showed growth attenuation; 25 µM 

CdCl2 caused cell death; and no difference was seen in 1 µM CdCl2 when compared 

to the medium only control.  

 

 

Figure 3.6. Growth curves showing cumulative population doublings of NHU cells as a function 

of time during continuous cadmium chloride exposure. Cells were counted with a 

haemocytometer then seeded into Primaria® flasks. Media were replaced after 48-72 hours. 

Once cultures reached 80% confluence cells were harvested, counted and then seeded into new 

Primaria® flasks. Number of population doublings equals log2 (CMF), where CMF (cell 

multiplication factor) equals the final cell number divided by the initial cell number. Points on 

the graph mark where cultures were subcultured.  
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As occupational or environmental exposure to cadmium is not constant, the ability 

for NHU cells to recover once exposed to cadmium was examined. NHU cells from 

two cell lines were transiently exposed to 1, 10 and 25 µM CdCl2 for 5 days after 

which the cadmium was removed. At all concentrations used, including 25 µM 

CdCl2, the cells recovered (Figure 3.7), although a lag phase occurred in cultures 

treated with 10 and 25 µM CdCl2. 

 

 

 

Figure 3.7. Growth curves showing cumulative population doublings of NHU cells as a function 

of time following transient exposure. Cells were counted with a haemocytometer then seeded 

into Primaria® flasks. Cultures were treated with cadmium for 5 days. Once cultures reached 

80% confluence cells were harvested, counted and then seeded into new Primaria® flasks. 

Number of population doublings equals log2 (CMF), where CMF (cell multiplication factor) 

equals the final cell number divided by the initial cell number. Points on the graph mark where 

cultures were subcultured.  
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3.3.2 The effect of cadmium on differentiating NHU cells 

The most common precursor to invasive urothelial cancer, carcinoma in situ (CIS), is 

associated with dysregulation of differentiation; therefore the potential of NHU cells 

to differentiate in the presence of cadmium was assessed.  

Before cadmium treatments were performed, successful induction of differentiation 

using the ABS/Ca2+ and TZPD methods was confirmed.  

Two markers of NHU cell differentiation, CK13 and claudin 5, were unregulated in 

whole cell lysates of ABS/Ca2+ treated NHU cell cultures (Figure 3.8A). The ability 

of ABS/Ca2+ treated cell cultures to form a functional barrier was demonstrated by 

cell sheets being able to form barriers greater than 2000 ohms.cm2, an epithelium is 

considered tight and impermeable if it has a TER > 500 ohms.cm2.  Cell sheets were 

lifted off the permeable membranes they were cultured on, then fixed and processed 

into paraffin. The embedded cell sheets were sectioned and then stained with 

hematoxylin and eosin to show a stratified urothelia consisting of basal, intermediate 

and superficial cell layers (Figure 3.8B). 

Upregulation of the terminal differentiation-associated gene UPK2 and the 

transitional differentiation marker, CK13, along side downregulation of CK14, a 

marker of proliferative NHU cells in culture, was demonstrated in TZPD induced 

differentiated NHU cell cultures (Figure 3.9). 
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Figure 3.8. Confirmation of ABS/Ca2+ induced differentiation. A) Western blot showing 

upregulation of CK13 and claudin 5 in response to ABS/Ca2+ induced differentiation. Cells were 

lysed using SDS lysis buffer and then sonicated. Protein concentration was measured using a 

Bradford assay. 4-12% bis-Tris gels were loaded with 20 µg of protein and run at 200 V in MES 

running buffer. Protein was blotted on to PVDF membranes using the Novex apparatus for 2 

hours at 30 V. Membranes were blocked in Odyssey blocking buffer, incubated with primary 

antibodies overnight at 4°c, and secondary immunoconjugates for one hour at ambient 

temperature then scanned on the Li-Cor imaging system. B) Hematoxylin and eosin stained cell 

sheet, showing stratified urothelia.  
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Figure 3.9. UPK2 and CK13 upregulation and CK14 downregulation in response in TZPD 

induced differentiation. A) Cells were lysed using SDS lysis buffer and then sonicated. Protein 

concentration was measured using a Bradford assay. 4-12% Bis-Tris gels were loaded with 20 

µg of protein and run at 200 V in MES running buffer. Protein was blotted on to PVDF 

membranes using the Novex apparatus for 2 hours at 30 V. Membranes were blocked in 

Odyssey blocking buffer, incubated with primary antibodies overnight at 4°c, and secondary 

antibodies for one hour at ambient temperature then scanned on the Li-Cor imaging system. B) 

UPK2 RTQPCR results. mRNA was harvested from the cultures at day 3, with RTQPCR 

performed to quantify the relative expression of UPK2. Each value is the average of 3 replicates 

with standard deviations shown by error bars. C) Immunofluorescence microscopy images of 

CK13 and CK14. NHU cells were seeded at a concentration of 1x105 cells mL-1 on to 12-well 

slides. Cells were cultured for 6 days ± TZ/PD before being fixed in methanol:acetone. Scale bar, 

10 µM. 
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3.3.2.1 Differentiated NHU cells – ABS/Ca2+ method 

Cadmium pre-treatment of NHU cell cultures before ABS/Ca2+ differentiation 

To investigate whether pre-treatment of proliferative NHU cell cultures with 

cadmium affected their ability to differentiate, two NHU cell lines were treated with 

1 and 10 µM CdCl2 for 4 days. The cadmium was removed prior to pre-treatment of 

the cells with 5% ABS for 5 days then cultured in the presence of 5% ABS and 2mM 

calcium. Cells were lysed and western blots performed to look at markers of 

differentiation (Figure 3.10).  Claudin 4, a tight junction protein upregulated in NHU 

cell differentiation, was shown to decrease slightly when cells were pre-treated with 

cadmium whereas claudin 5, another tight junction protein, was shown to increase 

slightly in both cell lines. In both cell lines CK13, a transitional differentiation 

marker was shown to decrease in cadmium pre-treated cells. By contrast CK14, a 

marker of squamous metaplasia, which is down regulated in differentiation, showed 

increases in one cell line but decreases in the other upon cadmium pre-treatment. 

Taken together these results indicate that cadmium pre-treatment of NHU cell 

cultures before ABS/Ca differentiation has a negligible effect upon differentiation. 
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Figure 3.10. Western blot analysis of NHU cells maintained with KSFMc only (Control), 1 µM 

CdCl2 and 10 µM CdCl2 before undergoing ABS/Ca2+ differentiation. Cells were lysed using 

SDS lysis buffer and then sonicated. Protein concentration was measured using a Bradford 

assay. 4-12% Bis-Tris gels were loaded with 20 µg of protein and run at 200 V using MES 

running buffer. Protein was blotted on to PVDF membranes using the Novex apparatus for 2 

hours at 30 V. Membranes were blocked in Odyssey blocking buffer, incubated with primary 

antibodies overnight at 4°C, and secondary antibodies for one hour at ambient temperature 

then scanned on the Li-Cor imaging system. The fluorescence of each band was quantified and 

normalised to the loading control β-actin using the Odyssey software. A) Treatment timelines. 

B) NHU cell line Y1019. C) NHU cell line Y1183. 
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Cadmium treatment during ABS/Ca2+ differentiation 

To see if the presence of cadmium affected the ability of NHU cells to form a 

functional barrier urothelium, Y1183 NHU cells were exposed continually to either 1 

or 10 µM CdCl2 during ABS/Ca2+ differentiation. Transepithelial electrical resistance 

(TER) was used to monitor differentiation, with readings taken every day.  Neither 1 

nor 10 µM CdCl2 produced any significant differences compared to the control 

(Figure 3.11B). Further cadmium treatments with an additional NHU cell line 

(Y1279) supported the initial observations with 1 and 10 µM CdCl2, however a 

concentration of 20 µM CdCl2 was shown to lead to a tightening of the barrier 

compared to the control, which was statistically significant at day 5 (Figure 3.11C).  

At the end of the cadmium treatment time course mRNA was extracted from the 

differentiated cell sheets (Figure 3.11B) and RTQPCR was performed to quantify 

uroplakin 2 (UPK2) transcript expression as a measure of differentiation. It was 

found that UPK2 gene expression decreased with increasing concentration of 

cadmium chloride (Figure 3.12).  

To follow up these observations, NHU cell cultures were maintained in either control 

5% ABS KSFMc medium or treated with 5% ABS medium containing 10 µM CdCl2 

for 3, 6 and 9 days. At each time point the cells were harvested for mRNA with 

RTQPCR performed to measure the expression of differentiation markers. When 

NHU cell cultures were differentiated with ABS/Ca in the presence of cadmium, the 

expression of terminal differentiation-associated genes was suppressed by cadmium 

exposure (Figure 3.13).   

Immunohistochemistry for CK13 was performed on paraffin embedded ABS/Ca2+ 

differentiated cell sheets that had been treated with 10 or 20 µM CdCl2. Labelled cell 

sheets were imaged using a Zeiss AxioScan.Z1 slide scanner with representative 

images for each treatment shown in Figure 3.14A. When CK13 expression was 

quantified using HistoQuest software (TissueGnostics), cadmium exposure was 

shown to reduce expression of CK13 (Figure 3.14B). 
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Figure 3.11. TER readings of NHU cells  differentiating in the presence of cadmium. A) 

Treatment timeline: NHU cell cultures were pre-treated with 5% ABS for 5 days before 500,000 

cells were seeded on to Snapwell or Griener membranes. Calcium concentration was increased 

to 2 mM 24 hours later at which point cadmium treatments started. B) NHU cell line Y1183. 

TER readings at day 4 and day 8 dip due to media changes having taken place. C) NHU cell line 

Y1279. Each data point is the average of at least 3 replicates with standard deviations shown by 

error bars. 

Passage&

5%&ABS&
5&days&

Ca2+&
&(2&mM)&

5%&ABS&+&Ca2+&

Cd2+&

8610&days&

0	

1000	

2000	

3000	

4000	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Ω
.c
m
²	

	

Day	

TER readings of differentiating NHU cells 
	

ABS/Ca	
1	uM	CdCl₂	
10	uM	CdCl₂	

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	

Ω
.c
m
²	

Day	

TER readings of differentiating NHU cells 

Control	
1	µM	CdCl₂	
10	µM	CdCl₂	
20	µM	CdCl₂	

A 

B 

C 



  Chapter 3 
 

98 

 

 
Figure 3.12. UPK2 expression in ABS/Ca2+ differentiated NHU cell cultures ± cadmium.  Y1183 

NHU cells were seeded on Snapwell™ membranes and then differentiated in the absence or 

presence of cadmium for 10 days at which point mRNA was harvested and UPK2 transcript 

expression quantified using RT-QPCR. Each value is the average of 3 replicates with standard 

deviations shown. One-way ANOVA with Tukey post testing was performed; where there are 

statistical differences between the treatments these are indicated on the graph. * p<0.05, **** 

p<0.0001 

 

 

Figure 3.13. RT-QPCR results of mRNA expression for three archetypal differentiation-

associated genes in ABS/Ca2+ differentiated cell cultures at day 3, 6 and 9. Each value is the 

average of 3 technical replicates with standard deviation shown. One-way ANOVAs with 

Turkey post testing was performed; where there are statistical differences between the 

treatments these are indicated on the graphs. * p<0.05 ** p<0.01, *** p<0.001, **** p<0.0001 
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Figure 3.14. CK13 expression in cadmium exposed ABS/Ca2+ differentiated NHU cell cultures. 

A) NHU cells pre-treated with 5% ABS were seeded on to Snapwell™ inserts. Cells were 

cultured for 9 days ± 10 or 20 µM CdCl2 before cell sheets were fixed in 10% (v/v) formalin. Cell 

sheets were embedded in paraffin wax before immunolabelling was performed using an indirect 

streptavidin ‘ABC’ immunoperoxidase method and then counterstained in haematoxylin. Cell 

sheets were imaged using a Zeiss AxioScan.Z1 slide scanner. Scale bar, 25 µM. B) Image 

analysis (HistoQuest by TissueGnostics) was used to quantify the percentage of CK13 labelled 

cells. 
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Cadmium treatment after ABS/Ca2+ differentiation 

To study the effect cadmium had on already differentiated cells, ABS/Ca2+ 

differentiation was performed on NHU cell cultures to form cell sheets on Snapwell 

membranes. Once a stable barrier was formed (>2500 Ω.cm²), the differentiated cell 

sheets were exposed to 1, 10 or 20 µM CdCl2 for 7 days in triplicate. The TER 

readings taken from cultures exposed to cadmium did not differ significantly from 

controls (Figure 3.15). At all cadmium concentrations the barrier was able to be 

maintained including at 20 µM CdCl2 which was toxic to the proliferative NHU cells. 

  

 
Figure 3.15. TER readings of differentiated cell sheets in the presence of cadmium. A) 

Treatment timeline: NHU cell cultures were pre-treated with 5% ABS for 5 days before 500,000 

cells were seeded on to each Griener membrane, 24 hours later calcium was added. When all 

barriers exceeded 2500 Ω.cm² the cadmium was added. B) NHU cell line Y1237. Three 

replicates were performed for each concentration. Standard deviations are shown by error bars. 
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Wounding and recovery of differentiated cell sheets in the presence of cadmium 

Differentiated cell sheets can be wounded and their ability to recover monitored by 

measuring TER. To see if the presence of cadmium affected this ability to recover, 

differentiated cell sheets were scratch wounded and then allowed to recover in 

presence of 1, 10 and 20 µM CdCl2. TER readings were taken every 3 hours to 

monitor the recovery of the barrier (Figure 3.16 A). Although the barrier fully 

recovered at each cadmium concentration there was a delayed recovery after 

wounding in the presence of cadmium compared to the control. This was statistically 

significant at 6 and 9 hours for 10 µM CdCl2 (Figure 3.16 B) and 6, 9 and 12 hours 

for 20 µM CdCl2 (Figure 3.16 C). Repetitive wounding (3x) performed on cell sheets 

still led to barrier reformation with TER readings recovering to at least 4500 Ω.cm² 

after each wounding (Table 3.1). 

 

 

 

 

 

 

 

 

 

 



  Chapter 3 
 

102 

 

 

 

 

 

 

Figure 3.16. A) TER readings of barrier recovery in the presence of cadmium (Y1244). Graphs 

show TER readings of barrier recovery after wounding, in the presence of 10 (B) or 20 (C) µM 

cadmium chloride. Error bars represent the standard deviation of 4 experimental replicates. 

*p<0.05, **p<0.01 Unpaired t test with Welch’s correction applied. 
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Table 3.1. TER readings of barrier reformation after repetitive wounding (Y1244). All values in 

Ω.cm² ± standard deviations. 

 After 1st  
Wounding 

After 2nd 
Wounding 

After 3rd 
Wounding 

ABS/Ca Control 5390 ± 496 4643 ± 448 4956 ± 806 

1 µM CdCl2 5643 ± 752 5252 ± 234 4735 ± 752 

10 µM CdCl2 5628 ± 416 4678 ± 1354 4660 ± 416 

20 µM CdCl2 5694 ± 292 4635 ± 926 4958 ± 292 

 

3.3.2.2 Differentiated NHU cells – TZPD method 

Cadmium pre-treatment of NHU cell cultures before TZPD differentiation 

Proliferative NHU cell cultures were maintained in control KSFMc medium or 

treated with 1 or 10 µM CdCl2 before undergoing TZPD differentiation. The cultures 

that were treated with 1 and 10 µM CdCl2 were split in to two groups; one group had 

the cadmium removed before TZPD differentiation while the other group remained 

in cadmium while undergoing TZPD differentiation.  

Cultures pre-treated with cadmium showed non-significant differences in the 

expression of differentiation-associated proteins (Figure 3.17). By contrast, cultures 

maintained in cadmium showed a decrease in the three differentiation markers 

Claudin 4 and 5 and CK13. CK14 a marker of proliferative NHU cells in culture 

remained high when cadmium was present. 
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Figure 3.17. Western blot analysis of NHU cells pre-treated with KSFMc only , 1 µM CdCl2 and 

10 µM CdCl2  before TZPD induced differentiation in the absence (-) or presence (+) of 

cadmium. A) Treatment timelines.  B) Cells were lysed using SDS lysis buffer and then 

sonicated. Protein concentration was measured using a Bradford assay. 4-12% Bis-Tris gels 

were loaded with 20 µg of protein and run at 200 V in MES running buffer. Protein was blotted 

on to PVDF membranes using the Novex apparatus for 2 hours at 30 V. Membranes were 

blocked in Odyssey blocking buffer, incubated with primary antibodies overnight at 4°c, and 

secondary antibodies for one hour at ambient temperature then scanned on the Li-Cor imaging 

system. The fluorescence of each band was quantified and normalised to the loading control β-

actin using Odyssey software.  
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Cadmium treatment during TZPD differentiation 

Proliferative NHU cells were treated with or without TZPD in the absence or 

presence of cadmium for up to 7 days. At day 3 and day 7 time points the cells were 

harvested for mRNA with RTQPCR performed to measure the transcript expression 

of known differentiation markers. 

It was found that exposure to cadmium resulted in a failure to upregulate KRT13 

(Figure 3.18 C), a marker of transitional (or urothelial)-type differentiation, as well 

as the late archetypical differentiation-associated genes UPK1a (Figure 3.18 A), 

UPK2 (Figure 3.18 B) and KRT20 (Figure 3.18 D) at both day 3 and day 7. 

There were statistically significant differences for all four differentiation-associated 

genes when comparing untreated with TZPD cell cultures and TZPD with TZPD 

Cd2+ treated cell cultures at day 3. 

Further treatments with two independent NHU cell lines (Figure 3.19) confirmed the 

initial observation that cadmium exposure during TZPD differentiation led to a 

failure of NHU cell cultures to fully differentiate, as the four differentiation-

associated genes UPK1a, UPK2, KRT13 and KRT20 all showed reduced expression 

when cadmium was present. 

There were statistically significant differences for all four differentiation-associated 

genes when comparing untreated with TZPD cell cultures and TZPD with TZPD 

Cd2+ treated cell cultures.  
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Figure 3.18. RT-QPCR data for four differentiation genes. Y1226 NHU cell cultures were 

treated ± TZPD ± 10 µM CdCl2 for 7 days (A). mRNA was harvested from the cultures at day 3 

and 7, with RTQPCR performed to quantify the relative expression of four differentiation-

associated genes B) UPK1a, C) UPK2, D) KRT13 and E) KRT20. Each value is the average of 3 

replicates with standard deviations shown by error bars. One-way ANOVAs with Tukey post 

testing was performed; where there are statistical differences between the TZPD treatments 

these are indicated on the graphs. * p<0.05 ** p<0.01, *** p<0.001, **** p<0.0001. 
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Figure 3.19. RT-QPCR data of four differentiation genes in two independent NHU cell lines. 

Y1197 and Y1233 NHU cell lines were cultured ± TZPD ± 10 µM CdCl2 for 3 days before 

mRNA was harvested (A). RTQPCR was performed to quantify the relative expression of B) 

UPK1a, C) UPK2, D) KRT13 and E) KRT20.  Each value is the average of 3 replicates with 

standard deviation shown as error bars. One-way ANOVAs with Tukey post testing was 

performed; where there are statistical differences between the treatments these are indicated on 

the graphs. * p<0.05 ** p<0.01, *** p<0.001, **** p<0.0001. 
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Immunofluorescence for CK20 was performed on NHU cell cultures which had been 

treated with or without TZ/PD and cadmium for 6 days (Figure 3.20A). TissueQuest 

software was then used to determine the percentage of CK20 labelled cells from the 

IF images (Figure 3.20B). These results support the RT-QPCR data shown above 

which show that CK20 expression was decreased in the presence of cadmium. 

 

 

 

Figure 3.20. Cytokeratin 20 expression in cadmium exposed TZPD differentiating NHU cell 

cultures. A) Representative images of CK20 immunolabelled cells. NHU cells were seeded at a 

concentration of 1x105 cells mL-1 on to 12-well slides. Cells were cultured for 6 days ± TZ/PD ± 

10 µM CdCl2 before being fixed in methanol:acetone. Cells were immunolabelled using mouse 

primary antibodies and goat anti-mouse secondary antibodies. Nuclei were stained with Hoechst 

33258. Scale bar, 10 µM. B) Image analysis (TissueQuest by TissueGnostics) was used to 

quantify the percentage of CK20 labelled cells. 
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CK13/14 Switch and Cadmium 

A switch in expression occurs between KRT14 and KRT13 in NHU cell cultures 

upon differentiation. KRT14 is a marker of squamous metaplasia and is expressed in 

proliferative, but not differentiated NHU cells, whereas KRT13 is only expressed in 

differentiated NHU cells. KRT14 transcript was not down regulated in the TZ/PD-

differentiated cells in the presence of cadmium in two independent cell lines Y1226 

(Figure 3.21 A) and Y1236 (Figure 3.21 B), suggesting the cells may have remained 

in a more squamous phenotype. 

Immunofluorescence for CK14 was performed on NHU cell cultures that had been 

treated with or without TZ/PD and cadmium for 6 days (Figure 3.22 A). TissueQuest 

software was then used to determine the percentage of CK14 labelled cells from the 

IF images (Figure 3.22 B). These results support the RT-QPCR and western blot data 

(Figure 3.23), showing that in the presence of cadmium TZ/PD-induced 

differentiated cells continue to express CK14 while CK13 expression remained low. 
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Figure 3.21. RTQPCR results of KRT14 mRNA expression in two independent NHU cell lines ± 

TZ/PD ± Cd. A) Y1226 NHU cell cultures were treated ± TZPD ± 10 µM CdCl2 for 7 days. 

mRNA was harvested from the cultures at day 3 and 7, with RTQPCR performed to quantify 

the relative expression of KRT14. B) Y1197 NHU cell lines were cultured  ± TZPD ± 10 µM 

CdCl2 for 3 days before mRNA was harvested and RTQPCR performed to quantify the relative 

expression of KRT14. Each value is the average of 3 replicates with standard deviation shown. 

One-way ANOVAs with Tukey post testing was performed; where there are statistical 

differences between the treatments these are indicated on the graphs. * p<0.05 ** p<0.01, *** 

p<0.001, **** p<0.0001. 
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Figure 3.22. Effect of cadmium on CK14 protein expression. A) CK14 labelled 

immunofluorescence images of NHU cell cultures ± TZ/PD ± Cd. NHU cells were seeded at a 

concentration of 1x105 cells mL-1 on to 12-well slides. Cells were cultured for 6 days before being 

fixed in methanol:acetone. Cells were immunolabelled using mouse primary antibodies and goat 

anti-mouse secondary antibodies. Nuclei were stained with Hoechst 33258. Scale bar, 10 µM. B) 

Quantification results from TissueQuest software, used to determine the percentage of labelled 

CK14 cells in the NHU cells cultures ± TZ/PD ± Cd. 
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Figure 3.23. Western blot analysis for cytokeratin 13 and 14 in NHU cell cultures ±TZ/PD ± 

cadmium. Cells were lysed using SDS lysis buffer and then sonicated. Protein concentration was 

measured using a Bradford assay. 4-12% Bis-Tris gels were loaded with 20 µg of protein and 

run at 200 V using MES running buffer. Protein was blotted on to PVDF membranes using the 

Novex apparatus for 2 hours at 30 V. Membranes were blocked in Odyssey blocking buffer, 

incubated with primary antibodies overnight at 4°c, and secondary antibodies for one hour at 

ambient temperature then scanned on the Li-Cor imaging system. The fluorescence of each 

band was quantified and normalised to the loading control β-actin using the Odyssey software. 
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3.3.3 Transcription factors involved in urothelial differentiation 

The expression of six transcription factors known to act downstream of PPARγ in 

urothelial differentiation (FOXA1, IRF1, GATA3, ELF3, KLF5 and GRHL3) was 

investigated using RT-PCR (Figure 3.24). An up regulation of all six transcription 

factors was seen between the proliferative DMSO treated control and TZPD induced 

differentiated cells. By contrast, no differences were seen between TZPD and TZPD 

Cd2+ treated NHU cell cultures. 

Quantitative PCR looking at two known intermediary transcription factors, FOXA1 

and IRF-1 showed that there was no statistical difference between transcript 

expression levels at day 1 and 3 in TZPD induced NHU cell cultures when cadmium 

was present or not (Figure 3.25). 

 

Figure 3.24. RTPCR of known transcription factors involved in urothelial differentiation. Y1236 

NHU cell cultures were treated ± TZPD ± 10 µM CdCl2 for 3 days before mRNA was harvested 

and RTPCR was performed to look at expression of known transcription factors involved in 

urothelial differentiation. 
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Figure 3.25. RT-QPCR data for two intermediary transcription genes involved in urothelial 

differentiation. Y1226 NHU cell cultures were treated ± TZPD ± 10 µM CdCl2 for 3 days. 

mRNA was harvested from the cultures at day 1 and 3, with QPCR performed to quantify the 

relative expression of the two transcription factors A) FOXA1 and B) IRF-1. Each value is the 

average of 3 replicates with standard deviation shown. One-way ANOVAs with Tukey post 

testing was performed; where there are statistical differences between the TZPD treatments 

these are indicated on the graphs. * p<0.05 ** p<0.01, *** p<0.001, **** p<0.0001, ns not 

significant. Attention is drawn to the observation that there is no significant difference between 

TZPD and TZPD Cd at day 1 and day 3. 
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3.3.4 Tumour suppressor gene expression 

The tumour suppressor, p16, was shown to be downregulated in cadmium exposed 

proliferative NHU cells, at transcript level (Figure 3.26) and at a protein level (Figure 

3.27) and in TZ/PD-induced differentiated NHU cells (Figure 3.28).  

NHU cell cultures were differentiated and seeded on to Snapwell™ membranes 

using the standard ABS/Ca2+ differentiation protocol. The NHU cell cultures were 

then treated with (1 or 10 µM) or without cadmium for ten days. Gene expression for 

tumour suppressor genes (p16, RASSF1A and APC) was then assessed by RTQPCR.  

Transcript expression for p16 and APC was significantly inhibited by cadmium 

treatment (Figure 3.29). 

 

 

Figure 3.26. RT-QPCR for p16 transcript expression in proliferative NHU cell cultures. 

Proliferative NHU cell cultures (Y1233) were treated for ± 10 µM CdCl2 22 days. mRNA was 

harvested from the cultures at day 4, 7 , 14 and 22, with RTQPCR performed to quantify p16 

transcript expression. Each value is the average of 3 technical replicates with standard deviation 

shown. One-way ANOVA with Tukey post testing was performed; where there are statistical 

differences between the treatments these are indicated on the graphs. * p<0.05 ** p<0.01, *** 

p<0.001, **** p<0.0001. 
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Figure 3.27. Western blot analysis for p16 expression in proliferative NHU cell cultures. Cells 

were lysed using SDS lysis buffer and then sonicated. Protein concentration was measured using 

a Bradford assay. 4-12% Bis-Tris gels were loaded with 20 µg of protein and run at 200 V using 

MES running buffer. Protein was blotted on to PVDF membranes using the Novex apparatus 

for 2 hours at 30 V. Membranes were blocked in Odyssey blocking buffer, incubated with 

primary antibodies overnight at 4°c, and secondary antibodies for one hour at ambient 

temperature then scanned on the Li-Cor imaging system. The fluorescence of each band was 

quantified and normalised to the loading control β-actin using the Odyssey software. Numbers 

quantifying the percentage intensity of the bands are displayed below the corresponding bands. 

 

 

Figure 3.28. RT-QPCR for p16 transcript expression in TZPD-induced differentiated NHU cell 

cultures. Y1226 NHU cell cultures were treated ± TZPD ± 10 µM CdCl2 for 7 days. mRNA was 

harvested from the cultures at day 1, 3 and 7, with RTQPCR performed to quantify transcript 

expression of p16. Each value is the average of 3 technical replicates with standard deviation 

shown. 
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Figure 3.29. RT-QPCR for p16, RASSF1A and APC transcript expression in ABS/Ca2+ 

differentiated NHU cell cultures. Y1183 NHU cells were seeded on Snapwell™ membranes and 

differentiated in the absence or presence of cadmium for 10 days at which point mRNA was 

harvested and quantified using RT-QPCR. Each value is the average of 3 technical replicates 

with standard deviation shown. One-way ANOVAs with Tukey post testing were performed; 

where there are statistical differences between the treatments these are indicated on the graphs. 

* p<0.05 ** p<0.01, *** p<0.001, **** p<0.0001. 
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3.4 Summary 

• Proliferation 

Proliferative NHU cell cultures could be exposed to cadmium concentrations up to 

10 µM CdCl2 before cytotoxicity occurred; cultures exposed to 10 µM CdCl2 showed 

a reduced proliferation rate, but this was reversible upon withdrawal of cadmium 

from the medium. 

• ABS/Ca2+ differentiation 

Pre-treatment of NHU cell cultures with cadmium before ABS/Ca2+ differentiation 

had no significant effect upon differentiation. 

The presence of cadmium during differentiation had no effect on barrier formation as 

measured by TER, but it did affect the rate of barrier recovery following wounding. 

At the transcript expression level, three terminal markers of differentiation (UPK1a, 

UPK2 and KRT20) were shown to be downregulated as a consequence of cadmium 

exposure. The transitional differentiation marker CK13 was also downregulated by 

cadmium exposure during ABS/Ca2+ differentiation.  

• TZPD differentiation 

Exposure of NHU cell cultures to cadmium during TZ/PD-induced differentiation 

compromised their ability to undergo urothelial differentiation as shown by a 

decrease in transcript of four differentiation-associated genes (UPK1a, UPK2, 

KRT13 and KRT20). There was also a failure to downregulate KRT14, a maker of 

squamous metaplasia. 

• Transcription factors 

Cadmium exposure during TZ/PD-induced differentiation did not affect transcript 

expression of the PPARγ-induced intermediary transcription factors IRF-1 and 

FOXA1 or on four other transcription factors known to be involved in urothelial 

differentiation. These results suggest that cadmium affects urothelial differentiation 

downstream of the initial PPARγ -induced effects. 

• Tumour suppressor genes 

Expression of the tumour suppressor gene p16 was downregulated during cadmium 

treatment in proliferative and differentiating NHU cell cultures. Transcript 
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expression of two further tumour suppressor genes RASSF1A and APC was 

downregulated by cadmium exposure in ABS/Ca2+ differentiated cultures. 
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4 Epigenetic mechanisms in cadmium exposure 

4.1 Aims 

Trichostatin A (TSA), a HDAC inhibitor and 5-azacytidine, a DNA 

methyltransferase inhibitor are often used in studies to examine whether epigenetic 

mechanisms are involved (Vallot et al., 2010; Scholpa et al., 2014; Chen et al., 

2015).  

The aims of this chapter were to determine whether epigenetic mechanisms were 

involved in the ability of cadmium to silence differentiation-associated genes as 

reported in Chapter 3 and to identify gene expression changes that occur when NHU 

cell cultures were differentiated in the presence of cadmium and TSA. 

The specific objectives of this chapter were to: 

• Treat cadmium exposed differentiating NHU cell cultures with TSA or 5-

azacytidine.  

• Perform promoter analysis on differentiation-associated genes that responded 

differentially to TSA in order to identify transcription factor binding motifs 

that differ between them. 

• Identify genes that were up/downregulated by cadmium and TSA in TZPD-

differentiating NHU cell cultures using Agilent microarrays. 

• Relate the changes determined from the microarrays to: 

1. Known markers of differentiation. 

2. Transcription factors involved in urothelial differentiation. 

3. Chromatin remodelling enzymes. 

4.2 Experimental Approach 

4.2.1 Cell culture 

NHU cells were cultured until 80-90% confluent and then induced to differentiate 

using TZPD as described in section 2.5.3.1. Cadmium chloride (10 µM), TSA (400 

nM) and 5-azacytidine (5aza) (1 µM) were applied to NHU cell cultures at the same 

time as TZPD.  The concentrations used for the epigenetic modifiers were in line 

with those described in the literature and in particular those used by Vallot et al. 

(2010) when treating NHU cell cultures. 
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4.2.2 RTQPCR  

RTQPCR was utilised in order to quantify changes in expression of known urothelial 

differentiation-associated genes following cadmium exposure and TSA or 5aza 

treatment. Genes examined included UPK1A, UPK2, KRT13, and KRT20. KRT14 

expression was also examined as a marker of squamous metaplasia expressed in 

proliferative but not differentiated NHU cell cultures.  Expression of all genes was 

calculated relative to the housekeeping gene, GAPDH. 

4.2.3 Immunoblotting 

Western blotting was performed to examine changes in CK13 protein expression 

following cadmium exposure and TSA treatment. Two independent NHU cell 

cultures, Y1197 and Y1223 were treated for 7 days ± TZPD ± 10 µM CdCl2 ± 400 

nM TSA. Upon completion of treatments, NHU cell cultures were lysed in situ with 

SDS lysis buffer to give whole cell lysates. 

4.2.4 Immunofluorescence microscopy 

Immunofluorescence microscopy was performed to examine protein expression and 

localisation of CK13 and CK14. NHU cells were seeded on to 12-well slides. Once 

cultures were 80-90% confluent, cells were treated ± TZPD  ± 10 µM CdCl2 ± 400 

nM TSA for 3 days before being fixed in methanol:acetone. Following air-drying, 

cells were immunolabelled using CK13 or CK14 antibodies. Positive and negative 

controls for immunofluorescence microscopy were performed as described in section 

2.7. 

4.2.5 Promoter analysis 

Promoter analysis for the four differentiation genes (UPK1A, UPK2, KRT13 and 

KRT20) was carried out using the PSCAN promoter analysis tool, which was run 

against the JASPAR database of transcription factor binding profiles 

(http://159.149.160.51/pscan/).  
Following identification of transcription factor motifs that differed in the promoters, 

RTPCR was performed to see how the expression of these transcription factors 

changed following cadmium and TSA treatment. In order to examine protein 

expression and localization of the candidate transcription factors 

immunofluorescence microscopy was performed.  
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4.2.6 Gene expression analysis 

Gene expression analysis was performed using Agilent SurePrint G3 Human 

Microarrays on two independent NHU cell lines (Y1441 and Y1451) which had been 

treated ± TZPD  ± 10 µM CdCl2 ± 400 nM TSA for 3 days. Microarrays were carried 

out by the Genomics Department of the Technology Facility at the University of 

York. Normalisation and fold change calculations were carried out by the Bioscience 

Technology Facility’s Bioinformatics Laboratory. Normalised intensity values and 

fold change data was supplied in the form of Excel spreadsheets. 

Gene ontology enrichment analysis was performed using the PANTHER 

Classification System (http://pantherdb.org/). 
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4.3 Results 

4.3.1 Ability of cadmium to silence differentiation markers is associated with 

histone modifications 

In order to determine if epigenetic mechanisms were involved in the process by 

which cadmium silenced differentiation genes as reported in Chapter 3, 

differentiating NHU cell cultures exposed to cadmium were treated with either TSA 

or 5aza for 3 days. 

RTQPCR results showed that TSA was able to reverse the inhibitory effects of 

cadmium on the expression of UPK2 and KRT20 genes, but not for UPK1A and 

KRT13; KRT13 showed a further reduction upon TSA treatment (Figure 4.1). These 

results were statistically significant, whereas TSA alone had no affect on TZ/PD-

induced differentiation on three of four differentiation-associated genes (UPK1A, 

UPK2 and KRT20).  

RTQPCR results for 5-azacytidine treatments showed that 5aza was not able to 

reverse the inhibitory effects of cadmium (Figure 4.2). 5aza affected TZ/PD-induced 

differentiation in two of the four differentiation genes (UPK1A and KRT20). 

Overall the results from the TSA and 5aza experiments indicated that histone 

modifications rather than DNA methylation may be responsible for the silencing of 

differentiation genes by cadmium. 
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Figure 4.1. RTQPCR data for four differentiation genes from NHU cell cultures treated with 

TSA.  Y1233 NHU cell cultures were treated ± TZPD ±  400 nM TSA ± 10 µM CdCl2 for 3 days. 

mRNA was harvested from the cultures, cDNA was synthesised using random hexamers and 

then RTQPCR was performed to quantify the relative expression of four differentiation-

associated genes UPK1A, UPK2, KRT13 and KRT20. Each value is the average of 3 technical 

replicates with standard deviations shown by error bars. One-way ANOVAs with Tukey post 

testing was performed (see Table 4.1) * p<0.05 ** p<0.01, *** p<0.001, **** p<0.0001, ns not 

significant. Note that TSA had no effect on the expression of the three terminal differentiation 

markers (UPK1A, UPK2 and KRT20), but TSA did reverse the inhibitory effects of cadmium 

for UPK2 and KRT20. 
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Table 4.1. Results of ANOVAs with Tukey post testing for the four differentiation genes in TSA 

treated NHU cell cultures. * p<0.05 ** p<0.01, *** p<0.001, **** p<0.0001, ns –not significant. 

UPK1A Control TZPD TZPD TSA TZPD Cd TZPD TSA Cd 

Untreated - **** **** ** ** 

TZPD  - ns **** **** 

TZPD TSA   - **** **** 

TZPD Cd    - ns 

TZPD TSA Cd     - 

 

UPK2 Control TZPD TZPD TSA TZPD Cd TZPD TSA Cd 

Untreated - **** **** **** **** 

TZPD  - ns *** ns 

TZPD TSA   - **** * 

TZPD Cd    - * 

TZPD TSA Cd     - 

 

KRT13 Control TZPD TZPD TSA TZPD Cd TZPD TSA Cd 

Untreated - **** **** *** * 

TZPD  - ** **** **** 

TZPD TSA   - *** **** 

TZPD Cd    - * 

TZPD TSA Cd     - 

 

KRT20 Control TZPD TZPD TSA TZPD Cd TZPD TSA Cd 

Untreated - **** **** ns **** 

TZPD  - ns **** ** 

TZPD TSA   - **** ** 

TZPD Cd    - *** 

TZPD TSA Cd     - 
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Figure 4.2. RTQPCR data for four differentiation genes from NHU cell cultures treated with 5-

azacytidine.  Y1236 NHU cell cultures were treated ± TZPD ± 1 µM 5aza ± 10 µM CdCl2 for 3 

days. mRNA was harvested from the cultures, cDNA was synthesised using random hexamers 

and then RTQPCR was performed to quantify the relative expression of four differentiation-

associated genes UPK1A, UPK2, KRT13 and KRT20. Each value is the average of 3 technical 

replicates with standard deviations shown by error bars. One-way ANOVAs with Tukey post 

testing was performed (see Table 4.2) * p<0.05 ** p<0.01, *** p<0.001, **** p<0.0001, ns not 

significant. Note that 5-azacytidine did not reverse the inhibitory effects of cadmium but 5aza 

did affect the expression of two terminal differentiation markers in opposite directions (UPK1A 

and KRT20). 
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Table 4.2. Results of ANOVAs with Tukey post testing for the four differentiation genes in 5-

azacytidine treated NHU cell cultures. * p<0.05 ** p<0.01, *** p<0.001, **** p<0.0001, ns –not 

significant. 

UPK1A Control TZPD TZPD 5aza  TZPD Cd TZPD Cd 5aza 

Untreated - **** *** ns ns 

TZPD  - * **** **** 

TZPD 5aza   - ** ** 

TZPD Cd    - ns 

TZPD Cd 5aza     - 

 

UPK2 Control TZPD TZPD 5aza  TZPD Cd TZPD Cd 5aza 

Untreated - **** **** **** **** 

TZPD  - ns **** **** 

TZPD 5aza   - **** **** 

TZPD Cd    - ns 

TZPD Cd 5aza     - 

 

KRT13 Control TZPD TZPD 5aza  TZPD Cd TZPD Cd 5aza 

Untreated - **** **** ** *** 

TZPD  - ns **** **** 

TZPD 5aza   - **** **** 

TZPD Cd    - ns 

TZPD Cd 5aza     - 

 

KRT20 Control TZPD TZPD 5aza  TZPD Cd TZPD Cd 5aza 

Untreated - **** **** ns ns 

TZPD  - **** *** *** 

TZPD 5aza   - **** **** 

TZPD Cd    - ns 

TZPD Cd 5aza     - 
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4.3.2 TSA treatments on two further independent NHU cell lines 

Two further independent NHU cell lines (Y1197 and Y1357) were treated with 

TZPD, cadmium and TSA for 3 days. RTQPCR results for Y1197 (Figure 4.3) and 

Y1357 (Figure 4.4) confirmed the initial findings that TSA was able to reverse the 

cadmium reduced expression of UPK2 and KRT20 but was not able to reverse the 

cadmium-reduced expression UPK1A and KRT13.  

 

 

Figure 4.3. RTQPCR data for four differentiation genes from Y1197 NHU cultures. NHU cell 

cultures were treated ± TZPD ±  400 nM TSA ± 10 µM CdCl2 for 3 days. mRNA was harvested 

from the cultures, cDNA was synthesised using random hexamers and then RTQPCR was 

performed to quantify the relative expression of four differentiation-associated genes UPK1A, 

UPK2, KRT13 and KRT20. Each value is the average of 3 technical replicates with standard 

deviations shown by error bars. One-way ANOVAs with Tukey post testing was performed; 

where there are statistical differences between the TZPD treatments these are indicated on the 

graphs. * p<0.05 ** p<0.01, *** p<0.001, **** p<0.0001. 
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Figure 4.4. RTQPCR data for four differentiation genes from Y1357 NHU cultures. NHU cell 

cultures were treated ± TZPD ±  400 nM TSA ± 10 µM CdCl2 for 3 days. mRNA was harvested 

from the cultures, cDNA was synthesised using random hexamers and then RTQPCR was 

performed to quantify the relative expression of four differentiation-associated genes UPK1A, 

UPK2, KRT13 and KRT20. Each value is the average of 3 technical replicates with standard 

deviations shown by error bars. One-way ANOVAs with Tukey post testing was performed; 

where there are statistical differences between the TZPD treatments these are indicated on the 

graphs. * p<0.05 ** p<0.01, *** p<0.001, **** p<0.0001. 
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4.3.3 CK13 protein expression  

Immunoblotting for CK13, a transitional marker of urothelial differentiation, was 

performed using whole cell lysates from two independent NHU cell lines (Figure 

4.5). CK13 was upregulated upon TZPD-induced differentiation in both cell lines. 

TSA alone led to slight increases in CK13. Upon exposure to cadmium CK13 

expression was reduced in both cell lines with TSA leading to a slight rescue in the 

protein expression amounts in one cell line, while a reduction was observed in the 

other cell line. These results were consistent with transcript data for KRT13 reported 

above.  

Immunofluorescence microscopy for CK13 (Figure 4.6) showed an upregulation of 

CK13 upon differentiation that was inhibited by cadmium exposure. TSA did not 

prevent the downregulation of CK13 caused by cadmium. 

Overall these results showed that TSA did not affect the cadmium-reduced 

expression of CK13 protein in differentiated NHU cell cultures in two of out three 

independent cell lines. 
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Figure 4.5. Western blot analysis of CK13 protein expression from two independent NHU cell 

lines. NHU cultures, Y1197 (A) and Y1223 (B), were treated for 7 days ± TZPD ± 10 µM CdCl2 

± 400 nM TSA. Cultures were lysed in situ with SDS lysis buffer and then sonicated. Protein 

concentration was measured using a Bradford assay. 4-12% Bis-Tris gels were loaded with 20 

µg of protein and run at 200 V in MES running buffer. Protein was blotted on to PVDF 

membranes using the Novex apparatus for 2 hours at 30 V. Membranes were blocked in 

Odyssey blocking buffer, incubated with primary antibodies overnight at 4°C, and secondary 

antibodies for one hour at ambient temperature then scanned on the Li-Cor imaging system. 

The fluorescence of each band was quantified and normalised to the loading control β-actin 

using the Odyssey software. Numbers quantifying the percentage intensity of the bands are 

displayed below the corresponding bands. Differentiation induced expression of CK13, which 

was further de-repressed by TSA. Cadmium inhibited differentiation-associated CK13 

expression, which was partially alleviated by TSA in one cell line only.  
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Figure 4.6. Immunofluorescence microscopy images for CK13. NHU cells (Y1357) were seeded  

at a concentration of 3x105 cells mL-1 on to 12-well slides. Once cultures were 80-90% confluent 

cells were treated for 3 days ± TZPD ± 10 µM CdCl2 ± 400 nM TSA before fixation in 

methanol:acetone. Following air-drying, cells were immunolabelled using anti-CK13 mouse 

primary antibodies and a goat anti-mouse secondary immunoconjugate. Nuclei were stained 

with Hoechst 33258. Scale bar, 10 µM. 
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4.3.4 CK14 transcript and protein expression 

When differentiating NHU cell cultures were exposed to cadmium, there was a 

failure to downregulate KRT14, as reported in Chapter 3. TSA alone was shown to 

have no effect on the downregulation of KRT14 upon TZ/PD-induced differentiation 

(Figure 1.7A). TSA treatment enabled KRT14 to be downregulated when cadmium 

was present in Y1236 NHU cell cultures (p<0.001) (Figure 4.7B) but not in Y1197 

NHU cell cultures (Figure 4.7A). 

CK14 protein expression was examined by immunofluorescence microscopy (Figure 

4.8). These results showed that upon differentiation CK14 was downregulated, 

however when cadmium was present downregulation of CK14 was inhibited. The 

addition of TSA to differentiating NHU cultures annulled the effect of cadmium and 

resulted in downregulation of CK14. 

Together these results showed that the inhibition of cytokeratin 14 downregulation 

due to cadmium exposure could be prevented by TSA treatment in two out of three 

independent differentiating NHU cell cultures. 
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Figure 4.7. RTQPCR results for KRT14 transcript expression from two independent NHU cell 

lines treated with TSA. Y1197 (A) and Y1236 (B) NHU cell cultures were treated ± TZPD ±  400 

nM TSA ± 10 µM CdCl2 for 3 days. mRNA was harvested from the cultures, cDNA was 

synthesised using random hexamers and then RTQPCR was performed to quantify the relative 

expression of KRT14. Each value is the average of 3 technical replicates with standard 

deviations shown by error bars. One-way ANOVAs with Tukey post testing was performed; 

where there are statistical differences between the TZPD treatments these are indicated on the 

graphs. * p<0.05 ** p<0.01, *** p<0.001, **** p<0.0001. 
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Figure 4.8. Immunofluorescence microscopy images for CK14. NHU cells (Y1357) were seeded 

at a concentration of 3x105 cells mL-1 on to 12-well slides. Once cultures were 80-90% confluent 

cells were treated for 3 days ± TZPD ± 10 µM CdCl2 ± 400 nM TSA before fixation in 

methanol:acetone. Following air-drying, cells were immunolabelled using anti-CK14 mouse 

primary antibodies and a goat anti-mouse secondary imunnoconjugate. Nuclei were stained 

with Hoechst 33258. Scale bar, 10 µM. 
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4.3.5 Promoter analysis for UPK1A, KRT13, UPK2 and KRT20 

As UPK2 and KRT20 responded differently to TSA treatment compared to UPK1A 

and KRT13, a bioinformatics promoter analysis was performed for these genes. 

Promoter analysis was performed using the PSCAN promoter analysis tool applied to 

the JASPAR database of transcription factor binding motifs.  When promoter regions 

for UPK1A and KRT13 were compared against UPK2 and KRT20, PSCAN results 

identified some potential candidates that differed between the two groups and many 

which did not (Figure 4.9).  

 

Figure 4.9. PSCAN promoter analysis performed using the JASPAR database of transcription 

factor binding site motifs. The ‘heatmap’ image shows the contribution of each input gene to the 

z-score of each transcription factor matrix; red spots correspond to scores higher than the 

genome-wide mean, green spots are scores lower than the genome-wide mean and black spots 

are around the average genome score. Therefore the motifs which are enriched in the promoter 

region of these genes will show as red. The following RefSeq mRNA IDs were input: 

NM_001281443, NM_002274, NM_019010 and NM_006760 representing UPK1A, KRT13, 

KRT20 and UPK2 respectively. Shown is a subset of the complete PSCAN analysis. SOX9 and 

NR3C1 motifs are shown enriched in UPK2 and KRT20. 

Two motifs that were enriched in the promoter region for UPK2 and KRT20 but not 

UPK1A and KRT13 were SOX9 and NR3C1. RT-PCR was performed to see if 

cadmium exposure affected the transcript expression of these candidates. Results 

showed that SOX9 failed to downregulate upon differentiation when cadmium was 

present (Figure 4.10), whereas NR3C1 showed no change. 

In order to examine SOX9 protein expression, immunofluorescence microscopy was 

performed. Results showed slight differences in SOX9 protein expression between 

cultures differentiated with or without cadmium. SOX9 labelling in TSA treated cells 

was more akin to the DMSO control cell cultures with labelling appearing greater in 

the nuclei compared to TZPD and TZPD Cd treated NHU cell cultures (Figure 4.11). 
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Figure 4.10. RTPCR results for NR3C1 and SOX9. Y1236 NHU cell cultures were treated ± 

TZPD ± 10 µM CdCl2 ± 400 nM TSA for 3 days. mRNA was harvested from the cultures, cDNA 

was synthesised using random hexamers and RTPCR was performed to examine expression of 

NR3C1 and SOX9. 

 

Figure 4.11. Immunofluorescence microscopy images for SOX9. NHU cells (Y1357) were seeded 

at a concentration of 3x105 cells mL-1 on to 12-well slides. Once cultures were 80-90% confluent 

cells were treated for 3 days ± TZPD ± 10 µM CdCl2 ± 400 nM TSA before fixation in 

methanol:acetone. Following air-drying, cells were immunolabelled using an anti-SOX9 goat 

primary antibody and a donkey anti-goat secondary immunoconjugate. Scale bar, 5 µM. 
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4.3.6 Gene expression analysis using Agilent microarrays 

Agilent microarrays were used to identify genes that changed in expression when 

two independent NHU cell cultures were differentiated in the presence of cadmium 

and TSA.  

Before microarrays were performed, confirmation that cadmium and TSA treatments 

had been successful was determined. A fraction of extracted RNA for each of the 

four treatments from the two NHU cell lines was synthesised into cDNA and 

RTQPCR was performed to examine the expression of the four urothelial 

differentiation-associated genes that were inhibited by cadmium exposure as reported 

in Chapter 3. Results showed that cadmium inhibited the expression of all four genes 

in both cell lines, with TSA reversing the inhibitory effects of cadmium for three 

terminal differentiation genes UPK1A, UPK2 and KRT20 (Figures 4.12 and 4.13). 

The reversal of the inhibitory effect of cadmium on UPK1A expression was in 

contrast to the results from three different NHU cell lines previously reported in this 

chapter. 

Data obtained from microarray analysis revealed a number of genes that were 

differentially expressed due to cadmium exposure and TSA treatment  (Figure 4.14). 

TZPD-induced differentiation of NHU cell cultures led to an upregulation of 1784 

genes and a downregulation of 1503 genes when data was filtered for >2-fold 

up/down changes, p<0.05. 
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Figure 4.12. Confirmation of cadmium and TSA treatment in Y1441 NHU cell cultures. NHU 

cell cultures were treated ± TZPD ±  400 nM TSA ± 10 µM CdCl2 for 72 hours. mRNA was 

harvested from the cultures, cDNA was synthesised using random hexamers and then RTQPCR 

was performed to quantify the relative expression of four differentiation-associated genes 

UPK1a, UPK2, KRT13 and KRT20. Each value is the average of 3 technical replicates with 

standard deviations shown by error bars. One-way ANOVAs with Tukey post testing was 

performed; where there are statistical differences between the TZPD treatments these are 

indicated on the graphs. * p<0.05 ** p<0.01, *** p<0.001, **** p<0.0001.  
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Figure 4.13. Confirmation of cadmium and TSA treatment in Y1451 NHU cell cultures. NHU 

cell cultures were treated ± TZPD ±  400 nM TSA ± 10 µM CdCl2 for 72 hours. mRNA was 

harvested from the cultures, cDNA was synthesised using random hexamers and then RTQPCR 

was performed to quantify the relative expression of four differentiation-associated genes 

UPK1a, UPK2, KRT13 and KRT20. Each value is the average of 3 technical replicates with 

standard deviations shown by error bars. One-way ANOVAs with Tukey post testing was 

performed; where there are statistical differences between the TZPD treatments these are 

indicated on the graphs. * p<0.05 ** p<0.01, *** p<0.001, **** p<0.0001.  
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Figure 4.14. Section of a dendrogram heat map produced using GeneSpring GX software. Heat 

map shows genes with high expression levels (red), low expression levels (blue) or average 

expression values (yellow). Showed that changes in gene expression occurred when 

differentiating NHU cultures were treated with cadmium and TSA. 
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4.3.6.1 Confirmation of known differentiation-associated markers 

The expression of known urothelial differentiation markers was analysed using fold 

change expression profiles. Fold changes were calculated using the combined 

microarray data of the two independent NHU cell lines (Y1441 and Y1451). Where 

more than one probe was present for a single gene the data was combined and 

standard deviations shown.  

Uroplakin gene expression fold changes are shown in Figure 4.15. When TZPD-

induced differentiated cell cultures were compared with DMSO control cultures all 

five uroplakin genes were shown to be upregulated. Cadmium exposure led to a 

decrease in expression of UPK1A, UPK2, UPK3A and UPK3B but not UPK1B. TSA 

reversed the inhibitory effect of cadmium by a 2 fold increase or more in three out of 

the four uroplakin transcripts (UPK1A, UPK3A and UPK3B) that were 

downregulated by cadmium.  

Cytokeratin transcript fold changes are shown in Figure 4.16. KRT13, a transitional 

differentiation-associated gene, and KRT20 a terminal differentiation-associated 

gene were both upregulated in TZPD treated cell cultures. Cadmium exposure led to 

a 2.7 fold decrease in KRT20 expression with TSA shown to reverse this 

downregulation.  

KRT14, KRT16, KRT17 and the KRT6 family all showed a marked reduction of 

transcript expression upon TZPD-induced differentiation. Cadmium treatment led to 

an increase of expression for all the transcripts when compared to TZPD only treated 

cultures. TSA alleviated the effects of cadmium exposure for two genes, KRT16 and 

KRT6C, by a 2 fold decrease or more.  

Tight junction genes were also analysed and are shown in Figure 4.17. Tight 

junctions are built from 40 different proteins including claudins, occludin and zona 

occludens. Claudin 3 and 4 were shown to be upregulated upon differentiation. 

Cadmium exposure led to a very slight increase in expression of claudin 3 and 4, 

TSA was shown to reverse this increase. Occludin was shown to be upregulated upon 

differentiation of NHU cell cultures, with cadmium exposure leading to a slight 

decrease in occludin transcript expression, further treatment with TSA did not affect 

occludin expression. ZO-2 and ZO-3 were upregulated in differentiated NHU cell 

cultures, with cadmium and TSA only having a minimal effect on expression levels.  
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Figure 4.15. Agilent microarray analysis for uroplakin targets during urothelial differentiation, 

cadmium exposure and TSA treatment. Y1441 and Y1451 NHU cell cultures were treated ± 

TZPD ± 10 µM CdCl2 ± 400 nM TSA. mRNA was collected at 72 hours and gene expression 

analysed using Agilent SurePrint G3 Human Microarrays. 
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Figure 4.16. Agilent microarray analysis for cytokeratin targets during urothelial 

differentiation, cadmium exposure and TSA treatment. Y1441 and Y1451 NHU cell cultures 

were treated ± TZPD ± 10 µM CdCl2 ± 400 nM TSA. mRNA was collected at 72 hours and gene 

expression analysed using Agilent SurePrint G3 Human Microarrays. 
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Figure 4.17. Agilent microarray analysis for tight junction targets during urothelial 

differentiation, cadmium exposure and TSA treatment. Y1441 and Y1451 NHU cell cultures 

were treated ± TZPD ± 10 µM CdCl2 ± 400 nM TSA.  mRNA was collected at 72 hours and gene 

expression analysed using Agilent SurePrint G3 Human Microarrays. 
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4.3.6.2 Expression of urothelial transcription factors 

The expression of six transcription factors known to be involved in urothelial 

differentiation was analysed (Figure 4.18). All six transcription factors were shown 

to be upregulated in differentiation by at least 2-fold with ELF3 shown to be the most 

upregulated by 35-fold. Transcription factor expression was not affected by cadmium 

exposure or TSA, except for ELF3, which showed minor changes, however these 

changes in expression were both less than 1.5 fold changes. 

These results were in agreement with the RTPCR and RTQPCR results reported in 

Chapter 3. Additionally they showed that TSA did not affect their expression. 
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Figure 4.18. Agilent microarray analysis for transcription factors targets during urothelial 

differentiation, cadmium exposure and TSA treatment. Y1441 and Y1451 NHU cell cultures 

were treated ± TZPD ± 10 µM CdCl2 ± 400 nM TSA. mRNA was collected at 72 hours and gene 

expression analysed using Agilent SurePrint G3 Human Microarrays. 
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4.3.6.3 Expression of chromatin modifying enzymes 

As the results from the TSA experiments reported above indicated that histone 

modifications may be responsible for the silencing of differentiation genes by 

cadmium, the expression of chromatin modifying enzymes was analysed using the 

microarray data in order to investigate if histone modification changes were 

occurring during to a change in expression of these enzymes. In total six classses of 

chromatin modifying proteins were analysed. 

Expression of polycomb group proteins which create and maintain repressive 

chromatin environments by forming two polycomb repressive complexes, PRC1 and 

PRC2 was analysed (Figure 4.19). Although differences were apparent upon 

differentiation, no differences greater than 1.5 fold change were noted during 

cadmium expoure.   

Expression of herterochromatin protein (HP1) whch is a family of three proteins that 

are vital for the formation of transcriptionally inactive heterochromatin was analysed 

(Figure 4.20). No differences in their expression were found upon differentiation or 

cadmium and TSA treatment.  

Three families of histone acetyltransferases (HATs) were analysed (Figure 4.21).  

The only change seen in expression amongst the HATs was for KAT2B upon 

differentiation. Cadmium exposure and TSA treatment did not affect HAT 

expression. 

Expression of histone deacetylases (HDACs) was analysed (Figure 4.22). A few 

HDACs showed differential expression upon differentiation, but cadmium and TSA 

did not affect their expression.  

Lysine methyltransferase (KMT) gene expression was analysed (Figure 4.23). 

Neither differentiation or cadmium and TSA treamtment affected the expression of 

KMTs.  

Lysine demethylase (KDM) gene expression was analysed (Figure 4.24). 

Differentiation led to the uprgualtion of KDM1A, KDM3B and KDM7C by 2-fold 

change or greater and the downregualtion of KDM7A. Cadmium had no significant 

effect on expression of KDMs except for KDM1B which showed a 2-fold decrease in 

expression which was recovered by TSA. 
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Figure 4.19. Agilent microarray analysis for the polycomb repressive complexes (PRC1 and 

PRC2) during urothelial differentiation, cadmium exposure and TSA treatment. Y1441 and 

Y1451 NHU cell cultures were treated ± TZPD ± 10 µM CdCl2 ± 400 nM TSA. mRNA was 

collected at 72 hours and gene expression analysed using Agilent SurePrint G3 Human 

Microarrays. 

 

 

 

Figure 4.20. Agilent microarray analysis for herterochromatin protein (HP1) during urothelial 

differentiation, cadmium exposure and TSA treatment. Y1441 and Y1451 NHU cell cultures 

were treated ± TZPD ± 10 µM CdCl2 ± 400 nM TSA. mRNA was collected at 72 hours and gene 

expression analysed using Agilent SurePrint G3 Human Microarrays. 
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Figure 4.21. Agilent microarray analysis for histone acetyltransferases during urothelial 

differentiation, cadmium exposure and TSA treatment. Y1441 and Y1451 NHU cell cultures 

were treated ± TZPD ± 10 µM CdCl2 ± 400 nM TSA. mRNA was collected at 72 hours and gene 

expression analysed using Agilent SurePrint G3 Human Microarrays 
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Figure 4.22. Agilent microarray analysis for histone deacetylases during urothelial 

differentiation, cadmium exposure and TSA treatment. Y1441 and Y1451 NHU cell cultures 

were treated ± TZPD ± 10 µM CdCl2 ± 400 nM TSA. mRNA was collected at 72 hours and gene 

expression analysed using Agilent SurePrint G3 Human Microarrays. 

  

 

Figure 4.23. Agilent microarray analysis for lysine methltransferase (KMT) during urothelial 

differentiation, cadmium exposure and TSA treatment. Y1441 and Y1451 NHU cell cultures 

were treated ± TZPD ± 10 µM CdCl2 ± 400 nM TSA. mRNA was collected at 72 hours and gene 

expression analysed using Agilent SurePrint G3 Human Microarrays. 
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Figure 4.24. Agilent microarray analysis for lysine demethylases (KDM) during urothelial 

differentiation, cadmium exposure and TSA treatment. Y1441 and Y1451 NHU cell cultures 

were treated ± TZPD ± 10 µM CdCl2 ± 400 nM TSA. mRNA was collected at 72 hours and gene 

expression analysed using Agilent SurePrint G3 Human Microarrays. 
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4.3.6.4 Identification of genes up/downregulated by cadmium and TSA 

In order to identify genes that were affected by cadmium exposure, genes that had p 

values less than 0.05 were filtered for 2-fold up or down changes. Filtering of the 

upregulated genes selected 118 gene targets. The most upregulated genes are shown 

in Table 4.3. Filtering of the downregulated genes selected 588 gene targets, with the 

most downregulated genes shown in Table 4.4. Complete gene lists are shown in 

Appendix 4. 

As expected, gene ontology enrichment analysis of the 118 genes upregulated in 

cadmium exposure (Figure 4.25) showed enrichment in GO biological process terms 

for a response to cadmium and zinc ions. This was due to the upregulation in 

metallothionein genes. 

Other genes of note that were shown upregulated in response to cadmium included 

three zinc transporters (Figure 4.26). 

When TSA was included in the treatment of NHU cell cultures, filtering produced 

245 gene targets that were upregulated and 78 gene targets that were downregulated 

when compared to differentiating cultures exposed to cadmium (Appendix 4).  
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Table 4.3. Most upregulated genes by cadmium in TZPD-differentiating NHU cell cultures. 

Pairwise comparisons were performed between the two relevant treatment groups (TZPD and 

TZPD Cd) to identify genes that were differentially expressed, p<0.05. 

Gene 

Symbol 

Gene Name Fold 

change log2 

GO biological process term 

MT1G Metallothionein 1G 14.5 Cellular response to 

cadmium/zinc ion 

MT1H Metallothionein 1H 11.8 Cellular response to 

cadmium/zinc ion 

MT1M Metallothionein 1M 8.4 Cellular response to zinc ion 

MT1B Metallothionein 1B 6.4 Cellular response to zinc ion 

MT1L Metallothionein 1L 6.4 Cellular response to zinc ion 

MT1E Metallothionein 1E 6.1 Cellular response to 

cadmium/zinc ion 

MT1F Metallothionein 1F 5.9 Cellular response to 

cadmium/zinc ion 

MT1X Metallothionein 1X 5.3 Cellular response to 

cadmium/zinc ion 

MT1A Metallothionein 1A 4.8 Cellular response to 

cadmium/zinc ion 

MT2A Metallothionein 2A 4.7 Cellular response to zinc ion 

ALDH3A1 Aldehyde dehydrogenase 3 

family, member A1 

3.4 Response to hypoxia // positive 

regulation of cell proliferation // 

oxidation-reduction process 

UCHL1 Ubiquitin carboxyl-terminal 

esterase L1 (ubiquitin 

thiolesterase) 

3.1 Response to ischemia // protein 

deubiquitination // cell 

proliferation 

HMOX1 Heme oxygenase 

(decycling) 1 

2.8 Heme oxidation // angiogenesis 

// cellular response to cadmium 

ion 

KRT16 Keratin 16 2.7 Cytoskeleton development // 

Keratinization // cell 

proliferation 

TMEM71 Transmembrane protein 71 2.4 --- 
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Table 4.4. Most downregulated genes by cadmium in TZPD-differentiating NHU cell cultures. 

Pairwise comparisons were performed between the two relevant treatment groups (TZPD and 

TZPD Cd) to identify genes that were differentially expressed, p<0.05. 

Gene 

Symbol 

Gene Name Fold 

change log2 

GO biological process term 

KRT8 Keratin 8 -4.1 Structural molecule activity 

GPR179 G protein-coupled receptor 

179 

-3.2 Visual perception 

BRIP1 BRCA1 interacting protein 

C-terminal helicase 1 

-2.8 DNA duplex unwinding // DNA 

damage checkpoint // double-

strand break repair 

TDGF1 Teratocarcinoma-derived 

growth factor 1 

-2.7 Cell differentiation // canonical 

Wnt signalling pathway 

FCN2 Ficolin 2 -2.5 Complement activation // innate 

immune respnse 

DTX1 Deltex 1, E3 ubiquitin 

ligase 

-2.5 Notch signalling pathway 

//transcription  

C4BPB Complement component 4 

binding protein, beta 

-2.4 Complement activation, 

classical pathway 

GRAMD1B GRAM domain containing 

1B 

-2.4 --- 

CD200R1 CD200 receptor 1 -2.4 Regulation of immune response 

FAM159B Family with sequence 

similarity 159, member B 

-2.3 --- 

TEX11 Testis expressed 11 -2.3 Negative regulation of 

apoptotic process 

ZC3H12D Zinc finger CCCH-type 

containing 12D 

-2.3 Negative regulation of cell 

growth 

FCAMR Fc receptor, IgA, IgM, high 

affinity 

-2.3 Immune system process 

CD4 T-cell surface glycoprotein 

CD4 

-2.3 Regulation of T cell activation 

// cell surface receptor 

signalling pathway 

OR5J2 Olfactory receptor, family 

5, subfamily J, member 2 

-2.3 G-protein coupled receptor 

signalling pathway 
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Figure 4.25. GO enrichment analysis for genes upregulated by cadmium exposure. T-tests were 

performed and genes were then filtered by 2-fold increase resulting in a list of 118 genes 

upregulated by cadmium exposure. This list was inputted in to the PANTHER Classification 

System; a PANTHER Overrepresentation Test was then performed using the annotation data 

set ‘GO biological process experimental only’. The second column represents background 

frequency while the third column is sample frequency. Background frequency is the number of 

genes annotated to a GO term in the entire background set, while sample frequency is the 

number of genes annotated to that GO term in the input list. The symbols + and - indicate over 

or underrepresentation of a GO term. 

 

Figure 4.26. Upregulation of zinc transporters in TZPD-differentiating NHU cell cultures 

exposed to cadmium. Y1441 and Y1451 NHU cell cultures were treated with TZPD ± 10 µM 

CdCl2. mRNA was collected at 72 hours and gene expression analysed using Agilent SurePrint 

G3 Human Microarrays.  
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4.4 Summary 

• TSA treatment was able to reverse the inhibitory effects of cadmium for 

UPK2 and KRT20 (5/5), UPK1A (2/5) but not for KRT13 in five independent 

NHU cell lines. However, 5-azacytidine was not able to do the same. Overall 

the results from the TSA and 5aza experiments indicate that histone 

modifications rather than DNA methylation may be responsible for the 

silencing of differentiation-associated genes by cadmium. 

• TSA did not affect the downregulation of CK13 protein by cadmium 

exposure in two out of three independent NHU cell lines. 

• The inhibition of KRT14 downregulation at both transcript and protein level 

due to cadmium exposure reported in Chapter 3, could be prevented by TSA 

treatment. 

• The SOX9 motif was shown to be enriched in the promoter regions for UPK2 

and KRT20. SOX9 transcript was not downregulated upon differentiation 

when cadmium was present, although protein levels, assessed subjectively by 

immunofluorescence microscopy, remained unchanged. 

• Results from Agilent microarrays showed: 

o Changes in uroplakin and cytokeratin gene expression following 

combined cadmium and TSA treatment 

o No significant changes in urothelial transcription factors or chromatin 

remodelling enzymes following cadmium and TSA treatment, with 

exception of KDM1B. 

o High induction of metallothionein genes upon cadmium exposure. 
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5 Cadmium Induced Post-translational Histone Modification 
Changes  

5.1 Aims 

Many metals, including arsenic, nickel and cobalt have been shown to induce post-

translational histone modification changes in cell cultures. Histone modification 

changes implicated in arsenic exposure include alterations in global histone H3 

methylation, with decreases in H3K27 trimethylation and increases in di- and 

trimethylated H3K4 (Zhou et al, 2008). Nickel exposure has been shown to lead to 

decreased histone acetylation of H2A, H2B, H3 and H4 (Broday et al., 2000; 

Golebiowski & Kasprzak, 2005; Ke et al., 2006), and increases in histone H3 lysine 

9 dimethylation (Chen et al., 2006). Finally histone changes implicated with cobalt 

exposure include increases in H3K4me3, H3K9me2, H3K9me3, H3K27me3 and 

H3K36me3 and a decrease in acetylation of H4 (Li et al., 2009). 

Reports of post-translational histone modification changes due to cadmium exposure 

are rather limited. However, one study reporting the epigenetic and genotoxic effects 

of cadmium telluride quantum dots in human breast carcinoma cells, found that free 

cadmium ions released in the cells led to chromatin condensation and global histone 

hypoacetylation (Choi et al., 2008).  

The aims of this chapter were to: 

• examine cadmium treated proliferative and differentiating NHU cell cultures 

for changes in global levels of post-translational histone modifications. 

• determine if any of these changes correlate with the transcript expression 

decreases reported in Chapter 3 with the differentiation genes (KRT13, 

KRT20, UPK1A, UPK2) upon cadmium exposure. 

5.2 Experimental Approach 

5.2.1 Proliferative NHU cell cultures 

Proliferative NHU cell cultures were treated with cadmium chloride concentrations 

ranging from 10 nM to 20 µM; medium was replaced every 48 hours. Control NHU 

cell cultures were maintained in KSFMc. Upon completion of cadmium treatment 

cultures was lysed using SDS lysis buffer to give whole cell lysates. Western blotting 

was performed to examine changes in known acetylation and methylation marks 
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present on the histone tails of H2A, H3 and H4. Equal quantities of protein were 

loaded per track and for quantification, final adjustments for loading were made 

using ß-actin as the housekeeping control protein. Densitometry was performed using 

LiCOR Odyssey software, and values were normalised to those obtained in the 

control (KSMFc) samples. 

Antibodies used for histone acetylation marks included anti-H2AK5ac, anti-

H3K9/14ac and anti-H4K5ac. Acetylation of histone tails by acetyltransferases 

induces chromatin decondensation, whereas the removal of acetyl groups by 

deacetylases promotes a tighter binding of the histones to the DNA. 

Antibodies used for histone methylation marks included anti-H3K4me3, anti-

H3K27me3 and anti-H4K20me3. Methylation of histones can be associated with 

either euchromatin or heterochromatin depending on the target histone residue. The 

tri-methylation of histone H3 lysine 27 (H3K27me3) is implicated in gene repression 

by promoting a compact chromatin structure (Ringrose et al., 2004). Tri-methylation 

of histone H4 lysine 30 (H4K20me3) is also associated with gene repression when 

present at promoters (Wang et al., 2008), whereas di/tri-methylated histone H3 lysine 

4 (H3K4me2/me3) is associated with transcriptional activation, with the highest 

levels of this modification being observed near transcriptional start sites of highly 

expressed genes (Shi et al., 2004). 

Immunofluorescence microscopy was performed to examine cellular localisations 

and confirm observations seen from the western blotting. NHU cells were seeded at a 

concentration of 1x105 cells mL-1 on to 12-well slides. Cells were cultured for 5 days 

in the presence of 1 and 10 µM CdCl2 before being fixed in methanol:acetone. 

Following air-drying, cells were immunolabelled using the H3K9/14ac and H4K5ac 

antibodies.  

5.2.2 Differentiating NHU cell cultures 

NHU cells were cultured until 80-90% confluent and then induced to differentiate 

using TZPD as described in Chapter 2. Cadmium chloride (concentration range 10 

nM - 20 µM) and TSA (400 nM) were applied to NHU cell cultures at the same time 

as TZPD.   
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5.2.2.1 Quantification of histone changes using mass spectrometry 

Quantification of global post-translational histone changes using mass spectrometry 

was performed in collaboration with Dr Mark Dickman and Tom Minshull from the 

Department of Chemical and Biological Engineering at the University of Sheffield. 

Cell culture treatments and preparation of histones was performed in York; RP-

HPLC, MS/MS and MS analyses were performed in Sheffield. 

NHU cell cultures were treated with TZPD ± 10 µM CdCl2 for 72 hours. Histones 

were acid-extracted from cell cultures as described in Chapter 2, following the 

technique of Shechter et al (2007). Histones were quantified using a Bradford assay 

and purity tested via SDS/PAGE gel and staining with Coomassie Brilliant Blue 

solution. 10 µg of histone proteins were derivatized using propionic anhydride to 

neutralize charge and block lysine residues as described by Garcia et al (2007). 

Histones were digested by trypsin, which cleaved only at the arginine residues as all 

lysine residues were blocked by endogenous modifications or chemically by 

conversion to propionyl amides, to give reproducible histone H3 fragments (Figure 

5.1). 

 

Figure 5.1. Peptides generated from the trypsin digestion of propionylated histone H3.  

The histone peptides then underwent offline fractionation by reversed phase high 

performance liquid chromatography using a porous graphitic carbon (Hypercarb™) 

column before MS/MS analysis. Relative quantification of histone post-translational 

modifications was determined using the area under the extracted ion chromatogram 

peak corresponding to a specific modified peptide, normalized to the sum of the peak 

areas corresponding to all observed modified forms of such peptide. 

5.2.2.2 Immunofluorescence microscopy 

Immunofluorescence microscopy was performed to confirm the results seen from the 

MS analysis. NHU cells were seeded on to 12-well slides. Once cultures were 80-
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90% confluent cells were treated ± TZPD  ± CdCl2 for 3 days before being fixed in 

methanol:acetone. Following air-drying, cells were immunolabelled using the 

H3K9me2 and H3K9me3 antibodies.  

5.2.2.3 ChIP-(Q)PCR 

In order to investigate if the silencing of differentiation genes brought about by 

cadmium exposure was associated with the H3K9me3 mark, ChIP-QPCR was 

performed.  

ChIP-QPCR was performed using Dynabeads® as described by Collas (2011). 

Sonicated chromatin (100 bp-600bp) from formaldehyde-fixed cells, that had been 

treated ±TZPD  ±CdCl2 ±TSA for 3 days, was diluted in RIPA ChIP buffer and 

subjected to ChIP using antibodies targeted to either histone H3 trimethylated lysine 

9 (H3K9me3), total histone H3 (positive control) or anti-rabbit IgG (negative 

control). 

To confirm the success of the ChIP, PCR was performed with QPCR then utilised to 

quantify the changes observed for four known differentiation genes (KRT13, 

KRT20, UPK1A, UPK2). 

5.2.2.4 Western blotting  

Upon completion of cadmium treatment, cell cultures were either lysed in SDS lysis 

buffer to give whole cell lysates or underwent acid-extraction by 0.2 M H2SO4 to 

give histone proteins before western blotting was performed to examine changes in 

histone post-translational modifications in differentiating NHU cell cultures treated 

with cadmium.  

Antibodies used for acetylation and methylation marks included anti-H3K9ac, anti-

H3K18ac, anti-H3K23ac, anti-H3K9me2 and anti-H3K9me3. Total histone H3 was 

used as the loading control. 
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5.3 Results 

5.3.1 Proliferative NHU cell cultures 

To study whether cadmium exposure alters epigenetic marks on histones, 

proliferative NHU cell cultures (Y1054) were treated with 10 nM, 100 nM, 1 µM and 

10 µM CdCl2 for 96 hours. Global levels of commonly studied histone 

modifications, including histone acetylation and methylation were assessed by 

western blot analysis. The results showed that global acetylation levels on histones 

H2A, H3 and H4 were reduced by cadmium treatment in a dose-dependent manner 

(Figure 5.2).  However results for histone methylation marks differed across the 

cadmium chloride concentrations (Figure 5.3). Amounts of tri-methylation on H3 

lysine 4 (H3K4me3) and tri-methylation on H3 lysine 27 (H3K27 me3) increased 

with lower doses (≤100 nM) of CdCl2, but decreased with the highest dose (10 µM), 

while levels of tri-methylation on H4 lysine 20 (H4K20me3) decreased with doses 

above 100 nM CdCl2. 

Two further proliferative NHU cell lines, Y1141 and Y1220 were treated with 1 µM, 

10 and 20 µM CdCl2 for 72 and 96 hours respectively to assess global amounts of 

acetylation on histone H2A, H3 and H4. Both cell lines showed decreased global 

amounts of H2AK5ac, H3K9/14ac and H4K8ac with increasing concentrations of 

CdCl2 (Figure 5.4, Figure 5.5). 

Additionally, immunofluorescence microscopy was used to examine global amounts 

of histone acetylation. NHU cell cultures (Y1183) were treated with 1 and 10 µM 

CdCl2 for 5 days before fixation with methanol:acetone, followed by 

immunolabelling using antibodies against H4K8ac and H3K9/14ac. All fluorescence 

images were taken at the same exposure and showed that H4K8ac and H3K9/14ac 

labelling was nuclear and appeared less bright in the cadmium exposed cell cultures 

(Figure 5.6). 
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Figure 5.2. Western blot analysis for acetylation marks on histone H2A, H3 and H4 in 

proliferative NHU cell cultures (Y1054) treated with cadmium for 96 hours. Cells were lysed 

using SDS lysis buffer and then sonicated. Protein concentration was measured using a 

Bradford assay. 4-12% Bis-Tris gels were loaded with 20 µg of protein and run at 200 V in MES 

running buffer. Protein was blotted on to PVDF membranes using the Novex apparatus for 2 

hours at 30 V. Membranes were blocked in Odyssey blocking buffer, incubated with primary 

antibodies overnight at 4°C, and secondary antibodies for one hour at ambient temperature 

then scanned on the Li-Cor imaging system. The fluorescence of each band was quantified and 

normalised to the loading control β-actin using the Odyssey software. Numbers quantifying the 

percentage intensity of the bands are displayed below the corresponding bands.  
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Figure 5.3. Western blot analysis for methylation marks on histone H3 and H4 in proliferative 

NHU cell cultures (Y1054) treated with cadmium for 96 hours. Cultures were lysed in situ with 

SDS lysis buffer and then sonicated. Protein concentration was measured using a Bradford 

assay. 4-12% Bis-Tris gels were loaded with 20 µg of protein and run at 200 V in MES running 

buffer. Protein was blotted on to PVDF membranes using the Novex apparatus for 2 hours at 30 

V. Membranes were blocked in Odyssey blocking buffer, incubated with primary antibodies 

overnight at 4°C, and secondary antibodies for one hour at ambient temperature then scanned 

on the Li-Cor imaging system. The fluorescence of each band was quantified and normalised to 

the loading control β-actin using the Odyssey software. Numbers quantifying the percentage 

intensity of the bands are displayed below the corresponding bands. 
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Figure 5.4. Western blot analysis for acetylation marks on histone H2A, H3 and H4 in NHU cell 

cultures (Y1141) treated with cadmium for 72 hours. Cultures were lysed in situ with SDS lysis 

buffer and then sonicated. Protein concentration was measured using a Bradford assay. 4-12% 

Bis-Tris gels were loaded with 20 µg of protein and run at 200 V in MES running buffer. Protein 

was blotted on to PVDF membranes using the Novex apparatus for 2 hours at 30 V. Membranes 

were blocked in Odyssey blocking buffer, incubated with primary antibodies overnight at 4°C, 

and secondary antibodies for one hour at ambient temperature then scanned on the Li-Cor 

imaging system. The fluorescence of each band was quantified and normalised to the loading 

control β-actin using the Odyssey software. Numbers quantifying the percentage intensity of the 

bands are displayed below the corresponding bands. 
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Figure 5.5. Western blot analysis for acetylation marks on histone H2A, H3 and H4 in NHU cell 

cultures (Y1202) treated with cadmium for 96 hours. Cultures were lysed in situ with SDS lysis 

buffer and then sonicated. Protein concentration was measured using a Bradford assay. 4-12% 

Bis-Tris gels were loaded with 20 µg of protein and run at 200 V in MES running buffer. Protein 

was blotted on to PVDF membranes using the Novex apparatus for 2 hours at 30 V. Membranes 

were blocked in Odyssey blocking buffer, incubated with primary antibodies overnight at 4°C, 

and secondary antibodies for one hour at ambient temperature then scanned on the Li-Cor 

imaging system. The fluorescence of each band was quantified and normalised to the loading 

control β-actin using the Odyssey software. Numbers quantifying the percentage intensity of the 

bands are displayed below the corresponding bands. 
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5.3.2 Differentiating NHU cell cultures 

5.3.2.1 Mass spectrometry quantification of epigenetic marks on histone H3 

Post-translational histone modifications of histone H3 were quantified using a mass 

spectrometry approach using histones isolated from differentiating NHU cell cultures 

(Y1202) that had been treated with or without 10 µM CdCl2 for 72 hours.  

Three peptides, K9-17, K18-26 and K27-40 of the H3 tail gave reliable 

identifications across all samples to allow quantification. In total 22 different 

combinations of histone modifications on 6 different lysine residues were manually 

verified and identified along the H3 tail. These modifications were quantified to give 

relative abundances per peptide (Figure 5.7). Due to overlapping retention times for 

acetylation on different positions of the same peptide (ie. K9ac v K14ac and K18ac v 

K23ac) an accurate percentage for each individual mark could not be ascertained, 

therefore in these cases relative abundance is given as the sum of both the individual 

marks.  

The most profound change seen when cadmium was present was the change in 

methylation state of lysine 9 (K9). Mono and di-methylation (K9me1 and K9me2) 

were reduced with cadmium treatment whereas tri-methylation (K9me3), a 

repressive mark, was increased. Relative abundance reduced from 9.1% to 5.8% for 

K9me1 and 39.6% to 28.9% for K9me2 whereas K9me3 increased from 25.4% to 

36% upon cadmium treatment. 

Other changes of note include decreases in activating marks including K18/23ac and 

K9me1K14ac, although K9/14ac was increased, alongside increases in repressive 

marks including K27me2 and K27me3. Also the combinatorial mark 

K27me1K36me3 appears absent in cadmium treated cultures. Overall this indicated 

that cadmium treatment resulted in a more repressive chromatin state. 
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Figure 5.7. Mass spectrometry analysis of histone modification changes on histone H3 isolated 

from TZPD-induced differentiating NHU cell cultures (Y1202) treated with or without 10 µM 

CdCl2 for 72 hours. Bar charts represent the relative abundance of the histone modifications for 

peptides covering residues 9-17 (KSTGGKAPR), 18-26 (KQLATKAAR) and 27-40 

(KSAPATGGVKKPHR). MS data provided by Tom Minshull under the supervision of Dr 

Mark Dickman (University of Sheffield). 
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5.3.2.2 Immunofluorescence microscopy for H3K9me2 and H3K9me3 

Immunofluorescence microscopy was used to further examine the H3K9me2 and 

H3K9me3 marks. NHU cell cultures (Y1357) were treated with TZPD or TZPD and 

10 µM CdCl2 alongside a DMSO control for 3 days. Immunofluorescence for 

H3K9me2 showed a change in shape and size of H3K9me2 foci between 

differentiated and non-differentiated (DMSO) cultures with H3K9me2 labelling 

appearing more punctate in TZPD and TZPD Cd treated cultures (Figure 5.8).  

 

Figure 5.8. Immunofluorescence microscopy images for H3K9me2. NHU cells (Y1357) were 

seeded at a concentration of 3x105 cells mL-1 on to 12-well slides. Once cultures were 80-90% 

confluent cells were treated for 3 days ± TZPD ± 10 µM CdCl2 before being fixed in 

methanol:acetone. Cells were immunolabelled using anti-H3K9me2 rabbit primary antibodies 

and goat anti-rabbit secondary antibodies. Scale bar, 5 µM. 

DMSO

TZPD

TZPD	Cd
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Immunofluorescence for H3K9me3 showed qualitative increases with differentiation 

and cadmium treatment compared to control cultures treated with DMSO only 

(Figure 5.9). Additionally, cadmium treatment showed increases in H3K9me3 at the 

nuclear periphery. 

 

Figure 5.9. Immunofluorescence microscopy images for H3K9me3. NHU cells (Y1357) were 

seeded at a concentration of 3x105 cells mL-1 on to 12-well slides. Once cultures were 80-90% 

confluent cells were treated for 3 days ± TZPD ± 10 µM CdCl2 before being fixed in 

methanol:acetone. Cells were immunolabelled using anti-H3K9me3 rabbit primary antibodies 

and goat anti-rabbit secondary antibodies. Arrows indicate H3K9me3 labelling at the nuclear 

periphery. Scale bar, 5 µM. 
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TZPD	Cd



  Chapter 5 
 

174 

 

5.3.2.3 Chromatin Immunoprecipitation 

As the results from the MS analysis showed that the greatest change seen was with 

the H3K9me3 mark, ChIP-QPCR was performed using antibodies to this mark to see 

how H3K9me3 associated with four urothelial differentiation genes known to be 

downregulated due to cadmium exposure (KRT13, KRT20, UPK1A and UPK2). 

Fragmented chromatin from NHU cell cultures (Y1141) that had been treated with 

either DSMO only, TZPD, TZPD CdCl2 or TZPD CdCl2 TSA for 72 hours was 

incubated with antibodies against H3K9me3, as well as H3 (positive control) and 

rabbit IgG (negative control). Anti-IgG Dynabeads were used to capture antibody-

chromatin complexes; DNA was recovered by phenol-chloroform extraction.  

In order to determine if ChIP had been successful, ChIP-isolated DNA was subjected 

to PCR using primers designed against the four differentiation genes. ChIP-PCR for 

H3K9me3 (Figure 5.10) showed that eluates from the positive control, H3, were 

positive in all samples and eluates from anti-rabbit IgG were negative in all samples. 

Differing amounts of PCR product for all four differentiation genes was present in 

each of the treated cell cultures; QPCR was used to quantify these changes. 

ChIP-QPCR for H3K9me3 (Figure 5.11) showed that H3K9me3 occupancy at all 

four differentiation-associated genes was highest in the TZPD Cd samples.
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Figure 5.11. ChIP-QPCR analysis for H3K9me3. Data is represented as % of input where % of 

input = (2-Ct IP/2-Ct input) x 100. Error bars indicate standard deviation of three technical 

replicates. 
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5.3.2.4 Mass spectrometry quantification of epigenetic marks on histone H3 for 

a biological repeat 

Post-translational histone modifications of histone H3 were quantified using a mass 

spectrometry approach using histones isolated from differentiating NHU cell cultures 

(Y1456) that had been treated with or without 10 µM CdCl2 for 72 hours.  

Overall the changes seen in histone modifications in the biological repeat Y1456 

cultures (Figure 5.12) were not as profound as those seen in the Y1202 cultures, with 

only minor changes seen in the methylation states of K9.  The greatest change seen 

due to cadmium treatment was the decrease in acetylation on K18 and K23 

(K18/K23ac); relative abundance decreased from 34.9% in TZPD cultures to 22.8% 

in TZPD Cd cultures. Other notable changes include increases in the combinatorial 

marks K27me1K36me2, K27me2K36me2 and K27me2K36me3. 

The two data sets for the biological replicates were combined to show the combined 

relative abundances and standard deviations against a DMSO treated non-

differentiated culture (Figure 5.13). When comparing differentiating cultures (TZPD) 

with undifferentiated (DMSO) cultures, epigenetic marks that showed differences 

outside of the standard deviation of the measurements included decreases in all three 

of the unmodified peptides (K9-17, K18-26 and K27-40), decreases in K36me2, 

K27me1K36me1 and K27me1K36me2 and increases in K9me2, K18/23ac, K27me3, 

K27me2K36me3 and K27me3K36me1. When comparing TZPD Cd with TZPD 

treated cultures, changes in epigenetic marks that were outside of the standard 

deviation of the two biological replicates included increases in K27me3, 

K27me1K36me2 and unmodified K9-17 and K18-26 peptides along with a decrease 

in K18/23ac.  
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Figure 5.12. Mass spectrometry analysis of histone modification changes on histone H3 isolated 

from TZPD-induced differentiating NHU cell cultures (Y1456) treated with or without 10 µM 

CdCl2 for 72 hours. Bar charts represent the relative abundance of the histone modifications for 

peptides covering residues 9-17 (KSTGGKAPR), 18-26 (KQLATKAAR) and 27-40 

(KSAPATGGVKKPHR). MS data provided by Tom Minshull under the supervision of Dr 

Mark Dickman (University of Sheffield). 

Unm
odifi

ed

K9m
e1

K9m
e2

K9m
e3

K9/1
4a

c

K9m
e1

, K
14

ac
0

10

20

30

40

K9-17 peptide

R
el

at
iv

e 
ab

un
da

nc
e 

%

TZPD
TZPD Cd  

Unm
odifi

ed

K18
m

e1

K18
/K

23
 ac

K18
ac

, K
23

ac
0

20

40

60

80

100

K18-26 peptide

R
el

at
iv

e 
ab

un
da

nc
e 

%

TZPD
TZPD Cd  

Unm
odifi

ed

K27
m

e1

K27
m

e2

K27
m

e3

K36
m

e2

K27
m

e1
, K

36
m

e1

K27
m

e1
, K

36
m

e2

K27
m

e1
, K

36
m

e3

K27
m

e2
, K

36
m

e1

K27
m

e2
, K

36
m

e2

K27
m

e2
, K

36
m

e3

K27
m

e3
, K

36
m

e1
0

10

20

30

40

K27-40 peptide

R
el

at
iv

e 
ab

un
da

nc
e 

%

TZPD
TZPD Cd  



  Chapter 5 
 

179 

 

 

 

Figure 5.13. Mass spectrometry analysis of histone modification changes on histone H3 isolated 

from two NHU cell lines treated ± TZPD ± 10 µM CdCl2 for 72 hours. Bar charts represent the 

relative abundance of the histone modifications for peptides covering residues 9-17 

(KSTGGKAPR), 18-26 (KQLATKAAR) and 27-40 (KSAPATGGVKKPHR). Error bars 

indicate the SD of two independent biological replicates (Y1202 and Y1456) except for those for 

DMSO, which indicate the SD of two technical replicates (Y1456). MS data provided by Tom 

Minshull under the supervision of Dr Mark Dickman (University of Sheffield). 
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5.3.2.5 Immunoblotting for histone H3 epigenetic marks 

To further explore changes in epigenetic marks on histone H3, immunoblotting 

against methylation on histone H3 lysine 9 and acetylation on histone H3 lysine 9, 18 

and 23 was performed.   

Western blots, carried out using whole cell lysates from two independent NHU cell 

lines treated with DMSO (control), TZPD or TZPD Cd, for H3K9me2, H3K18ac and 

H3K23ac showed that upon differentiation there was an increase in all three 

epigenetic marks (Figure 5.14). This was in agreement with the MS analysis. 

However cadmium treatment led to differing effects between the two cell lines. 

When TZPD and TZPD Cd treated cultures were compared, H3K9me2 was 

decreased in one cell line (Y1197) but slightly increased in the other (Y1223) and 

H3K23ac was increased in one (Y1197) and stayed the same in the other (Y1223). 

However, changes in H3K18ac were shown to be the same for both cell lines with 

expression of H3K18ac being decreased upon cadmium exposure. 

Immunoblotting was performed on whole cell lysates from TZPD-differentiating cell 

cultures, treated with either 1 or 10 µM CdCl2, in order to investigate changes in 

epigenetic marks caused by differing concentrations of cadmium. Cadmium 

treatments of 1 µM had a different effect compared to 10 µM treatments (Figure 

5.15). 1 µM treatments led to increases in all four of the epigenetic marks 

(H3K9me2, H3K9me3, H3K18ac and H3K23ac). However, 10 µM treatments led to 

decreases in methylation marks (H3K9me2 and H3K9me3) but increases in the 

acetylation marks (H3K18ac and H3K23 ac).  

Western blots were also performed on histones extracted from two independent NHU 

cell lines that had been treated with or without TZPD and CdCl2. Results for 

acetylation marks on histone H3 (Figure 5.16), showed that upon differentiation 

(Cont v TZPD), acetylation at lysine 9, 18 and 23 increased in both cell lines. When 

differentiating cultures where treated with cadmium (TZPD Cd), acetylation was 

shown to increase for all three marks in one cell line (Y1335). However, the other 

cell line (Y1445) showed decreases in two of the acetylation marks (H3K18ac and 

H3K23ac) alongside an increase in H3K9ac which was in agreement with the MS 

results. Results for methylation at lysine 9 (Figure 5.17), showed a decrease for 
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H3K9me3 for both cell lines, whereas, H3K9me2 increased in one cell line and 

decrease in the other upon cadmium exposure. 

 

 

Figure 5.14. Western blot analysis of methylation and acetylation marks on histone H3 in whole 

cell lysates from two independent NHU cell lines. Cultures were treated ± TZPD ± 10 µM CdCl2 

for 6 days.  Cultures were lysed in situ with SDS lysis buffer and then sonicated. Protein 

concentration was measured using a Bradford assay. 4-12% Bis-Tris gels were loaded with 20 

µg of protein and run at 200 V in MES running buffer. Protein was blotted on to PVDF 

membranes using the Novex apparatus for 2 hours at 30 V. Membranes were blocked in 

Odyssey blocking buffer, incubated with primary antibodies overnight at 4°C, and secondary 

antibodies for one hour at ambient temperature then scanned on the Li-Cor imaging system. 

The fluorescence of each band was quantified and normalised to the loading control histone H3 

using the Odyssey software. Numbers quantifying the percentage intensity of the bands are 

displayed below the corresponding bands.  

H3K9me2 

Total	H3 

H3K18ac 

H3K23ac 

		100															137																116																100														136																144				 

			100															171															169															100																182															170 

			100															131															146															100																101															100 

		Cont												TZPD											TZPD	Cd				 				Cont												TZPD												TZPD	Cd			 

													Y1197	 																								Y1223	  
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Figure 5.15. Western blot analysis of methylation and acetylation marks on histone H3 in whole 

cell lysates. Y1529 NHU cell cultures were treated with TZPD and either 1 or 10 µM CdCl2 for 6 

days. Cultures were lysed in situ with SDS lysis buffer and then sonicated. Protein concentration 

was measured using a Bradford assay. 4-12% Bis-Tris gels were loaded with 20 µg of protein 

and run at 200 V in MES running buffer. Protein was blotted on to PVDF membranes using the 

Novex apparatus for 2 hours at 30 V. Membranes were blocked in Odyssey blocking buffer, 

incubated with primary antibodies overnight at 4°C, and secondary antibodies for one hour at 

ambient temperature then scanned on the Li-Cor imaging system. The fluorescence of each 

band was quantified and normalised to the loading control histone H3 using the Odyssey 

software. Numbers quantifying the percentage intensity of the bands are displayed below the 

corresponding bands. 
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Figure 5.16. Western blot analysis for acetylation marks on histone H3 in acid extracted 

histones from two independent NHU cell lines. Cultures were treated ± TZPD ± 10 µM CdCl2 

for 72 hours. 4-12% Bis-Tris gels were loaded with 2.5 µg of isolated histones and run at 200 V 

in MES running buffer. Histone protein was blotted on to PVDF membranes using the Novex 

apparatus for 2 hours at 30 V. Membranes were blocked in Odyssey blocking buffer, incubated 

with primary antibodies overnight at 4°C, and secondary antibodies for one hour at ambient 

temperature then scanned on the Li-Cor imaging system. The fluorescence of each band was 

quantified and normalised to the loading control histone H3 using the Odyssey software. 

Numbers quantifying the percentage intensity of the bands are displayed below the 

corresponding bands. 

  

						Cont																Cd																				TZPD															TZPD	Cd 
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					100																			149																					151																148 

H3K9ac 
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Figure 5.17. Western blot analysis for H3K9me2 and H3K9me3 marks in acid extracted histones 

from two independent NHU cell lines. Cultures were treated ± TZPD ± 10 µM CdCl2 for 72 

hours. 4-12% Bis-Tris gels were loaded with 2.5 µg of isolated histones and run at 200 V in MES 

running buffer. Histone protein was blotted on to PVDF membranes using the Novex apparatus 

for 2 hours at 30 V. Membranes were blocked in Odyssey blocking buffer, incubated with 

primary antibodies overnight at 4°C, and secondary antibodies for one hour at ambient 

temperature then scanned on the Li-Cor imaging system. The fluorescence of each band was 

quantified and normalised to the loading control histone H3 using the Odyssey software. 

Numbers quantifying the percentage intensity of the bands are displayed below the 

corresponding bands. 
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5.4 Summary 

• Proliferative NHU cultures 

Proliferative NHU cultures showed a decrease in global levels of histone acetylation 

on H2A lysine 5, H3 lysine 9 and 14 and H4 lysine 8 upon cadmium treatment. 

However histone methylation varied depending on cadmium concentration; 

H3K4me3 increased at low doses of cadmium, as did H3K27me3 but both marks 

showed a slight decrease when treated with 10 µM CdCl2. Global H4K20me3 was 

shown to decrease with increasing concentrations of cadmium. 

• Differentiated NHU Cultures 

Mass spectrometry quantification of epigenetic marks on the tail of histone H3 in 

differentiating NHU cultures showed that upon cadmium exposure the relative 

abundance of H3K9me3 increased. ChIP-QPCR results showed that H3K9me3 

occupancy for KRT13, KRT20, UPK1A and UPK2 was highest in TZPD-

differentiating cultures exposed to cadmium. 

MS data from two biological replicates showed that upon differentiation (TZPD v 

DMSO treated cultures) levels of H3K9me2, H3K18/23ac and H3K27me3 were all 

increased. The increase seen in H3K9me2 was supported by western blot analysis of 

whole cell lysates from two independent NHU cell lines. The increase in 

H3K18/23ac was supported by western blot analysis from four independent cell 

lines, two carried out using whole cell lysates and two performed on isolated 

histones.  

Upon cadmium exposure, changes in epigenetic marks that were outside of the 

standard deviation of the two biological replicates included an increase in 

H3K27me3 and a decrease in H3K18/23ac. The decrease in amounts of H3K18/23ac 

was supported by western blots analysis carried out using whole cell lysates from 

two independent NHU cell lines and histones extracted from a further independent 

cell line.  

When different concentrations of cadmium were used to treat the differentiating 

NHU cell cultures this led to differing effects on H3K9 methylation, as 1 µM CdCl2 

led to an increase in H3K9me2 and H3K9me3 whereas, 10 µM CdCl2 led to a 

decrease in these marks. 
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6 Discussion 

Mechanisms reported to be involved in cadmium carcinogenesis include induction of 

oxidative stress, aberrant gene regulation, repression of DNA repair, deregulation of 

cell proliferation and inhibition of apoptosis (reviewed by Joseph, 2009). However, 

the exact mechanism responsible for cadmium-induced carcinogenesis has not been 

identified. As cadmium is a weak mutagen, it has been proposed that epigenetic 

mechanisms could be involved in cadmium-induced carcinogenesis (Waalkes, 2003, 

Arita & Costa, 2009). Therefore cadmium carcinogenesis of human urothelial cells 

was investigated, with a focus on whether epigenetic modifications such as histone 

modifications were involved.  

Experimental results support the initial hypothesis that exposure of urothelial cells to 

cadmium leads to downregulation of tumour suppressor genes and inhibition of 

differentiation via epigenetic dysregulation of gene expression.  

The most important experimental findings were that: 

• Cadmium exposure inhibits differentiation of NHU cell cultures in vitro. 

• TSA reversed the inhibitory effect of cadmium on differentiation-associated 

genes. 

• H3K9me3 may play a role in the silencing of differentiation-associated genes 

during cadmium exposure. 

• Cadmium exposure downregulates expression of tumour suppressor genes 

p16, APC and RASSF1A. 

• Cadmium alters histone modifications leading to a more repressive chromatin 

environment.  

6.1 Exposure of urothelial cells to cadmium 

Non-toxic cadmium chloride doses were determined by the use of an alamarBlue® 

assay and observations of NHU cell cultures. Cadmium chloride was cytotoxic to 

proliferative NHU cell cultures when concentrations exceeded 10 µM. However, 

ABS/Ca2+-differentiated NHU cell cultures could still be maintained when exposed 

to 20 µM CdCl2. After initial treatments of proliferative NHU cell cultures, cultures 

in all following experiments were exposed to non-toxic cadmium chloride 

concentrations. These doses were consistent with those used in other reported studies 
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including cadmium treatments on an immortalised human urothelial cell line that was 

exposed to 1, 5 and 9 µM CdCl2 for 16 days (Sens et al., 2003).  Other epithelial cell 

lines have also been exposed to similar cadmium chloride treatment doses including 

normal human bronchial epithelial (BEAS-2B) cells (Jing et al., 2012; Person et al., 

2013). A study by Xiao et al. (2015) showed no significant change in the number of 

colonies formed by BEAS-2B cells treated with up to 10 µM cadmium compared to 

untreated cells. Additionally Chen at al. (2014) showed that there was no significant 

cytotoxicity in BEAS-2B cells after treatment with 10 µM CdCl2 for 36 hours but 20 

µM CdCl2 significantly induced cytotoxicity after 36 hours of exposure. 

It was observed that cadmium concentrations up to 20 µM did not adversely affect 

barrier function in ABS/Ca2+ differentiated cell cultures. This is consistent with a 

study examining tight junction permeability in differentiated human intestinal cells 

that found cadmium concentrations of 1 and 50 µM had no effect on TER values, 

whereas the very high concentrations (100 and 300 µM) caused time and 

concentration dependent decreases in TER (Rusanov et al., 2015).  This may be due 

to these concentrations starting to become cytotoxic to the cells.  The highest 

concentration of cadmium that ABS/Ca2+-differentiated NHU cell cultures were 

exposed to was 20 µM and although this was shown to be cytotoxic for proliferative 

NHU cell cultures this was not the case for differentiated cultures.  

Tight junctions regulate paracellular permeability (barrier function) and maintain cell 

polarity (Balda & Matter, 2008). Microarray results showed that cadmium exposure 

only had very minimal effects on gene expression of tight junction proteins. Claudin 

3 knockdown in NHU cells has been shown to inhibit the formation of a tight barrier 

in three independent cell lines (Smith et al., 2015), therefore the slight increase in 

expression of claudin 3 and 4 upon cadmium exposure may explain the observation 

from Chapter 3 where 20 µM CdCl2 treatment led to a tightening of the barrier 

compared to the control. By contrast, Schulzke et al. (2005) showed that occludin is 

not essential for barrier function in the urothelium. This may explain why even 

though occludin expression is reduced by cadmium exposure no reduction in barrier 

function was observed.  

Rusanov et al. (2015) have recently studied the effects of cadmium on the functional 

state of human intestinal cells. Differentiated human intestinal epithelial Caco-2 cells 
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were treated with cadmium chloride concentrations ranging from 1 to 300 µM. They 

observed dose-dependent changes in mRNA expression levels of proteins involved in 

the formation of TJs (claudin 4 and ZO1) and adherens junctions (E-cadherin and 

p120-catenin). Claudin 4 expression was increased with increasing doses of cadmium 

while ZO1 expression was increased by 1 and 50  µM CdCl2 but showed decreased 

expression when treated with 100 µM CdCl2. In this thesis claudin 4 was shown to be 

slightly increased upon 10 µM cadmium exposure whereas ZO1 showed minimal 

changes in expression. E-cadherin and p120-catenin expression was shown to be the 

most sensitive to cadmium in Caco-2 cells, with the greatest induction in expression 

seen with 1 µM cadmium (Rusanov et al., 2015). Cadmium has been shown to 

specifically displace calcium from E-cadherin binding sites (Prozialeck & Lamar, 

1999) and impair cell-cell adhesion in kidney epithelial cells (Prozialeck et al., 

2003). This is because Cd2+ ions have ionic radii very similar to those of Ca2+ and 

therefore can substitute for Ca2+ in protein binding sites and interfere with the 

functions of numerous Ca2+-transport and Ca2+-dependent signalling proteins 

(Beyerssmann & Hartwig, 2008). However, in this thesis no indication of 

dysregulation of gene expression of E-cadherin was observed in cadmium exposed 

differentiating NHU cell cultures as gene expression analysis performed using 

Agilent microarrays showed no changes in the expression of E-cadherin or p120-

catenin upon cadmium exposure. 

It was also observed that barrier recovery was delayed in the presence of cadmium. 

Therefore in cases where urothelial injury has occurred, the lack of a fully functional 

permeability barrier and leaky tight junctions will allow intermediate and basal 

urothelial cells and underling tissue to be exposed to cadmium and other potential 

carcinogens that may be present in urine. 

6.2 Induction of Metallothioneins 

Metallothioneins (MTs) are low molecular weight proteins containing approximately 

30% cysteine that bind transition metals with high affinity (Hamer, 1986; Andrews, 

2000). They play an important role in cellular detoxification of inorganic species by 

sequestering metal ions that are present at elevated concentrations. Each MT protein 

molecule can bind up to seven cadmium atoms where Cd2+ is tetrahedrally 

coordinated to cysteine residues (Kagi & Valle, 1960; Otvos & Armitage, 1980; 
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Boulanger et al., 1982). Transcriptional activation of MT genes is mediated by 

MTF1, a metal-responsive transcription factor which binds to metal response 

elements (MREs) located upstream of the MT gene coding sequences (Stuart et al., 

1984; Searle et al., 1985; Westin & Schaffner, 1988; Seguin & Prevost, 1988). The 

pattern of MT1/2 expression is distinct from that of MT3. MT1 and MT2 isoforms 

show a ubiquitous pattern of tissue expression and play a critical role in the 

homeostasis of essential metals ions such as Zn2+ and Cu2+ as well as in the 

detoxification of heavy metals such as cadmium. By contrast, MT3 expression is 

normally limited to neural tissues and is not metal responsive (Palmiter el al., 1992), 

but it does posses a neuronal cell growth inhibitory activity that the other MT genes 

do not (Uchida et al., 1991; Amoureux et al., 1995). Exposure to low concentrations 

of cadmium has been shown to result in a significant induction of MT genes in 

numerous cell lines and animal tissues including COS-7 (African green monkey 

kidney) cell lines (Lee et al., 2002) and adult male Wistar rats and adult male C57 

and DBA mice tissues (Misra et al., 1997). 

Metallothionein isoforms MT1 and MT2 were highly induced in NHU cell cultures 

upon cadmium exposure. This is consistent with a recent gene expression analysis of 

human hepatocarcinoma cells, performed using Affymetrix Human Gene 1.0 arrays, 

which showed that acute cadmium exposure (0.5 µM CdCl2 for 24 hours) altered the 

expression of 333 genes, with the most upregulated being MT1G, MT1F, MT1M, 

MT1B, MT1X and MT1H (Cartularo et al., 2015). 

Metallothioneins have been reported to be upregulated in bladder cancer. Sens et al. 

(2000) demonstrated that MT3 was upregulated in human bladder cancer and that 

levels of MT3 increased with increasing tumour grade as MT3 immunostaining was 

found to be high in both CIS and high-grade cancer with low to moderate staining 

observed in low-grade bladder cancer. MT3 was shown to be undetectable using 

immunohistochemical, western and RTPCR techniques in normal urothelium (Sens 

et al., 2000), this is consistent with experimental results for MT3 expression in NHU 

cell cultures. Somji et al. (2001) showed that MT1X was overexpressed in bladder 

cancer tissue compared to normal bladder tissue. Further investigation by Zhou et al. 

(2006), using an antibody that recognises both MT1 and MT2, found that there was 

no protein expression of MT1/2 in benign lesions and low-grade cancers, low 

expression in dysplastic lesions and high-grade cancers with no evidence of muscle 
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invasion, and significantly increased expression in high-grade cancers that had 

invaded the underlying matrix. Expression of MT1/2 was also determined in 

immortalised urothelial cells that had been malignantly transformed by Cd2+ and 

shown to be capable of tumour formation in nude mice. Expression of MT1/2 protein 

in the tumour heterotransplants was found to be similar to that found in high-grade 

bladder cancers.  

6.3 Epigenetic dysregulation of differentiation 

Normal human urothelium is commonly represented in vitro as immortalised cell 

lines. However, immortalised urothelial cells, such as those immortalised by the 

overexpression of human telomerase reverse transcriptase lose the potential to 

differentiate and form a functional barrier urothelium (Chapman et al., 2006; 

Georgopoulos et al., 2011). NHU cells can be induced to differentiate using two 

published methods (Cross et al., 2005; Varley et al., 2004); therefore NHU cells 

provide a relevant cell culture system to study the effect of cadmium on urothelial 

cytodifferentiation.  

The potential of NHU cells to differentiate in the presence of cadmium was assessed, 

as exposure of the urothelium to cadmium was hypothesised to cause invasive 

urothelial cancer via epigenetic dysregulation of gene expression leading to field 

changes within the urothelium characteristic of dysplasia/carcinoma in situ (loss of 

differentiation). The observation that the urothelial differentiation markers KRT13 

and KRT20 where downregulated upon cadmium exposure, whereas KRT6, KRT14, 

KRT16 and KRT17 where upregulated was consistent with previous studies 

examining cadmium transformed cell lines. Transformation of immortalised human 

urothelial cells (UROtsa) by cadmium or arsenic was shown to induce the expression 

of KRT6A mRNA and protein compared to non-transformed UROtsa cells (Somji et 

al., 2008). Immunostaining of keratin 6A in tumour heterotransplants showed focal 

staining of the tumour cells that was localised to the cytoplasm. Focal 

immunostaining was also found in some archival patient specimens of high-grade 

bladder cancer, confirming translation of the results to human bladder cancer. 

Microarray analysis on Cd2+ transformed cell lines and their respective transplants all 

had overexpression of KRT 6A, 16 and 17 mRNA and protein, which correlated with 
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the areas of urothelial tumours cells that had undergone squamous differentiation 

(Somji et al, 2011). 

The cytokeratin expression profile of differentiating NHU cell cultures exposed to 

cadmium is similar to the recently described basal subtype of muscle invasive 

bladder cancer (MIBC; Sjodahl et al., 2012; 2013; Choi et al., 2014), where basal 

MIBCs characteristically express KRT5, KRT6, KRT14 and lack KRT20 expression. 

This indicates a link between cadmium exposure and invasive urothelial carcinoma. 

Differentiation of NHU cells in vitro is known to occur via PPARγ activation (Varley 

et al., 2006) leading to the upregulation of transcription factors that play a role in 

inducing the expression of differentiation markers. FOXA1, IRF1, ELF3, GATA3, 

GRHL3 and KLF5 are known transcription factors involved in urothelial 

differentiation (Varley et al., 2009; Yu et al., 2009; Bell et al., 2011; Bock et al., 

2014). It was observed that cadmium exposure did not affect the expression of these 

transcription factors. As the transcription factors include the pioneer factor FOXA1, 

whose differential binding to chromatin sites is dependent on the distribution of H3 

lysine 4 dimethylation (Lupien et al., 2008), it was hypothesised that cadmium 

inhibits chromatin modifications associated with expression of terminal 

differentiation.  

Differentiating NHU cell cultures were treated with two epigenetic modifiers to test 

this hypothesis. The epigenetic modifier, TSA was able to reverse the cadmium-

induced down-regulation of three terminal differentiation markers whereas 5-

azacytidine, a DNA-methylation inhibitor was not. This suggests that exposure to 

cadmium affects histone modifications required for the expression of these 

differentiation-associated genes. TSA has previously been used in the treatment of 

the human bladder cancer cell line CL1207 to show that epigenetic silencing of 

chromosomal regions was due to histone modifications, as TSA treatment was 

associated with the re-expression of most genes in the silenced regions (Vallot et al., 

2010). It was found that the promoters of most genes in the silenced regions had high 

levels of the repressive marks H3K9me3 and H3K27me3. MS analysis of histone H3 

modifications in NHU cell cultures exposed to cadmium showed increased levels of 

these two marks. H3K9me3 and H3K27me3 are characteristic of silent and 

heterochromatic regions of the genome (Greer & Shi, 2012). The observation that 



  Chapter 6 
 

192 

 

H3K9me3 was increased at the nuclear periphery in cadmium exposed NHU cell 

cultures is consistent with a report that shows H3K9me3 associates with repressed 

genes at the nuclear periphery  (Towbin et al., 2012). ChIP-QPCR results showed 

that H3K9me3 occupancy was highest in TZPD-differentiating cultures exposed to 

cadmium. However, these results were generated from only one NHU cell line, 

therefore repeats using additional independent NHU cell lines are needed in order to 

draw conclusions from this data. However, these results do suggest that in cultures 

treated with cadmium, H3K9me3 may play a role in suppressing the expression of 

KRT13, KRT20, UPK1A and UPK2. This is consistent with the role that H3K9me3 

plays in the MRES phenotype identified by Vallot et al. (2011) that was found to be 

associated with muscle-invasive tumours and in particular the CIS pathway of 

tumour progression. Therefore the observation that cadmium exposure leads to 

dysregulation of differentiation and global increases in repressive marks implicates a 

link between cadmium exposure and the CIS pathway. Further studies will need to be 

carried out to address whether the inhibitory effects of cadmium on differentiation 

are sustained after cadmium is removed. 

6.4 Inhibition of tumour suppressor genes 

Cadmium is predominantly non-genotoxic (Valverde et al., 2001) and therefore may 

induce carcinogenesis via epigenetic mechanisms by altering the expression levels of 

various critical genes (reviewed by Wang et al., 2012). CIS and invasive bladder 

cancer is traditionally associated with the inactivation of tumour suppressor genes, 

including p53 (Fujimoto et al., 1992) CDKN2A (Cairns et al., 1993) RB1 (Cairns et 

al., 1991) and PTEN (Aveyard et al., 1999). Numerous other tumour suppressor 

genes have been implicated in bladder cancer including APC, RUNX3 and TSC1 

(reviewed by Knowles & Hurst, 2015).  

The tumour suppressor genes, APC, p16, RASSF1A and RUNX3 were all observed 

to be downregulated in cadmium-exposed NHU cell cultures.  

The short arm of chromosome 9 (9p) contains a single region that encodes the known 

tumour suppressor genes p16 and p14 on alternate reading frames from the 

CDKN2A locus, and p15 from the CDKN2B locus (Cairns et al., 1994; Devlin et al., 

1994; Orlow et al., 1995; Williamson et al., 1995; Berggren et al., 2003). More than 

50% of all bladder tumours show chromosome 9 deletions (Cairns et al., 1993; 
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Linnenbach et al., 1993; Tsai et al., 1990). The majority of deletions are of 

CDKN2A. p16 is a negative regulator of the retinoblastoma (Rb) pathway and p14 is 

a negative regulator of the p53 pathway. CDKN2A deletions have been associated 

with high grade and stage bladder tumours (Chapman et al., 2005) and an increased 

risk of recurrence in Ta and T1 tumours (Bartoletti et al., 2007). However, a further 

study looking at homozygous deletions of exon 1B of CDKN2A found no 

association with tumour grade and stage (Berggren de Verdier et al., 2006).  

RASSF1A is a tumour suppressor whose inactivation is implicated in the 

development of many human cancers (Dammann et al., 2001; Yan et al., 2003; 

Schagdarsurengin et al., 2003). Loss or significant reductions of RASSF1A was 

identified in 62% of bladder tumours (Lee et al., 2001). RASSF1A is believed to 

mediate microtubule stability, cell cycle progression and the induction of apoptosis 

(Amin & Banerjee, 2012). Loss of function of RASSF1A has been shown to lead to 

accelerated cell cycle progression and resistance to apoptotic signals.  

RUNX3 is one of three Runt-domain transcription factors encoded by the RUNX 

gene family. In NHU cells exposed to cadmium RUNX3 microarray analysis showed 

-2.14 fold change compared to non-exposed cell cultures (p<0.05). 

The APC gene encodes for the adenomatous polyposis coli protein, which is a 

component of the β-catenin destruction complex. The destruction complex is 

responsible for the ubiquitylation and subsequent proteasomal degradation of β-

catenin. Inactivation of APC has been associated with human cancers including 

colon cancer (Markowitz & Bertagnolli, 2009).  

Expression of APC and RASSF1A has been found to be decreased in muscle-

invasive high-grade bladder cancer compared to non-muscle invasive low-grade 

bladder cancer and normal bladder mucosa (Bilgrami et al., 2014) and reduced 

expression of RASSF1A and p16 has previously been reported during cadmium-

induced malignant transformation of human prostate cells (Benbrahim-Tallaa et al., 

2007). Overall this suggests a link between cadmium exposure and invasive bladder 

cancer as cadmium exposure leads to the downregulation of tumour suppressor genes 

that are known to be associated with the CIS pathway and invasive high-grade 

bladder cancer. Future studies should identify if tumour suppressor genes remain 

downregulated in NHU cell cultures after cadmium exposure is removed. 
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The likely mechanism behind downregulation of tumour suppressor genes in 

cadmium-exposed cells may be DNA methylation as numerous reports have shown 

an association between reduced tumour suppressor expression and DNA 

hypermethylation. Hypermethylation of the RASSF1A promoter region is probably 

the most frequently described epigenetic inactivation event in human cancers (Pfeifer 

et al., 2002; Dammann et al., 2003). DNA hypermethylation of the RASSF1A 

promoter has been shown to correlate with overexpression of DNMT3b in cadmium-

transformed prostrate epithelial cells (Benbrahim-Tallaa et al., 2007). RUNX3 

inactivation by aberrant DNA methylation has been reported in bladder tumours 

(Kim at al., 2005), with a follow-up study by Kim et al. (2008) finding that RUNX3 

methylation significantly correlated with the development of invasive tumours. APC 

promoter methylation has been significantly associated with urothelial cancer 

progression (Yates et al., 2007). Furthermore, DNA hypermethylation was detected 

in the promoter region of APC in lung tumours from workers who had been exposed 

to the metal chromium, (Ali et al., 2011). Additionally, arsenic exposure has been 

shown to cause promoter methylation of RASSF1A and p16 (Cui et al., 2006; Marsit 

et al., 2006; Chanda et al., 2006; Zhang et al. 2007). This indicates that non-

genotoxic metals may share a similar mechanism that leads to aberrant DNA 

hypermethylation. Future work could utilise 5-azacytidine to identify if DNA 

methylation is responsible for APC, p16, RASSF1A and RUNX3 downregulation in 

cadmium exposed NHU cell cultures.  

6.5 Alterations of histone modifications by cadmium 

The greatest change observed in histone modifications in proliferative NHU cell 

cultures was in histone acetylation. Three independent NHU cell lines all showed a 

reduction in global acetylation at H2AK5, H3K9/14 and H4K8. Reduced acetylation 

will lead to more compact chromatin thereby resulting in gene repression and 

silencing (Grunstein, 1997; Turner, 2000). H4K20me3 global levels were shown to 

reduce slightly upon cadmium exposure. H4K20me3 is associated with repression of 

transcription when present at promoters (Wang et al., 2008). Additionally, loss of 

H4K20me3 has been identified as a hallmark of cancer (Fraga et al., 2005). Other 

epigenetic marks studied in proliferative NHU cell cultures were the repressive mark, 

H3K27me3 and the active mark H3K4me3. H3K27me3 is associated with promoter 

regions of repressed genes whereas H3K4me3 is found in promoter regions of 
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transcriptionally-active genes (Santos-Rosa et al., 2002; Mikkelsen et al., 2007).  10 

nM and 100 nM CdCl2 exposure led to an increase in these marks while 10 µM 

CdCl2 exposure led to slight decreases. A non-linear dose response has also been 

reported in cadmium treatments of normal human bronchial epithelial (BEAS-2B) 

cells, where elevations of global H3K4me3 and H3K9me2 were less at 5 µM CdCl2 

than those at 2.5 µM CdCl2 (Xiao et al., 2015). Additionally they also found that 

cadmium led to increases in global levels of a transcriptional activating mark and a 

repressing mark, this has also been reported in cells that have been exposed to other 

non-genotoxic metals including arsenic and nickel (Zhou et al., 2008; Zhou et al., 

2009).   

The use of a mass spectrometry (MS) approach to examine histone post-translational 

changes provides an unbiased method to quantify histone modifications and also 

offers the ability to examine the combinatorial nature of histone modifications 

(Britton et al., 2012). In this thesis two independent NHU cell lines underwent 

TZ/PD-induced differentiation either in the presence of absence of cadmium. Mass 

spectrometry results from the two cell lines showed that in both cell lines 

H3K18/23ac was decreased and H3K27me3 was increased upon cadmium treatment, 

indicating that cadmium exposure led to more repressive chromatin landscape. This 

may explain why microarray analysis, from Chapter 4, showed that 588 genes were 

downregulated but only 118 genes were upregulated during cadmium exposure.  

A couple of epigenetic marks showed differential changes between the two NHU cell 

lines upon exposure to cadmium. One cell line showed a decrease in H3K9me2 

alongside an increase in H3K9me3 whereas the other showed a slight increase in 

H3K9me2. This may be due to NHU cell lines being primary cells derived from 

different donors, therefore inter-individual variation in the epigenome may be 

present. Inter-individual variability of histone modifications and DNA methylation 

has been reported in rat and human cells (Rintisch et al., 2014; Wagner et al., 2014). 

Additionally, inter-individual variation in DNA repair gene expression was found 

between six independent NHU cell lines with the authors suggesting that donor 

genotype such as polymorphisms or epigenetic mechanisms may be responsible for 

the change in expression levels (Crallan et al., 2002). In order for conclusions to be 

drawn several NHU cell lines need to be analysed. This thesis has only used NHU 

cell cultures from two donors to quantify histone modifications by MS, therefore, 
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further independent NHU cell lines would need to be analysed to confirm histone 

modification changes. 

The MS approach utilised in this study to quantify post-translational histone 

modifications has previously been used to identify and quantify histone 

modifications in honey bees (Dickman et al., 2013). This approach has a limitation in 

its ability to recover H3K4 peptides containing di-and tri-methyl marks; because of 

this H4K4 methylation in cadmium treated NHU cell cultures were not quantified by 

MS. Further limitations of this MS approach were that only acetylation and 

methylation on histone H3 were examined and also some of the combinatorial marks 

on lysine 9 had to be excluded from the MS analysis as they did not show reduction 

in signal in line with the dilution factor. Additional histone modifications that were 

not examined in this study include phosphorylation, ubiquitnation, sumoylation, 

citrullination and ADP-ribosylation. 

The histone modification changes observed in western blots for NHU cell cultures 

where not as great as those that have recently been reported in HepG2 and BEAS-2B 

cells upon cadmium exposure (Cartularo et al., 2015; Xiao et al., 2015). However 

these two studies also showed contrasting results as global H3K9me2 was decreased 

in HepG2 cells upon cadmium exposure, whereas in BEAS-2B cell global H3K9me2 

was increased. This may suggest that different cell types may show differential 

changes to histone modifications upon cadmium exposure. 

The expression of numerous chromatin-remodelling genes involved in modifying 

histone modifications was analysed using Aglient microarrays. Genes analysed 

included those that encode for polycomb group proteins, HP1 proteins, histone 

acetyltransferases, histone deacetylases, lysine methyltransferases and lysine 

demethylases. 

Polycomb group proteins are vital for maintenance of cell-type identity and 

differentiation by creating and maintaining repressive chromatin environments. 

Polycomb group proteins form two polycomb repressive complexes, PRC1 and 

PRC2. PRC2 is responsible for the di-and tri-methyaltion of lysine 27 of histone H3 

(H3K27me2/3) by its catalytic subunits EZH1 and EZH2. H3K27me3 is then 

recognised by the CBX component of PRC1. The ubiquitin ligase RING1 then 

monoubiquitylates lysine 119 of histone H2A (H2AK119ub) leading to chromatin 
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compaction (Margueron & Reinberg, 2011). EZH2 has also been shown to serve as a 

recruitment platform for DNA methyltransfereases, thus forming a direct link 

between histone methylation and DNA methylation at represssed promoters (Vire et 

al., 2006).  

HP1 is a family of three proteins, encoded by CBX5, CBX1 and CBX3, which are 

vital for the formation of transcriptionally inactive heterochromatin. HP1 proteins 

contain a methyl lysine binding chromodomain that binds methylated H3K9 (Jacobs 

et al., 2001) and a chromo-shadow domain that binds other HP1 proteins as well as 

numerous other interacting proteins (Lomberk et al., 2006). HP1 mediated 

heterochromatin formation occurs via the recruitment of CBX5/CBX1 by 

H3K9me2/3 which then recruits the H3K9 methyltransferase SUV39H1 (KMT1A). 

This leads to propagation of the H3K9me3 mark and HP1 down the chromosome as 

well as the binding of additional proteins such as DNA methyltransfereases leading 

to heterochromatin formation and gene silencing (Tamaru & Selker, 2001; Maison & 

Almouzni, 2004). 

Histone acetyltransferases (HATs) acetylate lysine amino acids on histone proteins 

by transferring an acetyl group from acetyl-CoA. HATs can be grouped into several 

different families based on structural and functional similarity of their catalytic 

domains. The Gcn5-related N-acetyltransferase (GNAT) family are characterized by 

four conserved motifs found within the catalytic HAT domain and the presence of a 

bromodomain (Lee & Workman, 2007). The MYST family of HATs are 

characterized by the presence of the highly conserved MYST domain composed of 

an acetyl-CoA binding motif and a zinc finger (Avvakumov & Cote, 2007). The 

p300/CBP HATs have larger HAT domain than those present in the GNAT and 

MYST families, they also contain a bromodomain and three cysteine/histidine rich 

domains.  

Histone deacetylases (HDACs) remove acetyl groups from lysine amino acids. 

HDACs are divided into four classes based on function and DNA sequence 

similarity. Class I, II and IV HDACs (HDAC1-11) all contain a zinc dependent 

active site. 

Lysine methyltransferases (KMTs) catalyse mono-, di- or tri-methylation by 

transfering one, two or three methyl groups from S-adenosyl-L-methionine to the ε-
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amino group of a lysine residue. All KMTs contain a conserved SET domain 

possessing the enzymatic activity except for KMT4/DOTIL (Qian & Zhou, 2006). 

Most KMTs also contain a defined protein domain or homologous sequence that is 

used to classify KMTs into distinct families (Aravind et al., 2011). 

Two evolutionarily conserved families of histone demethylases, which utilise 

different reaction mechanisms to establish demethylation have been identified: LSD 

demethylases and Jumonji (JmjC) domain demethylases (Shi et al., 2004; Tsukada et 

al., 2006). Lysine demethylases (KDMs) are now classifed based on new 

nomenclature into several distinct groups based on their substrate specificities and 

protein domain organisation (Allis et al., 2007).    

No significant changes in the expression of chromatin remodelling genes responsible 

for the reported histone modification changes were observed except for KDM1B. 

Cadmium has previously been shown to decrease H3 autophosphorylation in vitro by 

inhibition of the human vaccinia-related kinase VRK1/2 (Barcia-Sanjurjo et al., 

2013); this study is one example of how cadmium exposure can impact histone 

modifications via inhibition of histone modifying enzymes without affecting 

expression of these enzymes. A more recent study has also reported histone 

modification changes that occurred due to cadmium inhibiting the activity rather than 

modulating the protein levels of two lysine demethylases, KDM5A and KDM3A 

(Xiao et al., 2015). Cd2+ ions have an analogous electron configuration with Zn2+ and 

despite having a larger radius (0.95 versus 0.74 Å), Cd2+ can often substitute for Zn2+ 

in zinc-dependent enzymes and disturb or abolish the biochemical functions of these 

proteins (Beyersmann, 1995; Nieboer et al., 1999; Hartwig, 2001). This may be a 

possible mechanism affecting chromatin remodelling proteins as many epigenetic 

enzymes bind zinc including class I, II and IV histone deacetylases and various 

histone acetyltransferases, lysine methyltransferases and lysine demethylases.  

A two fold decrease in expression of KDM1B was observed upon cadmium 

exposure. However, upon TSA treatment this decrease in expression was reversed. 

KDM1B/LSD2 is a demethylase that can remove mono- and di-methyl but not tri-

methyl groups from H3K4 (Karytinos et al., 2009).  By contrast to its homologue 

KDM1A/LSD1, which functions at promoters, KDM1B removes intragenic H3K4 

methylation (Fang et al., 2010). Changes in the epigenetic marks H3K4me1 and 
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H3K4me2 were not investigated in this thesis, therefore future work could include 

the examination of H3K4me1 and H4K4me2 changes in cadmium exposed cells as 

well as investigating histone modification positioning at either promoter or intragenic 

regions. 

Future studies may consider: 

• Investigating whether histone modification changes persist in NHU cell 

cultures through multiple generations after removal of cadmium from the 

medium. In the recently published study by Cartularo and colleagues (2015) 

cadmium chloride was removed from the cell culture media and HepG2 cells 

were then cultured for a further 72 hours in order to see if epigenetic changes 

caused by cadmium exposure persisted through at least three generations. It 

was found that histone H3 and H4 pan acetylation levels remained 

diminished, but not to the levels seen directly following treatment. Globally 

reduced levels of H4K16ac and H3K9me2 also remained diminished after 72 

hours.  

• Utilising in vitro assays in order to examine whether cadmium affects the 

activity of chromatin remodelling proteins. As it is has been proposed that 

cadmium may be affecting histone post-translational modifications during 

urothelial differentiation by modifying the activity of chromatin remodelling 

enzymes by substituting for zinc in zinc-dependent enzymes.  

6.6 Cadmium molecular mechanism 

As discussed above some of the effects of cadmium are thought to arise due to 

disruption of zinc-dependent processes, due to the structural and physical similarities 

between zinc and cadmium ions (Waalkes, 2003). Cadmium is believed to compete 

with zinc for a multitude of important binding sites within biomolecules, including 

sites important in gene regulation or enzymatic activity. This is supported by a study 

by Takiguchi and colleagues (2003) that showed that cadmium may inhibit DNMT 

activity by interacting with the DNA binding site, a zinc-binding domain. Cadmium 

ions exert high affinity towards SH groups, therefore potential targets are zinc finger 

proteins. Zinc finger proteins are a family of proteins where zinc is complexed 

through four cysteine and/or histidine residues to form a zinc finger domain. Zinc 

finger domains are mainly involved in DNA binding but can also be involved in 
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protein-protein interactions. Zinc replacement by cadmium in different eukaryotic 

zinc fingers has been studied with particular attention to the modulation of DNA 

binding activity, as cadmium substitution can lead to improper folding and structural 

rearrangement affecting the position of side chains involved in DNA recognition  

(Petering et al., 2000; Huang et al., 2004; Malgieri et al., 2011).   

Kothinti el al. (2010) have reported that cadmium inhibited the DNA binding affinity 

of the transcription factor Sp1 by replacing zinc in its zinc finger DNA binding 

domain. Therefore it is possible that cadmium is substituting for zinc in some of the 

transcription factors involved in urothelial differentiation and affecting their ability 

to bind DNA, as their expression at mRNA level is still upregulated but their 

downstream targets are not. Urothelial transcription factors that contain zinc fingers 

include GATA3 and KLF5.  

SOX9 is a transcription factor that is upregulated in basal and intermediate urothelial 

cells in response to injury and has been shown to be induced in CIS and invasive 

bladder tumours as well as many other types of cancer (Dong et al., 2004; Jo et al., 

2014). SOX9 induction in urothelial carcinoma cell lines has been shown to occur 

through ligand-stimulated activation of EGFR and subsequent MAPK pathway 

activation (Ling et al., 2011). SOX9 was expressed in proliferative NHU cell cultures 

and downregulated upon differentiation by PPARγ activation. Panza et al. (2013) 

also found that PPARγ activation by a synthetic agonist for PPARγ (rosiglitazone) 

led to reduced expression of SOX9 mRNA in two colon cancer cell lines (CaCo2 and 

HT-29). When cadmium was present during urothelial cell differentiation SOX9 

failed to downregulate. As SOX9 transcript failed to downregulate in the presence of 

cadmium it could be hypothesised that SOX9 may be inhibiting urothelial 

cytodifferentiation by promoting a proliferative phenotype. SOX9 protein expression 

was visualised by immunofluorescence microscopy. Decreased levels of SOX9 

within nuclei were observed upon differentiation. This was consistent with CaCo2 

cells that had been treated with rosiglitazone that also showed decreased levels of 

SOX9 staining within nuclei (Panza et al., 2013). Further investigation using 

immunoblotting techniques will need to be performed in order to fully characterise 

SOX9 protein expression changes upon cadmium exposure, with further study 

needed to investigate if SOX9 plays a role in the inhibition of urothelial 

differentiation and cadmium carcinogenesis. 
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CTCF is a highly conserved zinc finger protein involved in many cellular processes 

including transcriptional regulation, insulator activity and regulation of chromatin 

architecture (Phillips & Corces, 2009). Recently, Jose et al (2014) have shown that 

nickel, a non-genotoxic metal carcinogen, disrupted H3K9me2 domains, resulting in 

the spreading of H3K9me2 into active regions, which led to gene silencing in these 

regions. They found reduced CTCF binding at these sites, suggesting that a loss of 

CTCF-mediated insulation function maybe a potential reason for H3K9me2 domain 

disruption and spreading. Nickel, like cadmium, has also been linked with disrupting 

the structure and function of zinc finger domains of several transcription factors and 

enzymes leading to inhibition of DNA binding and alteration of DNA-binding 

specificity (Asmuss et al., 2000; Hartwig, 2001; Bal et al., 2003). Results from our 

laboratory show that greater amounts of CTCF are extracted in cadmium exposed 

cells following cytoskeletal salt extraction. This indicates that CTCF binding is 

weaker or reduced in cadmium exposed cells compared to control, suggesting that 

the mechanism of gene silencing described by Jose et al. may be present in NHU cell 

cultures exposed to cadmium. 

The hypothesis that cadmium competes with zinc is supported by a recent study that 

found that cadmium exposure (10 µM CdCl2) of HepG2 cells for 24 hours led to a 

large increase (93%) in intracellular zinc with cadmium displacing zinc from the zinc 

proteome (Urani et al., 2015). The study also reported the upregulation of the zinc 

transporter SLC30A1; this is in agreement with the upregulation of three zinc 

transporters (SLC30A1, SLC30A2 and SLC30A3) observed in differentiating NHU 

cell cultures exposed to cadmium. The SLC30 family of zinc transporters transport 

zinc and/or other metal ions from the cytoplasm into the lumen of intracellular 

organelles or to the outside of the cell (Palmiter & Huang, 2004). Therefore this 

upregulation of zinc transporters may be a way of regulating zinc homeostasis in 

NHU and HepG2 cell cultures by transporting excess Zn2+ ions out of the cytoplasm. 

Zinc transporters have also been implicated in the transport of Cd2+ into cells. The 

ZIP family of zinc transporters (SLC39) are responsible for the transport of zinc from 

the extracellular space or organellar lumen into the cytoplasm (Eide, 2004). ZIP8 

(SLC39A8) and ZIP14 (SLC39A14) transporters have been shown to be responsible 

for Cd2+ transport in kidney, intestine and testis (Dalton et al., 2005; Girijashanker et 

al., 2008; Liu et al., 2008; He et al., 2009). Ajjimaporn et al. (2012) have shown that 
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ZIP8 is expressed in normal urothelium. Additional candidates for the transport of 

cadmium into cells include the Fe2+/H+ cotransporter divalent metal transporter 1 

(DMT/SLC11A2; Gunshin et al., 1997; Bannon et al., 2003), TRPM7 ion channel 

(Monteilh-Zoller et al., 2003) and CaV3.1 T-type Ca2+ channels (Lacinova et al., 

2000, Diaz et al., 2005). Future studies examining NHU cell cultures for ZIP zinc 

transporters and other candidates proposed in cadmium transport would give insights 

into how cadmium is transported across the urothelial barrier and into urothelial 

cells. 

6.7 Conclusions  

Cadmium exposure changed the epigenome of NHU cells, leading to a more 

repressive chromatin landscape as evidenced by an increase in repressive marks such 

as H3K9me3 and H327me3 and a decrease in activation-associated acetylation marks 

including H3K18/23ac. Enzyme-catalysed post-translational modification of histones 

plays an important role in transcriptional processes. Disruption of the balance of 

histone modifications in cadmium-exposed cells could affect the normal expression 

of genes and contribute to cadmium carcinogenesis. Preliminary evidence supports a 

role for H3K9me3 inhibiting the expression of four representative differentiation-

associated genes in NHU cell cultures exposed to cadmium. It was also found that 

cadmium exposure led to the downregulation of tumour suppressor genes p16, 

RASSF1A, APC and RUNX3. The inactivation of these tumour suppressor genes has 

previously been implicated in CIS and MIBC. Taken together, these observations 

provide evidence supporting the hypothesis that cadmium exposure gives rise to 

invasive urothelial cancers via epigenetic dysregulation of gene expression leading to 

field changes within the urothelium characteristic of dysplasia/carcinoma in situ. 

Additionally, cadmium exposure may play a role in bladder cancers caused by 

tobacco smoke, arylamines and polycyclic aromatic amines (Figure 6.1). Several 

studies have shown that cadmium inhibits DNA repair processes (Wieland et al., 

2009; Viau et al., 2008, Schwerdtle et al., 2010; Zhou et al., 2012). A deficiency in 

DNA repair allows more DNA damages to remain in cells causing an increase in the 

frequency of mutations and eventually leading to cancer progression.   
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Figure 6.1. Hypothesis for the role of cadmium exposure in bladder cancer. 

 

Cadmium is a complex carcinogen and the mechanisms involved in cadmium 

carcinogenesis are multifactorial. The overall effect of cadmium is likely due to a 

coherence of several mechanisms. Future studies should investigate the heritability of 

epigenetic marks and correlate them to heritable gene expression patterns. 

Additionally, studies into whether changes occur in the promoter or regulatory 

regions of dysregulated genes will provide further insight into the epigenetic 

mechanisms involved in cadmium-induced carcinogenesis. 
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7 Appendices 

7.1 Appendix 1: List of Suppliers 

Supplier Contact details  

Abcam www.abcam.com 

Abnova www.abnova.com 

Active Motif www.activemotif.com 

Agilent Technologies www.agilent.com 

Ambion www.ambion.com 

Applied Biosystems (ABI) www.appliedbiosystems.com 

Axygen www.axygen.com 

BD Biosciences www.bdbiosciences.com 

Bioline www.bioline.com 

Bio-Rad www.bio-rad.com 

Bruker Daltonics www.bruker.com 

CA Hendley www.hendley-essex.com 

Calbiochem www.calbiochem.com 

Cambridge Bioscience www.bioscience.co.uk 

CE Instruments www.ceinstruments.co.uk 

Cell Path www.cellpath.co.uk 

Cell Signalling www.neb.uk.com 

Clontech www.clontec.com 

Dako www.dako.com 
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Diagenode www.diagenode.com 

Dionex www.dionex.com 

Dynex www.dynextechnologies.com 

ELGA www.elgalabwater.com 

Fisher Scientific www.fisher.co.uk 

Gibco www.thermofisher.com/uk/en 

Greiner www.greinerbioone.com 

Invitrogen www.invitrogen.com 

Leica www.leicabiosystems.com 

Li-Cor Biosciences www.licor.com 

Life Technologies www.thermofisher.com/uk/en 

Millipore www.millipore.com 

Molecular Probes www.invitrogen.com 

MSE www.mseuk.co.uk 

MWG Eurofins www.eurofinsgenomics.eu 

Nanoprop www.nanodrop.com 

New England Biolabs (NEB) www.neb.uk.com 

Nikon www.nikon.com 

Novex www.thermofisher.com/uk/en 

Nunc www.nalgenunc.com 

Olympus www.olympus.co.uk 

Philip Harris www.philipharris.co.uk 
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Pierce www.thermofisher.com/uk/en 

Promega www.promega.com 

Qiagen www.quigen.com 

R&D Systems www.rndsystems.com 

RA Lamb www.ralamb.co.uk 

Rockland www.rockland-inc.com 

Santa Cruz www.scbt.com 

Serotech www.abdserotec.com 

Sigma www.sigmaaldrich.com 

SLS www.scientificlabs.eu/ 

Star Lab www.starlab-group.com/en/ 

Sarstedt www.sarstedt.com 

Seralab www.seralab.co.uk 

Syngene www.syngene.com 

Thermo Scientific www.thermoscientific.com 

TissueGnostics www.tissuegnostics.com 

Tocris www.tocris.com 

Vector Labs www.vectorlabs.com 

VWR www.vwr.com 

World Precision Instruments www.wpiinc.com 

Zeiss www.zeiss.co.uk 
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7.2 Appendix 2: Buffers and Solutions 

General Solutions 

Phosphate Buffered Saline (PBS):  

137mM NaCl, 2.7mM KCl, 3.2mM Na2HPO4 and 147mM KH2PO4, pH 7.2 in dH2O 

PBS was prepared from tablets (Sigma) and autoclaved 

 

Cell Culture Solutions 

Cholera Toxin:  

Diluted to 30µg/ml in KSFM.  Diluted 1:1000 in KSFM for use. 

Collagenase IV: 

Diluted to 10,000 U in 100 mL Hank’s Balanced Salt Solution (with Ca2+ and Mg2+ 

ions), 10 mM HEPES 

Stripper Medium: 

500 mL Hank’s Balanced Salt Solution (without Ca2+ and Mg2+ ions), 10 mM 

HEPES, 500,000 kallikrein inactivating units (KIU) Trasylol and 0.1% (w/v) EDTA 

Transport Medium: 

500 mL Hank’s Balanced Salt Solution (with Ca2+ and Mg2+ ions), 10 mM HEPES 

and 500,000 (KIU) Trasylol 

10% (v/v) Formalin in PBSc: 

100 mL 37% formalin, 900 mL PBSc (PBS containing 0.5 mM MgCl2 and 0.9 mM 

CaCl2) 

 

Immunofluorescence Solutions 

TBS for IF: 

50mM Tris-HCl (pH 7.6), 150mM NaCl, 0.1% (w/v) NaN3 and 0.1% (w/v) BSA 

Antifade: 

5% N-propyl Gallate (w/v) in 95% glycerol and 5% PBS	 � 
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Histology Solutions 

Citric acid Buffer: 

0.8g Citric Acid in 350mls dH2O, adjusted to pH 6.0 with NaOH 

TBS Buffer for IHC: 

0.05M Tris-HCl, 0.15M NaCl, pH 7.6 in dH2O 

Haematoxylin:  

0.3g NaI, 1g Citric acid, 50g Chloral hydrate, 50g Aluminium potassium sulphate 

added sequentially to 850ml dH2O, 20ml ethanol containing 15% (w/v) 

haematoxylin, and 120ml glycerol. 

Scott’s Tap Water: 

2% (w/v) MgSO4 and 0.35% (w/v) NaHCO3 in dH2O 

 

Western Blotting Buffers 

2x SDS Sample Buffer: 

20% (v/v) glycerol, 2% (w/v) SDS, 125 mM Tris- HCl (pH 6.8), 200 mM NaF, 0.1 

mM Na3PO4, 33 mM Na3PO4, with freshly added 13 mM DTT and 1:100 dilution 

of protease inhibitor cocktail (Sigma Aldrich) 

Transfer Buffer: 

20 % (v/v) methanol and 80 % (v/v) H2O with final concentrations of 12 mM Tris 

and 96 mM glycine 

Tris Buffered Saline (TBS): 

10 mM Tris (adjusted to pH 7.4 with HCl) and 140 mM NaCl in H2O  

TBS – Tween 20: 

0.1% Tween-20, 10 mM Tris (adjusted to pH 7.4 with HCl) and 140 mM NaCl in 

H2O  
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Chromatin Immunoprecipitation Buffers 

Swelling Buffer: 

5mM PIPES (pH8) with 85 mM KCl in H2O  

TE buffer: 

10 mM Tris-HCl (pH 8.0), 10 mM EDTA 

Radioimmunoprecipitation assay (RIPA) Buffer: 

10 mM Tris-HCl (pH 7.5), 140 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 1% (v/v) 

Triton X-100 and 0.1% (w/v) SDS 

RIPA-ChIP Buffer: 

10 mM Tris-HCl (pH 7.5), 140 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 1% (v/v) 

Triton X-100, 0.1% (w/v) SDS with freshly added 1 mM PMSF and 1:100 dilution of 

protease inhibitor cocktail (Sigma Aldrich) 

Elution Buffer: 

20 mM Tris-HCl (pH 7.5), 5 mM EDTA and 50 mM NaCl 

Complete Elution Buffer: 

20 mM Tris-HCl (pH 7.5), 5 mM EDTA and 50 mM NaCl with freshly added 1% 

(w/v) SDS and 50 µg/mL proteinase K  

 

Acid- Extraction Buffers 

Hypotonic Lysis Buffer: 

10 mM Tris-HCl (pH 8.0), 1 mM KCl, 1.5 mM MgCl2, with freshly added 1 mM 

DTT, 1 mM PMSF, 1:100 dilution of protease inhibitor cocktail (Sigma Aldrich) and 

1:100 dilution of phosphatase inhibitor cocktails 2 and 3 (Sigma Aldrich) 

Coomassie Brilliant Blue Solution: 

0.1% (w/v) Brilliant Blue G-250 (BioRad), 50% methanol, 10% acetic acid in dH2O 

 

 



  Appendices 
 

210 

 

7.3 Appendix 3: Representative Western Blots 

7.3.1 β-actin 
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7.3.4 Claudin 4 

 

7.3.5 Claudin 5 

 

7.3.6 H2AK5ac 
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7.3.7 H3 

 

7.3.8 H3K4me3 

 

7.3.9 H3K9me2 
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7.3.10 H3K9me3 

 

7.3.11 H3K9ac 

 

7.3.12 H3K9/14ac 
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7.3.13 H3K18ac 

 

7.3.14 H3K23ac 

 

7.3.15 H3K27me3 
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7.3.16 H4K8ac 

 

7.3.17 H4K20me3 

 

7.3.18 p16 
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7.4 Appendix 4 

7.4.1 Genes upregulated by >2-fold change during cadmium exposure (p > 

0.05) 

ADCK3 HERC2 NCF2 
ALDH3A1 HMOX1 NOX1 
ANKRD35 HRG NTNG2 
AQP7P1 HSPB8 OTUB2 
ARHGAP6 IGSF3 PALD1 
ARID5B ITGB7 PAMR1 
ASB2 KRT14 PART1 
ATP6V0A1 KRT16 PCDHGB2 
BIRC7 KRT16P2 PLA2G4C 
C17orf51 KRT42P PLAC1 
C21orf37 KRTAP10-5 PPAP2C 
C3orf35 LHFPL1 PRDM15 
C9orf172 LINC00633 PTGDR 
CCDC172 LINC01121 PTPRG 
CCDC178 LOC100505874 RABGEF1 
CCK LOC100506379 RBM14 
CCNB3 LOC100506790 RBP7 
CD164L2 LOC100506795 RDH12 
CDHR2 LOC101927789 RNF32 
CLEC4GP1 LOC101929553 S100A12 
CRABP2 LOC284561 S100A8 
CST7 LOC285629 SECISBP2 
CTSG LOC344887 SLC30A1 
CYP2A7P1 LRP1B SLC6A2 
CYP4Z1 MAPK8IP2 SLC9B1 
DAB2 MEIOB SRD5A2 
DDIT4L METTL10 SSTR5 
EEF1A2 MGC21881 STXBP5-AS1 
EMILIN2 MT1A TBC1D21 
ERC2 MT1B TMEM71 
FLJ13744 MT1E TREM1 
FLJ32255 MT1F TRIL 
FOXL2 MT1G TSPAN7 
FPGT-TNNI3K MT1H TTC24 
FXYD2 MT1HL1 TTYH2 
GATM MT1IP UCHL1 
GIMAP6 MT1L UGT2B15 
GNAT2 MT1M USP44 
GPR63 MT1X  
GPR78 MT2A  
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7.4.2 Genes downregulated by >2-fold change during cadmium exposure (p > 

0.05) 

A4GNT C20orf166-AS1 CMTM5 ENDOU 
ABAT C20orf201 CNNM1 ENTHD1 
ABCC12 C3orf49 CNTLN ENTPD1 
ABL2 C4BPB COG6 EPHA10 
ACAP1 C5AR2 COL6A3 EPHA8 
ACBD7 C5orf48 COL6A4P1 ERCC5 
ACP1 C5orf64 CPNE2 ERMN 
ACSM4 C7orf13 CREB3L3 EXOG 
ADAM2 C7orf33 CRHBP F7 
ADAM5 C7orf69 CRYBA1 FAM159B 
ADH1A C8orf44-SGK3 CSN2 FAM19A3 
ADRA1D C9orf169 CSN3 FAM205B 
AICDA CA6 CT64 FAM230C 
ANKRD20A9P CACNA2D2 CXorf21 FAM90A7P 
ANKRD62 CALB1 CXorf27 FAM92B 
APOL5 CALML3-AS1 CXorf38 FAM95B1 
AQP4 CARD8 CYP26C1 FAM99A 
AQP6 CASC15 CYP4Z2P FBN1 
ARAP1-AS2 CCDC147 DAB1 FCAMR 
ARMCX4 CCDC64 DAW1 FCN1 
ASB11 CD177 DBF4 FCN2 
ASPM CD1C DCAF4L2 FCRL1 
AZU1 CD200R1 DCD FCRL5 
BARHL2 CD247 DCLK2 FENDRR 
BCOR CD27-AS1 DEC1 FGF18 
BLK CD300LD DEFA3 FGF5 
BNC2 CD34 DEFB110 FGF8 
BOLL CD4 DEFB127 FGG 
BPI CDH26 DEFB130 FHL5 
BRIP1 CDH6 DGKB FLCN 
BRWD1-AS1 CDKN2B-AS1 DHDDS FLJ35282 
BSX CDRT15 DLX1 FLJ37786 
C10orf53 CENPF DMRTA2 FLJ43903 
C10orf68 CENPW DNTT FLJ45482 
C10orf71-AS1 CHGB DOCK2 FLJ46284 
C12orf39 CHRNA3 DOK7 FLT1 
C12orf42 CHRNB2 DSCR8 FMNL3 
C14orf64 CKLF DTX1 FNDC1 
C15orf54 CLDN22 DYNAP FOXP2 
C17orf74 CLEC2L EBF1 FP2234 
C1orf111 CLEC4M EBF2 FRG2 
C1orf227 CMA1 ECEL1P2 FXYD4 
C1orf61 CMAHP EML5 GALNT15 
C1QL1 CMKLR1 EN1 GAS2L3 
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GATA1 ITGA4 LINC00669 LOC100507308 
GATA3-AS1 IZUMO3 LINC00684 LOC100507353 
GFRAL JPH3 LINC00689 LOC100507431 
GGNBP1 KCNA6 LINC00698 LOC100507477 
GIGYF2 KCNJ9 LINC00858 LOC100507642 
GIMAP4 KCNQ5 LINC00881 LOC100653005 
GNAT3 KCTD21-AS1 LINC00893 LOC100996267 
GNG3 KDM1B LINC00894 LOC100996345 
GOLGA6A KIAA1211 LINC00911 LOC100996490 
GPER1 KIRREL3-AS3 LINC00944 LOC100996701 
GPR146 KLF6 LINC00950 LOC101805491 
GPR179 KLK13 LINC01060 LOC101927165 
GPR61 KLK14 LINC01088 LOC101927367 
GPRIN1 KRT40 LINC01094 LOC101927381 
GPX6 KRT8 LINC01095 LOC101927668 
GRAMD1B LAMB4 LINC01102 LOC101928058 
GREB1 LDB2 LINGO1 LOC101928105 
GRIN2A LENG8 LIX1 LOC101928423 
GTSE1 LGI4 LOC100127972 LOC101928895 
GYG2P1 LHFPL3-AS1 LOC100128164 LOC101928956 
HAVCR2 LIG4 LOC100128787 LOC101929125 
HCG9 LINC00167 LOC100128840 LOC101929154 
HCN2 LINC00200 LOC100129083 LOC101929416 
HFE LINC00208 LOC100129373 LOC101929578 
HGC6.3 LINC00222 LOC100129393 LOC149351 
HIST1H1D LINC00277 LOC100129917 LOC151475 
HIST1H4B LINC00278 LOC100130071 LOC283177 
HIST1H4D LINC00299 LOC100130433 LOC283674 
HIVEP3 LINC00307 LOC100130954 LOC284688 
HLA-B LINC00320 LOC100131510 LOC284751 
HLX LINC00327 LOC100131581 LOC284933 
HMBOX1 LINC00328 LOC100131756 LOC284950 
HMMR LINC00348 LOC100131894 LOC285000 
HOXC12 LINC00403 LOC100132005 LOC285043 
HPD LINC00446 LOC100132014 LOC285762 
HSFY1P1 LINC00471 LOC100132069 LOC340515 
HSPBAP1 LINC00473 LOC100133145 LOC388282 
IDO2 LINC00478 LOC100133315 LOC400655 
IFNA21 LINC00494 LOC100270679 LOC440416 
IGFBP7-AS1 LINC00506 LOC100288102 LOC441204 
IGSF1 LINC00544 LOC100288728 LOC441666 
IGSF9B LINC00582 LOC100289361 LOC441728 
IKZF1 LINC00599 LOC100291323 LOC643037 
IL12RB2 LINC00615 LOC100506272 LOC644852 
IL20 LINC00622 LOC100506674 LOC645427 
IL21R LINC00643 LOC100506792 LOC646736 
IL2RA LINC00659 LOC100506827 LOC650226 
IMPG1 LINC00661 LOC100506837 LOC727710 
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LOC728095 NDUFA6-AS1 PSIP1 SNORD116-13 
LOC728715 NECAB1 PTF1A SNORD42A 
LOC729506 NEK3 PTGER3 SNORD59B 
LOC729860 NKX2-2 PTGFR SNORD84 
LOC729930 NPPC PTPN5 SNORD97 
LOC731779 NPSR1-AS1 QRFP SORCS1 
LONP2 NPW RACGAP1P SOX14 
LOXHD1 NPY2R RASGEF1A SOX30 
LOXL1 NRAP RAX SPIC 
LPPR4 NRK RBMY2EP SSMEM1 
LRFN5 NRXN1 REM1 ST8SIA6 
LRRIQ4 NSD1 RERG STC1 
LRRTM2 NUDT4 RGS6 STX1B 
LSM11 ODF3B RNA28S5 STXBP5-AS1 
LST1 OR10A4 RNF17 SULT6B1 
MAGEA4 OR10J1 RNU11 SYNGAP1 
MAGEA6 OR10K1 RPL13A SYT1 
MAML3 OR10R3P RSPH4A TBC1D29 
MAP3K19 OR10W1 RUNX3 TCEB3C 
MAPK15 OR13G1 RXFP2 TCL6 
MATN2 OR14A16 S100G TCP10 
MCHR2 OR1L3 SCARNA10 TDGF1 
MED27 OR2T4 SCARNA22 TEX11 
MEGF11 OR4C12 SCARNA9L TEX13A 
METTL21EP OR4S2 SCGB1D4 TEX26-AS1 
MEX3D OR51I1 SCN7A TGIF2LY 
MGAT4C OR51Q1 SCTR TINAG 
MGC27382 OR52B6 SEC16B TMEM114 
MIEF2 OR52J3 SHISA3 TMEM14E 
MIPEPP3 OR5D16 SIGLEC9 TMEM151B 
MIR181A1HG OR5J2 SLA2 TMEM194A 
MIRLET7DHG OR5M3 SLC17A9 TMEM262 
MMP21 OR8A1 SLC22A24 TMEM56 
MNDA OTUD7A SLC22A8 TMEM88B 
MPPED1 PIGK SLC24A4 TMPO 
MROH2A PIKFYVE SLC25A23 TNFSF11 
MROH7 PNCK SLC2A13 TNP1 
MS4A2 PNPLA1 SLC38A6 TNS1 
MS4A8 POLR2M SLC39A12 TPH2 
MSMP POM121L9P SLC9A1 TPTE2 
MTRNR2L1 POU4F3 SMDT1 TRERF1 
MUC12 PPP6R1 SMTN TRIM15 
MUC5AC PRAMEF15 SNAR-G1 TRIM61 
MUC6 PRB4 SNORA2B TRPA1 
NAIP PRDM14 SNORD113-5 TSG1 
NCAN PRKACG SNORD114-14 TSPAN16 
NDNF PRRG3 SNORD116-11 TSPEAR 
NDST3 PRX SNORD116-12 TTTY1 
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TTTY11 
UNC80 
UNC93A 
VCAM1 
VRTN 
VWA3A 
WDR33 
WDR49 
WIPF3 
WNT2 
WRAP53 
WTAP 
XKR5 
ZBTB20 
ZC3H12D 
ZC3H13 
ZEB2 
ZNF29P 
ZNF311 
ZNF316 
ZNF365 
ZNF43 
ZNF496 
ZNF705B 
ZNF732 
ZNF804A 
ZNF888 
ZYG11A 



  Appendices 
 

221 

 

7.4.3 Genes upregulated by >2-fold change by TSA (p > 0.05) 

ABL2 DNER IGSF6 LOC100996455 
ACR DNMT3B IL21R LOC101060442 
ADORA2A-AS1 DOC2B IL27 LOC101928761 
AEBP1 DPF3 INE1 LOC101929765 
AKAP4 DUX4L9 INTS1 LOC101930210 
ALX4 ECEL1 JAKMIP2 LOC284757 
ANKRD19P EIF5A2 KCNA6 LOC339442 
APBB1IP EN1 KCNN1 LOC344887 
AXIN2 ENTPD1 KCNV2 LOC388906 
BMP4 ETV1 KCTD21-AS1 LOC644277 
BMS1P20 EVX2 KIAA1161 LOC650226 
BPI F5 KRT8 LOC654841 
BPIFB4 FAM189A2 KRTAP9-1 LOC728093 
C12orf40 FAM216B LGI3 LOC728445 
C12orf42 FAM230C LIF LOC729739 
C1orf189 FAM99A LIMD2 LOC729866 
C8orf44-SGK3 FBLN2 LINC00205 LRCOL1 
CABP1 FCAMR LINC00240 LRRTM4 
CACNA1F FERMT1 LINC00244 MAPT 
CACNA2D2 FGF22 LINC00299 MNX1 
CADPS FLJ25363 LINC00307 MROH2A 
CALML5 FRMPD4 LINC00313 MS4A3 
CD3G FRY LINC00445 MSMP 
CHGA FUT10 LINC00462 MT1DP 
CLEC2A GLYATL2 LINC00478 MUC12 
CLVS2 GNAS LINC00630 MUC19 
CNTLN GNAZ LINC00840 MUC3 
COL6A4P2 GOLGA6A LINC00879 MYH11 
COMP GOLGA7B LINC00906 MYO3A 
CPA5 GPR156 LINC00908 MZB1 
CPA6 GPSM1 LINC01060 NHS 
CPNE9 GSX2 LINC01088 NMNAT2 
CRABP1 GYS2 LOC100128429 NPY2R 
CRB1 HBA2 LOC100130761 NR5A1 
CRLF1 HIST1H2APS1 LOC100131131 NR5A2 
CT60 HLA-DPB2 LOC100133612 NRARP 
CYP24A1 HRK LOC100505902 NRK 
CYP3A43 HSPA2 LOC100506351 OLAH 
DCLK2 HSPB11 LOC100507236 OR14A16 
DIO2 IFNA7 LOC100996380 OR1D5 
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OR2H1 SEPT12 WDR33  
OR51E2 SERPINA9 WFDC6  
OR52I2 SFRP1 ZBTB20-AS1  
OR52K2 SH2B2 ZFYVE28  
OR6C76 SLC24A4 ZNF29P  
OR7D4 SLC4A1   
OR8H1 SLC5A1   
OTOG SLC6A18   
OTUD7A SLCO4C1   
P2RY10 SNCB   
PADI2 SNORA39   
PCDHGA9 SNORD113-5   
PCDHGC4 SNORD114-9   
PDXK SOGA1   
PER3 SPATA25   
PHOSPHO2-KLHL23 SPDYE4   
PKN2 SPINK7   
PNKD SSX7   
PON1 STX1A   
PRMT8 STXBP5-AS1   
PROKR2 SUSD5   
PRPH SYNGAP1   
PTCH1 SYNJ2   
PTN SYT12   
PTPN5 TACR2   
PTPRVP TAS2R41   
RAB43 TCP10   
RAP1GAP TDGF1   
RIMS1 TEX35   
RNF216 TEX37   
RPL36AP33 TMEM59L   
RRN3P2 TNFRSF4   
SATL1 TNS1   
SBK1 TREM1   
SBK2 TRERF1   
SBNO2 UCMA   
SCN5A UNC80   
SCUBE1 VAX1   
SEC14L3 VCY   
SEMA6B VWA3B   
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7.4.4 Genes downregulated by >2-fold change by TSA (p > 0.05) 

ABLIM2 LOC100129516 ZC3H12D 
ACTG1 LOC100505716 ZNF577 
ADH4 LOC100506207  
ADORA3 LOC100506276  
AKT1S1 LOC100506421  
ANGPT1 LOC101927630  
ANKRD20A12P LOC101928427  
ANKRD35 LOC101930083  
APCDD1L-AS1 LOC283484  
ARMC12 LOC643406  
BOD1L2 NR2E1  
C9orf172 OR2T8  
CAPN14 OTC  
CARTPT OXCT2  
CD70 PABPC3  
CHL1 PCDHGA5  
COX8C PCDHGB2  
CRX PEG3-AS1  
CYCSP52 PIP5K1B  
CYP2A7P1 PPP1R14A  
DCAF8 PPP1R27  
FAM133B PRKCQ-AS1  
FGFBP1 PRUNE2  
FLNC PTPN11  
GBP1P1 SDCCAG8  
GIMAP7 SEMA3E  
GUCY1B3 SH3RF3  
ICMT SHANK2  
IL18RAP SLC3A1  
IL36RN SLC9B1  
KRTAP29-1 SPATA41  
LINC00112 TAGAP  
LINC00371 TBC1D21  
LINC00424 TDRG1  
LINC00617 TEX9  
LINC00683 TMEM33  
LINC00841 TRIM36  
LINC00963 TUBA3FP  
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8 Abbreviations 

The following abbreviations are used throughout the text: 

5aza 5-azacytidine (DNA methyltransferase inhibitor) 

ABS Adult bovine serum 

ABS/Ca2+ Treatment with 5% Adult bovine serum and 2 mM calcium 

AUM Asymmetric unit membrane 

bp Base pairs 

BPE Bovine pituitary extract 

BSA Bovine serum albumin 

Ca2+ Calcium 

Cd2+ Cadmium 

CdCl2 Cadmium chloride 

ChIP Chromatin Immunoprecipitation 

CIS Carcinoma in situ 

CK Cytokeratin protein 

CMF Cell multiplication factor (final cell number/initial cell number) 

DAB Diaminobenzidine 

DEPC Diethyl pyrocarbonate 

DMSO Dimethyl sulfoxide 

DNMT DNA methyltransferase 

dNTP Deoxynucleotide triphosphate 

DPBS Dulbecco’s phosphate buffered saline 

EDTA Ethylenediaminetetraacetic acid 

EGFR Epidermal growth factor receptor 

EZH2 Enhancer of zeste homolog 2 

FBS Fetal bovine serum 

GAPDH Glyceraldehyde 3-phosphate dehydrogenase 

HAT Histone acetyltransferase 

HBSS Hank’s balanced salt solution 

HDAC Histone deacetylase  

HPLC High performance liquid chromatography 

IEGs Immediate early response genes 
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IF Immunofluorescence 

IHC Immunohistochemistry 

kDa Kilo Dalton 

KDM Lysine demethylase 

KMT Lysine methyltransferase 

KRT Cytokeratin gene 

KSFM(c) Keratinocyte serum free medium (complete) 

LDS Lithium dodecyl sulfate 

lncRNA Long non-coding RNA 

MAPK Mitogen-activated protein kinase 

MBD Methyl-CpG-binding domain 

MIBC Muscle invasive bladder cancer 

miRNA Micro RNA 

MRE Metal response element 

MRES Multiple regional epigenetic silencing 

MS Mass spectrometry 

MT Metallothionein 

MTF1 Metal regulatory transcription factor 1 

NGFR Nerve growth factor receptor 

NHU Normal human urothelial 

NMIBC Non-muscle invasive bladder cancer 

PBS Phosphate buffered saline 

PD PD153035 (EGFR inhibitor) 

PPAR Peroxisome proliferator activated receptor 

PPRE Peroxisome proliferator response element 

PRC1 Polycomb repressive complex 1 

PRC2 Polycomb repressive complex 2 

PVDF Polyvinyldifluoride 

RT-QPCR Reverse transcriptase - quantitative polymerase chain reaction 

SAM S-adenosyl methionine 

SDS Sodium dodecyl sulfate 

Shh Sonic hedgehog 

TBS Tris buffered saline 



  Abbreviations 
 

226 

 

TER Transepithelial electrical resistance 

TJ Tight junction 

TSA Trichostatin A (HDAC inhibitor)  

TZ Troglitazone (PPARγ agonist) 

TZ/PD Treatment with 1 µM troglitazone and 1 µM PD153035 

UC Urothelial carcimona 

UPK Uroplakin 

Zn2+ Zinc 

ZO Zona occludens 
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