A Model-based Approach to Construction
of Integrated Internet CSCW Systems

Muichael Andrew Swaby

Submitted in accordance with the requirements

for the degree of Doctor of Philosophy

The University of Leeds

School of Computer Studies

September 1998

The candidate confirms that the work submitted is his own and the appropriate credit

has been given where reference has been made to the work of others

Abstract

Internet technologies provide ubiquitous infrastructure for Computer Supported Cooper-
ative Work (CSCW) applications, many of which share similar fundamental requirements
for coordination, collaboration and information management services. However, there
is a lack of structured architectural support for building and maintaining these systems.
This thesis is directed towards an investigation of development mechanisms for integrated
internet CSCW applications which promote reuse and rapid reconfiguration of CSCW ser-
vices. A model-based approach to development of internet CSCW systems is proposed,
based upon definition of reusable CSCW services and a specification language which de-
scribes user interaction with those services within an application context. At runtime, the
specification is used to drive a Web user interface generator that dynamically integrates
access to required CSCW services. This development approach enables many application
changes to be affected quickly at the modelling level, rather than requiring code recompi-
lation. Hence, investigation of the approach was directed towards rapid prototyping and
evolutionary maintenance of internet-based CSCW systems. A proof-of-concept system
architecture was implemented and applied to a case study cooperative working scenario
within a large telecommunications enterprise. Assessment of the implementation found
the approach to be useful in reducing iteration cycle times following change requests,
thereby enhancing participatory design of CSCW systems. The value of the approach
is in increasing communication and feedback between application builders and users by

enabling rapid exploration of evolving system designs.

Acknowledgements

I would like to thank the members of the Centre for Virtual Working Environments
(CVWE) at The University of Leeds, within which this research project was based. I
would particularly like to thank Professor Peter Dew for his supervision of this project
and Professor Christine Leigh for providing advice throughout. I am grateful to Dr. David
Morris and Dr. Gyuri Lajos for their technical expertise and Dr. Richard Drew, Dr. Neil
Hunter, Dr. Jason Wood, Steve Rowett, Dave Small and Judi Thursby for their help and

encouragement.

This work has been funded through an EPSRC Industrial CASE award in conjunction
with BT Laboratories. I would like to thank the staff of the Agent-enhanced Workflow
Group and the Intelligent Systems Unit at BT Labs for their support during the project.
In particular I would like to thank Dr. Paul Kearney, Paul O’Brien and Dr. Mark Wiegand

for their supervision and assistance.

I have been fortunate to have been able to build upon existing work within the CVWE
and at BT Laboratories. The proof-of-concept research implementation was constructed
using existing software components where these were available and 1 would therefore like
to acknowledge their authors: The first generation of the DiMe interpreter was created
by Dave Morris. Gyuri Lajos enhanced the implementation greatly through the NEST
Project. The scene-graph API within DiMe was written by Thorsten Blaise. Builtin
HTML object support was added by Rik Wade. The VSP 3D component library was
built and managed by Diane Willows. Greg Platt built the VSP UI metaphor set and
VRML2 demonstration. Gareth Bottomley produced the prototype client-side Java DiMe
implementation. The Process Interchange Format (PIF) model parser used within the

workflow helper application was written by Simon Thompson of BT Laboratories.

ii

Contents

List of Figures
Glossary

1 Introduction

1.1 Virtual Working Systems L oo
1.1.1 The Virtual Science Park
1.1.2 The VWS framework and core services

1.2 BT Intelligent Business Systems
1.2.1 Advanced Decision Environment for Process Tasks

1.3 Research domain L

1.4 Research problem L

1.5 Contribution L

1.6 Thesis structure. oL L e

2 Architectural support for CSCW

2.1 Introduction e e e

2.2 CSCW Frameworks v o o e e e e e e

iii

2.3 CSCW Services o o v v ittt e e e 23
2.3.1 Coordination Services 0. 23
2.3.2 Collaboration Services o . 28
2.3.3 Information Management Services 32
2.3.4 User interface services oo oo 37

2.3.4.1 Service synthesis at the user interface 37
2.3.4.2 User interface adaptivity 38
2.3.4.3 Abstraction of presentation services 40
2.3.5 Infrastructure Services Lo oo 41

2.4 SUMMATY .« .« v v v v e e e e e e e e e e e e e e e e e 42

Model-based CSCW architecture 44

3.1 The DiMe object model oo 49

3.2 Display Metaphor Scripting Language (DMSL) 51

3.3 DMSL Metaphor definition constructs 53

3.4 Interactive operation of ParaDiMe 58
3.4.1 DMSL commands L o oo 58
3.4.2 Interactive operation L oo 63

3.5 Supporting access to information services 66

3.6 Supporting forms-based information processing 76

3.7 Supporting access to remote objectso oL 78

3.8 Supporting access to collaborative tools 0L 79

3.9 Application development methodology 80

v

3.10 Summary ... e e e e 83

Case study implementation 84
4.1 Introduction Lo e e 84
4.2 Case study scenario Lo L e 85
4.3 End-user perspectives and application stakeholders 89
4.4 Case study implementation requirements oL 91
4.5 Application information modelso oo 91
4.6 ParaDiMe application implementation 95
4.7 Metaphors within the ‘workflow helper’ application 101

4.7.1 Application base metaphor o oL 102

4.7.2 Information object metaphors oo 104

4.7.3 Activity metaphorso oo o 104

4.7.4 Worklist metaphors oo oo 105

4.7.5 Person object and groupware execution metaphors 106
4.8 SUMMAary o e e e e e e e e e 107
Critique 113
5.1 Assessment methods L L L o 113
5.2 Demonstration scenarios o0 o e e 116
5.3 Feedback from the demonstrations 119
5.4 Results of follow-up interviews with potential users 120
5.5 Assessment within the VWS group 124

5.6 Assessment from a software engineering perspective 125

6 Conclusions and future work 129
6.1 Conclusions o e 129
6.2 Future work oL oL 132

6.2.1 Modelling language and reasoning 133

6.2.2 Distributed and agent-based solutions 134

6.2.3 Task and interaction modelling, 136

6.2.4 Visual system construction tools 0oL 137

6.2.5 Richer 3D interaction styles oL, 137

6.3 Closing remarks L e 138
Bibliography 140

vi

List of Figures

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.1

2.2

2.3

2.4

2.5

2.6

2.7

General aspects of computer-supported cooperative work 1
System-centric aspects of computer-supported cooperative work 3
Tenancy navigation within the Virtual Science Park 6
VSP personal office (© 1998 University of Leeds) 7
VWS as value-added network services 0., 8
VWS layered framework oo oo 8
Business process spanning business units L0000 9
The business process as a community of negotiating agents 11
Service lifecycle in ADEPTo oo oo oo 12
User interaction with integrated CSCW services 19
Framework-based integration of CSCW applications 20
Co-Tech CSCW Architecture oo 21
NCR Cooperation Architecture 21
NIITP Reference Architecture, 22
Workflow system characteristics oo oL 25
Action Technologies Metro worklist interface 26

vii

2.8 WIFMC Workflow reference model-components and interfaces 27

2.9 Space-time groupware taxonomy oo e e 29
2.10 VWS reading room ((©) 1998 University of Leeds) 30
2.11 VWS secure user-centred conferencing architecture 31
2.12 Person-centred VSP information modelo 0oL 34
2.13 DiMe metaphor example L o Lo L 40
2.14 Abstraction of presentation services., 41
3.1 Conceptual view of the model-based approach 46
3.2 Web database scripting o oL e 47
3.3 DiMeobject model Lo o 50
3.4 Runtime interface generation L oL 59
3.5 Metaphor selection strategies L oL 61
3.6 Runtime operation of the ParaDiMe architecture 64
3.7 Conceptual architecture of the information management service 67
3.8 Person-centric VSP entity-relationship model 68
3.9 Information management service architecture 70
3.10 Remote method invocation within DiMe 78
3.11 Collaborative tool control subsystem 79
3.12 ParaDiMe development methodology 82
4.1 Provision of quotations for data network services 87
4.2 Process Interchange Format (PIF) information model 93

viii

4.3 Prototype application information modelo 94
4.4 ParaDiMe ‘workflow helper’ application implementation 98
4.5 ParaDiMe prototyping consoleo o oo 100
4.6 ‘Workflow helper’ metaphors and inheritance hierarchy 103
4.7 Form-based interaction through ‘Workitem’ metaphor 108
4.8 DMSL definitions used to create the IDEF0 metaphor set 109
4.9 ‘IDEF0’ and ‘StructureStyle’ activity navigation metaphors 110
4.10 “‘Vanilla,” ‘Wizard’ and ‘Reading-room’ worklist metaphors 111
4.11 Groupware control metaphor using the LBL. wb whiteboard tool 112

X

Glossary

ADEPT: Advanced Decision Environment for Process Tasks
AEW: Agent Enhanced Workflow

ANSA: Advanced Networked Systems Architecture
API: Application Programming Interface

CGI: Common Gateway Interface

CORBA: Common Object Request Broker Architecture
COSS: Common Object Services

CSCW: Computer Supported Cooperative Work

CSS: Cascading Style Sheets

DII: Dynamic Interface Invocation

DMSL: Display Metaphor Scripting Language

DOM: Document Object Model

DSI: Dynamic Skeleton Interface

DiMe: Display Metaphor

E-R: Entity Relationship

EAI: External Application Interface

EI: Enterprise Integration

HTML: Hypertext Markup Language

HTTP: Hypertext Transfer Protocol

IBS: Intelligent Business Systems

IDE: Integrated Development Environment
IDL: Interface Definition Language

ITIOP: Internet Inter-ORB Protocol

ITU: International Telecommunication Union
IVE: Industrial Virtual Enterprise

KIF: Knowledge Interchange Format

KQML: Knowledge Query and Manipulation Language
LDAP: Lightweight Directory Access Protocol
LDIF: LDAP Data Interchange Format

NII: National Information Infrastructure
NIII: National Industrial Information Infrastructure
ODBC: Open Database Connectivity

ODP: Open Distributed Processing

OMG: Object Management Group

OQL: Object Query Language

ORB: Object Request Broker

OSI: Open Systems Interconnection

PIF: Process Interchange Format

PSV: Partially Shared Views

QoS: Quality of Service

RAD: Rapid Application Development

RDF: Resource Description Framework

xi

RMI: Remote Method Invocation

RPC: Remote Procedure Call

SDL: Service Definition Language

SLA: Service Level Agreement

SQL: Structured Query Language

STL: Standard Template Library

URL: Uniform Resource Locator

VRML: Virtual Reality Markup Language
VSP: University of Leeds Virtual Science Park
VWE: Virtual Working Environment

VWS: Virtual Working System

W3C: World Wide Web Consortium

WCCS: Work Coordination and Collaboration Systems
WFMC: Workflow Management Coalition
WFMS: Workflow Management System

XML: Extensible Markup Language

xii

Chapter 1

Introduction

The field of Computer Supported Cooperative work (CSCW) is concerned with the broad
and interdisciplinary study of computer-support for coordinated activities carried out by
collaborating individuals [41]. Software systems used to support CSCW scenarios are of-
ten referred to collectively as groupware, defined by Ellis et al as “computer-based systems
that support groups of people engaged in a common task and that provide an interface to
a shared environment” [27]. In essence, these systems attempt to bring people together
with information and technology to create an effective computer-mediated working envi-

ronment (Figure 1.1).

Figure 1.1: General aspects of computer-supported cooperative work

Far from being a distinct and isolated field, CSCW represents a confluence of interests that
unites academics and practitioners from a wide spectrum of backgrounds e.g. distributed
computing, social science, management, psychology, human computer interaction etc.

Given this inherently multi-perspective nature, it is difficult (and probably inadvisable)

CHAPTER 1. INTRODUCTION 2

to attempt to derive a precise universal definition of CSCW. This is reflected in the softness
of most widely cited characterisations of CSCW. For example, in their early critique of the
field, Bannon and Schmidt identified three general motivating requirements that CSCW

as a discipline seeks to address rather than offering an all-encompassing definition [7];

Articulating co-operative work: coordinating people and resources in contributing

towards the performance of a common task;

Sharing an information space: ensuring that group members can share data, infor-

mation, concepts and heuristics in a structured way;

Adapting technology to the organisation (and vice versa): creating an organisa-
tional context within which group activities may be situated, and enabling appro-

priate interactions within this setting.

Investigation of these motivating requirements may be viewed in terms of the basic aspects
of CSCW shown in Figure 1.1, in which three inter-related concerns are separated; the
‘people’ aspect is concerned with human interaction within cooperative work activities
(encompassing notions both of human-system interaction and human-human interaction
within the system); the ‘information’ aspect is concerned with the aquisition, represen-
tation and control of informational artefacts within the CSCW environment; and the
‘system architecture’ aspect is concerned with the provision of computing infrastructure
through which the cooperative working requirements may effectively be delivered. The
work reported within this thesis holds a system-centric perspective upon these elements
of CSCW. From this perspective, the above motivating requirements may broadly be
addressed through an amalgamation of several basic classes of system services, which
together form the framework for the research (Figure 1.2, based upon [106]). From the
systems perspective, CSCW solutions may be viewed as (often partial) integrations of
three major component services; coordination services which direct people and resources
towards achievement of a common goal, collaboration services which enable structured
and ad hoc inter-personal communication, and information management services which

provide a shared information context for cooperative work activities.

CHAPTER 1. INTRODUCTION 3

Coordination Collaboration

INFRASTRUCTURE

Information Managemnt

Figure 1.2: System-centric aspects of computer-supported cooperative work

Systems-centric CSCW research and development efforts may be characterised through
comparison of the relative emphasis placed upon supporting these basic constituent ser-
vices. The research reported in this thesis has been motivated through collaboration be-
tween the Centre for Virtual Working Environments (CVWE) at The University of Leeds
and the Intelligent Business Systems Group (IBS) at BT Laboratories. The CVWE and
IBS groups are focused on different research goals and application domains but there
is a mutual interest in systems-support for coordination of distributed cooperative work
activities. Within the general system-centric view of CSCW systems presented in Figure
1.2, research within the IBS group may informally be positioned towards the left side of
the diagram, whereas the problem domain under investigation within the CVWE appears
towards the right side of the diagram. There is however increasing research interest in
holistic approaches towards supporting group work, in which traditionally disjoint process-
oriented and ad-hoc collaboration-centric approaches are beginning to converge towards
integrated work management solutions (e.g. [106]). This thesis attempts to contribute to
understanding within this middle-ground area through an investigation of the contrasting,
yet orthogonal, VWS and IBS approaches. These two approaches are described in Section
1.1 and Section 1.2 respectively. Section 1.3 then outlines the investigative domain for
the research, leading to the identification of specific research hypotheses and objectives

in Section 1.4.

CHAPTER 1. INTRODUCTION 4

1.1 Virtual Working Systems

The Centre for Virtual Working Environments at the University of Leeds brings together
an inter-disciplinary team of social and computer scientists investigating a class of CSCW
environment referred to as Virtual Working Environments (VWE). A Virtual Working

Environment is characterised by the group as a working environment

e where people can undertake focused work;

within a rich information space;

e based on familiar working metaphors;

free from the need for physical co-location;

delivered via internet technologies.

Virtual Working Systems (VWSs) are internet computing systems which create VWEs

through the integration of a range of component services and technologies, e.g.

¢ information integration and knowledge services;
e search, navigation and reporting services;

¢ document management services;

e collaboration services;

e security services.

Implementations of these core VWS services are modularised and configured on a per
application basis, using a layered software framework to guide development. Before de-
scribing this framework and the generalised VWS services provided within it, it is useful to
consider a concrete exemplar of a VWS implementation—the University of Leeds Virtual

Science Park.

CHAPTER 1. INTRODUCTION 5

1.1.1 The Virtual Science Park

The most mature VWS implementation to date is the University of Leeds Virtual Science
Park (VSP) [24] which provides many of the services associated with physically located
science parks through a VWS implementation. The major goal of the VSP is to enhance
the University’s ability to interact with industry and deliver online professional educa-
tional services. Tenants of the VSP are characterised according to the services they offer
and the skills and expertise of their staff, providing a yellow pages service through which
clients can quickly locate services and information they require. Once relevant services
have been located, integrated collaborative tools enable communication with tenancy rep-
resentatives. The VSP enables tenants to deliver a variety of services to their customers

[24, 102] e.g.

e consultancy services;
e support for virtual project teams;
e work-based learning;

e research information services.

The VSP is implemented using internet technologies delivered through a World Wide Web
interface, based on presentational metaphors for a physical science park e.g. a reception,
visitor centre, tenancies, personal offices and conference rooms. Four major types of

tenancies exist within the VSP;

Education and training tenants provide professional education-based services (e.g. work-

based learning with mentoring);

Professional services tenants provide commercial or industrial services of use to other

tenants and clients (e.g. legal services or patents information);

Collaborative project tenancies support collaboration between members of virtual

teams through shared document repositories and integrated collaborative tools;

Innovative information brokers provide value-added services over particular informa-
tion domains (e.g. competitive analysis reports for market sectors or classification

and interpretation of research results).

CHAPTER 1. INTRODUCTION 6

The conceptual map of the VSP is shown in Figure 1.3. It should be noted, however,
that although the VSP (and other VWS implementations) are delivered through physical
metaphors they are not currently virtual reality applications. The technologies for de-
livering virtual reality VWS implementations are now filtering into the marketplace, but
the benefits of adopting such mechanisms are not yet suffliciently understood to warrant
detailed investigation. Instead of virtual reality implementations, the VSP and associated
VWS implementations provide hybrid interfaces based upon HTML and 2D image-map
representations of the physical organisational space. For example, Figure 1.4 shows a
personal office area within a VSP tenancy.
Access to tenancie (" Collaborative)
S project —-
tenancy

> Professiona >

services
VSP WWW | Visitor Knowledge S J\?Vr\‘,?,'\}cy
- .
presence centre services

(—\ presence
Education
—— and —

training

Innovative
information |
brokers

. I
Access to tenancie

Figure 1.3: Tenancy navigation within the Virtual Science Park

1.1.2 The VWS framework and core services

The VWS software system, within which the VSP is implemented, integrates core VWS
services through internet delivery mechanisms. However, VWS implementations are not
specifically designed for the public Internet. The provision of private corporate network
(intranet) VWS solutions is also of importance to the group.! Within an Internet context,
VWS services may be regarded as value-added services that are layered above standard

Internet and network services as shown in Figure 1.5.

Within this thesis the term internet is used to mean either Internet or intranet. VWS solutions for
these network domains would be differentiated primarily by their access control requirements. Such factors

are inconsequential to this work and the existence of an appropriate security service is therefore assumed.

CHAPTER 1. INTRODUCTION 7

File Edit View Go Communicator Help |

r < ® A & . £ < &

Back Fowerd Reload Home Search Guide Print. Securly

Publicati
Pu ns authored by Dr, Meil

Projects
Hur

vy Cir, el

Collaborate with Dr. Meil Hurter
Dr. Neil Hunter is a member of the
following Tenancies

YWS Ltd,

=" I |

Figure 1.4: VSP personal office ((©) 1998 University of Leeds)

A reference framework has been adopted by the group using an architectural style within
which services are positioned into functional layers, as shown in Figure 1.6. The framework
is largely based upon Wiederhold’s I (Intelligent Integration of Information) architecture

[116]. The function of each layer is summarised below.

The information integration layer maps heterogeneous domain information sources
into a consistent information space. For existing VWS implementations, the information
space describes member organisations and the services they provide through the expertise
and skills of their staff. This effectively provides an organisational context within which

collaborative work is situated [6].

Information mediation layer components are responsible for providing semantic in-
terpretation services over the information space. In the current VWS implementations,
mediation is provided via multiple classification schemes that serve as simple domain

ontologies. Future work within the group aims to incorporate intelligent software compo-

CHAPTER 1. INTRODUCTION 8

Virtual Working Envronment
Intelligent nformaton and Virtual Real Esta

communicationseyvices
Provision of standd Internet

)) services such as Weccess,
Internet service I[mwder mail and news

Network povider

Provision of undeyling
network infrastruatre

Figure 1.5: VWS as value-added network services

Presentation Sernds

Application Service

Mediation Services

Data Integration Seices

Figure 1.6: VWS layered framework

nents at this layer, aiming to provide problem solving ability (cf. Wiederhold’s definition

of mediation services in [117]).

The Application services layer covers a range of VWS services that make use of lower
level information services, either via the mediation services or directly to the information
integration layer. Current examples of application layer components are reading rooms,

communications services, report generation and data mining.

Presentation layer services support user interaction with the VWS, via a variety of

Internet browsers such as Microsoft Internet Explorer and Netscape Communicator.

CHAPTER 1. INTRODUCTION 9

1.2 BT Intelligent Business Systems

The Intelligent Business Systems (IBS) Group within the Applied Research and Tech-
nologies (ART) department at BT Laboratories is concerned with the application of dis-
tributed and intelligent systems to enterprise integration problems. To assist the reader,
this section provides an overview of enterprise integration and related research efforts

with a focus on approaches that are relevant to the IBS Group.?

Enterprise integration (EI) research is concerned with the coordination of enterprise re-
sources such as people, machinery and information towards the performance of potentially
large and complex business processes [95]. Large enterprises are usually structured into a
hierarchy of semi-autonomous business units in which individual groups are responsible
for management of their own local resources. Delivery of a product or service to customers
requires the coordination [68] of these distributed resources through a business process
as shown for example in Figure 1.7. In a large modern enterprise, resources contribut-
ing towards the business process are often distributed geographically as well as across
business units, perhaps spanning several independent companies creating so-called virtual

enterprises [37, 38].

Resources Business units
G\IFORMATION .
PEOPLE Design
ONSULTANCY — Team
_ [COMPUTERS)/
(9] EqupwENT ineeri
EQUIPMENT, Engineering |
PLANT] [PEOPLE Department
a INFO]

EQUIPMENT) PEOPLEf———— P! Delivery
_ VEHICLES) Department

Figure 1.7: Business process spanning business units

Coordination of distributed resources to provide integrated business processes is a very

2The aim is to present the background for the PhD from BT’s perspective as industrial collaborators,
not to describe the activities of the IBS Group in particular; the issues discussed are in general common

to all large enterprises.

CHAPTER 1. INTRODUCTION 10

complex problem for large enterprises. In order to overcome this inherent complexity,
model-based enterprise integration approaches have emerged which attempt to raise the
level of abstraction at which coordination occurs [95]. The model-based approach simpli-
fies the enterprise to enable manual re-engineering but, importantly, also allows software
systems to directly assist in the coordination process by operating upon these abstract
models. For example, the Toronto Virtual Enterprise Project (ToVE) [9] uses symbolic
AT techniques to model the operation of manufacturing enterprises supporting a degree of
automated common-sense reasoning about the enterprise. In the AIAI Enterprise Project
[112], an ontology-based toolset enables the creation of executable enterprise models which

can, for example, be used to explore what-if scenarios as part of a re-engineering activity.

Research within the IBS Group at BT Laboratories is concerned with Al approaches to
enterprise integration similar to those described above, with a particular focus on agent-
based approaches to business process management. As a representative example of the
approach taken within the group it is useful to consider ADEPT, a recent project under
the DTI/EPSRC Intelligent Systems Integration Programme (ISIP) in which BT was a

lead partner:

1.2.1 Advanced Decision Environment for Process Tasks

The ADEPT (Advanced Decision Environment for Process Tasks) Project applies intelli-
gent autonomous software agents to business process management. Software agents [120]
are distributed, intelligent, autonomous software components with the ability to interact
and learn over time. Several typical characteristics of business processes within large

enterprises can be modelled effectively through agent architectures [53, 30]. For example;

Distribution: enterprises are constructed of multiple groups which may be physically

distributed;

Autonomy: groups have their own resources and are relatively free to manage their local

activities;
Decentralisation: ownership of tasks, information and resources is decentralised;

Concurrency: many inter-related tasks are in progress at any given point in a business

process;

CHAPTER 1. INTRODUCTION 11

Unpredictability: processes often cannot be completely specified a priori and may be

affected whilst in progress through new instructions or error conditions.

Within ADEPT, a cooperative agent architecture was developed that enables business
processes to be represented as a community of negotiating agents (Figure 1.8). A central
concept in the ADEPT architecture is that of a service, representing some abstraction of
problem solving endeavour [53]. Agents within ADEPT are responsible for negotiating for
supply and consumption of services with other agents within the community. Agents may
themselves be comprised of subsidiary agents under their control enabling hierarchical

organisational structures to be modelled.

Marketing Team Design Tea

Negotiation

Service
Level
Agreements

Legal departmen

Intelligent Agent

Figure 1.8: The business process as a community of negotiating agents

There are three major phases to the service lifecycle within ADEPT [53] (Figure 1.9).
During the creation phase, services are modelled using a special purpose language called
Service Description Language (SDL). SDL defines the inputs, outputs and components for
a particular service using a declarative representation. Secondly, Service Level Agreement
(SLA) templates are created that define the parameters over which agents may negotiate
service delivery. At the second phase, agents negotiate for delivery of instances of ser-
vices in a process referred to as provisioning. The final phase in the service lifecycle is
the management of service delivery and dynamic re-negotiation of SLAs should this be

necessary.

Agents within ADEPT are general purpose in the sense that they are not explicitly de-

signed to manage specific services. Instead, the same basic agent shell may be loaded

CHAPTER 1. INTRODUCTION 12

ADEPT - Manual ADEPT - Automatic

|
|

- L > >
! "negotiate” "deliver"

CREATION PROVISIONING MANAGEMENT

Service Instanct
SLA Instance

Service Definition
SLA Template

Ensure SLAs in plae
Check inputs availde
Services scheduled
Services executed
Services monitored

< + Renegotiate

Figure 1.9: Service lifecycle in ADEPT

with relevant service definitions and information models which define how that agent
should behave in a particular business process context. This approach enables component
re-use across applications and dynamic modification of process characteristics e.g. task
constraints or information requirements. The agent-based approach to business process
management taken in ADEPT attempts to improve on traditional workflow management
techniques in scenarios which require dynamic resource re-configuration or exception han-
dling. However, the ADEPT agent architecture is not necessarily a replacement for con-
ventional WFMS technology. Rather, it can be viewed as a layer above the WFMS which
adds value by continually seeking to optimise the underlying workflow environment as it
changes over time. In this role, ADEPT provides a degree of system support for dynamic
change management. If a situation arises which ADEPT agents cannot resolve (e.g. as
indicated by non-deterministic service negotiation) then a human manager can be notified

in order to make a manual decision.

1.3 Research domain

A common objective of the VWS and IBS research groups is to develop systems which can
meet evolving user requirements within dynamic cooperative environments. For example,
the VWS group have requirements to create new Virtual Working Systems from existing

core services; the IBS Group aim to create agent-based workflow systems that can cope

CHAPTER 1. INTRODUCTION 13

with dynamic changes in business process characteristics. Within these environments, the
basic requirement is to design and build software systems in such a way that the cost of
iterative development and maintenance is minimised as systems evolve. This requirement

might be stated informally as the need to “engineer for change.”

As discussed earlier, VWS solutions support ad hoc human to human collaboration within
managed information spaces. This loose coordination style contrasts with the process-
centric IBS approach to work management in which software agents dynamically control
evolving business activities. One area of mutual research interest between the VWS and
IBS groups is the intersection of these people-centric and process-centric approaches,
towards deriving systems that provide flexible collaborative support for people engaged

in business processes within dynamic enterprise environments.

Virtual Working Systems have been developed primarily to support delivery of high-
quality educational and research knowledge services. The broad goal of enterprise inte-
gration efforts (under which IBS may be classified) is to bring together enterprise resources
(such as people, information and computing technologies) in an effective manner to create
flexible work processes that evolve as the enterprise environment changes. The informa-
tion and collaboration services provided by Virtual Working Systems could be of wider
benefit within dynamic enterprises if they could be appropriately packaged and redeployed
within their systems environments. The collaboration between the IBS group at BT and

VWS group at Leeds provided a good basis upon which to explore this basic idea.

A further motivating factor which helped scope the problem was a desire to exploit the
increasing potential of Internet computing and the World Wide Web in supporting co-
operative work within (and between) integrated enterprises. Initial implementations of
Virtual Working Systems were built through compiled languages on Unix workstations.
Whilst such an approach proved adequate in demonstrating VWS concepts, it was only
after switching development effort towards Web-based systems that commercial exploita-
tion became feasible. It therefore seemed appropriate to investigate the application of
these services within a wider context, given e.g. the ubiquity of the Web computing plat-
form on a global scale; the increasing internal use of Internet technologies within large

enterprises; the emergence of Web-based collaboration and coordination products.

CHAPTER 1. INTRODUCTION 14

1.4 Research problem

The target users for this research are software engineers responsible for building and main-
taining Internet-based cooperative systems within dynamic application environments.
When creating systems, engineers must bring together required component CSCW ser-
vices and integrate these into a coherent application delivered via Web infrastructure.
Such systems are referred to in this thesis as integrated internet CSCW systems. Software
engineering methods based upon iterative system construction, evaluation and refinement
are very useful in creating usable systems through participatory design [61, 4]. However,
development of cooperative Web information systems through rapid iterative cycles is
currently difficult, because of their complexity. The research reported within this thesis
seeks to address three specific problems which currently prevent rapid prototyping and

evolutionary development of integrated internet CSCW systems;

1. CSCW services are not reusable
Many cooperative work scenarios share similar requirements for basic CSCW ser-
vices e.g. coordination, collaboration, information management etc. yet significant
duplication of functionality can often be observed across CSCW applications used
within enterprises, increasing maintenance complexity and potentially introducing
data consistency and synchronisation problems [6, 45]. Component reusability is a

key rapid prototyping enabler [57], but no such component architectures exist for

Web-based CSCW systems.

2. User perspectives are not adequately reflected during prototyping
Cooperative working scenarios often involve participants who possess different per-
spectives upon their common activity [40]. Participatory design of cooperative
systems through prototypes should reflect this heterogeneity but, because of the
inherent complexity of the systems, it is difficult to quickly produce new iterations

that adequately embody emerging requirements from the user community.

3. Evolving requirements are not adequately reflected in evolving live sys-
tems
User requirements change over time of course, and these changes must be reflected
back into an evolving system. However, due to the complexity of internet CSCW

system implementations, changes typically cannot be affected as often, or at the

CHAPTER 1. INTRODUCTION 15

fine level of granularity that users desire because the required software engineering

effort outweighs the potential benefit of the change.

1.5 Contribution

The contribution of this work towards addressing the above research problems is to in-
vestigate model-based architectural support for prototypical construction and subsequent
maintenance of integrated cooperative systems. The approach proposed within this thesis
may briefly be summarised as follows. Firstly, application-specific code, reusable CSCW
services and user interface functionality are architecturally separated. Secondly, applica-
tions are specified at a high level of abstraction using a modelling language to describe
user interaction with applications and services via the user interface. Finally, a runtime
support architecture driven by this model is provided through which access to application-
specific code and reusable CSCW services are provided via dynamically generated Web

user interfaces.

The feasibility of the approach was assessed through a proof-of-concept implementation of
a model-based CSCW toolkit called ParaDiMe, through which integrated internet CSCW
systems may be constructed. The design of ParaDime (described in Chapter 3) extends
the DiMe architecture [79] developed within the Virtual Working Environments Group at
Leeds University. DiMe was initially developed as an automated user interface generation
tool for the World Wide Web. ParaDiMe extends DiMe through support for a gener-
alised distributed object model, which was provided via CORBA in the proof-of-concept
implementation. This fundamental extension to DiMe enables ParaDiMe to provide in-
teractive access to cooperative applications and the basic services from which they are
composed. Several architectural components of ParaDime were constructed through this
mechanism, summarised specifically as follows. A remote method invocation (RMI) ser-
vice provides access to arbitrary distributed objects via static or dynamic interfaces. An
information manager component provides a standards-based architectural interface to
distributed information sources. A forms processing subsystem provides mechanisms for
dynamic generation of HTML forms interfaces and associated handler code within dis-
tributed applications. Finally, a collaborative tools subsystem supports execution and

session control of synchronous groupware applications. These component subsystems

CHAPTER 1. INTRODUCTION 16

were integrated into a prototype application built using the ParaDiMe architecture. The
workflow helper prototype (described in Chapter 4) was built in order to investigate the
practical application of the proposed model-based approach to a case study cooperative

working scenario.

The broad hypothesis explored within this thesis is that the proposed model-based ap-
proach can offer a solution to the research problems identified previously. Hence, three

specific research objectives may be identified;

1. To investigate how common requirements in cooperative working scenarios are met
by reusable CSCW services and how such services can be brought to together in a
structured manner which promotes their integration and reuse within a model-based

architecture;

2. To assess the benefit of a model-based approach towards system development through
rapid prototyping, to test the hypothesis that the approach reduces prototype de-
velopment cycle times thereby enabling a higher level of user participation in the

design process.

3. To assess the benefit of a model-based approach towards maintenance of systems
as user requirements evolve within live applications, to test the hypothesis that the
approach reduces the software effort required to affect changes thereby enabling

evolving user requirements to be more effliciently fed back into systems.

1.6 Thesis structure

Chapter 2 (Architectural support for CSCW) investigates CSCW services and their
integration and reuse within a flexible CSCW system architecture. A number of ex-
isting CSCW frameworks are introduced, leading to the identification of a number
of core CSCW service classes of central interest to this research. Relevant research
and development efforts are then surveyed within this classification and a simple

CSCW framework is derived which serves to guide system design.

Chapter 3 (Model-based CSCW architecture) specifies the detailed design for a

model-based internet CSCW system architecture called ParaDiMe, which attempts

CHAPTER 1. INTRODUCTION 17

to offer a solution to the research problems.

Chapter 4 (Case study implementation) describes a proof-of-concept implementa-
tion used to explore the research approach, through application towards an exemplar

cooperative working scenario within a large telecommunications enterprise.

Chapter 5 (Critique) presents a critique of the research hypotheses through assess-

ment of the architecture and proof-of-concept implementation.

Chapter 6 (Conclusions and future work) reviews the contribution of the thesis and

offers an outlook upon directions in which the research might be progressed.

Chapter 2

Architectural support for CSCW

2.1 Introduction

The broad goal in this work is to investigate structured construction techniques for in-
tegrated internet CSCW systems. That is, CSCW systems that integrate a number of
component services and are delivered via internet infrastructure. The motivation for inte-
gration of services, rather than re-implementation, is in simplifying systems development
and reusing existing system components rather than duplicating software engineering
efforts. Chapter 1 provided a high-level systems perspective upon cooperative work. Ex-
tending this simple model to explicitly include user interaction services provides a basic

classification through which related work may be discussed (Figure 2.1).

Before considering these individual classes of CSCW services, however, it is useful to intro-
duce existing CSCW frameworks which attempt to bring services together in a structured
way. Section 2.2 discusses several existing and emerging CSCW frameworks that are
of relevance to this work. Section 2.3 then discusses CSCW services according to the
five basic CSCW architecture elements shown in Figure 2.1 (coordination, collaboration,

information management, user interface and infrastructure).

18

CHAPTER 2. ARCHITECTURAL SUPPORT FOR CSCW 19

User interface

Coordination INFRASTRUCTURE Collaboration

Information manageent

Figure 2.1: User interaction with integrated CSCW services

2.2 CSCW Frameworks

There is a significant duplication of requirements in many cooperative work scenarios,
implying duplication in systems services used to support them [45]. Thus, there is in-
creasing research interest in CSCW frameworks that attempt to modularise CSCW
services and position them within a defined architectural structure e.g. [58, 92, 85]. A
CSCW framework, in conjunction with a set of re-usable services, should be able to gen-
erate implementations to support a range of different cooperative working scenarios. In
order to promote service re-use, CSCW frameworks often separate out application-specific
from generic components (Figure 2.2). In [85], Navarro et al note that such a component-
oriented approach to CSCW systems development has been taken with several existing
projects, although the majority of early work was applied to real-time collaboration sce-

narios e.g. Rendezvous [93] and MMConf [21].

The work of Navarro et al differs from Rendezvous and MMConf in that it is directed
towards a more general class of cooperative applications. They also sought to consider
the implications of implementing cooperative systems within standard distributed sys-
tems architectures such as ANSA, OSI and ODP environments. Major workflow research

groups, such as the LSDIS Laboratory at The University of Georgia, are moving towards

CHAPTER 2. ARCHITECTURAL SUPPORT FOR CSCW 20

Unintegrated CSCWpplications CSCW applicationsitegrated vie
a CSCW framework

CSCW Frameworl

CSCW Service:

g

Figure 2.2: Framework-based integration of CSCW applications

more general and integrated cooperative working frameworks. For example, Sheth et al
describe their vision of the next generation of workflow as systems as Work Coordination
and Collaboration Systems (WCCS) [106], within which coordination, collaboration and
information management services are seamlessly integrated. Because of it’s generality,
the WCCS model has been adopted as a classification framework within this work, as
shown in Figure 2.1. The envisaged Work Coordination and Collaboration Systems are
highly adaptive, reacting dynamically to changes within the organisation and business
process. They also “support a unified framework for managing coordination, collaboration
and information-based decision making activities that naturally occur as part of organi-

? The LSDIS group have a strong research background in innovative

sational processes.
approaches to workflow and their emerging WCCS approach is highly relevant to this
work. This research is, however, focused upon a small and specific subset of the work
addressed within the WCCS research—synthesis of CSCW components within internet-

based collaborative working scenarios.

An example of a generic abstract CSCW framework is the Co-Tech architecture [58],
shown in Figure 2.3. The architecture specifies four major layers, within which collabora-
tion services are positioned; the HCI layer provides common user interfaces to underlying
applications, which are controlled through some form of collaboration management ser-
vice. These higher level services are implemented through a support layer which provides

standard distributed systems facilities.

CHAPTER 2. ARCHITECTURAL SUPPORT FOR CSCW 21

Human-Computer Interfaces

A

Collaboration Management

:

Common Applications

. '

Support Environmen

Figure 2.3: Co-Tech CSCW Architecture

Co-Tech is an example of a general purpose CSCW framework which may yield a wide
variety of collaborative system implementations. A more detailed CSCW framework
which seeks to address system integration issues is the NCR Cooperation architecture,
described in [52] (Figure 2.4). The Cooperation architecture is based on NCR’s Open
Computing Architecture (OCCA) and implemented using distributed object technology.

Graphical User Interfaces
Windows Presentation Manager OSF Motif HP NewWave
Sy | [oot][ey
Framework Applications Applications
Services of Cooperation
Information| |Application Network System System
Services Services Delivery Mgt. Support
Data access Security Fax serve Fault mgt Trace/Track
Document mgt| | Remote access| Email Config mgt Online suport
Directory Network 1O Mail gate Security mgt Diagnostics
Query Software mgt
Communication Services
LAN Manager WAN Server
Platform Support
DOS 052 Unix

Figure 2.4: NCR Cooperation Architecture

Within the Cooperation architecture, collaboration and coordination services are inte-

grated at the desktop via the HP NewWave interface. Users have limited ability to cus-

CHAPTER 2. ARCHITECTURAL SUPPORT FOR CSCW 22

tomise the look-and-feel of their interface onto the collaborative environment e.g. changing
screen colours and icon layout with the NewWave GUI. The feature of Cooperation that is
of most relevance to this work is, however, the open support for integration and construc-
tion of new applications. At the application layer of the architecture, the Cooperation
Framework for Application Development provides a standard library of functions which
developers can use to access a wide-range of lower level cooperation services e.g. informa-

tion or applications as specified in the Cooperation Services layer in Figure 2.4.

Internet infrastructure initiatives such as the NII seek to specify the next generation
superhighway supporting the broad spectrum of commercial, social, and leisure services.
Although the general NII framework [84] is important in positioning VWS and related
Internet-based collaborative systems in a wider context, its coverage is too broad to
be directly of use within this work. However, some industry specific NII initiatives,
such as the National Industrial Information Infrastructure (NIII), have been developed in
depth and are therefore of immediate relevance. A major milestone in the development
of the NIIT has been the definition of a reference architecture (NIII-RA), defining the
technologies that will be utilised in enabling Internet industrial virtual enterprises within

the overall NII effort [80] (Figure 2.5).

Work and Knowledge Management for
Industrial Virtual Enterprises

Comms Object Information
Technology Technology Technology

Figure 2.5: NIIIP Reference Architecture

The NIIT Protocols Consortium (NIIIPC) identify four key technology requirements for

industrial virtual enterprises (IVEs) that the NIII architecture seeks to provide:

e common communications protocols
¢ a uniform object technology base for system and application interoperability

¢ common information model specification and exchange

cooperative management of integrated virtual enterprise processes

CHAPTER 2. ARCHITECTURAL SUPPORT FOR CSCW 23

The strategy adopted by the NIIIPC in the integration of the core technologies is to
focus on the user perspective of a work and knowledge management system for virtual
enterprises. That is, technologies are positioned with respect to their roles in supporting
particular user-driven requirements. A central component of the NIII architecture is
therefore the notion of an enterprise model as a reference mechanism for the technology

components that support the virtual enterprise.

The NIII-RA is notable with respect to this research in that it is based heavily on the
integration and interoperability of component standards. Within industrial application
domains (e.g. manufacturing) there are a large number of existing standards and frame-
works. Rather than re-invent well-developed, and therefore well-understood architec-
tures, the NIII effort seeks to enable integration of existing components where possible.
For example, Figure 2.5 shows the NIII-RA as four broad services; work and knowledge
management services operating over communications, information and object technol-
ogy infrastructure. In specifying each of these service classes, standards-based solutions
are proposed e.g. WFMC compliant work management, OMG compliant object services,
STEP information management and Internet communications infrastructure. Re-use and
integration of standard components is a major objective in this research and the NIII-
RA is therefore of obvious relevance. The initiative has also produced results which are
of relevance to practical issues of system integration within this work e.g. the task and
session object model [81] provides a specification for implementing NIII services in an

OMG-compliant environment.

2.3 CSCW Services

2.3.1 Coordination Services

In many cooperative working scenarios there is a general requirement for coordination
services which are broadly responsible for “managing the interdependencies between ac-

tivities” [68].

CHAPTER 2. ARCHITECTURAL SUPPORT FOR CSCW 24

Jayachandra identifies five key properties that must be analysed in order to achieve process

coordination [52]

Objectives: what is the purpose of the activity to be performed?

Activities: how can this purpose be expressed as an ordered sequence or functionally

decomposed set of subtasks?

Performers: what skills/expertise are required to perform the above subtasks and how

should these be mapped?

Interdependencies: what constraints exist between activities that comprise the busi-

ness process?

Resource allocation: what resources are required at each stage of the process?

Workflow management solutions provide automated assistance for specification of business
processes according to the above general criteria. These specifications are then used to
drive workflow engines which enable multiple users to collectively enact the business
process. Several hundred commercial products claim to support some kind of workflow
management functionality [106]. Whilst it is beyond the scope of this thesis to compare

1

the entire range of existing systems,” most implementations may be classified according

to their level of support for three basic workflow types [105];

administrative workflows involve coordination of simple, predictable, repetitive activi-

ties e.g. expenses claims processing;

ad hoc workflows involve human coordination, collaboration and co-decision e.g. soft-

ware development projects;

production workflows involve predictable repetitive processes which require structured
access to enterprise information systems e.g. insurance claims processing, telephone

sales.

It should, however, be noted that the the above workflow classes are not mutually exclu-

sive. Thus, there is increasing interest in supporting hybrid workflow scenarios within the

!Sheth cites a number of papers providing commercial workflow product surveys in [106, p. 3].

CHAPTER 2. ARCHITECTURAL SUPPORT FOR CSCW 25

emerging field of multi-paradigm workflow e.g. [89]. A typical workflow management sys-
tem (e.g. IBM FlowMark, Plexis FloWare) provides a set of tools to enable the modelling,

enactment and monitoring of business processes as shown in Figure 2.6 [46].

Process Design Business Process Analysis,
& Definition Modelling & Definition Tools

'

Bui IdT|me ------------------------- Process Definition f---------------
Run Time

A

+ Process changes
Zroccgﬁtsrlorllstanuanon Workflow Enactment Service

Interaction with .
Users and Application Tools > Applications
4—— &ITTools

Figure 2.6: Workflow system characteristics

At the modelling stage, a representation of the process is built using a graphical or
language-based description technique. Most existing commercial systems provide graph-
ical support for process modelling using IDEFO0 [82], Role Activity Diagram (RAD) [76]
or similar approaches. Action Technologies advocate a conversation based workflow mod-
elling approach with their ActionWorkflow product set [74] based upon the original Co-
ordinator system developed by Winograd and Flores [31]. Most modelling environments
enable incorporation of information flow characteristics within workflows enabling, for
example, definition of the information objects modified by an activity. A variety of infor-
mation modelling mechanisms are implemented within current WFMS solutions, most of

which are compliant with the standard entity-relationship model [19] e.g. IDEF1X [83].

Once the activity and information characteristics of the business process have been mod-
elled, a workflow enactment engine is responsible for managing its execution. A provi-
sioning phase maps activities to processing entities such as people, machines or systems.
Several systems support pooling of resources to enable dynamic balancing of incoming
work e.g. a new job is automatically routed to the person with fewest current assign-
ments. End users typically interact with conventional WFM systems via a worklist as

shown, for example, in Figure 2.7.

CHAPTER 2. ARCHITECTURAL SUPPORT FOR CSCW 26

orkbox - Netscape

File Edt Miew Goo Communicator Help

Laurie _ =
Erashanoff ALR L d
QUEUES Ag e n a
Frontline
@ FrontlineHome When Title Due From Action DmeTo Project
April 10
M 14:00 Contact Firat Financial Broker L work for Sumi Shohara
Krashanoff
& Agenda
@ Closedltems April1l
09:46 Prizes for Food Dove Winners Brian Hawlane reply to Laurie Food Dhve
e Krashanoff
£°8 Eeguest
¥l Task April 13
£y Asset Management; First Financial Laune ; TN
2] Off qpyEset Management, Tirst Financial
i; Offer. 11 o L o e (W teply to Sumni Shohata First Financial
i Eoute
B Reminder April15
anEzpenze Beport Approval - Bran Laurie .
PFC‘CL ﬂﬂoHawkjns-Secon doephrorovl Rrasanol replyto Sumu Shohara Ezpense Report
b Basics |
P Website Al s
17:00Fund 148 Securitization Rrashanioff replyto John Hoye
No time =l
= |Diocument: Done S A A

Figure 2.7: Action Technologies Metro worklist interface

The worklist provides summary information for each piece of work assigned to a workflow
participant and provides forms through which the work can be completed or progress
tracked. Dependent upon the class of workflow, the worklist may be email, document
or process-oriented. For example, an administrative workflow may involve simple email
routing of on-line expense claims; processing insurance claims may involve routing of
scanned forms via document imaging technology; industrial workflow may track products
through several stages of their production process. In some cases, the worklist interface
will also integrate access to other applications and tools required during task performance.
For example, access to imaging equipment may be provided at the worklist interface for

tasks requiring document routing.

Most large WEFMS implementations support application programming interfaces of some
kind (usually proprietary). In this work it is assumed that implementations are structured

according the WFMC reference model as shown in Figure 2.8 [46].

CHAPTER 2. ARCHITECTURAL SUPPORT FOR CSCW 27

Process Definition Tools

t Interface 1

Workflow APl & Interchange formats|

Interface 4

- Other Workflow
Workflow Enactment Service Enactment Service(s)

Interface 5

Administration &
Monitoring Tools

Workflow
Engines(s)

Workflow
Engines(s)

Workflow Client Applications Invoked Applications

Figure 2.8: WFMC Workflow reference model-components and interfaces

The majority of major existing WFMS enactment services are either compliant with the
WEFMC reference model, or can be augmented with wrapper interfaces to achieve com-
patibility. The WFMC reference model is significant to developers of coordination-based
CSCW systems as it defines how workflow services interoperate with each other and with
external systems. The interfaces of primary importance to this work are those supporting
process definition interchange (Interface 1), workflow client applications (Interface 2) and

invoked applications (Interface 3).

Workflow definition interchange Interface 1 of the workflow reference model pro-
vides a separation between the build-time and runtime workflow environments. It’s pri-
mary purpose is to link process definition tools with the enactment service in a standard
way. Business process changes are accommodated at the enactment level through modi-
fication and resubmission of the process definition through this interface. Most existing
WM systems support proprietary process definition techniques and representation lan-
guages; cf. ActionWorkflow [74], FlowMark [49] and InConcert [72] for example. There
is however, increasing interest in process definition interchange languages which enable
models to be shared between different WFM systems. The Process Interchange Format
(PIF) [63] is one such translation interlingua for workflow definitions which is of particu-
lar interest to this work. PIF describes processes according to a frame-based declarative

approach with KIF-like syntax [33]. The core set of fundamental PIF language constructs

CHAPTER 2. ARCHITECTURAL SUPPORT FOR CSCW 28

(e.g. describing activities and constraints between them) is self-extensible through a mech-
anism of partially-shared views (PSVs) [64]. PSVs enable new concepts to be expressed

in a PIF compliant way without violating the existing language.

Workflow client interface Interface 2 provides a mechanism through which client
applications can interact with the workflow engine. A worklist handler is the most com-
mon type of client application, through which a human user is presented with tasks for
completion. Some workflow systems provide API facilities which enable customised client
software to be created but this usually requires programming changes to executable code.
A flexible approach taken in many newer workflow products is to provide Web access via

HTML forms interfaces e.g. Metro (Figure 2.7).

Invoked applications interface Interface 3 defines an execution and control mecha-
nism for sessions with applications invoked during a workflow session. There are many
conceivable examples of such applications although the most common usage scenario in-
volves provision of access to enterprise information systems. For example, as part of a
goods ordering workflow, access to a stock database management system might be pro-
vided. This interface could also be used to manage access to collaborative working tools
as required within this research, although suitably exposed control interfaces would be

required of invoked groupware tools.

2.3.2 Collaboration Services

Within a CSCW architecture, collaborative services provide system-mediated support for
ad hoc human-human interaction within the distributed environment. Johansen’s space-

time matrix is often used to classify implementations [54], as shown in Figure 2.9.

Synchronous colocated collaboration tools support real-time face-to-face interac-
tion. Most groupware implementations supporting this type of interaction are electronic
meeting room or group decision support systems, designed to aid group brainstorming
sessions by overcoming problematic characteristics of conventional meetings e.g. poor floor
control, power struggles etc. Typical architectures provide each meeting participant with

a workstation enabling (potentially anonymous) access to a shared whiteboard or doc-

CHAPTER 2. ARCHITECTURAL SUPPORT FOR CSCW 29

Same Time Different Time

face-to-face asynchronous
Same Place interaction interaction

_ synchronous asynchronous
Different Place distributed distributed
interaction interaction

Figure 2.9: Space-time groupware taxonomy

ument. Well known implementations include the Capture Lab [69], Liveboard [28] and
Colab [109].

Asynchronous collaboration tools are in common use e.g. electronic mail, news and
bulletin board systems would all be characterised within this class of application. Same-
place different-time groupware implementations are rare, although shift-based environ-
ments such as helpdesk management tools fall into this category. Integration of message-
based asynchronous groupware facilities within internet-based CSCW architectures is un-
complicated. Major vendors (e.g. Microsoft, Novell, Netscape) generally ship mail and
news client software free of charge, choosing instead to charge for server side compo-
nents which integrate closely with network operating systems. As Internet mail and news
protocols (e.g. SMTP and NNTP) have been widely adopted there is a large and ex-
panding range of interoperable asynchronous collaboration technologies based upon these

standards.

The major remaining problems with respect to integration of message-based collabora-
tive services within CSCW architectures are security and meta-information consistency.
Access control can be a particular problem in situations where collaborative groups span
multiple systems, security domains and/or organisations. Due to the general lack of in-
tegration of mail, conferencing and other groupware tools in current enterprises it is also
common to find significant duplication of information between services. For example, a
personal email address book may contain user information duplicated in an organisational
directory, potentially leading to synchronisation problems. This problem is diminishing
within internet environments however, as the use of information management services

becomes more common. 2

Section 2.3.3 discusses information management services in greater detail.

CHAPTER 2. ARCHITECTURAL SUPPORT FOR CSCW 30

Another important class of asynchronous groupware service are document manage-
ment systems e.g. DocMan [5] and BCSCW [13]. Web-based implementations are be-
coming increasingly popular as solutions can be created easily using standard infrastruc-
ture services (e.g. Web servers, server access controls, document upload etc). A document
management facility has proved to be one of the most popular features within VWS im-
plementations. The reading room service, shown in Figure 2.10, enables VWS tenants or
user communities to create private repositories through which documents may be stored

and exchanged.

[File Edit View Go Communicator Help |
V&P - T ¥ ® S h O
> L T e
\ I‘ F‘r-:-fllle :I:'-ac:ILE ; "m_».:‘r heip Contadt

School of Computer Studies Reading Room

This is the School of Computer Studies Reading Foorm. ¥WE Course material is
available here.

Introcuction Please diract any queries or problams with this reading room to Mike Swaby

Download File Yiewers - Applications tolet you view reading room files

In this Reading Room

[0 VYWE MSc Module hdodify Delete Edit
Course information far the Y'WE k3c Module Permissions details
Last Modified: 01/03/1998

[DOn-line Resources hdodify Delete Edit
Lseful infarmation on-line Permissions details

Last hodified: 21/05/1998

Other Tenancies related to School of

Computer Studies FITa—S—— S ———————————————

University of Leeds

Searchin the

|School of Computer Studies Reading Room = | ‘ Search
il

Title = |

containg
Contact Information | |

Search hy date

Search for documents which | have = | heen | created = | .
in the Iastlj

Options in this Room
Hodify Room Penmis sion 5] [elete Room] [Edit Room Detail 5] [Add Folded

= |G|

Figure 2.10: VWS reading room ((©) 1998 University of Leeds)

Reading room services provide access controls on documents, enable version control for
collaborative authoring and can also check incoming material for viruses. Currently,

reading rooms have to be set up by system support staff on an individual basis. Once this

CHAPTER 2. ARCHITECTURAL SUPPORT FOR CSCW 31

setup has taken place, however, nominated users may create new sub-folders and control

the management of their own reading room areas.

Synchronous distributed collaboration tools enable human-human communication
across geographically separated spaces. One of the most successful initial research efforts
in this area was the Media Spaces work at Xerox during the late 1980s [44]. The first
generation of CSCW infrastructure projects were also directed towards support for syn-
chronous distributed collaboration, notably Rendezvous (shared real-time interfaces) [93],
Liza (shared user interface objects) [35] and Shared X (shared windowing) [43]. Related
research work within the CVWLE at Leeds University has investigated conference archi-
tectures for use in Virtual Working Systems. In [48], Hunter proposes an architecture
for secure, user-centred conferencing within VWS implementations based upon the ITU

H.323 and T.120 standards for audiovisual and data conferencing (Figure 2.11).

User
Web Conference Control
Browser i
A
A
T.120 H.323
Support Support

IP Network

VWS Presentation Layer \
¥
Information Document Conferencing Security
Layer Management Services Services

Virtual Working System

Figure 2.11: VWS secure user-centred conferencing architecture

An initial implementation of this architecture integrates directory and security services
to create a person-centric conferencing environment within a VWS based around Mi-
crosoft’s NetMeeting synchronous groupware product. NetMeeting facilitates audiovisual
conferencing and application sharing within an internetwork environment. The work has

important implications for this research as it demonstrates how synchronous collaboration

CHAPTER 2. ARCHITECTURAL SUPPORT FOR CSCW 32

services can be accessed within an integrated CSCW environment.

2.3.3 Information Management Services

Most cooperative working scenarios involve collaboration over shared information arte-
facts. Services that manage access to such artefacts are therefore of central importance in
CSCW architectures. The goal of information management services is to provide CSCW
system users with an interface to a virtual information space appropriate to the task(s)
in which they are engaged. There are a large number of existing individual systems and
tools which would be positioned as information management services within an integrated
CSCW framework. Taking for granted basic database management tools and systems,

most services of interest to this work can be characterised within three broad classes;

¢ Information integration,
e Organisational context provision,

o Value-added information services.

Information integration

In many collaboration scenarios there is a basic need to share heterogeneous information
objects. Within the University of Leeds Virtual Science Park, for example, tenant or-
ganisations typically already have their own internal information models and database
instances which need to be integrated into the VSP information space. Information in-
tegration services encompass a variety of mechanisms that enable databases and other
information sources to be accessed in a uniform manner. This layer of service typically
provides syntactic integration before value-added services such as mediation software pro-
vides semantic interpretation of this information e.g. the information integration and

mediation layers of the VWS framework as shown in Figure 1.6.

Information integration services attempt to insulate end-users from the complexities of
underlying database structures by mapping information into a structure with which they
are familiar. For example, a VWS implementation may utilise several SQL relational

databases but the system user is hidden from the physical database structure through

CHAPTER 2. ARCHITECTURAL SUPPORT FOR CSCW 33

integration and presentation services which create a consistent view of the information

space.

There are a number of feasible approaches to integration of multiple databases [65] at
the syntactic level. The most commonly practised technique is to map underlying data
models (and thereby, instances) into a global conceptual schema [10]. This approach
is taken in the VSP and related VWS implementations through the use of database
wrappers, interactive translation tools and bulkload adapters [25]. Alternative techniques
(e.g. federation and semantic unification [95, pp. 1-14]) rely on higher level services to

provide more sophisticated integration services.

In this work there is a clear need to support information integration services, but the
research requirements can largely be met by existing tools. The assumption made with
respect to information integration services (at a system architectural level) is that, whilst
a range of heterogeneous database systems must be supported (e.g. relational data in
SQL tables, organisational directory information in X.500), all such data structures can
conceptually be characterised using a conventional entity-relationship (E-R) model [19].
Since the relational model of data is theoretically rigorous, this is a reasonable assumption
to make. The practical implication for this work is an emphasis on achieving integration
using a standard approach, rather than aiming to provide a computationally efficient
implementation. It should, however, be possible to create an efficient implementation of

the architecture within a production-quality system.

Organisational context provision

Work is generally situated within an organisational context. In a physically-colocated
work scenario this context is implicit in the familiar office environment, but in a com-
puter supported geographically-distributed collaboration scenario this context must be
represented explicitly within the system [6]. A model of organisational context within a
CSCW environment describes the objects and relationships that are of interest in a par-
ticular enterprise, e.g. people, projects, roles management structures, locations etc. [45].
Once the enterprise has been characterised according to this model, CSCW applications
can be built that operate (and interoperate) within it. For example, within the VWS en-

vironment proposed in [48], multimedia conferencing clients use a shared directory service

CHAPTER 2. ARCHITECTURAL SUPPORT FOR CSCW 34

as an address book and session record.

The standard E-R model (as identified when discussing information integration services)
is appropriate for modelling organisational context, although a range of representations
have been adopted in existing systems. A common implementation technology, especially
within large enterprises, is the use of directory services such as X.500 [51]. Directory ser-
vices are designed primarily to provide highly scalable white-pages facilities which reflect
organisational hierarchies. In order to support a richer modelling capability (e.g. yellow
pages services) the standard X.500-style directory model is often augmented with extra
object classes/attributes. For example, the proof-of-concept VSP implementation [24]
developed a person-centred model of organisational context that ensured navigation or
search of the information space would always lead to a person. This was achieved by
implementing a typed relationship model over the standard X.500 structural model, as
shown in Figure 2.12.

ompl et
Contract

contract was worked on by
worked on contract

Resource
contract worked on by resource held by
works on contract holds resource
Personal Information
38
|Current Projects] [Completed Projects
|Resources [Facilitieg [Publicationg]
provides service holds knowledge in area
service provided by knowledge held by
. Knowledge
Service holds skills Area
skills held by

Figure 2.12: Person-centred VSP information model

In the extended directory model, new directory entry classes were created for six types of
enterprise objects of relevance to the VSP domain (Organisation, Contract, Person, Ex-

pertise, Service, Facility). Typed relational attributes were then associated with instances

CHAPTER 2. ARCHITECTURAL SUPPORT FOR CSCW 35

of these classes e.g. Person works for Organisation. This model enabled intuitive infor-
mation services to be constructed, enabling efficient resolution of queries such as “find
all information about service X; which companies provide X; who within these companies

should I speak to about X7 etc.

Directories (especially when extended to enable richer descriptive capability) provide a
highly appropriate medium for representing organisational information within integrated
CSCW environments [98]. Research systems such as the Virtual Science Park [24] and
Nexor’s Enterprise Information System [45] were amongst the first projects to utilise
extended directory services within CSCW environments. Since the initial phases of these
projects, several major network computing vendors have embraced directory technology
(cf. Netscape, Novell, Microsoft). This is fuelling increased organisational adoption of
directory services and, significantly for this research, Internet-based directories to support

inter-enterprise collaboration.

Another relevant perspective on organisational context provision is that of researchers
working on ezecutable enterprise models. For example, the Toronto Virtual Enterprise
(ToVE) project [8, 9] developed a set of organisation ontologies enabling a degree of
automated common sense reasoning to be applied to an enterprise model. The ADEPT
project, as introduced in Chapter 1, defines a business process ontology which could be
viewed as focused subset of an organisational context model. The CIMOSA? framework
[113] enables derivation of executable engineering enterprise models that can directly drive
CIM processes. The ATAI Enterprise project [112] developed an ontology-base enterprise

modelling toolkit enabling e.g. business process simulation and predictive reasoning.

Value-added information services

This broad class of services operates above syntactic information integration services as
described previously. The goal of services at this layer is to provide (or assist in the)
semantic interpretation of information sources mapped into the information space at the
syntactic level. Within the VWS framework such services are provided by a mediator
component based upon Wiederhold’s I? architecture. In [117], Wiederhold provides the

following definition of mediation:

#Open Systems Architecture for Computer Integrated Manufacturing (CIM).

CHAPTER 2. ARCHITECTURAL SUPPORT FOR CSCW 36

“a mediatoris a software module that exploits domain knowledge about certain

sets or subsets of data to create information for a higher level of applications.”

There are many conceivable instances of such services e.g. information gathering, filter-
ing, profiling, ranking, abstraction and reporting. For example, the Carnot project at
MCC* [47] developed an agent-based architecture for semantic integration of heteroge-
neous information sources. This research was extended in the InfoSleuth project [119]
which adapted the Carnot architecture to operate in dynamic information environments
with no centralised control, such as the World Wide Web. The KRAFT Project® [39],
within which BT Laboratories are a partner, applies constraint satisfaction techniques to

mediation of heterogeneous information sources such as product specifications.

The above examples make use of Al techniques to encode domain knowledge and provide
interpretive mediation services. This is not a pre-requisite for mediation services how-
ever. Within the VWS architectural framework, mediation services are provided through
detailed domain classification schemes through which information is characterised. For
example, within the VWS which supports the NEST Project,® users searching for partic-
ular services may only have a broad idea of relevant research areas. The use of detailed
research classifications enables users to quickly narrow down their potential search space.
Within NEST, the domain classification scheme is specialised for description of research
information, but the general approach is widely applicable in different communities and

problem domains [29].

The What’s New and Relevant (WNAR) service is a further example of a value-added
information service [25]. Here, VWS users can build up a personal profile describing sub-
jects and events in which they are interested in (e.g. “notify me when project information
is updated.”). The service has been implemented within the ADVISER project to provide

a personalised notification service within the domain of EU RTD programmes [86].

*Microelectronics and Computer Technology Corporation.
®Knowledge Re-use and Fusion/Transformation

SNetwork for Exploitation of Science and Technology

CHAPTER 2. ARCHITECTURAL SUPPORT FOR CSCW 37

2.3.4 User interface services

Within an integrated CSCW framework, user interface services are responsible for sup-
porting and structuring user interaction with application services. The primary delivery
medium for Virtual Working Systems is the Internet, and the World Wide Web in par-
ticular. User interfaces for Virtual Working Systems are therefore primarily constructed
using the Hypertext Markup Language (HTML). The Web interfaces are built dynami-
cally using compiled and scripted gateway programs operating via the Common Gateway
Interface (CGI) [42]. These programs typically access information services and then gen-
erate HTML to present results to the user via the Web browser interface. For example,
a personal office within the VSP (e.g. Figure 1.4 on page 7) is generated by retrieving a
database object from an organisational directory and then populating a HTML template
with this information. In taking a broader view of user interface provision within a CSCW

architecture, there are three distinct but related requirements to consider;

Service synthesis at the user interface: to draw together access to application ser-

vices via a user interface with a consistent look-and-feel,

Abstraction of presentation services: tosupport as wide arange of Internet browsers

and support software as possible,

User interface adaptivity: to create user interfaces that more closely reflect the re-

quirements of individual users or classes of users.

2.3.4.1 Service synthesis at the user interface

Many existing Web—database connectivity engines provide good support for generation of
standard user interfaces for navigation and search of relational databases e.g. Microsoft
Active Server Pages and Allaire Cold Fusion products. Such products typically rely upon
the creation of HTML templates into which chunks of executable script are embedded
cf. [62]. Templates may be created manually or, in more sophisticated development tools,
through a visual interface. At runtime, when a particular page representing a database
query is requested through the Web server, the embedded script is executed and the result
set merged into the HTML template. The populated HTML page is then forwarded

back to the client browser for rendering. Template-based approaches to Web interface

CHAPTER 2. ARCHITECTURAL SUPPORT FOR CSCW 38

generation for information services have proved to be appropriate in many application
domains. It is, however, difficult to integrate other types of service (e.g. coordination or
collaboration services) through this interface generation technique in existing commercial

systems.

2.3.4.2 User interface adaptivity

Cooperative working scenarios often involve people with differing perspectives on the col-
laboration. The perspective they hold upon the collaborative scenario might be defined
or influenced by their role, responsibilities, expertise or personal preferences. Differing
perspectives are often reflected in differing user requirements in interaction with the coop-
erative system. For example, a workflow user in an administrative role would be primarily
concerned with their own worklist, whereas a managerial user might require an overview
of the progress being made by all subordinate stafl; an expert VWS user may prefer a terse
informational interface whereas a neophyte may prefer a more intuitive interface. Thus,
there is a basic requirement for the CSCW environment to adapt it’s user interface to meet
the heterogeneous requirements of the user community. In [104], Schneider-Hufschmidt
et al provide an informal rationale for adaptive user interfaces, noting four general cases

in which adaptive interface behaviour can be beneficial;

1. a system is used by users with different requirements,
2. a system is used by a user with changing requirements,
3. a user works in a changing environment,

4. a user works in different system environments.

Most CSCW scenarios exhibit at least one of these properties, hence it is useful to incor-
porate some user interface adaptivity features within a general CSCW architetcure. This
work is directed towards an investigation of support for CSCW in internet environments,

hence focusing upon Web user interfaces.

CHAPTER 2. ARCHITECTURAL SUPPORT FOR CSCW 39

Within internet environments, there are two basic classes of interaction supported within

major browsers;

¢ 2D interaction through HTMIL Web pages

¢ 3D interaction through VRML worlds

Most existing Web information systems provide support for a single basic interactional
style. That is, a uniform interface is specified for all system users. One barrier to flex-
ible generation of Web user interfaces is the deep linkage of content and presentational
constructs in HI'ML. This problem is well-known however, and emerging Web standards

such as XML [50] and cascading style sheets [114] are moving towards a solution.

The pace of development of Internet technologies is so fast that it is difficult to decide
when to upgrade Virtual Working Systems to include the latest features. A broad goal
in this work is to assist in this dilemma by enabling new interface generation features to

be embraced whilst still retaining regressive compatibility with existing techniques.

This problem is particularly apparent when considering 3D Internet interaction [26]. The
Virtual Reality Modeling Language (VRML) [94] and associated interface generation
and browser software provides scope for multi-user Internet interaction through phys-
ical metaphors. As computing and network performance increase, 3D navigation and
interaction will undoubtedly become commonplace within Internet computing environ-
ments. Existing research projects have demonstrated the benefits of 3D interaction in
supporting exploration of large-scale information spaces e.g. cone trees [66], 3D database
navigation in Virgilio [20], visualisation of organisational information in VR-Vibe [17].
In addition, physical metaphors (e.g. the rooms metaphor) can be used to create intu-
itive collaborative working environments (CVEs) e.g. cooperative working within Virtuosi
[101] and DIVE [12]. Virtual Working Systems possess characteristics that suggest a 3D
interactional style may be beneficial i.e. the basic requirement for distributed system sup-
port for interpersonal interaction within an organisational context and a large corpus of
domain information. For example, within the Virtual Science Park project it has been
appropriate to adopt a physical metaphor in order to provide an intuitive working envi-
ronment for users (e.g. users log on through the reception area and then move into their

home tenancy or the information services building). However, the role of 3D delivery

CHAPTER 2. ARCHITECTURAL SUPPORT FOR CSCW 40

technologies within VWS implementations is currently unclear. At the time of writing,
Internet 3D technologies (e.g. VRML2, VRML EAI Java3D, Microsoft Chrome) are in

their infancy and there is much current debate as to their relative merits .

One foundation for the research reported within this thesis is the DiMe (Display Metaphor)
language [79], built within the CVWE at Leeds University. DiMe is an Internet system
architecture that enables the automated creation of 3D physical metaphors (e.g. rooms
and offices) in VRML. The central feature of DiMe is an object-oriented scripting lan-
guage (DMSL) that enables component based definition of user interfaces. For example,
Figure 2.13 shows a metaphor used to generate a VRML office characterising a person
object within the VSP information space. Later work on DiMe extended the architecture

to support output of HTML as well as VRML interfaces.

define O ficeMetaplor

ext ends RoomMet apho {
used_t o_di spl ay PersonObj ect
in_style 3D

set floor to_contain {
add deskl as DesKnanme=$id) at 2,3
add chairl as Char() at 3,3

set deskl to_contain {
add telel as Tel @hone() at 0,0
Action sel ect
call $user auio
add videol as Vi g@ophone() at 1,1
Action sel ect
call $user video
)

Figure 2.13: DiMe metaphor example

2.3.4.3 Abstraction of presentation services

CSCW systems often support large number of users distributed amongst various organ-
isational, and hence computing contexts. A major existing problem when developing
cooperative applications within such domains is ensuring that user interfaces are consis-
tent across computing platforms, operating systems and browser implementations. The
simplest solution is to adopt the lowest common denominator approach by supporting
a limited but ubiquitous set of interface constructs (e.g. the base HTML 2.0 standard).
Whilst such an approach provides widest compatibility, it does not allow users to take

advantage of enhanced interface functionality offered by browser providers. For example,

CHAPTER 2. ARCHITECTURAL SUPPORT FOR CSCW 41

the two most popular Internet browsers (Microsoft Internet Explorer and Netscape Com-
municator) both support proprietary tag sets that augment standard HTML as defined
in the W3C HTML 4.0 specification [100]. In addition, there is an increasing emergence
of client-side scripting languages [99] that provide support for interactivity within Web
pages (e.g. JavaScript, JScript, VBScript, etc.) Again, there are many inconsistencies
in scripting implementations within different browsers and across platforms. To allevi-
ate these interface inconsistency problems, there is an increasing interest within the Web
systems community in abstract interface generation techniques (as shown conceptually
in Figure 2.14). This approach uses a neutral description language to generate Web in-
terfaces tailored to particular platforms or browsers. The approach is useful within an

internet-based CSCW system in supporting as wide a range of user platforms as possible.

VanillaHTML 3.2

VanillaHTML 4.0

Abstract Ul > User Interface
Moael Generator

Microsoft Extensions

Netscape Extensions

Figure 2.14: Abstraction of presentation services

2.3.5 Infrastructure Services

CSCW applications attempt to overcome several types of distribution e.g. geographical,
organisational and/or temporal. Within an integrated CSCW environment there is there-
fore a clear requirement for basic support services to provide an infrastructure within
which these distributed applications can operate effectively. Object-oriented distributed
systems architectures such as ODP [23], ANSA [3] and CORBA [88] can provide many
basic services from which to construct CSCW applications e.g. remote procedure invo-
cation, distributed database access, synchronisation and security. Although there can

be potential problems in utilising unmodified distributed object architectures to create

CHAPTER 2. ARCHITECTURAL SUPPORT FOR CSCW 42

CSCW systems (such as unwanted transparency [14]), they can provide a appropriate
foundation upon which which to construct integrated systems. Services requiring integra-
tion may be purpose built (e.g. VWS services) or exist as legacy systems (e.g. workflow
managers). Distributed object services can enable integration through wrapping existing
applications to make them accessible to other objects within the collaboration environ-
ment. A further advantage of a distributed object approach is that several generic (and
hence reusable) services are usually provided, cf. support for object relationships, secu-
rity, event management and database access in CORBA for example [87]. Utilisation
of these common object services reduces developer effort and promotes modularity and
component re-use, which are major objectives in this research. Existing research projects
have produced promising results in applying distributed object technology in delivering
internet-based systems. For example, CorbaWeb [75] enables transparent access to dis-
tributed object applications through a standard Web browser interface. Web* [1] utilises
a similar template-based approach to provide integration services within CERCs Informa-
tion Sharing System project.” ORBWork [22] provides a distributed and scalable workflow

enactment environment based upon Web infrastructure.

2.4 Summary

Through a survey of a number of existing CSCW frameworks, this chapter has identified
several core services that are required within a general CSCW architecture. Relevant
related research and commercial development efforts have then been described within
these service classes. The objective in this study is to identify structured mechanisms
through which individual services may be brought together within a CSCW architecture.
A number of conclusions may be drawn from the investigation, which serve to guide

development of the architecture proposed within this thesis;

Coordination services provide support for managing the interdependencies between
resources contributing towards a pre-defined or emergent common goal. Integration of
coordination services within a CSCW architecture requires an external control interface.
The workflow management coalition’s reference architecure (WFMC-RA) was described

as an example of a coordination service which could feasibly be integrated within a general

"Concurrent Engineering Research Center, West Virginia University

CHAPTER 2. ARCHITECTURAL SUPPORT FOR CSCW 43

CSCW architecture.

Collaboration services enable inter-personal interaction between members of a coop-
erating group. Integration of such tools within a CSCW architecture is largely dependent

upon the extent to which they support external control via a programming interface.

Information management services integrate domain information sources into an in-
formation space appropriate to the tasks undertaken within the cooperative working sce-
nario. A number of information service layers were identified, within which related work
was positioned. The requirement within this work is to provide basic mechanisms for
information access, upon which services implemented within these layers might be imple-

mented.

User interface services enable system users to interact with the CSCW environment
in an appropriate manner. Three main roles for a user interface service within a CSCW
architecture were identified; service synthesis at the user interface, abstraction of presen-
tation services and user interface adaptivity. The DiMe architecture, developed within
the CVWLE, was introduced as a flexible Web user interface generator which can be used

to deliver user interfaces within a CSCW architecture.

Infrastructure services provide middleware components to integrate CSCW services
together within a systems environment. Distributed object architectures such as CORBA
were identified as useful in enabling interoperability between CSCW service implementa-

tions.

Chapter 3

Model-based CSCW architecture

Chapter 1 introduced the research problem as a general requirement for structured devel-
opment techniques for integrated internet CSCW systems, that promote service compo-
nent reuse and enable rapid iterative development. Chapter 2 then characterised existing
CSCW services and surveyed related research and development efforts within five broad
classes (coordination, collaboration, information management, user interface and infras-
tructure). This survey identified mechanisms through which services might be brought
together into integrated applications by a CSCW architecture. This chapter describes
the detailed design of ParaDiMe, an architecture for integrated internet CSCW systems
which supports a model-based approach to iterative systems development. The research
hypothesis is that the proposed model-based approach can solve the research problems

identified in Chapter 1.

The basic conceptual approach taken within this work is to raise the level of abstraction
at which cooperative applications are built and subsequently modified over time. The re-
search problem is fundamentally a component integration and change management prob-
lem, current solutions to which are generally applied at the lower levels of layered systems
architectures. For example, CORBA supports integration of heterogeneous client-server
components through mutual commitment to a common remote procedure call (RPC)
mechanism. However, application end-users and the requirements analysts who represent
them are largely unconcerned with such levels of architectural detail. When building
prototype system implementations or designing systems according to a Rapid Applica-

tion Development (RAD) method, there are two basic considerations that guide initial

44

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 45

development;

Functionality: what functional services are required from the supporting environment,

User interaction: how end-users interact with these services via the human-computer

interface.

The approach taken in this work is to provide explicit architectural support for building
cooperative systems via component-based models which describe user interaction with
functional services. Basic CSCW services are often shared between applications, with
user interface requirements differentiating functionally similar implementations. Using a
model to map between application functionality and the embodiment of that functionality

at the user interface offers several advantages over conventional approaches;

o Access to applications is structured and encapsulated, promoting re-use;

o User interface changes can be made at a modelling level, rather than requiring code

recompilation, reducing software development effort;

o Several different user interface component sets may be mapped to the same func-

tional components, enabling adaptivity;

The model-based approach is illustrated conceptually in Figure 3.1, comprising of four

major interacting system components within the ParaDiMe architecture;

A library of user interface models is defined using a purpose-built modelling lan-
guage which describes how system users interact with application and component

services.

A runtime interface generation service provides application user interfaces at run-
time from user interface models defined using the modelling language, directed by

commands from the application-specific control component.

A library of CSCW services provides implementations of CSCW services that are

built specifically to enable their re-use in different applications.

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 46

Web user
interfaces
User interface generates
component model
I R o o | embed
oOooooQg defines - User interface commands
OoOooOooOoo operation of generator b\cl)imteract
I o o o |
N\ A
ecifies user
isr?teraction with [Presentation Tayer|
l controls IApplication Tayer]
o O o o I o
Doooo Cooperative
ODODODo o[Tegaemo ™| application [
I [o o |

Re-usable CSCW
services

Figure 3.1: Conceptual view of the model-based approach

Application components implement application specific functionality and integrate

access to general CSCW services where required.

The ParaDiMe architecture was developed to enable assessment of the proposed model-
based systems development approach by supporting exploration of case study CSCW
applications. The central architectural component within ParaDiMe is the DiMe user
interface generation toolkit [79], created within the CVWE by David Morris and Gyuri
Lajos who acted as technical supervisors in this research. ParaDiMe extends the capabil-
ities of DiMe to facilitate rapid iterative development of integrated internet-based CSCW

systems [111].

The role of the first generation of DiMe architecture was to automate construction of
VRML and HTML user interfaces to organisational directory servers. A batch mode
DiMe implementation was built in order to generate VRML models of the directory using
a 3D rooms metaphor. In addition, an interactive Web gateway implementation was

constructed which enabled HTML interfaces to be created dynamically as users navigate

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 47

around the directory. In isolation, DiMe performs a similar job to conventional Web
database scripting technologies (e.g. Active Server Pages and Cold Fusion) as shown in
Figure 3.2. In these systems, output display language templates (e.g. HI' ML templates)
describe how to present query results at the user interface. An incoming query is processed
by an evaluator component, producing a set of search results. These results are then

merged with the output display language template and returned to the client browser.

4 HTML merge
e Scripting ~ templaes ®)

engine

@

encoded query -

search @ result
request set

Database
server

Figure 3.2: Web database scripting

DiMe extends the conventional template-based approach to Web interface generation
through the definition of an object-oriented scripting language called DMSL (Display
Metaphor Scripting Language). There are two fundamental classes of language construct

within DMSL;

1. user interface component definitions called metaphor definitions,!

2. commands which are used to drive the generation process at runtime.

As a precursor to runtime interface generation, a set of DMSL metaphor definition scripts
are parsed to create an in-memory abstract representation and a metaphor indez in tabu-

lar form. At runtime, a DiMe command then triggers a metaphor selection process within

!The term metaphor has been used throughout the development of DiMe over several years and is
deeply entrenched within the software and documentation, largely as a result of the initial application
towards generation of 3D rooms and offices using VRML. In retrospect however, our use of the term is
incorrect. Whilst a virtual room certainly s a virtual interface metaphor [96], the vast majority of the
components which are referred to as metaphors within DiMe are no more than user interface building
blocks (i.e. interactors or widgets). The term metaphoris retained within this thesis for consistency, but

is used informally to mean interface component rather than meaning e.g. mapping of concepts [60].

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 48

DiMe. During metaphor selection, the index is used to identify and instantiate appropri-
ate metaphors which form a tree representation. This tree is then passed to the DiMe
output generators (for HTML/VRML etc.) which traverse the internal representation
and emit appropriate target language constructs. This output is then returned to the
requesting client through the Web server CGI mechanism. This template-based user in-
terface generation mechanism forms the core of the ParaDiMe architecture through which
the model-based approach to construction of integrated internet information systems is
explored within this research. DMSL is used as the modelling-language which specifies

user interaction with CSCW applications and the services they integrate.

The chapter begins by describing the DiMe object model (Section 3.1) and DMSL metaphor
definition constructs (Section 3.3). An understanding of these fundamental DiMe elements
is essential in introducing the ParaDiMe architecture which is built using them. Although
the author contributed towards the development of these components, it should be clearly
noted that they were invented by David Morris and Gyuri Lajos and hence, do not form
part of the contribution of this thesis. However, it is necessary to describe them here
because they are critical to the work and no suitable (published or internal) material

exists to which the reader could otherwise be referred.

Building upon these existing DiMe components, Section 3.4 introduces the ParaDiMe
runtime user interface generation service. This extends DiMe via a distributed object
architecture which enables ParaDiMe to support integrated access to reusable CSCW
services within applications. Within ParaDiMe, several basic mechanisms are provided
which may be used to provide integrated access to applications and component services.
An information management service is provided through which access to heterogeneous
domain information sources is supported (Section3.5). A forms-processing subsystem en-
ables user interaction with applications via HT'ML forms (Section 3.6). A remote method
invocation service is provided, through which access to external services (e.g. workflow
enactment services) is supported (Section 3.7). Finally, a collaborative tools subsystem
is defined, which supports execution and subsequent session control of appropriate syn-
chronous groupware tools (Section 3.8). Following discussion of these architectural com-
ponents, from which integrated internet CSCW applications may be constructed, Section
3.9 describes a simple RAD-type methodology which may be used to guide development

of systems using ParaDiMe.

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 49

3.1 The DiMe object model

Metaphor definition constructs in DMSL are directly reflected by internal operations on
metaphor abstract data types (ADTs) within DiMe. It is therefore beneficial to discuss
this internal representation before covering DMSL in detail. As mentioned earlier, DiMe
currently supports integrated generation of HTML and VRMI user interfaces. The first
implementation of DiMe solely supported 3D interface generation however, built upon

the SGI Inventor 3D graphics libraries [115].

Inventor (in common with several other similar products) provides a scene-graph API for
construction of 3D models in which hierarchies of objects (called nodes) define parent—child
relationships between objects. In simplified terms, nodes may represent particular objects
in the scene (e.g. a cube or sphere), collect other objects together (e.g a grouping node)
or apply some other operation on child nodes (e.g. colour, texture, or transformation).
Container nodes implement methods which manage the set of children attached to them
e.g. add child, remove child, etc. Rendering a scene to screen or saving a description
as VRML requires traversal of the scene graph (defined by a root grouping node) by
visiting subordinate nodes in a defined order. The object-oriented scene graph approach to
3D graphics programming is simple yet flexible. DiMe adopts this fundamental approach

but with two important extensions;

o augmenting the 3D scene graph model with a 2D HTML document object model
(DOM),

e an abstract layer of built-in objects with enhanced child management capabilities.

Hypertext Markup Language (HTML) uses tags to associate semantics with textual in-
formation. For example, <title>My Page</title> defines the title of a document to be
the string “My Page.” Upon parsing of this tag, a Web browser would typically name the
window within which it is running accordingly. Tags such as head and body define the
structure of the document, leading to a tree-based document representation very similar
to scene-graphs in 3D graphics programming. A HTML document library was created
using this approach and integrated with the 3D scene generation library within DiMe, as

shown in Figure 3.3.2

2The World Wide Web Consortium have subsequently pursued an analogous approach through their

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 50

eemples ... 0 O ..
Document géggr%tor
F’gg’;g{ HTML DOM API VRML scene-graph API Shape
Attribute nglii)grf]tsy "
.......................... 'g
) 3D object o)
VRML component library | 3D prop =
Page 3D container =
Frameset ; =
Frame Corﬁ?a]l ner HTML COmpOnent li brary ___________ cg
Para container _ _ Room
Rooms object library \'Ql’g'c:r
| Des | Y
‘ Base HTML Base VRML ‘
scripted metaphors scripted metaphors 0,6?
<
.......................... %
HT/VRML Page _ _ ol
Page with VRML Scripted 2D/3D abstraction layer S
3D Imagemap B
I
Search pages L) . (3
Navigation pages Application generic scripted metaphors
Tool pages v

Figure 3.3: DiMe object model

This integrated approach to 2D /3D interface generation provides a common framework
for developing different styles of interface using the same syntactic conventions within
DiMe. Hybrid interfaces that integrate 2D and 3D interaction can also be supported
elegantly through this approach. For example, addition of a 3D scene to a 2D HTML
document can be specified such that upon output generation, the scene appears as an

embedded VMRL window within the HTML browser.

Although powerful, a raw 3D scene-graph interface is more detailed than required in this
work. Through the initial application to generation of 3D rooms, the spatial abstrac-
tion at which DiMe operates derives from a fundamental requirement for planar object
management. This statement is best explained through an example; a room conceptually
consists of a set of connected features such as walls, ceiling and floor; objects added to
the room are associated with a feature within it e.g. one would expect a filing cabinet
to reside on the floor and a picture to be hung on a wall. Physical laws and heuristics
govern how objects exist and interact within the room e.g. discrete solid objects cannot
generally occupy the same physical space or float in mid-air. However, most existing

3D APIs (or VRML Web browsers) will not enforce such rules and the responsibility for

Document Object Model initiative [121].

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 51

creating physically feasible scenes rests with the developer.

Supporting physically realistic object management within 3D environments is a very hard
problem, but because DiMe is specialised for room scenes structured within a set of 2D
planes, some useful support can be provided at low cost. The approach taken within
DiMe is to provide a set of built-in 3D objects based on sets of 2D layout planes which
embody simple physical and common sense heuristic knowledge about how child objects
should be arranged. For example, a request to add three pictures to a built-in wall object
will result in the pictures being hung evenly across the width of the wall at an appropriate
height. Adding a telephone to a desk will place the telephone on top of the desk facing
the front. A set of several appropriate built-in objects is defined within DiMe (e.g. rooms,
walls, floors, desktops etc.) enabling realistic room scenes to be created at an appropriate
abstract level within DMSL.? Basic support for HTML generation is also provided using
built-in objects, although the API is much simpler as there is no requirement for object

layout other than that implicit in HT ML tag ordering.

3.2 Display Metaphor Scripting Language (DMSL)

Display Metaphor Scripting Language (DMSL) is a proprietary object-oriented scripting
language which forms the core of the DiMe architecture. DMSL externalises the DiMe
object model as described above via an intuitive high-level programming language. Within
the current DiMe architecture, support for DMSL is implemented using the PCCTS
compiler construction toolkit [91]. At the abstract level however, DMSL is a frame-
based language [77] and it should therefore be noted that many other implementations

are feasible.*

? Abstract spatial layout managers (e.g. supporting object grids, lattices and rings etc) have been

specified within the DiMe architectured but have not been implemented successfully to date.

*For example, early experimental work packages within this PhD project investigated rule-based imple-
mentations of the DiMe architecture using Common Lisp [108] and CLIPS [34]. The investigation found
such approaches to be highly appropriate for knowledge representation and reasoning within DiMe, but

interactive performance was extremely inferior to the custom-built DMSL implementation.

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 52

The fundamental concept in DiMe and DMSL is the metaphor; A metaphor within DiMe
represents a user interface component at some level of abstraction in the DiMe object
model. The simplest metaphors act as wrappers for built-in objects in the (HTML and
VRML) output generation APIs. Scripted metaphors then extend these base objects
to create interface components specialised for particular purposes. DMSL is used to
incrementally construct a (potentially complex) user interface model for a cooperative
system from re-usable building-block metaphor components. At the conceptual level, a

DMSL metaphor is a frame consisting of four sets of slots;

variable slots: maintain state through string, integer or floating point expressions,
content slots: define instances of component metaphors
constructor slots map a metaphor to a built-in object in the DiMe object model,

operator slots: specify actions, transformations and other operations to be applied to

the metaphor at generation.

As a concrete example of how these slots characterise a user interface component, con-
sider invocation of VWS videoconferencing services within a 3D room interaction style.
A feasible interactional scenario is for the system user to navigate an organisational infor-
mation space and locate the person they wish to contact, perhaps via a 3D representation
of their office. Upon entering the virtual office, the system user establishes a videocon-
ferencing session with the target user by clicking on a phone object positioned within the
scene. This scenario implicitly embodies managed access to the application information
space and structured invocation of a groupware tool. A DMSL metaphor can package
up an executable model of these requirements that can be re-used and specialised across
applications. So, a re-usable metaphor encapsulating the above properties might define

the following slot values;

variable slots: videoconferencing address to dial, label to put on phone, user id of target

user,

content slots: in this example the phone is an atomic object and therefore has no com-

ponent metaphors,

constructor slots: the phone is an extension of a built-in prop object,

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 53

operator slots: upon clicking the phone, invoke a videoconferencing call to the target

user.

The differentiating feature of DMSL (and therefore DiMe) is that it supports object-
oriented concepts such as inheritance and overriding of slot definitions. It is, for example,
trivial to extend the “wvideoconference by clicking on phone” metaphor as discussed above
to create a related “shared whiteboard by clicking on computer” metaphor. There are
several types of definition constructs within the DMSL language, as listed below. Because
of the object-oriented nature of DMSL, within applications these basic constructs are

typically amalgamated together into more sophisticated compound definitions;

Metaphor definition constructs,

¢ Information search and navigational constructs,

Interaction support constructs,

Forms handling constructs,
e Remote method invocation constructs,

Command constructs.

These constructs provide the basic functionality from which potentially complex user in-
terfaces may be built. The following sections discuss these constructs and the architectural

operations they represent within DiMe.

3.3 DMSL Metaphor definition constructs

The basic unit of abstraction within DMSL is referred to as a metaphor definition. A
metaphor definition is either a wrapper for an object in the DiMe object model (Sec-
tion 3.1) or a container for a set of subordinate metaphor definitions. Within DMSL, a

metaphor is represented according to the grammar shown informally below;

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 54

1: define <metaphor_id> extends <metaphor_id>
2: <usage context definition>

3: {

4: <variable slot definitions>

5: <constructor slot definition>

6: <content and operator slot definitions>
7 }

Lines 1 and 2 in the grammar represent the metaphor head constructs; Lines 4, 5 and 6
then define the constructor, variable, content and operator slots introduced earlier in this
section. The first line of the definition provides a system-wide unique identifier for the
metaphor and then, through the extends syntax, identifies the metaphor from which the
current metaphor is to be subclassed at runtime. The base metaphor for any inheritance
hierarchy of metaphors must represent a built-in object within the DiMe object model.
The usage context definition construct (Line 2) provides a hint to the user interface
generator about when it is appropriate to use the metaphor. The syntax of the usage

context definition construct is shown below;

used to_display <objectclass> within <viewingcontext> in_style <style>

The used to display construct associates a class of information or application object
with the metaphor definition, and is most commonly used in search and navigational
metaphors described below. The viewingcontext parameter further contextualises the
application of the metaphor and is typically used within 3D rooms style interfaces. For
example, one metaphor might represent a person object as a picture in a photograph
album viewing context whilst another might represent a person object as a name on a
door in a hallway viewing context. For HT'ML interaction styles, a single default viewing
context, called Viewer, is defined. Finally, an arbitrary style token may be associated
with a metaphor to further guide automated selection of interface components at runtime.
This construct is only useful when associated with a set of metaphors which together
facilitate a defined style of interaction, and there is more than one style set to choose
from in a particular interface generation scenario. In the VSP organisational browser
application for example, two duplicate sets of metaphors are provided implementing brief

and detailed views of each directory object e.g. a business card metaphor presents a

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 55

person object in a brief style; a curriculum vitae metaphor presents the same object in

a detailed interaction style;

define BusinessCard extends HTMLPage
used to_display PersonObject within Viewer in_style Brief
define CV extends HTMLPage

used to_display PersonObject within Viewer in_style Detailed ...

Definition of metaphors tailored to specific object classes, viewing contexts and styles is
central to runtime interface generation flexibility within DiMe. The body of a metaphor
defines values of four component slots as introduced earlier (variables, constructor, content
and operator slots). The variable slot supports basic definition of integer, floating point
and string variables, with identifiers scoped to the local metaphor. Literal and simple
expression values are supported. The variable definition grammar is shown below; the
add construct adds a new variable to the metaphor and assigns it an initial value, the
set construct is used to alter the value of a defined variable, the (seldom used) remove

construct removes an inherited variable from the current metaphor definition.

add|set <id> = <expression>

remove <id>

Variables are a critically important feature of metaphor definitions, providing the same
functionality (and advantages) as function parameters in conventional block structured
procedural programming languages. Within DiMe, metaphor variables fulfill two roles.
Firstly, they can be used to specialise metaphors added at build-time to the content slot
(covered later in this section). Secondly, they enable dynamic binding of variables as

metaphor parameters at runtime (covered in Section 3.4).

The constructor slot within a metaphor can only be defined in base metaphors, and
identifies which built-in object should be instantiated at runtime to generate the inter-
face components represented in the metaphor. All metaphors must be associated with
a constructor before interface generation, and once defined the constructor may not be
overridden. The use of the constructor definition is illustrated in the example shown

below. This DMSL fragment, taken from the DiMe VSP demonstrator, defines a base

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 56

bookcase metaphor binding to a built-in 3D object called vsBookCase. Note the use of

variable slots to provide parameters to the built-in object.

define BookCase extends Metaphor3D {
add object_name = '"BookCase"
add number_of_shelves = 3
add title = "default bookcase title"

construct vsBookCase(&object_name, &number_of_shelves, &title)

The main body of a metaphor definition is comprised of content and operator slots. These
specify component metaphor definitions (content slot) and optionally define some action
to perform when the component metaphor receives relevant events (operator slot). As
introduced in discussing the DiMe object model, the content slot is further subdivided
into feature slots primarily to enable automated planar object layout in VRML user
interfaces e.g. layout of books along a shelf in a bookcase. HTML metaphors do not require
such layout assistance® and therefore usually only define a single feature representing the
component in it’s entirety. In general terms, a content slot definition within a metaphor

is a set of feature constructs of the form shown below;

1: set <feature_id> to_contain {

2 add <id> as <metaphor_operation>

3 replace <id> as <metaphor_operation>
4: remove <id>

5 b

Within a feature (e.g. a HTML page, VRML desk surface or drawer) parameterised com-
ponent metaphors may be added to, replaced in or removed from the parent metaphor.®

For example, a four-shelved bookcase may be added to the rearwall feature of an office

®Component layout should be done by the browser during page rendering.

51t is possible to redefine non-final metaphors using this syntax within DiMe (i.e. metaphors which
have been subclassed elsewhere). Although this property can be useful in certain situations, we have yet
to find a way of ensuring the integrity of orphaned metaphors other than writing out and reparsing the
entire internal metaphor tree. Because of the expense of doing this, redefining non-final metaphors is not

recommended to application builders.

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 57

metaphor using the following syntax (which also demonstrates variable overriding in con-

tent metaphor definitions);

1: set rearwall to_contain {
2: add bl as BookCase(number_of_shelves=4)
3 }

For each component defined within the content slot of a metaphor (e.g. as shown above)
an operator slot definition may associate an action to be performed when a particular
runtime event occurs that is of relevance to the component. This slot provides the basic
mechanism through which all user interactivity is supported in DiMe. The operation of
this mechanism will be discussed in detail later, but it is useful to introduce the basic

approach at this stage.

Within standard HTML pages, the most common interactive operation is hyperlink selec-
tion e.g. clicking a textual, image or imagemap link. A wider range of events are feasible
using client-scripting or within VRML browsers e.g mouse-over, proximity sensing etc.
Through the operator slot definition construct, the DiMe runtime architecture supports

three types of interactive operation;

1. generation of another metaphor,
2. execution of an information space query,

3. invocation of a remote application-layer method.

Within the runtime architecture, interactive operational support is achieved by embed-
ding DMSL commands within URLs” that form part of the generated output language
(e.g. HTML href or VRML WWWAnchor fields). This mechanism is shown conceptually in
Figure 3.1, and will be discussed in detail in the following sections. However, an informal
appreciation for the operation of the construct can be gained with reference to a simple

example.

"Uniform Resource Locators.

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 58

1: add linkl as HyperTextLink()

2: Action select view Data

3: in "Viewer"

4: in_style "DetailedPage"

5: label ’View ’ + Data.name + ’ in more detail.’

The above DMSL fragment shows a content definition with an associated operator slot
definition provided through the Action syntax. This example is part of a HIML metaphor
used in navigating an information space. It generates a textual hyperlink which, when
selected, executes a DiMe command to view the current information object (denoted
by the reserved Data keyword) in a more detailed style. Before describing support for
interactive operations within the ParaDiMe architecture, it is useful to describe DiMe

commands and the operation of the runtime interface generator.

3.4 Interactive operation of ParaDiMe

3.4.1 DMSL commands

The previous section introduced metaphor definition within DMSL. A set of appropriately-
written DMSL metaphor scripts (utilising styles, viewing contexts, and object class ref-
erences) provides a comprehensive and flexible user interface model for a collaborative
application. DMSL is implementation-oriented however; that is, DMSL is designed to be
executed as a scripting language by an interpreter or similar runtime processor rather
than serving a purely representational role. Within ParaDiMe, which extends the DiMe
output generation architecture, there is therefore a distinction between build-time when
metaphor definitions are parsed to form an internal user interface model, and runtime
when this model is used to guide interactive generation of HTML and VRMIL user inter-

faces (Figure 3.4)

At build-time, a set of DMSL metaphor definitions is parsed to form an internal repre-
sentation of user interface components. Runtime interface generation is driven through
the interpretation of a simple set of DMSL command constructs, guided by the internal

interface model. The command interpretation process formulates a tree of metaphor ob-

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE

DMSL

metaphor
definitions
(buildtime)

DMSL

commands— 1 Command interpreter

(runtime)

p Metaphor interpreter

Query interface

Information
management
service

Y

Output generator

N

OoOooOooao
OoOooOooao
I o I o
I o I o

Component model

Context table

'

Metaphor selector

VRML generator HTML generator

'

VRML HTML

Figure 3.4: Runtime interface generation

59

ject instances. The objects within this tree are instances from the basic set of built-in

objects from which all scripted metaphors must inherit. Following construction of this in-

termediate representation, the tree of built-in objects is passed to the appropriate output

language generator.

The link between the DiMe object model and object-oriented constructs in DMSL becomes

clear when considering the output language generation process. Built-In objects within

the DiMe object model must support

1. mechanisms to add other built-in objects to themselves as contained children and,

2. mechanisms to support their own output language generation.

Therefore, given a container—component tree of built-in object instances, output language

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 60

generation can be achieved via a top-down left-to-right tree traversal.® In order to initiate
the output generation process, the ParaDiMe output generator must be provided with
the name (and optionally instance parameters) for a particular metaphor. Although this
information is often known explicitly by clients, ParaDiMe also supports system-initiated
interface component construction through an architectural component called the metaphor

selector.

As discussed earlier, DMSL metaphor definitions may contain context definition con-
structs which inform ParaDiMe about when it is appropriate to apply them. The con-
struct is typically used to associate a metaphor with a particular class of object in the
information space, a viewing context or an interaction style. During build-time inter-
pretation of DMSL metaphor definitions, a context table (called the used to display
table) is built internally. This table lists each metaphor known to ParaDiMe by object-
class, context and style. The metaphor selector uses this table to automatically choose an
appropriate metaphor during output generation in cases where a DMSL command does
not reference a specific named metaphor. There is a single primary output generation
command in DMSL (called show) which guides the interpreter according to one of three

metaphor selection strategies;

e specific metaphor call,
e automated metaphor selection within current context,

e automated metaphor and context selection

The relationship between these commands and the potential number of metaphors they

can match in a typical application is shown graphically in Figure 3.5.

The simplest DMSL output command is a specific metaphor call, which instructs
ParaDiMe to generate output for a particular named metaphor. This command must
therefore always map to a single metaphor definition within the internal interface compo-

nent model. Execution of this type of command effectively bypasses the metaphor selector

8This technique reflects the scene-graph approach used in object-oriented 3D graphics toolkits such as
SGI’s Open Inventor product, through which VRML interface support is currently implemented within
ParaDiMe cf. [115, ch. 9].

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 61

M etaphor Potential
selection metaphor DMSL
strategy matches command
Specific metaphor call 1 show <x> using <
... L s i
a
s
LA
e,
o T T
e,
T AT A i
e T T T
T o W
AT T e e T o e
Automated metaphor ﬁﬁﬁﬁfﬁ
selection within e e e e el
current context m, m> 1;%%%%% show <x> in_style s>
... o SOV X 3Ly S Ss
T T T e T e T e e
B T
B T
e T T T e e e e e e T
et T e e e e e e T T
T W T
B
e T e e e e e e T T
e e T e e e e T e T e i
T T o W)
T v
e e e o e e e e e T
Automated metaphor B e
and context selection D, > T e R iy show <x>

Figure 3.5: Metaphor selection strategies

component and drives the output generator directly. The structure of the command and

a usage example are shown below;

show <metaphor>(params)

show ProcessWorklist(user=johnsmith)

Basic system-initiated interface adaptivity is supported within ParaDiMe through auto-
matic metaphor selection within a specified interaction style. This is used primarily for
supporting data (or object) driven application scenarios such as database navigation.®
The show in style command instructs ParaDiMe to match an object (or set of objects)
to an appropriate metaphor in a named style. The style parameter is defined at the ap-
plication level; ParaDiMe has no predefined understanding of the semantics. Rather, the
style parameter is used by the metaphor selector to search the used to display table to find
a metaphor which was defined to be appropriate in the named style at build-time. It is
therefore the responsibility of the application designer to make good use of metaphor sets
and style keywords. It is useful to support this form of interface adaptivity when several

visual representations of the same object are required within the same application. For

example, the VSP NEST demonstrator provided navigation and search services over a

?Because information access is a central feature of Virtual Working Systems, the ParaDiMe architecture

is designed explicitly to support the interactional requirements inherent in these scenarios.

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 62

large scale information space characterising research results. For this application, naviga-
tion through the graph of related information objects (e.g. projects, people, publications,
grants etc.) required several different interaction styles; A classification browser style
was used to select metaphors which provided a fish-eye view of the information space.
The application changes to a detailed description style when a user selects a particular
object within the broad view. Given the same object, the detailed style is used to select a
metaphor providing a more comprehensive drill-down view of the object. The structure

of the show in style command, and a usage example are shown below;

show <objectspec> in_style <style>
show find(root.project.nest) in_style ’classification_summary’

show find(root.project.nest) in_style ’detailed_description’

The most flexible use of the show command automates both metaphor and style selection.
This command is not used as frequently as the show in style command but is useful
in application scenarios where style is unimportant, as long as any metaphor is matched.
The major use of this type of construct is to support metaphor sets tailored to multiple
users or user classes. Here, the same DMSL command will match with different styles
and metaphors that have been defined for each class. Application layer components may
therefore instruct ParaDiMe via a single command which is interpreted differently for each
user class, without needing to be aware of the specific metaphors defined for each class.
For example, one user class may define a VRML-based interaction style whilst another
may define a HTML-based style. In addition, the general form of the show command
has been useful is building default metaphors that match with any object or for creating
error metaphors in situations where a metaphor cannot be matched. The structure of the

general show command is shown below;

show <objectspec>

show find(root.project.nest)

System-initiated interface adaptivity within the current ParaDiMe implementation in-
volves simple constraint satisfaction through a multi-attribute decision based on the con-

tents of the metaphor context table. However, the metaphor selector within ParaDiMe

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 63

can easily be replaced with a more sophisticated component. As noted earlier, inves-
tigative work within the project ruled-out a rule-based implementation for the metaphor
selector because of poor performance. However, such advanced approaches could be viable
in future implementations, given the improvements in system performance and software

since this decision was made.

3.4.2 Interactive operation

The initial implementation of the DiMe architecture supported batch mode interface
generation only. That is, a command line interpreter for DMSL was developed that
enabled metaphor definitions to be read from the filestore and HTML/VRML interfaces
to be written back to the filestore following input of a DMSL show command at the
terminal. This implementation was found to be useful in generating large numbers of
complex but similar interfaces in a single batch operation. For example, a metaphor
set was developed for the VSP project which extracted personal information from an
organisational directory server; built 3D office representations of that information using
VRML; took a 2D snapshot of the scene; created a clickable image map by calculating
object locations; and embedded the map into a HTML page which was saved within the
filespace of the VSP Web server. This compound operation was too processor intensive
to be performed on the fly,'% but could be left running overnight for example to create a

large set of complex VRML-based interfaces with low effort.

The interactive ParaDiMe architecture replaces terminal-based control mechanisms with
object requests and returns within a distributed computing environment, as shown in
Figure 3.6. The current implementation of the architecture uses the WWW Common
Gateway Interface (CGI) mechanism [73] to translate between events at the Web user
interface (e.g. clicking on a hyperlink) and DMSL commands which are embedded within
the interface as structured Uniform Resource Locators (URLs). A CGI program accepts
user input and translates this into a remote object request into the application layer, then
waits for the resultant output language (HTML or VRML) which is then returned to the

browser via standard output in the conventional manner.

%Rendering each page took, on average, over 20 seconds of (single) processor time on a Silicon Graphics

Power Challenge compute server.

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 64

(l)—> show DiMeinterpreter |:
commands > | (user @) :
WIWVtV @ Display
clien :| metaphor — :
html/ : (DiaI\BI e DiMeinterpreter |
U vrml . (user ...) :
ser .
event ©6) i server ;
: | |DiMeinterpreter |[:
: (anonymous users) |:
URL-encoded Freyeyeyeyeye Py PR g g g g g g g g gy
show commands HTTPD |
Gl / Ap ® 5)
CORBA
_a?pl ication i n]:metaphor
information information
o BRIDGE o o
(7
html/ e :
vrml ' :
: Informati onimanager :
WWW S [[
e client : :
results i| Data Data Data |
- :| source source source |
®

Figure 3.6: Runtime operation of the ParaDiMe architecture

The key to the operation of the interactive ParaDiMe architecture is the use of URL tem-
plates which are used to embed appropriate DMSL commands within output languages.
Because of the stateless nature of HT'TP, it is common practise to embed state infor-
mation in Web pages directly e.g. through URLs or hidden form variables. The use of
templates to support interactivity may best be introduced through an example. Consider
an organisational directory application within which navigational support is provided by
ParaDiMe. One appropriate start page might list all employees with a summary of their
contact details on a single line. Upon clicking on the name of a person, the application
is to provide a more detailed full-page representation of the directory entry. When gen-
erating the index page in this scenario, DMSL commands are embedded as hyperlinks
for each name on the page, such that selection of the name invokes a show command on
the relevant information object in an alternative (detailed) style. Within DMSL, this is

achieved through the Action syntax introduced earlier;

1: add linkl as HyperTextLink()

2: Action select view Data

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 65

3: in "Viewer"
4: in_style "DetailedPage"
5: label ’View ’> + Data.name + ’ in more detail.’

When interpreting the above metaphor fragment for a particular directory entry, a single
hyperlink would be generated which embeds a command to be fed back into ParaDiMe
(via CGI) upon selection. The form of the URL to be embedded in the output markup
language is defined in a set of templates, which for the above example would look similar

to that shown below when filled;!!

http://cself21/cgi-bin/Reflector?
username = ms

app = vsp

op = execute

params = show find(root.people.john) in_style ’DetailedPage’

In this example Reflector is the name of the CGI bridge which is used to redirect
CGl-based DMSL commands to a CORBA implementation of the ParaDiMe interpreter.
The operation of the runtime ParaDiMe architecture using this approach may now be

described as an eight stage process as shown in Figure 3.6;

1. A user event (such as clicking on a HTML link, linked VRML object, imagemap

etc) occurs at the Web client;

2. This results in establishment of a HTTP request to a CGI process within the Web
server, according to the DMSI embedded command template introduced above.
The CGI process extracts a number of parameters from the client request (e.g. user
id, DMSL command, session timestamp, form input data etc.) via post and get
mechanisms. This information is then reformulated as parameters to a well known
input method on an application component i.e. an application is obliged to support
multi-threaded user input events on a well-known IDL interface. The application

which receives the input event is located via a name service lookup by the CGI

"This is a simplified representation of an actual URL which would, in practise, be encoded using the

unicode character set and formulated as a HT'TP post parameter list.

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 66

process. After invoking the input operation on the remote application, the CGI

process waits until (string-valued) HTML or VRML is returned via the application.

3. When an application component receives an input event some internal processing
or information access may be required before generation of the subsequent Web
interface. For example, an embedded Action command may result in the execution
of a Logoff operation within the application, before calling DiMe to render a goodbye

message.

4. Following application-specific processing, the application has two choices for sub-
sequent interface generation through ParaDiMe. Firstly (and most commonly)
the DMSL show command embedded in the calling link will be passed through
to DiMe. Alternatively, the application may decide to pass a different command
onto ParaDiMe e.g. a request to view an object is refused because the user does
not possess the required level of access and a metaphor reflecting this is generated
instead. Each user, or class of user, may be associated with a DMSL interpreter—
enabling interface customisation and load balancing of interpreters across machines.
By embedding user identifiers within URLs, the appropriate DiMe interpreter may

be located.

5. The show command is then executed within the appropriate DiMe interpreter and

in-metaphor information access constructs are executed if required, resulting in the

generation of a stream of HTML or VRML.

6. ParaDiMe then passes the generated output language back to the application (as a

string),
7. which passes it back to the CGI process,
8. which passes it back to the Web client,

9. which renders the resultant user interface.

3.5 Supporting access to information services

DiMe was developed primarily to build applications with a major requirement for infor-

mation search and navigation support. This emphasis had important design implications

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 67

for the ParaDiMe architecture, which as a result features a close integration of informa-
tion access features within DMSI and the ParaDiMe runtime environment. Specifically,

information access within ParaDiMe is supported through three mechanisms;

an information management service which provides a consistent query interface to

heterogeneous underlying data sources using a federation approach;

a client query interface embedded within the ParaDiMe command interpreter which

can resolve queries via the information service;

information access constructs used with DMSL metaphor definitions and commands.

The information management service provides a standard interface onto an information
space which may comprise of a number of heterogeneous databases and other information
sources e.g. relational databases, directory services and distributed objects. As concluded
in Chapter 2, several distinct types of information management service are feasible but
in this work a simple entity-relationship model is assumed. The information manager
federates domain information sources into a single information space which may then be

accessed via a uniform interface by applications or presentation services (Figure 3.7).

L do | wrapper DiMe user
P Global interface generator
E-R graph
representation
(X500db | wrapper
\ Application
m wrapper i Component
Information

manager

!

Figure 3.7: Conceptual architecture of the information management service

Federation is achieved through wrappers which map domain information sources into a
global conceptual schema and a canonical global namespace. Wrappers are also respon-
sible for mapping navigation and search requests from a generic to a data source specific
representation e.g. from the ParaDiMe abstract search interface to SQL via a relational
database wrapper. Within the system architecture developed within this work, the infor-

mation management component provides three specific basic services;

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 68

o Federation of heterogeneous information sources,
o Information space navigation via an entity-relationship graph representation,

e Information space query operations.

The basic federation approach adopted within this work is to take a lowest common
denominator: it is assumed that individual information sources can be mapped (statically
or dynamically) into an abstract entity-relationship (E-R) graph representation. For
example, Figure 3.8 shows the E-R model used within the first version of the Virtual
Science Park implementation.

ompl et
Contract

contract was worked on by
worked on contract

Resource
contract worked on by resource held by
works on contract holds resource
Personal Information
EXIIE]
|Current Projects] [Completed Projects
|Resources [Facilitied [Publicationg]
provides service holds knowledge in area
service provided by knowledge held by
. Knowledge
Service holds skills Area
skills held by

Figure 3.8: Person-centric VSP entity-relationship model

This simple abstract approach is suitable for relational [19] or object oriented [103] mod-
elling. However, query performance can be poor using an abstract representation and it
is therefore assumed that implementations utilise efficient physical data models e.g. nor-
malised tables within a database accessed through SQL [2]. As noted earlier, ParaDiMe
requires objects within the information space to possess a unique name, a class and a

set of name—value attributes. Data access metaphors within ParaDiMe encode knowledge

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 69

about how to represent particular attributes of particular classes of object in a particular
contezt e.g. how to present a telephone number attribute of an object of class Person in
a 3D office interactional context. Objects within specific data sources must therefore be
mapped to an object type which supports definition and retrieval of these facets in a
uniform manner. The approach taken within this work is to ensure that all information
objects support retrieval of these attributes, either via internal methods or via dynami-
cally associated object properties. Many underlying information sources may be mapped
within the information space using this approach; experimental work within the project

successfully derived implementations for four sources;

Object oriented database objects generally map without modification as they al-

ready possess identity and class attributes;

Organisational directory objects (e.g. X.500 objects) are already defined as instances
of classes and therefore map well. Implicit structural directory links (i.e. that model
organisational hierarchy within the naming scheme) should be represented explicitly
within implementations using containment relations e.g. the University of Leeds

contains the Department of Computer Studies;

Relational database objects may be mapped to a related object representation at sev-
eral levels of granularity, e.g. database server, table, view, row, field. At each level
of granularity a suitable name and class must be chosen. For example, an object of
type RelationalTable might be assigned a canonical name of serverl.db2.table3
and possess name-value attributes providing meta-descriptive information about its
columns. In the simplest case, a row/column entry can be represented directly as a

name-value pair;

Arbitrary distributed objects can be mapped if their implementation can be aug-
mented to provide an appropriate interface e.g. via an object property [87, §13]. In
cases where implementations cannot be modified, other object services may be used

to provide the relevant interface externally (e.g. relationships or properties).

At the system architectural level, the information management service is viewed as a query
manager defined in the CORBA query service [87, §11]. A query manager acts as a single

point of federation through which queries are evaluated using one or more underlying query

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 70

evaluator objects. There is typically a one-to-one mapping between query evaluators
and information sources (e.g. one evaluator for relational data, one for organisational
directories, one for distributed objects etc.) although in some implementations more
than a single evaluator may be required. The query manager is responsible for directing
an incoming query to the evaluator(s) that can resolve it. The structure of the information

management service is shown in Figure 3.9.

DiMe
query i/f

globally scoped query

Query
manager
referral referra referral
Query Query Query
evaluator evaluator evaluator

Figure 3.9: Information management service architecture

A universal information namespace is assumed within the system architecture. This
namespace serves as the primary mechanism through which query federation is achieved.
The naming scheme chosen within this work is a canonical notation based upon textually-
delimited syntax used, for example, in the Internet domain name service (DNS) and
many file systems. Every object is positioned within a tree structure, creating an object
hierarchy which is particularly suited to traversal and manipulation through DiMe. Some

example names are shown below;

Object Canonical textual name
Root object root

Organisation object root.ldap.vsp

Person object root.ldap.vsp.people.ms

Relational database object | root.odbc.dbl

Relational row object root.odbc.dbl.table3.row8

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 71

The CORBA naming service specification notes weaknesses in using syntactic representa-
tions for defining naming contexts [87, §3.1.2], primarily with reference to internationalisa-
tion issues. However, such an approach is justified in this architecture because of the need
to express object names and contexts within the DiMe scripting language, DMSL. Fur-
thermore, it is trivial to map between the syntactic name representation and a structural

representation (as, for example, advocated in the CORBA naming service specification).

Routing of queries to relevant evaluators is performed by the query manager using knowl-
edge of the namespace. FEvaluators are connected to the query manager via a registra-
tion/callback mechanism. The registration process requires submission of a query eval-
uator interface stub through which the query manager can issue queries and a naming
context over which the evaluator is able/willing to accept queries. For example, a depart-
mental directory service within a VWS implementation may register as a query evaluator
for the root.org.uol namespace, thereby committing to evaluate queries on all Univer-
sity of Leeds objects. Queries rooted upon objects whose name begins with this context

identifier would be referred to the registered evaluator.

Structural inter-object relationships are implied when using a canonical naming scheme
e.g. root.ldap.vws participates in an implicit containment relation with root.1ldap and
root. It is therefore important to differentiate between structural and explicit relation-
ships between objects within the information space. The naming approach utilised within
this work was adopted from the VSP project, which for several years utilised an LDAP!?
directory for information management. LDAP (and the X.500 standard [51] upon which
it is based) models organisational objects (such as companies, departments and people)
according to a tree hierarchy. For this type of data source it is appropriate to view the
namespace structure as object relationships. Within the VSP project, structural relation-
ships were augmented with explicit relational modelling constructs using software services
layered over the LDAP directory server. In this work, however, it cannot be assumed that
all information sources will be of a naturally hierarchical structure. Therefore, the ap-
proach taken within this work is to use an explicit relational representation throughout all
data sources using an object relationship service. Query evaluator implementations will,
of course, typically utilise efficient internal representations for objects and relationships.

But these internal representations must be expressed through the object relationship ser-

121 ightweight Directory Access Protocol

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 72

vice upon externalisation.

As relationships are modelled explicitly within the system architecture there is no tech-
nical requirement for a syntactically specified namespace. However, such an approach
has been found to be very useful when integrating information sources and working with
DMSL scripts. Symbolic names are intuitive to manipulate within DiMe and also provide

a simple mechanism to delineate the information space.

The information management service provides an E-R graph representation of the un-
derlying information space through an object relationship service e.g. [87, §9]. Clients
of the information service (i.e. DiMe or application layer components) utilise this graph
primarily to navigate the information space, although support for arbitrary queries is also

provided.

Navigational query operations are special forms of query which are rooted at a partic-
ular object within the information space and traverse one or more relational links
to other objects. The root object plus the resultant object set together form a
connected graph. e.g. “from the VWS Organisation object, find all objects of class

Person linked by an Employs relation.”

Generalised query operations are scoped over the entire information space and the result
set may contain objects that are not explicitly related e.g. “find objects modified this

week.”

ParaDiMe is designed specifically to support navigational queries within structured infor-
mation spaces. There are four basic database query operations which ParaDiMe requires

from the information management service in order to enable information space navigation;

1. Retrieve an object by name,
2. From an object, find all related objects of any class,
3. From an object, find all related objects of a particular class,

4. From an object, find all objects linked by a specific relational role.

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 73

Object retrieval by name is required through the find () syntax within ParaDiMe. Typ-
ically this syntax is used within commands that present start pages for information navi-
gation e.g. within the VSP implementation show find(’root.vsp’) generates the root
index to the VSP information space. The other use for object retrieval by name within
ParaDiMe is in metaphors that act as search handlers. A text input form element can be
linked to a metaphor that attempts to locate (and display) the object named in the entry

within the information space e.g.

define viewobject extends null {
add target = ’root.default’
set this to_contain {

add result as find(&target);

¥

show viewobject(target=’root.org.vws’);

Many ParaDiMe metaphors contain embedded search constructs which operate upon all
objects related to a named (or the current) object, irrespective of class. For example,
a Project object within the VSP information model may be linked via a has related
resources relationship to objects of type Person, Expertise or Publication. The
reserved Any token is used to match against any class of object so, using the Project
object example, the following construct would result in the execution of a query to find

all objects related to a specified object;

add related_objects as set_of find(’root.vsp.project.101’->Any);

Execution of this query through the information management service may produce a set of
heterogeneous objects (i.e. objects of different classes). The metaphor selector component
within ParaDiMe is responsible for choosing an appropriate metaphor for each object in
the result set, or selecting an error handling metaphor in the event that an adequate

selection cannot be made.

No commitment is made at the system architectural level as to how the information

management service is to be implemented. However, as noted earlier, a distributed object

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 74

architecture providing component services with the functionality of CORBAservices is
assumed. There are several relevant common object services upon which the information
management service is reliant, although how these services are actually constructed is an

implementation issue;

A Query service provides operations to retrieve and update objects within collections

such as databases [87, §11],

A Relationship service enables explicit modelling of typed relationships between ob-

jects and support for graphs of such relationships [87, §9],

A Property service enables objects to be dynamically associated with named, typed

values outside the static type system [87, §13].

Within the CORBA query service, SQL and OQL [18] may be used as query languages.
In this work, however, most queries are of a navigational nature and may involve different
underlying information sources. It was beyond the scope of the work to implement a
fully functional query evaluator for a potentially complex and heterogeneously-structured
information space. A simple proprietary query syntax was therefore developed within
the project. The syntax enables navigational searches within the information space to be

specified textually according to the following syntax;

(find <from> <direction> <objectfilter> <linkfilter> <genfilter>)

from: the canonical name of the object within the information space at which the navi-

gation is rooted (mandatory parameter),

direction: the direction(s) along which to traverse object relations (mandatory param-

eter),
objectfilter: a restriction on the class of objects to be returned (optional parameter),
linkfilter: a restriction on the object relationships to traverse (optional parameter),

genfilter: a source specific general search filter which is understood by the target query

evaluator (optional parameter).

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 75

There are several potential values for the mandatory direction parameter, based upon
a structural view of the information space. However, navigation requirements in most

implementations can be met by four search directions;

one-level-down: follow a relation from source role to target role (e.g. from employing-

organisation to employed-person),

one-level-up: follow an inverse relation from target role to source role (e.g. from employed-

person to employing-organisation),

one-level-up-and-down the union of a one-level-up and one-level-down search result

set,

all-levels-down perform a one-level-down search and (recursively) perform another one-

level-down search on each element in the result set.

All-levels-down searches may generate very large result sets and are not recommended
in implementations unless they are rooted towards leaf-nodes of the information space

graph. Some typical search syntax examples are shown below;

| Search | Syntax
1 Which people are directly associated with the VSP tenancy? (find root.org.vsp onedown personobject * %)
2 Which tenancy is Neil Hunter a member of? (find root.people.neilh oneup * employedbylink *)
3 What are all the services that VSP members offer? (find root.org.vsp alldown serviceobject * *)
4 What organisational directory entries contain the string 'VW3’? (find root.ldap * * * (description==’*VHS*’))

Examples 1-3 show onedown, oneup and alldown navigational searches respectively. A
oneupanddown search merges the results of a onedown and oneup search. Example 4
shows how queries on proprietary information sources may be accommodated via the
genfilter parameter. In this case, an LDAP search filter is passed to a query evaluator

managing access to an organisational directory.

The definition of a simple textual query language specialised for navigational queries is
beneficial in this work for several reasons; it closely reflects the abstract entity-relationship
structure of the information space; construction of query evaluators for different informa-
tion sources is uncomplicated; the syntax maps well to symbolic knowledge representation
and query languages such as KIF/KQML, enabling integration of value-added informa-
tion services. However, in large-scale production systems it would be more appropriate

to support standard query languages such as SQL or OQL.

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 76

3.6 Supporting forms-based information processing

Within many information-oriented application scenarios, there is a basic requirement for
user interaction via forms-based interfaces. ParaDiMe provides a simple mechanism for
supporting this style of interaction through the use of forms-handling metaphor definitions
and reformulated DMSL commands which convert form input elements into metaphor

parameters.

A HTML form associates names and values with form elements such as text boxes, but-
tons and other input fields. Upon form submission, these elements are encoded (either
using HTTP get or set) and passed to a CGI process named within the form. DMSL
metaphors can generate HTML forms through exactly the same mechanisms used to gen-
erate other types of markup. The key to forms generation (and subsequent processing)
within ParaDiMe is that meta-information about how to route the form upon submission
is embedded within the form as hidden values. A simple example of a forms generation

metaphor is shown below (taken from the VSP User Interface metaphor set—VSPUI);

01: define TestForm extends VSPUIDocument {

02: set page to_contain {

03: add form as VSPUITemplateForm(

04: cgi_handler="Reflector",
05: method="P0OST",

06: username=&userid,

07: metaphor_to_use="TestHandler");
08: add check as VSPUIFormInputRadio(

09: name="radiol",

10: value="YES",

11: checked="Y");

12: ¥

13: ¥

In this example, which defines a form with a single visible radio button input, the
VSPUITemplateForm metaphor embeds several pieces of routing information within the

generated form. Firstly, a CGI program is associated with the form submission button

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 77

(line 4) and a CGI method!? (line 5). Secondly, a ParaDiMe user name is associated with
the metaphor in order to route the processing request to the correct interpreter within
ParaDiMe (line 6). The user id may be specified as a literal string but is more usually
specified as the current user which is represented in DMSL through a special token—
guserid. Finally, a handler metaphor is specified for the form (line 7). The handler

metaphor must define a variable slot for each input element in form.

Upon form submission at the user interface, the form data is passed through CGI (and
the object bridge) to the application named as the form handler. The application then
reads the submitted form values on standard input and performs any required processing
e.g. object updating within the information space. When application specific processing
is completed, the application synthesises a DMSL show command from the form input
element values and the meta-information embedded by the generating metaphor. The

structure of the synthesised command, together with a usage example, is shown below;

show metaphor_to_use(element=value, element=value...)

show TestHandler(radiol=‘YES‘)

The show command is then routed to the relevant ParaDiMe interpreter and the output
results returned to the client in the standard manner. The forms handling subsystem
within ParaDiMe provides a useful mechanism for implementing form-based interaction
within applications. However, care must be taken by system builders to ensure that form
generation metaphors remain consistent with their associated handlers. In order to ad-
dress this issue, early experimental work has attempted to automate definition of forms
generation and handler DMSL metaphor definitions directly from database schemata.
This provides a quick way to generate accurate forms metaphors but creates a further
level of indirection in the interface generation process i.e. generation of a model to gen-
erate an interface. This approach has been useful for applications where the information
model remains static, but a better strategy would be to develop constructs which enable
new metaphors to be synthesised dynamically when new objects are encountered. This
strategy, which should be explored in future work, could move DiMe towards becoming a

generic object browser in dynamic information environments.

131t is normally safer to use post rather than get.

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 78

3.7 Supporting access to remote objects

In addition to information access, a basic application requirement in building integrated
CSCW systems is access to functional services e.g. conference control managers, security
servers or document management systems. Provided such services have a visible control
API, or can be wrapped in an appropriate interface, then access to control methods may
be supported within ParaDiMe and DMSL. ParaDiMe is implemented using the CORBA
distributed object architecture and support for access to functional services within DiMe

is consequently based upon the remote object request approach, as shown in Figure 3.10;

Common object services

: Name Interface |
: server repository :
(2) route (2) locate remote (3) OR locate interface
appcall implementation for invocation via DI
command
HTTPD]
WWW CcaGl/ f ot D Enabled
; Application .
client CORBA | (4) invoke method and |:I Obj ect
. retrieve results ~————
bridge

Figure 3.10: Remote method invocation within DiMe

Remote method invocation is supported within DMSL through the Action syntax, intro-
duced earlier. The Action construct was developed to embed a DMSI show command
within a URL accessed through hyperlink selection (or other interface event). This mech-
anism has been extended in this work to support remote method invocation. For example,
the DMSL fragment shown below generates a hyperlink that, upon selection, will invoke
a logout method within a remote security service. Within DMSL, a remote object and
method is firstly specified using the app call construct (line 3). A list of method specific

(stringified) parameters may also be provided (line 4).

1: add logout as HTLink

2: Action select

3: app_call "security.logout"
4: params &userid

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 79

5: label "Sign off from the system"

At runtime, the object bridge initially routes the request to the application component
specified within the Action template (step 1 in Figure 3.10). The application then uses
the CORBA name service to bind to the service implementation identified within the
metaphor definition (e.g. the security service implementation) (step 2). An interface
repository lookup may also be required where an interface is not known to the applica-
tion a priori (step 3). After binding to the remote interface, the application may then
locate and invoke the method named within the app call definition (step 4). Follow-
ing method invocation, an application is responsible for calling ParaDiMe to generate an
appropriate resultant interface—where the app call construct is used in existing appli-

cations, ParaDiMe generates a simple “operation performed successfully” message.

3.8 Supporting access to collaborative tools

The major application of remote method invocation mechanisms within ParaDiMe is in
supporting execution and subsequent control and teardown of collaborative working tools

e.g. shared whiteboards, videoconferencing tools etc. as shown in Figure 3.11.

HTTPD Application
WWW CGl / i Layer Groupware acgess metaphors
Client CORBA i ;
— BRIDGE \ ; ;
register : E DiMe server
User Comms . 5
\ execute j !
' | Groupware | ;
| execution
\ | manager
Comms —
Client |t . .
N ; Information manager
HTTPD / |
User [WWW CGl/ 5 =
Client CORBA[| A
: Registration profiles
BRIDGE i

Figure 3.11: Collaborative tool control subsystem

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 80

Groupware session control is, however, differentiated from the majority of other uses for
remote method invocation within ParaDiMe by a requirement for control of client-side
functional components. For example, consider establishment of a shared whiteboard ses-
sion between two users of a ParaDiMe-based group support system. In order to support
this scenario, ParaDiMe must firstly be informed that a user wishing to engage in commu-
nication is logged in and willing to accept connections from other users. Secondly, when
a calling user wishes to establish a whiteboard connection with somebody else, ParaDiMe
requires a mechanism for executing client-side whiteboard tools on each client machine

and pointing the clients at each other.

The approach taken within this work was to develop a standalone client-side component
that is separate to the Web browser through which the user typically interacts. The
communications client registers a callback interface with a remote conference control
component, which is then used to launch and control collaborative tools. As noted earlier
in the thesis, the flexibility of this mechanism is ultimately constrained by the level of
external control available in particular tools. In a proof-of-concept implementation for
example, the Unix wb shared whiteboard tool was integrated as this provided a simple
command line control interface. Future work may, however, investigate more sophisticated
conference control schemes such as the VWS conferencing architecture proposed by Hunter

[48].

3.9 Application development methodology

ParaDiMe is useful in building integrated internet-based CSCW systems. Development of
such applications within ParaDiMe is most appropriately progressed through an iterative
Rapid Application Development (RAD) approach, as shown in Figure 3.12. However,
designing and building ParaDiMe applications requires different development emphasis
through the design-build-evaluate lifecycle in comparison to conventional software engi-
neering projects. As a development environment, ParaDiMe includes a standard library
of re-usable CSCW services and generic metaphor definitions which describe how access
to those services may be provided via a Web user interface. An initial system design and
build activity using ParaDiMe therefore starts with an architectural design activity in

which core services are identified and brought together. Once a set of general services

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 81

has been brought together, a controlling application may be constructed using a standard
template class provided with DiMe. This template (expressed as a set of CORBA IDL
interfaces) specifies methods which a control application must support in order to operate

with the CGl-object gateway and the ParaDiMe runtime interface generator.

Following an initial build of a controlling application, the set of application wide metaphors
can then be built from basic predefined metaphor definitions provided with DiMe. Appli-
cation wide metaphors are typically developed to mirror application information models
and describe the general look-and-feel of the entire application. After definition of appli-
cation generic metaphors, user interface requirements for specific users or user classes may
then be translated into specific metaphor sets. These sets of metaphors typically extend
generic interface components using the object oriented inheritance features of DMSL. At
this point in the initial system built, an operational system may be provided to users or
their representatives in order to gain feedback on the system. This evaluative process may
result in a major iterative system build requiring application level code changes. However,
once operational functionality has correctly been implemented at the application level,
subsequent change requests from users are typically focused upon the human-computer
interface. Such changes may quickly be enacted within the ParaDiMe runtime architecture
through a minor iterative build as shown in the diagram. This activity may be carried
out in real time, perhaps during an prototype evaluation meeting between system builders

and user representatives.

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE

minor
iterative
rebuild

Freezefor
engineering

Capture
user
requirements

major
iterative
rebuild

initial
system
build

design service
and application
architecture

(re)build
application
layer

(re)build generic
and app-wide
metaphors

(re)build role
specific metaphors

Integrate and
evaluate

Turther design
required

Figure 3.12: ParaDiMe development methodology

82

CHAPTER 3. MODEL-BASED CSCW ARCHITECTURE 83

3.10 Summary

This chapter has discussed the ParaDiMe model-based CSCW architecture, which at-
tempts to raise the level of abstraction at which integrated internet CSCW applications
are built and subsequently modified over time. ParaDiMe provides explicit architectural
support for building cooperative systems via component-based models which describe
user interaction with functional services. The ParaDiMe architecture is comprised of four

major components;

A library of user interface models is defined using a purpose-built modelling lan-
guage which describes how system users interact with application and component

services;

A runtime interface generation service provides application user interfaces at run-
time from user interface models defined using the modelling language, directed by

commands from the application-specific control component;

A library of CSCW services provides implementations of CSCW services that are

build specifically to enable their re-use in different applications;

Application components implement application specific functionality and integrate

access to general CSCW services where required.

The Display Metaphor Scripting Language (DMSL) was introduced as the modelling
language component of the ParaDiMe architecture. The relationship between DMSL,
the DiMe object model and the ParaDiMe runtime interface generation component was
discussed. The runtime architecture subsystems supporting user interactivity were de-
scribed. Finally, a simple methodology for developing ParaDiMe applications within a
RAD framework was proposed. Chapter 4 proceeds by describing the application of
ParaDiMe towards a case study cooperative working scenario. Specifically, it presents
a proof-of-concept ParaDiMe-based implementation of an application to support group

work within a telecommunications business process.

Chapter 4

Case study implementation

4.1 Introduction

Chapter 3 described the system architecture of a model-based architecture for construction
of integrated CSCW systems from modular and reusable components. As stated in the
introduction to this thesis, the architecture seeks specifically to address three problems

inherent in many existing CSCW system construction environments,

1. CSCW services are not reusable,
2. User perspectives are not adequately reflected during prototyping,

3. Evolving user requirements are not adequately reflected in evolving live systems.

In order to assess the research hypothesis that a model-based system construction ap-
proach can offer a solution to these problems, a proof-of-concept implementation of the
model-based architecture was constructed. The implementation was then applied to a
case study cooperative working scenario and a number of use cases developed in order to
demonstrate the utility of the approach towards solving the research problems. A prac-
tical demonstration of the architecture based around these use cases formed the basis for
assessment of the research with a potential user community within BT Laboratories, as

reported in Chapter 5.

84

CHAPTER 4. CASE STUDY IMPLEMENTATION 85

This chapter presents the proof-of-concept implementation of the ParaDiMe model-based
CSCW architecture, focused upon a concrete case study business process within BT de-
scribed in Section 4.2. Whilst it was beyond the scope of this PhD research to implement
a comprehensive support environment for the entire process (because of it’s complexity),
it was felt that the important features of the research could be assessed with respect to
smaller elements of the process. The aim was to create tractable problem scenarios to
which the research implementation could be applied whilst retaining realistic character-
istics of the business process domain. Following description of the case study business
process, Section 4.3 then identifies and discusses the particular features of the process to
which ParaDiMe was applied. The construction of the proof-of-concept implementation
supporting these features is then presented in Section 4.6. The chapter concludes with a
discussion of four specific use cases for the proof-of-concept implementation, designed to

demonstrate salient functionality of the model-based architecture for research assessment.

4.2 Case study scenario

This section introduces a data network service quotation activity as an example of a dy-
namic cooperative business process within a typical large telecommunications enterprise.
This process has already been utilised as a case study scenario within existing BT re-
search projects (ADEPT [53] and KRAFT [39]). This meant that for this work, a large
and detailed body of existing descriptive material could be drawn upon without the need
to perform field-based requirements analysis work. To protect commercial confidentiality,
the quotation process as described here is a sanitised version of that which is actually
enacted.! However, the salient features of the process with respect to this research remain

valid.

Most major business customers of telecommunications enterprises rely heavily upon in-
formation systems to support their operations. In situations where these operations are
performed over several geographic locations there is an increasing market demand for
telecoms services to connect distributed information systems. One class of service offered

by telecommunications companies to meet this need is data services, which carry digi-

!The scenario description is based upon unpublished reports and models from the ADEPT and KRAFT

projects.

CHAPTER 4. CASE STUDY IMPLEMENTATION 86

tal traffic between end-user locations over public networks with some quality-of-service
(QoS) guarantee. Although these services are delivered over infrastructure shared with
other customers it appears to the customer that they have their own private network,
but without the expense of maintenance. Such arrangements are often referred to as
virtual private networks (VPNs). Data service requirements vary greatly from job to job,
dependent upon many constraining factors e.g. bandwidth, latency, availability, length of
circuit, routing etc. Providing a quotation for such services requires resource coordination
through several related activities within the telecommunications company, as shown in

Figure 4.1.

The end-to-end quotation process is comprised of several ordered tasks, performed by
a number of cooperating participant roles. The process is currently managed using a
conventional workflow management system (WFMS). Figure 4.1 shows the control flow

of work through the end-to-end quote process.

A job is initiated when a customer approaches the telecoms company for a quotation. In
the first instance, customer details are captured by a customer handling centre and
entered into the workflow system via a forms-based terminal interface. If the customer has
not dealt with the telco before then a new customer details record is created, otherwise
the existing customer details record is located. Submission of customer details to the

workflow system then triggers the next phase of the quotation process.

Following submission of a customer details record, two activities are progressed in parallel.
Because of the high potential cost of data service provision, the customer may be
vetted through a credit reference agency. Whilst this check takes place, an account
manager is assigned to elicit user requirements. Representatives are typically assigned
by market sector and have good industry and portfolio knowledge. The account manager
liaises with the customer and builds up a more detailed picture of their requirements.
These are entered into the workflow environment via a forms interface and associated

with the customer details record.

CHAPTER 4. CASE STUDY IMPLEMENTATION

Customer

Customer

A

portfolio
] item
Capture I dentify
> customer —® service
requirements profile
 J
Capture
Clésett%lnlqg customer ok no| yes
Vet
1 customer X
> Provide
Quote
A
> Anayse Survey
. reguirements CPE
islega
: Design
. no - network
: Legal
: ™ review
wadlel ... X

Figure 4.1: Provision of quotations for data network services

87

CHAPTER 4. CASE STUDY IMPLEMENTATION 88

Providing the customer has been vetted successfully, the service requirements profile
is identified. Here, the customer requirements are analysed to assess whether they can
be met from the existing telco service portfolio i.e. standard off-the-shelf services. If this
is the case, a quotation can be initiated immediately and forwarded to the customer—

thereby terminating the quotation job.

If the customer requirements cannot be met from an existing portfolio service, a data
network design must be created in order to provide a customised solution. At this point,
a network design team is assigned to the job and detailed network analysis and design
is conducted. Whilst this is underway, a parallel review is conducted by a legal team
to ensure that the emerging design does not contravene relevant legislation (it is, for
example, apparently illegal to carry encrypted network traffic through some parts of
FEurope). During the design stage, the account manager mediates between the customer
and the various cooperating groups within the telco (e.g. design team, legal advisors and
technical support). If the parallel secondary requirements analysis and legal review is

successful, a detailed design stage is initiated.

In the detailed network design activity, the design team are responsible for producing
a customised network architecture that meets the customer requirements. If it is deemed
necessary during the secondary requirements analysis phase, the customer premises equip-
ment (CPE) is surveyed on-site by engineers to provide input into the detailed network

design activity.

Upon initiation of the detailed design activity, the design team transfer the customer
details and requirements records from the main workflow system to a (textual) design
database, controlled by an account manager. During the design activity, the design team
collaborate using a range of heterogeneous information sources and tools. A designer will,
for example, require access to information on geographical site location, protocols, vendor
equipment, design guidelines, network performance characteristics etc. Throughout the
design process, the account manager elicits further requirements from the customer as
needed and feeds back progress on the design. Because of the complexity of the design
activity, there is still significant reliance upon paper-based communication and process

coordination at this stage.

CHAPTER 4. CASE STUDY IMPLEMENTATION 89

Once the design team have formulated a bespoke network design for the customer, a
profile of that design is fed back into the main workflow management environment and
a customised quotation prepared. The quotation is then delivered back to the cus-
tomer and the process terminates. Related installation, testing and billing processes are

subsequently enacted if the customer accepts the quotation.

4.3 End-user perspectives and application stakeholders

Provision of quotations for data network services is an involved process requiring struc-
tured and ad-hoc collaboration between a number of different groups within the telco.
Collaboration occurs within a highly heterogeneous information and systems environment.
The inherent complexity of the process (although simplified here) is reflected in the vari-
ety of systems used to support the real process. Cooperating groups often utilise internal
systems from which information is transferred to the major workflow environment as and

when required.

Several distinct roles must cooperate in order to provide a customer quotation (e.g. cus-
tomer handling centre operative, account manager, network designer and legal advisor).
These roles have different skills, expertise, responsibilities and perspectives on the overall
process. These differences are reflected in different requirements from the systems used

to coordinate the process;

the customer handling clerk handles initial enquiries (e.g. in a telesales environment)
and enters customer details onto a form, submission of which triggers the quotation
process. No further functionality is required of the support environment for this

role.

the account manager the account manager is responsible for a managing a number of
jobs and mediating between customers and the assigned technical teams. They are
primarily interested in tracking end-to-end job progress and are unconcerned with

the highly technical content of the network design.

the network designer utilises a wide range of tools and information sources to create a

bespoke network design. The design team need to share information and collaborate

CHAPTER 4. CASE STUDY IMPLEMENTATION 90

internally, whilst liaising with the account manager and legal advisor as the design

progresses.

the legal advisor uses a summary representation of the proposed design to assess po-
tential legal ramifications. In making this assessment, they typically communicate
on an ad-hoc basis with the design group during the secondary requirements analysis

phase.

One reason that different groups within the real process support environment utilise inter-
nal work management systems is that a single conventional workflow management system
(WEFMS) cannot easily meet contrasting per-role requirements.? Facilities exist within
many workflow systems to build customised interfaces for particular classes of users, but
the development effort required to support this heterogeneity over time as requirements
dynamically evolve is often prohibitive (unless support environment customisation adds
significant value in process enactment). When constructing the process-support applica-
tion, as with any system, end-user requirements are of central importance. The major
target usersin this research are those responsible for creating and subsequently managing
the environment which most appropriately meets the needs of their end-users. As noted
earlier, this work seeks specifically to consider dynamic applications domains in which
changing requirements must be fed back into support systems in an effective manner. A
number of scenarios within the data services quotation process exemplify this. For in-
stance, a new networking technology may be introduced which changes the structure of the
telco product portfolio; cooperating groups may relocate to different office locations lead-
ing to a changing requirements for communications tools; a new (similar) service might
be introduced using the existing process as a template. Within the simplified business

process support scenario considered here, three major stakeholders may be identified;

o Process designer
¢ System manager

e End user role (or representative)

2This observation is not unique to data network quotation provision of course; the process as described
for this work 1is fairly generic and similar situations arise in many business processes within typical large

enterprises.

CHAPTER 4. CASE STUDY IMPLEMENTATION 91

The process designer is responsible for analysing business requirements and creating a
coordinated set of activities through which the business requirements may be met e.g. the
designer models the quotation provision process as shown in Figure 4.1. The system
manager is then responsible for creating and managing a system-based enactment en-
vironment from this business process specification which reflects end user requirements
e.g. the system manager builds a workflow system to enact the process definition created

by the process designer.

4.4 Case study implementation requirements

The case study implementation attempted to demonstrate the utility of mechanisms
within the model-based architecture in supporting participatory design and subsequent
evolutionary maintenance of a realistic cooperative system. The goal of the implementa-
tion was to enable assessment of the research according to the objectives stated in Chapter
1. Hence, the implementation did not seek to deliver a comprehensive process-support
environment that could be used by end-users in a pilot study. Rather, the objective was
to enable exploration and experimental assessment of the key features of the model-based

approach to cooperative systems prototyping and evolution.

The remainder of this chapter describes the development of the ParaDiMe-based pro-
totyping environment to support experimental assessment of the model-based approach,
according to the simple development method introduced in Section 3. Section 4.5 firstly
discusses the information and process-oriented user requirements for the application. Sec-
tion 4.6 then describes how these requirements may be met from reusable CSCW services
and application-specific components. Section 4.7 considers the user interface metaphors
that are required to support the application and describes the structure of the resulting

metaphor library.

4.5 Application information models

The key feature of the application scenario is the requirement to augment (rather than
replace) conventional WFMS process coordination services with a more complete process

support environment, which more closely reflects differing end-user requirements. This

CHAPTER 4. CASE STUDY IMPLEMENTATION 92

has important design implications for the application, in that a large proportion of the
information model is predefined by the existing system. This is a common situation
in software prototyping, where a new system is to be developed based upon a similar
existing application. ParaDiMe is designed explicitly to support information model flexi-
bility through a tight integration with a general purpose information manager component

(described in Section 3.7).

For the quotation process support scenario there is a need to maintain an interface with
a conventional WFMS environment, through which jobs are coordinated. In considering
existing coordination services, Chapter 2 identified a number of relevant standards that
facilitate interoperability between workflow systems. For this case study, the existence
of a workflow manager compliant with the WFMC reference architecture is assumed. It
is also assumed that the workflow manager within the application domain supports state
querying that would allow a snapshot model of the business process to be generated when
required within the support environment. It was infeasible (and undesirable) to integrate
an existing large-scale WFMS implementation within the prototyping environment, so
it was assumed that a symbolic model could be passed from a WFMS and the support
environment. This approach has the advantage that the effect of changes in business
process can be explored quickly through manual introduction of different models into the

system.

Through links with existing research work within the IBS group at BT, Process Inter-
change Format (PIIF') was chosen as a process-description interlingua [63]. The goal of PIF
is to enable interoperability between workflow systems and so represents a good choice
for process modelling within the case-study scenario. The PIF core information model
provides a declarative object oriented (frame-based) description framework for business

processes, as shown in Figure 4.2.

Instances of the classes shown in Figure 4.2 may be used to make declarative statements
about a business process at a particular point in time or over a set of timepoints, en-
abling precise modelling of statements such as “activity B should not start until activity
A has been completed.”® For this case-study, PIF enables business process information

to be used within the support environment. The specific requirement was to encode the

®It is beyond the scope of this thesis to describe PIF in detail. The reader is referred to [63] which
fully specifies the PIF standard.

CHAPTER 4. CASE STUDY IMPLEMENTATION 93

Component
Enti Documentation g <String>
ntity)
User attrlbutes—><attri bute-list>
‘Name
<symbol> g
A Successor
I
Constraint Status Post
Pre Creates
Capability
When
. . <_ . pe .
Agent 1 Activity [«—— Modifies |—{ Object
> -
Performs Uses 4T
- - - ; Then
Timepoint ?Eegludn i / Ellse
3| s .
Precleeding Sulcceeding 5| 5 Decision
3| §
gl 8
Before c| & |
If
Yy
p <Sentence>

Figure 4.2: Process Interchange Format (PIF) information model

quotation business process (Iigure 4.1) in PIF, and then use this description in creating
user interfaces for the support environment. However, modeling and implementation of a
support environment for the entire quotation process was beyond the scope of the PhD re-
search project.? A simpler information model, based on a small subset of PIF augmented

with workflow client information was therefore derived (Figure 4.3).

This model adopts the PIF Activity class along with Component and Successor relations
to enable characterisation of hierarchical and linear task ordering constraints. Although
the model cannot capture decision points and other more esoteric process information,
the structure of a wide range of processes can be successfully described using this simple

approach. PIF is a process definition interlingua however, and as such is not concerned

*Because the PIF parsing tools used to construct the prototype implementation could not handle

process decision points at the time the system was built.

CHAPTER 4. CASE STUDY IMPLEMENTATION 94

Person has p Worklist
performs
asssin contains
Activity |e——isinstanceof — Workitem
—— >
r
as componen is associated with
succeeded by
creates .
modifies———m» Object
uses

Figure 4.3: Prototype application information model

with workflow client information. The end-user roles in the application scenario interact
with the WFMS via a client interface however, so the information model for the support
application must consequently reflect this. Again, a simple subset of a workflow client
information model was derived; A person interacts with the WFMS via a worklist, which
lists a number of workitems for completion. A workitem represents an instance of a PIF

activity and is associated with an information object.

Several information management assumptions were made in deriving an information
model for the application scenario. It was assumed that an information object can hold
the artefacts which are created, used or modified at each stage of the business process.
Secondly, there is a one-to-one mapping between individual tasks and information objects
so, for example, the capture customer details task generates a customer details object; the
vel customer task generates a customer vetting object and so on. In a task sequence, it
is assumed that the objects created by preceeding tasks are fed into the succeeding tasks
as inputs e.g. the vet customer task requires a customer details information object as an
input. Finally, it was noted that information within the application domain may be of
a complex nature e.g. a network design may be represented as a set of detailed network
specifications and graphical topologies. However, within the application it was assumed
that all objects can be represented (perhaps by proxy) as simple database objects i.e. a set
of named string-valued attributes. An analogous approach was taken within the ADEPT

agent-based workflow project, which also used the network service quotation process as

CHAPTER 4. CASE STUDY IMPLEMENTATION 95

a demonstration scenario. Adopting such an approach within this work enabled direct
utilisation of the existing ADEPT information models. Because the detailed structure
of the information space is not of importance during the prototyping cycle, taking this
simplified abstract view of information usage is appropriate. Of course, a production
quality implementation would have to address information integration issues within the

actual (complex and heterogeneous) information domain.

To summarise, a simple application information model was derived that enables char-
acterisation of the salient features of the scenario, whilst de-emphasising features that
are unimportant during prototyping. For the quotation process, the information model
serves to describe three types of information upon which prototype user interfaces are

dependent;

e structural business process definition (PIF)
e workflow client information (worklists and workitems)

e information use (simple database object for each task)

Following definition of an application information model for the scenario, a proof-of-

concept runtime environment was then constructed using ParaDiMe.

4.6 ParaDiMe application implementation

In creating the quotation process support application, there was a need to integrate and
control a number of basic CSCW services. The scenario analysis identified that access to

a number of basic services were required within the application;’

WEFMS access provides coordination between the tasks contributing towards the end-

to-end process;

Information access enables user interaction with the information artefacts within the

quotation process;

®Mirroring the coordination, collaboration and information management elements of CSCW as intro-

duced in Chapter 1.

CHAPTER 4. CASE STUDY IMPLEMENTATION 96

Conferencing tools enable ad hoc communication between process participants.

As noted earlier, the role of the WFMS within the application was simulated through
an information model defined using a process definition interchange language (PIF). This
meant that the business process model could be treated in the same way as other informa-
tion sources within the application (e.g. worklists, workitems and associated information
objects). Integration of process definition and other information sources within the appli-
cation was achieved by creating specialised data wrappers for the reusable ParaDiMe infor-
mation manager runtime component defined in Chapter 3. A parser for the PIF language
was used to convert from instances of PIF classes into the ParaDiMe entity-relationship
format via a PIF Queryable Collection (QC) object.® The PIF queryable collection acts
as a client to the information manager which is connected to the ParaDiMe interface
generator at runtime. In addition to the PIF parser, an LDIF parser and associated
queryable collection was built to enable description and integration of other information
objects and relationships within the application.” The PIF and LDIF queryable collection
services were implemented as CORBA objects which support dynamic updates through
the query interface. This provided the basic method through which information could
be dynamically updated within the application so, for example, a new business process
definition could be dynamically introduced through submission of an updated PIF file

through the PIF parser subsystem.

In addition to WFMS and information access, the case study scenario required the in-
tegration of conferencing services within the application. For the quotation process, no
changes to individual tools were necessary and so the reusable ParaDiMe conferencing
subsystem could be used without modification. For demonstration purposes, the LBL wb
shared whiteboarding tool was used as a representative example of a synchronous group-
ware tool. This tool was chosen primarily as it supports a simple command line execution
interface which can readily be integrated within ParaDiMe. Synchronous audiovisual con-
ferencing services could be provided through other mbone tools (e.g. vat and nv) using
the same mechanism. The quality of these tools is sufficient for demonstration of concepts

during prototyping but a more sophisticated conferencing subsystem would be required

6The PIF parser classes were written by Simon Thompson at BT Laboratories and released for use

within this PhD project.

TLDIF is a simple textual representation for information objects and their attributes, typically used to

populate LDAP directory servers.

CHAPTER 4. CASE STUDY IMPLEMENTATION 97

within a production environment (e.g. the VWS conferencing architecture proposed in

48]).

Following identification of basic service requirements within the application scenario,
reusable service implementations must be integrated within a controlling application-
layer component. This component implements the control logic within the application,
acting as a single sink for all user interface operations (via encoded DMSL commands) and
subsequent user interface generation through ParaDiMe. The application was customised
using the generic ParaDiMe runtime architecture presented in Section 3. In implementing
a support application for the quotation process, shown in Figure 4.4, two changes to the
generic ParaDiMe architecture were made. Firstly, queryable collections for the PIF and
LDIF domain information sources were constructed. Secondly, a controlling component
(called the workflow helper) was written as a specialised implementation of the general

ParaDiMe application template.

The workflow helper component brings together the reusable services that are required

within the application, providing three main services within the runtime environment;

Information object update through forms: users interact with tasks and informa-
tion objects via forms interfaces, thus there is a requirement to map form infor-
mation back into the information space. This was implemented using the forms-

interaction ParaDiMe subsystem.

Conferencing subsystem control: the ParaDiMe conference control subsystem was
integrated into the workflow helper application to enable business process partici-
pants to collaborate in real-time. Collaboration requirements were modelled within
the domain information model, by associating secondary roles with activities using
an assists relation. For example, collaboration between an account manager role
and the network design role during performance of the design activity could be
specified by association of the account manager to the design activity via the assists
relation. ParaDiMe can then use this information to create user interfaces with
appropriately embedded communications requests. The workflow helper was used
to maintain a list of registered communication client interfaces (i.e. noting which
roles were available for conferencing), and executing tools via these interfaces upon

reception of a conferencing request from a user.

CHAPTER 4. CASE STUDY IMPLEMENTATION 98

Metaphor library

VRML base || HTML base
metaphors || metaphors

(\ App-wide [|Role-specifig
WWW metaphors || metaphors
Client

N

User [Comms DiMe server
Client [| [HTTPD

N Workflow

) CORBA app
Comms [_|
Client BRIDGE Information manager

N .

(\ : PIF LDIF

User | WWW objects objects
Client — :""";f] ----- :
\ J 1 Workflow :
(assumed): enactment gg LDéF
i service Q
PIF
PIF process parser
model snapshot
LDIF

information object instances ———— P parser

Figure 4.4: ParaDiMe ‘workflow helper’ application implementation

session control: the final operation which was directly coded into the workflow helper
application supported system login and logout functions. These operations are
mapped to a private management interface within the ParaDiMe server that controls

creation and use of individual interpreters for system users.

ParaDiMe is implemented using the CORBA distributed object architecture which pro-
vides a high degree of language and platform flexibility. The workflow helper component
was implemented using Java and integrates with the rest of the ParaDiMe runtime archi-

tecture via interfaces defined in CORBA IDL (Interface Definition Language).

The HTTP-CORBA bridge was implemented as a simple (50 line) C program executed
by an Apache Web server through the CGI mechanism. This would be a poor approach

CHAPTER 4. CASE STUDY IMPLEMENTATION 99

to take in a production system because of the high performance overhead associated with
CGI process execution. However, the approach was simple to implement and performance
proved adequate with a small number of interactive users. A beneficial side-effect of
implementation on a Unix platform was that, for the majority of requests, the CGI process
could be obtained from the in-memory file system cache rather than requiring a disk read.
In a production system running within a heavily-loaded computing environment, however,
a more appropriate bridging technique should be sought e.g. use of a CORBA Web server

or compilation of a CORBA module within an existing Web server.

The HTTP-CORBA bridge calls a single method on a specified application layer compo-
nent (e.g. the workflow helper). This object request is very simple; the CGI query string
is packaged and a resultant user interface specified in HTML or VRML is passed back
as a string. Following application-specific processing (e.g. conferencing subsystem control
within the workflow helper), the application component invokes ParaDiMe to generate a
user interface. This is implemented through a single object request using the DimeAgent

interface as defined below;

module DimeExec {
typedef unsigned long Status;
interface DimeAgent {
Status execute(in string userid,
in string opcode,
in string cmdline,

out string result);

};

The execute method accepts a stringified user name token which identifies a system user
within ParaDiMe. Within the ParaDiMe user interface generator, each user (or class of
user) may be associated with a unique DMSL interpreter. The opcode parameter identifies
an operation to be performed within ParaDiMe, pertaining to the DMSL interpreter
instance for the specified user. Five types of operation are supported, which use the

cmdline string to carry parameter information;

CHAPTER 4. CASE STUDY IMPLEMENTATION 100

Login: create a new interpreter for the named user,
Logout: destroy the interpreter for the named user,

Loadfile: load the specified interpreter with the DMSL metaphor definitions contained

in the named file,
Loadbatch: apply loadfile for each of the files specified within the named batch file,

Execute: run the specified DMSL command on the appropriate interpreter.

The result of the above operation calls are fed back to the calling application using a
CORBA string holder (result). Access to these operations is coded directly into the
workflow helper application component to provide interactive support for users. How-
ever, it was also useful to build a simple ParaDiMe control console through which these

commands could be constructed manually, as shown in Figure 4.5.

File Edit VYiew Go Communicator Help|

<« ® A B 2 £ S & ‘

Back Forward Reload Home Search Guide Print.. Security Stop

Workflow helper test interface

ms

Operation:
b |Execute DWEL command =
Parameters: | show Worklist in style "IDEFQ"
Submit Query
= | B A

Figure 4.5: ParaDiMe prototyping console

This form interface enables a system manager to drive operation of the ParaDiMe runtime
environment without having to recompile application code. In the quotation business

process scenario, this enables the system manager to make metaphor changes and view

CHAPTER 4. CASE STUDY IMPLEMENTATION 101

the results in real time, providing a useful tool in exploring prototype design iteration

functionality in review meetings with end-user roles.

The final implementation interfaces to consider within the runtime implementation are
the information manager and queryable collections. These are direct implementations of
CORBA services, as defined in [87], hence existing applications which utilise this standard
may be integrated within the ParaDiMe architecture without modification. The PIF
and LDIF queryable collections were implemented using Java, but there is no implicit

implementation language restriction provided a CORBA binding is supported.

Following definition of the domain information model and integration of runtime architec-
ture components, the final stage in developing a ParaDiMe application involves definition

of the application metaphor library.

4.7 Metaphors within the ‘workflow helper’ application

Scripted metaphor definitions are the key enabling mechanism through which user in-
terfaces may be developed using the ParaDiMe toolkit. When designing metaphors it
is therefore of paramount importance to design for reuse, in the assumption that many
metaphors used within an application will change as evolving user requirements are fed
back into application iterations. Practical experience in building a number of ParaDiMe
implementations has identified three important empirical heuristics to observe when cre-

ating a metaphor library for an application;

Group functionally-similar generic metaphors together into static modules: many
metaphors perform basic services that are required by the majority of applications
(e.g. basic HTML and VRML constructs). These should be grouped together into
libraries and remain unmodified within applications, other than by inheritance or

overriding;

Build upon and create metaphor inheritance hierarchies: the prototyping flexi-
bility of DMSL stems from the object-oriented structure of metaphor definitions.
Unless this property is observed when building applications, iteration through metaphor

redefinition will not be any quicker than through conventional tools;

CHAPTER 4. CASE STUDY IMPLEMENTATION 102

Utilise variable slots as metaphor parameters: it is tempting to write metaphors
for very specific purposes, but the effort in creating more reusable metaphors that
can adapt through variable slot input values is generally repaid through reduced

subsequent metaphor coding effort during development iterations.

These heuristics guided development of the metaphor set used within the quotation pro-
cess scenario, based upon the structure of the ParaDiMe object model presented in Figure
3.3 on page 50. A number of generic and reusable metaphor modules were initially se-
lected. Firstly, base HTML and VRML builtin object wrapper metaphors were specified.
A second value-added layer of HTMI and VRML metaphors was then constructed, map-
ping to a HTML component library and a VRML rooms metaphor library. The HTML
component library (called VSPUI®) defines HTML user interface widgets representing ab-
stract interface concepts such as menu, search, navigation and query result presentation
which are built from simpler builtin HTML constructs. The rooms metaphor library pro-
vides builtin object support for construction of 3D room interfaces through basic VRML
constructs. Following selection of this set of basic metaphors, a hierarchy of metaphor
definitions for the quotation process support application was defined, as shown in Figure
4.6. Metaphors were defined within three main tiers, as illustrated in the diagram and

described below.

4.7.1 Application base metaphor

A single base metaphor for the application was defined, from which all other application
metaphors would directly inherit. Although DMSL does not support multiple inheritance
within metaphor definitions, a similar effect may be achieved through careful definition of
a single inheritance hierarchy. The application base metaphor was used solely to define a
set of variables describing the general look and feel of the application. An extract of the
base metaphor definition is shown below (the actual metaphor definition contains around

30 variables used to define application default settings).

#Developed within the VSP project.

CHAPTER 4. CASE STUDY IMPLEMENTATION

Application-base

HTML DOM AP VRML scene-graph API
12
g
) o]
VRML component library | |2
HTML component library E

Rooms object library
\
Base HTML Base VRML
scripted metaphors scripted metaphors

Workflow helper application base metaphor

>
e
[8)
@
g
metaphor =
[&]
...................... §
Application-wide ; ; ; E
metaphors Person Worklist Infoobject | PIF object =
______________________ 5
Standard Vanilla Read PIF &
page only activity E
Business Help Update IDEFO 3
Role/ style card wizard form view =
specific Kol
metaphors 3D office | Document Structure
store view
Groupware
...................... Y

103

Figure 4.6: ‘Workflow helper’ metaphors and inheritance hierarchy

define QuoteAppBase extends Null {
add def_font_size = "+1"
add def_colour="black"

add def_header_colour='green"

add def_hotlink_colour="red"

Because all application metaphors inherit from this base class, the look-and-feel of inter-
face components can be changed quickly by changing a single metaphor. This approach

is similar to the use of style sheets with conventional Web pages.

CHAPTER 4. CASE STUDY IMPLEMENTATION 104

4.7.2 Information object metaphors

A set of information object metaphors were created using the VSPUI metaphor set, which
provided forms-style interfaces to the simple workitem representations defined within the
quotation business process. Two duplicate sets of information object metaphors were
created. The first set provided a readonly presentational displays for an information
object, whilst the second set enabled information object updates to be implemented via
the ParaDiMe form interaction subsystem. Objectclass and Style metaphor context
descriptors were used to enable appropriate automated metaphor selection at runtime.
For example, the following DMSL fragment extract shows the context description for
the metaphor to enable forms editing of a network design proxy object. An example of
the HTML form generated from this metaphor, along with a summary of the runtime

processes through which the form is handled, is presented in Figure 4.7.

define EditND extends QuoteAppBase {

used_to_display infondObject within Viewer in_style ’editing’

4.7.3 Activity metaphors

Two sets of metaphors were defined that enable HI ML-based navigation of PIF process
definition in different presentational styles. Firstly, a compact representation providing
an indented list of task names through which a user could drill-down was created (based
around a style called StructureStyle). A more sophisticated process navigation metaphor
set was then defined to meet the needs of the account manager and process designer
roles, who require a more detailed end-to-end view of the business process. A common
graphical modelling language for business processes is IDEF0 [82], based upon the SADT
modelling technique. This describes processes as sequences of activities which may them-
selves comprise subordinate activities. An IDEFO0 style for presentation of PIF activity
objects was constructed, through which the account manager or process designer could
navigate the quotation business process model. The metaphors make extensive use of
DMSL information access constructs to follow relational links within through the process

definition stored as a set of objects within the information manager component. Hence,

CHAPTER 4. CASE STUDY IMPLEMENTATION 105

for each task within the quotation process, the metaphor can also display other useful
information (e.g. what information objects are created or updated by the activity, who
performs the activity and who indirectly collaborates during it’s performance). Variable
slot parameters act as switches in selecting a level-of-detail for the interface enabling, for
instance, a process view just showing who is responsible for performing each stage. The
structure of the DMSL definitions used to create the IDEF0 metaphor set are shown in
Figure 4.8. Sample HTML output for the StructureStyle and IDEF0 style metaphors is

presented in Figure 4.9.

The PIF activity metaphors were designed to operate with arbitrary process descriptions
(defined using the simplified activity, component and successor constructs introduced
earlier). Hence changing business process characteristics, as signified during application
iterations by submission of a modified PIF file, does not require metaphor recoding. The
metaphors were also designed to enable their incremental refinement upon subsequent

addition of further PIF constructs as shown in Figure 4.2.

4.7.4 Worklist metaphors

Within the case study scenario it was also desirable to provide mechanisms facilitating
exploration of alternative representations of worklists. As introduced earlier, worklists
provide workflow users with ‘to-do’ lists of jobs for completion, usually providing some
summary information about the job status e.g. the initiator, the type of activity and
related tasks or information artefacts. It was identified that different roles within the
quotation process could require different worklist representations. For example, a legal
advisor might be called into the process quotation on a relatively infrequent basis, hence
could benefit from the addition of extra context help within the worklist interface. The
network design team need to collaborate over a set of design documents in performing
their contribution to the process and could therefore benefit from a document manage-
ment facility integrated within the workflow client interface. To demonstrate metaphor
extension and specialisation through subclassing, a basic vanilla worklist metaphor was
defined which provides a conventional workflow client user interface (Figure 4.10). Two
extended versions of the basic worklist metaphor were then derived by subclassing the
vanilla metaphor definition. In the first specialisation, a context sensitive help feature

was added. The second specialisation links the worklist to a shared document repository,

CHAPTER 4. CASE STUDY IMPLEMENTATION 106

which could be used by process participants to share information artefacts.

The goal in developing the worklist metaphors was to demonstrate the application of
the model-based architecture towards rapid prototyping, in which a number of similar
interfaces to the same functional application component may be explored quickly with

end users.

4.7.5 Person object and groupware execution metaphors

The final set of metaphors which were built within the workflow helper implementation
were used to demonstrate access to collaborative working tools via the groupware con-
trol subsystem within the model-based toolkit. Within the case study context, there are
several conceivable points at which participant roles need to collaborate in order to per-
form activities. For example, the network designer and legal advisor collaborate during a
design review task to ensure the proposed network infrastructure does not contravene rel-
evant legislation. In tracking jobs through the process chain, the account manager needs
to communicate with the staff assigned to the job in order to ascertain progress. The
requirements for collaboration were demonstrated within the workflow helper application
by extending the business process description language (PIF') to associate communication
requirements with activity definitions. A PIF partially-shared view (PSV) module was
used to create a new PIF relation, called assists, which models the situation where a per-
son helps during an activity but is not directly responsible for performing that activity.

This was defined through extension of the PII core performs relation;

(define-frame ASSISTS
:own-slots

((Name "WfhPsv.ASSISTS")
(Subclass-of PERFORMS)

(Documentation "Agent collaborates on activity")))

This enabled simple collaboration requirements to be described within PIF files, used
to present business process models to the workflow helper application. Two styles of
metaphors were used to demonstrate groupware access within the toolkit environment,

as shown in Figure 4.11. Firstly, a basic HTML metaphor was built to operate upon in-

CHAPTER 4. CASE STUDY IMPLEMENTATION 107

formation objects describing people within the information space. So, given a set of pro-
cess participants and an extended process definition including collaboration requirements
specified through the assists relation, Web pages enabling groupware communications be-
tween cooperating roles could be constructed. Secondly, the same functional constructs
were embedded within a VRML 3D office metaphor.? Clicking on the computer screen
in this interface (as shown in Figure 4.11), establishes a shared whiteboard session with
the person whose office is being viewed.!® Tool execution was implemented through the
groupware control subsystem within the ParaDiMe runtime architecture. Access to the
LBL wb shared whiteboard tool was used as an exemplar, given that other collaborative

tools may be controlled through the same mechanism.

4.8 Summary

This section has presented a proof-of-concept implementation of the model-based coop-
erative systems construction approach using the ParaDiMe architecture. The goal of the
implementation was to enable experimental assessment of the research objectives with a
group of potential ParaDiMe users within BT. Thus, Chapter 5 presents a critique of the
research through exploration of a number of use cases for the architecture within the case

study scenario, driven through the proof-of-concept implementation.

®This metaphor was based upon compiled C++ builtin objects written by Thorsten Blaise as his BSc

final year project during 1996-97.

10Tt is noted that there is no requirement within the case study scenario for this type of 3D interaction.
This part of the demonstration was used primarily to convey the message that the architecture could be

used to explore very different interaction styles within applications.

CHAPTER 4. CASE STUDY IMPLEMENTATION

Fanward

Peforming inst.info.Quote. 1001.infond {of class infondObject)

Hlv] 34807

idob 1D 65456465-6546546-4545

iNarme ®YE Limited

M [imese]

M [tmesteiel mrate]

I P

P [omemere]

N R R

Custormer

N
&

Metwark

DESign
¥

Operations

[User. aum] Do 1996-95 The University of Leeds

A Datab _ _
O%j%::t @» Wﬁékggw _uﬁ; Information |—p ;tgr%ct
bridge application manager

Call to form handler metaphorl

HTML passed back to browser

DiMe
server

Figure 4.7: Form-based interaction through ‘Workitem” metaphor

108

CHAPTER 4. CASE STUDY IMPLEMENTATION 109

-—Pp deflnelDEFtaskooI extends IDEFnewcolumn { g

define IDEFpadcols extends PGroup {
add depth=1
add width = "100"

set page to_contain {

add cs as HT TableNewCol umn(width=$width) when ($depth !=0);

add ce as HT TableNewColumnEnd when ($depth != 0);
add ip as | DEFpadcols(depth = $depth + -1) when ($depth != 0);

- — define IDEFnewcol umn a<tends PGroup {

add fednameref—

add cellwidth = 100

add cellfontsize = "-1"
add cellfontcolor = "black”
add cellbgcolor = "white"
add cellfont = $def_font
add cellalign = "center"
add cellvalign = "top"

set page to_contain {
add cs as HT TableNewColumn(width=$cel lwidth,

bgcolor=$cellbgcolor, align=$cellalign, valign=$cellvalign);

add fsas HTLiteral Text(text = "<font face=" + $cellfont
+" size=" + $cellfontsize
+" color=" + $cellfontcolor + ">");

define IDEFcolumnend extends PGroup { -¢

Creates blank columnsto
create atop-left to
bottom-right IDEF style
tabular layout

Base class for diagram columns,
describing layout and basic
colour scheme, inheriting some
properties from the application
base metaphor

set page to_contain {
add fe as HT Literal Text(text = "");
add ce as HT TableNewColumnEnd;

- deflneIDEFlnfoooI extends IDEFnewcolumn { g
add creates =
add updates =
add performs ="
add helpers=""
add createsc = "red"
add updatesc = "green"
add performsc = "yellow"
add helpersc = "blue"

set cellbgcolor ="
set cellalign = "right"

set page to_contain {
add ct as HT Text(text=$creates, colour=$createsc);

Assaciate information with
atask cell, provided by a
ametaphor parameter,
extended from the

| DEFnewcolumn

metaphor definition

add taskname=
add fedref=""

set cellfontsize = "+1"
set cellfontcolor = "blue"

set page to_contain

{
add ct as HT Literal Text(text= "
" + $taskname + "

");

define IDEFlevel extends PGroup { -¢

Represent a particular
PIF task as atable cell

add depth = 0

set page to_contain {
add tr as HT TableRow(align="center");
add ip as | DEFpadcol s(depth=$depth);

add ic as | DEFinfocol (Creates=Datallinkcrestes);

Recursive metaphor which

creates asingle row of the

add ie as IDEFcolumnend;

add tc as | DEFtaskcol (taskname=Data.fedname, fedref=Data.fedname);

IDEF diagram

add te as IDEFcolumnend;
add re as HTTableRowEnd,

add s as set_of(Data->"Linksuccessor")
using | DEFlevel (depth = $depth + 1)
if ($search_result_count!=0);

define IDEFactivity extends PGroup {
used_to_display PIFACTIVITY within Viewer in_style"IDEF"

set page to_contain {

add ts as PTableStart(border=0, cellspacing="10", cellpadding="10", align="center");

add sas set_of (Data->"Linkfirstc")
using IDEFlevel

IDEFactivity leaf metaphor
providing HTML tabular IDEFO
style representations of PIF

if ($search_result_count!=0);
add te as PTableEnd;

—— Metaphor call
_— » Metaphor subclassing

business process specifications

Figure 4.8: DMSL definitions used to create the IDEF(0 metaphor set

CHAPTER 4. CASE STUDY IMPLEMENTATION 110

File Edit Yiew Go Communicator Help |
I A & e £ =S & B
: Back Forward Reload Home Search Guide Print.. Securty Stop

......................

IDEF Activity view for meta.pif.Quote2 (PIFACTIVITY])

View ACTIVITY in StructureStyle
View PIF meta info for ACTIVITY class

Key:

I :ctivity CREATES object
O ctivity UPDATES object

: " Activity PERFORed by

“ Person HELP'S during activity

meta.pif.infoci2 .
mita.pifinfocd? meta pif. ReqCap?2

meta.pifinfond2
matapifinfocr2 .
meta.pifinfocd? meta.pif.NetDes2

meta.pif.am?2
meta.pif.infols?
meta.pif.infocr2
meta.pif.infond2 .
meta.pif.infocd2 meta.pif.LegalZ
meta.pif.nd2
meta.pifinfocg2
meta.pif.infols2
meta.pif.infocr2
meta.pif.infond2 oo
metapitinfocd2 meta pif Finalise2
meta.pif.la?
meta.pif.nd2
[User: am] Sitde & 1996-93 The University of Leeds
= I | EX T
File Edit Yiew Go Communicator Help|
< @ A &4 = £ = & §
Back Forward Reload Home Search Guide Print.. Security Stop

StructureStyle Activity view for meta.pif.Quote2 (PIFACTIVITY)

meta.pif.Quote2
meta.pif.ReqCap2
meta.pif.NetDes2
meta.pif.DesRes2
meta.pif.DesRep2

meta.pif.l.egal2
meta.pif.Finalise2

[User. am] Ditde & 1996-95 The University of Leeds

= A ae 0P 2 ||

Figure 4.9: ‘IDEF0’ and ‘StructureStyle’ activity navigation metaphors

CHAPTER 4. CASE STUDY IMPLEMENTATION 111

File Edit View Go ~Communicator
- @ @ 5 = & =S~ £
Back Forward Reload Home Search Guide Print... Security Stop

e el

orklist

Aotivity Initiator iDate Time :Status Cperations

1007 {Prowvide Customer Quote (Customer Dietails) A W hite 129-03-98 1940 CustDetails [Perform
1002 Prowide Customer Quote (Customer A W hite 103-05-98 1400 (ReqCap [Perform]
Eeguirements)

s {MEW Provide Ouote (Metwork Design A White (04-05-88 (09:34 (NetDes [[Perform]

Provide Customer Guote HC Smith 12-06-98 112:34 [Started i[Execute] [Exception] [Help]
Provide Custormer Guote Smith 12-06-98 112:34 Started [Execute] [Exception] [Help]
Provide Customer Guote Srith 12-06-98 112:34 Started [Execute] [Exception] [Help]
Provide Customer Guote Smith f12-06-98 (12:34 Started [Execute] [Exception] [Help]
Provide Custormer Guote C Smith {12-06-98 :12:34 :Started [Execute] [Exception] [Help]

File Edit VYiew Go Communicator
- ¥ @ & = £ =% & a

Back Forward Reload Home Search Guide Print... Security Stop

st e
Worklist
Clok'id” Activity Initiatar Date Time {Status Operations
1001 Provide Customer Quote (Customer Details) A SWhite 1289-03-98 {1840 {CustDetails {[Perform
1002 Prowide Customer Quote (Customer A W hite (03-05-98 {14:00 (ReqCap [Eerform]
Eeguirements)
1003 \NEY Frowvide Quote (Network Design) A White (04-05-98 10934 iMetDes Perform,
1000 {Provide Customer Quote C Srith 12-06-98 :12:34 :Started [Execute] [Exception] [Help]
Provide Customer Guote Z Smith 12-06-98 112:34 :Started [Execute] [Exception] [Help]
1000 {Provide Customer Quote C Srith 12-06-98 :12:34 :Started [Execute] [Exception] [Help]
Provide Customer Guote Z Smith 12-06-98 112:34 :Started [Execute] [Exception] [Help]
1000 :Provide Customer Guote | Smith 12-06-98 [12:34 [Started {[Execute] [Exception] [Help]
.1 This page shows a number of worklist items that you
b have in yaur inhox Click on the name of an activity to

.I""'"f- go to a detailed view. Click on the name of the initiator
to communicate with that persan using multimedia
conferencing tools

|

File Edit Yiew Go Communicator Help |
- @ A 4 = A = & 1 ‘
3 Back Forward Reload Home Search Guide Print... Security Stop
Worklist
| Activity fnitiator— |Date Time {Status {Operations
Erovide Customer Quote (Customer Details) A White 29-03-98 11940 [CustDetails | [Perform
" Provide Clstomer Cruote (CUstomer A B hite (03-05-98 114:00 (RegCap Perform
Eeguirements)
1002 \ME Prowvide Quote (Metwrork Desigm) A White (04-05-98 (09:34 MetDes Perform
1000 :Provide Customer Guote {C Smith 12-06-98 {12:34 {Started {[Execute] [Exception] [Help]
) Provide Customer Guote Srith 12-06-98 ;12:34 ;Started [Execute] [Exception] [Help]
Provide Customer Guote Srith 12-06-98 :12:34 Started [Execute] [Exception] [Help]
1000 :Provide Customer Guote C Smith 12-06-98 {12:34 {Started [Execute] [Exception] [Help]
1000 :Provide Custormer Guote {C Smith 12-06-98 ;12:34 {Started i[Execute] [Exception] [Help]

Click here to enter the reading room for
this project. Reading rooms are a VWS
service that provide secure document
management on a per project basis.

&= o= 2|

Figure 4.10: ‘Vanilla,” ‘Wizard’ and ‘Reading-room’ worklist metaphors

CHAPTER 4. CASE STUDY IMPLEMENTATION 112

[Fie Edt View Go Communicator Help |

4 ¥ A & = £ 5 &
Back Foad Reload Home Search Guide Prnt. Sacurity

Personal communications page for Alan White

Call Alan White using audio
Call Alan White using videophone
Call Alan White using shared whiteboard
Send email to Alan White
Visit th: reading room for Alan White

Bookmarks Viewpoinis Qptions

[User am] s < 1995-98 The Liniversity of Leeds

=" [

groupware
tool
execution
¢ e
w,m\s“ m:;;‘-“m“@
mtw‘wd fﬁ"‘ms o R
wiﬂ\-"s nt\,@“@‘i‘, i
i
Nw
¥
/ \ Wwa«“
,\\-\o_ﬂ\"":\‘:::j.w“w o=l 1
A "
e
k/_oq_«_ /
w\
et
m[,m “umt\
st we"’“
v,s\’ w\ﬂa‘
O ,\F
W
e \"\
“"T\m

Figure 4.11: Groupware control metaphor using the LBL. wb whiteboard tool

Chapter 5

Critique

5.1 Assessment methods

The research presented in this thesis proposes a model-based systems development ap-
proach for integrated internet CSCW systems. The approach was realised through the
design of the ParaDiMe system architecture, as presented in Chapter 3. A proof-of-
concept CSCW application was then created according to the model-based approach,
using the ParaDiMe architecture. In measuring the extent to which the research meets
the objectives set out in Chapter 1, a number of methods were employed to assess the

approach, architecture and implementation;

e Software demonstration and feedback session,

Follow-up interviews with potential users,
o Assessment of feasibility within VWS,

o Assessment from a software engineering perspective.

As described in Chapter 4, the proof-of-concept workflow helper application was con-
structed using the ParaDiMe architecture. The workflow helper was designed to demon-
strate the salient features of the model-based systems development approach in supporting
participants of a network design business process. An important element of the research

assessment was to demonstrate the workflow helper to a potential user community and

113

CHAPTER 5. CRITIQUE 114

gain feedback. A group of potential BT users of the workflow helper agreed to attend
a presentation on the approach, followed by a demonstration of the workflow helper

L Although unaware of the specific details of the model-based approach, at-

application.
tendees were familiar with the network design business process scenario and the broad
objectives of the research. The presentation, which lasted approximately an hour, at-
tempted to describe the motivation for the research and introduce the key architectural
concepts that would subsequently be demonstrated. A number of usage scenarios for
the proof-of-concept ParaDiMe implementation were introduced in the presentation, as
summarised in Section 5.2. These scenarios (based upon the case study network services
quotation process) were used to provide a storyboard for the software demonstration. The
objective was to help position the work within a familiar telecommunications context and
focus feedback towards the specific research objectives. Following the presentation, the
key features of the workflow helper application were demonstrated to the audience via
the usage scenarios described in Section 5.2. Informal feedback was received during and

after the demonstration, and points were written down in note form. These notes are

summarised in Section 5.3.

Following the demonstration of the architecture implementation to a group audience at
BT Laboratories, six staff agreed to participate in longer one-to-one interviews to provide
more detailed feedback on the research. As well as providing useful assessment of the
approach, the interviewees made a number of useful practical suggestions that drove
further development iterations of the architecture and the workflow helper demonstration.
Because of the broad nature of the demonstration and the varying backgrounds of the
interviewees, a formal questionnaire-based technique was rejected in favour of informally
structured interviewing. Notes were taken during interviewing and then transcribed into a
report [110]. Whilst not rigidly adhering to a predefined script, the interviews attempted

to elicit answers around the following topics;

e perception of the research approach as potential users,
e feedback on the workflow helper implementation,

e relevance of the approach to BT applications.

!The research was jointly supervised by BT Laboratories, but to promote objectivity, the assessment

process was carried out in conjunction with staff who were not directly involved with the PhD project.

CHAPTER 5. CRITIQUE 115

The interviews were conducted over a week long visit to BT premises. The interviews
lasted between fifteen and forty-five minutes, with an average duration of around half an
hour. After conducting the set of interviews, similar comments from each interviewee were
collated. Feedback was varied, reflecting the range of backgrounds and perspectives of
the interviewees. However, the salient results could informally be grouped under several

headings, as summarised in Section 5.4.

In addition to obtaining feedback on the research from the software demonstration and
follow-up interviews with potential users, an informal assessment of the relevance of the
work to system builders within the Virtual Working Systems Group was conducted. The
results of this assessment, carried out via informal conversations with VWS staff, is sum-
marised in Section 5.5. Finally, the research was critically assessed in comparison to
relevant existing software engineering approaches towards system prototyping and main-
tenance, as presented in Section 5.6. The remainder of this chapter is structured as shown

below.

Section 5.2 describes system usage scenarios for services quotation business process,

which were used to drive the practical demonstration;

Section 5.3 summarises the feedback obtained during and after the software demonstra-
tion;

Section 5.4 summarises the results of interviews with potential users of model-based

tools within BT, following demonstration of the model-based architecture;

Section 5.5 summarises the results of informal assessment of the research within the

VWS group at Leeds;

Section 5.6 analyses the relative success of the model-based approach developed within
this thesis in comparison to existing approaches, methods and guidelines for proto-

typing and evolutionary maintenance.

CHAPTER 5. CRITIQUE 116

5.2 Demonstration scenarios

The software demonstration consisted of four usage scenarios, presented in terms of the

data services provision business process described in Chapter 4;?

1. basic iterative user interface customisation,
2. creation of a new business process support application,
3. exploratory prototyping of user interface requirements,

4. evolutionary change in business process characteristics.

All the use cases, as described below, assume the existence of the model-based architecture
implementation comprising reusable CSCW services, appropriate libraries of general user
interface components and the necessary runtime architecture. The use cases were based
upon the stakeholder roles identified for the quotation scenario; a process designer, end
user representative and system manager. During demonstration, the implementation was
driven by an operator performing the system manager role, using the prototyping console
(shown in Figure 4.5). The stories around which the use cases were demonstrated are

summarised below;

Basic user interface customisation

The workflow helper application is supporting participants of the network services quota-
tion process. Currently, all users interact with the system via a vanilla workflow worklist
user interface. However, the account manager is unfamiliar with the workflow environ-
ment and asks the end-user representative if the interface could be made easier to use.
The end-user representative, account manager and system manager meet and examine the
current worklist interface features. The account manager suggests changes to the help
feature on the worklist interface. The system manager locates a ‘help metaphor’ com-
ponent from the user interace repository, inserts this into the account manager worklist
interface using the architecture, immediately showing the enhanced interface to the users.

(Visual results for this use case are shown in Figure 4.10 on page 111).

>The assistance of Paul Kearney (of BT) is acknowledged in developing these use cases.

CHAPTER 5. CRITIQUE 117

Creation of a new business process support application

The process designer is required to put in place a new business process within his business
unit. The new process (data network design) is similar to an existing process currently
supported by the workflow helper application within the department. Hence, the process
designer would like to reuse several elements of this existing support infrastructure within
the new application. The process designer discusses the process requirements with the
system manager, and provides definitions of the new business process as PIF and LDIF
files. The process designer then explains the model descriptions in detail to the system
manager, who identifies basic requirements for information, coordination and collabora-
tion services. Required runtime architecture components are selected and populated with
the models provided by the process designer. A set of generic user interface components
are located within the metaphor library and used to build a quick demonstration of the
application. The end-user roles (network designer, legal advisor and account manager)
are identified and their requirements analysed in conjunction with the end-user represen-
tative. Application-wide metaphors for the support environment (worklists, workitems
etc.) are then specialised for each end-user role using the basic technique demonstrated

in the first use case.

Exploratory prototyping of user interface requirements

The account manager has been using the workflow helper environment for a period of
time, but is generally unhappy with the features it provides to assist him in keeping
customers up-to-date with the progress of their quotations. He arranges a meeting with
the end-user representative and system manager. The account manager explains that he
requires the ability to check job progress and communicate with other staff assigned to
component tasks, but doesn’t know how these features might best be provided within the
workflow helper application. The system manager notes these general requirements and
arranges to meet the account manager again in a few days. During this time, the system
manager uses the model-based architecture to build and modify a number of similar user
interface metaphors that enable navigation through business processes in different styles.
A reusable groupware subsystem metaphor is also added to the prototype interface set, to

demonstrate communications features. The system manager, account manager and end-

CHAPTER 5. CRITIQUE 118

user representative meet again, and the system manager demonstrates several alternative
interfaces to the account manager. The account manager chooses the version which most
closely meets his requirements, which is then moved into the production system by the
system manager. (Visual results for this use case are shown in Figures 4.9 and 4.11 on

pages 110 and 112).

Evolutionary change in business process characteristics

Support of the data services quotation process through the workflow helper has been
operational for some time, and now needs to be modified. Five types of evolutionary

changes may be envisaged,

1. change in application-wide user requirements

e.g. all interfaces must adopt new corporate style guidelines;

2. change in role-specific user requirements

e.g. a specialised workitem interface for the legal advisor role;

3. change in personal user requirements

e.g. account manager Alan White requires a context help feature;

4. change in business process model

e.g. the network design activity is split into research and reporting phases;

5. change in application information model

e.g. a new attribute is added to the network design information object.

Cases 1-3 can be demonstrated through reference to the previous use cases. Changes in
business process characteristics (as indicated by changes in process definition or applica-

tion information models) may be considered through a single use case;

The process designer navigates the quotation provision process definition using the struc-
tural and IDEF activity views within the workflow helper application. Following instruc-

tion from business unit management, the process designer is asked to further divide the

®Because PIF business process definitions are treated in the same way as any other information sources

within the ParaDiMe information manager subsystem.

CHAPTER 5. CRITIQUE 119

network design task into two explicit subordinate phases, a research activity and a report-
ing activity. The process designer uses a modelling tool to modify the process definition,
which is then exported from the tool into PIF and passed to the system manager. The
system manager loads the application with the updated model at an appropriate point,
and codes new workitem metaphors for the participants affected by the new subtasks. No
other changes are necessary because the application-wide metaphors are designed to cope

with evolving process and information models.

5.3 Feedback from the demonstrations

Demonstrations of the model-based approach contextualised by the above use cases were
generally well-received. The proof-of-concept architecture implementation was successful
in enacting the four use cases, thereby providing a basic existence proof of the approach
taken within this research. The demonstrations were conducted at BT premises using the
WWW to access a remote application server based at the CVWE in Leeds. This worked
adequately, but poor network latency adversely affected perception of the architecture.
Interface generation performance was not a primary consideration during implementation
and hence, when compounded by a slow client-sever network connection, interface gener-
ation was particularly slow (taking around 10 seconds round-trip time for generation of

a simple HTML page, for example).

The use cases, and the ways in which it was envisioned that a model-based architecture
could support them, were seen as realistic (although necessarily simplified for research
purposes) and of benefit to process-oriented system builders. The application of the ar-
chitecture in supporting rapid exploration of design ideas with end-users was seen as
particularly useful. However, several people were less convinced of the approach in sup-
porting process evolution, positing that most current major WFMS implementations are
model-driven and as such can ‘evolve’ unaided already. This is true of course, but in
defence it was argued that the workflow helper is a specific demonstration of a general
systems development approach. Hence, the fact that it can exchange information and co-
evolve with commercial WFMS implementations is a benefit of the model-based approach,

not a duplication of development effort.

CHAPTER 5. CRITIQUE 120

5.4 Results of follow-up interviews with potential users

Synergies with the IBS approach

A primary advantage of the model-based approach was seen as the ability to quickly
integrate services, providing the role of value-added middleware within a dynamic enter-
prise. A number of users remarked that it was useful in ‘bringing people further into the
business process environment,’ enabling at least partial reconciliation of process-oriented
and ad hoc collaboration approaches to supporting users within CSCW scenarios. Us-
ing the model-based approach within Agent-based Workflow architectures was seen as
feasible, particularly in providing flexible user interfaces that enhance human interaction
and collaboration within the workflow environment. Several interviewees asked whether
the architecture could be used to provide information visualisation services within the
ABW architecture e.g. creating 3D representations of inter-agent negotiation. Informal
experimentation within the model-based architecture following these questions concluded
that such services could be provided, but would require development of a specialist set of

builtin objects.

Linkage with commercial systems

The adoption of industry standards for integrating services was viewed as important to the
credibility of the research approach working within a large enterprise. The use of X.500
(directory services) and CORBA query services (information management) was seen as
useful, in that a wide range of other enterprise information sources could be rapidly in-
tegrated using similar approaches. The assumptions made about access to build-time
and runtime WEFMS appeared to be sensible within the approach, although it was noted
that significant further development would be required to bring the implementation to
production functionality. One perceived advantage of the distributed systems architec-
ture, through which the model-based approach is realised, was that it enables computing
power to be leveraged at a wider range of points within the enterprise. Many existing
workflow users have terminal-type equipment whereas others have sophisticated PCs and
workstations. The model-based approach could enable basic interfaces to be provided to

terminal users and more sophisticated interfaces to be provided to users of more powerful

CHAPTER 5. CRITIQUE 121

clients, with no distinction made at the applications level.

Prototyping versus evolution

The utility of the model-based approach in enabling rapid exploration of design choices
between scenario stakeholders was noted. A key advantage of the approach was viewed
as the fast turnaround time on iterations through model modification, rather than code
modification and recompilation. It was envisaged that this could enable some degree of
real-time prototyping to take place with users, improving upon existing techniques in
which there is a necessary delay of hours/days between prototype iterations. The IBS re-
search emphasis is towards dynamic evolution of production systems, rather than iterative
prototype-based construction of new systems. It was noted that, because the implemen-
tation system components were themselves of a prototypical nature, it was difficult to
assess claims about the applicability of the approach within production environments.
However, it was further noted that there was a good informal indication from the ex-
perimental architecture that such claims could be true, but substantiation would require
development of the architecture implementation to more robust production-quality level.
It was felt that the model-based approach could, in principle, support both prototyping
of new applications and evolution of production systems at the modelling layer. That is,
the role of prototyping would be to quickly derive a good user interface model, but the
application components driven through this model during prototyping would ultimately
be discarded. The model would then serve as a specification from which a production
quality system could then be engineered, either using conventional development processes

or a robust version of the model-based architecture.

Information integration and abstraction

The element of the implementation which attracted most criticism during demonstra-
tion and interviews was the application information model. The initial position taken
during development of the model-based approach was that all information sources could
be mapped into a simple E-R graph representation. In retrospect, this view proved to
be somewhat naive and several consequential problems were encountered during imple-

mentation of the workflow helper application. The most serious of these problems was

CHAPTER 5. CRITIQUE 122

that information abstraction issues were not addressed adequately. For instance, within
the workflow helper, several abstract tiers of information may be identified e.g. busi-
ness process class (quotation processes), business process (network services quotation),
process instance (quotation job 1003), process instance status (job 1003 awaiting legal
advice). The workflow helper application attempted to cover several of these tiers, but
the separation between layers become confused during implementation e.g. process meta-
descriptive information and instance information was incorrectly mixed within PIF files.
Although these criticisms were towards the workflow helper application, not the model-
based development approach, they did serve to identify that the domain information
model was much more complex than originally thought. Whilst the basic architectural
mechanisms proposed for information management within the research appeared to be

valid, the methodological emphasis upon information modelling was underestimated.

User-initiated adaptivity

Several interviewees noted that the research approach seemed restrictively focused upon
supporting system-initiated user interface adaptivity. For example, all the use cases for the
proof-of-concept implementation demonstration assumed that an expert operator would
be available to make applications changes within the architecture. It was asked if, through
appropriate use of the information manager and metaphor definitions, support for user-
initiated interface adaptivity might be supported. In response, a quick experiment was
constructed using the architecture in which a simple user profile was stored as a persistent
information object. A metaphor was then written that enabled menu-based updating of
this object using the form interaction subsystem. This enabled a user to, for example,
select a default help level from a menu and for this to be kept and used over several
sessions. The basic mechanisms of the architecture appeared adequate in supporting
persistent user profiles to enable user-initiated interface adaptivity. It was noted that, as
a future work package, it would be useful to package up these features into a reusable
module as they would be useful in many scenarios. One interviewee also stated that this
basic mechanism could feasibly be used to provide location-driven interface adaptivity,
a manner similar to home/remote locations in mobile telephony. This would enable
different profiles to be created for different computing clients from which a user connects

to the application server (e.g. desktop PC, laptop, dial-up access, PDA). Providing that

CHAPTER 5. CRITIQUE 123

metaphor sets were created for each type of client computing device, the profile could be

used to guide dynamic selection of the appropriate metaphor set at login.

Web user interface consistency

There were a number of questions relating to the use of Web user interface techniques
in supporting multi-user applications. Firstly, it was asked how context switching within
the Web interface was handled i.e. how the system could cope with a user browsing
elsewhere and then returning to the application at some future point. Within the current
proof-of-concept implementation there is no explicit support for session control. The
problem has, however, been tackled successfully by other researchers developing session-
oriented applications within Web infrastructure (e.g. the Stanford KSL ontology editor).
When constructing the proof-of-concept implementation it was assumed that, as with
security, session control measures would be present in a production environment but did
not warrant explicit research investigation. The question asked was, “given that the
model-based approach supports a service provider in specifying how an artefact should be
manifested at the user interface, yet also supports a service consumer in customising their
interface to the artefact, is it not likely that semantic inconsistencies will be introduced
e.g. a feature deemed critical by the service provider is demoted or even ignored by the
consumer?”* This problem was not explicitly addressed within the research approach, in
that it was assumed that the application designer would be responsible for ensuring that

such inconsistencies do not arise.

However, it was accepted that in supporting interface customisation for both ‘produc-
ers’ and ‘consumers’, there was more chance of problems occurring. There appears to
be no simple solution to this problem. However, some support for component mainte-
nance could be provided within the model-based architecture; as a well-defined set of
metaphor definitions for an application forms an inheritance hierarchy, it was suggested
that a token with the same semantics as final in (e.g.) Java could be used within the
add construct to ensure that a component metaphor was not redefined or overridden in
subclassed metaphors. Whilst this would not guarantee consistency, it would go some way

towards supporting preservation of important interface features. Finally, the use of the

*This is an example of what is referred to as a feature-interaction problem within the telecommunica-

tions community.

CHAPTER 5. CRITIQUE 124

model-based approach to provide an interface abstraction layer was identified as being of
benefit. Large enterprises must typically support a heterogeneous set of client hardware
and software, over which the model-based approach could provide an abstract user in-
terface generation layer. The phenomenal pace at which Web technologies are advancing
was also noted as a reason for adopting a model-based interface generation approach.
It was felt that the approach would be a useful structured approach in bringing new
Web technologies on-stream whilst still supporting existing baselines across an enterprise

computing environment.

5.5 Assessment within the VWS group

The majority of the research work reported within this thesis was conducted at Leeds,
within the CVWE. Most of the research assessment was conducted with BT however, in
order to obtain more objective results. Although of a less formal nature, assessment was
also carried out within the CVWE at Leeds in order to measure the potential benefit
of the research to development of VWS solutions. As the project neared completion,
a number of discussions were held with members of the engineering team within VWS
Ltd. (the commercial exploitation arm of the CVWE) to elicit feedback on the research

approach. The comments provided during these discussions are summarised as follows.

The main application for ParaDiMe, and hence the research approach, within VWS was
viewed as supporting rapid generation of customised VWS solutions for customers. Al-
though most existing VWS implementations integrate a wide range of core services, several
clients have expressed interest in acquiring a VWS system that is tailored to their spe-
cific requirements. It was felt that ParaDiMe could help bring together core services into
customised VWS clones in a rapid yet controlled manner. A customer would be able to
select required services, perhaps through a special demonstration environment, and then
ParaDiMe would assist in the generation of a VWS supporting the required features. The
reduced maintenance costs associated with the model-based approach were also thought
to be of significant benefit with respect to cloning VWS services. It was felt that, without
a unified development and maintenance approach, supporting a heterogeneous base of

VWS implementations would be extremely difficult.

CHAPTER 5. CRITIQUE 125

A further benefit of the ParaDiMe approach, noted by a VWS engineer, was in supporting
a spectrum of Web clients using an abstract interface layer. The VWS engineering team
support a large number of users using a variety of client computing platforms and Web
browsing software to interact with implementations. A number of inconsistencies have
been observed between different versions of browsers and between platforms, meaning
that it becomes difficult to guarantee usability levels without adopting a low baseline.
It was envisaged that a practical role for ParaDiMe within VWS solutions would be in

supporting heterogeneous browsers and platforms through specialised metaphor sets.

The feedback on the model-based approach from VWS was generally positive. However,
it was noted that it would be unwise to adopt ParaDiMe as a core component of the VWS

software architecture unless it was developed to commercial product quality.

5.6 Assessment from a software engineering perspective

The research reported within this thesis has investigated a model-based approach towards
iterative construction and evolution of integrated internet CSCW applications. The broad
hypothesis under consideration is that a model-based approach can decrease cycle times
during iterative prototyping and maintenance activities. Construction and demonstration
of a prototypical application through a toolkit supporting the model-based approach
provided useful feedback on the research. In addition, it is beneficial to consider the value

of the approach in comparison to existing software engineering guidelines and methods.

It was initially assumed that the model-based approach was equally applicable to proto-
typing and evolutionary systems development. As the research progressed, it became ap-
parent that this assumption was somewhat misconceived. The subtle differences between
prototyping and iterative development of production systems were not fully understood
during the early phases of the work, in that prototyping was compared incorrectly to
Rapid Applications Development (RAD) [70]. The goal of prototyping is to improve re-
quirements elicitation in order to derive a more accurate specification which can then be
used to drive development. In contrast, RAD attempts to deliver a complete production
quality system as quickly as possible Prototyping may, of course, be used within a RAD
cycle but it is not essential and prototype code may often be abandoned after it has served

it’s requirements engineering purpose [78]. There are good reasons for not propagating

CHAPTER 5. CRITIQUE 126

code developed through prototyping into production systems e.g. it may not be possible to
retro-fit important system services ignored during prototyping and the system structure
will typically degrade through ad hoc modification during prototyping [107]. In analysing
the approach developed within this research, it is thus useful to consider its application

towards prototyping and evolutionary development of production systems separately;

Prototyping

The model-based approach proposed in this thesis was validated through experimental
implementation of the architecture, described in Chapters 3 and 4. Investigative empha-
sis within the research was placed upon the use of the architecture within prototyping
phases of software development projects [111]. In [15], Boar defines a number of candidacy
factors by which an assessment of the extent to which an application is amenable to pro-
totyping may be made; application area, application complexity, customer characteristics
and project characteristics. As a application domain, CSCW is not a good candidate for
prototyping because of the baseline level of system complexity required to demonstrate
basic cooperative working functionality. The model-based approach promotes rapid pro-
totype implementation through reuse of basic building-block system components however,
helping to overcome much application complexity. With the architecture available to sys-
tem developers, all competency criteria for prototyping defined by Boar are satisfied; if
complexity is reduced to an adequate level through a model-based approach, CSCW ap-
plications become good candidates for prototyping because of their high levels of user
interactivity. Customer and project characteristics may respectively be met through will-
ingness to participate in evaluation and provision of the architecture environment within
the system development method. As a prototyping tool, the model-based architecture
developed using ParaDiMe appears to mirror Somerville’s four heuristics for reducing

prototype cycle times [107];

Use a high-level language: Although system-oriented, DMSL may be viewed as a high

level executable specification of user interaction;

Relax non-functional requirements: The current architecture implementation does
not address performance, security or other non-functional issues (although these

may be required in a production quality architecture implementation);

CHAPTER 5. CRITIQUE 127

Ignore error conditions: Error-handling within the current architecture has not been

fully developed—it is assumed that models used to drive the architecture are correct;

Reduce reliability and quality: Reliability and quality within the architecture are de-

pendent directly on the quality of component service implementations.

Of course, the fact that the current architecture implementation exhibits these properties
is influenced by the compressed timescale over which it itself was developed. Whilst
identifying that the architecture is appropriate in prototyping Web-based cooperative
systems, this does not imply that the approach is hence not appropriate in development

of production systems.

Evolutionary development and maintenance of production systems

It is well known that software engineering based upon modular reusable software compo-
nents ultimately improves product reliability and quality [57]. This was a central motiva-
tion in applying such an approach to development of internet-based cooperative systems.
The approach developed within this thesis is not intended to facilitate a seamless tran-
sition from prototyping through to production system development and maintenance.
Rather, the approach appears to be useful during prototyping and, given production
quality architectural components, the same approach could offer several advantages in

the ongoing evolution of production systems.

Maintenance is of major concern for software builders, accounting on average for some
sixty-percent of product lifetime cost [97]. The object oriented nature of the model-based
architecture developed within this research helps reduce maintenance effort as system
changes are required. Firstly, the emphasis placed upon reuse of existing service com-
ponents reduces the target-area in which errors may occur (assuming that the reusable
components are themselves error free). Secondly, the side effects of maintenance activi-
ties [90] are reduced through the highly object-oriented nature of the architecture. These
properties were observed experimentally during construction of the workflow helper proof
of concept implementation. ParaDiMe forces developers to delineate user interface, infor-
mation model and application-specific code. It was initially thought that as requirements

changed, significant modification to application-specific code would be required. However,

CHAPTER 5. CRITIQUE 128

after a number of corrective and perfective maintenance iterations, the compiled code por-
tion of the workflow helper remained fairly static. The majority of subsequent changes
could be affected at the modelling layer e.g. the use case which demonstrated evolution of
the workflow helper application did not require any code changes, rather reconfiguration
of the information, process and user interface models used to drive the application. The
model-based interface would thus seem useful during maintenance activities, provided that
the basic system architectural components were designed to cope with reconfiguration at
the model definition level. That is, implementation correctness following modelling recon-
figuration could be guaranteed. A major aim within this research project was to develop
architecture components that are resilient to model-changes. However, it was noted that
development of components with intrinsic reuse and change resilience properties requires
much more effort than tactical solutions. For example, it was informally noted during de-
velopment of the workflow helper that creation of a reusable metaphor took (on average)
over twice as long as development of a similar hard-wired example. However, this cost is

a one-off cost and should be recouped through reduced maintenance costs.

Although it is noted that prototyping and evolutionary maintenance are different prob-
lems, the model-based approach can be beneficial during both phases of the software
lifecycle as described above. Furthermore, there appear to be advantages in linking the
two phases through the approach. Prototyping using ParaDiMe derives a model reflect-
ing user requirements which can then directly be used to engineer a production system
(possibly re-implementing services but retaining the bulk of the derived model). Thus,
there is less scope for requirements to be mis-translated or lost within the implementa-
tion phase. A further interesting linkage between the use of ParaDiMe during prototyping
and maintenance phases is analogous to spare-part replacement in hardware maintenance.
When faults occur in harware systems, it is often less expensive to replace a defective
subsystem rather than repair a specific fault e.g. replacement of a defective computer
memory module. A spare parts strategy could also be used to reduce maintenance effort
within software projects [36]. Prototyping often generates a number of candidate feature
implementations from which one is finally selected. The model-based approach directly
supports hot-swapping of components following change requests and could, thereby, fea-
sibly be used to rapidly integrate replacement modules. However, the caveat to the spare
parts strategy (as noted by Pressman [97]) is that there is a tendency for the same mistakes

to be made within independent implementations of the same module.

Chapter 6

Conclusions and future work

6.1 Conclusions

The research reported in this thesis has been concerned with structured development tech-
niques for integrated CSCW applications that are delivered via internet infrastructure.
The research investigated issues surrounding architectural support for CSCW applica-
tions, with an emphasis towards service reuse and integration (Chapter 2). An internet
CSCW system development approach was proposed which integrates reusable services
and application specific code through a modelling language which specifies user interac-
tion with functional components (Chapter 3). The perceived advantage of this approach
is that it enables faster prototype iteration and structured system maintenance. These
claims were explored through construction of a proof-of-concept implementation of an ap-
plication based upon the ParaDiMe architecture (Chapter 4). The research approach was
primarily assessed through demonstration of the architecture in supporting prototyping
and maintenance activities within a workflow helper application (Chapter 5). Within the
broad goal of contributing to the understanding of structured development techniques
for CSCW applications, three specific hypotheses were tested through the research. In
assessing the results of the work, it is thus useful to retrospectively consider each of these

original hypotheses.

129

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 130

“To investigate how common requirements in cooperative working scenarios are met by
reusable CSCW services and how such services can be brought to together in a structured

manner which promotes their integration and reuse within a model-based architecture.”

This objective arose from an informal observation of cooperative working scenarios, which
noted that requirements for basic CSCW services were often duplicated across applications
and application domains. Many other researchers have also investigated frameworks for
CSCW services of course (e.g. [85, 45, 58]). The investigation reported within this thesis
is distinctive as it specifically addresses reuse and integration of services within dynamic
enterprise environments. A number of CSCW frameworks were surveyed, from which
basic requirements for coordination, collaboration and information management services
were identified. Fxisting research and development efforts within these areas were then
considered, in order to identify mechanisms that would enable services to be implemented
as reusable components within a model-based architecture. This investigation concluded
that many CSCW services can be reused across applications, and proposed a simple lay-
ered framework within which integrated applications may be built from component ser-
vices. However, it was also concluded that service reuse was often limited by the visibility
of an application programming interface (API) to the service implementation. The inves-
tigation also realised that integrated CSCW systems would typically require integration
with legacy services within large enterprise computing environments. Hence, the investi-
gation focused upon mechanisms through which existing software services (e.g. databases,
workflow systems) could be integrated within the model-based environment using stan-

dard techniques, rather than requiring redevelopment.

“To demonstrate and assess the benefit of a model-based approach towards system devel-
opment through rapid prototyping, to test the hypothesis that the approach significantly
reduces prototype development cycle times thereby enabling a higher level of user partici-

pation in the design process.”

The model-based approach proposed within this thesis appears to be highly appropriate
in prototyping internet-based integrated CSCW applications. The major barrier that cur-
rently prevents such prototyping activities is the necessarily complex structure of these
systems, which is reflected in the large amount of coding required to demonstrate basic
functionality using conventional software engineering approaches. The model-based devel-

opment approach hides much of this complexity, allowing the reusable building blocks of

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 131

cooperative applications to be assembled and reconfigured very quickly during prototyp-
ing. Within the case study, it was possible to demonstrate scenarios of use in which real
time system changes were explored with users. This level of iteration cycle time would be
significantly more difficult, if not impossible, to achieve using conventional software engi-
neering approaches. In addition to successful demonstration of the model-based approach
through proof-of-concept implementation, a comparison to established software engineer-
ing prototyping guidelines was performed. The comparison revealed that the approach
was consistent with requirements for a good prototyping architecture and, through sim-
plification of application complexity, enabled integrated internet CSCW systems to meet
prototyping competency criteria whereas they would not do so through traditional ap-

proaches.

“To demonstrate and assess the benefit of a model-based approach towards maintenance of
systems as user requirements evolve within live applications, to test the hypothesis that the
approach reduces the software effort required to affect changes thereby enabling evolving

user requirements to be more efficiently fed back into systems.”

This hypothesis could not be substantiated, for several reasons. Firstly, in order to re-
alistically assess claims about maintenance within production quality systems, one must
create such a system and assess it’s evolution naturally over time. However, the time
constraints upon PhD research are such that this level of development and analysis was
infeasible. Secondly, the approach was investigated through implementation of the archi-
tecture to a proof-of-concept level, within which the research approach was embodied. As
this implementation was itself of prototypical quality, assessment of it’s ability to support
production systems would be of little value. But this does not invalidate the hypothesis, it
serves merely to acknowledge that it was overly ambitious to attempt to test it within this
research project. There was however, strong informal evidence to suggest the suitability
of the model-based approach in supporting evolutionary systems construction and main-
tenance. It would certainly be wrong to assert that the approach could seamlessly flow
from prototyping through implementation to maintenance. The well-known characteris-
tic of system structure degradation during prototyping was strongly observed during case
study assessment. Hence, the use of prototype system architecture components within
production systems would not be recommended. However, the models used to drive the

prototype could serve as useful design specification templates during implementation and

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 132

maintenance activities. A production quality implementation of the model-based archi-
tecture would also appear to be of benefit during software maintenance cycles, reducing
the target area for maintenance and reducing system change side-effects. However, be-
cause of the difficulties stated above, it must be concluded that it was not possible to

provide substantive evidence with which to bolster these claims.

Generality of the model-based approach

The model-based approach to development of internet CSCW systems proposed in this
thesis is based upon definition of reusable CSCW services and a specification language
which describes user interaction with those services within an application context. At
runtime, the specification is used to drive a Web user interface generator that dynami-
cally integrates access to required CSCW services. Although the DiMe DMSL scripting
language was selected as the modelling component of the ParaDiMe architecture, the
model-based approach is itself not dependent upon DMSL. That is, DMSL could be re-
placed by other modelling representations for use in other contexts. Conceptually, the
modelling component of the ParaDiMe architecture requires a frame-based knowledge
representation [77]. Object oriented modelling languages would appear to be particularly
appropriate as these map well to the ParaDiMe object model. However, models used by
ParaDiMe are specifically designed to serve as runtime specifications used to integrate
system services and generate user interfaces. Although more general HCI conceptual
modelling frameworks (such as TKS [55]) could feasibly drive the ParaDiMe architecture,
it appears likely that some model reformulation would be required to map conceptual

interactional requirements onto system interaction mechanisms.

6.2 Future work

The research presented in this thesis has investigated basic system architectural mech-
anisms through which internet-based cooperative systems may be integrated, built and
maintained. The results appear promising, giving rise to a number of directions within

which future research and development activities might progress.

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 133

6.2.1 Modelling language and reasoning

The DiMe architecture and DMSL scripting language were chosen as an experimental
development vehicle within this research and have proved to be useful in exploring the
research approach. DiMe was designed primarily to solve a pragmatic system development
problem; the automated construction of large scale Web sites that integrate information
access within HTML and VRML interaction styles. Although it served to inspire the
work presented within this thesis, DMSL is beginning to get pushed beyond its intended
use. As a modelling language, DMSL suffers from the same problem as HTML in that
it mixes content and structural semantics. The World Wide Web Consortium (W3C)
are introducing a variety of technologies to repair this problem, such as style sheets,
extensible markup language etc. The Display Metaphor Scripting Language requires
similar re-design if it is to remain useful. However, it is not actually clear that DMSL is

needed at all.

As noted during Chapter 3, in which the system architecture for the model-based ar-
chitecture was introduced, DMSL is in essence an object oriented frame language. A
native-code implementation was chosen to maximise interactive server-side user interface
generation performance. But for conceptual modelling, a conventional knowledge repre-
sentation language may be a more appropriate vehicle through which further work can
be progressed. The main motivation for this statement is that knowledge representation
languages are generally designed to enable automated reasoning engines to operate over
them. Knowledge-based approaches towards user interface generation are well-established
(e.g. See [104] for a survey of intelligent user interface research), and there are several
reasons for adopting such an approach with ParaDiMe. The point of system-initiated in-
terface generation within ParaDiMe is the metaphor selector component. This currently
operates using a simple multi-attribute decision strategy in which a DMSL command is
matched against a metaphor index listing target object classes, viewer contexts and style
keywords for each metaphor known to ParaDiMe. Although useful, this mechanism is
simplistic in comparison to most model-based interface generators. This was known dur-
ing development of ParaDiMe and it has always been the intention to outsource metaphor
selection to a more sophisticated architectural component at some point. A declarative

frame-based modelling language to replace DMSL would ease this transition significantly.

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 134

Importantly, an Al approach would also widely increase the representational capability
of DMSL and allow new concepts to be introduced in a uniform manner; as more and
more constructs have been pragmatically added to DMSL it has lost some perspicuity
and gained some unnecessary complexity. For example, once an internal model has been
built within ParaDiMe from a DMSL script, subsequently modifying that model with-
out reparsing the initial DMSL model can produce unpredictable results. In contrast,
knowledge-based systems typically provide excellent built-in support for dynamic asser-
tion and retraction of information. There are also good reasons for adopting such an
approach in embracing other future research directions. For example, distributed agent
and task-driven interface generation (as described in the following text) would both ben-

efit from a more general knowledge representation language within ParaDiMe.

6.2.2 Distributed and agent-based solutions

A major feature of the model-based architecture developed within this work is the support
for per-user interface customisation through personalised metaphor definitions and DMSL
interpreters. ParaDiMe is a client-server environment in which interfaces are generated
at server-side and passed over the network to thin Web clients as target language streams
(e.g. HTML or VRML). This approach was adequate for this research in demonstrating the
model-based approach for a small set of users, but does not scale well for more ambitious

applications.

The proof-of-concept research implementation was built using the CORBA distributed
object architecture which eased the scalability problem significantly. DMSL interpreters
are allocated dynamically by the runtime ParaDiMe user interface generator as indepen-
dent CORBA objects. With appropriate server management functionality (as provided
in major ORB implementations), these objects may be launched over a pool of machines

providing support for distributed load-balancing.

A more ambitious area for future research and development work is to leverage the in-
creasing power of Web client machines, by moving towards client-side interface generation
techniques. The current CORBA implementation of ParaDiMe provides an excellent start-
ing point for this research, especially given the integration of the Visigenics ORB within

the popular Netscape Communicator browser. Some initial experiments have achieved

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 135

promising results in investigating client-side approaches. Notably, Gareth Bottomley
produced a working Java applet implementation of a small subset! of DMSL as his final
year undergraduate project [16]. This work used a Java version of PCCTS (as used in
the major ParaDiMe implementation) and connected the tree-walker to a VRML external
application interface (EAI) running within an applet. This enabled simplified DMSL con-
structs to be dynamically downloaded via a network connection and be applied directly to
the VRML model running within the browser. A client-side interface generation approach
is the logical next step forward for the model-based interface generation technique (and

hence ParaDiMe), providing two key benefits;

Firstly, it will enable richer interaction modalities (such as the next generation of Internet
interactive virtual reality standards) to be provided more efficiently than through conven-
tional server-side techniques. For example, representation of a detailed office scene may
require several megabytes of VRML and component models, textures etc. This must be
generated and packaged on the server, sent over the (increasingly bandwidth-constrained)
Internet and parsed into the client VRML browser. The client-side model-based approach
would be to cache a library of basic reusable interface components on the client and use a
controlling applet (or other code) to synthesise interfaces on-the-fly, in response to DMSL
commands sent from the application server. This would provide massive bandwidth re-

duction over VRML transmission, even with scene-compression techniques.

The second advantage of moving towards a client-side approach is in more effectively
supporting individual user interaction preferences. Mechanisms currently exist within
ParaDiMe to support user initiated interface adaption through user profiles stored in
the information space and appropriate references to these profiles within metaphors. For
example, a profile might maintain a user-skill-level attribute through which the user might
be classified as a novice or expert This information may then be read into ParaDiMe
through metaphors and used to guide metaphor selection e.g. by dynamic assignment of
the style metaphor context descriptor. However, this mechanism is somewhat inelegant
and difficult to maintain in practise. A better solution would be to investigate ParaDiMe
agents, which would manage presentation services on a per-user basis. It is envisioned
that the agents would be tightly integrated within the client browser, with access to the

internal document model API enabling dynamic interface generation capabilities. The

1 .
Five constructs.

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 136

user interface customisation services provided through this approach could potentially

integrate with other personal-assistant agent functions on client machines, cf. [67].

6.2.3 Task and interaction modelling

The ‘models’ that drive the model-based approach to cooperative systems development
investigated within this research are user interface component models, rather like widgets
in conventional user interface toolkits. These widgets encapsulate form and function into
some useful interface abstraction e.g. a telephone metaphor that establishes an audio
conferencing call upon selection within a scene. The ParaDiMe model-based interface
generator provides the basic representational and operational mechanisms for building
user interfaces to multi-user cooperative working systems. The research reported within
this thesis has attempted to raise the level at which these systems are created closer to the
user domain. However, there is still a wide gap between scenario requirements modelling

and system implementation.

A future research direction for the model-based techniques developed within this project
(and in related work within the CVWE) would be to investigate interface generation for
cooperative systems from task-oriented conceptual models, extending existing theories
and methods such as Task Knowledge Structures (TKS) [55], which has proved useful in
rapid prototyping of systems through task models [56]. The objective in this research
would be to derive a formal task-interaction model of cooperative work describing users,
the shared work context to be provided by the system, and the interactions which must
be supported within that work context (e.g. user-to-system, user-to-artefact within the
system, user-to-user mediated by the system). The ambitious research goal would be to
investigate user interface specification or generation directly from such a model (using an
architecture such as ParaDiMe), although it is currently not clear that such an approach is
either feasible or desirable. A potentially more tractable objective would be to use a task-
oriented CSCW model to identify commonly occurring tasks and interactions; construct
reusable system services and interfaces that embody these requirements; and then use
a model-based interface generation toolkit to create integrated cooperative applications

through rapid integration of these basic cooperative working building blocks.

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 137

6.2.4 Visual system construction tools

Although the model-based approach developed within this project attempts to further
involve end-users within design and prototyping of cooperative systems, operation of the
current user interface generation architecture (built using ParaDiMe) requires a relatively
high level of technical expertise to accomplish simple tasks. Although this is perhaps more
a development exercise rather than research direction, there is a need to derive visual tools
that support the functionality of DMSL whilst hiding the language behind a graphical
integrated development environment (IDE). Products such as Microsoft’s Visual InterDev
suite have significantly simplified the task of creating Web-based information systems,
and a similar approach seems highly appropriate for involving non-technical stakeholders
directly in the model-based systems development process. A starting-point in moving
towards a visual toolkit would be to augment the functionality of a standard Web design
tool (e.g. Microsoft FrontPage), with a toolbox of cooperative working widgets which could
be ‘drag-and-dropped’ into interfaces as required. A control function (perhaps similar to
the publish feature in FrontPage) could then generate out a set of runtime architecture
components that would implement the functionality specified within the visual design tool.
This work would take a significant amount of time and resources to implement successfully,
but moving at least some way towards a visual toolkit is essential in investigating the wider

use of model-based design techniques.

6.2.5 Richer 3D interaction styles

This research has been developed over a four year period between 1994 and 1998, during
which time internet technologies have advanced greatly. One area that has attracted in-
creasing interest during the project is internet virtual reality technologies, such as VRML.
The research reported within this thesis has not attempted to contribute towards under-
standing in this area. An existing VRMIL interface generation module was adopted from
a related CVWE research effort and was used primarily to demonstrate the utility of a
model-based approach in seamlessly supporting both 2D and 3D interaction modalities.
The decision not to pursue VRML interface generation as research investigation within
this PhD was made primarily because of the poor support for scene interactivity in the

VRML implementations available during the project (i.e. VRML 1.0). Whilst it was pos-

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 138

sible to generate VRML offices for example, it was not possible to populate or animate
them with real world interactive objects e.g. people. Hence, whilst 3D presentational in-
terfaces looked attractive and helped to contextualise system services for neophyte users,
their actual contribution to the functional operation of system was of negligible benefit

or even detrimental to usability.

Internet VR technology is advancing at a fast pace however, largely fuelled by the in-
fluential entertainment and leisure markets. Technologies such as VRML 2.0, Java 3D
and more recently Microsoft Chrome are moving towards an Internet VR interaction in-
frastructure. The benefits of ParaDiMe are readily apparent within 3D interaction styles,
where there are currently very few products supporting automated construction of interac-
tive Internet-based VR worlds. Fewer still, if any, enable dynamic integration of CSCW
services within these environments. Hence, there is potential research in investigating
model-based construction of cooperative working environments using the emerging inter-
active Internet VR technologies. The emphasis in this investigation would be in task-based
interaction modelling as described earlier, differentiating the research from existing work
such as that of Benford et al. [11]. It would be particularly interesting, given ParaDiMe’s
flexible interface generation capabilities, to study the integration of support for 2D and
3D interaction modes within such environments (e.g. switching from a 3D style used to

browse a virtual library shelf to a 2D style used to interact with a particular document).

6.3 Closing remarks

This thesis takes a software engineering perspective upon supporting cooperative work
within dynamic internet environments. Software engineering methodologies provide well-
established modelling and design abstractions for the functional and behavioural char-
acteristics of such systems. However, direct representational and tool support for HCI-
informed systems engineering is at best peripheral and at worst non-existent within cur-

rent software engineering methods (See e.g. [59]).

In the same way that the patterns work of Gamma et al codified and encapsulated best-
practise knowledge to promote reuse of object-oriented software concepts [32], there is a
real need for HCI design patterns to be fed into mainstream software engineering. This

firstly requires that HCI principles be embraced within widely-used software engineering

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 139

methods; not just making a token appearance in non-functional requirements or style
guides. Secondly, there is a requirement for these patterns to be embodied within CASE
tools so that software engineers and usability engineers may share a common interlingua

that more formally injects HCI knowledge through into implementations.

The opinion advocated through this thesis is that the World Wide Web will be a pri-
mary factor in narrowing the gap between HCI and software engineering. As client-server
implementations, the user interfaces of Web information systems are necessarily sepa-
rated from functional components. Unlike conventional client-server systems however,
the HTML user interface delivery mechanism is ubiquitous and externally adaptable by
non-programmers. As Gayna Williams of Microsoft’s usability group notes, HT ML inter-
faces are now becoming important design specification and prototyping tools that enable
participatory design iterations to occur extremely late in the product development pro-
cess [118]. The ultimate goal of the research presented within this thesis is to move
towards CASE tools and methods which directly support this prevailing compressed form

of software product lifecycle.

Bibliography

[1]

George Almasi, Anca Suvaiala, lon Muslea, Calin Cascaval, Ted Davis, and V. Ja-
gannathan. Web*: a technology to make information available on the Web. In Pro-
ceedings of the Fourth IFEE Workshop on Fnabling Technology: Infrastructure for
Collaborative Enterprises: WET-ICFE °95, Concurrent Engineering Research Centre,
West Virginia University, 1995.

American National Standards Institute, Standard X3.135-1992. Database Language-
SQL, January 1993.

Architecture Projects Management I.td. The ANSA Reference Manual, 1989.

Lowell Arthur. Rapid evolutionary development : requirements, prototyping and

software creation. Wiley, New York, 1992.

A. Bicker and U. Busbach. DocMan: A document management system for cooper-
ation support. In Proceedings of the 29th Hawaii International Conference on the

System Sciences, volume 3, pages 82-91, Maui, January 1996.

L. Bannon and K. Schmidt. Issues of supporting organisational context in CSCW

systems. COMIC Project Deliverable 1.1, Ocober 1993.

Liam Bannon and Kjeld Schmidt. CSCW: Four characters in search of a context. In
J. M. Bowers and S. D. Benford, editors, Studies in Computer Supported Cooperative
Work. Elsevier Science Publishers, North Holland, 1991.

M. Barbuceanu and M. Fox. The architecture of an agent based infrastructure for
agile manufacturing. Technical report, Enterprise Integration Laboratory, Univer-

sity of Toronto, 1995.

140

BIBLIOGRAPHY 141

[9]

[10]

[11]

[12]

M. Barbuceanu and M. Fox. The information agent: Building intelligent information
infrastructures for enterprise integration. Technical report, Enterprise Integration

Laboratory, University of Toronto, 1995.

C. Batini, M. Lenzerini, and S. B. Navathe. A comparative analysis of methodologies

for database schema integration. ACM Computing Surveys, 18:323-365, 1986.

Steve Benford, John Bowers, Lennart Fahlen, John Mariani, and Tom Rodden.

Supporting cooperative work in virtual environments. The Computer Journal,

37(8):653-668, 1994.

Steve Benford, Adrian Bullock, Neil Cook, Paul Harvey, Rob Ingram, and Ok-ki
Lee. From rooms to cyberspace: Models of interaction in large virtual computer

spaces. In Interacting with Computers. Butterworth-Heinmann, 1993.

R. Bentley, T. Horstmann, K.Sikkel, and J. Trevor. Supporting collaborative infor-
mation sharing with the World Wide Web: The BCSCW shared workspace system.
In Proceedings of the Fourth International World Wide Web Conference, Boston,
December 1995.

Gordon Blair and Tom Rodden. The impact of CSCW on Open Distributed Pro-
cessing. In De Meer et al. [23], pages 143-153.

B. Boar. Application Prototyping. Wiley-Interscience, 1984.

Gareth Bottomley. A client-side Java VRML generation language. BSc final year
project dissertation, School of Computer Studies, University of Leeds, UK, 1998.

Adrian Bullock. Visualising organisations. In John Bowers, editor, 4 Concep-
tual Framework for Describing Organisations, chapter 10, pages 229-240. COMIC
Project Deliverable D1.2, October 1994.

R. G. G. Cattell, editor. The Object Database Standard: ODMG-93 v1.2. Morgan
Kaufmann, 1994.

P. P. Chen. The entity relationship model-towards a unified view of data. ACM
Transactions on Database Systems, 1(1), March 1976.

M. F. Costabile, D. Malerba, M. Hemmje, and A. Paradiso. Building metaphors for

supporting user interaction with multimedia databases. In Proceedings of 4th IFIP

BIBLIOGRAPHY 142

[21]

[22]

[24]

[29]

[30]

2.6 Working Conference on Visual DataBase Systems (VDB /), 1Aqulia, Italy,
May 1998.

T. Crowley, P. Milazzo, E. Baker, H. Forsdick, and R. Tomlinson. MMConf: An
infrastructure for building shared multimedia applications. In Proceedings of CSCW
90, Los Angeles, October 7-10 1990.

S. Das, K. Kochut, J. Miller, A. Sheth, and D. Worah. ORBWork: A reliable
distributed CORBA-based workflow enactment system for METEOR;. Technical

report, LSDIS Laboratory, University of Georgia, 1997.

J. De Meer, V. Heymer, and R. Roth, editors. Proceedings of the IFIP TC6/WG6.4
International Workshop in Open Distributed Processing, Berlin, Germany, October

1991.

P. M. Dew, C. M. Leigh, R. S. Drew, D. T. Morris, and J. M. Curson. Collab-
orative working systems to support user interaction within a virtual science park.

Information Services and Use, 15:213-228, 1995.

Richard Drew. Integrated Information Directory Services to Support the Innovation
Process. PhD thesis, School of Computer Studies, University of Leeds, UK, June
1997.

Rae Earnshaw and John Vince, editors. The Internet in 3D: Information, Images

and Interaction. Academic Press, 1997.

C. A. Ellis, S. J. Gibbs, and G. L. Rein. Groupware: some issues and experiences.

Communications of the ACM, 34(1), January 1991.

S. Elrod, R. Bruce, R. Gold, F. Halasz, W. Janssen, D. Lee, K. McCall, E. Pedersen,
K. Pier, J. Tang, and B. Walsh. Liveboard: a large interactive display to support

group meetings, presentations and remote collaboration. In Proceedings of CHI °92,

pages 599-607. ACM Press, 1992.

D. Engelbart and H. Lehtman. Working together. In Byte, pages 245-252. CMP
Media, December 1988.

K. Fischer, J. P. Miiller, 1. Heimig, and A. W. Scheer. Intelligent agents in virtual

enterprises. In Proceedings of the First International Conference on the Practical

BIBLIOGRAPHY 143

[31]

[32]

[33]

[34]

[35]

[38]

[39]

Applications of Intelligent Agents and Multi-Agent Technology (PAAM °96), pages
205-223, 1996.

Fernando Flores, Michael Graves, Brad Hartfield, and Terry Winograd. Computer
systems and the design of organizational interaction. ACM Transactions on Office

Information Systems, 6(2):153-172, April 1988.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
FElements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

M. Genesereth and R. Fikes. Knowledge interchange format: Version 3.0 refer-
ence manual. Technical report, Computer Science Department, Stanford University,

1992.

J. Giarratano and G. Riley. Fzpert Systems: Principles and Programming. Inter-
national Thomson Publishing, 1994.

S. J. Gibbs. LIZA: An extensible groupware toolkit. In Proceedings of the ACM
SIGCHI Conference on Human Factors in Computing Systems, Austin, Texas, 1989.
ACM Press.

T. Gilb. Software spare parts. In G. Parikh, editor, Techniques of Program and
System Maintenance. Winthrop Publishers, 1981.

S. L. Goldman. 21st Century Manufacturing FEnterprise Strategy: An Industry-Led
View. lococca Institute, Lehigh University, 1991.

S. L. Goldman, R. N. Nagel, and K. Preiss. Agile Competitors and Virtual Organi-

zations. Van Nostrand Reinhold, January 1995.

P. M. D. Gray, A. Preece, N. J. Fiddian, W. A. Gray, T. J. M. Bench-Capon,
M. J. R. Shave, N. Azarmi, M. E. Wiegand, M. Ashwell, M. Beer, Z. Cui, B. Diaz,
S. M. Embury, K. Hui, A. C. Jones, D. M. Jones, G. J. L. Kemp, E. W. Lawson,
K. Lunn, P. Marti, J. Shao, and P. R. S. Visser. KRAFT: Knowledge fusion from
distributed databases and knowledge bases, database and expert system applica-

tions. In Database and Fzrpert System Applications (DEXA’ 97), Toulouse, 1997.

Saul Greenberg. Personizable groupware: Accommodating individual roles and

group differences. In L. Bannon, M. Robinson, and K. Schmidt, editors, Proceed-

BIBLIOGRAPHY 144

ings of the Second Furopean Conference on Computer Supported Cooperative Work
(ECSCW 91). Kluwer Academic Publishers, 1991.

[41] 1. Grief, editor. Computer Supported Cooperative Work: A book of readings. Morgan
Kaufmann, 1988.

[42] Shishir Gundavaram. Web Gateways: Increasing the Power of the Web. World
Wide Web Journal, 2(2):191-202, Spring 1997.

[43] P. Gust. Shared X: X in a distributed group work environment. In Proceedings of
the Second Annual X Conference, MIT, January 1988.

[44] S. Harrison and S. Minneman. The media space: A research project into the use of

video as a design medium. In Proceedings of Conference on Participatory Design,

pages 51-58, Seattle, WA, March 1990.

[45] P. Hennessy, P. Harvey, and H. Smith. Support for enterprise modelling in CSCW.
Technical report, NEXOR Ltd., 1994.

[46] David Hollingsworth. The workflow reference model. Workflow Management Coali-
tion, Document TC00-1003 Issue 1.1, November 1994.

[47] M. Huhns, N. Jacobs, T. Ksiezyk, W. M. Shen, M. Singh, and C. Tomlinson. En-

terprise information modeling and model integration in Carnot. In Petrie [95].

[48] Neil Hunter. Secure, User Centred Conferencing for Virtual Working Systems. PhD
thesis, School of Computer Studies, University of Leeds, UK, December 1997.

[49] International Business Machines Corporation, Vienna, Austria. FlowMark Workflow

Modeling, 1994. Release 1.1.
[50] ISO/IEC 10646. Extensible Markup Language (XML). Standard specification, 1997.

[61] ITU and ISO/IEC 9594-1. X.500-The Directory: Information Technology, Open

Systems Interconnection. Standard specification, 1992.

[52] Y. Jayachandra, editor. Re-engineering the Networked Enterprise. McGraw-Hill,
New York, 1993.

[53] N. R. Jennings, P. Faratin, M. J. Johnson, T. J. Norman, P. O’Brien, and M. E.
Wiegand. Agent-based business process management. International Journal of

Cooperative Information Systems, 1996.

BIBLIOGRAPHY 145

[54]

[55]

[56]

[64]

R. Johansen. Leading Business Teams. Addison-Wesley, Reading, MA, 1991.

P. Johnson and H. Johnson. Task Knowledge Structures: psychological basis and
integration into system design. Acta Psychologica, 78:3-26, 1991.

P. Johnson, H. Johnson, and S. Wilson. Rapid prototyping of user interfaces driven
by task models. In J. M. Carroll, editor, Scenario-based design for human computer

interaction. John Wiley and Sons, Inc., 1995.

T. C. Jones. Reusability in programming: a survey of the state of the art. IFEF
Transactions on Software Engineering, 10(5):488-494, September 1984,

T. Kalin, H. Lubich, and J. Rugelj. A proposal for the architectural model for
CSCW. Technical report, Co-Tech Project (COST 14) WG3, 1990.

Elizabeth Kemp and Chris Phillips. Extending support for user interface design in

object-oriented software engineering methods. In May et al. [71].

G. Lakoff and M. Johnson. Metaphors We Live By. University of Chicago Press,
1980.

Kenneth Lantz. The prototyping methodology. Prentice-Hall, Englewood Cliffs, N.J,
1986.

Peter Lazar and Peter Holfelder. Web database connectivity with scripting lan-
guages. World Wide Web Journal, 2(2):203-219, Spring 1997.

J. Lee, M. Gruninger, Y. Jin, T. Malone, A. Tate, and G. Yost. The PIF process in-
terchange format and framework. Technical report, PIF Working Group, University

of Hawaii, May 1996. Version 1.1.

J. Lee and T. Malone. Partially shared views: A scheme for communicating amongst
groups that use different type hierarchies. ACM Transactions on Office Information
Systems, 8(1):1-26, 1990.

W. Litwin and A. Abdellatif. Multidatabase interoperability. IEEFE Computer,
19(12):10-18, December 1986.

J. D. Mackinlay, G. Robertson, and S. Card. Cone trees: Animated 3D visualizations
of hierarchical information. In Proceedings of the ACM SIGCHI °91 Conference on

Human Factors in Computing Systems, pages 189-194, 1991.

BIBLIOGRAPHY 146

[67] P. Maes. Agents that reduce work and information overload. Communications of

the ACM, 37(7):31-40, July 1994.

[68] T. W. Malone and K. Crowston. Toward an interdisciplinary theory of coordination.

Technical Report 120, Center for Coordination Science, MIT Sloan School, 1991.

[69] Marilyn Mantei. Observation of executives using a computer supported meeting
environment. In Decision Support Systems 5, pages 153-166. Elsevier Science Pub-

lishers, North Holland, 1989.
[70] James Martin. Rapid Application Development. Macmillan, 1991.

[71] Jon May, Jawed Siddiqi, and Julie Wilkinson, editors. Adjunct Proceedings of BCS
Human Computer Interaction 98, Sheflield, UK, September 1998.

[72] D. McCarthy and S. Sarin. Workflow and transactions in InConcert. Bulletin of
the Technical Committee on Data Engineering, 16(2), 1993.

[73] R. McCool. The common gateway interface. Technical report, NCSA, 1995.

[74] R. Medina-Mora, T. Winograd, R. Flores, and F. Flores. The ActionWorkflow
approach to workflow management technology. In Proceedings of CSCW 92, pages
281-288. ACM Press, 1992.

[75] P. Merle, C. Gransart, and J. Geif. CorbaWeb: A WWW and Corba worlds in-
tegration. In Second COOTS Workshop on Distributed Object Computing on the

Internet, Toronto, June 1996.

[76] D. Miers. The use of technology within business process redesign initiatives and the
future of information systems. In Proceedings of the CCTA Emerging Technology
Showcase, pages 98-108, London School of Economics, January 4-6 1995.

[77] Marvin Minsky. A framework for representing knowledge. In P. Winston, editor,
Psychology of Computer Vision. McGraw-Hill, New York, 1975.

[78] Tan Mitchell. A CASE Supported Approach to Object-Oriented Rapid Prototyping.
PhD thesis, Rapid Prototyping Laboratory, University of Sunderland, UK, 1997.

[79] D. T. Morris, G. Lajos, P. M. Dew, R. S. Drew, and D. Willows. DiMe: An object
oriented scripting language for the automatic creation of virtual environments. In

Proceedings of Furographics UK Chapter Conference, April 1997.

BIBLIOGRAPHY 147

[80]

[81]

National Industrial Information Infrastructure Protocol Consortium (NIIIPC). NI-
IIP Reference Architecture: Concepts and Guidelines, Technical Report NTR95-01
Cycle 0, January 1995.

National Industrial Information Infrastructure Protocol Consortium (NIIPC). Task
and Session Objects: Common objects for enabling virtual enterprise resource shar-

ing and collaboration, NIITPC OMG Business Objects RFP Response, January 1997.

National Institute of Standards and Technology. Integration Definition for Func-
tion Modeling (IDEF0), Federal Information Processing Standards Publication 183,
December 1993.

National Institute of Standards and Technology. Integration Definition for Infor-
mation Modeling (IDEF1X), Federal Information Processing Standards Publication
184, December 1993.

National Institute of Standards and Technology. Framework for NII Services, Re-
port NISTIR 5478, December 1994.

L. Navarro, M. Medina, and T. Rodden. Environment support for cooperative
working. Technical report, Universitat Politécnica de Catalunya and University of

Lancaster Computing Department, 1994.

A. Obaidi, R. Drew, and P. M. Dew. Generic approach to agent systems with
application to adviser project. In Proceedings of the FCSCW 97 Workshop on
Social Agents in Web-based Collaboration, Lancaster, UK, September 1997.

Object Management Group. CORBAservices: Common Object Services Specifica-
tion, OMG Document 97-12-03, November 1997.

Object Management Group. The Common Object Request Broker: Architecture and
Specification, OMG Document 97-09-01, Revision 2.1, August 1997.

D. Palaniswami, J. Lynch, I. Shevchenko, A. Mattie, and L. Reed-Fourquet. Web-
based multi-paradigm workflow automation for efficient healthcare delivery. In Pro-
ceedings of the NSF Workshop on Workflow and Process Automation in Information
Systems: State-of-the-art and Future Directions, July 1996.

G. Parikh, editor. Techniques of Program and System Maintenance. Winthrop Pub-
lishers, 1981.

BIBLIOGRAPHY 148

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

Terrance Parr. Language Translation Using PCCTS and CH++. Automata Publish-
ing Company, 1996.

Encarna Pastor and Jonny Jager. Architectural framework for CSCW. In Coopera-
tion Among Organisations: the potential of Computer Supported Cooperative Work,
ESPRIT Research Reports, Project 5660. Springer, 1993.

J. F. Patterson, R. D. Hill, S. L. Rohall, and W. S. Meeks. Rendezvous: An
architecture for synchronous multi-user applications. In Proceedings of the ACM
Conference on Computer Supported Cooperative Work (CSCW '90), Los Angeles,
1990. ACM Press.

Mark Pesce. VRML: Browsing and Building Cyberspace. New Riders, 1995.

Charles Petrie, editor. FEnterprise Integration Modeling: Proceedings of the First
International Conference. MIT Press, 1992.

J. Preece, Y. Rogers, H. Sharp, D. Benyon, S. Holland, and T. Carey. Human
Computer Interaction. Addison-Wesley, 1994.

Roger Pressman. Software Engineering: A Practitioner’s Approach. McGraw-Hill,
2nd edition, 1989.

Wolfgang Prinz and Paola Pennelli. Relevance of the X.500 Directory to CSCW
Applications. In D. Marca and G. Bock, editors, Groupware: Software for Computer
Supported Cooperative Work, pages 209-225. IEEE, Computer Society Press, 1992.

Dave Raggett. Client-side scripting and HTML. In Seripting Languages: Automat-
ing the Web, World Wide Web Journal, volume 2, pages 29-37. O’Reilly, 1997.

Dave Raggett, Arnaud Le Hors, and lan Jacobs. HTML 4.0 Specification. World
Wide Web Consortium, April 1998. Recommendation REC-html40-19980424.

A. S. Rogers and S. Gray. Virtuosi- supporting collaboration in design and manu-

facture. In Procedings of Telecom ’95 Technology Summit, Geneva, October 1995.

S. Rowett, S. Saunders, P. M. Dew, C. M. Leigh, and E. J. Foster. A virtual
science park to support work-based learning. In Proceedings of World Conference

on Fducational Telecommunications, Calgary, Canada, June 1997.

BIBLIOGRAPHY 149

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and
William Lorenson. Object-Oriented Modeling and Design. Prentice-Hall, 1991.

M. Schneider-Hufschmidt, T. Kihme, and U. Malinowski, editors. Adaptive User

Interfaces. Flsevier Science Publishers, 1993.

Amit Sheth. Workflow automation: applications technologies and research. SIG-

MOD Conference tutorial notes, May 1995.

Amit Sheth. From contempory workflow process automation to adaptive and dy-
namic work activity coordination and collaboration. Technical report, Large Scale

Distributed Information Systems Lab, University of Georgia, 1997.
lan Somerville. Software Engineering. Addison Wesley, 3rd edition, 1989.
Guy Steele. Common LISP: the language. Digital Press, 2nd edition, 1990.

M. Stefik, G. Foster, D. Bobrow, K. Kahn, S. Lanning, and L. Suchman. Beyond the
chalkboard: computer support for collaboration and problem solving in meetings.

Communications of the ACM, 30(1):32-47, January 1987.

M. A. Swaby. Research assessment results: BT interview transcripts. Internal
PhD project report, School of Computer Studies, University of Leeds, June 1998.

Unpublished manuscript.

Michael Swaby, Peter Dew, David Morris, and Gyuri Lajos. System support for

rapid prototyping of collaborative internet information systems. In May et al. [71].

M. Uschold, M. King, S. Moralee, and Y. Zorgios. The Enterprise Ontology. Tech-

nical report, ATAI Enterprise Project, June 1995.

F. Vernadat. CIMOSA: Enterprise modelling and enterprise integration using a
process-based approach. In H. Yoshikawa and J. Goossenaerts, editors, Informa-
tion Infrastructure Systems for Manufacturing, volume B-14, pages 65-79. Elsevier

Science, North-Holland, 1993.

Norman Walsh. An introduction to cascading style sheets. In Advancing HTML:
Style and Substance, World Wide Web Journal, volume 2, pages 147-156. O’Reilly,
1997.

BIBLIOGRAPHY 150

[115]

[116]

[117]

[118]

[119]

[120]

[121]

J. Wernecke. The Inventor Mentor: Programming Object Oriented 3D Graphics
with Open Inventor. Addison Wesley Publishing Company, 1994.

Gio Wiederhold. Intelligent integration of diverse information. In T. Finin,
C. Nichola, and Y. Yesha, editors, First International Conference on Information

and Knowledge Management, Baltimore, November 1992.

Gio Wiederhold. Mediators in the architecture of future information systems. IFEFE
Computer, 25(3):38-49, March 1992.

Gayna Williams. Usability process challenges in a Web product cycle. In May et al.
[71].

D. Woelk and C. Tomlinson. The InfoSleuth project: Intelligent search management
via semantic agents. In Proceedings of the Second International World Wide Web

Conference, October 1994.

M. J. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practise. The
Knowledge Engineering Review, 10(2):115-152, 1995.

World Wide Web Consortium. Document Object Model Specification, TR-WD-
DOM-971209 (Working Draft), December 1997.

