Bootstrapping Structure into Language: Alignment-Based Learning

by

Menno M. van Zaanen

Submitted in accordance with the requirements for the degree of Doctor of Philosophy.

The University of Leeds
School of Computing

September 2001

The candidate confirms that the work submitted is his own and the appropriate credit has been given where reference has been made to the work of others.
Abstract

... refined and abstract meanings largely grow out of more concrete meanings.

— Bloomfield (1933)

This thesis introduces a new unsupervised learning framework, called Alignment-Based Learning, which is based on the alignment of sentences and Harris’s (1951) notion of substitutability. Instances of the framework can be applied to an untagged, unstructured corpus of natural language sentences, resulting in a labelled, bracketed version of that corpus.

Firstly, the framework aligns all sentences in the corpus in pairs, resulting in a partition of the sentences consisting of parts of the sentences that are equal in both sentences and parts that are unequal. Unequal parts of sentences can be seen as being substitutable for each other, since substituting one unequal part for the other results in another valid sentence. The unequal parts of the sentences are thus considered to be possible (possibly overlapping) constituents, called hypotheses.

Secondly, the selection learning phase considers all hypotheses found by the alignment learning phase and selects the best of these. The hypotheses are selected based on the order in which they were found, or based on a probabilistic function.

The framework can be extended with a grammar extraction phase. This extended framework is called parseABL. Instead of returning a structured version of the unstructured input corpus, like the ABL system, this system also returns a stochastic context-free or tree substitution grammar.

Different instances of the framework have been tested on the English ATIS corpus, the Dutch OVIS corpus and the Wall Street Journal corpus. One of the interesting results, apart from the encouraging numerical results, is that all instances can (and do) learn recursive structures.
Acknowledgements

“Yacc” owes much to a most stimulating collection of users, who have goaded me beyond my inclination, and frequently beyond my ability in their endless search for “one more feature.” Their irritating unwillingness to learn how to do things my way has usually led to my doing things their way; most of the time, they have been right.

— Johnson (1979, p. 376)

There are many people who helped me (in many different ways) to start, continue and finish this thesis and the research described in it. Rens Bod, my supervisor for this project, has been of great help, revising my writing, solving problems when I was stuck and giving me back my enthusiasm for the research when times were difficult (even though he might not even have noticed doing it).

Especially in the beginning of this research I have had discussions with many people, especially the DOP group, consisting of Arjen Poutsma and Lars Hoogweg among others, but also Mila Groot, Rob Freeman, Alexander Clark, and Gerardo Sierra (who pointed the Edit-Distance algorithm out to me) need mentioning.

People at three universities have allowed me to work there. First of all, the University of Leeds, where Dan Black, Vincent Devin, and John Elliott made me feel welcome every time. Eric Atwell, my advisor, was always interested in my current research and could point out some interesting features and applications I had never even thought about. At the faculty of Humanities at the University of Amsterdam, Renko Scha initially showed me the use of Data-Oriented Parsing in error correction (where it all started) and Khalil Sima’an helped me with his efficient DOP parser. With Pieter Adriaans and Marco Vervoort (who generated the EMILE results for me) from the faculty of Science I had many interesting discussions when
comparing their EMILE system to ABL. People at the University of Groningen, especially Wouter Jansen (who allowed me to use his workspace), Wilbert Heeringa, Roberto Bolognesi (who both had to cope with me working in their room), and John Nerbonne (who helped me with many things) made life a lot easier.

Whenever I needed programming help or computer power, I could ask Lo van den Berg, while Kurt Brauchli (working at the department of Pathology at the University of Basel) explained the ins and outs of DNA/RNA structures and Rogier Blokland (University of Groningen) supplied me with the Hungarian example sentences.

In the final stage of the process, Yorick Wilks of the University of Sheffield accepted the task of external examiner of this thesis. I would like to thank him for his useful comments, suggestions, and discussions.

Finally, I would like to thank my parents, who supported me throughout my life (including the years I have done this research) and Tanja Gaustad who helped me with many fruitful discussions and allowed me to spend time on my research even though it meant me spending less time with her.

I could not have done it without you all.
Declarations

How do you think he does it? I don’t know! What makes him so good?
— The Who (Tommy, Pinball Wizard)

Parts of the work presented in this thesis have been published in the following articles:

van Zaanen, 1999a

van Zaanen, 1999b

van Zaanen, 2000a

van Zaanen, 2000b

van Zaanen, 2000c

van Zaanen, 2001

van Zaanen and Adriaans, 2001a
Alignment-based learning versus EMILE: A comparison. In Proceedings of the Belgian-Dutch Conference on Artificial Intelligence (BNAIC); Amsterdam, the Netherlands. to be published.

van Zaanen and Adriaans, 2001b

van Zaanen, 2002
Contents

In which we take stock of where we are and where we are going, this being a good thing to do before continuing.
— Russell and Norvig (1995, p. 842)

1 Introduction 3

2 Learning by Alignment 5
 2.1 Goals ... 5
 2.1.1 Usefulness .. 6
 2.1.2 Minimum of information 7
 2.2 Finding constituents 9
 2.3 Multiple sentences 14
 2.4 Removing overlapping constituents 16
 2.5 Problems with the approach 16
 2.5.1 Incorrectly removing overlapping constituents 17
 2.5.2 Criticism on Harris’s notion of substitutability 18
 2.5.2.1 Chomsky’s objections to substitutability 18
 2.5.2.2 Pinker’s objections to substitutability 19

3 The ABL Framework 22
 3.1 Input ... 23
 3.2 Alignment learning 24
 3.2.1 Find the substitutable subsentences 27
 3.2.2 Insert a hypothesis in the hypothesis space 28
 3.2.3 Clustering 31
 3.3 Selection learning 32
3.4 Grammar extraction ... 33
3.4.1 Comparing grammars 34
3.4.2 Improving selection learning 34

4 Instantiating the Phases .. 36
4.1 Alignment learning instantiations 36
4.1.1 Alignment learning with edit distance 37
4.1.1.1 The edit distance algorithm 39
4.1.1.2 Default alignment learning 41
4.1.1.3 Biased alignment learning 43
4.1.2 Alignment learning with all alignments 45
4.2 Selection learning instantiations 46
4.2.1 Non-probabilistic selection learning 46
4.2.2 Probabilistic selection learning 48
4.2.2.1 The probability of a hypothesis 48
4.2.2.2 The probability of a combination of hypotheses 50
4.3 Grammar extraction instantiations 53
4.3.1 Extracting a stochastic context-free grammar 53
4.3.2 Extracting a stochastic tree substitution grammar 54

5 Empirical Results .. 57
5.1 Quantitative results 57
5.1.1 Different evaluation approaches 58
5.1.2 Test environment 62
5.1.2.1 Treebanks 62
5.1.2.2 Metrics ... 64
5.1.2.3 Tested systems 66
5.1.3 Test results and evaluation 67
5.1.3.1 Alignment learning systems 68
5.1.3.2 Selection learning systems 70
5.1.3.3 Results on the Wall Street Journal corpus 72
5.1.3.4 parseABL systems 73
5.1.3.5 Learning curve 74
5.2 Qualitative results ... 75
5.2.1 Syntactic constructions 76
5.2.2 Recursion ... 77
List of Figures

On two occasions I have been asked [by members of Parliament!],
‘Pray, Mr. Babbage, if you put into the machine wrong figures, will the right
answers come out?’

I am not able rightly to apprehend the kind of confusion of ideas that could
provoke such a question.
— Charles Babbage

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Sentence-meaning pairs</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Constituents induce compression</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Grammar size based on equal and unequal parts</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>Unequal parts of sentences generated by same non-terminal</td>
<td>13</td>
</tr>
<tr>
<td>3.1</td>
<td>Overview of the ABL framework</td>
<td>23</td>
</tr>
<tr>
<td>3.2†</td>
<td>Alignment learning</td>
<td>28</td>
</tr>
<tr>
<td>4.1</td>
<td>Example edit transcript and alignment</td>
<td>38</td>
</tr>
<tr>
<td>4.2†</td>
<td>Edit distance: building the matrix</td>
<td>41</td>
</tr>
<tr>
<td>4.3†</td>
<td>Edit distance: finding a trace</td>
<td>42</td>
</tr>
<tr>
<td>4.4</td>
<td>Example of a filled edit distance table</td>
<td>43</td>
</tr>
<tr>
<td>4.5†</td>
<td>Finding all possible alignments</td>
<td>47</td>
</tr>
<tr>
<td>4.6</td>
<td>Extracting an SCFG from a tree structure</td>
<td>54</td>
</tr>
<tr>
<td>4.7</td>
<td>Example elementary trees</td>
<td>55</td>
</tr>
<tr>
<td>5.1</td>
<td>Evaluating a structure induction system</td>
<td>62</td>
</tr>
<tr>
<td>5.2</td>
<td>Tested ABL and parseABL systems</td>
<td>66</td>
</tr>
</tbody>
</table>

†Figures with a † symbol following their numbers are algorithms.
5.3 Left and right branching trees 67
5.4 Learning curve on the ATIS corpus 75
5.5 Learning curve on the OVIS corpus 76

6.1 Ontology of learning systems 81
6.2 Example clustering expressions in EMILE 89
6.3 Using ABL to bootstrap a tree grammar for DOP 96
6.4 Using ABL to adjust the tree grammar 97

7.1 Extracting an SCFG from a fuzzy tree 105
7.2 Learning structure in sentence pairs 106
7.3 Linked tree structures .. 107
7.4 Structure in RNA ... 112
List of Tables

And this is a table ma’am. What in essence it consists of is a horizontal rectilinear plane surface maintained by four vertical columnar supports, which we call legs.

The tables in this laboratory, ma’am, are as advanced in design as one will find anywhere in the world.

— Frayn (1965)

5.1 Results alignment learning on the ATIS and OVIS corpus 69
5.2 Number of hypotheses after alignment learning . 69
5.3 Results selection learning on the ATIS corpus . 70
5.4 Results selection learning on the OVIS corpus . 71
5.5 Results ABL on the WSJ corpus . 73
5.6 Results parseABL on the ATIS corpus . 74
6.1 Results of EMILE and ABL . 93
Preface

The White Rabbit put on his spectacles.
‘Where shall I begin, please your Majesty?’ he asked.
‘Begin at the beginning,’ the King said, very gravely,
‘and go on till you come to the end: then stop.’
— Carroll (1982, p. 109)

Some years ago, I had a meeting with Remko Scha at the University of Amsterdam. He mentioned an interesting research topic where the Data-Oriented Parsing (DOP) framework (Bod, 1995) was to be used in error correction. During the research for my Master’s thesis at the Vrije Universiteit, I implemented an error correction system based on DOP and incorporated it in a C compiler (van Zaanen, 1997).

When I was nearly done with writing my thesis, Rens Bod contacted me and asked me if I would be interested in a PhD position at the University of Leeds, which would possibly allow me to continue the research I was doing. A short while later, I got accepted and the work, I have done there, has led to the thesis now lying in front of you.

The original idea for the research described in this thesis was to transfer the error correction system from the field of computer science back into computational linguistics (where the DOP framework originally came from).

The main disadvantage of using such an error correcting system to correct errors in natural language sentences, however, is that the underlying grammar should be fixed beforehand; the errors are corrected according to the grammar. In practice, with natural language, it is often the case that the grammar itself is incorrect or incomplete and the sentence is correct.

The topic of the research shifted from building an error correction system to building a grammar correction system. Taking things to extremes, the final system
should be able to bootstrap a grammar from scratch. I started wondering how people are able to learn grammars and I wondered how I could get a computer to do the same.¹

The result of this process is described in the rest of this thesis.

¹It must be absolutely clear that the system in no way claims to be cognitively modelling human language learning, even though some aspects may be cognitively plausible.
Chapter 1

Introduction

Are you ready for a new sensation?

— David Lee Roth (Eat ’em and smile)

The increase of computer storage and processing power has opened the way for new, more resource intensive linguistic applications that used to be unreachable. The trend in increase of resources also creates new uses for structured corpora or treebanks. In the mean time, wider availability of treebanks will account for new types of applications. These new applications can already be found in several fields, for example:

- Natural language parsing (Allen, 1995; Bod, 1998; Charniak, 1997; Jurafsky and Martin, 2000),

- Evaluation of natural language grammars (Black et al., 1991; Sampson, 2000),

- Machine translation (Poutsma, 2000b; Sadler and Vendelmans, 1990; Way, 1999),

- Investigating unknown scripts (Knight and Yamada, 1999).

Even though the applications rely heavily on the availability of treebanks, in practice it is often hard to find one that is suitable for the specific task. The main reason for this is that building treebanks is costly.
Language learning systems\(^1\) may help to solve the above mentioned problem. These systems structure plain sentences (without the use of a grammar) or learn grammars, which can then be used to parse sentences. Parsing indicates possible structures or completely structures the corpus, making annotation less time and expertise intensive and therefore less costly. Furthermore, language learning systems can be reused on corpora in different domains.

Because of the many uses and advantages of a language learning system, one might try to build such a system. Unsupervised learning of syntactic structure, however, is one of the hardest problems in NLP. Although people are adept at learning grammatical structure, it is difficult to model this process and therefore it is hard to make a computer learn structure similarly to humans.

The goal of the algorithms described in this thesis is not to model the human process of language learning, even though the idea originated from trying to model human language acquisition. Instead, the algorithm should, given unstructured sentences, find the best structure. This means that the algorithm should assign a structure to sentences which is similar to the structure people would give to those sentences, but not necessarily in the same way humans do this, nor in the same time or space restrictions.

The rest of this thesis is subdivided as follows. First, in chapter 2, the underlying ideas of the system are discussed, followed by a more formal description of the framework in chapter 3. Next, chapter 4 introduces several possible instantiations of the different phases of the system, and chapter 5 contains the results of the instantiations on different corpora. Since at that point the entire system has been described and evaluated, it is then compared against other systems in the field in chapter 6. Possible extensions of the basic systems are described in chapter 7 and finally, chapter 8 concludes this thesis.

\(^1\)Language learning systems are sometimes called structure bootstrapping, grammar induction, or grammar learning systems. These names are used interchangeably throughout this thesis. However, when the emphasis is on grammar learning, bootstrapping, or induction, the system should at least return a grammar as output, in contrast to language learning systems which only need to build a structured corpus.
Chapter 2

Learning by Alignment

Thus, the fiction of interchangeability is inhumane and inherently wasteful.
— Stroustrup (1997, p. 716)

This chapter will informally describe step by step how one might build a system that finds the syntactic structure of a sentence without knowing the grammar beforehand. First, the main goals are reviewed, followed by the description of a method for finding constituents. The method is then extended to be used for multiple sentences. This method, however, introduces ambiguities, which will be resolved in the following section. Finally, some criticism on the applied methods will be discussed.

2.1 Goals

It is widely acknowledged that the principal goal in linguistics is to characterise the set of sentence-meaning pairs. Considering that linguistics deals with production and perception of language, using sentence-meaning pairs corresponds to converting from sentence to meaning in perception and from meaning to sentence in the production process.

It may be obvious that directly finding these sentence-meaning mappings is difficult. Taking the (syntactic) structure\(^1\) of the sentence into account simplifies this process. A system that finds sentence to meaning mappings (i.e. in the perception process), first analyses the sentence, generating the structure of the sentence as an intermediate. Using this structure, the meaning of the sentence is computed (Montague, 1974).

\(^1\)In this thesis, “structure” and “syntactic structure” are used interchangeably.
In this thesis, the structure of a sentence is considered to be in the form of a tree structure. This is not an arbitrary choice. Apart from the fact that trees are rather uncontroversial in linguistics, it is also true in general that “complex entities produced by any process of unplanned evolution, ..., will have tree structuring as a matter of statistical necessity” (Sampson, 1997). Another reason is that “hierarchies have a property, ..., that greatly simplifies their behaviour” (Simon, 1969), which will be illustrated in section 2.2.

If the sentences conform to a language, described by a known grammar, several techniques exist to generate the syntactic structure of these sentences (see for example the (statistical) parsing techniques in (Allen, 1995; Charniak, 1993; Jurafsky and Martin, 2000)). However, if the underlying grammar of the sentences is not known, these techniques cannot be used, since they rely on knowledge of the grammar.

This thesis will describe a method that generates the syntactic structure of a sentence when the underlying grammar of the language (or the set of possible grammars\footnote{The empiricist/nativist distinction will be discussed in section 2.1.2.}) is not known. This type of system is called a structure bootstrapping system.

Following the discussion on the goals of linguistics in general, let us now concentrate on the goals of a structure bootstrapping system. The system described here is developed with two goals in mind: usefulness and minimum of information. Both goals will be described next.

\subsection*{2.1.1 Usefulness}

The first goal of a structure bootstrapping system is to find structure. However, arbitrary, random, incomplete or incorrect structure is not very useful. The main goal of the system is to find useful structure.

Remember that the goal in linguistics is to find sentence-meaning pairs, using structure as an intermediate. Useful structure, therefore, should help us find these pairs. As a (very simple) example how structure can help, consider figure 2.1. When a sentence in the left column has the (partial) structure as shown in the middle column, the meaning (shown in the right column)\footnote{In this example, the meaning of a sentence is represented in an overly simple type of predicate logic, where words in small caps represent the meaning of the word in the regular font. For example, LIKE is the meaning of the word \textit{likes}.} can be computed by combining the meaning of the separate parts.\footnote{How the transition from structure to meaning is found is outside the scope of this thesis. It will simply be assumed that such a transition is possible.}
Based on the principle of compositionality of meaning (Frege, 1879), the meaning of a sentence can be computed by combining the meaning of its constituents. In general, the constituent on position X may be more than one word. If, for example, *the old man* is found on position X, then the meaning of the sentence would be LIKES(Oscar, THE OLD MAN). Of course, this example is too simple to be practical, but it illustrates how structured sentences can help in finding the meaning of sentences.

Figure 2.1 Sentence-meaning pairs

<table>
<thead>
<tr>
<th>Sentence</th>
<th>\Rightarrow Structure</th>
<th>\Rightarrow Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oscar likes trash</td>
<td>Oscar likes [trash]</td>
<td>LIKES(Oscar, TRASH)</td>
</tr>
<tr>
<td>Oscar likes biscuits</td>
<td>Oscar likes [biscuits]</td>
<td>LIKES(Oscar, BISCUITS)</td>
</tr>
<tr>
<td>Oscar likes X</td>
<td>Oscar likes [X]</td>
<td>LIKES(Oscar, X)</td>
</tr>
</tbody>
</table>

Usefulness can be tested based on a predefined, manually structured corpus, such as the Penn Treebank (Marcus et al., 1993), or the Susanne Corpus (Sampson, 1995). The structures of the sentences in such a corpus are considered completely correct (i.e. each tree corresponds to the structure as it was perceived for the particular sentence uttered in a certain context). The structure learned by the structure bootstrapping system is then compared against this *true* structure. First, plain sentences are extracted from a given structured corpus. These plain sentences are the input of the structure bootstrapping system. The output (structured sentences) can be compared to the structured sentences of the original corpus and the completeness (recall) and correctness (precision) of the learned structure can be computed. Details of this evaluation method can be found in section 5.1.2.2.

2.1.2 Minimum of information

Structure bootstrapping systems can be grouped (like other learning methods) into *supervised* and *unsupervised* systems. Supervised methods are initialised with structured sentences, while unsupervised methods only get to see plain sentences. In practice, supervised methods outperform unsupervised methods, since they can adapt their output based on the structured examples in the initialisation phase whereas unsupervised methods cannot.

Even though in general the performance of unsupervised methods is less than that of supervised methods, it *is* worthwhile to investigate unsupervised grammar
learning methods. Supervised methods need structured sentences to initialise, but “the costs of annotation are prohibitively time and expertise intensive, and the resulting corpora may be too susceptible to restriction to a particular domain, application, or genre” (Kehler and Stolcke, 1999a). Thus annotated corpora may not always be available for a language. In contrast, unsupervised methods do not need these structured sentences.

The second goal of the bootstrapping system can be described as learning using a minimum of information. The system should try to minimise the amount of information it needs to learn structure. Supervised systems receive structured examples, which contain more information than their unstructured counterparts, so the second goal restricts the system described in this thesis from being supervised.

In general, unsupervised systems may still use additional information. This additional information may be for example in the form of a lexicon, part-of-speech tags (Klein and Manning, 2001; Pereira and Schabes, 1992), many adjustable language dependent settings in the system (Adriaans, 1992; Vervoort, 2000) or a combination of language dependent information sources (Osborne, 1994).

However, since the goal of the system described here is to use a minimum of information, the system must refrain from using extra information. The only language dependent information the system may use is a corpus of plain sentences (for example in the form of transcribed acoustic utterances). Using this information it outputs the same corpus augmented with structure (or a compact representation of this structure, for example in the form of a grammar).

The advantages of using a minimum of information are legion. Since no language specific knowledge is needed, it can be used on languages for which no structured corpora or dictionaries exist. It can even be used on unknown languages. Furthermore, it does not need extensive tuning (since the system does not have many adjustable settings).

By assuming the goal of minimum of information, the learning method should be classified as an empiricist approach. According to Chomsky (1965, pp. 47–48):

The empiricist approach has assumed that the structure of the acquisition device is limited to certain elementary “peripheral processing mechanisms”…Beyond this, it assumes that the device has certain analytical data-processing mechanisms or inductive principles of a very elementary sort, …
In contrast to the empiricist approach, there is the nativist (or rationalist) approach:

The rationalist approach holds that beyond the peripheral processing mechanisms, there are innate ideas and principles of various kinds that determine the form of the acquired knowledge in what may be a rather restricted and highly organised way.

The nativist approach assumes innate ideas and principles (for example an innate universal grammar describing all possible languages). The empiricist approach, however, is more closely linked to the idea of minimum of information.

Note that instead of refuting the nativist approach, the work described in this thesis is an attempt to show how much can be learned using an empiricist approach. Now that the goals of the system are set, a first attempt will be made to meet these goals. The rest of the chapter develops a method that adheres to the first goal (usefulness), while keeping the second goal in mind.

2.2 Finding constituents

Starting with the first goal of the system, usefulness, constituents need to be found in unstructured text. To get an idea of the exact problem, imagine seeing text in an unknown language (unknown to you). How would you try to find out which words belong to the same syntactic type (for example, nouns) or which words group together to form, for example, a noun phrase? (Remember that the goal is not to find a model of human language learning. However, thinking about how one searches for structure might also help in finding a way to automatically structure text.)

Let us start with the simplest case. If you see one sentence in an unknown language then what can you conclude from that? (Try for example sentence 1a.) If you do not know anything about the language, it is very hard if not impossible\footnote{Using for example universal rules or expected distributions of word classes, it may be possible to find some structure in one plain sentence.} to say anything about the structure of the sentence (but you can conclude that it is a sentence).

However, if two sentences are available, it is possible to find parts of the sentences that are the same in both and parts that are not (provided that some words are the same and some words are different in both sentences). The comparison of two sentences falls into one of three different categories:
1. All words in the two sentences are the same (and so is the order of the words).

2. The sentences are completely unequal (i.e. there is not one word that can be found in both sentences).

3. Some words in the sentences are the same in both and some are not.

It may be clear that the third case is the most interesting one. The first case does not yield any additional information. It was already known that the sentence was a sentence. No new knowledge can be induced from seeing it another time. The second case illustrates that there are more sentences, but since there is no relation between the two, it is impossible to extract any further useful information.

The sentences contained in the third case give more information. They show different contexts of the same words. These different contexts of the words might help find structure in the two sentences.

Let us now consider the pairs of sentences in 1 and 2. It is possible to group words that are equal and words that are unequal in both sentences. The word groups that are equal in both sentences are underlined.

(1) a. Bert süt egy **kekszet**

 b. Ernie eszi a **kekszet**

(2) a. **Bert süt egy** kekszet

 b. **Bert süt egy** kalácsot

These sentences are simple cases of the more complex sentences where there are more groups of equal and unequal words. The more complex examples can be seen as concatenations of the simple cases. Therefore, these simple sentences can be used without loss of generality.

Although it is clear which words are the same in both sentences (and which are not), it is still unclear which parts are constituents. The Hungarian sentences in 1 translate to the English sentences as shown in 3.

6Previous publications mentioned “similar” and “dissimilar” instead of “equal” and “unequal” in this context. However, apart from section 7.2 where the exact match is weakened, sentences are only considered equal if the words in the two sentences are exactly the same (and not just similar).

7For the sake of the argument, we may assume that the word order of the two languages is the same, but this need not necessarily be so, i.e. our argument does not depend on this (language dependent) assumption.
underlined word groups (consisting of one word) should be constituents. Biscuit is a constituent, but Bert is baking a and Ernie is eating the are not.

(3) a. Bert süt egy [kekszét]_{x_1}
 Bert-nom-sg to bake-pres-3p-sg-indef a-indef biscuit-acc-sg
 Bert is baking a [biscuit]_{x_1}

b. Ernie eszi a [kekszét]_{x_1}
 Ernie-nom-sg to eat-pres-3p-sg-def the-def biscuit-acc-sg
 Ernie is eating the [biscuit]_{x_1}

However, if we conclude that equal parts in sentences are always constituents, the sentences in 2 will be structured incorrectly. These sentences are translated as shown in 4. In this case, the unequal parts of the sentences are constituents. Biscuit and cake are constituents, but Bert is baking a is not.

(4) a. Bert süt egy [kekszét]_{x_2}
 Bert-nom-sg to bake-pres-3p-sg-indef a-indef biscuit-acc-sg
 Bert is baking a [biscuit]_{x_2}

b. Bert süt egy [kalácsot]_{x_2}
 Bert-nom-sg to bake-pres-3p-sg-indef a-indef cake-acc-sg
 Bert is baking a [cake]_{x_2}

Intuitively, choosing constituents by treating unequal parts of sentences as constituents (as shown in the sentences of 4) is preferred over constituents of equal parts of sentences (as indicated by the sentences in 3). This will be shown (in two ways) by considering the underlying grammar.

<table>
<thead>
<tr>
<th>Method</th>
<th>Structure</th>
<th>Grammar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equal parts</td>
<td>[Bert süt egy]_X kekszét_S</td>
<td>S→X kekszét</td>
</tr>
<tr>
<td></td>
<td>[Bert süt egy]_X kalácsot_S</td>
<td>S→X kalácsot</td>
</tr>
<tr>
<td></td>
<td>X→Bert süt egy</td>
<td></td>
</tr>
<tr>
<td>Unequal parts</td>
<td>[Bert süt egy]_{x_1}kekszét_S</td>
<td>S→Bert süt egy X</td>
</tr>
<tr>
<td></td>
<td>[Bert süt egy]_{x_1}kalácsot_S</td>
<td>X→kekszét</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X→kalácsot</td>
</tr>
</tbody>
</table>

^8X_1 and X_2 denote non-terminal types.
The main argument for choosing unequal parts of sentences instead of equal parts of sentences as constituents is that the resulting grammar is smaller. When unequal parts of sentences are taken to be constituents, this results in more compact grammars than when equal parts of sentences are taken to be constituents. In other words, the grammar is more compressed.

An example of the stronger compression power of the unequal parts of sentences can be found in figure 2.2. If the length of a grammar is defined as the number of symbols in the grammar, then the length of the first grammar is 10. However, the length of the second grammar is 9.

In general, it is the case that making constituents of unequal parts of sentences creates a smaller grammar. Imagine aligning two sentences (and, to keep things simple, assume there is one equal part and one unequal part in both sentences). The equal parts of the two sentences is defined as E and the unequal part of the first sentence is U_1 and of the second sentence U_2.

Figure 2.3 Grammar size based on equal and unequal parts

<table>
<thead>
<tr>
<th>Method</th>
<th>Grammar</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equal parts</td>
<td>$S \rightarrow X\ U_1$</td>
<td>$1 + 1 +</td>
</tr>
<tr>
<td></td>
<td>$S \rightarrow X\ U_2$</td>
<td>$1 + 1 +</td>
</tr>
<tr>
<td></td>
<td>$X \rightarrow E$</td>
<td>$1 +</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>$5 +</td>
</tr>
<tr>
<td>Unequal parts</td>
<td>$S \rightarrow E\ X$</td>
<td>$1 +</td>
</tr>
<tr>
<td></td>
<td>$X \rightarrow U_1$</td>
<td>$1 +</td>
</tr>
<tr>
<td></td>
<td>$X \rightarrow U_2$</td>
<td>$1 +</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>$4 +</td>
</tr>
</tbody>
</table>

Figure 2.3 shows that taking unequal parts of sentences as constituents create slightly smaller grammars.\(^9\) In the rightmost column, the grammar size is computed. Each non-terminal counts as 1 and the sizes of the equal and unequal parts are also incorporated.

For the second argument, assume the sentences are generated from a context-free grammar. This means that for each of the two sentences there is a derivation that leads to that sentence. Figure 2.4 shows the derivations of two sentences, where a and b are the unequal parts of the sentences (the rest is the same in both). The idea is now that the unequal parts of the sentences are both generated from the same

\(^9\)The order of the non-terminals and the sentence parts may vary. This does not change the resulting grammar size.
non-terminal, which would indicate that they are constituents of the same type. Note that this is not necessarily the case, as is shown in the example sentences in 3. However, changing one of the sentences in 3 to the other one, would require several non-terminals to have different yields\(^\text{10}\), whereas taking unequal parts of sentences as constituents means that only one non-terminal needs to have a different yield.

These two arguments indicate a preference for the method that takes unequal parts of sentences as constituents. Additionally, the idea closely resembles the linguistically motivated and language independent notion of substitutability. Harris (1951, p. 30) describes freely substitutable segments as follows:

If segments are freely substitutable for each other they are descriptively equivalent, in that everything we henceforth say about one of them will be equally applicable to the others.

Harris continues by describing how substitutable segments can be found:

We take an utterance whose segments are recorded as \textit{DEF}. We now construct an utterance composed of the segments \textit{DA'F}, where \textit{A'} is a repetition of a segment \textit{A} in an utterance which we had represented as \textit{ABC}. If our informant accepts \textit{DA'F} as a repetition of \textit{DEF}, or if we hear an informant say \textit{DA'F}, and if we are similarly able to obtain \textit{E'BC} (\textit{E'} being a repetition of \textit{E}) as equivalent to \textit{ABC}, then we say that \textit{A} and \textit{E} (and \textit{A'} and \textit{E'}) are mutually substitutable (or equivalent), as free variants of each other, and write \textit{A=E}. If we fail in these tests, we say that \textit{A} is different from \textit{E} and not substitutable for it.

When Harris’s test is simplified or reduced (removing the need for repetitions), the following test remains: “If the occurrences \textit{DEF, DAF, ABC and EBC} are found, \textit{A} and \textit{E} are substitutable.”

\(^{10}\)If changing the sentences would only require one non-terminal to be changed, the situation in figure 2.4 arises again.
The simplified test is instantiated with constituents as segments. We conclude that if constituents are found in the same context, they are substitutable and thus of the same type. This is equivalent to finding constituents as is shown in the sentences in 4.

The test for finding constituents is intuitively assumed correct (however, see section 2.5.2 for criticism of this approach). A constituent of a certain type can be replaced by another constituent of the same type, while still retaining a valid sentence. Therefore, if two sentences are the same except for a certain part, it might be the case that these two sentences were generated by replacing a certain constituent by another one of the same type.

2.3 Multiple sentences

The previous section showed how constituents can be found by looking for unequal parts of sentences. Of course, one pair of sentences can introduce more than one constituent-pair (see for example the sentences in 5).

(5) a. [Oscar]_{x_1} sees the [large, green]_{x_2} apple

 b. [Cookie monster]_{x_1} sees the [red]_{x_2} apple

Even so, the system is highly limited if only two sentences can be used to find constituents. If more sentences can be used simultaneously, more constituents can be found.

When a third sentence is used to learn, it must be compared to the first two sentences. For example, using the sentence *Big Bird sees a pear* it is possible to learn more structure in the sentences in 5. Preferably, the result should be the structured sentences as shown in 6. The “old” structure is augmented with the new structure found by comparing *Big bird sees a pear* to the two sentences.

(6) a. [Oscar]_{x_1} sees the [large, green]_{x_2} apple]_{x_3}

 b. [Cookie monster]_{x_1} sees the [red]_{x_2} apple]_{x_3}

 c. [Big Bird]_{x_1} sees a pear]_{x_3}

Learning structure by finding the unequal parts of sentences is easy if no structure is present yet. However, it is unclear what exactly the system would do when

11 Harris (1951) considers segments mainly as parts of words, i.e. phonemes and morphemes.
some constituents are already present in the sentence. The easiest way of handling
this is to compare the plain sentences (temporarily forgetting any structure already
present). When some structure is found it is then added to the already existing
structure.

In example 6, sentences 6a and 6b are compared first (as shown in 5). The
plain sentence 6c is then compared against the plain sentence of 6a. This adds the
constituents with type X_3 to sentences 6a and 6c and the constituent of type X_1 to
sentence 6c.

Sentence 6c then already has the structure as shown. However, it is still compared
against sentence 6b, since some more structure might be induced. Indeed, when
comparing the plain sentences 6b and 6c, sentence 6b also receives the constituents
with types X_3.

It might happen that a new constituent is added to the structure, that overlaps
with a constituent that already existed. As an example, consider the sentences
in 7. When the first sentence is compared against the second, the apple is equal in
both sentences, so the X_1 constituents are introduced. At a later time, the second
sentence is compared against the third sentence. This time, Big Bird is equal in both
sentences (indicated by a double underlining). This introduces the X_2 constituents.
At that point, the second sentence contains two constituents that overlap.

(7) a. [Oscar sees]_{x_1} the apple
 b. [x_1 Big Bird [x_2 throws]_{x_1} the apple]_{x_2}
 c. Big Bird [walks]_{x_2}

As the example shows, the algorithm can generate overlapping constituents. This
happens when an incorrect constituent is introduced. Since the structure is assumed
to be generated from a context-free grammar, the structure of sentence 7b is clearly
incorrect.\footnote{Whenever necessary, opening brackets are also annotated with their non-terminals.}
\footnote{Overlapping constituents can also be seen as a richly structured version of the sentences. From
this viewpoint, the assumed underlying context-free grammar restricts the output. It delimits the
structure of the sentences into a version that could have been generated by the less powerful
context-free type of grammar.}
2.4 Removing overlapping constituents

If the system is trying to learn structure that can be generated by a context-free (or mildly context-sensitive) grammar, overlaps should never occur within one tree structure. However, the system so far can (and does) introduce overlapping constituents.

Assuming that the underlying grammar is context-free is not an arbitrary choice. To evaluate learning systems (amongst others), a structured corpus is taken to compute the recall and precision. Most structured corpora are built on a context-free (or weakly context-sensitive) grammar and thus do not contain overlapping constituents within a sentence.

The system described so far needs to be modified so that the final structured sentences do not have overlapping constituents. This will be the second phase in the system. There are many different, possible ways of accomplishing this, but as a first instantiation, the system will make the (very) simple assumption that constituents learned earlier are always correct.\(^\text{14}\) This means that when a constituent is introduced that overlaps with an already existing constituent, the newer constituent is considered incorrect. If this happens, the new constituent is not introduced into the structure. This will make sure that no overlapping constituents are stored. Other instantiations, based on a probabilistic evaluation method, will be explained in chapter 4.

The next section will describe overall problems of the method described so far (including the problems of this approach of solving overlapping constituents). Improved methods that remove overlapping constituents will be discussed in section 4.2 on page 46.

2.5 Problems with the approach

There seem to be two problems with the structure bootstrapping approach as described so far. First, removing overlapping constituents as described in the previous section, although solving the problem, is clearly incorrect. Second, the underlying idea of the method, Harris’s notion of substitutability, has been heavily criticised. Both problems will be described in some detail next.

\(^{14}\)It must be completely clear that assuming that older constituents are correct is not a feature of the general framework (which will be described in the next chapter), but merely a particular instantiation of this phase.
2.5.1 Incorrectly removing overlapping constituents

The method of finding constituents as described in section 2.2 on page 9 may, at some point, find overlapping constituents. Since overlapping constituents are unwanted, as discussed above, the system takes the older constituents as correct, removing the newer constituents.

Even though there is evidence that “analyses that a person has experienced before are preferred to analyses that must be newly constructed” (Bod, 1998, p. 3), it is clear that applying this idea directly will generate incorrect results. It is easily imagined that when the order of the sentences is different, the final results will be different, since different constituents are seen earlier.

Let us reflect on why exactly constituents are removed. If overlapping constituents are unwanted, then clearly the method of finding constituents, which introduces these overlapping constituents, is incorrect.

Before discarding the work done so far, it may be helpful to reconsider the used terminology. Another way of looking at the approach is to say that the method which finds constituents does not really introduce *constituents*, but instead it introduces *hypotheses* about constituents.

“Finding constituents” really builds a hypothesis space, where possible constituents in the sentences are stored. “Removing overlapping constituents” searches this hypothesis space, removing hypotheses until the best remain.

Clearly, a better system would keep (i.e. not remove) hypotheses if there is more evidence for them. In this case, evidence can be defined in terms of frequency. Hypotheses that have a higher frequency are more likely to be correct. Older hypotheses can now be overruled by newer hypotheses if the latter have a higher frequency. Section 4.2 on page 46 contains two hypothesis selection methods based on this idea. Using probabilities to select hypotheses makes the system described in this thesis a Bayesian learning method. The goal is to maximise the probability of a set of (non-overlapping) hypotheses for a sentence given that sentence.

Selecting constituents based on their frequency is an intuitively correct solution. But, apart from that, the notion of selecting structure based on frequencies is uncontroversial in psychology. “More frequent analyses are preferred to less frequent ones” (Bod, 1998, p. 3).
2.5.2 Criticism on Harris’s notion of substitutability

Harris’s notion of substitutability has been heavily criticised. However, most criticism is similar in nature to: “..., although there is frequent reference in the literature of linguistics, psychology, and philosophy of language to inductive procedures, methods of abstraction, analogy and analogical synthesis, generalisation, and the like, the fundamental inadequacy of these suggestions is obscured only by their unclarity” (Chomsky, 1955, p. 31) or “Structuralist theories, both in the European and American traditions, did concern themselves with analytic procedures for deriving aspects of grammar from data, as in the procedural theories of ... Zellig Harris, ... primarily in the areas of phonology and morphology. The procedures suggested were seriously inadequate ...” (Chomsky, 1986, p. 7). There are only a few places where Harris’s notion of substitutability is really questioned. See (Redington et al., 1998) for a discussion of the problems described in (Pinker, 1984).

The next two sections will discuss serious objections by Chomsky and Pinker respectively.

2.5.2.1 Chomsky’s objections to substitutability

Chomsky (1955, pp. 129–145) gives a nice overview of problems when the notion of substitutability is used. In his argumentation, he introduces four problems. Three of these problems are relevant to the system described in this thesis, so these will be discussed in some detail.\(^\text{15}\)

Chomsky describes the first problem as:

In any sample of linguistic material, no two words can be expected to have exactly the same set of contexts. On the other hand, many words which should be in different contexts will have some context in common. ... Thus substitution is either too narrow, if we require complete mutual substitutability for co-membership in a syntactic category ..., or too broad, if we require only that some context be shared.

The structure bootstrapping system uses the “broad” method for substitutability. Hypotheses are introduced when “some context” is shared. This will introduce too many hypotheses and some of the introduced hypotheses might have an incorrect type (as Chomsky rightly points out). However, when overlapping hypotheses are removed, the more likely hypotheses will remain.

\(^{15}\)The fourth problem deals with a measure of grammaticality of sentences.
So far, Chomsky talked about substitutability of words. In the second problem he states: “We cannot freely allow substitution of word sequences for one another.” According to Chomsky, this cannot be done, since it will introduce incorrect constituents.

The solution to this problem is similar to the solution of the first problem. Since hypotheses about constituents are stored and afterwards the best hypotheses are selected, we conjecture that probably no incorrect constituents will be contained in the final structure. This conjecture will be tested extensively in chapter 5.

Chomsky’s last problem deals with homonyms: “[Homonyms] are best understood as belonging simultaneously to several categories of the same order.” Pinker discussed this problem extensively. His discussion will be dealt with next.

2.5.2.2 Pinker’s objections to substitutability

Pinker (1994, pp. 283–288) discusses two problems that deal with the notion of substitutability. The first problem deals with words that receive an incorrect type. For the second problem, Pinker shows that finding one-word constituents is not enough. Instead of classifying words, phrases need to be classified. He then shows that there are too many ways of doing this, concluding that the problem is too difficult to solve in an unsupervised way.

When describing the first problem, Pinker shows how structure can be learned by considering the sentences in 8.

(8) a. Jane eats chicken

 b. Jane eats fish

 c. Jane likes fish

From this, he concludes that sentences contain three words, *Jane*, followed by *eats* or *likes*, again followed by *chicken* or *fish*. This is exactly what the structure bootstrapping system described in this thesis does. He then continues by giving the sentences as in 9.

(9) a. Jane eats slowly

 b. Jane might fish

However, this introduces inconsistencies, since *might* may now appear in the second position and *slowly* may appear in the third position, rendering sentences like *Jane might slowly*, *Jane likes slowly* and *Jane might chicken* correct.
This is a complex problem and the current system, which selects hypotheses based on the chronological order of learning hypotheses, cannot cope with it. However, a probabilistic system (that assigns types to hypotheses based on probabilities) will be able to solve this problem. In section 7.3 on page 101 a solution to this problem is discussed in more detail, but the main line of the solution is briefly described here.

The problem with Pinker’s approach (and actually Harris makes the same mistake) is that he does not allow his system to recognise that words may belong to different classes. In other words, his approach will assign one class to a word (or in general, a phrase), for example a word is a noun and nothing else. This is clearly incorrect, as can be seen in sentences 8b and 8c (fish is a noun) and sentence 9b (fish is a verb).

However, the contexts of a word that does not have one clear type help to distinguish between the different types. A noun like fish can occur in places in sentences where the verb fish cannot. Consider for example the sentences in 10. The noun fish can never occur in the context of the first sentence, while the verb fish cannot occur in the context of the second sentence.

(10) a. We fish for trout
 b. Jane eats fish

Using these differences in contexts, a word may be classified as having a certain type in one context and another type in another context. For example, verb-like words occur in verb contexts and noun-like words occur in noun contexts. The frequencies of the word in the different contexts indicate which type the word has in a specific context.

Pinker continues with the second problem. He wonders what word could occur before the word bother when he shows the sentences in 11. This introduces a problem, since there are many different types of words that may occur before bother. From this, he concludes that looking for a phrase is the solution (a noun phrase in this particular case).

(11) a. That dog bothers me [dog, a noun]
 b. What she wears bothers me [wears, a verb]
 c. Music that is too loud bothers me [loud, an adjective]
 d. Cheering too loudly bothers me [loudly, an adverb]
e. The guy she hangs out with bothers me [with, a preposition]

Pinker then suggests considering all possible ways to group words into phrases. This results in 2^{n-1} possibilities if the sentence has length n. Since there are too many possibilities, the child (in our case, the structure bootstrapping system) needs additional guidance. This additional guidance clashes with the goal of minimum of information, so Pinker implies that an unsupervised bootstrapping system is not feasible.

We believe that Pinker missed the point here. It is clear that applying the system that has been described earlier in this chapter to the sentences in 11 will find exactly the correct constituents. In all sentences the words before bothers me are grouped in constituents of the same type. In other words, the system does not need any guiding as Pinker wants us to believe.
Chapter 3

The ABL Framework

One or two homologous sequences whisper ...
a full multiple alignment shouts out loud.
— Hubbard et al. (1996)

The structure bootstrapping system described informally in the previous chapter is one of many possible instances of a more general framework. This framework is called Alignment-Based Learning (ABL) and will be described more formally in this chapter.

Specific instances of ABL attempt to find structure using a corpus of plain (unstructured) sentences. They do not assume a structured training set to initialise, nor are they based on any other language dependent information. All structural information is gathered from the unstructured sentences only. The output of the algorithm is a labelled, bracketed version of the input corpus. This corresponds to the goals as described in section 2.1.

The ABL framework consists of two distinct phases:

1. alignment learning

2. selection learning

The alignment learning phase is the most important, in that it finds hypotheses about constituents by aligning sentences from the corpus. The selection learning phase selects constituents from the possibly overlapping hypotheses that are found by the alignment learning phase.
Although the ABL framework consists of these two phases, it is possible (and useful) to extend this framework with another phase:

3. grammar extraction

As the name suggests, this phase extracts a grammar from the structured corpus (as created by the alignment and selection learning phases). This extended system is called parseABL.¹

Figure 3.1 gives a graphical description of the ABL and parseABL frameworks. The parts surrounded by a dashed line depict data structures, while the parts with solid lines mark phases in the system. The two parts surrounded by two solid lines are the output data structures. The first chain describes the ABL framework. Continuing the first chain with the second yields the parseABL framework. All different parts in this figure will be described in more detail next.

3.1 Input

As described in the previous chapter, the main goal of ABL is to find useful structure using plain input sentences only. To describe this input in a more formal way, let us define a sentence.

Definition 3.1 (Sentence)

A sentence or plain sentence \(S \) of length \(|S| = n \) is a non-empty list of words \([w_1, w_2, \ldots, w_n] \). The words are considered elementary. A word \(w_i \) in sentence \(S \) is written as \(S[i] = w_i \).

¹Pronounce parseABL as parsable.
ABL cannot learn using only one sentence, it uses more sentences to find structure. The sentences it uses are stored in a list called a corpus. Note that according to the definition, a corpus can never contain structured sentences.

Definition 3.2 (Corpus)
A corpus \(U \) of size \(|U| = n\) is a list of sentences \([S_1, S_2, \ldots, S_n]\).

3.2 Alignment learning

A corpus of sentences is used as (unstructured) input. The framework attempts to find structure in this corpus. The basic unit of structure is a constituent, which describes a group of words.

Definition 3.3 (Constituent)
A constituent in sentence \(S \) is a tuple \(c^S = (b, e, n) \) where \(0 \leq b \leq e \leq |S| \). \(b \) and \(e \) are indices in \(S \) denoting respectively the beginning and end of the constituent. \(n \) is the non-terminal of the constituent and is taken from the set of non-terminals. \(S \) may be omitted when its value is clear from the context.

The goal of the ABL framework is to introduce constituents in the unstructured input sentences. The alignment learning phase indicates where in the input sentences constituents may occur. Instead of introducing constituents, the alignment learning phase indicates possible constituents. These possible constituents are called hypotheses.

Definition 3.4 (Hypothesis)
A hypothesis describes a possible constituent. It indicates where a constituent may (but not necessarily needs to) occur. The structure of a hypothesis is exactly the same as the structure of a constituent.

Now we can describe a sentence and hypotheses about constituents. Both are combined in a fuzzy tree.

Definition 3.5 (Fuzzy tree)
A fuzzy tree is a tuple \(F = (S, H) \), where \(S \) is a sentence and \(H \) a set of hypotheses \(\{h_1^S, h_2^S, \ldots\} \).

Similarly to storing sentences in a corpus, one can store fuzzy trees in a hypothesis space.

Definition 3.6 (Hypothesis space)
A hypothesis space \(D \) is a list of fuzzy trees.
The process of alignment learning converts a corpus (of sentences) into a hypothesis space (of fuzzy trees). Section 2.2 on page 13 informally showed how hypotheses can be found using Harris's notion of substitutable segments, what he called freely substitutable segments. Applying this notion to our problem yields: constituents of the same type can be substituted by each other.

Harris also showed how substitutable segments can be found. Informally this can be described as: if two segments occur in the same context, they are substitutable. In our problem, the notion of substitutability can be defined as follows (using the auxiliary definition of a subsentence).

Definition 3.7 (Subsentence or word group)

A subsentence or word group of sentence S is a list of words $v_{i:j}^S$ such that $S = u + v_{i:j}^S + w$ (the $+$ is defined to be the concatenation operator on lists), where u and w are lists of words and $v_{i:j}^S$ with $i \leq j$ is a list of $j - i$ elements where for each k with $1 \leq k \leq j - i$ is $v_{i:j}^S[k] = S[i + k]$. A subsentence may be empty (when $i = j$) or it may span the entire sentence (when $i = 0$ and $j = |S|$). S may be omitted if its meaning is clear from the context.

Definition 3.8 (Substitutability)

Subsentences u and v are substitutable for each other if

1. the sentences $S_1 = t + u + w$ and $S_2 = t + v + w$ (with t and w subsentences) are both valid, and

2. for each k with $1 \leq k \leq |u|$ it holds that $u[k] \not\in v$ and for each l with $1 \leq l \leq |v|$ it holds that $v[l] \not\in u$.

Note that this definition of substitutability allows for the substitution of empty subsentences. In the rest of the thesis we assume that for two subsentences to be substitutable, at least one of the two subsentences needs to be non-empty.

Consider the sentences in 12. In this case, the words *Bert* and *Ernie* are the unequal parts of the sentences. These words are the only words that are substitutable according to the definition. The word groups *sees Bert* and *Ernie* are not substitutable, since the first condition in the definition does not hold ($t = Oscar$ in 12a and $t = Oscar sees$ in 12b). On the other hand, the word groups *sees Bert* and *sees Ernie* are not substitutable, since these clash with the second condition. The word *sees* is present in both word groups.
(12) a. Oscar sees Bert

b. Oscar sees Ernie

The advantage of this notion of substitutability is that the substitutable word groups can be found easily by searching for unequal parts of sentences. Section 4.1 will show how exactly the unequal parts (and thus the substitutable parts) between two sentences can be found.

In Harris’s definition of substitutability it is unclear whether equal words may occur in substitutable word groups. Definition 3.8 clearly states that the two substitutable subsentences may not have any words in common. This definition is equal to Harris’s if he meant to exclude substitutable subsentences with words in common, or definition 3.8 is much stronger than Harris’s if he did mean to allow equal words in substitutable word groups.

Harris used an informant to test whether a sentence is valid or not: “[I]f our informant accepts [the sentence] or if we hear an informant say [the sentence], ..., then we say [the word groups] are mutually substitutable” (Harris, 1951, p. 31). However, in an unsupervised structure bootstrapping system there is no informant. The only information about the language is stored in the corpus. Therefore, we consider the validity of a sentence as follows.

Theorem 3.9 (Validity)

A sentence \(S \) is valid if an occurrence of \(S \) can be found in the corpus.

The definition of substitutability allows us to test if two subsentences are substitutable. If two subsentences are substitutable, they may be replaced by each other and still retain a valid sentence. With this in mind, a more general version of the definition of substitutability can be given. This version can test for multiple substitutable subsentences simultaneously.

Definition 3.10 (Substitutability (general case))

Subsentences \(u_1, u_2, \ldots, u_n \) and \(v_1, v_2, \ldots, v_n \) are pairwise substitutable for each other if the sentences \(S_1 = s_1 + u_1 + s_2 + u_2 + s_3 + \cdots + s_n + u_n + s_{n+1} \) and \(S_2 = s_1 + v_1 + s_2 + v_2 + s_3 + \cdots + s_n + v_n + s_{n+1} \) are both valid and for each \(k \) with \(1 \leq k \leq |n| \) the sentences \(T_1 = s_k + u_k + s_{k+1} \) and \(T_2 = s_k + v_k + s_{k+1} \) indicate that \(u_k \) and \(v_k \) are substitutable for each other if \(T_1 \) and \(T_2 \) would be valid.

The idea behind substitutability is that two substitutable subsentences can be replaced by each other. This is directly reflected in the general definition of substitutability. Sentence \(S_1 \) can be transformed into sentence \(S_2 \) by replacing substi-
tutable subsentences. This transformation is accomplished by substituting pairs of subsentences exactly as in the simple case.

The assumption on how to find hypotheses can now be rephrased as:

Theorem 3.11 (Hypotheses as subsentences)

If subsentences $v_{i..j}$ and $u_{k..l}$ are substitutable for each other then this yields hypotheses $h_1 = \langle i, j, n \rangle$ and $h_2 = \langle k, l, n \rangle$ with n denoting a type label.

The goal of the alignment learning phase is to convert a corpus into a hypothesis space. Algorithm 3.1 gives pseudo code of a function that takes a corpus and outputs its corresponding hypothesis space. It first converts the plain sentences in the corpus into fuzzy trees. Each fuzzy tree consists of the sentence and a hypothesis indicating that the sentence can be reached from the start symbol (of the underlying grammar). It then compares the fuzzy tree to all fuzzy trees that are already present in the hypothesis space. Comparing the two fuzzy trees yields substitutable subsentences (if present) and from that it infers new hypotheses. Finally, the fuzzy tree is added to the hypothesis space.

In the algorithm there are two undefined functions and one undefined procedure:

1. **NewNonterminal**,
2. **FindSubstitutableSubsentences**, and
3. **AddHypothesis**.

The first function, **NewNonterminal** simply returns a new (unused) non-terminal. The other function and procedure are more complex and will be described in more detail next.

3.2.1 Find the substitutable subsentences

The function **FindSubstitutableSubsentences** finds substitutable subsentences in the sentences of its arguments. The arguments of the function, F and G, are both fuzzy trees. A subsentence in the sentence of a fuzzy tree is stored as a pair $\langle B, E \rangle$. B denotes the begin index of the subsentence and E refers to the end index (as if describing a subsentence $v_{B..E}$). Substitutable subsentences in F and G are stored in pairs of subsentences, for example $\langle \langle B_F, E_F \rangle, \langle B_G, E_G \rangle \rangle$, where $\langle B_F, E_F \rangle$ is the substitutable subsentence in the sentence of fuzzy tree F and similarly $\langle B_G, E_G \rangle$ in G.
Algorithm 3.1 Alignment learning

func AlignmentLearning(U: corpus): hypothesis space
The sentences in U will be used to find hypotheses
var S: sentence,
 F, G: fuzzy tree,
 H: set of hypotheses,
 SS: list of pairs of pairs of indices in a sentence,
 PSS: pair of pairs of indices in a sentence,
 B_F, E_F, B_G, E_G: indices in a sentence,
 N: non-terminal,
 D: hypothesis space
begin
 foreach S ∈ U do
 H := \{0, |S|, startsymbol\}
 F := \langle S, H \rangle
 foreach G ∈ D do
 SS := FindSubstitutableSubsentences(F, G)
 foreach PSS ∈ SS do
 \langle B_F, E_F, B_G, E_G \rangle := PSS
 N := NewNonterminal() \# Return a new (unused) non-terminal
 AddHypothesis(\langle B_F, E_F, N, F \rangle) \# Add to set of hypotheses of F
 AddHypothesis(\langle B_G, E_G, N, G \rangle)
 od
 od
 D := D + F \# Add F to D
 end
end.

Using different methods to find the substitutable subsentences results in different instances of the alignment learning phase. Three different methods will be described in section 4.1 on page 36. For now, let us assume that there exists a method that can find substitutable subsentences.

3.2.2 Insert a hypothesis in the hypothesis space

The procedure AddHypothesis adds its first argument, a hypothesis in the form \langle b, e, n \rangle to the set of hypotheses of its second argument (a fuzzy tree). However, there are some cases in which simply adding the hypothesis to the set does not exactly result in the expected structure.

In total, three distinct cases have to be considered. Assume that the procedure
is called to insert hypothesis \(h_F = \langle B_F, E_F, N \rangle \) into fuzzy tree \(F \) and next, \(h_G = \langle B_G, E_G, N \rangle \) is inserted in \(G \). In the algorithm, hypotheses are always added in pairs, since substitutable subsentences always occur in pairs. The three cases will be described with help from the following definition.

Definition 3.12 (Equal and equivalent hypotheses)

Two hypotheses \(h_1 = \langle b_1, e_1, n_1 \rangle \) and \(h_2 = \langle b_2, e_2, n_2 \rangle \) are called equal when \(b_1 = b_2 \), \(e_1 = e_2 \), and \(n_1 = n_2 \). The hypotheses \(h_1 \) and \(h_2 \) are equivalent when \(b_1 = b_2 \) and \(e_1 = e_2 \), but \(n_1 \neq n_2 \) need not be true.

1. The sets of hypotheses of both \(F \) and \(G \) do not contain hypotheses equivalent to \(h_F \) and \(h_G \) respectively.

2. The set of hypotheses of \(F \) already contains a hypothesis equivalent to \(h_F \) or the set of hypotheses of \(G \) already contains a hypothesis equivalent to \(h_G \).

3. The sets of hypothesis of both \(F \) and \(G \) already contain hypotheses equivalent to hypotheses \(h_F \) and \(h_G \) respectively.

Let us consider the first case. Both \(F \) and \(G \) receive completely new hypotheses. This occurs for example with the fuzzy trees in 13.2

(13) a. [Oscar sees Bert]$_1$

b. [Oscar sees Big Bird]$_1$

In this case, the subsentences denoting *Bert* and *Big Bird* are substitutable for each other, so a new non-terminal is chosen (2 in this case) and the hypotheses \(\langle 2, 3, 2 \rangle \) in fuzzy tree 13a and \(\langle 2, 4, 2 \rangle \) in fuzzy tree 13b are inserted in the respective sets of hypotheses of the fuzzy trees. This results in the fuzzy trees as shown in 14 as expected.

(14) a. [Oscar sees [Bert]$_2$]$_1$

b. [Oscar sees [Big Bird]$_2$]$_1$

The second case is slightly more complex. Consider the fuzzy trees in 15.

(15) a. [Oscar sees [Bert]$_2$]$_1$

b. [Oscar sees Big Bird]$_1$

\(^2\)In this thesis, non-terminals are natural numbers starting from 1, which is also the start symbol. New non-terminals are introduced by taking the next lowest, unused natural number.
Since hypotheses are found by considering the plain sentences only, the hypotheses \(<2, 3, 3> \) and \(<2, 4, 3> \) should be inserted respectively in the sets of hypotheses of fuzzy trees 15a and 15b. However, the first fuzzy tree already has a hypothesis equivalent to the new one.

Finding the hypotheses in fuzzy trees 15 indicates that *Bert* and *Big Bird* might (in the end) be constituents of the same type. Therefore, both should receive the same non-terminal. This can be achieved in two similar ways. One way is by adding the hypothesis \(<2, 4, 2> \) to fuzzy tree 15b instead of \(<2, 4, 3> \) (its non-terminal is equal to the non-terminal of the existing hypothesis) and no hypothesis is added to 15a. This yields fuzzy trees:

(16) a. \([\text{Oscar sees }] [\text{Bert}]_{2_1}\)

b. \([\text{Oscar sees }] [\text{Big Bird}]_{2_1}\)

The other way is to insert the hypotheses in the regular way (overriding the existing \(<2, 3, 2> \) in the fuzzy tree of 15a)

(17) a. \([\text{Oscar sees }] [\text{Bert}]_{2-3_1}\)

b. \([\text{Oscar sees }] [\text{Big Bird}]_{3_1}\)

Then all occurrences of non-terminal 2 in the entire hypothesis space are replaced by non-terminal 3, again resulting in the fuzzy trees of 16.

The third case (where hypotheses are found that are equivalent to existing hypotheses in both fuzzy trees), falls into two subcases.

The first subcase is when the two original hypotheses already have the same type. This is depicted in fuzzy trees 18.

(18) a. \([\text{Oscar sees }] [\text{Bert}]_{2_1}\)

b. \([\text{Oscar sees }] [\text{Big Bird}]_{2_1}\)

Since it is already known that *Bert* and *Big Bird* are hypotheses of the same type, nothing has to be changed and the hypotheses do not even need to be inserted in the sets of hypotheses.

However, the second subcase is more difficult. Consider the following fuzzy trees:

(19) a. \([\text{Oscar sees }] [\text{Bert}]_{2_1}\)

b. \([\text{Oscar sees }] [\text{Big Bird}]_{3_1}\)
It is now known that *Bert* and *Big Bird* should have the same type, because the
tuples \((2, 3, 4) \) and \((2, 4, 4) \) are being inserted in the respective sets of hypotheses.
In other words, it is known that the non-terminals 2 and 3 both describe the same
type. Therefore, types 2 and 3 can be merged and all occurrences of both types in
the entire hypothesis space can be updated.

3.2.3 Clustering

In the previous section, it was assumed that word groups in the same context are
always of the same type. The assumption that if there is some evidence that word
groups occur in the same context then they also have the same non-terminal type,
might be too strong (and indeed it is, as will be shown below). However, this is just
one of the many ways of merging non-terminal types.

In fact, the merging of non-terminal types can be seen as a sub-phase of the
alignment learning phase. An instantiation based on the assumption made in the
previous section, namely that hypotheses which occur in the same context always
have the same non-terminal type, is only one possible instantiation of this phase. In
section 7.3, another instantiation is discussed. It is important to remember that the
assumption of the previous section is in no way a feature of the ABL framework, it
is merely a feature of one of its instantiations.

All systems in this thesis use the instantiation that merges types when two hypo-
theses with different types occur in the same context. This assumption influences
one of the selection learning instantiations and additionally, the qualitative evalu-
tion relies on this assumption, although similar results may be found when other
cluster methods are used.

The assumption that hypotheses in the same context always have the same non-
terminal type is not necessarily always true, as has been shown by Pinker (see
section 2.5.2.2 on page 19). Consider the following fuzzy trees:

\[(20) \quad \begin{align*}
a. \; & \textit{[Ernie eats well]}_1 \\
\text{b.} \; & \textit{[Ernie eats biscuits]}_1
\end{align*}\]

In this case, *biscuits* is a noun and *well* is an adjective. However, ABL will con-
clude that both are of the same type. Since *well* and *biscuits* are substitutable
subsentences, they will be contained in two hypotheses with the same non-terminal.

Merging non-terminals as described in the previous section assumes that when
there is evidence that two non-terminals describe the same type, they are merged.
However, finding hypotheses merely indicates that the possibility exists that a constituent occurs there. Furthermore, it indicates that a constituent with a certain type occupies that context. Simply merging non-terminals assumes that hypotheses are actually constituents and that the evidence is completely correct.

A better method of merging non-terminals, which also solves Pinker’s problem, would only merge types when enough evidence, for example in the form of frequencies of contexts, is found. For example, types could be clustered when the hypotheses are chosen to be correct and all hypotheses having one of the two types occur mostly in the same contexts. Section 7.3 will discuss this in more detail.

3.3 Selection learning

The goal of the selection learning phase is to remove overlapping hypotheses from the hypothesis space. Now that a more formal framework of hypotheses is available, it is easy to define exactly what overlapping hypotheses are:

Definition 3.13 (Overlapping hypotheses)

Two hypotheses \(h_i = \langle b_i, e_i, n_i \rangle \) and \(h_j = \langle b_j, e_j, n_j \rangle \) overlap (written as \(h_i \parallel h_j \)) iff \(b_i < b_j < e_i < e_j \) or \(b_j < b_i < e_j < e_i \). (Overlap between hypotheses from different fuzzy trees is undefined.)

An example of overlapping hypotheses can be found in (21), which is the same fuzzy tree as in (7b). It contains two hypotheses (\(\langle 0, 3, X_1 \rangle \) and \(\langle 2, 5, X_2 \rangle \)) which overlap, since \(0 < 2 < 3 < 5 \).

(21) \[\underbrace{\[x_1, \text{Big Bird}\]}_{\text{x_1 throws}} \underbrace{\[x_2, \text{the apple}\]}_{\text{x_2}} \]

The fuzzy trees generated by the alignment learning phase closely resemble the normal notion of tree structures. The only difference is that fuzzy trees can have overlapping hypotheses. Regular trees never have this property.

Definition 3.14 (Tree)

A tree \(T = \langle S, C \rangle \) is a fuzzy tree such that for each \(h_i, h_j \in C : -(h_i \parallel h_j) \). The hypotheses in a tree are called constituents.

Similarly, where a collection of fuzzy trees is called a hypothesis space, a collection of trees is a treebank.

Definition 3.15 (Treebank)

A treebank \(B \) is a list of trees.
The goal of the selection learning phase can now be rephrased as transforming a hypothesis space to a treebank. This means that each fuzzy tree in the hypothesis space should be converted into a tree. In other words, all overlapping hypotheses in the fuzzy trees in the hypothesis space should be removed.

The previous chapter described a simple instantiation of the phase that converts a hypothesis space into a treebank. The method assumed that older hypotheses are always correct. In the formal framework so far, this can be implemented in two different ways:

change AddHypothesis The system described earlier adds hypotheses by calling the procedure AddHypothesis. This procedure, therefore, can test if there exists another (older) hypothesis in the fuzzy tree that conflicts with the new hypothesis. If there exists one, the new hypothesis is not inserted in the set of hypotheses. If no overlapping hypothesis exists, the new hypothesis is added normally.

change the way fuzzy trees store hypotheses Storing hypotheses in a list of hypotheses, instead of storing them in a set, allows the algorithm to keep track of which hypotheses were inserted first. For example, if a hypothesis is always appended to the end of the list (of hypotheses), it must be true that the first hypothesis was the oldest and the last hypothesis in the list is the newest. Therefore, the selection learning phase searches for pairs of overlapping hypotheses and removes the one closer to the end of the list. This leaves the oldest non-overlapping hypothesis in the list.

Albeit very simple, this method is crummy (as will also be shown in the results in chapter 5). Fortunately, there are many other methods to remove the overlapping hypotheses. Section 4.2 describes two of them. The emphasis of these methods lies on the selection of hypotheses by computing the probability of each hypothesis.

3.4 Grammar extraction

Apart from the two phases (alignment learning and selection learning) described above, ABL can be extended with a third phase. The combination of alignment learning and selection learning generates a treebank, a list of trees. These two phases combined are called a *structure bootstrapping system*. Adding the third phase, which extracts a stochastic grammar from the treebank, expands the systems into *grammar bootstrapping systems*.
It is possible to extract different types of stochastic grammars from a treebank. Section 4.3 on page 53 will describe how two different types of grammar can be extracted. The next two sections go into the advantages of extracting such a grammar from the treebank.

3.4.1 Comparing grammars

Evaluating grammars can be done by comparing constituents in sentences parsed by the different grammars (Black et al., 1991).\(^3\) The grammars are compared against a given treebank, which is considered completely correct, a gold standard. From the treebank, a corpus is extracted. The sentences in the corpus are parsed using both grammars. This results in two new treebanks (one generated by each grammar) and the original treebank. The constituents in the new treebanks that can also be found in the gold standard treebank are counted. Using these numbers from both parsed treebanks, evaluation metrics such as precision and recall of the two grammars can be computed and the grammars are (indirectly) compared against each other.

A similar approach will be taken when evaluating the different alignment and selection learning phases in chapter 5. Instead of parsing the sentences with a grammar, the trees are generated by the alignment and selection learning phases. In this case, there is never actually a grammar present. The structure is built during the two phases.

When a grammar is extracted from the trees generated by alignment and selection learning, this grammar can be evaluated in the normal way. Furthermore, the grammar can be evaluated against other grammars (for example, grammars generated by other grammar bootstrapping systems).

The parseABL system, which is the ABL system extended with a grammar extraction phase, returns a grammar as well as a structured version of the plain corpus. The availability of a grammar is not the only advantage of this extended system. The selection learning phase also benefits from the grammar extraction phase, as will be explained in the next section.

3.4.2 Improving selection learning

The main idea behind the probabilistic selection learning methods is that the most probable constituents (which are to be selected from the set of hypotheses) should

\(^3\)Grammars can also be evaluated by formally comparing the grammars in terms of generative power. However, in this thesis, the emphasis will be on indirectly comparing grammars.
be introduced in the tree. The probability of the combination of constituents is computed from the probabilities of its parts (extracted from the hypothesis space).

The probability of each possible combination of (overlapping and non-overlapping) hypotheses should be computed, but the next chapter will show that this is difficult. In practice, only the overlapping hypotheses are considered for deletion. This assumes that non-overlapping hypotheses are always correct. However, even non-overlapping hypotheses may be incorrect.

Re parsing the plain sentences with an extracted grammar may find other, more probable parses. This implies that more probable constituents will be inserted in the sentences. Although the (imperfect) selection learning phase still takes place, the grammar extraction/parsing phase simulates selection learning, reconsidering all hypotheses.

(22) a. ...from [Bert's house]$_2$ to [Sesame Street]$_3$

b. ...from [Sesame Street]$_2$ to [Ernie's room]$_3$

Another problem that can be solved by extracting a grammar from the treebank and then reparsing the plain sentences is depicted in example 22. In these sentences from and to serve as "boundaries". Hypotheses are found between these boundaries and hypotheses between from and to are always of type 2 and hypotheses after to are of type 3. However, Sesame Street can now have two types depending on the context. This may be correct if type 2 is considered as a “from-noun phrase” and type 3 as a “to-noun phrase”, but normally Sesame Street should have only one type (e.g. a noun phrase).

Extracting a grammar and reparsing the plain sentences with this grammar may solve this problem. When for example Sesame Street occurs more often with type 2 than with type 3, reparsing the subsentence Sesame Street will receive type 2 in both cases. Finding more probable constituents can also happen on higher levels with non-lexicalised grammar rules.

Note that reparsing not always solves this problem. If for example hypotheses with type 2 are more probable in one context and hypotheses with type 3 are more probable in the other context, the parser will still find the parses of 22.

It can be expected that reparsing the sentences will improve the resulting treebank. A stochastic grammar contains probabilistic information about the possible contexts of hypotheses, in contrast to the selection learning phase which only uses local probabilistic information (i.e. counts).

4This occurs when for example to and from both have the same type label and there is a grammar rule describing a simple prepositional phrase.
Chapter 4

Instantiating the Phases

Do you still think you can control the game by brute force?
— Shiwan Khan
(tilt message in “the Shadow” pinball machine)

This chapter will discuss several instances for each of ABL’s phases. Firstly, three different instances of the alignment learning phase will be described, followed by three different selection learning methods. Finally, two different grammar extraction methods will be given.

4.1 Alignment learning instantiations

The first phase of ABL aligns pairs of sentences against each other, where unequal parts of the sentences are considered hypotheses. In algorithm 3.1 on page 28, the function \texttt{FindSubstitutableSubsentences}, which finds unequal parts in a pair of sentences, is still undefined. In the previous chapter it was assumed that such a function exists, but no further details were given.

In this section, three different implementations of this function are discussed. The first two are based on the edit distance algorithm by Wagner and Fischer (1974).\footnote{Apparently, this algorithm has been independently discovered by several researchers at roughly the same time (Sankoff and Kruskal, 1999).} This algorithm finds ways to convert one sentence into another, from which equal and unequal parts of the sentences can be found. The third method
finds the substitutable subsentences by considering all possible conversions if there exists more than one.

4.1.1 Alignment learning with edit distance

The edit distance algorithm consists of two distinct phases (as will be described below). The first phase finds the edit or Levenshtein distance between two sentences (Levenshtein, 1965).

Definition 4.1 (Edit distance)

The edit distance between two sentences is the minimum edit cost\(^2\) needed to transform one sentence into the other.

When transforming one sentence into the other, words unequal in both sentences need to be converted. Normally, three edit operations are distinguished: insertion, deletion, and substitution, even though other operations may be defined. Matching of words is not considered an edit operation, although it works exactly the same.

Each of the edit operations have an accompanying cost, described by the predefined cost function \(\gamma\). When one sentence is transformed into another, the cost of this transformation is the sum of the costs of the separate edit operations. The edit distance is now the cost of the “cheapest” way to transform one sentence into the other.

The edit distance between two sentences, however, does not yield substitutable subsentences. The second phase of the algorithm gives an edit transcript, which is a step closer to the wanted information.

Definition 4.2 (Edit transcript)

An edit transcript is a list of labels denoting the possible edit operations, which describes a transformation of one sentence into the other.

An example of an edit transcript can be found in figure 4.1. In this figure INS denotes an insertion, DEL means deletion, SUB stands for substitution and MAT is a match.

Another way of looking at the edit transcript is an alignment.

Definition 4.3 (Alignment)

An alignment of two sentences is obtained by first inserting chosen spaces, either into or at the ends of the sentences, and then placing the two resulting sentences one

\(^2\)Gusfield (1997) calls this version of edit distance, operation-weight edit distance.
above the other so that every word or space in either sentence is opposite a unique character or a unique space in the other string.

Edit transcripts and alignments are simply alternative ways of writing the same notion. From an edit transcript it is possible to find the corresponding alignment and vice versa (as can be seen in figure 4.1).

Finding indices of words that are equal in two aligned sentences is easy. Words that are located above each other and that are equal in the alignment are called links.

Definition 4.4 (Link)

A link is a pair of indices \(i^S, j^T\) in two sentences \(S\) and \(T\), such that \(S[i^S] = T[j^T]\) and \(S[i^S]\) is above \(T[j^T]\) in the alignment of the two sentences.

In the example in figure 4.1, \((1, 2), (2, 3),\) and \((4, 5)\) are the links (when indices of the words in the sentences start counting with 1). The first link describes the word monsters, the second like, and the third describes fish.

Links describe which words are equal in both sentences. Combining the adjacent links results in equal subsentences. Two links \((i_1, j_1)\) and \((i_2, j_2)\) are adjacent when \(i_1 - i_2 = j_1 - j_2 = \pm 1\). For example, the pairs of indices \((1, 2)\) and \((2, 3)\) are adjacent, since \(1 - 2 = -1\) and so is \(3 - 2\). Links \((2, 3)\) and \((4, 5)\) are not adjacent, since \(2 - 4 = -2\) as is \(3 - 5\).

From the maximal combination of adjacent links it is straightforwards to construct a word cluster.

Definition 4.5 (Word cluster)

A word cluster is a pair of subsentences \(a^S_{i \ldots j}\) and \(b^T_{k \ldots l}\) of the same length where \(a^S_{i \ldots j} = b^T_{k \ldots l}\) and \(S[i - 1] \neq T[k - 1]\) and \(S[j + 1] \neq T[l + 1]\).

Note that each maximal combination of adjacent links is automatically a word cluster, but since sentences can sometimes be aligned in different ways, a word cluster need not consists of links.\(^3\)

\(^3\)Equal words in two sentences are only called links when one is above the other in a certain alignment.
The subsentences in the form of word clusters describe parts of the sentences that are equal. However, the unequal subsentences are needed as hypotheses. Taking the complement of the word clusters yields exactly the set of unequal subsentences.

Definition 4.6 (Complement (of subsentences))

The complement of a list of subsentences \([a^S_{i_1}...i_2, a^S_{i_3}...i_4, \ldots, a^S_{i_{n-1}}...i_n] \) is the list of non-empty subsentences \([b^S_{0...i_1}, b^S_{i_2...i_3}, \ldots, b^S_{i_n...|S|}] \).

The definition of the complement of subsentences implies that \(b^S_{0...i_1} + a^S_{i_1...i_2} + b^S_{i_2...i_3} + a^S_{i_3...i_4} + \ldots + a^S_{i_{n-1}}...i_n + b^S_{i_n...|S|} = S \) and that \(b^S_{0...i_1} \) is not present when \(i_1 = 0 \) and \(b^S_{i_n...|S|} \) is not present when \(i_n = |S| \).

To summarise, the function \texttt{FindSubstitutableSubsentences} is implemented using the edit distance algorithm. This algorithm finds a list of pairs of indices where words are equal in both sentences. From this list, word clusters are constructed, which describe subsentences that are equal in both sentences. The complement of these subsentences is then returned as the result of the function.

4.1.1.1 The edit distance algorithm

The edit distance algorithm makes use of a technique called *dynamic programming* (Bellman, 1957). “For a problem to be solved by [the dynamic programming technique], it must be capable of being divided repeatedly into subproblems in such a way that identical subproblems arise again and again” (Russell and Norvig, 1995).

The dynamic programming approach consists of three components.

1. recurrence relation
2. tabular computation
3. traceback

A recurrence relation describes a recursive relationship between a solution and the solutions of its subproblems. In the case of the edit distance this comes down to the following. When computing the edit cost between sentences \(A \) and \(B \), \(D(i, j) \) denotes the edit cost of subsentences \(\nu^A_{0...i} \) and \(\nu^B_{0...j} \). The recurrence relation is then defined as

\[
D(i, j) = \min \begin{pmatrix}
D(i - 1, j) + \gamma(A[i] \to \epsilon) \\
D(i, j - 1) + \gamma(\epsilon \to B[j]) \\
D(i - 1, j - 1) + \gamma(A[i] \to B[j])
\end{pmatrix}
\]
In this relation, $\gamma(X \rightarrow Y)$ returns the edit cost of substituting X into Y, where substituting X into the empty word (ϵ) is the same as deleting X and substituting the empty word into Y means inserting Y. $\gamma(X \rightarrow X)$ does not normally count as a substitution; the two words match.

Next to the recurrence relation, base conditions are needed when no smaller indices exist. Here, the base conditions for $D(i, j)$ are $D(i, 0) = i \times \gamma(A[0] \rightarrow \epsilon)$ and $D(0, j) = j \times \gamma(\epsilon \rightarrow B[0])$. These base conditions mean that it takes i deletions to get from the subsentence $v_{0..i}^A$ to the empty sentence and j insertions to construct the subsentence $v_{0..j}^B$ from the empty sentence. Note that this implies that $D(0, 0) = 0$.

Using the base conditions and the recurrence relation, a table is filled with the edit costs $D(i, j)$. In each entry (i, j) in the matrix, the value $D(i, j)$ is stored. Computing an entry in the matrix (apart from the entries $D(i, 0)$ with $0 \leq i \leq |A|$ and $D(0, j)$ with $0 \leq j \leq |B|$ which are covered by the base conditions), is done using the recurrence relation. The recurrence relation only uses information from the direct left, upper, and upper-left entries in the matrix. An overview of the algorithm that fills the matrix can be found in algorithm 4.1.

As an important side note, one would expect that if the order of the two sentences that are to be aligned is reversed, all INSs will be DELs and vice versa. Matching words still match and substituted words still need to be substituted, which would lead to the same alignment and thus to the same substitutable subsentences. However, reversing the sentences may in some specific cases find different hypotheses. To see how this works, consider the sentences in 23. If the algorithm chooses to link Bert (when the sentences are in this order) since it occurs as the first word that can be linked in the first sentence, it will choose to link Ernie when the sentences are given in the other order (second sentence first and first sentence second), since Ernie is the first word in the first sentence that can be linked then. The problem lies in that the computation of the minimum cost of the three edit operations is done in a fixed order, where multiple edit operations can return the same cost.

(23) a. **Bert** sees **Ernie**

b. **Ernie** kisses **Bert**

When the matrix is built, the entry $D(|A|, |B|)$ gives the minimal edit cost to convert sentence A into sentence B. This gives a metric that indicates how different the two sentences are. However, the matrix also contains information on the edit transcript of A and B.

Algorithm 4.1 Edit distance: building the matrix

```
func EditDistanceX(A, B: sentence): matrix
# A and B are the two sentences for which the edit cost will be computed
var i, j, m_sub, m_del, m_ins: integer
D: matrix
begin
D[0,0] := 0
for i := 1 to |A| do
    D[i,0] := D[i-1,0] + γ(A[i] → ϵ)
end
for j := 1 to |B| do
    D[0,j] := D[0,j-1] + γ(ϵ → B[j])
end
for i := 1 to |A| do
    for j := 1 to |B| do
        m_sub := D[i-1,j-1] + γ(A[i] → B[j])
        m_del := D[i-1,j] + γ(A[i] → ϵ)
        m_ins := D[i,j-1] + γ(ϵ → B[j])
        D[i,j] := min(m_sub, m_del, m_ins)
    od
end
return D
end.
```

The third component in dynamic programming, the traceback, finds an edit transcript which results in the minimum edit cost. Algorithm 4.2 finds such a trace. A trace normally describes which words should be deleted, inserted or substituted. In algorithm 4.2, only the links in the two sentences are returned. Note that this is a slightly edited version of Wagner and Fischer (1974). The original algorithm incorrectly printed words that are equal and words that needed the substitution operation.

Remember that from the links, the equal subsentences can be found. Taking the complement of the equal subsentences yields the substitutable subsentences.

4.1.1.2 Default alignment learning

The general idea of using the edit distance algorithm to find substitutable subsentences is described in the previous section. However, nothing has been said about the cost function γ.

γ is defined to return the edit cost of its argument. For example, γ(A[i] → ϵ)
Algorithm 4.2 Edit distance: finding a trace

```
func EditDistanceY(A, B: sentence, D: matrix): set of pairs of indices
# A and B are the two sentences for which the edit cost will be computed
# D is the matrix with edit cost information (build by EditDistanceX)
var i, j: integer
    P: set of pairs of indices
begin
    P := {}
i := |A|
j := |B|
    while (i ≠ 0 and j ≠ 0) do
        if (D[i, j] = D[i - 1, j] + γ(A[i] → ϵ)) then
            i := i - 1
        elsif (D[i, j] = D[i, j - 1] + γ(ϵ → B[j])) then
            j := j - 1
        else
            if (A[i] = B[j]) then
                P := P + ⟨i, j⟩
            fi
            i := i - 1
            j := j - 1
        fi
    od
    return P
end.
```

returns the cost of deleting A[i] (i.e. changing A[i] into the empty word) or γ(A[i] → B[j]) is the cost of replacing A[i] by B[j].

Following Wagner and Fischer (1974), setting γ to return 1 for the insertion and deletion operations and 2 for the substitution operation yields an algorithm that finds the longest common subsequence of two sentences. This common subsequence coincides with the notion of word cluster as described in the previous section.

Implementing the alignment learning phase using algorithm 3.1 on page 28 and algorithms 4.1 and 4.2 results in an alignment instantiation which is called default when γ is defined as follows:

- γ(X → X) = 0
- γ(X → ϵ) = 1
- γ(ϵ → X) = 1
- γ(X → Y) = 2
Figure 4.2 Example of a filled edit distance table

<table>
<thead>
<tr>
<th></th>
<th>monsters</th>
<th>like</th>
<th>tuna</th>
<th>fish</th>
<th>sandwiches</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>0 1 1 2 2 3 3 4 4 5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>monsters</td>
<td>1 2 2 2 2 3 3 4 4 5</td>
<td>6 6 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>like</td>
<td>2 1 2 3 3 4 4 5 6 7</td>
<td>7 7 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to</td>
<td>3 4 2 1 2 3 3 4 5 6</td>
<td>6 6 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fish</td>
<td>4 5 3 4 2 3 3 4 5 6</td>
<td>4 4 4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4.2 is an example of the edit distance algorithm with the γ function as described above. The sentence *Monsters like tuna fish sandwiches* is transformed into *All monsters like to fish*. The values in the upper row and left column correspond to the base conditions. The other entries in the table have four values. The upper left value describes the cost when substituting (or matching) the words in that row and column plus the previous edit cost (found in the entry to the north-west). The upper right entry describes the edit cost of insertion plus the edit cost to the north. The lower left value is the edit cost of deletion plus the edit cost to the west. The lower right value is the minimum of the other three values, which is also the value stored in the actual matrix.

The bold values describe an alignment. The transcript of this alignment is found when starting from the lower right entry in the matrix and going back (following the bold value, which are constantly the minimum values on that point in the matrix) to the upper left entry. The transcript is then a DEL, MAT, SUB, MAT, MAT, INS, which is the (reversed) transcript shown in figure 4.1.

4.1.1.3 Biased alignment learning

Using the algorithm (and cost function) described above to find the dissimilar parts of the sentences does not always result in the preferred hypotheses. As can be seen when aligning the parts of the sentences in 24, the default algorithm generates the alignment in 25, because *Sesame Street* is the longest common subsequence. Linking *Sesame Street* costs 4, while linking *England* (shown in the sentences in 26) or *to*
(shown in the sentences in 27) costs 6.

(24) a. ...from Sesame Street to England

 b. ...from England to Sesame Street

(25) a. ...from []_2 Sesame Street [to England]_3

 b. ...from [England to]_2 Sesame Street []_3

(26) a. ...from [Sesame Street to]_4 England []_5

 b. ...from []_4 England [to Sesame Street]_5

(27) a. ...from [Sesame Street]_6 to [England]_7

 b. ...from [England]_6 to [Sesame Street]_7

However, aligning Sesame Street results in unwanted syntactic structures. Both to England and England to are considered hypotheses. A more preferred alignment can be found when linking the word to.

This problem occurs every time the algorithm links words that are “too far apart”. The relative distance between the two Sesame Streets in the two sentences is much larger than the relative distance between the word to in both sentences.

This can be solved by biasing the γ cost function towards linking words that have similar offsets in the sentence. The Sesame Streets reside in the beginning and end of the sentences (the same applies to England in the alignment of sentences 26), so the difference in offset is large. This is not the case for to; both reside roughly in the middle.

An alternative cost function may be biased towards linking words that have a small relative distance. This can be accomplished by letting the cost function return a high cost when the difference of the relative offsets of the words is large. The relative distance between the two Sesame Streets in sentences 25 is larger compared to the relative distance between the two tos in sentences 27. Therefore the total edit cost of sentences 27 will be less than the edit cost of sentences 25 or sentences 26.

In the system called biased, the γ function will be changed as follows:

- \(\gamma(X \to X) = \left| \frac{i^S_X}{|S|} - \frac{i^T_X}{|T|} \right| \times \text{mean}(|S|, |T|) \) where \(i^U_W \) is the index of word \(W \) in sentence \(U \) and \(S \) and \(T \) are the two sentences.
\[\gamma(X \to \epsilon) = 1 \]
\[\gamma(\epsilon \to X) = 1 \]
\[\gamma(X \to Y) = 2 \]

If the parts of the sentences shown in 24 are the complete sentences, the edit transcription with minimum edit cost of the alignment in 25 is [MAT, INS, INS, MAT, MAT, DEL, DEL] with costs: \(0 + 1 + 1 + 2 + 2 + 1 + 1 = 8\), for the sentences in 26 this is [MAT, DEL, DEL, DEL, MAT, INS, INS, INS] with costs: \(0 + 1 + 1 + 1 + 3 + 1 + 1 + 1 = 9\) and the sentences in 27 become [MAT, SUB, DEL, MAT, SUB, INS] with costs: \(0 + 2 + 1 + 1 + 2 + 1 = 7\). Therefore, the alignment with \textit{to} is chosen.

The biased system does not entirely solve the problem, since in sentences similar to those in 28 the words \textit{from} and \textit{Sesame Street} are linked (instead of the words \textit{from} and \textit{to} as preferred).

(28) a. …\textit{from England to Sesame Street}

b. …\textit{from Sesame Street where Big Bird lives to England}

Additionally, the biased system will find less hypotheses, since less matches will be found compared to the default system. Where the default system still matched words that are relatively far apart, the biased system will not match them. Less links and thus less word groups and hypotheses will be found.

4.1.2 Alignment learning with all alignments

Another solution to the problem of introducing incorrect hypotheses is to simply generate all possible alignments (using an alignment algorithm that is not based on the edit distance algorithm).\(^4\) This method is called \textit{all}.

When all possible alignments are considered, the selection learning phase of ABL has a harder job selecting the best hypotheses. Since the alignment learning finds more alignments, more hypotheses are inserted into the hypothesis space. And thus the selection learning phase has more to choose from. However, because the alignment learning phase does not know which are the correct hypotheses to insert, inserting all of them might be the best option.

\(^4\)It is also possible to implement this using an adapted version of the edit distance algorithm that keeps track of all possible alignments using a matrix with pointers.
Algorithm 4.3 finds all possible alignments between two sentences. The function AllAlignments takes two sentences as arguments. The first step in the algorithm finds a list of all matching terminals. This list is generated in the function FindAllMatchingTerminals. This list contains pairs of indices of words in the two sentences that can be linked (i.e. words that might be a link in an alignment). Note that this list can contain crossing links (in contrast to the links found by the edit distance algorithm).

Next, the algorithm incrementally adds each of these links into all possible alignments. If inserting a link in an alignment results in overlapping links within that alignment (which is not allowed), a new alignment is introduced. In algorithm 4.3 this is the case when $O \neq \emptyset$. The first alignment is unchanged (i.e. the current link is not inserted): $P := P + (j)$ and the current link is added to the new alignment, which contains all links from the first alignment which do not overlap with the current link: $P := P + (j - O + i)$. This might insert alignments that are proper subsets of other alignments in P, so before returning, these subsets need to be filtered away.

Since variable P is a set, no duplicates are introduced, so when all links are appended to the possible alignments, P contains all possible alignments in the two sentences.

4.2 Selection learning instantiations

Not only the alignment learning phase can have different instantiations. Selection learning can also be done in different ways. Several different methods will be described here. First, there is the simple, non-probabilistic method as described in chapter 2. Next, two probabilistic methods will be described. These probabilistic selection learning methods differ in the way probabilities of hypotheses are computed.

4.2.1 Non-probabilistic selection learning

Remember that the selection learning phase should take care that no overlapping hypotheses remain in the structure generated by the alignment learning phase. The easy solution to this problem is to make sure that overlapping hypotheses are never even introduced. In other words, if at some point, the system tries to insert a hypothesis that overlaps with a hypothesis that was already present, it is rejected.

The underlying assumption in this non-probabilistic method is that a hypothesis
Algorithm 4.3 Finding all possible alignments

func AllAlignments(A, B: sentence): set of pairs of indices

A and B are the two sentences for which all alignments will be computed

var M, O, j: list of pairs of integers,
P, P_{old}: set of lists of pairs of integers,
i, e: pair of integers

begin

M := FindAllMatchingTerminals(A, B)
P := {} # P is a singleton set with an empty list

foreach i \in M do

P_{old} := P
P := {}

foreach j \in P_{old} do

O := \{e \in j : (e[0] \leq i[0] \text{ and } e[1] \geq i[1]) \text{ or }
 (e[0] \geq i[0] \text{ and } e[1] \leq i[1])\}

if (O = \emptyset) then

P := P + (j + i) # Add the list j with i inserted to P

else

P := P + (j) # Add the list j to P
P := P + (j - O + i) # Add the list (j - O + i) to P

fi

od

foreach k \in P do

if (k \subseteq l \in P) then

P := P - k # Filter subsets from P

fi

od

return P

end.

that is learned earlier is always correct. This means that newly learned hypotheses
that overlap with older ones are incorrect, and thus should be removed. This method
is called incr.

The advantage of this method is that it is very easy to incorporate in the sys-
tem as described in section 2.4 on page 16. The main disadvantage is that once an
incorrect hypothesis has been learned, it can never be corrected. The incorrect hy-
pothesis will always remain in the hypothesis space and will in the end be converted
into an incorrect constituent.\(^5\)

\(^5\)Since hypotheses learned earlier may block certain (overlapping) hypotheses from being stored,
changing the order of the sentences in the corpus may change the resulting treebank.
The assumption that hypotheses learned earlier are correct may perhaps be only likely for human language learning. It so happens that the type of sentences in a corpus are generally not comparable to the type of sentences human hear when they are learning a language. Furthermore, the implication that once an incorrect hypothesis has been learned, it can never be corrected, is (cognitively) highly implausible.

4.2.2 Probabilistic selection learning

To solve the disadvantage of the first method, probabilistic selection learning methods have been implemented. The probabilistic selection learning methods select the combination of hypotheses with the highest combined probability. These methods are accomplished after the alignment learning phase, since more specific information (in the form of better counts) can be found at that time.

First of all, the probability of each hypothesis has to be computed. This can be accomplished in several ways. Here, two different methods will be considered. By combining the probabilities of the single hypotheses, the combined probability of a set of hypotheses can be found.

Different ways of computing the probability of a hypothesis will be discussed first, followed by a description on how the probability of a combination of hypotheses can be computed.

4.2.2.1 The probability of a hypothesis

The probability of a hypothesis is the chance that a hypothesis is drawn from the entire space of possible hypotheses. If it is assumed that the alignment learning phase generates the space of hypotheses, the probability of a hypothesis can be computed by counting the number of times that the specific hypothesis occurs in hypotheses generated by alignment learning. The hypotheses generated by alignment learning make up the hypothesis universe.\(^6\)

Definition 4.7 (Hypothesis universe)

The hypothesis universe is the union of all sets of hypotheses of the fuzzy trees in a hypothesis space. In other words, the hypothesis universe \(U^D\) of hypothesis space \(D\) is

\[
U^D = \bigcup_{F=\langle S_F, H_F \rangle \in D} H_F.
\]

\(^6\)Remember (definition 3.6) that a hypothesis space is a set of fuzzy trees. The hypothesis universe is the combination of the hypotheses of all fuzzy trees in a certain hypothesis space.
The probability that a certain hypothesis \(h \) occurs in a hypothesis universe \(D \) is its relative frequency under the assumption of the uniform distribution:

\[
P^U(h) = \frac{|h|}{|U|}
\]

All hypotheses in a hypothesis universe are unique. Within the set of hypotheses of a fuzzy tree they are unique, and all are indexed with their fuzzy tree, so hypotheses of different fuzzy trees can never be the same. This means that the previous formula can be rewritten as:

\[
P^U(h) = \frac{1}{|U|}
\]

The numerator becomes 1, since each hypothesis only occurs once and the denominator is exactly the total number of hypotheses in the hypothesis universe. The probability of a hypothesis is the same for all hypotheses.

The fact that each hypothesis has an equal probability of occurring in the hypothesis universe, does not help in selecting the better hypotheses. Hypotheses receive the same probabilities, because all hypotheses are unique.

Even though hypotheses are unique, it can be said that certain hypotheses are equal when concentrating on only certain aspects of the hypotheses. Instead of obliging all properties of two hypotheses to be the same, taking only certain properties of a hypothesis into account when deciding which hypotheses are the same relaxes the equality relation.

\(P^U(h) \) describes the probability of hypothesis \(h \) in the hypothesis universe \(U \). By grouping hypotheses with a certain property, the probability of a hypothesis is calculated relative to the subset of hypotheses that all have that same property. One way of grouping hypotheses is by their yield.

Definition 4.8 (Yield of a hypothesis)

The yield of a hypothesis \(\text{yield}(h^S) \) is the list of words (in the form of a subsentence) grouped together by the hypothesis. If \(h^S = \langle b, e, n \rangle \) then \(\text{yield}(h^S) = v^S_{b,e} \).

The first probabilistic method computes the probability of a hypothesis by counting the number of times the subsentence described by the hypothesis has occurred as a hypothesis in the hypothesis universe, normalised by the total number of hypotheses. Thus the probability of a hypothesis \(h \) in hypothesis universe \(U \) can be computed using the following formula.

\[
P_{\text{eq}}^U(h) = \frac{|h' \in U : \text{yield}(h') = \text{yield}(h)|}{|U|}
\]
This method is called leaf since we count the number of times the leaves (i.e. the words) of the hypothesis co-occur in the hypothesis universe as hypotheses.

The second method relaxes the equality relation in a different way. In addition to comparing the words of the sentence delimited by the hypothesis (as in the leaf method), this model computes the probability of a hypothesis based on the words of the hypothesis and its type label (the function root returns the type label of a hypothesis). This model is effectively a normalised version of \(P_{\text{leaf}} \). This probabilistic method of computing the probability of a hypothesis is called branch.

\[
P_{\text{branch}}^{U}(h) = \frac{|h' \in U : \text{yield}(h') = \text{yield}(h) \land \text{root}(h') = \text{root}(h)|}{|h'' \in U : \text{root}(h'') = \text{root}(h)|}
\]

First, a partition of the hypothesis space is made by considering only hypotheses with a certain type label. In other words, the hypothesis universe \(U \) as used in \(P_{\text{leaf}} \) is partitioned into parts bounded by all possible type labels. For a certain hypothesis \(h \) this becomes: \(U_{h}' = \{ h' \in U : \text{root}(h') = \text{root}(h) \} \), the set of hypotheses where the root is the same as the root of \(h \). Substituting \(U_{h}' \) (where \(h \) is the hypothesis for which the probability is computed) for \(U \) in \(P_{\text{leaf}} \) yields \(P_{\text{branch}} \).

The two methods just described are not the only possible approaches. Another interesting method, for example, could take into account the inner structure of a hypothesis. In other words, the probability of a hypothesis not only depends on the words in its yield, but also on other hypotheses that occur within the part of the sentence encompassed by the hypothesis. Such an approach will be described in section 7.4 on page 103.\(^7\)

4.2.2.2 The probability of a combination of hypotheses

The previous section described two ways to compute the probability of a hypothesis. Using these probabilities, it is possible to calculate the probability of a combination of hypotheses. The combination of hypotheses with the highest probability is then chosen to be the “correct” combination. This section describes how the probability of a combination of hypotheses can be computed using the probabilities of the separate hypotheses.

Since each selection of a hypothesis from the hypothesis universe is independent

\(^7\)This yields a (stochastically) more precise model (taking also the information of non-terminals into account). However, the information contained in the hypothesis space is unreliable, since the alignment learning phase also inserts incorrect hypotheses into the hypothesis universe. In other words, the model tries to give more precise results based on more imprecise information from the hypothesis universe.
of the previous selections, the probability of a combination of hypotheses is the product of the probabilities of the constituents as in SCFGs (cf. (Booth, 1969)). This means that if the separate probabilities of the hypotheses are known, the combined probability of hypotheses \(h_1, h_2, \ldots, h_n \) can be computed as follows:

\[
P_{SCFG}(h_1, h_2, \ldots, h_n) = \prod_{i=1}^{n} P(h_i)
\]

However, using the product of the probabilities of hypotheses results in a *trashing* effect, since the product of hypotheses is always smaller than or equal to the separate probabilities. Since probabilities are all between 0 and 1, multiplying many probabilities tends to reduce the combined probability towards 0. Consider comparing the probability of the singleton set of the hypothesis \(\{h_1\} \) with probability \(P_{h_1} = P(h_1) \) to the set of hypotheses \(\{h_1, h_2\} \) with probability \(P_{h_1, h_2} = P(h_1)P(h_2) \). It will always hold that \(P_{h_1, h_2} \leq P_{h_1} \). Thus in general, taking the product of probabilities prefers smaller sets of hypotheses.

To eliminate this effect, a normalised method of computing the combined probability is used. According to Caraballo and Charniak (1998), the geometric mean reduces the trashing effect. Therefore, the probability of a set of constituents \(h_1, \ldots, h_n \) is computed using:

\[
P_{GM}(h_1, \ldots, h_n) = \sqrt[n]{\prod_{i=1}^{n} P(h_i)}
\]

The probability of a certain hypothesis \(h \) can be computed using one of the methods described in the previous section (\(P_{leaf} \) or \(P_{branch} \)).

In practice, many probabilities may be multiplied, which can result in a numerical underflow. To solve this, the logprob (i.e. the \(-\log\)) of the probabilities is used. The geometric mean can be rewritten (where LP denotes the logprob) as:

\[
LP_{GM}(h_1, \ldots, h_n) = \frac{\sum_{i=1}^{n} LP(h_i)}{n}
\]

which shows that the geometric mean actually computes the mean of the logprob of the hypotheses.

Using this formula effectively selects only those hypotheses that have the highest probability (in the set). Assume the mean of a set of values is computed. If a value higher than that mean is added to the set, the newly computed mean will be higher, while adding a value lower than the mean will lower the resulting mean.
This means that the set with (only) the lowest values will be chosen when looking for the minimum mean. If there are more elements that have the same value, any combination of these elements result in the same mean value (the mean of for example $[3, 3]$ is the same as the mean of $[3]$).

Although using the P_{GM} (or the equivalent L_{GM}) method eliminates the trashing effect, it does not have a preference for richer structures when there are two (or more) combinations of hypotheses that have the same probability.

To let the system have a preference for more constituents in the final tree structure when there are more possibilities with the same probability, the extended geometric mean is implemented. The only difference with the (standard) geometric mean is that when there are more possibilities (single hypothesis or combinations of hypotheses) with the same probability, this system selects the combination with the most hypotheses. To indicate that the systems use the extended geometric mean, a $^+$ is added to the name of the methods that use the extended geometric mean. For example, using the leaf method to compute the probabilities of hypotheses and the extended geometric mean to compute the combined probability is called leaf$^{+}$ (and similarly branch$^{+}$ when using branch). If there are sets of hypotheses that have the same probability and the same number of hypotheses, one of them is chosen at random.

The properties of the geometric mean also explain why only the set of overlapping hypotheses is considered when computing the most probable structure of the fuzzy tree. In other words, hypotheses that do not overlap any other hypothesis in the fuzzy tree are always considered correct. If all hypotheses were considered, only the hypotheses with the highest probability will be selected. This means that many correct hypotheses will be thrown away. (It is very probable that the hypothesis with the start symbol will not be selected, since the probability of that hypothesis is very small; it only occurs as often as the entire sentence occurs in the corpus.)

Previous publications also mentioned methods that used the leaf and branch methods of computing the probabilities of hypotheses and the (standard) geometric mean to compute the combined probabilities. These systems however did not prefer more richly structured trees. They chose a random solution if multiple solutions were found. Since these systems will always learn the same amount of or less structure, they will not be considered here.

The probability of each combination of mutually non-overlapping hypotheses is computed using a Viterbi style optimisation algorithm (Viterbi, 1967). The combination of hypotheses with the highest probability (and the lowest logprob) is selected
and the overlapping hypotheses not present in this combination are removed from the fuzzy tree.

4.3 Grammar extraction instantiations

When the selection learning phase has disambiguated the fuzzy trees, regular tree structures remain. From these tree structures, it is possible to extract a grammar. First, the focus is on extracting a stochastic context-free grammar (SCFG), since the underlying grammar of the final treebank is considered context-free. Next, extracting a stochastically stronger grammar type, stochastic tree substitution grammar (STSG), is described.

4.3.1 Extracting a stochastic context-free grammar

In general, it is possible to extract grammar rules from tree structures (i.e. parsed sentences). These grammar rules can generate the tree structures it was extracted from. In other words, parsing the sentence with the extracted grammar can return the same structure.\(^8\)

Imagine the structured sentences as displayed in figure 4.3. These two sentences can also be written as tree structures. Extracting a context-free grammar from the tree structures is rather straightforward. For each node (non-terminal in the tree structure), take the label as the left-hand side of a grammar rule. The list of direct daughters of the node are the right-hand side of the grammar rule.

When the extracted context-free grammars are stored in a bag, the probabilities of the grammar rules can easily be computed, which converts the context-free grammar in a stochastic version. The probability of a context-free grammar rule is the number of times the specific grammar rule occurs in the bag, divided by the total number of grammar rules with the same non-terminal on its left-hand side. Extracting a stochastic context-free grammar from the two trees, results in the SCFG in figure 4.3.

When all grammar rules are extracted from the tree structure, the probabilities of the grammar rules in the grammar are then computed using the following formula:

\[
P_G^G(s) = \frac{|s' \in G: LHS(s') = LHS(s) \land RHS(s') = RHS(s)|}{|s'' \in G: LHS(s'') = LHS(s)|}
\]

\(^8\)Since an ambiguous grammar may be extracted from a set of tree structures, it is not necessarily the case that a structure equal to the original is assigned to the sentence.
Figure 4.3 Extracting an SCFG from a tree structure

\[
[S \rightarrow NP \quad VP \quad 2/2 = 1] \\
[VP \rightarrow V \quad NP \quad 1/2 = 0.5] \\
[VP \rightarrow V \quad 1/2 = 0.5] \\
[NP \rightarrow Bert \quad 1/3 = 0.33] \\
[NP \rightarrow Ernie \quad 2/3 = 0.67] \\
[V \rightarrow sees \quad 1/2 = 0.5] \\
[V \rightarrow walks \quad 1/2 = 0.5]
\]

In this formula, \(LHS(x) \) denotes the left-hand side of grammar rule \(x \), while \(RHS(x) \) denotes the right-hand side of \(x \).

4.3.2 Extracting a stochastic tree substitution grammar

The previous section showed how a stochastic context-free grammar can be extracted from a tree structure. This section will concentrate on extracting a stochastic tree substitution grammar (STSG). This type of grammar can generate the same tree structures as a context-free grammar, but is stochastically stronger (Bod, 1998).

When grammar rules, called *elementary trees* in an STSG, are extracted from a tree \(T \), each grammar rule \(t \) is in the form such that:

- \(t \) consists of more than one node

- \(t \) is connected

- except for frontier nodes of \(t \), each node in \(t \) has the same daughter nodes as the corresponding node in \(T \)

An example of the elementary trees in a tree structure can be found in figure 4.4.
This figure contains all elementary trees that can be extracted from the first tree in the figure. Note that the first tree is also an elementary tree (of itself).

Figure 4.4 Example elementary trees

![Diagram of elementary trees](image-url)

The description of what an elementary trees is, does not give a procedure to actually find these. van Zaanen (1997, p. 49) gives a (slightly informal) description of an algorithm that finds all elementary trees in a given tree.

As can be seen in figure 4.4, extracting elementary trees from one tree structure can result in many elementary trees. When the number of trees from which elemen-
tary trees are extracted becomes larger, the number of elementary trees becomes huge. To keep the number of elementary trees within practical limits, it is possible to set a condition on the maximum depth of the elementary trees (van Zaanen, 1997, p. 51).

The probabilities of the elementary trees are computed similarly to the probabilities of the context-free grammar rules in an SCFG:

$$P^G(s) = \frac{|s' \in G : s' = s|}{|s'' \in G : root(s'') = root(s)|}$$

Again, $root(x)$ denotes the root type label of the elementary tree x.
Chapter 5

Empirical Results

After all the purpose of computing is insight, not numbers, and one good way to demonstrate this is to take a situation where the numbers are clearly less important than the insights gained.
— Knuth (1996)

This chapter will put the theory of the previous chapters into practice. Each of the ABL systems (which are combinations of an alignment and a selection learning instance) is evaluated. Firstly, the focus is on evaluating the alignment learning phase, followed by a comparison of the results of both phases. Using the data generated by these systems, the grammar extraction and parsing phase of the parseABL systems are also evaluated.

Apart from a numerical analysis, which will be described first, the learned treebanks generated by ABL systems are looked at in a qualitative way. The learned treebanks contain for example constituents that closely resemble nouns and “from-to” phrases, but also many words are roughly tagged according to parts-of-speech. Furthermore, each of the generated treebanks contain recursive structures.

5.1 Quantitative results

This section first discusses the advantages and disadvantages of the method used here to evaluate the ABL and parseABL instances. Next, the test environment, consisting of the treebanks, metrics and learning instances used, is described. Finally, the
actual results of the different phases of the framework and their evaluation are given.

5.1.1 Different evaluation approaches

Evaluating language learning systems is difficult. Usually, one of three different evaluation methods is chosen. Here, the three methods will be described briefly concentrating on their advantages and disadvantages.

Looks-good-to-me approach When a language learning system is evaluated using the looks-good-to-me approach, the system is applied to an unstructured piece of text and the resulting grammar rules or structured sentences are qualitatively evaluated. If (intuitively) correct grammatical structures are found in the grammar or structured sentences, the system is said to be good. Since this is such a simple approach, it has been used to evaluate many systems, for example those by Cook et al. (1976); Cook and Holder (1994); Finch and Chater (1992); Grünwald (1994); Huckle (1995); Losee (1996); Scholtès and Bloembergen (1992); Stolcke and Omohundro (1994); Vervoort (2000).

advantages The main advantage of this approach is that only unstructured data is needed. This means that the system can easily be evaluated on different languages without the need of structured corpora.

Another advantage is that the evaluation can focus on certain specific syntactic constructions the system should be able to learn. Since the evaluation is done in a qualitative way, the input data can be specialised to show that the system can learn such constructions and the structured output can be searched for the wanted syntax.

disadvantages It may be clear that this approach has a few disadvantages. First of all, for the evaluation of language learning systems using this approach, an expert who has specific knowledge of the syntax of the language in the test corpus is needed. The expert can tell which syntactic structures should be present in the learned treebank and also if certain generated structures are correct or incorrect.

This leads to the second disadvantage, that of biased evaluation. In this approach, it is possible to pick the correctly learned grammatical features only and leave out the incorrect ones. It will seem that the system works well, since all grammatical structures that are shown are
correct. However, the learned treebank also contains incorrect structures which are not shown.
Furthermore, it is difficult to compare two systems based on this approach. Imagine two language learning systems that each find some other correct and incorrect structures. Which of the two systems is better?
The final disadvantage is that the unstructured input corpus may be biased towards a specific system. In other words, it may be possible to (unknowingly) feed the system only sentences that will generate the wanted syntactic structures.

Rebuilding known grammars Another approach in evaluating language learning systems is to let the system rebuild a known grammar. This evaluation method starts out with a (simple) grammar, from which a set of example sentences is generated. This set of sentences must at least represent each of the features of the grammar once. The sentences are then fed to the learning system and the resulting grammar is compared manually to the original grammar. If the learned grammar is similar or equal to the original grammar then the learning system is considered good. This evaluation approach has been used by, a.o. Cook et al. (1976); Nakamura and Ishiwata (2000); Pereira and Schabes (1992); Sakakibara and Muramatsu (2000); Stolcke (1994); Wolff (1996).

advantages This method has similar advantages as the looks-good-to-me approach. It does not need structured sentences to evaluate, because plain sentences, generated by the grammar, are used to learn structure. These grammars can be tailored to specific grammatical constructions, which allows for a specific evaluation of certain aspects of the system. Additionally, the looks-good-to-me approach needs an expert to indicate whether a grammatical construction is correct or incorrect, but this is unnecessary for this approach. If the learned grammar is similar to the original grammar, the learning system works well.
Another advantage is that this method of evaluation yields a more objective way of comparing different language learning systems, since the entire grammars are compared (and not only the intuitively correct parts of the grammar). However, even then it is still difficult to say which of two (slightly) incorrect grammars is closer to the original grammar.

disadvantages One of the disadvantages of this approach is that the evaluation of the system depends heavily on the chosen grammar. Some learning
systems can rebuild certain types of grammars more easily than others; by choosing simple grammars, the system can be shown to be better than it really is.

The idea of a language learning system is that it finds correct structure in real natural language data. This means that the original grammar should be as close to the underlying grammar of natural language sentences as possible. However, this grammar is in general not fully known.

A related problem is that the language generation model, which generates the example sentences from the grammar, is not known either. The language generation model should create a set of sentences that describes each of the grammatical features contained in the grammar, but if the language learning system is designed to work on real natural language texts (as is ABL), it should also create sentences that resemble real natural language sentences.

Compare against a treebank The third method of evaluation a language learning system, which will be used in this thesis, is to apply the system to plain natural language sentences which are extracted from a treebank. The structured sentences generated by the language learning system are then compared against the original structured sentences from the treebank.

There are several metrics that can be used to compare the learned tree against the original tree structure. Most often, the *recall*, which gives a measure of the completeness of the learned grammar, and the *precision*, which shows how correct the learned structure is, are computed. These metrics give a gradual indication of the performance of a learning system which allows the comparison of two systems that find correct, but also some incorrect, structure.

This method of evaluating learning systems is, in our view, the most objective. Lately, almost all systems are evaluated using this approach. Examples can be found in (Brent, 1999; Brill, 1993; Clark, 2001b; Déjean, 2000; Nevado et al., 2000).

Advantages This approach does not need an expert to indicate if some construction is correct or incorrect. All linguistic knowledge is already contained in the original treebank. This also means that real natural language data can be used. Of the three evaluation methods, this approach
comes closest to the evaluation of the system in the context of a real world application.

Furthermore, this approach allows for a relatively objective comparison of learning systems. Since several metrics can be used, gradual distinctions between systems can be made. Precise information indicating how well the systems perform on the treebank can be found, since the systems are given a score even when only parts of the learned structure are correct.

disadvantages This method also has its disadvantages. The first disadvantage is that a collection of structured sentences is needed. At the moment however, structured data is only available for a limited number of languages. This severely restricts the evaluation of language independency of the systems.

A second disadvantage is that the annotation scheme and imperfect annotation influence the results. If, for example, the structure of the sentences in the original treebank is relatively flat, but the language learning system finds rich, deep structures, it will be penalised for that, since it learns structure that is not present in the “correct” treebank. Suppose that for example sentence 29a is the structured sentences in a treebank and sentence 29b is the learned tree, the constituent $[Big]_{AP}$ will be counted as incorrect, since it is not present in the original treebank. However, depending on the annotation scheme, this constituent could have been correct. Similar things happen when the annotation of the sentences in the original treebank contains errors.

(29) a. $[[Oscar]_{NP} \sees [Big Bird]_{NP}]_{VP}s$

b. $[[Oscar]_{NP} \sees [[Big]_{AP} Bird]_{NP}]_{VP}s$

Evaluating language learning systems by comparing them against a treebank is done as shown in figure 5.1. Evaluation starts off with a base treebank. The trees in this treebank are taken to be perfectly correct, a gold standard. From each tree in this treebank, the plain sentence (i.e. the yield of the tree) is extracted. These sentences (contained in the plain corpus in the figure) are fed to the language learning system and the results are stored in the learned treebank. The trees in the learned treebank are then compared to the trees from the base treebank.

Applying the evaluation method to a language learning system indicates how much of the structure in the original treebank is found and how much correct struc-
Figure 5.1 Evaluating a structure induction system

structure is generated by the system. To get an idea how good the system really is, it needs to be compared against another system. Comparing the results of two language learning systems against each other shows which of the two works better (on this specific corpus). Normally, a system is compared against a baseline system. This is usually a simple system that generates for example trees with random structure.

5.1.2 Test environment

This section describes the settings used for testing the ABL and parseABL frameworks. Starting with a description of the different treebanks that will be used in this thesis, the section continues by explaining the evaluation metrics that are computed to compare the learned tree structures against the original tree structures. Finally, a brief overview of the tested systems will be given.

5.1.2.1 Treebanks

As mentioned in the previous section, the grammar induction systems will be applied to the plain sentences of a structured corpus. This section will describe the treebanks that have been used to test the ABL and parseABL systems in this thesis.

First of all, it needs to be mentioned that not many structured treebanks are available. There is only a limited number of languages for which structured treebanks are available. Unfortunately, to test if a grammar induction system is really language
independent, it needs to be applied to treebanks of several (different) languages.

Here, two treebanks have been used to extensively test the ABL and parseABL systems. Results on a third treebank, the Wall Street Journal treebank, will be discussed in a separate section. The first treebank is the Air Traffic Information System (ATIS) treebank (Marcus et al., 1993), which is taken from the Penn treebank 2. It is an English treebank containing mostly questions and imperatives on air traffic. The sentences in 30 are some (random) samples that are found in the treebank. The treebank consists of 577 sentences with a mean sentence length of 7.5 words per sentence. All empty constituents (and traces) that can be found in this treebank have been removed beforehand.

(30) a. What airline is this
 b. The return flight should leave at around seven pm
 c. Show me the flights from Baltimore to Oakland please

The second treebank is the Openbaar Vervoer Informatie Systeem\(^1\) (OVIS) treebank (Bonnema et al., 1997). This Dutch treebank, with its 10,000 trees, is larger than the ATIS corpus. The sentences in 31 are example sentences taken from this corpus. The mean sentence length in this treebank, which is 3.5 words per sentence, is much shorter than in the ATIS corpus. Apart from a few (simple) questions, the sentences in this corpus are all imperatives or answers to questions.

(31) a. van bergambacht naar lisse
 b. naar vlissingen zee ik toch
 c. ja dat heb ik nou de hele tijd gezegd ik wil niet naar alkmaar

The third treebank, section 23 of the Wall Street Journal (WSJ) treebank, will be discussed in section 5.1.3.3. Where the ATIS and OVIS can be seen as development corpora, the WSJ treebank is chosen to show that the system also works on a new and more complex set of sentences. Additionally, this is the first time that an unsupervised language learning system is applied to the plain sentences of this corpus.

\(^1\)Openbaar Vervoer Informatie Systeem translates to Public Transport Information System.
5.1.2.2 Metrics

To compare the trees in the learned treebank against the trees in the original treebank, metrics have to be defined. The metrics indicate how similar tree structures are, and thus can be used to show how well the learning systems perform. This section will describe the metrics that are used in this thesis.

The results have been computed with the commonly used EVALB\(^2\) program (Collins, 1997). The only difference from the parameter file that is supplied with the program is that unlabelled metrics, which do not take into account the type labels of the constituents, are used instead of their labelled counterparts.

The metrics that are used in this thesis are described here briefly.\(^3\) To be able to describe the metrics formally, some notions have to be introduced first. Sentences is the list of sentences (without structure) that are contained in the structured corpus. The function gold\((s)\) returns the tree in the original treebank, or the “gold standard”, that belongs to sentence \(s\). The function learned\((s)\) is similar to gold\((s)\), however, it returns the tree in the learned treebank. The function correct\((t, u)\) returns the set of constituents that can be found in both trees \(t\) and \(u\). It finds the constituents that have the same beginning and end in both trees (i.e. it finds all constituents that have an equivalent constituent in the other tree structure). Note that since the metrics are non-labelled, two constituents are considered equal if their begin and end indices are equal; their non-terminal type may be different.

(Bracketing) Recall This metric shows how many of the correct constituents have been learned, which gives an idea about the completeness of the learned grammar. It is the percentage of correctly learned constituents that are also found in the original treebank.

\[
\text{Recall} = \frac{\sum_{s\in\text{sentences}} |\text{correct}(\text{gold}(s), \text{learned}(s))|}{\sum_{s\in\text{sentences}} |\text{gold}(s)|}
\]

(Bracketing) Precision The precision metric indicates how many learned constituents are also correct. It describes the correctness of the learned grammar.

This metric returns the percentage of correctly learned constituents with re-

\(^2\)Available at http://www.cs.nyu.edu/cs/projects/proteus/evalb/.

\(^3\)The EVALB program additionally computes other metrics, but these metrics do not yield much more insight into the systems described here; the changes in recall and precision directly match the changes in the other metrics.
spect to all learned constituents.

\[
\text{Precision} = \frac{\sum_{\sigma \in \text{sentences}} |\text{correct}(\text{gold}(s), \text{learned}(s))|}{\sum_{\sigma \in \text{sentences}} |\text{learned}(s)|}
\]

F-score The f-score (which is not computed by the EVALB program) combines the recall and precision measures into one score. Increasing the \(\beta \) value makes the precision metric more important. Here, it is assumed that recall and precision are equally important, so \(\beta \) is set to 1.

\[
F_\beta = \frac{(\beta^2 + 1) \times \text{Precision} \times \text{Recall}}{\beta^2 \times \text{Precision} + \text{Recall}}
\]

Of course, one can think of many other metrics. In the rest of this chapter some simple, additional metrics are used, for example, to indicate how many constituents are learned, or what the mean sentence length is. These metrics are considered self-explaining.

As discussed in section 5.1.1.1, evaluating language learning system has some disadvantages. The main problem here is that the metrics rely heavily on the annotation scheme used. Constituents that are correct when compared to a tree annotated using one scheme might be incorrect if the tree had been annotated using another scheme. However, since the systems are all extensively tested on two different corpora (with different annotation schemes), the combination of metrics that have just been described will hopefully allow us to compare the different language learning methods. Furthermore, the metrics are only used to compare systems; the evaluation only depends on the relative values of the metrics. The absolute values of the metrics are not important in this case.

One important final note is that the metrics described above were originally designed to measure and compare supervised systems (especially parsers). In this thesis, however, the metrics will be used to compare unsupervised systems. This means that the actual values for each metric cannot under any circumstance be compared against the values of supervised systems. It may be expected that the unsupervised systems evaluated in this thesis yield much lower values for each of the metrics in contrast to supervised systems, since the unsupervised systems have no prior knowledge of the structure present in the treebank it is compared against.
5.1.2.3 Tested systems

The ABL framework consists of two distinct phases and both phases have several instances. Selecting an instance for both phases yields a specific system. Since three alignment learning and three selection learning instances are discussed, this results in nine different systems. The three alignment learning instances are evaluated separately in section 5.1.3.1 and each of the combined systems is evaluated in section 5.1.3.2.

When considering the parseABL framework, a grammar is extracted from the output of one of the different ABL systems. Systems using both types of grammar (SCFG and STSG) are tested. For the evaluation of the STSG framework, two instances with the maximum depth of subtrees set to two or three are tested. The evaluation of these results will be discussed in section 5.1.3.4.

Since there are a lot of possible combinations of instances, a simple naming scheme is introduced here. All instances have their own name, so a system is named by the combination of names of its instances. For example, default:leaf$^+$ is an ABL system that uses the default alignment learning instance and the leaf$^+$ selection learning phase. parseABL systems have an extra phase, so these names will be similar to all:incr:SCFG. Here the result of the all alignment learning instance combined with the incr selection learning phase is used to extract an SCFG. An overview of all possible combinations is depicted in figure 5.2.

<table>
<thead>
<tr>
<th>Alignment learning</th>
<th>Selection learning</th>
<th>Grammar extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>incr</td>
<td>SCFG</td>
</tr>
<tr>
<td>biased</td>
<td>leaf$^+$</td>
<td>STSG</td>
</tr>
<tr>
<td>all</td>
<td>branch$^+$</td>
<td></td>
</tr>
</tbody>
</table>

To be able to compare the results, a baseline system called *random*, is applied to the three corpora in addition to the ABL systems. Like the ABL systems, the resulting treebank is compared against the original treebank and the values for
the three metrics are computed. The baseline system randomly chooses for each sentence in the corpus a left or right branching structure (as displayed in figure 5.3). This system was chosen as a baseline, since it is a simple, language independent system (like the ABL systems). A right branching system (which only assigns right branching structures to sentences) would perform better on for example an English or Dutch corpus, but it would not perform as well on a corpus of a left branching language (like Japanese) and hence it is language dependent. The random system is expected to be much more robust and does not assume anything about the sentences it is assigning structure to.

Figure 5.3 Left and right branching trees

<table>
<thead>
<tr>
<th>Left branching tree</th>
<th>Right branching tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Oscar</td>
</tr>
<tr>
<td>Bird</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>sees</td>
</tr>
<tr>
<td>Big</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>sees</td>
</tr>
<tr>
<td>Oscar</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Bird</td>
</tr>
</tbody>
</table>

Since each of the alignment learning instances (apart from the all instance) depends on the order of the sentences in the plain corpus, all systems have been applied to the plain corpus ten times. The results that will be shown in the rest of the thesis are the mean values of the metrics, followed by the standard deviation between brackets.

5.1.3 Test results and evaluation

This section will give the numerical results of the baseline, ABL and parseABL systems when applied to the ATIS, OVIS and WSJ corpora.\(^4\) First, the alignment

\(^4\)These results differ from results in previous publications. There are several reasons for this. First, slightly different corpora and metrics are used. Secondly, a new implementation has been used here, which finds hypotheses in a different way from the previous implementation (as described in this thesis) and some minor implementation errors have been corrected.
learning phase will be evaluated, followed by the combinations of alignment learning and selection learning. Finally, after the evaluation on the WSJ corpus, the parseABL framework will be tested.

5.1.3.1 Alignment learning systems

The alignment learning inserts all hypotheses that will be present in the final treebank (after selection learning). The selection learning phase only removes hypotheses. This means that if constituents in the gold standard cannot be found in the learned hypothesis space after alignment learning, they will not be present in the final treebank. The alignment learning phase works best when it inserts as many correct hypotheses and as few incorrect hypotheses as possible.

To evaluate the alignment learning phase separately from the selection learning phase, the three alignment learning systems have been applied to the ATIS and OVIS corpora. This results in ambiguous hypothesis spaces. These hypothesis spaces cannot be compared to the gold standard directly, since they contain fuzzy trees instead of proper tree structures.

The hypothesis spaces are evaluated by assuming the perfect selection learning system. The hypothesis space is disambiguated by selecting only those hypotheses that are also present in the gold standard. This will give the upper bound on all metrics. The real selection learning methods (evaluated in the next section) can never improve on these values.

The results of applying the alignment learning phases to the ATIS and OVIS corpora and selecting only the hypotheses that are present in the original treebanks can be found in table 5.1. The precision in this table is 100%, since only correct constituents are selected from the hypothesis space. The recall indicates how many of the correct constituents can be found in the learned treebank.

Table 5.2 gives an overview of the number of hypotheses contained in the hypothesis spaces generated by the alignment learning phases. To get an idea of how these amount compare to the original treebank, the gold standard ATIS and OVIS treebanks contain respectively 7,197 and 57,661 constituents. Additionally, it shows how many hypotheses were removed from the hypothesis spaces to build the upper bound treebanks. The number of constituents present in those treebanks are also given.

It is interesting to see that the biased system does not perform very well at all. The recall is low (even compared to the baseline) and the results vary widely as indicated by the standard deviation. This is the case on both the ATIS and OVIS
Table 5.1 Results alignment learning on the ATIS and OVIS corpus

<table>
<thead>
<tr>
<th></th>
<th>Recall</th>
<th>Precision</th>
<th>F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATIS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>random default</td>
<td>28.90 (0.58)</td>
<td>100.00 (0.00)</td>
<td>44.83 (0.70)</td>
</tr>
<tr>
<td>biased all</td>
<td>19.52 (2.67)</td>
<td>100.00 (0.00)</td>
<td>32.60 (3.64)</td>
</tr>
<tr>
<td>OVIS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>random default</td>
<td>52.73 (0.09)</td>
<td>100.00 (0.00)</td>
<td>69.05 (0.40)</td>
</tr>
<tr>
<td>biased all</td>
<td>53.65 (2.27)</td>
<td>100.00 (0.00)</td>
<td>69.81 (1.93)</td>
</tr>
<tr>
<td></td>
<td>96.47 (0.00)</td>
<td>100.00 (0.00)</td>
<td>97.68 (0.00)</td>
</tr>
</tbody>
</table>

Table 5.2 Number of hypotheses after alignment learning

<table>
<thead>
<tr>
<th></th>
<th>Learned</th>
<th>Best</th>
<th>Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATIS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>random default</td>
<td>4,353 (0.0)</td>
<td>1,851 (25.6)</td>
<td>2,502 (25.6)</td>
</tr>
<tr>
<td>biased all</td>
<td>12,692 (8.8)</td>
<td>4,457 (4.4)</td>
<td>8,235 (9.8)</td>
</tr>
<tr>
<td></td>
<td>2,189 (796.8)</td>
<td>1,175 (331.2)</td>
<td>1,013 (460.3)</td>
</tr>
<tr>
<td>OVIS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>random default</td>
<td>34,221 (0.0)</td>
<td>22,301 (108.1)</td>
<td>11,920 (108.1)</td>
</tr>
<tr>
<td>biased all</td>
<td>123,699 (62.6)</td>
<td>50,365 (28.7)</td>
<td>73,334 (44.0)</td>
</tr>
<tr>
<td></td>
<td>40,399 (1,506.6)</td>
<td>21,488 (1,049.8)</td>
<td>18,911 (1,250.7)</td>
</tr>
<tr>
<td></td>
<td>129,646 (0.00)</td>
<td>51,158 (0.00)</td>
<td>78,488 (0.00)</td>
</tr>
</tbody>
</table>

corpora, although the system performs slightly better on the latter. Table 5.2 shows us why this is the case. The biased alignment learning method, like the random baseline system, does not introduce many hypotheses. It even inserts less hypotheses than there are constituents in the gold treebanks.

The default and all systems might seem to yield roughly similar results, however, the all system is significantly better. Both systems insert almost the same amount of hypotheses in their hypothesis spaces, but since the all system processes all possible alignments, it finds more (and thus more correct) hypotheses than the other alignment learning instances.

Note that the all system does not depend on the order of the sentences in the corpus (hence the zero standard deviation), since all possible alignments are computed. The other systems do depend on the order of the sentences. Especially the biased system introduces a largely varying number of hypotheses.

Since the default and all systems add more hypotheses, the hypothesis spaces will
contain more correct hypotheses (as indicated by the higher recall for both systems), but the selection learning phase also has a harder task, since it has more hypotheses to choose from. This phase will be investigated next.

5.1.3.2 Selection learning systems

For the evaluation of the complete ABL systems, all instances have been applied to the two corpora. The recall, precision and f-scores of the ABL systems and the baseline can be found in table 5.3 for the ATIS corpus and in table 5.4 for the OVIS corpus.

Remember that the selection learning phase works best when it removes as many incorrect and as few correct hypotheses from the hypothesis space. If there are many correct and few incorrect hypotheses in the hypothesis universe, then the selection learning phase has an easy task selecting the correct hypotheses. From this, it can be expected that the results of the selection learning phases on the hypothesis space generated by the biased system will be close to the upper bound, whereas the selection learning on the hypothesis space of the all system will perform less than perfect.

<table>
<thead>
<tr>
<th></th>
<th>Recall</th>
<th>Precision</th>
<th>F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>random</td>
<td>28.90 (0.58)</td>
<td>33.73 (0.68)</td>
<td>31.13 (0.63)</td>
</tr>
<tr>
<td>default</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>upper</td>
<td>48.08 (0.09)</td>
<td>100.00 (0.00)</td>
<td>64.94 (0.08)</td>
</tr>
<tr>
<td>incr</td>
<td>31.64 (0.94)</td>
<td>38.94 (1.32)</td>
<td>34.91 (1.10)</td>
</tr>
<tr>
<td>leaf+</td>
<td>25.82 (0.19)</td>
<td>54.73 (0.42)</td>
<td>35.09 (0.25)</td>
</tr>
<tr>
<td>branch+</td>
<td>20.81 (0.20)</td>
<td>46.57 (0.39)</td>
<td>28.76 (0.26)</td>
</tr>
<tr>
<td>biased</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>upper</td>
<td>19.52 (2.67)</td>
<td>100.00 (0.00)</td>
<td>32.60 (3.64)</td>
</tr>
<tr>
<td>incr</td>
<td>18.20 (2.06)</td>
<td>55.32 (4.82)</td>
<td>27.21 (1.59)</td>
</tr>
<tr>
<td>leaf+</td>
<td>18.01 (1.39)</td>
<td>56.56 (3.97)</td>
<td>27.23 (1.13)</td>
</tr>
<tr>
<td>branch+</td>
<td>17.82 (1.24)</td>
<td>56.62 (3.67)</td>
<td>27.02 (1.03)</td>
</tr>
<tr>
<td>all</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>upper</td>
<td>50.11 (0.00)</td>
<td>100.00 (0.00)</td>
<td>66.76 (0.00)</td>
</tr>
<tr>
<td>incr</td>
<td>32.42 (1.02)</td>
<td>39.34 (1.34)</td>
<td>35.54 (1.16)</td>
</tr>
<tr>
<td>leaf+</td>
<td>25.19 (0.11)</td>
<td>53.31 (0.24)</td>
<td>34.21 (0.15)</td>
</tr>
<tr>
<td>branch+</td>
<td>20.68 (0.02)</td>
<td>45.25 (0.05)</td>
<td>28.39 (0.03)</td>
</tr>
</tbody>
</table>

Table 5.3 and 5.4 give the results of applying the alignment learning and selection learning phases to the ATIS and OVIS corpora, respectively. The “upper” selection learning method corresponds to the results of the previous section, denoting the upper bound of the results after the selection learning phase.
The results show that almost all ABL systems are better than the baseline. Only the biased systems on the ATIS corpus and most of the branch\(^+\) systems perform slightly worse. Even though the f-score of the biased systems is lower, these systems do have a much higher precision than the baseline.

The disappointing results of the biased systems can be explained from the fact that the biased alignment learning phase does not introduce many hypotheses (as shown in the previous section). Only about 18% of the number of constituents present in the ATIS and almost 50% in the OVIS treebank are correct. However, almost all correct hypotheses inserted by the alignment learning phase are still contained in the resulting treebank. This means that the selection learning phases work relatively well for this alignment learning instance. A final remark about the biased systems is that the results can vary wildly, which can already be expected from the results of the alignment learning phase alone.

Table 5.4 Results selection learning on the OVIS corpus

<table>
<thead>
<tr>
<th></th>
<th>Recall</th>
<th>Precision</th>
<th>F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>random</td>
<td>52.73 (0.46)</td>
<td>50.91 (0.45)</td>
<td>51.80 (0.45)</td>
</tr>
<tr>
<td>default</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>upper</td>
<td>94.22 (0.04)</td>
<td>100.00 (0.00)</td>
<td>97.02 (0.02)</td>
</tr>
<tr>
<td>incr</td>
<td>56.01 (3.45)</td>
<td>54.38 (3.35)</td>
<td>55.18 (3.40)</td>
</tr>
<tr>
<td>leaf(^+)</td>
<td>53.63 (0.11)</td>
<td>63.78 (0.10)</td>
<td>58.27 (0.10)</td>
</tr>
<tr>
<td>branch(^+)</td>
<td>42.24 (0.14)</td>
<td>51.04 (0.11)</td>
<td>46.23 (0.13)</td>
</tr>
<tr>
<td>biased</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>upper</td>
<td>53.65 (2.27)</td>
<td>100.00 (0.00)</td>
<td>69.81 (1.93)</td>
</tr>
<tr>
<td>incr</td>
<td>48.03 (3.52)</td>
<td>74.84 (5.62)</td>
<td>58.50 (4.28)</td>
</tr>
<tr>
<td>leaf(^+)</td>
<td>47.63 (3.08)</td>
<td>76.30 (4.60)</td>
<td>58.64 (3.66)</td>
</tr>
<tr>
<td>branch(^+)</td>
<td>46.64 (2.94)</td>
<td>74.62 (4.37)</td>
<td>57.40 (3.49)</td>
</tr>
<tr>
<td>all</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>upper</td>
<td>96.47 (0.00)</td>
<td>100.00 (0.00)</td>
<td>97.68 (0.00)</td>
</tr>
<tr>
<td>incr</td>
<td>56.49 (3.22)</td>
<td>54.74 (3.13)</td>
<td>55.60 (3.22)</td>
</tr>
<tr>
<td>leaf(^+)</td>
<td>53.95 (0.07)</td>
<td>62.15 (0.08)</td>
<td>57.76 (0.07)</td>
</tr>
<tr>
<td>branch(^+)</td>
<td>41.83 (0.01)</td>
<td>48.91 (0.01)</td>
<td>45.09 (0.01)</td>
</tr>
</tbody>
</table>

The branch\(^+\) system uses more precise statistics to select the best hypotheses. However, it does not perform well. The hypothesis universe contains many correct, but also incorrect hypotheses which are used in the computation of the probabilities. It may be the case that when using more precise statistics, the incorrect hypotheses have a larger impact on the final probability, yielding worse results. Apart from this, the branch\(^+\) system relies on the non-terminal types of the hypotheses. However, the types are clustered in an imperfect way (as described in section 3.2.3) which introduces an extra margin of error.
The incr systems all perform relatively well. The all:incr system even outperforms all other systems on the ATIS corpus. From the relatively large standard deviation of these systems, it can be concluded that the order of the sentences in the corpora is important.

The default and all systems seem to perform relatively similar, but the leaf+ and branch+ systems yield significantly better results when combined with the default system on both corpora. Overall, the default systems perform best. They have high scores and small standard deviations. From the systems within default, the leaf+ system clearly performs best. For the rest of this chapter, i.e. the results on the WSJ corpus, the learning curve and parseABL, this system will be used.

5.1.3.3 Results on the Wall Street Journal corpus

To test how the system performs on a completely new corpus, it has been applied to the Wall Street Journal (WSJ) corpus. This corpus is, like the ATIS corpus, part of the Penn treebank 2. The default:leaf+ system has been applied to section 23 of this treebank⁵, which contains 1,094 sentences. The WSJ corpus consists of newspaper articles, which means that the sentences are more complex than the ATIS or OVIS corpora. The main difference between the corpora is that the WSJ corpus has a much larger vocabulary size. Where the other two corpora are samples of a small domain, the WSJ corpus is from a much larger domain. Apart from that, the mean sentence length is over 35 words per sentence. Some example sentences can be found in 32.

(32) a. At about 3:30 pm EDT S&P futures resumed trading and for a brief time the futures and stock markets started to come back in line

b. In the year quarter the designer and operator of cogeneration and waste heat recovery plants had net income of $326,000 or four cents a share on revenue of about $414 million

c. Under terms of the plan independent generators would be able to compete for 15 % of customers until 1994 and for another 10 % between 1994 and 1998

⁵Section 23 has informally developed into the test section of the WSJ corpus (see e.g. (Collins, 1997; Charniak, 1997)).
Table 5.5 Results ABL on the WSJ corpus

<table>
<thead>
<tr>
<th></th>
<th>Recall</th>
<th>Precision</th>
<th>F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>random</td>
<td>23.94 (0.29)</td>
<td>22.62 (0.27)</td>
<td>23.27 (0.28)</td>
</tr>
<tr>
<td>upper</td>
<td>52.86 (0.03)</td>
<td>100.00 (0.00)</td>
<td>69.16 (0.03)</td>
</tr>
<tr>
<td>default:leaf+</td>
<td>12.46 (0.54)</td>
<td>42.56 (1.73)</td>
<td>19.26 (0.52)</td>
</tr>
</tbody>
</table>

Before looking at the results, it must be mentioned that to our knowledge, this is the first time an unsupervised language learning system has been applied to the plain sentences of the Wall Street Journal corpus.

The results of applying the random baseline system, the upper bound of the alignment learning phase and the default:leaf+ system to section 23 of the WSJ corpus are shown in table 5.5. The baseline system outperforms the ABL system. However, default:leaf+ has a much higher precision. Note that applying the system to several sections indicate that the recall decreases slightly, but the precision improves even more.

The upper bound shows that many of the correct hypotheses are being learned. The selection learning phase, however, is unable to select them. It may be the case that the leaf+ selection learning system does not perform very well when confronted with more hypotheses compared to the ATIS and OVIS corpora. Future work should concentrate on better selection learning methods. Since there are many hypotheses, the probabilities used in the leaf+ system may not be precise enough. The branch+ system or the systems described in section 7.4 may perhaps perform better (even though they are based on imprecise non-terminal type data).

5.1.3.4 parseABL systems

For the evaluation of the parseABL system, a grammar has been extracted from each of the treebanks generated by the default:leaf+ system. Each of the grammars have been used to parse the plain sentences of the ATIS corpus. The results of the parsed treebanks are shown in table 5.6. The first entry is computed by extracting an SCFG and the final entry contains the results of the unparsed treebank (as shown in table 5.3. The other entries show the results of parsing the sentences using STSGs with the designated maximum tree depth.

6The corpus has been parsed using the efficient DOPDIS parser by Khalil Sima’an (1999). Only one minor problem was that the ABL systems sometimes learn too “flat” structure (i.e. constituents containing too many elements). The parser has not been optimised for this type of structure.
<table>
<thead>
<tr>
<th>TreeDepth</th>
<th>Recall</th>
<th>Precision</th>
<th>F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.87 (0.54)</td>
<td>56.79 (1.00)</td>
<td>34.59 (0.69)</td>
</tr>
<tr>
<td>2</td>
<td>25.62 (0.17)</td>
<td>55.38 (0.49)</td>
<td>35.03 (0.25)</td>
</tr>
<tr>
<td>3</td>
<td>25.79 (0.19)</td>
<td>54.74 (0.43)</td>
<td>35.06 (0.26)</td>
</tr>
<tr>
<td>-</td>
<td>25.82 (0.19)</td>
<td>54.73 (0.42)</td>
<td>35.09 (0.25)</td>
</tr>
</tbody>
</table>

Each of the reparsed corpora have a lower recall, but a higher precision. When the maximum tree depth is increased, the results grow closer to the unparsed treebank. Since the DOP system has a preference for shorter derivations and thus has a preference for the use of larger subtrees (Bod, 2000), the STSG instances that have a higher maximum tree depth will prefer the larger parts of the structures. This corresponds to the structures that are present in the unparsed treebank generated by the default:leaf$^+$ system. Increasing the treedepth even more will probably yield results similar to those of depth 3 and to the unparsed treebank.

5.1.3.5 Learning curve

To investigate how the ABL system responds to differences in amount of input data, the default:leaf system is applied to corpora of increasing size. The results on the ATIS corpus can be found in figure 5.4 and those on the OVIS corpus in figure 5.5.

The measures on both corpora seem to have been stabilised when the entire corpus is used to learn. It might still be the case that if the corpora were larger, the results would increase slightly, but no drastic improvements are to be expected.

It is interesting to see that the recall and precision metrics both respond similar to changes. The jump in performance that occurs between sentences 500 and 750 on the OVIS corpus can be found in all metrics. This shows that the ABL systems is very balanced. Note that the default:leaf$^+$ system has been applied to the corpora of different size only once in this section. The large increase in performance is explained by a number of “easy” sentences in that range. The standard deviation of the results become smaller when more data is available. When the system is applied ten times (and using the mean as values), this jump in performance is flattened out.

The system takes a longer time to stabilise on the OVIS corpus than on the ATIS corpus. The OVIS corpus contains mainly short sentences. These sentences are easy to structure, since there are not many possible hypotheses to insert. The ATIS corpus, on the other hand, has longer sentences, which are all about as difficult.
to structure. When longer sentences occur early in the corpus, the results on the OVIS corpus will fluctuate (as happens between sentences 500 and 750). If the longer sentences occur later in the corpus (for example when the order of the sentences is different), then there is already enough data in the hypothesis space to absorb the fluctuation.

5.2 Qualitative results

Apart from the numerical analysis, the treebanks resulting from applying the ABL systems are analysed and they exhibit some nice properties. This section takes a closer look at the properties of the generated treebanks. First, a rough “looks-good-to-me” approach is taken to evaluate the learned treebanks. Following this, it will be shown that the generated treebanks contain recursive structures.
5.2.1 Syntactic constructions

The learned treebanks all contain interesting syntactic structure. In this section, three different constructions worth mentioning are discussed. Of course, the structured corpora contain more, interesting, syntactic constructions, but these three are most remarkable.

The examples given in this section are taken from a version of the ATIS corpus, which is structured by the default:leaf+ system. The exact non-terminal types change for each instantiation, but similar constructions can be found in each of the structured corpora.

Noun phrases The system is able to consistently learn constituents that are similar to noun phrases. The sentences in 33 show some examples.

(33) a. [How much would the [coach fare cost]₁₀]₀
 b. [I need a [flight]₂₁₃ from Indianapolis to Houston on T W A]₀
 c. [List all [flights]₁₀₂₆ from Burbank to Denver]₀
The ABL system finds almost all noun phrases in the corpus. However, it inserts constituents that contain the entire noun phrase except for the determiner. This happens because the determiners occur frequently, which means that they are often linked. When the determiners are linked, the parts of the sentences following (and preceding) the determiner are stored in a hypothesis.

Note that since the determiners are not inside the noun phrase constituent, almost all noun phrases are learned incorrectly. Only noun phrases that do not have a determiner at all or noun phrases containing a noun only are learned correctly.

From-to phrases A case that is related to the noun phrase constituents is that of *from* and *to* phrases. Since the corpus contains air traffic information, *from* and *to* are words that occur frequently. Like in the previous case, where determiners are used as a hypothesis boundary, *from* and *to* are also linked regularly. This results in constituents (which are mostly names of places) as shown in the sentences in 34. It implies that all names of places are found correctly.

(34) a. [What are the flights from [Milwaukee]$_{54}$ to [Tampa]$_{55}$]$_{0}$
 b. [Show me the flights from [Newark]$_{54}$ to [Los Angeles]$_{55}$]$_{0}$
 c. [I would like to travel from [Indianapolis]$_{54}$ to [Houston]$_{55}$]$_{0}$

It is interesting to see that even the non-terminal types of the two constituents are consistent. A *from*-phrase has type 54 and a *to*-phrase has type 55.

Part-of-speech tags Apart from the larger constituents described above, ABL finds many part-of-speech tags of for example verbs, nouns. Many verbs are clustered into the same non-terminal type. All forms of the verb “to be” occurring in the corpus are grouped together, but also verbs that occur on the first position in the sentence have mostly the same type. Additionally, frequently occurring nouns, like *flight*, *flights*, *number* and *dinner* have the same non-terminal types consistently.

5.2.2 Recursion

All tested treebanks structured by the ABL systems contain recursive structure. This section will concentrate on examples taken from the structured ATIS corpus. To be completely clear about what recursion is, it is defined here as follows.
Definition 5.1 (Recursion in a tree)

A (fuzzy) tree $T = \langle S, C \rangle$ contains recursive structure iff there are constituents $c_1 = \langle b_1, e_1, n_1 \rangle$ and $c_2 = \langle b_2, e_2, n_2 \rangle \in C$ for which it holds that $n_1 = n_2$ and either $(b_1 \leq b_2 \land e_1 \geq e_2)$ or $(b_1 \geq b_2 \land e_1 \leq e_2)$.

Definition 5.2 (Recursion in a treebank or structured corpus)

A treebank or structured corpus is said to contain recursive structure iff at least one tree or fuzzy tree contains recursive structure.

The sentences 35, 36, and 37 are examples of recursion in trees found in the ATIS corpus. The first sentence of the pair is the learned tree, while the second is the original tree structure. These particular structures can be found in the corpus generated by the default:leaf$^+$ system, but the other systems learn equivalent recursive structures.

(35) a. [Fares less than one hundred fifty one dollars]$_{32}$ [dollars]$_{32}$

 b. [Fares less than [one hundred fifty one dollars]$_{QP}$ dollars]$_{NP}$]

In the sentences in 35, the original tree structure did not show any recursion. The recursive structure, however, can be easily explained. If the sentence is aligned with for example the sentence *Cheapest fare one way*, the word *one* can aligned against the first or second occurrence. This introduces the structure as shown, although the non-terminal types may still be different. At some later point, the different non-terminal types are merged and the recursive structure is a fact.

(36) a. [Is there a flight tomorrow morning from Columbus to [to [Nashville]$_{55}$]$_{55}$]

 b. [Is there a flight tomorrow morning from Columbus [to]$_{X}$ [to Nashville]$_{PP}$]

The sentences in 36 are a bit strange. The input corpus contained an error, and this allows different links of the word *to*, the system learned recursion. Again, the original corpus did not show any recursion.

(37) a. [Is dinner served on the [first leg or the [second leg]$_{1}$]$_{1}$]

 b. [Is dinner served on [[the first leg]$_{NP}$ or [the second leg]$_{NP}$]$_{NP}$]

The learned tree structure in the final example, which can be found in 37, is much more like the original structure. In fact, the constituents would have been
completely correct if only the determiner was put inside the constituents. The fact why this is not the case has been discussed in the previous section.

Intuitively, a recursive structure is formed first by building the constituents that form the structure of the recursion as hypotheses with different root non-terminals. Now the non-terminals need to be merged. This happens when two partially structured sentences are compared to each other yielding hypotheses that already existed in both sentences with the non-terminals present in the “recursive” structure (as described in sections 3.2.2 and 3.2.3). The non-terminals are then merged, resulting in a recursive structure.
Chapter 6

ABL versus the World

This world is spinning around me.
— Dream Theater (Images and Words)

The general framework has been described and tested in the previous chapters, so now it can be compared against other systems. This chapter will relate ABL to other learning systems. In addition, similarities between the ABL and Data-Oriented Parsing frameworks will be discussed.

This chapter first describes the previous work, giving ABL a niche in the world of language learning systems. Following this, ABL is compared against other language learning systems. Next, ABL is extensively compared to the EMILE system, since EMILE is in many ways similar to ABL and finally, the relationships between ABL and the DOP framework will be discussed. Even though DOP is not a language learning system, they have many similarities.

6.1 Background

Before going into a discussion of language learning systems, it must be mentioned that there is a whole research area dedicated to a formal description of the learnability of languages. Lee (1996) gives a nice overview of this field.

One of the negative results in the theoretical field of language learning is that by Gold (1967) which proved that learning context-free grammars from text (only)
is in general impossible.\footnote{Although the learning of context-free grammars in general is not possible, Gold’s theorems do not cover all cases, such as for example finite grammars (Adriaans, 1992, pp. 43–44).} Another result, which is even more important in our case, is by Horning (1969), who showed that stochastic context-free grammars are indeed learnable. On the other hand, Gold’s concept of identification in the limit has been amended with the notion of PAC (Probably Approximately Correct) and PACS (PAC learning under Simple distributions) learning (Valiant, 1984; Li and Vitányi, 1991). The idea with PAC learning is to minimise the chance of learning something wrong, without being completely sure to be right.

Existing (language) learning algorithms can be roughly divided into two groups, \textit{supervised} and \textit{unsupervised} learning algorithms, based on the type of information they use. All learning algorithms use a \textit{teacher} that gives examples of (unstructured) sentences in the language. In addition, some algorithms use a \textit{critic} (also called an \textit{oracle}). A critic may be asked if a certain sentence (possibly including structure) is a valid sentence in the language. The algorithm can use a critic to validate hypotheses about the language.\footnote{When an algorithm uses a treebank or structured corpus to initialise, it is said to be supervised. The structure of the sentences in the corpus can be seen as the critic.} Supervised language learning methods use a teacher and a critic, whereas the unsupervised methods only use a teacher (Powers, 1997).

Apart from the division of learning systems based on their \textit{information}, systems can also be separated based on the types of \textit{data} they use. Some systems learn using \textit{positive data} only, whereas other methods use \textit{complete information} (positive as well as negative).

Figure 6.1 shows the different types of language learning systems based on the type of information and type of data used. The ABL framework falls in the type 4 class, since it is unsupervised (it does not use a critic) and it uses only positive information (ABL is fed with sentences that can be generated by the language only).

\textbf{Figure 6.1 Ontology of learning systems}

<table>
<thead>
<tr>
<th>Type of data</th>
<th>Type of information</th>
<th>Supervised</th>
<th>Unsupervised</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete</td>
<td>Type 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>Type 3</td>
<td>Type 2</td>
<td></td>
</tr>
</tbody>
</table>

Supervised language learning methods typically generate better results. These methods can tune their output, since they receive knowledge of the structure of the language (by initialisation or querying a critic). In contrast, unsupervised language
learning methods do not receive these structured sentences, so they do not know at all what the output should look like and therefore cannot adjust the output towards the “expected” output.

Although unsupervised methods perform worse than supervised methods, unsupervised methods are necessary for the (otherwise) time-consuming and costly creation of treebanks of languages for which no initial treebank nor grammar yet exists. This indicates that there is a strong practical motivation to develop unsupervised grammar induction algorithms that work on plain text.

6.2 Bird’s-eye view over the world

This section will briefly describe some of the existing language learning systems. First, systems using complete information (types 1 and 2) will be described. Next, the systems which use positive information only will be considered, subdividing these into supervised (type 3) and unsupervised (type 4).

When progressing the next sections, more detail will be given towards types and systems that are more closely related to ABL, but even the section on unsupervised systems using only positive information is not meant to be a complete overview of the (sub-)field. These short descriptions are merely given to illustrate the ideas of the established work in this area.

6.2.1 Systems using complete information

For completeness sake, this section will describe two systems that use positive as well as negative examples to learn a grammar. First, a supervised system which uses partially structured sentences will be described, followed by an unsupervised system.

Sakakibara and Muramatsu (2000) describe a system that induces a grammar using partially structured sentences. The partially structured sentences are stored in a tabular representation (similar to the one used in the CYK algorithm (Younger, 1967)). A genetic algorithm partitions the set of non-terminals, effectively merging certain non-terminals. The different possible partitions are then tested against the negative examples.

The system by Nakamura and Ishiwata (2000) learns a context-free grammar from positive and negative examples by adapting the CYK algorithm, which introduces a grammar rule if the sentence is otherwise not parsable. If the introduction
of a grammar rule allows for parsing a negative example, the system returns failure.

This approach is in a way similar to the alignment learning phase of ABL. Parts of sentences that cannot be parsed (which are parts that are unequal to the right-hand side of the known grammar rules) are used to introduce hypotheses. However, no disambiguation takes place, the system returns failure when overlapping hypotheses are introduced (in contrast to ABL which has selection learning as a disambiguation phase).

Both systems are evaluated by letting the system rebuild a known context-free grammar. The emphasis of the first system, however, is on how many iterations of the genetic algorithm are needed to find a grammar similar to the original one, whereas the second system concentrates on processing time needed to find the grammar. This approach unfortunately makes it impossible to compare the two systems directly. Furthermore, it is unclear how the two methods would perform on real natural language data.

6.2.2 Systems using positive information

The systems described in this section (which use positive examples only) are more closely related to the ABL system than the systems in the previous section. First, some supervised systems will be described, followed by a section on unsupervised systems.

The section on unsupervised systems also contains some systems that learn word categories or segment sentences only. Even though these systems are different from ABL in that ABL learns context-free grammars, they are treated here because they start with similar information and are in some ways similar to ABL.

6.2.2.1 Supervised systems

The supervised Transformation-Based Learning system described in (Brill, 1993), is a non-probabilistic system. It starts with naive knowledge on structured sentences (for example right branching structures). The system then compares these structured sentences against the correctly structured examples. From the differences between the two, the system learns “transformations”, which can transform the naive structure into the correct structure. The learned transformations can then be used to correctly structure new (unstructured) text, by first assuming the naive structure and then applying the transformations. The system is evaluated by applying it to the Wall Street Journal treebank, which yields very good results. However,
the initial structure of the sentences is taken to be right branching, which is already quite similar to the structure of English sentences. This means that not many transformations are needed to convert it into the correct structure. It is unclear how well this method would work on a corpus of a mainly left branching language.

The ALLiS system (Déjean, 2000) is based on theory refinement. It starts by building a roughly correct grammar based on background knowledge. This initial grammar is extracted from structured examples. When the grammar is confronted to the bracketed corpus, revision points in the grammar are found. For these revision points, possible revisions are created. The best of these is chosen to revise the grammar. This is repeated until no more revision points are found. Like the previous system, this method is evaluated on a natural language treebank (although it is not mentioned which treebank is used). The evaluation concentrates on the structure of noun phrases and verb phrases only, therefore, it is unclear how well this method can generate structure for complete sentences.

In his thesis, Osborne (1994) builds a grammar learning system by combining a model-driven with a data-driven approach. The model-driven system starts with a grammar and meta-rules which describe how to introduce new grammar rules. The data-driven system extracts counts from a structured corpus and uses these counts to prune the new rules induced by the meta-rules. The system is extensively tested on a treebank, measuring several different metrics. These tests show that the combination of data-driven and model-driven approach performs best. However, it is unclear how the quality of the initial grammar, needed for the model-driven part of the system, influences the results of the entire system.

Pereira and Schabes (1992) describe a system that uses a partially bracketed corpus to infer parameters of a Stochastic Context-Free Grammar (SCFG) using inside-outside reestimation. It is tested by letting the system rebuild a grammar (one that generates palindrome sentences) and by applying it to the ATIS corpus (which is a different version of the one that is used in this thesis). It is possible to use this system on a raw (unbracketed) corpus, but the results decrease drastically. Hwa (1999) uses a variant of Pereira and Schabes system in which the inferred grammars are represented in a different formalism, which is slightly more efficient. This version is again tested on the ATIS (and, additionally, on the Wall Street Journal) corpus, however, the system is pre-trained on 3600 fully structured sentences from the Wall Street Journal treebank.

The algorithm described by Sakakibara (1992) is in many ways similar to the algorithm by Sakakibara and Muramatsu (2000), which uses complete data. Again,
structured examples are used to initialise the grammar, but instead of using negative information to decide which partitions can be used to merge non-terminals, the algorithm merges non-terminals to make the grammar reversible.\(^3\) Nevado et al. (2000) describe a version of the Sakakibara algorithm generating a stochastic context-free grammar. This method has been tested on a subset of the Wall Street Journal treebank, but the only metrics mentioned are the number of iterations the algorithm needed, the number of learned grammar rules and the perplexity of the learned grammar.

6.2.2.2 Unsupervised systems

Before discussing unsupervised grammar induction systems, a brief overview of systems that learn syntactic categories will be given. Next, an article which describes systems that find word boundaries is mentioned. Finally, unsupervised grammar induction systems using positive data only will be treated.

Huckle (1995) gives a brief overview of systems that cluster (semantically) similar words based on the distribution of the contexts of the words and their psychological relevance. His system uses a Naive Bayes method (Duda and Hart, 1973), which for each word, counts occurrences of words in the contexts of the considered word. The distance between two words is computed by taking into account the counts of the words in the different contexts. However, the evaluation of the systems, using the looks-good-to-me approach, is meager.

The system described in (Finch and Chater, 1992) bootstraps a set of categories. Words in the input text are classified in the same category when they can be replaced in the same contexts (i.e. according to a similarity measure). It is based on bigram statistics describing the contexts of the words. This system can also be used to classify short sequences of words. The article by Redington et al. (1998) contains the results of several experiments of a similar system that classifies words using distributional information. A system based on neural networks can be found in (Honkela et al., 1995). Using a Self-Organising Map (SOM) the words of the input text are roughly clustered according to their semantic type. All articles evaluate their system using the looks-good-to-me approach, which makes it impossible to compare them directly. Additionally, the article by Redington et al. makes a more

\(^3\)A grammar is called reversible if:

1. it is invertible, that is, \(A \to \alpha\) and \(B \to \alpha\) implies \(A = B\), and
2. it is reset-free, that is, \(A \to \alpha B \beta\) and \(A \to \alpha C \beta\) implies \(B = C\).
formal evaluation by computing accuracy, completeness and informativeness.

The ABL framework is in some ways a generalisation of the systems described above. Where these systems take a fixed window size for the context of a word or word sequence, ABL considers the entire sentence as context. If there is some context that can be found in at least two sentences, ABL will introduce the hypotheses of the words within that context, i.e. the unequal parts. This allows ABL to learn constituents of any size.

Brent (1999) describes the comparison of a variety of systems (by other people) that segment sentences finding word boundaries (which were not present in the input data). The systems do not generate grammars, but some structure (in the form of word boundaries) is found. The system is evaluated on the CHILDES corpus, which contains phonemic transcriptions of child-directed English, by computing recall and precision metrics. This system does not learn any further syntactic structure, it is only evaluated on how well it finds word boundaries.

Algorithms that use the minimum description length (MDL) principle build grammars that describe the input sentences using the minimal number of bits. The MDL principle results in grouping re-occurring parts of sentences yielding a reduction in the amount of information needed to describe the corpus. The system by Grünwald (1994) makes use of the MDL principle. Similarly, de Marcken (1995, 1996, 1999) uses the MDL principle to find structure in (unsegmented) text. This system finds word boundaries and inner-word structure. Most of these articles only perform a looks-good-to-me evaluation. Only de Marcken (1996) does a more formal evaluation. The recall and crossing-brackets rate is computed. Unfortunately, it uses other corpora than the Brent (1999) article, which again makes it impossible to compare the systems.

The ABL system does not make use of the MDL principle, but by introducing hypotheses, it indicates how the plain sentences can be compressed (as shown in figure 2.3 on page 12). By taking the unequal parts of sentences as hypotheses it compresses the input sentences better than when using the equal parts of sentences as hypotheses.

Stolcke (1994) and Stolcke and Omohundro (1994) describe a grammar induction method that merges elements of models using a Bayesian framework. At first, a simple model is generated (typically, just the set of examples). These examples are then chunked (i.e. examples are split into sub-elements). By merging the elements of this set, more complex models arise. Elements are merged guided by the Bayesian posterior probability (which indicates when the resulting grammar is “simpler”).
Evaluation is again done by rebuilding a grammar. In the ABL framework, non-terminals are merged in the clustering step as described in section 3.2.3 on page 31. Future extensions may take an approach similar to the one described in these articles (see section 7.3 on page 101).

Chen (1995) presents a Bayesian grammar induction method, which is followed by a post-pass using the inside-outside algorithm (Lari and Young, 1990). The system starts with a grammar that generates left-branching tree structures. The grammar rules are then changed and the probability of the resulting grammar based on the observations (example sentences) is computed, where smaller grammars are favoured over larger ones. Afterwards, the grammar is rebuilt using the inside-outside algorithm. This method is tested on the part-of-speech tags of the WSJ corpus, where the entropy of the resulting grammar is used as the evaluation metric.

Similarly, Cook et al. (1976) describe a hill-climbing algorithm (which chooses another grammar if the cost of that grammar is better than the cost of the current grammar). The cost function “measures the complexity of a grammar, as well as the discrepancy between its language and a given stochastic language sample.” The method is evaluated by letting the system rebuild some simple context-free grammars and examining the result using the looks-good-to-me approach.

The system by Wolff has a long history in the field of language learning. His earlier work describes a sentence segmentation system called MK10 (Wolff, 1975, 1977). It computes the joint frequencies of contiguous elements in the sentence. When a pair of elements occurs regularly, it is taken to be an element itself. Later work (Wolff, 1980, 1982, 1988) describes SNPR, which is more directed towards finding context-free grammars describing the example sentences. The system is explained from the viewpoint of compression (Wolff, 1996, 1998a,b). Again, the systems are evaluated using a looks-good-to-me approach.

Sequitur is a system developed by Nevill-Manning and Witten (1997) and is in many ways related to the SNPR system. It generates a grammar by incrementally inserting the words of the sample sentences in the grammar. Sequitur then makes sure that the following constraints are always satisfied: digram uniqueness, which means that no pair of adjacent symbols (words) appears more than once in the grammar and rule utility, which makes sure that every rule is used more than once. An interesting feature of this system is that it runs in linear time and space. The system is mostly evaluated on a formal basis (in the form of time and space complexity). Other than that, it has been applied to several corpora, but only some features of the learned structure are discussed (very briefly).
Magerman and Marcus (1990) describe a method that finds constituent boundaries (called *distituents*) using mutual information values of the part of speech n-grams within a sentence. The mutual information describes which words cannot be adjacent within a constituent. Between these words there should be a constituent boundary. The evaluation of this system is vague. It has been applied to a corpus, but the results are only given as rough mean error rates.

The system by Clark (2001b) combines several techniques. First of all, it uses distributional clustering to find grammar rules. A mutual information criterion is then used to remove incorrect non-terminals. These ideas are incorporated into a MDL algorithm. The system has been evaluated similarly to the evaluation of the ABL system in this thesis, even using the same corpus and evaluation metrics. The main difference with ABL, however, is that Clark’s system has been trained on the large British National Corpus before applying it to the ATIS corpus. Furthermore, the system is tested on part-of-speech tags instead of the plain words.

Klein and Manning (2001) describe two systems: the *Greedy-Merge* system clusters part-of-speech tags according to a cost (divergence) function, whereas the *Constituency-Parser* “learns distributions over sequences representing the probability that a constituent is realized as that sequence.” The exact details of the systems are hard to understand from the article, but both systems are evaluated on the part-of-speech tags of the Wall Street Journal corpus. This allows it to be roughly compared against the system by Clark.

From the description of the systems it may be clear that it is nearly impossible to compare two systems. The systems are divided over the three ways of evaluation (as described in section 5.1.1), but even the systems that evaluate using the same approach as in this thesis are nearly impossible to compare, since other (subsets of) corpora, grammars or metrics are used.

The evaluation of methods described by Clark (2001b), Klein and Manning (2001) and Pereira and Schabes (1992) comes reasonably close to ours. Pereira and Schabes (1992) use a slightly different version of the ATIS corpus. Clark (2001b) trains his system on the BNC corpus. Unlike the ABL system, all systems (including the one by Klein and Manning (2001)) use sequences of part-of-speech tags as sentences.

Now several grammar induction systems have been discussed briefly, we will take a more detailed look at the EMILE system, since it is the system most similar to ABL. Most of the next section has been previously published in van Zaanen and Adriaans (2001a,b).
6.3 Zooming in on EMILE

The EMILE 4.1 algorithm is motivated by the concepts behind categorial grammar and it falls into the PACS paradigm (Li and Vitányi, 1991). The theoretical concepts used in EMILE 4.1 are elaborated on in articles on EMILE 1.0/2.0 (Adriaans, 1992) and EMILE 3.0 (Adriaans, 1999). More information on the precursors of EMILE 4.1 may be found in the above articles, as well as in Dörnenburg’s (1997) Master’s thesis. The EMILE 4.1 algorithm was designed and implemented by Vervoort (2000). Adriaans et al. (2000) report some experiments using the EMILE system on large corpora.

The general idea behind EMILE is the notion of identification of substitution classes by means of clustering. If a language has a context-free grammar, then expressions that are generated from the same non-terminal can be substituted for each other in each context where that non-terminal is a valid constituent. Conversely, if there is a sufficiently rich sample from this language available, then one expects to find classes of expressions that cluster together in comparable contexts. Figure 6.2 illustrates how EMILE finds clusters and contexts. The context Oscar likes occurs with the expressions all dustbins and biscuits. Actually, this type of clustering can be seen as a form of text compression (Grünwald, 1994).

EMILE’s notion of substitution classes exactly coincides with the notion depicted in figure 2.4 on page 13, which shows that unequal parts of sentences can easily be generated from the same non-terminal.

Figure 6.2 Example clustering expressions in EMILE

<table>
<thead>
<tr>
<th>Sentences</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oscar likes all dustbins</td>
<td>1→Oscar likes 2</td>
</tr>
<tr>
<td>Oscar likes biscuits</td>
<td>2→all dustbins</td>
</tr>
<tr>
<td></td>
<td>2→biscuits</td>
</tr>
</tbody>
</table>

This finding gives rise to the hypothesis (possibly unjustified) that these two expressions are generated from the same non-terminal. If enough traces of a whole group of expressions in a whole group of contexts are found, the probability of this hypothesis grows. In other words, grammar rules are only introduced when enough

4EMILE 4.1 is a successor to EMILE 3.0, conceived by Adriaans. The original acronym stands for Entity Modelling Intelligent Learning Engine. It refers to earlier versions of EMILE that also had semantic capacities. The name EMILE is also motivated by the book on education by J.-J. Rousseau.
evidence has been seen and thus only when the probability of the hypothesis is high enough.

The difference with ABL’s approach is that instead of inserting hypotheses about constituents in the hypothesis space, the unequal parts of the sentences are clustered (i.e. grouped) in rewrite rules directly. However, ABL always stores the possible constituents, whereas EMILE only induces grammar rules when enough evidence has been found. EMILE never introduces conflicting grammar rules; the grammar rules with the highest probabilities are stored.

For a sentence of length n the maximal number of different contexts and expressions is $1/2n(n + 1)$.5 The complexity of a routine that clusters all contexts and expressions is polynomial in the number of contexts and expressions.

The EMILE family of algorithms works efficiently for the class of shallow context-free languages with characteristic contexts and expressions provided that the sample is taken according to a simple distribution (Adriaans, 1999). An expression of a type T is characteristic for T if it only appears with contexts of type T. Similarly, a context of a type T is characteristic for T if it only appears with expressions of type T. In the example one might see the context *Oscar likes* as characteristic for noun phrases and the phrases *all dustbins* and *biscuits* as characteristic for noun contexts. If more occurrences of the characteristic contexts and types are found, the certainty that these are characteristic grows.

A distribution is simple if it is recursively enumerable. A class of languages C is shallow if for each language L it is possible to find a grammar G, and a set of sentences S inducing characteristic contexts and expressions for all the types of G, such that the size of S and the length of the sentences of S are logarithmic in the descriptive length of L (relative to C). Languages with characteristic contexts and expressions for each syntactic type are called context- and expression-separable. A sample is characteristic if it allows us to identify the right clusters that correspond with non-terminals in the original grammar.

Samples generated by arbitrary probability distributions are very likely to be non-characteristic. One can prove, however, that if the sample is drawn according to a simple distribution and the original grammar is shallow then the right clusters will be found in a sample of polynomial size, i.e. one will have a characteristic sample of polynomial size.

Natural languages seem to be context- and expression-separable for the most

5Note that EMILE’s cluster routine does a more extensive search for patterns than a k-gram routine that distinguishes only $n − (k − 1)$ elements in a sentence.
part, i.e. if there are any types lacking characteristic contexts or expressions, these types are few in number, and rarely used. Furthermore, there is no known example of a syntactic construction in a natural language that cannot be expressed in a short sentence. Hence the conjecture that natural languages are (mostly) context- and expression-separable and shallow seems tenable. This explains why EMILE works for natural language.

The EMILE 4.1 algorithm consists of two main stages: clustering and rule induction. In the clustering phase all possible contexts and expressions of a sample are gathered in a matrix. Starting from random seeds, clusters of contexts and expressions, that form correct sentences, are created. If a group of contexts and expressions cluster together they receive a type label. This creates a set of proto-rules. In the example, the proto-rules 1 → Oscar likes 2 and 2 → all dustbins can be found (if there is enough evidence for them). The sentence type 1 can be rewritten as Oscar likes concatenated to an expression of type 2.

A concise method for rule creation is used in the rule induction phase. In the rule induction phase, sentences in the input are partially parsed using the set of proto-rules. It introduces new grammar rules by applying the proto-rules. New rules are derived by substitution of types for characteristic sub-expressions in typed expressions (Adriaans, 1992). Suppose for instance that the expression all dustbins is characteristic for type 2. It is then possible to form the rule 3 → cleans 2 with a brush from the rule 3 → cleans all dustbins with a brush.

In (Adriaans, 1999) it is shown that the EMILE 3.0 algorithm can PACS learn shallow context-free (or categorial) languages with context- and expression separability in time polynomial to the size of the grammar. EMILE 4.1 is an efficient implementation of the main characteristics of 3.0.

6.3.1 Theoretical comparison

While ABL directly (and greedily) structures sentences, EMILE tries to find grammar rules in two steps. It first finds proto-rules and using these proto-rules it introduces new grammar rules. Rules are only introduced when enough evidence has been found. This duality is actually the main difference of the two systems. Since ABL considers much more hypotheses, it results in ABL being slower (i.e. taking

6 After rewriting types such as ‘verbs that are also nouns’ as composites of basic types.

7 A set of parameters and thresholds determines the significance and the amount of noise in the clusters.

8 EMILE 3.0 uses a much more elaborate, sound rule induction algorithm, but it is impossible to implement this routine efficiently.
more time and thus working on smaller corpora) in contrast to EMILE, which is developed to work on much larger corpora (say over 100,000 sentences).

The inner working of the algorithms is completely different. EMILE finds a grammar rule when enough information is found to support the rule. Evidence for grammar rules is found by searching the matrix, which contains information on possible contexts and expressions. In other words, EMILE first finds a set of proto rules. The second phase uses these proto-rules to search for occurrences of the right-hand side of a proto-rule in the unstructured data, which indicates that the rule might have been used to generate that sentence. This knowledge is used to insert new grammar rules.

In contrast, ABL searches for unequal parts of sentences, since these parts might have been generated from the same non-terminal type (substitution class in EMILE’s terminology). ABL remembers all possible substitution classes it finds and only when all sentences have been considered and all hypotheses are found, the “best” constituents are selected from the found hypotheses.

One more interesting feature worth mentioning is that EMILE (like ABL) can learn recursive structures.

6.3.2 Numerical comparison

The two systems have been tested on two treebanks: the Air Traffic Information System (ATIS) treebank and the Openbaar Vervoer Informatie Systeem (OVIS) treebank. Both treebanks have been described in section 5.1.2.1 on page 62. The only difference here is that one-word sentences have been removed beforehand. This explains the slightly different results of ABL in table 6.1.

The same evaluation approach as described in chapter 5 has been used. ABL and EMILE have both been applied to the plain sentences of the two treebanks. The structured sentences generated by ABL have been directly compared against the structured sentences in the original corpus. EMILE builds a context-free grammar. The plain sentences in the original corpus are parsed using this grammar and the parsed sentences are compared against the original tree structures.

An overview of the results of both systems on the two treebanks can be found in table 6.1. The figures in the tables again represent the mean values of the metric followed by their standard deviations (in brackets). Each result is computed by applying the system ten times on the input corpus.

Note that the OVIS and ATIS corpora are certainly not characteristic for the
underlying grammars. It is therefore impossible to learn a perfect grammar for these corpora from the data in the corpora.\footnote{It is our hypothesis that one needs a corpus of at least 50,000,000 sentences to get an acceptable grammar of the English language on the basis of the EMILE algorithm.}

As can be seen from the results, ABL outperforms EMILE on all metrics on both treebanks. Since EMILE has been developed to work on large corpora (much larger than the ATIS and OVIS treebanks), the results are disappointing. However, it may well be the case that EMILE will outperform the ABL system on such corpora. ABL is a more greedy learner (it finds as many hypotheses as possible and then disambiguates the hypothesis space), whereas EMILE is much more cautious. Once a grammar rule has been inserted in the grammar, it is considered correct.

Another explanation why ABL outperforms EMILE is that the EMILE system has many parameters which influence for example the greediness of the algorithm. By adjusting the parameters, a different grammar may be found, which perhaps performs better than this one. Several settings have been tried and the results shown seem to be the best. This does not mean that there does not exist a better setting of the parameters.

Finally, the results of EMILE may be worse than those of ABL, because the sentences had to be parsed with the grammar generated by EMILE. A non-probabilistic parser is used to generate these results. This may also explain the large standard deviations in the results. If there are many derivations of the input sentences, the system will select one at random. Since the structured sentences are all parsed ten times, other derivations may have been chosen, generating variable results.

6.4 ABL in relation to the other systems

Now that several language learning systems have been described and ABL is more closely compared against the EMILE system, this section will relate ABL to estab-
lished work in the field of grammar induction. Each of the phases of ABL will be discussed briefly.

The two phases of ABL can roughly be compared to different language learning methods. To our knowledge, no other language learning system uses the edit distance algorithm to find possible constituents. In this way, the alignment learning methods are completely different from any other language learning technique, but the idea behind alignment learning closely resembles that of the first phase in the EMILE system. Both phases search for substitutable subsentences.

Another way of looking at the alignment learning phase is that the resulting (ambiguous) hypothesis space can be seen as a collection of possible ways of compressing the input corpus. From this point of view, the alignment learning phase resembles systems that are based on the MDL principle. The main difference with ABL is that the hypothesis space contains a collection of possible ways to compress the input corpus. Systems that use the MDL principle usually find only the best compression (which does not necessarily describe the best structure of the sentence).

The probabilistic selection learning methods are more closely related to techniques used in other systems. The main difference is that in ABL these techniques are used to disambiguate the hypothesis space, where other systems use these techniques to direct the learning system. The probabilistic selection learning instances select hypotheses based on the probability of the possible constituents. A similar approach can be found in systems that use distributional information to select the most probable syntactic types such as the systems in (Finch and Chater, 1992) or (Redington et al., 1998). On the other hand, ABL assigns a probability to the different hypotheses, which in a way is similar to finding the best parse based on an SCFG (Baker, 1979).

In the end, ABL can also be seen as a Bayesian learner. Using an intermediate data structure (the hypothesis space), the system finds the structured sentences such that:

$$\arg\max_T \prod_{i=1}^n P(T_i|C_i)$$

where T is a list of n trees with corresponding yields in C, which is the list of sentences.

Finally, the parseABL system has a grammar extraction phase which makes use of the standard SCFG and STSG techniques. Extracting the grammars from the structured corpora generated by the alignment and selection learning phases and also reparsing the plain sentences is done using established methods.
6.5 Data-Oriented Parsing

This section will relate ABL to the Data-Oriented Parsing (DOP) framework (Bod, 1995, 1998). Large parts of this section can also be found in (van Zaanen, 2002).

Data-Oriented Parsing and Alignment-Based Learning are two completely different systems with different goals. The DOP framework structures sentences based on known *structured* past experiences. ABL is a language learning system searching for structure using *unstructured* sentences only. However, the global approach both choose to tackle their respective problems is similar.

Both the DOP and ABL frameworks consist of two phases. The first phase builds a search space of possible solutions and the second phase searches this space to find the best solution. In the first phase, DOP considers all possible combinations of subtrees in the tree grammar that lead to possible derivations of the input sentence. The second phase then consists of finding the best of these possibilities by computing the most probable parse, effectively searching the “derivation-space”, which contains substructures of the sentences.

ABL has a similar setup. The first phase (alignment learning) consists of building a search space of hypotheses by aligning sentences to each other. The second phase (selection learning) searches this space (using for example a statistical evaluation function) to find the best set of hypotheses.

ABL and DOP are similar in remembering all possible solutions in the search space for further processing later on. The advantage of proceeding in this way is that the final search space contains more precise (statistical) information. ABL and DOP make definite choices using this more complete information, in contrast to systems that choose between mutually exclusive solutions at the time when they are found.

Note that ABL and DOP do not necessarily compute all solutions, but all (or at least many) solutions are present in a compact data structure. Taking into account all solutions is possible by searching this data structure.

6.5.1 Incorporating ABL in DOP

Here we describe two extensions of the DOP system using ABL. One way of extending DOP is to use ABL as a bootstrapping method generating an initial tree grammar. The other way is to have ABL running next to DOP to enhance DOP’s robustness.
6.5.1.1 Bootstrapping a tree grammar

One of the main reasons for developing ABL was to allow a parser to work on unstructured text without knowing the underlying grammar beforehand. From this it follows directly that ABL can be used to enhance DOP with a method to bootstrap an initial tree grammar. All DOP methods assume an initial tree grammar containing subtrees. These subtrees are normally extracted from a structured corpus. However, if no such corpus is available, DOP cannot be used directly.

Normally, a structured corpus is built by hand. However, as described in chapter 2, this is expensive. For each language or domain, a new structured corpus is needed and manually building such a corpus is not be feasible due to time and cost restrictions. Automatically building a structured corpus circumvents these problems. Unstructured corpora are built more easily and applying an unsupervised grammar bootstrapping system such as ABL to an unstructured corpus is relatively fast and cheap.

Figure 6.3 gives an overview of the combined ABL and DOP systems. The upper part describes how ABL is used to build a structured corpus, while the lower part indicates how DOP is used to parse a sentence. Both systems are used as usual, the figure merely illustrates how both systems can be combined. Starting out with an unstructured corpus, ABL bootstraps a structured version of that corpus. From this, subtrees are extracted using the regular method, which can then be used for parsing. Note that subtrees extracted from the sentences parsed by DOP can again be added to the tree grammar.

Figure 6.3 Using ABL to bootstrap a tree grammar for DOP

[Diagram showing the process of bootstrapping a tree grammar using ABL and DOP]
6.5.1.2 Robustness of the parser

The standard DOP model breaks down on sentences with unknown words or unknown syntactic structures. One way of solving this problem (in contrast to the DOP models described in (Bod, 1998)) is to let ABL take care of these cases. The main advantage is that even new syntactic structures (which were not present in the original tree grammar) can be learned. To our knowledge, no other DOP instantiation does this.

Figure 6.4 shows how, when DOP cannot parse a sentence,\(^{10}\) the unparsable sentence is passed to ABL. Applying ABL to the sentence results in a structured version of the sentence. Since this structured sentence resembles a parsed sentence, it can be the output of the system. Another approach may be taken, where subtrees, extracted from the sentence structured by ABL, are added to the tree grammar and DOP will reparse the sentence (which will definitely succeed).

Figure 6.4 Using ABL to adjust the tree grammar

![Diagram](image)

The main problem with this approach is that ABL cannot learn structure using the unparsable sentence only; ABL always needs other sentences to align to. Additionally, for any structure to be found, ABL needs at least two sentences with at least one word in common. There are several ways to solve this problem.

One way to find sentences for ABL to align is extracting them from the tree grammar used by DOP. If complete tree structures are present in the tree grammar, the yield of these trees (i.e. the plain sentences) can be used to align to the unparsable sentence. Furthermore, using the structure present in the trees from the tree grammar, the correct type labels might be inserted in the unparsable sentence.

\(^{10}\)It is assumed that the unparsable sentence is a correct sentence in the language and that the grammar (in the form of DOP subtrees) is not complete.
If no completely lexicalised tree structures representing sentences are present in the tree grammar (for example, because they have been removed by pruning), sentences can still be found by generating them from the subtrees. Using a smart generation algorithm can assure that at least some words in the unparsable sentence and the generated sentences are the same.

A completely different method of finding plain sentences which ABL can use to align to is by running ABL parallel to DOP. Each sentence DOP parses (correctly or incorrectly) is also given to ABL. These sentences can then be used to learn structure. When sentences are parsed with DOP, ABL builds its own structured corpus which can be used to align unparsable sentences to.

Additional information about the unparsable sentence can be gathered when ABL initialises the structure of the unparsable sentence with information from the (incomplete) chart DOP has built. The incomplete chart contains structure based on the subtrees in the treebank. These subtrees are a good indication of part of the structure of the sentence even though the subtrees cannot be combined into a complete derivation.

6.5.2 Recursive definition

If DOP uses ABL (section 6.5.1) and ABL uses DOP (section 4.3.2 on page 54 and 7.4.2.2 on page 105) at the same time, there seems to be an infinite loop between the systems, which is impossible to implement. However, when taking a closer look, DOP is extended with ABL as a bootstrapping method or to improve robustness. On the other hand, ABL is extended with DOP as an improvement to the stochastic evaluation function or to reparse sentences. In the latter case, there is no need for the robuster version of DOP. The DOP system that is used to extend ABL is not the extended DOP system, so effectively there is no recursive use between both systems.
Chapter 7

Future Work:
Extending the Framework

Hmmm, especially enjoyed that one...
Let’s see what’s next...
— Offspring (Smash)

This chapter will describe several possible extensions of the standard ABL system. At the moment, these extensions have not yet been implemented.

First, three extensions of the alignment learning phase will be described, followed by two possible extensions of the selection learning phase. Next, two extensions that influence the entire system are discussed, and finally something will be said about applying the ABL system to other corpora.

7.1 Equal parts as hypotheses

Even though the discussion in chapter 2 favoured assuming unequal parts of sentences as hypotheses, a modified ABL system that, additionally, stores equal parts of sentences as hypothesis might yield better results.

The idea of the alignment learning phase is to find a good set of hypotheses. Ideally, the alignment learning phase inserts as many correct and as few incorrect hypotheses into the hypothesis universe as possible. The selection learning phase, which should select the best of these hypotheses, then has less work in selecting the correct constituents and removing the incorrect ones.

99
However, inserting too many hypotheses into the hypothesis universe places a heavy burden on the selection learning phase, since it will need to make a stricter selection based on a hypothesis universe containing more noise. On the other hand, since only the alignment learning phase inserts hypotheses into the hypothesis universe, inserting too few hypotheses will directly decrease the performance of the entire system. There is a trade-off between inserting more hypotheses (which implies that many correct hypotheses are present in the hypothesis space, but not all are correct) and inserting fewer hypotheses (where there are fewer correct hypotheses inserted, but there is a larger probability that the inserted hypotheses are correct).

Chapter 2 showed that using equal parts of sentences as hypotheses sometimes introduces correct hypotheses, so adding these to the hypotheses universe may increase the precision of the system in the end, while also increasing the amount of work of the selection learning phase.

7.2 Weakening exact match

The algorithms described so far are unable to learn any structure when two sentences with completely distinct words are considered. Since unequal parts of sentences are stored as hypotheses, only the entire sentences (which have no words in common) are hypotheses. In other words, for a hypothesis to be introduced, there need to be equal words in the sentences. However, other sentences in the corpus (which do have words in common) can be used to learn structure in the two distinct sentences.

Sometimes it is too strong a demand to require equal words in the two sentences to find hypotheses; it is enough to have similar words. Imagine sentences 38a and 38b, which are completely distinct. The standard ABL learning methods would conclude that both are sentences, but no more structure will be found. Now assume that the algorithm knows that Book and Show are words of the same type (representing verbs), it would find the structures in sentences 39a and 39b.

(38) a. Book a trip to Sesame Street

 b. Show me Big Bird’s house

(39) a. Book [a trip to Sesame Street]₁

 b. Show [me Big Bird’s house]₁
An obvious way of implementing this is by using *equivalence classes* (for example the system as described in (Redington et al., 1998)). Words that are closely related (in a syntactic or semantic perspective) are grouped together in the same class. Words that are in the same equivalence class are said to be sufficiently equal, so the alignment algorithm may assume they are equal and may thus link them. Sentences that do not have words in common, but do have words in the same equivalence class in common, can now be used to learn structure.

A great advantage of using equivalence classes is that they can be learned in an unsupervised way. This means that when the algorithm is extended with equivalence classes, it still does not need to be initialised with structured training data.

Another way of looking at weakening the exact match is by comparing it to the second phase of the EMILE system, the rule induction. That phase introduces new grammar rules by applying already known grammar rules to unstructured parts of sentences. In other words, if there are grammar rules that rewrite type 2 into *Book* and into *Show*, then the words *Book* and *Show* are also possibly word groups of type 2, meaning that they are similar enough to be linked. This again results in the sentences in 39.

If equivalence classes or EMILE’s rule induction phase are used in the alignment learning phase, more hypotheses will be found since more words in the sentences are seen as similar. This means that the selection learning phase of the algorithm has more possible hypotheses to choose from.

7.3 Dual level constituents

In section 3.2.3 on page 31 it was assumed that a hypothesis in a certain context can only have one type. This assumption is in line with Harris’s procedure for finding substitutable segments, but it introduces some problems.

Consider the sentences of 41 taken from the Penn Treebank ATIS corpus. When applying the ABL learning algorithm to these sentences, it will determine that *morning* and *nonstop* are of the same type, since they occur in the same context. However, in the ATIS corpus, *morning* is tagged as an NN (a noun) and *nonstop* is a JJ (an adjective).

1 A clearer example might be

(40) a. Ernie eats biscuits

 b. Ernie eats well
(41) a. **Show me the** [morning]₁ flights

 b. **Show me the** [nonstop]₁ flights

 On the other hand, one can argue that these words *are* of the same type, precisely because they occur in the same context. Both words might be seen as some sort of modifying phrase.²

 The assumption that word groups in the same context are always of the same type is clearly not true. To solve this problem, merging the types of hypotheses should be done more cautiously.

 The example sentences of 41 show that there is a difference between syntactic type and functional type of constituents. The words *morning* and *nonstop* have a different syntactic type, a noun and an adjective respectively, but both modify the noun *flights*, i.e. they have the same functional type. (The same applies for the sentences in 40.) ABL finds the functional type, while the words are tagged according to their syntactic type, and thus there is a discrepancy between the types.

 The two different types are incorporated in the sentences as shown in 42. Both hypotheses receive the 1 (functional) type because they occur in the same context. Each hypothesis in the same context receives the same functional type. The inner type (2 and 3) denotes the syntactic type of the words. Hypotheses with the same yield always receive the same syntactic type (which again is incorrect, but hopefully in the end, this will even out).

(42) a. **Show me the** [morning]₂₁ flights

 b. **Show me the** [nonstop]₃₁ flights

 Since the overall use of the two words differs greatly, they occur in different contexts. *Morning* will in general occur in places where nouns or noun phrases belong, while *nonstop* will not. This distinction can be used to differentiate between the two words.

 When the alignment learning phase has finished, the merging of syntactic and functional types is started. Only when the distributions of two combination of a syntactic and a functional type are similar enough (according to some criterion), they are merged into the same (combined) type. The distribution of syntactic types within functional types can be used to find combinations of syntactic and functional

²Although Harris's *procedure* for finding the substitutable segments breaks down in these cases, his *implication* does hold: *nonstop* can be replaced by for example *cheap* (another adverb) and *morning* can be replaced by *evening* (another noun).
types that are similar enough to be merged. *Morning* and *nonstop* will then receive different types, since the syntactic type of *morning* normally occurs within other functional types than the syntactic type of *nonstop*.

7.4 Alternative statistics in selection learning

Section 4.2 on page 46 describes three different selection learning methods. A probabilistic method performs best, but those systems are very simple and make certain (incorrect) assumptions. This section will describe possible extensions or improvements over the currently implemented systems. First, a slightly modified probabilistic approach is discussed briefly, followed by the description of an alternative approach based on parsing.

7.4.1 Smoothing

One of the assumptions made when applying one of the probabilistic selection learning methods is that the hypothesis universe contains all possible hypotheses. In other words, it is assumed that the hypothesis universe describes the complete population of hypotheses.

To loosen this assumption, the probabilities of the hypotheses can be smoothed. Instead of assuming that the hypotheses in the hypothesis universe are all existing hypotheses, it is seen as a selection of the entire population. To account for this, a small fraction of the probabilities of the hypotheses is shifted to the unseen hypotheses.

There are several methods that can smooth the probabilities of the hypotheses. Chen and Goodman (1996, 1998) give a nice overview of the area of smoothing techniques.

7.4.2 Selection learning through parsing

Instead of computing the probability of each possible combination of (non-overlapping) constituents as described in section 4.2.2 on page 48, it is also possible to *parse* the sentence with a grammar that is extracted from the fuzzy trees, similar to the grammar extraction system as described in section 4.3 on page 53. However, this method is different from the parseABL system, in that here the parsing occurs in the selection learning phase. The grammar extraction occurs directly after the alignment learning phase.
The main advantage of this selection learning method is that all hypotheses are considered to be selected (or removed). This is in contrast to the selection methods described earlier in this thesis, where non-overlapping hypotheses are considered correct and only overlapping hypotheses can be removed.

Since the final structure of the tree should be in a form that could have been generated by a context-free grammar, the first instantiation of selection learning by parsing extracts a stochastic context-free grammar from the hypothesis space and reparses the plain sentences using that grammar. Similarly to the two grammar extraction methods, another instantiation, using the DOP system, which is based on the theory of stochastic tree substitution grammars (STSG), will be discussed.

7.4.2.1 Selection learning with an SCFG

The first system will extract an SCFG from the fuzzy trees generated by the alignment learning phase. Using this grammar, the plain sentences will be parsed and the resulting structure will be the output of the selection learning phase. Section 4.3.1 on page 53 mentioned how to extract an SCFG from a tree structure. However, the starting point for extracting an SCFG in the grammar extraction phase is a tree structure, but the starting point for selection learning is a fuzzy tree. This complicates things as shown in figure 7.1.

The fuzzy tree, which is displayed as a structured sentence in the figure mentioned above, denotes two (conflicting) tree structures at the same time. When these two tree structures are extracted and the regular grammar extraction method (as described in section 4.3.1 on page 53) is used on these trees, then the grammar shown in the figure is created. Using these grammar rules, the tree structures encapsulated by the fuzzy tree can be generated, so the structure in the fuzzy tree can be generated as well.

The problem now is to compute the probabilities of the grammar rules. The first four grammar rules all occur once, but the next two rules occur twice in the trees, so the probabilities are 2/4 = 0.5 (and 2/2 = 1 for the last rule). However, in the original fuzzy tree, the hypothesis only occurred once, so actually the probabilities should be 1/2 = 0.5 (and 1/1 = 1 for the final rule).

Since the final probabilities are the same in this case, it seems as though there is no real problem. However, when for example the grammar rule NP → Bert is found in another fuzzy tree, the results will turn out differently. If the NP rules were counted four times, then the probability of the new rule will be 3/5 = 0.6, but if the original rules were counted only two times, the probability should be 2/3 = 0.67.
7.4.2.2 Selection learning with an STSG

Similarly to the approach taken in section 4.3, it is possible to extract a stochastic tree substitution grammar instead of a stochastic context free grammar to use for selection learning. The advantage of this type of grammar is that it can capture a wider variety of stochastic dependencies between words in subtrees.

Extracting an SCFG from a fuzzy trees is not entirely without problems, as shown in the previous section and extracting an STSG has the same problem, only worse. The main problem with extracting an SCFG is that grammar rules that are contained in overlapping constituents can be counted in different ways. When extracting subtrees, this occurs much more frequently. On the other hand, once this problem has been solved for the SCFG case, it is also solved for the STSG case.

7.5 ABL with Data-Oriented Translation

Recently there has been research into a data-oriented approach to machine translation (Poutsma, 2000a,b; Way, 1999). The idea of the systems (based on DOP) is to translate sentences by parsing the source sentence using elementary trees extracted from a bilingually annotated, paired treebank. Each of the elementary subtrees in
the source language is linked to a subtree in the target language, so when a parse of the source language is found, the parse and thus the translated sentence in the target language follows automatically.

One of the main problems with DOP is that an initial set of elementary subtrees is needed. With these machine translation techniques, the problem is even worse, since linked\(^3\) (bi-lingual) subtrees are needed. Building such treebanks by hand is highly impractical. However, in section 4.3.2 on page 54, it was shown that ABL can learn a stochastic tree substitution grammar. This type of grammar is the basis of the DOP framework. By adapting ABL slightly, it can also be used to learn linked STSGs.

Instead of applying ABL to a set of sentences, ABL is given a set of pairs of sentences, where one sentence of the pair translates to the other sentence. If for example the sentences in figure 7.2 are given to ABL (the English sentences on the left-hand side translate to the Dutch sentences on the right-hand side), the hypotheses with types E\(_2\) and D\(_2\) are introduced.

Figure 7.2 Learning structure in sentence pairs

<table>
<thead>
<tr>
<th>English</th>
<th>Dutch</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Bert sees</td>
<td>[Ernie](E_1)</td>
</tr>
<tr>
<td>Bert sees</td>
<td>[Big Bird] (E_2)</td>
</tr>
</tbody>
</table>

When a hypothesis is introduced in the source and target sentences, a hypothetical link is also introduced between the two. A link indicates that the two phrases below the linked nodes are translation equivalent. Figure 7.3 shows how the sentences of figure 7.2 are linked. The link between E\(_1\) and D\(_1\) indicates that the two sentences are translation equivalent and the same applies to the phrases below the E\(_2\) and D\(_2\) non-terminals.

When more than one pair of hypotheses is found in the sentences, all possible combinations of hypothetical links are introduced. This is needed since different languages may have a different word order. For example the sentences as given in 43 (taken from (Poutsma, 2000b)) show that the subject of the first sentence occurs as the object of the second sentence. If these sentences are aligned against sentences where the subjects and objects are different, it is unclear whether the hypothesis containing *John* should be linked against the hypothesis *Jean* or *Marie*, since both sentences will receive two hypotheses.

\(^3\)Subtrees are linked when they are translation equivalent.
(43) a. John likes Mary

b. Marie plait à Jean

After the alignment learning phase, the hypotheses need to be disambiguated as usual, but since the system also introduces ambiguous links, these need to be disambiguated as well. The best links can be chosen by computing the probability that a hypothesis in one language is linked against the hypothesis in the other language. In the end, links that occur more often will be correct. For example, John will be more often linked with Jean than with Marie, when other sentences containing John and Jean but not Marie occur in the corpus.

7.6 (Semi-)Supervised Alignment-Based Learning

Unsupervised grammar induction systems like ABL do not have any knowledge about what the final treebank should look like, since unsupervised systems are not guided towards the wanted structure. Although, they usually yield less than perfect
results, these systems are still useful, for example when building a treebank of an unknown language, when no experts are available or when results are needed quickly.

On the other hand, when experts are available, when more precise results are needed or when there are no pressing time restrictions, the resulting treebank generated by an unsupervised grammar induction system might not be satisfactory. One possible way to use an unsupervised induction system for the generation of high quality treebanks is to improve the quality of the generated treebank by post-processing done by experts. As an example, the Penn Treebank, which is probably the most widely used treebank to date, was annotated in two phases (automatic structure induction followed by manual post-processing) (Marcus et al., 1993).

A more interesting approach to building a structured corpus, instead of choosing for one of the two possibilities of building a treebank (using an induction system or annotating the treebank by hand), would be to combine the best of both methods. This should result in a system that suggests possible tree structures for the expert to choose from and it should learn from the choices made by the expert in parallel.

The ABL system can be adapted into a system, called (Semi-) Supervised ABL (SABL), that indicates reasonably good tree structures and learns from the expert’s choices. The only changes needed in the algorithm occur in the selection learning phase:

Select n-best hypotheses Instead of selecting the best hypotheses only, as in standard ABL, let the system select the n (say 5) best hypotheses. These hypotheses are presented to the expert, who chooses the correct one or, if the correct one is not present in the set of n-best hypotheses, adds it manually.

Learn from the expert’s choice ABL’s selection of the best hypotheses from the hypothesis universe is guided by a probabilistic evaluation function. In order to learn from the choices made by the expert, the probabilities of the chosen hypotheses should be changed:

- If the correct hypothesis (i.e. the hypothesis chosen by the expert) was already present in the hypothesis universe, the probability of that hypothesis should be increased. When a hypothesis has a high probability, it will have a higher chance to be selected next time.

- If the correct hypothesis was not present in the hypothesis universe, it should be inserted and the probabilities of the hypotheses should be adjusted. Since it was the preferred hypothesis, its probability should be
increased as if the hypothesis was present in the hypothesis universe already.

Varying the amount of increase in probability, changes the learning properties of the system. A small amount of increase makes the system a slow learner, while a large amount of increase may over-fit the system.

Using an unsupervised grammar induction system and manual annotation are two opposing methods in building a treebank. SABL can be placed anywhere between the two extremes. By varying how many of the proposed hypotheses are actually used, SABL can be adjusted to work anywhere in the continuum between hand annotation and fully automatic structuring of sentences.

7.7 More corpora

Along with extending the ABL system, more extensive testing of the current system is needed as well. Testing ABL on different corpora will yield a deeper insight into the properties and (possible) shortcomings of ABL. Future research can take several different directions when evaluating ABL. Interesting future work will investigate

- the linguistic properties of ABL,
- the performance of ABL in a larger domain,
- the application of ABL on completely different data sets.

Chapter 5 on page 57 showed that ABL performs reasonably well on corpora of mainly right branching languages. It clearly outperformed the system that generates a randomly chosen left or right branching structure.

It was claimed that ABL will perform equally well on corpora of left or right branching languages. This claim needs to be tested on corpora of for example Japanese. Since the ABL system does not have a built-in preference for left or right branching structures, it can be expected that ABL will perform equally well on a corpus of a left or right branching language.

A right branching system outperforms ABL on an English or Dutch corpus and a left branching system will probably outperform ABL on a Japanese corpus. However, this is an unfair comparison, since the left and right branching systems are biased towards the language in the corpus (whereas ABL is not). The independent random system as described in chapter 5 can, like ABL, be expected to perform similarly on
a Japanese corpus. Therefore, ABL will probably outperform the random system on a corpus of a left branching language, too.

ABL has been tested on two corpora which both are taken from a limited domain (that of flight information and public transportation). Next to these two corpora, the ABL system has been applied to the large domain WSJ corpus. This showed that it is practically possible to use this system on such a corpus.

First tests on a larger domain corpus show the need for loosening the exact match of words, as discussed in section 7.2. Since the size of the vocabulary in a large domain is larger, it will help the system match non-function words. This indicates that more research can be done in this direction.

Finally, the system can also be applied to different types of corpora. Although the original system is developed to find syntactic structure in natural language sentences, it might be interesting to see how well ABL can find structure in other types of data, which can be (but are not limited to) for example:

Morphology There has been some work in the unsupervised learning of morphological structure, e.g. Clark (2001a); Gaussier (1999); Goldsmith (2001). It is also possible to apply ABL to a set of words, instead of a set of plain sentences, to find inner-word structure. ABL will then align characters (phonemes, or plain letters) while the rest of the system remains the same.

As an example, consider aligning the words /ranη/ (running) and /wɔkη/ (walking) as shown in 44 (taken from (Longman, 1995)). From this alignment, the syllables /ran/ (run), /wɔk/ (walk), and /η/ (-ing) can be found. Similarly, applying the algorithm to compound words will decompose these. When applying ABL to a collection of words, a hierarchically deeper structure can be found.

(44) a. ranη
 running

 b. wɔkη
 walking

Music A central topic in musicology is to construct formal descriptions of musical structures. Where in linguistics it is uncontroversial to use tree structures to describe the syntactic structure of sentences, in musicology similar structures\(^4\) are used (Sloboda, 1985).

\(^4\)Recently, structured musical data has become available (Schaffrath, 1995).
Musical pieces can be structured according to different viewpoints. Lerdahl and Jackendoff (1983) recognise the following components on which a musical piece can be structured:

Grouping structure This component indicates how a musical piece can be subdivided into sections, phrases and motives.

Metrical structure A musical piece contains strong and weak beats, which are often repeated in a regular way within a number of hierarchical levels. This component structures a musical piece based on the metric structure within that piece.

Time-span reduction A musical piece can be structured based on the pitches. Each of the pitches can be placed in a hierarchy of structural importance based on their position in metrical and grouping structure.

Prolongational reduction The pitches in a musical piece can also be structured in a hierarchy that “expresses harmonic and melodic tension and relaxation, continuity and progression.”

Next to these viewpoints, there are other dimensions of musical structure, such as timbre, dynamics, and motivic-thematic processes. However, these are not hierarchical in nature.

A good system that learns structure in music will need to be able to recognise (the combinations of) these different viewpoints with their corresponding parameters. If ABL is to be used in this field, several adaptations are needed. Furthermore, musical pieces are much longer than natural language sentences. Since the ABL system relies on the edit distance algorithm, it has difficulties with longer input.

DNA structure DNA (or RNA) is usually described by naming the bases in a DNA strand. Bases are the building blocks of DNA and each base is denoted by a letter. Each base is one of A, G, C, or T. A piece of DNA is thus described by a list containing these four letters. In the end, the parts of a DNA string of bases denoted by letters can be combined to form larger molecules.

From the DNA molecules, RNA is extracted. RNA is a molecule that is composed of (copies of) parts of the original DNA molecule. The combinations of adjacent bases in the RNA can be seen as blueprints for amino acids. These amino acids can then form proteins. The main problem here is to find which
parts of the DNA molecules contain useful information and will be copied into an RNA strand (Durbin, 2001; Gusfield, 1997; Sankoff and Kruskal, 1999; Searls, 1994).

Figure 7.4 illustrates how RNA bases combine into amino acids, which again combine into a protein. This hierarchy might be found when applying ABL to the bases of RNA.

Figure 7.4 Structure in RNA

![Diagram of RNA structure]

The main problem with these types of data (e.g. musical and DNA/RNA) is that there are no clear “sentences”. Whereas musical data might be chunked into phrases, this is clearly more difficult with DNA or RNA information. The current implementation of ABL is inherently slow when applied to very large strings (of for example over 10,000 symbols), since the time of the edit distance algorithm is in the order of the squared length of the string.
Chapter 8

Conclusion

De antwoorden zijn altijd al aanwezig.
— Steve Vai (Passion and Warfare)

Alignment-Based Learning (ABL) is an unsupervised grammar induction system that generates a labelled, bracketed version of the unstructured input corpus. The goal of the system is to learn syntactic structure in plain sentences using a minimum of information. This implies that no \textit{a priori} knowledge of the language of the input corpus (or of any other particular language in general) is assumed, not even part-of-speech tags of the words. This shows how an empiricist system can learn syntactic structure in practice.

The system is a combination of several known techniques, which are used in completely new ways. It relies heavily on Harris’s notion of substitutability and Wagner and Fischer’s edit distance algorithm. Implementing a system based on the notion of substitutability using the edit distance algorithm yields several new insights into these established methods.

Harris (1951) states that substitutable segments are descriptively equivalent. This means that everything that can be said about one segment can also be said about the other segment. He also describes a method to find the substitutable segments by comparing sentences: substitutable segments are parts of utterances that can be substituted for each other in different contexts. This idea is used as a starting point for the alignment learning phase.

Harris never mentioned the practical problems with this approach. The first problem to tackle is how to find the substitutable parts of two sentences. In ABL,
the edit distance algorithm is used for this task. This is reflected in the alignment learning phase of the system.

The second problem of Harris’s notion of substitutability is that when searching for substitutable segments, at some point conflicting (overlapping) substitutable segments are found. The selection learning phase of ABL tries to disambiguate between the possible (context-free) syntactic structures found by the alignment learning phase.

ABL consists thus of two phases, alignment learning and selection learning. The first phase generates a search space of possible constituents and the second phase searches this space to select the best constituents. The selected constituents are stored in the structured output corpus.

During the alignment learning phase, pairs of sentences are aligned against each other. This can be done in several different ways. In this thesis three systems are described. The first uses the instantiation of the edit distance algorithm (Wagner and Fischer, 1974) which finds the longest common subsequence between two sentences. The second is an adjusted version of the longest common subsequence algorithm which prefers not to link equal words in the two sentences that are relatively far apart (i.e. one word in the beginning of the sentence and the other word at the end of the other sentence). The third system, which does not use the edit distance algorithm, finds all possible alignments if there are more than one.

Aligning sentences against each other uncovers parts of the sentences that are equal (or unequal) in both. The unequal parts of the sentences are stored as hypotheses, denoting possible constituents. This step is in line with Harris’s notion of substitutability, where parts of sentences that occur in the same context are recognised as constituents.

The alignment learning phase may at some point introduce hypotheses that overlap each other. Overlapping hypotheses are unwanted, since their structure could never have been generated by a context-free (or mildly context-sensitive) grammar. The selection learning phase selects hypotheses from the set of hypothesis generated by the alignment learning phase, which resolves all overlapping hypotheses. This can be done in several different ways.

First, a non-probabilistic method is described where hypotheses that are learned earlier are considered correct. The main disadvantage of this system is that incorrectly learned hypotheses can never be corrected, when they are learned early. The other systems that have been implemented both have a probabilistic basis. The probability of each (overlapping) hypothesis is computed using counts from the hy-
hypotheses in the set of all hypotheses generated by the alignment learning phase. The probabilities of the separate hypotheses are combined and the combination of (non-overlapping) hypotheses with the highest combined probability is selected.

The probabilistic selection learning methods allow for a gradient range of knowledge about hypotheses, instead of an absolute yes/no distinction. This (potentially) solves many of the problems that used to be attributed to Harris's notion of substitutability (e.g. the problems introduced by Chomsky (1955) and Pinker (1994) as discussed in section 2.5.2).

The ABL system, consisting of the alignment and selection learning phase, can be extended with a grammar extraction and parsing phase. This system is called parseABL. The output of this system is a structured corpus (similar to the ABL system) and a stochastic grammar (a context-free or tree substitution grammar). Reparsing the plain sentences using an extracted grammar does not improve the quality resulting structured corpus, however.

No language dependent assumptions are considered by the system, however, it relies on some language independent assumptions. First of all, Harris's idea of substitutability gives a way of finding possible constituents. This results in a richly structured version of the input sentences. For evaluation purposes, an underlying context-free grammar constraint is imposed on this data structure. Note that this is not a necessary assumption for the system. It is not a feature of the system.

When applying the system to real-life data sets, some striking features of the system arise. The structured corpora generated by ABL by applying it to the ATIS, OVIS and WSJ corpora all contain recursive structures. This is interesting since ABL is able to find recursive constituents by considering only a finite number of sentences.

The ABL system has been applied to three corpora, the ATIS, OVIS and WSJ corpus. On all corpora, ABL yielded encouraging results. To our knowledge, this is the first time an unsupervised learning system has been applied to the plain WSJ corpus. Additionally, ABL has been compared to the EMILE system (Adriaans, 1992), which it clearly outperforms. More recently, Clark (2001b) has compared his system against ABL. These results are not completely comparable, since his system is bootstrapped using much more information. Even then, ABL's results are competitive.
Bibliography

Weiner’s Law of Libraries:
There are no answers, only cross references.
— Anonymous

ACL (1997). *Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics (ACL) and the 8th Meeting of the European Chapter of the Association for Computational Linguistics (EACL); Madrid, Spain*. Association for Computational Linguistics (ACL).

CoNLL (2001). *Proceedings of the Workshop on Computational Natural Language Learning held at the 39th Annual Meeting of the Association for Computational Linguistics (ACL) and the 10th Meeting of the European Chapter of the Association for Computational Linguistics (EACL); Toulouse, France*. Association for Computational Linguistics (ACL).

Horwood Limited, Chichester, UK. Printout by the authors.

In Scheler, G., Wernter, S., and Rillof, E., editors, Connectionist, Statistical and
Symbolic Approaches to Learning for Natural Language, volume 1004 of Lecture

Reprinted 1999 (with corrections).

USA and London, UK, 7th (1966) edition. Formerly Entitled: Methods in Struc-
tural Linguistics.

in grimm tales, analyzed by self-organizing map. In Fogelman-Soulie, F. and
Gallinari, P., editors, Proceedings of the International Conference on Artificial
Neural Networks; Paris, France, pages 3–7.

University, Stanford:CA, USA.

Hwa, R. (1999). Supervised grammar induction using training data with limited
constituent information. In Proceedings of the 37th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL); Maryland:MD, USA, pages 73–79.
Association for Computational Linguistics (ACL).

2.

Hall, Englewood Cliffs:NJ, USA.

Kehler, A. and Stolcke, A., editors (1999b). *Proceedings of a Workshop—Unsupervised Learning in Natural Language Processing; Maryland: MD, USA.*

Index

Let me get some action
from the back section.
— Beastie Boys (Hello Nasty)

– log, 51
\(\gamma \), 37, 39, 41
 biased, 44
 default, 42
\(\hat{\gamma}(\text{overlap}) \), 32

ABL, 22
Abney, S., 3, 34
Adriaans, P.W., v, 8, 81, 89–91, 115
Air Traffic Information System, 63, 92
alignment, 37, 43
alignment learning, 22, 24, 28
 instances, 36
 all, 45
 biased, 44
 default, 42
 upper bound, 68
Alignment-Based Learning, 22
 all, 45
Allen, J., 3, 6
ALLiS, 84
annotation scheme, 65

approach
 empiricist, 8
 nativist, 9
 rationalist, 9
Aronson, A.R., 58, 59, 87
ATIS, 63, 92
Baker, J.K., 94
base condition, 40
baseline system, 67
Bayesian framework, 86
Bayesian model merging, 86
Bellman, R.E., 39
Benedí, J-M., 60, 85
biased, 44
bigram statistics, 85
Black, E., 3, 34
Bloemergen, S., 58
Bloomfield, L., i
Bod, R., 1, 3, 17, 54, 63, 74, 95, 97
Bonnema, R., 63
Booth, T., 51

129
branch, 50
branch+, 52
Brent, M.R., 60, 86
Brill, E., 60, 83
Caraballo, S.A., 51
Carroll, L., 1
categorial grammar, 89
CFG, 12, 15, 16
characteristic, 90
Charniak, E., 3, 6, 51, 72
Chater, N., 18, 58, 85, 94, 101
Chen, S.F., 87, 103
Chomsky, N., 8, 18, 115
Clark, A., 60, 88, 110, 115
Cocke-Younger-Kasami, 82
Collins, M., 64, 72
complete data, 81
compositionality of meaning, 7
compression, 12
constituency-parser, 88
constituent, 11, 24
 boundaries, 35
 compare, 34
 correct, 16
 equal part, 11, 99
 find, 9, 14
 merge, 31
 multiple, 14
 overlap, 15, 16, 32
 unequal part, 11
context, 10, 90
color-separable, 90
color-free grammar, 12, 15, 16
 stochastic, 53
convert
 sentences, 36
Cook, C.M., 58, 59, 87
Cook, D.J., 58
corpus, 24
 DNA structure, 111
 morphology, 110
 music, 110
 other, 109
cost function, 37, 39, 41, 44
 biased, 44
critic, 81
CYK, 82
Dörrenburg, E., 89
Déjean, H., 60, 84
data-driven system, 84
Data-Oriented Parsing, 95
Data-Oriented Translation, 105
de Marcken, C., 86
default, 42
deletion, 37
derivation, 12
digram uniqueness, 87
distituent, 88
distribution of word class, 9
DOP, 95
DOPDIS parser, 73
DOT, 105
Duda, R.O., 85
Durbin, R., 112
Dutch, 67
dynamic programming, 39
edit cost, 39
edit distance, 37
 operation-weight, 37
edit distance algorithm, 36
edit operation, 37
edit transcript, 37
elementary trees, 54
EMILE, 88, 89
empiricism, 8
English, 67
equal parts as constituents, 11
equivalence class, 101
EVALB, 64
evaluation, 64
 alignment learning, 68
 compare against treebank, 60
 grammar, 3
 looks-good-to-me approach, 58, 75
 parseABL, 73
 rebuilding known grammar, 59
 selection learning, 70
 supervised system, 65
 upper bound, 68
expression, 90
expression separable, 90
extended geometric mean, 52
extension, 99
extract
 stochastic context-free grammar, 53
 stochastic tree substitution grammar, 54
f-score, 65
Finch, S., 18, 58, 85, 94, 101
find substitutable segment, 13
Fischer, M.J., 36, 41, 42, 114
Flickinger, D., 3, 34
Frege, G., 7
from-to phrase, 77
fuzzy tree, 24, 52
Gaussier, E., 110
Gdaniec, C., 3, 34
genetic algorithm, 82
geometric mean, 51
 extended, 52
goal, 4, 5
 alignment learning, 25
 minimum of information, 7, 8
 precision, 7
 recall, 7
 selection learning, 32, 33
 usefulness, 6
Gold, E.M., 80
Goldsmith, J., 110
Goodman, J., 103
Grünewald, P., 58, 86, 89
grammar
 categorial, 89
 comparing, 34
 evaluation, 3
 extraction, 23, 33, 35, 53
 reversible, 85
 smaller, 12
 stochastic, 35
 underlying, 11, 16
grammar induction system, 4
grammar learning system, 4
greedy-merge, 88
Grishman, R., 3, 34
Gusfield, D., 37, 112
Harris, Z.S., i, 13, 14, 26, 113
Harrison, P., 3, 34
Hart, P.E., 85
hierarchy, 6
hill-climbing, 87
Hindle, D., 3, 34
Holder, L.B., 58
Honkela, T., 85
Horning, J.J., 81
Hubbard, T.J.P., 22
Huckle, C.C., 58, 85
human language acquisition, 4, 9
Hwa, R., 84
hypothesis
 equal part, 99
 overlapping, 52
 probability of, 48
space
 partition of, 50
unique, 49
universe, 48
 with highest probability, 51
yield of, 49
incr, 47
information
 language specific, 8
Ingria, R., 3, 34
innativeness, 9
input, 23
insertion, 37
inside-outside reestimation, 84
instance
 tested, 66
instantiation, 36
Ishiwata, T., 59, 82
Jackendoff, R.S., 111
Japanese, 67
Jelinek, F., 3, 34
Johnson, S.C., ii
Jurafsky, D., 3, 6
Kehler, A., 8
Klavans, J., 3, 34
Klein, D., 8, 88
Knight, K., 3
Knuth, D.E., 57
Kohonen, T., 85
Kruskal, J., 112
language
 unknown, 9
language learning system, 4
Lari, K., 87
leaf, 50
leaf\^+, 52
learnability, 80
 of context-free grammars, 81
 of stochastic context-free grammars, 81
learning
 supervised, 81
 unsupervised, 81
learning curve, 74
Lee, L., 80
left branching system, 67
Lerdahl, F., 111
Lesk, A.M., 22
Levenshtein distance, 37
Levenshtein, V.I., 37
Li, M., 89
Liberman, M., 3, 34
link, 38
logprob, 51
longest common subsequence, 42, 43
Losee, R.M., 58
machine translation, 3
Magerman, D.M., 88
Manning, C.D., 8, 88
Marcinkiewicz, M., 7, 63, 108
Marcus, M., 3, 7, 34, 63, 88, 108
Martin, J.H., 3, 6
match, 37
MDL, 86
mean, 67
meaning, 5, 7
compositionality of, 7
merge types, 31
metric, 64
f-score, 65
labelled, 64
precision, 64
recall, 64
unlabelled, 64
minimum description length, 86
minimum of information, 7, 8
MK10, 87
model-driven system, 84
Montague, R., 5
multiple sentences, 14
Muramatsu, H., 59, 84
mutual information, 88

naive Bayes, 85
Nakamura, K., 59, 82
nativism, 9
natural language parsing, 3
negative data, 81
Nevado, F., 60, 85
Nevill-Manning, C.G., 87
Norvig, P., 39
noun phrase, 76

Omhondro, S., 58, 86
Openbaar Vervoer Informatie Systeem, 63, 92
oracle, 81

order of sentences, 40
Osborne, M., 8, 84
OVIS, 63, 92
PAC learning, 81
PACS learning, 81
parseABL, 23
evaluation, 73
parser
DOPDIS, 73
parsing, 4, 6, 35
perception, 5
Pereira, F., 8, 59, 84, 88
phase, 22, 36
alignment learning, 22
grammar extraction, 23
selection learning, 22
Pinker, S., 18, 19, 115
positive data, 81
Poutsma, A., 3, 105, 106
Powers, D.M.P., 81
precision, 7, 16, 64
probability
of a combination of hypotheses, 50
of a hypothesis, 48
production, 5
proto-rule, 91
Pullki, V., 85

qualitative result, 75
random system, 67
rationalism, 9
recall, 7, 16, 64
recurrence relation, 39
recursion, 77
recursive structure, 77, 92
Redington, M., 18, 85, 94, 101
relation
 between sentences, 10
result, 57
 from-to phrase, 77
noun phrase, 76
numerical, 67
qualitative, 75
quantitative, 57
syntactic constructions, 76
Wall Street Journal, 72
right branching system, 67
Rosenfeld, A., 58, 59, 87
Roukos, S., 3, 34
rule induction, 91, 101
rule utility, 87
Russell, S., 39
Sánchez, J.-A., 60, 85
SABL, 107
Sadler, V., 3
Sakakibara, Y., 59, 82, 84
Sampson, G., 6, 7
Sankoff, D., 112
Santorini, B., 3, 7, 34, 63, 108
SCFG, 51, 53, 73, 94
Scha, R., 63
Schabes, Y., 8, 59, 84, 88
Schaffrath, H., 110
Scholtes, J.C., 58
segment
 substitutable, 13
selection learning, 22, 32
 alternative statistics, 103
evaluation, 70
instances, 46
branch, 50
branch+, 52
incr, 47
inner structure, 50
leaf, 50
leaf+, 52
non-probabilistic, 46
probabilistic, 48
parsing, 103
smoothing, 103
with all constituents, 35
self-organising map, 85
sentence, 23
 complex, 10
dissimilar, 10
equal, 10
meaning, 5
multiple, 14
order of, 40, 67
plain, 23
similar, 10
simple, 10
unequal, 10
valid, 26
sentence-meaning pair, 5, 6
Sequitur, 87
shallow language, 90
Sima’an, K., 73
similarity measure, 85
Simon, H.A., 6
Sloboda, J.A., 110
SNPR, 87
SOM, 85
standard deviation, 67
stochastic context-free grammar, 53, 73
stochastic tree substitution grammar, 53,
 73
Stolcke, A., 8, 58, 59, 86
structure
 recursive, 77
 syntactic, 5
 tree, 6
structured corpus, 3, 16, 57
 bilingual, paired, 105
 build, 82, 108, 109
 increase of use, 3
Strzalkowski, T., 3, 34
STSG, 53, 73, 94
subsentence, 25
 complement of, 39
 is constituent, 27
 substitutable, 25, 27
subsequence
 longest common, 42, 43
substitutability, 13, 25
 general case, 26
substitution, 37
substitution class, 89
supervised, 81
Supervised Alignment-Based Learning, 107
subsupervised system, 7
 performance of, 7
 using positive information, 83
syntactic structure, 5
 unwanted, 44
system
 using complete information, 82
 using positive information, 83
 supervised, 83
 unsupervised, 85
 tabular computation, 39
TBL, 83
teacher, 81
test environment, 62
trace, 41
traceback, 39, 41
Tramontano, A., 22
transformation, 83
transformation-based learning, 83
trashing effect, 51
tree, 32
 fuzzy, 24, 52
 non-fuzzy, 32
 structure, 6
tree substitution grammar
 stochastic, 53
treebank, 3, 16, 32, 57, 62
 Air Traffic Information System, 63
 bilingual, paired, 105
 build, 82, 108, 109
 increase of use, 3
 non-English, 62
 Openbaar Vervoer Informatie Systeem, 63
 Wall Street Journal, 63
unequal parts as constituents, 11
universal grammar, 9
universal rules, 9
unknown language, 9
unknown script, 3
unsupervised, 81
unsupervised system, 7
 performance of, 7
usefulness, 6
Valiant, L.G., 81
validity
 of a sentence, 26
<table>
<thead>
<tr>
<th>Name</th>
<th>Page Numbers</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>van Zaanen, M.M.</td>
<td>v, 1, 55, 56, 88, 95</td>
<td></td>
</tr>
<tr>
<td>Vendelmands, R.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Vervoort, M.R.</td>
<td>8, 58, 89</td>
<td>equal in two sentences, 38</td>
</tr>
<tr>
<td>Vitányi, P.M.B.</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Viterbi, A.</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Wagner, R.A.</td>
<td>36, 41, 42, 114</td>
<td></td>
</tr>
<tr>
<td>Wall Street Journal</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Way, A.</td>
<td>3, 105</td>
<td></td>
</tr>
<tr>
<td>weakening exact match</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Witten, I.H.</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>Wolff, J.G.</td>
<td>59, 87</td>
<td></td>
</tr>
<tr>
<td>word</td>
<td></td>
<td></td>
</tr>
<tr>
<td>word cluster</td>
<td>38, 42</td>
<td></td>
</tr>
<tr>
<td>word group</td>
<td>10, 25</td>
<td></td>
</tr>
<tr>
<td>WSJ</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Yamada, K.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>yield of hypothesis</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Young, S.J.</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>Younger, D.H.</td>
<td>82</td>
<td></td>
</tr>
</tbody>
</table>