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Abstract 

Remote sensing is becoming an increasingly important tool for ocean wave 
measurement, and over the past decade much progress has been made in 
the development of the wave measuring capabilities of HF (High Frequency) 

radar. This system is able to make detailed and near continuous observations 
of the sea surface over a wide area. However, because the mathematics of 
the data extraction process is rather difficult, the statistical properties of the 

observed data have to date been poorly understood. 

In this study, the approximate sampling distributions of a variety of mea- 
surements from HF radar (including significant waveheight, mean wave pe- 
riod, wind direction, and various spectral parameters) are derived in terms 

of quantities that are either known or estimable. The resulting confidence 
intervals are, in the case of significant waveheight and mean wave period, 
of comparable width to those obtained from the corresponding NURWEC2 
(Netherlands UK Radar Wave buoy Experimental Comparison) wave buoy 

measurements, and in the case of spectral power, they are narrower. 

Furthermore, methods are derived by which such radar measurements may be 

compared with their corresponding wave buoy measurements in a statistically 

valid manner, and their relative biases estimated. These methods are then 

applied to data taken during the NURWEC2 field trial, which suggest that 
the radars and the wave buoy show good correspondence for measurements 
of significant waveheight and of spectral power (over 85 - 125mHz - the 
frequencies with most wave power, and hence those of most importance). 

There is also a fair correspondence for mean period measurements in the 

range 6.8 - 11.0secs. Spectral mean direction shows good correspondence 

over 85 - 155mHz over the somewhat limited directional range (i. e. as 

observed during the NURWEC2 storm) of the data. 
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Chapter 1 

Introduction 

1.1 Summary 

Remote sensing is becoming an increasingly important tool for ocean wave 
measurement with the advent of such systems as HF (High Frequency) 

radar, SAR (Synthetic Aperture Radar), satellite altimeters and others. The 

ocean wave measuring potential of radar was discovered virtually by accident. 
Radar was first used at sea to monitor ship movements during the second 
world war, each vessel being represented by a "blip" on the radar screen. 
However, under certain conditions wave motion would generate a cluster of 
blips (known as sea clutter) which during periods of rougher weather could 
obscure the trace of a ship. Much effort went into the removal of this sea 
clutter, but it was later realised that much oceanographic information is 

contained therein (see Shearman (1983) for further historical details). 

Over the past decade, much progress has been made in the development 

of the wave measuring capabilities of HF radar. HF radar has the advan- 
tage of being able to make near continuous and detailed observations of 
the sea surface (including the full directional power spectrum) over a wide 
area. The disadvantage is that the mathematics of the data extraction pro- 
cess is rather difficult, and hence the statistical properties of the observed 
data were poorly understood. Because such use of radars is a recent inno- 

vation, in early 1987 the NURWEC2 (Netherlands UK Radar Wave buoy 
Experimental Comparison, see section 1.4) field trial was conducted in order 
to compare the performance of an HF radar wave measuring system with that 
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of a wave buoy, and hence to validate the radar measurements. The bulk of 
the analyses performed to date on the NURWEC2 data have involved such 
techniques as simple least squares regression, (see section 6.3), which do not 
allow for the fact that there is sampling variability in the measurements from 
both systems. 

The purpose of this study has been to derive the statistical properties of 
HF radar ocean wave measurements, to use this information to compare the 

performances of the wave buoy and HF radar systems used in NURWEC2 in a 
statistically valid manner, and hence to gain some insight into the behaviour 

of the radar system. New intercomparison techniques have been developed 
for this purpose. 

1.2 Overview 

In order to understand the theory behind the use of HF radars and wave 
buoys to measure ocean waves, it is first necessary to be familiar with the 
theory of spectral analysis. This is introduced in chapter 2, and expanded 
upon in chapter 3 to include spectral integrals which are used in both wave 
buoy and HF radar analysis. The theory behind wave buoy measurements 
is covered in chapter 4. This information is necessary for any intercompar- 

ison with HF radar to be meaningful. In chapter 5 the theory of HF radar 

wave measurement is described together with the analysis technique which 
has been used on the NURWEC2 data. The statistical properties of data 

so analysed are derived. In particular, section 5.5 deals with the non-linear 
integral inversion problem which is the main difficulty in the radar analysis. 
Intercomparison methods suitable for use with the NURWEC2 data are de- 

rived in chapter 6, and in chapter 7 these are applied to data from the trial 

and the results are discussed. 

Throughout this study, graphical examples are presented of real data whose 

variabilities have been displayed in terms of their confidence intervals. Be- 

cause the derivation of these intervals involves the same type of approxima- 
tions for both radar and wave buoy observations, the basic theory is presented 
in this chapter (in section 1.5). 

Firstly, however, we shall briefly introduce the subjects of ocean waves (sec- 

tion 1.3), and the NURWEC2 field trial (section 1.4). 
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1.3 Background Ocean Wave Theory 

1.3.1 Formation and Classification 

When wind starts to blow across the sea surface, short capillary waves are 
formed travelling in the same direction as the wind. If the wind ceases, 
these waves quickly die away. However, if it continues to blow, the waves 
grow in both length and height. Once these waves exceed a wavelength of 
about 1.73cm they become gravity waves which will continue to propagate 
even if the wind ceases (fully developed waves typically have wavelengths 
in the order of tens of metres). For further details the reader is referred to 
Kinsman (1965). Waves may also be generated by other means (such as the 

motion of the moon, earthquakes, the wake produced by a ship, etc) but the 

waves of interest to this study are wind-generated and fall broadly into three 

categories : 

1. Wind waves are the waves generated by the action of the local wind 
(i. e. at the place at which the waves are observed). 

2. Old waves (or old sea) are those waves generated by previous wind 

action at the site of observation, the wind field having since changed 
to produce wind waves with different properties (e. g. travelling in a 
different direction). 

3. Swell waves are waves generated by some distant wind field which 
have propagated to the observation site. Swell waves tend to be of 
longer wavelength than old and wind waves. 

1.3.2 Measurement and Stationarity 

Wind action and wave interaction generate waves travelling in a range of 
directions and frequencies. Because of this, ocean waves may be represented 
by a directional wave spectrum (see section 2.2.3). The directional spectrum 
however is not very straightforward to estimate - the problems associated 

with this estimation are described in the chapters on the respective wave 

measurement systems (chapters 4 and 5 for wave buoys and HF radars, re- 

spectively). 
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Since HF radars measure the ocean wave spectrum as a function of directional 

wavenumber, as opposed to directional frequency, it is necessary to relate 
these two domains. The deep water dispersion relationship gives the angular 
frequency (w) of ocean waves in the following form : 

w2=9lkl 

where k is ocean wavenumber and g is acceleration due to gravity. Strictly, 

this formula is only valid for infinitesimal waves on an infinitely deep sea, 
but is usually considered a good approximation for all but the longest waves 
(see Wyatt and Holden (1991)) if the sea depth is at least 50m. 

One commonly used parameter for summarising ocean wave activity is sig- 

nificant waveheight (H, ) which is defined as follows : 

H, =4 mo 

where mo is the zeroth spectral moment (see section 3.2) of sea surface el- 

evation. This quantity is supposed to approximate the wave height that a 

seafarer on a ship would estimate by eye. 

It is typically assumed that the sea surface displacement caused by wave mo- 
tion is approximately Normally distributed. This is justified by considering 

such displacement as a sum of many contributions caused by relatively unre- 
lated forces acting at different times. Treating these contributions as random 
then allows the application of the central limit theorem. This is discussed by 

Kinsman (1965), who goes on to use observed data to demonstrate that the 

departure from Normality is "very small". 

In the context of ocean waves, stationarity (spatial or temporal) can be 

thought of in terms of a wave field having the same (or approximately the 

same) underlying directional wave spectrum over the area and time duration 

of interest (see section 2.2.2 for a more formal mathematical definition). Sta- 

tionarity is an important concept in ocean wave measurement, since most 

systems need to measure over a period of time (typically about 30 minutes) 

and many measure over an area (in the case of HF radar, typically about 
50km2). If the wave field is non-stationary then any such measurements 

would be difficult to interpret. Scales of temporal and spatial stationarity 
have been examined by Sova and Wyatt (1994), and their results are sum- 

marised in section 6.2. 
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1.4 The NURWEC2 Field Trial 

The NURWEC2 (Netherlands UK Radar Wave buoy Experimental Compar- 
ison) was conducted during the first four months of 1987 by the Department 

of Electronic and Electrical Engineering at the University of Birmingham 
(UK) and Neptune Radar Ltd with assistance from the Netherlands Rijkswa- 
terstaat, SERC, the Wolfson Foundation, Wimpol Ltd, Institute of Oceano- 

graphic Sciences, Rutherford & Appleton Laboratory, the Department of 
Energy, BP plc, the Meteorological Office and ARE. It was set up in order to 

gather ocean wave measurements from a pair of HF radars and a directional 

wave buoy for the purpose of comparing the performance of the radars with 
that of the wave buoy. The radar system used was of the PISCES type, under 
development by Neptune Radar Ltd from a prototype of the University of 
Birmingham (UK). The wave buoy was a Wavec directional buoy manufac- 
tured by Datawell by (of the Netherlands). The radar installations were at 
East Blockhouse (south Dyfed) and Nabor Point (north Devon), the beams 

crossing over the Celtic Sea (see figure 1.1 for details). Unfortunately, most 
of the data were available only in frequency domain form (as opposed to 
the original time series), thus restricting the types of analysis possible. This 
"pre-processing", along with the statistical properties of data thus derived, 
is discussed in chapters 4 and 5 (for the wave buoy data and radar data, 

respectively). The data of particular interest to this study were collected 
during a storm (March 25th to March 29th) - it was during this period that 

the greatest variation of sea conditions was experienced and that the radar 
data was of the best quality (see Wyatt (1988a), Wyatt (1988b) and Wyatt 
(1991) for further details of NURWEC2). Except where otherwise specified, 
the radar data used in this study has been taken from an area of sea which 
includes the position of the Wavec buoy. 

1.5 Normal Approximations and Confidence 

Intervals 

The distributions of a number of wave parameters as measured by wave 
buoys and HF radars are given in terms of a Normal approximation (see 

chapters 4 and 5 respectively). Each such measurement is a function of other 

measurements with known distribution properties, and its variance may be 
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Figure 1.1: A map showing the NURWEC2 measurement site of the Celtic 
Sea. The horizontal lines measure degrees latitude north of the Equator, and 
the vertical lines measure degrees longitude relative to the Greenwich Merid- 
ian. The other straight lines (which converge at the radar sites) represent 
the paths of the radar beams (showing 200km range) and the asterisk to the 
west of the Welsh radar site marks the position of the wave buoy. 
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estimated using a Taylor series expansion. Suppose we have a measurement 
Y (e. g. mean wave period as measured by HF radar, see section 5.4.3) which 
is some function of a measurement vector x (e. g. a Doppler spectrum). 
Then : 

Var(Y) = dVXdT 

where Vx is the variance-covariance matrix of x, and 

d= {d; }, d; =a 
l(X) 

(see Krogstad et al. (1988) for details). This is easily extended to the case 

where Y is a multivariate random variable (such as is used in section 5.4.4). 

If we have an approximately Normally distributed random variable with es- 
timated mean (e. g. observed mean wave period) and estimated variance 
Qý (as approximated above), then the following limits define an approximate 
100(1 - a)% confidence interval for the true (i. e. underlying) mean : 

µfzl_ý Va 2 

where zQ is the ß-th quantile of the N(0,1) distribution. Such a confidence 
interval should be interpreted as follows 
Under repeated sampling, 100(1- a)% of such intervals will contain the true 

mean. 
This emphasises that it is the true mean that is fixed, and the interval which 

is a random variable. 90% confidence intervals are commonly used in oceano- 

graphic texts, whereas statistical texts tend to favour 95% confidence inter- 

vals. A larger percentage produces a wider interval, but reduces the chance 

of error (i. e. of the interval not containing the true mean), and so some 

balance between these conflicting factors needs to be struck. We will keep to 

convention by using 90% confidence intervals for wave parameters and 95% 

confidence intervals for relative bias estimates. The z-values for 90% and 

95% confidence intervals are 1.65 and 1.96 respectively. Other z-values have 

been tabulated (such as by Neave (1978)). 
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Chapter 2 

Background Spectral Theory 

2.1 Introduction 

Wave measurements from both HF radar and wave buoys are derived from in- 
formation in the frequency domain. This chapter introduces spectral (i. e. fre- 

quency domain) analysis. The distribution of the observed spectrum of a Nor- 

mal white noise process is derived and linear filters used to extend this result 
to the distribution of the observed spectrum of a stationary process with an 
arbitrary underlying spectrum (as may be used to model ocean waves). The 

effect of applying a taper is also examined, and finally multivariate spectral 
analysis is introduced. 

2.2 Functions of Continuous Time 

2.2.1 The Fourier Transform 

A (complex or purely real) function of continuous time f (t) may be expressed 
as the limit of a linear combination of sinusoids of different frequencies. Math- 

ematically, this transition from the time domain to the frequency domain is 

performed by the Fourier transform : 

F(W) _ 
Lf(t)e-wedt 

ý 
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F(w) is a complex function of angular frequency (w) which contains the 

amplitude and phase information of the sinusoids. The Fourier transform is 

sometimes denoted thus : 
F(w) = 7(f (t)) 

The inverse Fourier transform performs the reverse procedure : 

00 

3F(w)e"tdw 
Together, f (t) and F(w) are known as a Fourier transform pair, and denoted 

thus : 

.f 
(t) f--' F(w) 

2.2.2 Random Functions and Stationarity 

As the functions of time of interest to this study are random (as opposed to 
deterministic), it is necessary to introduce the concept of stationarity. 

Strong Stationarity 

A process X (t) is said to be strongly stationary if all finite joint distributions 

of X (t) are the same as the corresponding joint distributions of X (t + r) for 

all values of r. This is also known as strict stationarity. 

Intuitively, this is roughly the same as saying that the underlying process is 

in some stable equilibrium. 

Weak Stationarity 

A process X (t) is said to be weakly stationary if the first and second order 

moments (i. e. mean vector and covariance matrix) of all finite joint distribu- 

tions of X (t) are the same as those of the joint distributions of X (t + r) for 

all values of r. This is also known as second order stationarity. 

An important special type of random function is one in which all finite joint 

distributions are multivariate Normal; such a function is called Normal, or 
Gaussian. Because a multivariate Normal distribution is completely defined 
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by its first and second order moments, a weakly stationary Normal process 
must also be strongly stationary. 

2.2.3 The Power Spectrum and Auto-Covariance Fun- 

ction 

The power spectrum (or more correctly the power spectral density) 5(w) of 
a function of time is the square of the modulus of its Fourier transform, and 
(roughly speaking) gives the power density as a function of frequency : 

S(w) = IF(w)12 

There exist various proofs of the relationship between the power spectrum 
and auto-covariance function, but the one the author has found most useful 
and straightforward is that of Cox and Miller (1965), which is summarised 
below. 

Consider the following process : 

X(t) =L e; wtdR(w) 

where each dR(w) is some complex random variable, independent for each w 
(hence R is non-differentiable). 

If X (t) has first order stationarity : 

E(dR(w)) =0 Vw 54 0 

and if X (t) has second order stationarity : 

E(dR(w)dR* (w')) =0 Vw 0 w' 

(where * denotes the complex conjugate). 

Consider now the auto-covariance function of this process y(h) : 

-y(h) = E(X(t + h)X*(t)) 

= E( 
f 

00 
eiw(t+h)dR(w) 

f 

oo 
e'iý, ýrdR*(w')) 

0/ 
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f 00 L 

J 
=0ifw54 w' 

This integration is over the diagonal w= w' and hence may be written as : 

7(h) =J 
00 

eiwhdG(w) 

where dG(w) = E(dR(w)dR*(w)), and provided that E(X(t)) = 0. 

Consider now the variance of this process : 

00 Var(X(t)) = 7(0) =f 
00 

dG(w) 

Hence, dG(w) gives the contribution to the variance (or power) of the process 
at frequency w-i. e. G(w) is the cumulative power spectrum of X(t). 

Usually it will be true that G is differentiable (though occasionally there is 

a jump at some fixed frequencies, such as 0), in which case : 

dG(w) 
= E(S(w)) 

dw 

giving 

7(h) =J 
00 E(S(w))eiwhdw 
00 

and hence 
Var(X(t)) = y(0) =f 

00 E(S(w))dw 
00 

Thus the underlying (i. e. expected) power spectrum of a random process is 

proportional to the Fourier transform of its auto-covariance function. 

This proof can be easily extended to higher dimensions by allowing X to be 

a function of time and space. Consider the waveform in figure 2.1 travelling 
to the right, and then consider the elevation at point A as a function of time 
(figure 2.2). In the time dimension, the shape of the waveform has been 

reversed. Thus, going forwards in time is like going backwards in space. So 

the process may be expressed : 

X (t, x) = 
l' 

e; (wt-k. x)dR(w, k) 

w, k 
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Distance 

Figure 2.1: An arbitrary waveform moving past some point A. 

Time 

Figure 2.2: Elevation at point A as a function of time. 
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This gives the autocovariance : 

'Y(h, r) _/e; 
(wh-k. r)dG(w, k) 

w, k 

and hence, 
Var(X(t, x)) = 7(0,0) =f dG(w, k) 

w, k 

So, as in the one dimensional case, the underlying power spectrum of a 
random process in space and time is proportional to the Fourier transform 

of its auto-covariance function. 

2.3 Discrete Time Series 

2.3.1 The Discrete Fourier Transform and the Power 

and Energy Spectra 

Section 2.2 introduced the theory of stationary processes in continuous time. 
The observed time series in this study each consist of a finite set of equally 

spaced observations of the process in question. As this is an incomplete 

picture of the full process, Fourier analysis produces only an estimate of 
the underlying power spectrum (the distribution theory associated with this 

estimate is given in sections 2.3.2 and 2.3.4). The discrete equivalent of 
the Fourier transform is the DFT (Discrete Fourier Transform). The DFT 

fits sinusoids of a finite set of equally spaced frequencies to the time series 

= -2 1-1 : 
a-1 

l=-Z... 2-1 F'(wi)= 1E 
X(t. i)e-i", j 

n is the number of observations in the time series 
W1 IA,, 

where A,, =T is the frequency step 
T is the duration of the time series 

All The interval (wj -z1 wl + ý) is known as a frequency bin. 

(2.1) 
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Equation 2.1 may also be written 

X(t1) «D-ºF(wi) 
A 

F(w1) is a complex function containing amplitude and phase information. 
A 

Also, because F is defined only for frequencies which are integer multiples of 
0,,, F describes a process which is periodic in T. 

The basic discrete equivalent of the power spectrum is the periodogram (this 

name is somewhat misleading, because it is a function of frequency and not 
of period) : 

S(wi) = IF(wi) 12 

Alternatively, we may think in terms of the energy spectrum cxx (we) (energy = 
power x time, with the subscripts identifying the original process) : 

cxx(wi) = TS(w, ) = nOtS(w1) (2.2) 

where At is the sampling interval. In the continuous case, this becomes : 

cxx (w) = TS(w) 

In this context, the usual units for the "energy" spectrum are m2/Hz. 

2.3.2 The Distribution of an Energy Spectrum of Nor- 

mal White Noise 

Consider a real process W(t1) of normally distributed white noise : 

W(t1) - N(O, Q2) i. i. d. Vtj =-a ... 2-1 

(i. i. d. means independent and identically distributed). From equations 2.1 

and 2.2 we get: 

w`wl) = At ((jiý Cw 
=- 

s 
W(t1) cos(wlti) 

s ^-1 

+ W(t? ) sin(witi) , 

1. -2... 2-1 
(2.3) 
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1 
Let A(wr) =E W(t,, ) cos(wltj) 

1 Z" Z 
B(w1) _E W(t1) sin(witj) 

ý_- 2 

We have : 
E(W(t, )) =0 Vt; 

Therefore, 

0 Vwt 

and hence, 

Var(A(wj)) = E(A2(wl)) = a2 cos2(wlij) =z 2 
i=-; nC2 1= 0ý -2 

Similarly, 

For l; m: 

Var(B(wi))= 
n2ý 

1 
1=±1... f(2-1) 

0=0, -ý 

-i 
Cov(A(wi), A(Wm)) = O'2 E cos(witj) cos( m, 

tj) _0 
j=- n 

and similarly, 
Cov(B(w, ), B(w,, )) =0 

Also, b'1, m: 
Cov(A(wi), B(w�, )) =0 

As A and B are linear combinations of independent normal variables, A and 
B are also normally distributed. Hence : 

AZ(wt) 
_ 

2ý«2 1= ±1... (2 
- 1) 

XZ N1 
Var(A(w! )) Ans ̀ 1=0, -n2 

and similarly : 

B 2(W1) 
_ 

2B ( t) 
^, Xis l= f1 ... ± (2 - 1) 

Vax( ( `)) no, 2 
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Because the distinct As and Bs are uncorrelated and jointly normally dis- 
tributed, they are also independent. So, using equation 2.3 we get : 

2 
(A2(wi) + B2(w, )) = 

2cww(wi) 
_ 

2cww(wi) 
,,, X2,1 = ±1 ... ± (z - 1) 

n Otor2 Cww(wi) 

2 (WI) 
cww(wi) 

_ 
aww(wr) 2n 

noz 
(wi) 

OtorZ Cww(wt) 
~ Xi' 1= 0, -2 

i. e. . 
Xv (2.4) 

cww(w1) v 

where v =1 or 2, according to the value of 1. Equation 2.4 also holds when 
W is a complex process. In such cases however, B will be non-zero when 
1=0, -11 and hence v=2 Vl. 

Hence, a 100(1 - a)% confidence interval for each cww(wt) may be con- 
structed (uýww(wi) 

ycww(wi) (2.5) 
X", 1_0 xV'S 

where X2, ß is the ß-th quantile of the X2 distribution. 

Since equation 2.4 deals with ratios of energy, power may be substituted for 

energy using equation 2.2 leading to a 100(1 - a)% confidence interval for 

power S(wi) : 

(uQ1) 
y5'(wl) (2.6) 

292, Xv 
, 1- XI/ 

2.3.3 Linear Filters 

A linear filter is a transformation which when applied to a time series will 

affect the component at each frequency independently. This effect on fre- 

quency is called the frequency response function. Consider a function of time 
Y(t) produced by passing a time series X (t) with Fourier transform P(w) 

through a linear filter with frequency response function ra(w) 

Y(t) 4) F(w)r1(w) 
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Consider now H(t), the inverse Fourier transform of i(w) : 

H(t) 4 --* 77(W) 

Hence : 
Y(t) =X (t) * H(t) 

where * denotes convolution. H(t) is called the impulse response function of 
the linear filter. 

Also, 

cYY(w) = Jil(')I2cxx(w) 

We may thus model a stationary process with arbitrary energy spectrum as 
a white noise process passed through a linear filter. 

2.3.4 The Distribution of the Energy Spectrum of a 
Stationary Process 

Consider a process W(tj) of normally distributed white noise, passed through 

a linear filter with impulse response function H(t,; ), producing a stationary 
linear process X(tj) : 

W(t1) ti N(0,1) i. i. d. Vt1 
X(t; ) = W(t, ) * H(t; ) 

H(t, ) 4-D-º i (wi) 

This gives us the following estimated energy spectrum of X: 

CXX (WO _ 
-1 

n 
X(tj) Cos(wltj) 

n 
i-i Z 

F, W (tj) cos (wit1 ) 

1=-!... a_ 22 

Z 
^-1 

-f- X(tj) sin(wlti) , j=- T 

W(tj) sin(wltj) 

z, 

and substituting from equation 2.3 we get : 

axx(wl) =I ii(wl)I2aww(wi) 
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Hence using equations 2.4 we get : 

Iii(W: )I2C^ww(wi) 
_ 6xx(wr) ,2 ri(wr)I2cww(wi) - cxx(w, ) Xi 

for 1= 0, n if the process is purely real, and 

2Ji1(wi)I2cww(w, ) 
_ 

2cxx(u. 'i) Z 
lq(wt)I Z cww(wt) cxx(wi) 

~ XZ 

otherwise. 

This yields the following 100(1 - a)% confidence interval for cxx(wi) 

I V8XX(wl) vcXX(wl) (2.7) 

Xý, i_f XY, z 

and the confidence interval for the power SX (w, ) takes the same form as in 

equation 2.6. 

The theory in this section is derived under the assumption that the process 
X exhibits energy only at a finite set of frequencies {wl}. Since the time 
domain processes of interest to this study have energy over a continuum of 
frequencies, an effect known as spectral leakage occurs (see section 2.3.5) and 
as a result, the theory presented above is only approximate. 

2.3.5 Spectral Leakage and Tapers 

In section 2.3.1 it was mentioned that P describes a periodic process. If 

the underlying process X (t) includes a component at some frequency which 
does not exactly match any observed frequency bin wl, an effect known as 
spectral leakage occurs. The Fourier transform assigns the power at this non- 
matching component to a range of frequency bins, with most of the power 
being assigned to those bins whose frequencies are closest to that of the 

component (such as in figure 2.3). Thus, it appears as though power from 

the non-matching component has "leaked" into neighbouring frequencies. 

If the underlying power spectrum is smooth, the effects of spectral leakage 

are not too serious, if however it contains spikes, spectral leakage can swamp 
lower powered frequencies. 

23 



Frequency 

L 
m 
3 
O 

O 

Figure 2.3: A spectrum showing leakage, obtained from a sinusoid whose 
frequency does not exactly correspond to any frequency bin. The power peaks 
at the frequency bin closest to the frequency of the signal, but some power 
has "leaked" into neighbouring frequencies. 
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Consider the function z(t1), j= -oo ... 00 

z(tj)_ 
1 if j=-ý... 2-1 
0 otherwise 

and let Y(tj), j= -oo ... oo be the process X(t2) measured over infinite 
time. 

i. e. X(t1) = Y(t1)z(t,; ) 

Thus, 

X (ti) 'D* Y(Y(t, )) *. F(z(ti)) 

Since 
. 

(z(tj)) is a sinc function (i. e. of the form ! LL), the effect of convo- 
lution is to cause some of the power to spread into neighbouring frequencies 
(this is a more mathematical explanation of leakage). Because of this, tapers 
(also known as data windows) are sometimes applied to the data. A taper is 

a function z(t1) whose properties in the frequency domain are more desirable 
than those of the sinc function (because of the shape of z(t, ) defined above, 
an untapered time series is sometimes referred to as having a square taper or 
rectangular taper). 

Harris (1978) has examined various properties of a wide range of tapers. 
Perhaps the best known of these is the Hanning taper (the process of applying 
this taper is ofter referred to as Hanning) which has the following form : 

zýtý) 
0.5 (1 + cos 

ý)) if j=-2.. 2-1n0 

otherwise 

Whilst such a taper will go some way towards counteracting spectral leakage 
(as shown below), it does have the disadvantage of broadening any spikes. 
Consider z'(t1), the finite subset of z(tj) corresponding to the observed data 
X(t; ) 

i. e. z'(t1) = z(tj), 

Now consider its DFT : 

0 if m=-2... -2 
0.25 ifm=-1 

, ý'(z'(tý)) = 0.5 if m=0 
0.25 if m=1 
0 ifm=2... ý-1 

Since it is this DFT with which the observed periodogram is convolved, it 
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can be seen how a peak (corresponding to m= 0) is broadened - compare 
this with the DFT of a square taper : 

10 ifm= -Z .. -1 
1 if m=0 
0 ifm=1.. 2-1 

The Hanning taper is an example of the Blackman-Harris family of tapers, 
defined by : 

z'(t1) = ao + al cos 
() 

+ a2 cos 
(4nß) 

+ a3 cos 
(6nß) 

, .7=-2... 2-1 

where ao ... a3 are constants satisfying 

Eam=1 

m-o 

The minimum /-sample Blackman Harris taper (hereafter referred to as the 

. j-point Blackman-Harris taper) is particularly effective at reducing spectral 
leakage (see figure 2.4 which shown the effect of this taper applied to the 

same signal as in figure 2.3) and has the following coefficients 

ao = 0.35875 

al = 0.48829 

a2 = 0.14128 

a3 = 0.01168 

The DFT of the Blackman-Harris family of tapers is : 

0 ifm=-2... -4 
if m= -3, -2, -1,1,2,3 

ao if m=0 
0 if m=4... 2-1 

hence their use can considerably broaden any spikes in the spectrum. 

We define the order of a taper as its highest order non-zero harmonic. Thus 

the Hanning taper has order 1, and the 4-point Blackman-Harris taper has 

order 3. 
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L m 
0 a 

Figure 2.4: The spectrum of a "leaky" signal, calculated after the applica- 
tion of a 4-Point Blackman-Harris taper. 

2.3.6 Averaging of Sequential and Time-Overlapped 

Spectra 

The main problem with the confidence intervals for energy and power given 
by equations 2.6 and 2.7 is that they are independent of n, the number of 
observations in the time series (i. e. they are not consistent estimators). One 

way to overcome this is to partition the observations into N shorter sequen- 
tial time series, each of length n' (i. e. n= Nn'), calculate the energy spectra 
and take the average. Because these sequential spectra are asymptotically 
independent, Nv is substituted for v in equation 2.7, thus reducing the width 

of the confidence interval (i. e. decreasing the variance of the estimated en- 

ergy). However, if a taper is being used, variance may be further reduced by 

overlapping the individual time series. 

Consider a linear process Y(t1), j=0... n-1 partitioned into a sequence 

of N time series of length T', each with n' (possibly tapered) observations 
such that each series overlaps with the preceeding and succeeding series by 
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50% (i. e. by j observations). 

ný m4 
_1 

Let A�ti(wi) =E Y(tj)z'(t. 
_ n" m ,) COS(W(t_ nI ,n, ) 

j= 
n' m2 

2 Bm(Wi) =E Y(tj)z'(tý_ 
ný m1) Sin(Wltj_ nl m+1 

) 

m=0... N-1 
1= 

-2 ... 
2-1 

Hence we estimate cyy(wl) with : 

N-1 

Y= Nn' 
E (Amýwt) + B,, 2, 

ºýWý)) m-0 

(2.8) 

This involves a sum of correlated Xi variables which may be approximated 
by a single X. variable whose degrees of freedom are given below. We get 

N-1 
( E All, 
lw, 

) 

E m=0 
N 

and similarly, 

E E(Am(wl)) 
n'l 77 (wl)I2 

nl 

N-1 
2 

M=o n' 

N2 
lool-T 

Also, 

N-1 N-1 N-1 
Var E A2 (WI) _E Var(Am) +EE Cov(Am, Ate 

m=0 m=0 m', m m=0 

But since the spectra of non-overlapping series are (approximately) indepen- 

dent, 

Var EN- 
N-i N- 1 A2 (WI) _E Var(A2) +Z2 Cov(Am, Am+l ) 

m=0 m-0 m=0 
N-1 

/ +22 E Cov(Am, Am-1) 

m=1 

- 
n's 

4 
wß ' (N + 4(N - 1)p2(50%)) 

(2.9) 
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where p(50%) is the correlation between each pair of successive As. Similarly, 

Var E Bm(w, ) 
4(N+4(N- 

1)p2(50%)) (2.10) 
m-0 

Consider now a pair of successive As. Each is a sum of the product of three 

components - the observations, the taper (if any) and the sinusoid (see 

equation 2.8). 

The sets of observations for the two series are identical over the overlap region 
(and approximately independent elsewhere). 

The sinusoid is periodic in T'. If the sinusoid is periodic in ZI (i. e. if 1 is 

even) then the sinusoidal components are identical over the overlap region. 
If the sinusoid is not periodic in Zý (i. e. if 1 is odd) then the sinusoidal 
components have a phase difference of 7r, and hence are identical in magnitude 
but with opposite signs (which can effectively be ignored since p appears in 

equations 2.9 and 2.10 as a square). Also, the sinusoidal components of the 
As and Bs of the same frequency all have a phase difference of 21 . 

Thus, the important factor in calculating p is the effect of the taper. We 

get . 

Cov(Ao(wj), A, (wi)) 

n'-1 

= Cov E Y(tj)z'(t3_) cos(wlt1_ " ), 
i=o 22 

ný-1 
= Cov Y(ti)z'(tj_ 

z) 
cos(wltj_ ýý ), 

n'-1 
Et z'(tj_ )z'(tj_n-) 

. 1=-r 
-1 

_ (-1)º nß''4 'ý 
ZI(t)z'(tj) 

fii . 1=-3 

Hence : 

-1 
Y(tj)z'(tj-n1) COS (W jt j-n'» 

1=T 

' n-1 
E Y(t1)z'(t1-n')CoS(Wltj-n'» 

7= j 

p(50%) = Corr(Ao(w, ), A1(w1)) 

= n, 
ý, 

ý 
Cov(Ao(wi), A1(w1)) 

=E z'(t1+ , )z'(t3) 2 
i_- Z 

Thus p2(50%) is a function of the taper used (i. e. a known quantity), and 
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hence : 
v_ 2E'(ayy) 

ar(cyy)2 

_, 
20177(wj)I4N2 

- 12 { (N+4(N-1)p2 (50%)) 

2N2 
N+4(N-1)p (50io) 

Consider now the same process but with each series overlapping with the 

preceeding and succeeding series by 75% (i. e. by 34ý observations). Keeping 

for the moment Am and B,.. as defined in equations 2.8, the following table 

gives the phase differences of the sinusoidal components of the first 4 As and 
Bs with respect to AO : 

III = 4,8,12... 111 = 2,6,10... 1 odd 
(Periodic in 4ý) (Periodic in 0) (Periodic in T') 

B 0 z 2 2 " 2 

Al 0 " 2 
Bl 2 2 7r 
A2 0 0 7r 
B2 i m 2 ,ý Z " 2 

A3 0 7r 2 
B3 

2 2 7r 

Thus if we swap the definitions of Am and B�, where both m and 1 are odd, 
i. e. let 

n'+2 
-1 

Am(wr) _E Y(tj)z'(tj_�' +, )sin(wrtj_n' m+, 
) 

"'M 2m odd 
^' '^ 21 odd 

Bm(wr) _'E Y(t, )z'(t1 
_ ''+ 1) cos(wrt, 

_ �ý m+ý ) 

then for each w, the sinusoidal components of all the As are identical in mag- 

nitude (though sometimes opposite in sign), and similarly for the sinusoidal 

components of all the Bs, and again the sinusoidal components of the As and 
Bs of the same frequency all have a phase difference of 2. Hence we may 

proceed almost as before 

N-1 
E 

o 
A""2 

nhI ý(Wi)I2 E=0, -n' N22 
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IN-1 
- Bm(``'I) 

rn=O n'I77 (wl)I2 EN=2 154 0, -z 

N-i N-i N-i 
Var Am(wý) =E Var(A )+ EE Cov(Am Ami) 

m=0 m=0 m m'om m=0 , 

_ 
Zi 

Var(Am) 
m=0 

+ 
ýO 

Cov(Am Am 
i) 

+ rN-i Cov(Am Am i) 
m= 

+ 
i m= - 

N-3 
( +E Cov(Am, 2 A 

2) + 
N-i 

Z ( 2 CoV(A 
, 

2 A 
-2) 

m=O 
m+ Z m= 

m m 

+Z 
N-4 

Cov(Am, A 
3) + Z 

i 
2 Cov(A 

, 
2 A 

-3) 
m=0 

m+ 
m=3 

m m 

giving : 

V=N+ 4(N - 1)pz 
2N 2 

(N > 3) 
(75%) + 4(N - 2)p2(50%) + 4(N - 3)p2(25%) 

ni 1 

p(25%) _ zI(ti+z_)zVi) 
n, 

where 
j =-T 
n' 

p(75%) = 1nß z'(t; +,. 
)z, '(t1) 

Alternative forms of the formulae for the approximate numbers of degrees of 
freedom (describing the same relationships) are given by Welch (1967) and 
Harris (1978). 

2.4 Multivariate Time Series 

2.4.1 The Cross- Co- and Quadrature Spectra 

The basic tool for examining the relationship between two time series (X 

and Y, say) in the frequency domain is the (energy) cross-spectrum ýXy : 

1-1 Z 
&y(w: ) =-E X(ti)e_1wl tj 

n j-- 3 

)eiwit, Y*(tjJ 
JJ l 
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Because it is a complex function, the cross-spectrum is often split into its 

co-spectrum cxy and quadrature spectrum qxy : 

cxY = Re(&xy) 
9xy = -Im(ýxy) 

i. e. UY = cXY - i4XY 

If X and Y are identical then the cross-spectrum takes the values of the 

energy spectrum of the process, and since this is purely real, so does the co- 
spectrum (this explains the double subscript in the notation cxx of the energy 
spectrum). The statistical properties of these spectra have been summarised 
by Long (1980) : 

COV(CAB) OCD) = 
CACCBD + QACQBD + CADCBC + QADQBC 

v 

COV(CAB 
s QCD) 

OACQBD - QACOBD - CAD 'BC + qADCBC 

v 

CoV(gAB, QcD) CACCBD + qAcqBD - CADCBC - QADQBC 

v 

where A, B, C and D represent 4 not necessarily distinct time series, v is 

the number of degrees of freedom in the spectral estimates, and c and q 
represent the expectations of c and q respectively. Furthermore, Long (1980) 

states that for large v (> 25) the cs and qs are approximately Normally 
distributed. 
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Chapter 3 

Spectral Integrals and 
Moments 

3.1 Introduction 

Many of the formulae relating to HF radar analysis (and to a lesser extent 
wave buoy analysis) considered in this study involve integrals over the whole 
or a part of an energy spectrum. Such integrals are estimated by a summation 
of the observed energy spectrum (possibly with weights) over the appropriate 
range of frequencies. This chapter deals with the statistical properties of 
such estimators, and derives some new expressions for the variances and 

covariances of such integrals calculated from tapered data. 

Since for most practical applications it is more convenient to consider func- 

tions of frequency f rather than angular frequency w (w = 2ir f ), we shall 
now adopt this convention. 

3.2 The Definition of a Spectral Moment 

The j-th spectral moment m,, of a spectrum cxx(f) is defined as : 

00 
mj L . f'cxx(. f)df 
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This is estimated by ; 
ºný _ý f'txx (f )L1 

f 

3.3 The Distribution of the Total Energy 
in a Set of Frequency Bins of a Peri- 

odogram 

For an observed untapered energy spectrum, we have from section 2.3.4 : 

6xx (f) - 
cxx (f )XQ 

approx. 2 

Suppose we are interested in the total energy in a set Cl, of frequencies (for 

convenience, f will now refer to the frequency bin index number, and we will 
drop the frequency step term 0 f). 

E axx (f) =E 
cxx (f)X2 

/En f Eil 
2 

_ ýxx(f)E(X2, 
f) /E1 2 

_ CXX(f) 
IE ) 

Var Cxx (f) = Var 
cxx (f )X2, 

f 

ýEf2 f En 
2 

_ 
cx 4(f) Var(X2,, ) 

fen 
1: cXX (f) asymptotically _ 
fEf 

(3.1) 

The distribution of this sum over frequency bins may be approximated by 

hX2 
, 

(by equating the means and variances) where : 

E CXXIf) 

h_ ! En (3.2) 
2F, cxx (. f ) lEll 
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2E cxx (f) 
V fEn (3.3) 1: c3X (f) 

IEn 

3.4 Extension for a Tapered Time Series 

We will now consider the distribution of the total energy in a set of consec- 
utive frequency bins derived from a tapered time series. In addition to the 

assumptions in section 3.3, we define : 

X(t) .2+ C(f) 

Re(((f )) 0) 0 
Im(C(f )) "' MN2 

00 2 

cxx 

where MNp(pc, E) refers to the p-dimensional multivariate Normal distribu- 

tion with mean vector it and variance-covariance matix E. 

Suppose we now apply a taper z'(t) of order A (i. e. with 2A +1 coefficients) : 

z'(t) +--l--º of 

Since in practice tapers are even functions, af is purely real. 

Let 

Y(t) =X (t)z'(t) 

Hence, 

aa 
A()( t'Y (f) = Re2 > a, C (f - j) + Imp a. i ((f - j) 

Assuming that the summation is over a series of consecutive frequency bins, 

fL to fu, we have : 

A fu fu fu 

cYY(f) - 
Re2 a. iC(f - j) + Im2 aiC(f - ý) 

i=-a 1=fi 1=h i=-a 1=1L 
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and 

E Re' a1((f -j) _E Re a1C(f - j) 
f=fL j=-A 

a 
Re ajC(f - j) 

fV A 
afRe(C(f - j)) 

f=fL j=-A 
fu AA 

_EE afalRe(((f - j))Re(((f - 1)) 
f=fL J=-a 1=-A 

and similarly for the imaginary part, giving : 

fu fv AA 
E, iYY(f) -LEE ajai(Re(C(f - j)Re(((f - 1)) 

f=ft f=fL j=-A 1=-A 

+Im(((f - J)Im(((f -1))) 

Now, 

and 

E(C(f)) =0Vf 

E(C(fi)((f2)) = E(((fi))E(C(f2)) =0 Vfi 54 fz 
due to independence. Hence 

!u fu A 
E 6yy(f) =E aiE(Re2(C(f - j)) + Im2(C(f - j))) 

f=fL f=fL=-A 

A fu 
_E aj2E cxx(f - J) (3.4) 

j=-A f=fL 

We now turn our attention to the variance of our sum over frequency bins. 
Consider 

Jv 2 fv fu 
E CYY(f) =EE 6YY(f)6YY(g) 

J=JZ J=fz 9=fL 

fu fu 
_E> E(eyy(f) y(g)) 

f=ft g=fa 
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fu fu AA 

_EEEEE ajal(Re(C(f - j))Re(((f - 1)) 
f=fL 9=fL 

(j=-A 

t 
+Im(((f - j))Im(((f -1))) 

x 
PE a t, 

E a1, at, (Re(((9 - j'))Re(((9 - l')) 

+, m(((9 - j'))Im(C(9 - 1')))) 
fu fu AAAA 

_EEEEEE ajataj, at, (J + K+ L+ M) 
f=fL 9=fL j=-A 1=-A j'=-A tf=-. 1 

J= E(Re(((f - j))Re(((f -1))Re(((g - j'))Re(((g -1'))) 

where 
K= E(Re(((f - j))Re(((f -1))Im(((g - j'))Im(((g -1'))) 
L= E(Im(((f - j))Im(((f -1))Re(((g - j'))Re(((g -1'))) 
M= E(Im(((f - j))Im(C(f -1))Im(((g - j'))Im(((g -1'))) 

As the real and imaginary components of each C are independent with zero 
means, J, K, L, and M will be zero if any (-term appears only once in the 

relevant expression. Thus, K and L are only non-zero if j=1 and j' = 1'. 
Hence both become 

fu fu 
aýaý'CXX(f -ý)Cxx(9 

f=fL 9=1L =-A j'=_A 22 

A fu 2 

_ 
Cxx(f (3.5) (a2> 

ý 
f=ft 2 

At least one of three conditions needs to be satisfied for J and M to be 

non-zero : 
A: j=1andj'=1', 
13: f -j=g-j'andf -1=g-l', 
C: f-j=g-fandf-1=g-j'. 

The expressions for J and M will be quartic (in terms of a single (-term) 
if all the arguments are equal, i. e. if j=1 and j' = 1' (condition A) and 
f-j=g- j' (and hence f-1=g- 1', condition B). Thus, using set 

notation : 
An ß* quartic 

Consider AnC :j =l, j'=1', f -j=g- it, f -1=g-j' 
=f-j=g-j', f-1=g-1' 
i. e. AnC C Ii 
Hence AnC=Anz3nC 
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Figure 3.1: A graphical representation of conditions A, B and C. 

Consider Anß j=1, j'=1', f-j=g-j', f-1=g-1' 
=f-j=g-1', f-1=g-j' 
i. e. AnL3CC 

Hence AnB=AflBnC=AnC 

Consider zinC: f-j=g-j', f-1=g-l', f-j=g-1', f-1=g-i' 
#-f-j=f-l, g-j'=g-1' 
*i=1, jß=1' 
i. e. BncCA 
Hence%3nC = AnßnC = An13 =A 

This gives the Venn diagram in figure 3.1, which we will now use to evaluate 
JandM. 

Evaluating the contribution of condition A to J and M as a double quadratic 
(i. e. as a product of two quadratic expressions in C-terms) :j=1, j' = 1' 

gives 
fu fu AA 

a1aý, 
cxx(f - j) cxx(9 

f=A 9=1i j=-, \ j, =-A 
22 
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2 fu 

a2 E cxx(f - j) (3.6) 

j=-a ' f=IL 

Evaluating the contribution of condition B to J and M as a double quadratic : 

f -1=g-1'gives 

1 fu fv AA 

4EEE> aja, a9+1-fa9+1-fcxx(f - j)cxx(f - l) (3.7) 
f=ft 9=fL j=-A 1=-, \ 

Evaluating the contribution of condition C to J and M as a double quadratic : 
f-j=g-1', 
f-1=g-j'gives 

1 fu fu AA 
EZZ> a1a, a9+r-fag+1-fcxx(f - j)cxx(f - 1) (3.8) 

f=fL s=fL . 
i=-A 1=-a 

We note that this is the same as equation 3.7. 

Evaluating the contribution of condition A fl B to J and M as a double 

quadratic: j=1, j'=l', f -j =g-j', (f -l=g-l')gives 

1 iv fu A 
EEE aj'a9+j-fcx' x(f -j) (3.9) 

4 
f=fL 9=fL i=-a 

To consider the quartic case, it is first necessary to derive the expectation of 
the fourth power of a Normally distributed variable with zero mean. Let 

Z- N(0, h) = Z2 - hXi 

Now, 

E ((hx2)2) 
= Var(hX, + E2(hX2) 

= 2h2v + h2v2 

= h2v(v +2) 

Hence : 
E(Z4) = 3h2 

Hence, evaluating the contribution of condition An13 to J and M as a quartic 
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(in (-terms) gives 

3 fu fu A 
4EEE aY+j-fc' x(f - j) (3.10) 

f=fL O=fL 1=-A 

)2) 
We may now use set theory to evaluate E 6YY (f) by evaluating 

1=fL 
the following expression 

AU 13 UC=A+ £3 +C-3x (A n 13double quadratic) +An l3quartic 

Hence equations 3.5 and 3.6 to 3.10 combine to give 

EE 6yY(. f) 
2 fu 

f =fL 
fu 2 

CXX (f 
_ j)) 

=fL 
fu fu AA 

-1) +1 EE>E ajara9+5-fag+t-fcxx(f - j)cxx(f 2 f=fL 9=fL 7=-a 1=-A 
fu fu a 

4 fE 9E 
Eaaj2a9+j-1CXx(. f -) 

fu fu A 
+4>EI a2ia9+i-fcxx(f -. 7) 

f=fL 9=fL i=-A 

a2 
+4 E a? 

fu 
E cxx(. f-i) 

i=-A f=fL 

_E a2 
2 

E cxx(f -j) 
(j=-A 

f=fL 

+EEEE afaºa9+j-1a9+t-f cxx(f - j)cxx(f - l) 
f=fL 9=ft j=-A 1=-A 

Hence (using equation 3.4) 

flu fU fU A 

Var Cyy(f) = ,EZa. 9ala9+1-fa9+l-fcxx(f_j)Cxx(f-1) 
f=fL f=fL 9=fL 1=-A 

(3.11) 

Once more approximating using hX., equations 3.4 and 3.11 may be com- 
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bined to give 

v= 

1u 
2 a', 

lu 
cxx(f - j)2 

(3.12) 

and 

fu fu AA 
EEEEa. ialag+j-fa9+t-fcxx(f - j)cxx(f -1) f =fL 9=fL f=-A 1=-A 

fu fu AA 
EEEE ajala9+j-fag+º-fcxx(f - j)cxx(f - 1) 

h_ f=fL 9=fL j=-A 1=-A 
A fu 

2EajZcxx(f-j) 
j=-A f=fL 

(3.13) 

We note that under a square taper (A = 0, ao = 1) equations 3.12 and 3.13 

reduce to equations 3.3 and 3.2 respectively. 

3.5 The Distribution of a Weighted Sum of 
Periodogram Energy 

Consider now the sum over a set n of frequency bins of a periodogram where 
the energy in the bins has been weighted by some known function w(f) (note 

that if SZ covers the entire periodogram and w(f) = f' then the sum is the 

m-th order moment). 

E 
(Ew(f)axx(f)) 

=E 
(Ew(f)cxx1x. f) 

fEn fEf2 
2 

_ 1: w(f)cxx(f) 
JEf 

Var w(f)cxx(f) = Var w( f)cxx(f)X'2, f 
1Et1 JEtt 

2 

w2(f)cXx(f) by independence 
fEf 
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Approximating by hXl gives 

ý_ 

Li = 

IE 
w2(f)cx'x(f) 

2E w(f )cxx (f) 
(3.14) 

fEn 
2 

2E w(f)cxx(f) En (3.15) 

fE w2(f)CXx(. f) 

We note that equations 3.14 and 3.15 reduce to equations 3.2 and 3.3 respec- 
tively if w(f) =1 Vf E ft. 

3.6 The Covariance of Two Weighted Sums 

of Periodogram Energy 

Consider now two known weighting functions, wl(f) and W2 (f ). 

Cov wi(f)cxx(f), w2(f)ýxx(f) 
(f 

Ei] fEf 

Coy Z wl (f) Cxx (ý )X2 
,f> w2 (. f) 

cxx (2 )X2, f 
(f 

Eil fEn 

_E wl (f)w2(f) cX 
4(f) 

Var(X2, f) by independence 
! En 

_E wl(f)w2(f)cXx(f) (3.16) 
JEfl 

3.7 Extension for a Tapered Time Series 

Again, let us now apply a taper z'(t) : 

Let 

z'(t) Haf 

Y(t) =X (t)z'(t) 
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Summing over consecutive frequency bins, fL to fu, we have : 

fa fu A 
1: w(f)c'Y(f) = w(f)Re2 aj((f - 

f=fL f=fL j-A 
fu A 

+E w(f )Im2 E a, C(f - j) 
f=fL 

(j=-A 

fu AA 

_E w(f) EEa,; al(Re(C(f -j)Re(((f -1))+Im(C(f -j)Im(((f -1))) 
f=fL j=-A 1=-A 

Thus 

fu fv A 
E w(f) y(f) _ w(f) ajE(Re2(C(f -J))+Im(((f -j))) 

f=fL f=fL j_-, \ 
fv A 

_ w(f) E ajcxx(f -j) (3.17) 
f=fL j=-a 

Consider now : 

fu Z fu fu 

E> wlf)eyy(f) =EE w(r )ayy(f)w(9)eyy(g) 

J=. fL f =fL 9=lL 

fa fu 

= w(f) E w(9)E(Cyyffl YY(g)) 
f=fL 9=ft 

fu fu AAAA 

=E w(f) E w(g) EEEE ajalaj, al, (J +K+L+ M) 
f=ft 9=fL j=-A 1=-A jl=-A l'=-A 

(3.18) 

J= E(Re(((f - j))Re(((f -1))Re(((g - j'))Re(((g -1'))) 

where 
K= E(Re(((f - j))Re(((f -1))Im(((g - j'))Im(C(g -1'))) 
L= E(Im(((f - j))Im(((f -1))Re(((g - j'))Re(((g -1'))) 

1M= E(Im(((f - j))Im(((f -1))Im(((g - j'))Im(((g -1'))) 

We now use the same arguments as in section 3.3. The contribution of each 

of K and Ii is 

fu fu AA 
wýf) ý to (g) ýý iý, cxx(f A- Cxx(9 - J') 

f=fL 9=fL j=-, \ 1l=-a 22 
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A !v 
Cxx(f -j) 

2 
= aj' E w(f) 2 

(3.19) 
ý_-A ! =! L 

Turning our attention to J and M, we define our three conditions as before : 
A: j=1andj'=1', 
B. f -j =g -j'and f -1=g-1', 
C. f-j=g-1'and f-1=g-j'. 

Evaluating the contribution of A as a double quadratic :j=1, j' = 1' gives 

fu fu l\ E w(f) 'E w(9) E a2 a2 
Cxx(2 -i)Cxx(2-ýý) (3.20) 

f=fL s=fL 

Evaluating the contribution of 13 as a double quadratic :f-j=q- j', 
f -1=g-1'gives 

I fu fu AA 

4E w(f) E w(g) a, aia9+; -fag+t-fcxx(f -j)cxx(f -1) (3.21) 
f=fL g=fL 

and the contribution of C as a double quadratic gives the same result. 

Evaluating the contribution of A fl Bas a double quadratic 
F= 111f -ß =g-j', (f -l =g-l') gives 

fu fu A4 
w(f) w(g) E aý a9+s-f Cxx (f - j) (3.22) 

1=1L s=1L j=-a 

Evaluating the expectation of Af 13 as a quartic gives 

fu fu AZZ 
w(f) Z w(g) Z aýaä+. i-fýXx(. f - ý) (3.23) 

f-fL 9 fL i--x 

Hence, using set theory as before, equations 3.19 and 3.20 to 3.23 combine 
to give 

1v 

EE w(f) 'Y(f) 
l=fL 
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=24 
u Ef W(f) 

u Ef w(9) E E a; aý, cxx( f- j)cxx(9 - j') 
f =1L 9=1L j= -a . fl=-A 

+1 2 
fu 
E W(f) 

fu 
E w(g) 

A A E a1a: a9+f-fag+º-fcxx(f - j)cxx(f -1) 1=1L 9=1L 9=-A l=-A 

3 
4 

fu 
E w(f) 

fu 
E w(f) L 2 aja9+j-fcxx(f i) 

f=1L 9=1L j=-, \ 

+2 
fu 

w(f) 
fu 
E w(g) 

A 
E 2 a; a9+7-1Cxx(f -. l) 

9 ý J, 

+4 
fu 

E w(f) 
fu 

E 'w(9) 
A 

E 
A 

f- j)cxx(g - j') E a, a; icxx( f=1L 9=fL . j=-Afl=-a 

fu fu AA 
=E w(f) w (9) EE a2a2, cxx(f - j)cxx(g - jý) 

f=fL a=fL , i=-A . i'=-a 'j 
fu fu AA 

+E W(f) E w(g) 
,EE 

ajaia9+j-fag+l-fcxx(f -j)cxx(f - l) 
f=fL s=fL 

Hence 

Var E w(f)Oyy(f) 
(11L 

fu fu IN A 
=E w(f) E w(g) EE a1a, a9+. i-Ja9+t-Jcxx(f -j)cxx(f - l) 

J=JL 9=JL 1=-A 1=-A 

(3.24) 

and approximating using hX2, equations 3.17 and 3.24 combine to give 

fu a2 
2 F, w(f) L a; cxx(f - ý) 

V 
f=fLa 

fu fu AA 
E w(f) E W(g) EE ajala9+i-fag+l-fcxx(f - j)cxx(f - 1) 

f=fL 9=fL 7=-A l=-, \ 

(3.25) 

and 

w(f) 
ý 

w(g) EE afala9+1-fag+r-fcxx(f -j)cxx(f -1) 
h= f=f' 9=fL i=-A 1=-A 

2E w(j) E a; cxx(f -j) 1=1L j=-A 
(3.26) 

We note that under a square taper (A = 0, ao = 1) equations 3.25 and 3.26 

reduce to equations 3.15 and 3.14 respectively, and that if w(f) =1 Vf E 
[fi, fu] then they reduce to equations 3.12 and 3.13 respectively. 
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3.8 Extension for the Covariance of Two Wei- 

ghted Sums of Spectral Energy of a Ta- 

pered Time Series 

Consider again two known weighting functions, wl (f) and w2 (f ). 

E 
L. ý wi(fýcYYlfý w2(f)ýYYýfý 

f=ft f=fL 

fu fu 
=E wl(. f) E w2(9)E(eyy(f)6yy(g)) 

f=fL g=fL 

IU fu AA 
E wi(f) E W2(9) a3a: a9+j-fag+1-1Cxx(f - j)cxx(f - 1) 

f=fi s=fL 

Thus 

fu fU 
Cov E wi(f)cYY(f), E w2(f)ýYY(fl 

f=fL f=fL 
iv fu 

(AA E wi(f) E W2(9) E ajala9+9-fag+t-fcxx(f -. %)cxx(f - 
1) 

f=fL 9=fL 7=-a 1_-A 

(3.27) 

We note that under a square taper (A = 0, ao = 1) equation 3.27 reduces to 

equation 3.16. 

3.9 Comment 

The formulae presented in this chapter give the statistical properties of esti- 

mated spectral integrals in terms of quantities which are either known (the 

taper used and the weighting function(s), if any) or estimable (the energy 

spectrum). It is thus possible to produce approximate confidence intervals 

for the measurement of interest from the observed spectrum. 
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Chapter 4 

Wave Buoy Theory 

4.1 Introduction 

A frequently used method for measuring ocean waves in situ is with the use 
of a wave buoy. Such instruments are often used as a standard by which to 

evaluate the performance of other wave measuring systems. Older models 
(such as Datawell's original Waverider) measure vertical motion at a single 
point. Typical directional wave buoys (such as Datawell's Wavec) addition- 
ally measure the slope of the sea surface in two directions (such as north and 
east) at the same point. In this chapter we examine the statistical properties 
of a variety of wave parameters derived from wave buoy measurements. 

4.2 The Non-Directional Ocean Wave Spec- 

trum 

The non-directional wave spectrum of the sea surface is the energy spectrum 

of its vertical motion at a fixed point. These spectral estimates have a X2 
distribution as described in section 2.3.4 (Figure 4.1 shows an example of a 

non-directional wave spectrum as measured by a wave buoy, with its 90% 

confidence interval). 

From this spectrum, significant waveheight (H3) and mean wave period (T�, ) 
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Figure 4.1: An example of a non-directional wave spectrum (with its 90% 

confidence interval) as measured by a Wavec directional wave buoy. The main 
mode represents waves generated by the local wind. The lower frequency 

mode (peaking at 90mHz) represents a swell wave component. 
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may be estimated from the following formulae : 

H, 
=4 mo 

Am = 
mo 
rn1 

where thj is the observed j-th spectral moment (see section 3.2). As these 
are functions of weighted integrals of the wave spectrum, they behave as 
described in chapter 3. This allows us to produce approximate confidence 
intervals by using a Normal approximation (see Krogstad et al. (1988)) and 
estimating the variances with a Taylor expansion to first order 

4Var(mo) 
Var(H. ) . ̂r MO 

(Tm) , -; 
Var(r"rmo) moCov(rno, ml) m2Var(ml) 

Var 
mi mi + mi 

Figures 4.2 and 4.3 respectively show significant waveheight and mean wave 
period estimates from a wave buoy, each with their 90% confidence intervals. 
At the time at which these measurements were taken, the sea state was rough 
but by no means stormy. 

4.3 Directional Parameters 

4.3.1 Truncated Estimation of the Directional Wave 

Spectrum 

Let X (t, x) describe the vertical displacement of the sea surface. From sec- 
tion 2.2.3 we have : 

X (t, x) =l et w-k. x)dR(w, k) 

w, k 

Consider the northward slope of this process : 

8X (t, x) 
= -i 

fk 
cos(O)e'(wt-ka`)dR(w, k) 

OXN 
w, k 

where XN is the northerly component of x, k= IkI and 0 is the direction of 

49 



2.. 

2. c 

l. t 

E 1. d 

t 

_01 
1.4 

m 

1.2 

N 
C 

1.0 

m 0.8 

U, 
0.6 

0.4 

0.2 

0.0 

Figure 4.2: Significant waveheight measurements (with their 90% confi- 
dence intervals) as measured by a Wavec directional wave buoy on October 
10th 1985. 
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Figure 4.3: Mean wave period measurements (with their 90% confidence 
intervals) as measured by a Wavec directional wave buoy on October 10th 

1985. 
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k measured clockwise from the north. 

Consider now the auto-covariance function of this process -yNN(h, r) : 

7NN(h, r) =E -ik cos(0)e`(w(e+h)-k. (x+r))dR(w, k) 

f ik' cos(0')e-'(w't-k"x)dR"(w', k') 

=f kk'cos(O) cos(9')e'(wh-k. r)et(w-w')tei(k'-k). x 

w, k, wl, kl 

E(dR(w, k)dR*(w', k')) 

=f k2 cos, (B)e`(wh-k. r)dG(w, k) 

w, k 

Hence, the energy spectrum of the northward slope equals that of the vertical 
displacement multiplied by k2 cos2(B). 

Similarly, the energy spectrum of the eastward slope equals that of the ver- 
tical displacement multiplied by k2 sin2(0). 

Also, we get the following multipliers for the various cross-spectra : 

18t Series 2"d Series Multiplier 

Vertical North Slope ik cos(0) 
Vertical East Slope ik sin (0) 

North Slope East Slope k2 cos(O) sin(O) 

It is worth noting that all the above are either purely real or purely imaginary. 

From Long (1980) we get : 

Var(cvv(w)) 

Var(cNN(w)) 

Var(CEE (w)) 

= cVV(w) 

Var(4vNv(w)) = 

Var(gvE(w)) = 

Var(cNE(W)) _ 

Cov(cvv(w), gvN(w)) _ 

CNN(W 

CEE( )) 

CVV(w)CNN(W)+ gVN(w) 
2 

CVV(W)CEE(w) + 9VE(W) 
2 

CNN (W) CEE (W) + qNE IW 
) 

2 
CVV(W)gVN(w) 
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Cov(cvv(W), gvE(W)) _ 
COV(CVV(W), CNE(W)) 

COV(9VN(W), 4VE(w)) _ 

COV(q^VN(w), 6NE(W)) _ 

COV(gVE(W), CNE(W)) _ 

cvv(w)gvE(W) 

gvN(w)qvE(w) 

cyy(W)ENE(W) + gyN(w)qyE(w 

2 
QVN(w)cNE(w) + CNN(w)gVE(w) 

2 
QVE(w)cNE(J)+ cEE(w)QVN(w) 

2 
(4.1) 

These variances and covariances may be estimated by substituting the esti- 
mated spectra for the true spectra. 

Using the deep water dispersion relationship (see section 1.3.2), let 

g2 
a2 EG 

(w, 
9 

sin(0) F(w, 0) = 2w3T awae 
(where F is the directional ocean wave spectrum, and assuming that this 

second derivative exists). At any fixed w, F is periodic in 0: 

F(w, 9) = 
a02 +Z aj(w) cos(0) + bo(w) sin(g) 

where the ajs and bis are the Fourier coefficients of F, and hence : 

ao(w) 
1 12" F(w, 6)d8 
ir 

_ CVV(w) 

al (w) 1 f2ir F(w, B) cos(0)d0 =-o 
it 

_ ýk gvN(w) 

bl (w) = -11f2, 
rF(w, 0) sin(8)dO 

_ 

7r o 
- 

gvE(w) - 

a2(w) 
1 j2" F(w, 9) cos(20)dO 
7r 

= 
2ir 

-1fo F(w, 6)(cos2(O) - sin2(9)d9 

_ 7k2 (CNN(w) - CEE(w)) 

b2(w) = 
1 2ir 1j 

F(w, B) sin(20)d0 
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1 2ir f F(w, 9) (2 sin(g) cos(B))d6 
7r o 

2 
_ 

ýkZ 
CNE(W) (4.2) 

Hence, a typical directional wave buoy measures the first five Fourier coef- 
ficients of the directional wave spectrum at each frequency. Summing these 
coefficients gives an approximation for F(w, 0) whose variance may be calcu- 
lated by combining equations 4.1 and 4.2. 

4.3.2 Model and Parameter Estimation of the Direc- 

tional Wave Spectrum 

The true directional wave spectrum is always positive, but the incomplete 
Fourier coefficient sum of equations 4.2 can lead to a negative estimate of 
this spectrum. An alternative approach is to fit some directional distribution 
(such as the cosine-power distribution, see Long (1980)) to these Fourier 

coefficients. This has the problem of having to make assumptions about 
the shape of the underlying directional distribution (for instance, the cosine- 
power distribution is unimodal and symmetrical). 

A third approach is to estimate summary parameters of the directional dis- 

tribution. This approach (described by Kuik and van Vledder (1984)) was 
chosen for NURWEC2. We can (for example) define mean direction (Bo) 

and directional spread (co) as measures of location and dispersion of the un- 
derlying directional distribution respectively (dropping the w arguments for 

clarity) : 

Oo = tan_1 
bl 

al 

17o = 2-2 ll a+b 
ao0 

Using a Taylor series expansion, the variances of the estimators of the above 

parameters are to first order : 

Var(9o) - 
aB, 9 

2 
Var(äl) F 

ago 2 
Var(bl) -}- 2aeo 

aeacov(äi, bi) 
aal abl aal äb1 

, 70)2 
2 

70 

, 
Var(bl) Var(di) + ab 

Var(vo) = aaaa00 

2 
Var(äo) + aal 
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500 000 +28ao öaýCov(äo, 
äl) + 2öao 8b1 

Cov(ao, b1) 

aoo 0'70 +2 öbl 
Cov(al, l) 

äa1 

4.4 Equipment Problems 

Unfortunately, wave buoy technology has certain associated problems. These 
include : 

" Wave buoys have a tendency to capsize in the stormier conditions of 
higher sea states, and are thus unreliable in the situations where the 
data is of most interest (Allender et al. (1989)). 

" High amplitude waves may obstruct the radio transmission of data from 

the wave buoy to the data collection site (Wyatt et al. (1985)). 

" There can be a tendency for the wave buoys to travel around (or even 
through) peaks in the sea surface, rather than over them (for instance 
Datawell's Waverider during WADIC, Allender et al. (1989)). 

" Inevitably, there is the possibility of mechanical and instrumentation 

failures (for instance most wave buoy systems used during WADIC, 

Allender et al. (1989)). 

Hence, although wave buoys are often used as a standard by which to evaluate 

other wave measuring systems, they have their own faults and any intercom- 

parison should bear this in mind (see also Sova and Wyatt (1991)). An 

intercomparison of wave buoy and HF radar measurements using data from 

the NURWEC2 experiment is presented in chapter 7. 
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Chapter 5 

HF Radar Theory 

5.1 Introduction 

Over the past decade HF (High Frequency) radar has become an impor- 
tant tool for ocean wave (and wind) measurement. The main advantage of 
HF radar over other systems is the combination of wide area coverage and 
observation of the full directional wave spectrum. The main disadvantage 
is the mathematical complexity behind the theory which has only relatively 
recently been overcome. In this chapter this theory is introduced from the 

point of view of deriving the statistical properties of the wave parameters 
thus measured. 

5.2 Pulse and FMICW Radars 

When a radar signal is transmitted from a source, the beam typically "illu- 

minates" a large area of sea (shaped like a wide circle segment, and in the 

case of the NURWEC2 radars, up to 200 kilometres in length). However, 

the antennae which receive the returning signal "observe" over a much nar- 

rower arc (such as 12°). In the NURWEC2 experiment, a selection of arcs 

was available at each radar site, and the operator would choose which to 

use. The returning signal from each arc contains information over a variety 
of distances. The process of separating the contribution from each distance 
is known as range gating. The method of range gating depends on whether 
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a pulse or FMICW (Frequency Modulated Interrupted Continuous Wave) 

radar is being used. 

A pulse radar emits short equally spaced signals of a fixed frequency. Range 
is proportional to the time it takes for the signal to return, hence the range 
gating takes place in the time domain. 

An FMICW radar emits continual "chirps" -a signal whose frequency grad- 
ually increases and then suddenly drops in a saw-tooth manner. As there 
is no waiting between chirps, signals are constantly arriving from all ranges. 
However, signals from further away will have a larger frequency difference 
from the emitted signal than signals from closer ranges. This is because the 

emitted signal will have had more time to increase its own frequency. Hence, 

range gating takes place in the frequency domain. As the radars used in 
NURWEC2 were FMICW, we shall restrict our attention to this system. 

Each chirp of an FMICW signal produces a short (e. g. 0.4secs) time series 
whose DFT gives a single complex number representing the radar backscatter 

at each range (or more correctly, for each range cell or range bin). Thus a 
series of such chirps will produce a complex time series for each range cell, 
spectral analysis of which produces the Doppler spectrum for that range cell. 

5.3 The Effect of Ocean Waves on a Radar 

Signal 

5.3.1 The First Order Effect 

When a radar beam (radio wave) comes into "contact" with the ocean sur- 
face, it will generally scatter in many directions. However, if it meets waves 
travelling either directly towards or directly away from the radar site, and the 

wavelength of those waves is half the radar wavelength, then a first order ef- 
fect known as Bragg resonance occurs (see figure 5.1) whereby those parts of 
the radar signal which are scattered back towards the radar source interfere 

constructively. Since the waves are moving (in this case either towards or 

away from the radar site) a frequency shift (the Doppler effect, see Shear- 

man (1983)) occurs (in fact there are two separate shifts, one positive and 

one negative, for approaching and receding waves respectively). This may 
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Figure 5.1: First order Bragg resonance. 

be examined using a power spectrum (see section 2.3.1) of a time series of 
the returning radar signal. This power spectrum is referred to as a Doppler 

spectrum. Figure 5.2 shows an example of a Doppler spectrum. The promi- 
nent peak on each side of the graph (i. e. positive and negative frequency 

shift) shows the first order Bragg resonance effect (one peak each for the 

approaching and receding ocean waves). 

5.3.2 Second Order Effects 

As well as the first order effect, figure 5.2 also shows some power over the 

continua of frequencies to either side of the Bragg peaks. This is due to 

second order resonance which has three main sources (Shearman (1983)) : 

The Trochoidal Effect 

Since ocean waves are trochoidal in shape (as opposed to pure sinusoids), 
Bragg resonance is also caused by higher order harmonics of longer ocean 

waves. Since these longer waves move at faster speeds, the shift in frequency 
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Figure 5,2: An observed Doppler spectrum (it is conventional to plot 
Doppler spectra on a decibel scale because the dynamic range is large). 
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Figure 5.3: The corner reflector effect. 

is greater than that for the first order effect. 

The Corner Reflector Effect 

If two ocean waves of suitable wavelength are travelling perpendicularly to 

each other, the radar beam will bounce off one and then the other and cause 
Bragg resonance at the radar site (see figure 5.3). The frequency shifts thus 

created depend on the velocities of both ocean waves. 

The Interaction Wave Effect 

Where two ocean waves cross, an interaction occurs. If the interaction has a 

wavelength half that of the radio wave and is moving either directly towards 

or directly away from the radar site, then Bragg resonance is again created 
(see figure 5.4). Again, the frequency shifts thus created depend on the 

velocities of both ocean waves. 

Because first order power is of a much higher level than the surrounding 
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Figure 5.4: The interaction effect. 

------Interaction 

second order continuum, it can easily leak into neighbouring frequencies, 
thereby corrupting the spectrum. Consequently it is necessary to use a taper 

such as the four point Blackman-Harris taper (see section 2.3.5). Figure 5.5 

shows part of a Doppler spectrum calculated with and without such a taper, 

and the following three features of using the taper are evident : 

1. Frequencies with relatively low power are more clearly defined (e. g. 

around the first-order peak). 

2. The first-order peak is broadened slightly. 

3. The spectrum is "smoother". 

5.3.3 Statistical Properties of the Doppler Spectrum 

Barrick and Snider (1977) use central limit arguments to demonstrate the 

approximate Normality of HF radar backscatter based on the assumption of 
the approximate Normality of the ocean surface. Under this assumption we 

may use equation 2.7 from section 2.3.4 to obtain an approximate expression 
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Figure 5.5: A Doppler spectrum calculated using (broken line) and without 
using (solid line) a taper. 
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for the distribution of an observed Doppler spectrum (this result is also given 
by Barrick and Snider (1977) and Barrick (1980)) : 

SD(f) 
'SD(f) 

(5.1) 
v 

where SD(f) is the estimated Doppler spectrum, SD(f) is its expectation, 
and v is the number of its degrees of freedom (see section 2.3.6 - to minimise 
leakage from the first order Bragg peaks, a 4-point Blackman-Harris taper 
(see section 2.3.5) is typically applied to the data). From equation 5.1, we 
derive the following 100(1-a)% confidence interval for the "underlying" (i. e. 
expected) Doppler spectrum : 

I vSD(f) VSD(f) 
Xß, 1- X! Z 

Figure 5.6 shows an example Doppler spectrum with its (pointwise) 90% 

confidence interval. Because of the multiplicative nature of equation 5.1, the 

confidence interval has a uniform width on a logarithmic scale. 

5.4 Parameters derived from the Doppler 

Spectra 

There are certain wind and wave parameters which may be calculated directly 

from the Doppler spectra. This section describes the calculation (as used in 

the NURWEC2 experiment) of each such parameter, and the derivation of 
their confidence intervals. 

5.4.1 Wind Direction 

For radio frequencies in the HF range, first order Bragg resonance is caused 
by waves which have been generated by the local wind. Wind direction 

(relative to the direction of the radar signal) is calculated from the two first 

order peaks as described by Wyatt (1983) : 

COS(OW) _ -1 
1rr 

2ý (5.2) 
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Figure 5.6: A Doppler spectrum (solid line) with its 90% confidence interval 
(broken lines). 
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Ow = wind direction with respect to radar beam 
r= °1= 

where °l+ 
a1+ = power in positive first order peak 
Cl... = power in negative first order peak 

We get from equation 5.1 : 

r= 0'1+ 

a, - x XI/v 
ti (71+ x X21V 

__T 

with both X2 variables independent 

P- rr,,,,, approx. 

where r", Qi_ and &1+ are the estimates of r, vl_ and o. respectively. 

We may now estimate the variance of Ow by using a Taylor series expansion : 

öcos(9w) (1-r)(-1+ý)+(-1-r-2ý 

är (1 - r)2 
(N/r- - 1) 2 

7r(1 
- r) (1 - r)2 

Hence, 

aew 
- -1 1-\ (., /-1)2 

Or 1 V- 
cos2(Bw) Vr-(1 - r) (1 - r)2 

_ 
1-r 1- f (f-1)2 

-2r+2 /(1 - r) (1 - r)2 

We may thus estimate Var(Bw) by substituting r" for r in the following ap- 
proximation : 

s 
Var(ew) = 

aOW Var(r") approx. to first order 
r 

where Var(r") = r2-2"(2-2) 24 (i. e. the variance of the F,,,,, distribution). 
Using a Normal approximation, we may construct approximate confidence 
intervals for wind direction. Figure 5.7 shows a plot of wind direction (with 

respect to the radar beam) with its 90% confidence interval. 

Formula 5.2 gives wind direction (relative to the radar beam) only in terms of 
its cosine. This results in a directional ambiguity since each possible value of 
the cosine function (except for ±1) is associated with two directions. Thus, 
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Figure 5.7: A plot of wind direction (with respect to the radar beam) with 
its 90% confidence interval, as a function of distance from the radar site, 
taken on March 27tß' 1987. 
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Figure 5.8: A plot of (absolute) wind direction with its 90% confidence 
interval during March 27th 1987. 

absolute wind direction (i. e. relative to True North) needs to be be estimated 
by comparing estimates from two radar sites (which by necessity will be 

operating either at different radio frequencies or non-simultaneously) and 
combining those estimates which most closely match. The NURWEC2 wind 
direction data have been calculated using data from the Dyfed site. Data 
from the Devon site have only been used to resolve the directional ambiguity 
- they have not been averaged with the Dyfed site data. Figure 5.8 shows a 
plot of absolute wind direction with its 90% confidence interval as a function 

of time. 

5.4.2 Significant Waveheight 

There are two formulae (each valid under different conditions - see below) 
describing the relationship between significant waveheight (H� defined as 
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four times the standard deviation of the sea surface, see section 1.3.2) and 
the Doppler spectrum (see Wyatt et at. (1986) and Wyatt (1988c)) : 

72(x%) + rkff 
0'2(7) 

H. _ Oko (5.3) 

H, =2x ko (5.4) 
(vIEc(17)+yEo)) aQ 

i is the normalised Doppler frequency 

02(77) is the Doppler spectrum divided 
by the first order Bragg power 

where HU, HL define the upper and lower side lobes 

of the second order continuum 
ko is the radar wavenumber 
cx, Q, 0 are known engineering parameters 

The normalised frequency, 77, is a linear function of frequency such that the 

negative Bragg peak occurs at 17 = -1, and the positive Bragg peak occurs 
at z= +1. These formulae refer only to the half of the Doppler spectrum 
which contains the Bragg peak with the most power, and it is the power of 
this Bragg peak by which the second order power is divided to give o2(i ). HL 

and Hu are the sets of frequency bins corresponding to iE [0.4gp, qp] and 
qE [gp, 1.67p] respectively, excluding those bins which contain first order 
power (qp is the normalised frequency of the Bragg peak with most energy, 
hence lgpl = 1). 

Formula 5.3 is appropriate if the mode wave direction is (approximately) 

perpendicular to the radar beam, otherwise formula 5.4 is used (although 

at this stage of the analysis, such directional information is unavailable). 
The different formulae result from the very different form that the Doppler 

spectrum takes when the mode wave direction is perpendicular to the radar 
beam (see Wyatt (1988c)). Both of these formulae are functions of sums 
of spectral power (initially dividing by first order power). Thus, estimating 
vL and vu (the number of degrees in the spectral integrals over HL and Hu 

respectively) using equation 3.12 we get : 

E U2(9)- FvL, �E(E o2(9)) 
HL Hy 
E02(77) 

^' F, �E(E o2(ii)) 
Hu Hu 
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where v is the number of degrees of freedom in the Doppler spectral estimates. 
This allows us to estimate the variance of ft, (the estimate of H, ) using a 
Taylor series expansion. Hence, when using formula 5.3 : 

4Qý(n)Var(FýL, ý)E2(H a2(q)) +ao, (ý)Var(Fýv, ý)E2(E ýs(ýl)) 

Var(H3) = HL HU 
V)2 k2 

approx. to first order 

(5.5) 

and when using formula 5.4 : 

Var(H, ) _ 
4HLC2(n)Var(F,, L,, 

)E2(H °2(ý1)) + 4XUCS(n)Var(FY,,, 
)E2(H a2(77)) 

4 
2a-2 

E 02(7%) +E 
(T, 

a2(ß% 
a2ß2 

X2 kö 

approx. to first order 

(5.6) 

Using a Normal approximation, formulae 5.5 and 5.6 may be used to con- 

struct approximate confidence intervals for significant waveheight. Figure 5.9 

shows a plot of significant waveheight (using both formulae - the higher and 
lower lines represent formula 5.3 and 5.4, respectively) with 90% confidence 
intervals. Barrick (1980) gives an alternative expression for the standard de- 

viation of the significant waveheight estimate which is based on the assump- 
tion that the second-order part of the Doppler spectrum has (approximately) 

a particular shape. Equations 5.5 and 5.6 do not rely on any such assump- 
tion as the shape of the Doppler spectrum is estimated from the observed 
Doppler spectrum itself. 

In practice, significant waveheight is estimated by combining the measure- 

ments from two radars which most closely match. If only one of these match- 
ing measurements is from formula 5.4 then that is chosen as the estimate, 

otherwise the mean is taken. Figure 5.10 shows a plot of significant wave- 
height with its 90% confidence interval as a function of time. 
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Figure 5.9: A plot of significant waveheight with 90% confidence intervals, 

as a function of distance from the radar site (with the higher and lower lines 

representing formula 5.3 and 5.4, respectively). 
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Figure 5.10: A plot of significant waveheight with its 90% confidence inter- 
val during March 27th 1987. 
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5.4.3 Mean Wave Period 

The following formula describes the relationship between mean wave period 
and the Doppler spectrum (see Wyatt et al. (1986)) : 

E e20) E e2(17) 
HLI Htyl 
es(n)Ilol-111a+ e(n)sllnl-ii 

la 
HV HUI 

_e 2 

Tm = (5.7) 
Ofe 

77 is the normalised Doppler frequency 

c2(q) is the Doppler spectrum divided 
by the first order Bragg power 

where Hu,, HL, define the upper and lower side lobes 

of the second order continuum 
fB is the Bragg frequency 

ý, 0 are known engineering parameters 

HL, and HU, are the sets of frequency bins corresponding to iE (0,77P) 

and 17 E [17p, 2rjp] respectively, excluding those bins which contain first order 

energy (17p is the normalised frequency of the Bragg peak with most energy, 

and hence I'ip l= 1). 

Formula 5.7 involves ratios of weighted sums of Doppler spectral energy. The 

variances and covariances of these weighted sums may be estimated from 

formulae 3.24 and 3.27. This information allows us to estimate the variance 

of Tm (the estimate of T�, ) using a Taylor series expansion. Let 

Al = O2(? 7) 
HL, 

Bl =E 02(17)lJ1I -11 HLI 

A2 =E O2('7) 
HU, 

B2 = C2(71)II71J-11 
Hu, 

YL 
Bl 

YU = 
A2 
B2 
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i. e. 

then, 

(YLJB+Yufa 

7' 2 
M cfe 

= 
Var(Al) 

_ 
2E(A1)Cov(A1, Bl) E2(A1)Var(Bl) Var(YL) 

E2(B1 ) E3(B) + E4(B1) to first order 

and similarly, 

Var(A2) 
_ 

2E(A2)Cov(A2, B2) E2(A2)Var(B2) var (Yu) _ E2(B2) E3(B2) + E4(B 2) 
to first order 

Hence, we may estimate Var(Tm) by substituting &2(i) for c2(i) : 

Var(t, ) = 
Var(YL 4+ Var(Yu) (5.8) 2 

Using a Normal approximation, formula 5.8 may be used to construct an 
approximate confidence interval for mean wave period. Figure 5.11 shows a 
plot of mean wave period with its 90% confidence intervals. 

Although mean wave period can be measured by a single radar, in prac- 
tice measurements from two radar are combined. If significant waveheight 
was derived from only one radar site, then the mean period measurement 
is taken from the same site. If the significant waveheight measurement is 
derived from both sites, then the mean period measurement is taken as the 

average of the mean period measurements from each site. (We recall that 

although significant waveheight is, under certain conditions, calculated using 
the measurement from only one radar site, it requires information from both 

sites, as described in section 5.4.2). Figure 5.12 shows a plot of mean wave 
period with its 90% confidence interval as a function of time. 

5.4.4 Wind Speed 

Dexter and Theodoridis (1982) give the following formula to describe the 

relationship between wind speed, significant waveheight and peak wave pe- 
riod (based on a wind-wave model which assumes that all waves have been 
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Figure 5.11: A plot of mean wave period with its 90% confidence interval, 
as a function of distance from the radar site, taken on March 27th 1987. 
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Figure 5.12: A plot of mean wave period with its 90% confidence interval 
during March 27th 1987. 
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generated by the local wind) : 

gHe 
Uý = 0.26 tanh p2x (3159)(TU 

J 00 

where U is wind speed, H, is significant waveheight, Tp is peak wave period 
(which may be estimated by 1.25T�ß) and g is the acceleration due to gravity. 
Because of the structure of this formula, wind speed is in practice derived 

using the following iterative scheme : 

gHs Ui 

0.26 tanh ( )' x 3.59 hl C\ 
J 

where U1 is the is the wind speed estimate after the j-th iteration. With an 
initial guess of Uo = 10m/s, this process typically converges after between 2 

and 6 iterations. 

Consider each iteration as producing the triple (U� H� Tp) from (U3_1, H� Tp) 

and let 

aui pi = aui_1 
au; 4i _ -aH, 

au; Pi=aTp 

pj qj rr 
Dj= 010 

001 

Then, using a Taylor expansion 

Vj = DjVj_iDj to first order 

Var(UÜ) Cov(Uj, H, ) Cov(UÜ, 7'p) 

where Vi = Cov(Ü� H, ) Var(ft. ) Cov(H� Tp) 

Cov(Ü� Tp) Cov(H� Tp) Var(7'p) 

Hence, 

Var(U,, ) = pj2Var(UJ_1) + qq Var(H, ) + rj2Var(Tp) 

+2p, q, Cov(6'j-i, Ha) + 2p1rrCov(U, -i' 
7'p) 

76 



+2girjCov(H� 7'p) 

Cov(Ü� H, ) = ppCov(Ü� H, ) + gqVar(H, ) + rjCov(H� Tp) 

Cov(Ü� Tp) = p1Cov(Ü� TP) + gqCov(H� 7'p) + r1Var(7'p) 

to first order, where since Tp = 1.25Tm : 

Var(Tt) = 1.252Var(im) 

Cov(H� i, ) = 1.25Cov(H� Tm) 

With this information, it is possible to produce a first order estimate of the 
variance of the wind speed measurement. However, wind speed variances 
estimated from simulated significant waveheight and mean wave period data 

were observed to be in the range of 0.2 - 2.0m2/s2, and quite different from 
their theoretical first order estimates. This suggests that such first order 
approximations are not accurate estimates of the variance of the observed 
wind speed. Fortunately, this is not a serious problem since the purpose 
of calculating wind speed is the production of a Pierson-Moskovitz model 
spectrum estimate (see section 5.4.5). This model estimate is used as a "first 

guess" in the estimation of the full directional frequency spectrum of wave 
power (see section 5.5.2). It is only left unaltered for wave frequencies over 
200mHz (approx. ) over which range the model shows little variation, even 
for large differences in wind speed. Figure 5.13 shows a plot of wind speed. 

5.4.5 The Wind-Driven Spectrum 

The Pierson-Moskovitz model wave spectrum has the following formula (see 

Tucker (1991)) : 

S(f) = apNr9'(2r)-4 f-5e-Q(3*UJ)4 

aPM = 0.0081 
Q=0.74 

where f is frequency 
U is wind speed 
S is the ocean wave power spectrum 

This model is based on the assumption that all waves present have been 

generated by the local wind, and is used as an initial guess in the estimation 
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Figure 5.13: A plot of wind speed during March 27th 1987, as a function of 
time. 
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Figure 5.14: The high frequency parts of 3 Pierson-Moskovitz spectra. The 
top, middle and bottom lines correspond to wind speeds of 20,15 and 10m/s, 
respectively. 

of the full directional ocean wave spectrum (see section 5.5.2). Only the high 
frequency part (above about 200mHz) of this spectrum is unchanged during 
the radar analysis procedure. Figure 5.14 shows how for 3 quite different 

wind speeds this part of the spectrum is fairly similar. 
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5.5 The Inversion Problem 

5.5.1 Introduction 

In section 5.4 we examined the statistical properties of the ocean wave pa- 
rameters which may be directly derived from the Doppler spectra. Extraction 

of further information requires the inversion of a non-linear equation which 
describes the relationship between a Doppler spectrum and the ocean wave 
spectrum : 

o, (9) =1 K(9, r)S(k(r, 0), 0)s(k'(ri, 0), 0'(i , 0))dO (5.9) 

where K is a kernel containing electromagnetic and hydrodynamic coupling 
coefficients, o is a Doppler spectrum, 77 is the normalised Doppler frequency 

and S is the ocean wave spectrum (here as a function of wavenumber and 
direction). K, k, k' and 0' are known functions which depend on the direction 

and frequency of the radar signal. 

Equation 5.9 is known as Barrick's equation. 

5.5.2 Analysis Overview and the Inversion Procedure 

Figure 5.15 summarises the analysis procedure for obtaining ocean wave mea- 

surements from the Doppler spectra produced by an HF radar (spectra from 

two radars are required in order to resolve a directional ambiguity) as used 
for the NURWEC2 experiment. Wyatt (1990b) has developed an iterative 

procedure for the inversion of Barrick's equation (5.9) to obtain an estimate 
of the ocean wave spectrum. This involves using a modified form of Barrick's 

equation (5.9) : 

o, j(9) =f 11(0,9)S(k1(r1, e), 0)s'(k; (9, e), e; (9, e))de, j =1... 4 (5.10) 

Here S' refers to the local wind-driven part of the ocean wave spectrum 

which is estimated by the Pierson-Moskovitz wind-wave model spectrum (see 

section 5.4.5), adjusted to include a directional term. The subscript j refers to 

the four versions we have of equation 5.10 - one for each Doppler spectrum 

side-lobe (the two side-lobes from each side of the main first order Bragg lines 

are used from each radar). It is worth noting that these modified formulae 
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Figure 5.15: Overview of the analysis procedure for obtaining ocean wave 
measurements using HF radar - the arrows show which parameter estimates 
are required to produce other parameter estimates (e. g. estimates of both 

significant waveheight and mean period are used in the estimation of wind 
speed). 
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are only valid over the limited range of it-values which involve interactions 
between short waves (described by S') and long waves (described by S). This 
limitation defines the upper wave frequency bound for the inversion (typically 

about 200mHz), the lower wave frequency bound being defined by the points 
of separation of the first and second order parts of the Doppler spectra. 

The iterative inversion procedure derived by Wyatt (1990b) is as follows (5j,: 

refers to the 1-th estimate of S associated with side-lobe j) : 

1. Set initial guess for S: 

14e- ew let Sj, o(k, 
B) = SPM(k)- 

v 
cos 2 

where 9w is the estimated wind direction, and v cos" (2) dO is a 

normalising constant. This initial guess is the same as S'. 

2. Set iteration counter :1=0 

3. Integrate : 

b;, º(i) =f=1... 4 

Note that the K; contain singularities, so the usual Simpson's rule or 

trapezium rule integration methods need to be modified to be able to 

cope with this. 

4. Estimate the "relative errors" in &j, 1 

let r" i= 
aiM - 

5. Increment 1 and start to calculate next iteration : 

4 
5j, 

1(k(9, e), B) = &j-, (k(17, e), 9) 11 1+ rM 1-, (o 
1 

m_1 maxe(KM(ii, 0)) 
j=1... 4 

Note that the values of rj for which we have an i will not necessarily be 

the same for each j, and in such cases the nearest point (in q- space) 

to the desired value of r is taken and a weighting applied. 

6. "Within-spectrum" smoothing 
A "nearest point weighted average" is performed on Sj, t(k, 9), j=1... 4 
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7. "Between-spectrum" smoothing 
Smoothing is performed on &I (k, 9), j=1... 4 with S�,, I(k, 0), m 
at the closest points in (k, 0)-space. 

8. Repeat from step 3 until convergence. 

This inversion procedure produces an estimate of the ocean wave directional 

spectrum on a grid which is non-uniform in both wavenumber space and 
directional frequency space. It is transformed onto a uniform directional fre- 

quency grid by taking the mean estimated power of those points closest to a 
particular set of frequencies and directions (typically 0.005Hz and 15° apart). 
The precise frequency limits of this transformed grid depend on the radar 

configuration (i. e. beam direction and frequency), but are typically approx- 
imately 30mHz and 200mHz, and close to the upper limit the distribution 

of points on the original grid is relatively sparse. 

5.5.3 Estimating the Statistical Properties of the Pa- 

rameters Derived from the Inversion 

Because of the nature and structure of equations 5.10, it is unlikely that an 

analytic solution for the variance of S exists. It was therefore decided to use 
Monte-Carlo methods to simulate observed ocean wave spectra and then to 

examine the resulting simulations in an attempt to quantify the behaviour 

of various estimated parameters. The following parameters were chosen for 

examination : 

" (non-directional) ocean wave power spectrum 

" mean direction spectrum 

e directional spread spectrum 

These spectra are functions of the directional ocean wave spectrum and are 
defined in sections 4.2 and 4.3.2. There are two main reasons behind the 

choice of these parameters - firstly they tend to summarise the directional 

spectrum reasonably well, and secondly they are measured by directional 

wave buoys without the need to make any assumptions about the shape of 

the underlying directional ocean wave spectrum. The simulation procedure 

used was as follows : 

83 



1. Generate an underlying directional ocean wave spectrum. 

2. Choose radar frequencies and beam directions. 

3. Calculate the underlying Doppler spectra. 

4. Use the underlying Doppler spectra to generate a simulated radar sig- 
nal in the frequency domain (by convolving the square root of the un- 
derlying Doppler spectra with Normally distributed white noise), and 
mimic the effect in the frequency domain of applying a taper to se- 
quential time series with 75% time overlap. This step introduces the 

appropriate sampling variability into the simulated Doppler spectra - 
no attempt has been made to simulate the effects of background radio 
noise. 

5. Estimate the directional ocean wave spectrum by inverting the integral 

equations 5.10 as described in section 5.5.2. 

6. Repeat from step 4 until there is a set of 5000 simulations from a 
particular underlying directional ocean wave spectrum and radar con- 
figuration. Having 5000 simulations in each set allows a reasonably 
accurate estimation of the second order moments (i. e. the variances) 
of the parameters in the sets. Ideally a larger number (such as 20000) 

would have been produced, but this was prevented by time constraints 
(each set of 5000 simulations typically took in the order of 10 days to 

complete on the available equipment). 

7. Calculate and store the wave parameters to be examined. 

8. Repeat from step 1 using different sea conditions. 

In all, 28 sets of 5000 simulations were produced. The radar configurations 
were chosen to reflect those used in the NURWEC2 trial when the radar 
footprints included the wave buoy site. The radar frequencies chosen were : 

" 9.25MHz, 9.39MHz 

a 6.815MHz, 9.39MHz 

" 12.058MHz, 9.39MHz 

" 16.425MHz, 6.908MHz 
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where the first frequency refers to the south Dyfed site (245.5° beam bearing) 

and the second refers to the north Devon site (315.0° beam bearing). These 
frequency configurations are close to those used throughout virtually the en- 
tire 5-day period of the NURWEC2 storm. Most of the underlying ocean 
wave spectra were created using a piece of software developed at the Univer- 

sity of Sheffield by Holden and Atanga (1994). This program models wave 
components generated by the local wind and allows the option of including 

swell components (other features of the program are described by Holden and 
Atanga (1994)). Most of the spectra used in this study are described in the 
following table, which includes all the parameters required by the program 
(where "amplitude" refers to the relative amplitude of the swell mode, when 
present, to the wind mode, whose peak frequency and amplitude are derived 
from the wind speed) : 

Spectrum Modes Wind Frequency Amplitude Direction Spread 

A 1 15m/s 900 48° 

B 1 6m/s 90° 48° 
C 1 10m/s 90° 48° 

D 2 12m/s 
80mHz 0.7 

30° 
350° 

48° 
27° 

F 2 lOrn/s 

90mHz 1.3 
220° 
350° 

450 
30° 

G 2 lOm/s 
80mHz 1.3 

30° 

350° 

48° 
27° 

H 2 lOm/s 
80mHz 0.5 

30° 
350° 

48° 
27° 

I 2 8m/s 
80mHz 1.0 

30° 
350° 

48° 
27° 

Additionally, four spectra were created with a previous version of the same 

software which used slightly different parameters. These are tabulated below 

(here, "amplitude" refers to the absolute peak amplitude of the appropriate 

mode) : 
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Spectrum Modes Frequency Direction Amplitude Spread 

E 3 140mHz 80° 5m2/Hz 48° 
95mHz 50° 3m2/Hz 27° 
105mHz 62° 4m2/Hz 24° 

J 2 140mHz 150° 5m2/Hz 48° 
80mHz 340° 5m2/Hz 27° 

K 2 150mHz 90° 5m2/Hz 45° 
70mHz 180° 6m2/Hz 300 

L 3 140mHz 230° 4m2/Hz 48° 
90mHz 70° 5m2/Hz 27° 
60mHz 200 3m2/Hz 18° 

Figure 5.16 includes a polar contour plot of the underlying ocean spectrum 
F. The two modes (wind and swell) are clearly distinguished, with the wind 
mode having a higher peak frequency (i. e. it is further away from the origin) 
and a larger directional spread. This figure also includes the underlying 
Doppler spectrum for the Dyfed radar operating at 9.25MHz. Figure 5.17 

shows a sampled Doppler spectrum for this radar configuration corresponding 
to ocean spectrum F. The shape is similar to that of the underlying Doppler 

spectrum, but the deviation is most obvious where the underlying Doppler 

spectrum is relatively flat. 

As mentioned in step 6, time constraints limited the size of each simulated 
data set. For the same reason, the number of data sets (and hence of under- 
lying ocean spectra) was also constrained. This limited number of spectra 
does not represent a comprehensive set of underlying ocean conditions, and a 
study involving a larger such set might yield further relationships than have 
been uncovered here (see section 5.5.4). 

5.5.4 Results from the Simulation Study 

The intention behind the simulations described in section 5.5.3 was to exam- 
ine the behaviour of the variances of the estimated spectral wave parameters 
and hopefully to identify some pattern which could be used to estimate these 

variances directly from the observations. The simulated observations were 
examined using the graphical and statistical capabilities of the Minitab-9 

software package. The basic procedure involved first graphically comparing 
the variances (or functions thereof) with the available parameters (see for ex- 
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SIMULATED DATA DIRECTIONAL SPECTRUM MODEL 
Rader Frequency (MHz) 9.25 Spec Max Freq Max Mean Drn Spread 
Rader Bering 245.50 1.00 0.14 220.00 45.00 
Wind Speed (m/e) 10.00 1.30 0.09 350.00 30.00 
Wind Bearing 220.00 
Sig Weveheight 2.66 
Water Depth (m) 50.00 
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Figure 5.16: A plot created by the ocean spectrum generation program. 
The graph on the left is a polar contour plot of spectrum F, with wave 
frequency being proportional to distance from the origin and direction indi- 

cating the direction towards which the waves are propagating (the contour 
units are m2/Hz/radian). The bimodality of this spectrum is clearly illus- 
trated. The graph on the right is the associated mean Doppler spectrum 
corresponding to the Dyfed radar site transmitting at 9.25MHz. 
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Figure 5.17: A sampled Doppler spectrum corresponding to the Dyfed radar 
site transmitting at 9.25MHz under the ocean wave conditions described by 
spectrum F. 
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ample figure 5.18, which suggests a linear relationship at 105mHz between 
directional spread and the variance of mean direction), and then attempt- 
ing to fit a numerical model to any patterns thus uncovered. The available 
spectral parameters were : 

" power 

" mean direction (see section 4.3.2) 

" directional spread (see section 4.3.2) 

" directional skewness (see Kuik and van Vledder (1984)) 

" directional kurtosis (see Kuik and van Vledder (1984)) 

The following relationships became apparent : 

" The variances of the parameters are functions of spectral frequency. 

" The variances of the parameters vary with radar frequency configura- 
tion. 

" The variance of spectral power depends on spectral power (allowing us 

to think in terms of degrees of freedom, for example see figure 5.19). 

" The variances of spectral mean direction and of spectral directional 

spread both depend on spectral directional spread, (for example see 
figure 5.18). 

Model fitting techniques were chosen appropriate for the above relationships. 
These were one-way analysis of variance (see Pearce (1982b)) in the case 

of spectral power, and analysis of covariance (see Pearce (1982a)) in the 

case of mean direction and directional spread. The results are given in the 

tables in figures 5.20 to 5.22. However, even taking all of the above into 

account, there is still some variation in the behaviour of the second moments 
(i. e. the variances) of the simulated observed parameters for which it has 

not been possible to account (no relationships involving further parameters 

were found), suggesting that there are further factors involved in the above 

relationships (which may be identifiable in a larger study). Nevertheless, 

we are now in a position where we can estimate these variances at least 

approximately. 
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Figure 5.18: A plot of the logarithm of the variance of mean wave direction 
against directional spread at 105mHz. The pattern is typical of that observed 
at other frequencies. 
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Figure 5.19: A plot of spectral power variance against spectral power at 
115mHz. The pattern is typical of that observed at other frequencies. 
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The mean numbers of degrees of freedom (defined as twice the variance di- 

vided by the square of the expectation) of the simulated spectral power ob- 
servations are given in the table in figure 5.20 as a function of wave frequency 

and radar frequency configuration. The missing values refer to where there is 

not enough information to reliably estimate the properties of the parameter. 
This is because these wave frequencies are at the extreme ranges of what the 
inversion process can handle at the given radar frequency configurations. 

The mean logarithms of the variances of the simulated spectral mean di- 

rection observations are given as a function of wave frequency and radar 
frequency configuration in the table in figure 5.21, which includes a factor 

which should be used as shown in equation 5.11. 

log(Var(mean direction)) = factor x directional spread+ table entry (5.11) 

i. e. we have a straight line relationship in which the factor acts as the slope 
and the frequency table entry as intercept. 

The mean logarithms of the variances of the simulated spectral directional 

spread observations are given as a function of wave frequency and radar 
frequency configuration in the table in figure 5.22, which includes a factor 

which should be used as shown in equation 5.12. 

log(Var(directional spread)) = factor x directional spread+ table entry 
(5.12) 

We note that for each radar frequency, the measurements with most vari- 

ability tend to correspond to those frequency bins whose measurements have 

been calculated by averaging a smaller number of points from the original 
inversion (see section 5.5.2). Typical numbers of such points are given in the 

table in figure 5.23. 

It is thus now possible to estimate the variances of spectral power, mean 

wave direction and directional spread as measured by HF radar pairs with 

configurations as examined above. In chapter 7 we will use this information 

to compare radar and wave buoy performances using NURWEC2 data. 
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Wave 
Frequency 

(mHz) 

Radar Frequencies 
(MHz) 

9.25,9.39 6.815,9.39 12.058,9.39 16.425,6.908 
40 23.2 - - - 
45 21.6 16.3 - - 
50 24.3 16.5 - - 
55 34.1 26.9 - - 
60 41.8 41.4 - - 
65 50.3 52.6 - - 
70 48.3 44.7 37.6 43.6 
75 48.4 47.1 40.7 45.4 
80 47.9 48.5 44.7 48.4 
85 49.4 52.0 50.6 51.6 
90 50.1 55.1 55.0 55.6 
95 52.1 57.0 59.9 60.1 
100 53.9 59.3 64.5 64.0 
105 55.1 62.0 65.0 65.6 
110 56.0 62.3 67.8 67.5 
115 59.1 63.9 70.1 68.1 
120 53.5 89.7 53.9 73.2 
125 55.8 91.0 57.5 74.6 
130 57.8 92.5 56.0 72.1 
135 59.3 98.6 60.0 73.9 
140 62.7 96.8 67.0 57.1 
145 61.5 96.8 69.2 50.9 
150 63.8 91.9 65.2 51.9 
160 70.8 86.8 62.6 55.8 
170 43.4 61.2 52.1 33.2 
180 37.8 48.6 59.4 38.7 
190 43.2 - 53.9 - 
200 42.1 - 57.2 - 
210 35.8 - 42.4 - 

Figure 5.20: A table showing the mean numbers of degrees of freedom of 
the simulated spectral power observations as a function of wave frequency 

and radar frequency configuration. The missing values refer to where there is 

not enough information to reliably estimate the properties of the parameter. 
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Wave 
Frequency 

(mHz) 

Radar Frequencies 
(MHz) 

9.25,9.39 6.815,9.39 12.058,9.39 16.425,6.908 
40 -0.38 - - - 
45 0.18 -0.64 - - 
50 -0.24 -0.91 - - 
55 -1.11 -1.11 - - 
60 -2.16 -2.19 - - 
65 -2.87 -3.15 - - 
70 -2.97 -2.64 -1.92 -1.89 
75 -3.08 -2.69 -1.89 -2.03 
80 -3.06 -2.85 -2.08 -2.08 
85 -3.14 -3.19 -2.61 -2.55 
90 -3.31 -3.58 -3.06 -3.10 
95 -3.75 -3.76 -3.49 -3.59 
100 -4.14 -4.02 -3.92 -3.97 
105 -4.47 -4.13 -4.14 -4.15 
110 -4.71 -4.34 -4.37 -4.36 
115 -4.73 -4.43 -4.46 -4.43 
120 -4.71 -4.26 -3.98 -4.67 
125 -4.80 -4.36 -4.23 -4.54 
130 -4.82 -4.39 -4.35 -4.75 
135 -4.79 -4.30 -4.27 -4.65 
140 -4.87 -4.32 -4.57 -5.07 
145 -4.85 -4.27 -4.68 -4.88 
150 -4.95 -4.03 -4.77 -4.99 
160 -4.98 -4.15 -4.95 -5.12 
170 -4.80 -3.78 -5.24 -5.37 
180 -4.62 -2.95 -5.29 -5.46 
190 -3.87 - -5.12 - 
200 -3.22 - -4.18 - 
210 -4.21 - -2.61 - 

factor 7.03 3.03 6.60 7.68 

Figure 5.21: A table showing the mean logarithms of the variances of the 

simulated spectral mean direction observations as a function of wave fre- 

quency and radar frequency configuration. The missing values refer to where 
there is not enough information to reliably estimate the properties of the 

parameter. 
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Wave 
Frequency 

(mHz) 

Radar Frequencies 
(MHz) 

9.25,9.39 6.815,9.39 12.058,9.39 16.425,6.908 
40 -3.70 - - - 
45 -3.85 -4.03 - - 
50 -3.86 -4.10 - - 
55 -3.94 -4.33 - - 
60 -4.13 -4.57 - - 
65 -4.40 -4.90 - - 
70 -4.57 -4.82 -4.19 -4.23 
75 -4.78 -5.10 -4.44 -4.52 
80 -4.96 -5.83 -4.76 -4.92 
85 -4.97 -5.55 -4.98 -5.02 
90 -5.01 -5.65 -5.17 -4.97 
95 -5.13 -5.75 -5.25 -4.94 
100 -5.24 -5.84 -5.37 -4.98 
105 -5.47 -5.94 -5.46 -5.06 
110 -5.56 -5.98 -5.62 -5.12 
115 -5.72 -6.09 -5.66 -5.23 
120 -5.53 -6.18 -5.07 -5.31 
125 -5.73 -6.18 -5.39 -5.50 
130 -5.79 -6.33 -5.20 -5.45 
135 -5.90 -6.44 -5.51 -5.49 
140 -5.97 -6.38 -5.43 -6.47 
145 -5.91 -6.52 -5.48 -6.96 
150 -6.05 -6.05 -5.74 -7.07 
160 -6.12 -6.19 -5.75 -7.16 
170 -6.60 -5.18 -6.20 -7.16 
180 -6.26 -5.06 -6.70 -6.55 
190 -5.95 - -6.92 - 
200 -5.77 - -6.53 - 
210 -6.13 - -6.12 - 

factor 0.63 -1.18 0.59 1.26 

Figure 5.22: A table showing the mean logarithms of the variances of the 

simulated spectral directional spread observations as a function of wave fre- 

quency and radar frequency configuration. The missing values refer to where 
there is not enough information to reliably estimate the properties of the 

parameter. 
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Wave 
Frequency 

(mHz) 

Radar Frequencies 
(MHz) 

9.25,9.39 6.815,9.39 12.058,9.39 16.425,6.908 
40 104 - - - 
45 101 96 - - 
50 102 105 - - 
55 97 100 - - 
60 101 108 - - 
65 103 103 - - 
70 104 94 103 104 
75 111 109 111 104 
80 94 103 104 106 
85 105 100 100 101 
90 100 100 97 105 
95 104 98 100 93 
100 98 100 104 102 
105 104 103 102 101 
110 97 98 96 102 
115 99 100 104 99 
120 94 102 95 105 
125 108 104 103 97 
130 105 96 101 103 
135 93 72 93 84 
140 112 81 113 58 
145 98 54 98 62 
150 92 48 109 58 
160 108 70 167 91 
170 66 48 116 82 
180 49 41 89 71 
190 37 - 54 - 
200 27 - 44 - 
210 22 - 27 - 

Figure 5.23: A table showing typical quantities of inverted points as a 
function of wave frequency and radar frequency configuration. 
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Chapter 6 

System Intercomparisons 

6.1 Introduction 

The use of HF radar to measure ocean wave parameters is a relatively recent 
development (see Wyatt (1990a) for further details). It would therefore be 

useful to have information on the performance of this system. Sections 5.4 

and 5.5.4 describe how we may produce approximate confidence intervals for 
the means of various parameters, but it would also be desirable to evalu- 
ate the relationship between these means and the corresponding underlying 
values for the true ocean spectrum ("sea truth"). Unfortunately, there is 

currently no wave measurement system which is known to give unbiased es- 
timates of sea truth parameters, however, wave buoys are often used as yard- 
sticks. One example of such use was NORCSEX '88 (Norwegian Continental 
Shelf Experiment) in which measurements from wave buoys were compared 
with those from an airborne SAR (Synthetic Aperture Radar) and from the 
GEOSAT radar altimeter (see Olsen and Barstow (1988)). Also noteworthy 
is the WADIC project (see section 6.3). This chapter presents a maximum 
likelihood approach for deriving the relationship between the mean ocean 
wave parameters as measured by HF radar and by directional wave buoys. 
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6.2 Required Assumptions 

For a meaningful system intercomparison, the following assumptions are re- 
quired : 

1. that there is temporal stationarity over the period of measurement, 

2. that there is spatial stationarity over the area of measurement, 

3. that the different systems measure independently. 

If the systems are not operating simultaneously, then assumption 1 must 
hold over the combined measurement period. Likewise, assumption 2 must 
also hold over the area between measurement sites. If either of these is bro- 
ken then the intercomparison is invalid as like is not being compared with 
like. Bova and Wyatt (1994) have used data from the WADIC experiment 
(see section 6.3) to examine such scales of stationarity in the ocean wave 
field. Their temporal examination suggests that the breaking of stationarity 
is wind-related. At "high" wind speeds (greater then 8.1m/s) this seems to 

take between 40 and 60 minutes with a fluctuating wind, and between 60 and 
120 minutes with a stable wind. At lower wind speeds, stationarity assump- 
tions are broken within 180 minutes. Due to data problems, their spatial ex- 

amination has not produced any strong conclusions. The intercomparisons 

presented in chapter 7 are based on near-simultaneous measurements over 

periods lasting approximately 30 minutes. It is therefore unlikely that the 

assumption of (approximate) temporal stationarity does not hold. However, 

the NURWEC2 radars each measure over a 7.5-15km long ring segment with 

a width of 12°, and these segments do not perfectly overlap. It has thus been 

necessary to assume spatial stationarity without there being strong evidence 
to justify this. 

6.3 Existing Approaches to System Inter- 

comparison 

The most comprehensive field intercomparison of commercially available oc- 

ean wave measurement systems was probably the WADIC (Wave Direction 
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Calibration) project (see Allender et al. (1989)). The devices examined in- 

cluded 7 models of wave buoy, as well as other types of system. For a partic- 
ular parameter (such as mean period) least squares and principal axis (see 
Krogstad et al. (1988)) regressions (between pairs of instruments) were per- 
formed both on the entire data set and on various subsets (defined according 
to ranges of significant waveheight), the standard deviations of the measure- 
ments being approximated using a (not necessarily linear) function of the 

measurements themselves. For spectral power, relative bias was estimated 
taking ratios of measurements from a pair of systems (at each frequency) and 
deriving confidence intervals from the resulting (F-) distribution. 

The relative bias of spectral power between the Wavec buoy and HF radars 
of the NURWEC2 field trial (see section 1.4) has been estimated by a sym- 
metrical regression through the origin (separately for each frequency) and 
confidence intervals derived therefrom (see Wyatt (1991)). However, to date 

the bulk of intercomparisons using NURWEC2 data have been restricted to 

the graphical methods (e. g. scatterplots) and linear regression. 

The approach adopted in this study makes use of the fact that we have 

estimates of the variances of each parameter which are not simple functions 

of that particular parameter (and hence relies on less approximation than 

the WADIC approach described above). Using this information we wish to 

model the relationship between the means of the parameter as measured by 

the radars and their Wavec equivalents. This is referred to as a functional 

relationship (see Kendall and Stuart (1973)). We now introduce the concept 

of maximum likelihood estimation. 

6.4 The Basic Principles of Maximum Like- 

lihood Estimation 

Maximum likelihood estimation consists of assuming a statistical model for 

a given data set and then finding the values of the model parameters with 
the highest probability density of producing that data set. These values are 
known as the maximum likelihood estimates of the true parameters. 

Consider a set of independent observations x� j=1... n from a distribution 

where the probability density of an x1 taking the value y is f (yI0) i. e. a 
function of y, given O, where O is a set of parameters which we wish to 
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estimate. The likelihood function is defined as the probability density of the 

observations : 
n 

lik(OIx) _ 11 f (xj I0) (6.1) 

At its maximum (with respect to 0), the likelihood function (if it is well- 
behaved, and provided that the maximum is not achieved on the boundary 

of the parameter space) has a derivative (with respect to 0) of zero. Because 

equation 6.1 involves a product, it is usually more convenient to work with 
its natural logarithm (since the logarithm is a monotonic increasing function, 

the maximum will be at the same place in O-space). Thus : 

n 

äloglik(O lx) 
_a 

log (f (x, I 0)) 
j=i 

Ö9m Ö9, ß 
where 9,,, is the m-th element of O. The maximum likelihood estimate of Bm 

(Om) then satisfies the equation 

n 
a ioa(f(r 1 0)) 

): 1 
aem 

=0 

The variance-covariance matrix of the estimated parameters 6 is (asymptot- 

ically) the inverse of the information matrix I®, whose (1, m)-th element is 

defined as follows : 

Ioýlm) -- a_loglik(o_X) I 

6.5 Application to Wave Measurement Sys- 

tem Intercomparison 

6.5.1 Linear Relationship Case 

Consider a set of paired observations (x,,, yj) of variables X,, and Y respec- 
tively (j =1... n) where : 

a2i N 

YN N(a + bpj, a) 
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where each c72 is known, each µ is unknown and all the Xs and Ys are 
mutually independent. The likelihood equation is : 

1ik(a, b, FýIx, y)o-X, may) _e 
's' °"' 

Hence, 
loglik(a, b, µ jx, y, c7 ,o) 

n1ss 
=- log(27r) -2 log(Qxj ývý) 

1(xj-µj) 

ýz 

1(yj-bµ; -a 2 
2 aZ j=1 ýý v; 

Differentiating the log-likelihood with respect to the parameters we get 

i9loglik(a, b, fllx, y, Qz, C2 

Oc 
n µj 

b 
n 

-f" a 
1n yj 

-1 öa 7z 
j=1 v1 j=1 

;s z vj j=1 01yj 
Ologlik(a, b, pIx, y, Qx, a ) 

°c 
n µj 

b 
n 

-}' a 
n yj E 

Ob j=1 vj j=1 
Tz as of j=1 vi 

öloglik(a, b, pIx, y, QX, o) 1 b2 b(a - yj) xj 
cx aµj 2 -I' ýýj 2 µj 

ýv 
ý" z-z avj ýýj 

and hence the maximum likelihood estimates of the parameters satisfy the 
following equations : 

1=1 yj 
a-n 

E 
yr j=1 vj 

µ (y a 

b 
_=1 

°y. 

i=1 yj 

µi -i bý 
01.1-1 0-1 11"j- 

(6.2) 

Equations 6.2 may be solved iteratively given some suitable "initial guesses" 

of ä and b. 

If we now suppose that the Xs refer to a particular parameter as measured 
by one system and that the Ys refer to the same parameter as measured by 

another and that the relationship between the expectations of the Xs and 
the Ys is linear, we may then use equations 6.2 to produce the maximum 
likelihood estimates of the slope and intercept of this relationship. (We 
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note that since both the Xs and the Ys are estimates of the same ocean 
wave parameter, unity and zero would be logical initial guesses of b and a 
respectively). As an example, figure 6.1 shows a scatter plot of mean wave 
period measurements taken during WADIC as measured (simultaneously) by 
two different wave buoys (a Wavec and a Waverider), with the maximum 
likelihood linear relationship superimposed. The equation of the line is : 

Tm 
Waverider = 0.928 x Tm 

Wavec + 0.505secs 

This line appears to fit the data quite well, and hence a linear relationship 
seems appropriate in this case. Unfortunately, each iteration produces only 
a fairly small change in a and b. Therefore, the convergence criteria need 
to be quite strict (e. g. stopping the iteration when both ä and b change 
by no more than 0.0001% gives an accuracy of about 3 decimal places). It 

should be noted that interchanging X and Y produces a line giving the same 
relationship (i. e. reflected about y= x). In this example, the convergence 
criteria were satisfied after 592 iterations (or after 816 iterations with the 
axes reversed). 

As a comparison, the linear relationship estimated using standard regression 
techniques (see Krogstad et al. (1988)) is: 

= 0.947 x T,,, Wavec + 0.439secs T' Waverider 

This is clearly similar to what we have derived above. 

Figure 6.2 shows the estimated relative mean bias of the Wavec mean period 
with respect to the Waverider mean period with its 95% (pointwise) con- 
fidence interval (as calculated from the inverse of the information matrix). 
The choice of 95% is because of the duality of confidence intervals and hy- 

pothesis tests. For instance, suppose we wish to test for zero Wavec bias 
for some value of the Waverider mean - if zero bias lies outside the 95% 

confidence interval at that value of the Waverider mean, then the data show 
some evidence to suggest non-zero bias at that point. However, in fitting a 
linear relationship we are implying that zero bias can only occur at a single 
point. Of more use would be an estimate of some set of parameter values 
over which the relative bias is within certain limits (±a% for example). This 

may be achieved by asking the question : 
"For what values is there no evidence to suggest a relative Wavec bias greater 
than a% in magnitude? " 
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Figure 6.1: A scatter plot of Wavec mean period against Waverider mean 
period during WADIC with the maximum likelihood linear relationship su- 
perimposed. 
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Figure 6.2: A plot of estimated Wavec mean period relative mean bias 
against Waverider mean period with its 95% confidence interval. 

The answer is those values for which the 95% confidence interval does not 
exclude all relative biases within ±a%. 

From figure 6.2, the data show no evidence to suggest a Wavec bias outside 
±2% for mean Waverider mean periods within (5.5s, 10.3s), and no evidence 
to suggest a Wavec bias outside ±5% for mean Waverider mean periods 
greater than 4.1s (over the range of the data). Below 4.1s there is evidence 
to suggest that the Wavec overestimates mean wave period with respect to 
the Waverider. 

6.5.2 Linear Relationship of Logarithms Case 

For a comparison of spectral power, a linear relationship between the mean 
logarithm of spectral energy (at the same frequency for each measurement 
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Figure 6.3: A scatter plot of the logarithm of Waverider spectral power 
against the logarithm of BEDS spectral power (both at 0.12Hz) during 
WADIC with the maximum likelihood linear relationship superimposed. 

system) appears to be appropriate, as demonstrated by figure 6.3 which shows 
a scatter plot of the logarithm of spectral power at 0.12Hz during WADIC 

as measured (simultaneously) by a Waverider buoy and an array of lasers 
(forming part of BEDS, the "Best Estimate Data Set") with the maximum 
likelihood linear relationship (calculated as described in section 6.5.1) super- 
imposed. The equation of the line is : 

log(S(0.12Hz) Waverider) = 1.035 x log(S(0.12Hz)BEDS) - 0.122 

Figure 6.4 shows the estimated relative mean bias of the Waverider spectral 
power at 0.12Hz to the BEDS equivalent with its 95% (pointwise) confidence 
interval (as calculated from the inverse of the information matrix). From this 
figure, the data show no evidence to suggest a Waverider bias outside ±2% 
for mean BEDS power (at 0.12Hz) above 7.1m2/Hz, and no evidence to 
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Figure 6.4: A plot of estimated Waverider spectral power relative mean 
bias against BEDS spectral energy (both at 0.12Hz) with its 95% confidence 
interval. 

suggest a Waverider bias outside f5% for mean BEDS power (at 0.12Hz) 

greater than 3.0m2/Hz (over the range of the data). Below 3.0m2/Hz there is 

evidence to suggest that the Waverider underestimates mean spectral power 
at 0.12Hz with respect to BEDS. 

6.5.3 Directional Difference Case 

Since any measurement of mean direction can only be relative (e. g. to mag- 
netic north) and not absolute, and 00 is the same direction as 360°, it makes 
little sense to think in terms of proportionality between measurements, but 

rather of the difference between them. Consider a set of observed directional 
differences b1 of paired measurements from two systems taken independently 
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from variables Wj (j = 1... n) where : 

'I's ̂ ' N(µ, c; ) 

where each of is known. The likelihood equation is : 

n 1.0_, u 
11 1e 

21% o) 1ik(pl &, oz) _ 
j=1 

V2-lroj2 / 

Hence, 

loglik(fýlb, ý-2) 21og(2ir) 
-2En log(aj) -2E 

ß'i0,2 2 

j=l j=l 

(j 

and differentiating with respect to p we get : 

D1oglik(µ 10,0,2) n1n oj 

= aý -µ Z 72 +Z ore (6.3) 
j=1 J j=1 

and hence (by setting equation 6.3 to zero) the maximum likelihood estimate 
of µ (the mean directional difference) is a weighted mean : 

J=1 ý. ' 

1=1 

and from this we may calculate the variance of directly : 

Var(µ) =n1 
j=1 °"1 

As an example, figure 6.5 shows a scatter plot of Norwave buoy mean wave 
direction measurements at 0.12Hz from WADIC against their BEDS coun- 
terparts, with the maximum likelihood relationship superimposed. The equa- 
tion of the line is : 

O_ ONorwave = OOBEDS - 8.1780 

The 95% confidence interval of the bias is (-9.357°, -6.999°), and hence the 
data show evidence to suggest a bias of greater than ±5° but no evidence to 

suggest a bias of greater than ±10°. Allender et al. (1989) do not go into 
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Figure 6.5: A scatter plot of Norwave mean wave direction against BEDS 
mean wave direction (both at 0.12Hz) during WADIC with the maximum 
likelihood relationship superimposed. 
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detail regarding mean direction comparisons, but state that the Norwave 

wave direction is biased 9° on average relative to BEDS and that the "reliable 
frequency range for mean direction" (as measured by the Norwave buoy) is 

[0.08Hz, 0.37Hz]. We note, however, that the data in figure 6.5 appear to 

deviate slightly from a linear relationship, indicating that a single value for 

bias (as opposed to a function of direction) may be inappropriate in this case. 

109 



Chapter 7 

Results from NURWEC2 

7.1 Introduction 

In chapter 6 we derived the maximum likelihood estimates for various rela- 
tionships between ocean wave parameters as measured by two independent 

wave measuring systems. In this chapter we estimate such relationships be- 
tween HF radar and wave buoy performances using data from the NUR- 
WEC2 (Netherlands UK Radar Wave buoy Experimental Comparison, see 
section 1.4) field trial. Unfortunately, complete wave buoy data is not avail- 
able at each frequency, but only for integrals over the following frequencies : 

" 30 - 45mHz 

S 45 - 60mHz 

" 60 - 85mHz 

" 85 - 100mHz 

" 100 -125mHz 

" 125 -155mHz 

" 160 - 200mHz 

Hence, the intercomparison of frequency domain data has been based on the 

above frequency ranges. The results presented use the techniques described 
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in section 6.5 and use data recorded during the NURWEC2 storm. We will 
now examine each wave parameter in turn. 

7.2 Significant Waveheight 

Figure 7.1 shows a scatter plot of HF radar significant waveheight measure- 
ments from NURWEC2 against their wave buoy counterparts, with the max- 
imum likelihood linear relationship superimposed. The equation of the line 
is 

. 
H' Radar - 0.986 x H, Wavec + 0.111M 

A linear relationship appears appropriate in this case. From figure 7.2 the 
data show no evidence to suggest a radar bias outside ±2% for mean Wavec 

significant waveheight over the whole range of the data. 

7.3 Mean Wave Period 

Figure 7.3 shows a scatter plot of HF radar mean period measurements from 

NURWEC2 against their wave buoy counterparts, with the maximum likeli- 
hood linear relationship superimposed. The equation of the line is : 

TmRadar 1.284 x Tm Wavec - 2.348secs 

A linear relationship appears appropriate in this case, although there are 
three outliers (each with a relatively large variance, and hence little influence 

on the relationship). From figure 7.4 the data show no evidence to suggest 

a radar bias outside ±2% for mean Wavec mean periods within (7.6s, 9.4s), 

and no evidence to suggest a radar bias outside ±5% for mean Wavec mean 

periods within (6.8s, 11.0s). Below and above these ranges there is evidence 
to suggest that the radars respectively underestimate and overestimate with 

respect to the mean Wavec mean period. 
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Figure 7.1: A scatter plot of HF radar significant waveheight against wave 
buoy significant waveheight during the NURWEC2 storm with the maximum 
likelihood linear relationship superimposed. The estimated relationship and 
the number of points are displayed at the top of the figure. 
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Figure 7.2: A plot of estimated HF radar significant waveheight relative 
mean bias against wave buoy significant waveheight with its 95% confidence 
interval. 
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Figure 7.3: A scatter plot of HF radar mean wave period against wave 
buoy mean wave period during the NURWEC2 storm with the maximum 
likelihood linear relationship superimposed. The estimated relationship and 
the number of points are displayed at the top of the figure. 
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Figure 7.4: A plot of estimated HF radar mean wave period relative mean 
bias against wave buoy mean wave period with its 95% confidence interval. 
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7.4 Spectral Power 

As described in section 6.5.2, (natural) logarithms of the spectral power esti- 
mates of both the radar and buoy have been taken before fitting the maximum 
likelihood estimates of the linear (on a logarithmic scale) relationship. We 

now examine these relationships separately for each frequency range. Each 

relationship is displayed at the top of the appropriate figure, together with 
the number of points (e. g. see figure 7.6). 

7.4.1 Spectral Power at 30-45mHz 

Figure 7.5 shows a scatter plot of the natural logarithms of HF radar spec- 
tral power measurements in the 30 - 45mHz range taken during NURWEC2, 

against their wave buoy counterparts. The maximum likelihood algorithm 
failed to converge for this data set. Because of the outliers in the upper 
left-hand portion of the plot, it is unlikely that any intuitively sensible (i. e. 
monotonically strictly increasing) function could satisfactorily be fitted to 
these data, and it would therefore be unwise to attempt to draw any conclu- 
sions about the relationship therefrom. 

7.4.2 Spectral Power at 45-60mHz 

Figure 7.6 shows a scatter plot of the natural logarithms of HF radar spectral 
power measurements in the 45 - 60mHz range taken during NURWEC2, 

against their wave buoy counterparts, with the maximum likelihood linear 

relationship superimposed. The equation of the line is : 

log(S(45 - 60mHz)Radar) = 1.136 x log(S(45 - 60mHz) Waved + 1.954m2 

The line does not appear to fit the data particularly well, suggesting that 

either a curved relationship would be more appropriate or that there is a 

problem with the outliers in the lower left-hand portion of the plot. Again, 

attempts to draw any conclusions about the relationship would therefore be 

unwise. 
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Figure 7.5: A scatter plot of the natural logarithms of HF radar spec- 
tral power over 30 - 45mHz against their wave buoy equivalents during the 
NURWEC2 storm. 
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Figure 7.6: A scatter plot of the natural logarithms of HF radar spec- 
tral power over 45 - 60mHz against their wave buoy equivalents during the 
NURWEC2 storm, with the maximum likelihood linear relationship super- 
imposed. 
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7.4.3 Spectral Power at 60-85mHz 

Figure 7.7 shows a scatter plot of the natural logarithms of HF radar spectral 
power measurements in the 60 - 85mHz range taken during NURWEC2, 

against their wave buoy counterparts, with the maximum likelihood linear 

relationship superimposed. The equation of the line is : 

log(S(60 - 85mHz)Radar) = 0.776 x log(S(60 - 85mHz) Wavec) - 0.351m2 

A linear relationship appears appropriate in this case. From figure 7.8 the 
data show no evidence to suggest a radar bias outside ±2% for mean Wavec 

spectral powers within (0.17m2,0.29m2), and no evidence to suggest a radar 
bias outside ±5% for mean Wavec spectral power within (0.17m2,0.34m2). 
Below and above these ranges there is evidence to suggest that the radars 
respectively overestimate and underestimate with respect to the mean Wavec 

spectral power. 

7.4.4 Spectral Power at 85-100mHz 

Figure 7.9 shows a scatter plot of the natural logarithms of HF radar spectral 
power measurements in the 85 - 100mHz range taken during NURWEC2, 

against their wave buoy counterparts, with the maximum likelihood linear 

relationship superimposed. The equation of the line is : 

log(S(85 -100mHz)Radar) = 0.958 x log(S(85 -100mHz) Waved - 0.008m2 

A linear relationship appears appropriate in this case. From figure 7.10 the 
data show no evidence to suggest a radar bias outside ±2% over the entire 
range of the data. 

7.4.5 Spectral Power at 100-125mHz 

Figure 7.11 shows a scatter plot of the natural logarithms of HF radar spectral 

power measurements in the 100 - 125mHz range taken during NURWEC2, 

against their wave buoy counterparts, with the maximum likelihood linear 
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Figure 7.7: A scatter plot of the natural logarithms of HF radar spec- 
tral power over 60 - 85mHz against their wave buoy equivalents during the 
NURWEC2 storm, with the maximum likelihood linear relationship super- 
imposed. 
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Figure 7.8: A plot of estimated HF radar spectral power relative mean bias 
against wave buoy mean spectral power (both over 60 - 85mHz) with its 
95% confidence interval. 
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Figure 7.9: A scatter plot of the natural logarithms of HF radar spectral 
power over 85 - 100mHz against their wave buoy equivalents during the 
NURWEC2 storm, with the maximum likelihood linear relationship super- 
imposed. 
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Figure 7.10: A plot of estimated HF radar spectral power relative mean 
bias against wave buoy mean spectral power (both over 85 - 100mHz) with 
its 95% confidence interval. 
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Figure 7.11: A scatter plot of the natural logarithms of HF radar spectral 
power over 100 - 125mHz against their wave buoy equivalents during the 
NURWEC2 storm, with the maximum likelihood linear relationship super- 
imposed. 

relationship superimposed. The equation of the line is : 

log(S(100-125mHz)Radar) = 1.022 xlog(S(100-125mHz) wavec)-0.048m2 

A linear relationship appears appropriate in this case. From figure 7.12 the 
data show no evidence to suggest a radar bias outside ±2% over the entire 
range of the data. 

7.4.6 Spectral Power at 125-155mHz 

Figure 7.13 shows a scatter plot of the natural logarithms of HF radar spectral 
power measurements in the 125 - 155mHz range taken during NURWEC2, 
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Figure 7.12: A plot of estimated HF radar spectral power relative mean 
bias against wave buoy mean spectral power (both over 100 - 125mHz) with 
its 95% confidence interval. 
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Figure 7.13: A scatter plot of the natural logarithms of HF radar spectral 
power over 125 - 155mHz against their wave buoy equivalents during the 
NURWEC2 storm, with the maximum likelihood linear relationship super- 
imposed. 

against their wave buoy counterparts, with the maximum likelihood linear 

relationship superimposed. The equation of the line is : 

log(S(125-155mHz)Radar) = 0.966 xlog(S(125-155mHz) Wavec)+0.169m2 

A linear relationship appears appropriate in this case. From figure 7.14 the 
data show some evidence to suggest a radar bias greater than +5% over the 

entire range of the data. 
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Figure 7.14: A plot of estimated HF radar spectral power relative mean 
bias against wave buoy mean spectral power (both over 125 -155mHz) with 
its 95% confidence interval. 
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Figure 7.15: A scatter plot of the natural logarithms of HF radar spectral 
power over 160 - 200mHz against their wave buoy equivalents during the 
NURWEC2 storm, with the maximum likelihood linear relationship super- 
imposed. 

7.4.7 Spectral Power at 160-200mHz 

Figure 7.15 shows a scatter plot of the natural logarithms of HF radar spectral 
power measurements in the 160 - 200mHz range taken during NURWEC2, 

against their wave buoy counterparts, with the maximum likelihood linear 

relationship superimposed. The equation of the line is : 

log(S(160-200mHz)Radar) = 1.854 xlog(S(160-200mHz) Wavec)+2.597m2 

A linear relationship appears reasonable in this case. However, the wide 
spread of points from the line with respect to the range of the data would 
make estimation somewhat unreliable, and it would therefore be unwise to 

attempt to draw any conclusions about such a relationship. 
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7.4.8 Comment on Radar Performance 

The Radar and Wavec perform similarly (in terms of relative mean bias of 
spectral power estimates) over the frequencies 85-125mHz (the bulk of wave 
power is typically within these frequencies, and hence this is where reliable 
performance is particularly important). That there should be some discrep- 

ancy outside this range is not surprising. At the more extreme frequencies, 
we approach the frequency limits of the radar inversion routine where, if 
anywhere, radar reliability is likely to be at its weakest. At lower frequen- 
cies (which typically have relatively low power levels) it is generally accepted 
that wave buoy measurements are highly prone to noise. Finally, because 
radars and wave buoys measure waves in such fundamentally different ways, 
comparable behaviour over all frequencies would be unexpected. 

7.5 Spectral Mean direction 

The (absolute) radar biases with respect to the wave buoy mean direction 

spectrum have been calculated as described in section 6.5.3. We now examine 
these biases separately for each frequency range. Each estimated bias (with 
its 95% confidence interval) is displayed at the top of the appropriate figure, 
together with the number of points (e. g. see figure 7.16). 

7.5.1 Spectral Mean Direction at 30-45mHz 

Figure 7.16 shows a scatter plot of the HF radar spectral mean direction 

measurements in the 30 - 45mHz range taken during NURWEC2, against 
their wave buoy counterparts. The maximum likelihood bias is superimposed, 
however, the scatter of the data makes it impossible to derive any useful 
information therefrom. 

7.5.2 Spectral Mean Direction at 45-60mHz 

Figure 7.17 shows a scatter plot of the HF radar spectral mean direction 

measurements in the 45 - 60mHz range taken during NURWEC2, against 
their wave buoy counterparts. The maximum likelihood bias is superimposed, 
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Figure 7.16: A scatter plot of HF radar spectral mean direction over 30 - 
45mHz against their wave buoy equivalents during the NURWEC2 storm, 
with the maximum likelihood bias estimate superimposed. 
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Figure 7.17: A scatter plot of HF radar spectral mean direction over 45 - 
60mHz against their wave buoy equivalents during the NURWEC2 storm, 
with the maximum likelihood bias estimate superimposed. 

however, as before, the scatter of the data makes it impossible to derive any 
useful information therefrom. 

7.5.3 Spectral Mean Direction at 60-85mHz 

Figure 7.18 shows a scatter plot of the HF radar spectral mean direction 

measurements in the 60 - 85mHz range taken during NURWEC2, against 
their wave buoy counterparts, with the maximum likelihood bias estimate 
superimposed. The scatter of the data makes it difficult to derive any useful 
information, however, the bias line does pass through the region where the 

points are clustered (in the 45° - 90° range). 
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Figure 7.18: A scatter plot of HF radar spectral mean direction over 60 - 
85mHz against their wave buoy equivalents during the NURWEC2 storm, 
with the maximum likelihood bias estimate superimposed. 
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Radar = uavec + -1.913degs 95% C. I. (-13.971,10.144) 
Number of points = 52 
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Figure 7.19: A scatter plot of HF radar spectral mean direction over 85 - 
100mHz against their wave buoy equivalents during the NURWEC2 storm, 
with the maximum likelihood bias estimate superimposed. 

7.5.4 Spectral Mean Direction at 85-100mHz 

Figure 7.19 shows a scatter plot of the HF radar spectral mean direction 

measurements in the 85 - 100mHz range taken during NURWEC2, against 
their wave buoy counterparts, with the maximum likelihood bias estimate 
superimposed. The data show no evidence to suggest a bias between the 
Wavec and radar measurements and the model appears to be appropriate, 
but the limited range of the data make such conclusions rather weak. 

7.5.5 Spectral Mean Direction at 100-125mHz 

Figure 7.20 shows a scatter plot of the HF radar spectral mean direction 

measurements in the 100 - 125mHz range taken during NURWEC2, against 
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Radar = uavec + 5.306degs 95% C. I. (-3.465,14.077) 
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Figure 7.20: A scatter plot of HF radar spectral mean direction over 100 - 
125mHz against their wave buoy equivalents during the NURWEC2 storm, 
with the maximum likelihood bias estimate superimposed. 

their wave buoy counterparts, with the maximum likelihood bias estimate su- 
perimposed. As before, the data show no evidence to suggest a bias between 
the Wavec and radar measurements and the model appears to be appropriate, 
but the limited range of the data make such conclusions rather weak. 

7.5.6 Spectral Mean Direction at 125-155mHz 

Figure 7.21 shows a scatter plot of the HF radar spectral mean direction 

measurements in the 125 - 155mHz range taken during NURWEC2, against 
their wave buoy counterparts, with the maximum likelihood bias estimate su- 
perimposed. As before, the data show no evidence to suggest a bias between 
the Wavec and radar measurements and the model appears to be appropriate, 
but the limited range of the data make such conclusions rather weak. 
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Radar = uavec + 1.069degs 95% C. I. (-7.467,9.605) 
Number of points = 52 
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Figure 7.21: A scatter plot of HF radar spectral mean direction over 125 - 
155mHz against their wave buoy equivalents during the NURWEC2 storm, 
with the maximum likelihood bias estimate superimposed. 
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Figure 7.22: A scatter plot of HF radar spectral mean direction over 160 - 
200mHz against their wave buoy equivalents during the NURWEC2 storm, 
with the maximum likelihood bias estimate superimposed. 

7.5.7 Spectral Mean Direction at 160-200mHz 

Figure 7.22 shows a scatter plot of the HF radar spectral mean direction 

measurements in the 160 - 200mHz range taken during NURWEC2, against 
their wave buoy counterparts, with the maximum likelihood bias estimate 
superimposed. The data show some evidence to suggest a bias (estimated at 
13.34°) between the Wavec and radar measurements. There appears to also 
be some deviation from the model, but once again the limited range of the 
data make such conclusions rather weak. 
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7.5.8 Comment on Radar Performance 

The Radar and Wavec perform similarly (in terms of bias of spectral mean 
direction estimates) over the frequencies 85 - 155mHz over the range of the 
data. Possible reasons for discrepancy outside this frequency range are dis- 

cussed in section 7.4. However, the limited ranges of observed spectral mean 
direction in the data make it impossible to draw any meaningful conclusions 
about the general reliability of the radar measurements. 

7.6 Spectral Directional Spread 

Figure 7.23 shows a scatter plot of HF radar spectral directional spread 
measurements in the 85 -100mHz range taken during NURWEC2, against 
their wave buoy counterparts. The large scatter of the data with respect to 
their range of values make it impossible to fit any meaningful relationship to 
this data set. Such behaviour is encountered for spectral directional spread 
measurements at all available frequencies, therefore no further inference has 

been attempted on the spectral directional spread parameters. 

7.7 Intercomparison Summary 

The NURWEC2 storm data suggest that the HF radar pair and the Wavec 

buoy show good correspondence for significant waveheight measurements and 

spectral power measurements (over 85 - 125mHz). There is also a fair corre- 

spondence for mean period measurements in the range 6.8-11.0secs. Spectral 

mean direction shows good correspondence over 85 - 155mHz, but the range 

of available data is somewhat limited. Spectral directional spread estimates 

show a poor correspondence over all frequencies. 
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Figure 7.23: A scatter plot of HF radar spectral directional spread over 
85 - 100mHz against their wave buoy equivalents during the NURWEC2 
storm. 
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Chapter 8 

Conclusions 

8.1 Theoretical Developments 

This study has involved the development of theory in three main categories : 

Firstly, expressions have been derived for the estimation of variances of (and 

covariances between) weighted integrals of power (or energy) spectra calcu- 
lated from tapered time series. 

Secondly, the distributions of a variety of wave measurements as measured by 
HF radars have been determined (though in the case of spectral parameters, 
which are derived from the inversion of Barrick's equation, this has only been 

possible through the use of simulated data). These are : 

" wind direction 

9 significant waveheight 

" mean wave period 

" spectral power 

" spectral mean direction 

" spectral directional spread 

This information may be used to produce confidence intervals for the un- 
derlying parameters. The variances of the spectral parameters depend on 
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spectral frequency and the radar configuration. Additionally, the variance of 
spectral power depends on spectral power and the variances of mean direction 
and directional spread both depend on directional spread. 

Thirdly, methods have been developed by which the relationship between 

observations by two different measuring systems of the same parameter may 
be estimated, taking into account that there is statistical variability in both 

measurement systems and also that the variance of each observation is es- 
timable. 

8.2 HF Radar Performance during the NUR- 

WEC2 Field Trial 

Confidence intervals for the radar measurements have been produced which 
are, in the case of significant waveheight and mean wave period, of com- 
parable width to those obtained from the corresponding NURWEC2 Wavec 

measurements. For significant waveheight the 90% radar confidence limits 

vary from ±8.2% to ±13.6% from the observations. For mean wave period 
they vary from ±3.5% to ±8.2%. In the case of spectral power, the 90% 

confidence intervals are narrower than those obtained from the correspond- 
ing NURWEC2 Wavec measurements, with the limits varying from ±25% to 
±33% (approximately, depending on ocean wave frequency and radar oper- 

ating frequency) except at the frequency limits of the inversion algorithm. 

This study has also involved the intercomparison of radar and wave buoy 

data taken during the NURWEC2 storm, by the application of the above 

mentioned theoretical developments. The data suggest that the radars and 
the wave buoy show good correspondence for significant waveheight mea- 

surements and spectral power measurements (over 85 - 125mHz - the 
frequencies with most wave power, and hence those of most importance). 
There is also a fair correspondence for mean period measurements in the 

range 6.8 - 11.0secs. Spectral mean direction shows good correspondence 
over 85 - 155mHz over the somewhat limited directional range (i. e. as ob- 

served during the NURWEC2 storm) of the data. Spectral directional spread 

estimates show a poor correspondence over all frequencies. 

Where the correspondence between the radar and wave buoy measurements 
is poor, it is not possible to decide with which system (if not both) the prob- 
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lem lies. Where the correspondence is good, the data are consistent with the 
assumption that the difference in bias between the two systems (relative to 
sea truth) is negligible, which combined with the fact that radar and wave 
buoys measure waves in drastically different ways, tends to lend some credi- 
bility to both systems. For such parameters, an oceanographer who would be 
satisfied with wave buoy measurements is likely to be just as contented with 
HF radar measurements. There are, of course, other advantages in using an 
HF radar system, such as wide area coverage. 

8.3 Possibilities for Further Research 

The variety of simulations of those radar measurements which are obtained 
by the inversion of Barrick's equation has been by necessity limited (each set 
of 5000 simulations would typically take of the order of 10 days to complete 
on the available equipment). With the ever increasing development of com- 
puter technology, a much wider range of simulations will become possible, 
hopefully leading to a better understanding of the statistical behaviour of 
these estimates than has been achieved in this study. It would also be useful 
to know what effect the inclusion of background radio noise would have on 
these measurements. At the same time, research is presently underway on 
the improvement of the inversion algorithm, with emphasis on the extrac- 
tion of data from higher wave frequencies (the current upper limit for the 
PISCES system is about 200mHz, depending on radar frequency). These 
improved estimates may have different distributions from the ones available 
to this study. 

Apart from the PISCES HF radar system used during NURWEC2, there is 

currently in operation another HF radar system called OSCR (Ocean Surface 
Current Radar). As its name suggests, OSCR was originally designed for 

surface current measurement, but OSCR data has also been successfully used 
for wave measurement. OSCR operates at a much higher frequency than 
PISCES (27MHz), and the examination of the statistical properties of data 
derived from the inversion of Barrick's equation at this frequency would be 

another possible avenue for further study. 

Finally, other intercomparison trials involving HF radar systems are planned. 
The SCAWVEX (Surface Current and Wave Variability Experiment) series 
of trials are expected to start in early 1996 and will consist of wave mea- 
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surements from an OSCR type HF radar, wave buoys and possibly other 
systems. 

142 



References 

Allender, J., Audunson, T., Barstow, S. F., Bjerken, S., Krogstad, H. E., 
Steinbakke, P., Vartdal, L., Borgman, L. E. and Graham, C. (1989) The 
WADIC Project: A Comprehensive Field Evaluation of Directional 
Wave Instrumentation, Ocean Engineering, 16(5/6), pp. 505-536. 

Barrick, D. E. (1980) Accuracy of Parameter Extraction from Sample- 
Averaged Sea-Echo Doppler Spectra, IEEE Transactions on Antennas 

and Propagation, AP-28(1), pp. 1-11. 

Barrick, D. E. and Snider, J. B. (1977) The Statistics of HF Sea-Echo Doppler 
Spectra, IEEE Transactions on Antennas and Propagation, AP-25(1), 

pp. 19-28. 

Chatfield, C. (1989) The Analysis of Time Series : An Introduction (Fourth 
Edition), Chapman and Hall. 

Cox, D. R. and Miller, H. D. (1965) The Theory of Stochastic Processes, 
Methuen. 

Dexter, P. E. and Theodoridis, S. (1982) Surface Wind Speed Extraction from 

HF Sky Wave Radar Doppler Spectra, Radio Science, 17(3), pp. 643- 
652. 

Harris, F. J. (1978) On the Use of Windows for Harmonic Analysis with the 
Discrete Fourier Transform, Proceedings of the IEEE, 66(1), pp. 51-83. 

Holden, G. J. and Atanga, J. N. (1994) Modelling and Processing HF Radar 
Doppler Spectra, Technical Report ACM Internal Report, Applied Math- 

ematics Section, School of Mathematics and Statistics, University of 
Sheffield. 

Jenkins, G. M. and Watts, D. G. (1968) Spectral Analysis and its Applica- 

tions, Holden-Day. 

143 



Kendall, M. G. and Stuart, A. (1973) The Advanced Theory of Statistics : 
Volume 2- Inference and Relationship (Third Edition), Griffin. 

Kinsman, B. (1965) Wind waves - Their Generation and Propagation on 
the Ocean Surface, Prentice-Hall. 

Krogstad, H. E., Barstow, S. F., Vartdal, L., Bjerken, S. and Audunson, 
T. (1988) WADIC Phase 8: Intercomparison of Directional Wave Mea- 

surement Systems. WADIC Project Final Report Vol II, Oceanor A/S 
& IKU Sintef-Gruppen. 

Kuik, A. J. and van Vledder, G. P. (1984) Proposed Method for the Rou- 
tine Analysis of Pitch-Roll Buoy Data, Symposium : Description and 
Modelling of Directional Seas, Kobenhavn, 18-20 June 1984. 

Long, R. B. (1980) The Statistical Evaluation of Directional Spectrum Esti- 

mates Derived from Pitch/Roll Buoy Data, Journal of Physical Oceanog- 

raphy, 10, pp. 944-952. 

Neave, H. R. (1978) Statistics Tables for Mathematicians, Engineers, 
Economists and the Behavioural and Management sciences, Unwin Hy- 

man. 

Olsen, R. B. and Barstow, S. F. (1988) Wave Measurements on Haltenbanken 
During NORCSEX '88: An Intercomparison of Buoy, Synthetic Aper- 

ture Radar and Altimeter Data, Oceanor A/S. 

Pearce, S. C. (1982a) Analysis of Covariance, Encyclopedia of Statistical Sci- 

ences, Volume 1, Wiley-Interscience. 

Pearce, S. C. (1982b) Analysis of Variance, Encyclopedia of Statistical Sci- 

ences, Volume 1, Wiley-Interscience. 

Shearman, E. D. R. (1983) Radio Science and Oceanography, Radio Science, 
18, pp. 299-320. 

ýova, M. G. and Wyatt, L. R. (1991) The Implications of Statistical Vari- 

ability on the Intercomparison of Wave Measurement Systems, 1991 In- 

ternational Geoscience and Remote Sensing Symposium, Helsinki Uni- 

versity of Technology, 3-6 June 1991. 

gova, M. G. and Wyatt, L. R. (1994) Spatial and Temporal Variability in 
Ocean Wave Measurement, report presented to HSE on completion of 

project P2881, to be published by HSE. 

144 



Tucker, M. J. (1991) Waves in Ocean Engineering - Measurement, Analysis, 
Interpretation, Ellis Horwood. 

Welch, P. D. (1967) The Use of Fast Fourier Transform for the Estimation of 
Power Spectra: A Method Based on Time Averaging Over Short, Mod- 
ified Periodograms, IEEE Transactions on Audio and Electroacoustics, 
AU-15, pp. 70-73. 

Wyatt, L. R. (1983) The Measurement of Oceanographic Parameters Using 
Dekametric Radar, Remote Sensing Applications in Marine Science and 
Technology, 

, pp. 183-205. 

Wyatt, L. R. (1988a) HF Radar Wave Measurement during NURWEC2, 
Proceedings of IGARSS '88 Symposium, Edinburgh, Scotland, 13-16 
September 1988. 

Wyatt, L. R. (1988b) HF Radar Wind Measurement during NURWEC2, 
Proceedings of IGARSS '88 Symposium, Edinburgh, Scotland, 18-16 
September 1988. 

Wyatt, L. R. (1988c) Significant Waveheight Measurement with H. F. Radar, 

International Journal of Remote Sensing, 9(6), pp. 1087-1095. 

Wyatt, L. R. (1990a) Progress in the Interpretation of HF Sea Echo: HF 

Radar as a Remote Sensing Tool, IEE Proceedings, 137(2), pp. 139- 

148. 

Wyatt, L. R. (1990b) A Relaxation Method for Integral Inversion Applied 

to HF Radar Measurement of the Ocean Wave Directional Spectrum, 

International Journal of Remote Sensing, 11(8), pp. 1481-1494. 

Wyatt, L. R. (1991) High-Frequency Radar Measurements of the Ocean 

Wave-Directional Spectrum, IEEE Journal of Oceanic Engineering, 

16(1), pp. 163-169. 

Wyatt, L. R. and Holden, G. J. (1991) The Remote Sensing of Very Long 

Ocean Waves using HF Radar, 1991 International Geoscience and Re- 

mote Sensing Symposium, Helsinki University of Technology, 3-6 June 

1991. 

Wyatt, L. R., Venn, J., Burrows, G. D., Ponsford, A. M., Moorhead, M. D. 

and van Heteren, J. (1986) HF Radar Measurements of Ocean Wave 

Parameters during NURWEC, IEEE Journal of Oceanic Engineering, 

OE-11(2), pp. 219-234. 

145 



Wyatt, L. R., Venn, J., Moorhead, M. D., Burrows, G. D., Ponsford, A. M. 

and van Heteren, J. (1985) HF Radar Measurements of Significant Wave- 
height and Mean Period During NURWEC, Advances in Underwater 
Technology and Offshore Engineering, Vol 4, Graham 8 Trotman. 

146 


